
1

� NSNumberFormatter

Inherits From: NSFormatter : NSObject

Conforms To: NSObject (NSObject)
NSCoding
NSCopying

Declared In: Foundation/NSNumberFormatter.h

Class Description

Instances of NSNumberFormatter format the textual representation of cells that contain
NSDecimalNumbers and convert textual representations of numeric values into NSDecimalNumbers. The
representation encompasses integers, floats, and doubles; floats and doubles can be formatted to a specified
decimal position. NSNumberFormatters can also impose ranges on the numeric values that cells can accept.

NSControl provides delegation methods that permit you to validate cell contents and to handle errors in
formatting. See the specification of the NSFormatter class for details.

When a cell with a NSNumberFormatter is copied, the new cell retains the NSNumberFormatter object
instead of copying it. You remove an NSNumberFormatter from a cell by specifying nil as the argument of
NSCell’s setFormatter: method.

Instances of NSNumberFormatter are mutable.

Creating an Instance of NSNumberFormatter

The easiest way to use NSNumberFormatter is to drag a formatter onto a control in Interface Builder.
However, if you’re not using Interface Builder to create your user interface or if you simply want more
fine-grained control over an NSNumberFormatter (for example, to change the text attributes of the values
displayed), you can create and manipulate instances of the class programmatically.

To create an NSNumberFormatter, allocate an instance of NSNumberFormatter and use one or more of
NSNumberFormatter’s “set format” methods to set its format. You then use NSCell’s setFormatter:
method to associate the NSNumberFormatter instance with a cell.

For example, the following code excerpt creates an instance of NSNumberFormatter, sets its formatting for
positive, zero, and negative values, and applies it to the cell of an NSTextField using NSCell’s
setFormatter: method:

NSNumberFormatter *numberFormatter =

[[[NSNumberFormatter alloc] init] autorelease];

[numberFormatter setFormat:@"$#,###.00;0.00;($#,##0.00)"];

2

[[textField cell] setFormatter:numberFormatter];

The value of a cell (NSCell) is represented by an object, typically an NSDecimalNumber object in this case.
When this value needs to be displayed or edited, the cell passes its object to the NSNumberFormatter
instance, which returns the formatted string. When the user enters a string, or when a string is
programmatically written in a cell (using setStringValue:), the cell obtains the equivalent
NSDecimalNumber object from the NSNumberFormatter.

The most common technique for assigning a format to an NSNumberFormatter object is to use the method
setFormat:, as shown above. This method takes as an argument an NSString whose contents can be one of
the following:

• @”positiveFormat”

For example, @”$###,##0.00” (the syntax of format strings is discussed in the following section).

• @”positiveFormat;negativeFormat”

For example, @”###,##0.00;(###,##0.00)”.

• @”positiveFormat;zeroFormat;negativeFormat”

For example, @”$###,###.00;0.00;($###,##0.00)”. Note that zero formats are treated as string constants.

As implied in the preceding list, you’re only required to specify a format for positive values. If you don’t
specify a format for negative and zero values, a default format based on the positive value format is used.
For example, if your positive value format is “#,##0.00”, an input value of “0” will be displayed as “0.00”.

If you don’t specify a format for negative values, the format specified for positive values is used, preceded
by a minus sign (-).

If you specify a separate format for negative values, its separators should be parallel to those specified in
the positive format string. In NSNumberFormatter, separators are either enabled or disabled for all
formats—both your negative and positive formats should therefore use the same approach.

As an alternative to using the setFormat: method, you can use the setPositiveFormat: and
setNegativeFormat: methods.

Format String Syntax

Format strings can include the following types of characters:

• Numbers

Format strings can include numeric characters. Wherever you include a number in a format string, the
number is displayed unless an input character in the same relative position “overwrites” it. For example,
suppose you have the positive format string @“9,990.00”, and the value 53.88 is entered into a cell to
which the format has been applied. The cell would display the value as 9,953.88.

3

• Separators

Format strings can include the period character (.) as a decimal separator, and comma character (,) as a
thousand separator. If you want to use different characters as separators, you can set them using the
setDecimalSeparator: and setThousandSeparator: methods. When you enable localization for an
NSNumberFormatter object by using the method setLocalizesFormat:, separators are converted to
characters appropriate to the environment in which the application is running.

• Placeholders

You use the pound sign character (#) to represent numeric characters that will be input by the user. For
example, suppose you have the positive format @”$#,##0.00”. If the characters 76329 were entered into
a cell to which the format has been applied, they would be displayed as $76,329.00. Strictly speaking,
however, you don’t need to use placeholders. The format strings @”,0.00”, @”#,#0.00, and @”#,##0.00”
are functionally equivalent. In other words, including separator characters in a format string signals
NSNumberFormatter to use the separators, regardless of whether you use (or where you put)
placeholders. The placeholder character’s chief virtue lies in its ability to make format strings more
human-readable, which is especially useful if you’re displaying formats in the user interface.

• Spaces

To include a space in a format string, use the underscore character (_). This character inserts a space if
no numeric character has been input to occupy that position.

• Currency

The dollar sign character ($) is normally treated just like any other character that doesn’t play a special
role in NSNumberFormatter. However, when you enable localization for an NSNumberFormatter object
by using the method setLocalizesFormat:, the dollar sign character is converted to the currency symbol
appropriate for the environment in which the application is running.

All other characters specified in a format string are displayed as typed. The following table shows examples
of the how the value 1019.55 is displayed for different positive formats:

Format String Display

@“#,##0.00” 1,019.55

@“$#,##0.00” $1,019.55

@“___,__0.00” 1,019.55

Working with Values as Attributed Strings

In NSNumberFormatter, positive, negative, zero, nil, and “not a number” values are NSAttributedStrings.
NSAttributedString objects manage character strings and associated sets of attributes (for example, font and
kerning) that apply to individual characters or ranges of characters in the string. An association of characters
and their attributes is called an attributed string. For more information on NSAttributedString, see the

4

NSAttributedString class cluster specification in the Foundation Kit Reference, and the NSAttributedString
Class Cluster Additions specification in the Application Kit Reference.

Because the values displayed by NSNumberFormatter are attributed strings, you can customize aspects of
their appearance, such as their color and font. The NSNumberFormatter methods you use to do this are as
follows:

– textAttributesForPositiveValues
– setTextAttributesForPositiveValues:
– textAttributesForNegativeValues
– setTextAttributesForNegativeValues:
– attributedStringForZero
– setAttributedStringForZero:
– allowsFloats
– setAttributedStringForNil:
– attributedStringForNotANumber
– setAttributedStringForNotANumber:

Using Separators

NSNumberFormatter supports two different kinds of separators: thousand and decimal. By default these
separators are represented by the comma (,) and period (.) characters respectively, and by default they’re
disabled.

All of the following statements have the effect of enabling thousand separators:

// use setFormat:

[numberFormatter setFormat:@"#,###"];

// use setHasThousandSeparators:

[numberFormatter setHasThousandSeparators:YES];

// use setThousandSeparator:

[numberFormatter setThousandSeparator:@"_"];

If you use the statement [numberFormatter setHasThousandSeparators:NO], it disables
thousand separators, even if you’ve set them through another means.

Both of the following statements have the effect of enabling decimal separators:

// use setFormat:

[numberFormatter setFormat:@"0.00"];

// use setDecimalSeparator:

[numberFormatter setDecimalSeparator:@"-"];

When you enable or disable separators, it affects both positive and negative formats. Consequently, both
formats must use the same separator scheme.

5

You can use the thousandSeparator and decimalSeparator methods to return an NSString containing the
character the receiver uses to represent each separator. However, this shouldn’t be taken as an indication of
whether separators are enabled—even when separators are disabled, an NSNumberFormatter still knows
the characters it uses to represent separators.

Separators must be single characters. If you specify multiple characters in the arguments to
setThousandSeparator: and setDecimalSeparator:, only the first character is used.

You can’t use the same character to represent thousand and decimal separators.

NSCell Methods for Number Formatting

NSCell provides methods that give you almost the same behavior as instances of NSNumberFormatter.
Send setEntryType: to a cell to associate it with an NSNumberFormatter object; specify the numeric
format with one of the constants listed below. The constant is equivalent to an NSNumberFormatter
initialized with a certain range and a conversion specifier:

Constant Range Specifier

NSIntType MININT, MAXINT %d
NSPositiveIntType 1, MAXINT %d
NSFloatType -MAXFLOAT, MAXFLOAT %g
NSPositiveFloatType MINFLOAT, MAXFLOAT %g
NSDoubleType -MAXDOUBLE, MAXDOUBLE %g
NSPositiveDoubleType MINDOUBLE, MAXDOUBLE %g

Send NSCell’s isEntryAcceptable: to a cell to determine if it can accept a numeric type as indicated by one
of the above constants. Send NSCell’s setFloatingPointFormat:left:right: to specify the number of digits
that appear to the left and right of the decimal point. By invoking this method you do not lose any range of
values for floats or values set either through setEntryType: or by initializing an NSNumberFormatter
directly.

Note: The NSNumberFormatter approach is recommended over the NSCell methods because it allows you
greater freedom in specifying the representation of numbers. However, NSCell’s setEntryType:,
isEntryAcceptable:, and setFloatingPointFormat:left:right: are OpenStep-compliant, whereas
NSNumberFormatter is an extension to OpenStep.

Method Types

Set formats – negativeFormat
– setNegativeFormat:
– positiveFormat
– setPositiveFormat:
– format
– setFormat:

6

Set characteristics for displaying values
– textAttributesForNegativeValues
– setTextAttributesForNegativeValues:
– textAttributesForPositiveValues
– setTextAttributesForPositiveValues:
– attributedStringForZero
– setAttributedStringForZero:
– attributedStringForNil
– setAttributedStringForNil:
– attributedStringForNotANumber
– setAttributedStringForNotANumber:

Set separators – hasThousandSeparators
– setHasThousandSeparators:
– thousandSeparator
– setThousandSeparator:
– decimalSeparator
– setDecimalSeparator:

Enable localization – localizesFormat
– setLocalizesFormat:

Set float behavior – allowsFloats
– setAllowsFloats:

Set rounding behavior – roundingBehavior
– setRoundingBehavior:

Set minimum and maximum values – minimum
– setMinimum:
– maximum
– setMaximum:

Instance Methods

� allowsFloats
– (BOOL)allowsFloats

Returns YES if the receiver allows as input floating point values (that is, values that include the period
character (.)), NO otherwise. When this is set to NO, only integer values can be provided as input. The
default is YES.

See also: – setAllowsFloats:

7

� attributedStringForNil
– (NSAttributedString *)attributedStringForNil

Returns the NSAttributedString used to display nil values. By default nil values are displayed as an empty
string.

See also: – allowsFloats

� attributedStringForNotANumber
– (NSAttributedString *)attributedStringForNotANumber

Returns the NSAttributedString used to display “not a number” values. By default “not a number” values
are displayed as the string “NaN”.

See also: – attributedStringForNotANumber

� attributedStringForZero
– (NSAttributedString *)attributedStringForZero

Returns the NSAttributedString used to display zero values. By default zero values are displayed according
to the format specified for positive values; for more discussion of this subject see the section “Creating an
Instance of NSNumberFormatter” in the Class Description.

See also: – setAttributedStringForZero:

� decimalSeparator
– (NSString *)decimalSeparator

Returns an NSString containing the character the receiver uses to represent decimal separators. By default
this is the period character (.). Note that the return value doesn’t indicate whether decimal separators are
enabled.

See also: – setDecimalSeparator:

� format
– (NSString *)format

Returns an NSString containing the format being used by the receiver.

See also: – setFormat:

8

� hasThousandSeparators
– (BOOL)hasThousandSeparators

Returns YES to indicate that the receiver’s format includes thousand separators, NO otherwise. The default
is NO.

See also: – setHasThousandSeparators:

� localizesFormat
– (BOOL)localizesFormat

Returns YES to indicate that the receiver localizes formats, NO otherwise. The default is NO.

See also: – setLocalizesFormat:

� maximum
– (NSDecimalNumber *)maximum

Returns the highest number that is allowed as input by the receiver.

See also: – setMaximum:

� minimum
– (NSDecimalNumber *)minimum

Returns the lowest number that is allowed as input by the receiver.

See also: – setMinimum:

� negativeFormat
– (NSString *)negativeFormat

Returns an NSString containing the format used by the receiver to display negative numbers.

See also: – setNegativeFormat:, – setFormat:

9

� positiveFormat
– (NSString *)positiveFormat

Returns an NSString containing the format used by the receiver to display positive numbers.

See also: – setPositiveFormat:, –setFormat:

� roundingBehavior
– (NSDecimalNumberHandler *)roundingBehavior

Returns an NSDecimalNumberHandler object to indicate the rounding behavior used by the receiver.

See also: – setRoundingBehavior:

� setAllowsFloats:
– (void)setAllowsFloats:(BOOL)flag

Sets according to flag whether the receiver allows as input floating point values (that is, values that include
the period character (.)). By default, floating point values are allowed as input.

See also: – allowsFloats

� setAttributedStringForNil:
– (void)setAttributedStringForNil:(NSAttributedString *)newAttributedString

Sets to newAttributedString the NSAttributedString the receiver uses to display nil values.

See also: – allowsFloats

� setAttributedStringForNotANumber:
– (void)setAttributedStringForNotANumber:(NSAttributedString *)newAttributedString

Sets to newAttributedString the NSAttributedString the receiver uses to display “not a number” values.

See also: – attributedStringForNotANumber

10

� setAttributedStringForZero:
– (void)setAttributedStringForZero:(NSAttributedString *)newAttributedString

Sets to newAttributedString the NSAttributedString the receiver uses to display zero values.

See also: – attributedStringForZero

� setDecimalSeparator:
– (void)setDecimalSeparator:(NSString *)newSeparator

Sets to newSeparator the character the receiver uses as a decimal separator. If newSeparator contains
multiple characters, only the first one is used. If you don’t have decimal separators enabled through another
means (such as setFormat:), using this method enables them.

See also: – decimalSeparator

� setFormat:
– (void)setFormat:(NSString *)aFormat

Sets the receiver’s format to the string aFormat. aFormat can consist of one, two or three parts separated
by ‘;’. The first part of the string represents the positive format, the second part of the string represents the
zero value, and the last part of the string represents the negative format. If the string just has two parts, the
first one becomes the positive format, and the second one becomes the negative format. If the string just has
one part, it becomes the positive format, and default formats are provided for zero and negative values based
on the positive format. For more discussion of this subject, see the section “Creating an Instance of
NSNumberFormatter” in the Class Description.

For example, the following code excerpt shows the three different approaches for setting an
NSNumberFormatter object’s format using setFormat::

NSNumberFormatter *numberFormatter =

[[[NSNumberFormatter alloc] init] autorelease];

// specify just positive format

[numberFormatter setFormat:@"$#,##0.00"];

// specify positive and negative formats

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];

// specify positive, zero, and negative formats

[numberFormatter setFormat:@"$#,###.00;0.00;($#,##0.00)"];

See also: – format

11

� setHasThousandSeparators:
– (void)setHasThousandSeparators:(BOOL)flag

Sets according to flag whether the receiver uses thousand separators. When flag is NO, thousand separators
are disabled for both positive and negative formats (even if you’ve set them through another means, such
as setFormat:). When flag is YES, thousand separators are used. In addition to using this method to add
thousand separators to your format, you can also use it to disable thousand separators if you’ve set them
using another method. The default is NO (though you in effect change this setting to YES when you set
thousand separators through any means, such as setFormat:).

See also: – hasThousandSeparators

� setLocalizesFormat:
– (void)setLocalizesFormat:(BOOL)flag

Sets according to flag whether the dollar sign character ($), decimal separator character (.), and thousand
separator character (,) are converted to appropriately localized characters as specified by the user’s
localization preference. While this feature may be useful in certain types of applications, it’s probably more
likely that you would tie a particular application to a particular currency (that is, that you would “hard-code”
the currency symbol and separators instead of having them dynamically change based on the user’s
configuration). The reason for this, of course, is that NSNumberFormatter doesn’t perform currency
conversions, it just formats numeric data. You wouldn’t want one user interpreting the value “56324” as US
currency and another user who’s accessing the same data interpreting it as Japanese currency, simply based
on each user’s localization preferences.

See also: – localizesFormat

� setMaximum:
– (void)setMaximum:(NSDecimalNumber *)aMaximum

Sets to aMaximum the highest number the receiver allows as input.

See also: – maximum

� setMinimum:
– (void)setMinimum:(NSDecimalNumber *)aMinimum

Sets to aMinimum the lowest number the receiver allows as input.

See also: – setMinimum:

12

� setNegativeFormat:
– (void)setNegativeFormat:(NSString *)aFormat

Sets to aFormat the format the receiver uses to display negative values.

See also: – negativeFormat, – setFormat:

� setPositiveFormat:
– (void)setPositiveFormat:(NSString *)aFormat

Sets to aFormat the format the receiver uses to display positive values.

See also: – positiveFormat, – setFormat:

� setRoundingBehavior:
– (void)setRoundingBehavior:(NSDecimalNumberHandler *)newRoundingBehavior

Sets to newRoundingBehavior the rounding behavior used by the receiver.

See also: – roundingBehavior

� setTextAttributesForNegativeValues:
– (void)setTextAttributesForNegativeValues:(NSDictionary *)newAttributes

Sets to newAttributes the text attributes to be used in displaying negative values. For example, this code
excerpt causes negative values to be displayed in red:

NSNumberFormatter *numberFormatter =

[[[NSNumberFormatter alloc] init] autorelease];

NSMutableDictionary *newAttrs = [NSMutableDictionary dictionary];

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];

[newAttrs setObject:[NSColor redColor] forKey:@"NSColor"];

[numberFormatter setTextAttributesForNegativeValues:newAttrs];

[[textField cell] setFormatter:numberFormatter];

An even simpler way to cause negative values to be displayed in red is to include the constant [Red] in
your format string, for example:

[numberFormatter setFormat:@"$#,##0.00;[Red]($#,##0.00)"];

13

Note: When you set a value’s text attributes to use color, the color only appears when the value’s cell
doesn’t have input focus. When the cell has input focus, the value is displayed in standard black.

See also: – textAttributesForNegativeValues

� setTextAttributesForPositiveValues:
– (void)setTextAttributesForPositiveValues:(NSDictionary *)newAttributes

Sets to newAttributes the text attributes to be used in displaying positive values.

See also: – textAttributesForPositiveValues

� setThousandSeparator:
– (void)setThousandSeparator:(NSString *)newSeparator

Sets to newSeparator the character the receiver uses as a thousand separator. If newSeparator contains
multiple characters, only the first one is used. If you don’t have thousand separators enabled through any
other means (such as setFormat:), using this method enables them.

See also: – thousandSeparator

� textAttributesForNegativeValues
– (NSDictionary *)textAttributesForNegativeValues

Returns an NSDictionary containing the text attributes that have been set for negative values.

See also: – setTextAttributesForNegativeValues:

� textAttributesForPositiveValues
– (NSDictionary *)textAttributesForPositiveValues

Returns an NSDictionary containing the text attributes that have been set for positive values.

See also: – setTextAttributesForPositiveValues:

14

� thousandSeparator
– (NSString *)thousandSeparator

Returns an NSString containing the character the receiver uses to represent thousand separators. By default
this is the comma character (,). Note that the return value doesn’t indicate whether thousand separators are
enabled.

See also: – setThousandSeparator:

