
1

NSPasteboard 

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPasteboard.h

Purpose
An NSPasteboard object is an interface to a pasteboard server that allows you to transfer data between 
applications, as in copy, cut, and paste operations. The data can be placed in the pasteboard server in a variety of 
representations. 

Principal Attributes
• Owners • Change count
• Data types • Name

Creation
+ generalPasteboard
+ pasteboardWithName: 

Commonly Used Methods
– types Returns an NSArray of pasteboard data types.
– declareTypes:owner: Prepares NSPasteboard to receive new data.
– dataForType: Reads data from a pasteboard.
– setData:forType: Writes data to a pasteboard.
– stringForType: Reads an NSString from a pasteboard.
– setStringForType: Writes an NSString to a pasteboard.

Class Description

NSPasteboard objects transfer data to and from the pasteboard server. The server is shared by all running 
applications. It contains data that the user has cut or copied, as well as other data that one application wants 

Class at a Glance



2

Classes: NSPasteboard

to transfer to another. NSPasteboard objects are an application’s sole interface to the server and to all 
pasteboard operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it’s to be used. Each set of data 
and its associated name is, in effect, a separate pasteboard, distinct from the others. An application keeps a 
separate NSPasteboard object for each named pasteboard that it uses. There are five standard pasteboards 
in common use:

General pasteboard The pasteboard that’s used for ordinary cut, copy, and paste 
operations. It holds the contents of the last selection that’s been 
cut or copied.

Font pasteboard The pasteboard that holds font and character information and 
supports Copy Font and Paste Font commands that my be 
implemented in a text editor.

Ruler pasteboard The pasteboard that holds information about paragraph formats 
in support of the Copy Ruler and Paste Ruler commands that 
may be implemented in a text editor.

Find pasteboard The pasteboard that holds information about the current state of 
the active application’s Find panel. This information permits 
users to enter a search string into the Find panel, then switch to 
another application to conduct another search.

Drag pasteboard The pasteboard that stores data to be moved as the result of a 
drag operation.

Each standard pasteboard is identified by a unique name (stored in global string objects):

NSGeneralPboard
NSFontPboard
NSRulerPboard
NSFindPboard
NSDragPboard

You can create private pasteboards by asking for an NSPasteboard object with any name other than those 
listed above. Data in a private pasteboard may then be shared by passing its name between applications.

The NSPasteboard class makes sure there’s never more than one object for each named pasteboard on the 
computer. If you ask for a new object when one has already been created for the pasteboard with that name, 
the existing object will be returned.



3

Data Types

Data can be placed in the pasteboard server in more than one representation. For example, an image might 
be provided both in Tag Image File Format (TIFF) and as encapsulated PostScript code (EPS). Multiple 
representations give pasting applications the option of choosing which data type to use. In general, an 
application taking data from the pasteboard should choose the richest representation it can handle—rich text 
over plain ASCII, for example. An application putting data in the pasteboard should promise to supply it in 
as many data types as possible, so that as many different applications as possible can use it.

Filtering services transform the data from one representation to another. Typically, these services aren’t 
invoked until data is read from a pasteboard.

Data types are identified by NSString objects containing the full type name. These global variables identify 
the string objects for the standard pasteboard types:

Type Description

NSColorPboardType NSColor data

NSDataLinkPboardType Defines a link between documents

NSFileContentsPboardType A representation of a file’s contents

NSFilenamesPboardType NSString designating one or more file names

NSFontPboardType Font and character information

NSPostScriptPboardType Encapsulated PostScript code (EPS)

NSRulerPboardType Paragraph formatting information

NSRTFPboardType Rich Text Format (RTF)

NSRTFDPboardType RTFD formatted file contents

NSSelectionPboardType Describes a selection for use with data linking

NSStringPboardType NSString data

NSTabularTextPboardType NSString containing tab-separated fields of text

NSTIFFPboardType Tag Image File Format (TIFF)

Typically, data is written to the pasteboard using setData:forType: and read using dataForType:. Some 
of these types can only be written with certain methods. For instance, NSFilenamesPboardType’s form is 
an array of NSStrings and requires special handling. Use these methods to write these types:



4

Classes: NSPasteboard

Type Writing Method Reading Method

NSColorPboardType NSColor class methodsNSColor class methods

NSFileContentsPboardType writeFileContents: readFileContentsType:toFile: 

NSFilenamesPboardType setPropertyList:forType:propertyListForType:

NSStringPboardType setString:forType: stringForType:

You don’t have to write the data (using setData:forType:) in all types that you’ve declared for the 
pasteboard: This avoids unneeded conversions. If data is requested from a pasteboard in a format that’s not 
present, the owner of the pasteboard receives a pasteboard:provideDataForType: message notifying it 
that it needs to supply the data in that format. It then supplies data in the requested type by invoking one of 
the setData:forType:, setString:forType:, or setPropertyList:forType: methods on the pasteboard.

The class methods pasteboardByFilteringData:ofType:, pasteboardByFilteringFile:, and 
pasteboardByFilteringTypesInPasteboard: return a pasteboard with data that is filtered into all types 
derivable from the current types using available filter services. (For more information on filter services see 
/NextLibrary/Documentation/NextDev/TasksAndConcepts/ProgrammingTopics/Services.rtf.) The 
pasteboards returned by these methods are autoreleased instances of NSPasteboard.

Types other than those listed above can also be used. For example, your application may keep data in a 
private format that’s richer than any of the existing types. That format can also be used as a pasteboard type.

Reading and Writing RTFD Data

The NSRTFDPboardType is used for the contents of an RTFD file package (a directory containing an RTF 
text file and one or many EPS and TIFF image files). There are several ways to work with RTFD data. If 
you have an NSFileWrapper object that represents an RTFD file wrapper, you can send it the 
serializedRepresentation method to return the RTFD data and write that to the pasteboard as follows:

NSFileWrapper *tempRTFDData = [[[NSFileWrapper alloc] 

initWithPath:@"/tmp/foo.rtfd"] autorelease];

[pboard setData:[tempRTFDData serializedRepresentation] 

forType:NSRTFDPboardType];

In addition to NSFileWrapper, classes such as NSAttributedString and NSText can return RTFD data. If 
you’re using one of these classes, you would do the following to write RTFD data to the pasteboard:

NSAttributedString *attrString;

...

[pboard setData:[attrString RTFDFromRange:NSMakeRange(0, [attrString length])] 

forType:NSRTFDPboardType];

Change Count

The change count is a computer-wide variable that increments every time the contents of the pasteboard 
changes (a new owner is declared). An independent change count is maintained for each named pasteboard. 



5

By examining the change count, an application can determine whether the current data in the pasteboard is 
the same as the data it last received. 

The changeCount, addTypes:owner:, and declareTypes:owner: methods return the change count. A 
types or availableTypeFromArray: message should be sent by the pasteboard before reading data so that 
the change count is valid.

Errors

Except where errors are specifically mentioned in the method descriptions, any communications error with 
the pasteboard server raises an NSPasteboardCommunicationException.

Method Types

Creating and releasing an NSPasteboard object
+ generalPasteboard
+ pasteboardByFilteringData:ofType:
+ pasteboardByFilteringFile:
+ pasteboardByFilteringTypesInPasteboard:
+ pasteboardWithName:
+ pasteboardWithUniqueName
+ typesFilterableTo:
– releaseGlobally

Referring to a pasteboard by name – name

Writing data – addTypes:owner:
– declareTypes:owner:
– setData:forType:
– setPropertyList:forType:
– setString:forType:
– writeFileContents:

Determining Types – availableTypeFromArray:
– types

Reading Data – changeCount
– dataForType:
– propertyListForType:
– readFileContentsType:toFile:
– stringForType:

Methods Implemented by the Owner 
– pasteboardChangedOwner:
– pasteboard:provideDataForType:



6

Classes: NSPasteboard

Class Methods

generalPasteboard
+ (NSPasteboard *)generalPasteboard

Returns the general NSPasteboard. This invokes pasteboardWithName: to obtain the pasteboard.

pasteboardByFilteringData:ofType:
+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data ofType:(NSString *)type

Creates and returns a new pasteboard with a unique name that supplies data in as many types as possible 
given the available filter services. The returned pasteboard also declares data of the supplied type type. 

No filter service is invoked until the data is actually requested, so invoking this method is reasonably 
inexpensive. 

pasteboardByFilteringFile:
+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename

Creates and returns a new pasteboard with a unique name that supplies the data in filename in as many types 
as possible given the available filter services. No filter service is invoked until the data is actually requested, 
so invoking this method is reasonably inexpensive.

pasteboardByFilteringTypesInPasteboard:
+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:(NSPasteboard *)pasteboard

Creates and returns a new pasteboard with a unique name that supplies the data on pasteboard in as many 
types as possible given the available filter services. This process can be thought of as expanding the 
pasteboard, since the new pasteboard generally will contain more representations of the data than 
pasteboard.

This method returns pasteboard if pasteboard was returned by one of the pasteboardByFiltering... 
methods, so a pasteboard can’t be expanded multiple times. This method only returns the original types and 
the types that can be created as a result of a single filter; the pasteboard will not have defined types that are 
the result of translation by multiple filters.

No filter service is invoked until the data is actually requested, so invoking this method is reasonably 
inexpensive.



7

pasteboardWithName:
+ (NSPasteboard *)pasteboardWithName:(NSString *)name

Returns the pasteboard for the name pasteboard. A new object is created only if the application doesn’t yet 
have a NSPasteboard object for the specified name; otherwise, the existing one is returned. To get a 
standard pasteboard, name should be one of the following variables:

NSGeneralPboard
NSFontPboard
NSRulerPboard
NSFindPboard
NSDragPboard

Other names can be assigned to create private pasteboards for other purposes.

pasteboardWithUniqueName
+ (NSPasteboard *)pasteboardWithUniqueName

Creates and returns a new pasteboard with a name that is guaranteed to be unique with respect to other 
pasteboards on the computer. This method is useful for applications that implement their own interprocess 
communication using pasteboards.

typesFilterableTo:
+ (NSArray *)typesFilterableTo:(NSString *)type

Returns an autoreleased array listing the types of data that type can be converted to by available filter 
services. The array contains the original type.

Instance Methods

addTypes:owner:
– (int)addTypes:(NSArray *)newTypes owner:(id)newOwner

Adds the data types in newTypes to the NSPasteboard and declares a new owner newOwner. This method 
can be useful when multiple entities (such as a combination of application and library methods) contribute 
data for a single copy command. It should only be invoked after a declareTypes:owner: message has been 
sent for the same types. The owner for the new types may be different from the owner(s) of the previously 
declared types.

Returns the new change count, or 0 in case of an error.

See also: – changeCount



8

Classes: NSPasteboard

availableTypeFromArray:
– (NSString *)availableTypeFromArray:(NSArray *)types

Scans the types defined by types and returns the first type that matches a type declared on the receiving 
NSPasteboard. 

A types or availableTypeFromArray: message should be sent before reading any data from the 
NSPasteboard.

changeCount
– (int)changeCount

Returns the NSPasteboard’s change count.

See also: – declareTypes:owner: 

dataForType:
– (NSData *)dataForType:(NSString *)dataType

Reads the dataType representation of the current contents of the NSPasteboard. dataType should be one of 
the types returned by the types method. A types or availableTypeFromArray: message should be sent 
before invoking dataForType:.

If the data is successfully read, this method returns the data. It returns nil if the contents of the pasteboard 
have changed (if the change count has been incremented by a declareTypes:owner: message) since they 
were last checked with the types method. It also returns nil if the pasteboard server can’t supply the data in 
time—for example, if the NSPasteboard’s owner is slow in responding to a 
pasteboard:provideDataForType: message and the interprocess communication times out. All other 
errors raise an NSPasteboardCommunicationException exception.

If nil is returned, the application should put up a panel informing the user that it was unable to carry out the 
paste operation. 

The NSData object that this method returns is autoreleased.

declareTypes:owner:
– (int)declareTypes:(NSArray *)newTypes owner:(id)newOwner

Prepares the NSPasteboard for a change in its contents by declaring the new types of data it will contain 
and a new owner. This is the first step in responding to a user’s copy or cut command and must precede the 
messages that actually write the data. A declareTypes:owner: message essentially changes the contents of 
the pasteboard: It invalidates the current contents of the pasteboard and increments its change count.



9

newTypes is an array of NSStrings that name types the new contents of the pasteboard may assume. The 
types should be ordered according to the preference of the source application, with the most preferred type 
coming first (typically, the richest representation).

The newOwner is the object responsible for writing data to the pasteboard in all the types listed in 
newTypes. You can write the data immediately after declaring the types, or wait until it’s required for a paste 
operation. If you wait, the owner will receive a pasteboard:provideDataForType: message requesting the 
data in a particular type when it’s needed. You might choose to write data immediately for the most 
preferred type, but wait for the others to see whether they’ll be requested.

The newOwner can be NULL if data is provided for all types immediately. Otherwise, the owner should be 
an object that won’t be released. It should not, for example, be the NSView that displays the data if that 
NSView is in a window that might be closed.

Returns the pasteboard’s new change count.

See also: – setString:forType:, –addTypes:owner:, –changeCount 

name
– (NSString *)name

Returns the NSPasteboard’s name.

See also: + pasteboardWithName:

propertyListForType:
– (id)propertyListForType:(NSString *)dataType

Returns a property list object using the type specified by dataType.

 A property list is an object of the NSArray, NSData, NSDictionary, or NSString classes—or any 
combination thereof. 

A types or availableTypeFromArray: message should be sent before invoking propertyListForType:.

This method invokes dataForType:.

See also: – setPropertyList:forType: 



10

Classes: NSPasteboard

readFileContentsType:toFile:
– (NSString *)readFileContentsType:(NSString *)type toFile:(NSString *)filename

Reads data representing a file’s contents from the NSPasteboard, and writes it to the file filename. An 
availableTypeFromArray: or types message should be sent before invoking 
readFileContentsType:toFile:.

Data of any file contents type should only be read using this method. type should generally be specified; if type 
is NULL, a type based on filename’s extension (as returned by NSCreateFileContentsPboardType()) is 
substituted. If data matching type isn’t found on the NSPasteboard, data of type NSFileContentsPboardType 
is requested. Returns the name of the file that the data was actually written to. 

See also: – writeFileContents:

releaseGlobally
– (void)releaseGlobally

Releases the NSPasteboard’s resources in the pasteboard server. Since an NSPasteboard object is an 
autoreleased instance of NSPasteboard, it isn’t released by this method, and its retain count isn’t changed.

After this method is invoked, no other application will be able to use the named NSPasteboard. A 
temporary, privately named pasteboard can be released this way when it’s no longer needed, but a standard 
NSPasteboard should never be released globally.

setData:forType:
– (BOOL)setData:(NSData *)data forType:(NSString *)dataType

Writes data to the pasteboard server. dataType gives the type of data being written; it must be a type that 
was declared in the previous declareTypes:owner: message. data points to the data to be sent to the 
pasteboard server.

Returns YES if the data is successfully written or returns NO if ownership of the pasteboard has changed. 
Any other error raises an NSPasteboardCommunicationException.

See also: – setPropertyList:forType: , – setString:forType: 

setPropertyList:forType:
– (BOOL)setPropertyList:(id)propertyList forType:(NSString *)dataType

Writes data to the pasteboard server. dataType gives the type of data being written; it must be a type that 
was declared in the previous declareTypes:owner: message. propertyList points to the data to be sent to 
the pasteboard server.



11

This method invokes setData:forType: with a serialized property list parameter.

Returns YES if the data is successfully written or returns NO if ownership of the pasteboard has changed. 
Any other error raises an NSPasteboardCommunicationException.

See also: – setString:forType:

setString:forType:
– (BOOL)setString:(NSString *)string forType:(NSString *)dataType

Writes data to the pasteboard server. dataType gives the type of data being written; it must be a type that 
was declared in the previous declareTypes:owner: message. string points to the data to be sent to the 
pasteboard server.

This method invokes setPropertyList:forType: to perform the write.

Returns YES if the data is successfully written or returns NO if ownership of the pasteboard has changed. 
Any other error raises an NSPasteboardCommunicationException.

See also: – setData:forType:, – setString:forType:

stringForType:
– (NSString *)stringForType:(NSString *)dataType

Returns an NSString using the type specified by dataType. A types or availableTypeFromArray: message 
should be sent before invoking stringForType:.

This method invokes propertyListForType: to obtain the string.

types
– (NSArray *)types

Returns an array of the NSPasteboard’s data types. 

Returns an array of the types that were declared for the current contents of the NSPasteboard. The array is 
an array of NSStrings holding the type names. Types are listed in the same order that they were declared. 

A types or availableTypeFromArray: message should be sent before reading any data from the 
NSPasteboard.

See also: – declareTypes:owner:, – dataForType:, NSUniqueString()



12

Classes: NSPasteboard

writeFileContents:
– (BOOL)writeFileContents:(NSString *)filename

Writes the contents of the file filename to the NSPasteboard object and declares the data to be of type 
NSFileContentsPboardType and also of a type appropriate for the file’s extension (as returned by 
NSCreateFileContentsPboardType() when passed the files extension), if it has one. Returns YES if the 
data from filename was successfully written to the NSPasteboard and NO otherwise.

See also: – readFileContentsType:toFile:

Methods Implemented by the Owner

pasteboardChangedOwner:
– (void)pasteboardChangedOwner:(NSPasteboard *)sender

Notifies a prior owner of the sender pasteboard (and owners of representations on the pasteboard) that the 
pasteboard has changed owners. This method is optional and need only be implemented by pasteboard 
owners that need to know when they have lost ownership. The owner is not able to read the contents of the 
pasteboard when responding to this method. The owner should be prepared to receive this method at any 
time, even from within the declareTypes:owner: used to declare ownership.

See also: – changeCount

pasteboard:provideDataForType:
– (void)pasteboard:(NSPasteboard *)sender

provideDataForType:(NSString *)type

Implemented by the owner (previously declared in a declareTypes:owner: message) to provide promised 
data. The owner receives a pasteboard:provideDataForType: message from the sender pasteboard when 
the data is required for a paste operation; type gives the type of data being requested. The requested data 
should be written to sender using the setData:forType:, setPropertyList:forType:, or 
setString:forType: methods.

pasteboard:provideDataForType: messages may also be sent to the owner when the application is shut 
down through Application's terminate: method. This is the method that’s invoked in response to a Quit 
command. Thus the user can copy something to the pasteboard, quit the application, and still paste the data 
that was copied.

A pasteboard:provideDataForType: message is sent only if type data hasn’t already been supplied. 
Instead of writing all data types when the cut or copy operation is done, an application can choose to 
implement this method to provide the data for certain types only when they’re requested.



13

If an application writes data to the NSPasteboard in the richest, and therefore most preferred, type at the 
time of a cut or copy operation, its pasteboard:provideDataForType: method can simply read that data 
from the pasteboard, convert it to the requested type, and write it back to the pasteboard as the new type.


