
1

 

� NSFileWrapper

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSFileWrapper.h

Class Description

An NSFileWrapper holds a file’s contents in dynamic memory. In this role it enables a document object to 
embed a file, treating it as a unit of data that can be displayed as an image (and possibly edited in place), 
saved to disk, or transmitted to another application. It can also store an icon for representing the file in a 
document or in a dragging operation.

Instances of this class are referred to as file wrapper objects, and when no confusion will result, merely as 
file wrappers. A file wrapper can be one of three specific types: a regular file wrapper, which holds the 
contents of a single actual file; a directory wrapper, which holds a directory and all of the files or directories 
within it; or a link wrapper, which simply represents a symbolic link in the file system (sometimes called a 
shortcut or alias). Some NSFileWrapper methods apply only to a specific type, and raise an exception if 
sent to a file wrapper of the wrong type. To determine the type of a file wrapper, use the isRegularFile, 
isDirectory, and isSymbolicLink methods.

You can create a file wrapper from data in memory using initWithSerializedRepresentation: or from data 
on disk using initWithPath:. Both create the appropriate type of file wrapper based on the nature of the 
serialized representation or of the file on disk. Three convenience methods each create a file wrapper of a 
specific type: initRegularFileWithContents:, initDirectoryWithFileWrappers:, and 
initSymbolicLinkWithDestination:. Because each initialization method creates file wrappers of different 
types or states, they’re all designated initializers for this class—subclasses must meaningfully override 
them all as necessary.

Memory and Disk Representations

Because the purpose of a file wrapper is to represent files in memory, it’s very loosely coupled to any disk 
representation. A file wrapper doesn’t record the path to the disk representation of its contents. This allows 
you to save the same file wrapper with different paths, but it also requires you to record those paths if you 
want to update the file wrapper from disk later. NSFileWrapper allows you to set a preferred filename for 
save operations and records the last filename it was actually saved to; the preferredFilename and filename 
methods return these names. This feature is more important for directory wrappers, though, and so is 
discussed below under “Working with Directory Wrappers.”



2

Classes: NSFileWrapper

A file wrapper stores file system information (such as modification time and access permissions), which it 
updates when reading from disk and uses when writing files to disk. The fileAttributes method returns this 
information in the format described in the NSFileManager class specification. You can also set the file 
attributes using the setFileAttributes: method.

When saving a file wrapper to disk, you typically determine the directory you want to save it in, then append 
the preferred filename to that directory path and use writeToFile:atomically:updateFilenames:, which 
saves the file wrapper’s contents and updates the file attributes. You can save a file wrapper under a 
different name if you wish, but this may result in the recorded filename differing from the preferred 
filename, depending on how you invoke the writeToFile:... method.

Besides saving its contents to disk, a file wrapper can re-read them from disk when necessary. The 
needsToBeUpdatedFromPath: method determines whether a disk representation may have changed, 
based on the file attributes stored the last time the file was read or written. If the file wrapper’s modification 
time or access permissions are different from those of the file on disk, this method returns YES. You can 
then use updateFromPath: to re-read the file from disk.

Finally, to transmit a file wrapper to another process or system (for example, over a distributed objects 
connection or through the pasteboard), you use the serializedRepresentation method to get an NSData 
object containing the file wrapper’s contents in the NSFileContentsPboardType format. You can safely 
transmit this representation over whatever channel you desire. The recipient of the representation can then 
reconstitute the file wrapper using the initWithSerializedRepresentation: method.

Working with Directory Wrappers

A directory wrapper contains other file wrappers (of any type), and allows you to access them by keys 
derived from their preferred filenames. You can add any type of file wrapper to a directory wrapper with 
addFileWrapper: or addFileWithPath:, and remove it with removeFileWrapper:. The convenience 
methods addRegularFileWithContents:preferredFilename: and 
addSymbolicLinkWithDestination:preferredFilename: allow you to add regular file and link wrappers 
while also setting their preferred names.

A directory wrapper stores its contents in an NSDictionary, which you can retrieve using the fileWrappers 
method. The keys of this dictionary are based on the preferred filenames of each file wrapper contained in 
the directory wrapper. There exist, then, three identifiers for a file wrapper within a directory wrapper:

• Preferred filename. This doesn’t uniquely identify the file wrapper, but the following identifiers are 
always based on it.

• Dictionary key. This is always equal to the preferred name when there are no other file wrappers of the 
same preferred name in the same directory wrapper. Otherwise, it’s a string made by adding a unique 
prefix to the preferred filename (note that the same file wrapper can have a different dictionary key for 
each directory wrapper that contains it). You use the dictionary key to retrieve the file wrapper object in 
memory, in order to get its contents or its filename (to update it from disk). You can get a file wrapper’s 
dictionary key by sending a keyForFileWrapper: message to the directory wrapper that contains it.



3

 

• Filename. This is usually based on the preferred filename, but isn’t necessarily the same as it or the 
dictionary key. You use the filename to update a single file wrapper relative to the path of the directory 
wrapper that contains it. Note that the filename may change whenever you save a directory wrapper 
containing the file wrapper (particularly if the file wrapper has been added to several different directory 
wrappers); thus, you should always retrieve the filename from the file wrapper itself each time you need 
it rather than caching it.

When working with the contents of a directory wrapper, you can use a dictionary enumerator to retrieve 
each file wrapper and perform whatever operation you need. Note that with the exceptions of saving and 
updating, a directory file wrapper defines no recursive operations for its contents. To set the file attributes 
for all contained file wrappers, or to perform any other such operation, you must define a recursive method 
that examines the type of each file wrapper and invokes itself anew for any directory wrapper it encounters.

Method Types

Initializing a file wrapper – initWithPath:
– initDirectoryWithFileWrappers:
– initRegularFileWithContents:
– initSymbolicLinkWithDestination:
– initWithSerializedRepresentation:

Writing to a file or serializing – writeToFile:atomically:updateFilenames:
– serializedRepresentation

Checking a file wrapper’s type – isRegularFile
– isDirectory
– isSymbolicLink

Setting attributes – setFilename:
– filename
– setPreferredFilename:
– preferredFilename
– setIcon:
– icon
– setFileAttributes:
– fileAttributes

Updating – needsToBeUpdatedFromPath:
– updateFromPath:



4

Classes: NSFileWrapper

Modifying a directory wrapper – addFileWrapper:
– removeFileWrapper:
– addFileWithPath:
– addRegularFileWithContents:preferredFilename:
– addSymbolicLinkWithDestination:preferredFilename:
– fileWrappers
– keyForFileWrapper:

Inspecting a regular file wrapper – regularFileContents

Inspecting a link wrapper – symbolicLinkDestination

Instance Methods

� addFileWithPath:
– (NSString *)addFileWithPath:(NSString *)path

Adds a new file wrapper to the receiving directory wrapper. Initializes the new file wrapper with 
initWithPath: using path as the argument, then adds the new file wrapper by invoking addFileWrapper:. 
Returns the dictionary key used for the newly added file wrapper within the directory wrapper. Raises an 
NSInternalInconsistencyException if sent to a regular file or link wrapper.

See also: – addRegularFileWithContents:preferredFilename:, 
– addSymbolicLinkWithDestination:preferredFilename:, –removeFileWrapper:, 
– fileWrappers

� addFileWrapper:
– (NSString *)addFileWrapper:(NSFileWrapper *)wrapper

Adds wrapper to the receiving directory wrapper. Returns the dictionary key used for wrapper within the 
directory wrapper. Raises an NSInternalInconsistencyException if sent to a regular file or link wrapper, or 
an NSInvalidArgumentException if wrapper doesn’t have a preferred name (set using 
setPreferredName:).

See also: – addFileWithPath:, –addRegularFileWithContents:preferredFilename:, 
– addSymbolicLinkWithDestination:preferredFilename:, –removeFileWrapper:, 
– fileWrappers



5

 

� addRegularFileWithContents:preferredFilename:
– (NSString *)addRegularFileWithContents:(NSData *)contents 

preferredFilename:(NSString *)filename

Adds a new regular file wrapper to the receiving directory wrapper. Initializes the new file wrapper with 
initRegularFileWithContents: using contents as the argument, sets its preferred name with 
setPreferredName: using filename as the argument, then adds the new file wrapper by invoking 
addFileWrapper:. Returns the dictionary key used for the newly added file wrapper within the directory 
wrapper. Raises an NSInternalInconsistencyException if sent to a regular file or link wrapper, or an 
NSInvalidArgumentException if filename is nil or empty.

See also: – addFileWithPath:, –addSymbolicLinkWithDestination:preferredFilename:, 
– removeFileWrapper:, – fileWrappers

� addSymbolicLinkWithDestination:preferredFilename:
– (NSString *)addSymbolicLinkWithDestination:(NSString *)path 

preferredFilename:(NSString *)filename

Adds a new link wrapper to the receiving directory wrapper. Initializes the new link wrapper with 
initSymbolicLinkWithDestination: using path as the argument, sets its preferred name with 
setPreferredName: using filename as the argument, then adds the new link wrapper by invoking 
addFileWrapper:. Returns the dictionary key used for the newly added link wrapper within the directory 
wrapper. Raises an NSInternalInconsistencyException if sent to a regular file or link wrapper, or an 
NSInvalidArgumentException if filename is nil or empty.

See also: – addFileWithPath:, –addFileWrapper:, 
– addRegularFileWithContents:preferredFilename:, –removeFileWrapper:, 
– fileWrappers

� fileAttributes
– (NSDictionary *)fileAttributes

Returns the file attributes last read from disk or set using setFileAttributes:. These attributes are used 
whenever the file wrapper is saved using writeToFile:atomically:updateFilenames:. See the 
NSFileManager class specification for information on the contents of the attributes dictionary.

� filename
– (NSString *)filename

Returns the filename for the last known disk representation of the receiver, or nil if the receiver has no 
filename. The filename is used for record-keeping purposes only, and is set automatically when the file 



6

Classes: NSFileWrapper

wrapper is created from disk using initWithPath: and when it’s saved to a disk using 
writeToFile:atomically:updateFilenames: (although this method allows you to request that the filename 
not be updated).

See also: – preferredFilename:, –setFilename:

� fileWrappers
– (NSDictionary *)fileWrappers

Returns the file wrappers contained in a directory wrapper. Raises an NSInternalInconsistencyException if 
sent to a regular file or link wrapper. See “Working with Directory Wrappers” in the class description for 
information on the dictionary.

See also: – filename, –addFileWrapper:

� icon
– (NSImage *)icon

Returns an image that can be used to represent the file wrapper to the user, or nil if the file wrapper has 
none. You don’t have to use this image; for example, a file viewer typically looks up icons automatically 
based on file extensions, and so wouldn’t need this image. Similarly, if a file wrapper represents an image 
file, you can display the image directly rather than a file icon.

See also: – setIcon:

� initDirectoryWithFileWrappers:
– (id)initDirectoryWithFileWrappers:(NSDictionary *)wrappers

Initializes a newly allocated NSFileWrapper as a directory wrapper containing wrappers. The new 
directory wrapper has no filename or associated disk representation until you save it using 
writeToFile:atomically:updateFilenames:. It’s also initialized with open permissions; anyone can read, 
write, or change directory to the disk representations that it saves.

If any file wrapper in wrappers doesn’t have a preferred name, its preferred name is automatically set to its 
corresponding dictionary key in wrappers.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – setFileAttributes:



7

 

� initRegularFileWithContents:
– (id)initRegularFileWithContents:(NSData *)contents

Initializes a newly allocated NSFileWrapper as a regular file wrapper with contents. The new file wrapper 
has no filename or associated disk representation until you save it using 
writeToFile:atomically:updateFilenames:. It’s also initialized with open permissions; anyone can read 
or write the disk representations that it saves.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

� initSymbolicLinkWithDestination:
– (id)initSymbolicLinkWithDestination:(NSString *)path

Initializes a newly allocated NSFileWrapper as a link wrapper pointing to path. The new file wrapper has 
no filename or associated disk representation until you save it using 
writeToFile:atomically:updateFilenames:. It’s also initialized with open permissions; anyone can read 
or write the disk representations that it saves.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

� initWithPath:
– (id)initWithPath:(NSString *)path

Initializes a newly allocated NSFileWrapper with the file or directory at path, setting its type to regular file, 
directory, or link wrapper based on the type of that file and caching the file’s attributes. Also sets the 
receiver’s preferred filename and recorded filename to the last component of path. If path identifies a 
directory, this method recursively creates file wrappers for each file or directory within that directory.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

� initWithSerializedRepresentation:
– (id)initWithSerializedRepresentation:(NSData *)data

Initializes a newly allocated NSFileWrapper with data, setting its type to regular file, directory, or link 
wrapper based on the nature of that data and reading the file attributes from the data as well. data is a 
serialized representation of a file’s or directory’s contents in the format used for the pasteboard type 



8

Classes: NSFileWrapper

NSFileContentsPboardType. Data of this format is returned by such methods as serializedRepresentation 
or NSAttributedString’s RTFDFromRange:.

The new file wrapper has no filename or associated disk representation until you save it using 
writeToFile:atomically:updateFilenames:. This method is a designated initializer for the NSFileWrapper 
class. Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

� isDirectory
– (BOOL)isDirectory

Returns YES if the receiver is a directory wrapper, NO otherwise.

See also: – isRegularFile, – isSymbolicLink

� isRegularFile
– (BOOL)isRegularFile

Returns YES if the receiver is a regular file wrapper, NO otherwise.

See also: – isDirectory, – isSymbolicLink

� isSymbolicLink
– (BOOL)isSymbolicLink

Returns YES if the receiver is a link wrapper, NO otherwise.

See also: – isDirectory, – isRegularFile

� keyForFileWrapper:
– (NSString *)keyForFileWrapper:(NSFileWrapper *)wrapper

Returns the key by which the receiving directory wrapper stores wrapper in its dictionary (as returned by 
the fileWrappers method). This is not necessarily the filename for wrapper. Raises an 
NSInternalInconsistencyException if sent to a regular file or link wrapper.

See also: – filename



9

 

� needsToBeUpdatedFromPath:
– (BOOL)needsToBeUpdatedFromPath:(NSString *)path

Returns YES if the receiver’s contents on disk may have changed, NO otherwise. For a regular file wrapper, 
this is determined by comparing the modification time and access permissions of the file or directory at path 
against those of the receiver. For a link wrapper, this is determined by checking whether the destination path 
has changed (not by checking the modification time or access attributes of the destination). For a directory, 
this is determined as needed recursively for each file wrapper contained in the directory; added or removed 
files also count as changes.

See also: – updateFromPath:, – fileAttributes

� preferredFilename
– (NSString *)preferredFilename

Returns the file wrapper’s preferred filename. This name is used as the default dictionary key and filename 
when a file wrapper is added to a directory wrapper. However, if another file wrapper with the same 
preferred name already exists in the directory wrapper when the receiver is added, the dictionary key and 
filename assigned may differ from the preferred filename.

See also: – setPreferredFilename:, – filename

� regularFileContents
– (NSData *)regularFileContents

Returns the contents of the receiving regular file wrapper. Raises an NSInternalInconsistencyException if 
sent to a directory or link wrapper.

� removeFileWrapper:
– (void)removeFileWrapper:(NSFileWrapper *)wrapper

Removes wrapper from the receiving directory wrapper and releases it. Raises an 
NSInternalInconsistencyException if sent to a regular file or link wrapper.

See also: – addFileWithPath:, –addFileWrapper:, 
– addRegularFileWithContents:preferredFilename:, 
– addSymbolicLinkWithDestination:preferredFilename:, – fileWrappers



10

Classes: NSFileWrapper

� serializedRepresentation
– (NSData *)serializedRepresentation

Returns the receiver’s contents as an opaque collection of data, in the format used for the pasteboard type 
NSFileContentsPboardType.

See also: – initWithSerializedRepresentation:

� setFileAttributes:
– (void)setFileAttributes:(NSDictionary *)attributes

Sets the file attributes that are applied whenever the file wrapper is saved using 
writeToFile:atomically:updateFilenames: to attributes. See the NSFileManager class specification for 
information on the contents of the attributes dictionary.

See also: – fileAttributes

� setFilename:
– (void)setFilename:(NSString *)filename

Sets the filename for the disk representation of the receiver to filename. The filename is used for 
record-keeping purposes only, and is set automatically when the file wrapper is saved to a disk using 
writeToFile:atomically:updateFilenames: (although this method allows you to request that the filename 
not be updated). You should rarely need to invoke this method.

Raises an NSInvalidArgumentException if filename is nil or empty.

See also: – setPreferredFilename:, – filename

� setIcon:
– (void)setIcon:(NSImage *)anImage

Sets the image that can be used to represent the file wrapper to the user to anImage. You don’t have to use 
this image; for example, a file viewer typically looks up icons automatically based on file extensions, and 
so wouldn’t need this image. Similarly, if a file wrapper represents an image file, you can display the image 
directly rather than a file icon.

See also: – icon



11

 

� setPreferredFilename:
– (void)setPreferredFilename:(NSString *)filename

Sets the receiver’s preferred filename to filename. This name is used as the default dictionary key and 
filename when a file wrapper is added to a directory wrapper. However, if another file wrapper with the 
same preferred name already exists in the directory wrapper when the receiver is added, the dictionary key 
and filename assigned may differ from the preferred filename. Raises an NSInvalidArgumentException if 
filename is nil or empty.

See also: – preferredFilename, –addFileWrapper:, –setFilename:

� symbolicLinkDestination
– (NSString *)symbolicLinkDestination

Returns the actual path represented by the receiving link wrapper. Raises 
NSInternalInconsistencyException if sent to a regular file or directory wrapper.

� updateFromPath:
– (BOOL)updateFromPath:(NSString *)path

Re-reads the file wrapper’s information from the file or directory at path, including contents or link 
destination, icon, file attributes. For a directory wrapper, the contained file wrappers are also sent 
updateFromPath: messages. If files in the directory on disk have been added or removed, corresponding 
file wrappers are released or created as needed. Returns YES if updating actually occurred, NO if it wasn’t 
necessary.

See also: – needsUpdateFromPath:, –updateAttachmentsFromPath: (NSAttributedString class cluster)

� writeToFile:atomically:updateFilenames:
– (BOOL)writeToFile:(NSString *)path

atomically:(BOOL)atomicFlag
updateFilenames:(BOOL)updateNamesFlag

Writes the receiver’s contents to a file or directory at path. Returns YES on success and NO on failure. If 
atomicFlag is YES, attempts to write the file safely so that an existing file at path is not overwritten, nor 
does a new file at path actually get created, unless the write is successful. If updateNamesFlag is YES and 
the contents are successfully written, changes the receiver’s filename to the last component of path, and the 
filenames of any children of a directory wrapper to the filenames under which they’re written to disk.



12

Classes: NSFileWrapper

If you’re executing a “save” or “save as” style operation, pass YES for updateNamesFlag; if you’re 
executing a “save to” style operation, pass NO for updateNamesFlag.

See also: – filename


