
1

NSButton

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSButton.h

Class Description

NSButton is a subclass of NSControl that intercepts mouse-down events and sends an action message to a
target object when it’s clicked or pressed. By virtue of its NSButtonCell, NSButton is a two-state
NSControl—it’s either “off” or “on”—and it displays its state depending on the configuration of the
NSButtonCell. NSButton acquires other attributes of NSButtonCell. The state is used as the value, so
NSControl methods like setIntValue: actually set the state (the methods setState: and state are provided
as a more conceptually accurate way of setting and getting the state). The NSButton can send its action
continuously and display highlighting in several different ways. What’s more, an NSButton can have a key
equivalent that’s eligible for triggering whenever the NSButton’s NSPanel or NSWindow is the key
window.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCell object.
However, while NSMatrix requires you to access the NSButtonCells directly, most of NSButton’s methods
are “covers” for identically declared methods in NSButtonCell. (In other words, the implementation of the
NSButton method invokes the corresponding NSButtonCell method for you, allowing you to be
unconcerned with the NSButtonCell’s existence.) The only NSButtonCell methods that don’t have covers
relate to the font used to display the key equivalent, and to specific methods for highlighting or showing the
NSButton’s state (these last are usually set together with NSButton’s setButtonType: method).

Creating a Subclass of NSButton

Override the designated initializer (NSView’s initWithFrame: method) if you create a subclass of
NSButton that performs its own initialization. If you want to use a custom NSButtonCell subclass with your
subclass of NSButton, you have to override the setCellClass: method, as described in “Creating New
NSControls” in the NSControl class specification.

See the NSButtonCell class specification for more on NSButton’s behavior.

2

Classes: NSButton

Method Types

Initializing the NSButton factory + cellClass
+ setCellClass:

Setting the button type – setButtonType:

Setting the state – setState:
– state

Setting the repeat interval – getPeriodicDelay:interval:
– setPeriodicDelay:interval:

Setting the titles – alternateTitle
– attributedAlternateTitle
– attributedTitle
– setAlternateTitle:
– setAttributedAlternateTitle
– setAttributedTitle
– setTitle:
– title

Setting the images – alternateImage
– image
– imagePosition
– setAlternateImage:
– setImage:
– setImagePosition:

Modifying graphic attributes – isBordered
– isTransparent
– setBordered:
– setTransparent:

Displaying – highlight:

Setting the key equivalent – keyEquivalent
– keyEquivalentModifierMask
– setKeyEquivalent:
– setKeyEquivalentModifierMask:

Handling events and action messages
– performClick:
– performKeyEquivalent:

3

Class Methods

cellClass
+ (Class)cellClass

Returns the class of cells used by the receiving class (which must be NSButtonCell or one of its subclasses).
Returns nil if no cell class has been specified for the receiving class or any of its superclasses (up to
NSButtonCell).

setCellClass:
+ (void)setCellClass:(Class)classId

Configures the NSButton class to use instances of classId for its NSCells. classId should be the id of a
subclass of NSButtonCell, obtained by sending the class message to either the NSCell subclass object or to
an instance of that subclass. The default NSCell class is NSButtonCell.

If this method isn’t overridden by a subclass of NSButton, then when it’s sent to that subclass, NSButton
and any other subclasses of NSButton will use the new NSCell subclass as well. To safely set an NSCell
class for your subclass of NSButton, override this method to store the NSCell class in a static id. Also,
override the designated initializer to replace the NSButton subclass instance’s NSCell with an instance of
the NSCell subclass stored in that static id. See “Creating New NSControls” in the NSControl class
specification’s class description for more information.

Instance Methods

alternateImage
– (NSImage *)alternateImage

Returns the image that appears on the button when it’s in its alternate state, or nil if there is no alternate
image. Note that some button types don’t display an alternate image. Buttons don’t display images by
default.

See also: – image, – imagePosition, – keyEquivalent, – setButtonType:

4

Classes: NSButton

alternateTitle
– (NSString *)alternateTitle

Returns the string that appears on the button when it’s in its alternate state, or the empty string if the button
doesn’t display an alternate title. Note that some button types don’t display an alternate title. By default, a
button’s alternate title is “Button”.

See also: – attributedAlternateTitle , – setButtonType:, – title

� attributedAlternateTitle
– (NSAttributedString *)attributedAlternateTitle

Returns the string that appears on the button when it’s in its alternate state as an NSAttributedString, or an
empty attributed string if the button doesn’t display an alternate title. Note that some button types don’t
display an alternate title. By default, a button’s alternate title is “Button”.

See also: – setButtonType:, – attributedTitle

� attributedTitle
– (NSAttributedString *)attributedTitle

Returns the string that appears on the button when it’s in its normal state as an NSAttributedString, or an
empty attributed string if the button doesn’t display a title. A button’s title is always displayed if the button
doesn’t use its alternate contents for highlighting or displaying the alternate state. By default, a button’s title
is “Button”.

See also: – attributedAlternateTitle , – setButtonType:

getPeriodicDelay:interval:
– (void)getPeriodicDelay:(float *)delay interval:(float *)interval

Returns by reference the delay and interval periods for a continuous button. delay is the amount of time (in
seconds) that the button will pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.

Default delay and interval values are taken from a user’s defaults (60 seconds maximum for each); if the
user hasn’t specified default values, delay defaults to 0.4 seconds and interval defaults to 0.075 seconds.

See also: – isContinuous (NSControl)

5

highlight:
– (void)highlight:(BOOL)flag

Highlights (or unhighlights) the button according to flag. Highlighting may involve the button appearing
“pushed in” to the screen, displaying its alternate title or image, or causing the button to appear to be “lit.”
If the current state of the button matches flag, no action is taken.

See also: – setButtonType:

image
– (NSImage *)image

Returns the image that appears on the button when it’s in its normal state, or nil if there is no such image.
This image is always displayed on a button that doesn’t change its contents when highlighting or showing
its alternate state. Buttons don’t display images by default.

See also: – alternateImage, – setButtonType:

imagePosition
– (NSCellImagePosition)imagePosition

Returns the position of the button’s image relative to its title. The return value is one of the following (these
are defined in NSCell.h):

Return Value Meaning

NSNoImage The button doesn’t display an image (this is the default)

NSImageOnly The button displays an image, but not a title

NSImageLeft The image is to the left of the title

NSImageRight The image is to the right of the title

NSImageBelow The image is below the title

NSImageAbove The image is above the title

NSImageOverlaps The image overlaps the title

If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

See also: – setButtonType:, – setImage:, – setTitle:

6

Classes: NSButton

isBordered
– (BOOL)isBordered

Returns YES if the button has a border, NO otherwise. A button’s border isn’t the single line of most other
controls’ borders; instead, it’s a raised bezel. By default, buttons are bordered.

isTransparent
– (BOOL)isTransparent

Returns YES if the button is transparent, NO otherwise. A transparent button never draws itself, but it
receives mouse-down events and tracks the mouse properly.

keyEquivalent
– (NSString *)keyEquivalent

Returns the key-equivalent character of the button, or the empty string if one hasn’t been defined. Buttons
don’t have a default key equivalent.

See also: – keyEquivalentFont (NSButtonCell), –performKeyEquivalent:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the mask indicating the modifier keys that are applied to the button’s key equivalent. Mask bits are
defined in NSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: – keyEquivalent:

performClick:
– (void)performClick:(id)sender

Simulates the user’s clicking the button with the mouse. This method essentially highlights the button,
sends the button’s action message to the target object, and then unhighlights the button. If an exception is
raised while the target object is processing the action message, the button is unhighlighted before the
exception is propagated out of performClick:.

See also: – performKeyEquivalent:

7

performKeyEquivalent:
– (BOOL)performKeyEquivalent:(NSEvent *)anEvent

If the character in anEvent matches the button’s key equivalent, and the modifier flags in anEvent match
the key-equivalent modifier mask, performKeyEquivalent: simulates the user clicking the button by
sending performClick: to self, and returns YES. Otherwise, performKeyEquivalent: does nothing and
returns NO. performKeyEquivalent: also returns NO in the event that the button is blocked by a modal
panel or the button is disabled.

See also: – keyEquivalentModifierMask

setAlternateImage:
– (void)setAlternateImage:(NSImage *)image

Sets the image that appears on the button when it’s in its alternate state to image and, if necessary, redraws
the contents of the button. Note that some button types don’t display an alternate image.

See also: – setImage:, –setButtonType:

setAlternateTitle:
– (void)setAlternateTitle:(NSString *)aString

Sets the string that appears on the button when it’s in its alternate state to aString. Note that some button
types don’t display an alternate title.

See also: – setTitle:, – setButtonType:, –setFont: (NSButtonCell)

� setAttributedAlternateTitle:
– (void)setAttributedAlternateTitle:(NSAttributedString *)aString

Sets the string that appears on the button when it’s in its alternate state to the attributed string aString. Note
that some button types don’t display an alternate title.

See also: – setAttributedTitle:, – setButtonType:, –setFont: (NSButtonCell)

8

Classes: NSButton

� setAttributedTitle:
– (void)setAttributedTitle:(NSAttributedString *)aString

Sets the string that appears on the button when it’s in its normal state to the attributed string aString and
redraws the button. The title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: – setAttributedAlternateTitle:, –setButtonType:, –setFont: (NSButtonCell)

setBordered:
– (void)setBordered:(BOOL)flag

Sets whether the button has a bezeled border. If flag is YES, the button displays a border; if NO, the button
doesn’t display a border. A button’s border is not the single line or most other controls’ borders; instead,
it’s a raised bezel. This method redraws the button if setBordered: causes the bordered state to change.

setButtonType:
– (void)setButtonType:(NSButtonType)aType

Sets how the button highlights while pressed and how it shows its state. setButtonType: redisplays the
button before returning.

The types available are for the most common button types, which are also accessible in Interface Builder.
You can configure different behavior with NSButtonCell’s setHighlightsBy: and setShowsStateBy:
methods.

aType can be one of eight constants:

9

Button Type Description

NSMomentaryLight While the button is held down it’s shown as “lit.” This type of
button is best for simply triggering actions, as it doesn’t show its
state; it always displays its normal image or title. This option is
called “Momentary Light” in Interface Builder’s Button
Inspector. This is the default button type.

NSMomentaryPushButton While the button is held down it’s shown as “lit,” and also
“pushed in” to the screen if the button is bordered. This type of
button is best for simply triggering actions, as it doesn’t show its
state; it always displays its normal image or title. This option is
called “Momentary Push” in Interface Builder’s Button
Inspector.

NSMomentaryChangeButton
While the button is held down, the alternate image and alternate
title are displayed. The normal image or title are displayed when
the button isn’t pressed. This option is called “Momentary
Change” in Interface Builder’s Button Inspector.

NSPushOnPushOffButton The first click both highlights and causes the button to be
“pushed in” if the button is bordered. A second click returns it
to its normal state. This option is called “Push On/Push Off” in
Interface Builder’s Button Inspector.

NSOnOffButton The first click highlights the button. A second click returns it to
the normal (unhighlighted) state. This option is called “On/Off”
in Interface Builder’s Button Inspector.

NSToggleButton The first click highlights the button, while a second click returns
it to its normal state. Highlighting is performed by changing to
the alternate title or image and showing the button as “pushed
in” if the button is bordered. This option is called “Toggle” in
Interface Builder’s Button Inspector.

NSSwitchButton This is a variant of NSToggleButton that has no border, with the
default image set to “NSSwitch,” and the alternate image set to
“NSHighlightedSwitch” (these are system bitmaps). This type
of button is available as a separate palette item in Interface
Builder.

NSRadioButton Like NSSwitchButton, but the default image is set to
“NSRadioButton” and the alternate image is set to
“NSHighlightedRadioButton” (these are system bitmaps). This
type of button is available as a separate palette item in Interface
Builder.

10

Classes: NSButton

See also: – setAlternateImage:, –setButtonType: (NSButtonCell), – setImage:

setImage:
– (void)setImage:(NSImage *)image

Sets the button’s image to anImage, and redraws the button. A button’s image is displayed when the button
is in its normal state, or all the time for a button that doesn’t change its contents when highlighting or
displaying its alternate state.

See also: – setImagePosition:, – setAlternateImage:, –setButtonType:

setImagePosition:
– (void)setImagePosition:(NSCellImagePosition)aPosition

Sets the position of the button’s image relative to its title. See the imagePosition method description for a
listing of possible values for aPosition.

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)charCode

Sets the key equivalent character of the button, and redraws the button’s interior if it displays a key
equivalent instead of an image. The key equivalent isn’t displayed if the image position is set to
NSNoImage, NSImageOnly or NSImageOverlaps; that is, the button must display both its title and its
“image” (the key equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to nil, then set the key equivalent,
then set the image position.

See also: – performKeyEquivalent:, – setAlternateImage:, – setImage:, –setImagePosition:,
– setKeyEquivalentFont: (NSButtonCell)

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the mask indicating the modifier keys to be applied to the button’s key equivalent. Mask bits are
defined in NSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: – setKeyEquivalent:

11

setPeriodicDelay:interval:
– (void)setPeriodicDelay:(float)delay interval:(float)interval

Sets the message delay and interval for the button. These two values are used if the button is configured (by
a setContinuous: message) to continuously send the action message to the target object while tracking the
mouse. delay is the amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target object. interval is the amount of time (also in seconds)
between those messages.

The maximum value allowed for both delay and interval is 60.0 seconds; if a larger value is supplied, it’s
ignored and 60.0 seconds is used.

See also: – setContinuous (NSControl)

setState:
– (void)setState:(int)value

Sets the button’s state to value and, if necessary, redraws the button. 0 is the normal or “off” state, and any
nonzero number is the alternate or “on” state.

setTitle:
– (void)setTitle:(NSString *)aString

Sets the title displayed by the button when in its normal state to aString and, if necessary, redraws the
button’s contents. This title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: – setAlternateTitle:, – setButtonType:, –setFont: (NSButtonCell)

setTransparent:
– (void)setTransparent:(BOOL)flag

Sets whether the button is transparent, and redraws the button if flag is NO and the button wasn’t already
transparent. A transparent button tracks the mouse and sends its action, but doesn’t draw. A transparent
button is useful for sensitizing an area on the screen so that an action gets sent to a target when the area
receives a mouse click.

12

Classes: NSButton

state
– (int)state

Returns the button’s state: 0 for normal or “off,” or 1 for alternate or “on.”

title
– (NSString *)title

Returns the title displayed on the button when it’s in its normal state (this title is always displayed if the
button doesn’t use its alternate contents for highlighting or displaying the alternate state). Returns the empty
string if the button doesn’t display a title. By default, a button’s title is “Button”.

See also: – alternateTitle, – setButtonType:

