Chapter

NSInvocation

Inherits From: NSObject
Conforms To: NSCoding

NSObject (NSObject)
Declared In: Foundation/NSInvocation.h

Class Description

An NSInvocation isan Objective-C message rendered static, an action turned into an object. NSInvocation
objects are used to store and forward messages between objects and between applications, primarily by
NSTimersand the distributed objects system. An NSInvocation contains all the elements of an Objective-C
message: atarget, a selector, arguments, and the return value. Each of these elements can be set directly,
and the return value is set automatically when the NSInvocation is dispatched.

An NSlInvocation can be repeatedly dispatched to different targets; its arguments can be modified between
dispatch for varying results; even its selector can be changed to another with the same method signature
(argument and return types). This makesit useful for repeating messages with many arguments and
variations; rather than retyping a dightly different expression for each message, you modify the
NSInvaocation as needed each time before dispatching it to a new target.

Creating an NSInvocation requires severa steps. Consider this method of the custom class MyCalendar:
— (BOOL)updateAppointmentskor Date: (NSDate *pDate

updateAppointmentsFor Date: takes an NSDate as its only argument, and returns YES or NO depending
on whether the appointments could be updated without conflicts. The following code fragment sets up an
NSInvocation for it:

SEL theSel ector;
NSMet hodSi gnat ure *aSi gnat ur e;
NSI nvocati on *anl nvocati on;

theSel ector = @el ect or (updat eAppoi nt ment sForDate:);

aSi gnature = [MyCal endar met hodSi gnat ur eFor Sel ect or: t heSel ect or]

anl nvocation = [NSl nvocati on invocati onWthMet hodSi gnature: aSi gnature];
[anl nvocation set Sel ector:theSel ector];

The first two lines get the NSMethodSignature fonthéateAppointmentsFor Date: method. The last two

lines actually create the NSInvocation and set its selector. Note that the selector can be set to any selector
matching the signature apdateAppointmentsFor Date;. Any of these methods can be used with

anl nvocation:

Chapter

Classes: NSlnvocation

— (BOOL)clear AppointmentsFor Date: (NSDate *pDate
— (BOOL)isAvailableOnDate: (NSDate *pDate
— (BOOL)setM eetingTime: (NSDate *pDate

Before being dispatchednlnvocation must have its target and arguments set:

MyCal endar *user Dat ebook; /* Assune this exists. */
NSDat e *t odaysDat e; /* Assune this exists. */

[anl nvocati on set Tar get: user Dat ebook] ;
[anl nvocati on set Argunent: & odaysDat e at | ndex: 3];

setArgument:atl ndex: sets the specified argument to the value supplied. Every method has two hidden
arguments, the target and selector, so the first argument that needs to be set is actually at index 3. In this
casetodaysDate will be the NSDate argument tpdateAppointmentsFor Date:.

To dispatch the NSInvocation, sendiavnoke orinvokeWithTarget: messaganvoke only produces a
result if the NSinvocation has a target set. Once dispatched, the NSInvocation contains the return value of
the message, whiaetReturnValue: produces:

BOOL result;

[anl nvocati on invoke];
[anl nvocati on get ReturnVal ue: & esult];

Saving NSInvocations for Later Use

Because an NSiInvocation doesn’t always need to retain its arguments, by default it doesn’t do so. This can
cause object arguments as well as the target to become invalid if they’re automatically released. If you plan
to cache an NSInvocation or dispatch it repeatedly during the execution of your application, you should
send it aetainArguments message. This method retains the target and all object arguments, and copies C
strings so that they’re not lost because another object frees them.

Using NSinvocations with NSTimers

Suppose the NSInvocation created above is being used in a time-management application that allows
multiple users to set appointments for others, such as group meetings. This application might allow a user’s
calendar to be automatically updated every few minutes, so that the user always knows what his schedule
looks like. Such automatic updating can be accomplished by setting up NSTimer objects with
NSInvocations.

Given the NSiInvocation above, this is as simple as invoking one NSTimer method:

[NSTi mer schedul edTi mer Wt hl nterval : 600
i nvocat i on: anl nvocati on
repeats: YES] ;

Chapter

Thisline of code sets up an NSTimer to dispatch anl nvacation every 10 minutes (600 seconds). Note that
an NSTimer always instructs its NSInvocation to retain its arguments; thus, you don't need to send
retainArguments yourself. See the NSTimer class specification for more information on timers.

Adopted Protocols

NSCoding —encodeWithCoder:
— initwWithCoder:

Method Types

Creating instances + invocationWithMethodSignature:

Accessing message elements — setArgument:atindex:
— getArgument:atindex:
— setReturnValue:
— getReturnValue:
— setSelector:
— selector
— setTarget:
— target

Managing arguments — argumentsRetained
— retainArguments

Dispatching an invocation —invoke
— invokeWithTarget:

Getting the method signature — methodSignature

Class Methods

invocationWithMethodSignature:
+ (NSInvocation *)nvocationWithM ethodSignatur e:(NSMethodSignature Ygnature
Returns an NSInvocation object able to construct messages using selectors dessigpatlis The new

object must have its selector set vadtSelector: and its arguments set wgtArgument:atindex: before
it can be invoked.

Chapter

Classes: NSlnvocation

Instance Methods

argumentsRetained
— (BOOL)argumentsRetained
Returns YES if the NSInvocation has retained its arguments, NO otherwise.

See also: —retainArguments

getArgument:atindex:
— (void)getArgument:(void *)buffer atl ndex:(int)index

Copies the argument storedradex into the storage pointed to byffer. Indices 0 and 1 indicate the hidden
argumentsealf and_cmd, respectively; these values can be retrieved directly withatlget andselector
methods. Use indices 2 and greater for the arguments normally passed in a message.

buffer must be large enough to accommodate the argument value. This method raises
NSinvalidArgumentException ihdex is greater than the actual number of arguments for the selector.

See also: —sSatArgument:atindex: —number OfArguments (NSMethodSignature)

getReturnValue:
— (void)getRetur nValue: (void *)buffer

Copies the invocation’s return value into the storage pointedhaffey, which should be large enough to
accommodate the value. Use NSMethodSignatunetfodRetur nLength method to determine the size
needed fobuffer:

unsigned int length = [[nylnvocation nethodSi gnat ure]
met hodRet ur nLengt h] ;
buffer = (void *)mall oc(length);

If the NSInvocation has never been invoked the result of this method is undefined.

See also: —satReturnValue:, —methodReturnType (NSMethodSignature)

invoke
— (void)invoke

UsesinvokeWithTar get: to send the NSInvocation’s message with arguments to its target. The
NSInvocation’s target, selector, and argument values must be set before this method is invoked.

See also: —getReturnValue:, —setSelector:, —setTarget:, —setArgument:atlndex:

Chapter

invokeWithTarget:
— (void)invokeWithTar get: (id)anObject
Sends the NSInvocation’s message with argumerais@bject and sets the return value. Doesn't set the

NSiInvocation’s target. The NSInvocation’s selector and argument values must be set before this method is
invoked.

See also: —getReturnValue:, —invoke, —setSelector:, —setTar get:, —setArgument:atindex:

methodSignature
— (NSMethodSignature miethodSignature

Returns the invocation’s method signature.

retainArguments
— (void)retainArguments

If the NSInvocation hasn't already done so, retains the NSinvocation’s target and all object arguments, and
copies all C string arguments. Before this method is invokemimentsRetained returns NO; after, it
returns YES.

For efficiency, newly created NSInvocations don'’t retain or copy their arguments, nor do they retain their
targets or copy C strings. You should instruct an NSInvocation to retain its arguments if you intend to cache
it, since the arguments may otherwise be released before the NSInvocation is invoked. NSTimers always
instruct their NSInvocations to retain their arguments, for example, since there’s usually a delay before an
NSTimer fires.

selector
— (SEL)selector

Returns the NSInvocation’s selector, or O if it hasn’t been set.

See also: — SetSelector:

setArgument:atindex:
— (void)setArgument: (void *)buffer atl ndex:(int)index

Copies the contents biiffer as the argument aidex. Indices 0 and 1 indicate the hidden argumsaits
and_cmd, respectively; these values should be set directly witbetfi@r get: andsetSelector: methods.

Chapter

Classes: NSlnvocation

Useindices 2 and greater for the arguments normally passed in a message. The number of bytes copied is
determined by the argument size.

This method raises NSlnvalidArgumentException if the value of index is greater than the actual number of
arguments for the selector.

See also: —getArgument:atl ndex:, —number OfArguments (NSMethodSignature)

setReturnValue:
— (void)setReturnValue: (void *)buffer

Copies the contents bfiffer as the NSinvocation’s return value. This is normally set when you send an
invoke orinvokeWithTarget: message.

See also: —getReturnValue:, —methodRetur nLength (NSMethodSignature),
—methodRetur nType (NSMethodSignature)

setSelector:
— (void)set Selector: (SEL)selector

Sets the NSInvocation’s selectorsabector.

See also: — sglector

setTarget:

— (void)set Tar get: (id)anObject
Sets the NSInvocation’s targetanObject. The target is the receiver of the message seimvoke.
See also: —target, —invokeWithTarget:

target
— (id)tar get
Returns the NSinvocation’s target,rit if the NSinvocation has no target.

See also: —SetTarget:

