
Classes: NSConditionLock 1

NSConditionLock

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: foundation/NSLock.h

Class Description

The NSConditionLock class defines objects whose locks can be associated with specific,
user-defined conditions. For example, using an NSConditionLock object, a thread can
request a lock only if a certain condition is met. Once it has acquired the lock and executed
the critical section of code, the thread could relinquish the lock and set the associated
condition to something new. The conditions themselves are arbitrary: You define them as
needed for your application.

Typically, you use this class when threads in your application need to execute in a particular
order, such as when one thread produces data that another consumes. While the producer is
executing, the consumer sleeps waiting to acquire a lock that’s conditional upon the
producer’s completion of its operation. An application can have multiple NSConditionLock
objects, each protecting different sections of code. However, these objects must be created
before the application becomes multithreaded.

The locking and unlocking methods that NSConditionLock objects respond to can be used
in any combination. For example, a lock message can be paired with
unlockWithCondition: , or a lockWhenCondition: message can be paired with unlock.

The following example shows how the producer-consumer problem might be handled using
condition locks. Imagine that an application contains a queue of data. A producer thread
adds data to the queue, and consumer threads extract data from the queue.

The producer need not wait for a condition, but must wait for the lock to be made available
so it can safely add data to the queue. For example, a producer could use a lock this way:

id condLock = [[NSConditionLock alloc] initWithCondition:NO_DATA];

[condLock lock];

/* Add data to the queue */

[condLock unlockWithCondition:HAS_DATA];

 2 Classes: NSConditionLock

A consumer thread can then wait until there’s data available and all other threads are out of
locked critical sections. In the following code, the consumer sleeps until the producer
invokes unlockWithCondition: with the parameter HAS_DATA:

[condLock lockWhenCondition:HAS_DATA];

/* Remove data from the queue */

[condLock unlockWithCondition:(isEmpty ? NO_DATA : HAS_DATA)];

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the
NSLocking protocol with various features and performance characteristics; see the other
class descriptions for more information.

Adopted Protocols

NSLocking – lock
– unlock

Method Types

Initializing an NSConditionLock– initWithCondition:

Returning the Condition – condition

Acquiring and Releasing a Lock – lockBeforeDate:
– lockWhenCondition:
– lockWhenCondition:beforeDate:
– unlockWithCondition:

Instance Methods

condition

– (int)condition

Returns the condition that’s associated with the receiver. If no condition has been set,
returns 0.

See also: – initWithCondition:

Classes: NSConditionLock 3

initWithCondition:

– (id)initWithCondition: (int)condition

Initializes a newly allocated NSConditionLock and sets its condition to condition. The
value of the condition argument is user-defined; see the class description for more
information. Returns self.

See also: – condition:

lockBeforeDate:

– (BOOL)lockBeforeDate:(NSDate *)limit

Attempts to acquire a lock before the date represented by limit. The condition associated
with the receiver isn’t taken into account in this operation. Returns YES if the lock is
acquired within the time limit. Returns NO if the time limit expires before a lock can be
acquired.

See also: – lockWhenCondition:beforeDate:

lockWhenCondition:

– (void)lockWhenCondition:(int)condition

Attempts to acquire a lock. The receiver’s condition must be equal to condition before the
locking operation will succeed. This method blocks the thread’s execution until the lock can
be acquired.

See also: – lockWhenCondition:beforeDate:, –unlockWithCondition:

lockWhenCondition:beforeDate:

– (BOOL)lockWhenCondition:(int)condition beforeDate:(NSDate *)limit

Attempts to acquire a lock before the date represented by limit. The receiver’s condition
must be equal to condition before the locking operation will succeed. Returns YES if the
lock is acquired within this time limit. Returns NO if the time limit expires before a lock
can be acquired.

See also: – lockBeforeDate:, – lockWhenCondition:

 4 Classes: NSConditionLock

unlockWithCondition:

– (void)unlockWithCondition: (int)condition

Relinquishes the lock and sets the receiver’s condition to condition.

See also: – lockWhenCondition:

