
1

NSColorPickingDefault

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides an
interface for adding color pickers—custom user interfaces for color selection—to an application’s
NSColorPanel. The NSColorPickingDefault protocol provides basic behavior for a color picker. The
NSColorPickingCustom protocol provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement
your own color picker is to create a subclass of NSColorPicker, implementing the NSColorPickingCustom
protocol for that subclass. However, it’s possible to create a subclass of another class, such as NSView, and
use it as a base upon which to add the methods of both NSColorPickingDefault and
NSColorPickingCustom.

Color Picker Bundles

A class that implements the NSColorPickingDefault and NSColorPickingCustom protocols needs to be
compiled and linked in an application’s object file. However, your application need not explicitly create an
instance of this class. Instead, your application’s file package should include a directory named
ColorPickers; within this directory you should place a directory MyPickerClass.bundle for each custom
color picker your application implements. This bundle should contain all resources required for your color
picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a bundle is found in the
ColorPickers directory. The class name is assumed to be the bundle directory name minus the .bundle
extension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from an NSMatrix of NSButtonCells. This protocol
includes methods for providing and manipulating the image that gets displayed on the button.

Color Mask and Color Modes

The color mask determines which color mode is enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of the

2

Classes: NSColorPickingDefault

other color mask constants: It causes the NSColorPanel to display all standard color pickers. When
initializing a new instance of NSColorPanel, you can logically OR any combination of color mask constants
to restrict the available color modes. The predefined color mask constants are:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask
Red-Green-Blue NSColorPanelRGBModeMask
Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask
Hue-Saturation-Brightness NSColorPanelHSBModeMask
Custom palette NSColorPanelCustomPaletteModeMask
Custom color list NSColorPanelColorListModeMask
Color wheel NSColorPanelWheelModeMask
All of the above NSColorPanelAllModesMask

When an application’s instance of NSColorPanel is masked for more than one color mode, your program
can set its active mode by invoking the setMode: method with a color mode constant as its argument; the
user can set the mode by clicking buttons on the panel. Here are the standard color modes and mode
constants:

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel
Red-Green-Blue NSRGBModeColorPanel
Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel
Hue-Saturation-Brightness NSHSBModeColorPanel
Custom palette NSCustomPaletteModeColorPanel
Custom color list NSColorListModeColorPanel
Color wheel NSWheelModeColorPanel

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

These constants are defined in AppKit/NSColorPanel.h.

See also: NSColorPickingCustom, NSColorPicker (class), NSColorPanel (class)

Method Types

Initializing a Color Picker – initWithPickerMask:colorPanel:

Setting the Mode – setMode:

Using Color Lists – attachColorList:
– detachColorList:

3

Adding Button Images – insertNewButtonImage:in:
– provideNewButtonImage

Showing Opacity Controls – alphaControlAddedOrRemoved:

Responding to a Resized View – viewSizeChanged:

Instance Methods

alphaControlAddedOrRemoved:
– (void)alphaControlAddedOrRemoved:(id)sender

Sent by the color panel when the opacity controls have been hidden or displayed. Invoked automatically
when the NSColorPanel’s opacity slider is added or removed; you never invoke this method directly.

If the color picker has its own opacity controls, it should hide or display them, depending on whether the
sender’s showsAlpha method returns NO or YES.

attachColorList:
– (void)attachColorList: (NSColorList *)colorList

Tells the color picker to attach the given colorList, if it isn’t already displaying the list. You never invoke
this method; it’s invoked automatically by the NSColorPanel when its attachColorList: method is invoked.
Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented by a
custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything, since
NSColorPanel’s list mode manages NSColorLists.

See also: – detachColorList

detachColorList:
– (void)detachColorList:(NSColorList *)colorList

Tells the color picker to detach the given colorList, unless the receiver isn’t displaying the list. You never
invoke this method; it’s invoked automatically by the NSColorPanel when its detachColorList: method is
invoked. Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented
by a custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything,
since NSColorPanel’s list mode manages NSColorLists.

See also: – attachColorList

4

Classes: NSColorPickingDefault

initWithPickerMask:colorPanel:
– (id)initWithPickerMask: (int)mask

colorPanel:(NSColorPanel *)owningColorPanel

Notifies the color picker of the color panel’s mask and initializes the color picker. This method is sent by
the NSColorPanel to all implementors of the color picking protocols when the application’s color panel is
first initialized. In order for your color picker to receive this message, it must have a bundle in your
application’s “ColorPickers” directory (described in “Color Picker Bundles” in the Protocol Description).

mask is determined by the argument to the NSColorPanel method setPickerMask:. If no mask has been set,
mask is NSColorPanelAllModesMask. If your color picker supports any additional modes, you should
invoke the setPickerMask: method when your application initializes to notify the NSColorPanel class. The
standard mask constants are:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask
Red-Green-Blue NSColorPanelRGBModeMask
Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask
Hue-Saturation-Brightness NSColorPanelHSBModeMask
Custom palette NSColorPanelCustomPaletteModeMask
Custom color list NSColorPanelColorListModeMask
Color wheel NSColorPanelWheelModeMask
All of the above NSColorPanelAllModesMask

This method should examine the mask and determine whether it supports any of the modes included there.
You may also check the value in mask to enable or disable any subpickers or optional controls implemented
by your color picker. Your color picker may also retain owningColorPanel in an instance variable for future
communication with the color panel.

This method is provided to initialize your color picker; however, much of a color picker’s initialization may
be done lazily through the NSColorPickingCustom protocol’s provideNewView: method. If your color
picker responds to any of the modes represented in mask, it should perform its initialization and return self.
Color pickers that do so have their buttons inserted in the color panel and continue to receive messages from
the panel as the user manipulates it. If the color picker doesn’t respond to any of the modes represented in
mask, it should do nothing and return nil .

See also: + setPickerMask: (NSColorPanel class)

insertNewButtonImage:in:
– (void)insertNewButtonImage:(NSImage *)newButtonImage

in: (NSButtonCell *)buttonCell

Sets newButtonImage as buttonCell’s image. buttonCell is the NSButtonCell object that lets the user choose
the picker from the color panel—the color picker’s representation in the NSColorPanel’s picker NSMatrix.

5

This method should perform application-specific manipulation of the image before it’s inserted and
displayed by the button cell.

See also: – provideNewButtonImage

provideNewButtonImage
– (NSImage *)provideNewButtonImage

Returns the image for the mode button that the user uses to select this picker in the color panel, that is, the
color picker’s representation in the NSColorPanel’s picker NSMatrix. (This is the same image that the color
panel uses as an argument when sending the insertNewButtonImage:in: message.)

setMode:
– (void)setMode:(int)mode

Sets the color picker’s mode. This method is invoked by NSColorPanel’s setMode: method to ensure that
the color picker reflects the current mode. For example, invoke this method during color picker initialization
to ensure that all color pickers are restored to the mode the user left them in the last time an NSColorPanel
was used.

Most color pickers have only one mode, and thus don’t need to do any work in this method. An example of
a color picker that uses this method is the slider picker, which can choose from one of several submodes
depending on the value of mode. The available modes are:

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel
Red-Green-Blue NSRGBModeColorPanel
Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel
Hue-Saturation-Brightness NSHSBModeColorPanel
Custom palette NSCustomPaletteModeColorPanel
Custom color list NSColorListModeColorPanel
Color wheel NSWheelModeColorPanel

viewSizeChanged:
– (void)viewSizeChanged:(id)sender

Tells the color picker when the NSColorPanel’s view size changes in a way that might affect the color
picker. sender is the NSColorPanel that contains the color picker. Use this method to perform special
preparation when resizing the color picker’s view. Since this method is invoked only as appropriate, it’s

6

Classes: NSColorPickingDefault

better to implement this method than to override the method superviewSizeChanged: for the NSView in
which the color picker’s user interface is contained.

See also: – provideNewView: (NSColorPickingCustom protocol)

