
1

NSScrollView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScrollView.h

Purpose
An NSScrollView allows the user to scroll a document view that’s too large to display in its entirety. In addition 
to the document view, it displays horizontal and vertical scrollers and rulers (depending on which it’s configured 
to have).

Principal Attributes
• Configurable scrollers • Small and large increment scrolling
• Configurable rulers • Dynamic (continuous) scrolling
• Displays a special cursor over its document view

Creation
Interface Builder
– initWithFrame: Designated initializer. 

Commonly Used Methods
– setDocumentView: Sets the cursor used over the document view.
– setLineScroll: Sets the amount by which the document view moves during scrolling.
– setRulersVisible: Displays or hides rulers.

Class Description

The NSScrollView class is the central coordinator for the Application Kit’s scrolling machinery, composed 
of this class, NSClipView, and NSScroller. An NSScrollView displays a portion of a document view that’s 
too large to be displayed whole, and provides NSScrollers that allow the user to move the document view 
within the NSScrollView. An NSScrollView can be configured with a vertical scroller, a horizontal scroller, 

Class at a Glance



2

Classes: NSScrollView

or both. In addition to the basic accoutrements, an NSScrollView keeps a cursor that it sets whenever the 
mouse is over its document view, and maintains both horizontal and vertical ruler objects that can be hidden 
and displayed.

An NSScrollView encloses its document view within an NSClipView, using this view to actually position 
and monitor the document view. Because the NSClipView manages the content of the NSScrollView, it’s 
also called the content view. The content view positions the document view by altering its bounds rectangle, 
which determines where the document view’s frame lies. The content view also monitors changes in the 
document view’s size and notifies the NSScrollView so that the scrollers can be updated to reflect the new 
size. The documentView and contentView methods return an NSScrollView’s major component views.

NSScrollView defines three levels of scrolling: by line, by page, and direct. Scrolling by line moves the 
document view by a small amount, typically when the user clicks the scroll buttons of a scroller. Scrolling 
by page moves the document view by a larger amount, typically near the size of the content view, when the 
user Alternate-clicks the scroll buttons, and on some platforms in the slot of the scroller. You set these 
amounts using setLineScroll: and setPageScroll:, respectively (Interface Builder also lets you set these 
directly). Direct scrolling moves the document view to the position of the scroller’s knob as the user drags 
it. This either displays the document view continuously as it scrolls or displays it only when the user 
releases the mouse, as configured with the setScrollsDynamically: method.

When created programmatically, an NSScrollView has no scrollers. You can set them up using the 
setHasVerticalScroller: and setHasHorizontalScroller: methods with an argument of YES, which cause 
the NSScrollView to allocate and maintain instances of the NSScroller class. You can substitute specialized 
scrollers using the setVerticalScroller: and setHorizontalScroller: methods. Note that in any case you 
must use the setHas... methods to make sure the NSScrollView displays its scrollers.

Rulers

An NSScrollView can be set to hold both horizontal and vertical rulers using the setHasHorizontalRuler: 
and setHasVerticalRuler: methods. These allocate instances of the NSRulerView class, but unlike with 
scrollers don’t immediately display the rulers. To do this, use the setRulersVisible: method. You can 
substitute custom ruler objects using setHorizontalRuler: and setVerticalRuler:, and to customize the 
rulers for all instances of NSScrollView you can set the class used with setRulerViewClass:. This causes 
all subsequent rulers created by NSScrollViews to be of the class you specify.

An NSScrollView’s rulers don’t automatically establish the document view as their client. The document 
view itself (or a subview) is responsible, as its selection and other state changes, for retrieving the rulers 
using NSScrollView’s horizontalRuler and verticalRuler methods and for establishing itself as the client 
using NSRulerView’s setClientView: method.

How Scrolling Works

As indicated above, an NSScrollView’s document view is actually positioned by the content view, which 
sets its bounds rectangle in such a way that the document view’s frame moves relative to it. However, the 



3

action sequence between the scrollers and the NSScrollView and the manner in which scrolling is 
performed involve a bit more detail than this.

Scrolling typically occurs because of user actions on an NSScroller object, which sends the NSScrollView 
a private action message telling it to scroll based on the NSScroller’s state. This process is described in the 
class description for the NSScroller class under “Interaction with a Container View.” If you plan to 
implement your own kind of scrolling view or scroller object, you should read that section.

NSClipView’s scrollToPoint: is the method that actually scrolls the document view. It essentially 
translates the origin of the content view’s bounds rectangle, but it also optimizes redisplay by copying as 
much of the rendered document view as remains visible, and only asking the document view to draw newly 
exposed regions. This usually improves scrolling performance, but may not always be appropriate behavior. 
You can turn it off using NSClipView’s setCopiesOnScroll: method. If you do leave copy-on-scroll active, 
be sure to scroll the document view programmatically using scrollToPoint: rather than 
translateOriginToPoint:.

Whether the document view scrolls explicitly through a user action or an NSClipView message, or 
implicitly through a setFrame: or other such message, the content view monitors it closely. Whenever the 
document view’s frame or bounds rectangle changes, it informs the NSScrollView of the change with a 
reflectScrolledClipView: message. This method updates the NSScroller objects to reflect the position and 
size of the visible portion of the document view. You may find on occasion that you need to invoke this 
method explicitly when manipulating the document view directly.

Autoscrolling

In addition to user-driven and programmatic scrolling, you can program any NSView to automatically 
scroll when the user drags the mouse outside the enclosing NSClipView. This allows the user to drag an 
item in order to move it, and have the document view automatically shift itself in the appropriate direction 
when the user drags the item past the visible area. NSClipView’s autoscroll: method takes an NSEvent 
object of the mouse-dragged type and scrolls its document view in the opposite direction from the mouse 
location, making the portion of the document view that would be under the mouse become visible. NSView 
also implements autoscroll: to forward the message to its superview. This allows any NSView to simply 
send the message to itself during a mouse-dragging loop without checking whether it’s contained in an 
NSClipView (though it does need to check whether the mouse is outside of its visible portion, as returned 
by visibleRect).

Method Types

Calculating layout + contentSizeForFrameSize:hasHorizontalScroller:
hasVerticalScroller:borderType:

+ frameSizeForContentSize:hasHorizontalScroller:
hasVerticalScroller:borderType:



4

Classes: NSScrollView

Determining component sizes – contentSize
– documentVisibleRect

Managing graphic attributes – setBackgroundColor:
– backgroundColor
– setBorderType:
– borderType

Managing the scrolled views – setContentView:
– contentView
– setDocumentView:
– documentView
– setDocumentCursor:

Managing scrollers – setHorizontalScroller:
– horizontalScroller
– setHasHorizontalScroller:
– hasHorizontalScroller
– setVerticalScroller:
– verticalScroller
– setHasVerticalScroller:
– hasVerticalScroller

Managing rulers + setRulerViewClass:
+ rulerViewClass
– setHasHorizontalRuler:
– hasHorizontalRuler
– setHorizontalRulerView:
– horizontalRulerView
– setHasVerticalRuler:
– hasVerticalRuler
– setVerticalRulerView:
– verticalRulerView
– setRulersVisible:
– rulersVisible

Setting scrolling behavior – setLineScroll:
– lineScroll
– setPageScroll:
– pageScroll
– setScrollsDynamically:
– scrollsDynamically

Updating display after scrolling – reflectScrolledClipView:

Arranging components – tile



5

Class Methods

contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:
+ (NSSize)contentSizeForFrameSize:(NSSize)frameSize

hasHorizontalScroller:(BOOL)hFlag
hasVerticalScroller:(BOOL)vFlag
borderType:(NSBorderType)borderType

Returns the size of a content view for an NSScrollView whose frame size is frameSize. hFlag and vFlag 
indicate whether a horizontal or vertical scroller, respectively, is present. If the flag is YES then the content 
size is reduced in the appropriate dimension by the width of an NSScroller. borderType indicates the 
appearance of the NSScrollView’s edge, which also affects the content size; see the description of 
setBorderType: for a list of possible values.

For an existing NSScrollView, you can simply use the contentSize method.

See also: + frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType:, 
+ scrollerWidth (NSScroller)

frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType:
+ (NSSize)frameSizeForContentSize:(NSSize)contentSize

hasHorizontalScroller:(BOOL)hFlag
hasVerticalScroller:(BOOL)vFlag
borderType:(NSBorderType)borderType

Returns the frame size of an NSScrollView that contains a content view whose size is contentSize. hFlag 
and vFlag indicate whether a horizontal or vertical scroller, respectively, is present. If the flag is YES then 
the frame size is increased in the appropriate dimension by the width of an NSScroller. borderType 
indicates the appearance of the NSScrollView’s edge, which also affects the frame size; see the description 
of setBorderType: for a list of possible values.

For an existing NSScrollView, you can simply use the frame method and extract its size.

See also: + contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:, 
+ scrollerWidth (NSScroller)

� rulerViewClass
+ (Class)rulerViewClass

Returns the default class to be used for ruler objects in NSScrollViews. This is normally NSRulerView.

See also: + setRulerViewClass:



6

Classes: NSScrollView

� setRulerViewClass:
+ (void)setRulerViewClass:(Class)aClass

Sets the default class to be used for ruler objects in NSScrollViews to aClass. This is normally 
NSRulerView, but you can use this method to set it to a custom subclass of NSRulerView.

Note: This method simply sets a global variable private to NSScrollView.Subclasses of NSScrollView 
should override both this method and rulerViewClass to store their ruler view classes in private 
variables.

See also: + rulerViewClass

Instance Methods

backgroundColor
– (NSColor *)backgroundColor

Returns the content view’s background color.

See also: – setBackgroundColor:, –backgroundColor (NSClipView)

borderType
– (NSBorderType)borderType

Returns a value that represents the type of border surrounding the receiver; see the description of 
setBorderType: for a list of possible values.

contentSize
– (NSSize)contentSize

Returns the size of the receiver’s content view.

See also: + contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:

contentView
– (NSClipView *)contentView

Returns the receiver’s content view, the view that clips the document view.

See also: – setContentView:, –documentView



7

documentCursor
– (NSCursor *)documentCursor

Returns the content view’s document cursor.

See also: – setDocumentCursor:, –documentCursor (NSClipView)

documentView
– (id)documentView

Returns the view that the receiver scrolls within its content view.

See also: – setDocumentView:, –documentView (NSClipView)

documentVisibleRect
– (NSRect)documentVisibleRect

Returns the portion of the document view, in its own coordinate system, that’s visible through the receiver’s 
content view.

See also: – documentVisibleRect (NSClipView), –visibleRect (NSView)

� hasHorizontalRuler
– (BOOL)hasHorizontalRuler

Returns YES if the receiver maintains a horizontal ruler view, NO if it doesn’t. Display of rulers is 
controlled using the setRulersVisible: method.

See also: – horizontalRulerView, –setHasHorizontalRuler:, –hasVerticalRuler, + rulerClass:

hasHorizontalScroller
– (BOOL)hasHorizontalScroller

Returns YES if the receiver displays a horizontal scroller, NO if it doesn’t.

See also: – horizontalScroller, –setHasHorizontalScroller:, –hasVerticalScroller



8

Classes: NSScrollView

� hasVerticalRuler
– (BOOL)hasVerticalRuler

Returns YES if the receiver maintains a vertical ruler view, NO if it doesn’t. Display of rulers is controlled 
using the setRulersVisible: method.

See also: – verticalRulerView, –setHasVerticalRuler:, –hasHorizontalRuler, + rulerClass:

hasVerticalScroller
– (BOOL)hasVerticalScroller

Returns YES if the receiver displays a vertical scroller, NO if it doesn’t.

See also: – verticalScroller, –setHasVerticalScroller:, –hasHorizontalScroller

� horizontalRulerView
– (NSRulerView *)horizontalRulerView

Returns the receiver’s horizontal ruler view, whether or not the receiver is currently displaying it, or nil if 
the receiver has none. If the receiver is set to display a horizontal ruler view and doesn’t yet have one, this 
method creates an instance of the ruler view class set using the class method setRulerViewClass:. Display 
of rulers is controlled using the setRulersVisible: method.

See also: – hasHorizontalRulerView, –verticalRulerView

horizontalScroller
– (NSScroller *)horizontalScroller

Returns the receiver’s horizontal scroller, whether or not the receiver is currently displaying it, or nil if the 
receiver has none.

See also: – hasHorizontalScroller, –setHorizontalScroller:, –verticalScroller

lineScroll
– (float)lineScroll

Returns the amount by which the receiver scrolls itself when scrolling line-by-line, expressed in the content 
view’s coordinate system. This amount is used when the user clicks the scroll arrows without holding a 
modifier key.

See also: – setLineScroll:, – pageScroll



9

pageScroll
– (float)pageScroll

Returns the amount of the document view kept visible when scrolling page-by-page, expressed in the 
content view’s coordinate system. This amount is used when the user clicks the scroll arrows while holding 
the Alternate key.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the 
user to orient himself to the new display. It differs from the line scroll amount, which indicates how 
far the document view moves. The page scroll amount is the amount common to the content view 
before and after the document view is scrolled by one page.

See also: – setLineScroll:, – pageScroll

reflectScrolledClipView:
– (void)reflectScrolledClipView:(NSClipView *)aClipView

If aClipView is the receiver’s content view, adjusts the receiver’s scrollers to reflect the size and positioning 
of its document view. Does nothing if aClipView is any other view object (in particular, if it’s an 
NSClipView that isn’t the content view).

This method is invoked automatically during scrolling and when an NSClipView’s relationship to its 
document view changes; you should rarely need to invoke it yourself, but may wish to override it for custom 
updating or other behavior.

See also: – contentView, –documentView

� rulersVisible
– (BOOL)rulersVisible

Returns YES if the receiver was set to show rulers using setRulersVisible: (whether or not it has rulers at 
all), NO if it was set to hide them.

See also: – hasHorizontalRuler, –hasVerticalRuler

scrollsDynamically
– (BOOL)scrollsDynamically

Returns YES if the receiver redraws its document view while tracking the knob, NO if it redraws only when 
the scroller knob is released. NSScrollView scrolls dynamically by default.

See also: – setScrollsDynamically:



10

Classes: NSScrollView

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the color of the content view’s background to aColor. This color is used to paint areas inside the 
content view that aren’t covered by the document view.

See also: – backgroundColor, – setBackgroundColor: (NSClipView)

setBorderType:
– (void)setBorderType:(NSBorderType)borderType

Sets the border type of the receiver to borderType, which may be one of:

NSNoBorder
NSLineBorder
NSBezelBorder
NSGrooveBorder

See also: – borderType

setContentView:
– (void)setContentView:(NSClipView *)aView

Sets the receiver’s content view, the view that clips the document view, to aView. aView’s document view, 
if any, also becomes the receiver’s document view, while the original content view’s document view 
remains with it.

See also: – contentView, –setDocumentView:

setDocumentCursor:
– (void)setDocumentCursor:(NSCursor *)aCursor

Sets the cursor used when the mouse is over the content view to aCursor, by sending setDocumentCursor: 
to the content view.

See also: – documentCursor



11

setDocumentView:
– (void)setDocumentView:(NSView *)aView

Sets the receiver’s document view to aView.

See also: – documentView, –setDocumentView: (NSClipView)

� setHasHorizontalRuler:
– (void)setHasHorizontalRuler:(BOOL)flag

Determines whether the receiver keeps a horizontal ruler object. If flag is YES, the receiver allocates a 
horizontal ruler the first time it’s needed. Display of rulers is handled independently with the 
setRulersVisible: method.

See also: – hasHorizontalRuler, –horizontalRuler, –setHasVerticalRuler:

setHasHorizontalScroller:
– (void)setHasHorizontalScroller:(BOOL)flag

Determines whether the receiver keeps a horizontal scroller. If flag is YES, the receiver allocates and 
displays a horizontal scroller as needed. An NSScrollView by default has neither a horizontal nor a vertical 
scroller.

See also: – hasHorizontalScroller, –horizontalScroller, – setHasVerticalScroller:

� setHasVerticalRuler:
– (void)setHasVerticalRuler:(BOOL)flag

Determines whether the receiver keeps a vertical ruler object. If flag is YES, the receiver allocates a vertical 
ruler the first time it’s needed. Display of rulers is handled independently with the setRulersVisible: 
method.

See also: – hasVerticalRuler, –verticalRuler, – setHasHorizontalRuler:, –setRulersVisible:

setHasVerticalScroller:
– (void)setHasVerticalScroller:(BOOL)flag

Determines whether the receiver keeps a vertical scroller. If flag is YES, the receiver allocates and displays 
a vertical scroller as needed. An NSScrollView by default has neither a vertical nor a horizontal scroller.

See also: – hasVerticalScroller, –verticalScroller, – setHasHorizontalScroller:



12

Classes: NSScrollView

� setHorizontalRulerView:
– (void)setHorizontalRulerView:(NSRulerView *)aRulerView

Sets the receiver’s horizontal ruler view to aRulerView. You can use this method to override the default 
ruler class set using the class method setRulerClass:. Display of rulers is controlled using the 
setRulersVisible: method.

See also: – horizontalRulerView:,– setHasHorizontalRuler:, – setVerticalRulerView:, 
– setRulersVisible:

setHorizontalScroller:
– (void)setHorizontalScroller:(NSScroller *)aScroller

Sets the receiver’s horizontal scroller to aScroller, establishing the appropriate target-action relationships 
between them. To make sure the scroller is visible, invoke the setHasHorizontalScroller: method with an 
argument of YES.

See also: – horizontalScroller, –setVerticalScroller:

setLineScroll:
– (void)setLineScroll:(float)aFloat

Sets the amount by which the receiver scrolls itself when scrolling line-by-line to aFloat, expressed in the 
content view’s coordinate system. This is the amount used when the user clicks the scroll arrows without 
holding a modifier key. When displaying text in an NSScrollView, for example, you might set this to the 
height of a single line of text in the default font.

See also: – lineScroll, – setPageScroll:

setPageScroll:
– (void)setPageScroll:(float)aFloat

Sets the amount of the document view kept visible when scrolling page-by-page to aFloat, expressed in the 
content view’s coordinate system. This amount is used when the user clicks the scroll arrows while holding 
the Alternate key.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the 
user to orient himself to the new display. It differs from the line scroll amount, which indicates how 
far the document view moves. The page scroll amount is the amount common to the content view 



13

before and after the document view is scrolled by one page. Thus, setting the page scroll amount to 
0.0 implies that the entire visible portion of the document view is replaced when a page scroll occurs.

See also: – pageScroll, –setLineScroll:

� setRulersVisible:
– (void)setRulersVisible:(BOOL)flag

Determines whether the receiver displays its rulers. If flag is YES, the receiver displays its rulers (creating 
them if needed). If flag is NO, the receiver doesn’t display its rulers.

See also: – rulersVisible, –hasHorizontalRuler, –hasVerticalRuler

setScrollsDynamically:
– (void)setScrollsDynamically:(BOOL)flag

Determines whether the receiver redraws its document view while scrolling continuously. If flag is YES it 
does, if flag is NO it redraws only when the scroller knob is released. NSScrollView scrolls dynamically 
by default.

See also: – scrollsDynamically

� setVerticalRulerView:
– (void)setVerticalRulerView:(NSRulerView *)aRulerView

Sets the receiver’s vertical ruler view to aRulerView. You can use this method to override the default ruler 
class set using the class method setRulerClass:. Display of rulers is controlled using the setRulersVisible: 
method.

See also: – verticalRulerView:, – setHasVerticalRuler:, – setHorizontalRulerView:, 
– setRulersVisible:

setVerticalScroller:
– (void)setVerticalScroller:(NSScroller *)aScroller

Sets the receiver’s vertical scroller to aScroller, establishing the appropriate target-action relationships 
between them. To make sure the scroller is visible, invoke the setHasVerticalScroller: method with an 
argument of YES.

See also: – verticalScroller, –setHorizontalScroller:



14

Classes: NSScrollView

tile
– (void)tile

Lays out the components of the receiver: the content view, the scrollers, and the ruler views. You rarely 
need to invoke this method, but subclasses may override it to manage additional components.

� verticalRulerView
– (NSRulerView *)verticalRulerView

Returns the receiver’s vertical ruler view, whether or not the receiver is currently displaying it, or nil if the 
receiver has none. If the receiver is set to display a vertical ruler view and doesn’t yet have one, this method 
creates an instance of the ruler view class set using the class method setRulerViewClass:. Display of rulers 
is controlled using the setRulersVisible: method.

See also: – hasVerticalRulerView, –horizontalRulerView

verticalScroller
– (NSScroller *)verticalScroller

Returns the receiver’s vertical scroller, whether or not the receiver is currently displaying it, or nil if the 
receiver has none.

See also: – hasVerticalScroller, –setVerticalScroller:, –horizontalScroller


