
1

NSMatrix

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSMatrix.h

Class Description 

NSMatrix is a class used for creating groups of NSCells that work together in various ways. It includes 
methods for arranging NSCells in rows and columns, either with or without space between them. NSCells 
in an NSMatrix are numbered by row and column, each starting with 0; for example, the top left NSCell 
would be at (0, 0), and the NSCell that’s second down and third across would be at (1, 2). 

The cell objects that an NSMatrix contains are usually of a single subclass of NSCell, but they can be of 
multiple subclasses of NSCell. The only restriction is that all cell objects must be the same size. An 
NSMatrix can be set up to create new NSCells by copying a prototype object, or by allocating and 
initializing instances of a specific NSCell class. Cells created by or added to an NSMatrix are retained by 
the matrix.

An NSMatrix adds to NSControl’s target/action paradigm by allowing a separate target and action for each 
of its NSCells in addition to its own target and action. It also allows for an action message that’s sent when 
the user double-clicks an NSCell, which is sent in addition to the single-click action message. If an NSCell 
doesn’t have an action, the NSMatrix sends its own action to its own target. If an NSCell doesn’t have a 
target, the NSMatrix sends the NSCell’s action to its own target. The double-click action of an NSMatrix 
is always sent to the target of the NSMatrix.

Since the user might press the mouse button while the cursor is within the NSMatrix and then drag the 
mouse around, NSMatrix offers four “selection modes” that determine how NSCells behave when the 
NSMatrix is tracking the mouse:

• NSTrackModeMatrix is the most basic mode of operation. In this mode the NSCells are asked to track 
the mouse with trackMouse:inRect:ofView:untilMouseUp: whenever the mouse is inside their 
bounds. No highlighting is performed. An example of this mode might be a “graphic equalizer” 
NSMatrix of sliders, where moving the mouse around causes the sliders to move under the mouse.

• NSHighlightModeMatrix is a modification of NSTrackModeMatrix. In this mode, an NSCell is 
highlighted before it’s asked to track the mouse, then unhighlighted when it’s done tracking. This is 
useful for multiple unconnected NSCells that use highlighting to inform the user that they are being 
tracked (like push-buttons and switches).



2

Classes: NSMatrix

• NSRadioModeMatrix is used when you want no more than one NSCell to be selected at a time. It can be 
used to create a set of buttons of which one and only one is selected (there’s the option of allowing no 
button to be selected). Any time an NSCell is selected, the previously selected NSCell is unselected. The 
canonical example of this mode is a set of radio buttons.

• NSListModeMatrix is the opposite of NSTrackModeMatrix. NSCells are highlighted, but don’t track the 
mouse. This mode can be used to select a range of text values, for example. NSMatrix supports the 
standard multiple-selection paradigms of dragging to select, using the shift key to make discontinuous 
selections, and using the alternate key to extend selections. Browsers (as used, for instance, in NeXT’s 
File Viewer) use this mode.

Method Types 

Initializing the NSMatrix class + cellClass
+ setCellClass

Initializing an NSMatrix object – initWithFrame:
– initWithFrame:mode:cellClass:numberOfRows:numberOfColums:
– initWithFrame:mode:prototype:numberOfRows:numberOfColumn

s:

Setting the selection mode – mode
– setMode:

Configuring the NSMatrix – allowsEmptySelection
– isSelectionByRect
– setAllowsEmptySelection
– setSelectionByRect:

Setting the cell class – cellClass
– prototype
– setCellClass:
– setPrototype:



3

Laying out the NSMatrix – addColumn
– addColumnWithCells:
– addRow
– addRowWithCells:
– cellFrameAtRow:column:
– cellSize
– getNumberOfRows:columns:
– insertColumn:
– insertColumn:withCells:
– insertRow:
– insertRow:withCells:
– intercellSpacing
– makeCellAtRow:column:
– numberOfColumns
– numberOfRows:
– putCell:atRow:column:
– removeColumn:
– removeRow:
– renewRows:columns:
– setCellSize:
– setIntercellSpacing:
– sortUsingFunction:context:
– sortUsingSelector:

Finding matrix coordinates – getRow:column:forPoint:
– getRow:column:ofCell:

Modifying individual cells – setState:atRow:column:

Selecting cells – deselectAllCells
– deselectSelectedCell
– keyCell
– selectAll:
– selectCellAtRow:column:
– selectCellWithTag:
– selectedCell
– selectedCells
– selectedColumn
– selectedRow
– setKeyCell:
– setSelectionFrom:to:anchor:highlight:

Finding cells – cellAtRow:column:
– cellWithTag:
– cells



4

Classes: NSMatrix

Modifying graphic attributes – backgroundColor
– cellBackgroundColor
– drawsBackground
– drawsCellBackground
– setBackgroundColor:
– setCellBackgroundColor:
– setDrawsBackground:
– setDrawsCellBackground:

Editing text in cells – selectText:
– selectTextAtRow:column:
– textDidBeginEditing:
– textDidChange:
– textDidEndEditing:
– textShouldBeginEditing:
– textShouldEndEditing:

Setting tab key behavior – nextText
– previousText
– setNextText:
– setPreviousText:
– setTabKeyTraversesCells:
– tabKeyTraversesCells

Assigning a delegate – delegate
– setDelegate:

Resizing the matrix and its cells – autosizesCells
– setAutosizesCells:
– setValidateSize:
– sizeToCells

Scrolling – isAutoscroll
– scrollCellToVisibleAtRow:column:
– setAutoscroll:
– setScrollable:

Displaying – drawCellAtRow:column:
– highlightCell:atRow:column:

Target and action – doubleAction
– errorAction
– sendAction
– sendAction:to:forAllCells:
– sendDoubleAction
– setDoubleAction:
– setErrorAction:



5

Handling event and action messages – acceptsFirstMouse:
– mouseDown:
– mouseDownFlags
– performKeyEquivalent:

Managing the cursor – resetCursorRects

Class Methods 

cellClass
+ (Class)cellClass 

Returns the default class that the NSMatrix class will use to make cells. 

See also: – cellClass, –makeCellAtRow:column:, –prototype

setCellClass:
+ (void)setCellClass:(Class)factoryId 

Sets the default class that the NSMatrix class will use to make cells. factoryId should be the id of a subclass 
of NSCell (usually NSActionCell), obtained by sending the class message to either the NSCell subclass 
object or to an instance of that subclass. The default NSCell class is NSActionCell.

Your code should rarely need to invoke this method, since each instance of NSMatrix can be configured to 
use its own NSCell class (or a prototype that gets copied). The NSCell class set with this method is simply 
a fall-back for matrices initialized with initWithFrame:.

See also: – setCellClass:, –setPrototype:, –makeCellAtRow:column:, 
– initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:, 
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns:

Instance Methods

acceptsFirstMouse:
– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent 

Returns NO if the selection mode of the NSMatrix is NSListModeMatrix, YES if the NSMatrix is in any 
other selection mode. The NSMatrix does not accept first mouse in NSListModeMatrix to prevent the loss 
of multiple selections. The NSEvent parameter, theEvent, is ignored.

See also: – mode



6

Classes: NSMatrix

addColumn
– (void)addColumn 

Adds a new column of cells to the right of the last column, creating new cells as needed with 
makeCellAtRow:column:.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, new cells 
are created only if they are needed. This allows you to grow and shrink an NSMatrix without repeatedly 
creating and freeing the cells.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send 
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this 
method to resize the NSMatrix to fit the newly added cells.

See also: – cellClass, – insertColumn:, –prototype

addColumnWithCells:
– (void)addColumnWithCells:(NSArray *)newCells 

Adds a new column of cells to the right of the last column. The new column is filled with objects from 
newCells, starting with the object at index 0. Each object in newCells should be a an NSCell or one of its 
subclasses (usually NSActionCell). newCells should have a sufficient number of cells to fill the entire 
column; extra cells are ignored.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send 
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this 
method to resize the NSMatrix to fit the newly added cells.

See also: – insertColumn:withCells:

addRow
– (void)addRow 

Adds a new row of cells below the last row, creating new cells as needed with makeCellAtRow:column:.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, then new 
cells are created only if they are needed. This allows you to grow and shrink an NSMatrix without 
repeatedly creating and freeing the cells.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send 
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this 
method to resize the NSMatrix to fit the newly added cells.

See also: – cellClass, – insertRow:, –prototype



7

addRowWithCells:
– (void)addRowWithCells:(NSArray *)newCells 

Adds a new row of cells below the last row. The new row is filled with objects from newCells, starting with 
the object at index 0. Each object in newCells should be a an NSCell or one of its subclasses (usually 
NSActionCell). newCells should have a sufficient number of cells to fill the entire row; extra cells are 
ignored.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send 
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this 
method to resize the NSMatrix to fit the newly added cells.

See also: – insertRow:withCells:

allowsEmptySelection
– (BOOL)allowsEmptySelection 

Returns whether its possible to have no cells selected in a radio-mode matrix.

See also: – mode

autosizesCells
– (BOOL)autosizesCells 

Returns YES if cells are resized proportionally to the NSMatrix when its size changes (and inter-cell 
spacing is kept constant). Returns NO if the cell size remains constant (and inter-cell spacing changes).

backgroundColor
– (NSColor *)backgroundColor 

Returns the color used to draw the background of the NSMatrix (the space between the cells).

See also: – cellBackgroundColor, –drawsBackground

cellAtRow:column:
– (id)cellAtRow:(int)row column:(int)column 

Returns the NSCell object at row and column, or nil if either row or column are outside the bounds of the 
NSMatrix.

See also: – getRow:column:ofCell:



8

Classes: NSMatrix

cellBackgroundColor
– (NSColor *)cellBackgroundColor 

Returns the color used to fill the background of the NSMatrix’s cells.

See also: – backgroundColor, –drawsCellBackground

cellClass
– (Class)cellClass 

Returns the subclass of NSCell that the NSMatrix uses when creating new (empty) cells.

See also: – prototype, –makeCellAtRow:column:

cellFrameAtRow:column:
– (NSRect)cellFrameAtRow:(int)row column:(int)column 

Returns the frame rectangle of the cell that would be drawn at the specified row and column (whether or not 
the specified cell actually exists).

See also: – cellSize

cellSize
– (NSSize)cellSize 

Returns the width and the height of each cell in the NSMatrix (all cells in an NSMatrix are the same size).

See also: – cellFrame:atRow:column:, – intercellSpacing

cellWithTag:
– (id)cellWithTag:(int)anInt 

Searches the NSMatrix and returns the last (when viewing the matrix as a row-ordered array) NSCell object 
which has a tag matching anInt, or nil if no such cell exists.

See also: – selectCellWithTag:, –setTag: (NSActionCell)



9

cells
– (NSArray *)cells 

Returns an NSArray that contains the NSMatrix’s cells. The cells in the array are row-ordered; that is, the 
first row of cells appear first in the array, followed by the second row, and so forth.

See also: – cellAtRow:column:

delegate
– (id)delegate 

Returns the delegate for messages from the field editor.

See also: – textShouldBeginEditing:, – textShouldEndEditing:

deselectAllCells
– (void)deselectAllCells 

Deselects all cells in the NSMatrix and, if necessary, redisplays the NSMatrix. If the selection mode is 
NSRadioModeMatrix and empty selection is not allowed, this method does nothing.

See also: – allowsEmptySelection, –mode, –selectAll:

deselectSelectedCell
– (void)deselectSelectedCell 

Deselects the selected cell or cells. If the selection mode is NSRadioModeMatrix and empty selection is not 
allowed, or if nothing is currently selected, this method does nothing. This method doesn’t redisplay the 
NSMatrix.

See also: – allowsEmptySelection, –mode, –selectCellAtRow:column:

doubleAction
– (SEL)doubleAction 

Returns the action method sent by the NSMatrix to its target when the user double-clicks an entry, or NULL 
if there’s no double-click action. The double-click action of an NSMatrix is sent after the appropriate 
single-click action (for the NSCell clicked or for the NSMatrix if the NSCell doesn’t have its own action). 



10

Classes: NSMatrix

If there is no double-click action and the NSMatrix doesn’t ignore multiple clicks, the single-click action is 
sent twice.

See also: – action (NSControl), –target (NSControl), –sendDoubleAction, 
– ignoresMultiClick (NSControl)

drawCellAtRow:column:
– (void)drawCellAtRow:(int)row column:(int)column 

Displays the cell at the specified row and column, providing that row and column reference a cell that’s 
within the NSMatrix.

See also: – drawCell: (NSControl), –drawCellInside: (NSControl)

drawsBackground
– (BOOL)drawsBackground 

Returns whether the receiver draws its background (the space between the cells).

See also: – backgroundColor, –drawsCellBackground

drawsCellBackground
– (BOOL)drawsCellBackground 

Returns whether the receiver draws the background within each of its cells.

See also: – cellBackgroundColor, –drawsBackground

errorAction
– (SEL)errorAction 

Returns the action that’s sent to the target of the NSMatrix when the user enters an illegal value for the 
selected cell.

See also: – action (NSControl), –target (NSControl), –textShouldEndEditing:



11

getNumberOfRows:columns:
– (void)getNumberOfRows:(int *)rowCount columns:(int *)columnCount 

Returns by reference the number of rows and columns in the NSMatrix.

See also: – numberOfColumns, –numberOfRows

getRow:column:forPoint:
– (BOOL)getRow:(int *)row column:(int *)column forPoint:(NSPoint)aPoint 

Returns YES if aPoint lies within one of the cells in the NSMatrix, and returns by reference the row and 
column for the cell within which the specified point lies. If aPoint falls outside the bounds of the Matrix or 
lies within an intercell spacing, getRow:column:forPoint: returns NO. 

Make sure that aPoint is in the coordinate system of the NSMatrix. 

See also: – getRow:column:ofCell:

getRow:column:ofCell:
– (BOOL)getRow:(int *)row column:(int *)column ofCell:(NSCell *)aCell 

Searches the NSMatrix and returns YES if aCell is one of the cells in the NSMatrix, and returns by reference 
the row and column of the cell. If aCell is not found within the Matrix, getRow:column:ofCell: returns NO. 

See also: – getRow:column:forPoint:

highlightCell:atRow:column:
– (void)highlightCell:(BOOL)flag atRow:(int)row column:(int)column 

Assuming that row and column indicate a valid cell within the NSMatrix, highlightCell:atRow:column: 
highlights (if flag is YES) or unhighlights (if flag is NO) the specified cell.

initWithFrame:
– (id)initWithFrame:(NSRect)frameRect 

Initializes and returns the receiver, a newly-allocated instance of NSMatrix, with default parameters in the 
frame specified by frameRect. The new NSMatrix contains no rows or columns. The default mode is 
NSRadioModeMatrix. The default cell class is NSActionCell.



12

Classes: NSMatrix

initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:
– (id)initWithFrame:(NSRect)frameRect mode:(int)aMode cellClass:(Class)factoryId 

numberOfRows:(int)numRows numberOfColumns:(int)numColumns 

Initializes and returns the receiver, a newly-allocated instance of NSMatrix, in the frame specified by 
frameRect. The new NSMatrix contains numRows rows and numColumns columns. aMode is set as the 
tracking mode for the NSMatrix, and can be one of the following four constants, all of which are described 
in the class description:

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

The new NSMatrix creates and uses cells of class classId, which can be obtained by sending a class message 
to the desired subclass of NSCell.

This method is the designated initializer for matrices that add cells by creating instances of an NSCell 
subclass.

initWithFrame:mode:prototype:numberOfRows:numberOfColumns:
– (id)initWithFrame:(NSRect)frameRect mode:(int)aMode prototype:(NSCell *)aCell 

numberOfRows:(int)numRows numberOfColumns:(int)numColumns 

Initializes and returns the receiver, a newly-allocated instance of NSMatrix, in the frame specified by 
frameRect. The new NSMatrix contains numRows rows and numColumns columns. aMode is set as the 
tracking mode for the NSMatrix, and can be one of the following four constants, all of which are described 
in the class description:

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

The new Matrix creates cells by copying aCell, which should be an instance of a subclass of NSCell.

This method is the designated initializer for matrices that add cells by copying an instance of an NSCell 
subclass. 



13

insertColumn:
– (void)insertColumn:(int)column

Inserts a new column of cells before column, creating new cells if needed with makeCellAtRow:column:. 
If column is greater than the number of columns in the NSMatrix, enough columns are created to expand 
the NSMatrix to be column columns wide. This method doesn’t redraw the NSMatrix. Accordingly, after 
calling this method you should send setNeedsDisplay:YES to the NSMatrix. Your code may also need to 
use sizeToCells after sending this method to resize the NSMatrix to fit the newly added cells.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, then new 
cells are created only if they’re needed. This allows you to grow and shrink an NSMatrix without repeatedly 
creating and freeing the cells.

See also: – addColumn, – insertRow:

insertColumn:withCells:
– (void)insertColumn:(int)column withCells:(NSArray *)newCells 

Inserts a new column of cells before column. The new column is filled with objects from newCells, starting 
with the object at index 0. Each object in newCells should be a an NSCell or one of its subclasses (usually 
NSActionCell). If column is greater than the number of columns in the NSMatrix, enough columns are 
created to expand the NSMatrix to be column columns wide. newCells should have a sufficient number of 
cells to fill each new column; extra cells are ignored.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send 
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this 
method to resize the NSMatrix to fit the newly added cells.

See also: – addColumnWithCells:, – insertRow:withCells:

insertRow:
– (void)insertRow:(int)row 

Inserts a new row of cells before row, creating new cells if needed with makeCellAtRow:column:. If row 
is greater than the number of rows in the NSMatrix, enough rows are created to expand the NSMatrix to be 
row rows high. This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you 
should send setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after 
sending this method to resize the NSMatrix to fit the newly added cells.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, then new 
cells are created only if they’re needed. This allows you to grow and shrink an NSMatrix without repeatedly 
creating and freeing the cells.

See also: – addRow, – insertColumn:



14

Classes: NSMatrix

insertRow:withCells:
– (void)insertRow:(int)row withCells:(NSArray *)newCells 

Inserts a new row of cells before row. The new row is filled with objects from newCells, starting with the 
object at index 0. Each object in newCells should be an NSCell or one of its subclasses (usually 
NSActionCell). If row is greater than the number of rows in the NSMatrix, enough rows are created to 
expand the NSMatrix to be row rows high. newCells should have a sufficient number of cells to fill each 
new row ([newCells count] must be greater than or equal to [self numberOfColumns]); extra cells are 
ignored.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send 
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this 
method to resize the NSMatrix to fit the newly added cells.

See also: – addRowWithCells:, – insertColumn:withCells:

intercellSpacing
– (NSSize)intercellSpacing 

Returns the vertical and horizontal spacing between cells in the NSMatrix.

See also: – cellSize

isAutoscroll
– (BOOL)isAutoscroll 

Returns whether the NSMatrix will be automatically scrolled whenever the mouse is dragged outside the 
NSMatrix after a mouse-down event within its bounds.

See also: – scrollCellToVisibleAtRow:column:, –setScrollable:

isSelectionByRect
– (BOOL)isSelectionByRect 

Returns YES if a the user can select a rectangle of cells in the NSMatrix by dragging the cursor, NO 
otherwise.

See also: – setSelectionFrom:to:anchor:highlight:



15

� keyCell
– (id)keyCell 

Returns the cell that will be clicked when the user presses the Return key.

See also: – nextText, – tabKeyTraversesCells

makeCellAtRow:column:
– (NSCell *)makeCellAtRow:(int)row column:(int)column

Creates a new cell at the specified location in the NSMatrix. If the NSMatrix has a prototype cell, it’s copied 
to create the new cell. If not, and if the NSMatrix has a cell class set, it allocates and initializes (with init) 
an instance of that class. If the NSMatrix hasn’t had either a prototype cell or a cell class set, 
makeCellAtRow:column: creates an NSActionCell. Returns the newly created cell.

Your code should never invoke this method directly; it’s used by addRow and other methods when a cell 
must be created. It may be overridden to provide more specific initialization of cells.

See also: – addColumn, –addRow, – insertColumn:, – insertRow:, – setCellClass:, –setPrototype:

mode
– (NSMatrixMode)mode 

Returns the selection mode of the NSMatrix. Possible return values are defined in NSMatrix.h, and are also 
listed here:

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

These modes are explained in detail in the class description.

See also: – initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:, 
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns:



16

Classes: NSMatrix

mouseDown:
– (void)mouseDown:(NSEvent *)theEvent 

Responds to a mouse-down event. A mouse-down event in a text cell initiates editing mode. A double-click 
in any cell type except a text cell sends the double-click action of the NSMatrix (if there is one) in addition 
to the single-click action.

Your code should never invoke this method, but you may override it to implement different mouse tracking 
than NSMatrix does. The response of the NSMatrix depends on its selection mode, as explained in the class 
description.

See also: – sendAction, – sendDoubleAction

mouseDownFlags
– (int)mouseDownFlags 

Returns the flags that were in effect at the mouse-down event that started the current tracking session 
(NSMatrix’s mouseDown: method obtains these flags by sending a modifierFlags message to the event 
passed into mouseDown:). Use this method if you want to access these flags. This method is valid only 
during tracking; it isn’t useful if the target of the NSMatrix initiates another tracking loop as part of its 
action method (as a cell that pops up a PopUpList does, for example).

See also: – sendActionOn: (NSCell)

nextText
– (id)nextText 

Returns the object that would be selected if the user presses Tab while editing the last text cell in the 
NSMatrix.

See also: – nextKeyView (NSView), –previousText, – setNextText:

numberOfColumns
– (int)numberOfColumns

Returns the number of columns in the NSMatrix.

See also: – getNumberOfRows:columns:



17

numberOfRows
– (int)numberOfRows

Returns the number of rows in the NSMatrix.

See also: – getNumberOfRows:columns:

performKeyEquivalent:
– (BOOL)performKeyEquivalent:(NSEvent *)theEvent 

If there’s a cell in the NSMatrix that has a key equivalent equal to the character in 
[theEvent charactersIgnoringModifiers] (taking into account any key modifier flags) and that cell is 
enabled, that cell is made to react as if the user had clicked it: by highlighting, changing its state as 
appropriate, sending its action if it has one, and then unhighlighting. Returns YES if a cell in the NSMatrix 
responds to the key equivalent in theEvent, NO if no cell responds.

Your code should never send this message; it is sent when the NSMatrix or one of its superviews is the first 
responder and the user presses a key. You may want to override this method to change the way key 
equivalents are performed or displayed, or to disable them in your subclass.

previousText
– (id)previousText 

Returns the object that would be selected if the user presses Shift-Tab while editing the first text cell in the 
NSMatrix.

See also: – nextKeyView (NSView), –nextText, –setPreviousText:

prototype
– (id)prototype 

Returns the prototype cell that’s copied whenever a new cell needs to be created, or nil if there is none.

See also: – initWithFrame:mode:prototype:numberOfRows:numberOfColumns:, 
– makeCellAtRow:column:

putCell:atRow:column:
– (void)putCell:(NSCell *)newCell atRow:(int)row column:(int)column 

Replaces the cell at the specified row and column with newCell, and redraws the cell.



18

Classes: NSMatrix

removeColumn:
– (void)removeColumn:(int)column 

Removes the column at position column from the NSMatrix and autoreleases the column’s cells. Doesn’t 
redraw the NSMatrix. Your code should normally send sizeToCells after invoking this method to resize the 
NSMatrix so that it fits the reduced cell count.

See also: – removeRow:, –addColumn, – insertColumn:

removeRow:
– (void)removeRow:(int)row 

Removes the row at position row from the NSMatrix and autoreleases the row’s cells. Doesn’t redraw the 
NSMatrix. Your code should normally send sizeToCells after invoking this method to resize the NSMatrix 
so that it fits the reduced cell count.

See also: – removeColumn:, –addRow, – insertRow:

renewRows:columns:
– (void)renewRows:(int)newRows columns:(int)newCols 

Changes the number of rows and columns in the NSMatrix. This method uses the same cells as before, 
creating new cells only if the new size is larger; it never frees cells. Doesn’t redisplay the NSMatrix. Your 
code should normally send sizeToCells after invoking this method to resize the NSMatrix so that it fits the 
changed cell arrangement. This method deselects all cells in the NSMatrix.

See also: – addColumn, –addRow, –removeColumn:, –removeRow:

resetCursorRects
– (void)resetCursorRects 

Resets cursor rectangles so that the cursor becomes an I-beam over text cells. It does this by sending 
resetCursorRect:inView: to each cell in the NSMatrix. Any cell that has a cursor rectangle to set up should 
then send addCursorRect:cursor: back to the NSMatrix.

See also: – resetCursorRect:inView: (NSCell), –addCursorRect:cursor: (NSView)



19

scrollCellToVisibleAtRow:column:
– (void)scrollCellToVisibleAtRow:(int)row column:(int)column 

If the NSMatrix is in a scrolling view, and row and column represent a valid cell within the NSMatrix, this 
method scrolls the NSMatrix so that the specified cell is visible.

See also: – scrollRectToVisible: (NSView)

selectAll:
– (void)selectAll:(id)sender 

Selects and highlights all of the cells in the NSMatrix, except for editable text cells and disabled cells. 
Redisplays the NSMatrix. sender is ignored.

See also: – selectCell: (NSControl)

selectCellAtRow:column:
– (void)selectCellAtRow:(int)row column:(int)column 

Selects the cell at the specified row and column within the NSMatrix. If the specified cell is an editable text 
cell, its text is selected. If either row or column is –1, then the current selection is cleared (unless the 
NSMatrix is in NSRadioModeMatrix and doesn’t allow empty selection). Redraws the affected cells.

See also: – allowsEmptySelection, –mode, –selectCell: (NSControl)

selectCellWithTag:
– (BOOL)selectCellWithTag:(int)anInt 

If the NSMatrix has at least one cell whose tag is equal to anInt, the last cell (when viewing the matrix as 
a row-ordered array) is selected. If the specified cell is an editable text Cell, its text is selected. Returns YES 
if the NSMatrix contains a cell whose tag matches anInt, or NO if no such cell exists.

See also: – cellWithTag:, – selectCell: (NSControl)

selectText:
– (void)selectText:(id)sender

If the currently selected cell is editable and enabled, its text is selected. Otherwise, the key cell is selected.

See also: – keyCell, – selectText: (NSTextField)



20

Classes: NSMatrix

selectTextAtRow:column:
– (id)selectTextAtRow:(int)row column:(int)column 

If row and column indicate a valid cell within the NSMatrix, and that cell is both editable and selectable, 
selectTextAtRow:column: selects and then returns the specified cell. If the cell specified by row and 
column is either not editable or not selectable, selectTextAtRow:column: does nothing, and returns nil. 
Finally, if row and column indicate a cell that is outside the NSMatrix, selectTextAtRow:column: does 
nothing and returns the receiver.

See also: – selectText:

selectedCell
– (id)selectedCell 

Returns the most recently selected cell, or nil if no cell is selected. If more than one cell is selected, 
selectedCell returns the cell that is lowest and furthest to the right in the NSMatrix.

selectedCells
– (NSArray *)selectedCells 

Returns an array containing each of the cells in the receiver that is currently highlighted.

See also: – selectedCell

selectedColumn
– (int)selectedColumn 

Returns the column number of the selected cell, or –1 if no cells are selected. If cells in multiple columns 
are selected, this method returns the number of the last (right-most) column containing a selected cell.

selectedRow
– (int)selectedRow 

Returns the row number of the selected cell, or –1 if no cells are selected. If cells in multiple rows are 
selected, this method returns the number of the last row containing a selected cell.



21

sendAction
– (BOOL)sendAction 

If the selected cell has both an action and a target, its action is sent to its target. If the cell has an action but 
no target, its action is sent to the target of the NSMatrix. If the cell doesn’t have an action, or if there is no 
selected cell, the NSMatrix sends its own action to its target. Returns YES if an action was successfully sent 
to a target.

If the selected cell is disabled, this method does nothing and returns NO.

See also: – sendDoubleAction, –action (NSCell), –target (NSCell)

sendAction:to:forAllCells:
– (void)sendAction:(SEL)aSelector to:(id)anObject forAllCells:(BOOL)flag 

Iterates through all of the cells in the NSMatrix (if flag is YES), or just the selected cells in the NSMatrix 
(if flag is NO), sending aSelector to anObject for each. Iteration begins with the cell in the upper-left corner 
of the NSMatrix, proceeding through the appropriate entries in the first row, then on to the next.

aSelector must represent a method that takes a single argument: the id of the current cell in the iteration. 
aSelector’s return value must be a BOOL. If aSelector returns NO for any cell, sendAction:to:forAllCells: 
terminates immediately, without sending the message to the remaining cells. If it returns YES, 
endAction:to:forAllCells: proceeds on to the next cell.

This method is not invoked to send action messages to target objects in response to mouse-down events in 
the NSMatrix. Instead, you can invoke it if you want to have multiple cells in an NSMatrix interact with an 
object. For example you could use it to verify the titles in a list of items, or to enable a series of radio buttons 
based on their purpose in relation to anObject.

sendDoubleAction
– (void)sendDoubleAction 

If the NSMatrix has a double-click action, sendDoubleAction sends that message to the target of the 
NSMatrix. If not, then if the selected cell (as returned by selectedCell) has an action, that message is sent 
to the selected cell’s target. Finally, if the selected cell also has no action, then the single-click action of the 
NSMatrix is sent to the target of the NSMatrix.

If the selected cell is disabled, this method does nothing.

Your code shouldn’t invoke this method; it’s sent in response to a double-click event in the NSMatrix. 
Override it if you need to change the search order for an action to send.

See also: – sendAction, – ignoresMultiClick: (NSControl)



22

Classes: NSMatrix

setAllowsEmptySelection:
– (void)setAllowsEmptySelection:(BOOL)flag 

If flag is YES, then the NSMatrix will allow one or zero cells to be selected. If flag is NO, then the NSMatrix 
will allow one and only one cell (not zero cells) to be selected. This setting has effect only in the 
NSRadioModeMatrix selection mode. 

setAutoscroll:
– (void)setAutoscroll:(BOOL)flag 

If flag is YES and the NSMatrix is in a scrolling view, it will be automatically scrolled whenever a the 
mouse is dragged outside the NSMatrix after a mouse-down event within the bounds of the NSMatrix.

setAutosizesCells:
– (void)setAutosizesCells:(BOOL)flag 

If flag is YES, then whenever the NSMatrix is resized, the sizes of the cells change in proportion, keeping 
the inter-cell space constant; further, this method verifies that the cell sizes and inter-cell spacing add up to 
the exact size of the NSMatrix, adjusting the size of the cells and updating the NSMatrix if they don’t. If 
flag is NO, then the inter-cell space changes when the NSMatrix is resized, with the cell size remaining 
constant.

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor 

Sets the background color for the NSMatrix to aColor, and redraws the NSMatrix. This color is used to fill 
the space between cells or the space behind any non-opaque cells. The default background color is 
NSColor’s controlColor.

See also: – drawsBackground, – setCellBackgroundColor:

setCellBackgroundColor:
– (void)setCellBackgroundColor:(NSColor *)aColor 

Sets the background color for the cells in the NSMatrix to aColor. This color is used to fill the space behind 
non-opaque cells. The default cell background color is NSColor’s controlColor.

See also: – drawsCellBackground, – setBackgroundColor:



23

setCellClass:
– (void)setCellClass:(Class)factoryId 

Configures the receiver to use instances of factoryId when creating new cells. factoryId should be the id of 
a subclass of NSCell, which can be obtained by sending the class message to either the NSCell subclass 
object or to an instance of that subclass. The default cell class is that set with the class method 
setCellClass:, or NSActionCell if no other default cell class has been specified.

You only need to use this method with matrices initialized with initWithFrame:, since the other initializers 
allow you to specify an instance-specific cell class or cell prototype.

See also: – addColumn, –addRow, – insertColumn:, – insertRow:, –makeCellAtRow:column:, 
– setPrototype:

setCellSize:
– (void)setCellSize:(NSSize)aSize 

Sets the width and the height of each of the cells in the NSMatrix to those in aSize. This may change the 
size of the NSMatrix. Does not redraw the NSMatrix.

See also: – calcSize (NSControl)

setDelegate:
– (void)setDelegate:(id)anObject 

Sets the delegate for messages from the field editor.

See also: – textShouldBeginEditing:, – textShouldEndEditing:

setDoubleAction:
– (void)setDoubleAction:(SEL)aSelector 

Makes aSelector the action sent to the target of the NSMatrix when the user double-clicks a cell. A 
double-click action is always sent after the appropriate single-click action; the cell’s if it has one, otherwise 
the single-click action of the NSMatrix.

If an NSMatrix has no double-click action set, then by default a double-click is treated as a single-click.

See also: – sendDoubleAction, – setAction: (NSControl), –setTarget: (NSControl)



24

Classes: NSMatrix

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag 

Sets whether the receiver draws its background (the space between the cells).

See also: – backgroundColor, – setDrawsCellBackground

setDrawsCellBackground:
– (void)setDrawsCellBackground:(BOOL)flag 

Sets whether the receiver draws the background within each of its cells.

See also: – cellBackgroundColor, –setDrawsBackground

setErrorAction:
– (void)setErrorAction:(SEL)aSelector 

Sets the action that’s sent to the target of the NSMatrix when the user enters an illegal value for the selected 
cell.

See also: – action (NSControl), –target (NSControl)

setIntercellSpacing:
– (void)setIntercellSpacing:(NSSize)aSize 

Sets the vertical and horizontal spacing between cells in the NSMatrix. By default, both values are 1.0 in 
the NSMatrix’s coordinate system.

See also: – cellSize

� setKeyCell:
– (void)setKeyCell:(NSCell *)aCell 

Sets to aCell the cell that will be clicked when the user presses the Return key.

See also: – setNextText:, –setTabKeyTraversesCells:



25

setMode:
– (void)setMode:(NSMatrixMode)aMode 

Sets the selection mode of the NSMatrix. Possible values for aMode are defined in NSMatrix.h, and 
include:

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

These modes are explained in detail in the class description.

See also: – initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:, 
– initWithFrame:mode:prototype:numberOfRows:numberOfColumns:

setNextText:
– (void)setNextText:(id)anObject 

If the NSMatrix doesn’t already have a next key view, inserts anObject after the receiver in the key view 
loop of the receiver’s NSWindow. anObject thus becomes the object that would be selected if the user 
presses Tab while editing the last text cell in the NSMatrix. If the NSMatrix already has a next key view, 
this method does nothing.

See also: – setNextKeyView: (NSView), –setTabKeyTraversesCells:

setPreviousText:
– (void)setPreviousText:(id)anObject 

If anObject doesn’t already have a next key view, inserts the receiver after anObject in the key view loop 
of anObject’s NSWindow. If anObject already has a next key view, this method does nothing.

See also: – setNextKeyView: (NSView)

setPrototype:
– (void)setPrototype:(NSCell *)aCell 

Sets the prototype cell that’s copied whenever a new cell needs to be created.

See also: – initWithFrame:mode:prototype:numberOfRows:numberOfColumns:, 
– makeCellAtRow:column:



26

Classes: NSMatrix

setScrollable:
– (void)setScrollable:(BOOL)flag 

If flag is YES, sets all the cells to be scrollable, so that the text they contain scrolls to remain in view if the 
user types past the edge of the cell. If flag is NO, all cells are made to be non-scrolling. The prototype cell, 
if there is one, is also set accordingly.

See also: – prototype, –setScrollable: (NSCell)

setSelectionByRect:
– (void)setSelectionByRect:(BOOL)flag 

Sets whether the user can select a rectangle of cells in the NSMatrix by dragging the cursor. If flag is NO, 
selection is on a row-by-row basis. The default is YES.

See also: – setSelectionFrom:to:anchor:highlight:

setSelectionFrom:to:anchor:highlight:
– (void)setSelectionFrom:(int)startPos to:(int)endPos anchor:(int)anchorPos highlight:(BOOL)lit 

Programmatically selects a range of cells. startPos, endPos, and anchorPos are cell positions, counting 
from 0 at the upper left cell of the NSMatrix, in row order. For example, the third cell in the top row would 
be number 2. 

startPos and endPos are used to mark where the user would have pressed the mouse button and released it, 
respectively. anchorPos locates the “last selected cell” with regard to extending the selection by Shift- or 
Alternate-clicking. Finally, lit determines whether cells selected by this method should be highlighted.

See also: – isSelectionByRect, – selectedCells:

setState:atRow:column:
– (void)setState:(int)value atRow:(int)row column:(int)column 

Sets the state of the cell at row and column to value. For radio-mode matrices, if value is non-zero the 
specified cell is selected before its state is set to value. If value is zero and the receiver is a radio-mode 
matrix, then the currently-selected cell is deselected (providing that empty selection is allowed).

This method redraws the affected cell.

See also: – allowsEmptySelection:, –setState: (NSCell), –selectCellAtRow:column:



27

� setTabKeyTraversesCells:
– (void)setTabKeyTraversesCells:(BOOL)flag

Sets whether pressing the Tab key advances the key cell to the next selectable cell in the NSMatrix. If flag 
is NO, or if there aren’t any selectable cells after the current one, when the user presses the Tab key the next 
view in the window becomes key. Pressing Shift-Tab causes the key cell to advance in the opposite 
direction (if flag is NO, or if there aren’t any selectable cells before the current one, the previous view in 
the window becomes key).

See also: – selectKeyViewFollowingView: (NSWindow), –selectNextKeyView: (NSWindow), 
– setKeyCell:, – setNextText:

setValidateSize:
– (void)setValidateSize:(BOOL)flag 

If flag is YES, then the size information in the NSMatrix is assumed to be correct. If flag is NO, then 
calcSize will be invoked before any further drawing is done.

See also: – calcSize (NSControl)

sizeToCells
– (void)sizeToCells 

Changes the width and the height of the NSMatrix frame so that it exactly contains the cells. Does not 
redraw the NSMatrix.

See also: – setFrameSize: (NSView), –sizeToFit (NSControl)

sortUsingFunction:context:
– (void)sortUsingFunction:(int (*)(id, id ,void *))comparator context:(void *)context 

Sorts the receiver’s cells in ascending order as defined by the comparison function comparator. The 
comparison function is used to compare two elements at a time and should return NSOrderedAscending if 
the first element is smaller than the second, NSOrderedDescending if the first element is larger than the 
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it’s 
passed context as its third argument. This allows the comparison to be based on some outside parameter, 
such as whether character sorting is case-sensitive or case-insensitive.

See also: – sortUsingFunction:context: (NSMutableArray)



28

Classes: NSMatrix

sortUsingSelector:
– (void)sortUsingSelector:(SEL)comparator 

Sorts the receiver’s cells in ascending order as defined by the comparison method comparator. The 
comparator message is sent to each object in the matrix, and has as its single argument another object in 
the array. The comparison method is used to compare two elements at a time and should return 
NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if the receiver is 
larger than the argument, and NSOrderedSame if they are equal.

See also: – sortUsingSelector: (NSMutableArray)

� tabKeyTraversesCells
– (BOOL)tabKeyTraversesCells

Returns whether pressing the Tab key advances the key cell to the next selectable cell in the NSMatrix. 

See also: – keyCell:, – setTabKeyTraversesCells:

textDidBeginEditing:
– (void)textDidBeginEditing:(NSNotification *)notification 

Invoked when there’s a change in the text after the receiver gains first responder status. This method’s 
default behavior is to post an NSControlTextDidBeginEditingNotification along with the receiving object 
to the default notification center. The posted notification’s user info contains the contents of notification’s 
user info dictionary, plus an additional key/value pair. The additional key is “NSFieldEditor”; the value for 
this key is the text object that began editing.

See also: – textDidChange:, – textDidEndEditing:, – textShouldBeginEditing:

textDidChange:
– (void)textDidChange:(NSNotification *)notification 

Invoked upon a key-down event or paste operation that changes the receiver’s contents. This method’s 
default behavior is to pass this message on to the selected cell (if the selected cell responds to 
textDidChange:), and then to post an NSControlTextDidChangeNotification along with the receiving 
object to the default notification center. The posted notification’s user info contains the contents of 
notification’s user info dictionary, plus an additional key/value pair. The additional key is “NSFieldEditor”; 
the value for this key is the text object that changed.

See also: – textDidBeginEditing:, – textDidEndEditing:



29

textDidEndEditing:
– (void)textDidEndEditing:(NSNotification *)notification 

Invoked when text editing ends. This method’s default behavior is to post an 
NSControlTextDidEndEditingNotification along with the receiving object to the default notification center. 
The posted notification’s user info contains the contents of notification’s user info dictionary, plus an 
additional key/value pair. The additional key is “NSFieldEditor”; the value for this key is the text object 
that began editing. After posting the notification, textDidEndEditing: sends an endEditing: message to 
the selected cell, draws and makes the selected cell key, and then takes the appropriate action based on 
which key was used to end editing (Return, Tab, or Back-Tab).

See also: – textDidBeginEditing:, – textDidChange:, – textShouldEndEditing:

textShouldBeginEditing:
– (BOOL)textShouldBeginEditing:(NSText *)textObject 

Invoked to let the NSTextField respond to impending changes to its text. This method’s default behavior is 
to send control:textShouldBeginEditing: to the receiver’s delegate (passing the receiver and textObject 
as parameters). textShouldBeginEditing: returns the value obtained from 
control:textShouldBeginEditing:, unless the delegate doesn’t respond to that method, in which case it 
returns YES, thereby allowing text editing to proceed.

See also: – delegate

textShouldEndEditing:
– (BOOL)textShouldEndEditing:(NSText *)textObject 

Invoked to let the NSTextField respond to impending loss of first-responder status. This method’s default 
behavior checks the text field for validity; providing that the field contents are deemed valid, and providing 
that the delegate responds, control:textShouldEndEditing: is sent to the receiver’s delegate (passing the 
receiver and textObject as parameters). If the contents of the text field aren’t valid, textShouldEndEditing: 
sends the error action to the selected cell’s target.

textShouldEndEditing: returns NO if the text field contains invalid contents, otherwise it returns the value 
passed back from control:textShouldEndEditing:.

See also: – delegate, –errorAction


