\9 NSNumberFormatter

Inherits From: NSFormatter : NSObject
Conforms To: NSObject (NSObject)
NSCoding
NSCopying
Declared In: Foundation/NSNumberFormatter.h

Class Description

Instances of NSNumberFormatter format the textual representation of cells that contain

NSDecimalNumbers and convert textual representations of numeric valuesinto NSDecimalNumbers. The
representation encompassesintegers, floats, and doubl es; floats and doubles can be formatted to a specified
decimal position. NSNumberFormatters can al so impose ranges on the numeric valuesthat cells can accept.

NSControl provides delegation methods that permit you to validate cell contents and to handle errorsin
formatting. See the specification of the NSFormatter class for details.

When a cell with a NSNumberFormatter is copied, the new cell retains the NSNumberFormatter object
instead of copying it. You remove an NSNumberFormatter from acell by specifying nil asthe argument of
NSCell'ssetFormatter: method.

Instances of NSNumberFormatter are mutable.

Creating an Instance of NSNumberFormatter

The easiest way to use NSNumberFormatter is to drag a formatter onto a control in Interface Builder.
However, if you're not using Interface Builder to create your user interface or if you simply want more
fine-grained control over an NSNumberFormatter (for example, to change the text attributes of the values
displayed), you can create and manipulate instances of the class programmatically.

To create an NSNumberFormatter, allocate an instance of NSNumberFormatter and use one or more of
NSNumberFormatter’s “set format” methods to set its format. You then use NS&é&lbsmatter:
method to associate the NSNumberFormatter instance with a cell.

For example, the following code excerpt creates an instance of NSNumberFormatter, sets its formatting for
positive, zero, and negative values, and applies it to the cell of an NSTextField using NSCell's
setFormatter: method:

NSNunmber For matt er *number Formatter =
[[[NSNunber Formatter alloc] init] autorel ease];
[nunber For mat t er set For mat: @ $#, ###. 00; 0. 00; ($#, ##0. 00)"];

[[textField cell] setFormatter: nunber Formatter];

Thevalue of acell (NSCell) isrepresented by an abject, typically an NSDecimal Number object in this case.
When this value needs to be displayed or edited, the cell passes its object to the NSNumberFormatter
instance, which returns the formatted string. When the user enters a string, or when astring is
programmatically written in acell (using setStringValue:), the cell obtains the equivalent
NSDecimalNumber object from the NSNumberFormatter.

The most common technique for assigning aformat to an NSNumberFormatter object isto use the method
setFormat:, as shown above. This method takes as an argument an NSString whose contents can be one of
the following:

e @"positiveFormat”
For example, @"$###,##0.00” (the syntax of format strings is discussed in the following section).
e @"positiveFormat; negativerormat”
For example, @"###,##0.00; (###,##0.00)".
* @"positiveFormat; zeroF or mat; negativeFor mat”
For example, @"$### ##+#.00;0.00;($###,##0.00)". Note that zero formats are treated as string constants.

As implied in the preceding list, you're only required to specify a format for positive values. If you don’t
specify a format for negative and zero values, a default format based on the positive value format is used.
For example, if your positive value format is “#,##0.00”, an input value of “0” will be displayed as “0.00".

If you don't specify a format for negative values, the format specified for positive values is used, preceded
by a minus sign (-).

If you specify a separate format for negative values, its separators should be parallel to those specified in
the positive format string. In NSNumberFormatter, separators are either enabled or disabled for all
formats—both your negative and positive formats should therefore use the same approach.

As an alternative to using tisetFormat: method, you can use tketPositiveFormat: and
setNegativeFor mat: methods.

Format String Syntax
Format strings can include the following types of characters:
* Numbers

Format strings can include numeric characters. Wherever you include a number in a format string, the

number is displayed unless an input character in the same relative position “overwrites” it. For example,
suppose you have the positive format string @“9,990.00”, and the value 53.88 is entered into a cell to

which the format has been applied. The cell would display the value as 9,953.88.

e Separators

Format strings can include the period character (.) as a decimal separator, and comma character (,) as a
thousand separator. If you want to use different characters as separators, you can set them using the
setDecimal Separ ator : andsetThousandSeparator: methods. When you enable localization for an
NSNumberFormatter object by using the metkeitl ocalizesFormat:, separators are converted to
characters appropriate to the environment in which the application is running.

* Placeholders

You use the pound sign character (#) to represent numeric characters that will be input by the user. For
example, suppose you have the positive format @"$#,##0.00". If the characters 76329 were entered into
a cell to which the format has been applied, they would be displayed as $76,329.00. Strictly speaking,
however, you don’t need to use placeholders. The format strings @”,0.00”, @"#,#0.00, and @"#,##0.00"
are functionally equivalent. In other words, including separator characters in a format string signals
NSNumberFormatter to use the separators, regardless of whether you use (or where you put)
placeholders. The placeholder character’s chief virtue lies in its ability to make format strings more
human-readable, which is especially useful if you're displaying formats in the user interface.

» Spaces

To include a space in a format string, use the underscore character (_). This character inserts a space if
no numeric character has been input to occupy that position.

e Currency

The dollar sign character ($) is normally treated just like any other character that doesn’t play a special
role in NSNumberFormatter. However, when you enable localization for an NSNumberFormatter object
by using the methosktL ocalizesFor mat:, the dollar sign character is converted to the currency symbol
appropriate for the environment in which the application is running.

All other characters specified in a format string are displayed as typed. The following table shows examples
of the how the value 1019.55 is displayed for different positive formats:

Format String Display
@"“#,##0.00" 1,019.55
@"“$#,##0.00" $1,019.55
@"__, 0.00" 1,019.55

Working with Values as Attributed Strings

In NSNumberFormatter, positive, negative, zait,and “not a number” values are NSAttributedStrings.
NSAttributedStringpbjects manage character strings and associated sets of attributes (for example, font and
kerning) that apply to individual characters or ranges of characters in the string. An association of characters
and their attributes is called atiributed string. For more information on NSAttributedString, see the

NSAttributedString class cluster specification in the Foundation Kit Reference, and the NSAttributedString
Class Cluster Additions specification in the Application Kit Reference.

Because the values displayed by NSNumberFormatter are attributed strings, you can customize aspects of
their appearance, such astheir color and font. The NSNumberFormatter methods you use to do this are as
follows:

— textAttributesForPositiveValues

— setTextAttributesForPositiveValues:
— textAttributesForNegativeValues

— setTextAttributesForNegativeValues:
— attributedStringForZero

— setAttributedStringForZero:

— allowsFloats

— setAttributedStringForNil:

— attributedStringForNotANumber

— setAttributedStringForNotANumber:

Using Separators

NSNumberFormatter supports two different kinds of separators: thousand and decimal. By default these
separators are represented by the comma (,) and period (.) characters respectively, and by default they’re
disabled.

All of the following statements have the effect of enabling thousand separators:

/| use setFornat:
[nunber Formatter setFormat: @ #, ###"] ;

/'l use setHasThousandSepar at ors:
[nunber Formatt er set HasThousandSepar at ors: YES] ;

/'] use set ThousandSepar at or:
[number For matt er set ThousandSeparator: @ _"];

If you use the statemehhunber Formatt er set HasThousandSepar at or s: NJ , it disables
thousand separators, even if you've set them through another means.

Both of the following statements have the effect of enabling decimal separators:

/1 use setFormat:
[nunber Formatter setFornmat: @0.00"];

/'l use setDeci mal Separ at or:
[nunber Formatter set Deci mal Separator: @-"];

When you enable or disable separators, it affects both positive and negative formats. Consequently, both
formats must use the same separator scheme.

You can use thethousandSepar ator and decimal Separ ator methodsto return an NSString containing the

character the receiver uses to represent each separator. However, this shouldn't be taken as an indication of
whether separators are enabled—even when separators are disabled, an NSNumberFormatter still knows
the characters it uses to represent separators.

Separators must be single characters. If you specify multiple characters in the arguments to
setThousandSepar ator: andsetDecimal Separ ator :, only the first character is used.

You can't use the same character to represent thousand and decimal separators.

NSCell Methods for Number Formatting

NSCell provides methods that give you almost the same behavior as instances of NSNumberFormatter.
SendsetEntryType: to a cell to associate it with an NSNumberFormatter object; specify the numeric
format with one of the constants listed below. The constant is equivalent to an NSNumberFormatter
initialized with a certain range and a conversion specifier:

Constant Range Specifier
NSIntType MININT, MAXINT %d
NSPositivelntType 1, MAXINT %d
NSFloatType -MAXFLOAT, MAXFLOAT %g
NSPositiveFloatType MINFLOAT, MAXFLOAT %g
NSDoubleType -MAXDOUBLE, MAXDOUBLE %g
NSPositiveDoubleType MINDOUBLE, MXDOUBLE %g

SendNSCell'sisEntryAcceptable: to a cell to determine if it can accept a numeric type as indicated by one
of the above constants. Send NSCa#its-loatingPointFor mat:left:right: to specify the number of digits

that appear to the left and right of the decimal point. By invoking this method you do not lose any range of
values for floats or values set either throsgiEntryType: or by initializing an NSNumberFormatter

directly.

Note: The NSNumberFormatter approach is recommended over the NSCell methods because it allows you
greater freedom in specifying the representation of numbers. However, NSEElitryType:,
isEntryAcceptable:, andsetFloatingPointFor mat:left:right: are OpenStep-compliant, whereas
NSNumberFormatter is an extension to OpenStep.

Method Types

Set formats — negativeFormat
— setNegativeFormat:
— positiveFormat
— setPositiveFormat:
— format
— setFormat:

Set characteristics for displaying values
— textAttributesForNegativeValues
— setTextAttributesForNegativeValues:
— textAttributesForPositiveValues
— setTextAttributesForPositiveValues:
— attributedStringForZero
— setAttributedStringForZero:
— attributedStringForNil
— setAttributedStringForNil:
— attributedStringForNotANumber
— setAttributedStringForNotANumber:

Set separators — hasThousandSeparators
— setHasThousandSeparators:
— thousandSeparator
— setThousandSeparator:
— decimalSeparator
— setDecimalSeparator:

Enable localization — localizesFormat
— setLocalizesFormat:

Set float behavior — allowsFloats
— setAllowsFloats:

Set rounding behavior —roundingBehavior
— setRoundingBehavior:

Set minimum and maximum values — minimum
— setMinimum:
— maximum
— setMaximum:;

Instance Methods
\9 allowsFloats
— (BOOL)allowsFloats

Returns YES if the receiver allows as input floating point values (that is, values that include the period
character (.)), NO otherwise. When this is set to NO, only integer values can be provided as input. The
default is YES.

See also: —setAllowsFloats;

®

®

e

attributedStringForNil
— (NSAttributedString *attributedStringFor Nil

Returns the NSAttributedString used to dispidyvalues. By defauhil values are displayed as an empty
string.

See also: — allowsFloats

attributedStringForNotANumber
— (NSAttributedString *attributedStringFor NotANumber

Returns the NSAttributedString used to display “not a number” values. By default “not a number” values
are displayed as the string “NaN”".

See also: — attributedStringFor NotANumber

attributedStringForZero
— (NSAttributedString *attributedStringForZero

Returns the NSAttributedString used to display zero values. By default zero values are displayed according
to the format specified for positive values; for more discussion of this subject see the section “Creating an
Instance of NSNumberFormatter” in the Class Description.

See also: — SetAttributedStringForZero:

decimalSeparator
— (NSString *decimal Separ ator

Returns an NSString containing the character the receiver uses to represent decimal separators. By default
this is the period character (.). Note that the return value doesn't indicate whether decimal separators are
enabled.

See also: — setDecimal Separ ator :

format
— (NSString *format

Returns an NSString containing the format being used by the receiver.

See also: —setFormat:

\9 hasThousandSeparators
— (BOOL)hasT housandSepar ators

Returns YES to indicate that the receiver’s format includes thousand separators, NO otherwise. The default
is NO.

See also: — setHasThousandSepar ators:

\9 localizesFormat
— (BOOL)ocalizesFor mat

Returns YES to indicate that the receiver localizes formats, NO otherwise. The default is NO.

See also: — setL ocalizesFormat:

\9 maximum
— (NSDecimalNumber fhaximum

Returns the highest number that is allowed as input by the receiver.

See also: —setMaximum:

\9 minimum
— (NSDecimalNumber thinimum
Returns the lowest number that is allowed as input by the receiver.

See also: —setMinimum:

\9 negativeFormat
— (NSString *hegativeFor mat

Returns an NSString containing the format used by the receiver to display negative numbers.

See also: — setNegativeFormat:, —setFormat:

®

positiveFormat
— (NSString *positiveFor mat

Returns an NSString containing the format used by the receiver to display positive numbers.

See also;: —setPositiveFormat:, —setFormat:

roundingBehavior
— (NSDecimalNumberHandler rpundingBehavior

Returns an NSDecimalNumberHandler object to indicate the rounding behavior used by the receiver.

See also: —setRoundingBehavior:

setAllowsFloats:
— (void)setAllowsFloats: (BOOL)flag

Sets according tihag whether the receiver allows as input floating point values (that is, values that include
the period character (.)). By default, floating point values are allowed as input.

See also: — allowsFloats

setAttributedStringForNil:
— (void)setAttributedStringFor Nil: (NSAttributedString *hewAttributedString

Sets tnewAttributedString the NSAttributedString the receiver uses to dispidyalues.

See also: — allowsFloats

setAttributedStringForNotANumber:
— (void)setAttributedStringFor NotANumber : (NSAttributedString *hewAttributedString

Sets tanewAttributedSiring the NSAttributedString the receiver uses to display “not a number” values.

See also: — attributedStringFor NotANumber

10

\9 setAttributedStringForZero:

— (void)setAttributedStringFor Zer 0: (NSAttributedString *hewAttributedString
Sets tanewAttributedSiring the NSAttributedString the receiver uses to display zero values.

See also: —attributedStringForZero

setDecimalSeparator:
— (void)setDecimal Separ ator : (NSString *newSepar ator

Sets tmewSeparator the character the receiver uses as a decimal separatvSHparator contains
multiple characters, only the first one is used. If you don’t have decimal separators enabled through another
means (such agtFormat:), using this method enables them.

See also: — decimal Separ ator

setFormat:
— (void)setFor mat: (NSString *)aFormat

Sets the receiver’s format to the stradgprmat. aFormat can consist of one, two or three parts separated

by ‘;’. The first part of the string represents the positive format, the second part of the string represents the
zero value, and the last part of the string represents the negative format. If the string just has two parts, the
first one becomes the positive format, and the second one becomes the negative format. If the string just has
one part, it becomes the positive format, and default formats are provided for zero and negative values based
on the positive format. For more discussion of this subject, see the section “Creating an Instance of
NSNumberFormatter” in the Class Description.

For example, the following code excerpt shows the three different approaches for setting an
NSNumberFormatter object’s format usisajFor mat::

NSNunber For matt er *nunber Formatter =
[[[NSNunber Formatter alloc] init] autorel ease];

/1 specify just positive format
[nunber For mat t er set For mat : @ $#, ##0. 00"] ;

/1 specify positive and negative formats
[nunber For mat t er set For mat : @ $#, ##0. 00; ($#, ##0. 00) "] ;

/'l specify positive, zero, and negative formats
[nunber For mat t er set For mat : @ $#, ###. 00; 0. 00; ($#, ##0. 00) "] ;

See also; —format

\9 setHasThousandSeparators:
— (void)setHasThousandSepar ator s:(BOOL)flag

Sets according tibag whether the receiver uses thousand separators. ffiégés NO, thousand separators

are disabled for both positive and negative formats (even if you've set them through another means, such
assetFormat:). Whenflag is YES, thousand separators are used. In addition to using this method to add
thousand separators to your format, you can also use it to disable thousand separators if you've set them
using another method. The default is NO (though you in effect change this setting to YES when you set
thousand separators through any means, sus#fE® mat:).

See also: — hasThousandSepar ators

\9 setLocalizesFormat:
— (void)setL ocalizesFormat: (BOOL)flag

Sets according tthag whether the dollar sign character ($), decimal separator character (.), and thousand
separator character (,) are converted to appropriately localized characters as specified by the user’s
localization preference. While this feature may be useful in certain types of applications, it's probably more
likely that you would tie a particular application to a particular currency (that is, that you would “hard-code”

the currency symbol and separators instead of having them dynamically change based on the user’s
configuration). The reason for this, of course, is that NSNumberFormatter doesn'’t perform currency
conversions, it just formats numeric data. You wouldn’t want one user interpreting the value “56324” as US
currency and another user who's accessing the same data interpreting it as Japanese currency, simply based
on each user’s localization preferences.

See also: —localizesFor mat

\9 setMaximum:
— (void)setM aximum: (NSDecimalNumber *aMaximum

Sets taaMaximum the highest number the receiver allows as input.

See also: —maximum

\9 setMinimum:
— (void)setMinimum: (NSDecimalNumber 3Minimum

Sets taaMinimum the lowest number the receiver allows as input.

See also; —satMinimum:

11

\9 setNegativeFormat:
— (void)setNegativeFor mat: (NSString *aFormat
Sets taaFormat the format the receiver uses to display negative values.

See also: —negativeFormat, —setFormat:

\9 setPositiveFormat:
— (void)setPositiveFor mat: (NSString *aFormat
Sets taaFormat the format the receiver uses to display positive values.

See also: — positiveFor mat, —setFormat:

\9 setRoundingBehavior:
— (void)setRoundingBehavior : (NSDecimalNumberHandler ripwRoundingBehavior
Sets tanewRoundingBehavior the rounding behavior used by the receiver.

See also: —roundingBehavior

\9 setTextAttributesForNegativeValues:
— (void)set TextAttributesFor NegativeValues: (NSDictionary *newAttributes

Sets tnewAttributes the text attributes to be used in displaying negative values. For example, this code
excerpt causes negative values to be displayed in red:

NSNunber For matt er *nunber Formatter =
[[[NSNunber Formatter alloc] init] autorel ease];
NSMut abl eDi ctionary *newAttrs = [NSMut abl eDi ctionary dictionary];

[nunber For mat t er set For mat : @ $#, ##0. 00; ($#, ##0. 00) "] ;
[newAttrs set Cbj ect:[NSCol or redCol or] forKey: @NSCol or"];

[nunber Formatter set Text Attri butesFor Negati veVal ues: newAttrs];
[[textField cell] setFormatter: nunber Formatter];

An even simpler way to cause negative values to be displayed in red is to include the E®esthrin
your format string, for example:

[nunber For mat t er set For mat : @ $#, ##0. 00; [Red] ($#, ##0. 00) "] ;

12

e

®

Note: When you set a value’s text attributes to use color, the color only appears when the value’s cell
doesn’'t have input focus. When the cell has input focus, the value is displayed in standard black.

See also: —textAttributesFor NegativeValues

setTextAttributesForPositiveValues:
— (void)set TextAttributesFor PositiveValues: (NSDictionary *newAttributes

Sets tanewAttributes the text attributes to be used in displaying positive values.

See also; —textAttributesForPositiveValues

setThousandSeparator:
— (void)set ThousandSepar ator : (NSString *newSepar ator

Sets tcnewSeparator the character the receiver uses as a thousand sepanadaSdparator contains
multiple characters, only the first one is used. If you don't have thousand separators enabled through any
other means (such agtFormat:), using this method enables them.

See also: —thousandSeparator

textAttributesForNegativeValues
— (NSDictionary *jextAttributesFor NegativeValues

Returns an NSDictionary containing the text attributes that have been set for negative values.

See also: — setTextAttributesFor NegativeValues:

textAttributesForPositiveValues
— (NSDictionary *}extAttributesFor PositiveValues

Returns an NSDictionary containing the text attributes that have been set for positive values.

See also: — setTextAttributesFor PositiveValues;

13

14

\9 thousandSeparator
— (NSString *}housandSepar ator

Returns an NSString containing the character the receiver uses to represent thousand separators. By default
this is the comma character (,). Note that the return value doesn’t indicate whether thousand separators are

enabled.
See also: — setThousandSepar ator:

