
1

NSActionCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSActionCell.h

Class Description

An NSActionCell defines an active area inside a control (an instance of NSControl or one of its subclasses).
As an NSControl’s active area, an NSActionCell does three things: it usually performs display of text or an
icon; it provides the NSControl with a target and an action; and it handles mouse (cursor) tracking by
properly highlighting its area and sending action messages to its target based on cursor movement. The only
way to specify the NSControl for a particular NSActionCell is to send the NSActionCell a
drawWithFrame:inView: message, passing the NSControl as the argument for the inView: keyword of
the method.

NSActionCell implements the target object and action method as defined by its superclass, NSCell. As a
user manipulates an NSControl, NSActionCell’s trackMouse:inRect:ofView:untilMouseUp: method
(inherited from NSCell) updates its appearance and sends the action message to the target object with the
NSControl object as the only argument. See "Target and Action" below more more on this paradigm.

Usually, the responsibility for an NSControl’s appearance and behavior is completely given over to a
corresponding NSActionCell. (NSMatrix, and its subclass NSForm, are NSControls that don’t follow this
rule.)

A single NSControl may have more than one NSActionCell. To help identify it in this case, every
NSActionCell has an integer tag. Note, however, that no checking is done by the NSActionCell object itself
to ensure that the tag is unique. See the NSMatrix class for an example of a subclass of NSControl that
contains multiple NSActionCells.

Many of the methods that define the contents and look of an NSActionCell, such as setFont: and
setBordered:, are reimplementations of methods inherited from NSCell. They’re overriden to ensure that
the NSActionCell is redisplayed when "visual" attributes change.

Target and Action

Target objects and action methods (or messages) are part of the mechanism by which NSControls respond
to user actions and enable users to communicate their intentions to an application. A target is an object that
an NSControl uses as the receiver of action messages. The target’s class defines an action method to enable
its instances to respond to these messages, which are sent as users click or otherwise manipulate the

2

Classes: NSActionCell

NSControl. NSControl’s sendAction:to: asks the NSApplication object, NSApp, to send an action
message to the NSControl’s target object.

An action method takes only one argument: the id of the sender. The sender may be either the NSControl
that sends the action message or, on occassion, another object that the target should treat as the sender.
When it receives an action message, a target can return messages to the sender requesting additional
information about its status.

You can also set the target to nil and allow it to be determined at run time. When the target is nil, the
NSApplication object must look for an appropriate receiver. It conducts its search in a prescribed order, by
following the responder chain until it finds an object that can respond to the message:

• It begins with the first responder in the key window and follows nextResponder links up the responder
chain to the NSWindow’s content view.

• It tries the NSWindow object and then the NSWindow’s delegate.

• If the main window is different from the key window, it then starts over with the first responder in the
main window and works its way up the main window’s responder chain to the NSWindow object and its
delegate.

• Next, the NSApplication object tries to respond itself. If it can’t respond, it tries its own delegate. NSApp
and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the action method. However, these
methods require that an NSControl’s cell (or cells) be NSActionCells or custom cells that hold action and
target as instance variables and can respond to the NSControl methods.

Method Types

 Configuring an NSActionCell – setAlignment:
– setBezeled:
– setBordered:
– setEnabled:
– setFloatingPointFormat:left:right:
– setFont:
– setImage:

Obtaining and setting cell values – doubleValue
– floatValue
– intValue
– stringValue
– setStringValue:
– setObjectValue:

3

Displaying the NSActionCell – drawWithFrame:inView:
– controlView

Assigning target and action – setAction:
– action
– setTarget:
– target

Assigning a tag – setTag:
– tag

Instance Methods

action
– (SEL)action

Returns the NSActionCell’s action-message selector.

See also: – setAction:, – setTarget:, – target

controlView
– (NSView *)controlView

Returns the view (normally an NSControl) in which the NSActionCell was last drawn or nil if the
NSActionCell has no control view (usually because it hasn’t yet been placed in the view hierarchy).

See also: – drawWithFrame:inView:

doubleValue
– (double)doubleValue

Returns the NSActionCell’s value as a double after validating any editing of cell content. If the receiver is
not a text-type cell or the cell value is not scannable, the method returns zero.

See also: – validateEditing (NSControl)

4

Classes: NSActionCell

drawWithFrame:inView:
– (void)drawWithFrame:(NSRect)cellFrame inView:(NSView *)controlView

Draws the NSActionCell's regular or bezeled border (if those attributes are set) and then draws the interior
of the cell. NSActionCell’s method overrides this method to replace its controlling control with controlView
(if they’re different) before invoking NSCell’s drawWithFrame:inView:.

See also: – controlView

floatValue
– (float)floatValue

Returns the NSActionCell’s value as a float after validating any editing of cell content. If the receiver is not
a text-type cell or the cell value is not scannable, the method returns zero.

See also: – validateEditing (NSControl)

intValue
– (int)intValue

Returns the NSActionCell’s value as a int after validating any editing of cell content. If the receiver is not
a text-type cell or the cell value is not scannable, the method returns zero.

See also: – validateEditing (NSControl)

setAction:
– (void)setAction:(SEL)aSelector

Sets the selector used for the action message to aSelector.

See also: – action, –setTarget:, – target

setAlignment:
– (void)setAlignment:(NSTextAlignment)mode

Sets the alignment of text in the receiving NSActionCell; mode is one of five constants:
NSLeftTextAlignment, NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment,
NSNaturalTextAlignment (the default alignment for the text). The method marks the receiving
NSActionCell as needing redisplay after discarding any editing changes that were being made to cell text.

5

setBezeled:
– (void)setBezeled:(BOOL)flag

Sets whether the NSActionCell draws itself with a bezeled border and marks it as needing redisplay. The
setBezeled: and setBordered: methods are mutually exclusive (that is, a border can be only plain or
bezeled).

setBordered:
– (void)setBordered:(BOOL)flag

Sets whether the receiver draws itself outlined with a plain border and marks it as needing redisplay. The
setBezeled: and setBordered: methods are mutually exclusive (that is, a border can be only plain or
bezeled).

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled or disabled. The text of disabled cells is changed to gray. If a cell is
disabled, it cannot be highlighted, does not support mouse tracking (and thus cannot participate in
target/action functionality), and cannot be edited. The method marks the receiving NSActionCell as
needing redisplay after discarding any editing changes that were being made to cell text.

setFloatingPointFormat:left:right:
– (void)setFloatingPointFormat:(BOOL)autoRange

left:(unsigned int)leftDigits
right:(unsigned int)rightDigits

Sets the NSActionCell’s floating point format as described in the NSCell class specification for the
setFloatingPointFormat:left:right: method. NSActionCell’s implementation of the method supplements
NSCell’s by marking the receiving NSActionCell as needing redisplay after discarding any editing changes
that were being made to cell text.

setFont:
– (void)setFont:(NSFont *)fontObj

Sets the font to be used when the NSActionCell displays text. If the receiver is not a text-type cell, the
method converts it to that type. If fontObj is nil and the receiver is a text-type cell, the font currently held
by the receiver is autoreleased. NSActionCell supplements NSCell’s implementation of this method by

6

Classes: NSActionCell

marking the updated cell as needing redisplay; if the receiving NSActionCell was converted to a text-type
cell and is selected, it also updates the field editor with fontObj.

setImage:
– (void)setImage:(NSImage *)image

Sets the font to be used when the NSActionCell displays text. If the receiver is not a text-type cell, the
method converts it to that type. If fontObj is nil and the receiver is a text-type cell, the font currently held
by the receiver is autoreleased. NSActionCell supplements NSCell’s implementation of this method by
marking the updated cell as needing redisplay.

� setObjectValue:
– (void)setObjectValue:(id)object

Discards any editing of the receiving NSActionCell’s text and sets its object value to object. If the object
value is afterwards different from what it was before the method was invoked, the method marks the
NSActionCell as needing redisplay.

See also: – objectValue

setTag:
– (void)setTag:(int)anInt

Sets the receiving NSActionCell’s tag to anInt.

See also: – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the receiving NSActionCell’s target object to anObject.

See also: – action, – setAction:, – target

stringValue
– (NSString *)stringValue

Returns the receiving NSActionCell’s value as a string object as converted by the cell’s formatter, if one
exists. If no formatter exists and the value is an NSString, returns the value as an plain, attributed or

7

localized formatted string. If the value is not an NSString or can’t be converted to one, returns an empty
string. The method supplements NSCell’s implementation by validating and retaining any editing changes
being made to cell text.

See also: – validateEditing (NSControl)

tag
– (int)tag

Returns the receiving NSActionCell’s tag.

See also: – setTag:

target
– (id)target

Returns the receiving NSActionCell’s target object.

See also: – action, –setAction:, – setTarget:

