
OpenStep Specification—2/14/972-46 Chapter 2: Foundation Kit

NSDate

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject)

Declared In: Foundation/NSDate.h

Class Description

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates,
computing time intervals, and similar functionality. It presents a programmatic interface through which suitable
date objects are requested and returned. NSDate objects are lightweight and immutable since they represent a
invariant point in time. This class is designed to provide the foundation for arbitrary calendrical representations. Its
subclass NSCalendarDate offers date objects that are suitable for representing dates according to western
calendrical systems.

“Date” as used above implies clock time as well. The standard unit of time for date objects is a value typed as
NSTimeInterval (a double) and expressed as seconds. The NSTimeInterval type makes possible a wide and
fine-grained range of date and time values, giving accuracy within milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as seconds relative to an absolute reference date. This reference date is
the first instant of January 1, 2001. NSDate converts all date and time representations to and from NSTimeInterval
values that are relative to this absolute reference date. A positive interval relative to a date represents a point in the
future, a negative interval represents a time in the past.

Note: Conventional UNIX systems implement time according to the Network Time Protocol (NTP) standard,
which is based on Coordinated Universal Time. The private implementation of NSDate follows the NTP standard.
However, this standard doesn’t account for leap seconds and therefore isn’t synchronized with International Atomic
Time (the most accurate).

Like various other Foundation classes, NSDate lets you obtain operating-system functionality (dates and times)
without depending on operating-system internals. It also provides a basis for the NSRunLoop and NSTimer classes,
which use concrete date objects to implement local event loops and timers.

NSDate’s sole primitive method, timeIntervalSinceReferenceDate, provides the basis for all the other methods
in the NSDate interface. It returns a time value relative to an absolute reference date.

Using NSDate

The date objects dispensed by NSDate give you a diverse range of date and time functionality. To obtain dates, send
one of the date... messages to the NSDate class object. One of the most useful is date itself, which returns a date
object representing the current date and time. You can get new date objects with date and time values adjusted from
existing date objects by sending addTimeInterval:.

Classes: NSDate 2-47OpenStep Specification—2/14/97

You can obtain relative date information by sending the timeInterval... messges to a date object. For instance,
timeIntervalSinceNow gives you the time, in seconds, between the current time and the receiving date object.
Compare dates with the isEqual:, compare:, laterDate:, and earlierDate: methods and use the description
method to obtain a string object that represents the date in a standard international format.

Creating an NSDate Object

+ (NSDate *)date Creates and returns an NSDate set to the current date and
time.

+ (NSDate *)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds
Creates and returns an NSDate set to seconds seconds from

the current date and time.

+ (NSDate *)dateWithTimeIntervalSince1970:(NSTimeInterval)seconds
Creates and returns an NSDate set to to seconds seconds

from the reference date used by UNIX systems. Use a
negative argument value to specify a date and time
before the reference date.

+ (NSDate *)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds
Creates and returns an NSDate set to seconds seconds from

the absolute reference date (the first instant of 1
January, 2001). Use a negative argument value to
specify a date and time before the reference date.

+ (NSDate *)distantFuture Creates and returns an NSDate that represents a date in the
distant future (in terms of centuries). You can use this
object in your code as a control date, a guaranteed outer
temporal limit.

+ (NSDate *)distantPast Creates and returns an NSDate that represents a date in the
distant past (in terms of centuries). You can use this
object in your code as a control date, a guaranteed
temporal boundary.

– (id)init Initializes a newly allocated NSDate to the current date and
time.

– (id)initWithString:(NSString *)description Returns an NSDate with a date and time value specified by
the international string-representation format:
YYYY-MM-DD HH:MM:SS ±HHMM, where
±HHMM is a time zone offset in hours and minutes
from Greenwich Mean Time.

– (NSDate *)initWithTimeInterval:(NSTimeInterval)seconds
sinceDate:(NSDate *)anotherDate Returns an NSDate initialized relative to another date

object by seconds (plus or minus).

OpenStep Specification—2/14/972-48 Chapter 2: Foundation Kit

– (NSDate *)initWithTimeIntervalSinceNow:(NSTimeInterval)seconds
Returns an NSDate initialized relative to the current date

and time by seconds (plus or minus).

– (id)initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds
Returns an NSDate initialized relative to the reference date

and time by seconds (plus or minus).

Converting to an NSCalendar Object

– (NSCalendarDate *)dateWithCalendarFormat:(NSString *)formatString
timeZone:(NSTimeZone *)timeZone Returns an NSCalendarDate object bound to the format

string formatString and the time zone timeZone. If you
specify nil after either or both of these arguments, the
default format string and time zone are assumed.

Representing Dates

– (NSString *)description Returns a string representation of the receiver. The
representation conforms to the international format
YYYY-MM-DD HH:MM:SS ±HHMM, where
±HHMM represents the time-zone offset in hours and
minutes from Greenwich Mean Time (GMT).

– (NSString *)descriptionWithCalendarFormat:(NSString *)formatString
timeZone:(NSTimeZone *)aTimeZone Returns a string representation of the receiver. The
locale:(NSDictionary *)localeDictionary representation conforms to formatString (a

strftime-style date-conversion string) and is adjusted to
aTimeZone. Included are the keys and values that
represent the locale data from localeDictionary. For
information on creating a locale dictionary, see the class
description in NSUserDefaults.

– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary
Returns a string representation of receiver (see

description). Included are the key and values that
represent the locale data from localeDictionary. For
information on creating a locale dictionary, see the class
description in NSUserDefaults.

Classes: NSDate 2-49OpenStep Specification—2/14/97

Adding and Getting Intervals

+ (NSTimeInterval)timeIntervalSinceReferenceDate
Returns the interval between the system’s absolute

reference date and the current date and time. This value
is less than zero until the first instant of 1 January 2001.

– addTimeInterval:(NSTimeInterval)seconds Returns an NSDate that’s set to a specified number of
seconds relative to the receiver.

– (NSTimeInterval)timeIntervalSince1970 Returns the interval between the receiver and the reference
date used by UNIX systems.

– (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate
Returns the interval between the receiver and anotherDate.

– (NSTimeInterval)timeIntervalSinceNow Returns the interval between the receiver and the current
date and time.

– (NSTimeInterval)timeIntervalSinceReferenceDate
Returns the interval between the receiver and the system’s

absolute reference date. This value is less than zero until
the first instant of 1 January 2001.

Comparing Dates

– (NSComparisonResult)compare:(NSDate *)anotherDate
Compares the receiver’s date to that of anotherDate and

returns NSOrderedDescending if the receiver is
temporally later, NSOrderedAscending if it’s
temporally earlier, and NSOrderedSame if they are
equal.

– (NSDate *)earlierDate:(NSDate *)anotherDate Compares the receiver’s date to anotherDate and returns
the one that’s temporally earlier.

– (BOOL)isEqualToDate:(NSDate *)anotherDate Returns YES if anotherDate and the receiver are within
one second of each other; otherwise, returns NO.

– (NSDate *)laterDate:(NSDate *)anotherDate Compares the receiver’s date to anotherDate and returns
the one that’s temporally later.

