Chapter

\9 NSFileManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)
NSCopying

Declared In: Foundation/NSFileManager.h

Class Description

NSFileManager enables you to perform many generic file-system operations. With it you can:

e Create directories and files.

« Extract the contents of files (as NSData objects).

« Change your current working location in the file system.

« Copy, move, and link files and directories.

* Remove files, links, and directories.

» Determine the attributes of a file, a directory, or the file system.
» Set the attributes of a file or directory.

« Make and evaluate symbolic links.

« Determine the contents of directories.

» Compare files and directories for equality.

Besides offering a useful range of generic functionality, the NSFileManager API insulates an application
from the underlying file system. An important part of this insulation is the encoding of file names (in, for
example, Unicode, ISO Latin1, and ASCII). This insulating layer makes it easier to port the application
between operating systems with different file systems. There is a default NSFileManager object for the file
system; this object responds to all messages that request a operation on the associated file system.

The pathnames specified as arguments to NSFileManager methods can be absolute or relative to the current
directory (which you can determine witbrrentDirectoryPath and set with
changeCurrentDirectoryPath:). However, pathnames cannot include wildcard characters.

Note: On UNIX file systems (such as NEXTSTEP) an absolute pathname starts with the root directory of
the file system, represented by a slash (/), and ends with the file or directory that the pathname
identifies. A relative pathname is relative to thwerent directory, the directory in which you are
working and in which saved files are currently stored (if no pathname is specified). Relative
pathnames start with a subdirectory of the current directory—without an initial slash—and end with
the name of the file or directory that the pathname identifies.

Chapter

Classes:

Path Utilities

NSFileManager methods are commonly used together with path-utility methodsimplemented asa category

on NSString. These methods extract the components of apath (directory, file name, and extension), create

paths from those components, “translate” path separators for the given platform, clean up paths containing

symbolic links and redundant slashes, and perform similar tasks. Where your code manipulates strings that
are part of file-system paths, it should use these methods. See the specification of the NSString class cluster

for details.

Method Types

Getting the default manager + defaultManager

Directory operations — changeCurrentDirectoryPath:
— createDirectoryAtPath:attributes:
— currentDirectoryPath

File operations — copyPath:toPath:handler:
— createFileAtPath:contents:attributes:
— movePath:toPath:handler:
— linkPath:toPath:handler:
—removeFileAtPath:handler:

Getting and comparing file contents — contentsAtPath:
— contentsEqualAtPath:andPath:

Detemining access to files — fileExistsAtPath:
— fileExistsAtPath:isDirectory:
— isReadableFileAtPath:
— isWritableFileAtPath:
— isExecutableFileAtPath:
—isDeletableFileAtPath:

Getting and setting attributes — fileAttributesAtPath:traverseLink:
— fileSystemAttributesAtPath:
— changeFileAttributes:atPath:

Discovering directory contents — directoryContentsAtPath:
— enumeratorAtPath:
— subpathsAtPath:
Symbolic-link operations — createSymbolicLinkAtPath:pathContent:

— pathContentOfSymbolicLinkAtPath:

Converting file-system representations
— fileSystemRepresentationWithPath:
— stringWithFileSystemRepresentation:length:

Chapter

Class Methods

e

defaultManager
+ (NSFileManager *)defaultM anager

Returns the default NSFileM anager object for the file system. You invoke all NSFileManager instance
methods with this object as the receiver.

Instance Methods

e

changeCurrentDirectoryPath:
— (BOOL)hangeCurrentDirectoryPath: (NSString *)path

Changes the path of the current directorpdth and returns YES if successful, NO if not successful. All
relative pathnames refer implicitly to the current working directory. The current working directory is stored
per task.

See also: —currentDirectoryPath, —fileExistsAtPath:isDirectory:, —directoryContentsAtPath:,
— createDirectoryAtPath:attributes:

changeFileAttributes:atPath:
— (BOOL)hangeFileAttributes:(NSDictionary *gttributes atPath: (NSString *)path

Changes the attributes of the file or directory specifiedaly. Attributes that you can change are the

owner, the group, file permissions, and the modification date. As in the POSIX standard, the application
must either own the file or directory or must be running as superuser for attribute changes to take effect.
The method attempts to make all changes specifiatiributes and ignores any rejection of an attempted
modification. If all changes succeed, it returns YES. If any change fails, the method returns NO, but it is
undefined whether any changes actually occured.

Some useful global keys for identifying object values inattrebutes dictionary are:

Key Value Type
NSFileModificationDate NSDate
NSFilePosixPermissions NSNumber

The NSFilePosixPermissions value must be initialized with the code representing the POSIX
file-permissions bit pattern.

You can change single attributes or any combination of attributes; you need not specify keys for all four
attributes.

See also: —fileAttributesAtPath:traver sel ink:

Chapter

Classes:

®

contentsAtPath:
— (NSData *fontentsAtPath: (NSString *path

Returns the contents of the file specifiegath as an NSData object.pgéth specifies a directory, or if some
other error occurs, this method returils

See also: — contentsEqual AtPath:andPath:, —createFileAtPath: contents.attributes:

contentsEqualAtPath:andPath:
— (BOOL)ontentsEqual AtPath: (NSString *pathl andPath: (NSString *)path2

Compares the file or directory specifiedpmthl with that specified ipath2 and returns YES if they have

the same contents.pthl andpath2 are directories, the contents are the list of files and subdirectories each
contain; contents of subdirectories are compared. If the contents differ in any way, this method returns NO.
It does not traverse symbolic links but compares the links themselves.

See also: — contentsAtPath:

copyPath:toPath:handler:

— (BOOLcopyPath: (NSString *source
toPath:(NSString *destination
handler:handler

Copies the directory or file specified in paturce to a different location in the file system identified by
pathnamelestination. If sourceis a file, the method creates a fileledtination that holds the exact contents

of the original file (this includes UNIX special files).dfurce is a directory, the method creates a new
directory atdestination and recursively populates it with duplicates of the files and directories contained in
source, preserving all links. The file specified saurce must exist, whilelestination must not exist prior

to the operation. When a file is being copied,déstination path must end in a file name; there is no
implicit adoption of thesource file name. Symbolic links are not traversed but are themselves copied.

If the copy operation is successful, the method returns YES. If the operation is not successful, but the
callbackhandler of fileM anager :shouldProceedAfterError: returns YES (see below),
copyPath:toPath:handler: also returns YES. Otherwise this copy method returns NO. The method also
attempts to make the attributes of the directory or fidesitnation identical tosource, but ignores any
failure at this attempt.

The argumeniandler identifies an object that responds to the callback messages

fileM anager : willProcessPath: and fileM anager : shouldProceedAfter Error: (see “Methods

Implemented by the CallbackHandler,” below). This callback mechanism is similar to delegation.
NSFileManager sends the first message when it begins a copy, move, remove, or link operation. It sends
the second message when it encounters any error in processing. You camgdecifndler if no object

Chapter

responds to the callback messages; if you specify nil and an error occurs, the method automatically returns
NO.

This code fragment verifies that the file to be copied exists and then copies that file to the user’s
~/Library/Reports directory:

NSString *source = @/tnp/quarterly_report.rtf";
NSString *destination = [[NSHoneDi rectory()
st ri ngByAppendi ngPat hConponent : @ Li brary"]
st ri ngByAppendi ngPat hConponent : @ Reports"];
NSFi | eManager *nmanager = [NSFi | eManager defaul t Manager];
if ([manager fil eExi stsAtPath:source])
[mmnager copyPat h: source toPath: destination handler:nil];

See also: —linkPath:toPath:handler:, —movePath:toPath: handler:,
—fileManager :shouldProceedAfterError:, —removeFileAtPath:handler:,
—fileM anager :willProcessPath:

createDirectoryAtPath:attributes:

— (BOOLXreateDirectoryAtPath:(NSString *path
attributes: (NSDictionary *jattributes

Createsa directory (without contents) path that has the specifiadtributes. Returns YES upon success

or NO upon failure. The directory to be created must not exist pettatThe file attributes that you can

set are owner and group numbers, file permissions, and modification date. If you sipdaifgttributes,

default values for these attributes are set (particularly write access for creator and read access for others).
The following table lists the global constants used as keys wttttilsutes NSDictionary and the types of

the associated values:

Key Value Type
NSFileModificationDate NSDate
NSFileOwnerAccount Number NSNumber
NSFileGroupOwnerAccountNumber NSNumber
NSFilePosixPermissions NSNumber

See also: —changeCurrentDirectoryPath:, —changeFileAttributes.atPath:,
— createFileAtPath:contents:attributes; — currentDirectoryPath

Chapter

Classes:

®

createFileAtPath:contents:attributes:

— (BOOLXreateFileAtPath: (NSString *path
contents:(NSData *rontents
attributes:(NSDictionary *jgttributes

Creates file atpath that containgontents and has the specified figgtributes. Returns YES upon success

or NO upon failure. The file attributes that you can set are owner and group numbers, file permissions, and
modification date. If you specityil for attributes, the file is given a default set of attributes. The following
table summarizes the the keys and types to associate with values in the NSDietioiaitgs.

Key Value Type
NSFileModificationDate NSDate
NSFileOwnerAccount Number NSNumber
NSFileGroupOwnerAccountNumber NSNumber
NSFilePosixPermissions NSNumber

See also: —contentsAtPath:, —changeFileAttributes:atPath:, —fileAttributesAtPath:traverseLink:

createSymbolicLinkAtPath:pathContent:
— (BOOL)XreateSymboalicLinkAtPath: (NSString *)path
pathContent:(NSString *ptherPath

Creates a symbolic link identified Ipath that refers to the locatiastherPath in the file systemReturns
YES if the operation is successful and NO if it is not successful. The method returns NO if a file, directory,
or symbolic link identical tgath already exists.

See also: — pathContentOfSymbolicLinkAtPath:, —linkPath:toPath: handler:

currentDirectoryPath
— (NSString *purrentDirectoryPath

Returns the path of the program’s current directory. Relative pathnames refer implictly to this directory; for
example, if the current directory/ftsnp, and the relative pathnameriports/info.txt, the full pathname

is constructed asmp/reports/info.txt. This path is initialized to the current working directory, and can be
thereafter reset witthangeCurrentDirectoryPath:. If the application’s current working directory isn't
accessible, this method retumis.

See also: —createDirectoryAtPath:attributes:

Chapter

®

directoryContentsAtPath:
— (NSArray *directoryContentsAtPath: (NSString *)path

Returns an array containing the filenames (including directories and symbolic links) immediately below the
directory specified ipath. The results are shallow, going no further than the next level below the specified
directory. Here is sample output, generated by NSArdiegs iption method, when this method is invoked

with /NextDeveloper aspath.

Denos,

Apps,

Makefi |l es,

pensSt epConver si on,
Exanpl es,

Header s,

2. 0Conpati bl eHeaders,
Pal ettes

As the example shows, the results omit the path preceeding the subdirectory. This method skips “.” and “..
and does not traverse symbolic links in the specified directory. It retiiihthe directory specified gath
does not exist or if there is some other error in accessing it.

See also: —currentDirectoryPath, —fileExistsAtPath:isDirectory:, —enumerator AtPath:,
—subpathsAtPath:

enumeratorAtPath:
— (NSDirectoryEnumerator 8humer ator AtPath: (NSString *path

Returns an NSDirectoryEnumerator with which to enumerate the contents of the directory specified at path.
This enumeration, which returns NSString objects, goes very deep and hence is very useful for large
file-system subtrees. If the method discovers a new mount point, it traverses the mount point. It also reports
any symbolic links it discovers. It returng if it cannot get the device of the linked-to file.

This code fragment enumerates the subdirectories and files/dhyg&ccount/Documents and processes
all files with an extension afloc:

NSString *file;
NSDi rect or yEnumer at or *enunerat or = [[NSFi | eManager def aul t Manager]
enuner at or At Pat h: @/ MyAccount / Docunents"];
while (file = [enunerator next(Cbject]) {
if ([[file pathExtension] isEqual ToString: @doc"])
[sel f scanDocunent:file];

Chapter Classes:

The NSDirectoryEnumerator class has methods for obtaining the attributes of the existing path and of the
parent directory, and for skipping descendents of the existing path.

See also: —currentDirectoryPath, —fileExistsAtPath:isDirectory:, —directoryContentsAtPath:,
—subpathsAtPath:

\9 fileAttributesAtPath:traverseLink:
— (NSDictionary *jileAttributesAtPath: (NSString *path traver seL ink: (BOOL)flag

Returns an NSDictionary containing various objects that represent the POSIX attributes of the file specified
atpath. You access these objects using these global constants as keys:

Key Value Type
NSFileSize (in bytes) NSNumber
NSFileModificationDate NSDate
NSFileOwnerAccount Number NSNumber
NSFileGroupOwnerAccountNumber NSNumber
NSFileReferenceCount (number of hard links) NSNumber
NSFileldentifier NSNumber
NSFileDeviceldentifier NSNumber
NSFilePosixPermissions NSNumber
NSFileType NSString

NSFileType’s global strings are defined as:

¢ NSFileTypeDirectory

* NSFileTypeRegular

¢ NSFileTypeSymbolicLink

* NSFileTypeSocket

* NSFileTypeCharacterSpecial
* NSFileTypeBlockSpecial

¢ NSFileTypeUnknown

If flag is YES andath is a symbolic link, the attributes of the linked-to file are returndthgfis NO, the
attributes of the symbolic link are returned.

This piece of code gets several attributes of a file and logs them.

NSNunber *fsize, *refs, *owner;
NSDat e *nopddat €;

Chapter

NSDi ctonary *fattrs =
[manager fileAttributesAtPath: @/tnp/List" traverseLink: YES];

if (!fattrs) {
NSLog(@Path is incorrect!");
return;

}
if (fsize = [fattrs object For Key: NSFi | eSi ze])

NSLog(@File size: %\n", [fsize intValue]);

if (refs = [fattrs objectForKey: NSFi | eRef erenceCount])
NSLog(@ Ref Count: %\ n", [refs intValue]);

if (moddate = [fattrs obj ect For Key: NSFi | eModi fi cati onDate])
NSLog(@ Modi f Date: %@n", [noddate description]);

Asaconvenience, NSDictionary provides a set of methods (declared as a category in NSFileM anager.h)
for quickly and efficiently obtaining attribute information from the returned NSDictionary: fileSize,
fileType, fileM odificationDate, and filePosixPer missions. For example, you could rewrite the last
statement in the code example above as:

if (nmoddate = [fattrs fileModificationDate])
NSLog(@ Modi f Date: %@n", [noddate description]);

Seealso: —changeFileAttributes:atPath:

§ fileExistsAtPath:

— (BOOLYileExistsAtPath: (NSString *path

Returns YES if the file specified path exists, or NO if it does not. The method traverses final symbolic
links.

See also: —fileExistsAtPath:isDirectory:

\9 fileExistsAtPath:isDirectory:

— (BOOLYileExistsAtPath: (NSString *)path isDirectory:(BOOL *)isDirectory

Returns whether the file specifiedgath exists. If you want to determinepéth is a directory, specify the
address of a boolean variable ffeDirectory; the method indirectly returns YESp#th is a directory. The
method traverses final symbolic links.

This example gets an NSArray that identifies the fontBlaxtLibrary/Fonts:
NSArray *subpat hs;

Chapter Classes:

BOOL isDir;
NSString *fontPath = @/ NextLi brary/ Fonts";
NSFi | eManager *nmanager = [NSFi | eManager defaul t Manager];
if ([manager fileExistsAtPath:fontPath isDirectory: & sDir]
&& i sDir)
subpat hs = [manager subpat hsAt Pat h: f ont Pat h] ;

Seealso: —fileExistsAtPath:

\9 fileSystemAttributesAtPath:
— (NSDictionary *fileSystemAttributesAtPath:(NSString *path

Returns an NSDictionary containing objects that represent attributes of the mounted fileatbtenany
pathname within the mounted file system. You access the attribute objects in the NSDictionary using these

global constants as keys:

Key Value Type
NSFileSystemSize (in an appropriate unit, usually bytes) NSNumber

NSFileSystemFreeSize (in an appropriate unit, usually bytes) NSNumber

NSFileSystemNodes NSNumber
NSFileSystemFreeNodes NSNumber
NSFileSystemNumber NSNumber

The following code example checks to see if there’s sufficient space on the file system before adding a new

file to it:

const char *data = [[customerRec description] cString];
NSData *contents = [NSData dataWt hBytes: data | ength:sizeof (data)];
NSFi | eManager *manager = [NSFi | eManager defaul t Manager];
NSDi cti onary *fsattrs =
[manager fileSystemAttributesAtPath: @/ Net/sal es/ msc"];
if ([[fsattrs objectForKey: NSFi | eSyst enfreeSi ze] unsi gnedl nt Val ue]
> [contents |length])
[manager createFil eAtPath: @/ Net/sal es/ misc/custrec.rtf"
contents:contents attributes:nil];

Seealso: —fileAttributesAtPath:traverselink:, —changeFileAttributes.atPath:

10

Chapter

®

fileSystemRepresentationWithPath:
— (const char ¥jleSystemRepresentationWithPath: (NSString *)path

Returns a C-string representatiorpafh that properly encodes Unicode strings for use by the file system.

If you need the C string beyond the scope of your autorelease pool, you should copy it. This method raises
an exception upon error. Use this method if your code calls system routines that expect C-string path
arguments.

Seealso: —dstringWithFileSystemRepresentation:length:

isDeletableFileAtPath:
— (BOOL)sDeletableFileAtPath: (NSString *)path

Returns YES if the invoking object appears to be able to delete the directory or file spegifigraind

NO if it cannot. To be deletable, either the parent directopatbfmust be writable and its owner must be

the application; ipath is a directory, it must have no undeletable items in it. This method does not traverse
symbolic links.

iIsExecutableFileAtPath:
— (BOOL) sExecutableFileAtPath: (NSString *)path

Returns YES if the underlying operating system appears able to execute the file specified in path and NO
if it cannot. This method traverses symbolic links.

isReadableFileAtPath:
— (BOOL)sReadableFileAtPath: (NSString *)path

Returns YES if the invoking object appears able to read the file specifiathiand NO if it cannot. This
method traverses symbolic links.

isWritableFileAtPath:
— (BOOL)sWritableFileAtPath: (NSString *path

Returns YES if the invoking object appears able to write to the file specifpathand NO if it cannot.
This method traverses symbolic links.

11

Chapter Classes:

\9 linkPath:toPath:handler:

— (BOOL)inkPath:(NSString *)pource
toPath:(NSString *)Ydestination
handler:handler

If pathnamesource identifies a file, this method hard-links the directory or file specifiedistination to

it. If sourceis a directory or a symbolic link, this methowpies it todestination instead of creating a hard
link. The file, link, or directory specified isource must exist, whilelestination must not yet exist. The
destination path must end in a file name; there is no implicit adoption osdisee file name. Symbolic
links in source are not traversed.

If the link operation is successflilnkPath:toPath:handler: returns YES. If the operation is not
successful, but thisandler methodfileM anager : shouldProceedAfterError: returns YES, the method
also returns YES. Otherwise it returns NO.

The argumenihandler identifies an object that responds to the callback messages

fileM anager : willProcessPath: andfileM anager : shouldProceedAfterError: (see “Methods

Implemented by the Callback Handler,” below). This callback mechanism is similar to delegation.
NSFileManager sends the first message when it begins a copy, move, remove, or link operation. It sends
the second message when it encounters any error in processing. You cam#decifiandler if no object
responds to the callback messages; if you spadifgnd an error occurs, the method automatically returns
NO.

This code fragment verifies the pathname typed in a text filageFileField) and then links the file to
the user’s-/Library/lmages directory:

NSString *i mageFile = [imageFil eField stringVal ue];
NSString *destination = [[NSHoneDi rectory()
st ri ngByAppendi ngPat hConponent : @ Li brary"]
st ri ngByAppendi ngPat hConponent : @ | mages"] ;
NSFi | eManager *manager = [NSFi | eManager defaul t Manager];
if ([manager fil eExi stsAtPath:source])
[mnager |inkPath: source toPath: destination handler:self];

See also: —copyPath:toPath:handler:, —createSymbolicL inkAtPath: pathContent:,
—movePath:toPath:handler:, —fileM anager : shouldProceedAfterError:,
—removeFileAtPath:handler:, —fileM anager :willProcessPath:,

\9 movePath:toPath:handler:

— (BOOL)movePath: (NSString *source
toPath:(NSString *destination
handler:handler

Moves the directory or file specified in patburce to a different location in the file system identified by
the pathnamdestination. If source is a file, the method creates a filedestination that holds the exact

12

Chapter

e

contents of the original file (including UNIX special files) and then deletes the original file. If sourceisa
directory, movePath:toPath:handler: createsanew directory at destination and recursively populates it
with duplicates of the files and directories contained in source; it then del etes the old directory and its
contents. Thefile specified in source must exist, while destination must not yet exist. The destination path
must end in afile name; there is no implicit adoption of the source file name. Symbolic links are not
traversed; however, links are preserved.

If the move operation is successful, the method returns Y ES. If the operation is not successful, but the
handler method fileM anager : shouldProceedAfter Error: returns Y ES, movePath:toPath:handler: also
returns Y ES; otherwise it returns NO. If afailure in a move operation occurs, the pre-existing path or the
new path remains intact, but not both.

The argument handler identifies an object that responds to the callback messages

fileM anager : willProcessPath: and fileM anager : shouldProceedAfterError: (see “Methods

Implemented by the Callback Handler,” below). This callback mechanism is similar to delegation.
NSFileManager sends the first message when it begins a copy, move, remove, or link operation. It sends
the second message when it encounters any error in processing. You camfdecifandler if no object
responds to the callback messages; if you spedifgnd an error occurs, the method automatically returns
NO.

See also: —copyPath:toPath:handler:, —linkPath:toPath:handler:, —removeFileAtPath:handler:,
—fileM anager :shouldProceedAfterError:, —fileM anager :will ProcessPath:

pathContentOfSymbolicLinkAtPath:
— (NSString *pathContentOfSymbolicLink AtPath: (NSString *)cStringPath

Returns the actual path of the directory or file that the symbolic8mingPath refers to.Returnail upon
failure.

See also: —createSymbolicLinkAtPath:pathContent:

removeFileAtPath:handler:
— (BOOLYemoveFileAtPath: (NSString *)path handler :handler

Deletes the file, link, or directory (including, recusively, all subdirectories, files and links in the directory)
identified bypath. If the removal operation is successfamoveFileAtPath:handler: returns YES. If the
operation is not successful, but thendler methodfileM anager : shouldProceedAfterError: returns

YES, removeFileAtPath:handler: also returns YES; otherwise it returns NO.

The argumeniandler identifies an object that responds to the callback messages

fileM anager : willProcessPath: andfileM anager : shouldProceedAfterError: (see “Methods

Implemented by the Callback Handler,” below). This callback mechanism is similar to delegation.
NSFileManager sends the first message when it begins a copy, move, remove, or link operation. It sends

13

Chapter

Classes:

14

the second message when it encountersany error in processing. You can specify nil for handler if no object

responds to the callback messages; if you specify nil and an error occurs, the method automatically returns
NO.

Sincetheremoval of directory contentsis so thorough and final, be careful when using this method. Do not
specify “.” or “..” for path; this will raise the exception NSinvalidArgumentException. This method does
not traverse symbolic links.

See also: copyPath:toPath:handler:, —linkPath:toPath:handler:, —movePath:toPath:handler:,
—fileManager :shouldProceedAfterError:, —fileM anager : will ProcessPath:

stringWithFileSystemRepresentation:length:

— (NSString *stringWithFileSystemRepresentation: (const char *tring
length: (unsigned intlen

Returns an NSString object converted from a C-string representation of a path name in the current file
system ¢tring). Use this method if your code receives paths as C-strings from system routines.

See also: —fileSystemRepresentationWithPath:

subpathsAtPath:
— (NSArray *subpathsAtPath: (NSString *path

Returns an NSArray that lists (as NSStrings) the contents of the directory identified by path. This list of

directory contents goes very deep and hence is very useful for large file-system subtrees. The method skips

Jand “..". If path is a symbolic linksubpathsAtPath: traverses the link. The method retumisif it
cannot get the device of the linked-to file.

Here is a sample fragment of wisabpathsAtPath: returns (as the output of NSArraylsscription
method) wherpath is /NextDeveloper :

Denos/ Appl nspect or . app/ Voyeur . ni b/ PauseH. ti ff,
Denos/ Appl nspect or . app/ Voyeur . ni b/ dat a. cl asses,
Denos/ Appl nspect or. app/ Voyeur . ni b/ dat a. ni b,
Denos/ Appl nspect or . app/ check. ti ff,

Denos/ Appl nspect or . app/ checkH. ti ff,

Denos/ Appl nspect or . app/ Appl nspect or,

Header s,

Header s/ archi tecture,

Header s/ ar chi t ect ur e/ ARCH_| NCLUDE. h,

Header s/ archi t ecture/ adb_bus. h,

Header s/ archi t ect ure/ adb_kb_codes. h,

Header s/ ar chi tecture/ adb_kb_map. h,

Header s/ archi tecture/ al i gnnent. h,

Chapter

Notice that this method reveal s every element of the subtree at path, including the contents of file packages
(such as applications, nib files, and RTFD files). This code fragment gets the contents of
/NextLibrary/Fonts after verifying that the directory exists:

BOOL i sDi r=NG

NSArray *subpat hs;

NSString *fontPath = @/ NextLi brary/ Fonts";

NSFi | eManager *manager = [NSFi | eManager defaul t Manager];

if ([manager fileExistsAtPath:fontPath isDirectory:& sDir] && isDir)
subpat hs = [manager subpat hsAt Pat h: f ont Pat h] ;

See also: — directoryContentsAtPath:, —enumer ator AtPath:

Methods Implemented by the Callback Handler (Notification)

\9 fileManager:shouldProceedAfterError:

— (BOOLYileM anager: (NSFileManager *hanager
shouldProceedAfter Error:(NSDictionary *errorinfo

NSFileManager sends this message for each error it encounters when copying, moving, removing, or
linking files or directories. The NSDictionary objectorinfo contains two or three pieces of information
(all NSStrings) related to the error:

Key Value

@"Path" The path related to the error (usually the source path)
@"Error" A description of the error

@"ToPath" The destination path (not all errors)

Return YES if the operation (which is often continuous within a loop) should proceed and NO if it should

not; the Boolean value is passed back to the invokesmyfPath:toPath: handler:,
movePath:toPath:handler:, removeFileAtPath:handler: orlinkPath:toPath:handler:. If an error

occurs and your handler has not implemented this method, the invoking method automatically returns NO.

The following implementation dfleM anager : shouldProceedAfterError: displays the error string in an
attention panel and leaves it to the user whether to proceed or stop:

-(BOQL) fil eManager: (NSFi | eManager *)nanager
shoul dProceedAfterError: (NSDi ctionary *)errorDict
{
int result;
result = NSRunAl ert Panel (@ Gunby App", @File operation error:
@with file: %@, @Proceed", @ Stop", NULL,
[errorDict objectForKey: @Error"],
[errorDict objectForKey: @Path"]);

if (result == NSAl ertDefaul t Return)

15

Chapter Classes:

return YES,;
el se
return NG

}
See also: —fileManager :willProcessPath:

\9 fileManager:willProcessPath:
— (void)fileM anager : (NSFileManager *nanager willProcessPath: (NSString *path

NSFileManager sends this message to the designated handler for each file or directory (ideptfl®d by
that it is about to copy, link, remove, or move. This notification gives you the opportunity to update your
user interface or to do anything similar where the knowledgatbfis important.

See also: —fileManager:shouldProceedAfterError:

16

