GETTING STARTED
WITH WEBOBJECTS

Apple, NeXT, and the publishers have tried to make the information contained in this manual as accurate and reliable
as possible, but assume no responsibility for errors or omissions. They disclaim any warranty of any kind, whether
express or implied, as to any matter whatsoever relating to this manual, including without limitation the
merchantability or fitness for any particular purpose. In no event shall they be liable for any indirect, special,
incidental, or consequential damages arising out of purchase or use of this manual or the information contained
herein. NeXT or Apple will from time to time revise the software described in this manual and reserves the right to
make such changes without obligation to notify the purchaser.

Copyright © 1997 by Apple Computer, Inc., 1 Infinite Loop, Cupertino, CA 95014.
All rights reserved.
[7010.01]

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the
publisher or copyright owner. Printed in the United States of America. Published simultaneously in Canada.

NeXT, the NeXT logo, OPENSTEP, Enterprise Objects, Enterprise Objects Framework, Objective-C, WEBSCRIPT, and
WEBOBJECTS are trademarks of NeXT Software, Inc. Apple is a trademark of Apple Computer, Inc., registered in the
United States and other countries. PostScript is a registered trademark of Adobe Systems, Incorporated. Windows NT
is a trademark of Microsoft Corporation. UNIX is a registered trademark in the United States and other countries,
licensed exclusively through X/Open Company Limited. ORACLE is a registered trademark of Oracle Corporation, Inc.
SYBASE is a registered trademark of Sybase, Inc. All other trademarks mentioned belong to their respective owners.

Restricted Rights Legend: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 [or, if
applicable, similar clauses at FAR 52.227-19 or NASA FAR Supp. 52.227-86].

This manual describes WebObjects 3.5.

Writing: Ron Karr and Kelly Toshach

Editing: Laurel Rezeau and Jeanne Woodward

With help from: Andy Belk, Craig Federighi, John Graziano, Ben Haller, Kenny Leung, Charles Lloyd, Jean Ostrem,
Becky Willrich, Greg Wilson

Graphic Design: Karin Stroud

Production: Gerri Gray

Contents

Table of Contents
Contents iii

Preface 1

About WebObjects 3
About This Book 3
Where to Go From Here 4

Creating a Simple WebObjects Application 5

Creating a WebObjects Application Project 8
Choosing the Programming Language 10
Examining Your Project 10
Launching WebObjects Builder 12
Creating the Page’s Content 14
Entering Static Text 15
Using the Inspector 16
Creating Form-Based Dynamic HTML Elements 17
Resizing the Form Elements 19
Binding Elements 21
Creating Variables 21
Binding the Input Elements 23
Implementing an Action Method 25
Creating the Application’s Output 26
Building and Running Your Application 29

Enhancing Your Application 31

Duplicating Your Project 33
Creating a Custom Guest Class 35

Binding the Class’s Instance Variables to the Form Elements 36

Creating a Table to Display the Output 37
Adding Dynamic Elements to Table Cells 39
Binding the Dynamic Elements in the Table 39
Creating the Guest Object 40

Keeping Track of Multiple Guests 41
Creating a Guest List 42
Adding Guests to the Guest List 43
Adding a Second Component 44
Using a Repetition 46
Adding the Finishing Touches 50
Clearing the Guest List 50
Adding a Dynamic Hyperlink 51

Creating a WebObjects
Database Application 53

The Movies Application 56
Enterprise Objects and Relationships 57
Designing the Main Page 59
Starting the WebObjects Application Wizard 59
Specifying a Model File 60
Choosing an Adaptor 61
Choosing What to Include in Your Model 63
Choosing the Tables to Include 65
Specifying Primary Keys 66
Specifying Referential Integrity Rules 67
Choosing an Entity 68
Choosing a Layout 69
Choosing Attributes to Display 70
Choosing an Attribute to Display as a Hyperlink 71
Choosing Attributes to Query On 71
Running Movies 72
Examining Your Project 73
Examining the Variables 75
Examining the Bindings 76
Refining Main.wo 80
Specifying a Sort Order 81
Specifying Default Values for New Enterprise Objects 82
Setting a Date Format 83
Setting a Number Format 84
Optional Exercise 85

Adding the MovieDetails Page 88

Creating the MovieDetails Component 88
Storing the Selected Movie 88

Navigating from Main to MovieDetails 89
Designing MovieDetails’ User Interface 90
Adding Date and Number Formats 91
Navigating from MovieDetails to Main 92
Running Movies 92

Refining Your Model 92

Opening Your Model 93

Removing Primary and Foreign Keys as Class Properties 93
Adding Relationships to Your Model 94

Using the Advanced Relationship Inspector 98

Where Do Primary Keys Come From? 99

Setting Up a Master-Detail Configuration 100

Creating a Detail Display Group 101
Adding a Repetition 104
Configuring a Repetition 105
Running Movies 106

Updating Objects in the Detail Display Group 107

Managing a WODisplayGroup’s Selection 108
Adding a Form 109

Adding a Talent Display Group 109
Configuring the Browser 110

Adding Insert, Save, and Delete Buttons 112

Adding Behavior to Your Enterprise Objects 113

vi

Specifying Custom Enterprise Object Classes 113
Generating Custom Enterprise Object Classes 114
Adding Custom Behavior to Talent 115

Providing Default Values in MovieRole 115
Running Movies 116

About WehObjects

Ahout This Book

WebObjects is an object-oriented environment for developing and
deploying World Wide Web applications. A WebObjects application runs on
aserver machine and receives requests from a user’s web browser on a client
machine. It dynamically generates HI'ML pages in response to the user’s
requests. WebObjects provides a suite of tools for rapid application
development, as well as prebuilt application components and a web
application server.

WebObjects is flexible enough to suit the needs of any web programmer.
You can write code using one of three programming languages: Java,
Objective-C, or WebScript. You can write simple WebObjects applications
in a matter of minutes. For more complex projects, WebObjects makes it
easy by performing common web application tasks automatically and by
allowing you to reuse objects you’'ve written for other applications.

"This book contains three tutorials that help you learn what WebObjects is
and how to use it:

e Chapter 1, “Creating a Simple WebObjects Application” (page 5),
teaches you the basic concepts and steps involved in creating a
WebObjects project, using the Project Builder and WebObjects Builder
tools. You'll create a simple application that takes input from a user and
displays it.

e Chapter 2, “Enhancing Your Application” (page 31), extends the
capabilities of your application and shows you additional techniques
you use when working with WebObjects.

e Chapter 3, “Creating a WebObjects Database Application” (page 53),
teaches you how to create a more complex application, one that
accesses a database.

WebObjects can run on several platforms. Screen shots in this book are for
Windows N'T systems; if you are running on a different platform, the look
of your windows may vary slightly.

Preface

Where to Go From Here

After you have worked through the tutorials in this book, you should have a
good working knowledge of WebObjects. For more in-depth information about
how WebObjects works, read the WebObyjects Developer’s Guide.

Other valuable information about WebObject is available online. You can access
all online information through the WebObjects Home Page. In particular, the
WebObjects HomePage gives you access to some books that are available only
online:

o WebObyjects Tools and lechniques is a more comprehensive guide to using
Project Builder and WebObjects Builder to develop WebObjects
applications.

o Serving WebObyjects describes how to administer and deploy WebObjects
applications after you’ve written them.

e 'T'he Dynamic Elements Reference documents the dynamic elements provided
with WebObjects and provides examples of how to use them.

o 'T'he WebObyjects Framework Reference provides a complete reference to the
classes in the WebObjects framework. Reference material is provided for
both the Java and Objective-C languages.

Additionally, for more information on Enterprise Objects Framework, read the
Enterprise Objects Framework Developer’s Guide. 'This book provides in-depth
information about how Enterprise Objects Framework works and about
techniques for developing database applications with it.

Chaprer 1 Creating a Simple WehObjects Application

"This chapter introduces you to the basic concepts and procedures of
developing WebObjects applications. You’ll develop, in stages, a simple
application for the World Wide Web. The application you’ll write is called
GuestBook.

When you’ve finished the steps in this chapter, your application will have
a single web page containing a form that allows users to enter their names,
e-mail addresses, and comments. When the form is submitted, the
application redraws the page with the user’s information at the bottom.

In Chapter 2, “Enhancing Your Application” (page 31), you will add
features to the application, including a second page, a table that displays
information from multiple users, and hyperlinks.

"This application illustrates the basic techniques you use to create a
WebObjects application. You’ll use two primary tools, Project Builder
and WebObjects Builder.

Chapter 1 Creating a Simple WebObjects Application

Project Builder is an integrated software-development application. It contains
a project browser, a code editor, build and debugging support, and many other
features needed to develop an application. In this tutorial, you’ll learn to use
Project Builder to:

e (reate a new WebObjects application project.
e Wirite scripts or compiled code to provide behavior in your application.
¢ Build and launch your application.

WebObjects Builder is an application that provides graphical tools for creating
dynamic web pages (components). A web page consists of elements. WebObjects
Builder allows you to add most of the common HTML elements to a
component by using its graphical editing tools. In addition, WebObjects allows
you to create dynamic elements, whose look and behavior are determined at run
time. You'll learn to use WebObjects Builder to:

¢ (ireate static content for your pages.
¢ Add dynamic elements to your pages.
¢ Bind the dynamic elements to variables and methods in your code.

Creating a WehObjects Application Project

A WebObjects application project contains all the files needed to build and
maintain your application. You use Project Builder to create a new project.

1. Launch Project Builder.

On Mac OS X Server, choose Project Builder from the Apple menu under
Developer Applications. On Windows N'T, you can launch Project Builder
from the WebObjects program group in the Start menu.

2. Choose Project » New.

P i T i / Set project type here.
Wb O b ectbppicaion” | Ok

_ ok |
Project Path Cancal |
L Brse =4

Iz Hiiave i — (lick to choose directory in which to
create your project.

3. In the New Project panel, select WebObjectsApplication from the Project
"Type pop-up list.

Creating a WebObjects Application Project

4. Click Browse.

Seven | ' Waebllbch it Choos:e WebObjects under the
server's document root.

D eurariston
Evargles
Frrmevarks
D

(o]

ey / Type project name here.

Flepaes [Gussibaook 4 | Swva :I—— Click when finished.

Bt 88 e |l Fdaxi) | Caodl |

5. Inthe Save panel, navigate to the directory where you want to save the
project.

6. 'Iype the name of the project you want to create (GuestBook).

7. Click Save.

The New Project panel shows the path you specified.
8. Click OK.

T'he WebObjects Application Wizard starts.

\J‘ Choose type of assistanae and primary languege.

vttty cossan,
1™ Daectin Sek i & A R e G T Sl '
o
1™ Wgpid Ll of ST AT Cospnn il Mt
A I SR
A Hare AP B T N T (R
Primary Langpusge .
riwa % Choose programming
I~ Waksagl language.
M Oljaches-C

caneal | | s | Finih ——— Click to proceed.

9. For Available Assistance, choose None.

If you are developing an application that accesses a database, you may
wish to use one of the levels of assistance that WebObjects provides.

Chapter 1 Creating a Simple WebObjects Application

For more information on these options, see Chapter 3, “Creating a
WebObjects Database Application” (page 53).

Choosing the Programming Language

WebObjects supports three languages:

e Java
¢ Objective-C
e WebScript

Java and Objective-C are compiled languages. They require you to build your

application before running it. WebScript, which is based on Objective-C, is a

scripted language. It allows you to make changes to your application while it is
running.

When you create a new project, Project Builder provides you with a component
called Main. In WebObjects terminology, a component represents a page in your
application (or possibly part of a page).

In the Wizard, you specify the language you’ll use to program your Main
component, as well as the application and session code files (which will be
described later).

1. For the primary language, select Java.

Later, you’ll create an additional component for your application and write
its code in WebScript.

2. Click Finish.

Project Builder creates a new application directory called GuestBook. This

directory contains the files you work with in both Project Builder and
WebObjects Builder.

Examining Your Project

Project Builder displays a browser showing the contents of your project. The
first column lists several categories of files that your project may contain. This

Examining Your Project

section describes some of the most important files you’ll use.

Giped il ook L WM ot e & 5 e i) i o el b0

Eryect [ln Edt Fommst Jook Window Zercar Heip

Your project’s components.

IJ{\|El"|ﬂl|g"] I?laj..l NS S e i D !

Bl s agh — Files in the selected

Ltain i component.
B bl

Chsgen

Hidikis

Cterr T e

i & DA T

‘Weh Sanver BEgoymes
Saibg o ek
Sypporing File:

F i v S

Liranie:

Mon Prajct Fikis

L]

F
[
E
k
F
[
E
k
F
[

=il

Categories (“suitcases”)
of project resources.

1. Select Web Components.

The next column displays a list with one element, Main.wo, which is a
directory containing the first component in your application. Every
application starts with a component called Main.

2. Select Main.wo.

"The files you see displayed in the next column are some of the files
you work with when developing your component:

e Main.html is the HTML template for your page. It can include tags for
dynamic WebObjects elements as well as regular HT'ML. Typically, you do
not edit this file directly; you create your page’s elements graphically using
WebObjects Builder.

® Main.wod is the declarations file that specifies bindings between the dynamic
elements and variables or methods in your scripts. Normally, you don’t edit
this file directly; you use WebObjects Builder to generate the bindings for
you.

3. Select Classes in the first column of the browser.

Chapter 1 Creating a Simple WebObjects Application

hisdiHoak LW s el iy, S el i i e bl b 1

Erject Fim Edt Fprsst Joor iindea Jurecer Hulp

\RQ|0|g] 2

P i java El

A e 1 Dl e S w0l b v . i 3= |ET |
BN | S 1
Hisdikirs L
Ay Squrces: . Your application’s
Fasmiimas B] Ipp
Y — ava classes.
54 Dy o inr "
Eypporting File: [
F e LS L
L 5
Hon Fragct Fikis I-
El El El
[I
i M ava L - W
ri ork, Ll e,
Tt et s, o
Ti et e
LR bl et e, Compenest |
— The Main component’s
; #| code goes here.

You'll see these files listed in the second column:

® Mainjava is a file that allows you to specify behavior associated with the
component. You do this by writing code in Java (since you specified Java as the
language when you created the project). You use Project Builder to edit this
file.

® Application.java and Session.java are other Java files that you may want to work with.
Application.java defines application variables that live as long as the application does.
Session.java defines session variables that exist for the lifetime of one user’s session.
In Chapter 2, you’ll add code to Application.java and learn more about application
and session variables.

® DirectAction.java defines a subclass of WODirectAction that you use as a container
class for your action methods. You can rename this class, or create multiple
subclasses of WODirectAction depending on your application needs.

Launching WehObjects Builder

Now that you’ve created your project, you’ll edit the Main component with
WebObjects Builder.

1. Select Web Components in the first column of the browser.

Launching WebObjects Builder

2. Double-click Mainwo in the second column.
The WebObjects Builder tool launches and displays a window titled

Main.wo. 'T'his represents your application’s Main component.

Pop-up list switches Click to inspect These buttons change properties
editing modes selected element. of selected elements, or text.

U by Vi pyven' B sl el e 1 Yo e k.

P [ok F hrdies GarvicelHin

6oL Tulz] -]] 21
Q& 1|E|-| |Djm|lf| Click one of these

buttons to create a

\ | specific element.

Elements pop-up list
switches buttons
displayed to its right.

-|an-

p—— This window displays
your component’s
= elements graphically.

JLEL,
LE

SR
18RHET

Object browser shows
variables and methods
in your application’s
= | H code.
= Pull-down menu lets
you add variables,
methods, and actions
to your source code.

B Mingave O =

You create your component graphically in the upper pane of the
component window. The browser at the bottom of the window (known
as the object browser) is used to display variables and methods your
component uses. Note that there are two variables already defined,
application and session. You'll create others later.

"T'he toolbar at the top of the window contains several buttons that
allow you to create the content of your component. WebObjects
Builder also has menu commands corresponding to these buttons.

Note: Depending on the width of the window, the toolbar may appear in
tWO rOWS Or one.

3. From the ﬂ pop-up list at the left of the toolbar, choose J

Chapter 1

Creating a Simple WebObjects Application

"This pop-up list allows you to switch between graphical editing mode and
source editing mode. When you choose source editing mode, the text of
your HT'ML template (Main.html) appears. It is a skeleton at this point, since
the page is empty. As you add elements graphically, their corresponding
HTML tags appear in this file.

“ W wo — C-YHelseapsBerserulinsYwWebl bpeohUG usstBosk M [m] E3

fla Edl Fgwad Epwanir Jocde Fawder Wirdow Savesz Halp
L0|el BlU|T]| o] - & =
R = T
=HTHL: _-I
A
ATITLEPuga Titlas TIMLE: The HTML source for your
A component.
AN
= BRI
2 HTHL ll
"
El _ L
Information about bindings
is displayed here.
El

The bottom pane shows your declarations (Main.wod) file. Later, when you
bind variables to your dynamic elements, this file stores the information.
Normally, you do not type directly in this file. You can add elements using
the toolbar in either source or graphical editing mode.

4. Switch back to graphical editing mode. For the rest of the tutorial, you’ll
work in this mode.

Creating the Page’s Content

A web page consists of elements. In addition to the standard static HTML
elements found in all web pages, WebObjects allows you to create dynamic
elements, whose look and behavior are determined at run time.

"To create elements, you use the buttons at the right of the toolbar(or bottom if

your window is small). The % button is a pop-up list that lets you switch the

Creating the Page’s Content

group of buttons that are displayed to its right. There are four groups of
buttons:

structures =5|. Use these buttons to create paragraphs, lists, images, and
other static HTML elements. This setting is the default.

Tables ﬂ Use these buttons to create and manipulate HI'ML table
elements.

Dynamic form elements £ Use these buttons to create form elements in
which users enter information. WebObjects gives your application
access to the data entered by users by allowing you to associate, or bind,
these elements to variables in your application.

Other WehObjects ﬂ Use these buttons to create other dynamic elements,
which you can bind to variables and methods in your program to control
how they are displayed. Some of these (such as hyperlinks) have direct
H'TML equivalents. Others are abstract dynamic elements, such as
repetitions and conditionals, which determine how many times an
element is displayed or whether it is displayed at all.

Entering Static Text

The simplest way to add text to a page is to type it directly into the
component’s window. To demonstrate this, add a title for the GuestBook’s

page.

1.

Type My Guest Book and press Enter (on the keyboard).

The text is displayed at the insertion point, in this case at the
beginning of the page.

Select the text you just typed.

Click the |:| button in the toolbar. This converts the selected text to a
heading element and displays it in a larger font.

From the 5' pop-up list in the toolbar, choose center justification.

"The toolbar also has buttons that allow you to apply text styles such as
bold, underline, and italics.

Chapter 1

Creating a Simple WebObjects Application

H'TML provides several levels of headings. To change the level, you use the
Inspector panel. You’ll use this panel frequently throughout these tutorials.

Using the Inspector

You use the Inspector panel to set properties of the elements in your
component. The Inspector’s title and contents reflect the element you’ve
selected in the component window.

1. Click 8.

A panel titled Heading Inspector appears. It allows you to set the level of
the heading.

Hesdog st K|
EI P T The element path. Click to inspect
] | different elements in the hierarchy.

Pk Dymaniee | |

Click here to set the heading level.
H:—m@A

‘I/E‘]Jl-l

2. Click “17.

The text is now part of an <H1> tag, and it is displayed in a larger font.

3. Click the 4 icon at the top of the panel.

"The top of the panel shows the element path to the selected element. Any
element can be contained in a hierarchy of several levels of elements and
can in turn contain other elements. Here, the element path shows that the
heading element is contained in the page element, which is the top level of

Creating the Page’s Content

the hierarchy. By clicking the icons in the element path, you can easily
choose different elements in the hierarchy.

Each element has its own Inspector that allows you to set properties
appropriate for the element. The Page Attributes Inspector allows you
to set properties such as the page’s title and its text color.

Fage tittihpes B

BE=
[i

Pika Dynanie | fahe Impeciar |

[~ Tile b Bramic

The: |[Fdy Guest Bark =t Enter page’s title here.

Fuil dacumani %
Backgrausd

faset | comn.. | Temure. |

Teed 5 Preead links 5
Links 5 Wigied links E

4. Choose “Full document” from the “Partial document” pull-down
menu.

5. Enteratitle (such as “My Guest Book”, or something else of your
choosing) in the Title text field. This is the title of the window that
appears in your web browser when you run the application.

6. Close the Inspector panel.
7. Choose File » Save to save the Main component.

Although WebObjects Builder supports undo, it is always a good idea
to save your work frequently.

Creating Form-Based Dynamic HTML Elements

In this section, you’ll create a form with several elements to capture input
from a guest. The Submit and Reset buttons you add to the form will apply

Chapter 1

Creating a Simple WebObjects Application

to all other elements in the form. These elements look and act like HT'ML form
elements but are actually dynamic WebObjects elements, which enable your
code to receive and manipulate the data entered by the user. Refer to the
following screen shot.

10.

11.

12.

13.

"To display the dynamic form elements buttons in the toolbar, choose ﬂ
from the Elements pop-up list.

Place the cursor on the second line after the “My Guest Book” text.

Click .

WebObjects Builder adds a form element to your component. The triangle
at the upper-left corner indicates that it is a dynamic form, as opposed to a
static form.T'he gray border indicates the extent of the form. You can
increase its size by adding additional elements inside it.

Type the text “Name: ” and press Enter.
This text replaces the word “Form” that was displayed by default.
Type “E-mail: ” and press Enter twice
"Iype “Comments: ” followed by Enter.

You have just entered three lines (and a blank line) of static text inside the
form. Now you’ll enter some dynamic elements to receive input from the
user: two text fields and a multi-line text area.

Place the cursor to the right of the text “Name: ”.

Click j to create a dynamic text field element (WO'TextField).

Repeat steps 7 and 8 for “E-mail: ”.

Use the [ITe button to create a multi-line text area below the “Comments: ”
line.

Press Enter twice to create a blank lines.

Click -‘-'l to create a Submit button, which is used to send the data in the
form to the server.

Click -'-'l to create a Reset button, which is used to clear the data in the
form.

Creating the Page’s Content

The window should now look like this:

vy Sy s e Frrrd ey grnH e

Fl-ihﬂ!HIﬂEﬂiHﬂiil'ﬂlih

-"Iﬂlﬂ_lll Bl/ Ul «f w2 =

__J,_ _||'_]m-”|J-"]"-'| p-l u-j:'lml Dynamic form
elements buttons.
My Guest Book =
teass | Dynamic text field
Ematl | elements.
L OFTaaes
T D .
- ynamic text area
| | glement.
subre] deusi|
\ = Rectangle indicates
- — extent of form.
LA E sl ;l ;l
IRNMET
E E
Enis =T |

Resizing the Form Elements

The text fields and text area are a bit small, so you’ll resize them using the
Inspector panel.

"To inspect an element, you must first select it. Some elements (such as text
fields and text areas) can be selected simply by clicking them; they appear
with a line underneath.

(el

You select text elements as you would in most text-editing applications (by
dragging, or by double-clicking words, or by triple-clicking lines); they
appear highlighted when selected.

Chapter 1 Creating a Simple WebObjects Application

1. Inspect the Name text field (that is, select the text field and open the
Inspector panel).

T - |
B [
| [
el Blalic | == (hoose Static Inspector from
namic inspacioe this pop-up list.
PHH:I
& ke
Tl er O 2 O LR i | e [nter rows and columns here.

HRIBET OF Pk |_

St

|

2. Change the setting of the pop-up list at the upper right of the panel from
Dynamic Inspector to Static Inspector.

All WebObjects elements have a dynamic inspector, that is, one that allows
you to set bindings (you’ll work with bindings in the next section). In
addition, many WebObjects elements (those with direct counterparts in
static HTML) also have a szatic inspector. This inspector allows you to set
the standard HTML attributes for that type of element.

In this panel, you can set various attributes of the static counterpart of a
WOTextField, which is an HI'ML <INPUT TYPE=TEXT> element.

3. In the Size field, type 20 and press Enter to set the width of the text field
to 20 characters.

Note: Be sure to press Enter after typing the values; otherwise, they won'’t
3 M »
stick.

4. Repeat steps 1 through 3 for the E-mail field.

20

Binding Elements

5. Inspect the multi-line text area.

In Text Area Inspector, you can set various attributes corresponding to
those of a <TEXTAREA> eclement.

6. Increase the size of the element by specifying the number of columns
and number of rows to, say, 30 and 6.

7. Save the Main component.

When a user enters information in GuestBook’s form elements, your
application needs a way of accessing that information. This is done by
binding the form elements to variables in your application. When the user
submits the form, WebObjects puts the data into the variables you’ve
specified.

Your application typically processes the data and returns a new page (or the
same page) displaying information that makes sense based on the user’s
input. The information displayed is usually represented by other dynamic
elements that are bound to variables and methods in your code.

"This process of receiving a request (triggered by actions such as submitting
a form or clicking a hyperlink) and responding by returning a page is known
as the request-response loop. This loop is at the heart of WebObjects
programming,.

In this tutorial, you’ll have WebObjects return the same page, with the
information you received from the user displayed in a slightly different
format at the bottom.

Creating Variables

In this section, you’ll declare individual variables in your code file (Main.java)
to hold the name, e-mail address, and comments entered by a single guest.
Later on, you’ll structure this information differently in order to work with
data from multiple users.

2

Chapter 1

Creating a Simple WebObjects Application

22

WebObjects Builder allows you to declare variables without having to edit your
source file directly. At the bottom of the panel there is a pull-down menu titled
Edit Main.java. It has three items:

Add Variable/Method allows you to add a £ey to your source file. A key can be either
an instance variable or a method that returns a value.

Add Action allows you to add the template for an action method, which is a
method that takes no parameters and returns a component (the next page
to be displayed).

View Source File opens the source file in a Project Builder window.
Choose Add Variable/Method from the pull-down menu.

The Add Variable/Method panel opens.

Audd Yamakle & Heitod

hlame: [FussFizre Type variable name here.

Type: = _{hype an gives)
" Faray of
" Kitable ey o
|Ztiing _S——t—(hoose variable’s type from
this pop-up menu.

e o Tl 5 CRATC o OB TR

FF &n ingtance verehis
[& methad refumisg e vales
[& methad seting e valys

cacel | agn |

"Iype guestName in the Name field.

"To specify the variable’s type, select String from the pop-up menu (or you
can type String directly in the box).

Click Add.

You have just created a variable called guestName of type String. It appears in
the first column of the object browser. A declaration for guestName also
appears in Mainjava, which you’ll edit later.

Create the variables email and comments in the same way (they are also of
type String.)

Binding Elements

Note: You may also add variables by editing the source file in Project Builder.
You will need to use Project Builder to remove or modify a variable.
Remember to save the file after editing in Project Builder to update
WebObjects Builder.

Binding the Input Elements

Each dynamic element contains several astributes. These attributes
determine what happens when the element is displayed or when a form
element is submitted. When you bind an element, you actually bind one or
more of its attributes.

For example, a WOText element (which represents a multi-line text area)
is defined as having two attributes:

* value specifies the string the user enters in the text area.
® name specifies a unique identifier for the text area.

In this tutorial, the only attribute you are concerned with is value, which
represents the string entered by the user in the comments field. You’ll bind
this to the comments variable. You don’t need to bind the name attribute in this
application. In a later example, you’ll bind more than one attribute of an
element.

1. Inthe object browser, make a connection by pressing the mouse button
down on the comments variable and dragging to the Comments text area.

23

Chapter 1

Creating a Simple WebObjects Application

24

Then release the mouse button.

e [foww Eere [ow Poctm phedon fermem Son
Zl0|@ Bl/|uiT] 3 |2 =)
Elr DTl ad uf =] =]|

My Gu
]
| i
R I P Bk | Oprar: ik i |
F-mmil
Binding
appears
here when
: L complete.
suprat] i
TrER T
ialbirel
vl
A8 e | r— Click here
Y/
to complete
| binding
[Esiuanjpan =]i]

& saesoow |

Press the mouse down on the variable name
and drag to element to begin binding.

The Inspector panel comes to the front, displaying the bindings for the
text area. 'T'he value attribute is automatically selected (since that is the one
that is most commonly used in bindings). If you wanted to choose a
different attribute to bind (you don’t at this time), you would simply select
the binding of your choice.

2. Click Connect on the Inspector panel.

comments appears in the Binding column next to the value attribute of the text
area, indicating that the binding has been made. Also, the text comments
appears in the text field to show that it has been bound.

Note: you can also bind a variable by typing its name directly in the Binding
column for the desired attribute.

3. In the same way, bind the guestName and email variables to the two text fields.

4. Save the Main component.

Binding Elements

Implementing an Action Method

When the user clicks the Submit button, your application will respond by
redisplaying the page with the submitted information shown at the bottom.
"To make this happen, you implement an action method and bind that method
to the action attribute of the WOSubmitButton.

1. From the Edit Main.java menu at the bottom of the object browser,
choose Add Action.

Heme | sunil e EN1EET ACION NAMe here.

Fage relumed: |nl.|1 j—— Select response page name from
pop-up menu (use null to return
same page).

cancd | aa | page)

2. Enter submit as the name of your action method.
3. From the “Page returned” pop-up menu, select null.

T'he value returned by an action method represents the next page
(component) to be displayed. When you return null (or nil if using
WebScript), the current page is redrawn. In a later task, you’ll see how
to return a new component.

4. Click Add.

"T'he submit action appears below a horizontal line in the first column
of the object browser.

5. Make a connection from the submit action in the object browser to the
submit button (press the mouse button down on the action, drag to the
button, and release the mouse button).

The Inspector opens with the button’s action attribute selected.
6. Click Connect.

You just bound the submit method you created to the action attribute of
the WOSubmitButton. You don’t need to write any additional code, so
your application is now ready to run. However, you may want to look at
your source file.

7. From the pull-down menu at the bottom of the window, choose View
Source File.

25

Chapter 1 Creating a Simple WebObjects Application

Project Builder becomes active and displays the code for your component
(in Main.java). You’ll notice that this file contains declarations for the variables
you created earlier, as well as a declaration for the submit action method.

[T] L Aoty apetS men ddscn Vet rbllinec ity

Pugest [[Fpwa Jool iahedoes Gaened Hep
“‘ qlﬂl EJ .‘E’ WSy ﬂ
|'\-'|-I.:J1l:|.:.-|-rr'. -_|i|.-;-lll.fu. i =] =]]

[

Dibar Srurres
Feaprarcas

O D T Pl
SRR
mugporiag Fise
Framwesuri

Libwvarid

o Fyoeri Fies

TrEmTTTET T

I_I_

|
L] g i}

soorl mesk EEL ®
sFpert ek v
STl Bt A

L Fariri vt ract @ [osporeed
arctacted Fireeg guaibiss
d w) -

4 i i Variable definitions.

AT L

ol Y submit action method.

A

Creating the Application’s Output

So far, you have a way for the guest to enter information and a way for the
application to store that information. Now, the application needs to do
something with the information.

For now, you’ll have the application simply display the same information the
user entered, in a slightly different format. "This allows you to verify that you
have correctly received the data. To do this, you’ll add dynamic string elements
(WOStrings) to the main page and bind them. In the next chapter, you’ll use
more complex forms of output.

1. In WebObjects Builder, place the cursor at the end of the document,

making sure that it is ouzside the gray rectangle that represents the form,
and press Enter.

26

Creating the Application’s Output

2. Choose =5 from the Elements pop-up list to display the Structures
buttons.

3. Click j to create a horizontal rule (an <HR> element).

4. Press Enter to add a blank line.

5. Select ﬂ from the Elements pop-up list to display the Other
WebObjects buttons.

6. Add a WOString element by clicking g

A WOString is a dynamic element whose value is determined at
run time. It is shown as a small rectangle surrounded by two icons.

. S

7. In the object browser, make a connection from the guestName variable to
the center rectangle of the WOString.

Notice that the name guestName appears inside the WOString, and
the Inspector panel doesn’t come to the front. The message
“Connected guestName to value” appears in the upper-right corner
of the panel.

WebObjects provides this shortcut for binding to the value attribute of
WOStrings, because it is the attribute you most often want to bind.
"T'he value attribute signifies the string that will be displayed when the
page is drawn. If you want to bind a different attribute, you make a
connection to the left or right icon, and the Inspector appears as usual.

8. Click to the right of the WOString and press Enter.

9. Create two more WOStrings and bind them to email and comments,
respectively.

Note that it isn’t necessary to resize the WOStrings as you did with
the text fields. They expand at run time to display the value of the
variables to which they are bound.

21

Chapter 1 Creating a Simple WebObjects Application

10. Save your component. It should now look like this:

B Bl Fpus Flewear ook Palsies phwies Gasces e
J0|g Bl |ulT| Al -] g
e))]])]] s
My Guest Book -
Vg, | RS
E-riil (o=l
[N
=arrenh j
=
antes|dust|
1 et g
- 1T |
18} commari-n 18 :,
Elf.l':.l:l:ll :r _ﬂ
priosat
DN Choose
brw = £ View Source File
Edd Hamn M I] from this menu.

In summary, when the user clicks the Submit button, a new request-response
cycle begins. WebObjects stores the data entered in the dynamic form elements
in the variables they are bound to (guestName contains the value in the Name field,
email contains the value in the E-mail field, and comments contains the value in the
Comments field). It then triggers the action method bound to the action attribute
of the WOSubmitButton. The action method returns a page (which, in this
example, is the same page). When the page is redrawn, the dynamic strings at
the bottom show the values entered by the user.

Now you are ready to test your application.

28

Building and Running Your Application

Building and Running Your Application

1. Make Project Builder active. A quick way to do this from WebObjects
Builder is to choose View Source File from the pull-down menu at the
bottom of the window.

"To build and launch your application, you use buttons in Project
Builder’s toolbar.

V&| QJ .ﬂ | ﬂ]-— Click here to open the Launch panel.

Click here to open the Project Build panel.

2. Click "'c\l in the toolbar to open the Project Build panel.

3. Click "Rl in the Project Build panel.

Target wmapp e ams "
ahakn GuesEngk - Buld secoeeded

Click here to build
ﬂ your application.

-CuANA_OPENSTEP_EMABLED -CUAVA_OFENSTEF -ORC -c-0 =]

ey oy STt T T SR] S P TR A R P

o i ek hESF rameras i F onc sl nad_GessEnckos

Cofdr il g 5o T 000 W e O Dy e B G 5 D oA _ i EEF raswrwa riF Dic el e Gai

Bmtn

Linkireg .

bl T He=iCl e el op e cufa bl sig s - CiEG-nedpin-winmtd 5

- L ks o e e e ol LW O R G B ot O e o plimiIa . arch [2ae-niEsdpd o

Akl 3 -0 CoMets capaiereniine e b je ot e sEn ok e SE0 ok wo 'O we 1B ok e

) ey S ST e T T T SR el e R TR L R PR LR T TS TG T

bz ap w5 rve ' on W sl Dby sc i Gus s iBontohps -

Dl il 2 Bl SR Prrasd F onc el nai_ GuesniBoskos Sraserwon WebiObjsct -amsraari.

WCEdmn sia s -amees ik ECA LT pes -amrenrt EQConbol -fremeswrk Foondetion i
-

The Project Build panel displays the commands that are being
executed to build your project. If all goes well, it displays the status
message “Build succeeded.”

4. Close the panel.

5. Click g.l in the toolbar to open the Launch panel.

29

Chapter 1

Creating a Simple WebObjects Application

30

Click g in the Launch panel to launch your application.

The Launch Panel displays a series of messages. If all goes well, you
should see messages such as the following, which mean that your

application is running successfully.

GusdiBopk - Lawnch - T siBool *

ENCEEEENEEE]

- Task st TATATTS] 0m LYI-Sm-15 B AT T B -

S0 15 9943009 GuestBoak[134] Prajgect doerar UEdeg S0rd iphed COMpLreThs

from oo jeot dirsctars © ebsosne Gereet wnos webln eoks sk Bk

S0 19 8948 GuestBook 18] saaliostboe Febn

07 A TR T a0 VNI S 18 B e

S0 15 994381 GuestBook[134] -'n:c.—-'-: weniereer Donfipurelion from

- T ekl 10Ty e edad bar s iond Lger ot Loe b SerwerLonti g plisk

S 15 99433 GuestBeak[134] Dodaesal Eook- ['GebsoapeGerseruioos

e 15 O GuesaiEooe] spolrosiroe Smee L Aweodneoha st bk

e 15 O A GuessiBooe [194 spoliosiioe weee FesabEnod

S0 15 B9 AL GuestiBook[184] mot coewerhed b Roadbor

Walomms to GuestiBook

Sep 15 B9 AL GuestBeok[134] doeatag sppdsoetioen s UEL in Erveser

it ¢/ Localnost AogL-ule sl jec b Gee s tiom —

S0 15 9993080 GuestBook[134] saltieg for regeests =
el |

Your web browser (such as Netscape Navigator or Internet Explorer)
should launch automatically and load the correct URL for your application.

"Test your application by entering information and submitting the form.

If all goes well, your page should look like the one shown at the beginning

of this chapter (page 5).

Chapter 2 Enhancing Your Application

Duplicating Your Project

In the previous tutorial, you learned how to create a web component that
has input and output elements and how to bind these elements to variables
and methods in your code.

Now you’ll add some additional features to your project that move it a bit
more in the direction of being a real-world web application. The application
will:

e Use a custom Java class to represent the data for a guest, rather than
using three separate variables.

e Maintain a guest list, which keeps track of all guest data (whether
entered by you or multiple users of your application), rather than just
the current guest.

¢ Have a second component, so that the guest list is displayed in a new
page rather than the same page. You’ll use WebScript rather than Java
to implement this component’s behavior.

e Make use of additional interface elements (such as HI'ML tables).

Duplicating Your Project

Before proceeding, you’ll create a new project by copying the old one and
renaming it. This way, you can make changes and still retain your previous
version.

1. In WebObjects Builder, close the component window.

If there are any unsaved files, you are prompted to save them.
2. In Project Builder, close GuestBook’s project window.

If there are any unsaved files, you are prompted to save them.

3. Inyour machine’s file system, navigate to the directory where your
project is located.

33

Chapter 2

Enhancing Your Application

34

10.

11.

4 Wbl bpsg i M= E
fla Edi Yew Haip

BT = @] Al
I = = .

[ioadnayds T s Fisvewnd: [

i - -

Eore o il

et o &

Duplicate the GuestBook folder.

On Mac OS X Server, select the folder and press Command-D. On
Windows NT; select the folder, choose Edit » Copy, then Edit » Paste.

Open the new folder (Copy of GuestBook) and double-click the project file
PB.project.

Project Builder opens a new browser window for this project.
(Alternatively, you could have opened the project from within Project
Builder by choosing Project » Open, then navigating to the project folder
and selecting PB.project.)

Click ""“'-\| from the toolbar to bring up the Project Build panel.

Click y in the Project Build panel.

This command deletes all the files that were generated when you built the
project previously.

Click ﬂ| to open the Project Inspector.

Choose Project Attributes from the pop-up list at the top of the window.
In the Name field, enter GuestBookP1lus and press Enter.

Respond Yes to the prompt that asks if you want to rename the folder.

You now have a new project called GuestBookPlus.

Creating a Custom Guest Class

Creating a Custom Guest Class

In the first chapter, you created individual variables to store a guest’s name,
e-mail address, and comments. When keeping track of multiple guests, it’s
more useful to encapsulate all the data for a guest as a single entity. You’ll
do this by creating a Java class that contains the data for a single guest.

1. In Project Builder’s browser, select Classes in the first column.

2. Choose File » New in Project.

Chasg Hasder

Ire GuetB kP s
(P a1 v =] Type name of class here.

I Cranis teader ﬂ|

3. 'Iype Guest. java as the name of the file.
4. Click OK.
The newly created file contains a skeleton for a class called Guest.

Modify the code so it looks like this:

import com.apple.yellow.foundation.*;
import com.apple.yellow.eocontrol.*;
import com.apple.yellow.webobjects.*;

public class Guest extends EOCustomObject {
protected String guestName;
protected String email;
protected String comments;

Guest() {
guestName = “*;
email = ““;
comments = “*;

}

}

A class stores information in its zzstance variables (also referred to as

data members). Here you’re declaring three instance variables for Guest:

35

Chapter 2

Enhancing Your Application

36

guestName, email, and comments. Note that these declarations are the same as
those that appeared in the code for Mainjava when you added the three
variables using WebObjects Builder. In WebObjects, a component is also a
class, specifically a subclass of the class WOComponent.

Java classes require a constructor to initialize an instance (or ofject) of a
particular class whenever one is created. A constructor has the same name
as the class and returns no value.

Whenever your application creates a new Guest class, its instance variables
are initialized with empty strings, which is the default value if the user
enters no data. (If you prefer, you can use different strings for these initial
values.)

5. Save Guestjava by choosing Save from the File menu.

Saving the file lets WebObjects Builder know about your newly created
Guest class.

Binding the Class’s Instance Variables to the Form Elements

In the first chapter, you bound the input elements to variables in Main’s code.
Now you’ll modify the bindings to use the class you just created.

1. Select Web Components in the first column of the browser.

2. Double-click Mainwo in the second column of the browser to open the
component in WebObjects Builder.

3. Using the Add Variable/Method panel, add a variable called currentGuest to
your component and specify its type as Guest. (Note that you can now
choose Guest from the Type pop-up menu.)

“w_”»

An entry for currentGuest appears in the object browser. Notice the “>
symbol to the right of its name. This means that there is additional data to
be displayed in the second column.

4. Select currentGuest in the object browser.

The second column displays the three fields of currentGuest, as determined
by the definition of its class, Guest.

5. Make a connection from guestName in the second column of the object
browser (next to currentGuest) to the Name text field (press the mouse button
down on the variable, drag to the element, and release the mouse button).

Creating a Custom Guest Class

"This time, when the Inspector opens, there is already a binding for the
value attribute (guestName), because you bound it in the first tutorial.

Double-click the row containing the value binding.

"This removes the binding for guestName you made previously and binds
currentGuest.guestName to the value attribute.

Bind the other two input elements to currentGuest.email and
currentGuest.comments.

Creating a Table to Display the Output

In the first chapter, you created three WOString elements to display the
information the guest entered. In this tutorial, you’ll create a different type
of element, an HTML table, to display the information. In later tasks, you’ll
display data for multiple users in the table.

1.

Delete the WOStrings below the horizontal line in the Main
component, because you’ll be replacing them with a table. Select the
WOStrings and choose Cut from the Edit menu to delete them.

Choose ﬂ from the Elements pop-up list to display table elements.

Click the | button.

A table with two rows and two columns appears.

1 Call
rald Call
Double-click to enter content-editing mode. gygkah;:futn:n
Click here to add a row. Single-click to enter structure-editing mode. ’

Click the E icon at the upper right of the table.
A third column appears, and the columns are equally spaced.
Select the upper-left cell of the table by clicking it.

There are two modes for table editing: content-editing mode, which lets
you change the text in a cell and add other elements to it; and st7ucture-
ediring mode, which lets you perform operations on a cell such as
splitting it in two. The cell you just selected is now in structure-editing
mode.

Chapter 2

Enhancing Your Application

38

Double-click the upper-left cell.

You can now edit the contents of the cell. If you want to resume structure

editing, click E in the toolbar, which allows you to toggle between
modes. (Alternatively, you can hold down the Control key and click in a
different cell to enter structure-editing mode.)

Change the text in the cell to Name.
Open the Inspector.

"The Inspector presents a number of modifiable settings that apply to the
table cell you’ve selected. Note also that the top row of the Inspector
window shows the element path, which includes the cell, the row it is
contained in, and the table itself. Selecting any of those allows you to set
specific properties of the selected element.

B R
| | Click here to inspect table row.
Pk D ymianik ddh | T Gl d

Click here to inspect table.

I} Hasntor Cal i
e a— Check this box to make the
Horzomal Align 7 | = | pi=zis cell a header.
=
Lnspecited & | - Enter table width here.
r Cenlar Heigh
- Fighl F Lingpacifiesd
I | pi=pis
vemcalAgn | - [T
17 L8 ped il el
I Top Backgmund
bk F Linspaciied

o (|

9. Click the Header Cell checkbox.

The text in the cell becomes bold and centered.

10. In the Width box, enter 150 in the field marked “pixels” and press Enter.

The width of the column is set to 150 pixels.

11. Click in the component window, then press Tab.

Creating a Custom Guest Class

12.

Pressing "Tab when editing a table causes the contents of the next cell
to the right to be selected (or the first cell of the next row if in the
rightmost column). Pressing Shift-Tab moves in the opposite direction
through the table.

Repeat steps 7 through 11 for the second and third cells of the top row.
Label the middle column E-mail and set its width to 150 pixels. L.abel
the third column Comments and leave its width unset. (The comments
field takes up the remainder of the width of the table.)

Note: It isn’t necessary to adjust the height of the columns—if left unset,
they’ll expand at run time to accommodate the size of the text being
displayed.

Adding Dynamic Elements to Table Cells

"Tables and cells are static HI'ML elements, so you can’t bind them to
variables or methods. To display dynamic information in cells, you add
dynamic elements, such as WOStrings, to the cells.

1.

Select the contents of the first cell in the second row of the table by
clicking in the cell, then double-clicking the text.

Choose ﬂ from the Elements pop-up list.

Click ﬂ to add a WOString to the cell.
Press the "Tab key.
T'he contents of the next cell to the right are selected.

Repeat steps 3 and 4 for the other two cells in the second row.

Binding the Dynamic Elements in the Table

1.

Make a connection from currentGuest.guestName in the object browser to the
center of the WOString in the first column to bind its value attribute.

Similarly, bind currentGuest.email and currentGuest.comments to the WOStrings
in the second and third columns.

The table should now look like this:

B
ourraniaant . eyt .;_ =R 8. orrrerriCuosr . comsar i | (4
&

39

Chapter 2

Enhancing Your Application

40

3.

Save the Main component.

Creating the Guest Object

Earlier in this chapter, you created a Java class of type Guest and wrote a
constructor for it. You also added a variable of that class, currentGuest, to the Main
component. However, adding a variable to the component doesn’t actually
create a new Guest object; you need to create one explicitly at some point in
your code.

You’ll create the Guest object in the constructor method for your component.
T'his method is called when the component is first created; that is, the first time
the user accesses the component.

Note: In WebScript or Objective-C, you use a method called init for this purpose.

1.

Choose View Source File from the pull-down menu at the bottom of the
window.

Project Builder becomes active and displays the code for Main.java. Notice
the following declaration that was added to your code when you added the
currentGuest variable:

protected Guest currentGuest;

Delete the declarations of guestName, email and comments, since you aren’t using
them anymore.

Add the constructor method inside the Main class definition:

Main() {

super () ;
currentGuest = new Guest();

}

The first statement calls the constructor of Main’s superclass (which is
com.apple.yellow.webobjects. WOComponent). The second statement allocates a new
empty Guest object and calls Guest’s constructor to initialize its instance
variables.

Save Main.java.

Build and run your application.

Keeping Track of Multiple Guests

The application should work similarly to the first chapter, except that
the guest’s data is displayed in a table at the bottom of the page instead
of as plain text.

caiwed in libscty mred
dicwted to the propowitiom

At this point, your application still handles information from a single guest
only; in the next section, you’ll modify the application so that it can keep
track of multiple guests.

Keeping Track of Multiple Guests

You’ve been using the variable currentGuest in the Main component to hold
the information entered by the user. You'll need another variable (an array)
to store the list of all the guests who have registered.

Q

Chapter 2

Enhancing Your Application

42

Before doing this, it is important to understand the scope and life span of
variables in WebObjects:

o Component variables, such as currentGuest, exist for the lifetime of the
component. These variables are defined in the component (in this case,
Main.java) and are accessible only by its methods. Each user that uses a
component gets a separate instance of the variable.

o Session variables exist for the lifetime of one user’s session and are accessible
by all code in the session. They are defined in Session.java. An instance of each
session variable is created for each user.

o Application variables live as long as the application does and are accessible by
all code in the application. They are defined in Application.java. A single
instance of an application variable is shared by all users of the application.

Creating a Guest List

"To store the information from all guests that have accessed the application,
you’ll create an application variable called allGuests, which exists for the life of the
application.

1. In Project Builder, select Classes in the first column of the Browser. Then
select Application.java from the second column.

"The application’s code appears in the window. The following listing shows
the code generated by the Wizard, along with code you will add.

// Generated by the WebObjects Wizard

import com.apple.yellow.foundation.*;
import com.apple.yellow.webobjects.*;

public class Application extends WOApplication {

protected NSMutableArray allGuests;
public Application() {

super () ;
allGuests = new NSMutableArray();
System.out.println("Welcome to " + this.name() + " !");

/* ** put your initialization code in here ** */

public void addGuest(Guest aGuest){
allGuests.addObject (aGuest);

Keeping Track of Multiple Guests

public void clearGuests(){
allGuests.removeAllObjects();

}
}

Note that there is one method already defined: Application, which is
the constructor for the application object. The first line calls the
constructor for Application’s superclass (which is the class
WOApplication). The second line prints a message, which you see
in the Launch panel when you launch your application.

2. After the call to super, enter this code:

allGuests = new NSMutableArray();

"T'his statement initializes allGuests to be a new object of class
NSMutableArray. This class is the Java equivalent of the Objective-C
class NSMutableArray, which provides an interface that allows you to
add, change and delete objects from an array.

3. At the top of the Application class definition, enter this declaration:
protected NSMutableArray allGuests;

"This declares allGuests to be of type NSMutableArray. Declaring it
protected means that it is accessible only from this class or one of its
subclasses. It is standard object-oriented practice for a class to prevent
other classes from directly manipulating its instance variables. Instead,
you provide accessor methods that other objects use to read or modify the
instance variables.

4. Add the accessor methods addGuest and clearGuests, as shown in the listing,

"T'he addGuest method adds an object of class Guest to the end of the
allGuests array, using the NSMutableArray method addObject.

"T'he clearGuests method removes all the objects from the array using the
NSMutableArray method removeAllObjects.

5. Save Application.java.

Adding Guests to the Guest List

Now, when the user submits the form, you’ll add the information to the
allGuests array rather than displaying it directly.

1. Switch to the code for Main.java.

LY

Chapter 2

Enhancing Your Application

2. In the submit method, add the following code before the return statement:

((Application)application()).addGuest(currentGuest);
currentGuest = new Guest();

"This code calls the application’s addGuest method, which adds an object (in
this case, currentGuest) to the end of the array. Then it creates a new Guest
object to hold the next guest’s data.

Note: The addGuest method is defined in the class Application, which is a
subclass of WOApplication. The component’s application method (called in
the above statement) returns an object of type WOApplication, so you
must cast it to Application in order to access its addGuest method.

Your next step is to create a new component to display the list of guests that
allGuests stores.

Adding a Second Component

4

In this section, you’ll create a new component. Instead of Java, you’ll implement
its code using WebScript. This section demonstrates the quick turn around
between development cycles when using WebScript.

1. In Project Builder’s browser, click Web Components in the first column.
2. Choose File » New in Project.
Note that the Web Components suitcase is selected.
3. 'Iype GuestList as the name of the new component, then click OK.
The WebObjects Component Wizard appears.

4. Choose None for Available Assistance and WebScript for Component
Language.

5. Click Finish.

6. Inthe second column of the browser, double-click GuestList.wo to bring up the
component window in WebObjects Builder.

7. Create a heading for this page, as you did for the Main component. Call it
“Guest List” (or something else of your choosing), then press Enter twice.

Adding a Second Component

8. Add a WOString below the heading. After the WOString, type the text
“ guests have signed this guestbook.”

You’re going to bind this WOString so that it reflects the number of
guests who have submitted this form (see screen shot on next page).

9. In the object browser, click application.

There is an entry in the second column for the allGuests application
variable you created. This entry appears in the Main component as
well, since application variables are accessible from anywhere in the
code.

If you click allGuests, you’ll see in the third column an entry for count.
"This is a standard method that returns the number of objects in the
array.

10. Make a connection from count to the center rectangle to bind it to the
WOString’s value attribute.

" e dLisiwo - DM otemapeEEree a0 sV e bl bje ' G 9880k Fles

fla Eci Fgwad Epwarkc Joor Pelstier Sindoa Jeracar Help

Ao|@| Bl u|T| =] =] & E

B EE R E N EE
Guest List B

Ii|:|i' gaeests have siqred s puesthaok|

B il D
clanGuesls
| E |
| E i Gasgribl i sivwas =4 |

allGuests. count represents the number
of objects in the array. Drag to bind it to the
WOString.

Chapter 2 Enhancing Your Application

11. Save the GuestList component.

You need to do one more thing so that the GuestList page now displays
when the user submits the form.

12. Go back to Project Builder and view the source code for Mainjava. Replace the
return statement in the submit method with the following code:

return pageWithName("GuestList");

pageWithName is a standard WebObjects method (defined in the
WOApplication class) that allows you to specify a new page to display.

At this point, the code for Mainjava looks like this:

1| W e Al X
{0LT NeaT 11" ry
T real v, e
T neal. . ®
fiin eatends e, v Cpeponent. {

il BARAL. DARTEE R,
Codfaiqaid. pailifs |

o bped Aot o) Ol d ok e 1] . AR DA TR famad]
T famal. = ra famald)
TAET D000, | | [eea) [bl L L1
1

i |
i
L]
DATRNLEARAr. w redd BBl]

13. Save Main.java.
14. Build and run your application.

Each time you submit the form, the number of guests displayed in the
WOString should increase.

"To return to the Main page, you’ll have to use your browser’s backtrack
button. Later in the tutorial, you’ll add a hyperlink to return to the Main

page.

Using a Repetition

Now you’ll create a table to display the entire list of guests in the GuestList
component. To do so, you’ll use a dynamic element called a repetition (an
instance of the WORepetition class). Repetitions are one of the most important

46

Using a Repetition

elements in WebObjects, since it is quite common for applications to
display repeated data (often from databases) when the amount of data to be
displayed isn’t known until run time. Typically, a repetition is used to
generate items in a list or a browser, multiple rows in a table, or multiple
tables.

A repetition can contain any other elements, either static HT'ML or
dynamic WebObjects elements. In the GuestList component, you'll create
a repetition that contains a table row.

You'’ll bind the allGuests array to the WORepetition’s list attribute. "This tells
WebObjects to generate the elements in the repetition once for each item
in the array. Each time WebObjects iterates through the array, it sets the
repetition’s item attribute to the current array object. You bind item to the
variable currentGuest and use currentGuest’s ficlds to bind the elements inside the
repetition (such as WOStrings). At run time, the table will consist of one row
(displaying name,

e-mail address, and comments) for each guest.

1. In WebObjects Builder, make the Main component window active
(double-click Main.wo).

2. Select the table at the bottom of the page by clicking outside it and
dragging across it.

3. Choose Edit» Copy.
4. Make the Guestl.ist component active.
5. Place the cursor at the bottom of the page and choose Edit» Paste.

You have just copied the table from Main into GuestList. It has all the
same properties, including the bindings. The WOStrings in the table
are still bound to instance variables of currentGuest. Since currentGuest is a
component variable defined in Main, it isn’t accessible from
GuestLuist. Therefore, you need to declare it here.

6. From the pull-down menu at the bottom of the window, choose Add
Variable/Method. Enter currentGuest as the name of the variable
and Guest as its type, and click Add.

7. Choose ﬂ from the Elements pop-up list to display the Tables
buttons.

47

Chapter 2

Enhancing Your Application

48

10.

11.

12.

Click somewhere in the table, then click E in the toolbar to enter
structure-editing mode. (Alternatively, Control-click on the table.)

Click one of the triangles in the second row to select the entire row.

Choose ﬂ to display Other WebObjects in the toolbar and click ﬂ

When you wrap a repetition around a table row in this way, the

WORepetition symbol g doesn’t appear in the table. Instead, a blue
border appears around the row. For additional examples of using
repetitions, see Chapter 3, “Creating a WebObjects Database Application”
(page 53).

In the object browser, select application in the first column.

In the second column, make a connection from allGuests to the entire row (zof
a WOString in a cell).

The Inspector window for that element opens. To display the

WORepetition bindings click on the ﬂ icon at the top of the inspector.

Using a Repetition

"The list attribute is selected by default.

Element path shows that WORepetition is
contained by table and contains a table row.

Select table row, then click here
to create repetition around row.

30 O] W) M= e) e
LI EEE = =
Guest Lizo [

babe Biadc | Diynanic mpiciar ¢ |

r.’.: mpplicetion. nllmayts -:r-ml.'ﬂ et havew sigread hi Fr— I“ a I

Fl=]
Lellii g1 1T

=

clarGuasls

E
[EdilGuwilinpas =[] ﬂ Aeddl Abiturie |
|

Blue border and background Drag variable to table row Click here to bind
means row is in a repetition. to bind to repetition. allGuests to the
repetition’s list attribute.

13. Click Connect to bind application.allGuests to the list attribute.
14. Bind currentGuest to the repetition’s item attribute.

As a short cut, you can select the row for item, then double-click in the
Binding column and type currentGuest.

By using the name currentGuest for the item attribute, you are taking
advantage of the fact that the strings in your table are already bound to
the fields of currentGuest.

You now have finished implementing the repetition. When the table is
generated, it will have one row for each item in the allGuests array.

49

Chapter 2

Enhancing Your Application

15. Save the GuestList component.
16. Delete the table from the Main component, since you no longer need it.
17. Build and launch your application.

18. Test your application by entering data for multiple guests and verifying that
each guest appears in the table.

Adding the Finishing Touches

50

There are a few additional things left to do to make your application a bit more
user friendly:

¢ Add a button that, when clicked, clears the guest list.
¢ Add a hyperlink to the GuestList page that allows users to return to the
Main page.

Clearing the Guest List

While developing your application, you may find it useful to be able to remove
all guests from the list. ('Typically, you wouldn’t allow users to remove all guests
from the list.)

1. In WebObjects Builder, make the GuestList component window active.

2. Choose Add Action from the pull-down menu at the bottom of the window.
In the panel, enter clearGuestList as the name of the action and set the
page returned to nil. Click Add.

3. Choose View Source File from the pull-down menu.

Project Builder displays the code for GuestListwos. GuestList.wos is your script
file, the WebScript equivalent of Mainjava in the Main component. For
WebScript components, the script files are stored under the component,
rather than in the Classes bucket. You’ll notice that there is a skeleton of
the clearGuestlist action method, using WebScript syntax, as well as the
declaration for currentGuest that you created previously.

4. Enter the following code before the return statement in clearGuestList:

[[self application] clearGuests];

Adding the Finishing Touches

"T'his code calls the application’s clearGuests method, which removes all
the Guest objects from the array.

5. Save Guestlistwos by choosing Save from the File menu.
6. Go back to WebObjects Builder.

7. Place the cursor below the table and press Enter.

8. Choose ﬂ from the Elements pop-up list and click g toadd a
WOForm element to contain the following button

9. Click 2]

"This creates a submit button that the user will click to clear the guest
list.

10. Using the Inspector, bind the submit button’s value attribute to Clear
Guest List.

This changes the title of the button. Note that the quotes are
necessary to indicate that you’re binding a string, not a variable.

11. Bind the action attribute to clearGuestList.

When the user clicks the button, the clearGuestList action method is
called, which causes the guest list to be cleared and the page to be
redrawn.

Adding a Dynamic Hyperlink
Now you’ll create a hyperlink that returns the user to the Main page.

1. Place the cursor below the submit button (outside the rectangle of its
containing form).

2. Choose ﬂ from the Elements pop-up list and click ﬂ
3. 'Iype Return to Sign-in Page, replacing the selected text.

4. Inspect the hyperlink.

51

Chapter 2

Enhancing Your Application

52

5. Select the pageName attribute, then double-click in the Binding column and

type "Main" (including the quotes) .

Note: You must specifically type the quotation marks in “Main”, because
you are specifying a string representing the name of the page to be
returned. If you left off the quotes, you would be specifying a variable or
method called Main.

Save the GuestList component.
"Test your application.

Note: In this case, you don’t have to rebuild and relaunch your application in
order to test it. Building is only required when you have made changes to
Java or Objective-C code. If you modify a component or WebScript code
only, the changes take effect even if the application is already running.

The GuestList page should now look like this:

v Netzcape - [Page Title]

Chapter 3 Creating a WehObjects
Database Application

One of the most powerful features of WebObjects is its ability to provide
access to databases. To do so, it uses a framework called the Enterprise
Objects Framework. This chapter introduces you to the Enterprise Objects
Framework by showing you how to create a simple database application.
T'he steps you take in creating this application demonstrate the principles
you’ll use in every other application you develop with the WebObjects and
Enterprise Objects Framework.

"The application you’ll create in this tutorial is called Movies. [t makes use
of a sample database, the Movies database, that contains information about
movies. In this tutorial we’ll use the OpenBase Lite database that comes
with WebObjects. If you wish to use another database, you need to set up
the Movies database as described in the Posz-Installation Instructions. Also, if
you aren’t familiar with Project Builder and WebObjects Builder, read the
first tutorials in this book, “Creating a Simple WebObjects Application”
(page 5) and “Enhancing Your Application” (page 31), which introduce
basic concepts and procedures you should know before you go on.

In this tutorial, you will:

e Use the WebObjects Application Wizard to create a fully functional
Main component that reads and writes from the Movies database.

e Create and configure display groups for interacting with a database in
terms of objects.

e (Create bindings between display groups and a user interface.
e Write code to manipulate display groups’ selected objects.

e Set up display groups in a master-detail configuration.

¢ Use EOModeler to maintain a model file.

e (reate custom enterprise object classes.

Along the way, you’ll learn basic Enterprise Objects Framework concepts
you can use to design your own database applications.

95

Chapter 3

Creating a WebObjects Database Application

The Movies Application

56

The Movies application has two pages, each of which allows you to access
information from the database in different ways:

® MovieSearch (the main page) lets you search for movies that match user-
specified criteria. For example, you can search for all comedies starting with
the letter “A”. Once you find the movie you’re looking for, you can make
changes to its data or delete it. You can also use this page to insert new

movies into the database.

® MovieDetails displays the actors who star in a selected movie and the roles
those actors play. You can add new roles, change the name of a role, and

assign a different actor to a role

Search for Movies
e R

Titls FIH'\'II'.

ey |'.¢---w-;

Fosaag |-

Diate Peleaged |21 Sap 1965

Foraerae femaim

= L:.J] o
et || B il

e Bl e

Movie Details

Afier Maurs

Categery: Comedy

Bating B

Diwie Kelpsoed: 23 Sep 195
Blerwsmatin: & 2,500, 0] 1)

Mlarving:

Ten Cour a5 Juks

Liseli Foimeritms i Ko
Borwme Sroqueis as Moy

Ar Tl -
Rt] ﬂ
Yomgpra
Farsare AzdatJabher
CEL DEN T =
Role ame: Ill-ll"
= || 5| =
Wb | | S i Dot e
| rb =

The Movies Application

Enterprise Objects and the Movies Database

Enterprise Objects Framework manages the interaction between the
database and objects in the Movies application. Its primary responsibility is
to fetch data from relational databases into enterprise objects. An enterprise
object, like any other object, couples data with methods for operating on
that data. In addition, an enterprise object has properties that map to stored
data. Enterprise object classes typically correspond to database tables. An
enterprise object instance corresponds to a single row or record in a database
table.

"The Movies application centers around three kinds of enterprise objects:
Movies, MovieRoles, and Talents. A movie has many roles, and talents (or
actors) play those roles.

The Movie, MovieRole, and Talent enterprise objects in the Movies
application correspond to tables in a relational database. For example,
the Talent enterprise object corresponds to the TALENT table in the
database, which has LAST_NAME and FIRST_NAME columns. The
"Talent enterprise object class in turn has lastName and firstName instance
variables. In an application, 'Talent objects are instantiated using the data
from a corresponding database row, as shown in the following figure:

lastName "Federighi"O
firstName "Craig"

S

m ‘ TALENT
1028 Federighi Cralg

1132 Feldman Corey

Enterprise Objects and Relationships

Relational databases model not just individual entities, but entities’
relationships to one another. For example, a movie has zero, one, or more
roles. This is modeled in the database by both the MOVIE table and

91

Chapter 3

Creating a WebObjects Database Application

58

MOVIE_ROLE table having a MOVIE_ID column. In the MOVIE table,
MOVIE_ID is a primary #ey, while in MOVIE_ROLE it’s a foreign fey.

A primary key is a column or combination of columns whose values are
guaranteed to uniquely identify each row in that table. For example, each row
in the MOVIE table has a different value in the MOVIE_ID column, which
uniquely identifies that row. "Two movies could have the same name but still be
distinguished from each other by their MOVIE_IDs.

A foreign key matches the value of a primary key in another table. The purpose
of a foreign key is to identify a relationship from a source table to a destination
table. In the following diagram, notice that the value in the MOVIE_ID column
for both MOVIE_ROLE rows is 501. This matches the value in the
MOVIE_ID column of the “Alien” MOVIE row. In other words, “Ripley”
and “Ash” are both roles in the movie “Alien.”

MOVIE_ROLE MOVIE
L O RO 0 » O D
10, .
‘ 28 Ripley 501 ~t—{--501 Alien
132 Ash so1 4| 703 |ToyS
——

Suppose you fetch a Movie object. Enterprise Objects Framework takes the
value for the movie’s MOVIE_ID attribute and looks up movie roles with the
corresponding MOVIE_ID foreign key. The framework then assembles a
network of enterprise objects that connects a Movie object with its MovieRole
objects. As shown below, a Movie object has an array of its MovieRoles, and the
MovieRoles each have a Movie.

Designing the Main Page

movieRoles

NSMutableArray

Every WebObjects application has at least one component—usually named
Main—that represents the first page the application displays. In Movies,
the Main component represents the MovieSearch page.

"To design the Main component, you’ll use the WebObjects Application
Wizard. The wizard performs all the setup that’s necessary to fetch database
records and display them in a web page. Specifying different wizard options
yields different pages: The MovieSearch page is an example of one of the
many different layouts you can generate with the wizard.

Starting the WebObjects Application Wizard
1. In Project Builder, choose Project » New.

2. In the New Project panel, select WebObjects Application from the
Project "Iype pop-up list.

59

Chapter 3

Creating a WebObjects Database Application

9.

Click Browse.

In the Open panel, navigate to a directory where you want to create your
new project.

"Iype Movies in the “File name” field.

Click Save.

In the New Project panel, click OK.

This starts the WebObjects Application Wizard.
Choose Wizard under Available Assistance.

With this option, the wizard guides you through the creation of a Main

component for your application. When you finish, you can immediately
build and run your application without performing any additional steps
and without adding any code.

Choose Java as the primary language.

10. Click Next.

Specifying a Model File

A model associates database columns with instance variables of objects. It also
specifies relationships between objects in terms of database join criteria. You
typically create model files using the EOModeler application, but the wizard
can create a first cut at a model as a starting point. Later on, you’ll use
EOModeler to modify the model created by the wizard.

Designing the Main Page

Wkt Apphoaion 'Wiead

%j Speaify a model that defines your database-to-objects mapping.

4&:« [

 Opan edsing nodel fie |

Wadal Fie |

Select this option.

cancal_| st [[Creis|]

1. Choose “Create new model.”

2. Click Next.

Choosing an Adaptor

An adaptor is a mechanism that connects your application to a particular
database server. For each type of server you use, you need a separate
adaptor. WebObjects provides adaptors for OpenBase Lite, Informix,
Oracle, and Sybase servers. If you’re working on a Windows platform,
WebObjects also provides an ODBC adaptor for use with ODBC-compliant
database sources.

1. In the wizard panel, choose the adaptor for your database.
2. Click Next.

Alogin panel for the selected adaptor opens. Different databases
require different login information, so each database’s login panel
looks different. Shown below are the login panels for the OpenBase
Lite, ODBC and Oracle adaptors.

61

Chapter 3

Creating a WebObjects Database Application

62

FloDun Soasos Machine Do Sousce |

Dt 5 iains H e _Topes | Dipsaepion
[Hcwms | Syt
Fantuk Syran

tha.-l

A Hactwna Dals Soucs o rpecic iz B machras, sncl canrot be chaed.
Thied” bt ddBosd a0 e et 0 b Papobines. e’ ik
sparez can b uoed by sl woer om B mactra, o by 8 Tpriemesace Tarace.

Sanver 1D | CRCL
User fame | ovies
Password |

| QK | Carael

3. Complete the login panel.

If you are using the preinstalled OpenBase Lite database, click “Set Path”,
browse to the \Apple\Local\Library\Databases\ directory, and click Open. “Movies”
will now appear in the Database pop-up list. Click Login.

If you are not using OpenBase Lite, specify the connection information
you provided when you created and populated the Movies database. Posz-
Installation Instructions provides more information.

4. Click OK.

When you use the wizard to create a model file, the wizard uses the adaptor you
specify to connect to your database. With the information you specified in

the adaptor’s login panel, the adaptor logs in, reads the database’s schema
information, and creates a model. The wizard uses your answers to the questions
in the next several pages to configure that model.

Designing the Main Page

Choosing What to Incdude in Your Model

In this next wizard page, you can specify the degree to which the wizard
configures your model.

W pElspecic Spplhcaten Wiesad

3} Choose what to include in your model.

I [Bssign prmany ieys | A Py A 15 & LAY R DR AN G oo W
bl ki s VA A AT AT SR el S st oo i e
o ELERR IR

& A5k abail ralalonships A 0 R el SR SRl rL
Lotipen L

&gk about dored ARohs J0d & SO SRR BECR0ked Sl b s
TR Bl L § Satabacs (e} i dachae (9 e ngiar
F Lkisa ik @ nleep it e O g bR Shadi 0 e o N Kol
abjecl: T w2y A umas s e chene Snssas (e S s
Bitial 2 Phair g, | VR M I AR Mo Co
o)

_ Cancal | = Back s ast |

The basic model the wizard creates contains ezntities, attributes, and
relationships. An entity is the part of the database-to-object mapping that
associates a database table with an enterprise object class. For example, the
Movie entity maps rows from the MOVIE table to Movie objects. Similarly,
an attribute associates a database column with an instance variable. For
example, the title attribute in the Movie entity maps the TTTLE column of
the MOVIE table to the title instance variable of Movie objects.

A relationship is a link between two entities that’s based on attributes of the
entities. For example, the Movie entity has a relationship to the MovieRole
entity based on the entities’ movield attributes (although the attributes in this
example have the same name in both entities, they don’t have to). This
relationship makes it possible to find all of a Movie’s MovieRoles.

How complete the basic model is depends on how completely the schema
information is inside your database server. For example, the wizard includes
relationships in your model only if the server’s schema information specifies
foreign key definitions.

Using the options in this page, you can supplement the basic model with
additional information. (Note that the wizard doesn’t modify the
underlying database.)

1. Check the “Assign primary keys to all entities” box.

Chapter 3

Creating a WebObjects Database Application

64

F Assign primauy ke A prtmany hey in m b o st o oo s wahg s
1 2l enities “"-"‘wmmmw“ﬁ*

Enterprise Objects Framework uses primary keys to uniquely identify
enterprise objects and to map them to the appropriate database row.
Therefore, you must assign a primary key to each entity you use in your
application. The wizard automatically assigns primary keys to the model if
it finds primary key information in the database’s schema information.

Checking this box causes the wizard to prompt you to choose primary keys
that aren’t defined in the database’s schema information. If your database
doesn’t define them, the wizard later prompts you to choose primary keys.

Check the “Ask about relationships” box.

F ik ol rl R s s A 0 e Rt sy ke
BT,

If there are foreign key definitions in the database’s schema information,
the wizard includes the corresponding relationships in the basic model.
However, a definition in the schema information doesn’t provide enough
information for the wizard to set all of a relationship’s options. Checking
this box causes the wizard to prompt you to provide the additional
information it needs to complete the relationship configurations.

Uncheck the “Ask about stored procedures” box.

™ A5k sibed U ioea o RN o T e e Do e A e
AroGedunes SEFREa PR RO R N AN RGO,

Checking this box causes the wizard to read stored procedures from the
database’s schema information, display them, and allow you to choose
which to include in your model. Because the Movies application doesn’t
require the use of any stored procedures, don’t check this box.

Uncheck the “Use custom enterprise objects” box.

[T sk ciskm e se P SRR SN DR L P RO 00 00 S
chiaris The wirem' assvoms Kb ode cosioe slvsser e She smoer
i i MR SRR s i A SRS M S

FENTO}

An entity maps a table to enterprise objects by storing the name of a
database table (MOVIE, for example) and the name of the corresponding

Designing the Main Page

enterprise object class (a Java class, Movie, for example). When
deciding what class to map a table to, you have two choices:
EOGenericRecord or a custom class. EOGenericRecord is a class
whose instances store key-value pairs that correspond to an entity’s
properties and the data associated with each property.

If you don’t check the “Use custom enterprise objects” box, the wizard
maps all your database tables to EOGenericRecord. If you do check
this box, the wizard maps all your database tables to custom classes.
The wizard assumes that each entity is to be represented by a custom
class with the same name. For example, a table named MOVIE has an
entity named Movie, whose corresponding custom class is also named
Movie.

Use a custom enterprise object class only when you need to add business logic;
otherwise use EOGenericRecord. The Movies application uses
EOGenericRecord for the Movie entity and custom classes for the
Talent and MovieRole entities. Later on, you’ll use EOModeler to
specify the custom classes.

5. Click Next.

Choosing the Tables to Include

1. Inthe wizard panel, select MOVIE, MOVIE_ROLE, and TALENT in
the Tables browser.

|BJI Choose e takdes o melude inyour model.
/ Ctl-shift-click to select
more than one table.
Totsinn y4 B
[FECTOR =
Tmlaci &l '| Click to select all the tables.
TALEHT FHOTD bl el 'I Click to deselect all
the tables.
E
Cancal L O | |

"T'he wizard creates entities only for the tables you select. Since
the Movies application doesn’t interact with any of the other tables (for

65

Chapter 3

Creating a WebObjects Database Application

example, DIRECTOR, PLOT_SUMMARY, STUDIO, and
TALENT_PHOTO), you don’t need to include them in the model.

2. Click Next.

Specifying Primary Keys

If you are using a database that stores primary key information in its database
server’s schema information, the wizard skips this step. The wizard has already
successfully read primary key information from the schema information and
assigned primary keys to your model.

However, if primary key information isn’t specified in your database server’s
schema information (as with Microsoft Access), the wizard now asks you to
specify a primary key for each entity.

WekliEecic Apphoaton YWiesd

kf Choose the primary key for Movie.

it |

Her A SRR e T
alegary e SRR AN SR R
daleAnl paned A RN
Language
Shift-click to select more
raing than one attribute.
[l
sudinid
e
H

cancal_| «Bat | Mwts |

1. Select movield as the primary key for the Movie entity.

2. Click Next.

3. Select both movield and talentld as the primary key for the MovieRole entity.
MovieRole’s primary key is compound, that is, it’s composed of more than
one attribute. Use a compound primary key when any single attribute isn’t
sufficient to uniquely identify a row. For MovieRole, the combination of
the movield and talentld atcributes is guaranteed to uniquely identify a row.

4. Click Next.

Designing the Main Page

5. Select talentld as the primary key for the Talent entity.

6. Click Next.

Specifying Referential Integrity Rules

If you’re using a database that stores foreign key definitions in its database
server’s schema information, the wizard reads them and creates
corresponding relationships in your model. For example, Movie has a to-
many relationship to MovieRole (that is, a Movie has an array of
MovieRoles), and Talent has a to-many relationship to MovieRole. The
wizard now asks you to provide additional information about the
relationships so it can further configure them.

! Spezalfy relerenilal Integrivy rules Sor Movie's movie Rolefaray In this example, the relationship
relationskip. name is movieRoleArray, but
the name is dependent on the
adaptor you're using.
= Wi pare B P LR T T P A
bawisRris nhjecit e e Sy ary, cwele dHime dosr doun e
it abran
e e b EhEiE,
8 Sk byl I HTRR B o
= Catomia] e i o i Y ko sy gty
~ Durry b et et Ao B0 B ke I BT AR
A LT
Cancil alach | pwds | |

If foreign key definitions aren’t specified in your database server’s schema
information (as with Microsoft Access), the wizard hasn’t created any
relationships at all, and it skips this step. You’ll add relationships to your
model using EOModeler later in this tutorial.

In the first relationship configuration page, the wizard asks you about
Movie’s relationship to MovieRole. The name of the relationship is
dependent on the adaptor you’re using.

1. Check the “Movie owns its MovieRole objects” box.

7 M aens 5 vV G AT T
IR : TR, s AN NG

67

Chapter 3

Creating a WebObjects Database Application

6.

"This option specifies that a MovieRole can’t exist without its Movie.
Consequently, when a MovieRole is removed from its Movie’s array of
MovieRoles, the MovieRole is deleted—deleted in memory and deleted in
the database.

Choose Cascade.

e hiovin b doiaiod..
~ HuK it e s Mo £
" Dot S8 £ WOV 5 AN V.
r Deny 5 et Tl (AN I de et S0 A ATy

RN B .

"This option specifies what to do when the source object (the Movie) is
deleted. The cascade delete rule specifies that when a source object

is deleted, the source’s destination objects should also be deleted—again,
deleted in memory and correspondingly in the database.

Click Next.

Now the wizard asks you about Talent’s relationship to MovieRole.
Check the “Talent owns its MovieRole objects” box.

Choose Deny.

The deny delete rule specifies that if the relationship source (a Talent) has
any destination objects (MovieRoles), then the source object can’t be
deleted.

Click Next.

You’re done with the model configuration part of the wizard. The rest of the
wizard pages are to help you configure your application’s user interface.

Choosing an Entity

In this page, the wizard asks you to choose the entity around which the
Main component will be centered. Your Main component centers around
the Movie entity.

1.

2.

Select the Movie entity.

Click Next.

Designing the Main Page

Choosing a Layout

"The wizard provides several page layout options for formatting objects

fetched from the database.

1. Choose Selected Record.

2. Choose Matching Records.

sl Choose a

Titde

o Y —
L= - | i —
=y |

Sald] |
Fiz]
Fla 1

Cancal |

1 B B Pl
I~ Tubdw

™ Dhiplay &1
v [l g e]
r Paginaced [perPage

= Waci Pl = I

A preview of the page is an
approximation of what the
finished page will look like
given your choices. (The
number of fields and items
isn't necessarily the exact
number that will be in the
finished page.)

The wizard generates a
title based on your chosen
entity.

Specifies that the page will
have a way to select a
record from a list and a
way to edit that selected
record.

Specifies that the page will
have a way to specify
search criteria.

Based on your specifications, the wizard shows you a preview of the
page it will generate. To see how the wizard’s preview corresponds
with the actual page the wizard will create, the finished page is shown

below.

69

Creating a WebObjects Database Application

Search for Movies

Speecify wihich Mowes to dsplay below

tifle:
cabagery: |
ratng |

_Metch |

Chck o bink 1o select that fosme

title |-'Hn-u-cul:.-1:l-.-eHI:rw

rategory | Chrevrmes

ratng [F

dabeBieleased |0 TEA97

revenue [mD
= =i ﬂ|
raarlPirs | | Swaric Cuih

cishuis

This is the query part, where users
type search criteria. Clicking Match
fetches movies that meet the criteria
and displays their titles in the
repetition part in the middle of

the page.

This is the repetition part. Clicking
a movie title selects the movie and
displays it in the editing part at

the bottom of the page.

This is the editing part, which
displays information about the
selected movie. You can use this part
to edit or delete the selected movie,
to create a new movie, and to save
your work.

There are three parts to this page: the query part (at the top of the page),
which contains fields into which users provide search criteria; the repetition
part (in the middle of the page), which contains a list of matching records
fetched from the database; and the editing part (at the bottom of the page),

which allows you to make changes to the selected record.

3. In the wizard panel, click Next.

Choosing Attributes to Display

The next step is to choose which of the Movie entity’s attributes to display in

the editing part at the bottom of the page.

1. Move attributes from the Don’t Include list to the Include list.

Designing the Main Page

SI Choase ariribuies b dspln.

Double-click an attribute to
move it to the Include list.

bl
Albuer OR
] e |
culuger Select an attribute...
1alin

- ...and click here to move it.

=L
<1

Cancil | « Wach P = I |

The order in which you add the attributes determines the order in
which they appear on the page, so add them in the following order: title,
category, dateReleased, and revenue.

Don’t add any of the remaining attributes (for example, trailerName,
studiold, posterName, and language)—they aren’t used in this tutorial.

2. Click Next.

Choosing an Attribute to Display as a Hyperlink

You now need to specify the attribute used in the repetition part of the page
to identify each record. This attribute will be displayed as a hyperlink.
Clicking the hyperlink displays the corresponding record in the detail
part of the page.

1. Add the title attribute to the Include browser.
2. Click Next.

Choosing Attributes to Query On

Specify the attributes to display in the query part of the page. The wizard
creates search criteria fields for each of the attributes you choose.

1. Add the title, and category attributes to the Include browser.

2. Click Finish.

n

Chapter 3

Creating a WebObjects Database Application

12

When the wizard finishes, your new project is displayed in Project Builder. The
wizard has produced all the files and resources for a fully functional, one-page
application. All you need to do before running your Movies application is

build it.

L] L]
Running Movies
Build and run the application as yvou did in the previous tutorials.

tile
ategury

raing

TR LT

Search for Movies

Speeifty whach Mowes bs Baplay balowr

tifle: |
cabegery |
retr |
I
B

Click o bink to select that soems

[apocabpes How
[Ciremes

[F

dabeBieleased 00,1097

EETTIA

| .
=S =

Type matching criteria. A database string
matches if it begins with the string in the text
field. For example, strings match “The” if they
start with the string “The”.

Click here to fetch and return matching
movies.

Click a movie to select it and display its
information below.

Use these text fields to edit the information
about a movie.

Click here to create a new, empty movie.

Click here to delete the selected movie.

Click here to save your work in the database
(add the new movies you inserted, remove the
movies you deleted, and save changes you
made to existing movies).

Experiment with the application by entering different search criteria and

inserting, updating, and deleting movies. For example:
1. Search for all movies beginning with the letter “A”.

Type “A” in the title field, and click Match.

2. Change the attributes of one of the movies and click “Save to database.”

When you’re done, perform another search to verify that your change was

saved.

Examining Your Project

3. Ity entering dates with different formats.

In the same movie, try changing the dateReleased field using different
formats (for example, “6/7/97,” “June 7, 1997,” and “today”). Save
each time after changing the date.

4. Create a new movie

Click Insert/New to create a new, empty movie. Fill out all the fields,
and click “Save to database.” Search for your movie to verify that it
was saved successfully.

5. Delete your movie.

With your movie selected, click Delete and then click “Save to
database.” When you’re done, search for the movie again to verify that
it’s been deleted.

Examining Your Project

Whenever you create a new project, Project Builder populates the project
with ready-made files and directories. What it includes depends on the
choices you make in the wizard, so this project has a set of files different
from those of the GuestBook project.

Like GuestBook, the Movies project contains a Main component (Main.wo).
It also includes some files that the GuestBook doesn’t have: classes
(Application.java, Session.java, DirectAction.java, and Main.java), a model file, and images
used by the Main component.

In Project Builder, navigate to the Movie project’s Resources category. This
is where the model, named Movies.eomodeld, is located. Later in this tutorial
you’ll use EOModeler to open the model and enhance it.

13

Chapter 3 Creating a WebObjects Database Application

ﬁ| q"'| ﬂ | EII 7ﬂg';;‘l DFroniPeg et ebs W Contend ﬂ

e oo R | |
s i "
Headsn .
WOUTwa T 1S40 LR i P

‘Wil S FEsoIas

Subpmiescis =

Eaipposting Files .

Frameesarts I-LI ;I ;I
L H

Navigate to the Web Server Resources category. This is where your project’s
images are located: DBWizardUpdate.gif, DBWizardDelete.gif, and DBWizardInsert.gif, for the
“Save to database,” “Delete”, and “Insert/New” buttons, respectively.

The biggest difference between the GuestBook and Movies projects are their
Main components. Whereas the Main component you created for the
GuestBook project was empty, the Main component for the Movies project
contains a fully functional user interface. Also, the Main.java class already contains
code that supplies the component with behavior. In the next sections, you’ll
examine Movies’ Mainwo component and its Main.java class.

14

Examining Your Project

Examining the Variables

1.

Double-click Main.wo in Project Builder’s WebObjects Components
category to open the Main component in WebObjects Builder.

There are four variables in the object browser: the application and session
variables that are available in all components and two others, movie and
movieDisplayGroup.

"The movie variable is an enterprise object that represents a row fetched
from the MOVIE table. movieDisplayGroup is a display group—an object
that interacts with a database, indirectly through classes in the
Enterprise Objects Framework. Display groups are used to fetch,
insert, update, and delete enterprise objects that are associated with a
single entity. movieDisplayGroup’s entity is Movie, which you specified in
the wizard’s “Choose an entity” page.

In Project Builder, look at the class file Mainjava to see how movie is
declared.

The movie declaration (shown below) declares movie to be an
EOEnterpriseObject—a Java interface that describes the general
behavior that all enterprise objects must have.

/** @TypeInfo Movie */
protected EOEnterpriseObject movie;

At run time, movie is a EOGenericRecord object. Recall that
EOGenericRecord is used to represent enterprise objects unless you
specify a custom class. Since you didn’t check the “Use custom
enterprise objects” box in the wizard’s “Choose what to include in
your model” page, your application defaults to using
EOGenericRecord for all its entities.

The comment (/** @TypeInfo Movie */)isused by WebObjects
Builder to identify movie’s entity (Movie). Knowing the entity allows
WebObjects Builder to display movie’s attributes (category, dateReleased, and
so on). You can see movie’s attributes if you select the movie variable in
the WebObjects Builder’s object browser.

In Project Builder, examine movieDisplayGroup’s declaration in Main.java.

The declaration (shown below) declares movieDisplayGroup to be a
WODisplayGroup.

protected WODisplayGroup movieDisplayGroup;

15

Chapter 3

Creating a WebObjects Database Application

16

Also note the comment explaining how movieDisplayGroup is initialized. The
Main.java class doesn’t have any code to create and initialize the display
group. Instead, it’s instantiated from an archive file, Main.woo, that’s stored in
the Mainwo component. You shouldn’t edit woo files by hand; they’re
maintained by WebObjects Builder. The woo file archiving mechanism is
described in more detail later in “Specifying a Sort Order” (page 81).

Examining the Bindings

Now examine the bindings of your Main component in WebObjects Builder.

Search for Movies

S e iy W T B D Sl ey Dl o

Wle !

e LS S L SRET O Dl pRRELn LIk]E

2

—

cabgary |

srualimElrsirse aarsfakch cakegEry

raling: i

o e

vyl el pd e aroen . qusEyiiatoh. rating

| [mevvia -.|-.I|If
5

Clbck a liak o Silert Ml e
e L LT LS L ey e e] wpene
]

1] [il:\-'.I: Lelerarsoes salectedE mct kakln
Caka gy il:\-'.I: Liplediroe salsckedle mct cabegory
raing il:\-'.I: Lmplediroe salsckedle mck rebang

tharka A el a5 el il\:\-'.l: Lplediroe salsctedle mct

cnkaZulasanc

T B Lkl il\:\-'.l: Lplediroe salsctedle mct

[a oy L

=l

Everything within this gray
box is in a form.

The “underline” on this text
field indicates that it's
selected.

This is a repetition.

Everything within this gray
box is in the repetition.

This gray box identifies
another form.

This is a table with five rows
and two columns.

This text field is in a
table cell.

This is a WOImageButton.

Remember that you can use WebObjects Builder’s Inspector to see the bindings
for an element’s attributes. Simply select the element to inspect, and click the

ﬂ'_ button to open the Inspector.

Examining Your Project

Bindings in the Query Part

In the query part of the component, movieDisplayGroup.queryMatch.title is bound to
the Title text field. There are similar bindings to the Category text fields.
"The queryMatch bindings allow users to specify search criteria to use when
movieDisplayGroup next fetches movies. The Match button is bound to
movieDisplayGroup.qualifyDataSource, which actually performs the fetch.

For example, to display all comedies, a user types “Comedy” in the
Category text field, and clicks the Match button. movieDisplayGroup then
refetches, selecting only movies whose category values are set to Comedy.

Aty which Morvies tn oisplasy el ey

™ sl nlaapl sy broup . uerytistchi bk le
e e A e B D Cp T 0, ek B

calzyony: |

1ng iml.d?ll.q:l.r\.-:r\u qardiebch. raking

wakch |

Bindings in the Repetition Part

In the repetition part of the component where matching movies are listed,
movieDisplayGroup.displayedObjects is bound to a repetition. More specifically,
displayedObjects is bound to the repetition’s list attribute, providing an array
of movies for the repetition to iterate over.

"T'he movie variable is bound to the repetition’s item attribute to hold each
movie in turn, and movieitle is bound to the string element inside the
repetition. These bindings produce a list of movie titles.

Displays the binding for the

Y repetition’s list attribute.

PR morv e L oni LS LA s |] e | Displays the binding for the
B [acvin. tar1a] I \ repetition’s item attribute.
] Displays the binding for the

string’s value attribute.

"The repetition’s string element is enclosed in a hyperlink. By clicking a
movie title, the user selects the corresponding movie.

n

Chapter 3 Creating a WebObjects Database Application

1. Inspect the hyperlink.

Its action attribute is bound to the action method selectObject.

T T - |
Bi-qa-@- 2

| [
e Giaic | ak2 Irnpiaciar w |
Airhsie | Bving]
i L s il |

2. Look in the Main.java class to see how the selectObject method is implemented.

The method (shown below) simply sets movieDisplayGroup’s selected object to
the movie the user clicked.

public void selectObject() {
movieDisplayGroup.selectObject (movie);

}

Bindings in the Editing Part

The text fields in the editing part are all bound to attributes of the
movieDisplayGroup’s selectedObject—the movie on which the user clicked. Typing new
values into these fields updates the Movie enterprise object. To actually save
the updated values to the database, the user must click the “Save to database”

button.
] [|m|.-l:l|.|:|l.r|i.'|m.p s lectaddh jact. titla
Cakagary: |m|.il|.q:l.n-ir\-m.p malecteddh ject. ontegary
|.‘||||:| |m|.ll|.q:|.nﬂrmp s lacteddh ject. rating

harieai Fl e et 6 e |m|.d:l|.q:l.nﬂrmp L= badh juct . duiaPalasssd

T G L |m|.-l:l|.q:l.l'\.i.'.r\a.p s Le=badTh jact . T
— - —
r F - "
= 55 B

raarifire Drai Culi
dubaba 20

18

Examining Your Project

Inspect the middle image button.
Its action attribute is bound to the action method saveChanges.
Look in the Mainjava class to see how saveChanges is implemented.

The method (shown below with comments omitted) simply saves any
changes that have been made to movieDisplayGroup’s objects to the
database.

public void saveChanges() throws Exception {

try {
this.session().defaultEditingContext().saveChanges();

}

catch (Exception exception) {
System.err.println("Cannot save changes ");
throw exception;

}

this.session() returns a Session object that represents a connection to the
application by a single user. A Session object provides access to an
EOEditingContext object. The expression

this.session().defaultEditingContext().saveChanges();

sends a saveChanges message to the Session’s defaultEditingContext. T"his
default EOEditingContext object manages graphs of objects fetched
from the database, and all changes to the database are saved through it.
For more information, see the EOEditingContext class specification in
the Enterprise Objects Framework Reference.

An EOEditingContext’s saveChanges method uses other Enterprise
Objects Framework objects to analyze its network of enterprise objects
(Movie objects referenced by the application) for changes and then to
perform a set of corresponding operations in the database. If an error
occurs during this process, saveChanges throws an exception. Main.java’s
saveChanges method simply raises the exception, having the effect of
returning a diagnostic page. You could return an error page that
explains the reason for the save failure instead, but the application in
this tutorial uses the default behavior.

Inspect the first and third image buttons to see what their action
attributes are bound to.

They are bound to the movieDisplayGroup.insert and movieDisplayGroup.delete,
methods respectively. The WODisplayGroup insert method creates a

19

Chapter 3 Creating a WebObjects Database Application

new enterprise object, then inserts it into the display group’s list of objects
just past the current selection. The WODisplayGroup delete method
deletes the display group’s selected object. These changes happen only in
memory—not in the database. To actually insert a new row in the database
(or delete a row), the user must click the “Save to database” button,
invoking saveChanges on the session’s EOEditingContext. The editing
context analyzes the enterprise objects in memory; determines if any
objects have been added, updated, or deleted; and then executes database
operations to sync the database with the application.

Refining Main.wo

You may have noticed that your application doesn’t list fetched movies in any
particular order. Also, when you insert a new movie, it appears in the list of
movies as a blank line.

Anewly inserted movie doesn't have
a title set, so it appears in the list
of movies as a blank line.

bl |
R |
radisgy |
datePBelemed: |
rEVEns |
= || 5| & 1
Fauifies || et ()
ity e

In this section you’ll tidy up the user interface to fix these things and a few
others. Specifically, you’ll:

e Configure movieDisplayGroup to sort the movies it displays.
® Assign default values to new Movie objects.
¢ (Change the way that dates and numbers are displayed.

80

Refining Main.wo

You can also put the query part of the page in a table and capitalize
Main.wo’s text field labels—for example, use “Title” instead of “title”
and “Date Released” instead of “dateReleased.”

Specifying a Sort Order

You can change your application to sort movies alphabetically without
writing any code. Display groups manage sorting behavior, and WebObjects
Builder provides a Display Group Options panel for configuring this and
other characteristics of display groups.

1. Double-click the movieDisplayGroup variable in the object browser.

The Display Group Options panel opens for configuring
movieDisplayGroup.

Lmaplarp G rowp U plera

Eniity. | Mawe [
B i Thad =il
[Har delall dats pogme

L) L

= (Choose an attribute to sort on.
Earing |
Enrias per baich |: Tie E

Gudkicaion: Pealx ® & LA m——Select this option to sort from ‘A'to ‘Z'.
" Dipecending

[™ Faiches an lasd Mok Sarnkd

el e

2. Select the title attribute in the Sorting pop-up list.
3. Select Ascending.
4. Click OK.

WebObjects Builder stores your settings in an archive that specifies how to
create and configure movieDisplayGroup at run time. The archive is stored inside
your Main component in a file named Main.woo. You can’t see the file from
Project Builder because you’re not meant to edit it directly, but WebObjects
Builder’s object browser shows you which of your component’s variables are
initialized from the archive (or woo file) so you don’t have to view its contents
directly.

Chapter 3 Creating a WebObjects Database Application

An image in this column means that the variable can be initialized
from the component’s archive.

plication ;l
.:.,E : A ¥ means that initialization parameters are already set. The
o mavicDkalayaimep variable is created and initialized from the archive as a part of the
component’s initialization.
& i G Foaeg - o
seleciobjer A= means that no initialization parameters have been set, and so

the variable isn't automatically created. Double-click the variable to
configure it and add it to the archive.

Specifying Default Values for New Enterprise Objects

When new enterprise objects are created in your application, it’s common to
assign default values to some of their properties. For example, in your Movies
application it makes sense to assign a default value for the title attribute so a new
movie won’t be displayed in the list of movies as a blank line.

You could write an action method for the Insert/New button instead of binding
it directly to the display group insert action method. In the custom action, you
would create a new Movie object, assign default values to it, and then insert the
new object into the display group. However, there are two additional ways to
specify default values for new enterprise objects, without making explicit
assignments:

® Assign default values in the enterprise object class.
¢ Specify default values using a display group.

For a particular situation, one of the approaches is usually better than the other.
If the default values are intrinsic to the enterprise object, assign them in the
enterprise object class. For example, consider a Member class with a memberSince
property. It’s likely that you would automatically assign the current date to
memberSince instead of forcing a user to supply a value. You’ll see how to use this
technique in “Adding Behavior to Your Enterprise Objects” (page 113).

On the other hand, if the default values are specific to an application or to a
particular user interface, explicitly initialize the object in code or specify the
default values using a display group. In the Movies application, the need for
default values is motivated by Main’s user interface: you need to provide a
default value so users can tell when a newly inserted record is selected. In
another situation, you might not want a new movie to have a default title; you
might instead want a new movie’s title to be blank.

The Movies application specifies default values for newly created Movie
objects using the display group, movieDisplayGroup.

1. Open Mainjava in Project Builder.

82

Refining Main.wo

2. Add the following constructor:

public Main() {
super () ;
NSMutableDictionary defaultValues = new NSMutableDictionary();
defaultvValues.setObjectForKey("New Movie Title", "title");
movieDisplayGroup.setInsertedObjectDefaultValues (defaultValues);

}

"T'his method assigns the value “New Movie Title” as the default value
for a new movie’s title attribute. When movieDisplayGroup inserts a new
movie (as it does when a user clicks the Insert/New button), it creates
a new movie and assigns this default value to that movie.

Setting a Date Format

"To change the way that dates are displayed, you assign a date format to the
element that displays the dates.

1. Using WebObjects Builder, inspect the dateReleased text field, which is
near the bottom of the Main component window.

Notice that the text field has a dateformat attribute that is bound to the
string “%m/%d/%y” . 'This binding tells the text field that it’s
displaying dates and describes how to format them. The %m
conversion specifier stands for month as a decimal number, %d stands
for day of the month, and %y stands for year without century.

2. Change the dateformat value to the string (including the quotes) "%d %b
3Y".

"T'his date format displays dates such as 3 Sep 1997. The %b
conversion specifier stands for abbreviated month name, and %Y
stands for year with century. You can create your own date formats with
any of the conversion specifiers defined for dates. For more
information, see the NSGregorianDate class specification in the
Foundation Framework Reference.

83

Chapter 3 Creating a WebObjects Database Application

TV ol Page's’ e b Uantend Ve e hill e S T s sl s Uhpsin &

=l
M plerasiapla e sulactackt et Hitls (wOToniled B B
4 dectadDl: mct. . cat
l:illigﬁn' I-‘n-nl splwirup. anlacks Wk cebagery EZ-EEE'EE'_
Ha.":l sldaplwiroup . anleckadlls mct . rebing J ll
Db Fosi i s Imlh:p\]lﬂf:q:- suleck sclts fack. . det sPal ssand
H & i L I-Inﬂlh:p\]l@'h:q:- :l]l:tld-lb:l:'c CENETAE Hi I Dwmhlrﬁpnﬂ:r .I
— F
= = & ST -
raarifirs fxakl [= CL] T
dubiam 1 ST B T
o Edbur el B laydmaipos

spplication d aliChjects

8 ricid D1 FLETHT T

mviE 2 bexhc e ok

IETTEEE] | o i
iepl sy e Db esie
8 B o e i Foas ik Baichie
seeciohjert ey ktaich
[|
Eci ain Jin'a =]
H

B aavibk | Discames |

Setting a Number Format

In addition to a dateformat attribute, text field elements also have a numberformat
attribute.

1. Inspect the revenue text field.

The revenue text field’s numberformat attribute is bound to the string “###.#%”.
This binding tells the text field that it’s displaying a number and describes
how to format it.

2. Change the text field’s numberformat binding value to the string (including the
quotes): "$ #,##0.00".

Using this number format, the Movies application formats the number
1750000 as $ 1,750,000. For more information on creating number formats,
see the NSNumberFormatter class specification in the Foundation
Framework Reference.

84

Refining Main.wo

Optional Exercise

You can tidy up the user interface even further by putting the query part of
the page in a table to match the editing part of the page. Also, you should
consider capitalizing Mainwo’s text field labels.

"To put the query part of the page in a table, follow these steps:

1. Put the cursor inside the form element before the “title” text field (in
the Query By Example Segment).

2. In the Tables toolbar, click the E_ button to add a table.

A table with two rows and two columns appears. Initially the table
spans the entire width of the page. You'll resize it later.

When the table is first added, it’s in structure-editing mode. You can
tell it’s in structure-editing mode because it has = buttons for adding
rows and columns and because it has P and 4 icons around each of
the table’s rows.

3. Inspect the new table.

85

Chapter 3

Creating a WebObjects Database Application

86

P el - D s edetw e bl e rd vVt seal b L il 1 Sk v D e .
P Lde foms Seses Swi Click to add a table at
r':]['”'!j “| L *4' __J -I ‘Lﬂ _'-J the insertion point.
E, 2 [ER L o A=} Click to toggle the table
between structure-editing
Saarch for Mevias = and content-editing modes.

Click to add a new row
/ T R NV e of cells to the table.

fa [T S g AT e e ik t0 inspect the

table itself.

[o pe s raiegey

e
_h.':l‘-'-l"llﬁ\.l--'l
sppicaion
[LieL L]
s
| movalnphwGooy]
FINCH = Type 0 to make the
resi=ir. table borderless.
[=

= Sglect to make the
table resize tofit its
contents.

In the Table Inspector, choose Unspecified for the table width.

The table resizes to just fit its contents. When you change the cell contents
later, the table will resize again to accommodate the new values.

Also in the Table Inspector, set the border to 0 to remove the appearance of
a border.

"Type the labels Title:, and Category: in the cells in the first column.

Recall that to put the table into content-editing mode, click the El button
or double-click in one of the table’s cells.

The table doesn’t resize to accommodate new cell content until you’re
done typing; that is, until you move the cursor out of the edited cell.

Cut and paste the query text fields into their corresponding table cells.

Just click on a text field to select it. When a text field is selected, it displays
with an underline. Choose Cut from the Edit menu, double-click the cell
to select its text, and choose Paste from the Edit menu.

Refining Main.wo

8. Delete the old query field labels.

When you’re done, the query part should look like this:

THE [Seietdspleniroun pueryTiston itle
Calapgany, [RvietisplsErmun. eryTiston. oakegory

Aning | [SwiefispleEroun. pueryfision rating

[t ntche|

Now edit the text labels in the editing part of the page and put any other

finishing touches on the page that you want. The finished component
might look something like this:

Search for Movies E

THe o e apd s Barvaip. cuetytiakoh Eikle

Cada gy [l e apd s faroap. cueyiial oh ook egaey

Rating [l eddapdesfeoap. ueryiiahoh rating

Tile: El:ﬁ-nll:q:pdlﬂfum- snleckaclb: ek Eikls
Eilﬁgﬁw El:ﬁ-nll:q:pdlﬂfum- anlectedll: ek . csbageey
Hﬂng I3 alapley oy anleck ndll: ek rebing

Doiareai s e ot ik apl e trouy . anleck sclls et . cek sfel ssand

T —
8 i il :l-ﬁ-nll:q:pdlﬂfum- sulectaclll: Wk rovaras

F F F

= oy

raarifirs Exmil Cuhiin
chubaba e

87

Chapter 3

Creating a WebObjects Database Application

Adding the MovieDetails Page

The MovieDetails page shows you the detailed information about a movie
you select in the Main page. For this to work, the Main page has to tell the
MovieDetails page which movie the user selected. The MovieDetails page
keeps track of the selected movie in its own instance variable. In this section,
you'll:

¢ (reate a new component whose interface you'll create yourself.
® Assign Main’s selected movie to a variable in the MovieDetails page.
e (Create a way to navigate from Main to MovieDetails and back.

In the sections following this one, you’ll extend the MovieDetails page to
display movie roles and the starring actors.

Creating the MovieDetails Component

1. In Project Builder, choose File » New in Project.

2. In the New File panel, click the Web Components suitcase.

3. 'Iype MovieDetails in the Name field.

4. Click OK.

5. In the wizard panel, choose None from the available assistance.
6. Choose Java as the component language.

7. Click Finish.

8. Open the new component, MovieDetails.wo, in WebObjects Builder.

Storing the Selected Movie

Now, in the MovieDetails component, create a variable that holds the
application’s selected movie. Later on, you’ll add code to the Main.java class that
assigns Main’s selected movie to this variable.

1. Choose Add Variable/Method from the pull-down menu.

Adding the MovieDetails Page

s Yammable £ M eihod

hame: [sslecimdbioes Type the variable name here.
Typa: = _{lypeas ghvos) Select this.

£ furay of

" Wiriakie weay of

{rdiriia et (ho0se Movie.
G M Tl S DATC £ O T

FF &n ingtance vanshis

FF & methad retusmisg e vl Check each of these boxes.

F F.methad sesng the waiue

Cancel | fad —]—— Click here when you're done.

2. Name the variable selectedMovie.
3. Set the variable’s type to Movie.

Movie isn’t actually a class; it’s an entity. It’s listed in the combo box as
a type along with entries for all the entities in your model. When you
choose an entity as the type for your variable, WebObjects Builder
recognizes that the variable is an enterprise object. Using information
in the model, WebObjects Builder can determine the entity’s
corresponding enterprise object class and the properties of that class.

4. Check the “An instance variable” box.

5. Check the “A method returning the value” box.
6. Check the “A method setting the value” box.

7. Click Add.

Navigating from Main to MovieDetails

"To get to the MovieDetails page from the Main page, users use a hyperlink.
Clicking the hyperlink should set MovieDetail’s selectedMovie variable and
then open the MovieDetails page.

1. Add a hyperlink at the bottom of the Main component.

2. Replace the text “Hyperlink” with “Movie Details.”

89

Chapter 3

Creating a WebObjects Database Application

90

NMafing e abtapdhircag mnlac bili JeCT TELRG =
Dl Hi baain] (deeialosplminen . salec isdh o dutefelamed
Aasirim jEeialtapdvinoan . saler tedlh mc reveam
3 =5 B
TR R :|1?"' Dl |
Add the hyperlink below
/ J the horizontal rule.

. crar B =

3. Choose Add Action from the pull-down menu.

4. In the Add Action panel, type showDetails in the Name field.

5. Select MovieDetails from the “Page returned” pull-down menu.
6. Click Add.

7. Bind the showDetails action to the hyperlink’s action attribute.

8. In Project Builder, modify the showDetails action in Main.java to look like the
following:

public MovieDetails showDetails() {
MovieDetails nextPage = (MovieDetails)pageWithName("MovieDetails");

// Initialize your component here

EOEnterpriseObject selection =
(EOEnterpriseObject)movieDisplayGroup.selectedObject();

nextPage.setSelectedMovie(selection);

return nextPage;

}

"This method creates the MovieDetails page and then invokes its
setSelectedMovie method with the movie that’s selected in the Main page. The
display group method selectedObject returns its selected object, which, in the
Main component, is set when a user clicks a movie title hyperlink.

Designing MovieDetuils’ User Interface

Now lay out the user interface for MovieDetails. When you’re done, your
component should look like the following:

Adding the MovieDetails Page

Maowvie Details

Il [amlactacicein ik 1n JB

Calngory: | salactadiosia caLagars] [

Faing: (R slsotadirds, rating |8

Dipfe Frlppemerd; | B select sdbecie . dstefalesand | 8
o vz |9 s Lo dgiirai porasre s | (B

1. Create a top-level heading with the text Movie Details.

Recall that to create a top-level heading, you type the text of the

heading, select the text, click the = | button to add a heading element
around the text, and then use the Inspector to set the heading’s level,
as you did in “Using the Inspector” (page 16).

2. Below the heading, add a string element.
3. With the string element selected, add a heading,.

"T'his adds a new level 3 heading element around the string. The
MovieDetails page will show the title of the selected movie in this
heading.

4. Add labels and string elements to display the selected movie’s category,
date released, and revenue.

5. Bold the labels.

6. Bind selectedMovie.title to the value attribute of the first string element (the
one in the heading).

7. Similarly, create bindings for the Category, Date Released, and
Revenue strings.

8. At the bottom of the page, add a horizontal rule.

Adding Date and Number Formats

String elements have dateformat and numberformat attributes just like text field
elements. Create bindings for the Date Released and Revenue strings so
that dateReleased and revenue values are displayed the way they are in the Main

page.
1. Add the date format "2d %b %Y" to the Date Released string.

2. Add the number format "$ #,##0.00" to the Revenue string.

91

Chapter 3

Creating a WebObjects Database Application

Refining Your Model

92

Navigating from MovieDetuails to Main

Now add a hyperlink to the MovieDetails page so users can navigate back to the

Main page from MovieDetails.
1. Add a hyperlink to the bottom of the page.

2. LabelitMovie Search.

MW B |]t ity . chrt e L | 61
v b (R SELaC baie s el R

Hiigvie Srars B Add the hyperlink here.

3. Bind the hyperlink’s pageName attribute to the text (including the quotes)
"Main".

Recall that the pageName attribute is a mechanism for navigating to another
page without writing code. By setting the attribute to “Main”, you’re
telling the application to open the MovieSearch page when the hyperlink
is clicked.

Running Movies

Be sure that all your project’s files are saved (including the components in
WebObjects Builder), and build and run your application. In the Main page,

select a movie and click the Movie Details link. The MovieDetails page should

display all the movie’s information.

The model created for you by the wizard is just a starting point. For most
applications, you need to do some additional work to your model to make it
useful in your application. To refine your model so that it can be used in the
Movies application, you’ll ultimately need to do all of the following:

e Remove primary and foreign keys as class properties.

¢ Add relationships to your model if the wizard didn’t have enough
information to add them for you.

¢ (Configure your model’s relationships in the Advanced Relationship
Inspector.

¢ Generate source files for the Talent class.

These steps are described in more detail throughout the rest of this tutorial.

Refining Your Model

Opening Your Model
1. In Project Builder, click the Resources category.
2. Select Movies.eomodeld.

3. Double-click the model icon.

[

=] -".é ',ul| ﬂ— Double-click to
“ | =l| CeWF o iF-ape W e ol open the model.

= - - |

Weh Conpnens

Wil Sarvar P S TEaE W
Eubpjeci L

Saitwrwtiwin F o "

Project Builder opens your model file in EOModeler, launching
EOModeler first if it isn’t already running. EOModeler displays your model
in the Model Editor. It lists the entities for the tables you specified in the
wizard—Movie, MovieRole, and Talent.

Eﬂ ALEJAIEIJ JJ;IJJ S|l

i Wi i~ I'.-h:r.lle Hn:u'.ﬂE B enericRacamd 5
i Wicwie Fioie i Mo iaAne MOVIE_FROLE ECeGenercRacond
1 Tukend = Taleni TALENT ECeGenercFacand

[_lj Btueed Proxedies

ll—lﬂd;l le

Removing Primary and Foreign Keys as Class Properties

By default, the wizard makes all of an entity’s attributes, except primary
keys, class properties. When an attribute is a class property, it means that the
property is a part of your enterprise object, usually as an instance variable.

You should mark as class properties only those attributes whose values are
meaningful in the objects that are created when you fetch from the
database. Attributes that are essentially database artifacts, such as primary

Chapter 3

Creating a WebObjects Database Application

94

and foreign keys, shouldn’t be marked as class properties unless the key has
meaning to the user and must be displayed in the user interface.

Eliminating primary and foreign keys as class properties has no adverse effect
on how Enterprise Objects Framework manages enterprise objects in your
application.

1. In the left frame (or zree view), click the Movie entity.

"The right frame switches from a view of the entities in the model to a view
of Movie’s attributes.

2. Click in the Class Property column to remove the # symbol for the
studiold attribute (the wizard already removed movield as a class property).

TR Mg ik [i il P s e b T adand Ve bl byass 18 5 Timad ks, [e] B3
Modd Edi Fropay T Click an entity
e T 0 W N T S inthis fameto
[Rlraraes ; H entity.
= g o=« | & | Hasia | iaha: Chases | Extai
g ARk & B CAEE HE5TIng vaF]
g Tl & @ dwmdsieyred HWSCaerdmDisle DATE
1 el Froneders + & lgege HSDecimaMumter | HULE o
= "B AT FoTeraime W Clickinan
& & rabng HE5ing VAR attribute’s Class
& il ey HSDecimaMumbar HILE Propertycolumn
& i Cudigls HaDeciraMumbar HIKE toremove it as a
& m e H55Fing VAR class property.
=1

3. In the MovieRole entity, remove movield and talentld as class properties.

4. Ifyouare using OpenBase Lite, remove the Rowld attributes from the Movie,
MovieRole, and Talent entities, since they are not used in this tutorial.

While Rowld is selected, choose Cut from the Edit menu.

Adding Relationships to Your Model

The Movies application uses two pairs of inverse relationships. The first pair
defines the relationship between the Movie and MovieRole entities, while the
second pair defines the relationship between the MovieRole and Talent
entities. An Enterprise Objects Framework relationship is directed, that is, a
relationship has a source and a destination. Generally models define a
relationship for each direction.

1. Select the Movie entity.

Refining Your Model

The right frame of the Model Editor shows the Movie’s relationships
as well as its attributes.>

! Hosiea, epimaadels [V o P o'’ e bWl anient s e bill baeo b T ussielsl

Hodel Edé Propmdy ook indoss Heip
i & 0
e e T] R I '
ﬁﬂhr!- d Witee Airlmes
ok bo=| | | B |Vl Claas G
53 i) Wi Rk & & Cakgany H55Hing AR
1 Tk # & rfreAseaces] HICakemaiae OAT
L0 Btded Prosedioe @ larguags HSCwcimaMunbar MUK
= & @ movield HECecimaMumbar MUK
I T L-l_l
Witeie Recbiiorsshigs
| limn [entnssns Bgwme il | | f—— The selected entity's
relationships are
. T displayed here.

Your model’s Movie entity might have a different name than the
toMovieRole relationship shown above. That’s because the wizard created
your relationship, and the relationship’s name is dependent on the
adaptor the wizard used. Adaptors don’t all have the same naming
convention for to-many relationships. For example, the Oracle adaptor
names Movie’s relationship movieRoleArray instead of toMovieRole.

If your Movie entity doesn’t have a toMovieRole relationship, it means
that the database server’s schema information for your database didn’t
have enough information for the wizard to create them. You need to
create them by hand now. The next several steps explain how.

2. Choose Property » Add Relationship.

A new relationship named “Relationship” is added in the table view at
the bottom of the Model Editor. The new relationship is already
selected.

3. With the relationship selected in the right frame of the Model Editor,

click the | button (in the toolbar) to inspect the relationship.

95

Chapter 3

Creating a WebObjects Database Application

96

/— Don’t change the relationship’s name, because EOModeler

g - updates the name for you automatically when you connect
| ! | the Destination and Join properties.
] JLi|

Hame:| Feiztian=ig

First select whether the relationship is to-one or to-many.

— Then select a destination entity.

Select a source attribute...

l——— ...and a matching destination attribute.

b When you're done, click here.

In the Inspector, select the 'To Many option.
Select MovieRole as the destination entity.
Select movield in the Source Attributes list.
Select movield in the Destination Attributes list.

Click Connect.

EOModeler automatically renames the relationship based on the name of
the destination entity. For example, after connecting a to-many
relationship from Movie to MovieRole, EOModeler names the relationship
“toMovicRole.” To-one relationships are named with the singular form of
the destination entity’s name. For example, EOModeler names the inverse
to-one relationship (from MovieRole to Movie) “toMovie.”

If the wizard created your relationship and used a name other than
“toMovieRole,” consider renaming the relationship. The rest of this
tutorial assumes that your relationships are named using EOModeler’s
naming convention.

Repeat the steps above to create the following relationships (if they do not
already exist):

Refining Your Model

10.

A to-one relationship named “toMovie” in the MovieRole entity
where:

¢ The destination entity is Movie.
e The source attribute is movield.
e The destination attribute is movield.

A to-one relationship named “toTalent” in the MovieRole entity
where:

¢ The destination entity is Talent.
e The source attribute is talentld.
e The destination attribute is talentld.

A to-many relationship named “toMovieRole” in the Talent entity
where:

¢ The destination entity is MovieRole.
e The source attribute is talentld.
e The destination attribute is talentld.

Choose | in the toolbar pop-up list to switch the Model Editor to
Diagram View.

Use this pop-up list to switch to a different view.

Switches to Table View.

Switches to Diagram View.

Switches to Browser View.

= WA MOVIE_ROL

At this point your model has all the relationships it needs. The Diagram
View gives you an overview of the entities in the model and their
relationships to other entities.

Bdgerim i e Talent

Lok iy K.] Ml e Mrslhbirs -
(Dl casid | | @ | % mkatara | | @ | =] lwltarn | | @ |=|
[anguags | || ® el e @ | | el el & | |
=TT .'--.i.. LT E ™ mtEAdE | = | .
.Iﬂlll:| | .ﬁ. - [0 BE .-|-.-l|ll—|_.k

[eenLa T %

|shoid @

file T |

oA e b s W |

97

Chapter 3 Creating a WebObjects Database Application

You can also use the Diagram View to edit your model. Double-click an attribute
or relationship to change its name. 'To create a relationship and its inverse,
Control-drag from the relationship’s source attribute to its destination attribute.

Using the Advanced Relationship Inspector

There are several additional settings you use to configure a relationship’s
referential integrity rules. For these, use the Advanced Relationship Inspector.

1. Inspect Movie’s toMovieRole relationship.

2. In the Inspector, click the Advanced Relationship button.

e et eedl Fialadida sbafn Irvs poso I

Advanced Relationship button.

__IE:‘_ : | l |

Ealcs Fauling

Baich Elai:l-:-

Opasnalty
¥ Cigbimal
" Mardaiony

Dsalata Acli
™ Biuiliy
= Cascade This should be selected.

I~ Dey
™ Bin Achion

(s Dasin el fy ! =t Thiis hox should be checked.
Propagala Pmany Kay [

3. Ensure that the delete rule is set to Cascade.

If the wizard created relationships for you, the relationship’s delete rule
should already be set to Cascade. You specified this in the wizard. If you
created your relationships by hand, you’ll have to set the delete rule
yourself.

4. Ensure that the Owns Destination box is checked.

As with the delete rule, if the wizard created relationships for you, the
relationship’s Owns Destination box should already be checked. If you

98

Refining Your Model

created your relationships by hand, you’ll have to check this box
yourself.

5. Check the Propagate Primary Key box.

A relationship that propagates its primary key propagates its key value
to newly inserted objects in the destination of the relationship. In this
case, checking the Propagate Primary Key box means that if you create
anew MovieRole and add it to a Movie’s list of MovieRoles, the Movie
object automatically assigns its movield value as the value for the new
MovieRole’s movield property.

"T'his option is usually used with relationships that own their
destination. For more information on propagates primary keys, see
“Where Do Primary Keys Come From?” (page 99).

6. Ensure that Talent’s toMovieRole relationship has its delete rule set to
Deny.

7. Ensure that Talent’s toMovieRole relationship owns its destination.

8. Set Talent’s toMovieRole relationship to propagate its primary key.

Where Do Primary Keys Come From?

Enterprise Objects Framework uses primary keys to identify enterprise
objects in memory, and it works best if you never change an enterprise
object’s primary key from its initial value. Consequently, applications
usually generate and assign primary key values automatically instead of
having users provide them. For example, the Movies application assigns a
movield value to a new movie when it’s created, and the value never changes
afterward. The Movies interface doesn’t even display movield values because
they aren’t meaningful to users of the application.

Enterprise Objects Framework provides several mechanisms for generating
and assigning unique values to primary key attributes. By default,
Enterprise Objects Framework uses a native database mechanism to assign
primary key values. See the chapter “Answers to Common Design
Questions” in the Enterprise Objects Framework Developer’s Guide for more
information.

"The Movies application generates primary key values for Movie and Talent
objects using the default mechanism, but MovieRole is a special case
because:

99

Chapter 3

Creating a WebObjects Database Application

® MovicRole’s primary key is compound. The default behavior of generating
a primary key value using a native database mechanism works only on
simple (not compound) primary keys.

¢ A MovieRole’s primary key attributes, movield and talentld, must match the
corresponding attributes in the MovieRole’s Movie and Talent objects. The
default mechanism generates new, unique values.

Instead of the default mechanism, Enterprise Objects Framework uses primary
key propagation to assign primary keys to MovieRole objects. By configuring
the Movie’s toMovieRole relationship to propagate primary key, the Framework
knows to assign a new MoviecRole’s movield to the same value as the movield of the
MovieRole’s Movie. Similarly, a new MovieRole’s talentld is set to the same value
as the talentld of the MovieRole’s Talent.

Setting Up a Master-Detail Configuration

100

So far your Movies application fetches, inserts, updates, and deletes only Movie
objects. Considered alone, a Movie object isn’t as interesting as it is when it’s
related to actors and roles. In this section, you’ll add MovieRole and Talent
objects to the Movies application.

The relationships defined in your model now come into play. Using Movie’s
toMovieRole relationship, you can display the MovieRoles for the selected Movie.
In this type of configuration, called master-detail, a master display group holds
enterprise objects for the source of a relationship, while a detail display group
holds records for the destination. As individual records are selected in the master
display group, the detail display group gets a new set of enterprise objects to
correspond to the selection in the master.

In the Movies application, the master-detail configuration is built around
Movie’s toMovieRole relationship. The configuration is split across two pages in the
application. The master, movieDisplayGroup, is in the Main component, while the
detail is in MovieDetails.

In this section, you’ll:

e (ireate and configure the detail display group.
e Extend the MovieDetails user interface to hold MovieRole and Talent
information.

Setting Up a Master-Detail Configuration

Creating a Detail Display Group

You can create a detail display group several different ways. You can write a
declaration for it in Project Builder, or you can use WebObjects Builder’s
Add Variable/Method command. But the easiest way to create a detail
display group is by dragging a relationship from EOModeler into your
component, as described below.

1. In EOModeler’s tree view, expand the Movie entity.

. By mommagrkl B SFyon P et by U prd el il lpeeSy D fongh el M= B3

Click here to expand or
i contract an entity.
0] 5 = e | S
iy — [=] means that the entity
e | r.:"" TH: " is already expanded.
i P b e & @ CEEgaYy 5 3 YAFay f
£ Pt b e & dusAziaassd e CI|ckthe dash to contract
+ - Vel & @ lErgusge HEDwcwadMambar WU the entity.
(2]] [3 - i
) rred Frocecias = & .-::..-.-\u |__.|:-:- R Ill:l'\.- meansthattheentity
1] | i can be expanded to
- display its relationships.
| BawTm Dostination | Jcsce S Click the plus to expand
the entity.
‘J-_l ,_,I_I If an entity has neither a
L] ES | = dash nora plus, the entity
has no relationships, and
therefore can't be
expanded.

2. Drag the Movie’s toMovieRole relationship from the tree view into the
MovieDetails component’s object browser.

101

Chapter 3 Creating a WebObjects Database Application

EiL mlmlalmlmla
Movie Det

[salactedtaera titla|[H)

Cafenary: E':ul:hﬂ«n cRbagErY I| :

Fatiag): | B [selectedioatie roring hR| -
Drale Rapsased [salactedioia datafalanssd|

Rarvaims: B seleobedinde revens (B - i _I-|;I |
e HIEH ’

R, s Rodes
"
| spplicatian d caEgay
& kicid ik Al i e

An Add Display Group panel opens.

TS o i e e s WebOQbjects Builder assigns

a default name based on the
relationship name.

cael | Add | #dd and conque_

3. In the Add Display Group panel, change the name to
movieRoleDisplayGroup.

4. Click Add and Configure.

T'he Display Group Options panel opens so you can immediately configure
the newly created display group.

102

Setting Up a Master-Detail Configuration

Lmapilarp G rop U plero
Identifies this display group as a detail display group.

Entty: | - |
Pl asiarThaiadl \
F Hax dafail dats soms — You can't set the entity of a detail display group. The

entity is computed from the Master/Detail settings.

wiaskr Enlity: |os =]
Dbl Ky |rvira R e =]

Sort MovieRole objects by roleName...

Earing
Enirias par baich 1 rishizme i

Oualiicaion: Frals @ = Fbcandng S———— _from ‘Ao 7.
 Cipzcending
F Feiches an load hiok Sanad

Check this box so the display group automatically
Aevert | cenom | ok] fetches its objects.

Ensure that the “Has detail data source” box is checked. This means
that movieRoleDisplayGroup gets its objects from a EODetailDataSource
object.

All display groups use some kind of data source to fetch their objects. A
data source is an object that exists primarily as a simple means for a
WODisplayGroup to access a store of objects. It’s through a data
source that a display group fetches, inserts, updates, and deletes
database records.

A EODetailDataSource is a subclass of DataSource that’s intended for
use in master-detail configurations. A detail data source keeps track of
a master object and a detail key. The master object is typically the
selected object in a master display group, but a master display group
isn’t strictly required. The detail key is the name of the relationship on
which the master-detail configuration is based. When a detail display
group asks its data source to fetch, the EODetailDataSource simply
gets the destination objects from the master object as follows:

detailObjects = masterObject.valueForKey(detailKey);

In your master-detail configuration, the master object is the selected
Movie, and the detail key is toMovieRole. When movieRoleDisplayGroup asks its
data source for its MovieRole objects, the detail WODisplayGroup
returns the objects in the selected Movie’s toMovieRole array of
MovieRoles. Similarly, when MovieRole objects are inserted or
deleted in movieRoleDisplayGroup, they are added and removed from the
master object’s toMovieRole array.

5. Set the display group to sort alphabetically by roleName.

103

Chapter 3 Creating a WebObjects Database Application

6. Check the “Fetches on load” box.

When “Fetches on load” is selected, the display group fetches its objects as
soon as the component is loaded into the application. You want this feature
in the MovieDetails page so that users are immediately presented with the
selected movie’s roles. In contrast, the Main page does not fetch on load; it

shouldn’t present a list of movies until the user has entered search criteria
and clicked Match.

7. Click OK.

8. In Project Builder, modify MovieDetail’s setSelectedMovie method to look like
the following:

public void setSelectedMovie(EOEnterpriseObject newSelectedMovie)
selectedMovie = newSelectedMovie;
movieRoleDisplayGroup.setMasterObject (newSelectedMovie);

}

With this addition, whenever a user navigates to the MovieDetails page,
setSelectedMovie updates the movieRoleDisplayGroup’s master object so it displays
the corresponding MovieRole objects.

o op®
Adding a Repetition
Now you’ll extend the user interface of the MovieDetails component to display
the actors in the selected movie. Because different movies have different
numbers of roles, you need the dynamism of a repetition element. When you’re
done adding the repetition, your component should look like this:

Movie Details

Bl [andactadtcnin titln |

Calegory: | salectediosia calagars| [

Ry | sslsriemivas aiing| |4

Dipde Frdnpemed; | B oelectsdic-ie . det sfelesand | 8
Reeimiig: [T s Laotadils rewsns | B

Hlarring:

‘-
BT BT BE| = LT BT

Ll
i
iy
) il

-

1. In the MovieDetails component window, add the bolded text Starring:
beneath the Revenue line.

104

Setting Up a Master-Detail Configuration

Below the Starring label, add a repetition.
Replace the “Repetition” text with three string elements.

T'he strings should all be on the same line, so don’t type carriage
returns between them.

"Iype a space between the first two strings and the word # as " (with a
space before and after) between the last two.

Add a carriage return after the last string.

L] L] O ®
Configuring a Repetition
Now configure MovieDetails’ repetition in a way similar to the way Main’s

repetition is configured. First you need to create a new variable to bind to
the repetition’s item attribute.

1.

Use the Add Variable/Method command to add a new variable, movieRole,
whose type is set to the MovieRole entity.

Don’t create set and get methods for movieRole. You won’t need accessor
methods because the variable is used only within the MovieDetails
component and shouldn’t be visible to any other classes.

Bind movieRoleDisplayGroup. displayedObjects to the repetition’s list attribute.
Bind movieRole to the repetition’s item attribute.

Bind movieRole.toTalent.firstName to the value attribute of the first string in the
repetition.

Bind movieRole.toTalent.lastName to the value attribute of the second string.

Bind movieRole.roleName to the value attribute of the last string.

105

Chapter 3 Creating a WebObjects Database Application

When you’re done, the repetition bindings should look like the following:

O |) e) e A) e o | | e b |
I mxviaRala. talant I'I.rlL1-I.iI | mceisAzle tals~t Cmathmss | E.13 | scwzsftdn roisbess I

=
applicalion El| mirsia El[dnmane =1

k] alsklarme i mme
wa i EF

¥ oAl eDlispbuaGmap
sk CEd kA

Running Movies

Be sure that all your project’s files are saved (including the components in
WebObjects Builder and the model in EOModeler), and build and run your
application. In the Main page, select a movie and click the Movie Details link.
Now, in addition to displaying all the movie’s information, the Movie Details
page should also display the movie’s roles and actors.

106

Updating Objects in the Detail Display Group

Updating Objects in the Detail Display Group

In this section, you’ll add the ability to insert, update, and delete movie
roles. The MovieDetails page will then look something like this:

Movie Details

Afier Hpars

Categary: Comedy

Rating: E

Tiade Beleased 23 Tap 1005
Bavewss £ 2 300,000.00

Erasviag:
Teo Gar as Click a role to select it and display its
Linda Fieremimo a Fibi information in the editing part below.

Foramnns Arcquetts = B{arcy

An@mone | Use the browser to choose an actor for the
kinuion = selected role.
;::s:muuhhm Edit the name of the selected role.
Iznhele Adjsni = /
Fele Name: [Jiie 1
))) Click here to create a new, empty role.

] i L

[TEET L EEET j [i=i=
I
1 Click here to delete the selected role.

Click here to save your work in the database
(add the new roles you inserted, remove the
roles you deleted, and save changes you made
to existing roles).

Many of the features in this page are similar to features in the Main page,
but in this section you perform by hand the tasks the wizard performed for
you to create Main. Already you’ve learned how to create a
WODisplayGroup variable and how to bind it to dynamic elements. In this
section you’ll:

e Write code to update a display group’s selected object.
e (reate and configure a browser.
e (reate a custom enterprise object class.

¢ (Configure image buttons to insert, update, and delete using display
group actions.

107

Chapter 3

Creating a WebObjects Database Application

108

Managing a WODisplayGroup’s Selection

Remember how clicking a movie title in the Main page selects the
corresponding Movie object in movieDisplayGroup. MovieDetails has a similar
behavior for selecting a MovieRole object in movieRoleDisplayGroup.

First you need to add a hyperlink element around the repetition’s role name
string so that users can select a particular MovieRole. When a user clicks one of
the movie role hyperlinks, the application should select the corresponding
MovieRole object in the movieRoleDisplayGroup.

1.

2.

Select the repetition’s role name string element.

Click the Add WOHyperlink button in the Other WebObjects toolbar to
add a hyperlink element around the string.

Now you need to create an action method to invoke when the hyperlink is
clicked.

Use the Add Action command in the pull-down menu to add an action
named selectObject, returning null.

Before you write the body of the selectObject method, bind it to the hyperlink
while you’re still in WebObjects Builder.

Bind the selectObject method to the hyperlink’s action attribute.

Now write the code for selectObject in MovieDetailjava. Modify the selectObject
action to look like the following:

public WOComponent selectObject() {
movieRoleDisplayGroup.selectObject (movieRole);
return null;

Updating Objects in the Detail Display Group

Adding a Form

Now lay out the user interface used to view and edit the selected
MovieRole. When you’re done, it should look like the following:

=
Fenie Bt i el g o vans . e et b Jact . o Lakis
A v b Som e =

1. Add another horizontal rule after the repetition.

2. Usethe Q button (in the “Dynamic form elements” toolbar) to add a
WOForm element between the two horizontal rules.

3. While the Form text is highlighted, click the = button to replace the
text with a WOBrowser element.

4. Beneath the browser (within the bounds of the new form), type the
bolded text Role Name:.

5. Add a text field.

6. Bind the text field to movieRoleDisplayGroup.selectedObject.roleName.

Adding a Talent Display Group

"The browser you just created is going to display a list of Talent objects. Like
a repetition element, a browser has list and item attributes. As the browser
moves through its list, the browser sets item to the object at the current index.
"T'he Movies application uses a display group to provide the browser with a
list of "Talent objects, so now you need to create the new display group and
a variable to bind to the browser’s item attribute.

1. Use the Add Variable/Method command to create two new instance
variables:

e talentDisplayGroup, whose type is WODisplayGroup
e talent, whose type is Talent

You don’t need to add set and get methods for the variables.

109

Chapter 3

Creating a WebObjects Database Application

110

2. Using the Display Group Options panel, assign talentDisplayGroup’s entity to
Talent.

Remember that to open the Display Group Options panel, simply

double-click the talentDisplayGroup variable in the object browser. The = icon
initially displayed next to the variable indicates that initialization
parameters have not yet been set.

3. Configure talentDisplayGroup to sort its objects alphabetically (ascending)
by lastName.

4. Configure it to fetch on load and click OK

After you configure talentDisplayGroup, the object browser shows a # icon
next to the variable.

The Movies application uses a display group to provide Talent objects, but you
could fetch the Talent objects from the database without one. Display groups
provide a simple way to fetch, insert, update, and delete enterprise objects
without writing much, if any, code. To get finer-grained control over these
operations, you can work directly with an EOEditingContext object. An editing
context can do everything a display group does and much more, but you have to
write more code to use one. For more information, see the EOEditingContext
class specification in the Enterprise Objects Framework Reference.

Configuring the Browser

Similar to the way you created bindings for a repetition, create your browser’s
bindings.

1. Bind talentDisplayGroup.displayedObjects to the browser’s list attribute.
2. Bind talent to the browser’s item attribute.
3. Bind talentlastName to the browser’s value attribute.

The value attribute tells the browser what string to display. For each item in
its list, the browser evaluates the item’s value.

The browser in the MovieDetails page should display the actors’ full
names, but there isn’t an attribute for full name. In the next section, you’ll
create a custom 'Talent class that implements a fullName method, but for now
just use talent.lastName as the value attribute.

A browser also has a selections attribute that should be bound to an array of
objects. A browser’s selection can be zero, one, or many objects; but in the

Updating Objects in the Detail Display Group

"Talent browser, the selection should refer to a single object.
Consequently, you need to add two methods to manage the browser’s
selection: one to return an array containing the selected Talent and one
to set the selected Talent from an array object.

4. Add the method talentSelection to the MovieDetails.java class as follows:

public NSArray talentSelection() {
EOEnterpriseObject aTalent;

EOEnterpriseObject aMovieRole =
(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject();

if (aMovieRole == null){
return null;
}
aTalent = (EOEnterpriseObject)aMovieRole.valueForKey("toTalent");
if (aTalent == null){
return null;
} else {
return new NSArray(aTalent);
}

}

Because the browser expects an array for its selections attribute, this
method packages the selected MovieRole’s talent object in an array. If
the selected MovieRole object is null, talentSelection simply returns null to
indicate that the browser shouldn’t set a selection.

5. Add the method setTalentSelection as follows:

public void setTalentSelection(NSArray talentArray){
if (talentArray.count() > 0){

EOEnterpriseObject aMovieRole =
(EOEnterpriseObject)movieRoleDisplayGroup.selectedObject

EOEnterpriseObject selectedTalent =
(EOEnterpriseObject)talentArray.objectAtIndex(0);

aMovieRole.addObjectToBothSidesOfRelationshipWithKey (
selectedTalent, "toTalent");

}

Again because the browser uses an array for its selections attribute, the
setTalentSelection method must take an array as its argument. If talentArray’s
count is nonzero, then this method sets the selected MovieRole’s talent
to the first object in the array. Note that by default, a user can’t select
more than one actor in a browser.

m

Chapter 3 Creating a WebObjects Database Application

With the addition of these methods, WebObjects Builder now displays
talentSelection in MovieDetail’s object browser.

6. Bind talentSelection to the browser’s selections attribute.

Adding Insert, Save, and Delete Buttons

Now add the buttons that let users insert, save, and delete MovieRoles. When
you’re done, it should look like the following:

= |

— o

El

¥ B s nkolaldaplsiroup . anleck sdDb mek ol absss
B e 4 Add the image buttons inside
= _!i o] the form element, which is
el Pirs !-r::ﬂ Culah bounded by a light gray box.
-

1. Inside the form, add three image buttons below the Role Name text field.
2. Inspect the first active image element.

3. Bind the filename attribute to the text (including the quotes)
"DBWizardInsert.gif".

4. Follow the same procedure to set the second image’s filename attribute to the
text (including the quotes) "DBWizardUpdate.gif".

5. Set the last image’s filename attribute to the text (including the quotes)
"DBWizardDelete.gif".

The WODisplayGroup class defines the actions insert and delete. You’ll bind
to the Insert/New and Delete buttons. It doesn’t, however, provide a save
method. You’ll have to provide that yourself.

112

Adding Behavior to Your Enterprise Objects

6. Copy the saveChanges method from the Mainjava class and paste it into the
MovieDetails.java class:

public void saveChanges() throws Exception {

try {
this.session().defaultEditingContext().saveChanges();

}

catch (Exception exception) {
System.err.println("Cannot save changes ");
throw exception;

}

7. Bind movieRoleDisplayGroup.insert to the Insert/New image’s action attribute.

8. Bind the saveChanges method to the “Save to database” image’s action
attribute.

9. Bind movieRoleDisplayGroup.delete to the Delete image’s action attribute.

Adding Behavior to Your Enterprise Objects

Right now, the Movies application maps all its entities to the
EOGenericRecord class. As the preceding sections illustrate, you can go
quite far in an application using just this default enterprise object class, but
now you need to add some custom classes to the Movies application.

In this section, you’ll learn how to:

® Generate source code for a custom enterprise object class.
® Provide default values in a custom enterprise object class.

You’ll create custom classes for the Talent and MovieRole entities. In the
Talent class, you’ll write a fullName method that concatenates a Talent’s first
and last names. You’ll use the method to populate MovieDetail’s browser
element. In the MovieRole class, you’ll provide default values for newly
inserted MovieRoles so they don’t show up in the list of movie roles as a
blank line.

Specifying Custom Enterprise Object Classes

Unless you specify otherwise, EOModeler maps entities to the
EOGenericRecord class. When you want to use a custom class instead,
you need to specify that custom class in the model.

Chapter 3 Creating a WebObjects Database Application

1. In EOModeler, inspect the Talent entity.

2. In the Entity Inspector for Talent, type Talent in the Class field.

L] L |
M | Tael
Tk M | T ENT
Cliricic | T el e Ty the name of your custom class here.
Fiosedis

= -
i | # Ireflmre :J
i | # e

= Ial=ril:

3. Set the MovieRole entity’s class to MovieRole.
Now you can generate the source files for your Talent and MovieRole classes.

Generating Custom Enterprise Object Classes

You can easily create a custom class to hold your business logic: EOModeler
provides a command to generate enterprise object classes.

1. In EOModeler, select the Talent entity.
2. Choose Property » Generate Java Files.

A Choose Class Name panel opens. If you opened the model file from
Project Builder, the Choose Class Name panel displays the project as the
destination directory and Talentjava as the default file name.

3. Ensure that the Movies project directory is selected.
4. Click Save.
A panel opens, asking if you want to insert the file in your project.
5. Click Yes.
EOModeler creates the source file Talentjava and adds it to your project.

6. Follow the same procedure for MovieRole.

114

Adding Behavior to Your Enterprise Objects

Adding Custom Behavior to Talent
Now add the fullName method to Talent and bind it to the browser.

1. Open Talentjava in Project Builder.

The class file declares instance variables for all of Talent’s class
properties (firstName and lastName) and implements set and get methods
for those instance variables.

2. Add the method, fullName, as follows.

public String fullName(){
return firstName() + " " + lastName();

}

After you save, fullName appears in the object browser of WebObjects
Builder as a property of Talent.

3. Bind talent.fullName to the browser’s value attribute.

Providing Default Values in MovieRole

As discussed in “Specifying Default Values for New Enterprise Objects”
(page 82), there are two main ways to specify default values for new
enterprise objects without making explicit assignments:

e Assign default values in the enterprise object class.
e Specity default values using a display group.

For the Movie class, you specified default values using a display group. This
approach is also the more appropriate choice for the MovieRole class, but
you’ll use the other approach for MovieRole just to see how its done.

1. Open MovieRole.java in Project Builder.
2. Add the method, awakeFrominsertionInEditingContext, as follows

public void awakeFromInsertion(EOEditingContext context){
super.awakeFromInsertion(context);
roleName = "New Role";

}

"T'his method is automatically invoked right after your enterprise object
class creates a new MovieRole and inserts it into an editing context,
which happens when you use a display group to insert.

115

Chapter 3 Creating a WebObjects Database Application

Running Movies

Be sure that all your project’s files are saved (including your model file), and
build and run your application. Now when a user clicks the Insert/New button
on the MovieDetails page, a new MovieRole is inserted, with “New Role”
already displayed as the role name.

116

	GETTING STARTED WITH WEBOBJECTS
	Contents
	Preface
	About WebObjects
	About This Book
	Where to Go From Here

	Creating a Simple WebObjects Application
	Creating a WebObjects Application Project
	Choosing the Programming Language
	Examining Your Project
	Launching WebObjects Builder
	Creating the Page’s Content
	Entering Static Text
	Using the Inspector
	Creating Form-Based Dynamic HTML Elements
	Resizing the Form Elements

	Binding Elements
	Creating Variables
	Binding the Input Elements
	Implementing an Action Method

	Creating the Application’s Output
	Building and Running Your Application

	Enhancing Your Application
	Duplicating Your Project
	Creating a Custom Guest Class
	Binding the Class’s Instance Variables to the Form Elements
	Creating a Table to Display the Output
	Adding Dynamic Elements to Table Cells
	Binding the Dynamic Elements in the Table
	Creating the Guest Object

	Keeping Track of Multiple Guests
	Creating a Guest List
	Adding Guests to the Guest List

	Adding a Second Component
	Using a Repetition
	Adding the Finishing Touches
	Clearing the Guest List
	Adding a Dynamic Hyperlink

	Creating a WebObjects Database Application
	The Movies Application
	Enterprise Objects and the Movies Database
	Enterprise Objects and Relationships

	Designing the Main Page
	Starting the WebObjects Application Wizard
	Specifying a Model File
	Choosing an Adaptor
	Choosing What to Include in Your Model
	Choosing the Tables to Include
	Specifying Primary Keys
	Specifying Referential Integrity Rules
	Choosing an Entity
	Choosing a Layout
	Choosing Attributes to Display
	Choosing an Attribute to Display as a Hyperlink
	Choosing Attributes to Query On
	Running Movies

	Examining Your Project
	Examining the Variables
	Examining the Bindings
	Bindings in the Query Part
	Bindings in the Repetition Part
	Bindings in the Editing Part

	Refining Main.wo
	Specifying a Sort Order
	Specifying Default Values for New Enterprise Objects
	Setting a Date Format
	Setting a Number Format
	Optional Exercise

	Adding the MovieDetails Page
	Creating the MovieDetails Component
	Storing the Selected Movie
	Navigating from Main to MovieDetails
	Designing MovieDetails’ User Interface
	Adding Date and Number Formats
	Navigating from MovieDetails to Main
	Running Movies

	Refining Your Model
	Opening Your Model
	Removing Primary and Foreign Keys as Class Properties
	Adding Relationships to Your Model
	Using the Advanced Relationship Inspector
	Where Do Primary Keys Come From?

	Setting Up a Master-Detail Configuration
	Creating a Detail Display Group
	Adding a Repetition
	Configuring a Repetition
	Running Movies

	Updating Objects in the Detail Display Group
	Managing a WODisplayGroup’s Selection
	Adding a Form
	Adding a Talent Display Group
	Configuring the Browser
	Adding Insert, Save, and Delete Buttons

	Adding Behavior to Your Enterprise Objects
	Specifying Custom Enterprise Object Classes
	Generating Custom Enterprise Object Classes
	Adding Custom Behavior to Talent
	Providing Default Values in MovieRole
	Running Movies

