\9 NSLayoutManager

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSLayoutManager.h

Class Description

An NSLayoutManager coordinatesthe layout and display of charactersheld in an NSTextStorage object. It
maps Unicode character codesto glyphs, setsthe glyphsin aseries of NSTextContainers, and displaysthem
in aseries of NSTextViews. In addition to its core function of laying out text, an NSLayoutManager
coordinates its NSTextViews, provides services to those NSTextViewsto support NSRulerViews for
editing paragraph styles, and handles the layout and display of text attributes not inherent in glyphs (such
as underline or strikethrough). Y ou can create a subclass of NSLayoutM anager to handle additional text
attributes, whether inherent or not.

Method Types

Creating an instance — init
Setting the text storage — setTextStorage:
— textStorage
— replaceTextStorage:
Setting text containers — textContainers
— addTextContainer:

— insertTextContainer:atindex:
— removeTextContainerAtindex:

Invalidating glyphs and layout — invalidateGlyphsForCharacterRange:changelnLength:

actualCharacterRange:

—invalidateLayoutForCharacterRange:isSoft:
actualCharacterRange:

— invalidateDisplayForGlyphRange:

— textContainerChangedGeometry:

— textStorage:edited:range:changelnLength:
invalidatedRange:

Turning background layout on/off — setBackgroundLayoutEnabled:
— backgroundLayoutEnabled



Classes: NSLayoutManager

Accessing glyphs —insertGlyph:atGlyphindex:characterindex:
— glyphAtindex:
— glyphAtindex:isValidindex:
— replaceGlyphAtindex:withGlyph:
— getGlyphs:range:
— deleteGlyphsinRange:
— numberOfGlyphs

Mapping characters to glyphs — setCharacterindex:forGlyphAtindex:
— characterindexForGlyphAtindex:
— characterRangeForGlyphRange:actualGlyphRange:
— glyphRangeForCharacterRange:actualCharacterRange:

Setting glyph attributes — setintAttribute:value:forGlyphAtindex:
— intAttribute:forGlyphAtindex:

Handling layout for text containers — setTextContainer:forGlyphRange:
— glyphRangeForTextContainer:
— textContainerForGlyphAtindex:effectiveRange:
— usedRectForTextContainer:

Handling line fragment rectangles — setLineFragmentRect:forGlyphRange:usedRect:
— lineFragmentRectForGlyphAtindex:effectiveRange:
— lineFragmentUsedRectForGlyphAtindex:effectiveRange:
— setExtraLineFragmentRect:usedRect:textContainer:
— extraLineFragmentRect
— extraLineFragmentUsedRect
— extraLineFragmentTextContainer
— setDrawsOutsideLineFragment:forGlyphAtindex:
— drawsOutsideLineFragmentForGlyphAtindex:

Layout of glyphs — setLocation:forStartOfGlyphRange:

— locationForGlyphAtindex:

— rangeOfNominallySpacedGlyphsContainingindex:

— rectArrayForCharacterRange:
withinSelectedCharacterRange:
inTextContainer:rectCount:

— rectArrayForGlyphRange:withinSelectedGlyphRange:

inTextContainer:rectCount:

— boundingRectForGlyphRange:inTextContainer:

— glyphRangeForBoundingRect:inTextContainer:

— glyphRangeForBoundingRectWithoutAdditionalLayout:
inTextContainer:

— glyphindexForPoint:inTextContainer:
fractionOfDistanceThroughGlyph:



Display of special glyphs — setNotShownAttribute:forGlyphAtindex:
— notShownAttributeForGlyphAtindex:
— setShowslInvisibleCharacters:
— showslInvisibleCharacters
— setShowsControlCharacters:
— showsControlCharacters

Finding unlaid characters/glyphs - getFirstUnlaidCharacterindex:glyphindex:

Using screen fonts — setUsesScreenFonts:
— usesScreenFonts
— substituteFontForFont:
Handling rulers — rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:

— rulerMarkersForTextView:paragraphStyle:ruler:

Managing the responder chain — layoutManagerOwnsFirstResponderinWindow:
— firstTextView
— textViewForBeginningOfSelection

Drawing — drawBackgroundForGlyphRange:atPoint:
— drawGlyphsForGlyphRange:atPoint:
— drawUnderlineForGlyphRange:underlineType:baselineOffset:
lineFragmentRect:lineFragmentGlyphRange:containerOrigin:
— underlineGlyphRange:underlineType:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:

Setting the delegate — setDelegate:
— delegate

Instance Methods

\9 addTextContainer:
— (void)addTextContainer: (NSTextContainer *3TextContainer

AppendsaTextContainer to the series of NSTextContainers where the receiver arranges text. Invalidates
glyphs and layout as needed, but doesn’t perform glyph generation or layout.

See also: —insertTextContainer:atlndex:, —removeT extContainer Atlndex:, —textContainers,
—invalidateGlyphsFor Char acter Range: changel nL ength: actual Char acter Range:,
—invalidatel ayoutFor Char acter Range:isSoft: actual Char acter Range:



Classes: NSLayoutManager

\9 backgroundLayoutEnabled
— (BOOL)backgroundL ayoutEnabled

Returns YES if the receiver generates glyphs and lays out text when the application’s run loop is idle, NO
if it only performs glyph generation and layout when necessary.

See also: — setBackgroundL ayoutEnabled:

\9 boundingRectForGlyphRange:inTextContainer:
— (NSRecthoundingRectFor GlyphRange: (NSRangea]jlyphRange
inTextContainer:(NSTextContainer *aTextContainer

Returns a single bounding rectangle enclosing all glyphs and other marks devext@ontainer for

glyphRange, including glyphs that draw outside their line fragment rectangles and text attributes such as
underlining. This method is useful for determining the area that needs to be redrawn when a range of glyphs
changes.

Performs glyph generation and layout if needed.

See also: —glyphRangeFor TextContainer:, —drawsOutsidel ineFragmentFor GlyphAtindex:

\9 characterindexForGlyphAtindex:
— (unsigned inBhar acter IndexFor GlyphAtl ndex: (unsigned intylyphl ndex

Returns the index in the NSTextStorage for the first character mapped to the glyphlatex within the
receiver. In many cases it's better to use the range-mapping methods,

character RangeFor GlyphRange: actualGlyphRange: and

glyphRangeFor Char acter Range: actual Char acter Range:, which provide more comprehensive
information.

Performs glyph generation if needed.

\9 characterRangeForGlyphRange:actualGlyphRange:

— (NSRangeaharacter RangeFor GlyphRange: (NSRangeglyphRange
actualGlyphRange:(NSRange *actual GlyphRange

Returns the range for the characters in the receiver’s text store that are mapped to thegijyhianye.
If actualGlyphRange is non-NULL, expands the requested range as needed so that it identifies all glyphs
mapped to those characters and returns the new range by referactoal (BlyphRange.



Suppose the text store begins with the character “O” and the glyph cache contains “O” and “”. If you get
the character range for the glyph range {0, 1} or {1,at}ual GlyphRange is returned as {0, 2}, indicating
that both of the glyphs are mapped to the character “O”.

Performs glyph generation if needed.

See also: —character IndexFor GlyphAtIndex:,
— glyphRangeFor Char acter Range: actualChar acter Range:

\9 delegate
— (id)delegate
Returns the receiver’s delegate.

See also: — SetDelegate:

\9 deleteGlyphsinRange:
— (void)deleteGlyphsl nRange: (NSRangejlyphRange
Deletes the glyphs iglyphRange.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: —insertGlyph:atGlyphlndex:character I ndex:

\9 drawBackgroundForGlyphRange:atPoint:

— (void)drawBackgroundFor GlyphRange: (NSRanggjlyphRange
atPoint: (NSPointrontainerOrigin

Draws background marks fgtyphRange, which must lie completely within a single NSTextContainer.
container Origin indicates the position of the NSTextContainer in the coordinate system of the NSView
being drawn. This method must be invoked with the graphics focus locked on that NSView.

Background marks are such things as selection highlighting, text background color, and any background
for marked text.

Performs glyph generation and layout if needed.

See also: —drawGlyphsFor GlyphRange:atPoint:, —glyphRangeFor TextContainer :,
—textContainer Origin (NSTextView)



Classes: NSLayoutManager

\9 drawGlyphsForGlyphRange:atPoint:
— (void)drawGlyphsFor GlyphRange: (NSRangeglyphRange atPoint: (NSPointgontainerOrigin

Draws the glyphs iglyphRange, which must lie completely within a single NSTextContainer.
container Origin indicates the position of the NSTextContainer in the coordinate system of the NSView
being drawn. This method must be invoked with the graphics focus locked on that NSView.

Performs glyph generation and layout if needed.

See also: —drawBackgroundFor GlyphRange:atPoint:, —glyphRangeFor TextContainer:,
—textContainer Origin (NSTextView)

\9 drawsOutsideLineFragmentForGlyphAtindex:
— (BOOL)rawsOutsideL ineFragmentFor GlyphAtl ndex: (unsigned intylyphl ndex

Returns YES if the glyph alyphindex exceeds the bounds of the line fragment where it’'s laid out, NO
otherwise. This can happen when text is set at a fixed line height. For example, if the user specifies a fixed
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

Glyphs that draw outside their line fragment rectangles aren’t considered when calculating enclosing
rectangles with the

rectArrayFor Char acter Range: withinSelectedChar acter Range:inTextContainer :rectCount: and
rectArrayFor GlyphRange:withinSelectedGlyphRange:inTextContainer :rectCount: methods. They
are, however, considered bgundingRectFor GlyphRange:inTextContainer:

Performs glyph generation and layout if needed.

\9 drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:

— (void)drawUnderlineFor GlyphRange: (NSRangejlyphRange
under lineType: (int)underlineType
baselineOffset: (float)baselineOffset
lineFragmentRect: (NSRect)ineRect
lineFragmentGlyphRange: (NSRangd)neGlyphRange
container Origin: (NSPointfontainer Origin

Draws underlining for the glyphs glyphRange, which must belong to a single line fragment rectangle (as
returned bylineFragmentRectFor GlyphAtl ndex: effectiveRange:). underlineType indicates the style of
underlining to draw; NSLayoutManager accepts only NSSingleUnderlineStyle, but subclasses can define
their own underline stylebaselineOffset indicates how far below the text baseline the underline should be
drawn; it's usually a positive valuBneRect is the line fragment rectangle containing the glyphs to draw
underlining for, andineGlyphRange is the range of all glyphs within that line fragment rectangle.
containerOrigin is the origin of the line fragment rectangle’s NSTextContainer in its NSTextView.



This method isinvoked automatically by under lineGlyphRange:...; you should rarely need to invoke it
directly.

See also: —textContainer For GlyphAtindex:effectiveRange:, —textContainer Origin (NSTextView)

extraLineFragmentRect
— (NSRectgxtralL ineFragmentRect

Returns the rectangle defining the extra line fragment for the insertion point at the end of a text (either in
an empty text or after a final paragraph separator). The rectangle is defined in the coordinate system of its
NSTextContainer. Returns NSZeroRect if there is no such rectangle.

See also: —extralLineFragmentUsedRect, —extralL ineFragmentTextContainer,
— setExtral ineFragmentRect: usedRect:textContainer :

extraLineFragmentTextContainer
— (NSTextContainer ®BxtralL ineFragmentTextContainer
Returns the NSTextContainer that contains the extra line fragment rectamglef threre is no extra line

fragment rectangle. This rectangle is used to display the insertion point for the insertion point at the end of
a text (either in an empty text or after a final paragraph separator).

See also: —extraLineFragmentRect, —extralL ineFragmentUsedRect,
—setExtral ineFragmentRect: usedRect:textContainer:

extraLineFragmentUsedRect
— (NSRectgxtral ineFragmentUsedRect
Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle. The rectangle

is defined in the coordinate system of its NSTextContainer. Returns NSZeroRect if there is no extra line
fragment rectangle.

The extra line fragment used rectangle is twice as wide (or tall) as the NSTextContainer’s line fragment
padding, with the insertion point itself in the middle.

See also: —extraLineFragmentRect, —extraL ineFragmentTextConainer,
— setExtral ineFragmentRect: usedRect:textContainer:



Classes: NSLayoutManager

\9 firstTextView
— (NSTextView *¥irstTextView

Returns the first NSTextView in the receiver’s series of text views. This is the object of various NSText
and NSTextView notifications posted.

\9 getFirstUnlaidCharacterindex:glyphindex:

— (void)getFirstUnlaidChar acter | ndex: (unsigned int *ghar I ndex
glyphlndex:(unsigned int *ylyphlndex

Returns by reference gharlndex andglyphlindex the indexes for the first character and glyph that have
invalid layout information. Either parameter may be NULL, in which case the receiver simply ignores it.

\9 getGlyphs:range:
— (unsigned ingetGlyphs: (NSGlyph *)glyphArray range: (NSRangejlyphRange

Fills glyphArray with displayable glyphs fromlyphRange and returns the actual number of glyphs filled

(which may be smaller thagtyphRange's length if some glyphs aren’t drawn—for example, tab and

newline characters). Raises an NSRangeException if the range specified exceeds the bounds of the actual
glyph range for the receiver.

Performs glyph generation if needed.

See also: —glyphAtindex:, —glyphAtlndex:isValidindex:, —notShownAttributeFor GlyphAtindex:

\9 glyphAtindex:
— (NSGlyphplyphAtIndex: (unsigned intylyphl ndex

Returns the glyph aflyphindex. Raises an NSRangeExceptioglifphlndex is out of bounds.

Performs glyph generation if needed. To avoid an exceptiorglyihAtlindex: you must first check the
glyph index against the number of glyphs, which requires genesrdtigtyphs. Another method,
glyphAtlndex:isvValidlndex:, generates glyphs only up to the one requested, so using it can be more
efficient.

See also: —QgetGlyphs.range:



\9 glyphAtindex:isValidindex:
— (NSGlyphplyphAtIndex: (unsigned intylyphindex isValidl ndex: (BOOL *)flag

If glyphindex is valid, returns the glyph gtyphindex and setdlag to YES. Otherwise sefkag to NO (in
which case the return value is meaningless).

Performs glyph generation if needed.

See also: —getGlyphs.range:, —glyphAtindex:

\9 glyphindexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:

— (unsigned inglyphl ndexFor Point: (NSPointaPoint
inTextContainer:(NSTextContainer *aTextContainer
fractionOfDistanceT hr oughGlyph: (float *) partial Fraction

Returns the index for the glyph nearaBbint within aTextContainer. aPoint is expressed in
aTextContainers coordinate system. If partialFractionisnon-NULL theratio of the distanceinto theglyph
relative to the next glyph (in the appropriate sweep direction) is returned by reference in partialFraction.

Note: NSLayoutManager currently supports only left-to-right sweep.

For purposes such as dragging out a selection or placing the insertion point, a partial percentage less than

or equal to 0.5indicatesthat aP ointshould be considered asfalling before the glyph index returned; apartial
percentage greater than 0.5 indicates that it should be considered as falling after the glyph index returned.

If the nearest glyph doesn’t lie undétoint at all (for example, iPoint is beyond the beginning or end of
a line) this ratio will be 0 or 1.

Suppose the glyph stream contains the glyphs “A” and “b”, with the width of “A” being 13 points. If the
user clicks at a location 8 points into “Agartial Fraction is 8+ 13, or 0.615. In this case, the point given
should be considered as falling between “A” and “b” for purposes such as dragging out a selection or
placing the insertion point.

Performs glyph generation and layout if needed.

\9 glyphRangeForBoundingRect:inTextContainer:

— (NSRangea)lyphRangeFor BoundingRect: (NSRectaRect
inTextContainer:(NSTextContainer *3TextContainer

Returns the smallest contiguous range for glyphs that are laid out wholly or partiallyaiitotrin
aTextContainer. The range returned can include glyphs that don't fall inside or inteReat though the

first and last glyphs in the range always do. This method is used to determine which glyphs need to be
displayed within a given rectangle.



Classes: NSLayoutManager

Performs glyph generation and layout if needed.
See also: —glyphRangeFor BoundingRectWithoutAdditionalL ayout:inTextContainer:

\9 glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:
— (NSRangea)lyphRangeFor BoundingRectWithoutAdditional L ayout: (NSRectpounds
inTextContainer:(NSTextContainer jontainer

Returns the smallest contiguous range for glyphs that are laid out wholly or partiallyaiitotrin
aTextContainer. The range returned can include glyphs which don't fall inside or intexRedt; though
the first and last glyphs in the range always do.

Unlike glyphRangeFor BoundingRect:inTextContainer:, this method doesn’t perform glyph generation
or layout. Its results, though faster, can be incorrect. This method is primarily for use by NSTextView; you
should rarely need to use it yourself.

See also: —glyphRangeFor BoundingRect:inTextContainer:

\9 glyphRangeForCharacterRange:actualCharacterRange:
— (NSRangea)lyphRangeFor Char acter Range: (NSRangejhar Range
actualChar acter Range: (NSRange *actual Char Range

Returns the range for the glyphs mapped to the characters of the text stard&amge. If
actualCharRange is non-NULL, expands the requested range as needed so that it identifies all characters
mapped to those glyphs and returns the new range by refereantealChar Range.

Suppose the text store contains the characters “n™ and the glyph cache contains “fi”. If you get the glyph
range for the character range {0, 1} or {1, &¢fual CharRangeis returned as {0, 2}, indicating both of the
characters mapped to the glyph “ii".

Performs glyph generation if needed.

See also: — characterIndexFor GlyphAtindex:,
— glyphRangeFor Char acter Range: actualChar acter Range

\9 glyphRangeForTextContainer:
— (NSRanga)lyphRangeFor TextContainer: (NSTextContainer *TextContainer

Returns the range for glyphs laid out witkhifiextContainer.

Performs glyph generation and layout if needed.

10



®

init

— (id)init
Initializes the receiver, a newly created NSLayoutManager object. This is the designated initializer for the
NSLayoutManager class. Retursaf.

See also: —addLayoutManager: (NSTextStorage), addTextContainer:

insertGlyph:atGlyphindex:characterindex:

— (void)insertGlyph: (NSGlyphaGlyph
atGlyphlndex: (unsigned intylyphl ndex
character Index: (unsigned intgharIndex

InsertsaGlyph into the glyph cache gtyphindex and maps it to the characteicharindex. If the glyph is
mapped to several characteasarlndex should indicate the first character that it's mapped to.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: —deeteGlyphslnRange:, —replaceGlyphAtIndex:withGlyph:

insertTextContainer:atindex:
— (void)insertTextContainer :(NSTextContainer *3TextContainer atlndex: (unsigned intindex

InsertsaTextContainer into the series of text containerdrdex, and invalidates layout for all subsequent
NSTextContainer’'s. Also invalidates glyph information as needed.

See also: —addTextContainer:, —removeT extContainer Atlndex:, —textContainers

intAttribute:forGlyphAtindex:
— (int)intAttribute: (int)attributeTag for GlyphAtl ndex: (unsigned intylyphlndex

Returns the value of the attribute identifieddblyibuteTag for the glyph aglyphlndex.

Subclasses that define their own custom attributes must override this method to access their own storage
for the attribute values. Non-negative tags are reserved by NeXT; you can define your own attributes with
negative tags and set values ussagntAttribute:value:for GlyphAtlindex:.

11



Classes: NSLayoutManager

12

®

invalidateDisplayForGlyphRange:
— (void)invalidateDisplayFor GlyphRange: (NSRangejlyphRange

Marks the glyphs iglyphRange as needing display, as well as the appropriate regions of the NSTextViews
that display those glyphs (using NSViewistNeedsDisplaylnRect:). You should rarely need to invoke
this method.

invalidateGlyphsForCharacterRange:changelnLength:actualCharacterRange:

— (void)invalidateGlyphsFor Char acter Range: (NSRangeghar Range
changel nL ength: (int)lengthChange
actualChar acter Range: (NSRange *actual Char Range

Invalidates the cached glyphs for the charactetkanRange and adjusts the remaining glyph-to-character
mapping according tengthChange, which indicates the number of characters added to or removed from
the text store. If non-NULLactualCharRange is set to the range of characters mapped to the glyphs just
invalidated. This can be larger than the range of characters given due to the effect of context on glyphs and
layout.

You should rarely need to invoke this method. It only invalidates glyph information, and performs no glyph
generation or layout. Because invalidating glyphs also invalidates layout, after invoking this method you
should also invokenvalidatel ayoutFor Char acter Range:isSoft: actualChar acter Range:, passing

charRange as the first argument and NO as the flag tas8eft: keyword.

invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:

— (void)invalidatel ayoutFor Char acter Range: (NSRangejhar Range
isSoft: (BOOL)flag
actualChar acter Range: (NSRange *actual Char Range

Invalidates the layout information for the glyphs mapped to the charactdar Range. If flag is YES,

attempts to save some layout information to avoid recalculation; if flag is NO, saves no layout information.
You should typically pass NO fdlag. If non-NULL, actualCharRange is set to the range of characters
mapped to the glyphs whose layout information has been invalidated. This can be larger than the range of
characters given due to the effect of context on glyphs and layout.

This method only invalidates information; it performs no glyph generation or layout. You should rarely
need to invoke this method.

See also: —invalidateGlyphsFor Char acter Range: changel nLength: actual Char acter Range:



\9 layoutManagerOwnsFirstResponderinWindow:
— (BOOL) ayoutM anager OwnsFir stResponder nWindow: (NSWindow *)aWindow

Returns YES if the first responderakMindow is an NSTextView associated with the receiver, NO
otherwise.

\9 lineFragmentRectForGlyphAtindex:effectiveRange:

— (NSRectlineFragmentRectFor GlyphAtl ndex: (unsigned intylyphl ndex
effectiveRange: (NSRange *)ineFragmentRange

Returns the line fragment rectangle containing the glygtyphindex. The rectangle is defined in the
coordinate system of its NSTextContainer. If non-NUIlitheFragmentRangeis set to contain the range for
all glyphs in that line fragment.

Performs glyph generation and layout if needed.

See also: —lineFragmentUsedRectFor GlyphAtl ndex:effectiveRange:,
— setLineFragmentRect: for GlyphRange: usedRect:

\9 lineFragmentUsedRectForGlyphAtindex:effectiveRange:

— (NSRectlineFragmentUsedRectFor GlyphAti ndex: (unsigned intylyphl ndex
effectiveRange: (NSRange *)ineFragmentRange

Returns the portion of the line fragment rectangle contaigliyginAtindex that actually contains glyphs

(such as for a partial or wrapped line), plus the line fragment padding defined by the NSTextContainer
where the glyphs reside. This rectangle is defined in the coordinate system of its NSTextContainer, and is
based on line calculation only—that is, it isn’t a bounding box for the glyphs in the line fragment.

If non-NULL, lineFragmentRange is set to contain the range for all glyphs in the line fragment.
Performs glyph generation and layout if needed.

See also: —lineFragmentRectFor GlyphAtlndex: effectiveRange:,
— setLineFragmentRect: for GlyphRange: usedRect:

\9 locationForGlyphAtindex:
— (NSPoint)ocationFor GlyphAtl ndex: (unsigned intylyphlndex

Returns the location, in terms of its line fragment rectangle, for the glgbyphindex. The line fragment
rectangle in turn is defined in the coordinate system of the text container where it resides.

13



Classes: NSLayoutManager

14

Performs glyph generation and layout if needed.

See also: —lineFragmentRectFor GlyphAtlndex:effectiveRange:,
—lineFragmentUsedRectFor GlyphAtl ndex: effectiveRange:

notShownAttributeForGlyphAtindex:
— (BOOL)notShownAttributeFor GlyphAtlndex:(unsigned intylyphlndex

Returns YES if the glyph atyphindexisn’t shown (in the sense of the PostSciiiw operator), NO if it

is. For example, a tab, newline, or attachment glyph doesn’t get shown; it just affects the layout of following
glyphs or locates the attachment graphic. Space characters, however, typically are shown as glyphs with a
displacement, though they leave no visible marks. Raises an NSRangeExceapyjaim rilex is out of

bounds.

Performs glyph generation and layout if needed.
See also: — setNotShownAttribute for GlyphAtlndex:

numberOfGlyphs
— (unsigned infhumber OfGlyphs

Returns the number of glyphs in the receiver, performing glyph generation if needed to determine this
number.

rangeOfNominallySpacedGlyphsContainingIndex:
— (NSRangea)angeOfNominallySpacedGlyphsContainingl ndex: (unsigned intylyphl ndex

Returns the range for the glyphs aroghgbhlndex that can be displayed with a single PostSahptv
operation; in other words, glyphs with no pairwise kerning or other adjustments to spacing.

Performs glyph generation and layout if needed.



®

rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount:

— (NSRect *yectArrayFor Char acter Range: (NSRangejharRange
withinSelectedChar acter Range: (NSRangedel Char Range
inTextContainer:(NSTextContainer "3TextContainer
rectCount:(unsigned int *jectCount

Returns a C array of rectangles for the glyphaTiextContainer that correspond tcharRange, and by

reference imectCount the number of such rectangles. These rectangles can be used to draw the background
or highlight for the given range of charactestChar Range indicates selected characters, which can affect

the size of the rectangles; it must be equal to or codtanirange. To calculate the rectangles for drawing

the background, use a selected character range whose location is NSNotFound. To calculate the rectangles
for drawing highlighting foccharRange, use a selected character range that conthar&ange.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

The array of rectangles returned is owned by the receiver, and is overwritten by various NSLayoutManager
methods. You should never free it, and should copy it if you need to keep the values or use them after
sending other messages to the layout manager.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectFor GlyphRange: inTextContainer: to determine the area that contains all drawing
performed for a range of glyphs.

Performs glyph generation and layout if needed.

See also: —glyphRangeFor TextContainer :, —character RangeFor GlyphRange: actualGlyphRange:,
—drawsOutsidel ineFragmentFor GlyphAtindex:

rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:
rectCount:

— (NSRect *yectArrayFor GlyphRange: (NSRangejlyphRange
withinSelectedGlyphRange: (NSRangeye GlyphRange
inTextContainer:(NSTextContainer *3TextContainer
rectCount:(unsigned *yectCount

Returns a C array of rectangles for the glyphaTiextContainer in glyphRange, and by reference in

rectCount the number of such rectangles. These rectangles can be used to draw the background or highlight
for the given range of glyphsel GlyphRange indicates selected glyphs. To calculate the rectangles for
drawing the background, use a selected glyph range whose location is NSNotFound. To calculate the
rectangles for highlighting, use a selected glyph range that coghtgah&ange.

15



Classes: NSLayoutManager

The number of rectangles returned isn't necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

The array of rectangles returned is owned by the receiver, and is overwritten by various NSLayoutManager
methods. You should never free it, and should copy it if you need to keep the values or use them after
sending other messages to the layout manager.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectFor GlyphRange:inTextContainer: to determine the area that contains all drawing
performed for a range of glyphs.

Performs glyph generation and layout if needed.

See also: —glyphRangeFor TextContainer:, —drawsOutsidel ineFragmentFor GlyphAtindex:

\9 removeTextContainerAtindex:
— (void)removeT extContainer Atlndex: (unsigned intindex

Removes the NSTextContaineradex and invalidates the layout as needed.Also invalidates glyph
information as needed.

See also: —addTextContainer:, —insertT extContainer:atl ndex:, —textContainers,
—invalidateGlyphskor Char acter Range: changel nL ength: actual Char acter Range:,
—invalidatel ayoutFor Char acter Range:isSoft: actual Char acter Range:

\9 replaceGlyphAtindex:withGlyph:
— (void)replaceGlyphAtindex: (unsigned intylyphindex withGlyph: (NSGlyphhewGlyph

Replaces the glyph gtyphlndex with newGlyph. Doesn’t alter the glyph-to-character mapping or
invalidate layout information.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: —setCharacter Index:for GlyphAtindex:,
—invalidateGlyphskor Char acter Range: changel nL ength: actual Char acter Range:,
—invalidatel ayoutFor Char acter Range:isSoft: actual Char acter Range:

16



®

replaceTextStorage:
— (void)replaceT extStor age: (NSTextStorage NewTextSorage

Replaces the NSTextStorage for the group of text-system objects containing the receiver with
newTextStorage. All NSLayoutManagers sharing the original NSTextStorage then share the new one. This
method makes all the adjustments necessary to keep these relationships intacktiielikstor age: .

rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:

— (NSView *)ruler AccessoryViewFor TextView: (NSTextView *JaTextView
paragraphStyle:(NSParagraphStyle paraltyle
ruler:(NSRulerView *aRulerView
enabled: (BOOL)flag

Returns the accessory NSView &RulerView. This accessory contains tab wells, text alignment buttons,
and so onparaStyle is used to set the state of the controls in the accessory NSView; it mustilotibe
flag is YES the accessory view is enabled and accepts mouse and keyboard events; if NO it's disabled.

This method is invoked automatically by the NSTextView object using the layout manager. You should
rarely need to invoke it, but you can override it to customize ruler support. If you do this method directly,
not that it neither installs the ruler accessory view nor sets the markers for the NSRulerView. You must
install the accessory view into the ruler using NSRulerViesata ccessoryView: method. To set the

markers, useuler Mar ker sFor TextView:paragraphSyle:ruler: to get the markers needed and then send
setMarkers: to the ruler.

See also: —horizontalRulerView (NSScrollView)

rulerMarkersForTextView:paragraphStyle:ruler:
— (NSArray *yulerMarker sFor TextView: (NSTextView *)aTextView
paragraphStyle:(NSParagraphStyle paraSyle
ruler:(NSRulerView *@aRulerView

Returns the NSRulerMarkers faRulerView in aTextView, based omparaSyle. These markers represent
such things as left and right margins, first-line indent, and tab stops. You can set these markers immediately
with NSRulerView’ssetM ar kers: method.

This method is invoked automatically by the NSTextView object using the layout manager. You should
rarely need to invoke it; but you can override it to add new kinds of markers or otherwise customize ruler
support.

See also: —ruler AccessoryViewFor TextView:paragraphStyleruler:enabled:

17



Classes: NSLayoutManager

18

®

setBackgroundLayoutEnabled:
— (void)setBackgroundL ayoutEnabled: (BOOL)flag

Sets according thag whether the receiver generates glyphs and lays them out when the application’s run
loop is idle.

See also: — backgroundL ayoutEnabled

setCharacterindex:forGlyphAtindex:
— (void)setCharacter | ndex: (unsigned intgharIndex for GlyphAtl ndex: (unsigned intylyphlndex

Maps the character aharlndex to the glyph aglyphl ndex.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: —character |ndexFor GlyphAtIndex:,
— char acter RangeFor GlyphRange: actualGlyphRange:,
— glyphRangeFor Char acter Range: actualChar acter Range:

setDelegate:
— (void)setDelegate: (id)anObject
Sets the receiver's delegateattObject, without retaining it.

See also: —delegate

setDrawsOutsideLineFragment:forGlyphAtindex:
— (void)setDrawsOutsidel ineFragment: (BOOL)flag for GlyphAtindex: (unsigned intylyphlndex

Sets according tthag whether the glyph aflyphindex exceeds the bounds of the line fragment where it's
laid out. This can happen when text is set at a fixed line height. For example, if the user specifies a fixed
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

This method is used by the layout mechanism; you should never invoke it directly.

See also: —drawsOutsidel ineFragmentFor GlyphAtindex



®

setExtraLineFragmentRect:usedRect:textContainer:

— (void)setExtral ineFragmentRect: (NSRectaRect
usedRect: (NSRectysedRect
textContainer:(NSTextContainer *3TextContainer

Sets a line fragment rectangle for displaying an empty last line in a body @Resttis the rectangle to
set, andaTextContainer is the NSTextContainer where the rectangle should be laidsedRect indicates
where the insertion point is drawn.

This method is used by the layout mechanism; you should never invoke it directly.

See also: —extraLineFragmentRect, —extralLineFragmentUsedRect, —textContainer

setintAttribute:value:forGlyphAtindex:

— (void)setI ntAttribute: (int)attributeTag
value: (int)anint
for GlyphAtIndex: (unsigned intylyphlndex

Sets a custom attribute value for the glypglgphlndex. attributeTag identifies the custom attribute, and
anint is its new value.

Subclasses that define their own custom attributes must override this method and provide their own storage
for the attribute values. Non-negative tags are reserved by NeXT; you can define your own attributes with
negative tags and set values using this method.

This method doesn’t perform glyph generation or layout. The glyglygtindex must already have been
generated.

See also: —intAttribute:for GlyphAtl ndex:

setLineFragmentRect:forGlyphRange:usedRect:

— (void)setL ineFragmentRect: (NSRectjragmentRect
for GlyphRange: (NSRangeg)lyphRange
usedRect: (NSRectusedRect

Sets tdragmentRect the line fragment rectangle where the glyphglyphRange are laid out. The text
container must be specified first wght TextContainer :for GlyphRange:, and the exact positions of the
glyphs must be set after the line fragment rectanglessiitiocation:for StartOfGlyphRange: . usedRect
indicates the portion dfagmentRect, in the NSTextContainer’s coordinate system, that actually contains
glyphs or other marks that are drawn (including the text container’s line fragment padshdiggct must

be equal to or contained withiragmentRect.

19



Classes: NSLayoutManager

20

This method is used by the layout mechanism; you should never invoke it directly.

See also: —lineFragmentRectFor GlyphRange: effectiveRange:,
—lineFragmentUsedRectFor GlyphRange: effectiveRange:

setLocation:forStartOfGlyphRange:
— (void)setL ocation: (NSPointaPoint for Star tOfGlyphRange: (NSRangejlyphRange

Sets the location where the glyphgigphRange are laid out t@Point, which is expressed relative to the
origin of the line fragment rectangle fgliyphRange. glyphRange defines a series of glyphs that can be
displayed with a single PostScrahtow operation (a nominal range). Setting the location for a series of
glyphs implies that the glyphs preceding it can’'t be included in a sshgle operation.

Before setting the location for a glyph range, you must specify the text container with
setTextContainer:for GlyphRange: and the line fragment rectangle with
setLineFragmentRect:for GlyphRange: usedRect:.

This method is used by the layout mechanism; you should never invoke it directly.

See also: —rangeOfNominallySpacedGlyphsContainingl ndex:

setNotShownAttribute:forGlyphAtindex:
— (void)setNot ShownAttribute: (BOOL)flag for GlyphAtl ndex: (unsigned intylyphlndex

Sets according tibag whether the glyph alyphindex is one that isn’'t shown. For example, a tab or newline
character doesn't leave any marks; it just indicates where following glyphs are laid out. Raises an
NSRangeException glyphindex is out of bounds.

This method is used by the layout mechanism; you should never invoke it directly.

See also: — notShownAttributeFor GlyphAtlndex

setShowsControlCharacters:
— (void)set ShowsControlChar acter s:(BOOL)flag

Controls whether the receiver makes control characters visible in layout where posBégas IVES, it
substitutes visible glyphs for control characters if the font and script suppoflag i$ NO it doesn't.

See also: —setShowsl nvisibleChar acters;, —showsControlChar acters



®

setShowslnvisibleCharacters:
— (void)set Showsl nvisibleChar acter s:(BOOL)flag

Controls whether the receiver makes whitespace and other typically nonvisible characters visible in layout
where possible. lflag is YES, it substitutes visible glyphs for invisible characters if the font and script
support it; ifflag is NO it doesn't.

See also: —setShowsControlCharacters;, —showsl nvisibleCharacters

setTextContainer:forGlyphRange:

— (void)set TextContainer : (NSTextContainer *aTextContainer
for GlyphRange: (NSRangeg)lyphRange

Sets taTextContainer the NSTextContainer where the glyphgliyphRange are laid out. You specify the
layout within the container with theetL ineFragmentRect:for GlyphRange: usedRect: and
setL ocation:for StartOf GlyphRange: methods.

This method is used by the layout mechanism; you should never invoke it directly.

See also: —textContainer For GlyphRange: effectiveRange:

setTextStorage:
— (void)set TextStor age: (NSTextStorage textSorage

Sets the receiver's NSTextStoragaaxiStorage. This method is invoked automatically when you add an
NSLayoutManager to an NSTextStorage object; you should never need to invoke it directly, but might want
to override it. If you want to replace the NSTextStorage for an established group of text-system objects
containing the receiver, useplaceT extStor age:.

See also: —addLayoutManager: (NSTextStorage)

setUsesScreenFonts:
—(void)setUsesScr eenFonts: (BOOL)flag

Sets according tihag whether the receiver calculates layout and displays text using screen fonts when
possible.

See also; — usesScreenFonts, —substituteFontFor Font:

21



Classes: NSLayoutManager

®

®

e

22

showsControlCharacters
— (BOOL)showsControlChar acters

Returns YES if the receiver substitutes visible glyphs for control characters if the font and script support it,
NO if it doesn't.

See also: —showslnvisibleCharacters, —setShowsControlCharacters:

showslInvisibleCharacters
— (BOOL)showsl nvisibleChar acters

Returns YES if the receiver substitutes visible glyphs for invisible characters if the font and script support
it, NO if it doesn't.

See also: —showsControlChar acters, —setShowsl nvisibleChar acters:

substituteFontForFont:
— (NSFont *pubstituteFontFor Font: (NSFont *)original Font
Returns a screen font suitable for use in plaa#igfnal Font, or simply return@riginalFont if a screen

font can’t be used or isn’t available. A screen font can be substituted if the receiver is set to use screen fonts
and if no NSTextView associated with the receiver are scaled or rotated.

See also: — USeSScreenFonts

textContainerChangedGeometry:

— (void)textContainer ChangedGeometry: (NSTextContainer ®3TextContainer
Invalidates the layout information, and possibly glyphsafxtContainer and all subsequent
NSTextContainers. This method is invoked automatically by other components of the text system; you
should rarely need to invoke it directly. Subclasses of NSTextContainer, however, must invoke this method

any time their size of shape changes (a text container that dynamically adjusts its shape to wrap text around
placed graphics, for example, must do so when a graphic is added, moved, or removed).

textContainerChangedTextView:
— (voidtextContainer ChangedTextView: (NSTextContainer *3TextContainer

Updates information needed to manage NSTextView objects. This method is invoked automatically by
other components of the text system; you should rarely need to invoke it directly.



\9 textContainerForGlyphAtindex:effectiveRange:

— (NSTextContainer textContainer For GlyphAtl ndex: (unsigned intylyphl ndex
effectiveRange: (NSRange *#ffectiveGlyphRange

Returns the NSTextContainer where the glyphygthl ndex is laid out. If non-NULL gffectiveGlyphRange
is set to the range for all glyphs laid out in that text container.

Performs glyph generation and layout if needed.

See also: —setTextContainer:for GlyphAtlindex:

\9 textContainers
— (NSArray *textContainers

Returns the receiver's NSTextContainers.

See also: —addTextContainer:, —insertT extContainer :atl ndex:, —removeT extContainer Atl ndex:

\9 textStorage
— (NSTextStorage textStorage

Returns the receiver's NSTextStorage.

See also: —satTextStorage:, —replaceT extStor age:

\9 textStorage:edited:range:changelnLength:invalidatedRange:

— (void)textStor age: (NSTextStorage gTextStorage
edited: (unsigned intnask
range:(NSRange)ange
changel nL ength: (int)lengthChange
invalidatedRange: (NSRangéenvalidatedChar Range

Invalidates glyph and layout information for a portion of texdTextSorage. This message is sent from
NSTextStorage’'grocessEditing method to indicate that its characters or attributes have been changed.
This method invalidates glyphs and layout for the affected characters, and performs a soft invalidation of
the layout information for all subsequent characteesk specifies the nature of the changes. Its value is
made by combining these options with the C bitwise OR operator:

Option Meaning

NSTextStorageEditedAttributes Attributes were added, removed, or changed.
NSTextStorageEditedCharacters Characters were added, removed, or replaced.

23



Classes: NSLayoutManager

24

®

range indicates the extent of characters resulting from the edits. If the NSTextStorageEditedCharacters bit

of mask is set, lengthChange gives the number of characters added to or removed from the original range
(otherwise its value is irrelevant). For example, after replacing “The” with “Several” to produce the string
“Several files couldn’t be saved’angeis {0, 7} andlengthChangeis 4. The receiver uses this information

to update its character-to-glyph mapping and to update the selection range based on the change.

invalidatedRange represents the range of characters affected after attributes have been fixed. For example,
deleting a paragraph separator character invalidates the layout information for all characters in the
paragraphs that precede and follow the separator.

textStor age: edited: range: changel nL ength:invalidatedRange: messages are sent in a series to each
NSLayoutManager associated with the text storage object, so the NSLayoutManagers receiving them
shouldn’t edilaTextSorage. If one of them does, thange, lengthChange, andinvalidatedRange

arguments will be incorrect for all following NSLayoutManagers that receive the message.

See also: —invalidatel ayoutFor Character Range:isSoft: actualChar acter Range:

textViewForBeginningOfSelection
— (NSTextView *}textViewFor BeginningOfSelection

Returns the NSTextView containing the first glyph in the selectiomil drthere’s no selection or if there
isn’t enough layout information to determine the text view.

underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin:

— (voidunderlineGlyphRange: (NSRangejlyphRange
under lineType: (int)underlineType
lineFragmentRect: (NSRect)ineRect
lineFragmentGlyphRange: (NSRangd)neGlyphRange
container Origin: (NSPointontainerOrigin

Calculates and draws underlining for the glyphglyphRange, which must belong to a single line fragment
rectangle (as returned hiyjeFragmentRectFor GlyphAtl ndex: effectiveRange:). underlineType

indicates the style of underlining to draw; NSLayoutManager accepts only NSSingleUnderlineStyle, but
subclasses can define their own underline stile=Rect is the line fragment rectangle containing the
glyphs to draw underlining for, aritheGlyphRange is the range of all glyphs within that line fragment
rectanglecontainerOrigin is the origin of the line fragment rectangle’s NSTextContainer in its
NSTextView.

This method determines which glyphs actually need to be underlined bagedbdimeType. With
NSSingleUnderlineStyle, for example, leading and trailing whitespace isn’t underlined, but whitespace
between visible glyphs is. A potential word-underline style would omit underlining on any whitespace.



After determining which glyphsto draw underlining on, this method invokes
drawUnderlineFor GlyphRange:... for each contiguous range of glyphsthat requiresit.

See also: —textContainer For GlyphAtindex:effectiveRange:, —textContainer Origin (NSTextView)

\9 usedRectForTextContainer:
— (NSSizeyisedRectFor TextContainer : (NSTextContainer *3TextContainer

Returns the bounding rectangle for the glyphs laid oaT@xtContainer, which tells “how full” it is. This
rectangle is given in th@&TextContainer’'s coordinate system.

See also: —container Size (NSTextContainer)

\9 usesScreenkFonts
— (BOOL )usesScr eenFonts

Returns YES if the receiver calculates layout and displays text using screen fonts when possible, NO
otherwise.

See also: — setUsesScreenFonts:, —substituteFontFor Font:

Methods Implemented By the Delegate

\9 layoutManager:didCompleteLayoutForTextContainer:atEnd:

— (void)layoutM anager : (NSLayoutManager *gLayoutManager
didCompletel ayoutFor TextContainer : (NSTextContainer *3TextContai ner
ateEnd: (BOOL)flag

Informs the delegate thatayoutManager has finished laying out text airextContainer. aTextContainer

is nil if there aren’t enough containers to hold all the text; the delegate can use this information as a cue to
add another container.flag is YES,alLayoutManager is finished laying out its text—this also means that
aTextContainer is the final text container used by the layout manager. Delegates can use this information
to show an indicator or background or to enable or disable a button that forces immediate layout of text.

\9 layoutManagerDidInvalidateLayout:
— (void)layoutM anager Didl nvalidatel ayout: (NSLayoutManager *§LayoutManager

Informs the delegate thatayoutManager has invalidated layout information (not glyph information). This
method is invoked only when layout was complete and then became invalidated for some reason. Delegates

25



Classes: NSLayoutManager

can use this information to show an indicator or background layout or to enable a button that forces
immediate layout of text.

26



