
1

NSText

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling
NSIgnoreMisspelledWords
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSText.h

Purpose
NSText declares the most general programmatic interface for objects that manage text. You usually use one of 
its subclasses, NSTextView or NSCStringText, but both share the methods and other definitions of this class.

Principal Attributes
• Supports rich text and graphics • Provides delegation and notification
• Works with the Font Panel and menu • Works with the pasteboard
• Works with the Services facility • Works with the spell-checking service

Creation
See the class description.

Commonly Used Methods
– readRTFDFromFile: Reads an .rtf or .rtfd file.
– writeRTFDToFile:atomically: Writes the receiver’s text to a file.
– string Returns the receiver’s text, without attributes.
– RTFFromRange: Returns the receiver’s text with attributes.
– RTFDFromRange: Returns the receiver’s text with attributes and attachments.

Class Description

The NSText class declares the most general programmatic interface to objects that manage text. NSText is 
an abstract class with two concrete subclasses, NSCStringText and NSTextView. You can create an 

Class at a Glance



2

Classes: NSText

NSText object when constructing your application’s interface with Interface Builder, or at run time using 
initWithFrame:. For the most generic and portable use of text, this is the recommended approach. 
NSCStringText is most suitable for use when backward compatibility with the NEXTSTEP Text object is 
needed. NSTextView is a NeXT addition to the OpenStep specification that acts as the front end to NeXT’s 
revised text system. Instances of any of these classes are generically called text objects.

Text objects are used by the Application Kit wherever text appears in interface objects: A text object draws 
the title of a window, the commands in a menu, the title of a button, and the items in a browser. Your 
application can also create text objects for its own purposes.

The text classes are unlike most other classes in the Application Kit in the richness and complexity of their 
interface. One of their design goals is to provide a comprehensive set of text-handling features so that you’ll 
rarely need to create a subclass. Among other things, a text object can:

• Control whether the user can select or edit text.

• Control the font and layout characteristics of its text by working with the Font Panel and menu.

• Let the user control the format of paragraphs by manipulating a ruler.

• Control the color of its text and background.

• Wrap text on a word or character basis.

• Display graphic images within its text.

• Write text to or read text from files in the form of RTFD—Rich Text Format files that contain TIFF or 
EPS images, or attached files.

• Let another object, the delegate, dynamically control its properties.

• Let the user copy and paste text within and between applications.

• Let the user copy and paste font and format information between NSText objects.

• Let the user check the spelling of words in its text.

Graphical user-interface building tools (such as Interface Builder) may give you access to text objects in 
several different configurations, such as those found in the NSTextField, NSForm, and NSScrollView 
objects. These classes configure a text object for their own specific purposes. Additionally, all 
NSTextFields, NSForms, NSButtons within the same window—in short, all objects that access a text object 
through associated cells—share the same text object, reducing the memory demands of an application. 
Thus, it’s generally best to use one of these classes whenever it meets your needs, rather than create text 
objects yourself. If one of these classes doesn’t provide enough flexibility for your purposes, you can create 
text objects programmatically.

Text objects typically work closely with various other objects. Some of these—such as the delegate or an 
embedded graphic object—require a degree of programming on your part. Others—such as the Font Panel, 
spell checker, or ruler—take no effort other than deciding whether the service should be enabled or 
disabled. Several of the following sections discuss these interrelationships.



3

Plain and Rich Text Objects

Text objects are differentiated into two groups: those that allow only one set of text attributes for all of their 
text, and those that allow multiple fonts, sizes, indents, and other attributes for different sets of characters 
and paragraphs. Text objects in the former group are called plain text objects, while those in the latter are 
called rich text objects. You can control whether a text object is plain or rich using the setRichText: 
method. Rich text objects are also capable of allowing the user to drag images and files into them. This 
behavior is controlled by the setImportsGraphics: method.

A rich NSText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words 
are supported: On input, an NSText object ignores any control word it doesn’t recognize; some of those it 
can read and interpret it doesn’t write out. The table below lists the RTF control words that any text object 
recognizes. Subclasses may recognize more. 

Control Word Read Write

\ansi yes yes
\b yes yes
\cb yes yes
\cf yes yes
\colortbl yes yes
\dnn yes yes
\fin yes yes
\fn yes yes
\fonttbl yes yes
\fsn yes yes
\i yes yes
\lin yes yes
\margrn yes yes
\paperwn yes yes
\mac yes no
\margln yes yes
\par yes yes
\pard yes no
\pca yes no
\qc yes yes
\ql yes yes
\qr yes yes
\sn yes no
\tab yes yes
\upn yes yes



4

Classes: NSText

Notifying a Text Object’s Delegate

Many of an NSText object’s actions can be controlled through an associated object, the NSText object’s 
delegate. The delegate can be any object you choose, and one delegate can control multiple NSText objects. 
If it implements any of the following methods, the delegate receives the corresponding message at the 
appropriate time:

textShouldBeginEditing:
textDidBeginEditing:
textDidChange:
textShouldEndEditing:
textDidEndEditing:

Of special note are the two “textShould” methods. These methods are requests for permission. Any time a 
text object begins an operation that would change its text or attributes, it uses textShouldBeginEditing: to 
request approval for the change. The delegate can return YES to permit the change, or NO to forbid it. 
Similarly, textShouldEndEditing: enables the delegate to prevent a text object from ending editing, such 
as when it contains an invalid value.

Adding Graphics and Other Attachments to the Text

A rich text object may allow graphics or other file attachments to be embedded in the text. Each graphic is 
treated as a single (possibly large) “character”: The text’s line height and character placement are adjusted 
to accommodate the graphic. Graphics are embedded in the text in either of two ways: programmatically or 
directly through user actions. In the programmatic approach, graphic objects can be added using 
replaceRange:WithRTFD:, or through a more specific method defined by a subclass.

An alternate means of adding an image or other attachment to the text is for the user to drag an image or 
other file directly into the text object. The text object automatically creates an attachment object to manage 
the display of the image (the implementation of attachment differs between NSTextView and 
NSCStringText). This feature requires a rich text object that has been configured to receive dragged images 
using the setImportsGraphics: method. 

Images that have been imported can be written as part of an RTFD document. RTFD documents use a file 
package, or directory, to store the components of the document (the “D” stands for “directory”). The file 
package has the name of the document plus an .rtfd extension. The file package always contains a file called 
TXT.rtf for the text of the document, and one or more TIFF or EPS files for the images, plus the files for 
other attachments. A text object can transfer information in an RTFD document to a file and read it from a 
file using the writeRTFDToFile:atomically: and readRTFDFromFile: methods.

Working with the Font Panel

Text objects are designed to work with the Application Kit’s font conversion system, defined by the 
NSFontPanel and NSFontManager classes. By default, a text object keeps the Font Panel updated with the 
first font in its selection, or of its typing attributes (defined below). It also changes the font in response to 



5

messages from the Font Panel and Font menu. Such changes apply to the selected text or typing attributes 
for a rich text object, or to all the text in a plain text object. You can turn this behavior off using the 
setUsesFontPanel: method. Doing so is recommended for a text object that serves as a field editor, for 
example.

Working with Rulers and Paragraph Styles

Text objects also provide for a ruler, by which the user can edit paragraph attributes such as indents and 
tabs. NSCStringText uses its own ruler object, and defines some methods for altering paragraph attributes. 
NSTextView works with the public NSRulerView class and uses the NSTextStorage and 
NSParagraphStyle classes to handle paragraph attributes. To show or hide a text object’s ruler, use the 
toggleRuler: action method. Similar to the Font Panel, NSTextView can be set not to use a ruler with the 
setUsesRuler: method.

Adopted Protocols

NSChangeSpelling – changeSpelling:

NSIgnoreMisspelledWords – ignoreSpelling:

Method Types

Creating instances – initWithFrame:

Getting the characters – string

Setting graphic attributes – setBackgroundColor:
– backgroundColor
– setDrawsBackground:
– drawsBackground

Setting behavioral attributes – setEditable:
– isEditable
– setSelectable:
– isSelectable
– setFieldEditor:
– isFieldEditor
– setRichText:
– isRichText
– setImportsGraphics:
– importsGraphics



6

Classes: NSText

Using the Font Panel and menu – setUsesFontPanel:
– usesFontPanel

Using the ruler – toggleRuler:
– isRulerVisible

Changing the selection – setSelectedRange:
– selectedRange

Replacing text – replaceCharactersInRange:withRTF:
– replaceCharactersInRange:withRTFD:
– replaceCharactersInRange:withString:
– setString:

Action methods for editing – selectAll:
– copy:
– cut:
– paste:
– copyFont:
– pasteFont:
– copyRuler:
– pasteRuler:
– delete:

Changing the font – changeFont:
– setFont:
– setFont:range:
– font

Setting text alignment – setAlignment:
– alignCenter:
– alignLeft:
– alignRight:
– alignment

Setting text color – setTextColor:
– setTextColor:range:
– textColor

Setting super- and subscripting – superscript:
– subscript:
– unscript:

Underlining text – underline:

Reading and writing RTF – readRTFDFromFile:
– writeRTFDToFile:atomically:
– RTFDFromRange:
– RTFFromRange:



7

Checking spelling – checkSpelling:
– showGuessPanel:

Constraining size – setMaxSize:
– maxSize
– setMinSize:
– minSize
– setVerticallyResizable:
– isVerticallyResizable
– setHorizontallyResizable:
– isHorizontallyResizable
– sizeToFit

Scrolling – scrollRangeToVisible:

Setting the delegate – setDelegate:
– delegate

Instance Methods

alignCenter:
– (void)alignCenter:(id)sender

This action method applies center alignment to selected paragraphs (or all text if the receiver is a plain text 
object).

See also: – alignLeft:, –alignRight:, –alignment, – setAlignment:

alignLeft:
– (void)alignLeft:(id)sender

This action method applies left alignment to selected paragraphs (or all text if the receiver is a plain text 
object).

See also: – alignCenter:, –alignRight:, –alignment, – setAlignment:

alignRight:
– (void)alignRight:(id)sender

This action method applies right alignment to selected paragraphs (or all text if the receiver is a plain text 
object).

See also: – alignLeft:, –alignCenter:, –alignment, – setAlignment:



8

Classes: NSText

alignment
– (NSTextAlignment)alignment

Returns the alignment of the first selected paragraph, or of all text for a plain text object. This value is one 
of:

NSLeftTextAlignment
NSRightTextAlignment
NSCenterTextAlignment
NSJustifiedTextAlignment
NSNaturalTextAlignment (realized as one of the above depending on the script)

backgroundColor
– (NSColor *)backgroundColor

Returns the receiver’s background color.

See also: – drawsBackground, –setBackgroundColor:

changeFont:
– (void)changeFont:(id)sender

This action method changes the font of the selection for a rich text object, or of all text for a plain text object. 
If the receiver doesn’t use the Font Panel, however, this method does nothing.

This method changes the font by sending convertFont: messages to sender (which is presumed to be an 
NSFontManager or similarly capable object) and applying each NSFont returned to the appropriate text. If 
a rich text object’s selection contains multiple fonts, convertFont: is invoked for each contiguous range of 
characters that share a font. See the NSFontManager class specification for more information on font 
conversion.

See also: – usesFontPanel

checkSpelling:
– (void)checkSpelling:(id)sender

This action method searches for a misspelled word in the receiver’s text. The search starts at the end of the 
selection and continues until it reaches a word suspected of being misspelled or the end of the text. If a word 
isn’t recognized by the spelling server. A showGuessPanel: message then opens the Guess panel and 
allows the user to make a correction or add the word to the local dictionary.

See also: – showGuessPanel:



9

copy:
– (void)copy:(id)sender

This action method copies the selected text onto the general pasteboard, in as many formats as the receiver 
supports. A plain text object uses NSStringPboardType for plain text, and a rich text object also uses 
NSRTFPboardType.

See also: – copyFont:, –copyRuler:, –cut:, –paste:

copyFont:
– (void)copyFont:(id)sender

This action method copies the font information for the first character of the selection (or for the insertion 
point) onto the font pasteboard, as NSFontPboardType.

See also: – copy:, –copyRuler:, –cut:, –paste:

copyRuler:
– (void)copyRuler:(id)sender

This action method copies the paragraph style information for first selected paragraph onto the ruler 
pasteboard, as NSRulerPboardType, and expands the selection to paragraph boundaries.

See also: – copy:, –copyFont:, –cut:, –paste:

cut:
– (void)cut:(id)sender

This action method deletes the selected text and places it onto the general pasteboard, in as many formats 
as the receiver supports. A plain text object uses NSStringPboardType for plain text, and a rich text object 
also uses NSRTFPboardType.

See also: – delete:, –copy:, –copyFont:, –copyRuler:, –paste:

delegate
– (id)delegate

Returns the receiver’s delegate, or nil if it has none.

See also: – setDelegate:



10

Classes: NSText

delete:
– (void)delete:(id)sender

This action method deletes the selected text.

See also: – cut:

drawsBackground
– (BOOL)drawsBackground

Returns YES if the receiver draws its background, NO if it doesn’t.

See also: – backgroundColor, –setDrawsBackground:

font
– (NSFont *)font

Returns the font of the first character in the receiver’s text, or of the insertion point if there’s no text.

See also: – setFont:, –setFont:range:

importsGraphics
– (BOOL)importsGraphics

Returns YES if the receiver allows the user to import files by dragging, NO if it doesn’t. A text object that 
accepts dragged files is also a rich text object.

See also: – isRichText, – setImportsGraphics:

initWithFrame:
– (id)initWithFrame:(NSRect)frameRect

Initializes the receiver with frameRect as its frame rectangle. This method actually substitutes an instance 
of a concrete subclass of NSText, such as NSCStringText or NSTextView, depending on the platform, and 
configures that instance to archive itself in a manner portable across OpenStep implementations.



11

isEditable
– (BOOL)isEditable

Returns YES if the receiver allows the user to edit text, NO if it doesn’t. You can change the receiver’s text 
programmatically regardless of this setting.

If the receiver is editable, it’s also selectable.

See also: – isSelectable, – setEditable:

isFieldEditor
– (BOOL)isFieldEditor

Returns YES if the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing, and 
possibly to change the first responder; no if it accepts them as text input. See the NSWindow class 
specification for more information on field editors. By default, NSText objects don’t behave as field editors.

See also: – setFieldEditor:

isHorizontallyResizable
– (BOOL)isHorizontallyResizable

Returns YES if the receiver automatically changes its width to accommodate the width of its text, NO if it 
doesn’t.

See also: – isVerticallyResizable, – setHorizontallyResizable

isRichText
– (BOOL)isRichText

Returns YES if the receiver allows the user to apply attributes to specific ranges of the text, NO if it doesn’t.

See also: – importsGraphics, – setRichText:

isRulerVisible
– (BOOL)isRulerVisible

Returns YES if the receiver’s enclosing scroll view shows its ruler, NO otherwise.

See also: – usesRuler, – toggleRuler:



12

Classes: NSText

isSelectable
– (BOOL)isSelectable

Returns YES if the receiver allows the user to select text, NO if it doesn’t.

See also: – isEditable, – setSelectable:

isVerticallyResizable
– (BOOL)isVerticallyResizable

Returns YES if the receiver automatically changes its height to accommodate the height of its text, NO if 
it doesn’t.

See also: – isHorizontallyResizable, – setVerticallyResizable

maxSize
– (NSSize)maxSize

Returns the receiver’s maximum size.

See also: – minSize, –setMaxSize:

minSize
– (NSSize)minSize

Returns the receiver’s minimum size.

See also: – maxSize, –setMinSize:

paste:
– (void)paste:(id)sender

This action method pastes text from the general pasteboard at the insertion point or over the selection.

See also: – copy:, –cut:, –pasteFont:, –pasteRuler:



13

pasteFont:
– (void)pasteFont:(id)sender

This action method pastes font information from the font pasteboard onto the selected text or insertion point 
of a rich text object, or over all text of a plain text object.

See also: – copyFont:, –pasteRuler:

pasteRuler:
– (void)pasteRuler:(id)sender

This action method pastes paragraph style information from the ruler pasteboard onto the selected 
paragraphs of a rich text object. It doesn’t apply to a plain text object.

See also: – copyFont:, –pasteRuler:

readRTFDFromFile:
– (BOOL)readRTFDFromFile:(NSString *)path

Attempts to read the RTFD file at path, returning YES if successful and NO if not. path should be the path 
for an .rtf file or an .rtfd file wrapper, not for the RTF file within an .rtfd file wrapper. 

See also: – writeRTFDToFile:atomically:

replaceCharactersInRange:withRTF:
– (void)replaceCharactersInRange:(NSRange)aRange withRTF:(NSData *)rtfData

Replaces the characters in aRange with RTF text interpreted from rtfData. This method applies only to rich 
text objects.

See also: – replaceCharactersInRange:withRTFD:, –replaceCharactersInRange:withString:

replaceCharactersInRange:withRTFD:
– (void)replaceCharactersInRange:(NSRange)aRange withRTFD:(NSData *)rtfdData

Replaces the characters in aRange with RTFD text interpreted from rtfdData. This method applies only to 
rich text objects.

See also: – replaceCharactersInRange:withRTF:, –replaceCharactersInRange:withString:



14

Classes: NSText

replaceCharactersInRange:withString:
– (void)replaceCharactersInRange:(NSRange)aRange withString:(NSString *)aString

Replaces the characters in aRange with aString. For a rich text object, the text of aString is assigned the 
formatting attributes of the first character of the text it replaces, or of the character immediately before 
aRange if the range’s length is zero. If the range’s location is zero, the formatting attributes of the first 
character in the receiver are used.

See also: – replaceCharactersInRange:withRTF:, –replaceCharactersInRange:withRTFD:

RTFDFromRange:
– (NSData *)RTFDFromRange:(NSRange)aRange

Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes 
within aRange. Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s 
characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s 
setData:forType: method, with a second argument of NSRTFDPboardType.

See also: – RTFFromRange:

RTFFromRange:
– (NSData *)RTFFromRange:(NSRange)range

Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within 
aRange, omitting any attachment characters and attributes. Raises an NSRangeException if any part of 
aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s 
setData:forType: method, with a second argument of NSRTFPboardType.

See also: – RTFDFromRange:documentAttributes:

scrollRangeToVisible:
– (void)scrollRangeToVisible:(NSRange)aRange

Scrolls the receiver in its enclosing scroll view so that the first characters of aRange are visible.



15

selectAll:
– (void)selectAll:(id)sender

This action method selects all of the receiver’s text.

selectedRange
– (NSRange)selectedRange

Returns the range of selected characters.

See also: – setSelectedRange:

setAlignment:
– (void)setAlignment:(NSTextAlignment)mode

Sets the alignment of all the receiver’s text to mode, which may be one of:

NSLeftTextAlignment
NSRightTextAlignment
NSCenterTextAlignment
NSJustifiedTextAlignment
NSNaturalTextAlignment (realized as one of the above depending on the script)

See also: – alignment, –alignLeft:, –alignCenter:, –alignRight:

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the receiver’s background color to aColor.

See also: – setDrawsBackground:, –backgroundColor

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See also: – delegate



16

Classes: NSText

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Controls whether the receiver draws its background. If flag is YES, the receiver fills its background with 
the background color; if flag is NO, it doesn’t.

See also: – setBackgroundColor:, –drawsBackground

setEditable:
– (void)setEditable:(BOOL)flag

Controls whether the receiver allows the user to edit its text. If flag is YES, the receiver allows the user to 
edit text and attributes; if flag is NO, it doesn’t. You can change the receiver’s text programmatically 
regardless of this setting. If the receiver is made editable, it’s also made selectable. NSText objects are by 
default editable.

See also: – setSelectable:, – isEditable

setFieldEditor:
– (void)setFieldEditor:(BOOL)flag

Controls whether the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing, and 
possibly to change the first responder. If flag is YES, it does; if flag is NO, it doesn’t, instead accepting 
these characters as text input. See the NSWindow class specification for more information on field editors. 
By default, NSText objects don’t behave as field editors.

See also: – isFieldEditor

setFont:
– (void)setFont:(NSFont *)aFont

Sets the font of all the receiver’s text to aFont.

See also: – setFont:range:, – font

setFont:range:
– (void)setFont:(NSFont *)aFont range:(NSRange)aRange

Sets the font of characters within aRange to aFont. This method applies only to a rich text object.

See also: – setFont:, – font



17

setHorizontallyResizable:
– (void)setHorizontallyResizable:(BOOL)flag

Controls whether the receiver changes its width to fit the width of its text. If flag is YES it does; if flag is 
NO it doesn’t.

See also: – setVerticallyResizable:, – isHorizontallyResizable

setImportsGraphics:
– (void)setImportsGraphics:(BOOL)flag

Controls whether the receiver allows the user to import files by dragging. If flag is YES, it does; if flag is 
NO, it doesn’t. If the receiver is set to accept dragged files, it’s also made a rich text object. Subclasses may 
or may not accept dragged files by default.

See also: – setRichText:, – importsGraphics

setMaxSize:
– (void)setMaxSize:(NSSize)aSize

Sets the receiver’s maximum size to aSize.

See also: – setMinSize:, –maxSize

setMinSize:
– (void)setMinSize:(NSSize)aSize

Sets the receiver’s minimum size to aSize.

See also: – setMaxSize:, –minSize

setRichText:
– (void)setRichText:(BOOL)flag

Controls whether the receiver allows the user to apply attributes to specific ranges of the text. If flag is YES 
it does; if flag is NO it doesn’t. If flag is NO, the receiver is also set not to accept dragged files. Subclasses 
may or may not let the user apply multiple attributes to the text and accept drag files by default.

See also: – isRichText, – setImportsGraphics:



18

Classes: NSText

setSelectable:
– (void)setSelectable:(BOOL)flag

Controls whether the receiver allows the user to select its text. If flag is YES, the receiver allows the user 
to select text; if flag is NO, it doesn’t. You can set selections programmatically regardless of this setting. If 
the receiver is made not selectable, it’s also made not editable. NSText objects are by default editable and 
selectable.

See also: – setEditable:, – isSelectable

setSelectedRange:
– (void)setSelectedRange:(NSRange)aRange

Selects the receiver’s characters within aRange.

See also: – selectedRange

setString:
– (void)setString:(NSString *)aString

Replaces the receiver’s entire text with aString, applying the formatting attributes of the old first character 
to its new contents.

setTextColor:
– (void)setTextColor:(NSColor *)color

Sets the text color of all characters in the receiver to aColor. Removes the text color attribute if aColor is 
nil.

See also: – setTextColor:range – textColor:

setTextColor:range:
– (void)setTextColor:(NSColor *)aColor range:(NSRange)aRange

Sets the text color of characters within aRange to aColor. Removes the text color attribute if aColor is nil. 
This method applies only to rich text objects.

See also: – setTextColor: – textColor:



19

setUsesFontPanel:
– (void)setUsesFontPanel:(BOOL)flag

Controls whether the receiver uses the Font Panel and Font menu. If flag is YES, the receiver responds to 
messages from the Font Panel and from the Font menu, and updates the Font Panel with the selection font 
whenever it changes. If flag is NO the receiver doesn’t do any of this. By default, an NSText object uses 
the Font Panel and menu.

See also: – usesFontPanel

setVerticallyResizable:
– (void)setVerticallyResizable:(BOOL)flag

Controls whether the receiver changes its height to fit the height of its text. If flag is YES it does; if flag is 
NO it doesn’t.

See also: – setHorizontallyResizable:, – isVerticallyResizable

showGuessPanel:
– (void)showGuessPanel:(id)sender

This action method opens the Spelling panel, allowing the user to make a correction during spell checking.

See also: – checkSpelling:

sizeToFit
– (void)sizeToFit

Resizes the receiver to fit its text.

See also: – isHorizontallyResizable, – isVerticallyResizable

string
– (NSString *)string

Returns the characters of the receiver’s text.

See also: – setString:



20

Classes: NSText

subscript:
– (void)subscript:(id)sender

This action method applies a subscript attribute to selected text (or all text if the receiver is a plain text 
object), lowering its baseline offset by a predefined amount.

See also: – subscript:, –unscript:, – lowerBaseline: (NSTextView)

superscript:
– (void)superscript:(id)sender

This action method applies a superscript attribute to selected text (or all text if the receiver is a plain text 
object), raising its baseline offset by a predefined amount.

See also: – subscript:, –unscript:, –raiseBaseline: (NSTextView)

textColor
– (NSColor *)textColor

Returns the color of the receiver’s first character, or for the insertion point if there’s no text.

See also: – setTextColor:, – setTextColor:range:

toggleRuler:
– (void)toggleRuler:(id)sender

This action method shows or hides the ruler, if the receiver is enclosed in a scroll view.

underline:
– (void)underline:(id)sender

This action method underlines selected text for a rich text object, or all text for a plain text object.



21

unscript:
– (void)unscript:(id)sender

This action method removes any superscripting or subscripting from selected text (or all text if the receiver 
is a plain text object).

See also: – subscript:, – superscript:, –raiseBaseline: (NSTextView), –lowerBaseline: (NSTextView)

usesFontPanel
– (BOOL)usesFontPanel

Returns YES if the receiver uses the Font Panel, NO otherwise.

See also: – setUsesFontPanel:

writeRTFDToFile:atomically:
– (BOOL)writeRTFDToFile:(NSString *)path atomically:(BOOL)flag

Writes the receiver’s text as RTF with attachments to a file or directory at path. Returns YES on success 
and NO on failure. If atomicFlag is YES, attempts to write the file safely so that an existing file at path is 
not overwritten, nor does a new file at path actually get created, unless the write is successful.

See also: – RTFFromRange:, –RTFDFromRange:, –readRTFDFromFile:

Methods Implemented By the Delegate

textDidBeginEditing:
– (void)textDidBeginEditing:(NSNotification *)aNotification

Informs the delegate that the text object has begun editing (that it has become first responder). The name of 
aNotification is NSTextViewDidBeingEditingNotification.

textDidChange:
– (void)textDidChange:(NSNotification *)aNotification

Informs the delegate that the text object has changed its characters or formatting attributes. The name of 
aNotification is NSTextViewDidChangeNotification.



22

Classes: NSText

textDidEndEditing:
– (void)textDidEndEditing:(NSNotification *)aNotification

Informs the delegate that the text object has finished editing (that it has resigned first responder status). The 
name of aNotification is NSTextViewDidEndEditingNotification.

textShouldBeginEditing:
– (BOOL)textShouldBeginEditing:(NSText *)aTextObject

Invoked from a text object’s implementation of becomeFirstResponder, this method requests permission 
for aTextObject to begin editing. If the delegate returns YES, the text object proceeds to make changes. If 
the delegate returns NO, the text object abandons the editing operation. This method is invoked whenever 
aTextObject attempts to become first responder.

See also: – makeFirstResponder: (NSWindow), –becomeFirstResponder (NSResponder)

textShouldEndEditing:
– (BOOL)textShouldEndEditing:(NSText *)aTextObject

Invoked from a text object’s implementation of resignFirstResponder, this method requests permission 
for aTextObject to end editing. If the delegate returns YES, the text object proceeds to finish editing and 
resign first responder status. If the delegate returns NO, the text object selects all of its text and remains the 
first responder.

See also: – resignFirstResponder (NSResponder)

Notifications

NSTextDidBeginEditingNotification

Posted when an NSText object begins any operation that changes characters or formatting attributes.

The notification contains:

Notification Object The notifying NSText object.

Userinfo None

NSTextDidChangeNotification

Posted after an NSText object performs any operation that changes characters or formatting attributes.



23

The notification contains:

Notification Object The notifying NSText object.

Userinfo None

NSTextDidEndEditingNotification

Posted when an NSText object resigns first responder status.

The notification contains:

Notification Object The notifying NSText object.

Userinfo None

Key Value

NSTextMovement The keyboard operation that ended editing, an NSNumber (int).

The value for NSTextMovement is one of:

NSIllegalTextMovement
NSReturnTextMovement
NSTabTextMovement
NSBacktabTextMovement
NSLeftTextMovement
NSRightTextMovement
NSUpTextMovement
NSDownTextMovement

The value for NSTextMovement is typically one of the first four. NSIllegalTextMovement indicates that 
the text object ended editing because of something other than keyboard input, typically a mouse click in 
another view. NSReturnTextMovement, NSTabTextMovement, and NSBacktabTextMovement indicate 
that a field editor ended editing because the user pressed the key named in the value. The remaining four 
values indicate the same for arrow keys.


