
1

NSFont

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSFont.h

Class Description

NSFont objects represent PostScript fonts to an application, providing access to characteristics of the font
and assistance in laying out glyphs relative to one another. Font objects are also used to establish the current
font when drawing in an NSView, using the set method.

You don’t create Font objects using the alloc and init methods. Instead, you use one of the
fontWithName:... methods to look up an available font and alter its size or matrix to your needs. These
methods check for an existing font object with the specified characteristics, returning it if there is one.
Otherwise, they look up the font data requested and create the appropriate object. NSFont also defines a
number of methods for getting standard system fonts, such as systemFontOfSize:, userFontOfSize:, and
messageFontOfSize:.

Drawing Text with NSFonts

In most cases you draw text using an NSTextView object. You can also draw an NSString directly in an
NSView using the methods drawAtPoint:withAttributes: and drawInRect:withAttributes:, which the
Application Kit adds to NSString. These methods take an NSDictionary of attributes, as used by the
NSAttributedString class, and apply them when drawing the string.

If you need to draw text using PostScript operators such as show, it’s recommended that you set the current
font using NSFont’s set method, rather than the PostScript operators setfont or selectfont. This allows the
Application Kit printing mechanism to record the fonts used in the PostScript output. If you absolutely must
set the font using a PostScript operator, you can record the font with the Application Kit using the class
method useFont:. See the description of that method for more information.

Getting Font Metrics

NSFont defines a number of methods for accessing a font’s metrics information, when that information is
available. Methods such as boundingRectForGlyph:, boundingRectForFont, xHeight, and so on, all
correspond to standard font metrics information. See the various method descriptions for specific

2

Classes: NSFont

information. You can also get a complete dictionary of font metrics using the afmDictionary method, or
retrieve the original contents of the metrics file using afmFileContents.

Calculating Glyph Layout

The OPENSTEP extended text system handles many complex aspects of laying glyphs out. If you need to
calculate layout for your own purposes, you can use several methods defined by NSFont. There are three
basic kinds of glyph layout: sequential, for running text; overstruck, for diacritics and other non-spacing
marks; and stacked, for scripts such as Indic and Tibetan.

The first kind of layout is supported by the method positionOfGlyph:precededByGlyph:isNominal:. This
method calculates the position of a glyph relative to glyph preceding it, using font metrics if they’re
available. This is the most straightforward kind of glyph layout.

Layout of overstruck glyphs is potentially the most complex, as it requires detailed information about
placement of many kinds of modifying marks. When you know both the base glyph and the non-spacing
mark being struck over it, you first use the method positionOfGlyph:struckOverGlyph:metricsExist: to
calculate the location of the non-spacing mark. This method also indicates whether metrics are available for
the two glyphs. If they’re not, you must fall back to calculating the layout based on the bounding rectangle
of the base glyph (which you can get using boundingRectForGlyph:). There are two methods for doing
this. The first, positionOfGlyph:struckOverRect:metricsExist:, attempts to use metrics to place the
non-spacing mark in a reasonable fashion relative to the base glyph’s bounding box. If this method indicates
that metrics aren’t available (which NSFont’s implementation always does, because current fonts don’t
provide for metrics relative to bare rectangles), you must resort to the last method,
positionOfGlyph:forCharacter:struckOverRect:. This method attempts to place the non-spacing mark
in a legible if not pleasing manner, treating it as a well-known character such as an acute accent, tilde, or
other modifier.

An additional method for laying out a series of overstruck glyphs is
positionsForCompositeSequence:numberOfGlyphs:pointArray:. This method accepts a C array
containing the base glyph followed by all of its non-spacing marks, and calculates the positions for as many
as it can. For those that it can’t determine, you must resort to the individual methods described immediately
above.

The final kind of layout, of stacked glyphs, is supported by the method
positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:. Stacked glyphs often
have special compressed forms, which standard font metrics don’t account for. NSFont’s implementation
of this method simply abuts the bounding boxes of the two glyphs for approximate layout of the individual
glyphs. Subclasses of NSFont can override this method to access any extra metrics information in order to
provide more sophisticated layout of stacked glyphs.

Special Glyphs

NSFont defines two special glyphs. NSNullGlyph indicates no glyph at all, and is useful in some layout
methods for calculating information that isn’t relative to another glyph. For example, with

3

positionOfGlyph:precededByGlyph:isNominal:, you can specify NSNullGlyph as the first glyph to get
the nominal advancement of the preceding glyph.

The other special glyph is NSControlGlyph, which the text system maps onto control characters such as
linefeed and tab. This glyph has no graphic representation and has no inherent advancement of its own.
Instead, the text system examines the control character underlying the glyph to determine what kind of
special layout it needs to perform.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copyWithZone:

Method Types

Creating arbitrary fonts + fontWithName:size:
+ fontWithName:matrix:

Creating user fonts + userFontOfSize:
+ userFixedPitchFontOfSize:

Creating system fonts + boldSystemFontOfSize:
+ menuFontOfSize:
+ messageFontOfSize:
+ paletteFontOfSize:
+ systemFontOfSize:
+ titleBarFontOfSize:
+ toolTipsFontOfSize:

Getting preferred fonts + setPreferredFontNames:
+ preferredFontNames

Using a font to draw – set

Adding fonts to print operations + useFont:

Getting general font information – encodingScheme
– isBaseFont
– isFixedPitch
– mostCompatibleStringEncoding

Getting information about glyphs – glyphIsEncoded:
– glyphWithName:

4

Classes: NSFont

Getting metrics information – advancementForGlyph:
– afmDictionary
– afmFileContents
– ascender
– boundingRectForFont
– boundingRectForGlyph:
– capHeight
– descender
– italicAngle
– matrix
– maximumAdvancement
– pointSize
– underlinePosition
– underlineThickness
– widthOfString:
– widths
– xHeight

Getting font names – displayName
– familyName
– fontName

Laying out sequential glyphs – positionOfGlyph:precededByGlyph:isNominal:
– positionsForCompositeSequence:numberOfGlyphs:pointArray:

Laying out overstruck glyphs – positionOfGlyph:forCharacter:struckOverRect:
– positionOfGlyph:struckOverGlyph:metricsExist:
– positionOfGlyph:struckOverRect:metricsExist:

Laying out stacked glyphs – positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:
metricsExist:

Setting user fonts + setUserFont:
+ setUserFixedPitchFont:

Getting corresponding device fonts – printerFont
– screenFont

5

Class Methods

boldSystemFontOfSize:
+ (NSFont *)boldSystemFontOfSize:(float)fontSize

Returns the font used for standard interface items that are rendered in boldface type, in fontSize. This is
equivalent to titleBarFontOfSize:.

See also: + fontWithName:size:

fontWithName:matrix:
+ (NSFont *)fontWithName:(NSString *)typeface matrix:(const float *)fontMatrix

Returns a font object for typeface and fontMatrix. A typeface is a fully specified family-face name, such as
Helvetica-BoldOblique or Times-Roman (not a name as shown in the Font Panel). fontMatrix is a standard
6-element transformation matrix as used in the PostScript language, specifically with the makefont
operator. In most cases, you can simply use fontWithName:size: to create standard scaled fonts.

You can use the defined value NSFontIdentityMatrix for [1 0 0 1 0 0]. Fonts created with a matrix other
than NSFontIdentityMatrix don’t automatically flip themselves in flipped views.

See also: – isFlipped (NSView)

fontWithName:size:
+ (NSFont *)fontWithName:(NSString *)fontName size:(float)fontSize

Returns a font object for typeface and fontSize. A typeface is a fully specified family-face name, such as
Helvetica-BoldOblique or Times-Roman. fontSize is used to scale the font, and is equivalent to using a font
matrix of [fontSize 0 0 fontSize 0 0] with fontWithName:matrix:. Fonts created with this method
automatically flip themselves in flipped views. This method is the preferred means for creating fonts.

� menuFontOfSize:
+ (NSFont *)menuFontOfSize:(float)fontSize

Returns the font used for menu items in fontSize.

See also: + fontWithName:size:

6

Classes: NSFont

� messageFontOfSize:
+ (NSFont *)messageFontOfSize:(float)fontSize

Returns the font used for standard interface items, such as button labels, menu items, and so on, in fontSize.
This is equivalent to systemFontOfSize:.

See also: + fontWithName:size:

� paletteFontOfSize:
+ (NSFont *)paletteFontOfSize:(float)fontSize

Returns the font used for palette window title bars.

See also: + fontWithName:size:, + titleBarFontOfSize:

� preferredFontNames
+ (NSArray *)preferredFontNames

Returns the names of fonts that the Application Kit tries first when a character has no font specified, or when
the font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the
remaining fonts on the system are searched for a glyph.

See also: + setPreferredFontNames:, –glyphIsEncoded:

� setPreferredFontNames:
+ (void)setPreferredFontNames:(NSArray *)fontNames

Sets the list of preferred font names to fontNames, and records them in the user defaults database for all
applications. The Application Kit tries these fonts first when a character has no font specified, or when the
font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the remaining
fonts on the system are searched for a glyph.

This method is useful for optimizing glyph rendering for uncommon scripts, by guaranteeing that
appropriate fonts are searched first.

See also: + preferredFontNames

7

setUserFixedPitchFont:
+ (void)setUserFixedPitchFont:(NSFont *)aFont

Sets the font used by default for documents and other text under the user’s control, when that font should
be fixed-pitch, to aFont, and records the font in the user defaults database for all applications.

See also: + setUserFont:, + userFixedPitchFontOfSize:

setUserFont:
+ (void)setUserFont:(NSFont *)aFont

Sets the font used by default for documents and other text under the user’s control to aFont, and records the
font in the user defaults database for all applications.

See also: + setUserFixedPitchFont:, + userFontOfSize:

systemFontOfSize:
+ (NSFont *)systemFontOfSize:(float)fontSize

Returns the font used for standard interface items, such as button labels, menu items, and so on, in fontSize.
This is equivalent to messageFontOfSize:.

See also: + boldSystemFontOfSize:, + userFontOfSize:, + userFixedPitchFontOfSize:,
+ fontWithName:size:

� titleBarFontOfSize:
+ (NSFont *)titleBarFontOfSize:(float)fontSize

Returns the font used for window title bars, in fontSize. This is equivalent to boldSystemFontOfSize:.

See also: + paletteFontOfSize:

� toolTipsFontOfSize:
+ (NSFont *)toolTipsFontOfSize:(float)fontSize

Returns the font used for tool-tips labels, in fontSize.

See also: + fontWithName:size:

8

Classes: NSFont

useFont:
+ (void)useFont:(NSString *)fontName

Records fontName as one used in the current print operation.

The NSFont class object keeps track of the fonts used in an NSView by recording each one that receives a
set message. When the view is called upon to generate conforming PostScript language output (such as
during printing), the NSFont class provides the list of fonts required for the %%DocumentFonts
comment, as required by Adobe’s Document Structuring Conventions.

useFont: augments this system by providing a way to register fonts that are included in the document but
not set using NSFont’s set method. For example, you might set a font by executing the setfont operator
within a function created by the pswrap utility. In such a case, be sure to pair the use of the font with a
useFont: message to register the font for listing in the document comments.

userFixedPitchFontOfSize:
+ (NSFont *)userFixedPitchFontOfSize:(float)fontSize

Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change), when that font should be fixed-pitch.

See also: + userFontOfSize:, + fontWithName:size:, + setUserFixedPitchFont:

userFontOfSize:
+ (NSFont *)userFontOfSize:(float)fontSize

Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change).

See also: + userFixedPitchFontOfSize:, + fontWithName:size:, + setUserFont:

Instance Methods

advancementForGlyph:
– (NSSize)advancementForGlyph:(NSGlyph)aGlyph

Returns the nominal spacing for aGlyph—the distance that the current point moves after showing the
glyph—accounting for the receiving font’s size. This spacing is given according to the glyph’s movement
direction, which is either strictly horizontal or strictly vertical.

See also: – boundingRectForGlyph, –maximumAdvancement

9

afmDictionary
– (NSDictionary *)afmDictionary

Returns the receiving font’s AFM information in dictionary form. It contains the following information
under these keys, with all values as strings:

NSAFMFamilyName NSAFMCapHeight
NSAFMFontName NSAFMXHeight
NSAFMFormatVersion NSAFMAscender
NSAFMFullName NSAFMDescender
NSAFMNotice NSAFMUnderlinePosition
NSAFMVersion NSAFMUnderlineThickness
NSAFMWeight NSAFMItalicAngle
NSAFMEncodingScheme NSAFMMappingScheme
NSAFMCharacterSet

For any other items, use the AFM file contents, as returned by afmFileContents.

afmFileContents
– (NSString *)afmFileContents

Returns the receiving font’s AFM file as a string object.

ascender
– (float)ascender

Returns the top y coordinate of the receiving font’s longest ascender.

See also: – descender, –capHeight, –xHeight

boundingRectForFont
– (NSRect)boundingRectForFont

Returns the receiving font’s bounding rectangle, scaled to the font’s size. The bounding rectangle is the
union of the bounding rectangles of every glyph in the font.

See also: – boundingRectForGlyph:

10

Classes: NSFont

boundingRectForGlyph:
– (NSRect)boundingRectForGlyph:(NSGlyph)aGlyph

Returns the bounding rectangle for aGlyph, scaled to the receiving font’s size.

See also: – boundingRectForFont

capHeight
– (float)capHeight

Returns the receiving font’s cap height.

See also: – ascender, –descender, –xHeight

descender
– (float)descender

Returns the bottom y coordinate of the receiving font’s longest descender.

displayName
– (NSString *)displayName

Returns the name used to represent the receiving font in the user interface, typically localized for the user’s
language.

encodingScheme
– (NSString *)encodingScheme

Returns the name of the receiving font’s encoding scheme, such as “AdobeStandardEncoding”,
“ISOLatin1Encoding”, “FontSpecific”, and so on.

familyName
– (NSString *)familyName

Returns the receiving font’s family name; for example, “Times” or “Helvetica”.

See also: – fontName

11

fontName
– (NSString *)fontName

Returns the receiver’s full font name, as used in PostScript language code; for example, “Times-Roman”
or “Helvetica-Oblique”.

See also: – familyName

glyphIsEncoded:
– (BOOL)glyphIsEncoded:(NSGlyph)aGlyph

Returns YES if the receiving font encodes aGlyph, NO if it doesn’t contain it.

glyphWithName:
– (NSGlyph)glyphWithName:(NSString *)glyphName

Returns the encoded glyph named glyphName, or –1 if the receiving font contains no such glyph. Also
returns –1 if the glyph named glyphName isn’t encoded.

isBaseFont
– (BOOL)isBaseFont

Returns YES if the receiver is a PostScript base font, NO if it’s a PostScript composite font composed of
other base fonts.

isFixedPitch
– (BOOL)isFixedPitch

Returns YES if all glyphs in the receiving font have the same advancement, NO if any advancements differ.

See also: – advancementForGlyph:

italicAngle
– (float)italicAngle

Returns the receiving font’s italic angle, as read from its AFM file.

12

Classes: NSFont

matrix
– (const float *)matrix

Returns the receiver’s font matrix, a standard 6-element transformation matrix as used in the PostScript
language, specifically with the makefont operator. In most cases, with a font of fontSize, this matrix is
[fontSize 0 0 fontSize 0 0].

See also: + fontWithName:matrix:

� maximumAdvancement
– (NSSize)maximumAdvancement

Returns the greatest advancement of any of the receiving font’s glyphs. This is always either strictly
horizontal or strictly vertical.

See also: – advancementForGlyph:

� mostCompatibleStringEncoding
– (NSStringEncoding)mostCompatibleStringEncoding

Returns the string encoding that works best with the receiving font, where there are the fewest possible
unmatched characters in the string encoding and glyphs in the font. You can use NSString’s
dataUsingEncoding: or dataUsingEncoding:allowLossyConversion: method to convert the string to this
encoding.

Note: This method works heuristically using well-known font encodings, so for nonstandard encodings it
may not in fact return the optimal string encoding.

See also: – widthOfString:

pointSize
– (float)pointSize

Returns the receiving font’s point size, or the vertical point size for a font with a nonstandard matrix.

13

� positionOfGlyph:forCharacter:struckOverRect:
– (NSPoint)positionOfGlyph:(NSGlyph)aGlyph

forCharacter:(unichar)aChar
struckOverRect:(NSRect)aRect

Calculates and returns a suitable location for aGlyph to be drawn as a diacritic or non-spacing mark relative
to aRect, assuming that aGlyph represents aChar. Returns NSZeroPoint if the location can’t be calculated.
The nature of aChar as one appearing above or below its base character determines the location returned.
For example, in the first figure below, the gray tilde and box represent aGlyph and aRect, and the black dot
is the point returned (defined relative to the origin of the aRect).

To place multiple glyphs over a rectangle, work from the innermost ones to the outermost. As you calculate
the position of each glyph, enlarge the rectangle to include the bounding rectangle of the glyph in
preparation for the next glyph. The second figure shows a tilde, acute accent, and cedilla all placed over a
rectangle, with the acute accent placed relative to bounding box of the base rectangle and the tilde.

This method is the last fallback mechanism for performining minimally legible typography when metrics
aren’t available, and should be used when positionOfGlyph:struckOverGlyph:metricsExist: indicates
that metrics don’t exist for the base glyph specified. It can account for the layout and placement of most
Latin, Greek, and Cyrillic non-spacing marks. You should draw the glyph at the returned location, even if
it’s NSZeroRect.

positionOfGlyph:precededByGlyph:isNominal:
– (NSPoint)positionOfGlyph:(NSGlyph)aGlyph

precededByGlyph:(NSGlyph)prevGlyph
isNominal:(BOOL *)flag

Calculates and returns the location of aGlyph relative to prevGlyph, assuming that prevGlyph precedes it in
the layout (not necessarily in the character stream). The point returned should be used relative to whatever
location is used for prevGlyph. If flag is non-NULL, it’s filled with NO if font metrics are available and
were used in the calculation, YES if the default spacing for the glyphs was used.

Returns NSZeroPoint is either aGlyph or prevGlyph is NSControlGlyph or is invalid. Returns the nominal
advancement of prevGlyph if aGlyph is NSNullGlyph.

This method is useful for sequential glyph placement when glyphs aren’t drawn with a single PostScript
operation.

˜ ´̃
¸

14

Classes: NSFont

� positionOfGlyph:struckOverGlyph:metricsExist:
– (NSPoint)positionOfGlyph:(NSGlyph)aGlyph

struckOverGlyph:(NSGlyph)baseGlyph
metricsExist:(BOOL *)flag

Calculates and returns a suitable location for aGlyph to be drawn as a diacritic or non-spacing mark relative
to baseGlyph. The point returned should be used relative to whatever location is used for baseGlyph. If flag
is non-NULL it’s filled with YES if font metrics are available, NO if they’re not. If flag is returned as NO,
the result isn’t valid and shouldn’t be used. In that case, use
positionOfGlyph:struckOverRect:metricsExist: or positionOfGlyph:forCharacter:struckOverRect:
to calculate a reasonable offset.

See also: – positionsForCompositeSequence:numberOfGlyphs:pointArray:,
– positionOfGlyph:structOverRect:metricsExist:

� positionOfGlyph:struckOverRect:metricsExist:
– (NSPoint)positionOfGlyph:(NSGlyph)aGlyph

struckOverRect:(NSRect)aRect
metricsExist:(BOOL *)flag

Overridden by subclasses to calculate and return a suitable location for aGlyph to be drawn as a diacritic or
non-spacing mark relative to aRect, provided metrics exist. Returns NSZeroRect if the location can’t be
determined. If flag is non-NULL it’s filled with YES if font metrics are available, NO if they’re not. If flag
is returned as NO, the result isn’t valid and shouldn’t be used. In that case, use
positionOfGlyph:forCharacter:struckOverRect: to calculate a reasonable offset.

Because current font metrics don’t include support for generic placement relative to rectangles, NSFont’s
implementation of this method always returns NSZeroPoint and returns flag as NO.

� positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:
– (NSPoint)positionOfGlyph:(NSGlyph)aGlyph

withRelation:(NSGlyphRelation)relation
toBaseGlyph:(NSGlyph)baseGlyph
totalAdvancement:(NSSize *)offset
metricsExist:(BOOL *)flag

Calculates and returns a suitable location for aGlyph to be drawn relative to baseGlyph, where relation is
NSGlyphBelow or NSGlyphAbove. The point returned should be used relative to whatever location is used
for baseGlyph. This method is useful for calculating the layout of stacked glyphs, such as those in Indic and
Tibetan scripts.

15

If offset is non-NULL, it’s filled with the larger of the two glyphs’ advancements, allowing for reasonable
layout of following glyphs.

If flag is non-NULL it’s filled with YES if font metrics are available, NO if they’re not. If metrics aren’t
available, the location is calculated as a simple stacking with no gap between baseGlyph and aGlyph.

Note: This method only supports horizontally laid-out base glyphs.

� positionsForCompositeSequence:numberOfGlyphs:pointArray:
– (int)positionsForCompositeSequence:(NSGlyph *)glyphs

numberOfGlyphs:(int)numGlyphs
pointArray:(NSPoint *)points

Calculates and fills points with the locations for glyphs, assuming that the first glyph is a base character and
those following are non-spacing marks. These points should all be interpreted as relative to the location of
the first glyph in glyphs. Returns the number of points that could be calculated.

If the number of points calculated is less than numGlyphs, the number of glyphs provided, you can use
positionOfGlyph:structOverRect:metricsExist: to determine the positions for the remaining glyphs.
When using that method, calculate the base rectangle for each glyph from the bounding rectangles and
positions of all preceding glyphs.

printerFont
– (NSFont *)printerFont

When sent to a font object representing a scalable PostScript font, returns self. When sent to a font object
representing a bitmapped screen font, returns its corresponding scalable PostScript font.

See also: – screenFont

screenFont
– (NSFont *)screenFont

When sent to a font object representing a bitmapped screen font, returns self. When sent to a font object
representing a scalable PostScript font, returns a bitmapped screen font matching the receiver in typeface
and matrix (or size), or nil if such a font can’t be found.

Note: Screen fonts are for direct use with the Window Server only. Never use them with Application Kit
objects, such as in setFont: methods.

See also: – printerFont

16

Classes: NSFont

set
– (void)set

Establishes the receiving font as the current font for PostScript show and other text-drawing operators.
During a print operation, also records the font as used in the PostScript code emitted.

See also: + useFont:

underlinePosition
– (float)underlinePosition

Returns the baseline offset that should be used when drawing underlines with the receiving font, as
determined by the font’s AFM file. This value is usually negative, which must be considered when drawing
in a flipped coordinate system.

See also: – underlineThickness

underlineThickness
– (float)underlineThickness

Returns the thickness that should be used when drawing underlines with the receiving font, as determined
by the font’s AFM file.

See also: – underlinePosition

widthOfString:
– (float)widthOfString:(NSString *)aString

Returns the x axis offset of the current point when aString is drawn with a PostScript show operator in the
receiving font. This method performs lossy conversion of aString to the most compatible encoding for the
receiving font.

Use this method only when you’re sure all of aString can be rendered with the receiving font. In general,
it’s better to use the Application Kit’s string-drawing methods, as described under NSString Additions.

See also: – mostCompatibleStringEncoding

17

widths
– (float *)widths

Returns a C array of 256 floats, giving the unscaled width of each glyph in the font. This data is useful only
for simple fonts without non-spacing marks, and doesn’t account for Unicode-related issues at all. You
should avoid using this method wherever possible; use advancementForGlyph: instead.

xHeight
– (float)xHeight

Returns the x-height of the receiving font.

See also: – ascender, –descender

