
Classes: NSArray Class Cluster 1

NSArray Class Cluster

Class Cluster Description

NSArray objects manage arrays of objects. The cluster’s two public classes, NSArray and
NSMutableArray, declare the programmatic interface for static and dynamic arrays,
respectively.

The objects you create using these classes are referred to as array objects. Because of the
nature of class clusters, array objects are not actual instances of the NSArray or
NSMutableArray classes but of one of their private subclasses. Although an array object’s
class is private, its interface is public, as declared by these abstract superclasses, NSArray
and NSMutableArray. (See “Class Clusters” in the introduction to the Foundation Kit for
more information on class clusters and creating subclasses within a cluster.)

Generally, you instantiate an array object by sending one of the array... messages to either
the NSArray or NSMutableArray class object. These methods return an array object
containing the elements you pass in as arguments. (Note that arrays can’t contain the nil
object.) In general, objects that you add to an array aren’t copied; rather, each object
receives a retain message before its id is added to the array. When an object is removed
from an array, it’s sent a release message.

The NSArray class adopts the NSCopying and NSMutableCopying protocols, making it
convenient to convert an array of one type to the other.

 2 Classes: NSArray Class Cluster

NSArray

Inherits From: NSObject

Conforms To: NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: foundation/NSArray.h

Class Description

The NSArray class declares the programmatic interface to an object that manages an
immutable array of objects. NSArray’s two primitive methods—count and
objectAtIndex:—provide the basis for all the other methods in its interface. The count
method returns the number of elements in the array. objectAtIndex: gives you access to
the array elements by index, with index values starting at 0.

The methods objectEnumerator and reverseObjectEnumerator also permit sequential
access of the elements of the array, differing only in the direction of travel through the
elements. These methods are provided so that array objects can be traversed in a manner
similar to that used for objects of other collection classes, such as NSDictionary.

NSArray provides methods for querying the elements of the array. indexOfObject:
searches the array for the object that matches its argument. To determine whether the
search is successful, each element of the array is sent an isEqual: message, as declared in
the NSObject protocol. Another method, indexOfObjectIdenticalTo: , is provided for the
less common case of determining whether a specific object is present in the array.
indexOfObjectIdenticalTo: tests each element in the array to see whether its id matches
that of the argument.

NSArray’s makeObjectsPerform: and makeObjectsPerform:withObject: methods let
you act on the individual objects in the array by sending them messages. To act on the array
as a whole, a variety of methods are defined. You can create a sorted version of the array
(sortedArrayUsingSelector: and sortedArrayUsingFunction:context:), extract a subset
of the array (subarrayWithRange:), or concatenate the elements of an array of NSString
objects into a single string (componentsJoinedByString:). In addition, you can compare
two array objects using the isEqualToArray: and firstObjectCommonWithArray:
methods.

▲

Classes: NSArray Class Cluster 3

Instance Variables

None declared in this class.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

NSCopying – copy
– copyWithZone:

NSMutableCopying – mutableCopy
– mutableCopyWithZone:

Method Types

Allocating and initializing an NSArray
+ allocWithZone:
+ array
+ arrayWithObject:
+ arrayWithObjects:
– initWithArray:
– initWithObjects:
– initWithObjects:count:

Querying the array – containsObject:
– count
– indexOfObject:
– indexOfObjectIdenticalTo:
– lastObject
– objectAtIndex:
– objectEnumerator
– reverseObjectEnumerator

Sending messages to elements – makeObjectsPerform:
– makeObjectsPerform:withObject:

Comparing arrays – firstObjectCommonWithArray:
– isEqualToArray:

Deriving new arrays – sortedArrayUsingFunction:context:
– sortedArrayUsingSelector:
– subarrayWithRange:

 4 Classes: NSArray Class Cluster

Joining string elements – componentsJoinedByString:

Creating a description of the array
– description
– descriptionWithIndent:

Class Methods

allocWithZone:

+ allocWithZone:(NSZone *)zone

Creates and returns an uninitialized array object in the specified zone. If the receiver is the
NSArray class object, an instance of an appropriate immutable private subclass is returned;
otherwise, an object of the receiver’s class is returned.

Typically, you create array objects using the array... class methods, not the alloc... and
init... methods. Note that it’s your responsibility to release objects (with either release or
autorelease) created with the alloc... methods.

See also: + array, + arrayWithObject: , + arrayWithObjects:

array

+ array

Creates and returns an empty array object. This method is declared primarily for the use of
mutable subclasses of NSArray.

See also: + arrayWithObject: , + arrayWithObjects:

arrayWithObject:

+ arrayWithObject: anObject

Creates and returns an array object containing the single element anObject.

See also: + array, + arrayWithObjects:

Classes: NSArray Class Cluster 5

arrayWithObjects:

+ arrayWithObjects:firstObj, ...

Creates and returns an array object containing the objects in the argument list. The
argument list is a comma-separated list of objects ending with nil .

As an example, this excerpt creates an array object containing three different types of
elements (assuming aPath exits):

NSArray *myArray;

NSData *someData = [NSData dataWithContentsOfFile:aPath];

NSValue *aValue = [NSNumber numberWithInt:5];

NSString *aString = @”a string”;

myArray = [NSArray arrayWithObjects:someData, aValue, aString, nil];

See also: + array, + arrayWithObject:

Instance Methods

componentsJoinedByString:

– (NSString *)componentsJoinedByString:(NSString *)separator

Constructs and returns an NSString object that is the result of interposing separator
between the elements of the receiver’s array. For example, this code excerpt causes
myTextObject to display the path /NextDeveloper/Examples (assuming stream exists):

NSArray *pathArray = [NSArray arrayWithObjects:@"NextDeveloper",

 @"Examples", nil];

NSLog("The path is /%@.\n”,

[pathArray componentsJoinedByString:@”/”]);

[myTextObject readText:stream];

Each element of the receiver’s array must be an NSString or an error occurs. If the receiver
has no elements, an NSString object representing an empty string is returned.

See also: – componentsSeparatedByString: (NSString)

 6 Classes: NSArray Class Cluster

containsObject:

– (BOOL)containsObject:anObject

Returns YES if anObject is present in the array. This method works by invoking
indexOfObject:, which compares each object in the array to anObject by sending them
each an isEqual: message.

See also: – indexOfObject:, – indexOfObjectIdenticalTo: , – isEqual:
(NSObject protocol)

count

– (unsigned)count

Returns the number of objects currently in the array.

See also: – objectAtIndex:

description

– (NSString *)description

Returns a string object that represents the contents of the receiver. The returned object uses
the PropertyList format.

See also: descriptionWithIndent:

descriptionWithIndent:

– (NSString *)descriptionWithIndent: (unsigned)level

Returns a string object that represents the contents of the receiver. The returned object uses
the PropertyList format. level allows you to specify a level of indent, to make the output
more readable: set level to 0 for no indent, or 1 to have the output indented four spaces.

See also: description

Classes: NSArray Class Cluster 7

firstObjectCommonWithArray:

– firstObjectCommonWithArray: (NSArray *)otherArray

Returns the first object from the receiver’s array that’s equal to an object in otherArray.
This method invokes containsObject: to determine whether objects are equal. If no such
object is found, this method returns nil .

See also: – containsObject:, – isEqual: (NSObject protocol)

hash

@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For
an array object, hash returns the number of elements in the array. If two array objects are
equal (as determined by the isEqual: method), they will have the same hash value.

See also: – isEqual:

indexOfObject:

– (unsigned)indexOfObject:anObject

Returns the index of anObject, if found; otherwise, returns NSNotFound. This method
checks the elements in the array from last to first by sending them an isEqual: message.

See also: – containsObject:, – indexOfObjectIdenticalTo: , – isEqual:
(NSObject protocol)

indexOfObjectIdenticalTo:

– (unsigned)indexOfObjectIdenticalTo:anObject

Returns the index of anObject, if found; otherwise, returns NSNotFound. This method
checks the elements in the array from last to first by comparing their ids.

See also: – containsObject:, – indexOfObject:, – isEqual: (NSObject protocol)

 8 Classes: NSArray Class Cluster

initWithArray:

– initWithArray: (NSArray *)array

Initializes a newly allocated array object by placing in it the objects contained in array.
After an immutable array has been initialized in this way, it can’t be modified. Returns self.

See also: + arrayWithObject: , – initWithArray:copyItems: , – initWithObjects:

initWithObjects:

– initWithObjects: firstObj, ...

Initializes a newly allocated array object by placing in it the objects in the argument list.
This list is a comma-separated list of objects ending with nil . This method invokes
initWithObjects:count: as part of its implementation; thus, the objects are retained rather
than copied as they’re added to the array. After an immutable array has been initialized in
this way, it can’t be modified. Returns self.

See also: – initWithObjects:count: , + arrayWithObjects: , – initWithArray: ,
– initWithArray:copyItems:

initWithObjects:count:

– initWithObjects: (id *)objects count:(unsigned)count

Initializes a newly allocated array object by placing in it count objects from the objects
array. Each object in the objects array receives a retain message as it’s added to the array.
After an immutable array has been initialized in this way, it can’t be modified. Returns self.

See also: – initWithObjects: , + arrayWithObjects: , – initWithArray: ,
– initWithArray:copyItems:

isEqual:

@protocol NSObject
– (BOOL)isEqual:anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return
value indicates that the receiver and anObject both inherit from NSArray and contain the
same data (as determined by the isEqualToArray: method).

See also: – isEqualToArray:

Classes: NSArray Class Cluster 9

isEqualToArray:

– (BOOL)isEqualToArray: (NSArray *)otherArray

Compares the receiving array object to otherArray. If the contents of otherArray are equal
to the contents of the receiver, this method returns YES. If not, it returns NO.

Two arrays have equal contents if they each hold the same number of objects and objects at
a given index in each array satisfy the isEqual: test.

See also: – isEqual: (NSObject protocol)

lastObject

– lastObject

Returns the last object in the array by invoking the objectAtIndex: and count methods. If
the array is empty, lastObject raises an NSRangeException error.

See also: – removeLastObject

makeObjectsPerform:

– (void)makeObjectsPerform:(SEL)aSelector

Sends an aSelector message to each object in the array in reverse order (starting with the
last object and continuing backwards through the array to the first object). The aSelector
method must be one that takes no arguments. It shouldn’t have the side effect of modifying
the receiver. The messages are sent using the perform: method declared in the NSObject
protocol.

See also: – makeObjectsPerform:withObject:, – perform: (NSObject protocol)

makeObjectsPerform:withObject:

– (void)makeObjectsPerform:(SEL)aSelector withObject:anObject

Sends an aSelector message to each object in the array in reverse order (starting with the
last object and continuing backwards through the array to the first object). The message is
sent each time with anObject as an argument, so the aSelector method must be one that
takes a single argument of type id. The aSelector method shouldn’t, as a side effect, modify
the receiver. The messages are sent using the perform:with: method declared in the
NSObject protocol.

See also: – makeObjectsPerform:, – perform:with: (NSObject protocol)

 10 Classes: NSArray Class Cluster

objectAtIndex:

– objectAtIndex: (unsigned)index

Returns the object located at index. If index is beyond the end of the array, an
NSRangeException error is raised.

This method is fast, with an execution time that’s independent of the number of objects in
the array.

See also: – count

objectEnumerator

– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the array, starting with the
first element.

NSEnumerator *enumerator = [myArray objectEnumerator];

id anObject;

while (anObject = [enumerator nextObject]) {

 /* code to act on each element as it is returned */

}

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify
the array during enumeration.

See also: – reverseObjectEnumerator, – nextObject (NSEnumerator protocol)

reverseObjectEnumerator

– (NSEnumerator *)reverseObjectEnumerator

Returns an enumerator object that lets you access each object in the array, from the last
element to the first. Your code shouldn’t modify the array during enumeration.

See also: – objectEnumerator, – nextObject (NSEnumerator protocol)

sortedArrayUsingFunction:context:

– (NSArray *)sortedArrayUsingFunction:(int(*)(id, id, void *))comparator
context:(void *)context

Returns an array object that lists the receiver’s elements in ascending order as defined by
the comparison function comparator. The new array contains references to the receiver’s

Classes: NSArray Class Cluster 11

elements, not copies of them. The retain count is incremented for each element in the
receiving array.

The comparison function is used to compare two elements at a time and should return
NSOrderedAscending if the first element is smaller than the second,
NSOrderedDescending if the first element is larger than the second, and NSOrderedSame
if the elements are equal. Each time the comparison function is called, it’s passed context
as its third argument. This allows the comparison to be based on some outside parameter,
such as whether character sorting is case-sensitive or case-insensitive.

Given anArray (an array of integer number objects) and a comparison function of this type,

int intSort(id num1, id num2, void *context)

{

 int v1 = [num1 intValue];

 int v2 = [num2 intValue];

 return v1-v2;

}

A sorted version of anArray is created in this way:

NSArray *sortedArray;

sortedArray = [anArray sortedArrayUsingFunction:intSort

context:NULL];

Sorting using this method guarantees no more than N log N comparisons.

See also: – sortedArrayUsingSelector:

sortedArrayUsingSelector:

– (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Returns an array object that lists the receiver’s elements in ascending order, as determined
by the comparison method specified by the selector comparator. The new array contains
references to the receiver’s elements, not copies of them. The retain count is incremented
for each element in the receiving array.

The comparator message is sent to each object in the array, and has as its single argument
another object in the array. The comparator method is used to compare two elements at a
time and should return NSOrderedAscending if the receiver is smaller than the argument,
NSOrderedDescending if the receiver is larger than the argument, and NSOrderedSame if
they are equal. Sorting using this method guarantees no more than N log N comparisons.

For example, an array of NSString objects can be sorted by using the compare: method
declared in the NSString class. Assuming anArray exists, a sorted version of the array can
be created in this way:

 12 Classes: NSArray Class Cluster

NSArray *sortedArray;

sortedArray = [anArray sortedArrayUsingSelector:@selector(compare:)];

See also: – sortedArrayUsingFunction:context:

subarrayWithRange:

– (NSArray *)subarrayWithRange:(NSRange)range

Returns an array object containing the receiver’s elements that fall within the limits
specified by range. If range isn’t within the receiver’s range of elements, an
NSRangeException error is raised. The retain count is incremented for each element in the
receiving array.

For example, this excerpt creates an array containing the elements found in the first half of
wholeArray, which is assumed to exist.

NSArray *halfArray;

NSRange theRange;

theRange.location = 0;

theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRange];

Classes: NSArray Class Cluster 13

NSMutableArray

Inherits From: NSArray

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: foundation/NSArray.h

Class Description

The NSMutableArray class declares the programmatic interface to objects that manage a
modifiable array of objects. This class adds insertion and deletion operations to the basic
array-handling behavior it inherits from NSArray.

The array operations that NSMutableArray declares are conceptually based on these three
methods:

addObject:
replaceObjectAtIndex:withObject:
removeLastObject

The other methods in its interface provide convenient ways of inserting an object into a
specific slot in the array and of removing an object based on its identity or position in the
array.

When an object is removed from a mutable array it receives a release message. If there are
no further references to the object, it’s deallocated. Note that if your program keeps a
reference to such an object, the reference will become invalid unless you remember to send
the object a retain message before it’s removed from the array. For example, the third
statement below could result in a run-time error, except for the retain message in the first
statement:

id anObject = [[anArray objectAtIndex:0] retain];

[anArray removeObjectAtIndex:0];

[anObject someMessage];

▲

 14 Classes: NSArray Class Cluster

A Note for Those Creating Subclasses of NSMutableArray

Although conceptually the NSMutableArray class has three primitive methods, two others
also access the array object’s data directly. These methods are:

insertObject:atIndex:
removeObjectAtIndex:

These methods could be implemented using the primitives listed above but in doing so
would incur unnecessary overhead from the retain and release messages that objects would
receive as they are shifted to accommodate the insertion or deletion of an element.

Instance Variables

None declared in this class.

Method Types

Allocating and initializing an NSMutableArray
+ allocWithZone:
+ arrayWithCapacity:
– initWithCapacity:

Adding objects – addObject:
– addObjectsFromArray:
– insertObject:atIndex:

Removing objects – removeAllObjects
– removeLastObject
– removeObject:
– removeObjectAtIndex:
– removeObjectIdenticalTo:
– removeObjectsFromIndices:numIndices:
– removeObjectsInArray:

Replacing objects – replaceObjectAtIndex:withObject:

Rearranging objects – sortUsingFunction:context:

Classes: NSArray Class Cluster 15

Class Methods

allocWithZone:

+ allocWithZone:(NSZone *)zone

Creates and returns an uninitialized NSMutableArray object in the specified zone. If the
receiver is the NSMutableArray class object, an instance of an appropriate private subclass
is returned; otherwise, an object of the receiver’s class is returned.

Typically, you create array objects using the array... class methods, not the alloc... and
init... methods. Note that it’s your responsibility to release objects (with either release or
autorelease) created with the alloc... methods.

See also: + arrayWithCapacity:

arrayWithCapacity:

+ arrayWithCapacity: (unsigned)numItems

Creates and returns an NSMutableArray object, giving it enough allocated memory to hold
numItems objects. NSMutableArray objects allocate additional memory as needed, so
numItems simply establishes the object’s initial capacity.

See also: – initWithCapacity:

Instance Methods

addObject:

– (void)addObject:anObject

Inserts anObject at the end of the NSMutableArray. The object receives a retain message
as it’s added to the array. If anObject is nil , an NSInvalidArgumentException error occurs.

This method is fast, with an execution time that’s independent of the number of objects in
the array.

See also: – addObjectsFromArray: , – removeObject:

 16 Classes: NSArray Class Cluster

addObjectsFromArray:

– (void)addObjectsFromArray: (NSArray *)otherArray

Adds the objects contained in otherArray to the end of the receiver’s array of objects. This
method invokes addObject: as part of its implementation. Its execution speed is
proportional to the number of elements in otherArray.

See also: – addObject:

copyWithZone:

@protocol NSCopying
– copyWithZone:(NSZone *)aZone

Creates and returns an immutable copy of the receiver. The new array object contains
copies of the receiver’s elements.

Note that it’s your responsibility to release an array object created in this way.

See also: – mutableCopyWithZone: (NSObject protocol)

initWithCapacity:

– initWithCapacity: (unsigned)numItems

Initializes a newly allocated array object, giving it enough memory to hold numItems
objects. Mutable array objects allocate additional memory as needed, so numItems simply
establishes the object’s initial capacity. Returns self.

See also: – init , –arrayWithCapacity:

insertObject:atIndex:

– (void)insertObject:anObject atIndex:(unsigned)index

Inserts anObject into the NSMutableArray at index. If index is already occupied, the
objects at index and beyond are shifted down one slot to make room. anObject receives a
retain message as it’s added to the array. This method raises an
NSInvalidArgumentException error if anObject is nil and an NSRangeException error if
index is beyond the end of the array.

This method is slow, with an execution time that’s dependent on the number of objects in
the array.

See also: – removeObjectAtIndex:

Classes: NSArray Class Cluster 17

removeAllObjects

– (void)removeAllObjects

Empties the NSMutableArray of all its elements. As each object is removed, it’s sent a
release message.

See also: – removeObject:, – removeLastObject, – removeObjectAtIndex:,
– removeObjectIdenticalTo:

removeLastObject

– (void)removeLastObject

Removes the last object in the array and sends it a release message. removeLastObject:
raises an NSRangeException error if there are no objects in the array.

This method is fast, with an execution time that’s independent of the number of objects in
the array.

See also: – removeAllObjects, – removeObject:, – removeObjectAtIndex:,
– removeObjectIdenticalTo:

removeObject:

– (void)removeObject:anObject

Removes all occurrences of anObject in the array. This method uses the indexOfObject:
method to locate matches and then removes them by invoking removeObjectAtIndex:.
Thus, matches are determined on the basis of an object’s response to an isEqual: message.

See also: – removeAllObjects, – removeLastObject, – removeObjectAtIndex:,
– removeObjectIdenticalTo:

removeObjectAtIndex:

– (void)removeObjectAtIndex:(unsigned)index

Removes the object at index and moves all elements beyond index up one slot to fill the gap.
The removed object receives a release message. removeObjectAtIndex: raises an
NSRangeException error if index is beyond the end of the array.

 18 Classes: NSArray Class Cluster

This method is slow, with an execution time that’s dependent on the number of objects in
the array.

See also: – removeAllObjects, – removeLastObject, – removeObject:,
– removeObjectIdenticalTo:, – removeObjectsFromIndices:numIndices:

removeObjectIdenticalTo:

– (void)removeObjectIdenticalTo:anObject

Removes all occurrences of anObject in the array. This method uses the
indexOfObjectIdenticalTo: method to locate matches and then removes them by invoking
removeObjectAtIndex:. Thus, matches are determined on the basis of an object’s id.

See also: – removeAllObjects, – removeLastObject, – removeObject:,
– removeObjectAtIndex:

removeObjectsFromIndices:numIndices:

– (void)removeObjectsFromIndices:(unsigned *)indices
numIndices:(unsigned)count

This method is similar to removeObjectAtIndex:, but allows you to efficiently remove
multiple objects with a single operation. count indicates the number of objects to be
removed, while indices points to the first in a list of indexes.

This method does not distribute and therefore should be used sparingly.

See also: – removeObjectAtIndex:, – removeAllObjects

removeObjectsInArray:

– (void)removeObjectsInArray: (NSArray *)otherArray

This method is similar to removeObject:, but allows you to efficiently remove large sets of
objects with a single operation. It assumes that all elements in otherArray—which are the
objects to be removed—respond to hash and isEqual:.

This method does not distribute and therefore should be used sparingly.

See also: – removeAllObjects, – removeObject:, – removeObjectIdenticalTo:

Classes: NSArray Class Cluster 19

replaceObjectAtIndex:withObject:

– (void)replaceObjectAtIndex:(unsigned)index withObject: anObject

Replaces the object at index with anObject. anObject receives a retain message as it’s
added to the array, and the previous object at index receives a release message. This
method raises an NSInvalidArgumentException error if anObject is nil and an
NSRangeException error if index is beyond the end of the array.

This method is fast, with an execution time that’s independent of the number of objects in
the array.

See also: – insertObjectAtIndex: , – removeObjectAtIndex:

sortUsingFunction:context:

– (void)sortUsingFunction:(int (*)(id ,id ,void *))compare context:(void *)context

Sorts (in place) the receiver’s elements in ascending order as defined by the comparison
function compare. context is passed to the comparator function as its third argument.

