
Classes: NSData Class Cluster 1

NSData Class Cluster

Class Description

NSData objects provide an object-oriented wrapper for byte buffers. This enables simple
allocated buffers (that is, data with no embedded pointers) to take on the behavior of
Foundation Kit objects. NSData is typically used for data storage. It is also useful in
Distributed Objects applications, where data contained in NSData objects can be copied or
moved between applications.

NSData can be used to wrap data of any size. When the data size is over a few pages,
NSData uses virtual memory management. NSData can also be used to wrap pre-existing
data, regardless of how the data was allocated. NSData contains no information about the
data itself (such as its type); the responsibility for deciding how to use the data lies with the
client. In particular, it will not handle byte-order swapping when distributed between
big-endian and little-endian machines. For typed data, use NSValue.

NSData provides an operating system-independent way to benefit from copy-on-write
memory. The copy-on-write technique means that when data is copied through a virtual
memory copy (using vm_copy()), an actual copy of the data is not made until there is an
attempt to modify it. NSData uses either bcopy() (byte copy) or vm_copy() to copy data,
depending on the data’s size. For large amounts of data, vm_copy() is used. For more
information about vm_copy(), see Chapter 1 of NEXTSTEP Operating System Software.

The cluster’s two public classes, NSData and NSMutableData, declare the programmatic
interface for static and dynamic NSData objects, respectively.

The objects you create using these classes are referred to as data objects. Because of the
nature of class clusters, data objects are not actual instances of the NSData or
NSMutableData classes but of one of their private subclasses. Although a data object’s
class is private, its interface is public, as declared by these abstract superclasses, NSData
and NSMutableData. (See “Class Clusters” in the introduction to the Foundation Kit for
more information on class clusters and creating subclasses within a cluster.)

Generally, you instantiate a data object by sending one of the data... messages to either the
NSData or NSMutableData class object. These methods return a data object containing or
copying the bytes you pass in as arguments. Depending on the method used to instantiate
the object, a copy of the bytes may be created and added to the receiver before the data
object is instantiated. This means that when the data object is released, a copy of the bytes
it contains continues to exist. Alternatively, you can instantiate a data object with a method
whose name includes “NoCopy,” such as initWithBytesNoCopy:length: . In that case, no
copy of the bytes remains when the original bytes are freed along with the data object that
contains them.

 2 Classes: NSData Class Cluster

The NSData classes adopt the NSCopying and NSMutableCopying protocols, making it
convenient to convert between efficient, read-only data objects and mutable data objects.

Classes: NSData Class Cluster 3

NSData

Inherits From: NSObject

Conforms To: NSCopying
NSMutableCopying

Declared In: foundation/NSData.h

Class Description

The NSData class declares the programmatic interface to an object that contains data in the
form of bytes. NSData’s two primitive methods—bytes and length—provide the basis for
all the other methods in its interface. The bytes method returns a pointer to the bytes
contained in the data object. length returns the number of bytes contained in the data object.

NSData provides access methods for copying bytes from a data object into a specified
buffer. getBytes copies all of the bytes into a buffer, whereas getBytes:length: copies bytes
into a buffer of length length. getBytes:range: copies a range of bytes from a starting point
within the bytes themselves. You can also return a data object that contains a subset of the
bytes in another data object by using the subdataWithRange: method. Or, you can use the
description method to return an NSString representation of the bytes in a data object.

For determining if two data objects are equal, NSData provides the isEqualToData:
method, which does a byte-for-byte comparison.

The writeToFile:atomically: method enables you to write the contents of a data object to
a file.

Instance Variables

None declared in this class.

Adopted Protocols

NSCopying – copy
– copyWithZone:

▲

 4 Classes: NSData Class Cluster

NSMutableCopying – mutableCopy
– mutableCopyWithZone:

Method Types

Allocating and initializing + allocWithZone:
+ data
+ dataWithBytes:length:
+ dataWithBytesNoCopy:length:
+ dataWithContentsOfFile:
+ dataWithContentsOfMappedFile
– initWithBytes:length:
– initWithBytesNoCopy:length:
– initWithContentsOfFile:
– initWithContentsOfMappedFile:
– initWithData:

Accessing data – bytes
– description
– getBytes:
– getBytes:length:
– getBytes:range:
– subdataWithRange:

Testing data – isEqualToData:
– length

Storing data – writeToFile:atomically:

Class Methods

allocWithZone

+ allocWithZone:(NSZone *)zone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the
NSData class object, an instance of the appropriate immutable subclass is returned;
otherwise, an object of the receiver’s class is returned.

Typically, you create dictionary objects using the data... class methods, not the alloc... and
init... methods. Note that it’s your responsibility to release (with either release or
autorelease) those objects created with the alloc... methods.

Classes: NSData Class Cluster 5

data

+ data

Creates and returns an empty data object. This method is declared primarily for the use of
mutable subclasses of NSData.

dataWithBytes:length:

+ dataWithBytes:(const void *)bytes length:(unsigned)length

Creates and returns a data object containing length bytes copied from the buffer bytes. If
page alignment is being used and if the data size is more than a few pages, this method
performs an efficient virtual copy using vm_copy().

See also: – dataWithBytesNoCopy:length:

dataWithBytesNoCopy:length:

+ dataWithBytesNoCopy:(void *)bytes length:(unsigned)length

Creates and returns a data object containing length bytes from the buffer bytes.

See also: – dataWithBytes:length:

dataWithContentsOfFile:

+ dataWithContentsOfFile:(NSString *)path

Creates and returns a data object by reading every byte from the file specified by path.

For example, this excerpt creates a data object myData initialized with the contents of
myFile.txt. The path must be absolute.

 NSString* thePath = @"/u/smith/myFile.txt";

 NSData *myData;

 myData = [NSData dataWithContentsOfFile:thePath];

See also: – dataWithContentsOfMappedFile:

 6 Classes: NSData Class Cluster

dataWithContentsOfMappedFile:

+ dataWithContentsOfMappedFile:(NSString *)path

Creates and returns a data object from the mapped file specified by path. Because of file
mapping restrictions, this method should only be used if the file is guaranteed to exist for
the duration of the data object’s existence. It is generally safer to use the
dataWithContentsOfFile: method.

This methods assumes that mapped files are available on the underlying operating system.
A mapped file uses virtual memory techniques to avoid copying pages of the file into
memory until they are actually needed.

See also: – dataWithContentsOfFile:

Instance Methods

bytes

– (const void *)bytes

Returns a pointer to the data object’s contents. This method returns read-only access to the
data.

See also: – description, –getBytes:, –getBytes:length:, –getBytes:range:

description

– (NSString *)description

Returns an NSString object that contains a hexadecimal representation of the receiver’s
contents. This string can be read by the ASCII parser.

See also: – bytes

getBytes:

– (void)getBytes:(void *)buffer

Copies a data object’s contents into buffer.

For example, this excerpt initializes a data object myData with the NSString myString. It
then copies the contents of myData into aBuffer.

NSData *myData;

unsigned char aBuffer[20];

Classes: NSData Class Cluster 7

NSString* myString = @"Test string.";

myData = [NSData

 dataWithBytes:[myString cString]

 length:[myString length]];

[myData getBytes:aBuffer];

See also: – bytes:, –getBytes:length:, –getBytes:range:

getBytes:length:

– (void)getBytes:(void *)buffer length:(unsigned)length

Copies length bytes from a data object into buffer.

See also: – bytes:, –getBytes:, – getBytes:range:

getBytes:range:

– (void)getBytes:(void *)buffer range:(NSRange)range

Copies the a data object’s contents into buffer, from a range range that is within the bytes
in the object. If range isn’t within the receiver’s range of bytes, an NSRangeException error
is raised.

See also: – bytes:, –getBytes:, – getBytes:length:

hash

@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For
a data object, hash returns the length of the data object. If two data objects are equal (as
determined by the isEqual: method), they have the same hash value.

See also: – isEqual:

 8 Classes: NSData Class Cluster

initWithBytes:length:

– initWithBytes: (const void *)bytes length:(unsigned)length

Initializes a newly allocated data object by adding to it length bytes of data copied from the
buffer bytes.

See also: – initWithBytesNoCopy:length:

initWithBytesNoCopy:length:

– initWithBytesNoCopy: (void *)bytes length:(unsigned)length

Initializes a newly allocated data object by adding to it length bytes of data from the buffer
bytes.

See also: – initWithBytes:length:

initWithContentsOfFile:

– initWithContentsOfFile: (NSString *)path

Initializes a newly allocated data object by reading into it the data from the file specified by
path. This method invokes initWithData: as part of its implementation.

See also: – initWithContentsOfMappedFile:

initWithContentsOfMappedFile:

– initWithContentsOfMappedFile: (NSString *)path

Initializes a newly allocated data object by reading into it the mapped file specified by path.
This method invokes initWithData: as part of its implementation.

See also: – initWithContentsOfFile:

initWithData:

– initWithData: (NSData *)data

Initializes a newly allocated data object by placing in it the contents of another data object,
data.

Classes: NSData Class Cluster 9

isEqual:

@protocol NSObject
– (BOOL)isEqual:anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return
value indicates that the receiver and anObject both inherit from NSData and contain the
same data (as determined by the isEqualToData: method).

See also: – isEqualToData:

isEqualToData:

– (BOOL)isEqualToData:(NSData *)other

Compares the receiving data object to other. If the contents of other are equal to the
contents of the receiver, this method returns YES. If not, it returns NO. Two data objects
are equal if they hold the same number of bytes, and if the bytes at the same position in the
objects are the same.

length

– (unsigned)length

Returns the number of bytes contained in a data object.

subdataWithRange:

– (NSData *)subdataWithRange:(NSRange)range

Returns a data object containing a copy of the receiver’s bytes that fall within the limits
specified by range. If range isn’t within the receiver’s range of bytes, an
NSRangeException error is raised.

For example, this excerpt initializes a data object, data2, to contain a sub-range of data1:

NSString* myString = @"ABCDEFG";

NSRange range = {2, 4};

NSData *data1, *data2;

data1 = [NSData

dataWithBytes:[myString cString]

 length:[myString length]];

data2 = [data1 subdataWithRange:range];

 10 Classes: NSData Class Cluster

The result of this excerpt is that data2 contains CDEF.

writeToFile:atomically:

– (BOOL)writeToFile: (NSString *)path atomically:(BOOL)useAuxiliaryFile

Writes the bytes in a data object to the file specified by path.

If you provide a value of YES for atomically:, the data is written to a backup file and then,
assuming no errors occur, the backup file is renamed to the intended file name.

A return value of YES indicates that writeToFile:atomically: succeeded. If NO is
returned, the method failed.

Classes: NSData Class Cluster 11

NSMutableData

Inherits From: NSData : NSObject

Conforms To: NSCopying
NSMutableCopying

Declared In: foundation/NSData.h

Class Description

The NSMutableData class declares the programmatic interface to an object that contains
modifiable data in the form of bytes. NSMutableData’s two primitive methods—
mutableBytes and setLength:—provide the basis for all the other methods in its interface.
The mutableBytes method returns a pointer for writing into the bytes contained in the
mutable data object. setLength: allows you to truncate or extend the length of a mutable
data object.

NSMutableData provides an additional method for changing the length of a mutable data
object: increaseLengthBy:.

The appendBytes:length: and appendData: methods let you append bytes or the contents
of another data object to a mutable data object. You can replace a range of bytes in a
mutable data object with either zeroes (using the resetBytesInRange: method), or with
different bytes (using the replaceBytesInRange:withBytes: method).

Instance Variables

None declared in this class.

Method Types

Allocating and initializing + allocWithZone:
+ dataWithCapacity:
+ dataWithLength:
– initWithCapacity:
– initWithLength:

▲

 12 Classes: NSData Class Cluster

Adjusting capacity – increaseLengthBy:
– setLength:
– mutableBytes

Adding data – appendBytes:length:
– appendData:

Modifying data – replaceBytesInRange:withBytes:
– resetBytesInRange:

Class Methods

allocWithZone

+ allocWithZone:(NSZone *)zone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the
NSData class object, an instance of the appropriate immutable subclass is returned;
otherwise, an object of the receiver’s class is returned.

Typically, you create objects using the data... class methods, not the alloc... and init...
methods. Note that it’s your responsibility to release objects created with the alloc...
methods.

dataWithCapacity:

+ dataWithCapacity:(unsigned)aNumItems

Creates and returns an NSMutableData object, initially allocating enough memory to hold
aNumItems objects. Mutable data objects allocate additional memory as needed, so
aNumItems simply establishes the object’s initial capacity.

This method acts by invoking the alloc and initWithCapacity: methods.

See also: – dataWithLength: , – initWithCapacity: , – initWithLength:

dataWithLength:

+ dataWithLength: (unsigned)length

Creates an autoreleased, mutable data object of length bytes, zero-filled.

See also: – dataWithCapacity: , – initWithCapacity: , – initWithLength:

Classes: NSData Class Cluster 13

Instance Methods

appendBytes:length:

– (void)appendBytes:(const void *)bytes length:(unsigned)length

Appends length bytes to a mutable data object from the buffer bytes. If page alignment is
being used and if the data size is more than a few pages, this method performs an efficient
virtual copy using vm_copy().

This excerpt copies the bytes in data2 into aBuffer, and then appends aBuffer to data1.

NSMutableData *data1, *data2;

NSString* firstString = @"ABCD";

NSString* secondString = @"EFGH";

unsigned char *aBuffer;

unsigned len;

data1 = [NSMutableData

 dataWithBytes:[firstString cString]

 length:[firstString length]];

data2 = [NSMutableData

 dataWithBytes:[secondString cString]

 length:[secondString length]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[data1 appendBytes:aBuffer length:len];

 The final string value of data1 is "ABCDEFGH".

See also: – appendData:

appendData:

– (void)appendData:(NSData *)other

Appends the contents of a data object other to a receiver data object.

See also: – appendBytes:

 14 Classes: NSData Class Cluster

increaseLengthBy:

– (void)increaseLengthBy:(unsigned)extraLength

Increases the length of a mutable data object by extraLength.

See also: – setLength:

initWithCapacity:

– initWithCapacity: (unsigned)capacity

Initializes a newly allocated mutable data object, giving it enough memory to hold capacity
bytes. Sets the length of the data object to 0.

See also: – dataWithCapacity:, – initWithLength:

initWithLength:

– initWithLength: (unsigned)length

Initializes a newly allocated mutable data object, giving it enough memory to hold length
bytes. Fills the object with zeroes up to length. This method acts by invoking the
initWithCapacity: and setLength: methods.

See also: – dataWithCapacity: , – dataWithLength:, – initWithCapacity:

mutableBytes

– (void *)mutableBytes

Returns a pointer to the bytes in a mutable data object that enables you to modify the bytes.

In this excerpt, mutableBytes is used to return a pointer to the bytes in data2. The bytes in
data2 are then overwritten with the contents of data1.

NSMutableData *data1, *data2;

NSString* myString = @"string for data1";

NSString* yourString = @"string for data2";

unsigned char *firstBuffer, *secondBuffer;

/* initialize data1, data2, firstBuffer, and secondBuffer...

 * ...

 */

[data2 getBytes:secondBuffer];

Classes: NSData Class Cluster 15

fprintf(stderr, "data2 before: \"%s\"\n", (char*)secondBuffer);

firstBuffer = [data2 mutableBytes];

[data1 getBytes:firstBuffer];

fprintf(stderr, "data1: \"%s\"\n", (char*)firstBuffer);

[data2 getBytes:secondBuffer];

fprintf(stderr, "data2 after: \"%s\"\n", (char*)secondBuffer);

This excerpt produces the output:

data2 before: "String for data2"

data1: "String for data1."

data2 after: "String for data1."

replaceBytesInRange:withBytes:

– (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes

Specifies a range within the contents of a mutable data object to be replaced by bytes. If
range isn’t within the receiver’s range of bytes, an NSRangeException error is raised.

In this excerpt, a range of bytes in data1 is replaced by the bytes in data2.

NSMutableData *data1, *data2;

NSString* myString = @"Liz and John";

NSString* yourString = @"Larry";

unsigned len;

unsigned char *aBuffer;

NSRange range = {8, [yourString length]};

data1 = [NSMutableData

 dataWithBytes:[myString cString]

 length:[myString length]];

data2 = [NSMutableData

 dataWithBytes:[yourString cString]

 length:[yourString length]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[data1 replaceBytesInRange:range withBytes:aBuffer];

The contents of data1 change from “Liz and John” to “Liz and Larry.”

See also: – resetBytesInRange:

 16 Classes: NSData Class Cluster

resetBytesInRange:

– (void)resetBytesInRange:(NSRange)range

Specifies a range within the contents of a mutable data object to be replaced by zeroes. If
range isn’t within the receiver’s range of bytes, an NSRangeException error is raised.

See also: – replaceBytesInRange:withBytes:

setLength:

– (void)setLength:(unsigned)length

Extends or truncates the length of a mutable data object. If the mutable data object is
extended, the additional bytes are zero-filled.

See also: – increaseLengthBy:

