Chapter

@ NSSet Class Cluster

Class Cluster Description

The NSSet, NSMutableSet, and NSCountedSet classes declare the programmatic interface for objects that
store unordered sets of objects.

Because of the nature of class clusters, the objects you create with the NSSet class cluster are not actual
instances of NSSet or NSMutableSet. Rather, the instances belong to one of their private subclasses. (For
convenience, we use the term set to refer to any one of these instances without specifying its exact class
membership.) Although a set’s class is private, its interface is public, as declared by the abstract
superclasses NSSet and NSMutableSet.Note that NSCountedSet is not part of the class cluster; itis a
concrete subclass of NSMutableSet.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries when
it's created, and thereafter the entries can’'t be modified. NSMutableSet, on the other hand, declares a
programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows the addition and
deletion of entries at any time, automatically allocating memory as needed.

Use sets as an alternative to arrays when the order of elements isn’t important and performance in testing
whether an object is contained in theiset consideration—while arrays are ordered, testing for
membership is slower than with sets.

Objects in a set must respond to the NSObject protocol metiagasndisEqual:. See the NSObject
protocol for more information.

Note: If mutable objects are stored in a set, eithehtisa method of the objects shouldn’t depend on the
internal state of the mutable objects or the mutable objects shouldn’t be modified while they’re in the
set (note that it can be difficult to know whether or not a given object is in a collection).

Objects added to a set are not copied; rather, each object reqitaés message before it's added to a set.

Generally, you create a temporary set by sending one séthemethodsto the NSSet class object. These

methods return an NSSet object containing the elements (if any) you passin as arguments. The setmethod

is a “convenience” method to create an empty mutable set. Newly created instances of NSSet created by
invoking theallocWithZone: method can be populated with objects using any dhthe methods.

The set classes adopt the NSCopying and NSM utableCopying protocols, making it convenient to convert a
set of onetype to the other.

Chapter Classes:

@ NSSet

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSSet.h

Class at a Glance

Purpose
An NSSet object stores an immutable set of objects.

Principal Attributes
» The objects that make up the set.

Creation

+ set Returns an empty set.

+ setWithArray: Returns a set containing a number of objects from an array.
+ setWithObject: Returns a set containing a single object.

+ setWithObjects: Returns a set containing a number of objects.

+ setWithObjects:count: Returns a set containing a specified number of objects.

+ setWithSet: Returns a set containing a number of objects from another set.
Commonly Used Methods

— allObjects Returns an array containing the set's member objects.

— count Returns the number of objects in the set.

— containsObject: Indicates whether a given object is present in the set.
Primitive Methods

— count

— member:

— objectEnumerator

Chapter

Class Description

The NSSet class declaresthe programmatic interface to an object that manages an immutabl e set of objects.
NSSet provides support for the mathematical concept of aset. A set, both in its mathematical sense and in
the implementation of NSSet, is an unordered collection of distinct elements. The NSMutableSet and
NSCountedSet classes are provided for sets whose contents may be altered.

NSSet provides methods for querying the elements of the set. allObj ects returns an array containing the
objectsin aset. anyObject returns some object in the set. count returns the number of objects currently in
the set. member: returns the object in the set that is equal to a specified object. Additionaly, the

inter sectsSet: testsfor set intersection, isEqual ToSet: tests for set equality, and isSubsetOfSet: tests for
one set being a subset of another.

The objectEnumerator method provides for traversing elements of the set one by one.

NSSet'smakeObjectsPer form: andmakeObj ectsPerform:withObject: methods provides for sending
messages to individual objects in the set.

Exceptions

NSSet implements thecodeWithCoder: method, which raises NSinternalinconsistencyException if the
number of objects enumerated for encoding turns out to be unequal to the number of objects in the set.

Adopted Protocols

NSCoding — encodeWithCoder:
— initwithCoder:
NSCopying — copyWithZone:

NSMutableCopying — mutableCopyWithZone:

Chapter Classes:

Method Types

Creating a set + alocWithZone:
+ set
+ setWithArray:
+ setWithObject:
+ setWithObjects:
— initWithArray:
— initWithObjects:
— initWithObjects:count:
— initWithSet:
— initWithSet:copyltems:
Counting entries — count
Accessing the members — allObjects
— anyObject
— containsObject:
— makeObjectsPerform:
— makeObjectsPerform:withObject:
— member:
— objectEnumerator

Comparing sets — isSubsetOfSet:
— intersectsSet:
— isequalToSet:

Describing a set — description
— descriptionWithLocale:

Class Methods
allocWithZone:
+ (id)allocWithZone:(NSZone *yone

Creates and returns an uninitialized set in the specified zone. If the receiver is the NSSet class object, an
instance of an immutable private subclass is returned; otherwise, an object of the receiver’s class is returned.

Typically, you create temporary sets usinggfte. class methods, not ttalocWithZone: andinit...
methods. Note that it's your responsibility to free objects created witdltayVithZone: method.

Seealso: + set, + setWithObject:, + setWithObjects,, + setWithArray:

Chapter

set
+ (id)set

Creates and returns an empty set. This method is declared primarily for the use of mutable subclasses of
NSSet.

Seealso: + setWithArray:, + setWithObject:, + setWithObjects:

setWithArray:

+ (id)ysetWithArray: (NSArray *)anArray
Creates and returns a set containing those objects contained within the array anArray.
Seealso: + set, + setWithObject:, + setWithObjects:

setWithObject:
+ (id)setWithObj ect: (id)anObject

Creates and returns a set containing a single member, anObject. anObject receives aretain message after
being added to the set.

Seealso: + setWithArray:, + set, + setWithObjects:

setWithObjects:
+ (id)setWithObj ects: (id)anObject, ...

Createsand returnsaset containing the objectsin the argument list. The argument list isacomma-separated
list of objects ending with nil.

As an example, the following code excerpt creates a set containing three different types of elements
(assuming aPath exits):

NSSet *nySet ;

NSDat a *soneData = [NSDat a dataWt hContent sOFFi | e: aPat h] ;
NSVal ue *aVal ue = [NSNunber nunberWthlnt:5];

NSString *aString = @"a string”;

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

Seealso: + setWithArray:, + set, + setWithObj ect:

Chapter Classes:

\9 setWithObjects:count:
+ (id)setWithObjects. (id *)objects count: (unsigned int)count

Creates and returns a set containing count objects from the list of objects specified by objects.

\9 setWithSet:
+ (id)setWithArray: (NSSet *)aSet

Creates and returns a set containing those objects contained within the set aSeat.

Instance Methods
allObjects
— (NSArray *)jallObjects

Returns an array containing the receiver’s members, or an empty array if the receiver has no members. The
order of the objects in the array isn’t defined.

anyObject
— (id)anyObj ect
Returns one of the objects in the set (essentially chosen at randaih)f tre set contains no objects.

See also: —allObjects, —objectEnumerator

containsObject:
— (BOOL containsObject: (id)anObject
Returns YES ifanObject is present in the set, NO otherwise.

See also: —member:

count
— (unsigned ingount

Returns the number of members in the set.

Chapter

description
— (NSString *pescription
Returns a string object that represents the contents of the receiver, formatted as a property list.

See also: —descriptionWithL ocale:

descriptionWithLocale:
— (NSString *escriptionWithL ocale: (NSDictionary *Jocale

Returns a string object that represents the contents of the receiver, formatted as a projmedielist.
specifies options used for formatting each of the receiver’'s members (eachlesgeptionWithL ocale:,
andlocale is passed along as the sole parameter); speitifiyyou don’t want them formatted.

See also: —description

hash
@protocol NSObject
— (unsigned int)ash

Returns an unsigned integer that can be used as a table address in a hash table structurénasbr a set,
returns the number of members in the set. If two sets are equal (as determineidgiEyudie method),
they will have the same hash value.

See also: —isEqual:

initWithArray:
— (id)initWithArray:(NSArray *)array
Initializes a newly allocated set with the objects that are contaireeday This method steps through

array, adding members to the new set as it goes. Each object rece@tais anessage as it is added to the
set. Returnself.

See also: —initWithObjects:, —initWithObjects.count:, — initWithSet:, — initWithSet:copyltems: ,
+setWithArray:

Chapter

Classes:

initWithObjects:
— (id)initWithObj ects: (id)anObject...
Initializes a newly allocated set with members taken from the specified tibjeots. initWithObjects:

takes a comma-separated list of objects terminatetill bifach object receivesratain message as it is
added to the set. Returssaif.

See also: —initWithArray:, —initWithObjects.count:, — initWithSet:, — initWithSet:copyltems: ,
+setWithObjects:

initWithObjects:count:
— (id)initWithObjects: (id *) objects count: (unsignedyount
Initializes a newly allocated set withunt members. This method steps throughdtjects array, creating

members in the new set as it goes. Each object receietgmmessage as it is added to the set. Returns
sdf.

Seealso: —initWithArray:, —initWithObjects:, — initWithSet:, — initWithSet:copyltems:

initWithSet:
— (id)initWithSet: (NSSet *pther Set

Initializes a newly allocated set by placing in it the objects containattienSet. Each object is retained as
it is added to the receiver. RetusaH.

See also: —initWithArray:, —initWithObjects:, —initWithObjects:count:, — initWithSet:copyltems:

initWithSet:copyltems:

— (id)initWithSet: (NSSet *pther Set copyltems: (BOOL)flag
Initializes a newly allocated set andfldg is NO, places in it the objects containeabtiner Set. If flag is
YES, the members atherSet are copied, and the copies are added to the receiver. (Note that
copyWithZone: is invoked in making these copies. Thus, the receiver's new member objects may be

immutable, even though their counterpartsthrer Set were mutable. Also, members must conform to the
NSCopying protocol)

This method returnself.
See also: —initWithArray:, —initWithObjects:, —initWithObjects:count:, — initWithSet:

Chapter

intersectsSet:
— (BOOL)nter sectsSet: (NSSet *pther Set

Returns YES if at least one object in the receiver is also presatheifet, NO otherwise.
Seealso: —isEqualToSet:, —isSubsatOf Set:

isequal:

@protocol NSObject
— (BOOL)isequal:(id)anObject

Returns YES if the receiver amdObject are equal; otherwise returns NO. A YES return value indicates
that the receiver arahObject both inherit from NSSet armbntain the same contents (as determined by the
isEqualToSet: method).

See also: —isEqualToSet:

iIsEqualToSet:
— (BOOL)isEqual ToSet: (NSSet *pther Set

Compares the receiving setdier Set. If the contents ofither Set are equal to the contents of the receiver,
this method returns YES. If not, it returns NO.

Two sets have equal contents if they each have the same number of members and if each member of one set
is present in the other.

Seealso: —intersectsSet:, —isEqual: (NSObject protocol), +sSubsetOfSet:

isSubsetOfSet:
— (BOOL)isSubsetOf Set: (NSSet *pther Set

Returns YES if every object in the receiver is also presathanSet, NO otherwise.

See also: —intersectsSet:, —isEqual ToSet:

Chapter

Classes:

10

makeObjectsPerform:
— (void)makeObj ectsPerform: (SEL)aSelector

SendsaSdector to each object in the set. Ta8lector method must be one that takes no arguments. It
shouldn’t have the side effect of modifying this set. The messages are sent uparfate: method
declared in the NSObject protocol.

See also: —makeObjectsPerform:withObject:

makeObjectsPerform:withObject:
— (void)makeObjectsPerform: (SEL)aSe ector withObject: (id)anObject

SendsaSdector to each object in the set. The message is sent each timan®ltject as the argument, so
theaSalector method must be one that takes a single argument oifidypaeaSelector method shouldn't,
as a side effect, modify this set. The messages are sent uspagftiren:with: method declared in the
NSObject protocol.

See also: — makeObjectsPerform:

member:
— (id)member : (id)anObject

If anObject is present in the set (as determineddigual:), the object in the set is returned. Otherwise,
member: returnsnil.

See also: — containsObject:

objectEnumerator
— (NSEnumerator 9bjectEnumer ator

Returns an enumerator object that lets you access each object in the set:

NSEnuner at or *enunerator = [nmySet objectEnunerator];
id val ue;
while ((value = [enunerator nextObject])) {
[* code that acts on the set’s values */
}

Chapter

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the set during

enumeration. If you intend to modify the set, usealh®bjects method to create a “snapshot” of the set’s
members. Enumerate the snapshot, but make your modifications to the original set.

See also: —nextObject (NSEnumerator)

11

Chapter

Classes:

@ NSMutableSet

Inherits From: NSSet : NSObject
Conforms To: NSCoding
NSCopying
NSM utableCopying (NSSet)
NSObject (NSObject)
Declared In: Foundation/NSSet.h

Class at a Glance

Purpose
An NSMutableSet abject stores amodifiable set of objects.

Principal Attributes
» The objects that make up the set.

Creation
+ setWithCapacity: Returns An empty set with enough allocated memory to hold a
specified number of objects.

Commonly Used Methods

— addObject: Adds an object to the set, if it isn't already a member.
— removeObiject: Removes an object from the set.

Primitive Methods

— addObject:

— removeObject:

Class Description

12

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of
objects. NSMutableSet provides support for the mathematical concepdtofsset, both in its
mathematical sense, and in the NSMutableSet implementationuisraered collection of distinct

Chapter

elements. The NSCountedSet class, which is a concrete subclass of NSM utableSet, supports mutable sets
that can contain multiple instances of the same element. The NSSet class supports creating and managing
immutable sets.

Objects are added to an NSMutableSet with addObj ect:, which adds a single object to the set;
addObjectsFromArray:, which addsall objectsfrom aspecified array to the set; or with unionSet:, which
adds all the objects from another set.

Objects are removed from an NSMutableSet using any of the methods inter sectSet:, minusSet:,
removeAllObjects, or removeObject:.

Method Types

Creating an NSMutabl eSet + alocWithZone:
+ setWithCapacity:
— initWithCapacity:
Adding and removing entries — addObject:

— removeObject:
— removeAllObjects
— addObjectsFromArray:

Combining and recombining sets — unionSet:
— minusSet:
— intersectSet:
— setSet:

Class Methods
allocWithZone:
+ (id)allocWithZone:(NSZone *yone

Creates and returns an uninitialized mutable set in the specified zone. If the receiver is the NSMutableSet
class object, an instance of a mutable private subclass is returned; otherwise, an object of the receiver’s class
is returned.

Typically, you create temporary sets usingdfte. class methods, not ttalocWithZone: andinit...
methods.

See also: + initWithCapacity:, + set (NSSet)+ setWithObjects.count: (NSSet)

13

Chapter

Classes:

setWithCapacity:
+ (id)setWithCapacity: (unsigned)numltems

Creates and returns amutable set, giving it enough allocated memory to hold numltems members. Mutable
sets allocate additional memory as needed, so numitems simply establishes the object’s initial capacity.

Seealso: —initWithCapacity:, +set (NSSet), +setWithObjects:count: (NSSet)

Instance Methods

14

addObject:
— (void)addObj ect: (id)anObject

Adds the specified object to the receiver if it is not already a meani@ject is sent aetain message as
it is added to the receiver.dhObject is already present in the set, this method has no effect on either the
set or oranObject.

See also: —addObjectsFromArray:, —unionSet:

addObjectsFromArray:
— (voidladdObjectsFromArray:(NSArray *)anArray

Adds each object containedanArray to the receiver, if that object is not already a member. The new
membelis retained. If a given element of the array is already present in the set, this method has no effect
on either the set or on the array element.

See also: —addObject:, —unionSet:

initWithCapacity:
— (id)initWithCapacity: (unsignedjumitems

Initializes a newly allocated mutable set, giving it enough allocated memory taumlligms members.
Mutable sets allocate additional memory as needealjstiems simply establishes the object’s initial
capacity. Returnself.

See also: + setWithCapacity:

Chapter

intersectSet:
— (void)inter sectSet: (NSSet *pther Set

Removes from the receiver each object that isn't a memhmtheset. Each object that's removed from
the receiver is sentr&lease message.

See also: —removeObject:, —removeAllObjects, — minusSet:

minusSet:
— (void)minusSet: (NSSet *pther St

Removes from the receiver each object containethenSet that is also present in the receiver. Each object
that's successfully removed from the receiver is sestease message. If any memberaher Set isn'’t
present in the receiving set, this method has no effect on either the receiver ootber 82emember.

See also: —removeObject:, —removeAllObjects, — intersectSet:

removeAllObjects
— (void)removeAllObjects

Empties the set of all of its members. Each member is setdase message.

See also: —removeObject:, —minusSet:, —inter sect Set:

removeObject:
— (void)removeObject: (id)anObject

RemovesanObject from the set. The removed object is sertiease message if it was a member of the
receiver.

See also: —removeAllObjects, — minusSet:, —inter sectSet:

setSet:
— (void)setSet: (NSSet *pther Set

Empties the receiver, then adds each object contairatlen®et to the receiver The new member is sent a
retain message as it is added to the receiver.

15

16

Chapter

Classes:

unionSet:
— (void)unionSet: (NSSet *pther Sat
Adds each object containedather et to the receiver, if that object is not already a member. The new

member is senti@tain message as it is added to the receiver. If any membtreoget is already present
in the receiver, this method has no effect on either the receiver or othdfest member.

See also: —addObject:, —addObjectsFromArray:

