
Classes: NSCharacterSet Class Cluster 1

NSCharacterSet Class Cluster

Class Cluster Description

An NSCharacterSet object represents a set of Unicode characters. The NSString and
NSScanner classes use NSCharacterSets to group characters together for searching
operations, so that they can find any of a particular set of characters during a search. The
cluster’s two public classes, NSCharacterSet and NSMutableCharacterSet, declare the
programmatic interface for static and dynamic character sets, respectively.

The objects you create using these classes are referred to as character set objects (and when
no confusion will result, merely as character sets). Because of the nature of class clusters,
character set objects are not actual instances of the NSCharacterSet or
NSMutableCharacterSet classes but of one of their private subclasses. Although a character
set object’s class is private, its interface is public, as declared by these abstract superclasses,
NSCharacterSet and NSMutableCharacterSet. (See “Class Clusters” in the introduction to
the Foundation Kit for more information on class clusters and creating subclasses within a
cluster.) The character set classes adopt the NSCopying and NSMutableCopying protocols,
making it convenient to convert a character set of one type to the other.

Using a Character Set

Character set objects are value objects, in that they don’t perform any tasks. The NSString
and NSScanner classes define methods that take NSCharacterSets as arguments so that they
can find any of several characters. For example, this code excerpt finds the range of the first
uppercase letter in myString:

NSString *myString = @"some text in an NSString...";

NSRange letterRange;

letterRange = [myString rangeOfCharacterFromSet:[NSCharacterSet

 uppercaseLetterCharacterSet]];

letterRange.location is equal to the index of the first “N” in “NSString” after
rangeOfCharacterFromSet: is invoked. If the first letter of the string were “S” then
letterRange.location would be 0.

See the NSScanner class cluster specification for an example using an NSScanner.

 2 Classes: NSCharacterSet Class Cluster

Building a Character Set

NSCharacterSet provides methods to quickly create “standard” character sets, such as
letters (uppercase or lowercase), decimal digits, whitespace, and so on. You can use a
standard character set as a starting point for building your own custom set by creating an
immutable standard set and making a mutable copy of it. For example, to create a character
set containing letters, decimal digits, and basic punctuation, you could use this code:

myCharSet = [[NSCharacterSet alphanumericCharacterSet] mutableCopy];

[myCharSet addCharactersInString:@";:,.";];

You can also start from scratch by using alloc and init to create an empty character set.

If your application frequently uses a custom character set, you’ll want to save its definition
in a resource file and load that instead of explicitly adding individual characters each time
you need to create the set. You can save a character set by getting its bitmap representation
(an NSData object) and saving that object to a file:

NSString *filename = @"/some/file";

NSData *charSetRep = [myCharSet bitmapRepresentation];

[charSetRep writeToFile:filename atomically:YES];

To read a character set file, load it into an NSData object and use
characterSetWithBitmapRepresentation::

charSetRep = [NSData dataWithContentsOfFile:filename];

myCharSet = [NSCharacterSet

 characterSetWithBitmapRepresentation:charSetRep];

Notes on Unicode Support

The NSCharacterSet classes don’t fully support Unicode at this time. Only the low 256
character values, corresponding to the NEXTSTEP character set, are implemented. The
definitions of the standard character sets defined by NSCharacterSet will change in the
future to include the full set of Unicode characters. String objects created from C strings
work properly with character set objects as they’re currently implemented, and both will
continue to work as NEXTSTEP support for the Unicode character encoding increases.

Classes: NSCharacterSet Class Cluster 3

NSCharacterSet

Inherits From: NSObject

Conforms To: NSCopying
NSMutableCopying

Declared In: foundation/NSCharacterSet.h

Class Description

The NSCharacterSet class declares the programmatic interface for an object that manages
a set of Unicode characters (see the NSString class cluster specification for information on
Unicode). NSCharacterSet’s two primitive methods—characterIsMember: and
bitmapRepresentation—provide the basis for all other instance methods in its interface.
A subclass of NSCharacterSet needs only to override these methods for proper behavior.

Adopted Protocols

NSCopying – copyWithZone:
– copy

NSMutableCopying – mutableCopyWithZone:
– mutableCopy

▲

 4 Classes: NSCharacterSet Class Cluster

Method Types

Creating a standard character set
+ alphanumericCharacterSet
+ controlCharacterSet
+ decimalDigitCharacterSet
+ decomposableCharacterSet
+ illegalCharacterSet
+ letterCharacterSet
+ lowercaseLetterCharacterSet
+ nonBaseCharacterSet
+ uppercaseLetterCharacterSet
+ whitespaceCharacterSet
+ whitespaceAndNewlineCharacterSet

Creating a custom character set + characterSetWithRange:
+ characterSetWithCharactersInString:
+ characterSetWithBitmapRepresentation:

Testing set membership – characterIsMember:

Inverting a character set – invertedSet

Getting a binary representation – bitmapRepresentation

Class Methods

alphanumericCharacterSet

+ (NSCharacterSet *)alphanumericCharacterSet

Returns a character set containing the uppercase and lowercase NEXTSTEP alphabetic
characters (a-z, A-Z, other alphabetic characters such as é, É, ç, Ç, and so on) and the
decimal digit characters (0-9).

See also: – letterCharacterSet, –decimalDigitCharacterSet

characterSetWithBitmapRepresentation:

+ (NSCharacterSet *)characterSetWithBitmapRepresentation:(NSData *)data

Returns a character set containing characters determined by the bitmap representation data.
This method is useful for creating a character set object with data from a file or other
external data source.

See also: – bitmapRepresentation

Classes: NSCharacterSet Class Cluster 5

characterSetWithRange:

+ (NSCharacterSet *)characterSetWithRange:(NSRange)aRange

Returns a character set containing characters whose Unicode values are given by aRange.
aRange.location is the value of the first character, and aRange.location + aRange.length –
1 is the value of the last. If aRange.length is 0, an empty character set is returned.

For example, this code excerpt creates a character set object containing the lowercase
English alphabetic characters:

NSCharacterSet *lcLetters;

lcLetters = [NSCharacterSet

 characterSetWithRange:(NSRange){(unsigned int) ’a’, 26}];

characterSetWithCharactersInString:

+ (NSCharacterSet *)characterSetWithCharactersInString:(NSString *)aString

Returns a character set containing the characters in aString. If aString is empty, an empty
character set is returned. aString must not be nil .

controlCharacterSet

+ (NSCharacterSet *)controlCharacterSet

Returns a character set containing the control characters (characters with decimal Unicode
values 0 to 31 and 127 to 159).

decimalDigitCharacterSet

+ (NSCharacterSet *)decimalDigitCharacterSet

Returns a character set containing only decimal digit characters (0-9).

See also: – alphanumericCharacterSet

decomposableCharacterSet

+ (NSCharacterSet *)decomposableCharacterSet

Returns a character set containing all individual Unicode characters that can also be
represented as composed character sequences. Composed character sequences are simply

 6 Classes: NSCharacterSet Class Cluster

letters with accents for the currently supported subset of Unicode (decimal values 0 through
255). See the NSString class cluster description for a brief introduction to composed
character sequences.

See also: – nonBaseCharacterSet

illegalCharacterSet

+ (NSCharacterSet *)illegalCharacterSet

Returns a character set containing the illegal Unicode values. See The Unicode Standard:
Worldwide Character Encoding for details on illegal Unicode values.

letterCharacterSet

+ (NSCharacterSet *)letterCharacterSet

Returns a character set containing the uppercase and lowercase NEXTSTEP alphabetic
characters (a-z, A-Z, other alphabetic characters such as é, É, ç, Ç, and so on).

See also: – alphanumericCharacterSet, – lowercaseLetterCharacterSet,
– uppercaseLetterCharacterSet

lowercaseLetterCharacterSet

+ (NSCharacterSet *)lowercaseLetterCharacterSet

Returns a character set containing only lowercase NEXTSTEP alphabetic characters (a-z,
other alphabetic characters such as é, ç, and so on).

See also: – uppercaseLetterCharacterSet, – letterCharacterSet

nonBaseCharacterSet

+ (NSCharacterSet *)nonBaseCharacterSet

Returns an empty character set. There are no non-base characters in the subset of Unicode
currently supported.

See also: – decomposableCharacterSet

Classes: NSCharacterSet Class Cluster 7

uppercaseLetterCharacterSet

+ (NSCharacterSet *)uppercaseLetterCharacterSet

Returns a character set containing only uppercase NEXTSTEP alphabetic characters (A-Z,
other alphabetic characters such as É, Ç, and so on).

See also: – lowercaseLetterCharacterSet, – letterCharacterSet

whitespaceAndNewlineCharacterSet

+ (NSCharacterSet *)whitespaceAndNewlineCharacterSet

Returns a character set containing only whitespace characters (space and tab) and the
newline character.

See also: – whitespaceCharacterSet

whitespaceCharacterSet

+ (NSCharacterSet *)whitespaceCharacterSet

Returns a character set containing only in-line whitespace characters (space and tab). This
set doesn’t contain the newline or carriage return characters.

See also: – whitespaceAndNewlineCharacterSet

Instance Methods

characterIsMember:

– (BOOL)characterIsMember:(unichar)aCharacter

Returns YES if aCharacter is in the receiving character set, NO if it isn’t.

bitmapRepresentation

– (NSData *)bitmapRepresentation

Returns an NSData object encoding the receiving character set in binary format. This
format is suitable for saving to a file or otherwise transmitting or archiving.

A bitmap representation of a character set is a byte array of 216 bits (that is, 8192 bytes).
The value of the bit at position n represents the presence in the character set of the character

 8 Classes: NSCharacterSet Class Cluster

with decimal Unicode value n. To add a character with decimal Unicode value n to a bitmap
representation, use a statement such as:

bitmapRep[n >> 3] |= (((unsigned)1) << (n & 7));

To remove that character:

bitmapRep[n >> 3] &= ~(((unsigned)1) << (n & 7));

To test for the presence of that character, use an expression such as:

(bitmapRep[n >> 3] & (((unsigned)1) << (n & 7)))

See also: + characterSetWithBitmapRepresentation:

invertedSet

– (NSCharacterSet *)invertedSet

Returns a character set containing only characters that don’t exist in the receiver. Inverting
an immutable character set is much more efficient that inverting a mutable character set.

See also: – invert (NSMutableCharacterSet)

Classes: NSCharacterSet Class Cluster 9

NSMutableCharacterSet

Inherits From: NSCharacterSet : NSObject

Conforms To: NSCopying (NSCharacterSet)
NSMutableCopying (NSCharacterSet)

Declared In: foundation/NSCharacterSet.h

Class Description

The NSMutableCharacterSet class declares the programmatic interface to objects that
manage a modifiable set of Unicode characters. NSMutableCharacterSet defines no
primitive methods; subclasses must override all methods declared by this class.

Adopted Protocols

NSCopying – copyWithZone:
– copy

NSMutableCopying – mutableCopyWithZone:
– mutableCopy

Method Types

Adding and removing characters
– addCharactersInRange:
– removeCharactersInRange:
– addCharactersInString:
– removeCharactersInString:

Combining character sets – formIntersectionWithCharacterSet:
– formUnionWithCharacterSet:

Inverting a character set – invert

▲

 10 Classes: NSCharacterSet Class Cluster

Instance Methods

addCharactersInRange:

– (void)addCharactersInRange:(NSRange)aRange

Adds the characters whose integer values are given by aRange to the receiver.
aRange.location is the value of the first character to add, and aRange.location +
aRange.length – 1 is the value of the last. If aRange.length is 0, this method has no effect.

See also: – removeCharactersInRange:, –addCharactersInString:

addCharactersInString:

– (void)addCharactersInString:(NSString *)aString

Adds the characters in aString to those in the receiver. If aString is empty, this method has
no effect. aString must not be nil .

See also: – removeCharactersInString:, –addCharactersInRange:

formIntersectionWithCharacterSet:

– (void)formIntersectionWithCharacterSet: (NSCharacterSet *)otherSet

Modifies the receiver so that it contains only those characters that exist in both the receiver
and in otherSet.

See also: – formUnionWithCharacterSet:

formUnionWithCharacterSet:

– (void)formUnionWithCharacterSet: (NSCharacterSet *)otherSet

Modifies the receiver so that it contains all characters that exist in either the receiver or
otherSet, barring duplicates.

See also: – formIntersectionWithCharacterSet:

Classes: NSCharacterSet Class Cluster 11

invert

– (void)invert

Replaces all of the characters in the receiver with all the characters it didn’t previously
contain. Inverting a mutable character set is much less efficient that inverting an immutable
character set.

See also: – invertedSet (NSCharacterSet)

removeCharactersInRange:

– (void)removeCharactersInRange:(NSRange)aRange

Removes from the receiver the characters whose integer values are given by aRange.
aRange.location is the value of the first character to add, and aRange.location +
aRange.length – 1 is the value of the last. If aRange.length is 0, this method has no effect.

See also: – addCharactersInRange:, – removeCharactersInString:

removeCharactersInString:

– (void)removeCharactersInString:(NSString *)aString

Removes the characters in aString from those in the receiver. If aString is empty, this
method has no effect. aString must not be nil .

See also: – addCharactersInString:, – removeCharactersInRange:

