
1

NSWorkspace

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSWorkspace.h

Class Description

An NSWorkspace object responds to application requests to perform a variety of services:

• opening, manipulating, and obtaining information about files and devices
• tracking changes to the file system, devices, and the user database
• launching applications
• miscellaneous services such as animating an image and requesting additional time before power off

There is one shared NSWorkspace object per application. You use the class method sharedWorkspace to
access it. For example, the following statement uses an NSWorkspace object to request that a file be opened
in the Edit application:

[[NSWorkspace sharedWorkspace] openFile:@"/Myfiles/README"

withApplication:@"Edit"];

Note: On the Microsoft Windows platform, some of the methods in this class have no effect. Refer to the
method descriptions below.

Method Types

Accessing the shared NSWorkspace + sharedWorkspace

Accessing the NSWorkspace notification center
– notificationCenter

Opening files – openFile:
– openFile:withApplication:
– openFile:fromImage:at:inView:
– openFile:withApplication:andDeactivate:
– openTempFile:

Manipulating applications – launchApplication:
– launchApplication:showIcon:autolaunch:
– hideOtherApplications

2

Classes: NSWorkspace

Manipulating files – performFileOperation:source:destination:files:tag:
– selectFile:inFileViewerRootedAtPath:

Requesting information about files
– iconForFile:
– iconForFileType:
– iconForFiles:
– getInfoForFile:application:type:
– fullPathForApplication:
– getFileSystemInfoForPath:isRemovable:isWritable:

isUnmountable:description:type:

Requesting additional time before logout
– extendPowerOffBy:

Tracking changes to the file system
– noteFileSystemChanged
– fileSystemChanged

Updating registered services and file types
– findApplications

Tracking changes to the defaults database
– noteUserDefaultsChanged
– userDefaultsChanged

Tracking status changes for applications and devices
– mountedRemovableMedia
– mountNewRemovableMedia
– checkForRemovableMedia

Animating an image – slideImage:from:to:

Unmounting a device – unmountAndEjectDeviceAtPath:

Class Methods

sharedWorkspace
+ (NSWorkspace *)sharedWorkspace

Returns the shared NSWorkspace instance.

3

Instance Methods

checkForRemovableMedia
– (void)checkForRemovableMedia

On the Mach platform, polls the system’s drives for any disks that have been inserted but not yet mounted.
checkForRemovableMedia doesn’t wait until such disks are mounted; instead, it requests that the disk be
mounted asynchronously and returns immediately.

 This method has no effect on the Microsoft Windows platform.

See also: – mountNewRemovableMedia, –mountedRemovableMedia

extendPowerOffBy:
– (int)extendPowerOffBy:(int)requested

Requests requested milliseconds more time before the power goes off or the user logs out. Returns the
number of additional milliseconds granted. On some platforms you might not be able to extend the time.

fileSystemChanged
– (BOOL)fileSystemChanged

On the Mach platform, returns YES if a change to the file system has been registered with a
noteFileSystemChanged message since the last fileSystemChanged message; NO otherwise.

This method is not implemented on the Microsoft Windows platform. If you try to use it, it raises an
NSInvalidArgumentException.

findApplications
– (void)findApplications

On the Mach platform, examines all applications in the normal places (/LocalApps, /NextApps,
/NextDeveloper/Apps) and updates the records of registered services and file types.

 This method has no effect on the Microsoft Windows platform.

fullPathForApplication:
– (NSString *)fullPathForApplication: (NSString *)appName

Returns the full path for the application appName, or nil if appName isn’t in one of the normal places.

4

Classes: NSWorkspace

getFileSystemInfoForPath:isRemovable:isWritable:isUnmountable:
description:type:

– (BOOL)getFileSystemInfoForPath:(NSString *)fullPath
isRemovable:(BOOL *)removableFlag
isWritable: (BOOL *)writableFlag
isUnmountable:(BOOL *)unmountableFlag
description:(NSString **)description
type:(NSString **)fileSystemType

On the Mach platform, describes the file system at fullPath. This method has no effect on the Microsoft
Windows platform.

Returns YES if fullPath is a file system mount point, NO otherwise. If the return value is YES, description
describes the file system; this value can be used in strings, but it shouldn’t be depended upon by program
logic. Example values for description are “hard”, “nfs”, and “foreign”. fileSystemType indicates the file
system type; values could be “NeXT”, “DOS”, or other values. removableFlag is YES if the file system is
on removable media, NO otherwise. writableFlag is YES if the file system’s media is writable, NO
otherwise. unmountableFlag returns YES if the file system is unmountable, NO otherwise.

getInfoForFile:application:type:
– (BOOL)getInfoForFile: (NSString *)fullPath

application:(NSString **)appName
type:(NSString **)type

Retrieves information about the file specified by fullPath. If this method returns YES, the NSString pointed
to by appName is set to the application the system would use to open fullPath. The NSString pointed to by
type contains one of the following values or a file name extension such as “rtf” indicating the file’s type:

Value Type of File

NSPlainFileType Plain (untyped) file

NSDirectoryFileType Directory

NSApplicationFileType OpenStep application

NSFilesystemFileType File system mount point

NSShellCommandFileType Executable shell command

This method returns NO if it could not find fullPath.

See also: – iconForFile:, – iconForFiles:

5

hideOtherApplications
– (void)hideOtherApplications

Hides all applications other than the sender. This method has no effect on the Microsoft Windows platform.
On the Mach platform, the user can hide all applications except the current one by
Command-double-clicking an application’s tile, so programmatic invocation of this method is usually
unnecessary.

iconForFile:
– (NSImage *)iconForFile:(NSString *)fullPath

Returns an NSImage with the icon for the single file specified by fullPath.

See also: – getInfoForFile:application:type: , – iconForFileType:, – iconForFiles:

iconForFileType:
– (NSImage *)iconForFileType:(NSString *)fileType

Returns an NSImage the icon for the file type specified by fileType.

See also: – iconForFile:, – iconForFiles:

iconForFiles:
– (NSImage *)iconForFiles:(NSArray *)fullPaths

Returns an NSImage with the icon for the files specified in fullPaths, an array of NSStrings. If fullPaths
specifies one file, its icon is returned. If fullPaths specifies more than one file, an icon representing the
multiple selection is returned.

See also: – iconForFile:, – iconForFileType:

launchApplication:
– (BOOL)launchApplication: (NSString *)appName

Launches the application appName. appName need not be specified with a full path and, in the case of an
application wrapper, can be specified with or without the .app extension. Returns YES if the application is
successfully launched or already running, NO if it can’t be launched.

6

Classes: NSWorkspace

Before this method begins, it posts an NSWorkspaceWillLaunchApplicationNotification to the
NSWorkspace’s notification center. When the operation is complete, it posts an
NSWorkspaceDidLaunchApplicationNotification.

See also: – launchApplication:showIcon:autolaunch:

launchApplication:showIcon:autolaunch:
– (BOOL)launchApplication: (NSString *)appName

showIcon:(BOOL)showIcon
autolaunch:(BOOL)autolaunch

Launches the application appName. If showIcon is NO, the application’s icon won’t be placed on the screen.
(The icon still exists, though.) If autolaunch is YES, the autolaunch default will be set as though the
application were autolaunched at startup. This method is provided to enable daemon-like applications that
lack a normal user interface and for use by alternative dock programs. Its use is not generally encouraged.

Returns YES if the application is successfully launched or already running, and NO if it can’t be launched.

Before this method begins, it posts an NSWorkspaceWillLaunchApplicationNotification to the
NSWorkspace’s notification center. When the operation is complete, it posts an
NSWorkspaceDidLaunchApplicationNotification.

See also: – launchApplication:

mountNewRemovableMedia
– (NSArray *)mountNewRemovableMedia

On the Mach platform, polls the system’s drives for any disks that have been inserted but not yet mounted,
waits until the new disks have been mounted, and returns an NSArray of NSStrings containing full
pathnames to all newly mounted disks. This method posts an NSWorkspaceDidMountNotification to the
NSWorkspace’s notification center when it is finished.

This method is not implemented on the Microsoft Windows platform. If you try to use it, it raises an
NSInvalidArgumentException.

See also: – checkForRemovableMedia, –mountedRemovableMedia

mountedRemovableMedia
– (NSArray *)mountedRemovableMedia

Returns an NSArray of NSStrings containing the full pathnames of all currently mounted removable disks.
This method is not implemented on the Microsoft Windows platform. If you try to use it, it raises an
NSInvalidArgumentException.

7

On the Mach platform, if the computer provides an interrupt or other notification when the user inserts a
disk into a drive, the Workspace Manager will mount the disk immediately. However, if no notification is
given, the Workspace Manager won’t be aware that a disk needs to be mounted. On such systems, an
application should invoke either mountNewRemovableMedia: or checkForRemovableMedia before
invoking mountedRemovableMedia:. Either of these methods cause the Workspace Manager to poll the
drives to see if a disk is present. If a disk has been inserted but not yet mounted, these methods will cause
the Workspace Manager to mount it.

The Disk button in an Open or Save panel invokes mountedRemovableMedia: and
mountNewRemovableMedia: as part of its operation, so most applications won’t need to invoke these
methods directly.

See also: – checkForRemovableMedia, –mountNewRemovableMedia

noteFileSystemChanged
– (void)noteFileSystemChanged

On the Mach platform, informs NSWorkspace that the file system has changed. NSWorkspace then gets the
status of all the files and directories it is interested in and updates itself appropriately. This method is used
by many objects that write or delete files.

This method has no effect on the Microsoft Windows platform.

See also: – fileSystemChanged

noteUserDefaultsChanged
– (void)noteUserDefaultsChanged

On the Mach platform, informs NSWorkspace that the defaults database has changed. NSWorkspace then
reads all the defaults it is interested in and reconfigures itself appropriately. For example, on Mach
platforms, this method is used by the Preferences application to notify Workspace Manager whether the
user prefers to see hidden files.

This method has no effect on the Microsoft Windows platform.

See also: – userDefaultsChanged

notificationCenter
– (NSNotificationCenter *)notificationCenter

Returns the notification center for workspace notifications.

8

Classes: NSWorkspace

openFile:
– (BOOL)openFile:(NSString *)fullPath

Opens the file specified by fullPath using the default application for its type; returns YES if file was
successfully opened, NO otherwise. The sending application is deactivated before the request is sent.

See also: – openFile:fromImage:at:inView: , –openFile:withApplication: ,
– openFile:withApplication:andDeactivate:, –openTempFile:

openFile:fromImage:at:inView:
– (BOOL)openFile:(NSString *)fullPath

fromImage:(NSImage *)anImage
at:(NSPoint)point
inView: (NSView *)aView

Opens the file specified by fullPath using the default application for its type. On the Mach platform,
Workspace Manager provides animation before opening the file to give the user feedback that the file is to
be opened. To provide this animation, anImage should contain an icon for the file, and its image should be
displayed at point, specified in aView’s coordinates. On the Microsoft Windows platform, this method is the
same as the openFile: method.

The sending application is deactivated before the request is sent. Returns YES if the file is successfully
opened, NO otherwise.

See also: – openFile:, –openFile:withApplication: , –openFile:withApplication:andDeactivate:,
– openTempFile:

openFile:withApplication:
– (BOOL)openFile:(NSString *)fullPath withApplication: (NSString *)appName

Opens the file specified by fullPath using the appName application. appName need not be specified with a
full path and, in the case of an application wrapper, can be specified with or without the .app extension. The
sending application is deactivated before the request is sent. Returns YES if the file is successfully opened,
NO otherwise.

See also: – openFile:, –openFile:withApplication:andDeactivate:

9

openFile:withApplication:andDeactivate:
– (BOOL)openFile:(NSString *)fullPath

withApplication: (NSString *)appName
andDeactivate:(BOOL)flag

Opens the file specified by fullPath using the appName application. appName need not be specified with a
full path and, in the case of an application wrapper, can be specified with or without the .app extension. If
appName is nil , the default application for the file’s type is used. If flag is YES, the sending application is
deactivated before the request is sent, allowing the opening application to become the active application.
Returns YES if the file is successfully opened, NO otherwise.

See also: – openFile:, –openFile:withApplication: , –application:openFile: (NSApplication delegate
method)

openTempFile:
– (BOOL)openTempFile:(NSString *)fullPath

Opens the temporary file specified by fullPath using the default application for its type. The sending
application is deactivated before the request is sent. Using this method instead of one of the openFile:...
methods lets the receiving application know that it should delete the file when it no longer needs it. Returns
YES if the file is successfully opened, NO otherwise.

See also: – openFile:, –openFile:fromImage:at:inView: , –openFile:withApplication: ,
– openFile:withApplication:andDeactivate:

performFileOperation:source:destination:files:tag:
– (BOOL)performFileOperation: (NSString *)operation

source:(NSString *)source
destination:(NSString *)destination
files:(NSArray *)files
tag:(int *) tag

Performs a file operation on a set of files in a particular directory. operation is some file operation, such as
compressing or moving files. files contains NSString specifying the names of the files to be manipulated.
The file names are given relative to the source directory. The list can contain both files and directories; all
of them must be located directly within source (not in one of its subdirectories).

Some operations—such as moving, copying, and linking files—require a destination directory to be
specified. If not, destination should be the empty string (@"").

The possible values for operation are:

10

Classes: NSWorkspace

Operation Meaning

NSWorkspaceMoveOperation Move file to destination

NSWorkspaceCopyOperation Copy file to destination

NSWorkspaceLinkOperation Create link to file in destination

NSWorkspaceCompressOperation Compress file

NSWorkspaceDecompressOperation Decompress file

NSWorkspaceEncryptOperation Encrypt file

NSWorkspaceDecryptOperation Decrypt file

NSWorkspaceDestroyOperation Destroy file

NSWorkspaceRecycleOperation Move file to recycler

NSWorkspaceDuplicateOperation Duplicate file in source directory

Note: NSWorkspaceCompressOperation, NSWorkspaceDecompressOperation,
NSWorkspaceEncryptOperation, and NSWorkspaceDecryptOperation are not available on the
Microsoft Windows platform.

This method returns YES if the operation succeeded, NO otherwise, In tag, the method returns a negative
integer if the operation fails, 0 if the operation is performed synchronously and succeeds, and a positive
integer if the operation is performed asynchronously. The positive integer is a tag that identifies the
requested file operation. Before this method returns, it posts an
NSWorkspaceDidPerformFileOperationNotification to NSWorkspace’s notification center.

selectFile:inFileViewerRootedAtPath:
– (BOOL)selectFile:(NSString *)fullPath inFileViewerRootedAtPath:(NSString *)rootFullPath

Selects the file specified by fullPath. If a path is specified by rootFullPath, a new file viewer is opened. If
rootFullPath is an empty string (@""), the file is selected in the main viewer. Returns YES if the file is
successfully selected, NO otherwise.

slideImage:from:to:
– (void)slideImage:(NSImage *)image

from: (NSPoint)fromPoint
to:(NSPoint)toPoint

On Mach platforms, animates a sliding image of image from fromPoint to toPoint, specified in screen
coordinates. This method has no effect on the Microsoft Windows platform.

11

unmountAndEjectDeviceAtPath:
– (BOOL)unmountAndEjectDeviceAtPath:(NSString *)path

Unmounts and ejects the device at path. Returns YES if unmount succeeded and NO otherwise. When this
method begins, it posts an NSWorkspaceWillUnmountNotification to NSWorkspace’s notification center.
When it is finished, it posts an NSWorkspaceDidUnmountNotification.

userDefaultsChanged
– (BOOL)userDefaultsChanged

On the Mach platform, returns whether a change to the defaults database has been registered with a
noteUserDefaultsChanged message since the last userDefaultsChanged message.

This method has no effect on the Microsoft Windows platform.

Notifications

All NSWorkspace notifications are posted to NSWorkspace’s own notification center, not the application’s
default notification center. Access this center using the notificationCenter method.

NSNotificationCenter *workspaceCenter = [[NSWorkspace sharedWorkspace]

notificationCenter];

NSWorkspaceDidLaunchApplicationNotification

Posted when a new application has started up.

The notification object contains:

Notification Object the shared NSWorkspace instance

Userinfo

Key Value

NSApplicationName The application being terminated

NSWorkspaceDidMountNotification

Posted when a new device has been mounted.

12

Classes: NSWorkspace

The notification object contains:

Notification Object the shared NSWorkspace instance

Userinfo

Key Value

NSDevicePath The path where the device was mounted

NSWorkspaceDidPerformFileOperationNotification

Posted when a file operation has been performed.

Notification Object the shared NSWorkspace instance

Userinfo

Key Value

NSOperationNumber A number indicating the type of file operation completed

NSWorkspaceDidTerminateApplicationNotification

Posted when an application finishes executing.

The notification object contains:

Notification Object the shared NSWorkspace instance

Userinfo

Key Value

NSApplicationName The application that terminated

NSWorkspaceDidUnmountNotification

Posted when the workspace has unmounted a device.

Notification Object the shared NSWorkspace instance

Userinfo

Key Value

NSDevicePath The path where the device was previously mounted

13

NSWorkspaceWillLaunchApplicationNotification

Posted when the workspace is about to launch an application.

Notification Object the shared NSWorkspace instance

Userinfo

Key Value

NSApplicationName The application about to be launched

NSWorkspaceWillPowerOffNotification

Posted when the user has requested that the machine be powered off.

Notification Object the shared NSWorkspace instance

Userinfo None

NSWorkspaceWillUnmountNotification

Posted when the workspace is about to unmount a device.

Notification Object the shared NSWorkspace instance

Userinfo

Key Value

NSDevicePath The path where the device is mounted

