
1

NSFontManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSFontManager.h

Class Description

NSFontManager is the center of activity for the font conversion system. It records the currently selected
font, updates the Font Panel and Font menu to reflect the selected font, initiates font changes, and converts
fonts in response to requests from text-bearing objects. In a more prosaic role, NSFontManager can be
queried for the fonts available to the application, and for the particular attributes of a font, such as whether
it’s condensed or extended.

You normally set up a font manager and the Font Menu using Interface Builder. However, you can also do
so programmatically by getting the shared font manager instance and having it create the standard Font
menu at run time:

NSFontManager *fontManager = [NSFontManager sharedFontManager];

NSMenu *fontMenu = [fontManager fontMenu:YES];

You can then add the Font menu to your application’s main menu. Once the Font menu is installed, your
application automatically gains the functionality of both the Font menu and the Font Panel.

Recording the Selected Font

Any object that records fonts that the user can change should tell the font manager what the font of its
selection is whenever it becomes the first responder and whenever its selection changes while it’s the first
responder. The object does so by sending the shared font manager a setSelectedFont:isMultiple: message.
It should pass in the first font of the selection, along with a flag indicating whether there’s more than one
font.

The font manager uses this information to update the Font Panel and Font menu to reflect the selected font.
For example, suppose the selected font is set as Helvetica Oblique 12.0 point. In this case the Font Panel
selects that font and displays its name; the Font menu changes its Italic command to Unitalic; if there’s no
Bold variant of Helvetica available, the Bold menu item is disabled; and so on.

2

Classes: NSFontManager

Initiating Font Changes

The user normally changes the font of the selection by manipulating the Font Panel and Font menu. These
objects initiate the intended change by sending an action message to the font manager. There are four
font-changing action methods:

– addFontTrait:
– removeFontTrait:
– modifyFont:
– modifyFontViaPanel:

The first three cause the font manager to query the sender of the message in order to determine which trait
to add or remove, or how to modify the font. The last causes the font manager to use the settings in the Font
Panel to modify the font. The font manager records this information and uses it in later requests to convert
fonts, as described under “Responding to Font Changes.”

When the font manager receives an addFontTrait: or removeFontTrait: message, it queries the sender
with a tag message, interpreting the return value as a trait mask for use with convertFont:toHaveTrait: or
convertFont:toNotHaveTrait:, as described below under “Converting Fonts Manually.” The Italic and
Bold Font menu commands, for example, have tags of NSItalicFontMask and NSBoldFontMask,
respectively. See convertFont:toHaveTrait: for a list of trait mask values.

When the font manager receives a modifyFont: message, it queries the sender with a tag message and
interprets the return value as a particular kind of conversion to perform, via the various conversion methods
described under “Converting Fonts Manually.” For example, a button whose tag value is
NSSizeUpFontAction causes the font manager’s convertFont: method to increase the size of the NSFont
passed as the argument. See modifyFont: for a list of conversion tag values.

For modifyFontViaPanel:, the font manager sends the application’s Font Panel a panelConvertFont:
message. The Font Panel in turn uses the font manager to convert the font provided according to the user’s
choices. For example, if the user selects only the font family in the Font Panel (perhaps to Helvetica), then
whatever fonts are provided to panelConvertFont:, only the family is changed: Courier Medium 10.0 point
becomes Helvetica Medium 10.0 point, while Times Italic 12.0 point becomes Helvetica Oblique 12.0
point.

Responding to Font Changes

The font manager responds to a font-changing action method by sending a changeFont: action message up
the responder chain. A text-bearing object that receives this message should have the font manager convert
the fonts in its selection by invoking convertFont: for each font and using the NSFont object returned.
convertFont: uses the information recorded by the font-changing action method, such as addFontTrait:,
modifying the font provided appropriately. (There’s no way to explicitly set the font-changing action or
trait; instead, you use the methods described under “Converting Fonts Manually.”)

This simple example assumes there’s only one font in the selection:

3

– (void)changeFont:(id)sender

{

 NSFont *oldFont = [self selectionFont];

 NSFont *newFont = [sender convertFont:oldFont];

 [self setSelectionFont:newFont];

 return;

}

Most text-bearing objects will have to scan the selection for ranges with different fonts, and invoke
convertFont: for each one.

Font Trait Masks

NSFontManager categorizes fonts according to a small set of traits. You can convert fonts by adding and
removing individual traits, and you can get a font with a specific combination of traits. The traits defined
and available for your use are:

NSItalicFontMask NSCondensedFontMask

NSBoldFontMask NSExpandedFontMask

NSNarrowFontMask NSCompressedFontMask

NSFixedPitchFontMask NSSmallCapsFontMask

NSPosterFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive. In addition to these,
NSFontManager defines the masks NSUnitalicFontMask, NSUnboldFontMask, and
NSNonStandardCharacterSetFontMask for its own internal use. Though they’re defined in the header file,
you shouldn’t use these masks.

Converting Fonts Manually

NSFontManager defines a number of methods for explicitly converting particular traits and characteristics
of a font. These methods are:

– convertFont:toFace:
– convertFont:toFamily:
– convertFont:toHaveTrait:
– convertFont:toNotHaveTrait:
– convertFont:toSize:
– convertWeight:ofFont:

Each returns a transformed version of the font provided, or the original font if it can’t be converted.
convertFont:toFace: and convertFont:toFamily: both alter the basic design of the font provided. The first
method requires a fully-specified typeface name, such as “Times-Roman” or “Helvetica-BoldOblique”,
while the second expects only a family name, such as “Times” or “Helvetica”.

4

Classes: NSFontManager

convertFont:toHaveTrait: and convertFont:toNotHaveTrait: use trait masks to add or remove a single
trait such as Italic, Bold, Condensed, or Extended.

convertFont:toSize: returns a font of the requested size, with all other characteristics the same as those of
the original font.

convertWeight:ofFont: either increases or decreases the weight of the font provided, according to a
boolean flag. Font weights are typically indicated by a series of names, which can vary from font to font.
Some go from Light to Medium to Bold, while others have Book, SemiBold, Bold, and Black. This method
offers a uniform way of incrementing and decrementing any font’s weight.

The default implementation of font conversion is very conservative, making a change only if no other trait
or aspect is affected. For example, if you try to convert Helvetica Oblique 12.0 point by adding the Bold
trait, and only Helvetica Bold is available, the font isn’t converted. You can create a subclass of
NSFontManager and override the conversion methods to perform less conservative conversion, perhaps
using Helvetica Bold in this case and losing the Oblique trait.

In addition to the font-conversion methods, NSFontManager defines fontWithFamily:traits:weight:size:
to construct a font with a given set of characteristics. If you don’t care to make a subclass of
NSFontManager, you can use this method to perform approximate font conversions yourself.

Examining Fonts

In addition to converting fonts, NSFontManager provides information on which fonts are available to the
application, and on the characteristics of any given font. availableFonts returns an array of the names of
all fonts available. availableFontNamesWithTraits: filters the available fonts based on a font trait mask.

There are three methods for examining individual fonts. fontNamed:hasTraits: returns YES if the font
matches the trait mask provided. traitsOfFont: returns a trait mask for a given font. weightOfFont: returns
an approximate ranking of a font’s weight on a scale of 0–15, where 0 is the lightest possible weight, 5 is
Normal or Book weight, 9 is the equivalent of Bold, and 15 is the heaviest possible (often called Black or
Ultra Black).

Customizing the Font Conversion System

If you need to customize the font conversion system by creating subclasses of NSFontManager or
NSFontPanel, you must inform the NSFontManager class of this change with a setFontManagerFactory:
or setFontPanelFactory: message, before either the shared font manager or shared font panel is created.
These methods record your class as the one to instantiate the first time the font manager or Font Panel is
requested.

You may be able to avoid using subclasses if all you need is to add some custom controls to the Font Panel.
In this case, you can invoke NSFontPanel’s setAccessoryView: method to add an NSView below its font
browser. This allows you to add controls for such things as font color, kerning, and so on.

5

If you provide your own Font menu, you should register it with the font manager using the setFontMenu:
method. The font manager is responsible for validating Font menu items and changing their titles and tags
according to the selected font. For example, when the selected font is Italic the font manager changes the
Italic Font menu item to Unitalic, and changes its tag to NSUnitalicFontMask. Your Font menu’s items
should use the appropriate action methods and tags. Here are some examples:

Font Menu Item Action Tag

Italic addFontTrait: NSItalicFontMask

Bold addFontTrait: NSBoldFontMask

Heavier modifyFont: NSHeavierFontAction

Larger modifyFont: NSSizeUpFontAction

Normally, the application’s Font Panel displays all the standard fonts available on the system. If this isn’t
appropriate for your application—for example, if only fixed-pitch fonts should be used—you can assign a
delegate to the font manager object to filter the available fonts. Before the Font Panel displays a particular
font family or face, it asks the font manager to confirm it. The font manager in turn queries its delegate with
a fontManager:willIncludeFont: message. If the delegate returns YES (or doesn’t implement this
method), the font is displayed in the Font Panel. If the delegate returns NO, the font isn’t listed.

Method Types

Getting the shared font manager + sharedFontManager

Changing the default font conversion classes
+ setFontManagerFactory:
+ setFontPanelFactory:

Getting available fonts – availableFonts
– availableFontNamesWithTraits:

Setting and examining the selected font
– setSelectedFont:isMultiple:
– selectedFont
– isMultiple
– sendAction

Action methods – addFontTrait:
– removeFontTrait:
– modifyFont:
– modifyFontViaPanel:

Converting fonts automatically – convertFont:

6

Classes: NSFontManager

Converting fonts manually – convertFont:toFace:
– convertFont:toFamily:
– convertFont:toHaveTrait:
– convertFont:toNotHaveTrait:
– convertFont:toSize:
– convertWeight:ofFont:

Getting a particular font – fontWithFamily:traits:weight:size:

Examining fonts – traitsOfFont:
– fontNamed:hasTraits:
– weightOfFont:

Enabling the Font Panel and Font menu
– setEnabled:
– isEnabled

Setting the Font menu – setFontMenu:
– fontMenu:

Getting the Font Panel – fontPanel:
– orderFrontFontPanel:

Setting the delegate – setDelegate:
– delegate

Setting the action method – setAction:
– action

Class Methods

setFontManagerFactory:
+ (void)setFontManagerFactory:(Class)aClass

Sets the class object used to create the font manager to aClass, which should be a subclass of
NSFontManager. When the NSFontManager class object receives a sharedFontManager message, it
creates an instance of aClass, if no instance already exists. Your font manager class should implement init
as its designated initializer. The default font manager factory is NSFontManager.

This method must be invoked before your application’s main nib file is loaded, such as in the application
delegate’s applicationWillFinishLaunching: method.

See also: + setFontPanelFactory:

7

setFontPanelFactory:
+ (void)setFontPanelFactory:(Class)factoryId

Sets the class used to create the Font Panel to aClass, which should be a subclass of NSFontPanel. Invoke
this method before accessing the Font Panel in any wa, such as in the application delegate’s
applicationWillFinishLaunching: method.

See also: + setFontManagerFactory:

sharedFontManager
+ (NSFontManager *)sharedFontManager

Returns the singleton instance of the font manager factory for the application, creating it if necessary.

See also: + setFontManagerFactory:

Instance Methods

action
– (SEL)action

Returns the action that’s sent to the first responder when the user selects a new font from the Font panel or
chooses a command from the Font menu. The default action is changeFont:.

See also: – setAction:

addFontTrait:
– (void)addFontTrait:(id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font by adding the trait specified by sender. This trait is determined by sending a tag
message to sender and interpreting it as a font trait mask for a convertFont:toHaveTrait: message.

See also: – removeFontTrait:, –modifyFont:, –modifyFontViaPanel:

8

Classes: NSFontManager

availableFontNamesWithTraits:
– (NSArray *)availableFontNamesWithTraits:(NSFontTraitMask)fontTraitMask

Returns the names of the fonts available in the system whose traits are described exactly by fontTraitMask
(not the NSFont objects themselves). These fonts are discovered by searching the user’s personal font
directory, the local font directory, and the OPENSTEP system font directory. You specify the desired traits
by combining these font trait mask values using the C bitwise OR operator:

NSItalicFontMask NSCondensedFontMask

NSBoldFontMask NSExpandedFontMask

NSNarrowFontMask NSCompressedFontMask

NSFixedPitchFontMask NSSmallCapsFontMask

NSPosterFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive.

See also: – availableFonts

availableFonts
– (NSArray *)availableFonts

Returns the names of the fonts available in the system (not the NSFont objects themselves). These fonts are
discovered by searching the user’s personal font directory, the local font directory, and the OPENSTEP
system font directory.

See also: – availableFontNamesWithTraits:

convertFont:
– (NSFont *)convertFont:(NSFont *)aFont

Converts aFont according to the object that initiated a font change, typically the Font Panel or Font menu.
Returns the converted font, or aFont itself if the conversion isn’t possible.

This method is invoked in response to a changeFont: message, which is itself initiated by an action
message such as addFontTrait: or modifyFontViaPanel:. These initiating methods cause the font
manager to query the sender for the action to take and the traits to change. See the class description for more
information.

See also: – convertFont:toFace:, –convertFont:toFamily:, –convertFont:toHaveTrait:,
– convertFont:toNotHaveTrait:, –convertFont:toSize:, –convertWeight:ofFont:

9

convertFont:toFace:
– (NSFont *)convertFont:(NSFont *)aFont toFace:(NSString *)typeface

Returns an NSFont whose traits are as similar as possible to those of aFont except for the typeface, which
is changed to typeface. Returns aFont if it can’t be converted. A typeface is a fully specified family-face
name, such as Helvetica-BoldOblique or Times-Roman.

This method attempts to match the weight and angle of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0–15.

See also: – convertFont:toFamily:, –convertFont:toHaveTrait:, –convertFont:toNotHaveTrait:,
– convertFont:toSize:, –convertWeight:ofFont:, –convertFont:

convertFont:toFamily:
– (NSFont *)convertFont:(NSFont *)aFont toFamily:(NSString *)family

Returns an NSFont whose traits are as similar as possible to those of aFont except for the font family, which
is changed to family. Returns aFont if it can’t be converted. A family is a generic font name, such as
Helvetica or Times.

This method attempts to match the weight and angle of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0–15.

See also: – convertFont:toFace:, –convertFont:toHaveTrait:, –convertFont:toNotHaveTrait:,
– convertFont:toSize:, –convertWeight:ofFont:, –convertFont:

convertFont:toHaveTrait:
– (NSFont *)convertFont:(NSFont *)aFont toHaveTrait:(NSFontTraitMask)fontTrait

Returns an NSFont whose traits are the same as those of aFont except for the traits, which are changed to
include the single trait fontTrait, which may be any one of:

NSItalicFontMask NSCondensedFontMask

NSBoldFontMask NSExpandedFontMask

NSNarrowFontMask NSCompressedFontMask

NSFixedPitchFontMask NSSmallCapsFontMask

NSPosterFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive.

10

Classes: NSFontManager

Returns aFont if it can’t be converted.

See also: – convertFont:toNotHaveTrait:, –convertFont:toFace:, –convertFont:toFamily:,
– convertFont:toSize:, –convertWeight:ofFont:, –convertFont:

convertFont:toNotHaveTrait:
– (NSFont *)convertFont:(NSFont *)aFont toNotHaveTrait:(NSFontTraitMask)fontTraitMask

Returns an NSFont whose traits are the same as those of aFont except for the traits, which are changed so
as not to include the single trait fontTrait, which may be any one of:

NSItalicFontMask NSCondensedFontMask

NSBoldFontMask NSExpandedFontMask

NSNarrowFontMask NSCompressedFontMask

NSFixedPitchFontMask NSSmallCapsFontMask

NSPosterFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive.

Returns aFont if it can’t be converted.

See also: – convertFont:toHaveTrait:, –convertFont:toFace:, –convertFont:toFamily:,
– convertFont:toSize:, –convertWeight:ofFont:, –convertFont:

convertFont:toSize:
– (NSFont *)convertFont:(NSFont *)aFont toSize:(float)size

Returns an NSFont whose traits are the same as those of aFont except for the size, which is changed to size.
Returns aFont if it can’t be converted.

See also: – convertFont:toFace:, –convertFont:toFamily:, –convertFont:toHaveTrait:,
– convertFont:toNotHaveTrait:, –convertWeight:ofFont:, –convertFont:

convertWeight:ofFont:
– (NSFont *)convertWeight:(BOOL)increaseFlag ofFont:(NSFont *)aFont

Returns an NSFont whose weight is greater or lesser than that of aFont, if possible. If increaseFlag is YES,
a heavier font is returned; if it’s NO, a lighter font is returned. Returns aFont unchanged if it can’t be
converted. Weights are typically graded along this scale:

11

NSFontManager’s implementation of this method refuses to convert a font’s weight if it can’t maintain all
other traits, such as Italic and Condensed. You might wish to override this method to allow a looser
interpretation of weight conversion.

See also: – convertFont:toFace:, –convertFont:toFamily:, –convertFont:toHaveTrait:,
– convertFont:toNotHaveTrait:, –convertFont:toSize:, –convertFont:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

fontMenu:
– (NSMenu *)fontMenu:(BOOL)createFlag

Returns the menu that’s hooked up to the font conversion system, creating it if necessary and if createFlag
is YES.

See also: – setFontMenu:

fontNamed:hasTraits:
– (BOOL)fontNamed:(NSString *)typeface hasTraits:(NSFontTraitMask)fontTraitMask

Returns YES if the font named typeface has all the traits specified in fontTraitMask, NO if it doesn’t. You
specify the desired traits by combining these font trait mask values using the C bitwise OR operator:

NSItalicFontMask NSCondensedFontMask

NSBoldFontMask NSExpandedFontMask

NSNarrowFontMask NSCompressedFontMask

NSFixedPitchFontMask NSSmallCapsFontMask

NSPosterFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive.

12

Classes: NSFontManager

fontPanel:
– (NSFontPanel *)fontPanel:(BOOL)createFlag

Returns the application’s shared Font Panel object, creating if necessary and if createFlag is YES.

See also: + sharedFontPanel (NSFontPanel), +sharedFontPanelExists (NSFontPanel),
+ setFontPanelFactory:

fontWithFamily:traits:weight:size:
– (NSFont *)fontWithFamily:(NSString *)family

traits:(NSFontTraitMask)fontTraitMask
weight:(int)weight
size:(float)size

Attempts to load a font with the specified characteristics, returning the font if successful and nil if not.
family is the generic name of the font desired, such as Times or Helvetica. weight is a hint for the weight
desired, on a scale of 0–15: a value of 5 indicates a normal or book weight and 9 or more a bold or heavier
weight. It’s ignored if fontTraitMask includes NSBoldFontMask.

You specify fontTraitMask by combining these font trait mask values using the C bitwise OR operator:

NSItalicFontMask NSCondensedFontMask

NSBoldFontMask NSExpandedFontMask

NSNarrowFontMask NSCompressedFontMask

NSFixedPitchFontMask NSSmallCapsFontMask

NSPosterFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive.

isEnabled
– (BOOL)isEnabled

Returns YES if the font-conversion system’s user interface items (the Font Panel and Font menu items) are
enabled, NO if they’re not.

See also: – isEnabled (NSFontPanel), –isEnabled (NSMenuItem), –setEnabled:

13

isMultiple
– (BOOL)isMultiple

Returns YES if the last font selection recorded has multiple fonts, NO if it’s a single font.

See also: – setSelectedFont:isMultiple:, – selectedFont

modifyFont:
– (void)modifyFont:(id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font in the manner specified by sender. The conversion is determined by sending a tag
message to sender and invoking a corresponding method:

Sender’s Tag Method Used

NSNoFontChangeAction None, the font is returned unchanged
NSViaPanelFontAction The Font Panel’s panelConvertFont:
NSAddTraitFontAction convertFont:toHaveTrait:
NSRemoveTraitFontAction convertFont:toNotHaveTrait:
NSSizeUpFontAction convertFont:toSize:
NSSizeDownFontAction convertFont:toSize:
NSHeavierFontAction convertWeight:ofFont:
NSLighterFontAction convertWeight:ofFont:

See also: – addFontTrait:, –removeFontTrait:, –modifyFontViaPanel:

modifyFontViaPanel:
– (void)modifyFontViaPanel:(id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font by sending a panelConvertFont: message to the Font Panel. The panel in turn
may send convertFont:toFamily:, convertFont:toHaveTrait:, and other specific conversion methods to
make its change.

See also: – addFontTrait:, –removeFontTrait:, –modifyFont:

14

Classes: NSFontManager

orderFrontFontPanel:
– (void)orderFrontFontPanel:(id)sender

This action method opens the Font Panel by sending it an orderFront: message, creating the Font Panel if
necessary.

See also: – fontPanel:, + setFontPanelFactory:

removeFontTrait:
– (void)removeFontTrait:(id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font by removing the trait specified by sender. This trait is determined by sending a
tag message to sender and interpreting it as a font trait mask for a convertFont:toNotHaveTrait: message.

See also: – addFontTrait:, –modifyFont:, –modifyFontViaPanel:

selectedFont
– (NSFont *)selectedFont

Returns the last font recorded with a setSelectedFont:isMultiple: message. While fonts are being
converted in response to a changeFont: message, you can determine the font selected in the Font Panel like
this:

NSFontManager *fontManager = [NSFontManager sharedFontManager];

panelFont = [fontManager convertFont:[fontManager selectedFont]];

See also: – isMultiple

sendAction
– (BOOL)sendAction

Sends the receiver’s action message, changeFont: by default, up the responder chain, initiating a font
change for whatever conversion and trait to change were last requested. Returns YES if some object
handled the changeFont: message, NO if the message went unheard.

This method is used internally by the font conversion system. You should never need to invoke it directly.
Instead, use the action methods such as addFontTrait: or modifyFontViaPanel:.

See also: – setAction:

15

setAction:
– (void)setAction:(SEL)aSelector

Sets the action that’s sent to the first responder when the user selects a new font from the Font panel or
chooses a command from the Font menu to aSelector. The default action is changeFont:. You should rarely
need to change this.

See also: – action

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject.

See also: – delegate

setEnabled:
– (void)setEnabled:(BOOL)flag

Controls whether the font-conversion system’s user interface items (the Font Panel and Font menu items)
are enabled. If flag is YES they’re enabled; if flag is NO they’re disabled.

See also: – setEnabled: (NSFontPanel), –isEnabled

setFontMenu:
– (void)setFontMenu:(NSMenu *)aMenu

Records aMenu as the application’s Font menu.

See also: – fontMenu:

setSelectedFont:isMultiple:
– (void)setSelectedFont:(NSFont *)aFont isMultiple:(BOOL)flag

Records aFont as the currently selected font, and updates the Font Panel to reflect this. If flag is YES, the
Font Panel indicates that more than one font is contained in the selection.

An object that manipulates fonts should invoke this method whenever it becomes first responder and
whenever its selection changes. It shouldn’t invoke this method in the process of handling a changeFont:

16

Classes: NSFontManager

message, as this causes the font manager to lose the information necessary to effect the change. After all
fonts have been converted, the font manager itself records the new selected font.

See also: – selectedFont, – isMultiple

traitsOfFont:
– (NSFontTraitMask)traitsOfFont:(NSFont *)aFont

Returns the traits of aFont, a mask created by combining these options with the C bitwise OR operator:

NSItalicFontMask NSCondensedFontMask

NSBoldFontMask NSExpandedFontMask

NSNarrowFontMask NSCompressedFontMask

NSFixedPitchFontMask NSSmallCapsFontMask

NSPosterFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive.

weightOfFont:
– (int)weightOfFont:(NSFont *)aFont

Returns a rough numeric measure of aFont’s weight, where 0 indicates the lightest possible weight, 5
indicates a normal or book weight, and 9 or more indicates a bold or heavier weight.

Methods Implemented By the Delegate

fontManager:willIncludeFont:
– (BOOL)fontManager:(id)theFontManager willIncludeFont:(const char *)fontName

Requests permission from the delegate to display fontName in the Font Panel. fontName is the full
PostScript name of the font, such as “Helvetica-BoldOblique” or “Helvetica-Narrow-Bold”. If the delegate
returns YES, fontName is listed; if the delegate returns NO, it isn’t.

This method is invoked repeatedly as necessary whenever the Font Panel needs updating, such as when the
Font Panel is first loaded, and when the user selects a family name to see which typefaces in that family are
available. Your implementation should execute fairly quickly to guarantee the responsiveness of the Font
Panel.

