NSData Class Cluster

Class Description

NSData objects provide an object-oriented wrapper for byte buffers. This enables simple
allocated buffers (that is, data with no embedded pointers) to take on the behavior of
Foundation Kit objects. NSData is typically used for data storage. It is also useful in
Distributed Objects applications, where data contained in NSData objects can be copied or
moved between applications.

NSData can be used to wrap data of any size. When the data size is over a few pages,
NSData uses virtual memory management. NSData can also be used to wrap pre-existing
data, regardless of how the data was allocated. NSData contains no information about the
data itself (such as its type); the responsibility for deciding how to use the data lies with the
client. In particular, it will not handle byte-order swapping when distributed between
big-endian and little-endian machines. For typed data, use NSValue.

NSData provides an operating system-independent way to benefit from copy-on-write
memory. The copy-on-write technigue means that when data is copied through a virtual
memory copy (usingm_copy(), an actual copy of the data is not made until there is an
attempt to modify it. NSData uses eitteopy() (byte copy) owm_copy()to copy data,
depending on the data’s size. For large amounts ofwata;opy()is used. For more
information abouvm_copy(), see Chapter 1 dEXTSTEP Operating System Software

The cluster’s two public classes, NSData and NSMutableData, declare the programmatic
interface for static and dynamic NSData objects, respectively.

The objects you create using these classes are referreddtaadjectsBecause of the

nature of class clusters, data objects are not actual instances of the NSData or
NSMutableData classes but of one of their private subclasses. Although a data object’s
class is private, its interface is public, as declared by these abstract superclasses, NSData
and NSMutableData. (See “Class Clusters” in the introduction to the Foundation Kit for
more information on class clusters and creating subclasses within a cluster.)

Generally, you instantiate a data object by sending one dathe. messages to either the
NSData or NSMutableData class object. These methods return a data object containing or
copying the bytes you pass in as arguments. Depending on the method used to instantiate
the object, a copy of the bytes may be created and added to the receiver before the data
object is instantiated. This means that when the data object is released, a copy of the bytes
it contains continues to exist. Alternatively, you can instantiate a data object with a method
whose name includes “NoCopy,” suchigigwithBytesNoCopy:length:. In that case, no

copy of the bytes remains when the original bytes are freed along with the data object that
contains them.

Classes: NSData Class Cluster 1



2

The NSData classes adopt the NSCopying and NSMutableCopying protocols, making it
convenient to convert between efficient, read-only data objects and mutable data objects.

Classes: NSData Class Cluster



» NSData

Inherits From: NSObject

Conforms To: NSCopying
NSMutableCopying

Declared In: foundation/NSData.h

Class Description

The NSData class declares the programmatic interface to an object that contains data in the
form of bytes. NSData’s two primitive methodgytesandlength—provide the basis for

all the other methods in its interface. Thges method returns a pointer to the bytes
contained in the data objetdngthreturns the number of bytes contained in the data object.

NSData provides access methods for copying bytes from a data object into a specified
buffer.getBytescopies all of the bytes into a buffer, whergatBytes:length:copies bytes

into a buffer of lengthength getBytes:range:copies a range of bytes from a starting point
within the bytes themselves. You can also return a data object that contains a subset of the
bytes in another data object by usingghbdataWithRange: method. Or, you can use the
description method to return an NSString representation of the bytes in a data object.

For determining if two data objects are equal, NSData providasEhealToData:
method, which does a byte-for-byte comparison.

ThewriteToFile:atomically: method enables you to write the contents of a data object to
a file.

Instance Variables

None declared in this class.

Adopted Protocols

NSCopying — copy
— copyWithZone:

Classes: NSData Class Cluster 3



NSMutableCopying — mutableCopy

— mutableCopyWithZone:
Method Types
Allocating and initializing + allocWithZone:
+ data

+ dataWithBytes:length:

+ dataWithBytesNoCopy:length:

+ dataWithContentsOfFile:

+ dataWithContentsOfMappedFile
— initWithBytes:length:

— initWithBytesNoCopy:length:

— initWithContentsOfFile:

— initWithContentsOfMappedFile:
— initWithData:

Accessing data — bytes
— description
— getBytes:
— getBytes:length:
— getBytes:range:

— subdataWithRange:
Testing data — isequalToData:
—length
Storing data — writeToFile:atomically:

Class Methods

allocWithZone
+ allocWithZone:(NSZone *gone
Creates and returns an uninitialized data object in the specified zone. If the receiver is the

NSData class object, an instance of the appropriate immutable subclass is returned;
otherwise, an object of the receiver’s class is returned.

Typically, you create dictionary objects using daga... class methods, not th#oc...and
init... methods. Note that it's your responsibility to release (with eiteaseor
autoreleas@ those objects created with takoc... methods.

Classes: NSData Class Cluster



data
+ data

Creates and returns an empty data object. This method is declared primarily for the use of
mutable subclasses of NSData.

dataWithBytes:length:
+ dataWithBytes:(const void *pyteslength:(unsignedength

Creates and returns a data object contail@ngthbytes copied from the buffeytes If
page alignment is being used and if the data size is more than a few pages, this method
performs an efficient virtual copy usingh_copy()

See also: —dataWithBytesNoCopy:length:

dataWithBytesNoCopy:length:
+ dataWithBytesNoCopy(void *)byteslength:(unsignedkength

Creates and returns a data object contail@ngthbytes from the buffebbytes

See also: —dataWithBytes:length:

dataWithContentsOfFile:
+ dataWithContentsOfFile:(NSString *path
Creates and returns a data object by reading every byte from the file specfat by

For example, this excerpt creates a data objg€atainitialized with the contents of
myFile.txt. The path must be absolute.

NSString* thePath = @"/u/smith/myFile.txt";
NSData *myData;
myData = [NSData dataWithContentsOfFile:thePath];

See also: — dataWithContentsOfMappedFile:

Classes: NSData Class Cluster 5



dataWithContentsOfMappedFile:
+ dataWithContentsOfMappedFile:(NSString *path

Creates and returns a data object from the mapped file specifadhbBecause of file
mapping restrictions, this method should only be used if the file is guaranteed to exist for
the duration of the data object’s existence. It is generally safer to use the
datawithContentsOfFile: method.

This methods assumes that mapped files are available on the underlying operating system.
A mapped file uses virtual memory techniques to avoid copying pages of the file into
memory until they are actually needed.

See also: — dataWithContentsOfFile:

Instance Methods
bytes
— (const void *pbytes

Returns a pointer to the data object’s contents. This method returns read-only access to the
data.

See also: —description, —getBytes; —getBytes:length; —getBytes:range:

description
— (NSString *ylescription

Returns an NSString object that contains a hexadecimal representation of the receiver's
contents. This string can be read by the ASCII parser.

See also: —bytes

getBytes:
— (void)getBytes(void *)buffer
Copies a data object’s contents ibtdfer.

For example, this excerpt initializes a data objegDatawith the NSStringnyString It
then copies the contentsmfyDatainto aBuffet

NSData *myData;
unsigned char aBuffer[20];

Classes: NSData Class Cluster



NSString* myString = @"Test string.";
myData = [NSData
dataWithBytes:[myString cString]
length:[myString length]];

[myData getBytes:aBuffer];

See also: —bytes:, —getBytes:length; —getBytes:range:

getBytes:length:

— (void)getBytes(void *)bufferlength:(unsignedength
Copieslengthbytes from a data object intwffer.
See also: —bytes:;, —getBytes:,—getBytes:range:

getBytes:range:
— (void)getBytes(void *)bufferrange:(NSRangelange

Copies the a data object’s contents imiéfer, from a rangeangethat is within the bytes
in the object. Ifangeisn’t within the receiver’s range of bytes, an NSRangeException error
is raised.

See also: — bytes;, —getBytes:,—getBytes:length:

hash

@protocol NSObject
— (unsigned int)ash

Returns an unsigned integer that can be used as a table address in a hash table structure. For
a data objectashreturns the length of the data object. If two data objects are equal (as
determined by thesEqual: method), they have the same hash value.

See also: —isEqual:

Classes: NSData Class Cluster 7



8

initWithBytes:length:
— initWithBytes: (const void *pyteslength:(unsignedength

Initializes a newly allocated data object by adding engthbytes of data copied from the
buffer bytes

See also: —initWithBytesNoCopy:length:

initWithBytesNoCopy:length:
—initwithBytesNoCopy: (void *)byteslength:(unsignedength

Initializes a newly allocated data object by adding kerigthbytes of data from the buffer
bytes

See also: —initWithBytes:length:

initWithContentsOfFile:
—initWithContentsOfFile: (NSString *path

Initializes a newly allocated data object by reading into it the data from the file specified by
path This method invokemitWithData: as part of its implementation.

See also: — initWithContentsOfMappedFile:

initWithContentsOfMappedFile:
—initWithContentsOfMappedFile: (NSString *path

Initializes a newly allocated data object by reading into it the mapped file specifiathby
This method invokemitWithData: as part of its implementation.

See also: —initWithContentsOfFile:

initWithData:
—initWithData: (NSData *fata

Initializes a newly allocated data object by placing in it the contents of another data object,
data

Classes: NSData Class Cluster



isEqual:
@protocol NSObject
— (BOOL)isequal:anObject

Returns YES if the receiver aattObjectare equal; otherwise returns NO. A YES return
value indicates that the receiver armDbjectboth inherit from NSData and contain the
same data (as determined by istequalToData: method).

See also: —isEqualToData:

isEqualToData:
— (BOOL)isequalToData:(NSData *pther
Compares the receiving data objecbtoer. If the contents oftherare equal to the
contents of the receiver, this method returns YES. If not, it returns NO. Two data objects

are equal if they hold the same number of bytes, and if the bytes at the same position in the
objects are the same.

length
— (unsignedgngth

Returns the number of bytes contained in a data object.

subdataWithRange:
— (NSData *subdataWithRange(NSRangerange

Returns a data object containing a copy of the receiver’s bytes that fall within the limits
specified byrange If rangeisn't within the receiver’s range of bytes, an
NSRangeException error is raised.

For example, this excerpt initializes a data obj@ata2 to contain a sub-range déatal

NSString* myString = @"ABCDEFG";
NSRange range = {2, 4};
NSData *datal, *data2;

datal = [NSData
dataWithBytes:[myString cString]
length:[myString length]];

data2? = [datal subdataWithRange:range];

Classes: NSData Class Cluster 9



The result of this excerpt is thad@ta2contains CDEF

writeToFile:atomically:
— (BOOL)writeToFile: (NSString *pathatomically: (BOOL)useAuxiliaryFile
Writes the bytes in a data object to the file specifiepatly

If you provide a value of YES fatomically:, the data is written to a backup file and then,
assuming no errors occur, the backup file is renamed to the intended file name.

A return value of YES indicates thatiteToFile:atomically: succeeded. If NO is
returned, the method failed.

10 Classes: NSData Class Cluster



» NSMutableData

Inherits From: NSData : NSObject

Conforms To: NSCopying
NSMutableCopying

Declared In: foundation/NSData.h

Class Description

The NSMutableData class declares the programmatic interface to an object that contains
modifiable data in the form of bytes. NSMutableData’s two primitive methods—
mutableBytesandsetLength—provide the basis for all the other methods in its interface.
ThemutableBytesmethod returns a pointer for writing into the bytes contained in the
mutable data objecsetLength: allows you to truncate or extend the length of a mutable
data object.

NSMutableData provides an additional method for changing the length of a mutable data
object:increaseLengthBy:

TheappendBytes:length:andappendData: methods let you append bytes or the contents
of another data object to a mutable data object. You can replace a range of bytes in a
mutable data object with either zeroes (usingdisetBytesinRange:method), or with
different bytes (using theplaceBytesinRange:withBytes:method).

Instance Variables

None declared in this class.

Method Types

Allocating and initializing + allocWithZone:
+ dataWithCapacity:
+ dataWithLength:
— initWithCapacity:
— initWithLength:

Classes: NSData Class Cluster 11



12

Adjusting capacity — increaselLengthBy:
— setLength:
— mutableBytes

Adding data — appendBytes:length:
— appendData:
Modifying data — replaceBytesIinRange:withBytes:

—resetBytesInRange:

Class Methods

allocWithZone
+ allocWithZone:(NSZone *gone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the
NSData class object, an instance of the appropriate immutable subclass is returned;
otherwise, an object of the receiver’s class is returned.

Typically, you create objects using tiata... class methods, not tladloc... andinit...
methods. Note that it's your responsibility to release objects created wihate
methods.

dataWithCapacity:
+ dataWithCapacity:(unsignedaNumlitems

Creates and returns an NSMutableData object, initially allocating enough memory to hold
aNumltembjects. Mutable data objects allocate additional memory as needed, so
aNumltemsimply establishes the object’s initial capacity.

This method acts by invoking tlaloc andinitWithCapacity: methods.
See also: —dataWithLength:, —initWithCapacity: , —initWithLength:

dataWithLength:
+ dataWithLength: (unsignedength

Creates an autoreleased, mutable data objéehgthbytes, zero-filled.

See also: —dataWithCapacity:, —initWithCapacity: , —initWithLength:

Classes: NSData Class Cluster



Instance Methods

appendBytes:length:
— (void)appendBytes(const void *pyteslength:(unsignediength
Appenddengthbytes to a mutable data object from the buffges If page alignment is

being used and if the data size is more than a few pages, this method performs an efficient
virtual copy using/m_copy().

This excerpt copies the bytesdata2into aBuffer and then appenddBufferto datal

NSMutableData *datal, *data2;
NSString* firstString = @"ABCD";
NSString* secondString = @"EFGH";
unsigned char *aBuffer;

unsigned len;

datal = [NSMutableData
dataWithBytes:[firstString cString]
length:[firstString length]];
data2 = [NSMutableData
dataWithBytes:[secondString cString]
length:[secondString length]];

len = [data2 length];
aBuffer = malloc(len);

[data2 getBytes:aBuffer];
[datal appendBytes:aBuffer length:len];

The final string value afatalis "ABCDEFGH'

See also: —appendData:

appendData:
— (void)appendData{NSData *pther

Appends the contents of a data object other to a receiver data object.

See also: —appendBytes:

Classes: NSData Class Cluster 13



increaseLengthBy:
— (void)increaselLengthBy(unsignedgxtralLength
Increases the length of a mutable data objeexnalLength

See also: —setLength:

initWithCapacity:
—initWithCapacity: (unsigned3apacity

Initializes a newly allocated mutable data object, giving it enough memory todpuddity
bytes. Sets the length of the data object to O.

See also: —dataWithCapacity:, — initWithLength:

initWithLength:
—initwithLength: (unsignedength
Initializes a newly allocated mutable data object, giving it enough memory téengjith

bytes. Fills the object with zeroes upéagth This method acts by invoking the
initWithCapacity: andsetLength: methods.

See also: —dataWithCapacity:, — dataWithLength:, — initWithCapacity:

mutableBytes
— (void *)mutableBytes

Returns a pointer to the bytes in a mutable data object that enables you to modify the bytes.

In this excerptmutableBytesis used to return a pointer to the bytedata2 The bytes in
data2are then overwritten with the contentdatal

NSMutableData *datal, *data2;

NSString* myString = @"string for datal";
NSString* yourString = @"string for data2";
unsigned char *firstBuffer, *secondBuffer;

/* initialize datal, data2, firstBuffer, and secondBuffer...
*

*/

[data2 getBytes:secondBuffer];

14 Classes: NSData Class Cluster



fprintf(stderr, "data2 before: \"%s\"\n", (char*)secondBuffer);
firstBuffer = [data2 mutableBytes];

[datal getBytes:firstBuffer];

fprintf(stderr, "datal: \"%s\"\n", (char*)firstBuffer);

[data2 getBytes:secondBuffer];

fprintf(stderr, "data2 after: \"%s\"\n", (char*)secondBuffer);

This excerpt produces the output:

data2 before: "String for data2"
datal: "String for datal."
data2 after: "String for datal."

replaceBytesinRange:withBytes:
— (void)replaceBytesinRange(NSRangerngewithBytes:(const void *pytes

Specifies a range within the contents of a mutable data object to be replégtesdy
rangeisn't within the receiver’s range of bytes, an NSRangeException error is raised.

In this excerpt, a range of bytesdatalis replaced by the bytes data2

NSMutableData *datal, *data2;
NSString* myString = @"Liz and John";
NSString* yourString = @"Larry";
unsigned len;

unsigned char *aBuffer;

NSRange range = {8, [yourString length]};

datal = [NSMutableData
dataWithBytes:[myString cString]
length:[myString length]];

data? = [NSMutableData
dataWithBytes:[yourString cString]
length:[yourString length]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[datal replaceBytesInRange:range withBytes:aBuffer];

The contents oflatalchange from “Liz and John” to “Liz and Larry.”

See also: —resetBytesinRange:

Classes: NSData Class Cluster 15



resetBytesinRange:
— (void)esetBytesInRange{NSRangejnge

Specifies a range within the contents of a mutable data object to be replaced by zeroes. If
rangeisn’t within the receiver’s range of bytes, an NSRangeException error is raised.

See also: —replaceBytesIinRange:withBytes:

setLength:
— (void)setLength:(unsignedength

Extends or truncates tihengthof a mutable data object. If the mutable data object is
extended, the additional bytes are zero-filled.

See also: —increaselLengthBy:

16 Classes: NSData Class Cluster



