
Currency Converter Tutorial Chapter 2

15

Type part name here:

Concepts

Project Indexing

A Window in OpenStep

An OpenStep Application — What You Get For Free

An OpenStep Application — the Possibilities

Why an Object is Like a Jelly Donut

The Model-View-Controller Paradigm

Class Versus Object

Paths for Object Communication: Outlets, Targets, and Actions

What Happens When You Build an Application

Where to Go For Help

2

To Do Tutorial

Chapter 2

Currency Converter Tutorial

Sections

Creating the Currency
Converter Project

Creating the Currency
Converter Interface

Designing the Currency
Converter Application

Defining the Classes of
Currency Converter

Implementing the Classes of
Currency Converter

Building the Currency
Converter Project

Run Currency Converter

Currency Converter Tutorial

16

17

The application that you are going to create in this tutorial is called Currency
Converter. It is a simple application, yet it exemplifies much of what software
development with OpenStep is about. As you’ll discover, Currency Converter is
amazingly easy to create, but it’s equally amazing how many features you get
“for free”— as with all OpenStep applications.

Currency Converter converts a dollar amount to an amount in another currency,
given the rate of that currency relative to the dollar. Here’s what it looks like:

Instead of clicking the button, you can also press the Return key. You can
double-click the converted amount, copy it (with the Edit menu’s Copy
command) and paste it in another application that takes text. You can tab
between the first two fields. You can do many other things common to OpenStep
applications.

In this tutorial you’ll learn the basic things you must do to create a OpenStep
application. You will discover how to:

• Create a project.
• Create an interface.
• Create a custom subclass.
• Connect an instance of the custom subclass to the interface.
• Design an application using a common object-oriented design paradigm.

Enter an exchange rate and a dollar amount.

When you click the Convert button, the
converted amount appears in the Amount in
Other Currency field.

You can find the
CurrencyConverter project in the
AppKit subdirectory of
/NextDeveloper/Examples.

Chapter 2

Currency Converter Tutorial

18

By following the steps of this chapter, you will become more familiar with the
two most important OpenStep applications for program development: Interface
Builder and Project Builder. You will also learn the typical work flow of
OpenStep application development:

2.

3.

4.

7.

6.

5.

Creating the Project
(Project Builder)

Creating the
Interface

(Interface Builder)

Defining the Classes
(Interface Builder)

Implementing the
Classes

(Project Builder)

Building the Project
(Project Builder)

Running and Testing
the Application

fix errors or
change
design.

1. Note: Although this chapter
discusses the design of the
application midway through the
tutorial, application design can take
place anytime in the early stages of
a project, and in fact is often
recommended as the first stage.

Designing the
Application

Creating the Currency Converter Project

19

Creating the Currency Converter Project

Every OpenStep application starts out as a

project

. A project is a repository for all
the elements that go into the application, such as source code files, makefiles,
frameworks, libraries, the application’s user interface, sounds, and images. You
use the Project Builder application to create and manage projects.

When Project Builder starts up, only its main menu appears on the screen. You
must create or open a project to get Project Builder’s main window. The New
Project panel allows you to specify a new project’s name and location.

Project Builder creates a project directory named after the project—in this case
CurrencyConverter—and populates this directory with an assortment of ready-
made files and directories. It then displays its main window.

Note:

Here’s a variation on project creation: Create a project directory using File
Viewer and then, in the New Project panel, navigate to that directory, type
“PB.project” in the Name field, and click OK.

1 Launch Project Builder.

In File Viewer navigate to the
/NextDeveloper/Apps directory.

Select ProjectBuilder.app and
double-click its icon (at right).

Make sure Application is the project
type.

The name specified here becomes the
name of the project directory and the
default name of the application itself.

Often projects are kept in a common
directory.

2 Make a new project.

Choose New from the Project
menu (Project mNew).

In the New Project panel,
select the project location.

Enter “CurrencyConverter” as the
project name.

Click OK to create the project.

Chapter 2

Currency Converter Tutorial

20

Go ahead and click an item in the left column of the project browser (a grouping
of project resources sometimes called a “suitcase”); see what some of these
suitcases contain already:

•

Other Sources

: This suitcase contains

CurrencyConverter_main.m

, the

main()

 routine
that loads the initial set of resources and runs the application. (Do not modify
this file!)

•

Interfaces

: This suitcase contains

CurrencyConverter.nib

, the file that contains the
application’s user interface. More on this file in the next step.

•

Supporting Files

: This suitcase contains the project’s default makefiles and
template source-code files. You can modify the preamble and postamble
makefiles, but you must leave

Makefile

 unchanged.

Command panle: Build,
Find, Loaded Files, Project
Inspector, Launcher/
Graphical Debugger.

Project browser. Each
“suitcase” is a project
resource category.

Code editor

A makefile specifies file
dependency relations and
compiler and linker instructions
for building the project. See
OPENSTEP Development: Tips
and Techniques for common
changes to Makefile.preamble and
Makefile.postamble.

Project Indexing

When you create or open a project, after
some seconds you may notice triangular
“branch” buttons appearing after source
code files in the browser. Project Builder has
indexed these files.

During indexing Project Builder stores all
symbols of the project (classes, methods,
globals, etc.) in virtual memory. This allows
Project Builder to access project-wide
information quickly. Indexing is
indispensable to such features as name
completion and Project Find. (More on these
features later.)

Usually indexing happens automatically
when you create or open a project. You can
turn off this option if you wish. Choose
Preferences from the Info menu and then
choose the Indexing display. Turn off the
“Index when project is opened” switch.

You can also index a project at any time by
choosing Index Source Code from the
Project menu. If you want to do without
indexing (maybe you have memory
constraints), choose Purge Indices from the
Project menu.

Creating the Currency Converter Interface

21

Creating the Currency Converter Interface

When you create an application project, Project Builder puts the

main nib file

 in
the Interfaces suitcase. A nib file is primarily a description of a user interface (or
part of a user interface). The main nib file contains the main menu and any
windows and panels you want to appear when your application starts up; at start-
up time, each application loads the main nib file.

At the beginning of a project, the main nib file is like a blank canvas, ready for
you to craft the interface. Look in the Interfaces suitcase for nib files.

By default, the window entitled “My Window” will appear when the application
is launched.

Note:

The Interface Builder application is located in

/NextDeveloper/Apps

. The icon
for the application is this:

1 Open the main nib file.

Locate CurrencyConverter.nib in
the project browser.

Double-click to open.

To open, double-click the nib file name ...or double-click the icon Palette wondow

When you first open the application’s main nib file,
Interface Builder displays a blank window.Nib file window

A nib file contains user-interface
objects, definitions of custom
classes, the connections between
objects, and sounds and images
that are used in the interface.
Besides the main nib file, you can
have nib files that you can load
whenever you need them. These
auxillary nib files, and the
techniques related to using them,
are described in the “To Do
Tutorial,” page 118. See
OPENSTEP Development: Tools
and Techniques for an overview of
nib files.

Chapter 2

Currency Converter Tutorial

22

A Window in OpenStep

A window in OpenStep looks very similar to windows in other user
environments such as Windows or Macintosh. It is a rectangular
area on the screen in which an application displays controls,
fields, text, and graphics. Windows can be moved around the
screen and stacked on top of each other like pieces of paper. A
typical OpenStep window has a title bar, a content area, and
several control objects.

Many user-interface objects other than the

standard window

depicted above are windows. Menus, pop-up lists, and pull-down
lists are primarily windows, as are all varieties of panels: attention
panels, inspectors, and tool palettes, to name a few. In fact,

anything

 drawn on the screen must appear in a window.

NSWindow and the Window Server

Two interacting systems create and manage OpenStep windows.
On the one hand, a window is created by the Window Server. The
Window Server is a process integrating the NeXT Window
System and Display Postscript. The Window Server draws,
resizes, hides, and moves windows using Postscript primitives.
The Window Server also detects user events (such as mouse
clicks) and forwards them to applications.

The window that the Window Server creates is paired with an
object supplied by the Application Kit: an instance of the
NSWindow class. Each physical window in an object-oriented
program is managed by an instance of NSWindow (or subclass).

When you create an NSWindow object, the Window Server
creates the physical window that the NSWindow object will
manage. The Window Server references the window by its
window number, the NSWindow by its own identifier.

Application, Window, View

In a running OpenStep application, NSWindow objects occupy a
middle position between an instance of NSApplication and the
views of the application. (A view is an object that can draw itself
and detect user events.) The NSApplication object keeps a list of

title bar

Miniaturize and
close buttons

resize bar

its windows and tracks the current status of each. Each window,
on the other hand, manages a hierarchy of views in addition to its
PostScript window.

At the “top” of this hierarchy is the

content view

, which fits just
within the window’s

content rectangle

. The content view
encloses all other view (its

 subviews

), which come below it in the
hierarchy. The NSWindow distributes events to views in the
hierarchy and regulates coordinate transformations among them.

Another rectangle, the

frame rectangle

, defines the outer
boundary of the window and includes the title bar and the
window’s controls. The lower-left corner of the frame rectangle
defines the window’s location relative to the screen’s coordinate
system and establishes the base coordinate system for the views
of the window. Views draw themselves in coordinate systems
transformed from (and relative to) this base coordinate system.

See page 149 for more on the view hierarchy.

Key and Main Windows

Windows have numerous characteristics. They can be on-screen
or off-screen. On-screen windows are “layered” on the screen in
tiers managed by the Window Server. On-screen windows also
can carry a status:

key

 or

main

.

Key windows respond to key presses for an application and are
the primary recipient of action messages from menus and panels.
Usually a window is made key when the user clicks it. Key
windows have black title bars. Each application can have only
one key window.

An application has one main window, which can often have key
status as well. The main window is the principal focus of user
actions for an application. Often user actions in a modal key
window (typically a panel such as the Font panel or an inspector)
have a direct effect on the main window. In this case, the title bar
of the main window (when it is not key) is a dark gray.

NSApp Window

Content
View

View
A

View
B

View
C

View
D

NSApp =
application object

Creating the Currency Converter Interface

23

Most objects on an interface have attributes that you can set in the Inspector
panel’s Attributes display.

Make the window smaller by
dragging an edge of the window
inward from a resize handle.

Between the two resize handles
is the resize bar, which permits
only vertical resizing.

2 Resize the window.

3 Set the window’s title and
attributes.

Click the window to select it.

Choose Tools m Inspector.

Select the Attributes display from
the pop-up list.

Enter the window title.

Turn off the resize option.

The title of the major window in
an application is often the
application name.

When this option is turned off,
the windows’s resize bar
disappears.

Chapter 2

Currency Converter Tutorial

24

Put palette objects on the window using the “drag and drop” technique.

You must get rid of the word “Text” in this field; otherwise, that’s what the field
will show when the nib file is loaded.

The text field should be longer so it can hold more digits (you’re dealing with
millions here):

Currency Converter needs two more text fields, both the same size as the first.
You have two options: you can drag another object from the palette and make it
the same size; or you can duplicate the first object

4 Put a text field on the interface
and resize and initialize it.

Select the Views palette.

Drag a text field from the palette
onto the window.

Drag a text field and drop it (that is,
release the mouse button) over the
"surface" of the window.

Click this icon to select the Views
palette. This palette contains an
assortment of commonly used objects.

To initialize the text field, double-
click “Text” and press Delete.

Lengthen the text field.

Drag a resize handle in the direction
you want the object to grow.

Creating the Currency Converter Interface

25

.

Get the third field from the palette and make it the same size as the first field.

You’re not done yet with these text fields. The bottom text field displays the
result of the computation. It should not be editable and therefore should, by
convention, have a gray background.

The Views palette provides a “Title” object that you can easily adapt to be a
text-field label. (The title object is actually a text field, set to have a gray
background and no border, and to be non-editable and non-selectable.) Text in

The new text field appears slightly offset
from the original field. Reposition it under the
first text field.

5 Duplicate an object.

Select the text field.

Choose Edit m Copy.

Choose Edit m Paste.

6 Make objects the same size.

Drag a text field onto the window.

Delete “Text” from the text field.

Select the first text field.

Shift-click to select the new text
field.

Choose Format m Size m Same
Size

The first object you select should have the
dimensions you want the other objects in the
selection to take.

Shift-click multiple objects to include them in
the same selection.

Click to get the color that blends the text
field into the window background.

Click these
buttons to get
the grayscale
palette.

Drag the gray color into this well to set
the background color.

With the Editable attribute turned off,
users cannot alter the contents of the
text field.

Keep Selectable as an option so the user
can select, copy, and paste the result to
other applications.

7 Change the attributes of a text
field.

Select the third text field.

Choose Tools m Colors.

Select the grayscale palette of
the Color panel.

Select the gray color that is the
same as the window background.

Choose Tools m Inspector.

Select the Inspector panel’s
Attributes display.

Drag the gray color from the Color
panel into the Background Color
well.

Turn off the Editable and
Scrollable options.

Chapter 2

Currency Converter Tutorial

26

the title object is centered by default, but labels are usually aligned from the
right.

The size of the text is rather large for a label, so change it. You set font family,
typeface, and size with the standard OpenStep Font panel.

When you cut and paste objects that contain text, like these labels, the object
should be selected and not the text the object contains; if the text is selected,
de-select it by clicking outside the text, then click the object again to select it.

The text is highlighted when it is selected.

8 Assign labels to the fields.

Drag a title object onto the
window.

Double-click to select the text
“Title”.

Choose Format mText m Align
Right to align the text from the
right.

The font of this object is 18 point Helvetica.
Click here and then click the Set button to set
the font size to 16 points.

Make sure the object’s text is
selected.

Choose Format m Font m Font
Panel.

Set the label text to 16 points.

Make two copies of the label.

Position all labels to the left of
their text fields.

Type the text of each label.

Double-click to select title, then type the text
of the label in place of the selection.

Creating the Currency Converter Interface

27

You can easily give the button the capacity for responding to carriage returns in
addition to mouse clicks.

If you check the attributes of the button in the Inspector panel, you’ll notice two
things have been added:

NSReturnSign

 is now listed as the button’s icon, and the
Key field contains the escape sequence for a carriage return (

\r

).

You’ve probably noticed that the final interface for Currency Converter (shown
on the first page of this chapter) has a decorative line between the text fields and
the button. This line is easy to make.

9 Add a button to the interface and
initialize it.

Drag the button object from the
Views palette and put it on the
lower-right corner of the window.

Make the button the same size as
a text field.

Change the title of the button to
“Convert”.

You can resize buttons the same way you resize
text fields or any other object on a window.

Double-click the title of the button to select it.

Select a display of the nib file window
by clicking a tab.

After you drop the image
over the button, the image
appears (by default) to the
right of the button title.

Select the Images display of the
nib file window.

Drag the NSReturnSign image to
the main window and drop it over
the button.

Chapter 2

Currency Converter Tutorial

28

As you might have noticed, the Currency Converter has a main menu that holds,
by default, the commands Info, Hide, and Quit, and the Edit, Services, and
Windows menus. The menus contain ready-made sets of commands. The Edit
menu includes commands for cutting, copying, and pasting text. The Windows
menu lists the titles of open windows as well as common window commands.
The Services menu allows your application to communicate with other
applications, often with no work on the part of your application. For example, if
your application handles text, you can use the Services menu to transfer
information to other applications that accept text.

Drag upward until lines merge into one line.

For a black line (instead of white) click here.

10 Create a horizontal decorative
line.

Drag a box object from the Views
palette onto the interface.

Bring up the Attributes display for
the box (Command-1), select No
Title, and set the Vertical Offset to
zero.

Drag the bottom-middle resize
handle of the box upward until the
horizontal lines meet.

Position the line above the button.

Drag the end points of the line
until the line extends across the
window.

Aligning on a Grid

You can align objects on a window by
imposing a grid on the window. When you
move objects in this grid, they “snap” to the

nearest grid intersection like nails to a
magnet. You set the edges of alignment and
the spacing of the grid (in pixels) in the
Alignment panel. Choose Format

m

Align

m

Alignment to display this panel.

Be sure the grid is turned on before you move
objects (Format

 m

Align

m

Turn Grid On).

You can move selected user-interface
objects in Interface Builder by pressing an
arrow key. When the grid is turned on the unit
of movement is whatever the grid is set to (in
pixels). When the grid is turned off, the unit of
movement is one pixel.

Creating the Currency Converter Interface

29

Currency Converter’s interface is almost complete. One finishing touch might
be to align the text fields and labels in neat rows and columns. Interface Builder
gives you several ways to align selected objects on a window.

• Dragging objects with the mouse
• Pressing arrow keys (with the grid off, the selected objects move one pixel)
• Using a reference object to put selected objects in rows and columns
• Specifying origin points in the Size display of the Inspector panel
• Using a grid (see preceding side bar)

For Currency Converter, use the columns-and-rows technique.

The final step in composing the Currency Converter interface has more to do
with behavior than appearance. You want the user to be able to tab from the first
editable field to the second, and back again to the first. Many objects on
Interface Builder’s palettes have an instance variable named

nextKeyView

. This
variable identifies the next object to receive keyboard events when the user
presses the Tab key (or the previous object if Shift-Tab is pressed). If you want
inter-field tabbing you must connect fields through the

nextKeyView

 variable.

11 Align the text fields and labels in
rows and columns.

Select the three text fields and
choose Format m Align m Make
Column.

Select the first text field and its
label and choose Format m
Align m Make Row.

Repeat the last step for the
second and third text fields and
their labels.

COLUMNS

First select the object whose vertical position
the other objects should adopt (the reference
object).

Shift-click the other objects to include them in
the selection.

Making a column evens the spacing between
objects in the selection.

ROWS

When you make a row, the selected objects
rest on a common horizontal baseline.

The nextKeyView variable is an
outlet. An outlet is the identifier of
an object that another object
stores as an instance variable.
Outlets enable communication
between objects. See page 40 for
more information on outlets.

Chapter 2

Currency Converter Tutorial

30

When you make a visual connection such as this, Interface Builder brings up the
Connections display of the Inspector panel:

Don’t connect the

nextKeyView

 outlet of the “Amount in Other Currency” field;
this field is not supposed to be editable.

When you press Control and drag the mouse
from an object, a connection line is drawn.

When a line encloses the destination object,
release the mouse button.

12 Enable tabbing between text
fields.

Select the first text field.

Control-drag a connection line
from it to the second text field.

In the Inspector panel
(Connections display) select
nextKeyView and click Connect.

Repeat the same procedure,
going from the second to the first
field.

Be sure to click the Connect button to confirm the
connection (the button title then changes to Disconnect).

The nextKeyView outltet identifies the next object to
respond to events after the Tab key is pressed.

Creating the Currency Converter Interface

31

The CurrencyConverter interface is now complete. Interface Builder lets you
test an interface without having to write one line of code.

Note:

You can also exit from test mode by double-clicking the Interface Buildfer
icon, which changes to the following image to represent test mode:

13 Test the interface.

Choose Document m Save to
save the interface to the nib file.

Choose Document m Test
Interface.

Try various operations in the
interface (see suggestions on the
following page).

When finished, choose Quit from
the main menu.

Chapter 2

Currency Converter Tutorial

32

An OpenStep Application — What You Get “For Free”

The simplest OpenStep application, even one without a line of
code added to it, includes a wealth of features that you get “for
free”: You do not have to program these features yourself. You can
see this when you test an interface in Interface Builder.

To enter test mode, choose Test Interface from the Document
menu. Interface Builder simulates how your application (in this
case, Currency Converter) would run, minus the behavior added
by custom classes. Go ahead and try things out: move your
windows, type in fields, click buttons.

Application and Window Behavior

In test mode Currency Converter behaves almost like any other
application on the screen. Click elsewhere on the screen, and
Currency Converter is deactivated, becoming totally or partially
obscured by the windows of other applications.

.

Reactivate Currency Converter by clicking on its window or by
double-clicking its icon (the default terminal icon) in the
workspace. Move the window around by its title bar.

Here’s some other tests you can make:

• Click the Edit submenu in Currency Converter’s main menu. It
expands and contracts as in any application.

• Click the miniaturize button or choose the Hide command.
Double-click the document icon to get the window back.

• Click the close box and the Currency Converter window
disappears. (Choose Quit from the main menu and re-enter test
mode to get the window back.)

If we had configured Currency Converter’s window in Interface
Builder to retain the resize bar, we could also resize it now. We

could also have set the auto-resizing attributes of the window and
its views so that the window’s objects would resize proportionally
to the resized window or would retain their initial size (see
OPENSTEP Programming: Tools and Techniques for details on
auto-resizing).

Controls and Text

The buttons and text fields of Currency Converter come with many
built-in behaviors. Click the Convert button. Notice how the button
is highlighted momentarily.

.

If you had buttons of a different style, such as radio buttons, they
would also respond in characteristic ways to mouse clicks.

Now click in one of the text fields. See how the cursor blinks in
place. Type some text and select it. Use the commands in the Edit
menu to copy it and paste it in the other text field.

Do you recall the nextKeyView connections we made between
Currency Converter’s text fields? While a cursor is in a text field,
press the Tab key and watch the cursor jump from field to field.

When You Add Menu Commands

An application you design in Interface Builder can acquire extra
functionality with the simple addition of a menu command or
submenu. You’ve already seen what you get with the Services and
Windows menu, both included by default. You can add other
commands and submenus to the main menu for “free”
functionality without compilation. For example:

• The Font submenu adds behavior for applying fonts to text in
NSText objects, such as the one in the scroll view object in the
DataViews palette. Your application gets the Font panel and a
font-manager object “for free.”

• The Text submenu allows you to align text anywhere there is
editable text, and to display a ruler in the NSText object for
tabbing, indentation, and alignment.

Many objects that display text or images can print their contents
as PostScript data. Later you’ll learn how to add the Print menu
command and have it invoke this capability.

Creating the Currency Converter Interface

33

An OpenStep Application — The Possibilities

An OpenStep application can do an impressive range of things
without a formidable programming effort on your part.

Document Management

Many applications create and manage semi-autonomous objects
called documents. Documents contain discrete sets of
information and support the entry and maintenance of that
information. A word-processing document is a typical example.
The application coordinates with the user and communicates
with its documents to create, open, save, close and otherwise
manage them.

The final tutorial in this book describes how to create an
application based on a multi-document architecture.

File and Account Management

An application can use the Open panel of the Application Kit to
help the user locate files in the file system and open them. It can
also make the Save panel available for saving information in files.
NeXT’s version of OpenStep also provides classes for managing
files in the file system (creating, comparing, copying, moving, and
so forth) and for managing system-account information and user
defaults.

Communicating With Other Applications

OpenStep gives an application several ways of communicating
information to and from other applications:

• Pasteboard: The pasteboard is a global facility for sharing
information among applications. Applications can use the
pasteboard to hold data that the user has cut or copied and
may paste into another application.

• Services: Any application can avail itself of the services
provided by another application, based on the type of the
selected data (such as text). An application can also provide
services to other applications such as encryption, language
translation, or record-fetching.

• Drag-and-drop: If your application implements the proper
protocol, users can drag objects to and from the interfaces of
other applications.

Editing Support

You can get several panels (and associated functionality) when
you add a submenu to your application’s main menu in Interface
Builder. These “add-ons” includes the Font panel (and font

management), the Color panel (and color management), and,
although it’s not a panel, the text ruler and the tabbing and
indentation capabilities it provides.

Formatter classes enable your application to format numbers,
dates, and other types of field values. Support for validating the
contents of fields is also available.

Printing and Faxing

With just a simple Interface Builder procedure, OpenStep
automates simple printing and faxing of views that contain text or
graphics. When a user clicks the control, an appropriate panel
helps to configure the print or fax process. The output is
WYSIWYG.

Several Application Kit classes give you greater control over the
printing of documents and forms, including features such as
pagination and page orientation.

Help

You can create a help system for your application using Interface
Builder, Project Builder, and an RTF text editor (such as Edit). The
Application Kit includes an class for context-sensitive help. If the
user clicks an object on the application’s interface while pressing
a Help key, a small window is displayed containing concise
information on the object.

Custom Drawing and Animation

OpenStep lets you create your own custom views that draw their
own content and respond to user actions. To assist you in this,
OpenStep provides image-compositing and event-handling API
as well as PostScript operators, operator functions, and client
library functions.

Plug and Play

You can design some applications so that users can incorporate
new modules later on. For example, a drawing program could
have a tools palette: pencil, brush, eraser, and so on. You could
create a new tool and have users install it. When the application
is next started, this tool appears in the palette.

Chapter 2 Currency Converter Tutorial

34

Designing the Currency Converter Application

An object-oriented application should be based on a design that identifies the
objects of the application and clearly defines their roles and responsibilities. You
normally work on a design before you write a line of code. You don’t need any
fancy tools for designing many applications; a pencil and a pad of paper will do.

Currency Converter is an extremely simple application, but there’s still a design
behind it. This design is based upon the Model-View-Controller paradigm, a
model behind many designs for object-oriented programs (see ‘‘The Model-
View-Controller Paradigm’’ on page 36). This design paradigm aids in the
development of maintainable, extensible, and understandable systems. But
first, you might want to read the sidebar below to understand the symbol used
in the design diagram.

Note: This design for Currency Converter is intended to illustrate a few points,
and so is perhaps overly designed for something so simple. It is quite possible to
have the application’s controller class, ConverterController, do the computation
and do without the Converter class.

Why an Object is Like a Jelly Donut

This book depicts objects as filled and segmented “donuts.” Why
this unlikely shape?

This symbol illustrates data encapsulation, the essential
characteristic of objects. An object consists of both data and
procedures for manipulating that data. Other objects or external
code cannot access that data directly, but must send messages
to the object requesting its data.

An object’s procedures (called methods) respond to the message

procedure

proc
ed

ur
e procedure

data

and may return data to the requesting object. As the symbol
suggests, an object’s methods do the encapsulating, in effect
mediating access to the object’s data. An object’s methods are
also its interface, articulating the ways in which the object
communicates with the world outside it.

The donut symbol also helps to convey the modularity of objects.
Because an object encapsulates a defined set of data and logic,
you can easily assign it to particular duties within a program.
Conceptually, it is like a functional unit—for instance, “Customer
Record”—that you can move around on a design board; you can
then plot communication paths to and from other objects based
on their interfaces.

See the appendix “Object Oriented Programming,” for a fuller
description of data encapsulation, messages, methods, and other
properties of objects.

Designing the Currency Converter Application

35

You can divide responsibility within Currency Converter among two custom
objects and the user interface, taken as a collection of ready-made Application
Kit objects. The Converter object is responsible for computing a currency
amount and returning that value. Between the user interface and the Converter
object is a controller object, ConverterController. ConverterController coordinates
the activity between the Converter object and the UI objects.

The ConverterController class assumes a central role. Like all controller objects,
it communicates with the interface and with model objects, and it handles tasks
specific to the application, such as managing the cursor. ConverterController
gets the values users enter into fields, passes these values to the Converter
object, gets the result back from Converter, and puts this result in a field in the
interface.

The Converter class merely computes a value from two arguments passed into
it and returns the result. As with any model object, it could also hold data as well
as provide computational services. Thus, objects that represent customer
records (for example) are akin to Converter. By insulating the Converter class
from application-specific details, the design for Currency Converter makes it
more reusable, as you’ll see in the Travel Advisor tutorial.

convert

ConverterController

Converter

Chapter 2 Currency Converter Tutorial

36

The Model-View-Controller Paradigm

A common and useful paradigm for object-oriented applications,
particularly business applications, is Model-View-Controller
(MVC). Derived from Smalltalk-80, MVC proposes three types of
objects in an application, separated by abstract boundaries and
communicating with each other across those boundaries.

Model Objects

This type of object represents special knowledge and expertise.
Model objects hold a company’s data and define the logic
that manipulates that data. For example, a Customer object,
common in business applications, is a Model object. It holds data
describing the salient facts of a customer and has access to
algorithms that access and calculate new data from those facts.
A more specialized Model class might be one in a meteorological
system called Front; objects of this class would contain the data
and intelligence to represent weather fronts. Model objects are
not displayable. They often are reusable, distributed, persistent,
and portable to a variety of platforms.

View Objects

 A View object in the paradigam represents something visible on
the user interface (a window, for example, or a button). A View
object is “ignorant” of the data it displays. The Application Kit
usually provides all the View objects you need: windows, text
fields, scroll views, buttons, browsers, and so on. But you might
want to create your own View objects to show or represent your
data in a novel way (for example, a graph view). You can also
group View objects within a window in novel ways specific to an
application. View objects, especially those in kits, tend to be very
reusable and so provide consistency between applications.

View

Controller

Model

Controller Object

Acting as a mediator between Model objects and View objects in
an application is a Controller object. There is usually one per
application or window. A Controller object communicates data
back and forth between the Model objects and the View objects.
It also performs all the application-specific chores, such as
loading nib files and acting as window and application delegate.
Since what a Controller does is very specific to an application, it
is generally not reusable even though it often comprises much of
an application’s code. (This last statement does not mean,
however, that Controller objects cannot be reused; with a good
design, they can.)

Because of the Controller’s central, mediating role, Model
objects need not know about the state and events of the user
interface, and View objects need not know about the
programmatic interfaces of the Model objects. You can make your
View and Model objects available to others from a palette in
Interface Builder.

Hybrid Models

MVC, strictly observed, is not advisable in all circumstances.
Sometimes its best to combine roles. For instance, in a graphics-
intensive application, such as an arcade game, you might have
several View objects that merge the roles of View and Model.
In some applications, especially simple ones, you can combine
the roles of Controller and Model; these objects join the special
data structures and logic of Model objects with the Controller’s
hooks to the interface.

A Note on Terminology

The Application Kit and Enterprise Objects Framework reserve
special meanings for “vew object” and “model .” A view object in
the Application Kit denotes a user-interface object that inherits
from NSView. In the Enterprise Objects Framework, a model
establishes and maintains a correspondence between an
enterprise object class and data stored in a relational database.
This book uses “model object” only within the context of the
Model-View-Controller paradigm.

Defining the Classes of Currency Converter

37

Defining the Classes of Currency Converter

Interface Builder is a versatile tool for application developers. It enables you not
only to compose the application’s graphical user interface, but it gives you a way
to define much of the programmatic interface of the application’s classes and to
connect the objects eventually created from those classes.

You must go to the Classes display of the nib file window to define a class. Once
there, the first thing you must do is select the superclass, the class your new
subclass will inherit from. Let’s start with the ConverterController class.

After you choose the Subclass command, “MyNSObject” appears under
“NSObject” highlighted.

Click to select the Classes display.

NSObject, the root class, is the class that
ConverterController will inherit from.

The Subclass command in this pull-down
menu generates a new subclass.

1 Specify a subclass.

Go to the Classes display of the
nib file window.

Select NSObject, the superclass
of your custom classes.

Choose Subclass from the pull-
down Operations menu.

Class Versus Object

To newcomers to the subject, explanations of object-oriented
programming might seem to use the terms “object” and “class”
interchangeably. Are an object and a class the same thing? And if
not, how are they different? How are they related?

An object and a class are both programmatic units. They are
closely related, but serve quite different purposes in a program.

First, classes provide a taxonomy of objects, a useful way of
categorizing them. Just as you can say a particular tree is a pine
tree, you can identify a particular object by its class. You can
thereby know its purpose and what messages you can send it. In
other words, a class describes the type of an object.

Second, you use classes to generate instances —or objects.
Classes define the data structures and behavior of their
instances, and at run time create and initialize these instances.
In a sense, a class is like a factory, stamping out instances of itself
when requested.

What especially differentiates a class from its instance is data. A
instance has its own unique set of data but its class, strictly
speaking, does not. The class defines the structure of the data its
instances will have, but only instances can hold data.

A class, on the other hand, implements the behavior of all of its
instances in a running program. The donut symbol used to
represent objects is a bit misleading here, because it suggests
that each object contains its own copy of code. This is fortunately
not the case; instead of being duplicated, this code is shared
among all current instances in the program.

Implicit in the notion of a taxonomy is inheritance, a key property
of classes. Classes exist in a hierarchical relationship to one
another, with a subclass inheriting behavior and data structures
from its superclass, which in turn inherits from its superclass.

See the appendix, “Object-Oriented Programming,” for more on
these and other aspects of classes.

Chapter 2 Currency Converter Tutorial

38

Now your class is established in the hierarchy of classes within the nib file. Next,
specify the paths for messages travelling between the ConverterController
object and other objects. In Interface Builder you specify these paths as outlets
and actions.

Before You Go On

Here’s some basic terminology:

Outlet An object held as an instance variable and typed as id. Objects in
applications often hold outlets as part of their data so they can send messages to
the objects referenced by the outlets. An outlet lets you keep track of or
manipulate something in the interface.

id The generic (or dynamic) type of objects (technically the address of an
object).

Action Refers both to a message sent to an object when the user clicks a button
or manipulates some other control object and to the method that is invoked.

Control object A user-interface object (a device) with which users can interact to
affect events in the application. Control objects include buttons, text fields,
forms, sliders, and browsers. All control objects inherit from NSControl.

After you name the class, it appears
indented under its superclass in
alphabetical order.

To see subclasses of a class, click a filled
button (if the button is unfilled, there are no
subclasses).

NSCell, for example, has several levels of
subclasses; each level is indicated by
indentation.

Enter the name of the subclass:
“ConverterController.”

Press Return.

See Paths for Object
Communication: Outlets, Targets,
and Actions on page 40. for a more
detailed description of outlets
and actions. See page 103 for
more on control objects and their
relation to cells and formatters.

Defining the Classes of Currency Converter

39

ConverterController has one action method, convert:. When the user clicks the
Convert button, a convert: message is sent to the target object, an instance of
ConverterController.

Before You Go On

Add an outlet: ConverterController needs to access the text fields of the interface,
so you’ve just provided outlets for that purpose. But ConverterController must
also communicate with the Converter class (yet to be defined). To enable this
communication, add an outlet named converter to ConverterController.

Click here to begin specifying outlets.

“Outlets” appears indented underneath,
highlighted (not shown).

Instead of choosing Add Outlets from the
Operations menu, you can press Return
when “Outlets” is highlighted to add an
outlet.

2 Define your class’s outlets.

In the nib file window, click the
electrical-outlet icon to the right
of the class.

Choose Add Outlet from the
Operations pull-down menu

Type the name of the outlet over
the highlighted “myOutlet.” Name
the first outlet rateField.

Press Return.

Repeat the last three steps to
define two other outlets:

 dollarField
 totalField

3 Define your class’s actions.

In the Classes display of the nib
file window, click the crosshairs
icon.

Choose the Add Action command
from the Operations pull-down
menu.

Type the name of the action
method, convert:.

Press Return.

The crosshairs suggest the “target” in the
target/action paradigm.

After you chose Add Action “myAction”
appears indented under “Actions.”

You only need to type convert here–
Interface Builder adds the colon.

Chapter 2 Currency Converter Tutorial

40

Paths for Object Communication: Outlets, Targets, and Actions

Outlets

An outlet is an instance variable that identifies an object.

You can communicate with other objects in an application by
sending messages to outlets.

An outlet can reference any object in an application: user-
interface objects such as text fields and buttons, windows and
panels, instances of custom classes, and even the application
object itself.

Outlets are declared as:

id anObject;

You can use id as the type for any object; objects with id as their
type are dynamically typed, meaning that the class of the object is
determined at run time. You can statically type an object as a
pointer to a class name; you can declare these objects as
instance variables, but they are not outlets. What distinguishes
outlets is their relationship to Interface Builder.

Interface Builder can “recognize” outlets in code by their
declarations, and it can initialize outlets. You usually set an
outlet’s value in Interface Builder by drawing connection lines
between objects. There are ways other than outlets to reference
objects in an application, but outlets and Interface Builder’s
facility for initializing them are a great convenience.

outlet

controller

aField

When You Make a Connection in Interface Builder

As with any instance variable, outlets must be initialized at run
time to some reasonable value—in this case, an object’s identifier
(id value). Because of Interface Builder, an application can
initialize outlets when it loads a nib file.

When you make a connection in Interface Builder, a special
connector object holds information on the source and destination
objects of the connection. (The source object is the object with
the outlet.) This connector object is then stored in the nib file.
When a nib file is loaded, the application uses the connector
object to set the source object’s outlet to the identifier of the
destination object.

It might help to understand connections by imagining an electrical
outlet (as used in the Classes display of the nib file window)
embedded in the destination object. Also picture an electrical
cord extending from the outlet in the source object Before the
connection is made the cord is unplugged and the value of
destination is undefined; after the connection is made (the cord is
plugged in), the id value of the destination object is assigned to
the destination outlet

.

source destination

destination

anObject

Defining the Classes of Currency Converter

41

As you’ll soon find out, you can view (and complete) target/action
connections in Interface Builder’s Connections inspector. This
inspector is easy to use, but the relation of target and action in it
might not be apparent. First, target is an outlet of a cell object that
identifies the recipient of an action message. Well (you say)
what’s a cell object and what does it have to do with a button?—
that’s what I’m making the connection from.

One or more cell objects are always associated with a control
object (that is, an object inheriting from NSControl, such as a
button). Control objects “drive” the invocation of action methods,
but they get the target and action from a cell. NSActionCell
defines the target and action outlets, and most kinds of cells in the
Application Kit inherit these outlets.

Which Direction to Connect?

Usually the outlets and actions that you connect belong to a
custom subclass of NSObject. For these occasions, you need only
follow a couple simple rules to know which way to draw a
connection line in Interface Builder:

• To make an action connection, draw a line to the custom
instance from a control object in the user interface, such as a
button or a text field.

• To make an outlet connection, draw a line from the custom
instance to another object in the application.

Another way to clarify connections is to consider who needs to
find whom. With outlets, the custom object needs to find some
other object, so the connection is from the custom object to the
other object. With actions, the control object needs to find the
custom object, so the connection is from the control object.

These are only rules of thumb for the common case, and do not
apply in all circumstances. For instance, many OpenStep objects
have a delegate outlet; to connect these, you draw a connection
line from the OpenStep object to your custom object.

myController

outlet action

Target/Action in Interface Builder—What’s Going On

NSActionCell

inherits

Instance variables:
SEL_action:
id_target;
...

For example, when a user clicks the Convert button of Currency
Converter, the button gets the required information from its cell
and sends the message convert: to the target outlet, which is an
instance of your custom class ConverterController.

In the Actions column of the Connections inspector are all action
methods defined by the class of the target object and known by
Interface Builder. Interface Builder identifies action methods
because their declarations follow the syntax:

- (void)doThis:(id)sender;

It looks in particular for the argument sender.

Chapter 2 Currency Converter Tutorial

42

Connecting ConverterController to the Interface
As the final step of defining a class in Interface Builder, you create an instance
of your class and connect its outlets and actions.

Note: The Instantiate command does not generate a true instance of
ConverterController, but creates a stand-in object used for establishing
connections. When the nib file’s contents are unarchived, Interface Builder will
create true instances of these classes and use the proxy objects to establish the
outlet and action connections.

When you instantiate a class (that is, create an instance of it), Interface Builder
switches to the Instances display and highlights the new instance, which is
named after the class.

Now you can connect this ConverterController object to the user interface. By
connecting it to specific objects in the interface, you initialize your outlets.
ConverterController will use these outlets to get and set values in the interface.

Click the class name to collapse outlets and
actions. If they are already collapsed, make
sure your subclass is selected.

Choose this command to generate an
instance of your custom class.

4 Generate an instance of the
class.

In the Classes display, select the
ConverterController class.

Choose the Instantiate command
from the Operations pull-down
menu.

Defining the Classes of Currency Converter

43

Interface Builder brings up the Connections display of the Inspector panel. This
display shows the outlets you have defined for ConverterController.

To receive action messages from the user interface—to be notified, for example,
when users click a button—you must connect the control objects that emit those
messages to CurrencyConverter. The procedure for connecting actions is similar
to that for outlets, but with one major difference. When you connect an action,
always start the connection line from a control object (such as a button, text field,

Control-drag from an object with defined
outlets)often an instance of a custom
class).

When a black line encloses an object, it will
be selected as the destination object of the
connection if you release the mouse
button.

5 Connect the custom class to the
interface via its outlets.

In the Instances display of the nib
file window, Control-drag a
connection line from the
ConverterController instance to
the first text field.

When the field is outlined in black,
release the mouse button.

Outlets of the destination object appear
under this column of the Connections
display.

When you click Connect the connection
appears here, including the class of the
destination object.

In the Connections display, select
the outlet that corresponds to the
first field (rateField).

Click the Connect button.

Following the same steps,
connect ConverterController’s
dollarField and totalField outlets
to the appropriate text fields.

Chapter 2 Currency Converter Tutorial

44

or form) that sends an action message; you usually end the connection at an
instance of your custom class. That instance is the target outlet of the control
object.

The Connections display of the Inspector panel shows the action methods you
have specified for ConverterController.

You’ve finished defining the classes of Currency Converter—almost.

The source object of an action connection
must be a control object.

When a black line encloses an object, it will
be selected as the destination object of the
connection if you release the mouse
button.

6 Connect the interface’s controls
to the custom class via its
actions.

Control-drag a connection line
from the Convert button to the
ConverterController instance in
the nib file window.

When the instance is outlned in
black, release the mouse button..

If you had defined other actions for
ConverterController, they would have
appeared in this column.

Interface Builder allows you to set these
outlets directly for buttons.

Make sure that you click here to establish
the connection.

In the Connections display, make
sure target in the Outlets column
is selected.

Select convert: in the Actions
column.

Click the Connect button.

Save the CurrencyConverter nib
file (Document m Save).

Defining the Classes of Currency Converter

45

Before You Go On

Define the Converter Class: While connecting ConverterController’s outlets, you
probably noticed that one outlet remains unconnected: converter. This outlet
identifies the instance of the Converter class in the Currency Converter
application, which doesn’t exist yet.

Define the Converter class. This should be pretty easy because Converter, as
you might recall, is a model class within the Model-View-Controller paradigm.
Since instances of this type of class don’t communicate directly with the
interface, there is no need for outlets or actions. Here are the steps to be
completed:

1. In the Classes display, make Converter a subclass of NSObject.
2. Instantiate the Converter class.
3. Make an outlet connection between ConverterController and Converter.

When you are finished, save CurrencyConverter.nib.

Optional Exercise

Text fields and action messages: The NSReturnsign image that you embedded earlier in
the Convert button indicates that users can activate this button by pressing the
Return key. In Currency Converter this key event occurs when the cursor is in
a text field. Text fields are control objects just as buttons are; when the user
presses the Return key and the cursor is in a text field, an action message is sent
to a target object if the action is defined and the proper connection is made.

Connect the second text field (that is, the one with the “Dollars to Convert”
label) to the convert: action method of ConverterController. You won’t be
disconnecting the prior action connection because multiple control objects in an
interface can invoke the same action method.

Chapter 2 Currency Converter Tutorial

46

Implementing the Classes of Currency Converter

Interface Builder generates source code files from the (partial) class definitions
you’ve made. These files are “skeletal,” in the sense that they contain little
more than essential Objective-C directives and the class-definition information.
You’ll usually need to supplement these files with your own code.

Interface Builder then displays two attention panels, one after the other:

Now we leave Interface Builder for this application. You’ll complete the
application using Project Builder.

Click here to bring up the Classes display.

Make sure your class is selected before
choosing Create Files.

1 In Interface Builder, generate
header and implementation files.

Go to the Classes display of the
nib file window.

Select the ConverterController
class.

Choose Create Files from the
Operations pull-down menu.

When a Create Files panel is
displayed, click Yes.

A second Create Files panel is
displayed; click Yes again.

Repeat for the Converter class.

Save the nib file.

Click Yes to confirm that you want the
header and implementation files for the
class created. Interface Builder files have
an extension of .h and implementation files
an extension of .m.

Click Yes to confirm that you want the
source code files added to the project in
Project Builder. If, for example, you wanted
to add the files to another project, you
would click No.

Implementing the Classes of Currency Converter

47

You can add instance variables or method declarations to a header file generated
by Interface Builder. This is commonly done, but it isn’t necessary in
ConverterController’s case. But we do need to add a method to the Converter
class that the ConverterController object can invoke to get the result of the
computation. Let’s start with by declaring the method in Converter.h.

This declaration states that convertAmount:byRate: takes two arguments of type float,
and returns a float value. When parts of a method name have colons, such as
convertAmount: and byRate:, they are keywords which introduce arguments. (These
are keywords in a sense different from keywords in the C language.) Most
method declarations begin with a dash (-), followed by a space.

Now you need to update both implementation files. First examine Converter.m.

Project Builder imports the
Application Kit header files,
which import the Foundation
header files.

Interface definition begin
with @interface and the class
name. The superclass
appears after the colon.

Instance variables (here the
outlets defined in Interface
Builder) go between the braces.
Method declarations follow the
second brace. The declaration of
the action method you specified
in Interface Builder is inserted.
The definition ends with @end.

2 Examine an interface (header)
file in Project Builder.

Hide Interface Builder and
activate Project Builder.

Click Headers in the project
browser.

Select ConverterController.h.

#import <AppKit/AppKit.h>

#import <Foundation/Foundation.h>

@interface Converter:NSObject

{

}

- (float)convertAmount:(float)rate byRate:(float)amt;

@end

3 Add a method declaration.

Select Converter.h in the project
browser.

Insert a declaration for
convertAmount:byRate:.

Chapter 2 Currency Converter Tutorial

48

For this class, implement the method declared in Converter.h. Between
@implementation Converter and @end add the following code:

The method simply multiplies the two arguments and returns the result. Simple
enough. Next update the “empty” implementation of the convert: method that
Interface Builder generated.

The convert: method does the following:

1. Gets the floating-point values typed into the rate and dollar-amount fields

Class implementations begin
with @implementation and
the class name.

The associated header file is
imported automatically.

Put implementations of
methods between
@implementation and @end.

4 Examine an implementation file.

Click Classes in the project
browser.

Select Converter.m.

- (float)convertAmount:(float)amt byRate:(float)rate

{

return (amt * rate);

}

5 Implement the classes.

Type the code at right between
@implementation and @end in
Converter.m.

- (void)convert:(id)sender

{

float rate, amt, total;

amt = [dollarField floatValue]; /* 1 */

rate = [rateField floatValue];

total = [converter convertAmount:amt byRate:rate]; /* 2 */

[totalField setFloatValue:total]; /* 3 */

[rateField selectText:self]; /* 4 */

}

Select ConverterController.m in
the project browser.

Update the convert: method as
shown by the example.

Import Converter.h.

Implementing the Classes of Currency Converter

49

2. Invokes the convertAmount:byRate: method and gets the returned value.

3. Uses setFloatValue: to write the returned value in the Amount in Other
Currency text field (totalField).

4. Sends selectText: to the rate field; this puts the cursor in the rate field so the
user begin another calculation.

Be sure to #import “Converter.h”—ConverterController invokes a method defined
in the Converter class, so it needs to be aware of the method’s declaration.

Before You Go On

Each line of the convert: method shown above, excluding the declaration of floats,
is a message. The “word” on the left side of a message expression identifies the
object receiving the message (called the “receiver”). These objects are
identified by the outlets you defined and connected. After the receiver comes
the name of the method that the sending object (called the “sender”) wants to
invoke. Messages often result in values being returned; in the above example,
the local variables rate, amt, and total hold these values.

Before you build the project, add a small bit of code to ConverterController.m that
will make life a little easier for your users. When the application starts up, you
want Currency Converter’s window to be selected and the cursor to be in the
Exchange Rate per $1 field. We can do this only after the nib file is unarchived,
which establishes the connection to the text field rateField. To enable set-up
operations like this, awakeFromNib is sent to all objects when unarchiving
concludes. Implement this method to take appropriate action.

1. You’ve seen the selectText: message before, in the convert: implementation; it
selects the text in the text field that receives the message, inserting the cursor
if there is no text.

2. The makeKeyAndOrderFront: message does as it says: It makes the receiving
window the key window and puts it before all other windows on the screen.
This message also nests another message; [rateField window] returns the window
to which the text field belongs, and the makeKeyAndOrderFront: method is then
sent to this returned object.

- (void)awakeFromNib

{

[rateField selectText:self]; /* 1 */

[[rateField window] makeKeyAndOrderFront:self]; /* 2 */

}

6 Implement the awakeFromNib
method.

Type the code shown at right.

Chapter 2 Currency Converter Tutorial

50

Objective-C Quick Reference

The Objective-C language is a superset of ANSI C with special
syntax and run-time extensions that make object-oriented
programming possible. Objective-C syntax is uncomplicated, but
powerful in its simplicity. You can mix standard C and even C++
code with Objective-C code.

The following summarizes some of the more basic aspects of the
language. See Object-Oriented Programming and the Objective-C
Language for complete details. Also, see “Object-Oriented
Programming” in the appendix for explanations of terms that are
italicized.

Declarations

• Dynamically type objects by declaring them as id:

id myObject;

Since the class of dynamically typed objects is resolved at run
time, you can refer to them in your code without knowing
beforehand what class they belong to. Type outlets in this way
as well as objects that are likely to be involved in polymorphism
and dynamic binding.

• Statically type objects as a pointer to a class:

NSString *mystring;

You statically type objects to obtain better compile-time type
checking and to make code easier to understand.

• Declarations of instance methods begin with a minus sign (-)
and, for class methods, with a plus sign (+):

- (NSString *)countryName;

+ (NSDate *)calendarDate;

• Put the type of value returned by a method in parentheses
between the minus sign (or plus sign) and the beginning of the
method name. (See above example.) Methods returning no
explicit type are assumed to return id.

• Method argument types are in parentheses and go between
the argument’s keyword and the argument itself:

- initWithName:(NSString *)name
 andType:(int)type;

Be sure to terminate all declarations with a semicolon.

• By default, the scope of an instance variable is protected,
making that variable directly accessible only to objects of the
class that declares it or of a subclass of that class. To make an
instance variable private (accessible only within the declaring
class), insert the @private directive before the declaration.

Messages and Method Implementations

• Methods are procedures implemented by a class for its objects
(or, in the case of class methods, to provide functionality not
tied to a particular instance). Methods can be public or private;
public methods are declared in the class’s header file (see
above). Messages are invocations of an object’s method that
identify the method by name.

• Message expressions consist of a variable identifying the
receiving object followed by the name of the method you want
to invoke; enclose the expression in brackets.

[anObject doSomethingWithArg:this];

 receiver method to invoke

As in standard C, terminate statements with a semicolon.

• Messages often get values returned from the invoked method;
you must have a variable of the proper type to receive this
value on the left side of an assignment.

int result = [anObj calcTotal];

• You can nest message expressions inside other message
expressions. This example gets the window of a form object
and makes it the receiving object of another message.

[[form window] makeKeyAndOrderFront:self];

• A method is structured like a function: After the full declaration
of the method comes the body of the implementing code
enclosed by braces.

• Use nil to specify a null object; this is analogous to a null
pointer. Note that some OpenStep methods do not accept nil
objects as arguments.

• A method can usefully refer to two implicit identifiers: self and
super. Both identify the object receiving a message, but they
affect differently how the method implementation is located:
self starts the search in the receiver’s class whereas super
starts the search in the receiver’s superclass. Thus

[super init];

causes the init method of the superclass to be invoked.

• In methods you can directly access the instance variables of
your class’s instances. However, accessor methods are
recommended instead of direct access, except in cases where
performance is of paramount importance. Chapter 4, “Travel
Advisor Tutorial,” describes accessor methods in greater
detail.

Building the Currency Converter Project

51

Building the Currency Converter Project

The Build process in Project Builder compiles and links the application guided
by the information stored in the project’s makefiles. You must begin builds from
the Project Build panel.

When you click the Build button on the main window, the Project Build panel
is displayed.

When you click the Build button on the Project Build panel, the build process
begins; Project Builder logs the build’s progress in the lower split view. When
Project Builder finishes—and encounters no errors along the way—it displays
“Build succeeded.”

Of course, rare is the project that is flawless from the start. Project Builder is
likely to catch some errors when you first build your project. To see the error-
checking features of Project Builder, introduce a mistake into the code.

1 Build the project.

Save source code files and any
changes to the project.

Click the Build button on the main
window (icon at right).

Click the Build button on the
Project Build panel (same icon).

Build, Clean, and Build
Options buttons.

Build error browser.

Detailed build results.

You don’t have to maintain
makefiles in Project Builder. It
updates Makefile according to the
variables specified through its
user interface. You can customize
the build process by modifying
the Makefile.preamble and
Makefile.postamble files. For
more information on customizing
these files, see OPENSTEP
Development: Tools and Techniques

Chapter 2 Currency Converter Tutorial

52

What Happens When You Build an Application

cc

ld

.o

a.h

b.h b.m

a.m

.oa.o b.o

libraries

frameworks

application wrapper
(".app" extension)

application
executable

Resources

English.lproj

c.c

.oc.o

<arch>_obj

An application wrapper is a file package with an extension of
“.app”. A file package is a directory that the Workspace
Manager presents to users as a simple file; in other words, it
hides the contents of the directory. The “.app” extension tells

By clicking the Build button in Project Builder,
you run the build tool. By default, the build tool is
gnumake, but it can be any build utility that you
specify as a project default in Project Builder.
The build tool coordinates the compilation and
linking process that results in an executable file.
It also performs other tasks needed to build an
application.

The build tool manages and updates files based
on the dependencies and other information
specified in the project’s makefiles. Every
application project has three makefiles:
Makefile, Makefile.preamble, and
Makefile.postamble. Makefile is maintained by
Project Builder—don’t edit it directly—but you
can modify the other two to customize your
build.

The build tool invokes the compiler tool cc,
passing it the source code files of the project.
Compilation of these files (Objective-C, C++, and
standard C) produces machine-readable object
files for the architecture (or architectures)
specified for the build. It puts these files in an
architecture-specific subdirectory of
dynamic_obj.

In the linking phase of the build, the build tool
executes the link editor ld (via cc), passing it the
libraries and frameworks to link against the
object files. Frameworks and libraries contain
precompiled code that can be used by any
application. Linking integrates the code in
libraries, frameworks, and object files to
produce the application executable file.If there
are multiple architecture-specific object files,
linking also combines these into a single “fat”
executable.

The build tool also copies nib files, sound,
images, and other resources from the project to
the appropriate localized or non-localized
locations in the application wrapper.

the Workspace Manager that the application wrapper
contains an executable that can be run (“launched”) by
double-clicking.

Building the Currency Converter Project

53

To navigate to an
error in a code file,
click the line
describing the error.

Project Builder highlights the line that
contains the error

.

2 Build the project after correcting
errors.

Delete a semicolon in the code,
creating an error.

Click the Build button on the
Project Build panel.

Click the error-notification line
that appears in the build error
browser (upper split view).

Fix the error in the code.

Re-build.

Chapter 2 Currency Converter Tutorial

54

Where To Go For Help

Context-Sensitive Application Help

Project Builder and Interface Builder provide context-sensitive
help on the details of their use. To activate context-sensitive help,
Help-click a control, field, menu command, or other areas of the
application. A small window appears that briefly describes the
selected object.

The Help key varies by computer architecture. Consult user
documentation for the Help key on your machine.

 Digital Librarian

Digital Librarian is an application that quickly searches for a word
(or other lexical unit) in an on-line manual (or other target) and
lists the documents that contain the word. You click a listed item
and the document is displayed at the point where the word
occurs. The contents of documents are indexed, making
searching very fast.

OpenStep includes NextDeveloper.bshlf, a Digital Librarian
bookshelf for developers in /NextLibrary/Bookshelves. This
bookshelf contains most of the targets you are likely to want, and
includes (as the topmost target) instructions on creating your own
bookshelf and customizing it to your needs. When you choose
Help from Project Builder or Interface Builder, a Digital Librarian
bookshelf is opened that contains the on-line version of
OPENSTEP Development: Tools and Techniques.

You can find Digital Librarian as Librarian.app in /NextApps.

Building the Currency Converter Project

55

 Project Builder

Project Builder gives you several ways to get the information you
need when developing an application.

Project Find: The Project Find panel allows you to search for
definitions of, and references to, classes, methods, functions,
constants, and other symbols in your project. Since it is based on
project indexing, searching is quick and thorough and leads
directly to the relevant code. See OPENSTEP Development: Tools
and Techniques for a complete description of Project Find.

Reference Documentation Lookup: If the results of a search using
Project Find includes OpenStep symbols, you can easily get
related reference documentation that describes that symbol. See
‘‘Finding Information Within Your Project’’ on page 94 for
instructions on the use of this feature.

Frameworks: Under Frameworks in the project browser, you can
browse the header files related to OpenStep frameworks within
Project Builder. The Application Kit and Foundation frameworks
always are included by default for application projects. See
chapter 5, “Where to Go From Here,” for a fuller description

NeXT’s Technical Documentation

Most OpenStep programming documentation is located on-line in
NeXTLibrary/Documentation/NextDev. The document files are in
RTF format, so you can open them in Project Builder, Edit, or in
most word processors. NeXT includes the following manuals
under the /NextDev directory:

Reference

• API Reference Documentation (specifications of classes,
protocols, functions, types, and constants). This
documentation is divided among, and located in, the
frameworks NeXT provides, except for information that is
common to all frameworks (/Reference).

• Development Tools Reference covering the compiler, the
debugger, and other tools (Reference DevTools).

• NeXT Assembler Manual

Tasks and Concepts

• Discovering OPENSTEP: A Developer Tutorial (this manual)

• Object-Oriented Programming and the Objective-C Language

• Topics in OPENSTEP Programming (concepts and
programming procedures)

• OPENSTEP Development: Tools and Techniques (a task-
oriented approach to using the development tools)

• OPENSTEP Conversion Guide (step-by-step instructions for
converting 3.x NEXTSTEP applications to run on OPENSTEP 4.0.

The /NextDev directory also includes release notes . It also
contains documentation on the following products, if they’re
installed: Enterprise Objects Framework, Distributed Objects
(DO), Portable Distributed Objects (PDO).

See chapter 5, “Where to Go From Here,” for more information on
NeXT’s technical publications.

Chapter 2 Currency Converter Tutorial

56

Run Currency Converter

Congratulations. You’ve just created your first OpenStep application. Find
CurrencyConverter.app in the Workspace, launch it, and try it out. Enter some rates
and dollar amounts and click Convert. Also, select the text in a field and choose
the Services menu; this menu now lists the other applications that can do
something with the selected text.

Of course, the more complex an application is, the more thoroughly you will
need to test it. You might discover errors or shortcomings that necessitate a
change in overall design, in the interface, in a custom class definition, or in the
implementation of methods and functions.

Although it’s a simple application, Currency Converter still introduced you to
many of the concepts, tools, and skills you’ll need to develop OpenStep
applications. Let’s review what you’ve learned:

• Composing a graphical user interface (GUI) with Interface Builder
• Testing the interface
• Designing an application using the Model-View-Controller paradigm
• Specifying a class’s outlets and actions
• Connecting the class instance to the interface via its outlets and actions
• Class implementation basics
• Building an application and error resolution

Optional Exercise

Nesting Messages:You can nest message expressions; in other words, you can use
the value returned by a message as the receiver of another message or as a
message argument. It is thus possible to rewrite the first three messages of the
ConverterController’s convert: method as one statement:

It is possible to go even further. Try to incorporate the fourth message ([totalField
setFloatValue:total]) of the convert: method into the above statement.

You can use Project Builder’s
graphical debugger or gdb to track
bugs down. See ‘‘Using the
Graphical Debugger’’ on page
104 for an overview of the
graphical debugger.

total = [converter convertAmount:[dollarsField floatValue]

byRate:[rateField floatValue]];

