
To Do Tutorial Chapter 4

113

Type part name here:

Concepts

Starting up — what happens in NSApplicationMain()

Dynamically loading resources and code

Dates and times in OpenStep

The structure of multi-document applications

The application quartet: NSResponder, NSApplication, NSWindow, and NSView

Coordinate systems in OpenStep

Events and the event cycle

A short guide to drawing and compositing

Making a custom NSView

Run loops and timers

To Do Tutorial

Chapter 4

To Do Tutorial

Sections

The design of To Do

Setting up the project

Creating the model class

Subclass example: adding
data and behavior

The basics of a multi-
document application

Managing documents through
delegation

Managing the data and
coordinating its display

Subclass example: overriding
behavior

Creating and managing an
inspector

Subclass example: overriding
and adding behavior

Setting up timers for
notification messages

Build, run, and extend the
application

4

To Do Tutorial

114

115

Many kinds of applications—word processors and spreadsheets, to name a
couple—are designed with the notion of a

document

 in mind. A document is a
body of information, usually contained by a window, that is self-contained and
repeatable. Users can create, modify, store, and access a document as a discrete
unit. Multi-document applications (as these programs are called) can generate
an almost unlimited number of documents.

The To Do application presented in this chapter is a multi-document
application. It is a fairly simple personal information manager (PIM). Each To
Do document captures the daily “must-do” items for a particular purpose. For
instance, one could have a To Do list for work and another one for home. To Do
allows users to:

• Enter appointments or actions that they must complete on particular days.
• Specify the times those items are due.
• Receive notifications at a specified interval before the due time.
• Associate notes with to-do items.
• Mark items as complete or deferred.

As with Travel Advisor, you’re going to cover a lot of OpenStep territory by
completing this tutorial. It explores two major areas:

• Multi-document architecture: The design of applications that can create
multiple documents, save and restore those documents, and do the right
thing on certain events, such as application termination.

Chapter 4

To Do Tutorial

116

• Strategies for subclassing: Reuse of existing classes by adding behavior and
data, by overriding existing behavior, or by doing both things.

You will also learn about other aspects of OpenStep programming:

• Opening and saving files
• Loading nib files (and other bundles) programmatically
• Creating and managing inspectors
• Programmatic creation and manipulation of user-interface objects
• Time and date manipulation
• Declaring informal protocols
• Using timers

And you’ll be introduced to these important OpenStep concepts:

• Event handling
• The core program framework
• Drawing and image composition

When you complete this tutorial, you should be ready to tackle OpenStep
programming on your own.

Starting Up — What Happens in NSApplicationMain()

Every OpenStep application project created through Project
Builder has the same

main()

 function (in the file

ApplicationName

_main.m

). When users double-click an
application or document icon in the File Viewer,

 main()

 (the entry
point) is called first;

main()

, in turn, calls

NSApplicationMain()

—
and that’s all it does.

The

NSApplicationMain()

 function does what’s necessary to get
an OpenStep application up and running—responding to events,
coordinating the activity of its objects, and so on. The function
starts the network of objects in the application sending messages
to each other. Specifically,

NSApplicationMain()

:

1

Gets the application’s attributes, which are stored in the
application wrapper as a property list. From this property list,
 it gets the names of the main nib file and the principal class (for
applications, this is NSApplication or a custom subclass of
NSApplication).

2

Gets the Class object for NSApplication and invokes its

sharedApplication

 class method, creating an instance of
NSApplication, which is stored in the global variable, NSApp.
Creating the NSApplication object connects the application to
the window system and the Display PostScript server, and
initializes its PostScript environment.

3

Loads the main nib file, specifying NSApp as the owner.
Loading unarchives and re-creates application objects and
restores the connections between objects.

4

Runs the application by starting the main event loop. Each time
through the loop, the application object gets the next available
event from the Window Server and dispatches it to the most
appropriate object in the application. The loop continues until
the application object receives a

stop:

 or

 terminate:

 message,
after which the application is released and the program exits.

You can add your own code to

main()

 to customize application
start-up or termination behavior.

The Design of To Do

117

The Design of To Do

The To Do application vaults past Travel Advisor in terms of complexity.
Instead of Travel Advisor’s one nib file, To Do has three nib files. Instead of
three custom classes, To Do has seven. This diagram shows the
interrelationships among instances of some of those classes and the nib files that
they load:

Some of the objects in this diagram are familiar, fitting as they do into the
Model-View-Controller paradigm. The ToDoItem class provides the model
objects for the application; instances of this class encapsulate the data associated
with the items appearing in documents. They also offer functions for computing
subsets of that data. And then there’s the controller object...actually, there is
more than one controller object.

To Do’s Multi-Document Design

Two types of controller objects are at the heart of multi-document application
design. They claim different areas of responsibility within an application.
ToDoController is the

application controller

; it manages events that affect the
application as a whole. Each ToDoDoc object is a

document controller

, and
manages a single document, including all the ToDoItems that belong to the
document. Naturally, it’s essential that the application controller be able to
communicate with its (potentially) numerous document controllers, and they
with it.

ToDoController
(Controller)

ToDoDoc
(Controller)

ToDoItem
(Model)

ToDoInspector.nib

ToDo.nib

ToDoDoc.nib

Loads

Creates

ToDoInspector
(Controller)

The ToDoInspector instance in
the above diagram is an offshoot
of the application controller,
ToDoController. By breaking
down a problem domain into
distinct areas of responsibility,
and assigning certain types of
objects to each area, you increase
the modularity and reusability of
the object, and make
maintenance and trouble-
shooting easier. See “Object-
Oriented Programming” in the
appendix for more on this.

Chapter 4

To Do Tutorial

118

Only When Needed: Dynamically Loading Resources and Code

As any developer knows well, performance is a key consideration
in program design. One factor is the timing of resource allocation.
If an application loads all code and resources that it

might

 use
when it starts up, it will probably be a sluggish, bloated
application—and one that takes awhile to launch.

You can strategically store the resources of an application
(including user-interface objects) in several nib files. You can also
put code that might be used among one or more

loadable bundles

.
When the application needs a resource or piece of code, it loads
the nib file or loadable bundle that contains it. This technique of
deferred allocation benefits an application greatly. By conserving
memory, it improves program efficiency. It also speeds up the time
it takes to launch the application.

Auxiliary Nib Files

When more sophisticated applications start up, they load only a
minimum of resources in the main nib file—the main menu and
perhaps a window. They display other windows (and load other
nib files) only when users request it or when conditions warrant it.

Nib files other than an application’s main nib file are sometimes
called

auxiliary nib files

. There are two general types of auxiliary
nib files: special-use and document.

Special-use nib files contain objects (and other resources)
that

might

 be used in the normal operation of the application.
Examples of special-use nib files are those containing inspector
panels and Info panels.

Document nib files contain objects that represent some
repeatable entity, such as a word-processor document. A
document nib file is a template for documents: it contains the UI
objects and other resources needed to make a document.

The Owner of an Auxiliary Nib File

The object that loads a nib file is usually the object that owns
it. A nib file’s owner must be external to the file. Objects
unarchived from the nib file communicate with other objects in
the application only through the owner.

In Interface Builder, the File’s Owner icon represents this external
object. The File’s Owner is typically the application controller for
special-use nib files, and the document controller for document

nib files. The File’s Owner object is not really appearing twice; it’s
created in one file and referenced in the other.

The File’s Owner object dynamically loads a nib file and makes
itself the owner of that file by sending

loadNibNamed:owner:

 to
NSBundle, specifying

self

 as the second argument.

NSBundle and Bundles

A bundle is a location in the file system that stores code and the
resources that go with that code, including images, sounds, and
archived objects. A bundle is also identified with an instance of
NSBundle, which makes the contents of the bundle available to
other objects that request it.

The generic notion of bundles is pervasive throughout OpenStep.
Applications are bundles, as are frameworks and palettes. Every
application has at least one bundle—its main bundle—which is
the “.app” directory (or

application wrapper

) where its
executable file is located. This file is loaded into memory when
the application is launched.

Loadable Bundles

You can organize an application into any number of other bundles
in addition to the main bundle and the bundles of linked-in
frameworks. Although these loadable bundles usually reside
inside the application wrapper, they can be anywhere in the file
system. Project Builder allows you to build Loadable Bundle
projects.

Loadable bundles differ from nib files in that they don’t require you
to use Interface Builder to build them. Instead of containing
mostly archived objects, they usually contain mostly code.
Loadable bundles are especially useful for incorporating extra
behavior into an application upon demand. An economic-forecast
application, for example, might load a bundle containing the code
defining an economic model, but only when users request that
model. You could also use loadable bundles to integrate “plug and
play” components into an existing framework.

Loadable bundles usually have an extension of “.bundle”
(although that’s a convention, not a requirement). Each loadable
bundle must have a principal class that mediates between bundle
objects and external objects.

The Design of To Do

119

As multi-document applications typically do, To Do includes the Document
menu found on Interface Builder’s Menus palette. When users choose New
from the Document menu, the application controller allocates and initializes an
instance of the ToDoDoc class. When the ToDoDoc instance initializes itself, it
loads the

ToDoDoc.nib

 file. When the user has finished entering items into the
document, and chooses Save from the Document menu, a Save panel appears
and the user saves the document in the file system under an assigned name.
Later, the user can open the document using the Open menu command, which
causes the Open panel to be displayed.

The controller objects of To Do respond to a variety of delegation messages sent
when certain events occur—primarily from windows and NSApp—in order to
save and store object state. One example of such an event is when the user
closes a document window; another is when data is entered into a document.
Often when these events happen, one controller sends a message to the other
controller to keep it informed.

How To Do Stores and Accesses its Data

The data elements of a To Do document (ToDoDoc) are ToDoItems. When a
user enters an item in a document’s list, the ToDoDoc creates a ToDoItem and
inserts that object in a mutable array (NSMutableArray); the ToDoItem
occupies the same position in the array as the item in the matrix’s text field. This
positional correspondence of objects in the array and items in the matrix is an
essential part of the design. For instance, when users delete the first entry in the
document’s list, the document removes the corresponding ToDoItem (at index
0) from the array.

The rationale behind, and
process of, constructing
multi-document applications is
discussed in ‘‘The Structure of
Multi-Document Applications’’
on page 141.

ToDoItem (*item one*)

ToDoItem (*item one*)

ToDoItem (*item one*)

Chapter 4

To Do Tutorial

120

The array of ToDoItems is associated with a particular day. Thus the data for a
document consists of a (mutable) dictionary with arrays of ToDoItems for values
and dates for keys.

When users select a day in the calendar, the application computes the date,
which it then uses as the key to locate an array of ToDoItems in the dictionary.

To Do’s Custom Views

The discussion so far has touched on model objects and controller objects, but
has said nothing about the second member of the Model-View-Controller triad:
view objects. Unlike Travel Advisor, which uses only “off-the-shelf” views, To
Do’s interface features objects from three custom Application Kit subclasses.

You’ll learn much more about these custom subclasses in the pages that follow.

15 Nov 1996 16 Nov 1996 17 Nov 1996

ToDoItem ToDoItem ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

NSMutableDictionary

CalendarMatrix: a
subclass of NSMatrix,
this is a dynamic
calendar that notifies
the delegate about
selected dates.

ToDoCell: a subclass of
NSButtonCell, this is a
tri-state control with
different images for each
state. It also displays
times items are due.

SelectionNotifMatrix:
modifies NSMatrix to
notify observers when a
selection in a text field
occurs.

Setting up the To Do Project

121

Setting up the To Do Project

Create the To Do project almost in the same way you created the Travel Advisor
application. There are a few differences; each, of course, has a different name
and icon. But the most important difference is that To Do has its own document
type.

1 Create the application project.

Start Project Builder.

Choose New from the Project
menu.

Name the application “ToDo.”

2 Add the application icon.

The ToDo icon (ToDo.tiff) is
located in the ToDo project in the
AppKit subdirectory of
/NextDeveloper/Examples.

3 Specify the To Do document type.

Click Add.

Double-click the new cell under
the Extension column.

Type the extension of To Do
documents: “td”.

Drag into the image well the file
calendar.tiff from the ToDo
project in
/NextDeveloper/Examples/
AppKit.

You can have different icons and other project
attributes for OpenStep for Mach and OpenStep for
Windows.

Instead of dragging the image-file icon into the well,
you can add the image file to the projedct and then
just type the name of the image here.

Document types specify the kinds of files the
application can open and “understand.” They
appear in the workspace with the assigned icon and
may be opened by double-clicking.

As with the applicaation icon, when you drag the
document icon into the image well, the image file is
added to the project.

Before Project Builder accepts the document icon,
you must assign the extension (if the type is new) and
select the row.

If the document type is well-known (for example,
“.c”), just drag a document of that type into the well.

Chapter 4

To Do Tutorial

122

Creating the Model Class (ToDoItem)

The ToDoItem class provides the model objects for the To Do application. Its
instance variables hold the data that defines tasks that should be done or
appointments that have to be kept. Its methods allow access to this data. In
addition, it provides functions that perform helpful calculations with that data.
ToDoItem thus encapsulates both data

and

 behavior that goes beyond accessing
data.

Since ToDoItem is a model class, it has no user-interface duties and so the
expedient course is to create the class without using Interface Builder. We first
add the class to the project; Project Builder helps out by generating template
source-code files.

As you’ve done before with Travel Advisor, start by declaring instance variables
and methods in the header file,

ToDoItem.h

.

You are adopting the NSCopying protocol in addition to the NSCoding protocol
because you are going to implement a method that makes “snapshot” copies of
ToDoItem instances.

1 Add the ToDoItem class to the
project.

Select Classes in the project
browser.

Choose New In Project from the
File menu.

In the New File In ToDo panel,
type “ToDoItem” in the Name
field.

Make sure the “Create header”
switch is checked.

Click the OK button.

2 Declare ToDoItem’s instance
variables and methods.

Type the instance variables as
shown at right.

Indicate the protocols adopted by
this class.

@interface ToDoItem:NSObject<NSCoding, NSCopying>

{

 NSCalendarDate *day;

 NSString *itemName;

 NSString *notes;

 NSTimer *itemTimer;

 long secsUntilDue;

 long secsUntilNotif;

 ToDoItemStatus itemStatus;

}

Creating the Model Class (ToDoItem)

123

Instance Variable What it Holds

day The day (a date resolved to 12:00 AM) of the to-do item

itemName The name of the to-do item (the content’s of a document text field)

notes The contents of the inspector’s Notes display; this could be any
information related to the to-do item, such as an agenda to discuss at

a meeting.

itemTimer A timer for notification messages.

secsUntilDue The seconds after

day

 at which the item comes due

secsUntilNotif The seconds after

day

 at which a notification is sent (before

secsUntilDue

)

itemStatus Either “incomplete,” “complete,” or “deferToNextDay”

The first set of constants are values for the

itemStatus

 instance variable. The
second set of constants are for convenience and clarity in the methods that deal
with temporal values.

These functions provide computational services to clients of this class,
converting time in seconds to hours and minutes (as required by the user
interface), and back again to seconds (as stored by ToDoItem).

3 Define enum constants for use in
ToDoItem’s methods.

Define these constants before the
@interface directive.

typedef enum _ToDoItemStatus {

 incomplete=0,

 complete,

 deferToNextDay

} ToDoItemStatus;

enum {

 minInSecs = 60,

 hrInSecs = (minInSecs * 60),

 dayInSecs = (hrInSecs * 24),

 weekInSecs = (dayInSecs * 7)

};

4 Declare two time-conversion
functions.

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute);

long ConvertTimeToSeconds(int hr, int min, BOOL flag);

Chapter 4

To Do Tutorial

124

Most of these declarations are for accessor methods. You know what to do.

The

setItemTimer

: method is slightly different from the other “set” accessor
methods. It sends

invalidate

 to

itemTimer

 to disable the timer before it autoreleases
it.

In this application, you want client objects to be able to copy your ToDoItem
objects and test them for equality. You must define this behavior yourself.

Type the method declarations
shown at right.

- (id)initWithName:(NSString *)name andDate:(NSCalendarDate *)date;

- (void)dealloc;

- (BOOL)isEqual:(id)anObject;

- (id)copyWithZone:(NSZone *)zone;

- (id)initWithCoder:(NSCoder *)coder;

- (void)encodeWithCoder:(NSCoder *)coder;

- (void)setDay:(NSCalendarDate *)newDay;

- (NSCalendarDate *)day;

- (void)setItemName:(NSString *)newName;

- (NSString *)itemName;

- (void)setNotes:(NSString *)notes;

- (NSString *)notes;

- (void)setItemTimer:(NSTimer *)aTimer;

- (NSTimer *)itemTimer;

- (void)setSecsUntilDue:(long)secs;

- (long)secsUntilDue;

- (void)setSecsUntilNotif:(long)secs;

- (long)secsUntilNotif;

- (void)setItemStatus:(ToDoItemStatus)newStatus;

- (ToDoItemStatus)itemStatus;

5 Implement accessor methods.

Open ToDoItem.m in the code
editor.

Implement methods that get and
set the values of ToDoItem’s
instance variables.

Implement the setItemTimer:
method as shown at right.

- (void)setItemTimer:(NSTimer *)aTimer

{

 if (itemTimer) {

 [itemTimer invalidate];

 [itemTimer autorelease];

 }

 itemTimer = [aTimer retain];

}

Timers (instances of NSTimer)
are always associated with a run
loop (an instance of
NSRunLoop). See ‘‘Tick Tock
Brrrring: Run Loops and Timer’’
on page 190 for more on timers
and run loops.

Creating the Model Class (ToDoItem)

125

The default implementation of

isEqual:

(in NSObject) is based on pointer
equality. However, ToDoItem has a different basis for equality; any two
ToDoItem objects for the same calendar day and having the same item name are
considered equal. The implementation of

isEqual:

 overrides NSObject to make
these tests. (Note that it invokes NSString’s and NSDate’s own

isEqual...

methods for the specific tests.)

Before You Go On

There is a specific as well as a general need for the

isEqual:

 override. In the To
Do application, an NSArray contains a day’s ToDoItems. To access them, other
objects in the application invoke several NSArray methods that, in turn, invoke

the

isEqual:

 method of each object in the array.

This implementation of the

copyWithZone:

 protocol method makes a copy of a
ToDoItem instance that is an independent replicate of the original (

self

). It does
this by allocating a new ToDoItem object and initializing it with the essential
instance variables held by

self

. Copying is often implemented for

value

 objects—
objects that represent attributes such as numbers, dates, and to-do items.

The next method you’ll implement—

description

—assists you and other
developers in debugging the To Do application with

gdb

. When you enter the

po

(print object) command in

gdb

 with a ToDoItem as the argument, this

description

method is invoked and essential debugging information is printed.

- (BOOL)isEqual:(id)anObj

{

 if ([anObj isKindOfClass:[ToDoItem class]] &&

 [itemName isEqualToString:[anObj itemName]] &&

 [day isEqualToDate:[anObj day]])

 return YES;

 else

 return NO;

}

6 Implement the isEqual: method.

- (id)copyWithZone:(NSZone *)zone

{

 ToDoItem *newobj = [[ToDoItem alloc] initWithName:itemName

 andDate:day];

 [newobj setNotes:notes];

 [newobj setItemStatus:itemStatus];

 [newobj setSecsUntilDue:secsUntilDue];

 [newobj setSecsUntilNotif:secsUntilNotif];

 return newobj;

}

7 Implement the copyWithZone:
method.

Copies of objects can be either
deep or shallow. In deep copies
(like ToDoItem’s) every copied
instance variable is an
independent replicate, including
the values referenced by
pointers. In shallow copies,
pointers are copied but the
referenced objects are the same.
For more on this topic, see the
description of the NSCopying
protocol in the Foundation
reference documentation.

Chapter 4

To Do Tutorial

126

Here are some things to remember as you implement

initWithName:andDate:

 and

dealloc

:

• If the first argument of

initWithName:andDate:

 (the item name) is not a valid
string, return

nil

. If the second argument (the date) is

nil

, set the related
instance variable to some reasonable value (such as today’s date). Also, be sure
to invoke

super

’s

init

 method.

• The instance variables to initialize are

day

, itemName, notes, and itemStatus (to
“incomplete”).

• In dealloc, release those object instance variables initialized in
initWithName:andDate: plus any object instance variables that were initialized
later. Also invalidate any timer before you release it.

When you implement encodeWithCoder: and initWithCoder:, keep the following in
mind:

• Encode and decode instance variables in the same order.

• Copy the object instance variables after you decode them.

• You don’t need to archive the itemTimer instance variable since timers are re-
set when a document is opened.

The final step in creating the ToDoItem class is to implement the functions that
furnish “value-added” behavior.

- (NSString *)description

{

 NSString *desc = [NSString stringWithFormat:@"%@\n\tName: %@\n\tDate:
%@\n\tNotes: %@\n\tCompleted: %@\n\tSecs Until Due: %d\n\tSecs Until
Notif: %d",

 [super description],

 [self itemName],

 [self day],

 [self notes],

 (([self itemStatus]==complete)?@"Yes":@"No"),

 [self secsUntilDue],

 [self secsUntilNotif]];

 return (desc);

}

8 Implement the description
method.

9 Implement ToDoItem’s initializing
and deallocation methods.

10 Implement ToDoItem’s archiving
and unarchiving methods.

Creating the Model Class (ToDoItem)

127

1. This expression, as well as others in these two methods, uses the enum
constants for time-values-as seconds that you defined earlier.

2. The ConvertSecondsToTime() function uses indirection as a means for returning
multiple values and directly returns a Boolean to indicate AM or PM.

11 Implement ToDoItem’s time-
conversion functions.

long ConvertTimeToSeconds(int hr, int min, BOOL flag) /* 1 */

{

 if (flag) { /* PM */

 if (hr >= 1 && hr < 12)

 hr += 12;

 } else {

 if (hr == 12)

 hr = 0;

 }

 return ((hr * hrInSecs) + (min * minInSecs));

}

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute) /* 2 */

{

 int hr=0;

 BOOL pm=NO;

 if (secs) {

 hr = secs / hrInSecs;

 if (hr > 12) {

 *hour = (hr -= 12);

 pm = YES;

 } else {

 pm = NO;

 if (hr == 0)

 hr = 12;

 *hour = hr;

 }

 *minute = ((secs%hrInSecs) / minInSecs);

 }

 return pm;

}

Chapter 4 To Do Tutorial

128

Subclass Example: Adding Data and Behavior (CalendarMatrix)

The calendar on To Do’s interface is an instance of a custom subclass of
NSMatrix. CalendarMatrix dynamically updates itself as users select new
months, notifies a delegate when users select a day, and reflects the current day
(today) and the current selection by setting button attributes.

Creating a subclass of a class that is farther down the inheritance tree poses more
of a challenge for a developer than a simple sublcass of NSObject. A class such
as NSMatrix is more specialized than NSObject and carries with it more
baggage: It inherits from NSResponder, NSView, and NSControl, all fairly
complex Application Kit classes. And since CalendarMatrix inherits from
NSView, it appears on the user interface; it is an example of a view object in the
Model-View-Controller paradigm, and as such it is highly reusable.

Why NSMatrix?
When you select a specialized superclass as the basis for your subclass, it is
important to consider what your requirements are and to understand what the
superclass has to offer. To Do’s dynamic calendar should:

• Arrange numbers (days) sequentially in rows and columns.
• Respond to and communicate selections of days.
• Understand dates.
• Enable navigation between months.

If you then started to peruse the reference documentation on Application Kit
classes, and looked at the section on NSMatrix, you’d read this:

NSMatrix is a class used for creating groups of NSCells that work together in various
ways. It includes methods for arranging NSCells in rows and columns.... An
NSMatrix adds to NSControl's target/action paradigm by allowing a separate target
and action for each of its NSCells in addition to its own target and action.

Subclass Example: Adding Data and Behavior (CalendarMatrix)

129

So NSMatrix has an inherent capability for the first of the requirements listed
above, and part of the second (responding to selections). Our CalendarMatrix
subclass thus does not need to alter anything in its superclass. It just needs to
supplement NSMatrix with additional data and behavior so it can understand
dates (and update itself appropriately), navigate between months, and notify a
delegate that a selection was made.

When you created subclasses of NSObject in the previous two tutorials, the next
step was to instantiate the subclass. Because CalendarMatrix is a view (that is, it
inherits from NSView), the procedure for generating an instance for making
connections is different.

1 Define the CalendarMatrix class
in Interface Builder.

From Project Builder, open
ToDo.nib.

In Interface Builder, choose
Document m New Module m
New Empty to create a new nib
file.

Save the nib file as ToDoDoc.nib.

In the Classes display of the nib
file window, select NSMatrix.

Choose Subclass from the pull-
down list.

Name the new class
“CalendarMatrix”.

Select the new class.

Add the outlets and actions
shown in the example at right.

Locate NSMatrix several levels down in the
class hierarchy.

Outlets and actions already defined by the
superclass (or its superclass) appear in gray
text. Add the outlets and actions shown in
black text.

Chapter 4 To Do Tutorial

130

The selection of the class for the CustomView creates an instance of it that you
can connect to other objects in the nib file. Now put the controls and fields
associated with CalendarMatrix on the window.

The CustomView object is a “proxy” object,
representing any custom NSView object on
the interface

Assign a class to the CustomView by
selecting a class here. Custom classes
must be defined in the nib file.

2 Put a custom NSView object
(CalendarMatrix) on the user
interface.

Drag a window from the Windows
palette.

Resize the window, using the
example at right as a guide.

Turn off the window’s resize
handle.

Drag a CustomView from the
Views palette onto the window.

Resize and position the
CustomView, using the example
at right as a guide.

In the Attributes display of the
inspector, select CalendarMatrix
from the list of available classes.

Subclass Example: Adding Data and Behavior (CalendarMatrix)

131

.

Next connect CalendarMatrix to its satellite objects.

Name Connection Type

monthName From CalendarMatrix to the label field above it outlet

leftButton From CalendarMatrix to the left-pointing arrow outlet

rightButton From CalendarMatrix to the right-pointing arrow outlet

monthChanged: From both arrows to CalendarMatrix action

You might have noticed that there’s an action message left unconnected:
choseDay:. Because it is impossible in Interface Builder to connect an object with
itself, you will make this connection programmatically.

This label contains the month and year. Initialize by typing
“September 9999” (the longest possible string), set text to
Helvetica 18, center it, then delete it.

Type the days of the week as individual labels, arrange as
a row, then distribute the fields evenly over the columns
(this may take some trial and error).

To make the button enclose the image as tightly as
possible, select the button and choose Format mSize m
Size to fit.

3 Put the objects related to
CalendarMatrix on the window.

Drag a label object for the month-
year from the Views palette and
put it over the CalendarMatrix.

Make seven small labels for each
day of the week.

Drag a button onto the interface
and set its attributes to
unbordered and image only.

Drag left_arrow.tiff from
/NextDeveloper/Examples
/AppKit/ToDo and drop it over the
button.

To the attention panel that asks
“Insert image left_arrow in
project?” click Yes.

Repeat the same button
procedure for right_arrow.tiff.

4 Connect CalendarMatrix to its
outlet and to the controls sending
action messages.

5 Finish up in Interface Builder.

Save ToDoDoc.nib.

Select CalendarMatrix and in the
Classes display and choose
Create Files from the Operations
pull-down menu.

Confirm that you want the source-
code files added to the project.

Chapter 4 To Do Tutorial

132

There are a couple of interesting things to note about these declarations:

1. The cells in CalendarMatrix are sequentially ordered by tag number, left to
right, going downward. startOffset marks the cell (by its tag) on which the first
day of the month falls.

2. CalendarMatrixDelegate is a category on NSObject that declares the
methods to be implemented by the delegate. This technique creates what is
called an informal protocol, which is commonly used for delegation methods.

@interface CalendarMatrix : NSMatrix

{

 /* ... */

 NSCalendarDate *selectedDay;

 short startOffset; /* 1 */

}

/* ... */

- (void)refreshCalendar;

- (id)initWithFrame:(NSRect)frameRect;

- (void)dealloc;

- (void)setSelectedDay:(NSCalendarDate *)newDay;

- (NSCalendarDate *)selectedDay;

@end

@interface NSObject(CalendarMatrixDelegate) /* 2 */

 - (void)calendarMatrix:(CalendarMatrix *)obj

didChangeToDate:(NSDate *)date;

 - (void)calendarMatrix:(CalendarMatrix *)obj

didChangeToMonth:(int)mo year:(int)yr;

@end

6 Add declarations to the header
file CalendarMatrix.h.

(Existing declarations are
indicted by ellipsis.)

Subclass Example: Adding Data and Behavior (CalendarMatrix)

133

The initWithFrame: method is an initializer of NSMatrix, NSControl and NSView.

1. This invocation of date, a class method declared by NSDate, returns the
current date (“today”) as an NSCalendarDate. (NSCalendarDate is a subclass
of NSDate.)

2. This message to super (NSMatrix) sets the physical and cell dimensions of the
matrix, identifies the type of cell using a prototype (an NSButtonCell), and
specifies the general behavior of the matrix: radio mode, which means that
only one button can be selected at any time.

3. Set the tag number of each cell sequentially left to right and down. Tags are
the mechanism by which CalendarMatrix sets and retrieves the day numbers
of cells.

4. This NSCalendarDate class method initializes the selectedDay instance
variable to midnight of the current day, using the year, month, and day
elements of the current date. The localTimeZone message obtains an
NSTimeZone object with an suitable offset from Greenwich Mean Time.

- (id)initWithFrame:(NSRect)frameRect

{

 int i, j, cnt=0;

 id cell = [[NSButtonCell alloc] initTextCell:@""];

 NSCalendarDate *now = [NSCalendarDate date]; /* 1 */

 [super initWithFrame:frameRect /* 2 */

 mode:NSRadioModeMatrix

 prototype:cell

 numberOfRows:6

 numberOfColumns:7];

 // set cell tags /* 3 */

 for (i=0; i<6; i++) {

 for (j=0; j<7; j++) {

 [[self cellAtRow:i column:j] setTag:cnt++];

 }

 }

 [cell release];

 selectedDay = [[NSCalendarDate dateWithYear:[now yearOfCommonEra]

 month:[now monthOfYear] /* 4 */

 day:[now dayOfMonth]

 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]] copy];

 return self;

}

7 Implement CalendarMatrix’s
initialization methods.

Select CalendarMatrix.m in the
project browser.

Write the implementation of
initWithFrame: (at right).

Implement dealloc.

Chapter 4 To Do Tutorial

134

The awakeFromNib method performs additional initializations (some of which
could just have easily been done in initWithFrame:). Most importantly, it sets self as
its own target object and specifies an action method for this target, choseDay:,
something that couldn’t be done in Interface Builder. Other methods to note:

• setAutosizesCells: causes the matrix to resize its cells on every redraw.
• refreshCalendar (which you’ll write next) updates the calendar.

The refreshCalendar method is fairly long and complex—it is the workhorse of the
class—so you’ll approach it in sections.

- (void)awakeFromNib

{

 [monthName setAlignment:NSCenterTextAlignment];

 [self setTarget:self];

 [self setAction:@selector(choseDay:)];

 [self setAutosizesCells:YES];

 [self refreshCalendar];

}

Implement awakeFromNib as
shown at right.

Dates and Times in OpenStep

In OpenStep you represent dates and times as objects that inherit
from NSDate. The major advantage of dates and times as objects
is common to all objects that represent basic values: they yield
functionality that, although commonly found in most operating
systems, is not tied to the internals of any particular operating-
system.

NSDates hold dates and times as values of type NSTimeInterval
and express these values as seconds. The NSTimeInterval type
makes possible a wide and fine-grained range of date and time
values, giving accuracy within milliseconds for dates 10,000 years
apart.

NSDate and its subclasses compute time as seconds relative to
an absolute reference date (the first instant of January 1, 2001).
NSDate converts all date and time representations to and from
NSTimeInterval values that are relative to this reference date.

NSDate provides methods for obtaining NSDate objects
(including date, which returns the current date and time as an
NSDate), for comparing dates, for computing relative time values,
and for representing dates as strings.

The NSCalendarDate class, which inherits from NSDate,
generates objects that represent dates conforming to western
calendrical systems. NSCalendarDate objects also adjust the
representations of dates to reflect their associated time zones.
Because of this, you can track an NSCalendarDate object across
different time zones. You can also present date information from
time-zone viewpoints other than the one for the current locale.

Each NSCalendarDate object also has a calendar format string
bound to it. This format string contains date-conversion specifiers
that are very similar to those used in the standard C library
function strftime(). NSCalendarDate can interpret user-entered
dates that conform to this format string.

NSCalendar has methods for creating NSCalendarDate objects
from formatted strings and from component time values (such as
minutes, hours, day of week, and year). It also supplements
NSDate with methods for accessing component time values and
for representing dates in various formats, locales, and time zones.

Subclass Example: Adding Data and Behavior (CalendarMatrix)

135

.

Before it can start writing day numbers to the calendar for a given month,
CalendarMatrix must know what cell to start with and how many cells to fill with
numbers. The refreshCalendar method begins by calculating these values.

1. Creates an NSCalendarDate for the first day of the currently selected month
and year (computed from the selectedDay instance variable).

2. Writes the month and year (for example, “February 1997”) to the label above
the calendar.

3. Gets from the MonthDays static array the number of days for that month; if the
month is February and it is a leap year, this number is adjusted.

4. Gets the day of the week for the first day of the month and stores this in the
startOffset instance variable.

static short MonthDays[] =

{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

#define isLeap(year) (((((year) % 4) == 0 && (((year) % 100) != 0))

 || ((year) % 400) == 0))

8 Implement the code that updates
the calendar.

Initialize the MonthDays[] array
and write the isLeap() macro.

Determine the day of the week at
the start of the month and the
number of days in the month. - (void)refreshCalendar

{

 NSCalendarDate *firstOfMonth, *selDate = [self selectedDay],

 *now = [NSCalendarDate date];

 int i, j, currentMonth = [selDate monthOfYear];

 unsigned int currentYear = [selDate yearOfCommonEra];

 short daysInMonth;

 id cell;

 firstOfMonth = [NSCalendarDate dateWithYear:currentYear /* 1 */

 month:currentMonth

 day:1 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]];

 [monthName setStringValue:[firstOfMonth /* 2 */

 descriptionWithCalendarFormat:@"%B %Y"]];

 daysInMonth = MonthDays[currentMonth-1]+1; /* 3 */

 /* correct Feb for leap year */

 if ((currentMonth == 2) && (isLeap(currentYear))) daysInMonth++;

 startOffset = [firstOfMonth dayOfWeek]; /* 4 */

Chapter 4 To Do Tutorial

136

The first and third for-loops in this section of code clear the leading and trailing
cells that aren’t part of the month’s days. Because the current day is indicated by
highlighting, they also turn off the highlighted attribute. The second for-loop
writes the day numbers of the month, starting at startOffset and continuing until
daysInMonth, and resets the font (since the selected day is in bold face) and other
cell attributes.

This final section of refreshCalendar determines if the newly selected month and
year are the same as today’s, and if so highlights the cell corresponding to today.

 for (i=0; i<startOffset; i++) {

 cell = [self cellWithTag:i];

 [cell setBordered:NO];

 [cell setEnabled:NO];

 [cell setTitle:@""];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

 for (j=1; j < daysInMonth; i++, j++) {

 cell = [self cellWithTag:i];

 [cell setBordered:YES];

 [cell setEnabled:YES];

 [cell setFont:[NSFont systemFontOfSize:12]];

 [cell setTitle:[NSString stringWithFormat:@"%d", j]];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

 for (;i<42;i++) {

 cell = [self cellWithTag:i];

 [cell setBordered:NO];

 [cell setEnabled:NO];

 [cell setTitle:@""];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

Write the refreshCalendar code
that writes day numbers to the
cells and sets cell attributes.

 if ((currentYear == [now yearOfCommonEra])

 && (currentMonth == [now monthOfYear])) {

 [[self cellWithTag:([now dayOfMonth]+startOffset)-1]

setCellAttribute:NSCellHighlighted to:YES];

 [[self cellWithTag:([now dayOfMonth]+startOffset)-1]

setHighlightsBy:NSMomentaryChangeButton];

 }

}

Complete the refreshCalendar
method implementation by
resetting the “today” cell
attribute.

Subclass Example: Adding Data and Behavior (CalendarMatrix)

137

The arrow buttons above CalendarMatrix send it the monthChanged: message
when they are clicked. This method causes the calendar to go forward or
backward a month.

1. Determines which button is sending the message, then increments or
decrements the month accordingly. If it goes past the end or beginning of the
year, it increments or decrements the year and adjusts the month.

2. Resets the selectedDay instance variable with the new month (and perhaps
year) numbers and invokes refreshCalendar to display the new month.

3. Sends the calendarMatrix:didChangeToMonth:year: message to its delegate (which
in this application, as you’ll soon see, is a ToDoDoc controller object).

- (void)monthChanged:sender

{

 NSCalendarDate *thisDate = [self selectedDay];

 int currentYear = [thisDate yearOfCommonEra];

 unsigned int currentMonth = [thisDate monthOfYear];

 if (sender == rightButton) { /* 1 */

 if (currentMonth == 12) {

 currentMonth = 1;

 currentYear++;

 } else {

 currentMonth++;

 }

 } else {

 if (currentMonth == 1) {

 currentMonth = 12;

 currentYear--;

 } else {

 currentMonth--;

 }

 } /* 2 */

 [self setSelectedDay:[NSCalendarDate dateWithYear:currentYear

 month:currentMonth

 day:1 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]]];

 [self refreshCalendar];

 [[self delegate] calendarMatrix:self /* 3 */

 didChangeToMonth:currentMonth year:currentYear];

}

9 Implement the monthChanged:
action method.

Chapter 4 To Do Tutorial

138

This method is invoked when users click a day of the calendar.

1. Gets the tag number of the selected cell and subtracts the offset from it (plus
one to adjust for zero-based indexing) to find the number of the selected day.

2. Derives an NSCalendarDate that represents the selected date.

3. Sets the font of the previously selected cell to the normal system font
(removing the bold attribute) and puts the number of the currently selected
cell in bold face.

4. Sets the selectedDay instance variable to the new date and sends the
calendarMatrix:didChangeToDate: message to the delegate.

You are finished with CalendarMatrix. If you loaded ToDoDoc.nib right now, the
calendar would work, up to a point. If you clicked the arrow buttons,
CalendarMatrix would display the next or previous months. The days of the
month would be properly set out on the window, and the current day would be
highlighted.

But not much else would happen. That’s because CalendarMatrix has not yet
been hooked up to its delegate.

- (void)choseDay:sender

{

 NSCalendarDate *selDate, *thisDate = [self selectedDay];

/* 1 */

 unsigned int selDay = [[self selectedCell] tag]-startOffset+1;

/* 2 */

 selDate = [NSCalendarDate dateWithYear:[thisDate yearOfCommonEra]

 month:[thisDate monthOfYear]

 day:selDay

 hour:0

 minute:0

 second:0

 timeZone:[NSTimeZone localTimeZone]];

/* 3 */

 [[self cellWithTag:[thisDate dayOfMonth]+startOffset-1]

 setFont:[NSFont systemFontOfSize:12]];

 [[self cellWithTag:selDay+startOffset-1] setFont:

 [NSFont boldSystemFontOfSize:12]];

/* 4 */

 [self setSelectedDay:selDate];

 [[self delegate] calendarMatrix:self didChangeToDate:selDate];

}

10 Implement the choseDay: action
method.

11 Implement accessor methods for
the selectedDay instance
variable.

The Basics of a Multi-Document Application

139

The Basics of a Multi-Document Application

A multi-document application, as described on page 141, has at least one
application controller and a document controller for each document opened.
The application controller also responds to user commands relating to
documents and either creates, opens, closes, or saves a document.

Note: The Info submenu, which you get by default, includes the Info Panel,
Preferences, and Help commands. Although this tutorial does not cover
implementing Info and Preferences panels specifically, it does give you enough
information (which it will supplement with tips) so that you can try to
implement these panels on your own. You may delete the Help command from
the Info submenu if you wish; if you leave it in and users click it, they get a
message informing them that Help is not available.

Now that you’ve defined the application-controller class, define the document-
controller class, ToDoDoc. Remember, since the ToDoDoc controller must own
the nib file containing the document, it must be external to it; although it is
defined in the main nib file (ToDo.nib) and in ToDoDoc.nib, it’s instantiated before
its nib file is loaded.

1 Customize the application’s main
menu.

Open ToDo.nib in Interface
Builder.

Drag the Document item from the
Menus palette and drop it
between the Info and the Edit
submenus.

Drag the Item item from the
Menus palette and drop it
between the Edit and Windows
menus.

Change the title of “Item” to
“Inspector.”

Customize the document submenu by deleting the
Save As, Save To, Save All and Revert To Saved
commands.

Append an ellipsis (three dots) to the command
name to indicate that the command displays a
panel. Also enter “i” as the key equivalent.

2 Define the application-controller
class.

Create ToDoController as a
subclass of NSObject.

Add the outlet and actions (listed
at right) to the class.

Make the action connections
from the appropriate Document
menu commands.

Chapter 4 To Do Tutorial

140

Now add the remaining objects to the document interface.

Name Connection Type

calendar From File’s Owner to the CalendarMatrix object outlet

dayLabel From File’s Owner to label “To Do on” outlet

itemMatrix From File’s Owner (ToDoDoc) to matrix of long text fields outlet

markMatrix From File’s Owner to matrix of short text fields outlet

itemChecked: From matrix of short text fields to File’s Owner action

3 Define the document-controller
class.

Create ToDoDoc as a subclass of
NSObject.

Add to the class the outlets and
action listed at right.

Instantiate ToDoController and
ToDoDoc.

Save ToDo.nib.

4 Complete the document
interface.

Open ToDoDoc.nib.

Add the matrices of text fields.

Add the labels above the
matrices.

Make the labels 14 points in the
user’s application font.

Make the item text 12 points in the
user’s application font.

Save ToDoDoc.nib.

Set the text color of this
label to dark grey.

To assist alignment, these
cells are text fields of the
same size as the cells of
the opther matrix.
However, you will at run
time substitute your own
custom cell (ToDoCell).

Add padding to this
label, extend it across
the column.

Remember, create a
matrix by Alternate-
dragging a handle of a
suitable object. Before
alternate-dragging,
make the intial text field
scrollable.

5 Connect the outlets and actions
of ToDoDoc.

Select File’s Owner in the
Instances display of
ToDoDoc.nib.

Choose ToDoDoc from the list of
classes in the Attributes display
of the inspector.

Make the connections described
in the table at right.

The Basics of a Multi-Document Application

141

The Structure of Multi-Document Applications

From a user’s perspective, a document is a unique body of
information usually contained by its own window. Users can
create an unlimited number of documents and save each to a file.
Common documents are word-processing documents and
spreadsheets.

From a programming perspective, a document comprises the
objects and resources unarchived from an auxiliary nib file and
the controller object that loads and manages these things. This
document controller is the owner of the auxiliary nib file
containing the document interface and related resources.To
manage a document, the document controller makes itself the
delegate of its window and its “content” objects. It tracks edited
status, handles window-close events, and responds to other
conditions.

When users choose the New (or equivalent) command, a method
is invoked in the application’s controller object. In this method, the
application controller creates a document-controller object,
which loads the document nib file in the course of initializing itself.
A document thus remains independent of the application’s “core”
objects, storing state data in the document controller. If the
application needs information about a document’s state, it can
query the document controller.

When users chose the Save command, the application displays a
Save panel and enables users to save the document in the file
system. When users chose the Open command, the application
displays an Open panel, allowing users to select a document file
and open it.

Document Management Techniques

When you make the application controller and the document

controller delegates of the application (NSApp) and the document
window, they can receive messages sent at critical moments of a
running application. These moments include the closure of
windows (windowShouldClose:), window selection
(windowDidResignMain:), application start-up
(applicationWillFinishLaunching:) and application termination
(applicationShouldTerminate:). In the methods handling these
messages, the controllers can then do the appropriate thing, such
as saving a document’s data or displaying an empty document.

Several NSViews also have delegation messages that facilitate
document management, particularly text fields, forms, and other
controls with editable text (controlText...) and NSText objects
(text...). One important such message is textDidChange: (or
controlTextDidChange:), which signals that the document’s
textual content was modified. In responding to this message,
controllers can set the window’s close button to have a “broken”
X with the setDocumentEdited: message; later, they can
determine whether the document needs to be saved by sending
isDocumentEdited to the window.

Document controllers often need to communicate with the
application controller or other objects in the application. One way
to do this is by posting notifications. Another way is to use the key
relationships within the core program framework (see page 149)
to find the other object (assuming it’s a delegate of an Application
Kit object). For example, the application controller can send the
following message to locate the current document controller:

[[NSApp mainWindow] delegate]

The document controller can find the application controller with:

[NSApp delegate]

creates loads

AppController DocController

Doc.nib

- new

{

 // ...

 [[DocController alloc] init];

// ..
}

- init

{

 // ...

 [NXApp loadNibSelection:"Doc.nib"

 owner:self];

 // ..

}

Document Creation Sequence

Chapter 4 To Do Tutorial

142

Text fields in a matrix, just like a form’s cells, are connected for inter-field
tabbing when you create the matrix. But you must also connect ToDoDoc and
ToDoController to the delegate outlets of other objects in the application—this
step is critical to the multi-document design.

Name Connection

textDelegate From the CalendarMatrix object to File’s Owner (ToDoDoc)

delegate From the document window’s title bar to File’s Owner (ToDoDoc)

delegate In ToDo.nib, from File’s Owner (NSApp) to the ToDoController instance

The ToDoDoc class needs supplemental data and behavior to get the multi-
document mechanism working right.

The activeDays and currentItems instance variables hold the collection objects that
store and organize the data of the application. (You’ll deal with these instance
variables much more in the next section of this tutorial.) Many of the methods
declared are accessor methods that set or return these instance variables or one
of the matrices of the document.

You’ll be switching between ToDoDoc.m and ToDoController.m in the next few tasks.
The intent is not to confuse, but to show the close interaction between these
two classes.

Connect ToDoDoc and
ToDoController to other objects
as their delegates.

6 Create source-code files for
ToDoDoc and ToDoController.

In Project Builder:

7 Add declarations of methods and
instance variables to the
ToDoDoc class.

Select ToDoDoc.h in the project
browser.

Add the declarations at right.

(Ellipses indicate existing
declarations.)

@interface ToDoDoc:NSObject

{

 /* ... */

 NSMutableDictionary *activeDays;

 NSMutableArray *currentItems;

}

/* ... */

- (NSMutableArray *)currentItems;

- (void)setCurrentItems:(NSMutableArray *)newItems;

- (NSMatrix *)itemMatrix;

- (NSMatrix *)markMatrix;

- (NSMutableDictionary *)activeDays;

- (void)saveDoc;

- (id)initWithFile:(NSString *)aFile;

- (void)dealloc;

- (void)activateDoc;

- (void)selectItem:(int)item;

@end

The Basics of a Multi-Document Application

143

The newDoc: method is invoked when the user chooses New from the
Document menu. The method allocates and initializes an instance of the
document controller, ToDoDoc, thereby creating a document. (See the
implementation of initWithFile: on the following page to see what happens in this
process.) It then updates the document interface by invoking activateDoc..

- (void)newDoc:(id)sender

{

 id currentDoc = [[ToDoDoc alloc] initWithFile:nil];

 [currentDoc activateDoc];

}

8 Write the code that creates
documents.

Select ToDoController.m in the
project browser.

Implement ToDoController’s
newDoc: method.

Coordinate Systems in OpenStep

The screen’s coordinate system is the basis for all other
coordinate systems used for positioning, sizing, drawing, and
event handling. You can think of the entire screen as occupying
the upper-right quadrant of a two-dimensional coordinate grid.
The other three quadrants, which are invisible to users, take
negative values along their x-axis, their y-axis, or both axes. The
screen’s quadrant has its origin in the lower left corner; the
positive x-axis extends horizontally to the right and the positive y-
axis extends vertically upward. A unit along either axis is
expressed as a pixel.

The screen coordinate system has just one function: to position
windows on the screen. When your application creates a new
window, it must specify the window's initial size and location in
screen coordinates.You can “hide” windows by specifying their
origin points well within one of the invisible quadrants. This
technique is often used in off-screen rendering in buffered
windows.

The reference coordinate system for a window is known as the
base coordinate system. It differs from the screen coordinate
system in only two ways:

• It applies only to a particular window; each window has its own
base coordinate system.

• Its origin is at the lower left corner of the window, rather than
the lower left corner of the screen. If the window moves, the
origin and the entire coordinate system move with it.

For drawing, each NSView uses a coordinate system transformed
from the base coordinate system or from the coordinate system of
its superview. This coordinate system also has it origin point at the
lower-left corner of the NSView, making it more convenient for
drawing operations. NSView has several methods for converting
between base and local coordinate systems. When you draw,
coordinates are expressed in the application's current coordinate
system, the system reflecting the last coordinate transformations
to have taken place within the current window.

(500.0, 200.0)

(0.0, 0.0) x-axis

y-
ax

is

(-200.0,
-200.0)

.
0,0

160,155
0,0

0,0
375,310

x axis

y axis

A view’s lacation is specified
relative to the coordinate system
of its window or superview.
The coordinate origin for drawing
begins at this point.

The location of the window is
expressed relative to the screen’s
origin, and its coordinate system
begins here too.

The origins and dimensions of
windows and panels are based on
the screen origin.

Chapter 4 To Do Tutorial

144

This method, which initializes and loads the document, has the following steps:

1. Restores the document’s archived objects if the aFile argument is the
pathname of a file containing the archived objects (that is, the document is
opened). If objects are unarchived, it retains the activeDays dictionary;
otherwise it displays an attention panel.

2. Initializes the activeDays and currentItems instance variables. A aFile argument
with a nil value indicates that the user is requesting a new document.

3. Loads the nib file containing the document interface, specifying self as owner.

4. Sets the title of the window; this is either the file name on the left of the title
bar and the pathname on the right, or “UNTITLED” if the document is new.

Before You Go On

Note the [itemMatrix window] message nested in the last message. Every object
that inherits from NSView “knows” its window and will return that NSWindow
object if you send it a window message.

- initWithFile:(NSString *)aFile

{

 NSEnumerator *dayenum;

 NSDate *itemDate;

 [super init];

 if (aFile) { /* 1 */

 activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile];

 if (activeDays)

 activeDays = [activeDays retain];

 else

 NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@",

 nil, nil, nil, aFile);

 } else { /* 2 */

 activeDays = [[NSMutableDictionary alloc] init];

 [self setCurrentItems:nil];

 }

 if (![NSBundle loadNibNamed:@"ToDoDoc.nib" owner:self]) /* 3 */

 return nil;

 if (aFile) /* 4 */

 [[itemMatrix window] setTitleWithRepresentedFilename:aFile];

 else

 [[itemMatrix window] setTitle:@"UNTITLED"];

 [[itemMatrix window] makeKeyAndOrderFront:self];

 return self;

}

Select ToDoDoc.m in the project
browser.

Implement ToDoDoc’s
initWithFile: method.

The Basics of a Multi-Document Application

145

The openDoc: method displays the modal Open panel, gets the user’s response
(which can be multiple selections) and opens the file (or files) selected.

1. Creates or gets the NSOpenPanel instance (an instance shared among objects
of an application). The previous message specifies the file types (that is, the
extensions) of the files that will appear in the Open panel browser. The next
message enables selection of multiple file in the panel’s browser.

2. Sets the directory at which the NSOpenPanel starts displaying files either to
the directory of any document window currently key or , if there is none, to
the user’s home directory.

3. Runs the NSOpenPanel and obtains the key clicked.

4. If the key is NSOKButton, cycles through the selected files and, for each,
creates a document by allocating and initializing a ToDoDoc instance,
passing in a file name.

The methods invoked by the Document menu’s Close and Save commands
both simply send a message to another object. How they locate these objects
exemplify important techniques using the core program framework.

- (void)openDoc:(id)sender

{

 int result;

 NSString *selected, *startDir;

 NSArray *fileTypes = [NSArray arrayWithObject:@"td"];

 NSOpenPanel *oPanel = [NSOpenPanel openPanel]; /* 1 */

 [oPanel setAllowsMultipleSelection:YES];

 if ([[[NSApp keyWindow] delegate] isKindOfClass:[ToDoDoc class]])

 startDir = [[[NSApp keyWindow] representedFilename] /* 2 */

 stringByDeletingLastPathComponent];

 else

 startDir = NSHomeDirectory();

 result = [oPanel runModalForDirectory:startDir file:nil /* 3 */

 types:fileTypes];

 if (result == NSOKButton) {

 NSArray *filesToOpen = [oPanel filenames];

 int i, count = [filesToOpen count];

 for (i=0; i<count; i++) { /* 4 */

 NSString *aFile = [filesToOpen objectAtIndex:i];

 id currentDoc = [[ToDoDoc alloc] initWithFile:aFile];

 [currentDoc activateDoc];

 }

 }

}

9 Implement the document-
opening method.

Select ToDoController.m in the
project browser.

Write the code for openDoc:.

Chapter 4 To Do Tutorial

146

NSApp, the global NSApplication instance, keeps track of the application’s
windows, including their status. Because only one window can have main status,
the mainWindow message returns that NSWindow object— which is, of course,
the one the user chose the Close command for. The closeDoc: method sends
performClose: to that window to simulate a mouse click in the window’s close
button. (See the following section, “Managing Documents Through
Delegation,” to learn how the document handles this user event.)

As did closeDoc:, this method sends mainWindow to NSApp to get the main
window, but then it sends delegate to the returned window to get its delegate, the
ToDoDoc instance that is managing the document. It then sends the ToDoDoc-
defined message saveDoc to this instance.

Note: You could implement closeDoc: and saveDoc: in the ToDoDoc class, but the
ToDoController approach was chosen to make the division of responsibility
clearer.

- (void)closeDoc:(id)sender

{

 [[NSApp mainWindow] performClose:self];

}

10 Write the code that closes
documents.

In ToDoController.m, implement
the closeDoc: method.

- (void)saveDoc:(id)sender

{

 id currentDoc = [[NSApp mainWindow] delegate];

 if (currentDoc)

 [currentDoc saveDoc];

}

11 Write the code that saves
documents.

In ToDoController.m, implement
the saveDoc: method.

The Basics of a Multi-Document Application

147

ToDoDoc’s saveDoc method complements ToDoController’s openDoc: method in
that it runs the modal Save panel for users.

1. The title method returns the text that appears in the window’s title bar. If the
title doesn’t begin with “UNTITLED” (what new document windows are
initialized with), then a file name and directory location has already been
chosen, and is stored as the representedFilename.

2. If the window title begins with “UNTITLED” then the document needs to
be saved under a user-specified file name and directory location. This part of
the code creates or gets the shared NSSavePanel instance and sets the file
type, which is the extension that’s automatically appended. Then it runs the
Save panel, specifying the user’s home directory as the starting location.

3. Archives the document under the chosen directory path and file name and,
with the setDocumentEdited: message, changes the window’s close button to an
“unbroken X” image (more on this in the next section).

Don’t implement setCurrentItems: yet. This method does something special for
the application that will be covered in ‘‘Managing the Data and Coordinating its
Display (ToDoDoc)’’ on page 154.

- (void)saveDoc

{

 NSString *fn;

 if (![[[itemMatrix window] title] hasPrefix:@"UNTITLED"]) {

 fn = [[itemMatrix window] representedFilename]; /* 1 */

 } else {

 int result; /* 2 */

 NSSavePanel *sPanel = [NSSavePanel savePanel];

 [sPanel setRequiredFileType:@"td"];

 result = [sPanel runModalForDirectory:NSHomeDirectory() file:nil];

 if (result == NSOKButton) {

 fn = [sPanel filename];

 [[itemMatrix window] setTitleWithRepresentedFilename:fn];

 } else

 return;

 }

 if (![NSArchiver archiveRootObject:activeDays toFile:fn]) /* 3 */

 NSRunAlertPanel(@"To Do", @"Couldn't archive file %@",

 nil, nil, nil, fn);

 else

 [[itemMatrix window] setDocumentEdited:NO];

}

Select ToDoDoc.m in the project
browser.

Implement the saveDoc: method.

12 Implement the accessor methods
for ToDoController and ToDoDoc.

Chapter 4 To Do Tutorial

148

The Application Quartet: NSResponder, NSApplication, NSWindow, and NSView

Many classes of the Application Kit stand out in terms of relative
importance. NSControl, for example, is the superclass of all user-
interface devices, NSText underlies all text operations, and
NSMenu has obvious significance. But four classes are at the
core of a running application: NSResponder, NSApplication,
NSWindow, and NSView. Each of these classes plays a critical
role in the two primary activities of an application: drawing the
user interface and responding to events. The structure of their
interaction is sometimes called the core program framework.

NSWindow

An NSWindow object manages each physical window (that is,
each window created by the Window Server) on the screen. It
draws the title bar and window frame and responds to user
actions that close, move, resize, and otherwise manipulate the
window.

The main purpose of an NSWindow is to display an application’s
user interface (or part of it) in its content area: that space below
the title bar and within the window frame. A window’s content is
the NSViews it encloses, and at the root of this view hierarchy is
the content view, which fills the content area. Based on the
location of a user event, NSWindows assigns an NSView in its
content area to act as first responder.

An NSWindow allows you to assign a custom object as its
delegate and so participate in its activities.

NSResponder

NSResponder is an abstract class, but it enables event handling
in all classes that inherit from it. It defines the set of messages
invoked when different mouse and keyboard events occur. It also
defines the mechanics of event processing among objects in an
application, especially the passing of events up the responder
chain to each next responder until the event is handled. See the
‘‘Events and the Event Cycle’’ on page 163 for more on the
responder chain and a description of first responder.

NSApplication

Every application must have one NSApplication object to act as
its interface with the Window Server and to supervise and
coordinate the overall behavior of the application. This object
receives events from the Window Server and dispatches them to
the appropriate NSWindows (which, in turn, distribute them to
their NSViews). The NSApplication object manages its windows
and detects and handles changes in their status as well as in its
own status: hidden and unhidden, active and inactive. The
NSApplication object is represented in each application by the
global variable NSApp. To coordinate your own code with NSApp,
you can assign your own custom object as its delegate.

NSView

Any object you see in a window’s content area is an NSView.
(Actually, since NSView is an abstract class, these objects are
instances of NSView subclasses.) NSView objects are
responsible for drawing and for responding to mouse and
keyboard events. Each NSView owns a rectangular region
associated with a particular window; it produces images within
this region and responds to events occurring within the rectangle.

NSViews in a window are logically arranged in a view hierarchy,
with the content view at the top of the hierarchy (see facing page
for more information). An NSView references its window, its
superview, and its subviews. It can be the first responder for
events or the next responder in the responder chain. An NSView’s
frame and bounds are rectangles that define its location on the
screen, its dimension, and its coordinate system for drawing.

NSObject

NSResponder

NSWindow NSApplication NSView

‘The NSEvent class is also
involved in event processing. For
more about NSEvent and the
event cycle, see ‘‘Events and the
Event Cycle’’ on page 163.

The Basics of a Multi-Document Application

149

The View Hierarchy

Just inside each window’s content area—the area enclosed by
the title bar and the other three sides of the frame—lies the
content view. The content view is the root (or top) NSView in the
window’s view hierarchy. Conceptually like a tree, one or more
NSViews may branch from the content view, one one or more
other NSViews may branch from these subordinate NSViews, and
so on. Except for the content view, each NSView has one (and
only one) NSView above it in the hierarchy. An NSView’s
subordinate views are called its subviews; its superior view is
known as the superview.

On the screen enclosure determines the relationship between
superview and subview: a superview encloses its subviews. This
relationship has several implications for drawing:

• It permits construction of a superview simply by arrangement
of subviews. (An NSBrowser is an instance of a compound
NSView.)

• Subviews are positioned in the coordinates of their superview,
so when you move an NSView or transform its coordinate
system, all subviews are moved and transformed in concert.

• Because an NSView has its own coordinate system for
drawing, its drawing instructions remain constant regardless
of any change in position in itself or of its superview.

Fitting Your Application In

The core program framework provides ways for your application
to access the participating objects and so to enter into the action.

• The global variable NSApp identifies the NSApplication object.
By sending the appropriate message to NSApp, you can obtain
the application’s NSWindow objects (windows), the key and
main windows (keyWindow and mainWindow), the current
event (currentEvent), the main menu (mainMenu), and the
application’s delegate (delegate).

• Once you’ve identified an NSWindow object, you can get its
content view (by sending it contentView) and from that you can
get all subviews of the window. By sending messages to the
NSWindow object you can also get the current event
(currentEvent), the current first responder (firstResponder),
and the delegate (delegate).

• You can obtain from an NSView most objects it references. You
can discover its window, its superview, and its subviews.
Some NSView subclasses can also have delegates, which you
can access with delegate.

By making your custom objects delegates of the NSApplication
object, your application’s NSWindows, and NSViews that have
delegates, you can integrate your application into the core
program framework and participate in what’s going on.

NSApplication

NSWindow

NSWindow

windows
delegate

contentView
delegate

contentView
delegate

NSView (A)

window
superview (nil)
subviews

NSView (B)

window
superview
subviews

NSView (C)

window
superview
subviews

A
B

C

NSApp

Chapter 4 To Do Tutorial

150

Managing Documents Through Delegation

At certain points while an application is running you want to ensure that a
document’s data is preserved or that a document’s edited status is tracked.
These events occur when users:

• Edit a document.
• Close a window.
• Quit the application.
• Hide the application.
• Switch to another application or window.

Several classes of the Application Kit send messages to their delegates when
these events occur, giving the delegate the opportunity to do the appropriate
thing, whether that be saving a document to the file system or marking a
document as edited.

When a control that contains editable text—such as a text field or a matrix of text
fields—detects editing in a field, it posts the controlTextDidChange: notification
which, like all notifications, is sent to the control’s delegate as well as to all
observers. The setDocumentEdited: message causes the document’s window to
change the image in its close button to a broken X.

Note: The ToDo object that, by notification, invokes the controlTextDidChange:
method is itemMatrix, the matrix of to-do items (text fields). You will
programmatically set ToDoDoc to be the delegate of this object later in this
tutorial.

- (void)controlTextDidChange:(NSNotification *)notif

{

 [[itemMatrix window] setDocumentEdited:YES];

}

1 Mark a document as edited.

Open ToDoDoc.m.

Implement the
controlTextDidChange: method
to mark the document.

[window setDocumentEdited:NO];

[window setDocumentEdited:YES];

Managing Documents Through Delegation

151

When users click a window’s close button, the window sends windowShouldClose:
to its delegate. It expects a response directing it either to close the window or
leave it open.

1. Returns YES (meaning: go ahead, close the window) if the document hasn’t
been edited.

2. Makes the window its own first responder. This has the effect of forcing the
validation of cells, flushing currently entered text to the method that handles
it (more on this in the next section).

3. Identifies the clicked button by evaluating the constant returned from
NSRunAlertPanel() and returns the appropriate boolean value. If the user clicks
the Save button, this method also updates internal storage with the currently
displayed items (saveDocItems) and then sends saveDoc to itself to archive
application data to a file. (saveDocItems is described in the following section.)

Note: Do you recall the performClose: method that ToDoController sends the
document window when the user chooses the Close command? This method

- (BOOL)windowShouldClose:(id)sender

{

 int result;

/* 1 */

 if (![[itemMatrix window] isDocumentEdited]) return YES;

/* 2 */

 [[itemMatrix window] makeFirstResponder:[itemMatrix window]];

 result = NSRunAlertPanel(@"Close", @"Document has been edited.

 Save changes before closing?", @"Save", @"Don't Save",

 @"Cancel");

/* 3 */

 switch(result) {

 case NSAlertDefaultReturn: {

 [self saveDocItems];

 [self saveDoc];

 return YES;

 }

 case NSAlertAlternateReturn: {

 return YES;

 }

 case NSAlertOtherReturn: {

 return NO;

 }

 }

 return NO;

}

2 Save edited documents when
windows are closed.

Implement the delegation method
windowShouldClose:.

Chapter 4 To Do Tutorial

152

simulates a mouse click on the window’s close button, causing windowShouldClose:
to be invoked.

NSApplication sends several message to its delegate. One of these messages—
applicationShouldTerminate:—notifies the delegate that the application is about to
terminate. The implementation of this method is similar to that for
windowShouldClose:. What’s different is that this method cycles through all
windows of the application and, if the window is managed by ToDoDoc, puts
up an attention panel and responds according to the user’s choice.

- (BOOL)applicationShouldTerminate:(id)sender

{

 while ([NSApp keyWindow]) {

 int result;

 id doc = [[NSApp keyWindow] delegate];

 if (![[NSApp keyWindow] isDocumentEdited]) {

 [[NSApp keyWindow] close];

 if (doc) [doc autorelease];

 continue;

 }

 if ([doc isKindOfClass:[ToDoDoc class]]) {

 NSString *repfile = [[NSApp keyWindow] representedFilename];

 result = NSRunAlertPanel(@"To Do", @"Save %@?", @"Save",

 @"Don't Save", @"Cancel",

 ([repfile isEqualToString:@""]?@"UNTITLED":repfile));

 switch(result) {

 case NSAlertDefaultReturn:

 [doc saveDocItems];

 [doc saveDoc];

 break;

 case NSAlertAlternateReturn:

 [[NSApp keyWindow] close];

 break;

 case NSAlertOtherReturn:

 return NO;

 }

 if (doc) [doc autorelease];

 }

 else

 [[NSApp keyWindow] close];

 }

 return YES;

}

3 Save edited documents when the
user quits the application.

In ToDoController.m, implement
the delegation method
applicationShouldTerminate:.

Managing the Data and Coordinating its Display (ToDoDoc)

153

Managing the Data and Coordinating its Display (ToDoDoc)

If you recall the discussion on To Do’s design earlier in this chapter (‘‘How To
Do Stores and Accesses its Data’’ on page 119), you’ll remember that the
application’s real data consists of instances of the model class, ToDoItem. To Do
stores these objects in arrays and stores the arrays in a dictionary; it uses dates as
the keys for accessing specific arrays. (Both the dictionary and its arrays are
mutable, of course.) You might also recall that this design depends on a
positional correspondence between the text fields of the document interface
and the “slots” of the arrays.

To lend clarity to this design’s implementation, this section follows the process
from start to finish through which the ToDoDoc class handles entered data, and
organizes, displays, and stores it. It also shows how the display and manipulation
of data is driven by the selections made in the CalendarMatrix object.

Start by revisiting a portion of code you wrote earlier for ToDoDoc’s initWithFile:
method.

Assume the user has chosen the New command from the Document menu.
Since there is no archive file (aFile is nil), the activeDays dictionary is created but
is left empty. Then initWithFile: invokes its own setCurrentItems: method, passing in
nil.

- initWithFile:(NSString *)aFile

{

 /* ... */

 if (aFile) {

 activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile];

 if (activeDays)

 activeDays = [activeDays retain];

 else

 NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@",

 nil, nil, nil, aFile);

 } else {

 activeDays = [[NSMutableDictionary alloc] init];

 [self setCurrentItems:nil];

 }

/* ... */

}

Chapter 4 To Do Tutorial

154

This “set” accessor method is like other such methods, except in how it handles
a nil argument. In this case, nil signifies that the array does not exist, and so it
must be created. Not only does setCurrentItems: create the array, but it “initializes”
it with empty string objects. It does this because NSMutableArray’s methods
cannot tolerate nil objects within the bounds of the array.

So there’s now a currentItems array ready to accept ToDoItems. Imagine yourself
using the application. What are the user events that cause a ToDoItem to be
added to the currentItems array? To Do allows entry of items “on the fly,” and thus
does not require the user to click a button to add a ToDoItem to the array.
Specifically, items are added when users type something and then:

• Press the Tab key.
• Press the Enter key.
• Click outside the text field.

The controlTextDidEndEditing: delegation method makes these scenarios possible.
The matrix of editable text fields (itemMatrix) invokes this method when the
cursor leaves a text field that has been edited.

- (void)setCurrentItems:(NSMutableArray *)newItems

{

 if (currentItems) [currentItems autorelease];

 if (newItems)

 currentItems = [newItems mutableCopy];

 else {

 int numRows = [[itemMatrix cells] count];

 currentItems = [[NSMutableArray alloc]

 initWithCapacity:numRows];

 while (--numRows >= 0)

 [currentItems addObject:@""];

 }

}

1 Set the current items or, if
necessary, create and prepare
the array that holds them.

Implement setCurrentItems:.

Managing the Data and Coordinating its Display (ToDoDoc)

155

A control sends controlTextDidEndEditing: to its delegate when the cursor leaves a text
field. In addition to creating new ToDoItems, this implementation of
controlTextDidEndEditing: removes ToDoItems from arrays and modifies item text.
What it does is appropriate to what the user does.

1. If the document hasn’t been edited (see controlTextDidChange:) or if the selected
row exceeds the array bounds, it returns because there’s no reason to proceed.
It initializes a currentItems array if one doesn’t exist.

2. If the user deletes the text of an existing item, it removes the ToDoItem that
positionally corresponds to the row of that deleted text.

3. It changes the name of an item if the text entered in a field doesn’t match the
name of the corresponding item in the currentItems array.

- (void)controlTextDidEndEditing:(NSNotification *)notif

{

 id curItem, newItem;

 int row = [itemMatrix selectedRow];

 NSString *selName = [[itemMatrix selectedCell] stringValue];

/* 1 */

 if (![[itemMatrix window] isDocumentEdited] ||

 (row >= [currentItems count])) return;

 if (!currentItems)

 [self setCurrentItems:nil];

/* 2 */

 if ([selName isEqualToString:@""] &&

 ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]]) &&

 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:@""]))

 [currentItems replaceObjectAtIndex:row withObject:@""];

/* 3 */

 else if ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]] &&

 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:selName]))

 [[currentItems objectAtIndex:row] setItemName:selName];

/* 4 */

 else if (![selName isEqualToString:@""]) {

 newItem = [[ToDoItem alloc] initWithName:selName

 andDate:[calendar selectedDay]];

 [currentItems replaceObjectAtIndex:row withObject:newItem];

 [newItem release];

 }

/* 5 */

 [self updateMatrix];

}

2 As items are entered in the
interface, add ToDoItems to
internal storage, delete them, or
modify them, as appropriate.

Implement
controlTextDidEndEditing:.

Chapter 4 To Do Tutorial

156

4. If either of the two previous conditions don’t apply, and text has been
entered, it creates a new ToDoItem and inserts it in the currentItems array.

5. Updates the list of items in the document interface.

The updateMatrix method writes the names of the items (ToDoItems) in the
currentItems array to the text fields of itemMatrix. It also updates the visual
appearance of the cells in the matrix (markMatrix) next to itemMatrix. These cells
are instances of a custom subclass of NSButtonCell that you will create later in
this tutorial. For now, just type all the code above; later, when you create the cell
class, ToDoCell, you can refer back to this example to see what is happening.

Basically, this method cycles through the array of items, doing the following:

1. If an object in the array is a ToDoItem, it writes the item name to the text
field corresponding to the array slot and updates the button cell next to the
field.

2. If an object isn’t a ToDoItem, it blanks the corresponding text field and cell.

- (void)updateMatrix

{

 int i, cnt = [currentItems count], rows = [[itemMatrix cells] count];

 ToDoItem *thisItem;

 for (i=0; i<cnt, i<rows; i++) {

 NSDate *due;

 thisItem = [currentItems objectAtIndex:i];

 if ([thisItem isKindOfClass:[ToDoItem class]]) { /* 1 */

 if ([thisItem secsUntilDue])

 due = [[thisItem day] addTimeInterval:

 [thisItem secsUntilDue]];

 else

 due = nil;

 [[itemMatrix cellAtRow:i column:0] setStringValue:

 [thisItem itemName]];

 [[markMatrix cellAtRow:i column:0] setTimeDue:due];

 [[markMatrix cellAtRow:i column:0] setTriState:

 [thisItem itemStatus]];

 }

 else { /* 2 */

 [[itemMatrix cellAtRow:i column:0] setStringValue:@""];

 [[markMatrix cellAtRow:i column:0] setTitle:@""];

 [[markMatrix cellAtRow:i column:0] setImage:nil];

 }

 }

}

3 Update the document interface
with the current items.

Implement updateMatrix:.

Managing the Data and Coordinating its Display (ToDoDoc)

157

As you recall, CalendarMatrix declared two methods to allow delegates to “hook
into” its behavior. Its delegate for this application is ToDoDoc.

1. The calendar sends calendarMatrix:didChangeToDate: when users click a new day
of the month. This implementation saves the current items to the activeDays
dictionary. It then sets the current items to be those corresponding to the
selected date (if there are no items for that date, the objectForKey: message
returns nil and the currentItems array is initialized with empty strings). Finally
it updates the matrix with the new data.

2. The calendar sends calendarMatrix:didChangeToMonth:year: when users go to a new
month and (possibly) a new year. This implementation responds by saving
the current items to internal storage and presenting a blank list of items.

- (void)calendarMatrix:(CalendarMatrix *)matrix /* 1 */

 didChangeToDate:(NSDate *)date

{

 [[itemMatrix window] makeFirstResponder:[itemMatrix window]];

 [self saveDocItems];

 [self setCurrentItems:[activeDays objectForKey:date]];

 [dayLabel setStringValue:[date descriptionWithCalendarFormat:

 @"To Do on %a %B %d %Y" timeZone:[NSTimeZone defaultTimeZone]

 locale:nil]];

 [self updateMatrix];

}

- (void)calendarMatrix:(CalendarMatrix *)matrix /* 2 */

 didChangeToMonth:(int)mo year:(int)yr

{

 [self saveDocItems];

 [self setCurrentItems:nil];

 [self updateMatrix];

}

4 Respond to user actions in the
calendar.

Implement CalendarMatrix’s
delegation methods.

Chapter 4 To Do Tutorial

158

This method inspects the currentItems array and, if it contains at least one
ToDoItem, puts the array in the activeDays dictionary with a key corresponding
to the date.

Now that you’ve completed the methods for saving and archiving the collection
objects holding ToDoItems, assume that the user has saved his document and
then opens it.

- (void)saveDocItems

{

 ToDoItem *anItem;

 int i, cnt = [currentItems count];

 // save day's current items (array) to document dictionary

 for (i=0; i<cnt; i++) {

 if ((anItem = [currentItems objectAtIndex:i]) &&

 ([anItem isKindOfClass:[ToDoItem class]])) {

 [activeDays setObject:currentItems forKey:

 [anItem day]];

 break;

 }

 }

}

5 Save the data to internal storage.

Implement saveDocItems:.

6 Archive and unarchive the
document’s data.

Implement encodeWithCoder:
and initWithCoder: to archive and
unarchive the dictionary holding
the arrays of ToDoItems.

Managing the Data and Coordinating its Display (ToDoDoc)

159

When the ToDoDoc.nib file is completely unarchived, awakeFromNib is invoked. It
sets the current items for today, sets a couple of delegates, and puts the
document window in front of all other windows.

Note: This method sets some delegates programmatically, which is redundant
since you set these delegates in Interface Builder. However, this code
demonstrates the programmatic route—and no harm done.

The activateDoc method is invoked right after a ToDo document is created or
opened. It starts the ball rolling by updating the list matrices of the document
and writing the current date to the “To Do on <date>” label.

- (void)awakeFromNib

{

 int i;

 NSDate *date;

 date = [calendar selectedDay];

 [self setCurrentItems:[activeDays objectForKey:date]];

 /* set up self as delegates */

 [[itemMatrix window] setDelegate:self];

 [itemMatrix setDelegate:self];

 [[itemMatrix window] makeKeyAndOrderFront:self];

}

7 Perform set-up tasks when the
document’s nib file is unarchived.

Implement awakeFromNib as
shown at right.

8 Set up the document once it’s
created or opened.

Implement activateDoc as shown
at right.

- (void)activateDoc

{

 if ([currentItems count]) [self updateMatrix];

 [dayLabel setStringValue:[[calendar selectedDay]

 descriptionWithCalendarFormat:@"To Do on %a %B %d %Y"

 timeZone:[NSTimeZone defaultTimeZone] locale:nil]];

}

Chapter 4 To Do Tutorial

160

Subclass Example: Overriding Behavior (SelectionNotifMatrix)

You can often achieve significant gains in object behavior by making a subclass
that adds only a small amount of code to its superclass. Such is the case with the
subclass you’ll create in this section: SelectionNotifMatrix.

The need for this class is this: An instance of NSMatrix is a control and thus can
send action messages to its cell’s targets; but when it contains
NSTextFieldCells, action messages are sent only when users press the Return
key in a cell. You want the inspector to synchronize its displays when the user
selects a new item by clicking a text field. To do this, you will override the
method in NSMatrix that is invoked when users click the matrix; in your
implementation, you’ll invoke the superclass method, detect the selected row,
and then post a notification to interested observers.

1. Declares a string constant identifying the notification that will be posted.

2. Declares mouseDown:, the method implemented by the superclass that
SelectionNotifMatrix overrides.

1 Create template source-code
files and add to the project.

Choose File m New In Project.

In the New File In ToDo panel,
select the Class suitcase, turn on
the Create header switch, and
type “SelectionNotifMatrix” after
Name.

2 Add declarations to the header
file.

#import <AppKit/AppKit.h>

extern NSString *SelectionInMatrixNotification = /* 1 */
 @"SelectionInMatrixNotification";

@interface SelectionNotifMatrix : NSMatrix

{

}

- (void)mouseDown:(NSEvent *)theEvent; /* 2 */

@end

- (void)mouseDown:(NSEvent *)theEvent

{

 int row;

 [super mouseDown:theEvent]; /* 1 */

 row = [self selectedRow]; /* 2 */

 if (row != -1) {

 [[NSNotificationCenter defaultCenter]

 postNotificationName:@"SelectionInMatrixNotification"

 object:self userInfo:[NSDictionary dictionaryWithObjectsAndKeys:

 [NSNumber numberWithInt:row], @"ItemIndex", nil]];

 }

}

3 Override mouseDown:

In SelectionNotifMatrix.m,
implement mouseDown: as
shown here.

Subclass Example: Overriding Behavior (SelectionNotifMatrix)

161

This override of mouseDown: does the following:

1. Invokes NSMatrix’s implementation of mouseDown: to allow the normal
processing of this event.

2. Gets the row of the cell clicked and, if it’s a valid row, creates a userInfo
dictionary containing the clicked row, and posts the
SelectionInMatrixNotification.

Now that you’ve created the SelectionNotifMatrix class, you must re-assign the
class membership of the object in the interface. You can do this easily in
Interface Builder.

The Custom Classes browser lists the
original class of the selected object and
all compatible custom subclasses.

4 Replace the class of the matrix
object.

In Interface Builder:

Open ToDoDoc.nib.

Select the matrix of editable text
cells.

Open the inspector and choose
Custom Class from the pop-up
menu.

Select SelectionNotifMatrix in
the browser of compatible
classes.

Chapter 4 To Do Tutorial

162

Events and the Event Cycle

You can depict the interaction between a user and an OpenStep
application as a cyclical process, with the Window Server playing
an intermediary role (see illustration below). This cycle—the
event cycle—usually starts at launch time when the application
(which includes all the OpenStep frameworks it’s linked to) sends
a stream of PostScript code to the Window Server to have it draw
the application interface.

Then the application begins its main event loop and begins
accepting input from the user (see facing page). When users click
or drag the mouse or type on the keyboard, the Window Server
detects these actions and processes them, passing them to the
application as events. Often the application, in response to these
events, returns another stream of PostScript code to the Window
Server to have it redraw the interface.

In addition to events, applications can respond to other kinds of
input, particularly timers, data received at a port, and data waiting
at a file descriptor. But events are the most important kind of input.

Events

The Window Server treats each user action as an event; it
associates the event with a window and reports it to the
application that created the window. Events are objects:
instances of NSEvent composed from information derived from
the user action.

All event methods defined in NSResponder (such as mouseDown:
and keyDown:) take an NSEvent as their argument. You can query
an NSEvent to discover its window, the location of the event
within the window, and the time the event occurred (relative to
system start-up). You can also find out which (if any) modifier keys
were pressed (such as Command, Alternate, and Control), the

codes identifying characters and keys, and various other kinds of
information.

An NSEvent also divulges the type of event it represents. There
are many event types (NSEventType); they fall into five categories:

• Keyboard events Generated when a key is pressed down, a
pressed key is released, or a modifier key changes. Of these,
key-down events are the most useful. When you handle a key-
down event, you often determine the character or characters
associated with the event by sending the NSEvent a
characters message.

• Mouse events Mouse events are generated by changes in
the state of the mouse buttons (that is, down and up) for both
left and right mouse buttons and during mouse dragging.
Events are also generated when the mouse simply moves,
without any button pressed.

• Tracking-rectangle events If the application has asked the
window system to set a tracking rectangle in a window, the
window system creates mouse-entered and mouse-exit
events when the cursor enters the rectangle or leaves it.

• Periodic events A periodic event notifies an application that
a certain time interval has elapsed. An application can request
that periodic events be placed in its event queue at a certain
frequency. They are usually used during a tracking loop. (These
events aren’t passed to an NSWindow.)

• Cursor-update events An cursor-update event is generated
when the cursor has crossed the boundary of a predefined
rectangular area.

User

Window
Server

Application

Other
Applications

Monitored Port
or File

Events

PostScript
Code Timed

Entries

Subclass Example: Overriding Behavior (SelectionNotifMatrix)

163

The Event Queue and Event Dispatching

When an application starts up, the NSApplication object (NSApp)
starts the main event loop and begins receiving events from the
Window Server (see page 116). As NSEvents arrive, they’re put in
the event queue in the order they’re received. On each cycle of
the loop, NSApp gets the topmost event, analyzes it, and sends an
event message to the appropriate object. (Event messages are
defined by NSResponder and correspond to particular events.)
When NSApp finishes processing the event, it gets the next event,
and repeats the process again and again until the application
terminates.

The object that is “appropriate” for an event depends on the type
of event. NSApp sends most event messages to the NSWindow in
which the user action occurred. If the event is a keyboard or
mouse event, the NSWindow forwards the message to one of the
objects in its view hierarchy: the NSView within which the mouse
was clicked or the key was pressed. If the NSView can respond
to the event—that is, it accepts first responder status and defines
an NSResponder method corresponding to the event message—
it handles the event.

First Responder and the Responder Chain

Each NSWindow in an application keeps track of the object in its
view hierarchy that has first responder status. This is the NSView
that currently receives keyboard events for the window. By
default, an NSWindow is its own first responder, but any NSView
within the window can become first responder when the user
clicks it with the mouse.

You can also set the first responder programmatically with the
NSWindow’s makeFirstResponder: method. Moreover, the first-
responder object can be a target of an action message sent by an
NSControl, such as a button or a matrix. Programmatically, you do
this by sending setTarget: to the NSControl (or its cell) with an
argument of nil. You can do the same thing in Interface Builder by
making a target/action connection between the NSControl and
the First Responder icon in the Instances display of the nib file
window.

Recall that all NSViews of the application, as well as all
NSWindows and the application object itself, inherit from
NSResponder, which defines the default message-handling
behavior: events are passed up the responder chain. Many
Application Kit objects, of course, override this behavior, so
events are passed up the chain until they reach an object that
does respond.

The series of next responders in the responder chain is
determined by the interrelationships between the application’s
NSView, NSWindow, and NSApplication objects (see page 149).
For an NSView, the next responder is usually its superview; the
content view's next responder is the NSWindow. From there, the
event is passed to the NSApplication object.

For action messages sent to the first responder, the trail back
through possible respondents is even more detailed. The
messages are first passed up the responder chain to the
NSWindow and then to the NSWindow’s delegate. Then, if the
previous sequence occurred in the key window the same path is
followed for the main window. Then the NSApplication object
tries to respond, and failing that, it goes to NSApp’s delegate.

Window
Server

NSEvent

NSEvent

NSEvent

NSEvent

NSApplication

NSWindow

NSView

If the NSView cannot handle an event, it forwards the message to
the next responder in the responder chain (see below). It travels
up the responder chain until an object handles it.

NSWindow handles some events itself, and doesn’t forward them
to an NSView, such as window-moved, window-resized, and
window-exposed events. (Since these are handled by NSWindow
itself, they are not defined in NSResponder.) NSApp also
processes a few kinds of events itself; these include cursor-
update, and application-activate and -deactivate events.

Chapter 4 To Do Tutorial

164

Creating and Managing an Inspector (ToDoInspector)

An inspector is a panel of fields and controls that enable users to examine and
set an object’s attributes. Because objects often have many attributes and
because you want to make it easy for users to set those attributes, inspectors
usually have more than one display; users typically access these multiple
displays using a pop-up list.

The ToDo application has an inspector panel that allows users to inspect and set
the attributes of the currently selected ToDoItem. The inspector panel has its
own controller: ToDoInspector. While showing you how to create the inspector
panel and ToDoInspector, this section focuses on four things:

• Managing displays according to user selections
• Getting the current ToDoItem
• Updating the currently selected display
• Updating the current ToDoItem as users make changes to it

Before You Go On

You might be wondering about the empty box object in the lower part of the
panel. This box by itself may not seem a promising thing for displaying object
attributes, but it is critical to the workings of the inspector panel. A box that you
drag from the Views palette contains one subview, called the content view.
NSBox’s content view fits entirely within the bounds of the box. NSBox
provides methods for obtaining and changing the content view of boxes. You’ll
use these methods to change what the inspector panel displays.

The text fields after the lables should have a light
gray background and should not be editable. The
lower of these fields should be large enough to
hold the text of an item.

Double-click to display the three default cells
(Item 1, Item 2, and Item 3). Then, for each cell,
double-click its title to select it and type the new
title. Assign tags (0 to 2) to the cells

Turn off the title attribute an resize the box object
so it fits just inside the lower part of the panel. To
provide a guide for resizing, this example shows
the box having a border; turn the border off after
resizing.

In Interface Builder

1 Create a new nib file named
ToDoInspector.nib and add it to
the ToDo project.

2 Create the inspector panel.

Drag a panel object from the
Windows palette.

Make the title of the panel
“Inspector.”

Resize the panel, using the
example at right as a guide.

Put labels and fields on the panel
and set their attributes (as
shown).

Put a pop-up button on the panel
and set cell titles (as shown).

Assign tags to the pop-up button
cells.

Create a separator line just below
the pop-up button.

Put an empty box object in the
lower part of the panel.

Creating and Managing an Inspector (ToDoInspector)

165

Before You Go On

You probably now see where the inspector panel gets its displays and how it puts
them in place. When the inspector panel is first opened (and ToDoInspector.nib is
loaded) the inspector controller, ToDoInspector, replaces the content view of
the inspector’s empty box (dummyView) with the content view of the Notification
box in the off-screen panel. Thereafter, every time the user chooses a new pop-
up button in the inspector panel, ToDoInspector replaces the currently
displayed content view with the content view of the associated off-screen box.

The scroll view is its own grouping (Notes).

Turn off the border attributes of each outer box.

3 Create an off-screen panel
holding the inspector’s displays.

Drag a panel object from the
Windows palette.

Resize the panel, using the
example at right as a guide.

Put the labels, text fields, scroll
view, and switch and radio-button
matrices on the panel shown in
the example at right.

Make the When to Reschedule
and When to Notify groupings
(boxes).

Make three other groupings for
the three displays: Notes,
Reschedule, and Notification.

Resize the resulting boxes to the
same dimensions as the
“dummy” view in the inspector
panel.

dummyView

When users choose a new display,
ToDoInspector replaces the current content
view of dummyView with the appropriate view
of the offscreen window inspector’s view.

Chapter 4 To Do Tutorial

166

Outlet Connection From ToDoInspector To...

dummyView The empty box object in the inspector panel

inspectorViews The title bar of the off-screen panel

notesView The box in the off-screen panel containing the scroll view

notifView The box in the off-screen panel containing the fields and controls
related to notification of impending items

reschedView The box in the off-screen panel containing the fields and controls
related to rescheduling items

inspPopUp The pop-up button on the inspector panel

inspDate The uneditable text field next to the “Date” label

inspItem The uneditable text field next to the “Item” label

inspNotifHour The first field after the “Time” label

inspNotifMinute The second field after the “Time” label

inspNotifAMPM The matrix holding the “AM” and “PM” radio buttons

inspNotifOtherHours The text field in the “When to Notify” box

inspNotifSwitchMatrix The matrix of switches in the “When to Notify” box

inspSchedComplete The “Task Completed” switch

inspSchedDate The text field in the “When to Reschedule” box

inspSchedMatrix The matrix of switches in the “When to Reschedule” box

inspNotes The text object inside the scroll view

Action Connection To ToDoInspector From...

newInspectorView: The pop-up button on the inspector panel

switchChecked: The matrix of switches in the “When to Notify” box, the AM-PM matrix,
the “Task Completed” switch, and the matrix of switches in the “When
to Reschedule” switches.

4 Define the ToDoInspector class.

Create a subclass of NSObject
and name it “ToDoInspector.”

Add the outlets and actions in the
tables at right to the new class.

Instantiate ToDoInspector.

Connect the ToDoInspector
object to its outlets and as the
target of action messages (see
tables at right).

Connect ToDoInspector and the
inspector panel via the panel’s
delegate outlet.

Close both panels.

Save ToDoInspector.nib.

Create source-code files for
ToDoInspector and add them to
the project.

Creating and Managing an Inspector (ToDoInspector)

167

The ToDoInspector class has a utility function for clearing switches set in a
matrix and defines constants for the tags assigned to the pop-up buttons.

Using tags to identify cells rather than cell titles is a better localization strategy.

ToDoInspector has two accessor methods, one that gives out the current item
and one that sets the current item.

This implementation of a “set” accessor method probably seems familiar to
you—except for a couple of things:

1. Instead of copying the new value, this implementation retains it. By
retaining, it shares the current ToDoItem with the document controller
(ToDoDoc) that has sent the setCurrentItem: message, enabling both objects to
update the same ToDoItem simultaneously.

Note: Later in this section, you’ll invoke ToDoInspector’s setCurrentItem:
method in various places in ToDoDoc.m.

2. Updates the current display of the inspector with the appropriate values of
the new ToDoItem.

In Project Builder

5 Add declarations to
ToDoInspector.h.

Open ToDoInspector.h.

Type the declarations shown at
right (ellipses indicate existing
declarations).

Import ToDoItem.h and
ToDoDoc.h.

@interface ToDoInspector : NSObject

{

 ToDoItem *currentItem;

 /* ... */

}

/* ... */

- (void)setCurrentItem:(ToDoItem *)newItem;

- (ToDoItem *)currentItem;

- (void)updateInspector:(ToDoItem *)item;

@end

Open ToDoInspector.m.

Forward-declare
clearButtonMatrix() at the
beginning of the file.

Define enum constants for the
pop-up button tags.

static void clearButtonMatrix(id matrix);

enum { notifTag = 0, reschedTag, notesTag };

6 Implement the accessor methods
for the class.

Implement currentItem to return
the instance variables it names.

Implement setCurrentItem: as
shown at right.

- (void)setCurrentItem:(ToDoItem *)newItem

{

 if (currentItem) [currentItem autorelease];

 if (newItem)

 currentItem = [newItem retain]; /* 1 */

 else

 currentItem = nil;

 [self updateInspector:currentItem]; /* 2 */

}

Chapter 4 To Do Tutorial

168

This method switches the current inspector display according to the pop-up
button users select; it does this switching by replacing the dummyView’s content
view. Toward this end, the method:

1. Gets the panel’s content view and the tag of the selected pop-up button.

2. Assigns to the newView local variable the off-screen box object corresponding
to the tag of the selected pop-up button.

3. Returns if the selected display is already on the inspector panel. The subviews
message returns an array of all subviews of the inspector panel’s control view,
and the containsObject: message determines if the chosen display is among
these subviews.

4. Replaces the content view of the inspector panel’s dummyView. In awakeFromNib
(which you’ll soon implement) you’ll retain each original content view. The
setContentView: method replaces the new view and releases the old one;
because it’s been retained, the replaced view doesn’t disappear.

5. Updates the inspector with the current item; this item hasn’t changed, but the
display is new and so the set of instance variables to be displayed is different.
The display message forces a re-draw of the inspector panel’s views.

7 Switch inspector displays based
on user selections.

Implement newInspectorView:.

- (void)newInspectorView:(id)sender

{

 NSBox *newView=nil;

 NSView *cView = [[inspPopUp window] contentView]; /* 1 */

 int selected = [[inspPopUp selectedItem] tag];

 switch(selected){ /* 2 */

 case notifTag:

 newView = notifView;

 break;

 case reschedTag:

 newView = reschedView;

 break;

 case notesTag:

 newView = notesView;

 }

 if ([[cView subviews] containsObject:newView]) return; /* 3 */

 [dummyView setContentView:newView]; /* 4 */

 if (newView == notifView) [inspNotifHour selectText:self];

 if (newView == notesView) [inspNotes

 setSelectedRange:NSMakeRange(0,0)];

 [self updateInspector:currentItem]; /* 5 */

 [cView display];

}

Creating and Managing an Inspector (ToDoInspector)

169

8 Update the current inspector
display with the new ToDoItem.

Write the first part of the
updateInspector: method shown
at right.

- (void)updateInspector:(ToDoItem *)newItem

{

 int minute=0, hour=0, selected=0;

 selected = [[inspPopUp selectedItem] tag]; /* 1 */

 [[inspPopUp window] orderFront:self];

 if (newItem && [newItem isKindOfClass:[ToDoItem class]]) { /* 2 */

 [inspItem setStringValue:[newItem itemName]];

 [inspDate setStringValue:[[newItem day]

 descriptionWithCalendarFormat:@"%a, %b %d %Y"

 timeZone:[NSTimeZone localTimeZone] locale:nil]];

 switch(selected) {

 case notifTag: { /* 3 */

 long notifSecs, dueSecs = [newItem secsUntilDue];

 BOOL ampm = ConvertSecondsToTime(dueSecs, &hour, &minute);

 [[inspNotifAMPM cellAtRow:0 column:0] setState:!ampm];

 [[inspNotifAMPM cellAtRow:0 column:1] setState:ampm];

 [inspNotifHour setIntValue:hour];

 [inspNotifMinute setIntValue:minute];

 notifSecs = dueSecs - [newItem secsUntilNotif];

 if (notifSecs == dueSecs) notifSecs = 0;

 clearButtonMatrix(inspNotifSwitchMatrix);

 switch(notifSecs) { /* 4 */

 case 0:

[[inspNotifSwitchMatrix cellAtRow:0 column:0]

 setState:YES];

 break;

 case (hrInSecs/4):

 [[inspNotifSwitchMatrix cellAtRow:1 column:0]

 setState:YES];

 break;

 case (hrInSecs):

 [[inspNotifSwitchMatrix cellAtRow:2 column:0]

 setState:YES];

 break;

 case (dayInSecs):

 [[inspNotifSwitchMatrix cellAtRow:3 column:0]

 setState:YES];

 break;

 default: /* Other */

 [[inspNotifSwitchMatrix cellAtRow:4 column:0]

 setState:YES];

 [inspNotifOtherHours setIntValue:

 ((dueSecs-notifSecs)/hrInSecs)];

 break;

 }

 break;

 }

 case reschedTag:

 break;

Chapter 4 To Do Tutorial

170

The updateInspector: method is a long one, so we’ll approach it in stages. This first part updates
the common data elements (item name and date) and, if the selected display is for notifications,
updates that display.

1. Gets the tag assigned to the selected pop-up button.

2. Tests the argument newItem to see if it is a ToDoItem. This test is important
because if the argument is nil, the method clears the display of existing data
(next example).

If newItem is a ToDoItem, updateInspector: first updates the Item and Date
fields.

3. If the tag of the selected pop-up button is notifTag, updates the associated
inspector display. This task starts by converting the due time from seconds to
hour, minute, and PM boolean values and then setting the appropriate fields
and button matrix with these values.

4. Sets the appropriate switch in the “When to Notify” matrix. It starts with the
difference (in seconds) between the time the item is due and the time the
item notification is sent. It calls clearButtonMatrix() to turn all switches off and
then, in a switch statement, sets the switch corresponding to the difference in
value between seconds from midnight before due and before notification.

Before You Go On

Update the Notes display: Add code to update the inspector’s Notes display from the
information in the ToDoItem passed into updateInspector:. (Check the
documentation on NSText to see what method is suitable for this.) The selected
pop-up button must have notesTag assigned to it. Also put the cursor at the start
of the text object by selecting a “null” range.

Note that tutorial omits the rescheduling logic of the ToDo application,
including the code in this method that would update the “Reschedule” display.
Rescheduling of ToDoItems is reserved as an optional exercise for you at the
end of this tutorial.

Creating and Managing an Inspector (ToDoInspector)

171

As you’ve most likely noticed, the updateInspector: method calls the function
clearButtonMatrix(), which resets the states of all button cells in a switch matrix to
NO. This function has a counterpart, indexOfSetCell(), that returns the index of the
currently selected switch.

The cells message returns the cells of the matrix as an array; the count message
determines the number of cells.

Finish the implementation of
updateInspector: by resetting all
displays if the argument is nil.

 }

 else if (!newItem) { /* newItem is nil */

 [inspItem setStringValue:@""];

 [inspDate setStringValue:@""];

 [inspNotifHour setStringValue:@""];

 [inspNotifMinute setStringValue:@""];

 [[inspNotifAMPM cellAtRow:0 column:0] setState:YES];

 [[inspNotifAMPM cellAtRow:0 column:1] setState:NO];

 clearButtonMatrix(inspNotifSwitchMatrix);

 [[inspNotifSwitchMatrix cellAtRow:0 column:0]

setState:YES];

 [inspNotifOtherHours setStringValue:@""];

 [inspNotes setString:@""];

 }

}

Implement the
clearButtonMatrix() utility
function.

void clearButtonMatrix(id matrix)

{

 int i, cnt=[[matrix cells] count];

 for(i=0; i<cnt; i++)

 [[matrix cellAtRow:i column:0] setState:NO];

}

Chapter 4 To Do Tutorial

172

9 Update the current item with new
values entered in the inspector.

Implement switchChecked: to
apply changes made through
switches and other controls.

- (void)switchChecked:(id)sender

{

 long tmpSecs=0;

 int idx = 0;

 id doc = [[NSApp mainWindow] delegate];

 if (sender == inspNotifAMPM) { /* 1 */

 if ([inspNotifHour intValue]) {

 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],

 [inspNotifMinute intValue],

 [[sender cellAtRow:0 column:1] state]);

 [currentItem setSecsUntilDue:tmpSecs];

 [[NSApp mainWindow] setDocumentEdited:YES];

 [doc updateMatrix];

 }

 } else if (sender == inspNotifSwitchMatrix) { /* 2 */

 idx = [inspNotifSwitchMatrix selectedRow];

 tmpSecs = [currentItem secsUntilDue];

 switch(idx) {

 case 0:

 [currentItem setSecsUntilNotif:0];

 break;

 case 1:

 [currentItem setSecsUntilNotif:tmpSecs-(hrInSecs/4)];

 break;

 case 2:

 [currentItem setSecsUntilNotif:tmpSecs-hrInSecs];

 break;

 case 3:

 [currentItem setSecsUntilNotif:tmpSecs-dayInSecs];

 break;

 case 4: // Other

 [currentItem setSecsUntilNotif:([inspNotifOtherHours intValue]

 * hrInSecs)];

 break;

 default:

 NSLog(@"Error in selectedRow");

 break;

 }

 [[NSApp mainWindow] setDocumentEdited:YES];

 } else if (sender == inspSchedComplete) { /* 3 */

 [currentItem setItemStatus:complete];

 [[NSApp mainWindow] setDocumentEdited:YES];

 [doc updateMatrix];

 } else if (sender == inspSchedMatrix) { /* 4 */

 }

}

Creating and Managing an Inspector (ToDoInspector)

173

When users click a switch button on any inspector display, or when they click
one of the AM-PM radio buttons, the switchChecked: method is invoked. This
method works by evaluating the sender argument: the sending object.

1. If sender is the radio-button matrix (AM-PM), gets the new time due by
calling the utility function ConvertTimeToSeconds(), sets the current item to have
this new value, marks the document as edited, and then sends updateMatrix to
the document controller to have it display this new time.

2. If sender is the “When to Notify” matrix, gets the index of the selected cell
and the seconds until the item is due. It evaluates the first value in a switch
statement and uses the second value to set the current item’s new secsUntilNotif
value. It also sets the window to indicate an edited document.

3. If sender is the “Task Completed” switch, sets the status of the current item
to “complete,” sets the window to indicate an edited document, and has the
document controller update its matrices.

4. As before, implementation of this rescheduling block is left as a final exercise.

Since text fields are controls that send target/action messages, you could also
have switchChecked: respond when data is entered in the fields. However, users
might not press Return in a text field so you can’t assume the action message will
be sent. Therefore, it’s better to rely upon delegation messages.

Chapter 4 To Do Tutorial

174

The textDidEndEditing: and controlTextDidEndEditing: notification messages are sent to
the delegate (and all other observers) when the cursor leaves a text object or text
field (respectively) after editing has occurred.

1. After editing takes place in the “Notes” text object, this method is invoked,
and it responds by resetting the notes instance variable of the ToDoItem with
the contents of the text object.

2. If the object behind the notification is the hour or minute field of the
“Notifications” display, controlTextDidEndEditing: computes the new due time,
sets the current item to have this new value, and then sends updateMatrix to the
document controller to have it display this new time. (This code is almost the
same as that for the AM-PM matrix in the switchChecked: method.)

3. If the object behind the notification is the “Other...hours” text field in the
“When to Notify” box, the method verifies that the “Other” switch is
checked and, if it is, sets the ToDoItem with the new value.

4. Here is another empty rescheduling block of code that you can fill out in a
later exercise.

- (void)textDidEndEditing:(NSNotification *)notif /* 1 */

{

 if ([notif object] == inspNotes)

 [currentItem setNotes:[inspNotes string]];

 [[NSApp mainWindow] setDocumentEdited:YES];

}

- (void)controlTextDidEndEditing:(NSNotification *)notif

{

 long tmpSecs=0;

 if ([notif object] == inspNotifHour || /* 2 */

 [notif object] == inspNotifMinute) {

 tmpSecs = ConvertTimeToSeconds([inspNotifHour intValue],

 [inspNotifMinute intValue],

 [[inspNotifAMPM cellAtRow:0 column:1] state]);

 [currentItem setSecsUntilDue:tmpSecs];

 [[[NSApp mainWindow] delegate] updateMatrix];

 [[NSApp mainWindow] setDocumentEdited:YES];

 } else if ([notif object] == inspNotifOtherHours) { /* 3 */

 if ([inspNotifSwitchMatrix selectedRow] == 4) {

 [currentItem setSecsUntilNotif:([inspNotifOtherHours

 intValue] * hrInSecs)];

 [[NSApp mainWindow] setDocumentEdited:YES];

}

 } else if ([notif object] == inspSchedDate) { /* 4 */

 }

}

Update the current item if
changes are made to the
contents of text fields or the text
object of the inspector panel.

Creating and Managing an Inspector (ToDoInspector)

175

Now it’s time to address two related problems in synchronizing displays of data.
The first is the requirement for the inspector to display the ToDoItem currently
selected in the document. In ToDoDoc.m write code that communicates this object
to ToDoInspector through notification.

The controlTextDidEndEditing: method is where ToDoItems are added, removed, or
modified, so it’s especially important here to let ToDoInspector know when
there’s a change in the current ToDoItem. The fragment of code above gets the
current item (row holds the index of the selected row); if the returned object isn’t
a ToDoItem, curItem is set to nil. Then the code posts a
ToDoItemChangedNotification, passing in curItem as the object related to the
notification.

Post an identical notification in other ToDoDoc methods that select a
ToDoItem or that require the removal of the currently displayed ToDoItem
from the inspector’s display. In methods of this second type, there is no need to
get the current item because the object argument of the notification should
always be nil. This argument is eventually passed to ToDoInspector’s
updateInspector:, to which nil means “clear the display.”

Other Methods Posting Notifications to ToDoInspector object: Argument

calendarMatrix:didChangeToDate: nil

calendarMatrix:didChangeToMonth:year: nil

windowShouldClose: (for both “Save” and “Close”) nil

selectionInMatrix: current item or nil

The second data-synchronization problem involves the selection and display of
initial values in the document and the inspector when the user:

• Opens the inspector

 id curItem;

/* ... */

 if (curItem = [currentItems objectAtIndex:row]) {

 if (![curItem isKindOfClass:[ToDoItem class]])

 curItem = nil;

 [[NSNotificationCenter defaultCenter] postNotificationName:

 ToDoItemChangedNotification object:curItem

 userInfo:nil];

 }

10 Synchronize the items displayed
in the document with the
inspector.

Open ToDoDoc.m.

Import ToDoInspector.h.

Add the code at right to the end of
the controlTextDidEndEditing:
method.

Post identical notifications in the
other ToDoDoc methods listed in
the table below.

In ToDoDoc.h declare as extern
the string constant
ToDoItemChangedNotification.

In ToDoDoc.m, declare and
initialize the same constant.

Chapter 4 To Do Tutorial

176

• Opens a document
• Selects a new day from the calendar

You must return to ToDoDoc.m to write code that implements this behavior.

The selectItem: method selects the text field identified in the argument and posts
a notification to the inspector with the associated ToDoItem as argument (or nil
if the text field is empty). Next, invoke selectItem: in these methods:

Method Comment

calendarMatrix:didChangeToDate: Make it the final message, with an argument of 0 (ToDoDoc.m).

openDoc: Invoke after opening a document, with an argument of 0
(ToDoController.m)

showInspector: Invoke after opening the inspector panel, passing in the index of the
selected row in the document. (ToDoController.m). Hint: Get the
current document by querying for the delegate of the main window,
then obtain the selected row from this object.

Before You Go On

Make ToDoInspector respond to the notification. Declare a notification method
named currentItemChanged: and implement it to set the current item with the object
value of the notification. Then, in init or awakeFromNib, add ToDoInspector as an
observer of the ToDoItemChangedNotification, identifying currentItemChanged:
as the method to be invoked.

- (void)selectItem:(int)item

{

 id thisItem = [currentItems objectAtIndex:item];

 [itemMatrix selectCellAtRow:item column:0];

 if (thisItem) {

 if (![thisItem isKindOfClass:[ToDoItem class]]) thisItem = nil;

 [[NSNotificationCenter defaultCenter]

 postNotificationName:ToDoItemChangedNotification

 object:thisItem

 userInfo:nil];

 }

}

11 Open the inspector panel when
users choose the Inspector
command.

Implement ToDoController’s
showInspector: method to load
ToDoInspector.nib and make the
inspector panel the key window.

12 Update the document and
inspector to display initial
values.

In ToDoDoc.m, implement
selectItem:.

Invoke this method at the
appropriate places (see below).

The use of notifications to
communicate changes in one
object to another object in an
application is a good design
strategy because it removes the
need for the objects to have
specific knowledge of each other.
It also makes the application
more extensible, because any
number of objects can also
become observers of the changes.
However, there is a way for
ToDoDoc to locate
ToDoInspector reliably using the
various relationships established
within the program framework.
See page 189 to see how this is
done.

Creating and Managing an Inspector (ToDoInspector)

177

ToDoInspector’s awakeFromNib method sets up formatters for the inspector’s
hour, minute, and date fields. It also performs some necessary “housekeeping”
tasks.

1. Sets the hour and minute fields to accept only positive integer values.

2. Creates a date formatter (an instance of NSDateFormatter) that accepts and
formats dates as (for example) “12/25/96.” After associating the formatter with
the date text-field cell, it releases it (setFormatter: retains the formatter).

3. Makes the Notification display the start-up default, using the index of the
“Notification” cell rather than its title to improve localization. Then it sets self
to be the delegate of the text object.

4. Each of the three inspector displays in the off-screen panel (inspectorViews) is
the content view of an NSBox. This section of code extracts and retains each
of those content views, reassigning each to its original NSBox instance
variable in the process. This explicit retaining is necessary because, in
newInspectorView:, each current content view is released when it’s swapped out.
Once all content views are retained, the code releases the off-screen window
and invokes newInspectorView: to put up the default display.

- (void)awakeFromNib

{

 NSDateFormatter *dateFmt;

 [[inspNotifHour cell] setEntryType:NSPositiveIntType]; /* 1 */

 [[inspNotifMinute cell] setEntryType:NSPositiveIntType];

 dateFmt = [[NSDateFormatter alloc] /* 2 */

 initWithDateFormat:@"%m/%d/%y" allowNaturalLanguage:YES];

 [[inspSchedDate cell] setFormatter:dateFmt];

 [dateFmt release];

 [inspPopUp selectItemAtIndex:0]; /* 3 */

 [inspNotes setDelegate:self];

 [[notifView contentView] removeFromSuperview]; /* 4 */

 notifView = [[notifView contentView] retain];

 [[reschedView contentView] removeFromSuperview];

 reschedView = [[reschedView contentView] retain];

 [[notesView contentView] removeFromSuperview];

 notesView = [[notesView contentView] retain];

 [inspectorViews release];

 [self newInspectorView:self];

}

13 Format and validate the contents
of inspector text fields.

In ToDoInspector.m:

Implement awakeFromNib as
shown at right.

Implement control:isValidObject:
to ensure that users can only
enter the proper range of
numbers in the hour and minute
text fields.

Chapter 4 To Do Tutorial

178

A Short Guide to Drawing and Compositing

Besides responding to events, all objects that inherit from
NSView can render themselves on the screen. They do this
rendering through image composition and PostScript drawing.

NSViews draw themselves as an indirect result of receiving the
display message (or a variant of display); this message is sent
explicitly or through conditions that cause automatic display. The
display message leads to the invocation of an NSView’s
drawRect: method and the drawRect: methods of all subviews of
that NSView. The drawRect: method should contain all code
needed to redraw the NSView completely.

An NSView can be automatically displayed when:

• Users scroll it (assuming it supports scrolling).

• Users resize or expose the NSView’s window.

• The window receives a display message or is automatically
updated.

• For some Application Kit objects, when an attribute changes.

An NSView represents a context within which PostScript drawing
can take place. This context has three components:

• A rectangular frame within a window to which drawing is
clipped.

• A coordinate system

• The current PostScript graphics state

Frame and Bounds

An NSView’s frame specifies the location and dimensions of the
NSView in terms of the coordinate system of the NSView’s
superview. It is a rectangle that encloses the NSView. You can

programmatically move, scale, and rotate the NSView by
reference to its frame (setFrameOrigin:, setFrameSize:, and so
on).

To draw efficiently, the NSView must have its frame rectangle
translated into its own coordinate system. This translated
rectangle, suitable for drawing, is called the bounds. The bounds
rectangle usually specifies exactly the same area as the frame
rectangle, but it specifies that area in a different coordinate
system. In the default coordinate system, an NSView’s bounds is
the same as its frame, except that the point locating the frame
becomes the origin of the bounds (x = 0.0, y = 0.0). The x- and y-
axes of the default coordinate system run parallel to the sides of
the frame so, for example, if you rotate the frame the default
coordinate system rotates with it.

This relationship between frame and bounds has several
implications important in drawing and compositing.

• Each NSView’s coordinate system is a transformation of its
superview’s.

• Drawing instructions don’t have to account for an NSView’s
location on the screen or its orientation.

• Changes in a superview’s coordinate system are propagated to
its subviews.

NSView allows you to flip coordinate systems (so the positive y-
axis runs downward) and to otherwise alter coordinate systems.

Focusing

Before an NSView can draw it must lock focus to ensure that it
draws in the correct window, place, and coordinate system. It
locks focus by invoking NSView’s lockFocus method. Focusing
modifies the PostScript graphics state by:

• Making the NSView’s window the current device

• Creating a clipping path around the NSView’s frame

• Making the PostScript coordinate system match the NSView’s
coordinate system

After drawing, the NSView should unlock focus (unlockFocus).

(0.0, 0,0)

0.0, 0,0

Frame rotated within its
superview

Flipped coordinate
system.

Location of frame within
its superview (200, 300)

Bounds origin

Creating and Managing an Inspector (ToDoInspector)

179

PostScript Drawing

In OpenStep, NSViews draw themselves by sending binary-
encoded PostScript code to the Window Server. The Application
Kit and the Display PostScript frameworks provide a number of C-
language functions that send PostScript code to perform common
drawing tasks. You can use these functions in combinations to
accomplish fairly elaborate drawing.

The Application Kit has functions and constants, declared in
NSGraphics.h, for (among other things):

• Drawing, filling, highlighting, clipping and erasing rectangles

• Drawing buttons, bezels, and bitmaps

• Computing window depth and related display information

You also call OpenStep-compliant drawing routines defined in
dpsOpenStep.h. These routines (such as DPSDoUserPath()) draw
a specified path. In addition, you can call the functions declared
in psops.h. These functions correspond to single PostScript
operators, such as PSsetgray() and PSfill().

You can also write and send your own custom PostScript code.
pswrap is a program (in /usr/bin) that converts PostScript code
into C-language functions that you can call within your
applications. It is an efficient way to send PostScript code to the
Window Server. The following pswrap function draws grid lines:

Compose the function in a file with a .psw extension and add it to
the Other Source project “suitcase” in Project Builder. When you
next build your project, Project Builder runs the pswrap program,
generating an object file and a header file (matching the file name
of the .psw) file, and links these into the application. To use the
code, import the header file and call the function when you want
to do the drawing:

DrawGrid(5.0, 5.0, 1.0);

Compositing Images

The other technique NSViews use to render their appearance is
image compositing. By compositing (with the SOVER operator)

NSViews can simply display an image within their frame. You
usually composite an image using NSImage’s
compositeToPoint:operation: (or a related method).

NSImage allows you to copy images into your user interface. It
uses various subclasses of NSImageRep to store the multiple
representations of the same image—color, grayscale, TIFF, EPS,
and so on—and choosing the representation appropriate for a
given type or display. NSImage can read image data from a
bundle (including the application’s main bundle), from the
pasteboard, or from an NSData object.

Compositing allows you to do more than simply copy images.
Compositing builds a new image by overlaying images that were
previously drawn. It's like a photographer printing a picture from
two negatives, one placed on top of the other. Various
compositing operators (NSCompositingOperation, defined in
dpsOpenStep.h) determine how the source and destination
images merge.

You can achieve interesting effects with compositing when the
initial images are drawn with partially transparent paint.
(Transparency is specified by coverage, a PostScript indicator of
paint opacity.) In a typical compositing operation, paint that's
partially transparent won't completely cover the image it's placed
on top of; some of the other image will show through. The more
transparent the paint is, the more of the other image you'll see.

Source Image Destination Image

Operation Destination After

Copy

Source
Over

Destination
Out

Source image overlays

Source image wherever
it is opaque, and
destination image
elsewhere.

Destination image
wherever it is opaque but
source image is
transparent, and
transparent elsewhere.

Chapter 4 To Do Tutorial

180

Making a Custom View

If you want an object that draws itself differently than any other
Application Kit object, or responds to events in a special way, you
should make a custom subclass of NSView. Your custom subclass
should complete at least the steps outlined below.

Note: If you make a custom subclass of any class that inherits from
NSView, and you want to do custom drawing or event handling,
the basic procedure presented here still applies.

Interface Builder

1 Define a subclass of NSView in Interface Builder. Then
generate header and implementation files.

2 Drag a CustomView object from the Views palette onto a
window and resize it. Then, with the CustomView object still
selected, choose the Custom Class display of the Inspector
panel and select the custom class. Connect any outlets and
actions.

Initializing Instances

3 Override the designated initializer, initWithFrame: to return an
initialized instance of self. The argument of this method is the
frame rectangle of the NSView, usually as set in Interface
Builder (see step 2). You might want to display the custom view
at this point.

Handling Events

In the next section, you’ll make a subclass of NSButtonCell that
uniquely responds to mouse clicks. The way custom NSViews
handle events is different. If you intend your custom NSView to
respond to user actions you must do a couple of things:

4 Override acceptsFirstResponder to return YES if the NSView is
to handle selections. (The default NSView behavior is to return
NO.)

5 Override the desired NSResponder event methods
(mouseDown:, mouseDragged:, keyDown:, etc.)

- (void)mouseDown:(NSEvent *)event {

if (([event modifierFlags] &

NSControlKeyMask){

doSomething();

}

You can query the NSEvent argument for the location of the user
action in the window, modifier keys pressed, character and key
codes, and other information.

Drawing

When you send display to an NSView, its drawRect: method and
each of its subview’s drawRect: are invoked. This method is
where an NSView renders its appearance.

6 Override drawRect:. The argument is usually the frame
rectangle in which drawing is to occur. This tells the Window
Server where the NSView’s coordinate system is located. To
draw the NSView, you can do one or more of the following:

• Composite an NSImage.

• Call Application Kit functions such as NSRectFill() and
NSFrameRect () (NSGraphics.h).

• Call C functions that correspond to single PostScript
operations, such as PSsetgray() and PSfill().

• Call custom drawing functions created with pswrap.

See ‘‘A Short Guide to Drawing and Compositing’’ on page 179 for
more information on drawing techniques and requirements.

Subclass Example: Overriding and Adding Behavior (ToDoCell)

181

Subclass Example: Overriding and Adding Behavior (ToDoCell)

Buttons in the Application Kit are two-state controls. They have two—and only
two—states: 1 and 0 (often expressed as Boolean YES and NO, or ON and
OFF). For the To Do application, a three-state button is preferable. You want
the button to indicate, with an image, three possible states: notDone (no image),
done (an “X”), and deferred (a check mark). These states correspond to the
possible statues of a ToDoItem.

The ToDoCell class, which you will implement in this section, generates cells
that behave as three-state buttons. These buttons also display the time an item
is due.

The superclass of ToDoCell is NSButtonCell. In creating ToDoCell you will
add data and behavior to NSButtonCell, and you will override some existing
behavior.

Item status. Time item is due.

Why Chose NSButtonCell as Superclass?

ToDoCell’s superclass is NSButtonCell. This
choice prompts two questions:

• Why a button cell and not the button itself?

• Why this particular superclass?

NSCell defines state as an instance variable,
and thus all cells inherit it. Cells instead of
controls hold state information for reasons of
efficiency—one control (a matrix) can
manage a collection of cells, each cell with
its own state setting. NSButton does provide
methods for getting and setting state values,
but it accesses the state value of the cell
(usually NSButtonCell) that it contains.

NSButtonCell is ToDoCell’s superclass
because button cells already have much of
the behavior you want. By virtue of
inheritance from NSActionCell, button cells
can hold target and action information.
Button cells also have the unique capability
to display an image and text simultaneously.
These are all aspects of behavior needed for
ToDoCell.

When you think that you need a specialized
subclass of an OpenStep class, you should
first spend some time examining the header
files and reference documentation on not
only that class, but its superclasses and any
“sibling” classes.

Chapter 4 To Do Tutorial

182

The triState instance variable will be assigned ToDoButtonState constants as
values. The NSImage variables hold the “X” and check mark images that
represent statuses of completed and deferred (that is, rescheduled for the next
day). The timeDue instance variable carries the time the item is due as an
NSDate; for display, this object will be converted to a string.

1. Sets some superclass (NSButtonCell) attributes, such as button type, image
and text position, font of text, and border.

2. Through NSBundle’s pathForImageResource:, gets the pathname for the cell
images and creates and stores the images using the pathname.

enum _ToDoButtonState {notDone=0, done, deferred} ToDoButtonState;

@interface ToDoCell : NSButtonCell

{

 ToDoButtonState triState;

 NSImage *doneImage, *deferredImage;

 NSDate *timeDue;

}

- (void)setTriState:(ToDoButtonState)newState;

- (ToDoButtonState)triState;

- (void)setTimeDue:(NSDate *)newTime;

- (NSDate *)timeDue;

@end

1 Add header and implementation
files to the project.

Chose New in Project from the
File menu.

In the New File In ToDo panel,
select the Class suitcase, click
Create header, type “ToDoCell”
after Name, and click OK.

2 Complete ToDoCell.h.

Make the superclass
NSButtonCell.

Add the instance-variable and
method declarations shown at
right.

Add the enum constants for state
values (as shown).

- (id)init

{

 NSString *path;

 [super initTextCell:@""];

 triState = notDone;

 [self setType:NSToggleButton]; /* 1 */

 [self setImagePosition:NSImageLeft];

 [self setBezeled:YES];

 [self setFont:[NSFont userFontOfSize:12]];

 [self setAlignment:NSRightTextAlignment];

 /* 2 */

 path = [[NSBundle mainBundle] pathForImageResource:@"X.tiff"];

 doneImage = [[NSImage alloc] initByReferencingFile:path];

 path = [[NSBundle mainBundle]

 pathForImageResource:@"checkMark.tiff"];

 deferredImage = [[NSImage alloc] initByReferencingFile:path];

 return self;

}

3 Initialize the allocated ToDoCell
instance (and deallocate it).

Select ToDoCell.m in the project
browser.

Implement init as shown at right.

Implement dealloc.

Subclass Example: Overriding and Adding Behavior (ToDoCell)

183

Accessing state information is a dual-path task in ToDoCell. It involves not only
setting and getting the new state instance variable, triState, but properly handling
the inherited instance variable by overriding the superclass accessor methods for
state.

1. If the new value for triState is one greater than the limit (deferred), reset it to
zero (notDone); otherwise, assign the value. The reason behind this logic is that
(as you’ll soon learn) when users click a ToDoCell, setTriState: is invoked with
an argument one more than the current value. This way users can cycle
through the three states of ToDoCell.

2. Overrides setState: to be a null method. The reason for this override is that
NSCell intervenes when a button is clicked, resetting state to zero (NO).
This override nullifies that effect.

3. Overrides state to return a reasonable value to client objects that invoke this
accessor method.

- (void)setTriState:(ToDoButtonState)newState /* 1 */

{

 if (newState == deferred+1)

 triState = notDone;

 else

 triState = newState;

 [self _setImage:triState];

 }

- (ToDoButtonState)triState {return triState;}

- (void)setState:(int)val /* 2 */

{

}

- (int)state /* 3 */

{

 if (triState == deferred)

 return (int)done;

 else

 return (int)triState;

}

4 Implement the accessor methods
related to state.

Write the methods that get and
set the triState instance variable.

Override the superclass methods
that get and set state.

Chapter 4 To Do Tutorial

184

This portion of code handles the display of the cell’s image by doing the
following:

1. In a category of ToDoCell in ToDoCell.m, it declares the private method
_setImage:. Private methods, which by convention begin with an underscore,
are methods that you don’t want clients of your object to invoke. In this case,
you don’t want the image to be set independently from the cell’s triState value.

2. In a switch statement, evaluates the tri-state argument and sets the cell’s
image appropriately (setImage: is an NSButtonCell method).

3. Sends updateCell: to the control view of the cell’s control (a matrix) to force a
re-draw of the cell.

@interface ToDoCell (PrivateMethods)

- (void)_setImage:(ToDoButtonState)aState; /* 1 */

@end

/* ... */

- (void)_setImage:(ToDoButtonState)aState

{

 switch(aState) { /* 2 */

 case notDone: {

 [self setImage:nil];

 break;

 }

 case done: {

 [self setImage:doneImage];

 break;

 }

 case deferred: {

 [self setImage:deferredImage];

 break;

 }

 }

 [(NSControl *)[self controlView] updateCell:self]; /* 3 */

}

5 Set the cell image.

Declare the private method
_setImage:.

Implement the _setImage:
method.

Subclass Example: Overriding and Adding Behavior (ToDoCell)

185

When you create your own cell subclass, you might want to override some
methods that are intrinsic to the behavior of the cell. Mouse-tracking methods,
inherited from NSCell, are among these. You can override these methods to
incorporate specialized behavior when the mouse clicks the cell or drags over it.
ToDoCell overrides these methods to increment the value of triState.

• Overrides startTrackingAt:inView: to return YES, thus signalling to the control
that the ToDoCell will track the mouse.

• Overrides stopTracking:at:inView:mouseIsUp: to evaluate flag and, if it’s YES, to
increment the triState instance variable. (The setTriState: method “wraps” the
incremented value to zero (notDone) if it is greater than 2 (deferred)).

The setTimeDue: method is similar to other “set” accessor methods, except that it
handles interpretation and display of the NSDate instance variable it stores. If
newTime is a valid object, it uses NSDate’s
descriptionWithCalendarFormat:timeZone:locale: method to interpret and format the

- (BOOL)startTrackingAt:(NSPoint)startPoint inView:

 (NSView *)controlView

{

 return YES;

}

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint

 inView:(NSView *)controlView mouseIsUp:(BOOL)flag

{

 if (flag == YES) {

 [self setTriState:([self triState]+1)];

 }

}

6 Track mouse clicks on a
ToDoCell and reset state.

Override two NSCell mouse-
tracking methods as shown in this
example.

- (void)setTimeDue:(NSDate *)newTime

{

 if (timeDue)

 [timeDue autorelease];

 if (newTime) {

 timeDue = [newTime copy];

 [self setTitle:[timeDue descriptionWithCalendarFormat:

 @"%I:%M %p" timeZone:[NSTimeZone localTimeZone]

 locale:nil]];

 }

 else {

 timeDue = nil;

 [self setTitle:@"-->"];

 }

}

7 Get and set the time due,
displaying the time in the
process.

Implement setTimeDue: as shown
in this example.

Implement timeDue to return the
NSDate.

Chapter 4 To Do Tutorial

186

date object, then displays the result with setTitle:. If newTime is nil, no due time has
been specified, and so the method sets the title to “-->”.

You’ve now completed all code required for ToDoCell. However, you must now
“install” instances of this class in the To Do interface.

This block of code substitutes a ToDoCell for each cell in the left matrix
(markMatrix) you created for the To Do interface. It creates a ToDoCell, sets its
target and action message, then inserts it into the markMatrix by invoking
NSMatrix’s putCell:atRow:column: method.

Finally, you must implement the action message sent when the matrix of
ToDoCells is clicked. (This response to mouse-down is for objects external to
ToDoCell, while the mouse-tracking response sets state internally.)

This method gets the ToDoCell that was clicked and the object in the
corresponding text field. If that object is a ToDoItem, the method updates its
status to reflect the state of the ToDoCell. It then marks the window as
containing an edited document.

- (void)awakeFromNib

{

 int i;

/* ... */

 i = [[markMatrix cells] count];

 while (i--) {

 ToDoCell *aCell = [[ToDoCell alloc] init];

 [aCell setTarget:self];

 [aCell setAction:@selector(itemChecked:)];

 [markMatrix putCell:aCell atRow:i column:0];

 [aCell release];

 }

}

8 At launch time, create and install
your custom cells in the matrix.

Select ToDoDoc.m in the project
browser.

Insert the code at right in
awakeFromNib.

- (void)itemChecked:sender

{

 int row = [sender selectedRow];

 ToDoCell *cell = [sender cellAtRow:row column:0];

 if (cell && [currentItems count]) {

 id item = [currentItems objectAtIndex:row];

 if (item && [item isKindOfClass:[ToDoItem class]]) {

 [item setItemStatus:[cell triState]];

 [[sender window] setDocumentEdited:YES];

 }

 }

}

9 Respond to mouse clicks on the
matrix of ToDoCell’s.

In ToDoDoc.m, implement
itemChecked:.

Setting Up Timers for Notification Messages

187

Setting Up Timers for Notification Messages

The To Do application includes as a feature the capability for notifying users of
items with impending due times. Users can specify various intervals before the
due time for these notifications, which take the form of a message in an attention
panel. In this section you will implement the notification feature of To Do. In
the process you’ll learn the basics of creating, setting, and responding to timers.

Here’s how it works: Each ToDoItem with a “When to Notify” switch (other
than “Do not notify”) selected in the inspector panel—and hence has a positive
secsUntilNotif value—has a timer set for it. If a user cancels a notification by
selecting “Do not notify,” the document controller invalidates the timer. When
a timer fires, it invokes a method that displays the attention panel, selects the
“Do not notify” switch, and sets secsUntilNotif to zero.

Implementing the timer feature takes place entirely in Project Builder, but
extends across several classes.

This method sets or invalidates a timer, depending on whether the ToDoItem
passed in has a positive secsUntilNotif value.

1. Tests the ToDoItem to see if it has a positive secsUntilNotif value and, if it has,
composes the time the notification should be sent.

2. Creates a timer and schedules it to fire at the notification time, and instructs
it to invoke itemTimerFired: when it fires. It also sets the timer in the ToDoItem.

3. If the secsUntilNotif variable is zero, invalidates the item’s timer.

- (void)setTimerForItem:(ToDoItem *)anItem

{

 NSDate *notifDate;

 NSTimer *aTimer;

 if ([anItem secsUntilNotif]) { /* 1 */

 notifDate = [[anItem day] addTimeInterval:[anItem

 secsUntilNotif]];

 aTimer = [NSTimer scheduledTimerWithTimeInterval: /* 2 */

 [notifDate timeIntervalSinceNow]

 target:self

 selector:@selector(itemTimerFired:)

 userInfo:anItem

 repeats:NO];

 [anItem setItemTimer:aTimer];

 } else

 [[anItem itemTimer] invalidate]; /* 3 */

}

1 Add the timer as an instance
variable to ToDoItem.

Open ToDoItem.h.

Add the instance variable
itemTimer of class NSTimer.

Write accessor methods to get
and set this instance variable.

2 Create and set the timer, or
invalidate it.

Open ToDoDoc.m.

Implement the setTimerForItem:
method, which is shown at right.

Chapter 4 To Do Tutorial

188

When a ToDoItem’s timer goes off, it invokes the itemTimerFired: method
(remember, you designated this method when you scheduled the timer).

1. This method communicates with ToDoInspector in a more direct manner
than notification. It gets the ToDoInspector object through this chain of
association: the delegate of the application object is ToDoController, which
holds the id of the inspector panel as an instance variable, and the delegate of
the inspector panel is ToDoInspector.

2. Composes the notification time (as an NSDate), beeps, and displays an
attention panel specifying the name of a ToDoItem and the time it is due. It
then sets the ToDoItem’s secsUntilNotif instance variable to zero, and sends
resetNotifSwitch to ToDoInspector to have it reset the “When to Notify”
switches to “Do not Notify.”

Before You Go On

Implement resetNotifSwitch: You haven’t written ToDoInspector’s resetNotifSwitch
method yet, so do it now as an exercise. It should select the “Do not Notify”
switch after turning off all switches in the matrix, and then force a redisplay of
the switch matrix.

Next you must send setTimerForItem: at the right place and time, which is
ToDoInspector, when the user alters a “When to Notify” value.

- (void)itemTimerFired:(id)timer

{

 id anItem = [timer userInfo];

 ToDoInspector *inspController = [[[NSApp delegate] /* 1 */

 inspector] delegate];

 NSDate *dueDate = [[anItem day] addTimeInterval: /* 2 */

 [anItem secsUntilDue]];

 NSBeep();

 NSRunAlertPanel(@"To Do", @"%@ on %@", nil, nil, nil,

 [anItem itemName], [dueDate

 descriptionWithCalendarFormat:@"%b %d, %Y at %I:%M %p"

 timeZone:[NSTimeZone defaultTimeZone] locale:nil]);

 [anItem setSecsUntilNotif:0];

 [inspController resetNotifSwitch];

}

3 Respond to timers firing.

Implement itemTimerFired: as
shown at right.

Setting Up Timers for Notification Messages

189

Instead of archiving an item’s NSTimer, To Do re-creates and resets it when the
application is launched.

This block of code traverses the activeDays dictionary, evaluating each ToDoItem
within the dictionary. If the ToDoItem has a positive secsUntilNotif value, it
invokes setTimerForItem: to have a timer set for it.

[[[NSApp mainWindow] delegate] setTimerForItem:currentItem];4 Send the message that sets the
timer at the right times

Open ToDoInspector.m.

In switchChecked:, insert the
setTimerForItem: message at
right after the switch statement
evaluating which “When to
Notify” switch was checked.

In controlTextDidEndEditing:,
insert the same message at the
end of the block related to the
inspNotifOtherHours variable.

5 When the application is
launched, reset item timers.

Add the code at right, below, to
ToDoDoc’s initWithFile: method.

 if ([self activeDays]) {

 dayenum = [[self activeDays] keyEnumerator];

 while (itemDate = [dayenum nextObject]) {

 NSEnumerator *itemenum;

 ToDoItem *anItem=nil;

 NSArray *itemArray = [[self activeDays]

 objectForKey:itemDate];

 itemenum = [itemArray objectEnumerator];

 while ((anItem = [itemenum nextObject]) &&

 [anItem isKindOfClass:[ToDoItem class]] &&

 [anItem secsUntilNotif]) {

 [self setTimerForItem:anItem];

 }

 }

 }

Tick Tock Brrrring: Run Loops and Timer

A run loop—an instance of NSRunLoop—
manages and processes sources of input.
These sources include mouse and keyboard
events from the window system, file
descriptor, inter-thread connections
(NSConnection), and timers (NSTimer).

Applications typically won't need to either
create or explicitly manage NSRunLoop
objects. When a thread is created, an
NSRunLoop object is automatically created
for it. The NSApplication object creates a
default thread and therefore creates a
default run loop.

NSTimer creates timer objects. A timer
object waits until a certain time interval has

elapsed and then fires, sending a specified
message to a specified object. For example,
you could create an NSTimer that
periodically sends messages to an object,
asking it to respond if an attribute changes.

NSTimer objects work in conjunction with
NSRunLoop objects. NSRunLoops control
loops that wait for input, and they use
NSTimers to help determine the maximum
amount of time they should wait. When the
NSTimer's time limit has elapsed, the
NSRunLoop fires the NSTimer (causing its
message to be sent), then checks for new
input.

Chapter 4 To Do Tutorial

190

Build, Run, and Extend the Application

Although you probably have been building the ToDo project frequently now, as
it’s been taking shape, build it one more time and check out what you have
wrought. Go through the following sequence and observe To Do’s behavior.

1. When you choose New from the Document menu, the application creates a
new To Do document and selects the current day.

2. Enter a few items. Click a new day on the calendar and enter a few more
items. Click the previous day and notice how the items you entered reappear.

3. Choose Inspector from the main menu. When the inspector appears, click an
item and notice how the name and date of the item appears in the top part of
the inspector. Enter due times for a couple items, and some associated notes.
Note how the times, as you enter them, appear in the Status/Due column of
the To Do document. Click among a few items again and note how the
Notifications and Notes displays change.

4. Click a Status/Due button; the image toggles among the three states. Then,
with an item that has a due time, select a notification time that has already
passed. The application immediately displays an attention panel with a
notification message. When you dismiss this panel, To Do sets the
notification option to “Do not notify.”

5. Click the document window and respond to the attention panel by clicking
Save. In the Save panel, give the document a location and name. When the
window has closed, chose Open from the Document menu and open the
same document. Observe how the items you entered are redisplayed.

Optional Exercises
You should be able now to supplement the To Do application with other
features and behaviors. Try some of the following suggestions.

Make Your Own Info Panel
Make your own Info panel. Define a method that responds to a click on the Info
panel button by loading a nib file containing the panel. The owner of the panel
can be the application controller. You can customize this panel however you
wish. For instance, put the application icon in a toggled button (the main image)
and make the alternate image a photo (yourself, your significant other, your
dog). When users click the button, the image changes between the two.

Build, Run, and Extend the Application

191

Implement Application Preferences
Make a Preferences panel for the application, with a new controller object (or
the application controller) as the owner of the nib file containing the panel.
Follow what you’ve done for ToDoInspector, especially if the panel has
multiple displays. Some ideas for Preferences: how long to keep expired
ToDoItems before logging and purging them (see below); the default document
to open upon launch; the default rescheduling interval (see below). Store and
retrieve specified preferences as user defaults; for more information, see the
NSUserDefaults specification.

Implement Rescheduling
ToDo’s Inspector pane has a Rescheduling display that does almost nothing
now. Implement the capability for rescheduling items by the period specified.

Implement Logging and Purging
After certain period (set via Preferences), append expired ToDoItems (as
formatted text) to a log, and expunge the ToDoItems from the application.

Chapter 4 To Do Tutorial

192

