
Classes: NSNumber 1

NSNumber

Inherits From: NSValue : NSObject

Conforms To: NSCopying
NSMutableCopying

Declared In: foundation/NSValue.h

Class Description

NSNumber objects provide an object-oriented wrapper for C number data types.

NSNumber, which inherits from NSValue, provides methods for creating number objects
that contain data of a specified type. It also provides methods for extracting data from a
number object and casting the data to be of a particular type.

For comparing two number objects, NSNumber provides the compare: method that returns
an ordered comparison result.

Instance Variables

None declared in this class.

Adopted Protocols

NSCopying – copy
– copyWithZone:

NSMutableCopying – mutableCopy
– mutableCopyWithZone:

 2 Classes: NSNumber

Method Types

Allocating and initializing + numberWithBool:
+ numberWithChar:
+ numberWithDouble:
+ numberWithFloat:
+ numberWithInt:
+ numberWithLong:
+ numberWithLongLong:
+ numberWithShort:
+ numberWithUnsignedChar:
+ numberWithUnsignedInt:
+ numberWithUnsignedLong:
+ numberWithUnsignedLongLong:
+ numberWithUnsignedShort:
– initWithBool:
– initWithChar:
– initWithDouble:
– initWithFloat:
– initWithInt:
– initWithLong:
– initWithLongLong:
– initWithShort:
– initWithUnsignedChar:
– initWithUnsignedInt:
– initWithUnsignedLong:
– initWithUnsignedLongLong:
– initWithUnsignedShort:

Accessing data – boolValue
– charValue
– doubleValue
– floatValue
– intValue
– longLongValue
– longValue
– shortValue
– stringValue
– unsignedCharValue
– unsignedIntValue
– unsignedLongLongValue
– unsignedLongValue
– unsignedShortValue

Classes: NSNumber 3

Comparing data – compare:
– isEqual:

Class Methods

numberWithBool:

+ numberWithBool:(BOOL)value

Creates and returns a number object containing value of the type BOOL.

numberWithChar:

+ numberWithChar: (char)value

Creates and returns a number object containing value of the type char.

This excerpt initializes a number object to contain the character ‘K’.

NSNumber* numObj;

char myChar = ‘K’;

numObj = [NSNumber numberWithChar:myChar];

See also: – numberWithUnsignedChar:

numberWithDouble:

+ numberWithDouble: (double)value

Creates and returns a number object containing value of the type double.

numberWithFloat:

+ numberWithFloat: (float)value

Creates and returns a number object containing value of the type float.

 4 Classes: NSNumber

numberWithInt:

+ numberWithInt: (int)value

Creates and returns a number object containing value of the type int.

See also: – numberWithUnsignedInt:

numberWithLong:

+ numberWithLong: (long)value

Creates and returns a number object containing value of the type long.

See also: – numberWithUnsignedLong:

numberWithLongLong:

+ numberWithLongLong: (long long)value

Creates and returns a number object containing value of the type long long.

See also: – numberWithUnsignedLongLong:

numberWithShort:

+ numberWithShort: (short)value

Creates and returns a number object containing value of the type short.

See also: – numberWithUnsignedShort:

numberWithUnsignedChar:

+ numberWithUnsignedChar:(unsigned char)value

Creates and returns a number object containing value of the type unsigned char.

See also: – numberWithChar:

Classes: NSNumber 5

numberWithUnsignedInt:

+ numberWithUnsignedInt: (int)value

Creates and returns a number object containing value of the type unsigned int.

See also: – numberWithInt:

numberWithUnsignedLong:

+ numberWithUnsignedLong:(unsigned long)value

Creates and returns a number object containing value of the type unsigned long.

See also: – numberWithLong:

numberWithUnsignedLongLong:

+ numberWithUnsignedLongLong:(unsigned long long)value

Creates and returns a number object containing value of the type unsigned long long.

See also: – numberWithLongLong:

numberWithUnsignedShort:

+ numberWithUnsignedShort:(unsigned short)value

Creates and returns a number object containing value of the type unsigned short.

See also: – numberWithShort:

Instance Methods

boolValue

– (BOOL)boolValue

Returns a BOOL value from a number object.

 6 Classes: NSNumber

charValue

– (char)charValue

Returns a char value from a number object.

See also: – unsignedCharValue

compare:

– (NSComparisonResult)compare:(NSNumber *)other

Compares the receiver to other and returns an NSComparisonResult. NSComparisonResult
is used for ordered comparison results. It returns an enumerated value that indicates
whether the first argument to the comparison (that is, the receiving object in a message call
or the left argument in a function call) is greater, equal to, or less than the second argument.
The three possible return values of NSComparisonResult are:

• NSOrderedAscending

• NSOrderedSame

• NSOrderedDescending

NSOrderedDescending is also returned when other is not an NSNumber.

The compare: method conforms to the standard C rules for type conversion. For example,
if you compare a number object that has an integer value with a number object that has a
floating point value, the integer value is converted to a float.

Two number objects are equal if they have the same value and type.

For example, in this excerpt num1 and num2 evaluate as being equal.

NSNumber *num1, *num2;

int myInt = 123;

float yourFloat = 123.000;

NSComparisonResult result;

num1 = [NSNumber numberWithInt:myInt];

num2 = [NSNumber numberWithFloat:yourFloat];

result = [num1 compare:num2];

if(result == NSOrderedAscending)

fprintf(stderr, "num1 is less than num2\n");

else if (result == NSOrderedSame)

fprintf(stderr, "num1 equals num2\n");

else

fprintf(stderr, "num1 is greater than num2.\n");

Classes: NSNumber 7

doubleValue

– (double)doubleValue

Returns a double value from a number object.

floatValue

– (float)floatValue

Returns a float value from a number object.

This excerpt creates two number objects: num1, which holds an integer value, and num2,
which holds a floating point value. The excerpt then prints the floating point value of num1
and the integer value of num2.

NSNumber *num1, *num2;

int myInt = 123;

float myFloat = 13.07;

num1 = [NSNumber numberWithInt:myInt];

num2 = [NSNumber numberWithFloat:myFloat];

fprintf(stderr, "num1: \"%f\"\n", [num1 floatValue]);

fprintf(stderr, "num2: \"%i\"\n", [num2 intValue]);

initWithBool:

– initWithBool: (BOOL)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithChar:

– initWithChar: (char)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithDouble:

– initWithDouble: (double)value

Initializes the receiver, a newly allocated NSNumber, from value.

 8 Classes: NSNumber

initWithFloat:

– initWithFloat: (float)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithInt:

– initWithInt: (int)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithLong:

– initWithLong: (long)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithLongLong:

– initWithLongLong: (long long)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithShort:

– initWithShort: (short)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithUnsignedChar:

– initWithUnsignedChar: (unsigned char)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithUnsignedInt:

– initWithUnsignedInt: (unsigned int)value

Initializes the receiver, a newly allocated NSNumber, from value.

Classes: NSNumber 9

initWithUnsignedLong:

– initWithUnsignedLong: (unsigned long)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithUnsignedLongLong:

– initWithUnsignedLongLong: (unsigned long long)value

Initializes the receiver, a newly allocated NSNumber, from value.

initWithUnsignedShort:

– initWithUnsignedShort: (unsigned short)value

Initializes the receiver, a newly allocated NSNumber, from value.

intValue

– (int)intValue

Returns an int value from a number object.

See also: – unsignedIntValue

isEqual:

– (BOOL)isEqual:value

Returns YES if the receiver and value are equal; otherwise returns NO. For NSNumber,
isEqual: first compares the class of value and the receiver to verify that they are the same.
If they are, isEqual: then invokes compare: and, if value and the receiver compare as
NSOrderedSame, isEqual: returns YES.

longLongValue

– (long long)longLongValue

Returns a long long value from a number object.

See also: – unsignedLongLongValue

 10 Classes: NSNumber

longValue

– (long)longValue

Returns a long value from a number object.

See also: – unsignedLongValue

shortValue

– (short)shortValue

Returns a short value from a number object.

See also: – unsignedShortValue

stringValue

– (NSString *)stringValue

Returns a pointer to an NSString object from a number object.

This excerpt creates a number object with an integer value, and then extracts its data as an
NSString object.

NSNumber aNum;

int myInt = 12345678;

NSString *aString;

aNum = [NSNumber numberWithInt:myInt];

aString = [aNum stringValue];

unsignedCharValue

– (unsigned char)unsignedCharValue

Returns an unsigned char value from a number object.

See also: – charValue

unsignedIntValue

– (unsigned int)unsignedIntValue

Returns an unsigned int value from a number object.

See also: – intValue

Classes: NSNumber 11

unsignedLongLongValue

– (unsigned long long)unsignedLongLongValue

Returns an unsigned long long value from a number object.

See also: – longLongValue

unsignedLongValue

– (unsigned long)unsignedLongValue

Returns an unsigned long value from a number object.

See also: – longValue

unsignedShortValue

– (unsigned short)unsignedShortValue

Returns an unsigned short value from a number object.

See also: – shortValue

