Chapter

\9 NSPipe

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: Foundation/NSFileHandle.h

Class Description

An NSPipe represents both ends of a pipe and enables communi cation through the pipe. A pipeisaone-way
communications channel between related processes; one process writes datawhile the other process reads
that data. The data that passes through the pipe is buffered; the size of the buffer is determined by the
underlying operating system.

Each end point of the pipeisafile descriptor, represented by an NSFileHandle. You thus use NSFileHandle
messages to read and write pipe data. A “parent” process creates the NSPipe and holds one end of it. It
creates an NSTask for the other process and, before launching it, passes the other end of the pipe to that
process; it does this by setting the NSTask’s standard input, standard output, or standard error device to be
the other NSFileHandle or the NSPipe itself (in the latter case, the type of NSFileHandle—reading or
writing—is determined by the NSTask “set” method).

The following example illustrates the above procedure:

- (void)readTaskDat a: (i d) sender
{
NSTask *pi peTask = [[NSTask alloc] init];
NSPi pe *newPi pe = [NSPi pe pi pe];
NSFi | eHandl e *readHandl e = [newPi pe fil eHandl eFor Readi ng] ;
NSData *inData = nil;

[pi peTask set StandardCQut put: newPipe]; // wite handle is closed to this process
[pi peTask set LaunchPat h: [NSHoneDi rect ory()

st ri ngByAppendi ngPat hConponent : @ Pi peTask. app/ Pi peTask"]];
[pi peTask | aunch];

while ((inData = [readHandl e avail abl eData]) && [inData |length]) {
[i nDat a processDat a] ;

}
}

The launched process in this example must get data and write that data, using NSFileWeibelelsa:,
to its standard output device (obtained NSFileHandiksslandleWithStandar dOutput).

Chapter Classes:

When the processes have no more datato communicate across the pipe, the writing process should simply

send closeFile to its NSFileHandle end point. This causes the process with the “read” NSFileHandle to
receive an empty NSData, signalling end of data. If the “parent” process created the NSPipeimitth the
method, it should then release it.

Method Types

Creating an NSPipe - init
+ pipe
GettingNSFileHandles for pipe — fileHandleForReading

— fileHandleForWriting

Class Methods

® pipe
+ (id)pipe
Returns an NSPipe that’s been saribrelease. Because the returned object will be deallocated at the end
of the current loop, retain the object or, better yet, usaitheethod if you intend to keep the object beyond

that point. Returnsil if the method encounters errors while attempting to create the pipe or the
NSFileHandle end points.

Instance Methods

\9 fileHandleForReading
— (NSFileHandle *ileHandleFor Reading

Returns an NSFileHandle that accepts messages that read pipvaédbteData,

readDataToEndOfFile, readDataOfL ength:. You don’t need to sendoseFile to this object or explicitly
release after you're finished using it. This descriptor represented by this object is deleted and the object
itself is automatically deallocated when the NSPipe is deallocated.

\9 fileHandleForWriting
— (NSFileHandle *jileHandleForWriting

Returns an NSFileHandle for writing to the pipe using NSFileHandlgteData:. When you are finished
writing data to this object, senddiseFile to delete the descriptor, which causes the reading process to

Chapter

receive an end-of-datasignal (an empty NSData). Thisobject isautomatically deallocated whenthe NSPipe
is deallocated.

& init
— (id)init
Returns an NSPipe. Retumi if the method encounters errors while attempting to create the pipe or the
NSFileHandles that serve as end points of the pipe.

Seealso: + pipe

