

What’s New in Enterprise Objects
Framework 3.0

This document describes changes made to the Enterprise Objects
Framework product between release 2.2 and release 3.0. It tells you how to
convert applications to 3.0, describes changes made to existing features, and
then describes some new features you may want to start using in your
application. It is organized into the following sections:

• Compatibility With Earlier Releases
• File Location Changes
• Changes to Java API
• Deprecated API
• Support for the OpenBase Lite Database
• New Convenience API
• Changes to EOModeler
• Binding to Complex Qualifiers
• Merging Object Changes
• Raw Row Fetching
• Support for Multi-Threaded Applications
• Changes to Key-Value Coding
• Changes to Enterprise Object Validation
• Changes to the Interface Layer

For a description of the changes to the WebObjects product, see “What’s
New in WebObjects 4.0.”

Note: This document describes changes in both the Java and Objective-C
implementations of Enterprise Objects Framework. Where Java and
Objective-C method names are dissimilar, both method names are
provided. For methods that take zero arguments, both languages use the
same name. For single argument methods, the Java name is the Objective-
C name minus the trailing colon (:).

Compatibility With Earlier Releases

Enterprise Objects Framework 3.0 is backward compatible with Enterprise
Objects Framework 2.2; however, you must keep in mind the following:

• Release 3.0 is the first release of Enterprise Objects Framework that
runs on Rhapsody and on Yellow Box for Windows NT. It does not run
on OpenStep 4.2. Because of this change, the locations of Enterprise
Objects Framework files have changed (see the section “File Location
Changes”).
© Apple Computer, Inc. October 9, 1998 1

What’s New in Enterprise Objects Framework 3.0

• The file location changes require some changes to your Project Builder
projects.

• Yellow Box uses a different version of the Java-wrapped APIs. The package
names, class names, and some method names have changed. There is a
script to help you convert your Java code.

If you have an existing application that uses both WebObjects and Enterprise
Objects Framework (or that uses any of the Java APIs) and if you want to convert
that application to the latest release, see the section “Converting an Existing
WebObjects Application” in the document “What’s New in WebObjects 4.0.”

If you want to convert an application that doesn’t use WebObjects, all you need
to do is convert the project in Project Builder so that it points to the new locations
for build tools. On Rhapsody systems, see the online document
/System/Developer/Makefiles/Conversion/DirectoryLayout/ConvertMakefilesReadMe.rtf. On NT, see
NEXT_ROOT/Developer/Makefiles/Conversion/DirectoryLayout/ConvertMakefilesReadMe.rtf.

File Location Changes

Enterprise Objects Framework 3.0 is the first release of Enterprise Objects
Framework that runs on Rhapsody and on Yellow Box for Windows NT instead
of OpenStep 4.2. Because of this change, the locations of Enterprise Objects
Framework files have changed.

On Rhapsody, Enterprise Objects Framework files are installed in the System
folder. On Windows NT, you still choose a folder in which to install the software,
and the NEXT_ROOT environment variable points to that folder. The default has
changed to C:\Apple.

The following table lists new directory names relative to the System folder or
NEXT_ROOT and what each directory contains.

Location Contains

Developer/Applications The EOModeler application.

Developer/Examples/EnterpriseObjects Enterprise Objects Framework examples.

Developer/Examples/WebObjects WebObjects examples, including examples of using
Enterprise Objects Framework with WebObjects.

Documentation/Developer Developer documentation for Rhapsody, Yellow Box,
Enterprise Objects Framework, and WebObjects.
2 © Apple Computer, Inc. October 9, 1998

Changes to Java API

Changes to Java API

In Enterprise Objects Framework 3.0, the Java APIs have changed
considerably. The changes to the Java APIs are summarized here:

• A two-letter prefix (EO) has been added to each Java class name. In
almost all cases, the Java class name is now identical to its Objective-C
counterpart.

• The Java package names have changed to the following:

com.apple.yellow.eoaccess
com.apple.yellow.eocontrol
com.apple.yellow.eointerface
com.apple.yellow.informixeoadaptor
com.apple.yellow.odbceoadaptor
com.apple.yellow.oracleeoadaptor
com.apple.yellow.sybaseeoadaptor

Note that the next.eo package has been split into two packages:
eoaccess and eocontrol. Also note that Java APIs are now available for
the EOInterface framework and the database-specific adaptor
frameworks.

• The basic classes (for arrays, dictionaries, and data) have become more
like their Foundation counterparts than their Java counterparts. For
example, ImmutableVector is now named NSArray and responds to
count instead of size. MutableHashtable is now named
NSMutableDictionary and responds to setObjectForKey instead of put.

Note that for numbers and strings, you still use the classes
java.lang.Number and java.lang.String.

Library/Frameworks Public frameworks such as EOAccess.framework.

Library/Executables Framework DLLs (Windows NT systems only).

Library/Java Java packages for Yellow Box, WebObjects, and Enterprise
Objects Framework.

Local/Library Prebuilt example frameworks and executables, sample
EOModeler extension bundle, and 3.5 to 4.0 conversion
scripts.

Location Contains
© Apple Computer, Inc. October 9, 1998 3

What’s New in Enterprise Objects Framework 3.0

Also note that changing to Foundation-style methods for the dictionary
class introduces a subtle change. The Java Hashtable classes take the
arguments in the key-value order. For example, the put method takes the
key and then the value. NSDictionary takes the value and then the key.
The conversion scripts change the order of the arguments for you.

• DecimalNumber is no longer available. Use java.math.BigDecimal instead.

• CalendarDate is now named NSGregorianDate.

• The root object is now com.apple.yellow.foundation.NSObject.

• Delegate interfaces are now declared as inner classes (within the
appropriate class). For example, EditingContextDelegates is now
EOEditingContext.Delegate.

If you have existing Java code that you want to convert, see the document
“What’s New in WebObjects 4.0.”

Deprecated API

Enterprise Objects Framework 3.0 introduces API improvements that require
deprecating existing API. You’ll still be able to use deprecated API, but you’ll
receive a warning at runtime. The following tables summarize the deprecated
API.

Fetch Specification Hint Keys

Old API New API

EOPrefetchingRelationshipHintKey (Objective-C)

FetchSpecification.PrefetchingRelationshipHintKey and
DatabaseContext.PrefetchingRelationshipHintKey (Java)

EOFetchSpecification’s accessor methods,
prefetchingRelationshipKeyPaths and
setPrefetchingRelationshipKeyPaths:

EOFetchLimitHintKey (Objective-C)

DatabaseContext.FetchLimitHintKey (Java)

EOFetchSpecification’s accessor methods,
fetchLimit and setFetchLimit:

EOPromptAfterFetchLimitHintKey (Objective-C)

DatabaseContext.PromptAfterFetchLimitHintKey (Java)

EOFetchSpecification’s accessor methods,
promptsAfterFetchLimit and
setPromptsAfterFetchLimit:
4 © Apple Computer, Inc. October 9, 1998

Deprecated API

EOClassDescription

Old API New API

delegate and setDelegate: class (Objective-C) or static
(Java) methods

classDelegate and setClassDelegate: class
(Objective-C) or static (Java) methods.

EOModelGroup

Old API New API

delegate and setDelegate: class methods
(Objective-C only)

classDelegate and setClassDelegate: class
methods. Note that the corresponding Java
static methods have always been named
classDelegate and setClassDelegate.

NSObject Additions (Objective-C)
EOCustomObject (Java)

Old API New API

useStoredAccessor class (Objective-C) or static (Java)
method

This method still exists, but the default is now
YES or true.

flushClassKeyBindings None. Use flushAllKeyBindings instead.

EOUndoManager

Old API New API

EOUndoManager class NSUndoManager in Foundation.

The EOUndoManager header file is no longer
included in EOControl. If you want to continue
using EOUndoManager, you’ll have to include
EOControl/EODeprecated.h, where it’s now
defined.

EOUndoManager is no longer available in Java
at all.

EOLoginPanel

Old API New API

runPanelForAdaptor:validate: (Objective-C only)

There wasn’t an equivalent Java class in WebObjects 3.5.

runPanelForAdaptor:
validate:
allowsCreation: (Objective-C)

runPanelForAdaptor (Java)
© Apple Computer, Inc. October 9, 1998 5

What’s New in Enterprise Objects Framework 3.0

Support for the OpenBase Lite Database

Enterprise Objects Framework 3.0 adds support for a new database, OpenBase
Lite, which ships with Enterprise Objects Framework 3.0 as an unsupported
demo.

If you install OpenBase Lite, it installs the following two frameworks in
Local/Library/Frameworks:

• OpenBaseLiteAPI.framework, the proprietary database implementation
• OpenBaseLiteEOAdaptor.framework, the OpenBase Lite adaptor

On NT, OpenBase Lite also installs the following DLLs in Local/Library/Executables:

• OpenBaseLiteAPI.dll
• OpenBaseLiteEOAdaptor.dll

Additionally, a preloaded OpenBase Lite database for the Movies and Rentals
models is provided as a part of the installation process. All of the examples run
against this database out-of-the-box (without any configuration).

OpenBase Lite is intended to be used as a single-user, single-machine database
convenient for development, not as a deployment database. Only one process
can access an OpenBase Lite database at a time (other processes are locked out
until the first process releases the OpenBase Lite database). For more
information on OpenBase Lite or if you are interested in the full-featured,
client-server OpenBase database (as opposed to the bundled “Lite” version),
contact OpenBase International:

OPENBASE INTERNATIONAL LTD.
58 Greenfield Road
Francestown, NH 03043 USA
TEL: (603) 547-8404
FAX: (603) 547-2423
e-mail: info@openbase.com
http://www.openbase.com

New Convenience API

Enterprise Objects Framework 3.0 introduces new API to facilitate common
programming tasks. Tasks that used to take several lines of code now only take
one. The following sections describe the new convenience API.
6 © Apple Computer, Inc. October 9, 1998

New Convenience API

EOUtilities
Most of the new convenience API is implemented in EOUtilities. In
Objective-C, EOUtilities is a category on EOEditingContext provided in
EOAccess. In Java, it’s a new class called EOUtilities in EOAccess. The
Objective-C and Java methods work the same way, but you invoke them
differently. For example, compare the invocations for the following method:

Objective-C

[editingContext objectsForEntityNamed:entityName];

Java

EOUtilities.objectsForEntityNamed(editingContext, entityName);

Both versions of the method require an editing context into which the
objects should be fetched. In Objective-C, the editing context is the
receiver of the message. In Java, the editing context must be passed as an
argument.

Note: The Objective-C source code for EOUtilities is available as an
example. On Rhapsody systems, see
/System/Developer/Examples/EnterpriseObjects/Sources/EOUtilities. On NT, see
NEXT_ROOT/Developer/Examples/EnterpriseObjects/Sources/EOUtilities.

The complete documentation for the Objective-C EOUtilities methods are
documented in the “EOEditingContext Additions” class specification
(EOAccess). The corresponding Java EOUtilities API documentation is
available in the EOUtilities class specification (EOAccess). The following
tables summarize the EOUtilities methods.

Note: All the Java EOUtilities methods are static methods.

Fetching Enterprise Objects

objectsForEntityNamed: Fetches and returns the enterprise
objects associated with the specified
entity.

objectsOfClass: Fetches and returns the enterprise
objects associated with the specified
class. Raises or throws an exception if
more than one entity for the class exists.

objectsWithFetchSpecificationNamed:entityNamed:bindings:
(Objective-C)

objectsWithFetchSpecificationAndBindings (Java)

Fetches and returns the enterprise
objects retrieved with the specified fetch
specification and bindings. (For more
information on bindings, see “Binding to
Complex Qualifiers.”)
© Apple Computer, Inc. October 9, 1998 7

What’s New in Enterprise Objects Framework 3.0

objectWithFetchSpecificationNamed:entityNamed:bindings:
(Objective-C)

objectWithFetchSpecificationAndBindings (Java)

Same as the corresponding objects...
method (immediately above), except this
method raises or throws an exception
unless exactly one object is retrieved.

objectsForEntityNamed:qualifierFormat: (Objective-C)

objectsWithQualifierFormat (Java)

Creates a qualifier with the provided
format string and returns matching
enterprise objects.

objectForEntityNamed:qualifierFormat: (Objective-C)

objectWithQualifierFormat (Java)

Same as the corresponding objects...
method (immediately above), except this
method raises or throws an exception
unless exactly one object is retrieved.

objectsMatchingValue:forKey:entityNamed: (Objective-C)

objectsMatchingKeyAndValue (Java)

Creates an EOKeyValueQualifier with the
specified key and value and returns
matching enterprise objects.

objectMatchingValue:forKey:entityNamed: (Objective-C)

objectMatchingKeyAndValue (Java)

Same as the corresponding objects...
method (immediately above), except this
method raises or throws an exception
unless exactly one object is retrieved.

objectsMatchingValues:entityNamed: (Objective-C)

objectsMatchingValues (Java)

Creates EOKeyValueQualifiers for each
key-value pair in the specified dictionary,
ANDs these qualifiers together into an
EOAndQualifier, and returns matching
enterprise objects.

objectMatchingValues:entityNamed: (Objective-C)

objectMatchingValues (Java)

Same as the corresponding objects...
method (immediately above), except this
method raises or throws an exception
unless exactly one object is retrieved.

objectWithPrimaryKeyValue:entityNamed: (Objective-C)

objectWithPrimaryKeyValue (Java)

Fetches and returns the enterprise object
identified by the specified primary key
value. For use only with enterprise
objects that have non-compound primary
keys. Raises or throws an exception
unless exactly one object is retrieved.

objectWithPrimaryKey:entityNamed: (Objective-C)

objectWithPrimaryKey (Java)

Fetches and returns the enterprise object
identified by the specified primary key
dictionary. Raises or throws an exception
unless exactly one object is retrieved.

Fetching Enterprise Objects
8 © Apple Computer, Inc. October 9, 1998

New Convenience API

Fetching Raw Rows

(For information on raw rows, see “Raw Row Fetching.”)

rawRowsForEntityNamed:qualifierFormat: (Objective-C)

rawRowsWithQualifierFormat (Java)

Creates a qualifier for the specified entity
and with the specified qualifier format
and returns matching raw row
dictionaries.

rawRowsMatchingValue:forKey:entityNamed: (Objective-C)

rawRowsMatchingKeyAndValue (Java)

Creates an EOKeyValueQualifier with the
specified key and value and returns
matching raw rows.

rawRowsMatchingValues:entityNamed: (Objective-C)

rawRowsMatchingValues (Java)

Creates EOKeyValueQualifiers for each
key-value pair in the specified dictionary,
ANDs these qualifiers together into an
EOAndQualifier, and returns matching
raw rows.

rawRowsWithSQL:modelNamed: (Objective-C)

rawRowsForSQL (Java)

Evaluates the specified SQL and returns
the resulting raw rows.

rawRowsWithStoredProcedureNamed:arguments: (Objective-C)

rawRowsForStoredProcedureNamed (Java)

Executes the specified stored procedure
with the provided arguments and returns
the resulting raw rows.

executeStoredProcedureNamed:arguments: (Objective-C)

executeStoredProcedureNamed (Java)

Executes the specified stored procedure
with the provided arguments. Returns
the stored procedure’s return values (if
any). Use only with stored procedures
that don’t return results rows.

objectFromRawRow:entityNamed: (Objective-C)

objectFromRawRow (Java)

Fetches and returns the object
corresponding to the specified raw row
(using EOEditingContext’s
faultForRawRow:entityNamed: in
Objective-C or faultForRawRow in Java).
This method can only be used on raw
rows that include the row’s primary key.

Accessing the Enterprise Objects Framework Stack

databaseContextForModelNamed: Returns the database context used to
service the specified model.

connectWithModelNamed:connectionDictionaryOverrides:
(Objective-C)

connectWithModelNamed (Java)

Connects to the database using the
connection information in the specified
model and the provided overrides
dictionary. This method facilitates per-
session database logins in WebObjects
applications. Typically, you’d put a login
name and password in the overrides
dictionary and otherwise use the values
in the model’s connection dictionary.
© Apple Computer, Inc. October 9, 1998 9

What’s New in Enterprise Objects Framework 3.0

Supporting Convenience Methods
The following tables describe the remainder of the convenience API.

Accessing Enterprise Object Data

primaryKeyForObject: Returns the primary key dictionary for the
specified enterprise object.

destinationKeyForSourceObject:relationshipNamed: (Objective-C)

destinationKeyForSourceObject (Java)

Returns the foreign key for the rows at the
destination entity of the specified
relationship.

localInstanceOfObject: Translates the specified enterprise object
from one editing context to another.

localInstancesOfObjects: Translates the specified enterprise
objects from one editing context to
another.

Accessing Model Information

modelGroup Returns the model group associated with
the editing context’s root object store, an
EOObjectStoreCoordinator.

entityNamed: Returns the entity with the specified
name. Raises or throws an exception if
the specified entity can’t be found.

entityForClass: Returns the entity associated with the
specified class. Raises or throws an
exception if the specified entity can’t be
found or if more than one entity is
associated with the class.

entityForObject: Returns the entity associated with the
provided enterprise object. Raises or
throws an exception if the specified entity
can’t be found.

EOQualifier

qualifierToMatchAllValues: Takes a dictionary of search criteria, from
which the method creates
EOKeyValueQualifiers (one for each
dictionary entry). The method ANDs these
qualifiers together, and returns the
resulting EOAndQualifier.
10 © Apple Computer, Inc. October 9, 1998

Changes to EOModeler

Changes to EOModeler

EOModeler in release 3.0 has the following changes:

• Improvements in the way you create a model file and database from
scratch

• Support for prototype attributes, which you can use to quickly set up
attributes

• The ability to create and store complex queries (or
EOFetchSpecifications)

• A different bundle loading procedure

Each is discussed in more detail in the following sections.

Improved Database Creation Support
The most common way to create a model file is to use information stored in
an already-created database. Sometimes, however, it’s useful to create the

qualifierToMatchAnyValues: Takes a dictionary of search criteria, from
which the method creates
EOKeyValueQualifiers (one for each
dictionary entry). The method ORs these
qualifiers together, and returns the
resulting EOOrQualifier.

EODatabaseContext

forceConnectionWithModel:
connectionDictionaryOverrides:
editingContext:
(Objective-C)

forceConnectionWithModel: (Java)

Added to facilitate per-session database
logins in WebObjects applications, this
method connects to the database using
the provided model’s connection
information and the provided overrides
dictionary.

EOModelGroup

storedProcedureNamed: Returns the stored procedure identified
by the provided name.

EOQualifier
© Apple Computer, Inc. October 9, 1998 11

What’s New in Enterprise Objects Framework 3.0

model file first and use that model to create the empty database and generate
the database tables. In release 3.0, EOModeler contains improvements that
make it easier to create and delete the database:

• The adaptor login panels now allow you to create a new database or user.

• The SQL Generation panel now has options for creating a database and
deleting a database.

• EOModeler now supports the definition of prototype attributes that you can
use to quickly set up attributes in the new model (see the section
“Prototype Attributes”).

To create a model file and its database from scratch, do the following:

1. Choose New from the Model menu.

2. Select an adaptor.

3. Enter connection information for the new database (user name, password,
and so on).

Once the database is created, users will log into the database with this
information.

4. Click Create.

5. Provide the administrator connection information.

The information you provide in this panel will be used to log into the
database server to create the new database. The login information you
provide must be for an account that has database creation permissions.

6. Click Finish.

7. Define the entities and attributes that you want the model to represent.

8. Choose Generate SQL from the Property menu.

9. Select the Create Tables option.

10. Click the Execute SQL button.
12 © Apple Computer, Inc. October 9, 1998

Changes to EOModeler

API for Database Creation and Deletion
This section describes new API that supports the database creation feature
in EOModeler.

EOLoginPanel

administrativeConnectionDictionaryForAdaptor: Returns the administrative connection
dictionary, which contains the values (user
name and password) needed to connect to the
database server as the administrator.

runPanelForAdaptor:validate:allowsCreation: (Objective-C)

runPanelForAdaptor (Java)

Replaces runPanelForAdaptor:validate:.

EOAdaptor

createDatabaseWithAdministrativeConnectionDictionary:
and dropDatabaseWithAdministrativeConnectionDictionary:

Creates or deletes the database specified in the
receiver’s connection dictionary, connecting to
the database server using the information in
the provided administrative connection
dictionary.

EOSQLExpression

dropDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:
(Objective-C class method)

dropDatabaseStatementsForConnectionDictionary
(Java static method)

Generates the SQL statements to delete the
database (or user for Oracle). Note that the
statements generated only work if you are
connected with administrative privileges.

createDatabaseStatementsForConnectionDictionary:
administrativeConnectionDictionary:
(Objective-C class method)

createDatabaseStatementsForConnectionDictionary
(Java static method)

Generates the SQL statements that will create a
database (or user for Oracle) that can be
accessed by the provided connection dictionary
and administrative connection dictionary. Note
that the statements generated only work if you
are connected with administrative privileges.

schemaCreationStatementsForEntities:options: (Objective-
C class method)

schemeCreationStatementsForEntities (Java static method)

This method already exists, but takes these new
keys to its option dictionary:

EOCreateDatabaseKey
EODropDatabaseKey
© Apple Computer, Inc. October 9, 1998 13

What’s New in Enterprise Objects Framework 3.0

Prototype Attributes
To allow easier model creation from scratch, EOModeler now supports the
concept of prototype attributes. Prototype attributes are just what they sound
like — special EOAttributes from which other EOAttributes derive their
settings. A prototype can specify any of the characteristics you normally define
for an attribute. When you create an attribute, you can associate it with one of
these prototypes, and the attribute’s characteristics are then set from the
prototype definition.

For example, suppose your adaptor contains a date prototype that defines the
value class to be NSCalendarDate and the external type to be DATE. When
you create an attribute and associate it with this date prototype, the attribute’s
value class is dynamically resolved to NSCalendarDate and its external type is
dynamically resolved to DATE. If any of the prototype information is not
correct for your attribute, you can override it. Simply set the property of the
attribute to the correct value. The remaining attribute properties will still
dynamically resolve to the values set in the prototype.

To associate an attribute with a prototype, use the table mode of the Model
Editor. In the row for your attribute, choose a prototype from the combo box in
the Prototype column. (If EOModeler doesn’t display the Prototype column,
activate it from the Columns pull-down menu.) The prototypes in the combo
box come from three places:

1. An EOEntity named EO<adaptor-name>Prototypes, where <adaptor-name> is the
name of the adaptor for your model (EOOraclePrototypes, for example)

Option Keys for EOSQLExpression’s schema creation methods

Objective-C

For use with schemaCreationScriptForEntities:options:
and schemaCreationStatementsForEntities:options:

Java

For use with schemaCreationScriptForEntities
and schemaCreationStatementsForEntities

EOCreateDatabaseKey EOSQLExpression.CreateDatabaseKey

EOCreatePrimaryKeySupportKey EOSQLExpression.CreatePrimaryKeySupportKey

EOCreateTablesKey EOSQLExpression.CreateTablesKey

EODropDatabaseKey EOSQLExpression.DropDatabaseKey

EODropPrimaryKeySupportKey EOSQLExpression.DropPrimaryKeySupportKey

EODropTablesKey EOSQLExpression.DropTablesKey

EOForeignKeyConstraintsKey EOSQLExpression.ForeignKeyConstraintsKey

EOPrimaryKeyConstraintsKey EOSQLExpression.PrimaryKeyConstraintsKey
14 © Apple Computer, Inc. October 9, 1998

Changes to EOModeler

2. An EOEntity named EOPrototypes

3. The adaptor for your model

So to create your own prototype, create a prototype entity—an entity
named either EO<adaptor-name>Prototypes or EOPrototypes—and add an attribute to
it. Note that the EO<adaptor-name>Prototypes and EOPrototypes entities can be
defined in the current model or in another model in the model group (all the
models in your project are typically a part of the same model group).

When resolving a prototype name, Enterprise Objects Framework looks for
prototypes in EO<adaptor-name>Prototypes, then in EOPrototypes, and finally in the
adaptor for your model. This search path allows you to override the
prototypes provided by each adaptor. Furthermore, if you don’t want to use
the adaptor-defined prototypes at all, you can hide them. Create an entity
named EOPrototypesToHide. For each prototype you want to hide, create an
attribute with that name; you don’t need to specify other attribute
properties.

API for Prototype Attributes
The following tables describe the API that has been added to support
prototype attributes.

EOAdaptor

prototypeAttributes Returns an array of prototype attributes specific to the
adaptor.

EOModel

prototypeAttributeNamed: Returns the prototype attribute identified by the specified
name or nil or null if there isn’t one by that name. Looks first
for the prototype in the prototypes entity named
EO<adaptorName>Prototypes, then in prototypes entity
named EOPrototypes, and then in the list of prototypes
provided by the adaptor itself (using EOAdaptor’s
prototypeAttributes method).

availablePrototypeAttributeNames Returns an array of the names of all the prototypes available
to the model.
© Apple Computer, Inc. October 9, 1998 15

What’s New in Enterprise Objects Framework 3.0

Query Builder
You can now use EOModeler to create a query, name it, and store it in the model
file. To perform a query in Enterprise Objects Framework, you create an
EOFetchSpecification object, which has associated with it an entity, a qualifier,
a sort ordering for the fetched objects, and several other options. In previous
releases, creating a fetch specification was usually done programmatically and
could be quite complex and error prone. EOModeler now has a user interface
that allows you to create the fetch specification, associate it with an entity, build
the qualifier graphically, and specify the sort ordering and any other options, and
test the complete fetch specification by dragging it into the Data Browser.

To create a query, select an entity and then click the New Fetch Specification
button (second from the right in the tool bar).

API for Query Builder
This section describes API that has been added to support storing an
EOFetchSpecification in the EOModel.

• A new class, EOQualifierVariable, defines objects that serve as placeholders
in the qualifier. When you create a qualifier programmatically, you typically
do something like this:

In Objective-C

aQual = [EOQualifier
qualifierWithQualifierFormat:"dateReleased = %@", aDate];

In Java

EOAttribute

overridesPrototypeDefinitionForKey: Returns NO or false if the requested key gets its value from
the prototype attribute, or YES or true if the attribute
overrides the prototype information for that key
(“columnName”, “valueClass”, or so on). If the attribute
doesn’t have a prototype, this method returns NO or false.

setPrototype: Sets the prototype attribute from which the receiver derives
its settings. Invoking this method overrides any existing
settings in the receiver.

prototypeName Returns the name of the attribute’s prototype, or nil or null if
the attribute has none.

prototype Returns the attribute’s prototype, or nil or null if the attribute
has none.
16 © Apple Computer, Inc. October 9, 1998

Changes to EOModeler

aQual = EOQualifier.qualifierWithQualifierFormat(
"dateReleased = %@", aDate);

where aDate is a variable that contains the actual date you want to query
upon. When you store the qualifier in an EOModel, there is no way to
know the actual value to query upon or the variable that will contain
that value. The EOQualifierVariable object acts as a placeholder for
the actual variable that will represent the right side of the expression.
You specify an EOQualifierVariable by using a $, as in the following:

dateReleased = $aDate

For more information, see the section “Binding to Complex
Qualifiers.”

• Methods have been added to EOEntity to retrieve the fetch
specification by name. When you create an EOFetchSpecification
programmatically, you pass it the entity with which it should be
associated. When you create an EOFetchSpecification in EOModeler,
you select the entity that it should be associated with and you assign a
name to the fetch specification. The EOEntity now keeps a list of all
fetch specifications associated with it and can retrieve them by name.
Note that EOFetchSpecifications don’t know their names; rather the
owning entity keeps a fetch specification-to-name mapping.

The following tables describe the new API in more detail.

EOQualifierVariable (New Class)

variableWithKey: class method (Objective-C)

EOQualifierVariable(String) constructor (Java)

Creates and returns a new EOQualifierVariable
object with the specified name. For example, if
your qualifier is “dateReleased = $aDate”, then
this method would be invoked with the key
“aDate”.

initWithKey: (Objective-C only) Initializes a newly created EOQualifierVariable
object for the specified name.

key Returns the name with which the receiver is
associated.

EOModelGroup

fetchSpecificationNamed:entityNamed: (Objective-C)

fetchSpecificationNamed (Java)

Returns the fetch specification identified by the
provided name from the specified entity.
© Apple Computer, Inc. October 9, 1998 17

What’s New in Enterprise Objects Framework 3.0
EOModeler Bundle Loading
EOModeler’s Preferences panel now allows you to specify file system locations
in which to look for EOModeler bundles. EOModeler loads all the .EOMbundle files
it finds in those locations. In the past, you specified the bundles you wanted to
load with a user default. This same default still exists (and is used by the
Preferences panel), but its value has a slightly different meaning. Whereas you
used to specify the full path to each bundle to load, you now specify paths in
which to search for bundles.

EOEntity

fetchSpecificationNames Returns an alphabetically sorted array of
names of the entity’s fetch specifications.

fetchSpecificationNamed: Returns the fetch specification named with the
provided name.

addFetchSpecification:withName: (Objective-C)

addFetchSpecification (Java)

Adds the fetch specification and associates the
provided name with it.

removeFetchSpecificationNamed: Removes the fetch specification referred to by
the provided name.

EODatabaseDataSource

initWithEditingContext:
entityName:
fetchSpecificationName:
(Objective-C)

EODatabaseDataSource(EOEditingContext, String, String)
(Java)

Initializes a new data source with an editing
context, an entity name, and a named fetch
specification. If the provided fetch specification
name is nil or null, this method creates a new
fetch specification that fetches all of the
entities objects and assigns this fetch
specification to the new data source.

setFetchSpecificationByName: Sets the database data source’s fetch
specification to the one identified by the
provided name. This method is an alternative to
setFetchSpecification:

fetchSpecificationName Returns the name of the data source’s fetch
specification or nil or null if the data source’s
fetch specification doesn’t have a name.
18 © Apple Computer, Inc. October 9, 1998

Binding to Complex Qualifiers
Binding to Complex Qualifiers

In Enterprise Objects Framework 3.0, you can bind user interface elements
directly to variables in a complex qualifier that you created using the new
Query Builder in EOModeler.

For example, suppose you want to create a WebObjects application that
allows users to perform a complex query on the Movies entity in the Movies
database. Suppose you want to allow users to query on the title, the date
released, and the studio. You could use the queryMatch, queryMin, and queryMax
support in display group to easily construct such query. For example:

(title = $title) AND (dateReleased = $date) AND (studio = $studio)

However, queryMatch support is limited to ANDed criteria; it isn’t sufficient
for more complex queries such as:

(title = $title) OR (dateReleased = $date) OR (studio = $studio)

For this qualifier you could define the qualifier in EOModeler and then
bind to it in your user interface. In general, you would set this up by
following these steps:

1. In EOModeler, open the Movies model file and select the Movies
entity.

2. Create a fetch specification associated with the Movies entity by
clicking the New Fetch Specification button.

3. Use Query Builder’s user interface to set up a query on the title,
dateReleased, and studio attributes of the entity (see the section “Query
Builder”). On the right side of each expression, use a $ syntax to denote
the qualifier variable. For example, your fetch specification might look
like this:

(title = $title) OR (dateReleased = $date) OR (studio = $studio)

Depending on the type of graphical user interface you build, you access the
fetch specification’s query bindings differently. In WebObjects Builder, you
access the query bindings in the following way:

4. Use WebObjects builder to create a component that allows the user to
enter the query criteria. You might create text fields for the title and
date released and a pop-up list for the studio, for example.
© Apple Computer, Inc. October 9, 1998 19

What’s New in Enterprise Objects Framework 3.0
5. Drag the fetch specification from EOModeler into your component. This
has the effect of creating a new display group for your specification’s entity.

6. Choose “Add and Configure.”

7. Configure the new display group, setting its fetch specification to the one
you defined in your model.

8. In WebObjects Builder, bind the user interface elements to the
queryBindings.title, queryBindings.date, and queryBindings.studio keys of your display
group (movieDisplayGroup, for example).

In Interface Builder, the steps are similar except that you bind the user interface
elements to @bindings.title, @bindings.date, and @bindings.studio keys of your display
group. The @bindings syntax represents the value associated with the named
qualifier variable.

Qualifier bindings are also useful when you want to bind a value to more than
one qualifier component as in the following:

(title like $searchString) OR (description like $searchString)

In this example, searchString could contain a user-provided keyword surrounded
with wildcard characters.

The following tables describe the API added to support binding to complex
qualifiers.

EOFetchSpecification

fetchSpecificationWithQualifierBindings: Returns a new fetch specification created by resolving the
bindings for the fetch specification’s qualifier using the
bindings dictionary passed as an argument to this method.

requiresAllQualifierBindingVariables and
setRequiresAllQualifierBindingVariables:

Returns or sets whether a missing binding is ignored or
whether it raises or throws an exception. If
requiresAllQualifierBindingVariables is YES or true, a
missing binding raises or throws an
EOQualifierVariableSubstitutionException during variable
substitution. If NO or false, any nodes for which there are no
bindings should be pruned from the qualifier. The default is
NO or false.
20 © Apple Computer, Inc. October 9, 1998

Binding to Complex Qualifiers
EOQualifier

qualifierWithBindings:requiresAllVariables:
(Objective-C)

qualifierWithBindings(NSDictionary, Boolean)
(Java)

Returns a new qualifier created by substituting all
EOQualifierVariables with the values contained in the
provided argument. The object passed to this method is an
NSDictionary containing the values to which the
EOQualifierVariables are bound. (Typically the values are
those entered by the user in the user interface fields.)

If the second argument (a boolean value) is YES or true,
then the new qualifier requires all its variables (meaning
that if a value is not found for a variable in the provided
object, an EOQualifierVariableSubstitutionException is
raised or thrown). If the second argument is NO or false,
then the new qualifier doesn’t require all its variables; and
if any variable is not found in the bindings dictionary (that
is, the user has left that field blank), the node containing
that variable is simply pruned from the qualifier tree.

bindingKeys Returns an array of strings representing the binding keys for
the EOQualifierVariables contained in this qualifier. For
example, if you have a qualifier such as “dateReleased =
$date”, this method returns an array containing the single
string “date”. Multiple occurrences of the same variable
only appear once in this list.

keyPathForBindingKey: Returns the lefthand side of a qualifier binding. For
example, if you have a qualifier such as
“movie.dateReleased = $date”, this method returns
“movie.dateReleased” for the key “date”.

EOClassDescription

defaultFormatterForKeyPath: Similar to defaultFormatterForKey:, except this method
takes a key path (roles.roleName, for example).

EODataSource

qualifierBindingKeys Returns an array of strings representing all of the binding
keys from the fetch specification’s qualifier and the data
source’s auxiliary qualifier.

qualifierBindings and setQualifierBindings: Returns or sets the NSDictionary containing the bindings
that will be used for variable replacement on the fetch
specification’s qualifier and the auxiliary qualifier before the
fetch is executed. The keys to the dictionary are the keys
returned by qualifierBindingKeys. The values are typically
the values that the application’s user entered through the
user interface.
© Apple Computer, Inc. October 9, 1998 21

What’s New in Enterprise Objects Framework 3.0
Merging Object Changes

A change has been made to how peer editing contexts (that is, editing contexts
that share an object store) handle database modifications. WebObjects
applications often use peer editing contexts since each session has an editing
context and an application can run multiple sessions.

When an application has more than one editing context, it’s possible for each
editing context to have its own in-memory copy of the same enterprise object.
Suppose the users of the editing contexts each make changes to their copies of
that object. Which change wins? In prior releases of Enterprise Objects
Framework, the editing context that saved its changes first overwrote the
changes made by the second editing context.

For example, suppose two editing contexts each have a copy of a Customer
object. Suppose the user of the first editing context changes the customer’s
address and at the same time, the user of the second editing context changes the
customer’s phone number. Then suppose the first user saved the change to the
address. In previous releases of Enterprise Objects Framework, the change to
the phone number was lost. When the first editing context’s changes were
saved, the customer object for the second editing context was turned back into
a fault, losing any uncommitted changes in that object. The next time the
customer was accessed, it was refetched from the object store, and the phone
number retrieved from the database was the one committed by the first editing
context.

In Enterprise Objects Framework release 3.0, the default behavior is not to lose
the changed phone number. EOEditingContexts now keep track of
uncommitted changes. When an object (such as the customer object) is
refaulted in the second editing context (due to the
EOObjectsChangeInStoreNotification posted after the first editing context
saved changes), the second editing context checks to see if it has uncommitted
changes for that object. If it does, it fires the fault (refetching the object from the
database) and merges the uncommitted changes with the information retrieved
from the database. Thus, in the example above, the second editing context
would refetch the customer from the in-memory snapshot, thereby picking up

New Exception

EOQualifierVariableSubstitutionException Raised or thrown when the EOFetchSpecification’s
requiresAllQualifierBindingVariables is YES or true and a
value for one of the variables in the qualifier is missing from
the bindings object.
22 © Apple Computer, Inc. October 9, 1998

Merging Object Changes
the change to the address, and then overwrite the phone number retrieved
from the database with the changed phone number.

Suppose, however, that the two users each change the same field. For
example, suppose the first user changes the last name to “Primero” but
doesn’t save the change immediately, and the second user changes the last
name to “Segundo” and immediately saves the change (before the first user
saves). The first editing context refaults and refetches the customer object
containing the last name “Segundo” and then overwrites that field with its
uncommitted change of “Primero.” You may not want this to happen. You
may want the first user to decide whether to keep his uncommitted change
or to replace it with the change made by the second user. If so, your editing
context delegate should implement the method
editingContext:shouldMergeChangesForObject: (editingContextShouldMergeChangesForObject in
Java).

Remember that in a WebObjects application, the first editing context does
not pick up the change until the first user submits a request. That is, the
second user changes the last name to “Segundo” and clicks the submit
button to save the change to the database. At this point, the first editing
context refaults the customer object but has no way to update the user’s
browser with information that the object has changed until that user
submits another request. This request is likely to be the action of
submitting the last name change to “Primero.” Thus, your application will
probably have to display an alert component informing its user that the
customer value in the database has changed and then prompt to see if its
user wants to commit or discard his own changes.
© Apple Computer, Inc. October 9, 1998 23

What’s New in Enterprise Objects Framework 3.0
The following tables describe the API added to support the change to the way
peer editing contexts behave.

EOEditingContext Delegatation

editingContext:shouldMergeChangesForObject:
(Objective-C)

editingContextShouldMergeChangesForObject
(Java)

When an EOObjectsChangedInStoreNotification is received,
the editing context sends this message to its delegate once
for each of the objects that has both uncommitted changes
and an update from the EOObjectStore. This method is
invoked before any updates actually occur.

If this method returns YES or true, all of the uncommitted
changes should be merged into the object after the update
is applied, in effect preserving the uncommitted changes
(the default behavior). The delegate method
editingContext:shouldInvalidateObject:globalID:
(editingContextShouldInvalidateObject in Java) will not be
sent for the object in question.

If this method returns NO or false, no uncommitted changes
are applied. Thus, the object is updated to reflect the values
from the parent object store exactly. This method should not
make any changes to the object since it is about to be
invalidated.

editingContextDidMergeChanges: Invoked once after a batch of objects has been updated from
the database. A delegate might implement this method to
define custom merging behavior, most likely in conjunction
with editingContext:shouldMergeChangesForObject:
(editingContextShouldMergeChangesForObject in Java). It
is safe for this method to make changes to the objects in the
editing context.

EOEnterpriseObject Informal Protocol (Objective-C) or Interface (Java)

changesFromSnapsot: Returns a dictionary similar to a snapshot except that the
dictionary contains only those keys that refer to
uncommitted changes in the enterprise object relative to the
provided snapshot argument. For to-many keys, the
uncommitted value is an array of two arrays: uncommitted
additions and uncommitted deletions.

reapplyChangesFromDictionary: Similar to takeValuesFromDictionary: but the dictionary
argument can include values for to-many relationships as
described above in the description of
changesFromSnapshot:. Attribute and to-one keys refer to
values that should replace the enterprise object’s current
value. An instance of EONull is used in the dictionary
argument as a placeholder for nil or null.
24 © Apple Computer, Inc. October 9, 1998

Raw Row Fetching
Raw Row Fetching

When you perform a fetch in an Enterprise Objects Framework application,
the information from the database is fetched and stored in a graph of
enterprise objects. This object graph provides many advantages, but it can
be large and complex. If you’re creating a simple application, you may not
need all of the benefits of the object graph. For example, a WebObjects
application that merely displays information from a database without ever
performing database updates and without ever traversing relationships
might be just as well served by fetching the information into a set of
dictionaries rather than a set of enterprise objects.

More specifically, suppose you want to display the first name, last name, and
the department for a set of employees. Using objects, you would bind
Employee’s firstName, lastName, and department.name keys to your user interface.
This configuration requires fetching of all of the attributes in an Employee
entity—the ones you want to display (firstName and lastName) as well as the
ones you don’t (salary, birthDate, address, and so on, for example). In addition,
this configuration requires faulting in (or perhaps prefetching) all of the
related Department objects. Again you fetch all the Department attributes,
those you want to display (departmentName) as well as those you don’t (budget,
location, and so on). In addition to fetching a large amount of data that your
application doesn’t use, this object-based fetch incurs the additional
overhead of creating real enterprise objects from the returned data and of
uniquing those objects in the EOEditingContext.

In this kind of display-only scenario, it might be preferable to fetch only the
attributes that you need, and to fetch them as lightweight, non-uniqued,
rows. In this example, you could fetch only the firstName, lastName, and
department.name for each employee. In addition to fetching less data, you’d also
fetch with one trip to the database instead of two (one for Employee objects
and one for the related Departments).

Enterprise Objects Framework 3.0 supports this concept of a simplified
fetch, called raw row fetching. In raw row fetching, each row from the
database is fetched into an NSDictionary object.

To set up an application to perform raw row fetching, create an
EOFetchSpecification, and send it a setFetchesRawRows:YES (or
setFetchesRawRows(true) in Java) message. By default, the keys in the raw row
dictionaries are the attribute names as given by the EOEntity’s
attributesToFetch method.
© Apple Computer, Inc. October 9, 1998 25

What’s New in Enterprise Objects Framework 3.0
If you want more control over the attributes that are fetched for the raw row, use
the setRawRowKeyPaths: method to specify the attribute paths you want. The key
paths you provide can be simple attribute keys, such as title, as well as key paths,
such as studio.name. After the fetch, each row is returned as a separate dictionary
whose keys are the key paths you specified. If you use setRawRowKeyPaths:, you
don’t have to invoke setFetchesRawRows:; it’s automatic.

When you use raw row fetching, you lose some important features:

• The NSDictionary objects are not uniqued.

• The NSDictionary objects aren’t tracked by an editing context.

• You can’t access to-many relationship information. (To access to-one
relationship information, you use key paths such as “movie.dateReleased”.)

Should you fetch a row into an NSDictionary and later want to fetch the
corresponding enterprise object, send faultForRawRow:entityNamed:editingContext: (or
faultForRawRow in Java) to the EOEditingContext. This creates a fault for the row
(an EOFault object in Objective-C or an empty object of the correct enterprise
object class in Java). The raw row dictionary must contain the primary key
attributes for this method to work properly. When your code tries to access the
object for that row, the fault forces another database fetch, and a true enterprise
object is created.

The following tables describe the API added to support raw row fetching.

EOFetchSpecification

rawRowKeyPaths Returns an array of attribute keys that should be fetched as
raw data. The default value is nil or null, indicating that full
enterprise objects are to be returned from the fetch. If the
array contains no objects, the entity specifies which
attributes to fetch (EOEntity’s attributesToFetch method).

setRawRowKeyPaths: Sets the array of attribute keys that should be fetched as
raw data. You can disable the fetching of raw rows by
sending nil or null to this method. If you want to perform raw
row fetching, but you want the entity to specify which
attributes to fetch, you can pass an empty array to this
method or you can use the setFetchesRawRows: method to
enable raw row fetching.

fetchesRawRows Returns whether raw row fetching is performed. YES or true
if rawRowKeyPaths is non-nil or non-null.
26 © Apple Computer, Inc. October 9, 1998

Support for Multi-Threaded Applications
In addition to these methods, EOUtilities also provides raw row fetching
methods. For more information, see section “New Convenience API.”

Support for Multi-Threaded Applications

Enterprise Objects Framework 3.0 provides thread-safe APIs. This means
that you can now write a multi-threaded enterprise object application. (For
information on multi-threading WebObjects applications, see “What’s New
in WebObjects 4.0.”)

The following operations are now thread-safe:

• The initial setup of the object graph in the editing context
• Making changes to the object graph in the editing context
• Database fetches
• Faulting
• Database saves

Enterprise Objects Framework 3.0 allows one thread to be active in each
EOEditingContext and one thread to be active in each
EODatabaseContext. In other words, multiple threads can access and
modify objects concurrently in different editing contexts, but only one
thread can access the database at a time (to save, fetch, or fault).
Consequently, the support for multi-threaded applications can’t be used to
increase the level of database concurrency, but this wasn’t the goal. Rather,
the goal for 3.0 was to provide thread safety for applications that perform

setFetchesRawRows: Sets whether raw row fetching is performed. If the value
passed to this method is YES or true, then the
rawRowKeyPaths array is set to an empty array. If NO or
false, then the rawRowKeyPaths array is set to nil or null.

EOObjectStore

faultForRawRow:entityNamed:editingContext:
(Objective-C)

faultForRawRow (Java)

Returns a fault for the given raw row dictionary. The raw row
dictionary must include the primary key attributes for this
method to work properly. If the dictionary does not include
the primary key, this method raises or throws an exception.

Note that as EOObjectStore subclasses, EOEditingContext
and EODatabaseContext also provide this method.

EOFetchSpecification
© Apple Computer, Inc. October 9, 1998 27

What’s New in Enterprise Objects Framework 3.0
other types of operations using multiple threads. To increase the level of
database concurrency in your WebObjects applications, simply run multiple
instances. This technique has been proven to scale very well.

The following tables describe the new API provided to support multi-threaded
applications:

Changes to Key-Value Coding

In release 3.0, Enterprise Objects Framework makes slight changes to key-
value coding:

• The implementations of the primitive key-value coding methods resolve
their keys differently: the search order for resolving the key has changed and
the valueForKey methods now support Java-style getter methods (such as
getKey). More detailed information on the search order is provided in the
table below.

• A new method, storedValueForKey:, has been added to the set of primitive key-
value coding methods. It is the corresponding getter method to
takeStoredValue:forKey: (Objective-C) and takeStoredValue (Java).

• The methods takeStoredValue:forKeyPath: and takeStoredValuesFromDictionary: have
been removed.

EOEditingContext (conformance to NSLocking)

lock Locks access to the EOEditingContext to prevent other
threads from accessing it. You should lock the editing
context when you are making changes to the object graph,
when you are fetching objects, and when you are saving
objects. Only one thread is allowed per editing context tree.

unlock Unlocks access to the EOEditingContext so that other
threads may access it.

EODatabaseContext (conformance to NSLocking)

lock Locks access to the EODatabaseContext to prevent other
threads from accessing it. You typically don’t have to invoke
this method yourself.

unlock Unlocks access to the EODatabaseContext. You typically
don’t have to invoke this method yourself.
28 © Apple Computer, Inc. October 9, 1998

Changes to Key-Value Coding
The new key-value coding API is summarized in the following table:

Stored Value Methods
The stored value methods, storedValueForKey: and takeStoredValue:forKey:
(storedValueForKey and takeStoredValueForKey in Java), are used by the framework
when accessing properties of an enterprise object to get or set properties for
state storage and restoration (either from the database or to an in-memory
snapshot). This access is considered private to the enterprise object and is
invoked by the Framework to effect persistence on the object’s behalf.

On the other hand, the basic key-value coding methods, valueForKey: and
takeValue:forKey: (valueForKey and takeValueForKey in Java), are the public interface to
an enterprise object. They are invoked by clients external to the object
(such as for interactions with user interface or other business object logic).

Enterprise object classes can take advantage of this distinction to perform
additional processing in accessor methods except when the object is being
initialized with values from an external store. For instance, suppose an
object wanted to update a total whenever the bonus was set:

Key-Value Coding Primitives

valueForKey: The search order for resolving the provided key has changed
to the following:

method getKey, key
method _getKey, _key
instance variable _key, key

takeValue:forKey:(Objective-C)

takeValueForKey (Java)

The search order for resolving the provided key has changed
to the following:

method setKey, _setKey
instance variable key, _key

storedValueForKey: The search order for resolving the provided key has changed
to the following:

method _getKey, _key
instance variable _key, key
method getKey, key

takeStoredValue:forKey:(Objective-C)

takeStoredValueForKey (Java)

The search order for resolving the provided key has changed
to the following:

method _setKey, _key
instance variable key, setKey
© Apple Computer, Inc. October 9, 1998 29

What’s New in Enterprise Objects Framework 3.0
void setBonus(double newBonus) {
willChange();
_total += (newBonus - _bonus);

}

This code should be activated when the object is updated with values provided
by a user through the application’s user interface, but not when the bonus
property is restored from the database. Since the Framework restores the
property using takeStoredValue:forKey: (takeStoredValueForKey in Java) and since this
method accesses the _bonus instance variable in preference to calling the
accessor, the unnecessary (and possibly harmful) recomputation of _total is
avoided. If the object actually wants to intervene when a property is set from the
database, it has two options:

• Implement _setBonus:
• Turn off stored accessors by overriding the class (Objective-C) or static

(Java) method useStoredAccessor to return NO or false.

Changes to Enterprise Object Validation

Enterprise Objects Framework 3.0 makes slight changes to validation. First, it
adds new validation API, summarized in the following tables.

Second, the Java validation methods have changed. Where their Objective-C
counterparts (and their release 2.2 equivalents) return an exception, the 3.0
methods throw the (previously returned) exception. For more information, see
the interface specification for EOValidation.

EOEnterpriseObject Informal Protocol (Objective-C) or Interface (Java)

validateTakeValue:forKeyPath: (Objective-C)

validateTakeValue (Java)

Validates (and coerces) the provided value and assigns it to
destination of the provided key path if the value is different
from the current value.

New Exception

EOUnknownKeyException The default implementation of valueForKey: and
takeValue:forKey: (takeValueForKey in Java) raise or throw
this exception when they are invoked with a key that doesn’t
correlate with a method or instance variable in the receiver.
The userInfo dictionary is augmented with the target object
(EOTargetObjectUserInfoKey) and the unknown key
(EOUnknownUserInfoKey).
30 © Apple Computer, Inc. October 9, 1998

Changes to the Interface Layer
Changes to the Interface Layer

In the EOInterface framework, three association classes have been added,
and some changes have been made to EODisplayGroup.

New Associations
The following sections provide a high level overview of the new
associations. For complete documentation, see the corresponding class
specifications.

EOMatrixAssociation
Binds titles or images in an NSMatrix to string or image attributes in an
enterprise object. Its aspects are:

EORecursiveBrowserAssociation
Binds display groups to an NSBrowser so that enterprise objects of a
recursive nature (that is, enterprise objects where there is a parent-child
relationship) are displayed in the browser. Its aspects are:

EOMasterCopyAssociation
Binds a display group to a relationship property of the selected object in
another display group. This association contains one aspect, parent, which is

title String property of the enterprise object that should be displayed in the matrix.

image NSImage property of the enterprise object that should be displayed in the matrix.

enabled Boolean property of enterprise object indicating if the matrix is enabled or disabled.

rootChildren A display group that represents the root object, the parent of all children. Bind this
aspect first in Interface Builder. If you do, Interface Builder creates a second display
group (bound to the children aspect) that holds the browser’s current selection.

isLeaf Boolean property of the enterprise object indicating if it has children. If the value is
NO or false, the enterprise object must be able to return a value for the children
aspect.

children A display group containing the children of this enterprise object. If you bind the
rootChildren aspect first, a display group is created by Interface Builder and bound
to this aspect. If this display group is created by Interface Builder, it always holds the
browser selection.

title String to display in the browser title for this enterprise object.
© Apple Computer, Inc. October 9, 1998 31

What’s New in Enterprise Objects Framework 3.0
the key for the property in the master object. Any change performed in one of
these display groups is reflected in the other display group. Both display groups
always have the same set of enterprise objects for allObjects but, depending on the
applied qualifier, not necessarily the same set of displayedObjects.

This association exists mainly to support EORecursiveBrowserAssociation.

EOColumnAssociation
Three new aspects have been added to EOColumnAssociation:

EODisplayGroup Changes
EODisplayGroup has changed to make its API similar to the WODisplayGroup
class in the WebObjects Framework.

textColor NSColor property of the enterprise object indicating the text color for the row.

italic Boolean property of the enterprise object indicating whether row text should be
italicized.

bold Boolean property of the enterprise object indicating whether row text should be bold.

Changed Methods

valueForKey:object: Is now valueForObject:key: (valueForObject in Java).

New Methods

insertedObjectDefaultValues Returns a dictionary containing the default values to be
used for newly inserted objects. The keys into the dictionary
are the properties of the entity that the display group
manages. If the dictionary returned by this method is empty,
the insert method adds an object that is initially empty.
Because the object is empty, the display group has no value
to display in the user interface for that object, meaning that
there is nothing for the user to select and modify. Use the
setInsertedObjectDefaultValues: method to set up a
default value so that there is something to display.

setInsertedObjectDefaultValues: Sets the default values to be used for newly inserted objects.
You use this method to provide at least one field that can be
displayed for the newly inserted object. The possible keys
into the dictionary are the properties of the entity managed
by this display group. Note that EODisplayGroup already
contains other hooks for this purpose, such as
displayGroup:shouldInsertObject:atIndex:
(displayGroupShouldInsertObject in Java).
32 © Apple Computer, Inc. October 9, 1998

Changes to the Interface Layer
queryOperatorValues Returns a dictionary of operators to use on items in the
equalToQueryValues dictionary. If a key in the
equalToQueryValues dictionary also exists in
queryOperatorValues, that operator for that key is used.
The possible values are defined in the EOQualifier header.

setQueryOperatorValues: Sets a dictionary of operators to use on items in the
equalToQueryValues dictionary.

defaultStringMatchOperator Returns the operator used to perform pattern matching for
NSString values in the equalToQueryValues dictionary. This
operator is used for properties listed in the
equalToQueryValues dictionary that have NSString values
and that do not have an associated entry in the
queryOperator dictionary. In these cases, the operator
returned by this method is used to perform pattern
matching.

The default value for the query match operator is
caseInsensitiveLike, which means that the query does not
consider case when matching letters. The other possible
value for this operator is like, which matches the case of the
letters exactly.

setDefaultStringMatchOperator: Sets the operator used to perform pattern matching for
NSString values in the equalToQueryValues dictionary.

defaultStringMatchFormat This format is used for properties listed in the
equalToQueryValues dictionary that have NSString values
and that do not have an associated entry in the
queryOperator dictionary. In these cases, the value is
matched using pattern matching and the format returned by
this method specifies how it will be matched.

The default format string for pattern matching is "%@*"
which means that the string value in the
equalToQueryValues dictionary is used as a prefix. For
example, if the equalToQueryValues dictionary contains a
value “Jo” for the key “name”, the query returns all records
whose name values begin with “Jo”.

setDefaultStringMatchFormat: Sets how pattern matching will be performed on NSString
values in the equalToQueryValues dictionary.

queryBindingValues Added to support the binding of complex qualifiers to the
user interface (see the section “Binding to Complex
Qualifiers”). This method returns an NSDictionary
containing the actual values that the user wants to query
upon.

setQueryBindingValues: Added to support the binding of complex qualifiers to the
user interface (see the section “Binding to Complex
Qualifiers”). This method sets the NSDictionary containing
the actual values that the user wants to query upon.

New Methods
© Apple Computer, Inc. October 9, 1998 33

What’s New in Enterprise Objects Framework 3.0
34 © Apple Computer, Inc. October 9, 1998

	Compatibility With Earlier Releases
	File Location Changes
	Changes to Java API
	Deprecated API
	Support for the OpenBase Lite Database
	New Convenience API
	EOUtilities
	Supporting Convenience Methods

	Changes to EOModeler
	Improved Database Creation Support
	API for Database Creation and Deletion

	Prototype Attributes
	API for Prototype Attributes

	Query Builder
	API for Query Builder

	EOModeler Bundle Loading

	Binding to Complex Qualifiers
	Merging Object Changes
	Raw Row Fetching
	Support for Multi-Threaded Applications
	Changes to Key-Value Coding
	Stored Value Methods

	Changes to Enterprise Object Validation
	Changes to the Interface Layer
	New Associations
	EOMatrixAssociation
	EORecursiveBrowserAssociation
	EOMasterCopyAssociation
	EOColumnAssociation

	EODisplayGroup Changes

