Chapter

NSDecimalNumber

Inherits From: NSNumber : NSValue : NSObject

Conforms To: NSDecimalNumberBehavior
NSObject (NSObject)

Declared In: Foundation/NSDecimal Number.h

Class Description

NSDecimalNumber, an immutable subclass of NSNumber, provides an object-oriented wrapper for doing
base-10 arithmetic. An instance can represent any number that can be expressed as mantissa X 10exponent
where mantissa is a decimal integer up to 38 digitslong, and exponent is an integer between -128 and 127.

In the course of doing arithmetic, amethod may produce cal culation errors, such asdivision by zero. It may
also meet circumstances where it has a choice of waysto round a number off. The way the method acts on
such occasions is called its “behavior.”

Behavior is set by methods in the NSDecimalNumberBehaviors protocol. Every NSDecimalNumber
argument calletiehavior requires an object that conforms to this protocol. For more on behaviors, see the
specifications for the NSDecimalNumberBehaviors protocol and the NSDecimalNumberHandler class.
Also see thalefaultBehavior method description, below.

C Interface to Decimal Numbers

The arithmetic and rounding methods of NSDecimalNumber are also accessible through group of ordinary
C functions, defined in NSDecimal.h. You might consider the C interface if you don't need to treat
NSDecimalNumbers as objects—that is, if you don’t need to store them in an object-oriented collection like
an NSArray or NSDictionary.

You might also consider the C interface if you need maximum efficiency. The C interface is faster and uses
less memory than the NSDecimalNumberClass.

If you need mutability, you can combine the two interfaces. Use functions from the C interface and convert
their results to NSDecimalNumbers.

The C functions-NSDecimalCompact(), NSDecimalCompare(), NSDecimalRound(),
NSDecimalNor malize(), NSDecimalAdd(), NSDecimal Subtract(), NSDecimalM ultiply(),
NSDecimal Divide(), NSDecimal Power (), NSDecimal M ultiplyByPower Of10(), NSDecimal String()—
are all documented in the “Functions” chapter offbendation Framework Reference.

Chapter Classes: NSDecimalNumber

Method Types

Creating an NSDecimalNumber + decima NumberWithDecimal :
+ decimal NumberWithM antissa:exponent:isNegative:
+ decimal NumberWithString:
+ decima NumberWithString:locale:
+ one
+ zero
+ notANumber

Initializing an NSDecimalNumber — initWithDecimal:
— initWithMantissa:exponent.isNegative:
— initWithString:
— initWithString:locale:

Doing arithmetic — decimalNumberByAdding:
— decimalNumberBySubtracting:
— decimalNumberByMultiplyingBy:
— decimalNumberByDividingBY:
— decimalNumberByRaisingToPower:
— decimalNumberByMultiplyingByPowerOf10:
— decimalNumberByAdding:withBehavior:
— decimalNumberBySubtracting:withBehavior:
— decimalNumberByMultiplyingBy:withBehavior:
— decimalNumberByDividingBy:withBehavior:
— decimalNumberByRaisingToPower:withBehavior:
— decimalNumberByMultiplyingByPowerOf10:withBehavior:

Rounding off — decimalNumberByRoundingAccordingToBehavior:
Getting the value in other formats - decimalValue

Asking and changing the behavior + defaultBehavior
+ setDefaultBehavior:

Class Methods

decimalNumberWithDecimal:
+ (NSDecimalNumber gecimalNumber WithDecimal: (NSDecimalylecimal
Creates and returns an NSDecimalNumber equivaletgctonal.

decimal is an NSDecimal struct, which you can initialize by hand, or generate usisgattizecimal:
method from the NSDecimalNumberScanning category of NSScanner, defined in “NSDecimalNumber.h”.

Chapter

decimalNumberWithMantissa:exponent:isNegative:
+ (NSDecimalNumber *)decimal Number WithM antissa: (unsigned long long)mantissa
exponent: (short)exponent isNegative: (BOOL)isNegative
Creates and returns an NSDecima Number equivalent to the number specified by the arguments.
The arguments express anumber in akind of scientific notation that requires the mantissato be an integer.

So, for example, if the number to be represented is 1.23, it is expressed as 123x10-2—mantissas 123,
exponents -2, and isNegativewhich refers to the sign of the mantissa, is NO.

decimalNumberWithString:
+ (NSDecimalNumber *)decimalNumber WithString: (NSString *)numericString
Creates and returns an NSDecimal Number equivalent to numericStringBesides digits, numericStringcan

include an initial “+” or “-,” a single “E” or “e”, to indicate the exponent of a number in scientific notation,
and a single NSDecimalSeparator to divide the fractional from the integral part of the number.

Whether the NSDecimalSeparator is a period (as in the United States) or a comma (as in France) depends
on the default locale.

See also: — decimalNumberWithString:locale:

decimalNumberWithString:locale:

+ (NSDecimalNumber YecimalNumber WithString: (NSString *numericString
locale: (NSDictionary *Jocale

Creates and returns an NSDecimalNumber equivalenintericString. Besides digitspumericSring can
include an initial “+” or “-,” a single “E” or “e”, to indicate the exponent of a number in scientific notation,
and a single NSDecimalSeparator to divide the fractional from the integral part of the number.

locale determines whether the NSDecimalSeparator is a period (as in the United States) or a comma (as in
France).

The following strings are acceptable valuesriamericSring:

e “2500.6" (or “2500,6”, depending docale)
» “-2500.6" (or “-2500.6")

e “-2.5006€e3” (or “-2,5006e3")

» “-2.5006E3” (or “-2,5006E3")

The following are unacceptable:

» “2,500.6”
» “2500 3/5”
» “2.5006x10e3"

Chapter

Classes: NSDecimalNumber

* “two thousand five hundred and six tenths”

See also: — decimalNumberWithString:

defaultBehavior
+ (id <NSDecimalNumberBehaviorsigfaultBehavior

Returns the way that arithmetic methods, tikeimalNumber ByAdding:, round off and handle error
conditions.

By default, the arithmetic methods do not round numbers off. They assume that your need for precision does
not exceed 38 significant digits. And they raise exceptions when they try to divide by zero, or when they
produce a number that is too big or small to be represented.

If this default behavior doesn’t suit your application, you should use methods that let you specify the
behavior, likedecimalNumber ByAdding:withBehavior. If you find yourself using a particular behavior
consistently, you can specify a different default behavior settbefaultBehavior :.

notANumber
+ (NSDecimalNumber f)otANumber

Creates and returns an NSDecimalNumber that specifies no number. Any arithmetic method receiving
notANumber as an argument returnstANumber.

This value can be a useful way of handling non-numeric data in an input file. It can also be a useful response
to calculation errors. For more information on calculation errors, see the
exceptionDuringOperation:error:leftOperand:rightOperand: method description in the
NSDecimalNumberBehaviors protocol specification.

one
+ (NSDecimalNumber 9ne

Creates and returns an NSDecimalNumber equivalent to the number 1.0.

Seealso: +ze&ro

setDefaultBehavior:
+ (void)setDefaultBehavior : (id <NSDecimalNumberBehaviordyghavior

Specifies the way that arithmetic methods, tieeimalNumber ByAdding:, round off and handle error
conditions.behavior must conform to the NSDecimalNumberBehaviors protocol.

Chapter

zero
+ (NSDecimalNumber *)zero

Returns a newly allocated NSDecima Number equivalent to the number 0.0.

See also: + one

Instance Methods
decimalNumberByAdding:
— (NSDecimalNumber fecimalNumber ByAdding: (NSDecimalNumber *gecimal Number

AddsdecimalNumber to the receiver, and returns the samnmewly created NSDecimalNumber. This
method uses the default behavior when handling calculation errors and rounding.

See also: — decimalNumberByAdding:withBehavior:, + defaultBehavior

decimalNumberByAdding:withBehavior:

— (NSDecimalNumber flecimalNumber ByAdding: (NSDecimalNumber *gecimal Number
withBehavior:(id <NSDecimalNumberBehaviordxghavior

AddsdecimalNumber to the receiver, and returns the sanmewly created NSDecimalNumblbehavior
specifies the handling of calculation errors and rounding.

decimalNumberByDividingBy:
— (NSDecimalNumber tecimalNumber ByDividingBy: (NSDecimalNumber *Jeci mal Number

Divides the receiver bgecimalNumber, and returns the quotient, a newly created NSDecimalNumber. This
method uses the default behavior when handling calculation errors and rounding.

See also: —decimalNumber ByDividingBy:withBehavior:, + defaultBehavior

decimalNumberByDividingBy:withBehavior:
— (NSDecimalNumber tiecimalNumber ByDividingBy: (NSDecimalNumber *Jecimal Number
withBehavior:(id <NSDecimalNumberBehaviordxghavior

Divides the receiver bglecimalNumber, and returns the quotient, a newly created NSDecimalNumber.
behavior specifies the handling of calculation errors and rounding.

Chapter

Classes: NSDecimalNumber

decimalNumberByMultiplyingBy:
— (NSDecimalNumber fJecimalNumber ByM ultiplyingBy: (NSDecimalNumber *gecimal Number

Multiplies the receiver bgecimalNumber, and returns the product, a newly created NSDecimalNumber.
This method uses the default behavior when handling calculation errors and when rounding.

See also: —decimalNumber ByM ultiplyingBy:withBehavior:, + defaultBehavior

decimalNumberByMultiplyingBy:withBehavior:

— (NSDecimalNumber tecimalNumber ByM ultiplyingBy: (NSDecimalNumber *gecimal Number
withBehavior:(id <NSDecimalNumberBehaviordyghavior

Multiplies the receiver bgecimalNumber, and returns the product, a newly created NSDecimalNumber.
behavior specifies the handling of calculation errors and rounding.

decimalNumberByMultiplyingByPowerOf10:
— (NSDecimalNumber tecimalNumber ByM ultiplyingByPower Of10: (shortpower

Multiplies the receiver by awer, and returns the product, a newly created NSDecimalNumber. This
method uses the default behavior when handling calculation errors and when rounding.

See also: —decimalNumber ByM ultiplyingByPower Of10:withBehavior :, + defaultBehavior

decimalNumberByMultiplyingByPowerOf10:withBehavior:

— (NSDecimalNumber tecimalNumber ByM ultiplyingByPower Of10: (shortpower
withBehavior:(id <NSDecimalNumberBehaviordxghavior

Multiplies the receiver by Mdwer, and returns the product, a newly created NSDecimalNurbbleswvior
specifies the handling of calculation errors and rounding.

decimalNumberByRaisingToPower:
— (NSDecimalNumber tecimalNumber ByRaisingToPower : (unsignedpower

Raises the receiver ppwer, and returns the result, a newly created NSDecimalNunilbés.method uses
the default behavior when handling calculation errors and when rounding.

See also: — decimalNumberByRaisingToPower:withBehavior; + defaultBehavior

Chapter

decimalNumberByRaisingToPower:withBehavior:

— (NSDecimalNumber tjecimalNumber ByRaisingToPower : (unsignedpower
withBehavior:(id <NSDecimalNumberBehaviorsbghavior

Raises the receiver ppwer, and returns the result, a newly created NSDecimalNurbbleswior specifies
the handling of calculation errors and rounding.

decimalNumberByRoundingAccordingToBehavior:

— (NSDecimalNumber gecimalNumber ByRoundingAccor dingToBehavior : (id <NSDecimalNum
berBehaviors)ehavior

Rounds the receiver off in the way specified by behavior, and returns the result, a newly created
NSDecimalNumber. For a description of the different ways of rounding, seauth@ingM ode method in
the NSDecimalNumberHandler class specification.

decimalNumberBySubtracting:
— (NSDecimalNumber tecimalNumber BySubtracting: (NSDecimalNumber gecimal Number

SubtractslecimalNumber from the receiver, and returns the difference, a newly created
NSDecimalNumber. This method uses the default behavior when handling calculation errors and when
rounding.

See also: — decimalNumber BySubtracting:withBehavior:, + defaultBehavior.

decimalNumberBySubtracting:withBehavior:

— (NSDecimalNumber flecimalNumber BySubtracting: (NSDecimalNumber *fecimal Number
withBehavior:(id <NSDecimalNumberBehaviordxghavior

SubtractslecimalNumber from the receiver, and returns the difference, a newly created
NSDecimalNumberbehavior specifies the handling of calculation errors and rounding.

decimalValue
— (NSDecimaljlecimal Value

Returns the receiver’s value, expressed as an NSDecimal struct.

Chapter

Classes: NSDecimalNumber

initWithDecimal:
— (NSDecimalNumber thitWithDecimal:(NSDecimalylecimal

Returns an NSDecimalNumber initialized to represienitmal. This method is NSDecimalNumber’s
designated initializer.

initWithMantissa:exponent:isNegative:
— (NSDecimalNumber thitWithM antissa: (unsigned long longantissa exponent: (shortexponent
isNegative: (BOOL)isNegative
Creates and returns an NSDecimalNumber equivalent to the number specified by the arguments.

The arguments express a number in a type of scientific notation that requires the mantissa to be an integer.
So, for example, if the number to be represented is 1.23, it is expressed asZL2gxdtissas 123,
exponents -2, and isNegativewhich refers to the sign of the mantissa, is NO.

initWithString:
— (NSDecimalNumber thitWithString: (NSString *numericSring

Returns an NSDecimalNumber equivalenhamericSring. numericSring must be a simple string of
digits, possibly including a decimal separator. For a listing of acceptable and unacceptable strings, see the
class methodecimalNumber WithString:.

initWithString:locale:
— (NSDecimalNumber thitWithString: (NSString *numericSring locale: (NSDictionary *Jocale

Returns a newly created NSDecimalNumber equivalent to numericString. The interpretation of the numeric
string depends on locale.

See also: + decimalNumberWithString:locale:

