
1

� NSHelpManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSHelpManager.h

Class Description

NSHelpManager provides a platform-independent approach to displaying on-line help. An application
contains one instance of NSHelpManager. Your application’s code rarely needs to access NSHelpManager
directly. Instead, you use Interface Builder and Project Builder to set up on-line help for your application.

OpenStep applications can run on multiple platforms, and each platform provides its own support for
on-line help. It’s important to users that applications use the native on-line help system (on Microsoft
Windows, for instance, users want the Microsoft Windows help system and don’t want to have to learn how
to use a different help system), so NSHelpManager does not provide a comprehensive solution for
presenting help. Instead, it provides cross-platform support for context-sensitive help and allows you to
present more comprehensive help (conceptual and task-based help) in any way you choose.

Context Help

Context-sensitive help (also referred to as context help) gives the user a small amount of information when
they help-click an interface item. For example, if the user help-clicks a menu item called “Copy,” they
should get context help that says something like “Copies the currently selected text to the pasteboard.” This
text appears in a small window near where the user help-clicked, and the window disappears when the user
clicks anywhere else in the application.

Help-clicking is performed in any one of several ways, depending on the platform and the hardware used.
On Mach platforms, help-clicking is performed when the user holds down the Help key, the F1 key, or the
Alternate and Control keys while pressing the mouse button. On Microsoft Windows platforms, users press
Shift-F1 and then press the mouse button to display context-sensitive help. Some Microsoft Windows
applications also have a What’s This menu item on the Help menu. When the user selects this item, the next
mouse click displays context-sensitive help.

To provide context-sensitive help for your application, follow these steps:

1. For each interface item that needs context help, create an RTF or RTFD file containing the text and
any images you want to appear when the user help-clicks that interface item. Try to keep the text as
brief as possible and the images as small as possible.

2

Classes: NSHelpManager

The text that you write will appear in a small window just under the cursor when the user help-clicks
an interface item. If the user help-clicks near the edge of the screen, text may appear off-screen. (This
is especially prevalent when the user help-clicks a menu item on the Mach platform.) Use hard
returns in your text so that the window will be as narrow as possible.

2. If you don’t need to localize your context help files, in Project Builder simply add these files to your
project under Context Help.

If you do need to localize your context help files, first copy the files into the appropriate .lproj
directory of your project, then add them to the project.

In Interface Builder, connect each interface item to its context help file by doing the following:

1. Bring up the Interface Builder inspector and choose the Help display. The Help display lists all the
context help files associated with your application. (You may have to quit and restart Interface
Builder to get this to occur.)

2. Select an interface item.

3. In the Inspector, choose the appropriate help file.

When you build your application, /usr/bin/compileHelp packages your help files into a property list named
Help.plist. NSHelpManager knows how to extract context help from an Help.plist file.

Comprehensive Help

Most applications provide some form of on-line help that is more comprehensive and detailed than
context-sensitive help, such as conceptual or task help. NSHelpManager allows you to provide this sort of
comprehensive help in any way you choose. Some help authors prefer to provide comprehensive help in
HTML using a World-Wide Web browser; others use tools such as Digital Librarian or Concurrence; on
Microsoft Windows a full-featured native help system is available.

When the user chooses the Help menu item, NSHelpManager simply asks NSWorkspace to open the help
file you have specified for your application. That file should be the starting point of your help, and should
allow users to access whatever information they might need.

To specify a help file for your application, do one of the following:

• In Project Builder, specify the name of the help file in the Project Attributes inspector. (If you are creating
an application that will run on both the Mach and Windows platforms, you need to enter this file twice—
once for Mach and once for Windows). The specified value can be a full or relative path, and if it is
relative, it is assumed to be a resource in the application wrapper.

• As an alternative, you can place the help file in your application wrapper and name it after your
application. If you haven’t specified a help file, NSHelpManager looks in the application wrapper for an
appropriately named file.

3

On Mach, it must be an RTF file called appName.rtf (where appName is the name of the
application).

On Microsoft Windows, it must be a Windows help file called appName.hlp.

Note: It’s common for Windows applications to have more than one command under the Help menu and
to have each command open a different help file. To implement this, connect each of the Help menu
commands to a different action method. The actions methods should send openFile: to the shared
NSWorkspace object to open the appropriate help file. For example:

[[NSWorkspace sharedWorkspace] openFile:@"AppKit.hlp"];

Method Types

Creating an NSHelpManager instance
+ sharedHelpManager

Getting and setting context help mode
+ setContextHelpModeActive:
+ isContextHelpModeActive

Returning context-sensitive help – contextHelpForObject:
– showContextHelpForObject:locationHint:

Setting up context-sensitive help – setContextHelp:forObject:
– removeContextHelp:forObject:

Class Methods

� isContextHelpModeActive
+ (BOOL)isContextHelpModeActive

Returns YES if the application is currently in context-sensitive help mode, NO otherwise. In
context-sensitive help mode, when a user clicks a user interface item, help for that item is displayed in a
small window just below the cursor.

See also: + setContextHelpModeActive:

� setContextHelpModeActive:
+ (void)setContextHelpModeActive:(BOOL)flag

Controls context-sensitive help mode. If flag is YES, the application enters context-sensitive help mode. If
flag is NO, the application returns to normal operation.

4

Classes: NSHelpManager

You never send this message directly; instead, the NSApplication method activateContextHelpMode
activates context-sensitive help mode, and the first mouse click after displaying the context-sensitive help
window deactivates it.

When the application enters context-sensitive help mode, NSHelpManager posts
NSContextHelpModeDidActivateNotification to the default notification center. When the application
returns to normal operation, NSHelpManager posts NSContextHelpModeDidDeactivateNotification.

See also: + isContextHelpModeActive

� sharedHelpManager
+ (NSHelpManager *)sharedHelpManager

Returns the shared NSHelpManager instance, creating it if it does not already exist.

Instance Methods

� contextHelpForObject:
– (NSAttributedString *)contextHelpForObject:(id)object

Returns context-sensitive help for object.

See also: – setContextHelp:forObject:, – showContextHelpForObject:locationHint:

� removeContextHelpForObject:
– (void)removeContextHelpForObject:(id)object

Removes the association between object and its context-sensitive help. If object does not have
context-sensitive help associated with it, this method does nothing. Typically, you use Interface Builder to
remove context-sensitive help from an item.

See also: – setContextHelp:forObject:

� setContextHelp:forObject:
– (void)setContextHelp:(NSAttributedString *)help forObject:(id)object

Associates help with object. When the application enters context-sensitive help mode, if object is clicked,
help will appear in the context-sensitive help window. Typically, you use Interface Builder to associate
context-sensitive help with an object.

See also: – removeContextHelpForObject:

5

� showContextHelpForObject:locationHint:
– (BOOL)showContextHelpForObject:(id)object locationHint:(NSPoint)point

Displays the context-sensitive help for object at or near the point on the screen specified by point. This point
is usually just under the cursor. Returns YES if it successfully displays context-sensitive help for the object,
NO if it cannot (for example, if there is no context-sensitive help associated with this object).

See also: – contextHelpForObject:

Notifications

� NSContextHelpModeDidActivateNotification

Posted when the application enters context-sensitive help mode. This typically happens when the user holds
down the Help key. It can also occur on Microsoft Windows platforms if the user chooses the What’s This
command from the Help menu.

The notification contains:

Notification Object The NSHelpManager object

Userinfo None

� NSContextHelpModeDidDeactivateNotification

Posted when the application exits context-sensitive help mode. This happens when the user clicks the
mouse anywhere on the screen after displaying a context-sensitive help topic.

The notification contains:

Notification Object The NSHelpManager object

Userinfo None

