NSDPSContext

Inherits From: NSObject
Conforms To: NSObject (NSObject)
Declared In: AppKit/NSDPSContext.h

Class Description

The NSDPSContext classisthe programmatic interface to objectsthat represent Display PostScript System
contexts. A context can be thought of as a destination to which PostScript code is sent for execution. Each
Display PostScript context contains its own complete PostScript environment including its own local VM
(PostScript Virtual Memory). Every context hasits own set of stacks, including an operand stack, graphics
state stack, dictionary stack, and execution stack. Every context also contains a FontDirectory whichis
local to that context, plusaShar edFontDirectory that is shared acrossall contexts. There arethreebuilt-in
dictionariesin the dictionary stack. From top to bottom, they are userdict, globaldict, and systemdict.
user dict isprivate to the context, while globaldict and systemdict are shared by all contexts. globaldict is
amodifiable dictionary containing information common to all contexts. systemdict is aread-only
dictionary containing all the PostScript operators.

At any time there is the notion of the current context. The current context for the current thread may be set
using setCurrentContext:.

NSDPSContext objects by default write their output to a specified data destination. Thisis used for
printing, faxing, and for generation of saved EPS (Encapsulated PostScript) code. The meansto create
contexts that interact with displays are platform-specific.

The NSApplication object creates an NSDPSContext by default.

NSDPSContext Objects and Display PostScript System Context Records

When an NSDPSContext object is created, it creates and manages a DPSContext record. Programmers
familiar with the client side C function interface to the Display PostScript System can access the

DPSContext record by sending a context message to an NSDPSContext object. Y ou can then operate on

this context record using any of the functions or single operator functions defined in the Display PostScript
System client library. Conversely, you can create an NSDPSContext object from a DPSContext record with

the DPSContextObject() function, as defined in “Client Library Functions”. You can then work with the
created NSDPSContext object using any of the methods described here.

Classes: NSDPSContext

General Exception Conditions

A variety of exceptions can be raised from NSDPSContext. In most cases, exceptions are rai sed because of

errors returned from the Display PostScript Server. Exceptions are listed under “Types and Constants.”
Also see th®isplay Postcript System, Client Library Reference Manual, by Adobe Systems Incorporated,

for more details on Display PostScript System error names and their possible causes.

Method Types

Initializing a context — initWithMutableData:forDebuggin:languageEncoding:
nameEncoding:textProc:errorProc:

Testing the drawing destination —isDrawingToScreen

Accessing context data — mutableData

Setting and identifying the current context
+ currentContext
+ setCurrentContext:
— DPSContext

Controlling the context — flush
— interruptExecution
— notifyObjectWhenFinishedExecuting:
—resetCommunications
— wait

Managing returned text and errors + stringForDPSError:
— errorProc
— setErrorProc:
— setTextProc:
— textProc

Sending raw data — printFormat:
— printFormat:arguments:
— writeData:
— writePostScriptWithLanguageEncodingConversion:

Managing binary object sequences - awaitReturnValues
— writeBOSArray:count:.ofType:
— writeBOSNumString:length:ofType:scale:
— writeBOSString:length:
— writeBinaryObjectSequence:length:
— updateNameMap

Managing chained contexts — chainChildContext:
— childContext
— parentContext
— unchainContext

Controlling the wait cursor — startWaitCursorTimer
— setWaitCursorEnabled:
—isWaitCursorEnabled
Debugging aids + areAllContextsOutputTraced

+ areAllContextsSynchronized
+ setAllContextsOutputTraced:
+ setAllContextsSynchronized:
—isOutputTraced
—isSynchronized

— setOutputTraced:

— setSynchronized:

Class Methods

areAllContextsOutputTraced
+ (BOOL)areAllContextsOutputTraced

Returns YES if the data flowing between the application’s contexts and their destinations is copied to
diagnostic output.

areAllContextsSynchronized
+ (BOOL)ar eAllContextsSynchronized

Returns YES if all NSPDSContext objects invoke the wait method after sending each batch of output.

currentContext
+ (NSDPSContext QurrentContext

Returns the current context of the current thread.

Classes: NSDPSContext

setAllContextsOutputTraced:
+ (void)setAllContextsOutputTraced: (BOOL)flag

Causes the data (PostScript code, return values, and so forth) flowing between the all the application’s
contexts and their destinations to be copied to diagnostic output.

setAllContextsSynchronized:
+ (void)setAllContextsSynchronized: (BOOL)flag

Causes thavait method to be invoked each time an NSDPSContext object sends a batch of output to its
destination.

setCurrentContext:
+ (void)setCurrentContext: (NSDPSContext jontext

Installscontext as the current context of the current thread.

stringForDPSError:
+ (NSString *stringFor DPSError:(const DPSBinObjSeqRecefyor

Returns a string representationeofor.

Instance Methods

DPSContext
— (DPSContexpPSContext

Returns the corresponding DPScontext.

awaitReturnValues
— (void)awaitRetur nValues

Waits for all return values from the result table.

chainChildContext:
— (void)hainChildContext: (NSDPSContext hild

Links child (and all of it's children) to the receiver as its chained context, a context that receives a copy of
all PostScript code sent to the receiver.

childContext
— (NSDPSContext thildContext

Returns the receiver’s child context,mot if none exists.

errorProc
— (DPSErrorPro@& rorProc

Returns the context’s error callback function.

flush
— (void)flush

Forces any buffered data to be sent to its destination.

initWithMutableData:forDebugging:languageEncoding:nameEncoding:textProc:err
orProc:
—initWithMutableData: (NSMutableData *jata for Debugging: (BOOL)debug
languageEncoding: (DPSProgramEncodinigingEnc

nameEncoding: (DPSNameEncodingameEnc textProc: (DPSTextProdProc
errorProc:(DPSErrorPro@rrorProc

Initializes a newly allocated NSDPSContext that writes itsoutpdatiusing the language and name
encodingsspecified BangEnc andnameEnc. The callback functionroc anderrorProc handle text and
errorsgenerated by the contexidébug is YES, the output is given in human-readable form in which large
structures (such as images) may be represented by comments.

interruptExecution
— (void)interruptExecution

Interrupts execution in the receiver's context.

Classes: NSDPSContext

isDrawingToScreen
— (BOOL)sDrawingT oScreen

Returns YES if the drawing destination is the screen.

isOutputTraced
— (BOOL)sOutputTraced

Returns YES if the data flowing between the application’s single context and its destination is copied to
diagnostic output.

isSynchronized
— (BOOL)sSynchronized

Returns whether th@ait method is invoked each time the receiver sends a batch of output to the server.

\9 iIsWaitCursorEnabled
— (BOOL)sWaitCursorEnabled

Returns whether the wait cursor is enabled.

See also: PScurrentwaitcur sor enabled()

mutableData
— (NSMutableData hutableData

Returns the receiver’s data object.

notifyObjectWhenFinishedExecuting:
— (void)notifyObjectWhenFinishedExecuting:(id)object

Registerobject to receive aontextFinishedExecuting: message when the NSDPSContext’s destination
is ready to receive more input.

parentContext
— (NSDPSContext ParentContext

Returns the receiver’s parent contextnibrif none exists.

printFormat:
— (void)rintFormat:(NSString *format,...

Constructs a string frofiormat and following string objects (in the mannepointf()) and sends it to the
context’s destination.

printFormat:arguments:
— (void)printFormat:(NSString *format ar guments:(va_listargList

Constructs a string frofiormat andargList (in themanner ofprintf()) and sends it to the context’s
destination.

resetCommunication
— (voidy esetCommunication

Discards any data that hasn’t already been sent to its destination.

setErrorProc:
— (void)setErrorProc: (DPSErrorProgyroc

Sets the context’s error callback functiorptoc.

setOutputTraced:
— (void)setOutputTraced: (BOOL)flag

Causes the data (PostScript code, return values, and so on) flowing between the application’s single context
and the Display PostScript server to be copied to diagnostic output.

Classes: NSDPSContext

setSynchronized:
— (void)set Synchronized: (BOOL)flag

Sets whether theait method is invoked each time the receiver sends a batch of output to its destination.

setTextProc:
— (void)set TextProc: (DPSTextProgroc

Sets the context’s text callback functiorptoc.

\9 setWaitCursorEnabled:
— (void)setWaitCur sor Enabled: (BOOL)flag

Sets whether the wait cursor is enabled or disabled accordirag.to

See also: PSsetwaitcursorenabled()

\9 startWaitCursorTimer
— (void)startWaitCursor Timer

Generates a pseudo-event to start wait cursor timer.

See also: setWaitCursorEnabled:

textProc
— (DPSTextProdgxtProc

Returns the context’s text callback function.

unchainContext
— (voidunchainContext

Unlinks the child context (and all of it's children) from the receiver’s list of chained contexts.

updateNameMap
— (voidupdateNameM ap

Updates the context’'s name map from the client library’s name map.

wait
— (void)wait

Waits until the NSDPSContext’s destination is ready to receive more input.

writeBOSArray:count:ofType:
— (void)writeBOSArray: (const void *fata count: (unsigned inffemsof Type: (DPSDefined Typédype

Write an array to the context’s destination as part of a binary object sequence. The array is talaa from
and consists dtems items of typeype.

writeBOSNumString:length:ofType:scale:

— (void)writeBOSNumString: (const void *Hata length: (unsigned intount
of Type: (DPSDefinedTypdype scale: (int)scale

Write a number string to the context’s destination as part of a binary object sequence. The string is taken
from dataas described bgount, type, andscale.

writeBOSString:length:
— (voidwriteBOSString: (const void *data length: (unsigned intyytes

Write a string to the context’s destination as part of a binary object sequence. The string is takgie§rom
(a count)of data.

writeBinaryObjectSequence:length:
— (voidwriteBinaryObjectSequence: (const void *Hata length: (unsigned inf)ytes

Write a binary object sequence to the context’s destination. The sequence cohgiesgatount) oflata.

Classes: NSDPSContext

writeData:
— (voidwriteData: (NSData *puf

Sends the PostScript dataowrf to the context’s destination.

writePostScriptWithLanguageEncodingConversion:
— (voidwritePostScriptWithL anguageEncodingConver sion: (NSData *buf

Writes the PostScript data lif to the context’s destination. The data, formatted as plain text, encoded
tokens, or a binary object sequence, is converted as necessary depending on the language encoding of the
receiving context.

10

