NSView

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSView.h

Class at a Glance

Purpose

NSView isan abgtract class that defines the basic drawing, event-handling, and printing architecture of an
OPENSTEP application. You typically don’t interact with NSView API directly; rather, your custom view
classes inherit from NSView and override many of its methods, which are invoked automatically by the
Application Kit. If you're not creating a custom view class, there are few methods you need to use.

Principal Attributes

» Event handling « Integrated display to screen and printer
 Flexible coordinate systems « |con dragging

Creation

Interface Builder

— initwithFrame: Designated initializer.

Commonly Used Methods

— frame Returns the NSView’s location and size.

— bounds Returns the NSView's internal origin and size.

— setNeedsDisplay: Marks the NSView as needing to be redrawn.

— window Returns the NSWindow that contains the NSView.
— drawRect: Draws the NSView. (All subclasses must implement this method, but

it's rarely invoked explicitly.)

Classes: NSView

Class Description

NSView is an abstract class that provides concrete subclasses with a structure for drawing, printing, and
handling events. NSViews are arranged within an NSWindow, in a nested hierarchy of subviews. A view
object claims arectangular region of its enclosing superview, is responsible for all drawing within that
region, and is eligible to receive mouse events occurring in it as well. In addition to these major
responsibilities, NSView handles dragging of icons and works with the NSScrollView class to support
efficient scrolling. The following sections explore these areas and more.

Most of NSView’s functionality is either automatically invoked by the Application Kit, or is available in
Interface Builder. Unless you’re implementing a concrete subclass of NSView or working intimately with
the content of the view hierarchy at run time, you don’t need to know much about this class’s interface. See
“Commonly Used Methods” above for methods you might use regardless.

The View Hierarchy

To be displayed, an NSView must be placed in an NSWindow. All view objects within an NSWindow are
arranged in a hierarchy that begins at the NSWindoeritent view, with each NSView having a single
superview and zero or morgubviews (see the NSWindow class specification for more on the content view).
An NSView’s superview and all the NSViews above the superview are sometimes referred to as the
NSView’'sancestors. An NSView’s subviews and all of their subviews on down are known as the NSView’s
descendants. Each NSView in the view hierarchy has its own area to draw in and its own coordinate system,
expressed as a transformation of its superview’s coordinate system. An NSView can scale, translate, or
rotate its coordinates dynamically, and a subclass can dechixitsflipped to allow drawing from top

to bottom—useful for drawing text, for example.

Graphically, an NSView can be regarded as a framed canvas. The frame locates the NSView in its
superview, defines its size, and clips drawing to its edges, while the canvas defines the NSView's own
internal coordinate system and hosts the actual drawing. The frame can be moved around, resized, and
rotated in the superview, so that the NSView's image moves with it. Similarly, the canvas can be shifted,
stretched, and rotated, so that the drawn image moves within the frame. The frame maps onto a region of
the canvas that defines the bounds of what can possibly be seen. An NSView therefore keeps track of its
space using two rectangles, one for each perspectivérantmerectangle gives the exterior perspective and

the bounds rectangle give the interior. Thérame andbounds methods, respectively, return these

rectangles. This figure shows the relation between the frame rectangle, on the left, and the bounds rectangle
over the canvas, on the right:

superview

[/

(0.0, 0.0)|

Frame at (5.0, 5.0), size (50.0, 65.0) Bounds at (0.0, 0.0), size (50.0, 65.0)

Although the bounds rectangle indicates which portion of the NSView that’s potentially visible through the
frame, if the frame runs outside of the superview the image will be clipped even within the bounds
rectangle. An NSView'sisiblerectanglereflects the portion of an NSView that actually displays, in terms

of its own coordinate system (the darker gray rectangle in the figure below). It isn’'t often important to know
what the visible rectangle is, since the display mechanism automatically limits drawing to visible portions
of a view. If a subclass must perform expensive precalculation to build its image, though, it can use the
visibleRect method to limit its work to what'’s actually needed.

superview

(0.0, 0.0)
Bounds at (0.0, 0.0), size (50.0, 70.0)
Frame at (85.0, 30.0), size (50.0, 65.0) Visible at (0.0, 0.0), size (35.0, 50.0)

TheinitWithFrame: method establishes an NSView’s frame rectangle, but doesn’t insert it into an
NSWindow’s view hierarchy. This is the job of thedSubview: method, which you send to the NSView

that you want to contain the newly initialized one. The frame rectangle is then interpreted in terms of the
superview, properly locating the new NSView both by its place in the view hierarchy and its location in the
superview's NSwWindow.

After initialization, you can move an NSView programmatically using any of the frame-setting methods:
setFrame:, setFrameOrigin:, setFrameSize:, andsetFrameRotation:. When you move an NSView all

of its subviews move along with it. When you change the frame rectangle’s size, the bounds rectangle is
automatically resized to match (see figure below), and the subviews are automatically resized as described
later under “Moving and Resizing NSViewsetFrameRotation: rotates the NSView around the origin of

the frame rectangle (which is typically the lower left corner).

Classes: NSView

superview

A/

Frame at (20.0, 10.0), size (40.0, 30.0) Bounds at (0.0, 0.0), size (40.0, 30.0)

A number of methods accessthe view hierarchy itself. superview returns the receiver’s containing NSView,

while subviews returns an NSArray containing its immediate descendant NSViewsvifidew method

returns the NSWindow whose view hierarchy the receiver belongs to. You can add NSViews to and remove
them from the view hierarchy using the methaddSubview:, removeFromSuperview, and
replaceSubview:with:. An additional methodgddSubview:positioned:relativeTo:, allows you to specify

the ordering of NSViews that may overlap (though laying out NSViews so that they overlap isn’t
recommended). When an NSView is added as a subview of another, it automatically invokes the
viewWillM oveToSuperview: and if necessary theewWillM oveToWindow: methods. Concrete

subclasses can override these methods, allowing an instance to query its new superview or NSWindow
about relevant state and update itself accordingly. A few other methods allow you to inspect relationships
among NSViewsisDescendantOf: confirms the containment of the receiarcestor SharedWithView:

find the common container of two NSViews, ammhqueAncestor returns the closest containing NSView
that's guaranteed to draw every pixel in the receiver’s frame (possible the receiver itself).

Coordinate Conversion in the View Hierarchy

At various times, particularly when handling events, you need to convert a rectangle or point from the
coordinate system of one NSView to another (typically a superview or subview). NSView defines six
methods that convert rectangles, points, and sizes in either direction:

— convertPoint:fromView: — convertPoint:toView:
— convertSize:fromView: — convertSize:toView:
— convertRect:fromView: — convertRect:toView:

These methods convert geometric structures between the receiver’s coordinate system and another
NSView’s within the same NSWindow, returning an alternate expression for the same on-screen location or
area. Note that the structure in question needn’t actually be located within the NSView’s bounds rectangle;
it's merely assumed to be expressed in that NSView’s coordinate system. If the second argument to a
conversion method isil, the conversion is made between the receiver’s coordinate system and the base
coordinate system of its NSWindow.

For converting to and from the screen coordinate system, NSWindow defirestieetBaseToScr een:
andconvertScreenToBase: methods. Using the NSView conversion methods along with these allows you

to convert a geometric structure between an NSView’s coordinate system and the screen’s with only two
messages.

Conversion is straightforward when neither NSView is rotated, or when dealing only with points. When
converting rectangles or sizes between NSViews with different rotations, the geometric structure must be
altered in a reasonable way. In converting a rectangle NSView makes the assumption that you want to
guarantee coverage of the original screen area. To this end, the converted rectangle is enlarged so that when
located in the appropriate NSView it completely covers the original rectangle (the left side of the figure
below, with 15 degrees of rotation). In converting a size NSView simply treats it as a vector from (0.0, 0.0)
and maps it onto the destination coordinate system. Though the length remains the same, the balance along
the two axes shifts according to the rotation (the right side of the figure below, rotated 45 degrees).

\e
yerted rect@®
coW

original rectangle original size
] (10.0, 10.0)

C
X

Drawing in an NSView

Drawing in an NSView is as simple as implementingdh@vRect: method to generate the appropriate
PostScript code for the image you want displayed—the display mechanism handles the rest of the work. On
the other hand, it can be as complex as dealing with the PostScript language itself, the coordinate
transformations from superview to subview, and the operation of the display mechanism. This section and
the following, “The Display Mechanism,” progress from the basic to the esoteric, keeping the picture
correct, if incomplete, at each stage.

In order for a concrete subclass of NSView to display any kind of image, it must implenanavitiect :

method. This method is invoked during the display process to generate PostScript code that’s rendered by
the Window Server into a raster imageawRect: takes a single argument, an NSRect describing the area
that needs to be drawn in the receiver’s own coordinate system. Here’s an example:

- (void)drawRect : (NSRect) aRect
{

PSset gray(NSWi te);

NSRect Fi | | (aRect);

PSset gr ay(NSBI ack) ;
PSarc(0.0, 0.0, 117.0, 0.0, 360.0);
PSfill();

Classes: NSView

return;

}

This method first fills the view’s background with white, then draws a black circle at the origin (0.0, 0.0).
An NSView automatically clips drawing to its frame rectangle, so the results look like this:

Except for the background, this implementatiomlicdwRect: ignores the rectangle provided, drawing
everything each time it's invoked. This isn’'t a problem for a simple image, but for complex drawing it can
be an extremely inefficient practice. Sending drawing instructions and data to the Window Server has a cost,
and it's best to minimize that cost where possible. You can do this by testing whether a particular graphic
shape intersects the rectangle being drawn, i8igter sectsRect() and similar functions.

How to Draw

As indicated in the example above, drawing can be performed by invoking PostScript client library

functions (also known as single-operator functions), which map directly to PostScript operators. The
Application Kit provides a few higher-level mechanisms for handing PostScript instructions to the Window
Server. The first is theswrap program, which converts custom PostScript procedures into C functions that

you can call in the same manner as client library functions. Wrapping complex drawing procedures
minimizes the overhead of communication with the Window Server by passing a group of instructions in

one interprocess message, as opposed to a number of such messages for repeated single-operator calls. The
Application Kit itself defines somgswrap functions, such adSRectFill(), and you can define your own.

Describing the PostScript language, client libraries,pmad ap is outside this scope of this class
description. For more information, see:

PostScript Language Reference Manual, Second Edition. Adobe Systems Incorporated. Addison
Wesley, 1990. ISBN 0-201-18127-4.

Descriptions of OPENSTEP PostScript operators and client functions, accessible from the Project
Builder application in the Application Kit framework documentation.

For information orpswrap, contact Adobe Systems.

The second higher-level mechanism is provided by Application Kit classes that perform drawing within an
NSView, such as NSImage and the various NSCell subclasses. These classes send PostScript instructions
to the Window Server but don't have the overhead of maintaining a drawing context that NSView has.
Objects that draw themselves are useful for encapsulating graphic elements that need to be drawn over and

over, at different locations, or in dlightly different ways. See the appropriate class specifications for more
information on drawing with them.

Another way of drawing within an NSView isto add subviews that each do their own drawing. Thisis
somewhat more heavyweight than using NSCells or NSImages, but the elements of such a constructed
group have the full power of the NSView machinery at their disposal, including the autosizing of
components and event handling, features described later in this class description.

Checking the Output Device

Most of an NSView’s displayed image is a stable representation of its state, and is defined in the
device-independent PostScript language. View objects also interact dynamically with the user, however,
and this interaction often involves drawing that isn't integral to the image itself—selections and other
highlighting, for example. Such drawing should be performed only to the computer screen, and never to a
printer or fax device, or to the pasteboard (as when drawing an EPS image). You can predicate drawing on
this difference of output device by sending the current DPS contéseawingToScreen message:

NSDPSCont ext *cont ext = [NSDPSCont ext current Context];

if (context && [context isDrawi ngToScreen]) {
/* Draw things that should only appear on a conputer screen. */

}

Coordinate System Transformations

By default, an NSView’s coordinate system is based at (0.0, 0.0) in the lower-left corner of its bounds
rectangle, its units are the same size as those of its superview, and its axes are parallel to those of its frame
rectangle. To change this coordinate system you can alter the NSView’s bounds rectangle, thereby placing
the canvas inside the frame rectangle, or transform it directly using PostScript operatoas an Rext ;

method. Changing the bounds rectangle sets up the basic coordinate system, with which all drawing
performed by the NSView begins; concrete subclasses of NSView typically alter the bounds rectangle
immediately as needed in théiitWithFrame: methods (or other designated initializers). Direct
transformations are useful for temporary effects, such as scaling one axis to draw an oval instead of a circle,
then scaling it back before stroking the path to preserve line widths; rotating the axes to draw text at an
angle; or repeatedly translating the origin to draw the same figure in several locations.

The basic method for changing the bounds rectang&Bsunds:, which both positions and stretches the
canvas. The origin of the rectangle provideda®ounds. becomes the lower-left corner of the bounds
rectangle, and the size of the rectangle is made to fit in the frame rectangle, effectively scaling the NSView’s
drawn image. In the figure below, the bounds rectangle from the previous example is moved and doubled
in size; the result appears on the right:

Classes: NSView

superview
(0.0, 0.0)L
Bounds at (10.0, 10.0), size (80.0, 60.0) Frame at (20.0, 10.0), size (40.0, 30.0)

o

You can also set the parts of the bounds rectangle independently, using setBoundsOrigin: and

setBoundsSize:. An additional method, setBoundsRotation:, rotates the coordinate system around its

origin within the bounds rectangle (not the origin of the bounds rectangleitself). It also enlargesthevisible

rectangle to account for the rotation, so that it's expressed in the rotated coordinates yet completely covers
the visible portion of the frame rectangle. This adds regions that must be drawn, yet will never be displayed
(the triangular areas in the figure below). For this reason, rotating the bounds rectangle is strongly
discouraged. It’s better to rotate the coordinate system by using PostScript operatousamw ezt ;

method rather than by rotating the bounds rectangle.

D, superview
d '
0)
0 ’ 0 ‘ecta"\g\e

e

setBoundsOrigin:, setBoundsSize:, andsetBoundsRotation: all express their transformations in absolute
terms. Another set of methods transform the coordinate system in relative terms; if you invoke them
repeatedly, their effects accumulate. These methodsargateOriginToPoint:,

scaleUnitSquareToSize:, androtateByAngle:. See the individual method descriptions for more
information.

One final type of coordinate transformation is statically established by overridirgtipped method.
NSView’s implementation returns NO, which means that the origin of the coordinate system lies at the
lower-left corner of the default bounds rectangle and/ttrds runs from bottom to top. When a subclass
overrides this method to return YES, the NSView machinery automatically adjusts itself to assume that the
upper-left corner of the NSView holds the origin. In other words, vigidipped returns YES thg axis

runs from top to bottom. A flipped coordinate system affects all drawing in the NSView itself and reckons
the frame rectangles of all immediate subviews from their upper-left corners, but it doesn't affect the
coordinate systems of those subviews or the drawing performed by them.

Aflipped coordinate system doesn’t affect an NSView's subviews, but the other coordinate transformations
do. Translation of the bounds rectangle from the coordinate system origin shifts all subviews along with the
rest of the NSView’s image. Scaling and rotation actually affect the drawing of the subviews, as their
coordinate systems inherit and build on these alterations. You can determine whether an NSView’s
coordinate system is (or was ever) altered from the base coordinate system of its window using two
methodsisRotatedFromBasereturns YES if the receiver or any of its ancestors in the view hierarchy has
ever been rotated, whether of the frame or of the bounds recigRgletedOr ScaledFromBase similarly

returns YES if the receiver or any of its ancestors has ever been rotated or been scaled from the base
coordinate system’s unit size. You can determine whether the NSView has never been rotated by checking
thatisRotatedOr ScaledFromBase returns YES whilésRotatedFromBase returns NO. Note that these
methods only offer hints about the coordinate system. Their purpose is to help optimize certain operations,
not to reflect the present state: Once an NSView is marked as having been rotated or scaled, it remains so
marked for its lifetime.

To get the actual amount of rotation, usefttEeneRotation andboundsRotation methods. These return

the rotation relative to the superview only, not to the base coordinate system, so if you want the latter
amount you have to progress up through each superview to the NSWindow’s content view, accumulating
the rotation as you go. To get the scaling relative to the superview you caonued Size:toView: and
examine the ratio of the original size to that of the superview. To get the scaling relative to the base
coordinate system, usél as the second argument, which converts to the NSWindow’s base coordinate
system.

The Display Mechanism

Displaying an NSView centers around thr@awRect: method, which transmits drawing instructions to the
Window Server. Before this can happen, however, a number of other things must be established. First, of
course, is the rectangle in the view that needs to be drawn. Once this is known, the view must be checked
for opacity; if the view is partially transparent, its nearest opaque ancestor must be found and drawing must
commence from there. Once all of this is determined and a particular view is to be drawn, the Window
Server must know which window device the view is in, how to clip drawing to the appropriate region, and
what coordinate system to use. This is all handled outisi@&Rect:, by NSView’s various display

methods. The following sections examine each of these points in turn.

Marking a View as Needing Display

The most common way of causing an NSView to redisplay is to tell it that its image is invalid. On each pass
through the event loop, all views that need to redisplay do so. NSView defines two methods for marking a
view’s image as invalidsetNeedsDisplay:, which invalidates the view’s entire bounds rectangle, and
setNeedsDisplayl nRect:, which invalidates a portion of the view. The automatic display of views is
controlled by their window; you can turn this behavior off using NSWindest&sutodisplay: method.

Classes: NSView

10

You should rarely need to do this however; the autodisplay mechanism is well-suited to most kinds of
update and redisplay.

The autodisplay mechanism invokes various methods that actually do thework of displaying. You can aso

usethese methodsto force aview to redisplay itself immediately when necessary. display and displayRect:

are the counterparts to the methods mentioned above; both cause the receiver to redisplay itself regardless

of whether it needs to or not. Two additional methods, displayl fNeeded and displayl fNeededl nRect:,

redisplay invalidated rectangles in the receiver if it's been marked invalid with the methods above. The
rectangles that actually get drawn are guaranteed to be at least those marked as invalid, but the view may
coalesce them into larger rectangles to save multiple invocatiahiawwRect:.

Opacity

NSViews don’t necessarily cover every bit of their frames with drawing. Because of this, the display
methods must be sure to find an opaque background behind the view that's ostensibly being drawn, and
begin displaying from there forward. The display methods above all pull back up the view hierarchy to the
first view that responds YES to a®Dpaque message, bringing the invalidated rectangles along. NSView
by default responds NO teOpaque, so it's important to remember to override this method to return YES

if appropriate when defining a subclass. Most Application Kit subclasses of NSView actually do this.

If you want to exclude background views from drawing when forcing display to occur unconditionally, you
can use NSView methods that explicitly omit backing up to an opaque ancestor. These methods, parallel to
those mentioned above, alieplayRectl gnoringOpacity:, displayl fNeededl gnoringOpacity:, and

displayl fNeededl nRectl gnoringOpacity:.

Locking Focus

Before adisplay... method invokeslrawRect:, it sets the Window Server up with information about the
view, including the window device it draws in, the coordinate system and clipping path it uses, and other
PostScript graphics state (discussed in detail below, under “PostScript Graphics State Objects”). The
method used to do thislisckFocus, and it has a companion method that undoes its effects, called
unlockFocus.

All drawing code invoked by an NSView must be bracketed by invocations of these methods to produce
proper results. If you define some methods that need to draw in a view without going through the display
methods above, for example, you must dexkiFocus to the view that you're drawing in before sending
commands to the Window Server, amdockFocus as soon as your done.

It's perfectly reasonable to lock the PostScript focus on one view when another already has it. In fact, this
is exactly what happens when subviews are drawn in their superview. The focusing machinery keeps a stack
of which views have been focused, so that when one view is sentak Focus message, the PostScript

focus is restored to the view that was focused immediately before.

PostScript Graphics State Objects

When an NSView receives alock Focus message, its basic drawing environment state is constructed and

sent to the Window Server as a PostScript graphics state object, or gstate (this is a PostScript user object,

not an Objective-C object). The basic state includes default values for parameters that don’t change often,
but leaves many other parameters undefined:

11

Classes: NSView

12

Parameter

coordinate transformation

position

path

clipping path
font

line width

line cap

line join
halftone screen
halftone phase
flatness

miter limit

dash pattern
device

stroke adjust
color

color space
color rendering
overprint

black generation

transfer

Default Value

The NSView's coordinate system as established by the bounds
rectangle

No default valuemust be set before drawing
No default value
As established bgck Focus
No default valuemust be set before drawing text
0.0
0 (a square butt end)
0 (mitered joins)
A device-dependent, type 3 halftone dictionary
0,0
1.0
10
A normal solid line
The current window
true
No guaranteed default value
No guaranteed default value, varies with color
Calibrated RGB rendering
false
No default value

No default value

undercolor removal No default value

alpha (opacity) 1.0 (opagque)
instance drawing mode false

When drawing in an NSView, you must be sure to explicitly set relevant parameters that have no default
value, or a PostScript error will result. Further, although drawing methods are free to set any gstate
parameter, they should always restore the parameters to their original values when finished. This protects
multiple drawing methods, and objects that draw within an NSView, such as NSimages and NSCells, from

altering each other’s graphics states. You can protect the gstate by bracketing the changeSgséte()
andPSgrestore(), or by explicitly placing the parameter in question on the stack and resetting it later—for
example, saving the line width only usiR§currentlinewidth(), performing your drawing, then calling
PSsetlinewidth() to restore the prior value.

Normally the graphics state object is reconstructed from scratch each time the NSView is focused. You can
instruct an NSView to keep a graphics state object indefinitely by sendingllbeateGState message

(typically in the initialization method for a concrete subclass). This eliminates the overhead of continual
reconstruction of the graphics state, and also allows you to omit commands for setting parameters from your
drawing code. However, because a graphics state object does consume a fair amount of memory, you should
be sure to test your application’s performance with and without it. Persistent gstate objects are most suitable
for NSViews that must be redrawn frequently with the same parameters.

When you set an NSView to use a persistent gstate object, it doesn’t actually allocate one until it needs it.
When it does create the graphics state object, the NSView invokelG State method to set the
parameters. Your subclass can override this method to establish the parameters that you want kept in the
graphics state using such methods and client library functions as NSColor’s and N&FEont's
PSsetlinewidth(), PSsetdash(), and so on.

You can cause an NSView to discard its gstate object by sendingéaseGState message, or simply to
invalidate it usingenewGState. The latter method causes the NSView to reestablish its gstate parameters
by invokingsetUpGState the next time it's needed. Finally, if for some reason you need to access the
persistent gstate object directly, tjgate method returns its PostScript user object identifier.

Moving and Resizing NSViews

Repositioning an NSView is a potentially complex operation. Moving or resizing can expose portions of
the NSView's superview that weren'’t previously visible, requiring the superview to redisplay. Resizing can
also affect the layout of an NSView’s subviews. Changes to an NSView’s layout in any case may be of
interest to other objects, which might need to be notified of the change. The following sections explore each
of these areas.

Displaying After Moving or Resizing

None of the methods that alter an NSView’s frame rectangle redisplays the NSView or marks it as needing
display. When using th&etFrame... methods, then, you must mark both the view being repositioned and

its superview as needing display. This can be as simple as marking the superview in its entirety as needing
display, or better, marking the superview in the old frame of the repositioned view and the view itself in its
entirety. This code fragment seékeView's frame rectangle, and updates its superview appropriately:

NSVi ew *t heVi ew; /* Assunme this exists. */
NSRect newFr ane; /* Assunme this exists. */

[[theVi ew supervi ew] set NeedsDi spl ayl nRect:[theView frane]];
[theVi ew set Frane: newFr ane] ;
[theVi ew set NeedsDi spl ay: YES] ;

13

Classes: NSView

14

This sample marksthe superview as needing display in the frame of the view about to be moved. Then, after
theView is repositioned, it's marked as needing display in its entirety, which is nearly always the case.

Note: ThesetBounds... methods also don'’t redisplay the NSView, but because their changes don't affect
superviews you can simply mark the repositioned NSView as needing display.

Autoresizing of Subviews

When an NSView's frame size changes, they layout of its subviews must often be adjusted to fit in the new
size. NSView defines a mechanism that automates this process, allowing you to specify how any NSView
should reposition itself when its superview is resized. Interface Builder allows you to set these attributes
graphically with its Size Inspector, and in test mode you can examine the effects of autoresizing. You can
also set autoresizing attributes programmatically usstfgutor esizingM ask: with a mask containing any

of the constants illustrated below, combined using the C bitwise OR operator:

¢ NSViewMaxYMargin
A

NSViewHeightSizable NSViewMaxXMargin

- g

NSViewMinXMargin NSViewWidthSizable
\J
NSViewMinYMargin ‘
(00,000

When one of these mask flags is omitted, the NSView’s layout is fixed in that aspect; when it's included the
NSView’s layout is flexible in that aspect. For example, to keep an NSView in the lower left corner of its
superview, you specify NSViewMaxXMargin | NSViewMaxYMargin. When more than one aspect along
an axis is made flexible, the resize amount is distributed evenly among them.

Autoresizing is on by default, but you can turn it off usings#t@utor esizesSubviews: method. Note that

when you turn off an NSView'’s autoresizing, all of its descendants are likewise shielded from changes in
the superview. Changes to subviews, however, can still percolate downward. Similarly, if a subview has no
autoresize mask, it won't change in size, and therefore none of its subview will autoresize.

Autoresizing is accomplished using two methodsizeSubviewsWithOldSize: is invoked automatically

by an NSView whenever its frame size changes. This method then simply sends a
resizeWithOldSuperviewSize: message to each subview. Each subview compares the old frame size to the
new size and adjusts its position and size according to its autoresize mask. Subclasses of NSView can
override either method to alter their autoresizing behavior.

Two cautions apply to autoresizing. First, it doesn’t work at all in NSView that have been rotated. Subviews
that have been rotated can autoresize within a nonaltered superview, but then their descendants aren’t

autoresized. Also, for autoresizing to work correctly, the subview being autoresized must lie completely
within its superview’s frame. Apart from these limitations, autoresizing covers most layout changes quite
well.

Notifications

Beyond resizing its subviews, an NSView broadcasts notifications to interested observers any time its
bounds and frame rectangles change. The notification names are NSViewFrameDidChangeNotification and
NSBoundsDidChangeNotification, respectively. An NSView that bases its own display on the layout of its
subviews, for example, can register itself as an observer for those subviews and update itself any time
they’re moved or resized. NSScrollView and NSClipView cooperate in this manner to adjust the
NSScrollView’s NSScroller’s. You can turn notifications on and off using
setPostsFrameChangedNotification: andsetPostsBoundsChangedNofitications:.

Event Handling

NSViews are the most typical receivers of event and action messages, as described in the NSResponder and
NSEvent class specifications. An NSView subclass can handle any event or action message simply by
implementing it (being sure to invokeper 's implementation as needed). Then, if an instance of that class

is the first in the responder chain to respond to that message, it receives such messages as they’re generated.

Except for an NSWindow’s content view, an NSView’s next responder is always its superview—maost of
the responder chain, in fact, comprises the NSViews from an NSWindow’s first responder up to its content
view. NSViewaddSubview: method automatically sets the receiver as the new subview’s superview; you
should never sergitNextResponder: to an NSView object. You can safely add responders to the top end
of an NSWindow'’s responder chain—the NSWindow itself if it has no delegate, or the delegate if it does.

As the class that handles display, NSView is the typical recipient of mouse and keyboard events. Mouse
clicks, drags, and movements usually occur in some NSView or other, and most keystrokes represent text
to be added for display at some point in a window. A mouse event starts at the lowest NSView containing
it in the view hierarchy (or, the topmost NSView displayed under the cursor), and proceeds up the responder
chain through superviews until some object handles it. “Mouse Events,” below, covers the details of
handling mouse events. Most keyboard events start at the first responder, whatever it might be, and are
similarly offered up the responder chain. Some actually change the first responder, thus allowing the user
to perform many actions without using the mouse. See the NSResponder class specification for information
on keyboard events. Tracking-rectangle events are monitored by the NSWindow and dispatched directly to
the object that owns the tracking rectangle. “Tracking Rectangles and Cursor Rectangles” describes how to
set up and handle these. An additional section covers the use of context-sensitive pop-up menus by your
views.

Mouse Events

An NSView can receive mouse events of three general types: clicks, drags, and movements. A custom
subclass of NSView can interpret a mouse event as a cue to perform a certain action, such as sending a

15

Classes: NSView

16

target-action message, selecting a graphic element, and so on. NSViews automatically receive

mouse-clicked and mouse-dragged events, but because mouse-moved events occur so often and can bog

down the event queue, an NSView must explicitly request its NSWindow to watch for them using
NSWindow’ssetAcceptsM ouseM ovedEvents. method. Tracking rectangles, described below, are a less
expensive way of following the mouse’s location.

The NSView selected to receive a mouse event is determined by the NSWindow using NBiViesst's

method, which returns the lowest descendant that contains the cursor location of the event (this is also the
topmost NSView displayed). Once the recipient is determined, the NSWindow senusuieown:

message, which includes an NSEvent object containing information about the click. NSEvent’s

locationl nWindow locates the cursor’s hot spot in the coordinate system of the receiver's NSWindow. To
convert it to the NSView'’s coordinate system, caevertPoint:fromView: with anil NSView argument.

From here, you can useouse:inRect: to determine whether the click occurred in an interesting area.

One of the earliest things to consider in handling mouse-down events is whether the receiving NSView
should become the first responder, which means that it will be the first candidate for subsequent key events
and action messages. NSViews that handle graphic elements that the user can select—drawing shapes or
text, for example—should typically accept first responder status on a mouse-down event, by overriding the
acceptsFirstResponder method to return YES. This results in the window making the receiving NSView

first responder with NSWindowisiakeFir stResponder: method. Some NSViews, however, may not wish

to change the selection upon the first mouse click in a non-key window, which should normally only order
the window to the front. NSViewacceptskirstM ouse: method controls whether an initial mouse click is

sent to the NSView or not. By default it returns NO, which in most cases is appropriate behavior. Certain
subclasses, such as controls that don't affect the selection, override this method to return YES.

Once an NSView has accepted a mouse event and determined its location, it can also check which mouse
button was clicked and how many times. NSEvewype method distinguishes between left and right

mouse events, and the NSView can base its behavior on this information. Right mouse events are defined
by the Application Kit to open pop-up menus, but you can override this behavior if necessary. NSEvent's
clickCount method returns a number identifying the mouse event as a single-, double-, or triple-click (and
S0 on).

NSViews that handle mouse clicks as a single event, from mouse down, through dragging, to mouse up,
must usually short-circuit the application’s normal event loop, entenmgdal event loop to catch and

process only events of interest. For example, an NSButton highlights upon a mouse-down event, then
follows the mouse location during dragging, highlighting when the mouse is inside and unhighlighting
when the mouse is outside. If the mouse is inside on the mouse-up event, the NSButton sends its action
message. This method template shows one possible kind of modal event loop:

- (voi d) rouseDown: (NSEvent *)t heEvent
{

BOOL keepOn = YES;

BOCL i sl nside = YES;

NSPoi nt nmouseloc;

do {

nouseLoc = [self convertPoint:[theEvent nouselLocati onl nW ndow
fromvViewnil]];
islnside = [self nouse: nobuseLoc inRect:[self bounds]];

switch ([theEvent type]) {
case NSLeft MouseDragged:
[sel f highlight:islnside];
br eak;
case NSLeft MouseUp:
if (islnside) [self doSonethingSignificant];
[sel f highlight:NQ ;

keepOn = NG,
br eak;
defaul t:
/* lgnore any other kind of event. */
br eak;
}
theEvent = [[sel f window] next Event Mat chi ngMask: NSLeft MouseUpMask |

NSLef t MouseDr aggedMVask] ;
} while (keepOn);

return;

}

This loop converts the mouse location and checks whether it's inside the receiver. It highlights itself using
the fictionalhighlight: method according to this, and on a mouse up inside, invokes
doSomethingSignificant to perform an important action. Instead of merely highlighting, a custom NSView
might move a selected object, draw a graphic image according to the mouse’s location, and so on.

This kind of modal event loop is driven only as long as the user actually moves the mouse. It won't work,
for example, to cause continual scrolling if the user presses the mouse button but never moves the mouse
itself. For this, your modal loop should start a periodic event stream using NSEvent’s class method
startPeriodicEventsAfter Delay:withPeriod:, and add NSPeriodicMask to the mask passed to

nextEventM atchingM ask:. In theswitch() statement the NSView can then check for a case of NSPeriodic
and take whatever action it needs to; scrolling a document view or moving a step in an animation, for
example. If you need to check the mouse location during a periodic event, you can use NSWindow’s
mousel ocationOutsideOfEventStream method.

Tracking Rectangles and Cursor Rectangles

One special type of event is that for tracking mouse movement into and out of a region in the NSView. Such
a region is known astaacking rectangle; it triggers mouse-entered events when the cursor enters it and
mouse-exited events when the cursor leaves it. This can be useful for displaying context-sensitive messages

17

Classes: NSView

18

or highlighting graphic elements under the cursor, for example. An NSView can have any number of
tracking rectangles, which can overlap or be nested one within the other; the NSEvent objects generated for
tracking eventsinclude atag that identified the rectangle that triggered the event.

To create a tracking rectangle, use the addTrackingRect: owner ;user Data:assumel nside: method. This

method registers an owner for the tracking rectangle provided, so that the owner receives the event

messages. This is typically the NSView itself, but need not be. The method returns the tracking rectangle’s
tag so that you can store it for later reference in the event handling metioodsiEntered: and

mouseExited:. To remove a tracking rectangle, usertraoveTrackingRect: method, which takes as an
argument the tag of the tracking rectangle to remove.

Tracking rectangles, though created and used by NSViews, are actually maintained by NSWindows.
Because of this, a tracking rectangle is a static entity; it doesn’t move or change its size when the NSView
does. If you use tracking rectangles, you should be sure to remove and reestablish them any time you change
the frame rectangle of the NSView that contains them. If you're using a custom subclass of NSView, you
can override the frame- and bounds-setting methods to do this. You can also register an observer for the
NSViewFrameDidChangeNotification (described below), and have it reestablish the tracking rectangles on
receiving the notification.

One common use of tracking rectangles is to change the cursor image over different types of graphic
elements. Text, for example, typically requires an I-beam cursor. Changing the cursor is such a common
operation that NSView defines several convenience methods to ease the process. A tracking rectangle
generated by these methods is calledrsor rectangle. The Application Kit itself assumes ownership of
cursor rectangles, so that when the user moves the mouse over the rectangle the cursor automatically
changes to the appropriate image. Unlike general tracking rectangles, cursor rectangles may not partially
overlap. They may, however, be completely nested, one within the other.

Because cursor rectangles need to be reset often as the NSView's size and graphic elements change,
NSView defines a single methatksetCur sor Rects, that’s invoked any time its cursor rectangles need to
be reestablished. A concrete subclass overrides this method, inedki@gr sor Rect:cursor: for each
cursor rectangle it wishes to set. Thereafter, the NSView’s cursor rectangles can be rebuilt by invoking
NSWindow'sinvalidateCur sor RectsFor View: method. If you find you need to temporarily remove a
single cursor rectangle, you can do this watmoveCur sor Rect: cur sor ;. Be aware thateset Cur sor Rects

will reestablish that rectangle, unless you implement it to do otherwise.

An NSView’s cursor rectangles are automatically reset whenever:

* Its frame or bounds rectangle changes, whetherdsiFaame... or setBounds... message or by
autoresizing.

» Its NSWindow is resized. In this case all of the NSWindow’s view objects get their cursor rectangles
reset.

* It's moved in the view hierarchy.

* It's scrolled in an NSScrollView or NSClipView.

You can temporarily disable all the cursor rectangles in a window using NSWirdieadéeCur sor Rects
andenableCur sor Rects methods. NSWindow'areCur sor RectsEnabled tells you whether they're
currently enabled.

Context-Sensitive Menus

On Microsoft Windows, any view can be assigned a pop-up menu that’s displayed when the user clicks the
right mouse button over the viesetM enu: assigns an NSMenu to a view, andnu returns it. Your

subclass can define a menu that's used for all instances by implementiefptiieM enu class method. It

can also change the menu displayed based on the mouse event by overridieguthar Event: instance

method. This allows the view clicked to display different menus based on the location of the mouse and of
the view’s state, or to change or enable individual menu items based on the commands available for the view
or for that region of the view. See the NSMenu and NSMenultem class and protocol specifications for more
information on using menus.

Printing and Faxing

Printing or faxing an NSView uses the same PostScript description as for displaying on the screen, by
simply changing the device. An NSView can check whether it's drawing to the screen in order to
conditionally include or omit elements such as highlighting, but normally doesn’t need to be involved with

the PostScript generation process in a special way for printing. It may, however, need to take part in
peripheral issues, including how it's divided into pages and placed on them, and generation of document
structuring comments used by some PostScript document programs. The sections below cover these areas.

To print or fax an NSView, send itpint: or fax: message. You can also generate an EPS representation
using eithedataWithEPSInsideRect: orwriteEPSI nsideRect:toPasteboard:. For any of these jobs, the
NSView creates an NSPrintOperation object that manages the process of generating proper PostScript code
for a printer or fax device. NSPagelLayout, NSPrintinfo, and NSPrintPanel objects are also involved in the
process. See those classes’ specifications for more information on the printing process itself.

Pagination

When an NSView is printed onto pages smaller than itself, it tiles itself out onto separate logical pages so
that its entire visible region is printed. A subclass of NSView can alter the way pagination is performed by
overriding two small sets of methods. The first set affects automatic pagination; the second replaces
automatic pagination completely. One extra method allows the NSView to adjust the location of the printed
image on the page. Finally, after pagination has actually been performed, the NSView is given the chance
to draw additional marks on the page.

NSView’s automatic pagination tries to fit as much of the view being printed onto a logical page, slicing
the view into the largest possible chunks. This is sufficient for many views, but if a view’s image must be
divided only at certain places—between lines of text or cells in a table, for example, the view can adjust the
automatic mechanism to accommodate this by reducing the height or width of each page. It does so by
overriding up to four methodadjustPageH eightNew:top:bottom:limit: provides an out parameter for

19

Classes: NSView

20

the new bottom coordinate of the page, followed by the proposed top and bottom. An additional parameter

limits the height of the page; the bottom can’t be moved aboadj itstPageWidthNew:|eft:right:limit:

works in the same way to allow the view to adjust the width of a page. The limits are calculated as a
percentage of the proposed page’s height or width. Your view subclass can also customize this percentage
by overriding the methodseightAdjustLimit andwidthAdjustLimit to return the reducible fraction of

the page.

More complex views, such as those that display separate pages over a background, need to direct their own
pagination. An NSView subclass that needs to do so overridkahesPagesFir st:last: method to return

YES, which signals that it will be calculating each page’s dimensions, and returns by reference its first and
last page numbers. The pagination machinery then uses these numbers,reetiebnBage: to the

NSView, which uses the page number and the current printing information to calculate an appropriate
rectangle in its coordinate system. TugustPage... methods aren't used in this case.

The last stage of pagination involves placing the image to be printed on the logical page. NSView’s
locationOfPrintRect: places it according to the NSPrintinfo’s status. By default it places the image in the
upper left corner of the page, but if NSPrintinfisld orizontallyCentered orisVerticallyCentered

methods return YES, it centers a single-page image along the appropriate axis. A multiple-page document,
however, is always placed so that the divided pieces can be assembled at their edges.

After the NSView has sliced out a rectangle and positioned it on a page, it's given two chances to add extra
marks to the page, such as crop marks or fold laresvPageBor der WithSize: is used for logical pages,

and is invoked for each paginated portion of the vinawSheetBor der WithSize: isused for actual

physical pages, or sheets, on which one or morelogical pages may belaid out. In a 2-up printing, for

example, the former method is invoked twice for each sheet, while the latter is invoked once for each sheet.

PostScript Document Structure

As an adjunct to the PostScript language itself, Adobe has defined asairoént structuring conventions

that describe the internal structure of a given PostScript language document. NSView properly generates
the basic information needed to structure its output, and defines a number of methods that subclasses can
override to provide additional information. This section only describes the methods that relate to the
structure of a conforming PostScript language document; see the individual method descriptions and
Adobe’sPostcript Language Reference Manual, Appendix G for more information.

An NSView subclass can override any of the methods that write out document structuring comments and
definitions. When overridingegin... oradd... methods, be sure to invokeper’s implementatiorbefore

writing additional information; when overridirend... methods, invoksuper’s implementation last. This
sample method, for example, adds a comment to the header of a document:

- (voi d) endHeader Comment s
{
NSDPSCont ext *cont ext = [NSDPSCont ext current Context];
[context printFormat: @ %88EomeConment : %\ n", someNumnber];

[super endHeader Comment s];
return;

}

Theinitial portion of aconforming PostScript language document is called the prologue, and contains two
parts itself: the header and a set of procedure definitions. NS\hegiisPr ologueBBox:... writes out the
very beginning of the documemnhdHeader Comments closes the first part of the prologue. Subclasses
can add their own procedure definitions to the end of the prologue by ovesmdiRgologue.

After the prologue comes tlseript, which contains a section that applies to the entire document, followed

by sections for each page, and finally the document trbdgimSetup andendSetup write the document

setup section. Each page is written with five methods, in additiorateRect:.

beginPage: label:bBox:fonts: writes out the beginning of each page’s document structuring comments. It’s
followed bybeginPageSetupRect: placement:, which starts the page setup section. An additional method,
addToPageSetup, does nothing by default, but allows subclasses to append extra procedure definitions and
comments to the page setup. The page setup concludes ittRageSetup message. After all this,

endPage wraps up the page description; subclasses can override this method to add document structuring
comments and PostScript code to the page trailer. The document trailer is writtedyrifieailer and
endTrailer methods.

Communicating with the Window Server During Printing

While an NSView is printing, its connection to the Window Server is replaced by a connection to the print
job output. Sometimes the NSView needs to communicate briefly with the Window Server while printing;
for example, it may need to read some data stored only on the Window Server, or open an attention panel
to alert the user of a problem. In these cases, it can temporarily swap in the NSApplication object’s DPS
context to restore access to the application’s Window Server state and to the screen. When finished, the view
object restores the print operation’s context to continue generating its image:

[NSDPSCont ext set Current Cont ext: [NSApp context]];
/* Conmmuni cate with the Wndow Server. */

[NSDPSCont ext set Current Context:[[NSPri nt Operation currentOperation] context]];
/* Resume generating PostScript code. */

Other Features

Besides the fundamentals of drawing and event handling, NSView includes several auxiliary features.
These are tagging NSViews for quick location, support for dragging of images and file icons, and
cooperation with the scrolling machinery to facilitate viewing larger NSViews through smaller ones. The
following sections introduce each of these features and name the methods and cooperating classes or
protocols involved in each.

21

Classes: NSView

22

Tags

NSView defines methods that allow you to tag individual view objects with integer tags and to search the

view hierarchy based on those tags. NSVigagmethod always returns —1. You can override this in
subclasses to return a special value, or even seldfa@y: method to allow the tag to be changed at run time
(several Application Kit classes, especially NSControl and NSCell, do just thisyi@¥ithTag:

method proceeds through all of the receiver’'s descendants (including itself), searching for a subview with
the given tag and returning it if it's found.

Dragging

A view object can act as either the source or destination for dragged images and file icons. The basic
dragging methodsiragl mage: ... anddragFile ... methods, handle the mechanics of moving the image on

the screen and notifying the destination of the dragging operations. To act as a source for dragging
operations, a concrete subclass of NSView can adopt the NSDraggingSource protocol, by which the source
indicates what kinds of dragging operations are allowed and is notified of dragging operations as they begin.
Both NSView and NSWindow subclasses can act as destinations for dragging operations, by adopting the
NSDraggingDestination protocol and making use of the NSDraggingInfo protocol. For more information
see the dragging protocol specifications and the descriptiatragifmage: ... anddragFile:... in this

specification.

Scrolling

NSView defines a number of methods to support scrolling, whereby the NSView being scrolled—the
document view—is displayed partially through another—tumtent or clip view (not to be confused with a
window’s content view). Scrolling is effected by moving the clip view’s bounds rectangle, which reveals
the different regions of the document view. Most of the scrolling methods assume that the NSView is
enclosed within an NSClipView and an NSScrollView, which handle the mechanics of scrolling for you.
You can, however, reproduce the effects of scrolling yourself if you wish. See the NSScrollView,
NSClipView, and NSScroller class specifications for information on how scrolling is implemented by the
Application Kit.

NSView’s most direct scrolling methods aoeollPoint: andscrollRectToVisible:, both of which assume

that the receiver is embedded in an NSClipView. These methods move the clip view so that the requested
point or rectangle in the receiver become visible. Another me#lubdscroll:, automatically scrolls the

receiver in an NSClipView based on the location of the mouse. It's useful for moving the document view
when the user drags an icon outside of the visible areaerithasingScrollView method returns the
NSScrollView that contains the NSView, allowing you to tune the way scrolling occurs.

Two other methods aid in scrolling. A subclass of NSView can oveadpestScroll: to change the way
automatic (user-driven) scrolling occurs. It can quantize scrolling into regular units, to the edges of a
spreadsheet’s cells, for example, or simply limit scrolling to a specific region of the NSView. The last
scrolling methodscrollRect:by:, copies an already-drawn portion of the NSView to a new location. It's
useful for producing temporary effects, but note that any subsequent drawing will obliterate the copied
portion.

Method Types

Creating instances — initWithFrame:
Managing the view hierarchy — superview
— subviews
—window
— addSubview:

— addSubview:positioned:relativeTo:

— removeFromSuperview

— replaceSubview:with:

— isDescendantOf:

— opaqueAncestor

— ancestorSharedWithView:

— sortSubviewsUsingFunction:context:
— viewWillMoveToSuperview:

— viewWillMove ToWindow:

Searching by tag — viewWithTag:
—tag

Modifying the frame rectangle — setFrame:
— frame

— setFrameOrigin:

— setFrameSize:

— setFrameRotation:
— frameRotation

Modifying the bounds rectangle — setBounds:
— bounds
— setBoundsOrigin:
— setBoundsSize:
— setBoundsRotation:
— boundsRotation

Modifying the coordinate system — translateOriginToPoint:
— scaleUnitSquareToSize:
— rotateByAngle:

Examining coordinate system modifications
— isFlipped
— isRotatedFromBase
— isRotatedOrScaledFromBase

Classes: NSView

Converting coordinates

Controlling notifications

Resizing subviews

Focusing

Displaying

Drawing

Managing a graphics state

24

— convertPoint:fromView:
— convertPoint:toView:

— convertSize:fromView:

— convertSize:toView:

— convertRect:fromView:
— convertRect:toView:

— centerScanRect:

— setPostsFrameChangedNotifications:
— postsFrameChangedNotifications
— setPostsBoundsChangedNotifications:
— postsBoundsChangedNotifications

— resizeSubviewsWithOldSize:
— resizeWithOldSuperviewSize:
— setAutoresizesSubviews:

— autoresizesSubviews
— setAutoresizingMask:
— autoresizingMask

— lockFocus
— unlockFocus
+ focusView

— setNeedsDisplay:

— setNeedsDisplayInRect:

— needsDisplay

— display

— displayRect:

— displayRectlgnoringOpacity:

— displaylfNeeded

— displaylfNeededInRect:

— displaylfNeededlgnoringOpacity
— displaylfNeededInRectlgnoringOpacity:
—isOpaque

— drawRect:

— visibleRect

— canDraw

— shouldDrawColor

— allocateGState
— gState
— setUpGState
— renewGState
—releaseGState

Event handling

Dragging operations

Managing cursor rectangles

Managing tracking rectangles

Scrolling

Context-sensitive menus

Managing the key view loop

Printing and faxing

Pagination

— acceptsFirstMouse:

— hitTest:

— mouse:inRect:

— performKeyEquivalent:
— performMnemonic:

— draglmage:at:offset.event:pasteboard:source:slideBack:

— dragFile:fromRect:slideBack:event:

— registerForDraggedTypes:

— unregisterDraggedTypes

— shouldDelayWindowOrderingForEvent:

— addCursorRect:cursor:
— removeCursorRect:cursor:
— discardCursorRects
— resetCursorRects

— addTrackingRect.owner:userData:assumelnside:
—removeTrackingRect:

— scrollPoint:

— scrollRectToVisible:
— autoscroll:

— adjustScroll:

— scrollRect:by:

— enclosingScrollView

— menuForEvent:
+ defaultMenu

— setNextKeyView:
— nextKeyView
— nextValidKeyView
— previousKeyView
— previousValidKeyView

— print;
—fax:
— dataWithEPSInsideRect:
— writeEPSInsideRect:toPasteboard:

— heightAdjustLimit
— widthAdjustLimit
— adjustPageWidthNew:left:right:limit;
— adjustPageHeightNew:top:bottom:limit:
— knowsPageskFirst:last:
—rectForPage:
— locationOfPrintRect:

25

Classes: NSView

Adorning pages in printout — drawPageBorderWithSize:
— drawSheetBorderWithSize:

Writing conforming PostScript — beginPrologueBBox:creationDate:createdBy:fonts:
forwhom:pages:title:
— endHeaderComments
—endPrologue
— beginSetup
—endSetup
— beginPage:label:bBox:fonts:
— beginPageSetupRect:placement:
—addToPageSetup
— endPageSetup
—endPage
— beginTrailer
—endTrailer

Class Methods
\9 defaultMenu
+ (NSMenu *defaultM enu

Overridden by subclasses to return the default pop-up menu for instances of the receiving class. NSView'’s
implementation returnsil. This menu is used only on Microsoft Windows.

See also: — menuForEvent:, —menu(NSResponder)

focusView
+ (NSView *)focusView

Returns the currently focused NSView objectnibif there is none.

See also: —lockFocus, —unlockFocus

Instance Methods

acceptsFirstMouse:
— (BOOL)acceptsFirstM ouse: (NSEvent *xheEvent

Overridden by subclasses to return YES if the receiver should berseasgDown: message faheEvent,
an initial mouse-down event over the receiver in its window, NO if not. The receiver can either return a

26

value unconditionally, or usetheEvent’s location to determine whether or not it wants the event. NSView’s
implementation ignoretheEvent and returns NO.

Override this method in a subclass to allow instances to respond to initial mouse-down events. For example,
most view objects refuse an initial mouse-down event, so that the event simply activates the window. Many
control objects, however, such as NSButton and NSSlider, do accept them, so that the user can immediately
manipulate the control without having to release the mouse button.

See also: —hitTest:

addCursorRect:cursor:
— (void)addCur sor Rect: (NSRectaRect cursor:(NSCursor *aCursor
EstablishesCursor as the cursor to be used when the mouse pointer lies wRbot

Note: Cursor rectangles aren’t subject to clipping by superviews, nor are they intended for use with rotated
NSViews. You should explicitly confine a cursor rectangle to the NSView’s visible rectangle to
prevent improper behavior.

This method is intended to be invoked only byribset Cur sor Rects method. If invoked in any other way,
the resulting cursor rectangle will be discarded the next time the NSView'’s cursor rectangles are rebuilt.

See also: —removeCur sor Rect:cursor:, —discar dCur sor Rects, —resetCur sor Rects, —visibleRectangle

addSubview:
— (void)addSubview: (NSView *)aView

AddsaView to the receiver’s subviews so that it's displayed above its siblings. Also sets the receiver as
aView's next responder.

See also: —addSubview:positioned:relativeTo:, —subviews, —removeFromSuperview,
—setNextResponder: (NSResponder)

addSubview:positioned:relativeTo:

— (void)addSubview: (NSView *)aView
positioned: (NSWindowOrderingModglace
relativeTo: (NSView *)otherView

InsertsaView among the receiver’s subviews so that it's displayed immediately above ordibénview
according to whethgilace is NSWindowAbove or NSWindowBelow.dtherView isnil (or isn’t a subview

27

Classes: NSView

28

of thereceiver), aView is added above or below all of itsnew siblings. Also setsthereceiver asaView's next
responder.

See also: —addSubview:, —subviews, removeFromSuper View, —setNextResponder: (NSResponder)

addToPageSetup
— (void)addToPageSetup

Implemented by subclasses that perform their own pagination to add a scaling operator to the PostScript
code generated when printing. This method is invokeal byt: andfax:. NSView's implementation of this
method does nothing.

See the NSPrintinfo class specification for information on retrieving document scaling during printing.

See also: — beginPageSetupRect:placement:

addTrackingRect:owner:userData:assumelnside:

— (NSTrackingRectTagyld TrackingRect: (NSRectaRect
owner :(id)anObject
user Data:(void *)userData
assumel nside: (BOOL)flag

EstablishesRect as an area for tracking mouse-entered and mouse-exited events within the receiver, and
returns an tag that identifies the tracking rectangle in NSEvent objects and that can be used to remove the
tracking rectangleanObject is the object that gets sent the event messages. It can be the receiver itself or
some other object (such as an NSCursor or a custom drawing tool object), as long as it responds to both
mouseEntered: andmouseExited:. userData is supplied in the NSEvent object for each tracking event.

flag determines which event is sent first by indicating where the mouse is assumed to be at the time this
method is invoked. lfiag is YES, the first event will be generated when the mouse le&ees if flag is

NO the first event will be generated when the mouse enters it.

Tracking rectangles provide a general mechanism that can be used to trigger actions based on the mouse
location (for example, a status bar or hint field that provides information on the item the cursor lies over).
To simply change the cursor over a particular areaadd€ur sor Rect: cursor .. If you must use tracking
rectangles to change the cursor, the NSCursor class specification describes the additional methods that must
be invoked to change cursors by using tracking rectangles.

See also: —removeTrackingRect:, —user Data (NSEvent)

adjustPageHeightNew:top:bottom:limit:

— (void)adjustPageH eightNew: (float *) newBottom
top: (float)top
bottom: (float)proposedBottom
limit: (float)bottomLimit

Overridden by subclasses to adjust page height during automatic pagination. This method is invoked by
print: andfax: with top andproposedBottom set to the top and bottom edges of the pending page rectangle
in the receiver’s coordinate system. The receiver can raise the bottom edge and return the new value in
newBottom, allowing it to prevent items such as lines of text from being divided across patt@sLimit

is the topmost value thaewBottom can be set to, as calculated using the return value of
heightAdjustLimit. If this limit is exceeded, the pagination mechanism simply haéamLimit for the

bottom edge.

NSView’s implementation of this method propagates the message to its subviews, allowing nested views to
adjust page height for their drawing as well. An NSButton or other small view, for example, will nudge the
bottom edge up if necessary to prevent itself from being cut in two (thereby pushing it onto an adjacent
page). Subclasses should invalaper’s implementation, if desired, after first making their own

adjustments.

See also: —adjustPageWidthNew:left:right:limit:

adjustPageWidthNew:left:right:limit:

— (void)adjustPagewWidthNew: (float *)newRight
left: (float)l eft
right: (float)proposedRight
limit: (float)rightLimit

Overridden by subclasses to adjust page width during automatic pagination. This method is invoked by
print: andfax: with left andproposedRight set to the side edges of the pending page rectangle in the
receiver’s coordinate system. The receiver can pull in the right edge and return the newnesiRegint,
allowing it to prevent items such as small images or text columns from being divided across pages.
rightLimit is the leftmost value thaewRight can be set to, as calculated using the return value of
widthAdjustLimit. If this limit is exceeded, the pagination mechanism simplyniglts imit for the right

edge.

NSView’s implementation of this method propagates the message to its subviews, allowing nested views to
adjust page width for their drawing as well. An NSButton or other small view, for example, will nudge the
bottom edge up if necessary to prevent itself from being cut in two (thereby pushing it onto an adjacent
page). Subclasses should invalaper's implementation, if desired, after first making their own

adjustments.

See also: — adjustPageHeightNew:top:bottom:limit:

29

Classes: NSView

30

adjustScroll:
— (NSRectadjustScroll: (NSRectproposedVisi bleRect

Overridden by subclasses to modpiypposedVisibleRect, returning the altered rectangle. NSClipView
invokes this method to allow its document view to adjust its position during scrolling. For example, a
custom view object that displays a table of data can adjust the origiopokedVisibleRect so that rows

or columns aren’t cut off by the edge of the enclosing NSClipView. NSView’'s implementation simply
returnsproposedVisibleRect.

Note: NSClipView only invokes this method during automatic or user-controlled scrolling. Its
scroll ToPoint: method doesn't invoke this method, so you can still force a scroll to an arbitrary point.

allocateGState
— (void)allocateGState

Causes the receiver to maintain a private PostScript graphics state object, which encapsulates all parameters
of the graphics environment. The receiver builds the graphics state parametesstUgiftate, then
automatically establishes this graphics state each time the PostScript focus is locked on it. A graphics state
may improve performance for view objects that are focused often and need to set many parameters, but use
of standard PostScript operators is normally efficient enough.

Because graphics states occupy a fair amount of memory, they can actually degrade performance. Be sure
to test application performance with and without the private graphics state before committing to its use.

See also: —setUpGState, —gstate, —renewGState, —releaseGState

ancestorSharedWithView:
— (NSView *)ancestor SharedWithView: (NSView *)aView

Returns the closest ancestor shared by the receiveveg or nil if there’s no such object. Retursaf
if aView is identical to the receiver.

See also: —isDescendantOf:

autoresizesSubviews
— (BOOL)autor esizesSubviews

Returns YES if the receiver automatically resizes its subviews ussizgSubviewsWithOldSize:
whenever its frame size changes, NO otherwise.

See also: — SetAutoresizesSubviews:

autoresizingMask
— (unsigned ingutoresizingM ask

Returns the receiver’s autoresizing mask, which determines how it's resized by the
resizeWithOldSuperviewSize: method. The autoresizing mask values are listed under the
setAutoresizingM ask: method description. If the autoresizing mask is equal to NSViewNotSizable (that
is, if none of the options are set), then the receiver doesn't resize ateslkzeWithOldSuperviewSize:.

autoscroll:
— (BOOL)autoscroll: (NSEvent *xheEvent

Scrolls the receiver’s closest ancestor NSClipView proportionaligetevent’s distance outside of.it
theEvent's location should be expressed in the window’s base coordinate system (which it normally is), not
the receiving view object’s. Returns YES if any scrolling is performed; otherwise returns NO.

View objects that track mouse-dragged events can use this method to scroll automatically when the mouse
is dragged outside of the NSClipView. Repeated invocations of this method (with an appropriate delay)
result in continual scrolling, even when the mouse doesn’t move.

See also: —autoscroll: (NSClipView), —scrollPoint:, —isDescendant Of:

beginPage:label:bBox:fonts:

— (void)beginPage: (int)ordinalNum
label:(NSString *)aString
bBox: (NSRectpageRect
fonts:(NSString *¥ontNames

Writes a conforming PostScript page separator. This method is invokednbyandfax:.

ordinalNum is the page’s position in the document’s page sequence (from 1 thréaighnn-page
document).

astring is a string that contains no white space characters. It identifies the page according to the document’s
internal numbering scheme.d§&ring is empty (@), the text equivalent ofdinalNum is used.

pageRect is the rectangle enclosing all the drawing on the page about to be printed, in the default PostScript
coordinate system of the page (not of the receiving NSViewageRect is an empty rectangle (width and
height of zero), “(atend)” is output instead of a description of the bounding box, and the bounding box is
output at the end of the page.

31

Classes: NSView

32

fontNames is a string containing the names of the fonts used in the page, each pair separated by a space. If
the fonts used are unknown before the page is printed, fontNames can be empty. In this case “(atend)” is
output instead of the font names, which are listed automatically at the end of the page description.

See also: —endPage, NSI sEmptyRect() (Foundation Kit)

beginPageSetupRect:placement:
— (void)beginPageSetupRect: (NSRectaRect placement: (NSPoint)ocation

Writes the page setup section for a page, generating the initial coordinate transformation for printing the
region defined byRect in the receiver’s coordinate systdcation is the offset in page coordinates of the
rectangle on the physical page.

This method is invoked byrint: andfax: after the starting comments for the page have been written. It
generates a PostScriatve operation and invokdsckFocus, which are balanced in tleedPage method
with anunlockFocus and a PostScriptestore operation.

See also: —addToPageSetup

beginPrologueBBox:creationDate:createdBy:fonts:forwhom:pages:title:

— (void)beginPrologueBBox: (NSRecthoundingBox
creationDate: (NSString *)dateCreated
createdBy: (NSString *)anApplication
fonts:(NSString *¥ontNames
forWhom: (NSString *user
pages: (intynumPages
title:(NSString *aTitle

Invoked byprint: andfax: to write the start of a conforming PostScript header.

boundingBox is the bounding box of the document, expressed in the default PostScript coordinate system
on the page. The document bounding box is the union of the bounding boxes of every page in the document.
If it's unknown, boundingBox should be empty (width and height of zero). In this case “(atend)” is output
instead of the bounding box, which is accumulated as pages are printed and written in the trailer.

dateCreated is a text string containing a human readable dat&atéCreated is empty (@*") the current
date is used.

anApplication is a string containing the name of the document creatmAlfplication is empty then the
string returned by NSProcessInfpsocessName instance method is used.

fontNames is a string holding the names of the fonts used in the document, each pair separated by a space.
If the fonts used are unknown before the document is prifti@Names should be empty. In this case

“(atend)” is output instead of the font names, and the name of each NSFont used by the view is written in
the trailer.

user is a string containing the name of the person the document is being printedgerisfempty the
login name of the current user is substituted.

numPages specifies the number of pages in the document. If unknown at the beginning of printing,
numPages should have a value of —1. In this case “(atend)” is output instead of a page count, the pages are
counted as they are generated, and the resulting count is written in the trailer.

aTitleis a string specifying the title of the documengTitle is empty, then the title of the receiver’s
window is used. If the window has no title, “Untitled” is output.

See also: —beginTrailer, —endTrailier, —set (NSFont), +useFont: (NSFont)

beginSetup

— (void)beginSetup
Writes the beginning of the document setup section, which begins with a %%BeginSetup comment and
includes a %%PaperSize comment declaring the type of paper being used. This method is inmaked by
andfax: at the start of the setup section of the document, which occurs after the prologue of the document

has been written, but before any pages are written. This section of the output is intended for device setup or
general initialization code.

beginTrailer
— (void)beginTrailer

Writes the start of a conforming PostScript trailer, which begins with a %%Trailer comment. This method
is invoked byprint: andfax: immediately after all pages have been written.

bounds
— (NSRectbounds

Returns the receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.
The bounds rectangle may be rotated; usét@dsRotation method to check this.

See also: —frame, —setBounds:

33

Classes: NSView

34

boundsRotation
— (float)poundsRotation

Returns the angle of the receiver’s bounds rectangle relative to its frame rectangle. See the
setBoundsRotation: method description for more information on bounds rotation.

See also: —rotateByAngle:, —setBoundsRotation:

canDraw

— (BOOL)canDraw
Returns YES if drawing commands will produce any result, NO otherwise. Use this method when invoking
a draw method directly along witbckFocus andunlockFocus, bypassing thdisplay... methods (which

test drawing ability and perform locking for you). If this method returns NO, you shouldn’t invoke
lockFocus or perform any drawing.

An NSView can draw if it's attached to a view hierarchy in an NSWindow and the NSWindow has a
corresponding PostScript window device, or during printing if the NSView is a descendant of the view
being printed.

centerScanRect:

— (NSRectgenter ScanRect: (NSRectaRect
Converts the corners of a rectangle to lie on the center of device pixels, which is useful in compensating for
PostScript overscanning when the coordinate system has been scaled. This method converts the given

rectangle to device coordinates, adjusts the rectangle to lie in the center of the pixels, and converts the
resulting rectangle back to the receiver’s coordinate system. Returns the adjusted rectangle.

See also: —isRotatedOr ScaledFromBase

convertPoint:fromView:
— (NSPointgonvertPoint: (NSPointaPoint fromView: (NSView *)aView
ConvertsaPoint from aView's coordinate system to that of the receiveaMiew is nil, this method instead

converts from window base coordinates. Battew and the receiver must belong to the same NSWindow.
Returns the converted point.

See also: —convertRect:fromView:, —convertSize:-fromView:, —sharedAncestor WithView:,
—contentView (NSWindow)

convertPoint:toView:
— (NSPointronvertPoint: (NSPointpPoint toView: (NSView *)aView
ConvertsaPoint from the receiver’s coordinate system to tha\ééw. If aView isnil, this method instead

converts to window base coordinates. Batew and the receiver must belong to the same NSWindow.
Returns the converted point.

See also: — convertRect:toView:, —convertSize:toView:, —sharedAncestor WithView:,
— contentView (NSWindow)

convertRect:fromView:
— (NSRectyonvertRect: (NSRectaRect fromView: (NSView *)aView

ConvertsaRect from aView's coordinate system to that of the receiveaMifew is nil, this method instead
converts from window base coordinates. Bottew and the receiver must belong to the same NSWindow.
Returns the converted rectangle.

See also: — convertPoint:fromView:, —convertSize:fromView:, —sharedAncestor WithView:,
— contentView (NSWindow)

convertRect:toView:
— (NSRectyonvertRect: (NSRectaRect toView: (NSView *)aView

ConvertsaRect from the receiver’s coordinate system to tha\dééw. If aView is nil, this method instead
converts to window base coordinates. Batew and the receiver must belong to the same NSWindow.
Returns the converted rectangle.

See also: — convertPoint:toView:, —convertSize:toView:, —sharedAncestor WithView:,
— contentView (NSWindow)

convertSize:fromView:
— (NSSizegonvertSize: (NSSizepSze fromView: (NSView *)aView

ConvertsaSze from aView's coordinate system to that of the receiveaMifew is nil, this method instead
converts from window base coordinates. Battew and the receiver must belong to the same NSWindow.
Returns the converted size.

See also: —convertPoint:fromView:, —convertRect:fromView:, —sharedAncestor WithView:,
—contentView (NSWindow)

35

Classes: NSView

36

convertSize:toView:
— (NSSizegonvertSize:(NSSizepSze toView: (NSView *)aView

ConvertsaSze from the receiver’s coordinate system to thad\déw. If aView is nil, this method instead
converts to window base coordinates. Batew and the receiver must belong to the same NSWindow.
Returns the converted size.

See also: —convertPoint:toView:, —convertRect:toView:, —sharedAncestor WithView:,
— contentView (NSWindow)

dataWithEPSInsideRect:
— (NSData *gataWithEPSI nsideRect: (NSRectaRect

Returns EPS data that draws the region of the receiver valect. This data can be placed on an
NSPasteboard, written to a file, or used to create an NSImage object.

See also: —writeEPSInsideRect:toPasteboard:

discardCursorRects
— (void)discardCur sor Rects

Invalidates all cursor rectangles set up usithdCur sor Rect:cur sor:. You need never invoke this method
directly; it's invoked automatically before the NSView’s cursor rectangles are reestablished using
resetCur sor Rects.

See also: —discardCur sor Rects (NSWindow)

display
— (void)display

Displays the receiver and all its subviews if possible, invoking each NSMieskEocus, drawRect:, and

unlock Focus methods as necessatry. If the receiver isn’t opaque, this method backs up the view hierarchy

to the first opaque ancestor, calculates the portion of the opaque ancestor covered by the receiver, and begins
displaying from there.

See also: —canDraw, —opaqueAncestor, —visibleRect, —displayl fNeededl gnoringOpacity

displaylfNeeded
— (void)displayl fNeeded

Displays the receiver and all its subviews if any part of the receiver has been marked as needing display
with asetNeedsDisplay: or setNeedsDisplayl nRect: message. This method invokes each NSView’s
lockFocus, drawRect:, andunlockFocus methods as necessary. If the receiver isn’t opaque, this method
backs up the view hierarchy to the first opaque ancestor, calculates the portion of the opaque ancestor
covered by the receiver, and begins displaying from there.

See also: —display, —needsDisplay, —displayl fNeededl gnoringOpacity

displaylfNeededlgnoringOpacity
— (void)displayl fNeededl gnoringOpacity

Acts asdisplaylfNeeded, except that this method doesn’t back up to the first opaque ancestor—it simply
causes the receiver and its descendants to execute their drawing code.

displaylfNeededInRect:
— (void)displayl fNeededl nRect: (NSRectaRect

Acts asdisplayl fNeeded, confining drawing t@Rect.

displaylfNeededInRectignoringOpacity:
— (void)displayl fNeededl nRectl gnoringOpacity: (NSRectject

Acts adisplaylfNeeded, but confining drawing taRect and not backing up to the first opaque ancestor—
it simply causes the receiver and its descendants to execute their drawing code.

displayRect:
— (void)displayRect: (NSRectaRect

Acts asdisplay, confining drawing t@Rect.

displayRectlgnoringOpacity:
— (void)displayRectI gnoringOpacity: (NSRectaRect

Acts asdisplay, but confining drawing taRect and not backing up to the first opaque ancestor—it simply
causes the receiver and its descendants to execute their drawing code.

37

Classes: NSView

38

dragFile:-fromRect:slideBack:event:

— (BOOL)dragFile:(NSString *¥ullPath
fromRect: (NSRectaRect
dideBack:(BOOL)flag
event: (NSEvent *theEvent

Initiates a dragging operation from the receiver, allowing the user to drag a file icon to any application that
has window or view objects that accept files. This method must be invoked only within an implementation
of themouseDown: method. Returns YES if the receiver successfully initiates the dragging operation

(which doesn’t necessarily mean the dragging operation concluded successfully). Otherwise returns NO.

The dragging operation uses these arguments:
« fullPath is an absolute path for the file to be dragged.
+ aRect describes the position of the icon in the receiver’s coordinate system.

« flag indicates whether the icon being dragged should slide back to its position in the receiver if the file
isn’t accepted. The icon slides baclkaiect, if flag is YES, the file is not accepted by the dragging
destination, and the user has not disabled icon animation; otherwise it simply disappears.

 theEvent is the mouse-down event object from which to initiate the drag operation. In particular, its
mouse location is used for the offset of the icon being dragged.

See the NSDraggingSource, NSDragginginfo, and NSDraggingDestination protocol specifications for
more information on dragging operations.

See also: —dragl mage:at:offset: event: pasteboar d: sour ce:dideBack:,
—shouldDelayWindowOr deringFor Event:

dragimage:at:offset:event:pasteboard:source:slideBack:

— (void)dragl mage: (NSImage *anlmage
at:(NSPoint)magel.oc
offset: (NS SizejnouseOffset
event: (NSEvent *theEvent
pasteboard: (NSPasteboard ppoard
sour ce: (id)sourceObject
dideBack: (BOOL)flag

Initiates a dragging operation from the receiver, allowing the user to drag arbitrary data with a specified
icon into any application that has window or view objects that accept dragged data. This method must be
invoked only within an implementation of theouseDown: method. The dragging operation uses these
arguments:

» anlmage is the NSImage to be dragged.

imageLoc is the location of the image’s lower left corner, in the receiver’s coordinate system. It
determines the placement of the dragged image under the cursor.

mouseOffset is the mouse’s current location relative to the mouse-down location. It determines the initial
location of the image when dragging commences. If you initiate a dragging operation immediately on a
mouse-down event, this should be (0.0, 0.0). If you test for a mouse-dragged event first, this should be
the difference between the mouse-dragged event’s location and that of the mouse-down event.

theEvent is the left-mouse-down event that triggered the dragging operation (see below).
pboard holds the data to be transferred to the destination (see below).

sourceObject serves as the controller of the dragging operation. It must conform to the
NSDraggingSource protocol, and is typically the receiver itself or its NSWindow.

flag determines whether the NSIimage should slide back if it’s rejected. The image slidesdbatitto
if flag is YES, the image isn’t accepted by the dragging destination, and the user hasn’t disabled icon
animation; otherwise it simply disappears.

Before invoking this method, you must place the data to be transferpidand. To do this, get the drag
pasteboard object (NSDragPboard), declare the types of the data, and then put the data on the pasteboard.
This code fragment initiates a dragging operation on an image itself (that is, the image is the data to be

transferred):

- (voi d) mouseDown: (NSEvent *)theEvent

{
NSSi ze dragOffset = NSMakeSi ze(0.0, 0.0);
NSPast eboard *pboard;
pboard = [NSPast eboard past eboar dW t hNane: NSDr agPboar d] ;
[pboard decl areTypes: [NSArray arrayWthObj ect: NSTI FFPboar dType] owner:sel f];
[pboard setData:[[sel f inmage] TIFFRepresentation] forType: NSTI FFPboar dType];
[sel f draglmage:[self inmmge] at:[self inmagelLocation] offset:dragcfset

event :t heEvent pasteboard: pboard source: sel f slideBack: YES];

return;

}

See the NSDraggingSource, NSDraggingInfo, and NSDraggingDestination protocol specifications for
more information on dragging operations.

See also: —dragFile:fromRect:dideBack:event:, —shouldDelayWindowOr deringFor Event:

39

Classes: NSView

40

drawPageBorderWithSize:
— (void)drawPageBor der WithSize:(NSSizeporder Sze

Allows applications that use the Application Kit pagination facility to draw additional marks on each logical
page, such as alignment marks or a virtual sheet border. This method is invoked by
beginPageSetupRect:placement:. The default implementation doesn’t draw anything.

See also; —drawSheetBorder WithSize:

drawRect:
— (void)drawRect: (NSRectaRect

Overridden by subclasses to draw the receiver’s image veRect. The receiver can assume that the
PostScript focus has been locked, that drawing will be clipped to its frame rectangle, and that the coordinate
transformations of its frame and bounds rectangles have been applied; all it need do is invoke PostScript
client functionsaRect is provided for optimization; it's perfectly correct, though inefficient, to draw images
that lie outside the requested rectangle. See “How to Draw” in the class description for information and
references on drawing.

This method is intended to be completely overridden by each subclass that performs drawing. Don’t invoke
super’s implementation in your subclass.

See also: —display..., —shouldDrawColor, —isFlipped

drawSheetBorderWithSize:
— (void)drawSheetBor der WithSize: (NSSizeporder Sze

Allows applications that use the Application Kit pagination facility to draw additional marks on each
printed sheet, such as crop marks or fold lines. This method is invoked by
beginPageSetupRect:placement:. The default implementation doesn’t draw anything.

See also: —drawPageBorder WithSize:

enclosingScrollView
— (NSScrollView *)enclosingScrolIView

Returns the nearest ancestor NSScrollView containing the receoten¢luding the receiver itself);
otherwise returnasil.

endHeaderComments

— (void)endHeader Comments
Writes out the end of a conforming PostScript header, starting with the %%EndComments line and then the
start of the prologue, including the Application Kit’s standard printing package. OvendéReologue to

add your own global definitions. This method is invokegbint: andfax: after
beginPrologueBBox:creationDate: createdBy: fonts.for Whom: pages:title: and beforeendPrologue.

endPage

— (void)endPage
Writes the end of a conforming PostScript page. This method is invoked after each page is printed. It
balances the preceding invocatiorbefjinPageSetupRect: placement: by invokingunlockFocus and
generating a PostScriptstore operator, and generates a PostSehptvpage operator to finish the page.

This method also generates comments for the bounding box and page fonts, if they were specified as being
at the end of the page.

See also: — beginPrologueBBox:creationDate: createdBy:fonts:for Whom: pages:title:

endPageSetup
— (void)endPageSetup

Writes the end of the page setup section, which begins with a %%EndPageSetup comment. This method is
invoked byprint: andfax: just afterbeginPageSetupRect: placement: is invoked.

endPrologue
— (void)endPrologue

Writes the end of the conforming PostScript prologue. This method is involkedriy andfax: after the
prologue of the document has been written. Subclasses can override this method to add their own definitions
to the prologue. For example:

- endPr ol ogue

{
[[NSDPSCont ext current Context] printFormat: @/littl eProc {pop} def");
[super endProl ogue] ;
return;

}

41

Classes: NSView

42

endSetup
— (void)endSetup

Writes out the end of the setup section, which begins with a %%EndSetup comment. This method is
invoked byprint: andfax: just afterbeginSetup is invoked.

endTrailer
— (void)endTrailer

Writes the end of the conforming PostScript trailer. This method is invokpditty andfax: just after
beginTrailer is invoked.

See also: —beginTrailer

\9 fax:

— (void)fax: (id)sender

Opens the Fax panel, and if the user chooses an option other than canceling, prints the receiver and all its
subviews to a fax modem.

See also: —print:

frame
— (NSRectjrame

Returns the receiver’s frame rectangle, which defines its position in its superview. The frame rectangle may
be rotated; use tHeameRotation method to check this.

See also;: —bounds, —setFrame:

frameRotation
— (float)frameRotation

Returns the angle of the receiver’s frame relative to its superview’s coordinate system.

See also: —setFrameRotation:, —boundsRotation

gState

— (int)gState
Returns the PostScript user object identifier for the receiver’s PostScript graphics state object, as created
with allocateGState, or O if it doesn’t have one. A view object allocates its graphics state object only when

needed, so if the receiver hasn’t been focused since receivialjateteG State message, this method
returns O.

See also: — allocateGState, —lockFocus

heightAdjustLimit
— (float)heightAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as lines of text from being divided across pages. This fraction
is used to calculate the bottom edge limit fadpustPageH eightNew:top:bottom:limit: message.

See also: —widthAdjustLimit

hitTest:
— (NSView *)hitTest: (NSPointaPoint

Returns the farthest descendant of the receiver in the view hierarchy (including itself) that efoiains
or nil if aPoint lies completely outside the receivaPoint is in the coordinate system of the receiver’s
superview, not of the receiver itself.

This method is used primarily by an NSWindow to determine which NSView should receive a mouse-down
event. You'd rarely need invoke this method, but you might want to override it to have a view object hide
mouse-down events from its subviews.

See also; —mouseinRect:, —convertPoint:toView:

initWithFrame:
— (id)initWithFrame: (NSRectjrameRect

Initializes a newly allocated NSView withameRect as its frame rectangle. The new view object must be
inserted into the view hierarchy of an NSWindow before it can be used. This method is the designated
initializer for the NSView class. Retursdf.

See also: —addSubview:, —addSubview:positioned:relativeTo:, —setFrame:

43

Classes: NSView

44

isDescendantOf:
— (BOOL)isDescendantOf: (NSView *)aView

Returns YES if the receiver is a subview, immediate or naiefv, or if it's identical tcaView; otherwise
returns NO.

See also: — superview, —subviews, —ancestor SharedWithView:

isFlipped
— (BOOL)isFlipped
Returns YES if the receiver uses flipped drawing coordinates or NO if it uses native PostScript coordinates.

NSView’s implementation returns NO; subclasses that use flipped coordinates should override this method
to return YES.

isOpaque
— (BOOL)isOpaque
Overridden by subclasses to return YES if the receiver is opaque, NO otherwise. A view object is opaque

if it completely covers its frame rectangle when drawing itself. NSView, being an abstract class, performs
no drawing at all and so returns NO.

See also: —opaqueAncestor, —displayRectlgnoringOpacity:, —displayl fNeededl gnoringOpacity,
—displaylfNeededl nRectl gnoringOpacity:

isRotatedFromBase
— (BOOL)isRotatedFromBase

Returns YES if the receiver or any of its ancestors has ever recesggtt ameRotation: or

setBoundsRotation: message; otherwise returns NO. This intent of this information is to optimize drawing
and coordinate calculation, not necessarily to reflect the exact state of the receiver’s coordinate system, so
it may not reflect the actual rotation. For example, if an NSView is rotated to 45 degrees and later back to
zero, this method still returns YES.

See also: —frameRotation, —boundsRotation

isRotatedOrScaledFromBase
— (BOOL)isRotatedOr ScaledFromBase

Returns YES if the receiver or any of its ancestors have ever had a nonzero frame or bounds rotation, or has
been scaled from the window’s base coordinate system; otherwise returns NO. This intent of this
information is to optimize drawing and coordinate calculation, not necessarily to reflect the exact state of
the receiver’s coordinate system, so it may not reflect the actual rotation or scaling. For example, if an
NSView is rotated to 45 degrees and later back to zero, this method still returns YES.

See also: —frameRotation, —boundsRotation, —center ScanRect:, —setBounds:, —setBoundsSize:,
—scaleUnitSquareToSize:

knowsPagesFirst:last:
— (BOOL)knowsPagesFir st: (int *) firstPageNum last: (int *) lastPageNum

Overridden by subclasses to indicate whether the receiver wishes to perform its own pagination. This
method is invoked bprint: andfax:. If the receiver returns NO, it's paginated by NSView’s automatic
pagination mechanism. If the receiver returns YES, the printing mechanism later inrsctkesPage: to
determine the rectangle of each page from the out pararfiesg#fageNum to lastPageNum. NSView’s
implementation returns NO.

This method is normally invoked with the valuefioftPageNum set to 1 and diastPageNum set to the
maximum integer size. If the receiver returns YES it must alter these values to reflect its own numbering
scheme, and possibly to limit which pages are printed.

See also: —getRect:for Page:

locationOfPrintRect:
— (NSPoint)ocationOfPrintRect: (NSRectaRect

Invoked byprint: andfax: to determine the location aRect, the rectangle being printed on the physical

page. The return value of this method is used to set the origiRdct; whose size the receiver can examine

in order to properly place it. Both the rectangle and the returned location are expressed in the default
PostScript coordinate system of the page.

NSView’s implementation placedrect according to the status of the NSPrintinfo object for the print job.

By default it places the image in the upper left corner of the page, but if NSPrintInfo’s
isHorizontallyCentered orisVerticallyCentered method returns YES, it centers a single-page image

along the appropriate axis. A multiple-page document, however, is always placed so that the divided pieces
can be assembled at their edges.

45

Classes: NSView

lockFocus
— (void) ockFocus

Locks the PostScript focus on the receiver, so that subsequent PostScript commands take effect in the
receiver’s window and coordinate system. If you don’t udes@ay... method to draw an NSView, you

must invokdock Focus before invoking methods that send PostScript commands to the Window Server,
and must balance it with amlock Focus message when finished.

See also: + focusView, —display..., —drawRect:

\9 menuForEvent:
— (NSMenu *menuFor Event: (NSEvent *theEvent

Overridden by subclasses to return a context-sensitive pop-up menu for the mouse-ineexaent The

receiver can use information in the mouse event, such as its location over a particular element of the
receiver, to determine what kind of menu to return. For example, a text object might display a text-editing
menu when the mouse lies over text and a menu for changing graphic attributes when the mouse lies over
an embedded image.

NSView’s implementation returns the receiver’s normal menu. This menu is used only on Microsoft
Windows.

See also: + defaultM enu, —menu (NSResponder)

mouse:inRect:
— (BOOL)mouse: (NSPointaPoint inRect: (NSRectaRect

ReturnsYESif aRect containsaPoint (which represents the hot spot of the mouse cusmqunting for
whether thereceiver isflipped or not. aPoint andaRect must be expressed in the receiver’s coordinate
system.

Never use the Foundation KitSPointl nRect() function as a substitute for this method. It doesn’t account
for flipped coordinate systems.

See also: —hitTest:, —isFlipped, NSMousel nRect() (Foundation Kit), -eonvertPoint:fromView:

needsDisplay
— (BOOL)needsDisplay

Returns YES if the receiver needs to be displayed, as indicated usseg\bedsDisplay: and
setNeedsDisplayl nRect: methods; returns NO otherwise. Tdisplayl fNeeded... methods check this

46

statusto avoid unnecessary drawing, and all display methodsclear this statusto indicate that the view object
is up to date.

needsPanelToBecomeKey
— (BOOL)needsPanel ToBecomeK ey

Overridden by subclasses to return YES if the receiver requires its panel, which might otherwise avoid
becoming key, to become the key window so that it can handle keyboard input. Such a subclass should also
overrideacceptsrkir stResponder to return YES. NSView’s implementation returns NO.

See also: —becomesK eyOnlylfNeeded (NSPanel)

nextKeyView
— (NSView *)nextK eyView

See also: Returns the view object following the receiver in the key view loopilaf there is none. This
view should, if possible, be made first responder when the user navigates forward from the
receiver using keyboard interface controlextValidK eyView, —setNextK eyView:,

— previousK eyView, —previousvalidK eyView

nextValidKeyView
— (NSView *)nextValidK eyView

Returns the closest view object in the key view loop that follows the receiver and actually accepts first
responder status, ail if there is none.

See also: —nextKeyView, —setNextK eyView:, —previousK eyView, —previousvValidK eyView

opaqueAncestor
— (NSView *)opaqueAncestor
Returns the receiver’s closest opaque ancestor (including the receiver itself).

See also: —isOpaque, —displayRectl gnoringOpacity:, —displayl fNeededl gnoringOpacity,
—displaylfNeededl nRectl gnoringOpacity:

a7

Classes: NSView

48

performKeyEquivalent:
— (BOOL)performK eyEquivalent:(NSEvent *fheEvent

Implemented by subclasses to respond to key equivalents (also known as shortcuts). If the receiver’s key
equivalent is the same as the characters of the key-downtkeevent, as returned by
characterslgnoringModifiers, it should take the appropriate action and return YES. Otherwise, it should
return the result invokinguper’s implementation. NSView’s implementation of this method simply passes

the message down the view hierarchy (from superviews to subviews) and returns NO if none of the
receiver’s subviews responds YES.

See also: — performMnemonic:, —keyDown: (NSWindow)

\9 performMnemonic:

— (BOOL)per formM nemonic: (NSString *)aString

Implemented by subclasses to respond to mnemonics. If the receiver’'s mnemonic is the same as the
characters of the key-down eveheEvent, as returned bgharacter slgnoringM odifiers, it should take

the appropriate action and return YES. Otherwise, it should return the result insupénts

implementation. NSView’s implementation of this method simply passes the message down the view
hierarchy (from superviews to subviews) and returns NO if none of the receiver’s subviews responds YES.

See also: —performKeyEquivalent:, —keyDown: (NSWindow)

postsBoundsChangedNotifications
— (BOOL)postsBoundsChangedNotifications
Returns YES if the receiver posts natifications to the default notification center whenever its bounds

rectangle changes; returns NO otherwise.sBd®stsBoundsChangedNotifications: for a list of methods
that result in notifications.

postsFrameChangedNotifications
— (BOOL)postsFrameChangedNotifications
Returns YES if the receiver posts notifications to the default notification center whenever its frame

rectangle changes; returns NO otherwise.s8tt& ameRotation: for a list of methods that result in
notifications.

\9 previousKeyView
— (NSView *)previousK eyView

Returns the view object preceding the receiver in the key view loop ibthere is none. This view should,
if possible, be made first responder when the user navigates backward from the receiver using keyboard
interface control.

See also: —previousvalidK eyView, —nextK eyView, —nextValidK eyView, —setNextK eyView:

\9 previousValidKeyView
— (NSView *)previousValidK eyView

Returns the closest view object in the key view loop that precedes the receiver and actually accepts first
responder status, ail if there is none.

See also: —previousKeyView, —nextValidK eyView, —nextK eyView, —setNextK eyView:

print:
— (void)print:(id)sender

Opens the Print panel, and if the user chooses an option other than canceling, prints the receiver and all its
subviews to the device specified in the Print panel.

See also: —fax:, —dataUsingEPSInsdeRect:, —writeEPSI nsideRect:toPasteboar d:

rectForPage:

— (NSRect)ectFor Page: (int)pageNumber
Implemented by subclasses to determine the portion of the receiver to be printed for pageagentier
the receiver responded YES to an ealimowsPageskFir st:last: message, this method is invoked for each
page it specified in the out parameters of that message. The receiver is later made to display this rectangle

in order to generate the image for this page. This method should return NSZerpRgeXlifmber is
outside the receiver’s bounds.

If an NSView responds NO tonowsPagesFirst:last:, this method isn’t invoked by the printing
mechanism.

See also: —adjustPageHeight:top:bottom:limit:, —adjustPageWidth:left:right:limit:

49

Classes: NSView

registerForDraggedTypes:
— (void)egister For DraggedTypes: (NSArray *)pboardTypes

RegistergpboardTypes as the pasteboard types that the receiver will accept as the destination of an
image-dragging session.

Note: Registering an NSView for dragged types automatically makes it a candidate destination object for
a dragging session. As such, it must properly implement some or all of the NSDraggingDestination
protocol methods. As a convenience, NSView provides default implementations of these methods.
See the NSDraggingDestination protocol specification for details.

See also: —unregister DraggedTypes

releaseGState
— (void)eleaseGState

Frees the receiver’s PostScript graphics state object, if it has one.

See also: —allocateGState

removeCursorRect:cursor:
— (void)}emoveCur sor Rect: (NSRectaRect cursor: (NSCursor *aCursor

Completely removes a cursor rectangle from the receiRect andaCursor must match values previously
specified usingddCur sor Rect:cursor:. You should rarely need to use this methedet Cur sor Rects,

which is invoked any time cursor rectangles need to be rebuilt, should establish only the cursor rectangles
needed. If you implememesetCur sor Rects in this way, you can then simply modify the state that
resetCursor Rects uses to build its cursor rectangles and then invoke NSWindow’s
invalidateCur sor RectsFor View:.

See also: —discardCursor Rects

removeFromSuperview
— (void)removeFromSuper view

Unlinks the receiver from its superview and its NSWindow, removes it from the responder chain, and
invalidates its cursor rectangles. The receiver is also released; if you plan to reuse it, be sure to retain it
before sending this message and to release it as appropriate when adding it as a subview of another NSView.

Never invoke this method during display.

See also: —addSubview:, —addSubview: positioned:relativeTo:

50

removeTrackingRect:
— (void)removeTrackingRect: (NSTrackingRectTag)Tag

Removes the tracking rectangle identifiedadgg, which is the value returned by a previous
addTrackingRect:owner :user Data;assumel nside: message.

renewGState
— (voidyenewGState

Invalidates the receiver’s PostScript graphics state object, if it has one, so that it will be regenerated using
setUpGState the next time the receiver is focused for drawing.

See also: —lockFocus

replaceSubview:with:
— (void)eplaceSubview: (NSView *)oldView with: (NSView *)new\View

Replace®ldView with newMiew in the receiver’s subviews. Does nothing and retorhi$ oldView is not
a subview of the receiver.

This method causeddView to be released; if you plan to reuse it, be sure to retain it before sending this
message and to release it as appropriate when adding it as a subview of another NSView.

See also: —addSubview:, — addSubview:positioned:relativeTo:

resetCursorRects
— (void)resetCur sor Rects

Overridden by subclasses to define their default cursor rectangles. A subclass’s implementation must
invokeaddCur sor Rect:cursor: for each cursor rectangle it wants to establish. NSView’s implementation
does nothing.

Application code should never invoke this method directly; it's invoked automatically as described in the
class description under “Tracking Rectangles and Cursor Rectangles.” Use NSWindow’s
invalidateCur sor RectsFor View: instead to explicitly rebuild cursor rectangles.

See also: —VisibleRectangle

51

Classes: NSView

52

resizeSubviewsWithOldSize:
— (void)resizeSubviewsWithOldSize: (NSSizepldFrameS ze

Informs the receivers’s subviews that the receiver’s bounds rectangle size has changktiF-faomeS ze.
If the receiver is configured to autoresize its subviews, this method is automatically invoked by any method
that changes the receiver’s frame size.

NSView’s implementation sendssizeWithOldSuperviewSize: to the receiver’s subviews with
oldFrameSze as the argument. You shouldn’t invoke this method directly, but you can override it to define
a specific retiling behavior.

See also: —SetAutoresizesSubviews,

resizeWithOldSuperviewSize:
— (void)esizeWithOldSuperviewSize:(NSSizepldFrameS ze

Informs the receiver that the frame size of its superview has changedléierameSze. This method is
normally invoked automatically fromesizeSubviewsWithOldSize:.

NSView’s implementation resizes the receiver according to the autoresizing options listed under the
setAutoresizingM ask: method description. You shouldn’t invoke this method directly, but you can
override it to define a specific resizing behavior.

rotateByAngle:
— (void)otateByAngle: (float)angle
Rotates the receiver’s bounds rectanglafgte degrees around the origin of the coordinate system, (0.0,

0.0) See theetBoundsRotation: method description for more information.This method neither redisplays
the receiver nor marks it as needing display. You must do this yourseHigpthy or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: —setFrameRotation:, —setPostsBoundsChangedNotifications:

scaleUnitSquareToSize:
— (void)scaleUnitSquar eToSize: (NSSizehewUnitSze
Scales the receiver’s coordinate system so that the unit square changedndSze. For example, a

newUnitSize of (0.5, 1.0) causes the receiver’s horizontal coordinates to be halved, in turn doubling the
width of its bounds rectangle. Note that scaling is performed from the origin of the coordinate system, (0.0,

0.0), not the origin of the bounds rectangle; as aresult, both the origin and size of the bounds rectangle are
changed. The frame rectangle remains unchanged.

This method neither redisplaysthe receiver nor marksit as needing display. You must do thisyourself with
display or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: —setBoundsSize:, —setPostsBoundsChangedNotifications:

scrollPoint:
— (void)scrollPoint: (NSPointaPoint

Scrolls the receiver’s closest ancestor NSClipView soaRaint in the receiver lies at the origin of the
NSClipView’'s bounds rectangle.

See also: —autoscroll:, —scrollToPoint: (NSClipView), —isDescendantOf:

scrollRect:by:
— (void)scrollRect: (NSRectaRect by: (NSSizebffset

Copies the visible portion of the receiver’s rendered image waiRent and lays that portion down again
atoffset from aRect’s origin. This method is useful during scrolling or translation of the coordinate system
to efficiently move as much of the receiver’s rendered image as possible without requiring it to be redrawn,
following these steps:

1. InvokescrollRect:by: to copy the rendered image.
2. Move the view object’s origin or scroll it within its superview.

3. Calculate the newly exposed rectangles and invoke €littpdayRect: or setNeedsDisplayl nRect:
to draw them.

You should rarely need to use this method, howeversditod Point:, scrollRectToVisible:, and
autoscroll: methods automatically perform optimized scrolling.

See also: —setBoundsOrigin:, —trandateOriginToPoint:

53

Classes: NSView

54

scrollRectToVisible:
— (BOOL)scrollRectToVisible:(NSRectaRect

Scrolls the receiver’s closest ancestor NSClipView the minimum distance neededaitechat the
receiver becomes visible in the NSClipView. Returns YES if any scrolling is performed; otherwise returns
NO.

See also: —autoscroll:, —scrollToPoint: (NSClipView), —isDescendantOf:

setAutoresizesSubviews:
— (void)setAutoresizesSubviews: (BOOL)flag

Determines whether the receiver automatically resizes its subviews when its frame size chibages. If
YES, the receiver invokees zeSubviewsWithOldSize: whenever its frame size changestag is NO, it
doesn’t. View objects by default do autoresize their subviews.

See also: — autoresizesSubviews;

setAutoresizingMask:
— (void)setAutoresizingM ask: (unsigned intnask

Determines how the receiverssizeWithOldSuperviewSize: method changes its frame rectanghask
can be specified by combining any of the following options using the C bitwise OR operator:

Option Meaning

NSViewMinXMargin The left margin between the receiver and its superview is flexible.
NSViewWidthSizable The receiver’s width is flexible.

NSViewMaxXMargin The right margin between the receiver and its superview is flexible.
NSViewMinYMargin The top margin between the receiver and its superview is flexible.
NSViewHeightSizable The receiver’s height is flexible.

NSViewMaxYMargin The bottom margin between the receiver and its superview is flexible.

Where more than one option along an axis issszeWithOldSuperviewSize: by default distributes the

size difference as evenly as possible among the flexible portions. For example, if NSViewWidthSizable and
NSViewMaxXMargin are set and the superview’s width has increased by 10.0 units, the receiver’s frame
and right margin are each widened by 5.0 units.

See also: —autoresizingM ask, —resizeSubviewsWithOIldSize:, —setAutoresizesSubviews:

setBounds:
— (void)setBounds: (NSRectpoundsRect
Sets the receiver’s bounds rectangledondsRect. The bounds rectangle determines the origin and scale

of the receiver’s coordinate system within its frame rectangle. This method neither redisplays the receiver
nor marks it as needing display. You must do this yourselfdigiiay or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: —bounds, —setBoundsRotation:, —setBoundsOrigin:, —setBoundsSize:, —setFrame;,
— setPostsBoundsChangedNotifications:

setBoundsOrigin:
— (void)setBoundsOrigin: (NSPointhewOrigin

Sets the origin of the receiver’s bounds rectanghenOrigin, effectively shifting its coordinate system
so thatnewOrigin lies at the origin of the receiver’s frame rectangle. This method neither redisplays the
receiver nor marks it as needing display. You must do this yourseltligjitay or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: —trandateOriginToPoint:, —bounds, —setBoundsRotation:, —setBounds:, —setBoundsSize:,
— setPostsBoundsChangedNoatifications:

setBoundsRotation:
— (void)setBoundsRotation: (float)angle

Sets the rotation of the receiver’s bounds rectanghedte. Positive values indicate counterclockwise

rotation, negative clockwise. Rotation is performed around the coordinate system origin, (0.0, 0.0), which
need not coincide with that of the frame rectangle or the bounds rectangle. This method neither redisplays
the receiver nor marks it as needing display. You must do this yoursetigpthy or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

Bounds rotation affects the orientation of the drawing within the view object’s frame rectangle, but not the
orientation of the frame rectangle itself. Also, for a rotated bounds rectangle to enclose all the visible areas
of its view object—that is, to guarantee coverage over the frame rectangle—it must also contain some areas
that aren't visible. This can cause unnecessary drawing to be requested, which may affect performance. It

55

Classes: NSView

56

may be better in many casesto rotate the PostScript coordinate system in thedr awRect: method rather than
use this method.

See also: —rotateByAngle:, —boundsRotation, —setFrameRotation:,
— setPostsBoundsChangedNotifications:

setBoundsSize:
— (void)setBoundsSize: (NSSizehewS ze
Sets the size of the receiver’s bounds rectangiew§ize, inversely scaling its coordinate system relative
to its frame rectangle. For example, a view object with a frame size of (100.0, 100.0) and a bounds size of

(200.0, 100.0) draws half as wide alongxteis. This method neither redisplays the receiver nor marks it
as needing display. You must do this yourself wliplay or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: —bounds, —setBoundsRotation:, —setBounds:, —setBoundsOrigin:,
— setPostsBoundsChangedNotifications:

setFrame:
— (void)setFrame: (NSRectjrameRect
Sets the receiver’s frame rectanglértmmeRect, thereby repositioning and resizing it within the coordinate

system of its superview. This method neither redisplays the receiver nor marks it as needing display. You
must do this yourself witdisplay or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: —frame, —setFrameRotation:, —setFrameOrigin:, —setFrameSize:, —setBounds:,
— setPostsFrameChangedNoatifications:

setFrameOrigin:
— (void)setFrameOrigin:(NSPointhewOrigin
Sets the origin of the receiver’s frame rectangleet@Origin, effectively repositioning it within its

superview. This method neither redisplays the receiver nor marks it as needing display. You must do this
yourself withdisplay or setNeedsDisplay:.

Thismethod posts an NSViewFrameDidChangeNotification to the default notification center if thereceiver
is configured to do so.

See also: —frame, —setFrameSize;, —setFrame;, —setFrameRotation:,
— setPostsFrameChangedNoatifications:

setFrameRotation:
— (void)setFrameRotation: (float)angle

Sets the rotation of the receiver’s frame rectangéadge, rotating it within its superview without affecting
its coordinate system. Positive values indicate counterclockwise rotation, negative clockwise. Rotation is
performed around the origin of the frame rectangle.

This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: —frameRotation:, —setBoundsRotation:

setFrameSize:
— (void)setFrameSize: (NSSizepewS ze
Sets the size of the receiver’s frame rectanghews ze, resizing it within its superview without affecting

its coordinate system. This method neither redisplays the receiver nor marks it as needing display. You must
do this yourself wittdisplay or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: —frame, —setFrameOrigin:, —setFrame:, —setFrameRotation:,
— setPostsFrameChangedNoatifications:

setNeedsDisplay:
— (void)setNeedsDisplay: (BOOL)flag

If flagis YES, marks the receiver’s entire bounds as needing displkag i$ NO, marks it as not needing
display. Whenever the data or state used for drawing a view object changes, the view should be sent a
setNeedsDisplay: message. NSViews marked as needing display are automatically redisplayed on each

57

Classes: NSView

58

pass through the application’s event loop. (View objects that need to redisplay before the event loop comes
around can of course immediately be sent the approjpiiggkay... method.)

See also: — SsetNeedsDisplayl nRect:, —needsDisplay

setNeedsDisplaylnRect:
— (void)setNeedsDisplayl nRect: (NSRect)nvalidRect
Marks the region of the receiver withimvalidRect as needing display, increasing the receiver’s existing
invalid region to include it. A latetisplayl fNeeded... method will then perform drawing only within the
invalid region. NSViews marked as needing display are automatically redisplayed on each pass through the

application’s event loop. (View objects that need to redisplay before the event loop comes around can of
course immediately be sent the appropriagplay... method.)

See also: —setNeedsDisplay:, —needsDisplay

setNextKeyView:
— (void)setNextK eyView: (NSView *)aView
InsertsaView after the receiver in the key view loop of the receiver’s NSWindow.

See also: —nextKeyView, —nextValidK eyView:, —previousK eyView, —previousvValidK eyView

setPostsBoundsChangedNotifications:
— (void)setPostsBoundsChangedNoatifications: (BOOL)flag

Controls whether the receiver informs observers when its bounds rectangle chdiages YES, the
receiver will post notifications to the default notification center whenever its bounds rectangle changes; if
flag is NO it won't. The following methods can result in notification posting:

setBounds:
setBoundsOrigin:
setBoundsSize:
setBoundsRotation:
translateOriginToPoint:
scaleUnitSquareToSize:
rotateByAngle:

See also: — postsBoundsChangedNotifications

setPostsFrameChangedNotifications:
— (void)setPostsFrameChangedNotifications: (BOOL)flag

Controls whether the receiver informs observers when its frame rectangle chafiggés NES, the
receiver will post notifications to the default notification center whenever its frame rectangle changes; if
flag is NO it won't. The following methods can result in notification posting:

setFrame:
setFrameOrigin:
setFrameSize:
setFrameRotation:

See also: — postsFrameChangedNotifications

setUpGState
— (void)setUpGState

Overridden by subclasses to (re)initialize the receiver’s graphics state object. This method is automatically
invoked when the graphics state object created wingateGState needs to be initialized. NSView's
implementation does nothing. Your subclass can override it to set the current font, line width, or any other
PostScript graphics state parameter except coordinate transformations and the clipping path—these are
established by the frame and bounds rectangles, and by methods statblastSquareToSize: and
translateOriginToPoint:. Note thadrawSelf: can further transform the coordinate system and clipping
path for whatever temporary effects is needs.

See also: —allocateGState, —renewGState

shouldDelayWindowOrderingForEvent:
— (BOOL)shouldDelayWindowOr deringFor Event: (NSEvent *theEvent

Overridden by subclasses to allow the user to drag images from the receiver without its window moving
forward and possibly obscuring the destination, and without activating the application. If this method
returns YES, the normal window ordering and activation mechanism is detaye@¢essarily prevented)

until the next mouse-up event. If it returns NO then normal ordering and activation occurs. Never invoke
this method directly; it's invoked automatically for each mouse-down event directed at the NSView.

An NSView subclass that allows dragging should implement this method to return ¥ESvént, an

initial mouse-down event, is potentially the beginning of a dragging session or of some other context where
window ordering isn’t appropriate. This method is invoked befonew@seDown: message faheEvent is

sent. NSView’s implementation returns NO.

If, after delaying window ordering, the receiver actually initiates a dragging session or similar operation, it
should also send@eventWindowOr dering message to NSApp, which completely prevents the window

59

Classes: NSView

60

from ordering forward and the activation from becoming active. preventWindowOrdering is sent
automatically by NSView'slragl mage: ... anddragFile:... methods.

shouldDrawColor
— (BOOL)shouldDrawColor

Returns NO if the receiver is being drawn in an NSWindow (as opposed, for example, to being printed) and
the NSWindow can't store color; otherwise returns YES. An NSView can base its drawing behavior on the
return value of this method to improve its appearance in grayscale windows.

See also: —drawRect:, —canStoreColor (NSWindow)

sortSubviewsUsingFunction:context:
— (void)sortSubviewsUsingFunction:(int (*)(id, id, void *))compare context:(void *)context

Orders the receivers immediate subviews using the comparator furartipare, which takes as arguments
two subviews to be ordered and tloatext supplied, which may be arbitrary data used to help in the
decision.compare should return NSOrderedAscending if the first subview should be ordered lower,
NSOrderedDescending if the second subview should be ordered lower, and NSOrderedSame if their
ordering isn't important.

See also: —sortedArrayUsingFunction:context: (NSArray class cluster of the Foundation Kit)

subviews
— (NSArray *)subviews

Return the receiver’s immediate subviews.

See also: —superview, —addSubview:, —addSubview:positioned: relativeTo:, —removeFromSuper view

superview
— (NSView *)superview

Returns the receiver’s superviewnolrif it has none. When applying this method iteratively or recursively,
be sure to compare the returned NSView to the content view of the NSWindow to avoid proceeding out of
the view hierarchy.

See also: —window, —subviews, —removeFromSuper view

tag
— (int)itag

Returns the receiver’s tag, an integer that you can use to identify view objects in your application. NSView’s
implementation returns —1. Subclasses can override this method to provide individual tags, possibly adding
storage and setTag: method (which NSView doesn’t define).

See also: —viewWithTag:

translateOriginToPoint:
— (void)translateOriginToPoint: (NSPointhewOrigin

Translates the receiver’s coordinate system so that its origin mawas@oigin. In the process, the origin
of the receiver’s bounds rectangle is shifted me@Origin.x, -newOrigin.y). This method neither
redisplays the receiver nor marks it as needing display. You must do this yourselifsplidly or
setNeedsDisplay:.

Note the difference between this method and setting the bounds origin. Translation effectively moves the

image inside the bounds rectangle, while setting the bounds origin effectively moves the rectangle over the
image. The two are in a sense inverse, although translation is cumulative and setting the bounds origin is
absolute.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: —setBoundsOrigin:, —setBounds:., —setPostsBoundsChangedNotifications:

unlockFocus
— (void)unlockFocus

Balances an earlidock Focus message, restoring the focus to the previously focused view is necessary.

See also: —allocateGState

unregisterDraggedTypes
— (voidunregister DraggedTypes
Unregisters the receiver as a possible destination in a dragging session.

See also: —register For DraggedTypes:

61

Classes: NSView

62

viewWillMoveToSuperview:
— (void)viewWilIM oveToSuper view: (NSView *)newSuperview

Informs the receiver that it's being added as a subvievewBuperview. Subclasses can override this
method to perform whatever actions are necessary.

See also: —VviewWillMoveToWindow:

viewWillIMoveToWindow:
— (void)viewWilIM oveToWindow: (NSWindow *newMindow

Informs the receiver that it's being added to the view hierarchgmdMndow. Subclasses can override this
method to perform whatever actions are necessary.

See also: —viewWillMoveToSuperview:

viewWithTag:
— (id)viewWithTag: (int)aTag

Returns the receiver’s nearest descendant (including itself) whoseatag,isrnil if no subview has that
tag.

See also: —tag

visibleRect
— (NSRectyisibleRect

Returns the portion of the receiver not clipped by its superviews. Visibility is therefore defined quite simply,
and doesn’t account for whether other NSViews (or windows) overlap the receiver or whether the receiver
has a window at all.

Note: During a printing operation the visible rectangle is further clipped to the page being imaged.

See also: —isVisible (NSWindow), -documentVisibleRect (NSScrollView),
—documentVisibleRect (NSClipView)

widthAdjustLimit
— (floatwidthAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as small images or text columns from being divided across

pages. This fraction is used to calculate the right edge limit for a adjustPageWidthNew:left:right:limit:
message.
See also: —heightAdjustLimit

window
— (NSWindow *window

Returns the receiver’s window object,rok if it has none.

See also: —suUperview

writeEPSInsideRect:toPasteboard:
— (void)writeEPSI nsideRect: (NSRectaRect toPasteboar d: (NSPasteboard ppoard

Writes EPS data that draws the region of the receiver watReat ontopboard.
See also: —dataUsingEPSI nsideRect:

Notifications

NSViewBoundsDidChangeNotification

Posted whenever the NSView's bounds rectangle changes independently of the frame rectangle, if the
NSView is configured usingetPostsBoundsChangedNoatifications: to post such notifications. The
notification contains:

Notification Object The NSView whose bounds rectangle has changed
Userinfo None
The following methods can result in notification posting:

setBounds:
setBoundsOrigin:
setBoundsSize:
setBoundsRotation:
translateOriginToPoint:
scaleUnitSquareToSize:
rotateByAngle:

Note that the bounds rectangle resizes automatically to track the frame rectangle. Because the primary
change is that of the frame rectangle, howesetFrame: andsetFrameSize: don't result in a
bounds-changed notification.

63

Classes: NSView

64

NSViewFocusDidChangeNotification

Posted whenever the NSView loses the PostScript focus other than by an unlock Focus message (for
example, when its frame or bounds rectangle is changed). The notification contains:

Notification Object The NSView that has lost focus.
Userinfo None

See also: + focusView

NSViewFrameDidChangeNotification

Posted whenever the NSView’s frame rectangle changes, if the NSView is configured using
setPostsFrameChangedNotifications. to post such notifications. The notification contains:

Notification Object The NSView whose frame rectangle has changed
Userinfo None
The following methods can result in notification posting:

setFrame:
setFrameOrigin:
setFrameSize:
setFrameRotation:

