The EOControl Framework

The EOControl Framework

Framework: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Header File Directories: System/Developer/Java/Headers

Introduction

The EOInterface framework defines one of the layers of the Enterprise Objects Framework architecture—
the control layer. It provides an infrastructure for enterprise objects that is independent of your application’s
user interface and its storage mechanism. The control layer dynamically manages the interaction between
enterprise objects, the access layer, and the interface layer by:

» Tracking changes to enteprise objects

« Prompting the user interface to change when object values change

* Prompting the database to change when changes to objects are committed
» Managing undo in the object graph

» Managing uniquing (the mechanism by which Enterprise Objects Framework uniquely identifies
enterprise objects and maintains their mapping to stored data in the database)

The control layer's major areas of responsibility and the key classes involved are described in the following
table:

Responsibility Classes

Tracking Enterprise Objects ChangesEOControl provides

four classes and an interface that form an efficient,

specialized mechanism for tracking changes to enterprise

objects and for managing the notification of those changes to

interested observers. EOObserverCenter is the central EOObserverCenter
manager of change notification. It records observers and the EODelayedObserverQueue
objects they observe, and it distributes notifications when the EODelayedObserver
observable objects change. Observers implement the EOObserverProxy
EOObserving interface, which defines one method, EOObserving (interface)
objectWillChange. Observable objects (generally enterprise

objects) invoke their willChange method before altering their

state, which causes all observers to receive an

objectWillChange message.

Responsibility Classes

EOObjectStore

EOCooperatingObjectStore (Yellow Box only)
EOObjectStoreCoordinator (Yellow Box only)
EOGlIoballD

EOKeyGloballD

EOTemporaryGloballD

Object Storage Abstraction

EOFetchSpecification
Query specification EOQualifier
EOSortOrdering

EOCIlassDescription (validation)

Interaction with enterprise objects NSObjectAdditions (basic enterprise object behavior)

Simple source of objects (for display groups) EODataSource, EODetailDataSource

The following sections describe each responsibility in greater detail.

Tracking Enterprise Objects Changes EOControl provides four classes and an interface that form

an efficient, specialized mechanism for tracking changes to enterprise objects and for managing the
notification of those changes to interested observers. EOObserverCenter is the central manager of change
notification. It records observers and the objects they observe, and it distributes notifications when the
observable objects change. Observers implement the EOObserving interface, which defines one method,
objectWillChange. Observable objects (generally enterprise objects) invokewiikihange method

before altering their state, which causes all observers to recedigeat\VillChange message.

The other three classes add to the basic observation mechanism. EODelayedObserverQueue alters the basic,
synchronous change notification mechanism by offering different priority levels, which allows observers to
specify the order in which they’re notified of changes. EODelayedObserver is an abstract superclass for
objects that observe other objects (such as the EOInterface layer's EOAssociation classes). Finally,
EOObserverProxy is a subclass of EODelayedObserver that forwards change messages to a target object,
allowing objects that don't inherit from EODelayedObserver to take advantage of this mechanism.

The major observer in Enterprise Objects Framework is EOEditingContext, which implements its
objectWillChange method to record a snapshot for the object about to change, register undo operations in

an NSUndoManager, and record the changes needed to update objects in its EOObjectStore. Because some
of these actions—such as examining the object’s new state—can only be performed after the object has
changed, an EOEditingContext sets up a delayed message to itself, which it gets at the end of the run loop.
Observers that only need to examine an object after it has changed can use the delayed observer mechanism,
described in the EODelayedObserver and EODelayedObserverQueue class specifications.

The EOControl Framework

Object Storage Abstraction

The control layer provides an infrastructure that’s independent of your application’s storage mechanism
(typically a database) by defining an API for an “intelligent” repository of objects, whether it's based on
external data or whether it manages objects entirely in memory. EOObjectStore is an abstract class that
defines that basic API, setting up the framework for constructing and registering enterprise objects,
servicing object faults, and committing changes made in an EOEditingContext. Subclasses of
EOObjectStore implement the API in terms of their specific storage mechanism.

Subclasses of EOObjectStore

EOEditingContext is the principal subclass of EOObjectStore and is used for managing objects in memory.
For stores based on external data, there are several subclasses. EOCooperatingObjectStore defines stores
that work together to manage data from several distinct sources (such as different databases). The access
layer's EODatabaseContext is actually a subclass of this class. A group of cooperating stores is managed
by another subclass of EOObjectStore, EOObjectStoreCoordinator. If you're defining a subclass of
EOODbjectStore, it's probably one based on an external data repository, and it should therefore inherit from
EOCooperatingObjectStore so as to work well with an EOObjectStoreCoordinator—though this isn’t
required.

EODatabaseContext provides objects from relational databases and is therefore provided by Enterprise
Objects Framework’s access layer. It is the class that defines the interaction between the control and access
layers. Database contexts and other object stores based on external data are often shared by several editing
contexts to conserve database connections.

Object store subclasses cooperate with one another as illustrated in the following:

EDEditing EQEdiing EQEdting
Conbaxt Context Context
EliDatabrse ECiDaiabase
Canbext Cantexi

Note that EOCooperatingObjectStore, EOObjectStoreCoordinator, and EODatabaseContext are not
provided by Java Client.

Registering Enterprise Objects
An object store identifies its objects in two ways:

< By reference for identification within a specific editing context
» By global ID for universal identification of the same record among multiple stores.

A global ID is defined by three classes: EOGloballD, EOKeyGloballD, and EOTemporaryGloballD.
EOGloballD is an abstract class that forms the basis for uniquing in Enterprise Objects Framework.
EOKeyGloballD is a concrete subclass of EOGloballD whose instances represent persistent IDs based on
the access layer's EOModel information: an entity and the primary key values for the object being
identified. An EOTemporaryGloballD object is used to identify a newly created enterprise object before it's
saved to an external store. For more information, see the EOGloballD class specification.

Servicing Faults

For external repositories, an object store might delay fetching an object’s data, instead creating an empty
enterprise object (calledfault). When a fault is accessed (sent a message), it triggers its object store to
fetch its data and fill the fault with its data. This preserves both the object’s reference and its EOGloballD,
while saving the cost of fetching data that might not be used. Faults are typically created for the destinations
of relationships for objects that are explicitly fetched. See the EOFaultHandler class specification for more
information.

Classes: EOArrayDataSource

EOArrayDataSource

Inherits From: EODataSource : Object (Java Client)
EODataSource : NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOArrayDataSource is a concrete subclass of EODataSource that can be used to provide enterprise objects
to a display group (EODisplayGroup from EOInterface or WODisplayGroup from WebObjects) without
having to fetch them from the database. In an EOArrayDataSource, objects are maintained in an in-memory
NSArray.

EOArrayDataSource can fetch, insert, and delete objects—operations it performs directly with its array. It
can also provide a detail data source.

Constructors

EOArrayDataSource

public EOArrayDataSource(
EOClassDescriptionlassDescription
EOEditingContexeditingContext

Creates and returns an EOArrayDataSource object wlasgDescriptiorcontains information about the
objects provided by the EOArrayDataSource editingContexis the EOArrayDataSource’s editing
context. Either argument may be null

Instance Methods

setArray
public voidsetArray (foundation.NSArraarray)

Sets the receiver’s array of objectatoay.

Classes: EOAndQuialifier

EOANndQualifier

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Implements: EOQualifierEvaluation
NSCoding (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOANdQualifier is a subclass of EOQualifier that contains multiple qualifiers. EOAndQualifier implements
the EOQualifierEvaluation interface, which defines the metivatliate WithObject for in-memory

evaluation. When an EOAndQualifier object receives\atuate WithObject message, it evaluates each

of its qualifiers until one of them returfase. If one of its qualifiers returrfalse the EOAndQualifier

object returngalseimmediately. If all of its qualifiers retutrue, the EOAndQualifier object returtraie.

Interfaces Implemented

EOQualifierEvaluation
evaluateWithObject

NSCoding (Java Client only)
classForCoder
encodeWithCoder

Constructors
EOANndQualifier
public EOAndQualifier (NSArray qualifiery

Creates a new EOAndQualifier.d@ialifiersis provided, the new EOAndQualifier is initialized with the
EOQualifier objects igualifiers

Instance Methods

evaluateWithObject

EOQualifierEvaluation Interface

Java Client:

public boolearevaluateWithObject(EOKeyValueCodingAdditionanObjec}
Yellow Box:

public boolearevaluateWithObject(java.lang.ObjecanObjec}

Returngrue if anObjectsatisfies the qualifiefalse otherwise. When an EOAndQuialifier object receives
anevaluateWithObject message, it evaluates each of its qualifiers until one of them rédigadf any

of its qualifiers returnfalse the EOAndQualifier object returfalse immediately. If all of its qualifiers
returntrue, the object returngue. This method can throw one of several possible exceptions if an error
occurs. If your application allows users to construct arbitrary qualifiers (such as through a user interface),
you may want to write code to catch any exceptions and properly respond to errors (for example, by
displaying a panel saying that the user typed a poorly formed qualifier).

qualifiers
public NSArrayqualifiers()

Returns the receiver’s qualifiers.

Classes: EOClassDescription

EOCIlassDescription

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

The EOClassDescription class provides a mechanism for extending classes by giving them access to
metadata not available in the run-time system. This is achieved as follows:

« EOCIlassDescription provides a bridge between enterprise objects and the metadata contained in an
external source of information, such as an EOModel (EOAccess). It defines a standard API for accessing
the information in an external source. It also manages the registration of EOClassDescription objects in
your application.

* The EOEnterpriseObject interface declares several EOClassDescription-related methods that define
basic enterprise objects behavior, such as undo and validation. The EOCustomObject and
EOGenericRecord classes implement the EOEnterpriseObject inteface. An enterprise object class can
either accept the default implementations by subclassing from EOCustomObject or it can provide its own
implementation by overriding. This is discussed in more detail in the section “Using
EOClassDescription.”

Enterprise Objects Framework implements a default subclass of EOClassDescription in EOAccess,
EOEntityClassDescription. EOEntityClassDescription extends the behavior of enterprise objects by
deriving information about them (such as NULL constraints and referential integrity rules) from an
associated EOModel.

For more information on using EOClassDescription, see the sections

* How Does It Work?

* Using EOClassDescription

« EOEntityClassDescription

« The EOClassDescription’s Delegate

Constants

EOClassDescription defines the following string constants for the names of the notifications it posts:
« EOCIlassDescriptionNeededForClassNotification
» EOClassDescriptionNeededForEntityNameNotification

See the Notifications section for more information on the notifications.
Additionally, EOClassDescription defines an integer constant for each delete rule:

* DeleteRuleCascade
« DeleteRuleDeny

» DeleteRuleNullify

» DeleteRuleNoAction

For more information on the delete rules, see the method descriptbeiédtgRuleForRelationshipKey

Method Types

Managing EOClassDescriptions
invalidateClassDescriptionCache (Yellow Box only)
registerClassDescription

Getting EOClassDescriptions
classDescriptionForClass
classDescriptionForEntityName

Creating new object instances
createlnstanceWithEditingContext

Propagating delete
propagateDeleteForObject

Returning information from the EOClassDescription
entityName
attributeKeys
classDescriptionForDestinationKey
toManyRelationshipKeys
toOneRelationshipKeys
inverseForRelationshipKey
ownsDestinationObjectsForRelationshipKey
deleteRuleForRelationshipKey

Performing validation
validateObjectForDelete
validateObjectForSave
validateValueForKey

Providing default characteristics for key display (Yellow Box only)
defaultFormatterForKey (Yellow Box only)
defaultFormatterForKeyPath (Yellow Box only)
displayNameForKey (Yellow Box only)

10

Classes: EOClassDescription

Handling newly inserted and newly fetched objects
awakeObjectFromFetch
awakeObjectFrominsertion

Setting the delegate
classDelegate
setClassDelegate

Getting an object’s description (Yellow Box only)
userPresentableDescriptionForObject (Yellow Box only)

Static Methods
classDelegate
public static java.lang.ObjectassDelegat@
Returns the delegate for the EOClassDescription class (as opposed to EOClassDescription instances).

See also: setClassDelegate

classDescriptionForClass
public static EOClassDescriptimtassDescriptionForClas§ava.lang.ClasaClasg

Invoked by the default implementations of the EOEnterpriseObject interface notthsDescriptionto

return the EOClassDescription faClass It's generally not safe to use this method directly—for example,
individual EOGenericRecord instances can have different class descriptions. If a class description for
aClassisn’t found, this method posts an EOClassDescriptionNeededForClassNotification on behalf of the
receiver’s class, allowing an observer to register a an EOClassDescription.

classDescriptionForEntityName

public static EOClassDescription
classDescriptionForEntityNamejava.lang.StringentityNamé

Returns the EOClassDescription registered uadétyName

invalidateClassDescriptionCache
public static voidnvalidateEOClassDescriptionCaché€)

This method is available for Yellow Box applications only; there is no Java Client equivalent.

11

Flushes the EOClassDescription cache. Because the EOModel objects in an application supply and register
EOCIlassDescriptions on demand, the cache continues to be repopulated as needed after you invalidate it.
(The EOModel class is defined in EOAccess.)

You'd use this method when a provider of EOClassDescriptions (such as an EOModel) has newly become
available, or is about to go away. However, you should rarely need to directly invoke this method unless
you're using an external source of information other than an EOModel.

registerClassDescription

public static voidegisterClassDescriptior
com.apple.client.eocontrol. EOClassDescriptiescription
java.lang.Classlasg

Registers an EOClassDescription objecttassin the EOClassDescription caceu should rarely need
to directly invoke this method unless you're using an external source of information other than an EOModel
(EOAccess).

setClassDelegate
public static voicksetClassDelegaigava.lang.Objectielegatg

Sets the delegate for the EOClassDescription class (as opposed to EOClassDescription instances) to
delegate For more information on the class delegate, see the EOClassDescription.ClassDelegate interface
specification.

See also: classDelegate

Instance Methods

12

attributeKeys
public NSArrayattributeKeys()

Overridden by subclasses to return an array of attribute keys (Strings) for objects described by the receiver.
“Attributes” contain immutable data (such as Numbers and Strings), as opposed to “relationships” that are
references to other enterprise objects. For example, a class description that describes Movie objects could
return the attribute keys “title,” “dateReleased,” and “rating.”

EOCIlassDescription’s implementation of this method simply returns .

See also: entityName, toOneRelationshipKeys, toManyRelationshipKeys

Classes: EOClassDescription

awakeObjectFromFetch

public voidawakeObjectFromFetcH
EOEnterpriseObjecibject
EOEditingContexainEditingContext

Overridden by subclasses to perform standard post-fetch initializatiobjémtin anEditingContext.
EOCIlassDescription’s implementation of this method does nothing.

awakeObjectFromInsertion

public voidawakeObjectFromInsertion(
EOEnterpriseObjecibject
EOEditingContexanEditingContext

Assigns empty arrays to to-many relationship properties of newly inserted enterprise objects. Can be
overridden by subclasses to propagate inserts for the newly ingbjitetin anEditingContextMore
specifically, ifobjecthas a relationship (or relationships) that propagates the object’s primary key and if no
object yet exists at the destination of that relationship, subclasses should create the new object at the
destination of the relationship. Use this method to put default values in your enterprise object.

classDescriptionForDestinationKey
public EOClassDescriptiotlassDescriptionForDestinationKeyjava.lang.StringletailKey)

Overridden by subclasses to return the class description for objects at the destination of the to-one
relationship identified byetailKey For example, the statement:

movie.classDescriptionForDestinationKey("studio")

might return the class description for the Studio class. EOClassDescription’s implementation of this method
returnsnull.

createlnstanceWithEditingContext

public EOEnterpriseObjecteatelnstanceWithEditingContext(
EOEditingContexanEditingContext
EOGlIoballDgloballD)

Overridden by subclasses to create an object of the appropriate elaBslitingContextvith globallD. In

typical usage, both of the method’s argumentsate To create the object, the subclass should pass
anEditingContextitself, andaGloballD to the appropriate constructor. Enterprise Objects Framework uses
this method to create new instances of objects when fetching existing enterprise objects or inserting new
ones in an interface layer EODisplayGroup. EOClassDescription’s implementation of this method returns
null.

13

defaultFormatterForKey
public NSFormattedefaultFormatterForKey (java.lang.Stringey)

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returns the default NSFormatter to use when parsing values for assignke®nEClassDescription’s
implementation returnsull. The access layer's EOEntityClassDescription’s implementation returns an
NSFormatter based on the Java valueClass specifi&dyfior the associated model file. Code that creates
a user interface, like a wizard, can use this method to assign formatters to user interface elements.

defaultFormatterForKeyPath
public NSFormattedefaultFormatterForKey (java.lang.Striney)

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Similar todefaultFormatterForKey, except this method traverdesyPathand returns the formatter for the
key at the end of the path (usidgfaultFormatterForKey).

deleteRuleForRelationshipKey
public intdeleteRuleForRelationshipKeyjava.lang.StringelationshipKey

Overridden by subclasses to return a delete rule indicating how to treat the destination of the given
relationship when the receiving object is deleted. The delete rule is one of:

Constant Description

When the source object is deleted, any references a destination object has to the source
are removed or “nullified.” For example, suppose a department has a to-many
relationship to multiple employees. When the department is deleted, any back references
an employee has to the department are set to null.

DeleteRuleNullify

When the source object (department) is deleted, any destination objects (employees) are

DeleteRuleCascade also deleted.

If the source object (department) has any destination objects (employees), a delete

DeleteRuleDeny operation is refused.

14

Classes: EOClassDescription

Constant Description

When the source object is deleted, its relationship is ignored and no action is taken to
propagate the deletion to destination objects.

This rule is useful for tuning performance.To perform a deletion, Enterprise Objects
Framework fires all the faults of the deleted object and then fires any to-many faults that
point back to the deleted object. For example, suppose you have a simple application
based on the sample Movies database. Deleting a Movie object has the effect of firing a
to-one fault for the Movie’s studio relationship, and then firing the to-many movies fault
for that studio. In this scenario, it would make sense to set the delete rule
EODeleteRuleNoAction for Movie's studio relationship. However, you should use this
delete rule with great caution since it can result in dangling references in your object
graph.

DeleteRuleNoAction

EOCIlassDescription’s implementation of this method returns the delete rule EODeleteRuleNullify. In the
common case, the delete rule for an enterprise object is defined in its EOModel. (The EOModel class is
defined in EOAccess.)

See also: propagateDeleteWithEditingContext (EOEnterpriseObject)

displayNameForKey
public java.lang.StringlisplayNameForKey(java.lang.Stringey)
This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returns the default string to use in the user interface when dispkayi®y convention, lowercase words

are capitalized (for example, “revenue” becomes “Revenue”), and spaces are inserted into words with
mixed case (for example, “firstName” becomes “First Name”). This method is useful if you're creating a
user interface from only a class description, such as with a wizard or a Direct To Web application.

entityName
public java.lang.StringntityName()

Overridden by subclasses to return a unique type name for objects of this class. For example, the access
layer's EOEntityClassDescription returns its EOEntity’s name. EOClassDescription’s implementation of
this method returnsull.

See also: attributeKeys, toOneRelationshipKeys, toManyRelationshipKeys

15

16

inverseForRelationshipKey
public java.lang.StringnverseForRelationshipKeyjava.lang.StringelationshipKey

Overridden by subclasses to return the name of the relationship pointing back at the receiver from the
destination of the relationship specifiedrblationshipKeyFor example, suppose an Employee object has
a relationship calledepartment to a Department object, and Department has a relationship called
employeeshack to Employee. The statement:

employee.inverseForRelationshipKey("department”);
returns the string “employees”.

EOClassDescription’s implementation of this method retoutis

ownsDestinationObjectsForRelationshipKey
public boolearownsDestinationObjectsForRelationshipKeyjava.lang.StringelationshipKey

Overridden by subclasses to rettnure or falseto indicate whether the objects at the destination of the
relationship specified brglationshipKeyshould be deleted if they are removed from the relationship (and
not transferred to the corresponding relationship of another object). For example, an Invoice object owns
its line items. If a Lineltem object is removed from an Invoice it should be deleted since it can't exist outside
of an Invoice. EOClassDescription’s implementation of this method retlsesin the common case, this
behavior for an enterprise object is defined in its EOModel. (The EOModel class is defined in EOAccess.)

propagateDeleteForObject

public voidpropagateDeleteForObject
EOEnterpriseObjecibject
EOEditingContexanEditingContext

Propagates a delete operationdbjectin anEditingContextaccording to the delete rules specified in the
EOModel. This method is invoked whenever a delete operation needs to be propagated, as indicated by the
delete rule specified for the corresponding EOEntity’s relationship key. (The EOModel and EOEntity
classes are defined in EOAccess.) For more discussion of delete rules, see the EOEnterpriseObject
interfacespecification.

See also: deleteRuleForRelationshipKey

Classes: EOClassDescription

toManyRelationshipKeys
public NSArraytoManyRelationshipKeyy)

Overridden by subclasses to return the keys for the to-many relationship properties of the receiver. To-many
relationship properties contain arrays of enterprise objects. EOClassDescription’s implementation of this
method returnsull.

See also: entityName, toOneRelationshipKeys, attributeKeys

toOneRelationshipKeys
public NSArraytoOneRelationshipKeyg)

Overridden by subclasses to return the keys for the to-one relationship properties of the receiver. To-one
relationship properties are other enterprise objects. EOClassDescription’s implementation of this method
returnsnull.

See also: entityName, toManyRelationshipKeys, attributeKeys

userPresentableDescriptionForObject
public java.lang.StringserPresentableDescriptionForObjedjava.lang.ObjecanObjec)

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returns a short (no longer than 60 characters) descriptamQifjectbased on its data. This method
enumerateanObjecs attributeKeys and returns each attribute’s value, separated by commas and with the
default formatter applied for numbers and dates.

validateObjectForDelete

public voidvalidateObjectForDeletd EOEnterpriseObjecibjec)
throws EQOValidation.Exception

Overridden by subclasses to determine whether it's permissible to olgjeteé Subclasses should
complete normally if the delete operation should proceed, or raise an exception containing a
user-presentable (localized) error message. EOClassDescription’s implementation of this method
completes normally.

17

validateObjectForSave

public voidvalidateObjectForSavgEOEnterpriseObjeaibjec)
throws EQOValidation.Exception

Overridden by subclasses to determine whether the values being salgddtare acceptable. Subclasses
should complete normally if the values are acceptable and the save operation should proceed, or raise an
exception containing a user-presentable (localized) error message if not. EOClassDescription’s
implementation of this method completes normally.

validateValueForKey

public java.lang.ObjeatalidateValueForKey(
java.lang.Objectvalue
java.lang.Stringey)
throws EQValidation.Exception

Overridden by subclasses to valideadue Subclasses should complete normally if the value is acceptable,
or raise an exception containing a user-presentable (localized) error message if not. Implementations can
replacevalueby returning a new value.

Notifications

18

The following notifications are declared by EOClassDescription and posted by enterprise objects in your
application.

EOCIlassDescriptionNeededForClassNotification

One of the EOClassDescription-related methods in the EOEnterpriseObject interface to extend the behavior
of enterprise objects is classDescription. The first time an enterprise object receives a classDescription
message (for example, when changes to the object are being saved to the database), it posts
EOCIlassDescriptionNeededForClassNotification to notify observers that a class description is needed. The
observer then locates the appropriate class description and registers it in the application. By default,
EOModel objects are registered as observers for this notification and register EOClassDescriptions on
demand.

Notification Object Enterprise object class

userlinfo Dictionary None

Classes: EOClassDescription

EOClassDescriptionNeededForEntityNameNotification

WhenclassDescriptionForEntityNameis invoked for a previously unregistered entity name, this
notification is broadcast with the requested entity name as the object of the notification. By default,

EOModel objects are registered as observers for this notification and register EOClassDescriptions on

demand.

Notification Object Entity name (String)

userlnfo Dictionary None

19

20

Classes: EOClassDescription

EOClassDescription

How Does It Work?

As noted above, Enterprise Objects Framework implements a default subclass of EOClassDescription in
EOAccess, EOEntityClassDescription. In the typical scenario in which an enterprise object has a
corresponding model file, a particular operation (such as validating a value) results in the broadcast of an
EOCIlassDescriptionNeeded... notification (an EOClassDescriptionNeededForClassNotification or an
EOCIlassDescriptionNeededForEntityNameNotification). When an EOModel object receives such a
notification, it registers the metadata (class description) for the EOEntity on which the enterprise object is
based. (EOModel and EOEntity are defined in EOAccess.)

An enterprise object takes advantage of the metadata registered for it by using the
EOClassDescription-related methods defined in the EOEnterpriseObject interface (and implemented in
EOCustomObject and EOGenericRecord). Primary among these methbladsi3escription which

returns the class description associated with the enterprise object. Through this class description the
enterprise object has access to all of the information relating to its entity in a model file.

In addition to methods that return information based on an enterprise object’s class description, the
EOCIlassDescription-related methods the EnterpriseObject interface defines include methods that are
automatically invoked when a particular operation occurs. These include validation methods and methods
that are invoked whenever an enterprise object is inserted or fetched.

All of this comes together in your running application. When a user tries to perform a particular operation
on an enterprise object (such as attempting to delete it), the EOEditingContext sends these validation
messages to your enterprise object, which in turn (by default) forwards them to its EOClassDescription.
Based on the result, the operation is either accepted or refused. For example, referential integrity constraints
in your model might state that you can't delete a department object that has employees. If a user attempts
to delete a department that has employees, an exception is returned and the deletion is refused.

Using EOClassDescription

For the most part, you don't need to programmatically interact with EOClassDescription. It extends the
behavior of your enterprise objects transparently. However, there are two cases in which you do need to
programmatically interact with it:

« When you override EOClassDescription-related EOEnterpriseObject methods in an enterprise object
class. These methods are used to perform validation and to intervene when enterprise objects based on
EOModels are created and fetched. (The EOModel class is defined in EOAccess.) For objects that don'’t
have EOModels, you can override a different set of EOEnterpriseObject methods; this is described in
more detail in the section “Working with Objects That Don’t Have EOModels.”

* When you create a subclass of EOClassDescription

21

22

Overriding Methods in an Enterprise Object

As described above, EOEnterpriseObject defines several EOClassDescription-related methods. It's
common for enterprise object classes to override the following methods to either perform validation, to
assign default valuesyakeFrominsertion), or to provide additional initialization to newly fetched
objects a&wakeFromFetch:

* validateForSave

« validateForDelete

« validateForlnsert

« validateForUpdate

» awakeFrominsertionInEditingContext:
» awakeFromFetchIinEditingContext:

« userPresentableDescriptionForObject:

For example, an enterprise object class can implematidateForSavemethod that checks the values of
salary andjobLevel properties before allowing the values to be saved to the database:

public void validateForSave() throw EOValidation.Exception {
if (salary > 1500 && jobLevel < 2) {
throw new EOValidation.Exception(
"The salary is too high for that position!");

}

/I pass the check on to the EOClassDescription
super.validateForSave();

}

For more discussion of this subject, see the chapter “Designing Enterprise ObjectErnitetipeise
Objects Framework Developer’s Guijdind the EOEnterpriseObiject interface specification.

Working with Objects That Don’'t Have EOModels

Although an EOModel is the most common source of an EOClassDescription for a class, it isn’t the only
one. Objects that don’t have an EOModel can implement EOClassDescription methods directly as instance
methods, and the rest of the Framework will treat them just as it does enterprise objects that have this
information provided by an external EOModel.

There are a few reasons you might want to do this. First of all, if your object implements the methods
entityName, attributeKeys, toOneRelationshipKeys andtoManyRelationshipKeys,
EOEditingContexts can snapshot the object and thereby provide undo for it.

Secondly, you might want to implement EOClassDescription’s validation or referential integrity methods
to add these features to your classes.

Implementing EOClassDescription methods on a per-class basis in this way is a good alternative to creating
a subclass of EOClassDescription.

Classes: EOClassDescription

Creating a Subclass of EOClassDescription

You create a subclass of EOClassDescription when you want to use an external source of information other
than an EOModel to extend your objects. Another possible scenario is if you've added information to an
EOModel (such as in its user dictionary) and you want that information to become part of your class
description—in that case, you'd probably want to create a subclass of the access layer’s
EOEntityClassDescription.

When you create a subclass of EOClassDescription, you only need to implement the methods that have
significance for your subclass.

If you're using an external source of information other than an EOModel, you need to decide when to
register class descriptions, which you do by invoking the me#wisterClassDescription You can either
register class descriptions in response to a EOClassDescriptionNeeded... notification (an
EOCIlassDescriptionNeededForClassNotification or an
EOClassDescriptionNeededForEntityNameNotification), or you can register class descriptions at the time
you initialize your application (in other words, you can register all potential class descriptions ahead of
time). The default implementation in Enterprise Objects Framework is based on responding to the
EOClassDescriptionNeeded... notifications. When an EOModel receives one of these notifications, it
supplies a class description for the specified class or entity name by inkedistgrClassDescription

EOEntityClassDescription

There are only three methods in EOClassDescription that have meaningful implementations (that is, that
don'’t either returmull or simply return without doing anythinghvalidateClassDescriptionCache
registerClassDescription andpropagateDeleteForObject The default behavior of the rest of the

methods in Enterprise Objects Framework comes from the implementation in the access layer’s
EOCIlassDescription subclass EOEntityClassDescription. For more information, see the
EOEntityClassDescription class specification.

The EOClassDescription’s Delegate

You can assign a delegate to the EOClassDescription class. EOClassDescription sends the message
shouldPropagateDeleteForObjecto its delegate when delete propagation is about to take place for a
particular object. The delegate can either allow or deny the operation for a specified relationship key. For
more information, see the method descriptiorsfiouldPropagateDeleteForObject

23

24

Classes: EOCooperatingObjectStore

EOCooperatingObjectStore

Inherits From: EOODbjectStore : NSObject

Package: com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOCooperatingObjectStore is a part of the control layer’s object storage abstraction. It is an abstract class
that defines the basic API for object stores that work together to manage data from several distinct data
repositories. It is for use in WebObjects and Yellow Box applications only; there is no equivalent class for
Java Client applications. For more general information on the object storage abstraction, see “Object
Storage Abstraction” in the introduction to the EOControl Framework.

The interaction between EOCooperatingObjectStores is managed by another class,
EOObjectStoreCoordinator. The EOObjectStoreCoordinator communicates changes to its
EOCooperatingObjectStores by passing them an EOEditingContext. Each cooperating store examines the
modified objects in the editing context and determines if it's responsible for handling the changes. When a
cooperating store has changes that need to be handled by another store, it communicates the changes to the
other store back through the coordinator.

For relational databases, Enterprise Objects Framework provides a concrete subclass of
EOCooperatingObjectStore, EODatabaseContext (EOAccess). A database context represents a single
connection to a database server, fetching and saving objects on behalf of one or more editing contexts.
However, a database context and an editing context don't interact with each other directly—a coordinator
acts as a mediator between them.

EDEditing EQEdRIng EQEdfing
Conbet Canbext Conbext
EC et o
Coardinabor

ELilatabrese ECiDalsbase
Conbext Cantexi

25

Method Types

Committing or discarding changes
commitChanges
performChanges
rollbackChanges
prepareForSaveWithCoordinator
recordChangesinEditingContext
recordUpdateForObject

Returning information about objects
valuesForKeys

Determining if the EOCooperatingObjectStore is responsible for an operation
ownsObject
ownsGloballD
handlesFetchSpecification

Instance Methods
commitChanges
public abstract voidommitChangeg)

Overridden by subclasses to commit the transaction. Throws an exception if an error occurs; the error
message indicates the nature of the problem.

Seealso: performChanges commitChanges
saveChangesInEditingContex{EOObjectStoreCoordinator)

handlesFetchSpecification
public abstract booledmandlesFetchSpecificatiofEOFetchSpecificatiofetchSpecification

Overridden by subclasses to rettnure if the receiver is responsible for fetching the objects described by
fetchSpecificationFor example, EODatabaseContext (EOAccess) determines whether it's responsible
based orietchSpecificatioa entity name.

See also: ownsGloballD, ownsObject

26

Classes: EOCooperatingObjectStore

ownsGloballD
public abstract booleaswnsGlobalID(EOGIoballDgloballD)

Overridden by subclasses to rettnure if the receiver is responsible for fetching and saving the object
identified bygloballD. For example, EODatabaseContext (EOAccess) determines whether it's responsible
based on the entity associated vgtbballD.

See also: handlesFetchSpecificationownsObject

ownsObject
public abstract booleamwnsObjec{java.lang.Objecbbjec)
Overridden by subclasses to rettnure if the receiver is responsible for fetching and sawbjgct For

example, EODatabaseContext (EOAccess) determines whether it's responsible based on the entity
associated witlobject

See also: ownsGloballD, handlesFetchSpecification

performChanges
public abstract voigherformChangey)

0

Overridden by subclasses to transmit changes to the receiver’s underlying database. Raises an exception if
an error occurs; the error message indicates the nature of the problem.

See also: commitChanges rollbackChanges
saveChangesInEditingContex{EOODbjectStoreCoordinator)

prepareForSaveWithCoordinator

public abstract voighrepareForSaveWithCoordinator(
EOObjectStoreCoordinataoordinator,
EOEditingContexanEditingContext

Overridden by subclasses to notify the receiver that a multi-store save operation ovecseedihtoris
beginning foranEditingContextFor example, the receiver might prepare primary keys for newly inserted
objects so that they can be handed out to other EOCooperatingObjectStores upon request. The receiver
should be prepared to receive the messegmsdChangesInEditingContextand

recordUpdateForObject.

After performing these methods, the receiver should be prepared to receive the possible messages
performChangesand thercommitChangesor rollbackChanges

27

28

recordChangesinEditingContext

public abstract voidecordChangesinEditingContext)
0

Overridden by subclasses to instruct the receiver to examine the changed objects in the receiver’s
EOEditingContext, record any operations that need to be performed, and notify the receiver’s
EOODbjectStoreCoordinator of any changes that need to be forwarded to other EOCooperatingObjectStores.

See also: prepareForSaveWithCoordinator, recordUpdateForObject

recordUpdateForObject

public abstract voidecordUpdateForObject(
java.lang.Objecbbject
NSDictionarychange}

Overridden by subclasses to communicate from one EOCooperatingObjectStore to another (through the
EOODbjectStoreCoordinator) thettangeseed to be made to abject For example, an insert of an object

in a relationship property might require changing a foreign key property in an object owned by another
EOCooperatingObjectStore. This method is primarily used to manipulate relationships.

See also: prepareForSaveWithCoordinator, recordChangesinEditingContext

rollbackChanges

public abstract voidollbackChangey)
0

Overridden by subclasses to roll back changes to the underlying database. Raises one of several possible
exceptions if an error occurs; the error message should indicate the nature of the problem.

See also: commitChanges performChanges
saveChangesInEditingContex{EOObjectStoreCoordinator)

valuesForKeys

public abstract NSDictionawyaluesForKeyg
NSArraykeys
java.lang.Objecbbjec)

Overridden by subclasses to return values (as identifikdysyheld by the receiver that augment

properties irobject For instance, an EODatabaseContext (EOAccess) stores foreign keys for the objects it
owns (and primary keys for new objects). These foreign and primary keys may well not be defined as
properties of the object. Other database contexts can find out these keys by sending the database context

Classes: EOCooperatingObjectStore

that owns the objectwamluesForKeysmessage. Note that you use this for properties thatoastored in
the object, so using key-value coding directly on the object won't always work.

29

30

Classes: EOCustomObject

EOCustomObject

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Implements: EOEnterpriseObject
EOKeyValueCoding (EOKeyValueCodingAdditions)
EOKeyValueCodingAdditions (EOEnterpriseObiject)
EORelationshipManipulation (EOEnterpriseObject)
EOValidation (EOEnterpriseObject)
EOFaulting (EOEnterpriseObject)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (\Yellow Box)

Class Description

The EOCustomObiject class provides a default implementation &QEaterpriseObject interface.yibu

need to create a custom enterprise object class, you can subclass EOCustomObiject and inherit the
Framework’s default implementations. Some of the methods are for subclasses to implement or override,
but most are meant to be used as defined by EOCustomObiject. For information on which methods you
should implement in your subclass, see the EOEnterpriseObject interface specification.

EOCustomObject’s method implementations are described in the specification for the interface that
declares them. For example, you can find a description of how EOCustomObject impiletuefisrkKey
(introduced in the EOKeyValueCoding interface) in the specification for EOKeyValueCoding, and you can
find a description of how EOCustomObject implemetassDescription(introduced in the
EOEnterpriseObject interface) in the specification for EOEnterpriseObject.

The only methods provided in EOCustomObiject that aren’t defined in the EOEnterpriseObject interface are
the following three static methods:

» accesslnstanceVariablesDirectly
« flushAllKeyBindings
» useStoredAccessor

You would never invoke these methods, rather, they are provided in EOCustomObject to demonstrate the
additional APl your custom enterprise objects can implement. Similarly, EOCustomObiject’'s constructors
are not meant to be invoked; you would never create an instance of EOCustomObject. Rather,
EOCustomObject provides the constructors to demonstrate the constructors your custom enterprise objects
should implement.

31

Interfaces Implemented
EOKeyValueCoding

EOKeyValueCodingAdditions

EORelationshipManipulation

EQOValidation

32

handleQueryWithUnboundKey
handleTakeValueForUnboundKey
storedValueForKey
takeStoredValueForKey
takeValueForKey
unableToSetNullForKey
valueForKey

takeValueForKeyPath
takeValuesFromDictionary
valueForKeyPath
valuesForKeys

addObjectToBothSidesOfRelationshipWithKey

addObjectToPropertyWithKey

removeObjectFromBothSidesOfRelationshipWithKey
removeObjectFromPropertyWithKey

validateForDelete
validateForInsert
validateForSave
validateForUpdate
validateValueForKey

Classes: EOCustomObject

EOEnterpriseObject
allPropertyKeys
attributeKeys
awakeFromFetch
awakeFromInsertion
changesFromSnapshot (Yellow Box only)
classDescription
classDescriptionForDestinationKey
clearProperties
deleteRuleForRelationshipKey
editingContext
entityName
eoDescription
eoShallowDescription
inverseForRelationshipKey
invokeRemoteMethod (Java Client only)
isToManyKey
ownsDestinationObjectsForRelationshipKey
propagateDeleteWithEditingContext
reapplyChangesFromDictionary (Yellow Box only)
shapshot
toManyRelationshipKeys
toOneRelationshipKeys
updateFromSnapshot
userPresentableDescription (Yellow Box only)
willChange

EOFaulting
clearFault
isFault
turnintoFault
willRead

Constructors

public EOCustomObject(EOEditingContexanEOEditingContext
EOCIlassDescriptioanEOCIlassDescriptigrEOGIloballDanEOGIoballD

You would never create an instance of EOCustomObiject; rather, your subclasses can create constructors of
this same form. A subclass’s constructors should create a new object and initialize it with the arguments
provided.

See also: createlnstanceWithEditingContext (EOClassDescription)

33

Static Methods

accesslinstanceVariablesDirectly
public static booleaaccessinstanceVariablesDirectilf)

Subclasses implement this method to refatseif the key-value coding methods should never access the
corresponding instance variable directly on finding no accessor method for a property. You don't have to
implement this method if the default behavior of accessing instance variables directly is correct for your
objects.

See also: valueForKey, takeValueForKey

flushAllKeyBindings
public static voidlushAllKeyBindings()

Invalidates the cached key binding information for all classes (caches are kept of key-to-method or instance
variable bindings in order to make key-value coding efficient). This method should be invoked whenever a
class is modified in or removed from the run-time system.

See also:

useStoredAccessor
public static booleanseStoredAccessd)

Subclasses implement this method to refalse if the stored value methodst¢redValueForKey and
takeStoredValueForKey) should not use private accessor methods in preference to public accessors.
Returningfalse causes the stored value methods to use the same accessor method-instance variable search
order as the corresponding basic key-value coding methkialie ForKey andtakeValueForKey). You

don’t have to implement this method if the default default stored value search order is correct for your
objects.

34

Classes: EODataSource

EODataSource

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

EODataSource is an abstract class that defines a basic API for providing enterprise objects. It exists
primarily as a simple means for a display group (EODisplayGroup from EOInterface or WODisplayGroup
from WebObjects) or other higher-level class to access a store of objects. EODataSource defines functional
implementations of very few methods; concrete subclasses, such as EODatabaseDataSource (defined in
EOAccess) and EODetailDataSource, define working data sources by implementing the others.
EODatabaseDataSource, for example, provides objects fetched through an EOEditingContext, while
EODetailDataSource provides objects from a relationship property of a master object. For information on
creating your own EODataSource subclass, see the section “Creating a Subclass.”

An EODataSource provides its objects withféiehObjects methodinsertObject anddeleteObjectadd
and remove individual objects, aogateObjectinstantiates a new object. Other methods provide
information about the objects, as described below.

Method Types

Accessing the objects
fetchObjects

Inserting and deleting objects
createObject
insertObject
deleteObject

Creating detail data sources
dataSourceQualifiedByKey
qualifyWithRelationshipKeyAndObject

Accessing the editing context
editingContext

Accessing the class description
classDescriptionForObjects

35

Instance Methods

36

classDescriptionForObjects
public EOClassDescriptiotlassDescriptionForObject$)

Implemented by subclasses to return an EOClassDescription that provides information about the objects
provided by the receiver. EODataSource’s implementation retuths

createObject
public java.lang.Objeatreate Object)

Creates a new object, inserts it in the receiver’s collection of objects if appropriate, and returns the object.
Returnsnull if the receiver can’t create the object or can't insert it. You should iriasketObject after
this method to actually add the new object to the receiver.

As a convenience, EODataSource’s implementation sends the receiver's EOClassDescription a
createlnstanceWithEditingContext message to create the object. If this succeeds and the receiver has an
EOEditingContext, it sends the EOEditingContexitraertObject message to register the new object with

the EOEditingContext (note that this doed insert the object into the EODataSource). Subclasses that
don’t use EOClassDescriptions or EOEditingContexts should override this mdthodtinvoking

supers implementation.

See also: classDescriptionForObjects editingContext

dataSourceQualifiedByKey
public abstract EODataSourdataSourceQualifiedByKeyjava.lang.StringelationshipKey

Implemented by subclasses to return a detail EODataSource that provides the destination objects of the
relationship named brelationshipKey The detail EODataSource can be qualified using
qualifyWithRelationshipKeyAndObject to set a specific master object (or to change the relationship
key). EODataSource’s implementation merely throws an exception; subclasses shouldniuperke
implementation.

deleteObject
public abstract voidleleteObjectjava.lang.ObjecanObjec}

Implemented by subclasses to deb®bject EODataSource’s implementation merely throws an
exception; subclasses shouldn't invakger's implementation.

Classes: EODataSource

editingContext
public EOEditingContexgéditingContext()

Implemented by subclasses to return the receiver's EOEditingContext. EODataSource’s implementation
returnsnull.

fetchObjects
public NSArrayfetchObjecty)

Implemented by subclasses to fetch and return the objects provided by the receiver. EODataSource’s
implementation returnsull.

insertObject
public abstract voidhsertObject(java.lang.Objecbbjec)

Implemented by subclasses to ingdrject EODataSource’s implementation merely throws an exception;
subclasses shouldn’t invokepers implementation.

qualifyWithRelationshipKeyAndObject

public abstract voidjualifyWithRelationshipKey (
java.lang.Strinckey
java.lang.ObjecsourceObjeqt

Implemented by subclasses to qualify the receiver, a detail EODataSource, to display destination objects
for the relationship namddaybelonging tasourceObjectkeyshould be the same as the key specified in the
message that created the receivesoifrceObjects null, the receiver qualifies itself to provide no objects.
EODataSource’s implementation merely throws an exception; subclasses shouldn'supeise
implementation.

37

38

Classes: EODataSource

EODataSource

Creating a Subclass

The job of an EODataSource is to provide objects that share a set of properties so that they can be managed
uniformly by its client, such as an EODisplayGroup (defined in EOInterface) or a WODisplayGroup

(defined in WebObijects). Typically, these objects are all of the same class or share a superclass that defines
the common properties managed by the client. All that's needed, however, is that every object have the
properties expected by the client. For example, if an EODataSource provides Member and Guest objects,
they can be implemented as subclasses of a more general Customer class, or they can be independent classes
defining the same propertidagtName firstName, andaddress for example). You typically specify the

kind of objects an EODataSource provides when you initialize it. Subclasses usually define a constructor
whose arguments describe the objects. The EODatabaseDataSource constructor, for exampleuses an
EOEntity to describe the set of objects. Another subclass might use an EOClassDescription, a class or
superclass for the objects, or even a collection of existing instances.

A subclass can provide two other pieces of information about its objects, using methods declared by
EODataSource. First, if your subclass keeps its objects in an EOEditingContext, it should override the
editingContext method to return that EOEditingContext. It doesn’'t have to use an EOEditingContext,
though, in which case it can just use the default implementatemitafgContext, which returnsiull Keep

in mind, however, the amount of work EOEditingContexts do for you, especially when you use
EODisplayGroups. For example, EODisplayGroups depend on change notifications from
EOEditingContexts to update changes in the objects displayed. If your subclass or its clients depend on
change notification, you should use an EOEditingContext for object storage and change notification. If you
don't use one, you'll have to implement that functionality yourself. For more information, see these class
specifications:

« EOODbjectStore

« EOEditingContext

« EODisplayGroup (EOInterface)
» EODelayedObserverQueue

« EODelayedObserver

The other piece of information—also optional—is an EOClassDescription for the objects. EODataSource
uses an EOClassDescription by default when creating new objects. Your subclass should override
classDescriptionForObjectsto return the class description if it uses one and if it's providing objects of a
single superclass. Your subclass can either record an EOClassDescription itself, or get it from some other
object, such as an EOEntity or from the objects it provides (through the EOEnterpriseObject method
classDescription which is implemented by EOCustomObject and EOGenericRecord). If your
EODataSource subclass doesn’t use an EOClassDescription at all it, can use the default implementation of
classDescriptionForObjects which returnsull.

39

40

Manipulating Objects

A concrete subclass of EODataSource must at least provide objects by implerfstcii@bjects If it

supports insertion of new objects, it should impleniesgrtObject, and if it supports deletion it should

also implementleleteObject An EODataSource that implements its own store must define these methods
from scratch. An EODataSource that uses another object as a store can forward these messages to that store.
For example, an EODatabaseDataSource turns these three requedieoteWithFetchSpecification
insertObject, anddeleteObjectmessages to its EOEditingContext.

Implementing Master-Detail Data Sources

An EODataSource subclass can also implement a pair of methods that allow it to be used in master-detail
configurations. The first methadataSourceQualifiedByKey should create and return a new data source,

set up to provide objects of the destination class for a relationship in a master-detail setup. In a master-detail
setup, changes to the detail apply to the objects in the master; for example, adding an object to the detail
also adds it to the relationship of the master object. The standard EODetailDataSource class works well for
this purpose, so you can simply implemeataSourceQualifiedByKeyto create and return one of these.

Once you have a detail EODataSource, you can set the master object by sending the detail a
qualifyWithRelationshipKeyAndObject message. The detail then uses the master object in evaluating the
relationship and applies inserts and deletes to that master object.

Another kind of paired EODataSource setup, called master-peer, is exemplified by the
EODatabaseDataSource class. In a master-peer setup, the two EODataSources are independent, so that
changes to one don'’t affect the other. Inserting into the “peer,” for example, does not update the relationship
property of the master object. See that class description for more information.

Classes: EODelayedObserver

EODelayedObserver

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Implements: EOObserving

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

The EODelayedObserver class is a part of EOControl’'s change tracking mechanism. It is an abstract
superclass that defines the basic functionality for coalescing change notifications for multiple objects and
postponing notification according to a prioritized queue. For an overview of the general change tracking
mechanism, see “Tracking Enterprise Objects ChangesEOControl provides four classes and an interface
that form an efficient, specialized mechanism for tracking changes to enterprise objects and for managing
the natification of those changes to interested observers. EOObserverCenter is the central manager of
change notification. It records observers and the objects they observe, and it distributes notifications when
the observable objects change. Observers implement the EOObserving interface, which defines one
method, objectWillChange. Observable objects (generally enterprise objects) invoke their willChange
method before altering their state, which causes all observers to receive an objectWillChange message.” in
the introduction to the EOControl Framework.

EODelayedObserver is primarily used to implement the interface layer’s associations and wouldn’t
ordinarily be used outside the scope of a Java Client or Yellow Box application (not in a command line tool
or WebObijects application, for example). See the EODelayedObserverQueue class specification for general
information.

You would never create an instance of EODelayedObserver. Instead, you use subclasses—typically
EOAssociations (EOInterface). For information on creating your own EODelayedObserver subclass, see
“Creating a Subclass of EODelayedObserver.”

41

Constants

The following integer constants are defined to represent the priority of a notification in the queue:

ObserverPrioritylmmediate ObserverPriorityFourth
ObserverPriorityFirst ObserverPriorityFifth
ObserverPrioritySecond ObserverPrioritySixth
ObserverPriority Third ObserverPriorityLater

Interfaces Implemented

EOObserving
objectWillChange

Method Types

Change notification
subjectChanged

Canceling change notification
discardPendingNoatification

Getting the queue and priority
observerQueue
priority

Instance Methods
discardPendingNotification
public voiddiscardPendingNoatification()

Sends alequeueObservemessage to the receiver's EODelayedObserverQueue to clear it from receiving
a change notification. A subclass of EODelayedObserver should invoke this method when its done
observing changes.

See also: ObserverQueue

42

Classes: EODelayedObserver

objectWillChange

interface EOObserving
public voidobjectWillChange(java.lang.ObjecanObjec}

Implemented by EODelayedObserver to enqueue the receiver on its EODelayedObserverQueue.
Subclasses shouldn’t need to override this method; if they do, they must be sure tsupeske
implementation.

See also: 0ObserverQueug enqueueObservel(EODelayedObserverQueuehjectWillChange
(EOObserving)

observerQueue
public EODelayedObserverQueoabserverQueu€)

Overridden by subclasses to return the receiver’s designated EODelayedObserverQueue.
EODelayedObserver’'s implementation returns the default EODelayedObserverQueue.

See also: defaultObserverQueue(EODelayedObserverQueue)

priority

public intpriority ()
0

Overridden by subclasses to return the receiver’s change notification priority, one of:

« ObserverPriorityimmediate
» ObserverPriorityFirst

* ObserverPrioritySecond

» ObserverPriorityThird

» ObserverPriorityFourth

» ObserverPriorityFifth

» ObserverPrioritySixth

» ObserverPriorityLater

EODelayedObserver’'s implementation returns ObserverPriorityThird. See the EODelayedObserverQueue
class specification for more information on priorities.

subjectChanged
public abstract voidubjectChanged)

Implemented by subclasses to examine the receiver’'s observed objects and take whatever action is
necessary. EODelayedObserver’s implementation does nothing.

43

44

Classes: EODelayedObserver

EODelayedObserver

Creating a Subclass of EODelayedObserver

EODelayedObserver implements the badiectWillChange method to simply enqueue the receiver on

an EODelayedObserverQueue. Regardless of how many of these messages the receiver gets during the run
loop, it receives a singlubjectChangedmessage from the queue—at the end of the run loop. In this

method the delayed observer can check for changes and take whatever action is necessary. Subclasses
should record objects they're interested in and examine theabjactChanged An

EOAssociation.(EOInterface) for example, examines each of the EODisplayGroups (EOInterface) it's

bound to in order to find out what has changed. Another kind of subclass might record each changed object
for later examination by overridingpjectWillChange, but it must be sure to involseipers

implementation when doing so.

The rest of EODelayedObserver's methods have meaningful, if static, default implementations.
EODelayedObserverQueue sends change notifications according to the priority of each enqueued observer.
EODelayedObserver’s implementation of tirerity method returns ObserverPriority Third. Your

subclass can override it to return a higher or lower priority, or to have a settable priority. The other method
a subclass might overrideabserverQueue which returns a default EODelayedObserverQueue normally
shared by all EODelayedObservers. Because sharing a single queue keeps all EODelayedObserver’s
synchronized according to their priority, you should rarely override this method, doing so only if your
subclass is involved in a completely independent system.

A final methoddiscardPendingNotification need never be overridden by subclasses, but must be invoked
when a delayed observer is done observing changes. This prevents observers from being sent change
notifications after they've been finalized.

45

46

Classes: EODelayedObserverQueue

EODelayedObserverQueue

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

The EODelayedObserverQueue class is a part of EOControl’s change tracking mechanism. An
EODelayedObserverQueue collects change notifications for observers of multiple objects and notifies them
of the changesn masseluring the application’s run loop, according to their individual priorities. For an
overview of the general change tracking mechanism, see “Tracking Enterprise Objects ChangesEOControl
provides four classes and an interface that form an efficient, specialized mechanism for tracking changes to
enterprise objects and for managing the notification of those changes to interested observers.
EOObserverCenter is the central manager of change notification. It records observers and the objects they
observe, and it distributes notifications when the observable objects change. Observers implement the
EOObserving interface, which defines one method, objectWillChange. Observable objects (generally
enterprise objects) invoke their willChange method before altering their state, which causes all observers to
receive an objectWillChange message.” in the introduction to the EOControl Framework.

EODelayedObserverQueue’s style of notification is particularly useful for coalescing and prioritizing
multiple changes; the interface layer's EOAssociation classes use it extensively to update Java Client and
Yellow Box user interfaces, for example. Instead of being told that an object will change, an
EODelayedObserver is told that it did change, wislulbjectChangedmessage, as described in the
EODelayedObserver class specification. Delayed observation is thus not useful for comparing old and new
states, but only for examining the new state. Delayed observation also isn’t ordinarily used outside the scope
of a Java Client or Yellow Box application (in a command line tool or WebObjects application, for
example).

The motivation for a delayed change notification mechanism arises mainly from issues in observing
multiple objects. Any single change to an observed object typically requires the observer to update some
state or perform an action. When many such objects change, it makes no sense to recalculate the new state
and perform the action for each object. EODelayedObserverQueue allows these changes to be collected into
a single notification. It further orders change notifications according to priorities, allowing observers to be
updated in sequence according to dependencies among them. For example, an EOMasterDetailAssociation
(EOInterface), which must update its detail EODisplayGroup (EOInterface) according to the selection in

the mastebeforeany redisplay occurs, has an earlier priority than the default for EOAssociations. This
prevents regular EOAssociations from redisplaying old values and then displaying the new values after the
EOMasterDetailAssociation updates.

a7

For more information on using EODelayedObserverQueues, see the sections

¢ Enqueuing a Delayed Observer
« Change Notification
* Observer Proxies

Constants

EODelayedObserverQueue defines the following constant:

Constant Type Description

Determines when to notify delayed observers are notified, during end

FlushDelayedObserversRunLoop int .
of event processing.

Method Types

Constructors
EODelayedObserverQueue

Getting the default queue
defaultObserverQueue

Enqueuing and dequeuing observers
enqueueObserver
dequeueObserver

Sending change notifications
notifyObserversUpToPriority

Configuring notification behavior
runLoopModes (Yellow Box only)
setRunLoopModes (Yellow Box only)

48

Classes: EODelayedObserverQueue

Constructors
EODelayedObserverQueue
public EODelayedObserverQueué

Creates and returns a new EODelayedObserverQueue with NSRunLoop.DefaultRunLoopMode as its only
run loop mode.

See also: runLoopModes (Yellow Box only)

Static Methods
defaultObserverQueue
public static EODelayedObserverQuealedaultObserverQueud)
Returns the EODelayedObserverQueue that EODelayedObservers use by default.

Instance Methods

dequeueObserver
public voiddequeueObservefEODelayedObservemObserver

RemovesaanObservefrom the receiver.

See also: engqueueObserver

enqueueObserver
public voidenqueueObservefEODelayedObservemObserver

RecordsanObserveto be sensubjectChangedmessages. HnObserves priority is
ObserverPriorityimmediate, it's immediately sent the message and not enqueued. OtheDbEsrvers
sent the message the next tinotifyObserversUpToPriority is invoked with a priority later than or equal
to anObserves. Does nothing iinObserveis already recorded.

The first time this method is invoked during the run loop with an observer whose priority isn’t
ObserverPriorityImmediate, it registers the receiver to be senifgObserversUpToPriority message at

the end of the run loop, using FlushDelayedObserversRunLoopOrdering and the receiver’s run loop modes.
This causes enqueued observers up to a priority of ObserverPrioritySixth to be notified automatically during
each pass of the run loop.

49

50

WhenanObserveis done observing changes, it should invdiseardPendingNotificationto remove
itself from the queue.

See also: dequeueObserverpriority (EODelayedObserver),
discardPendingNotification (EODelayedObservennLoopModes (Yellow Box only)

notifyObserversUpToPriority
public voidnotifyObserversUpToPriority (int priority)

SendssubjectChangedmessages to all of the receiver’'s enqueued observers whose pripriityitg or

earlier. This method cycles through the receiver's enqueued observers in priority order, sending each a
subjectChangedmessage and then returning to the very beginning of the queue, in case another observer
with an earlier priority was enqueued as a result of the message.

EODelayedObserverQueue invokes this method automatically as needed during the run loop, with a
priority of ObserverPrioritySixth.

See also: enqueueObserverpriority (EODelayedObserver)

runLoopModes
public NSArrayrunLoopModes()

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returns the receiver’s run loop modes.

setRunLoopModes
public voidsetRunLoopModegNSArraymode$

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Sets the receiver’s run loop modestodesan array of NSString objects representing run loop modes. For
more information see the Foundation class NSRunLoop.

Classes: EODelayedObserverQueue

EODelayedObserverQueue

Enqueuing a Delayed Observer

TheenqueueObservemethod records an EODelayedObserver for later change notification. However,
enqueuing is usually performed automatically by an EODelayedObservahjeittVill Change method.

Hence, it’s typically enough that an object being observed inwilkéhange as needed. For example, in

Siva and Yellow Box applications, an EODisplayGroup (EOInterface) does this (among many other things)
on receiving an ObjectsChangedInEditingContextNotificdtiom its EOEditingContext.

Although you can create individual EODelayedObserverQueues, you typically use the single instance
provided by the static methafaultObserverQueue Using separate queues bypasses the prioritization
mechanism, which may cause problems between the objects using the separate queues. If you do use
separate queues, your EODelayedObserver subclasses should record a designated
EODelayedObserverQueue that they always use, and impletremverQueueto return that object.

If you need to remove an enqueued observer, you can do so ustiegjtfeieObservemmethod.
EODelayedObserver also defines discardPendingNotification method, which removes the receiver
from its designated queue.

Change Notification

The actual process of change notification is initiated bgitigeeueObservemessages that line observers

up to receive notifications. Regardless of how many tengsieueObservelis invoked for a particular

observer, that observer is only put in the queue once. The first observer enqueued during the run loop also
sets up the EODelayedObserverQueue to receive a message at the end of the run loop. EODelayedObserver
sets up this delayed invocation in NSRunLoop.DefaultRunLoopMode, but you can change the mode or add
additional modes in which delayed invocation occurs us&tBunLoopModes(Yellow Box only).

notifyObserversUpToPriority cycles through the queue of EODelayedObservers in priority order, from
ObserverPriorityFirst to the priority given, sending each obsersebjactChangedmessage. Each time,

it returns to the earliest priority (rather than continuing through the queue) in case the message resulted in
another EODelayedObserver with a earlier priority being enqueued. This guarantees an optimal delivery of
change natifications.

Observer Proxies

It may not always be possible for a custom observer class to inherit from EODelayedObserver. To aid such
objects in participating in delayed change notifications, the Framework defines a subclass of
EODelayedObserver, EOObserverProxy, which implemenssiiigctChangedmethod to invoke an

action method of your custom object. You create an EOObserverProxy, providing the “real” observer, the
action method to invoke, and the priority at which the EOObserverProxy should be enqueued. Then, instead
of registering the custom object as an observer of objects, you register the proxy (using
EOObserverCenteraddObserver). When the proxy receives ahjectWillChange message, it enqueues

51

52

itself for delayed change notification, receivesghibjectChangedmessage from the
EODelayedObserverQueue, and then sends the action message to the “real” observer.

Classes: EODetailDataSource

EODetailDataSource

Inherits From: EODataSource : Object (Java Client)
EODataSource : NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

EODetailDataSource defines a data source for use in master-detail configurations, where operations in the
detail data source are applied directly to properties of a master object. EODetailDataSource implements the
standardetchObjects insertObject, anddeleteObjectmethods to operate on a relationship property of

its master object, so it works for any concrete subclass of EODataSource, including another
EODetailDataSource (for a chain of three master and detail data sources).

To set up an EODetailDataSource programmatically, you typically create it by sending a
dataSourceQualifiedByKeymessage to the master data source, then establish the master object with a
qualifyWithRelationshipKey message. The latter method records the name of a relationship for a
particular object to resolve fatchObjectsand to modify innsertObject, anddeleteObject These three
methods then manipulate the relationship property of the master object to perform the operations requested.
See the individual method descriptions for more information.

Method Types

Constructors
EODetailDataSource

Qualifying instances
gualifyWithRelationshipKey

Examining instances
masterDataSource
detailKey
masterObiject

Accessing the master class description
masterClassDescription
setMasterClassDescription (Yellow Box only)

Accessing the objects
fetchObjects

53

Inserting and deleting objects
insertObject
deleteObject

Accessing the master editing context
editingContext

Constructors

EODetailDataSource

public EODetailDataSource
EOClassDescriptiomasterClassDescriptign
java.lang.StringelationshipKey

Creates and returns a new EODetailDataSource object. The new data soaster©bjectis
associated witmasterClassDescriptigrandrelationshipKeyis assigned to the new data source’s
detailKey. The constructor invokepialifyWithRelationshipKey specifyingrelationshipKeyas the
relationship key andull as the object.

public EODetailDataSource
EODataSourcenasterDataSourcge
java.lang.StringelationshipKey

Creates and returns a new EODetailDataSource object. The new data source provides destination
objects for the relationship named fgyationshipKeyfrom amasterObjectin masterDataSource

See also: masterClassDescriptionmasterDataSource

Instance Methods
deleteObject
public voiddeleteObjectjava.lang.ObjecanObjec)

Sends aemoveObjectFromPropertyWithKey message (defined in the EORelationshipManipulation
interface) to the master object wahObjectand the receiver’s detail key as the arguments. Throws an
exception if there’s no master object or no detail key set.

54

Classes: EODetailDataSource

detailKey
public java.lang.StringletailKey/()

Returns the name of the relationship for which the receiver provides objects, as provided to the constructor
when the receiver was created or as squadifyWithRelationshipKey . If none has been set yet, returns
null.

See also: “Constructors”

editingContext
public EOEditingContexgéditingContext()

Returns the EOEditingContext of the master objeatudrif there isn’t one.

fetchObjects
public NSArrayfetchObjecty)

SendsvalueForKey (defined in the EOKeyValueCoding interface) to the master object with the receiver’s
detail key as the argument, constructs an array for the returned object or objects, and returns it. Returns an
empty array if there’s no master object, or returns an array containing the master object itself if no detalil
key is set.

insertObject
public voidinsertObject(java.lang.ObjecanObjec}

Sends amddObjectToBothSidesOfRelationshipWithKeymessage (defined in the
EORelationshipManipulation interface) to the master objectavitbbjectand the receiver’s detail key as
the arguments. Throws an exception if there’s no master object or no detail key set.

masterClassDescription
public EOClassDescriptiomasterClassDescriptior)

Returns the EOClassDescription of the receiver’s master object.

See also: setMasterClassDescription“Constructors”

55

56

masterDataSource
public EODataSourcmasterDataSource)

Returns the receiver's master data source.

See also: detailKey, “Constructors”

masterObject
public java.lang.ObjeanasterObject()

Returns the object in the master data source for which the receiver provides objects. You can change this
with aqualifyWithRelationshipKey message.

See also: detailKey

qualifyWithRelationshipKey

public voidqualifyWithRelationshipKey (
java.lang.StringelationshipKey
java.lang.ObjecmasterObjedt

Configures the receiver to provide objects based on the relationshgstdrObjechamed by
relationshipKeyrelationshipKeycan be different from the one provided to the constructor, which changes
the relationship the receiver operates omadsterObjects null, this method causes the receiver to return
an empty array when senteichObjects message.

See also: detailKey

setMasterClassDescription
public voidsetMasterClassDescriptioiEOClassDescriptioanEOClassDescription

AssignsclassDescriptioras the EOClassDescription for the receiver’'s master object.

See also: masterClassDescription

Classes: EOEditingContext

EOEditingContext

Inherits From: EOODbjectStore : Object (Java Client)
EOObijectStore : NSObject (Yellow Box)

Implements: EOObserving
NSLocking (Yellow Box only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Purpose

An EOEditingContext object manages a graph of enterprise objects in an application; this object graph
represents an internally consistent view of one or more external stores (most often a database).

Principal Attributes

The set of enterprise objects managed by the EOEditingContext

The EOEditingContext’'s parent EOObjectStore

The set of EOEditor objects messaged by the EOEditingContext

The EOEditingContext's EOMessageHandler

57

Commonly Used Methods

objectsWithFetchSpecification

Fetches objects from an external store.

Registers a new object to be inserted into the parent EOObjectStore when changes are

insertObject
saved.
. Registers that an object should be removed from the parent EOObjectStore when
deleteObject
changes are saved.
lockObject Attempts to lock an object in the external store.
Returns true if any of the receiver has any pending changes to the parent
hasChanges EOODbjectStore.
saveChanges Commits changes made in the receiver to the parent EOObjectStore.
revert Removes everything from the undo stack, discards all insertions and deletions, and

restores updated objects to their original values.

objectForGloballD

Given a globallD, returns its associated object.

globallDForObject

Given an object, returns its globallD.

setDelegate

Sets the receiver’s delegate.

parentObjectStore

Returns the receiver’s parent EOObjectStore.

rootObjectStore

Returns the receiver’s root EOObjectStore.

Class at a Glance”

Class Description

58

An EOEditingContext object represents a single “object space” or document in an application. Its primary
responsibility is managing a graph of enterprise objects.clpet graphis a group of related business
objects that represent an internally consistent view of one or more external stores (usually a database).

All objects fetched from an external store are registered in an editing context along with a global identifier
(EOGIloballD) that's used to uniquely identify each object to the external store. The editing context is
responsible for watching for changes in its objects (using the EOObserving interface) and recording
snapshots for object-based undo. A single enterprise object instance exists in one and only one editing

Classes: EOEditingContext

context, but multiple copies of an object can exist in different editing contexts. Thus object uniquing is
scoped to a particular editing context.

For more information on EOEditingContext, see the sections:

Constants

Other Classes that Participate in Object Graph Management

Programmatically Creating an EOEditingContext

For more discussion of working programmatically with EOEditingContexts, see the chapter “Application
Configurations” in the Enterprise Objects Framework Developer’s Guide.

Fetching Objects

Managing Changes in Your Application

Managing Changes in Your Application

General Guidelines for Managing the Object Graph

Methods for Managing the Object Graph

The following string constants name notifications EOEditingContext posts:

EditingContextDidSaveChangesNotification
ObjectsChangedInEditingContextNotification

See the Notifications section for more information on the notifications.

The following string constants are the keys to the ObjectsChangedInEditingContextNatification’s user info
dictionary:

UpdatedKey
DeletedKey
InsertedKey
InvalidatedKey

EditingContextFlushChangesRunLoopOrdering, is an integer that defines the order in which the editing
context performs end of event processingrimcessRecentChanged/essages with lower order numbers

are processed before messages with higher order numbers. In an application built with the Application Kit,
the constant order value schedules the editing context to perform its processing before the undo stack group
is closed or window display is updated.

Interfaces Implemented

EOObserving

objectWillChange

59

Method Types

60

Constructors

EOEditingContext

Controlling EOEditingContext’s memory management strategy

Fetching objects

objectsWithFetchSpecification

Committing or discarding changes

Registering changes

Checking changes

saveChanges
refaultObjects

refetch

revert (Yellow Box only)
invalidateAllObjects

deleteObject
insertObject
insertObjectWithGloballD
objectWillChange
processRecentChanges

deletedObjects

insertedObjects
updatedObijects
hasChanges

Object registration and snapshotting

Locking objects

forgetObject

recordObject
committedSnapshotForObject
currentEventSnapshotForObject
objectForGloballD
globallDForObject
registeredObjects

lockObject

lockObjectWithGloballD
isObjectLockedWithGloballD
setLocksObjectsBeforeFirstModification
locksObjectsBeforeFirstModification

Classes: EOEditingContext

Undoing operations (Yellow Box only)
redo (Yellow Box only)
undo (Yellow Box only)
setUndoManager (Yellow Box only)
undoManager (Yellow Box only)

Deletion and Validation Behavior
setPropagatesDeletesAtEndOfEvent
propagatesDeletesAtEndOfEvent
setStopsValidationAfterFirstError
stopsValidationAfterFirstError

Returning related object stores
parentObjectStore
rootObjectStore

Managing editors
editors
addEditor
removeEditor

Setting the delegate
setDelegate
delegate

Setting the message handler
setMessageHandler
messageHandler

Invalidating objects (Yellow Box only)
setinvalidatesObjectsWhenFreed (Yellow Box only)
invalidatesObjectsWhenFreed (Yellow Box only)

Interacting with the server (Java Client only)
invokeRemoteMethod (Java Client only)

Locking (Yellow Box only)
lock (Yellow Box only)
unlock (Yellow Box only)

Working with raw rows (Yellow Box only)
faultForRawRow (Yellow Box only)

Unarchiving from nib
defaultParentObjectStore
setDefaultParentObjectStore
setSubstitutionEditingContext
substitutionEditingContext

61

Nested EOEditingContext support
objectsWithFetchSpecification
objectsForSourceGloballD
arrayFaultWithSourceGloballD
faultForGloballD
saveChangesInEditingContext
refaultObject
invalidateObjectsWithGloballDs
initializeObject

Archiving and unarchiving objects (Yellow Box only)
encodeObjectWithCoder (Yellow Box only)
initObjectWithCoder (Yellow Box only)
setUsesContextRelativeEncoding (Yellow Box only)
usesContextRelativeEncoding (Yellow Box only)

Constructors
EOEditingContext
public EOEditingContext()
Creates a new EOEditingContext object with the default parent object store as its parent object store.
public EOEditingContext(EOObjectStoranObjectStorg

Creates a new EOEditingContext object vatiObjectStoras its parent object store. For more
discussion of parent object stores, see “Other Classes that Participate in Object Graph Management”
in the class description.

See also: parentObjectStore, defaultParentObjectStore

Static Methods

defaultParentObjectStore
public static EOObjectStomefaultParentObjectStore()

Returns the EOObjectStore that is the default parent object store for new editing contexts. Normally this is
the EOObjectStoreCoordinator returned from the EOObjectStoreCoordinator static method
defaultCoordinator.

See also: setDefaultParentObjectStore

62

Classes: EOEditingContext

encodeObjectWithCoder

public static voicencodeObjectWithCode(
java.lang.Objecbbject
NSCoderencodey

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Invoked by an enterprise objaatjectto ask the EOEditingContext to encarlgectusingencoder For
more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the class description.

See also: initObjectWithCoder , setUsesContextRelativeEncodingisesContextRelativeEncoding

initObjectWithCoder

public static java.lang.ObjewtitObjectWithCoder (
java.lang.Objecbbject
NSCoderdecodey

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Invoked by an enterprise objadijectto ask the EOEditingContext to initialinbjectfrom data irdecoder
For more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web
Objects Framework” in the class description.

See also: encodeObjectWithCoder, setUsesContextRelativeEncodingusesContextRelativeEncoding

setDefaultParentObjectStore
public static voidsetDefaultParentObjectStord EOObjectStorestore
Sets thalefault parent EOODbjectStoregtore You use this method before loading a nib file to change the
default parent EOObjectStores of the EOEditingContexts in the nib file. The object you sustasefzan
be a different EOObjectStoreCoordinator or another EOEditingContext (if you're using a nested

EOEditingContext). After loading a nib with an EOEditingContext substituted as the default parent
EOODbjectStore, you should restore the default behavior by setting the default parent EOObject@tore to

A default parent object store is global until it is changed again. For more discussion of this topic, see the
chapter “Application Configurations” in thenterprise Objects Framework Developer’s Guide

See also: defaultParentObjectStore

63

64

setSubstitutionEditingContext
public static voidsetSubstitutionEditingContext(EOEditingContexanEditingContext

AssignsanEditingContexas the EOEditingContext to substitute for the one specified in a nib file you're
about to load. Using this method causes all of the connections in your nib file to be redirected to
anEditingContextThis can be useful when you want an interface loaded from a second nib file to use an
existing EOEditingContext. After loading a nib with a substitution EOEditingContext, you should restore
the default behavior by setting the substitution EOEditingContaxilto

A substitution editing context is global until it is changed again. For more discussion of this topic, see the
chapter “Application Configurations” in ttenterprise Objects Framework Developer’'s Guide

See also: substitutionEditingContext

setUsesContextRelativeEncoding
public static voidsetUsesContextRelativeEncodingoolearflag)

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Sets according thhag whetherencodeObjectWithCoderuses context-relative encoding. For more
discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the class description.

See also: usesContextRelativeEncodingencodeObjectWithCoder,

substitutionEditingContext
public static EOEditingContesubstitutionEditingContext()

Returns the substitution EOEditingContext if one has been specified. Otherwisematurns

See also: setSubstitutionEditingContext

usesContextRelativeEncoding
public static booleansesContextRelativeEncoding)

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returndrue to indicate thaéncodeObjectWithCoderuses context relative encodifigiseotherwise. For
more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the class description.

See also: setUsesContextRelativeEncoding

Classes: EOEditingContext

Instance Methods

addEditor
public voidaddEditor (java.lang.Objeceditor)

Addseditorto the receiver's set of EOEditingContext.Editor. For more explanation, see the method
description foreditors and the EOEditingContext.Editor interface specification.

See also: removeEditor

arrayFaultWithSourceGloballD

public NSArrayarrayFaultWithSourceGloballD (
EOGloballDgloballD,
java.lang.Stringhame
EOEditingContexanEditingContext

Overrides the implementation inherited from EOObjectStore. If the objects associated with the
EOGloballDgloballD are already registered in the receiver, returns those objects. Otherwise, propagates
the message down the object store hierarchy, through the parent object store, ultimately to the associated
EODatabaseContext. The EODatabaseContext creates and returns a to-many fault.

When a parent EOEditingContext receives this on behalf of a child EOEditingContext and the EOGloballD
globallD identifies a newly inserted object in the parent, the parent returns a copy of its object’s relationship
array with the member objects translated into objects in the child EOEditingContext.

For more information on faults, see the EOObjectStore, EODatabaseContext (EOAccess), and
EOFaultHandler class specifications.

See also: faultForGloballD

committedSnapshotForObject
public NSDictionarycommittedSnapshotForObjec{EOEnterpriseObjeaibjec)

This method is only available in Yellow Box; there is no Java Client equivalent.

Returns a dictionary containing a snapshaitgéctthat reflects its committed values (that is, its values as
they were last committed to the databakepther words, this snapshot represents the state of the object
before any modifications were made to it. The snapshot is updated to the newest object state after a save.

See also: currentEventSnapshotForObject

65

66

currentEventSnapshotForObject
public NSDictionarycurrentEventSnapshotForObjec{ EOEnterpriseObjeatbjec)

This method is only available in Yellow Box; there is no Java Client equivalent.

Returns a dictionary containing a snapshailéctthat reflects its state as it was at the beginning of the
current event loop. After the end of the current event—upon invocatimocéssRecentChangesthis
shapshot is updated to hold the modified state of the object.

See also: committedSnapshotForObject processRecentChanges

delegate
public java.lang.Objedalelegatd)

Returns the receiver’s delegate.

See also: setDelegate

deleteObject
public voiddeleteObjec{EOEnterpriseObjeaibjec)

Specifies thabbjectshould be removed from the receiver’s parent EOObjectStore when changes are
committed. At that time, the object will be removed from the uniquing tables.

See also: deletedObjects

deletedObjects
public NSArraydeletedObjectg)

Returns the objects that have been deleted from the receiver’s object graph.

See also: updatedObjects insertedObjects

editors
public NSArrayeditors()

Returns the receiver’s editors. Editors are special-purpose delegate objects that may contain uncommitted
changes that need to be validated and applied to enterprise objects before the EOEditingContext saves
changes. For example, EODisplayGroups (EOlInterface) register themselves as editors with the
EOEditingContext of their data sources so that they can save any changes in the key text field. For more

Classes: EOEditingContext

information, see the EOEditingContext.Editor interface specification and the EODisplayGroup class
specification.

See also: addEditor, removeEditor

faultForGloballD

public EOEnterpriseObjetaultForGloballD (
EOGloballDgloballD,
EOEditingContexanEditingContext

Overrides the implementation inherited from EOObjectStore. If the object associated with the EOGloballD
globallD is already registered in the receiver, this method returns that object. Otherwise, the method
propagates the message down the object store hierarchy, through the parent object store, ultimately to the
associated EODatabaseContext. The EODatabaseContext creates and returns a to-one fault.

For example, suppose you want the department object wleps® has a particular value. The most
efficient way to get it is to look it up by its globallD usiiagltForGloballD .

If the department object is already registered in the EOEditingCofdakEorGloballD returns the
object (without going to the database). If not, a fault for this object is created, and the object is fetched only
when you trigger the fault.

In a nested editing context configuration, when a parent EOEditingContext falddfarGloballD on
behalf of a child EOEditingContext agtbballD identifies a newly inserted object in the parent, the parent
registers a copy of the object in the child.

For more discussion of this method, see the section “Working with Objects Across Multiple
EOEditingContexts” in the class description. For more information on faults, see the EOObjectStore,
EODatabaseContext (EOAccess), and EOFaultHandler class specifications.

See also: arrayFaultWithSourceGloballD

faultForRawRow

public EOEnterpriseObjeéaultForRawRow (
java.lang.Objectow,
java.lang.StringentityName

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returns a fault for the raw romww by invokingfaultForRawRow with this as the editing context.

67

68

forgetObject
public voidforgetObject(EOEnterpriseObjeaibjec)

Removesbjectfrom the uniquing tables and causes the receiver to remove itself as the object’s observer.
This method is invoked whenever an object being observed by an EOEditingContext is finalized. You
should never invoke this method directly. The correct way to remove an object from its editing context is to
remove every reference to the object by refaulting any object that references itétailt@bjects or
invalidateAllObjects). Also note that this method doegthave the effect of deleting an object—to delete

an object you should either use tledeteObjectmethod or remove the object from an owning relationship.

globallDForObject
public EOGloballDgloballDForObject (EOEnterpriseObjeaibjec)

Returns the EOGloballD faybject All objects fetched from an external store are registered in an
EOEditingContext along with a global identifier (EOGloballD) that’s used to uniquely identify each object
to the external store. ébjecthasn’t been registered in the EOEditingContext (that is, if no match is found),
this method returnsull. Objects are registered in an EOEditingContext usinm#estObject method, or,

when fetching, withrecordObject.

See also: ObjectForGloballD

hasChanges

public boolearhasChange§)
0

Returngrue if any of the objects in the receiver’s object graph have been modified—that is, if any objects
have been inserted, deleted, or updated.

initializeObject
public voidinitializeObject (
EOEnterpriseObjeaibject
EOGlIoballDgloballD,
EOEditingContexanEditingContext

Overrides the implementation inherited from EOObjectStore to build the propertiesdbjabidentified

by globallD. When a parent EOEditingContext receives this on behalf of a child EOEditingContext (as
represented bgnEditingContext and thegloballD identifies an object instantiated in the parent, the parent
returns properties extracted from its object and translated into the child’s context. This ensures that a nested
context “inherits” modified values from its parent EOEditingContext. If the receiver doesnblhjace
the request is forwarded the receiver’'s parent EOObjectStore.

Classes: EOEditingContext

insertedObjects
public NSArrayinsertedObjecty)

Returns the objects that have been inserted into the receiver’s object graph.

See also: deletedObjects updatedObjects

insertObject
public voidinsertObject(EOEnterpriseObjeatbjec)

Registers (by invokingnsertObjectWithGloballD) objectto be inserted in the receiver’s parent
EOODbjectStore the next time changes are saved. In the meartijewijs registered in the receiver with a
temporary globallD.

See also: insertedObjects deletedObijects insertObjectWithGloballD

insertObjectWithGloballD

public voidinsertObjectWithGloballD (EOEnterpriseObje@nEOEnterpriseObject
EOGloballDanEOGIoballD

Registers a newbjectidentified bygloballD that should be inserted in the parent EOObjectStore when
changes are saved. Works by invokiagordObject, unless the receiver already contains the object. Sends
objectthe messagavakeFrominsertion. globallD must responttue toisTemporary. When the external
store commit®bject it re-records it with the appropriate permanent globallD.

It is an error to insert an object that’s already registered in an editing context unless you are effectively
undeleting the object by reinserting it.

See also: insertObject

invalidateAllObjects

public voidinvalidateAllObjects()
0

Overrides the implementation inherited from EOObjectStore to discard the values of objects cached in
memory and refault them, which causes them to be refetched from the external store the next time they're
accessed. This method sends the messeagldateObjectsWithGloballDs to the parent object store with

the globallDs of all of the objects cached in the receiver. When an EOEditingContext receives this message,

it propagates the message down the object store hierarchy. EODatabaseContexts discard their snapshots for
invalidated objects and broadcast an ObjectsChangedinStoreNotification. (EODatabaseContext is defined
in EOAccess.)

69

70

The final effect of this method is to refault all objects currently in memory. The next time you access one
of these objects, it's refetched from the database.

To flush the entire application’s cache of all values fetched from an external store, use a statement such as
the following:

EOEditingContext.rootObjectStore().invalidateAllObjects();

If you just want to discard uncommitted changes but you don't want to sacrifice the values cached in
memory, use the EOEditingContegivert method (Yellow Box only), which reverses all changes and

clears the undo stack. For more discussion of this topic, see the section “Methods for Managing the Object
Graph” in the class description.

See also: refetch, invalidateObjectsWithGloballDs

invalidateObjectsWithGloballDs
public voidinvalidateObjectsWithGloballDs (NSArraygloballDs)

Overrides the implementation inherited from EOObjectStore to signal to the parent object store that the
cached values for the objects identifiedgiigballDs should no longer be considered valid and that they
should be refaulted. Invok@socessRecentChangelsefore refaulting the objects. This message is
propagated to any underlying object store, resulting in a refetch the next time the objects are accessed. Any
related (child or peer) object stores are notified that the objects are no longer valid. All uncommitted
changed to the objects are lost. For more discussion of this topic, see the section “Methods for Managing
the Object Graph” in the class description.

See also: invalidateAllObjects

invalidatesObjectsWhenFreed
public boolearnnvalidatesObjectsWhenFreed)

0

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returndrue to indicate that the receiver clears and “booby-traps” all of the objects registered with it when
the receiver is finalizedalse otherwise. The default tsue. In this method, “invalidate” has a different
meaning than it does in the otlievalidate... methods. For more discussion of this topic, see the method
description forsetinvalidatesObjectsWhenFreed

Classes: EOEditingContext

invokeRemoteMethod

public java.lang.ObjedhvokeRemoteMethod
EOEditingContexanEditingContext
EOGIloballDgloballD,
java.lang.StringnethodName
java.lang.Object[pbject3

This method is available for Java Client applications only; there is no Yellow Box equivalent.

See also:

isObjectLockedWithGloballD

public booleansObjectLockedWithGloballD (
EOGloballDgloballD,
EOEditingContexanEditingContext

Returngrue if the object identified bgloballD in anEditingContexis locked false otherwise. This
method works by forwarding the messag@bjectLockedWithGloballD to its parent object store.

See also: lockObiject, lockObjectWithGloballD ,
locksObjectsBeforeFirstModification

lock
public voidlock()

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Locks access to the receiver to prevent other threads from accessing it. You should lock an editing context
when you are accessing or modifying objects managed by the editing context. The thread-saftey provided
by Enterprise Objects Framework allows one thread to be active in each EOEditingContext and one thread
to be active in each EODatabaseContext (EOAccess). In other words, multiple threads can access and
modify objects concurrently in different editing contexts, but only one thread can access the database at a
time (to save, fetch, or fault).

Warning: This method creates an NSAutoreleasePool that is releasedimlbek is called. Consequently,
objects that have been autoreleased within the scopeak/anlock pair may not be valid after
theunlock.

See also: unlock

71

72

lockObject
public voidlockObject(EOEnterpriseObjecnObjecy

Attempts to lockanObjectin the external store. This method works by involkaaObjectWithGloballD .
Throws an exception if it can’t find the globallD famObjectto pass tdockObjectWithGloballD .

See also: iISObjectLockedWithGloballD , locksObjectsBeforeFirstModification

lockObjectWithGloballD

public voidlockObjectWithGloballD (
EOGlIoballDgloballD,
EOEditingContexanEditingContext

Overrides the implementation inherited from EOObjectStore to attempt to lock the object identified by
globallD in anEditingContexin the external store. Throws an exception if unable to obtain the lock. This
method works by forwarding the messdgekObjectWithGloballD to its parent object store.

See also: lockObiject, isObjectLockedWithGloballD , locksObjectsBeforeFirstMaodification

locksObjectsBeforeFirstModification
public booleanocksObjectsBeforeFirstModification()

0

Returngrue if the receiver lockebjectin the external store (witlockObject) the first timeobjectis
modified.

See also: setLocksObjectsBeforeFirstModification isObjectLockedWithGloballD , lockObject,
lockObjectWithGloballD

messageHandler

public java.lang.ObjeanessageHandlef)
Returns the EOEditingContext’'s message handler. A message handler is a special-purpose delegate
responsible for presenting errors to the user. Typically, an EODisplayGroup (EOInterface) registers itself

as the message handler for its EOEditingContext. For more information, see the
EOEditingContext.MessageHandler interface specification.

See also: setMessageHandler

Classes: EOEditingContext

objectForGloballD
public EOEnterpriseObjeabjectForGloballD (EOGloballDgloballD)

Returns the object identified lpyoballD, ornull if no object has been registered in the EOEditingContext
with globallD.

See also: globallDForObject

objectsForSourceGloballD

public NSArrayobjectsForSourceGloball(
EOGloballDgloballD,
java.lang.Stringname
EOEditingContexanEditingContext

Overrides the implementation inherited from EOODbjectStore to service a to-many fault for a relationship
namechame When a parent EOEditingContext receivedgctsForSourceGloballDmessage on behalf

of a child editing context argloballD matches an object instantiated in the parent, the parent returns a copy
of its relationship array and translates its objects into the child editing context. This ensures that a child
editing context “inherits” modified values from its parent. If the receiving editing context does not have the
specified object or if the parent’s relationship property is still a fault, the request is fowarded to its parent
object store.

objectsWithFetchSpecification

public NSArrayobjectsWithFetchSpecificatiofEOFetchSpecificatiofetchSpecification
public NSArrayobjectsWithFetchSpecificatior{
EOFetchSpecificatiofetchSpecification
EOEditingContexainEditingContext

Overrides the implementation inherited from EOObjectStore to fetch objects from an external store
according to the criteria specified fetchSpecificatiomand return them in an array. If one of these objects

is already present in memory, this method doesn't overwrite its values with the new values from the
database. This method throws an exception if an error occurs; the error message indicates the nature of the
problem.

When an EOEditingContext receives this message, it forwards the message to its root object store. Typically
the root object store is an EOObjectStoreCoordinator with underlying EODatabaseContexts. In this case,
the object store coordinator forwards the request to the appropriate database context based on the entity
name infetchSpecificationThe database context then obtains an EODatabaseChannel and performs the
fetch, registering all fetched objectsanEditingContext(EODatabaseContext and EODatabaseChannel

are defined in EOAccess.)

73

74

objectWillChange
public voidobjectWillChange(java.lang.Objecbbjec)

This method is automatically invoked when any of the objects registered in the receiver invokes its
willChange method. This method is EOEditingContext’s implementation of the EOObserving protocol.

parentObjectStore
public EOObjectStorparentObjectStore()

Returns the EOObjectStore from which the receiver fetches and to which it saves objects.

processRecentChanges

public voidprocessRecentChangé€s
0

Forces the receiver to process pending insertions, deletions, and uNdateslly, when objects are

changed, the processing of the changes is deferred until the end of the current event. At that point, an
EOEditingContext moves objects to the inserted, updated, and deleted lists, delete propagation is
performed, undos are registered, and ObjectsChangedInStoreNotification and
ObjectsChangedInEditingContextNotification are posted (In a Yellow Box application, this usually causes
the user interface to update). You can use this method to explicitly force changes to be processed. An
EOEditingContext automatically invokes this method on itself before performing certain operations such
assaveChangesThis method does nothing on Java Client.

propagatesDeletesAtEndOfEvent

public boolearpropagatesDeletesAtEndOfEver()
0

Returngrue if the receiver propagates deletes at the end of the event in which a change wéalsadfde,
it propagates deletes only right before saving changes. The detausd.is

See also: setPropagatesDeletesAtEndOfEvent

Classes: EOEditingContext

recordObject

public voidrecordObject(
EOEnterpriseObjecibject
EOGIoballDgloballD)

Makes the receiver aware of an object identifiegloypallD existing in its parent object store.

EOODbjectStores (such as the access layer's EODatabaseContext) usually invoke this method for each object
fetched. When it receives this message, the receiver enters the object in its uniquing table and registers itself
as an observer of the object.

redo
public voidredo()

This method is available for Yellow Box applications only; there is no Java Client equivalent.

This method forwardsr@do message to the receiver's NSUndoManager, asking it to reverse the latest undo
operation applied to objects in the object graph.

See also: undo

refault:
public voidrefault()

This method is available for Yellow Box applications only; there is no Java Client equivalent.

This method simply invoke®faultObjects.

refaultObject

public voidrefaultObject(
EOEnterpriseObjeanObject
EOGIloballDgloballD,
EOEditingContexanEditingContext

Overrides the implementation inherited from EOObjectStore to refault the enterpriseobigett

identified bygloballD in anEditingContextThis method should be used with caution since refaulting an
object does not remove the object snapshot from the undo stack. Objects that have been newly inserted or
deleted should not be refaulted.

The main purpose of this method is to break reference cycles between enterprise objects. When you are
using Java APIs to access Obijective-C Enterprise Objects Framework classes, you have to take into
consideration the way objects are deallocated on the Objective-C side of the Java Bridge. This means that
you might still need to break reference cycles to help keep your application’s memory in check. For

75

76

example, suppose you have an Employee object that has a to-one relationship to its Department, and the
Department object in turn has an array of Employee objects. You can use this method to break the reference
cycle. Note that reference cycles are automatically broken if the EOEditingContext is finalized. For more
discussion of this topic, see the section “Methods for Managing the Object Graph” in the class description.

See also: invalidateObjectsWithGloballDs

refaultObjects

public voidrefaultObjects()
0

Refaults all objects cached in the receiver that haven't been inserted, deleted, or updated. Invokes
processRecentChangeshen invokesefaultObject for all objects that haven't been inserted, deleted, or
updated. For more discussion of this topic, see the section “Methods for Managing the Object Graph” in the
class description.

refetch
public voidrefetch()

This method simply invokes thievalidateAllObjects method.

registeredObjects
public NSArrayregisteredObjects)

Returns the enterprise objects managed by the receiver.

removeEditor
public voidremoveEditor(java.lang.ObjecanObjec}

Unregistersditorfrom the receiver. For more discussion of EOEditors, seedit@s method description
and the EOEditingContext.Editor interface specification.

See also: addEditor

Classes: EOEditingContext

revert
public voidrevert()

0

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Removes everything from the undo stack, discards all insertions and deletions, and restores updated objects
to their last committed values. Does not refetch from the database. Nowvdratloesn't automatically

cause higher level display groups (WebObject’'s WODisplayGroups or the interface layer’s
EODisplayGroups) to refetch. Display groups that allow insertion and deletion of objects need to be
explicitly synchronized whenever this method is invoked on their EOEditingContext.

See also: invalidateAllObjects

rootObjectStore
public EOObjectStoreootObjectStore()

Returns the EOObjectStore at the base of the object store hierarchy (usually an
EOObjectStoreCoordinator).

saveChanges

public voidsaveChange§
public voidsaveChange§ava.lang.ObjecanObjecj (Siva only)

0

Commits changes made in the receiver to its parent EOObjectStore by sending it the message
saveChangeslnEditingContextIf the parent is an EOObjectStoreCoordinator, it guides its
EOCooperatingObjectStores, typically EODatabaseContexts, through a multi-pass save operation (see the
EOODbjectStoreCoordinator class specification for more information). If a database error occurs, an
exception is thrown; the error message indicates the nature of the problem.

saveChangesInEditingContext
public voidsaveChangesInEditingContextt OEditingContexanEditingContext

Overrides the implementation inherited from EOObjectStore to tell the receiver's EOObjectStore to accept
changes from a child EOEditingContext. This method shouldn’'t be invoked directly. It's invoked by a nested
EOEditingContext when it's committing changes to a parent EOEditingContext. The receiving parent
EOEditingContext incorporates all changes from the nested EOEditingContext into its own copies of the
objects, but it doesn’t immediately save those changes to the database. If the parent itself is later sent
saveChangesit propagates any changes received from the child along with any other changes to its parent

77

78

EOODbjectStore. Throws an exception if an error occurs; the error message indicates the nature of the
problem.

setDelegate
public voidsetDelegat@ava.lang.ObjecanObjec}

Set the receiver’s delegate tod®Object

See also: delegate

setinvalidatesObjectsWhenFreed
public voidsetinvalidatesObjectsWhenFree¢booleanflag)

This method is available for Yellow Box applications only; there is ho Java Client equivalent.

Sets according tthag whether the receiver clears and “booby-traps” all of the objects registered with it
when the receiver is finalized. If an editing context invalidates objects when it’s finalized, it sends a
clearPropertiesmessage to all of its objects, thereby breaking any reference cycles between objects that
would prevent them from being finalized. This method leaves the objects in a state in which sending them
any message throws an exception.

The default igrue, and as a general rule, this setting mugdtue for enterprise objects with cyclic
references to be finalized when their EOEditingContext is finalized.

Note that the word “invalidate” in this method name has a different meaning than it does in the other
invalidate... methods, which discard object values and refault them.

When you are using Java APIs to access Objective-C Enterprise Objects Framework classes, you have to
take into consideration the way objects are deallocated on the Objective-C side of the Java Bridge. This
means that you might still need to break reference cycles to help keep your application’ the objects usage
in check.

See also: invalidatesObjectsWhenFreed

setLocksObjectsBeforeFirstModification
public voidsetLocksObjectsBeforeFirstModificationbooleanflag)

Sets according tibag whether the receiver lockéjectin the external store (witbckObject) the first time

objectis modified. The default false If flagistrue, an exception will be thrown raised if a lock can't be
obtained whembjectinvokeswillChange. There are two reasons a lock might fail: because the row is
already locked in the server, or because your snapshot is out of date. If your snapshot is out of date, you can
explicitly refetch the object using an EOFetchSpecification satRefreshesRefetchedObjectset to

Classes: EOEditingContext

true. To handle the exception, you can implement the EODatabaseContext delegate method
databaseContextShouldRaiseExceptionForLockFailure

You should avoid using this method or pessimistic locking in an interactive end-user application. For
example, a user might make a change in a text field and neglect to save it, thereby leaving the data locked
in the server indefinitely. Consider using optimistic locking or application level explicit check-in/check-out
instead.

See also: locksObjectsBeforeFirstModification

setMessageHandler
public voidsetMessageHandlgjava.lang.Objechandlel)
Set the receiver's message handler tbdredler

See also: messageHandler

setPropagatesDeletesAtEndOfEvent
public voidsetPropagatesDeletesAtEndOfEvel(boolearflag)

This method is only available on Yellow Box; it has no effect in Java Client.

Sets according tihag whether the receiver propagates deletes at the end of the event in which a change was
made, or only just before saving changes.

If flagistrue, deleting an enterprise object triggers delete propagation at the end of the event in which the
deletion occurred (this is the default behaviorjlag is false delete propagation isn’t performed until
saveChangess invoked.

You can delete enterprise objects explicitly by usingiflete Objectmethod or implicitly by removing

the enterprise object from an owning relationship. Delete propagation uses the delete rules in the
EOClassDescription to determine whether objects related to the deleted object should also be deleted (for
more information, see the EOClassDescription class specification and the EOEnterpriseObject interface
specification). If delete propagation fails (that is, if an enterprise object refuses to be deleted—possibly due
to a deny rule), all changes made during the event are rolled back.

See also: propagatesDeletesAtEndOfEvent

setStopsValidationAfterFirstError
public voidsetStopsValidationAfterFirstError (booleanflag)

Sets according tilag whether the receiver stops validating after the first error is encountered, or continues
for all objects (validation typically occurs during a save operation). The defaui¢isSetting it tofalse

79

80

is useful if the delegate implememtitingContextShouldPresentExceptiorto handle the presentation of
aggregate exceptions.

See also: stopsValidationAfterFirstError

setUndoManager
public voidsetUndoManagefNSUndoManageundoManager

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Sets the receiver's NSUndoManageutmloManagerYou might invoke this method withull if your
application doesn't need undo and you want to avoid the overhead of an undo stack. For more information
on editing context’s undo support, see the section “Undo and Redo.”

See also: undoManager

stopsValidationAfterFirstError
public boolearstopsValidationAfterFirstError ()

0

Returndrue to indicate that the receiver should stop validating after it encounters the first daise tar
indicate that it should continue for all objects.

See also: setStopsValidationAfterFirstError

undo
public voidundo()

This method is available for Yellow Box applications only; there is no Java Client equivalent.

This method forwards aimndo message to the receiver's NSUndoManager, asking it to reverse the latest
uncommitted changes applied to objects in the object graph. For more information on editing context’s undo
support, see the section “Undo and Redo.”

See also: redo

undoManager
public NSUndoManagerndoManagen()

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Classes: EOEditingContext

Returns the receiver's NSUndoManager.

See also: setUndoManager

unlock
public voidunlock()

This method is available for Yellow Box applications only; there is no Java Client equivalent.
Unlocks access to the receiver so that other threads may access it.

warning: This method creates an NSAutoreleasePool that is releasedimtbek is called. Consequently,
objects that have been autoreleased within the scopead/anlock pair may not be valid after
theunlock.

See also: lock

updatedObjects
public NSArrayupdatedObjecty)

Returns the objects in the receiver’s object graph that have been updated.

See also: deletedObjects insertedObjects

Notifications

The following notifications are declared (except where otherwise noted) and posted by EOEditingContext.

EditingContextDidSaveChangesNotification

This notification is broadcast after changes are saved to the EOEditingContext’s parent EOObjectStore. The
notification contains:

Notification Object The EOEditingContext

userlnfo Dictionary

Key Value

updated An NSArray containing the changed objects

81

82

deleted An NSArray containing the deleted objects

inserted An NSArray containing the inserted objects

InvalidatedAllObjectsinStoreNotification

This notification is defined by EOObjectStore. When posted by an EOEditingContext, it's the result of the
editing context invalidating all its objects. When an EOEditingContext receives an
InvalidatedAllObjectsInStoreNotification from its parent EOObjectStore, it clears its lists of inserted,
updated, and deleted objects, and resets its undo stack. The notification contains:

Notification Object The EOEditingContext

userlnfo Dictionary None.

An interface layer EODisplayGroup (not a WebObjects WODisplayGroup) listens for this notification to
refetch its contents. See the EOODbjectStore class specification for more information on this notification.

ObjectsChangedInStoreNotification

This notification is defined by EOObjectStore. When posted by an EOEditingContext, it's the result of the
editing context processimapjectWillChange observer notifications iprocessRecentChangesvhich is

usually as the end of the event in which the changes occurred. See the EOObjectStore class specification
for more information on ObjectsChangedInStoreNotification.

This notification contains:

Notification Object The EOEditingContext

userlnfo Dictionary

Key Value

updated An NS_Array of EOGIqbaIIDs for objects whose_ propertie_s have changed. A receiving
EOEditingContext typically responds by refaulting the objects.

inserted An NSArray of EOGloballDs for objects that have been inserted into the EOObjectStore.

deleted An NSArray of EOGloballDs for objects that have been deleted from the EOObjectStore.

Classes: EOEditingContext

An NSArray of EOGloballDs for objects that have been turned into faults. Invalidated objects
invalidated are those for which the cached view should no longer be trusted. Invalidated objects should
be refaulted so that they are refetched when they’re next examined.

ObjectsChangedInEditingContextNotification

This notification is broadcast whenever changes are made in an EOEditingContext. It's similar to
ObjectsChangedinStoreNotification, except that it contains objects rather than globallDs. The notification
contains:

Notification Object The EOEditingContext

userinfo Dictionary

Key Value

UpdatedKey An NSArray containing the changed objects
DeletedKey An NSArray containing the deleted objects
InsertedKey An NSArray containing the inserted objects
InvalidatedKey An NSArray containing invalidated objects.

Interface layer EODisplayGroups (hot WebObjects WODisplayGroups) listen for this notification to
redisplay their contents.

83

84

Classes: EOEditingContext

EOEditingContext

Other Classes that Participate in Object Graph Management

EOEditingContexts work in conjunction with instances of other classes to manage the object graph. Two
other classes that play a significant role in object graph management are NSUndoManager and
EOObserverCenter. NSUndoManager objects provide a general-purpose undo stack. As a client of
NSUndoManager, EOEditingContext registers undo events for all changes made the enterprise objects that
it watches.

EOObserverCenter provides a notification mechanism for an observing object to find out when another
object is about to change its state. “Observable” objects (typically all enterprise objects) are responsible for
invoking theirwillChange method prior to altering their state (in a “set” method, for instance). Objects

(such as instances of EOEditingContext) can add themselves as observers to the objects they care about in
the EOObserverCenter. They then receive a notification (akjactWillChange message) whenever an
observed object invokesillChange.

TheobjectWillChange method is defined in the EOObserving interface. EOEditingContext implements
the EOObserving interface. For more information about the object change notification mechanism, see the
EOObserving interface specification.

Programmatically Creating an EOEditingContext

Typically, an EOEditingContext is created automatically for your application as a by product of some other
operation. For example, the following operations result in the creation of network of objects that include an
EOEditingContext:

* Running the EOF Wizard in Project Builder to create an OpenStep application with a graphical user
interface

« Dragging an entity from EOModeler into a nib file in Interface Builder
« Accessing the default editing context of a WebObjects WOSession in a WebObjects application

Under certain circumstances, however, you may need to create an EOEditingContext programmatically—
for example, if you're writing an application that doesn’t include a graphical interface. To create an
EOEditingContext, do this:

EOEditingContext EOEditingContext = new EOEditingContext();

This creates an editing context that's connected to the default EOObjectStoreCoordinator. You can change
this default setting by initializing an EOEditingContext with a particular parent EOObjectStore. This is
useful if you want your EOEditingContext to use a different EOObjectStoreCoordinator than the default,
or if your EOEditingContext is nested. For example, the following code excerpt initializes
childeditingContext with a parent object stoparentEditingContext:

85

86

EOEditingContext parentEditingContext; // Assume this exists.
EOEditingContext childEditingContext = new EOEditingContext(parentEditingContext);

For more discussion of working programmatically with EOEditingContexts, see the chapter “Application
Configurations” in thé&nterprise Objects Framework Developer's Guide

Accessing An Editing Context's Adaptor Level Objects

You can use an EOEditingContext with any EOObjectStore. However, in a typical configuration, you use
an EOEditingContext with the objects in the access layer. To access an EOEditingContext’s adaptor level
objects, you get the editing context’s EOObjectStoreCoordinator from the editing context, you get an
EODatabaseContext (EOAccess) from the object store coordinator, and you get the adaptor level objects
from there. The following code demonstrates the process.

EOEditingContext editingContext; // Assume this exists.
String entityName; /I Assume this exists.
EOFetchSpecification fspec;

EOODbjectStoreCoordinator rootStore;
com.apple.yellow.eoaccessDatabaseContext doContext;
com.apple.yellow.eoaccessAdaptor adaptor;
com.apple.yellow.eoacces®AdaptorContext adContext;

fspec = new EOFetchSpecification(entityName, null, null);

rootStore = (EOObjectStoreCoordinator)editingContext.rootObjectStore();

dbContext = (EODatabaseContext)rootStore.objectStoreForFetchSpecification(fspec);
adaptor = dbContext.database().adaptor();

adContext = dbContext.adaptorContext();

This example first creates a fetch specification, providing just the entity name as an argument. Of course,
you can use a fetch specification that hasmahvalues for all of its arguments, but only the entity name

is used by the EOObjectStavbjectStoreForFetchSpecificatiormethod. Next, the example gets the

editing context's EOObjectStoreCoordinator using the EOEditingContext mestbtiabjectStore.
rootObjectStore returns an EOObjectStore and not an EOObjectStoreCoordinator, because it's possible to
substitute a custom object store in place of an object store coordinator. Similarly, the
EOODbjectStoreCoordinator methobjectStoreForFetchSpecificatiorreturns an

EOCooperatingObjectStore instead of an access layer EODatabaseContext because it's possible to
substitute a custom cooperating object store in place of a database context. If your code performs any such
substitutions, you should alter the above code example to match your custom object store’s API. See the
class specifications for EOObjectStore, EOObjectStoreCoordinator, and EOCooperatingObjectStore for
more information.

An EOEditingContext's EOObjectStoreCoordinator can have more than one set of database and adaptor
level objects. Consequently, to get a database context from the object store coordinator, you have to provide
information that the coordinator can use to choose the correct database context. The code example above

Classes: EOEditingContext

provides an EOFetchSpecification using the metigectStoreForFetchSpecification but you could
specify different criteria by using one of the following EOObjectStoreCoordinator methods instead:

Method Description

cooperatingObjectStores Returns an array of the EOObjectStoreCoordinator’s cooperating object stores.

Returns the cooperating object store for the enterprise object identified by the

objectStoreForGloballD provided EOGIoballD.

objectStoreForObject Returns the cooperating object store for the provided enterprise object.

After you have the EODatabaseContext, you can get the corresponding EOAdaptor and EOAdaptorContext
as shown above. (EODatabaseContext, EOAdaptor, and EOAdaptorContext are all defined in EOAccess.)

Using EOEditingContexts in Different Configurations

The fundamental relationship an EOEditingContext has is to its parent EOObjectStore, which creates the
object graph the EOEditingContext monitors. EOObjectStore is an abstract class that defines a source and
sink of objects for an EOEditingContext. The EOObjectStore is responsible for constructing and registering
objects, servicing object faults, and committing changes made in an EOEditingContext.

You can augment the basic configuration of an EOEditingContext and its parent EOObjectStore in several
different ways. For example, multiple EOEditingContexts can share the same EOObjectStore, one
EOEditingContext can act as an EOObjectStore for another, and so on. The most commonly used scenarios
are described in the following sections.

Peer EOEditingContexts

One or more “peer” EOEditingContexts can share a single EOObjectStore (Figure 1). Each
EOEditingContext has its own object graph—so, for example, a given Employee row in a database can have
separate object instances in each EOEditingContext. Changes to an object in one EOEditingContext don’t
affect the corresponding object in another EOEditingContext until all changes are successfully committed
to the shared object store. At that time the objects in all EOEditingContexts are synchronized with the
committed changes. This arrangement is useful when an application allows the user to edit multiple
independent “documents.”

87

88

EOEditing EOEditing

Contaxt Cantext
ohject store abject store
EﬂﬂhiEEtEIcI'EI

Figure 1 Peer EOEditingContexts

Nested EOEditingContexts

EOEditingContext is a subclass of EOObjectStore, which gives its instances the ability to act as
EOObjectStores for other EOEditingContexts. In other words, EOEditingContexts can be nested (Figure
2), thereby allowing a user to make edits to an object graph in one EOEditingContext and then discard or
commit those changes to another object graph (which, in turn, may commit them to an external store). This
is useful in a “drill down” style of user interface where changes in a nested dialog can be okayed
(committed) or canceled (rolled back) to the previous panel.

ECEditing
Cantext

abject slora

4

EDEditing
Context

oipeet slore

EDthﬂShmI

Figure 2 Nested EOEditingContexts

When an object is fetched into a nested EOEditingContext, it incorporates any uncommitted changes that
were made to it in its parent EOEditingContext. For example, suppose that in one panel you have a list of
employees that allows you to edit salaries, and that the panel includes a button to display a nested panel
where you can edit detail information. If you edit the salary in the parent panel, you see the modified salary

Classes: EOEditingContext

in the nested panel, not the old (committed) salary from the database. Thus, conceptually, nested
EOEditingContexts fetch through their parents.

EOEditingContext overrides several of EOObjectStore’s methods:

 arrayFaultWithSourceGloballD

« faultForGloballD

« invalidateAllObjects

« invalidateObjectsWithGloballDs

» objectsForSourceGloballD

* objectsWithFetchSpecification

» — refaultObject:withGloballD:editingContext:
» saveChangesInEditingContext

These methods are generally used when an EOEditingContext acts as an EOObjectStore for another
EOEditingContext. For more information, see the individual method descriptions. For information on
setting up this configuration for interfaces loaded from nib files, see the method description for
setDefaultParentObjectStore

For a description of how to implement nested EOEditingContexts, see the chapter “Application
Configurations” in thé&nterprise Objects Framework Developer’s Guide

Getting Data from Multiple Sources

An EOEditingContext’s object graph can contain objects from more than one external store (Figure 3). In
this scenario, the object store is an EOObjectStoreCoordinator, which provides the abstraction of a single
object store by redirecting operations to one or more EOCooperatingObjectStores.

EQEditing
Contaext

ol slara

ECObjectStore
Coordinator

ECDatabase ECDatabase
Cantext Confext

Figure 3 An EOEditingContext Containing Objects from Multiple Sources

89

90

In writing an application, it's likely that you'll use combinations of the different scenarios described in the
above sections.

Fetching Objects

The most common way to explicitly fetch objects from an external store in an Enterprise Objects
Framework application is to use EOEditingContesbgectsWithFetchSpecification:method. This

method takes a fetch specification and returns an array of objects. A fetch specification includes the name
of the entity for which you want to fetch objects, the qualifier (query) you want to use in the fetch, and the
sort order in which you want the objects returned (if any).

Managing Changes in Your Application

EOEditingContext provides several methods for managing the changes made to objects in your application.
You can use these methods to get information about objects that have changed, to selectively undo and redo
changes, and to discard all changes made to objects before these changes are committed to the database.
These methods are described in the following sections.

Getting Information About Changed Objects

An EOEditingContext maintains information about three different kinds of changes to objects in its object
graph: insertions, deletions, and updates. After these changes have been made and before they're committed
to the database, you can find out which objects have changes in each of these categories by using the
insertedObjects deletedObjects andupdatedObjectsmethods. Each method returns an arraycontaining

the objects that have been inserted, deleted, and updated, respectivegsThangesnethod returns

true orfalseto indicate whether any of the objects in the object graph have been inserted, deleted, or
updated.

Undo and Redo

EOEditingContext includes thendo, redo, andrevert methods for managing changes to objects in the

object graphundo asks the EOEditingContext's NSUndoManager to reverse the latest changes to objects

in the object graplredo asks the NSUndoManager to reverse the latest undo operatiert: clears the

undo stack, discards all insertions and deletions, and restores updated objects to their last committed (saved)
values.

EOEditingContext’s undo support is arbitrarily deep; you can undo an object repeatedly until you restore it
to the state it was in when it was first created or fetched into its editing context. Even after saving, you can
undo a change. To support this feature, the NSUndoManager can keep a lot of data in memory.

For example, whenever an object is removed from a relationship, the corresponding editing context creates
a snapshot of the modified, source object. The snapshot, which has a reference to the removed object, is
referenced by the editing context and by the undo manager. The editing context releases the reference to

Classes: EOEditingContext

the snapshot when the change is saved, but the undo manager doesn't. It continues holding the snapshot, so
it can undo the deletion if requested.

If the typical usage patterns for your application generate a lot of change processing, you might want to
limit the undo feature to keep its memory usage in check. For example, you could clear an undo manager
whenever its editing context saves. To do so, simply send the undo marergeveAllActions message

(or aremoveAllActionsWithTarget message with the editing context as the argument). If your application
doesn't need undo at all, you can avoid any undo overhead by setting the editing context’s undo manager
to null with setUndoManager

Saving Changes

ThesaveChangesnethod commits changes made to objects in the object graph to an external store. When
you save changes, EOEditingContext’s lists of inserted, updated, and deleted objects are flushed.

Upon a successful save operation, the EOEditingContext’s parent EOObjectStore broadcasts an
ObjectsChangedinStoreNotification. Peers of the saved EOEditingContext receive this notification and
respond by synchronizing their objects with the committed versions. See also

Methods for Managing the Object Graph

EOEditingContext provides methods for managing the enterprise objects in the context’s object graph. This
section describes these methods, as well as other techniques you can use to manage the object graph.

At different points in your application, you might want to do the following:
» Break reference cycles between enterprise objects
« Discard changes that have been made to enterprise objects

» Make sure that when you refetch objects from the database, any changed database values are used instead
of the original values

» Discard the view of objects cached in memory
« Work with objects across multiple editing contexts

These scenarios are discussed in the following sections.

Breaking Reference Cycles

When you are using Java APIs to access Objective-C Enterprise Objects Framework classes, you have to
take into consideration the way objects are deallocated on the Objective-C side of the Java Bridge. This
means that you might still need to break reference cycles to help keep your application’s memory usage in
check.

You use the EOEditingContext methadgaultObjects andrefaultObject:withGloballD:
editingContext: to break reference cycles between your enterprise objects. For example, suppose you have

91

92

an Employee object that has a to-one relationship to its Department, and the Department object in turn has
an array of Employee objects. This circular reference constitutes a reference cycle, which you can break
using therefault... methods.

Note: Reference cycles are automatically broken if the EOEditingContext is finalized.

You should use theefault... methods with caution, since refaulting an object doesn’t remove the object
shapshot from the undo stack. Objects that have been newly inserted or deleted should not be refaulted. In
general, it's safer to ugefaultObjects than it is to useefaultObject:withGloballD:editingContext:
sincerefaultObjects only refaults objects that haven't been inserted, deleted or updated. The method
refaultObject:withGloballD:editingContext: doesn’t make this distinction, so you should only use it

when you're sure you know what you're doing.

If you want to reset your EOEditingContext and free all of its objects, do the following:

EOEditingContext EOEditingContext; // Assume this exists.
EOEditingContext.revert(); /I Discard uncommitted changes.
EOEditingContext.refaultObjects();

Note that you must remove any other references to enterprise objects in the EOEditingContext for them to
actually be freed. For example, to clear a display group that references a list of enterprise objects, you'd do
something like the following:

displayGroup.setObjectArray(null);

Using theinvalidate... methods (described below) also has the effect of breaking reference cycles, but these
methods have a more far-reaching effect. It's not recommended that you use them simply to break reference
cycles.

Discarding Changes to Enterprise Objects

EOEditingContext provides different techniques for discarding changes to enterprise objects. These
techniques are as follows:

« Perform a simpleindo, which reverses the latest uncommitted changes applied to objects in the object
graph.

« Invoke the EOEditingContext methoglvert, which removes everything from the undo stack, discards
all insertions and deletions, and restores updated objects to their last committed values. If you just want
to discard uncommitted changes but you don't want to sacrifice the original values from the database
cached in memory, use thevert method.

A different approach is to use thwvalidate... methods, described in ““Discarding the View of Objects
Cached in Memory”.”

Classes: EOEditingContext

Refreshing Objects

One characteristic of an object graph is that it represents an internally consistent view of your application’s
data. By default, when you refetch data, Enterprise Objects Framework maintains the integrity of your
object graph by not overwriting your object values with database values that have been changed by someone
else. But what if you want your application to see those changes? You can accomplish this by using the
EOFetchSpecification methedtRefreshesRefetchedObjecténvokingsetRefreshesRefetchedObjects

with the argumentrue causes existing objects to be overwritten with fetched values that have been
changed. Alternatively, you can use the EODatabaseContext (EOAccess) delegate method
databaseContextShouldUpdateCurrentSnapshot

Normally, when you set an EOFetchSpecification to refresh ssiiRefreshesRefetchedObject# only
refreshes the objects you're fetching. For example, if you refetch employees, you don'’t also refetch the
employees’ departments. However, if you use the EOPrefetchingRelationshipHintKey with an
EOFetchSpecification in the EODatabaseContext maibjmttsWithFetchSpecification the refetch is
propagated for all of the fetched objects’ relationships that are specified for the hint. For more discussion
of this topic, see the EODatabaseContext class specification.

Refreshing refetched objects only affects the objects you specify. If you want to refetch your entire object
graph, you can use the EOEditingContexalidate... methods, described below.

Discarding the View of Objects Cached in Memory

As described in the section “Discarding Changes to Enterprise Objects,” you cardase revert to

selectively discard the changes you've made to enterprise objects. Using these methods preserves the
original cache of values fetched from the database. But what if you want to flush your in-memory object
view all together—in the most likely scenario, to see changes someone else has made to the database? You
can invalidate your enterprise objects usingitivalidateAllObjects method or the
invalidateObjectsWithGloballDs method. (You can also use the methafgtch, which simply invokes
invalidateAllObjects). Unlike fetching with the EOFetchSpecification method
setRefreshesRefetchedObjectset totrue (described above), thievalidate... methods result in the

refetch of your entire object graph.

The effect of theénvalidateAllObjects method depends on how you use it. For example, if you send
invalidateAllObjects to an EOEditingContext, it sends/alidateObjectsWithGloballDs to its parent

object store with all the globallDs for the objects registered in it. If the EOEditingContext is nested, its
parent object store is another EOEditingContext; otherwise its parent object store is typically an
EOODbjectStoreCoordinator. Regardless, the message is propagated down the object store hierarchy. Once
it reaches the EOObjectStoreCoordinator, it's propagated to the EODatabaseContext(s). The
EODatabaseContext discards the row snapshots for these globallDs and sends an
ObjectsChangedinStoreNotification, thereby refaulting all the enterprise objects in the object graph. The
next time you access one of these objects, it's refetched from the database.

SendingnvalidateAllObjects to an EOEditingContext affects not only that context’s objects, but objects
with the same globallDs in other EOEditingContexts. For example, supgdibisgyContextthasobjectA
andobjectB andeditingContexthasobjectA objectB andobjectC When you senihvalidateAllObjects

93

94

to editingContextlobjectAandobjectBare refaulted in botladitingContextlandeditingContext2
However,objectCin editingContextds left intact sinceditingContextdoesn’t have anbjectC

If you sendnvalidateAllObjects directly to the EOObjectStoreCoordinator, it seimgalidate AllObjects
to all of its EODatabaseContexts, which then discard all of the snapshots in your application and refault
every single enterprise object in all of your EOEditingContexts.

Theinvalidate... methods are the only way to get rid of a database lock without saving your changes.

Working with Objects Across Multiple EOEditingContexts

Any time your application is using more than one EOEditingContext (as described in the section “Using
EOEditingContexts in Different Configurations”), it's likely that one editing context will need to access
objects in another.

On the face of it, it may seem like the most reasonable solution would be for the first editing context to just
get the desired object in the second editing context and modify the object directly. But this would violate
the cardinal rule of keeping each editing context’s object graph internally consistent. Instead of modifying
the second editing context’s object, the first editing context needs to get its own copy of the object. It can
then modify its copy without affecting the original. When it saves changes, they're propagated to the
original object, down the object store hierarchy. The method that you use to give one editing context its own
copy of an object that's in another editing contextasltForGloballD .

For example, suppose you have a nested editing context configuration in which a user interface displays a
list of objects—this maps to the parent editing context. From the list, the user can select an object to inspect
and modify in a “detail view"—this maps to the child editing context. To give the child its own copy of the
object to modify in the detail view, you would do something like the following:

EOEditingContext childEC, parentEC; // Assume these exist.
Object origObject; /I Assume this exists.
Object newObiject;

newObject = childEC.faultForGloballD(parentEC.globallIDForObject(origObject,
childEC));

whereorigObject is the object the user selected for inspection from the list.

The child can make changeswObjectwithout affectingorigObject in the parent. Then when the child
saves changesrigObject is updated accordingly.

Updates from the Parent EOObjectStore

When changes are successfully saved in an EOObjectStore, it broadcasts an
EOObjectsChangedinStoreNotification. An EOEditingContext receiving this notification will synchronize

its objects with the committed values by refaulting objects needing updates so the new values will be
retrieved from the EOODbjectStore the next time they are needed. However, locally uncommitted changes to
objects in the EOEditingContext are by default reapplied to the objects, in effect preserving the

Classes: EOEditingContext

uncommitted changes in the object graph. After the update, the uncommitted changes remain uncommitted,
but the committed snapshots have been updated to reflect the values in the EOObjectStore.

You can control this process by implementing two delegate methods. Before any updates have occurred, the
delegate methoeditingContextShouldMergeChangesForObjectvill be invoked for each of the objects

that has both uncommitted changes and an update in the EOObjectStore. If the delegatauesttives
uncommitted chnages will be merged with the update (the default behavior). If it fataenthen the

object will be invalidated (and refaulted) without preserving ay uncommitted changes. As a side effect, the
delgate might cache information about the object (globallD, snapshot, etc.) so that a specialized merging
behavior could be implemented. At this point, the delegate should not make changes to the object becuse it
is about to be invalidated. However, the delegate mettiithgContextDidMergeChangesis invoked

after all of the updates for the EOObjectsChangedInStoreNotification have been completed, including the
merginf of all uncommitted changes. By default, it does nothing, but this delegate method might perform
the customized merging behavior based on whatever information was cached in
editingContextShouldMergeChangesForObjecfor each of the objects that needed an update. See the
informal protocol EOValueMerging for the descriptions of the metlsbdsgesFromSnapshotand
reapplyChangesFromDictionary:, which might be useful for implementing custom merging behaviors.

General Guidelines for Managing the Object Graph

When you fetch objects into your application, you create a graph of objects instantiated from database data.
From that point on, your focus should be on working with the object graph—not on interacting with your
database. This distinction is an important key to working with Enterprise Objects Framework.

You don'’t have to worry about the database...

One of the primary benefits of Enterprise Objects Framework is that it insulates you from having to worry
about database details. Once you've defined the mapping between your database and your enterprise objects
in a model file, you don’t need to think about issues such as foreign key propagation, how object deletions
are handled, how operations in the object graph are reflected in your database tables, and so on.

This can be illustrated by considering the common scenario in which one object has a relationship to
another. For example, suppose an Employee has a relationship to a Department. In the object graph, this
relationship is simply expressed as an Employee object having an instance variable for its Department
object. The Department object might in turn have an instance variable an ’s an array of Employee objects.
When you manipulate relationships in the object graph (for example, by moving an Employee to a different
Department), Enterprise Objects Framework changes the appropriate relationship references. For example,
moving an Employee to a different Department changes the Employee’s department instance variable and
adds the Employee to the new Department’s employee array. When you save your changes to the database,
Enterprise Objects Framework knows how to translate these object graph manipulations into database
operations.

95

96

...but you do have to worry about the object graph

As described above, you generally don’t need to concern yourself with how changes to the object graph are
saved to the database. However, you do need to concern yourself with managing the object graph itself.
Since the object graph is intended to represent an internally consistent view of your application’s data, one
of your primary considerations should be maintaining its consistency. For example, suppose you have a
relationship from Employee to Project, and from Employee to Manager. When you create a new Employee
object, you must make sure that it has relationships to the appropriate Projects and to a Manager.

Just as you need to maintain the internal consistency of an EOEditingContext’s object graph, you should
never directly modify the objects in one EOEditingContext from another EOEditingContext. If you do so,
you risk creating major synchronization problems in your application. If you need to access the objects in
one EOEditingContext from another, use the metaattForGloballD , as described in “Working with

Objects Across Multiple EOEditingContexts.” This gives the receiving EOEditingContext its own copy of
the object, which it can modify without affecting the original. Then when it saves its changes, the original
is updated accordingly.

One of the implications of needing to maintain the consistency of your object graph is that you should never
copy an enterprise object (though you can snapshot its properties), since this would be in conflict with
uniquing. Uniquing dictates that an EOEditingContext can have one and only one copy of a particular
object. For more discussion of uniquing, see the chapter “Behind the Scene<Eimetmise Objects
Framework Developer’'s Guid&imilarly, your enterprise objects shouldn't overrideghaalsmethod.
Enterprise Objects Framework relies on this method checking implementation which checks instance
equality rather than value equality.

Using EOEditingContext to Archive Custom Objects in Web Objects Framework

In WebObjects, applications that use the Enterprise Objects Framework must enlist the help of the
EOEditingContext to archive enterprise objects. The primary reason is so that the EOEditingContext can
keep track, from one transaction to the next, of the objects it manages. But using an EOEditingContext for
archiving also benefits your application in these other ways:

< During archiving, an EOEditingContext stores only as much information about its enterprise objects as
is needed to reconstitute the object graph at a later time. For example, unmodified objects are stored as
simple references (by globallD) that will allow the EOEditingContext to recreate the object from the
database. Thus, your application can store state very efficiently by letting an EOEditingContext archive
your enterprise objects.

< During unarchiving, an EOEditingContext can recreate individual objects in the graph only as they are
needed by the application. This approach can significantly improve application performance.

An enterprise object (like any other object that uses the OpenStep archiving scheme) makes itself available
for archiving by declaring that it implements the NSCoding interface, by implementing the interface’s
methodencodeWithCoderand by providing a constructor that takes an NSCoder object.The enterprise
object simply passes on responsibility for archiving and unarchiving itself to the EOEditingContext class,
by invoking theencodeObjectWithCoderandinitObjectWithCoder static methods. The

Classes: EOEditingContext

EOEditingContext takes care of the rest. For more discussencofle WithCoderand the corresponding
constructor, see the NSCoding interface specification irdhedation Framework Reference

EOEditingContext includes two additional methods that affect the archiving and unarchiving of objects:
setUsesContextRelativeEncodingndusesContextRelativeEncodingWhen you use context relative
encoding, it means that enterprise objects that archive themselves using the EOEditingContext
encodeObjectWithCodermethod archive their current state (that is, all of their class properties) only if
they (the objects) are marked as inserted or updated in the EOEditingContext. Otherwise, they archive just
their globallD’s since their state matches what's stored in the database and can be retrieved from there. If
usesContextRelativeEncodingeturngalse, it means the current state will always be archived, even if the
enterprise object is unmodified. The defaufalse for OpenStep applications, atrde for WebObjects
applications.

97

98

Classes: EOFaultHandler

EOFaultHandler

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOFaultHandler is an abstract class that defines the mechanisms that create faults and help them to fire.
Faultsare used as placeholders for an enterprise object’s relationship destinations. For example, suppose
an Employee object hagddapartment relationship to the employee’s department. When an employee is
fetched, faults are created for its relationship destinations. In the caseleptrément relationship, an

empty Department object is created. The Department object’s data isn’t fetched until the Department is
accessed, at which time the fault is saifiro

Subclasses of EOFaultHandler perform the specific steps necessary to get data for the fault and fire it. The
Access Layer, for example, uses private subclasses to fetch data using an EODatabaseContext (defined in
EOAccess). Most of EOFaultHandler's methods are properly defined; you need only override
completelnitializationOfObject to provide appropriate behavior. In Yellow Box applications, you can
optionally implementaultWillFire to prepare for conversion.

In a Yellow Box application you create an EOFaultHandler using the standard constructor. To create a fault
in a Yellow Box application, you invoke the static methoakeObjectintoFault with the object to turn

into a fault and the EOFaultHandler. An EOFaultHandler belongs exclusively to a single fault, and shouldn’t
be shared or used by any other object.

In a Java Client application you also create an EOFaultHandler using the standard constructor. To create a
fault in a Java Client application, though, you send a newly-created oljeotrdoFault message and

provide an EOFaultHandler that will help the fault to fire. In order for that newly-created object to be able
to respond taurnintoFault , the object must conform to the EOFaulting interface. An EOFaultHandler
belongs exclusively to a single fault, and shouldn’t be shared or used by any other object. In Java Client
applications, the fault handler is the private property of the fault; you shouldn’t send any messages to the
fault hander, instead dealing exclusively with the fault.

Firing a Fault

When a fault receives a message that requires it to fire, it sendgpéetelnitializationOfObject method

to its EOFaultHandler. This method is responsible for invokingléeeFault method to revert the fault to
its original state, and then do whatever is necessary to complete initialization of the object. Doing so
typically involves fetching data from an external repository and passing it to the object.

99

Method Types

Constructors
EOFaultHandler
Creating and examining faults
clearFault
isFault

makeObjectintoFault
handlerForFault

Reference counting
incrementExtraRefCount
decrementExtraRefCountlsZero
extraRefCount

Getting the original class
classForFault

Firing a fault
completelnitializationOfObject
faultWillFire

Getting a description
descriptionForObject

Checking class information
respondsToSelectorForFault

Constructors

EOFaultHandler
public EOFaultHandler ()

Creates and returns an EOFaultHandler object.

Static Methods

clearFault
public static voictlearFault(java.lang.ObjecaFault)

This method is only available in Yellow Box; there is no Java Client equivalent. Redftardo its status
prior to themakeObjectintoFault message that created it. Throws an exceptiaRatiltisn’t a fault.

100

Classes: EOFaultHandler

You rarely use this method. Faults typically fire automatically when accessed, using the
completelnitializationOfObject method.

handlerForFault
public static EOFaultHandlérandlerForFault (java.lang.ObjecaFaulf)

This method is only available in Yellow Box; there is no Java Client equivalent. Returns the
EOFaultHandler that will helpFaultto fire. Returnswull if aFaultisn’t a fault.

isFault
public static booleaisFault(java.lang.ObjecanObjec}

Returngrue if anObjectis a fault,false otherwise.

makeObjectintoFault
public static voidnakeObjectintoFault(java.lang.ObjecanObject EOFaultHandleaFaultHandle)

This method is only available in Yellow Box; there is no Java Client equivalent. Coan@®itgectinto a

fault, assignin@FaultHandleras the object that stores its original state and later converts the fault back into
a normal object (typically by fetching data from an external repository). The new fault becomes the owner
of aFaultHandler you shouldn’t assign it to another object.

targetClassForFault
public static java.lang.ClasargetClassForFault(java.lang.ObjecanObjec}

This method is only available in Yellow Box; there is no Java Client equivalent. Returns the class that will
be instantiated when the fault fires. The returned class could be a superclass of the actual class instantiated.

Instance Methods

classForFault
public java.lang.ClasslassForFaulijava.lang.Objectault)

This method is only available in Yellow Box; there is no Java Client equivalent. Returns the target class of
the receiver’s fault object, which must be passeaFasitin case the receiver needs to fire it

101

102

(EOFaultHandlers don't keep references to their faults). For example, to support entity inheritance, the
Access layer fires faults for entities with subentities to confirm their precise class membership.

See also: targetClassForFault

completelnitializationOfObject

public voidcompletelnitializationOfObject (java.lang.ObjecaFault)
Implemented by subclasses to rew#tault to its original state and complete its initialization in whatever
means is appropriate to the subclass. For example, the Access layer subclasses of EOFaultHandler fetch
data from the database and pass it to the object. This method is invoked automatically by a fault when it's

sent a message it can’t handle without fetching its data. EOFaultHandler’s implementation merely throws
an exception.

decrementExtraRefCountlsZero
public booleardecrementExtraRefCountlsZerd()

This method is only available in Yellow Box; there is no Java Client equivalent. Decrements the reference
count for the receiver’s fault. An object’s reference count is the number of objects that are accessing it.
Newly created objects have a reference count of one. If another object is referencing an object, the object
is said to have aextra reference count

If, after decrementing the reference count, the fault’'s new reference count is zero, this methomueturns
If the reference count has not become zero, this method réglgasObjects that have a zero reference
count are marked for garbage collection.

This method is used by EOFaultHandler’s internal reference counting mechanism.

descriptionForObject
public java.lang.StringlescriptionForObject(java.lang.ObjecaFault)

This method is only available in Yellow Box; there is no Java Client equivalent. Returns a string haming the
original class of the receiver’s fault and givadgaults address, and also noting that it's a fault. (The fault
must be passed afault because EOFaultHandlers don’t keep references to their faults.)

extraRefCount
public intextraRefCount

This method is only available in Yellow Box; there is no Java Client equivalent. Returnsthe receiver’s
current reference count. This method is used by EOFaultHandler’s internal reference counting mechanism.

Classes: EOFaultHandler

faultWillFire
public voidfaultWillFire (java.lang.ObjecaFaulf)

This method is only available in Yellow Box; there is no Java Client equivalent. Informs the receiver that
aFaultis about to be reverted to its original state. EOFaultHandler’s implementation does nothing.

incrementExtraRefCount
public voidincrementExtraRefCount()

This method is only available in Yellow Box; there is no Java Client equivalent. Increments the reference
count for the receiver’s fault. An object’s reference count is the number of objects that are accessing it.
Newly created objects have a reference count of one. If another object is referencing an object, the object
is said to have aextra reference count

This method is used by EOFaultHandler’s internal reference counting mechanism.

See also: extraRefCount

isKindOfClass
public booleansKindOfClass(java.lang.ClasaClass java.lang.ObjecaFaulf)

This method is only available in Yellow Box; there is no Java Client equivalent. Retenkthe target

class of the receiver’s fault @&Classor a subclass @Class The fault must be passed inad&ultin case

the receiver needs to fire it (EOFaultHandlers don't keep references to their faults). For example, to support
entity inheritance, the Access layer fires faults for entities with subentities to confirm their precise class
membership.

See also: completelnitializationOfObject

iIsMemberOfClass
public booleansMemberOfClasgjava.lang.ClasaClass java.lang.ObjecaFaulf)

This method is only available in Yellow Box; there is no Java Client equivalent. Retigribthe target

class of the receiver’s fault &Class This fault must be passedafzaultin case the receiver needs to fire

it (EOFaultHandlers don't keep references to their faults). For example, to support entity inheritance, the
Access layer fires faults for entities with subentities to confirm their precise class membership.

See also: completelnitializationOfObject

103

104

respondsToSelectorForFault
public booleanrespondsToSelectorForFaulfNSSelectoaSelectorjava.lang.ObjecaFaull)

This method is only available in Yellow Box; there is no Java Client equivalent. Retigrnéthe target
class of the receiver’s fault respondsi®electarThis fault must be passedafzaultin case the receiver
needs to fire it (EOFaultHandlers don't store references to their faults). For example, to support entity
inheritance, the Access layer fires faults for entities with subentities to confirm their precise class
membership.

See also: completelnitializationOfObject

targetClass
public java.lang.ClaswrgetClasy)

This method is only available in Yellow Box; there is no Java Client equivalent. Returns the target class of
the receiver’s fault . The fault may, however, be converted to a member of this class or of a subclass of this
class. For example, to support entity inheritance, the Access layer fires faults for entities with subentities
into the appropriate class on fetching their data.

Classes: EOFetchSpecification

EOFetchSpecification

Inherits From: Object (Java Client)

NSObject (Yellow Box)

Implements: NSCoding (Java Client only)

Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (Yellow Box)

Class Description

An EOFetchSpecification collects the criteria needed to select and order a group of records or enterprise
objects, whether from an external repository such as a relational database or an internal store such as an
EOEditingContext. An EOFetchSpecification contains these elements:

The name of an entity for which to fetch records or objects. This is the only mandatory element.
An EOQuialifier, indicating which properties to select by and how to do so.

An array of EOSortOrderings, which indicate how the selected records or objects should be ordered when
fetched.

An indicator of whether to produce distinct results or not. Normally if a record or object is selected
several times, such as when forming a join, it appears several times in the fetched results. An
EOFetchSpecification that makes distinct selections causes duplicates to be filtered out, so each record
or object selected appears exactly once in the result set.

An indicator of whether to fetch deeply or not. This is used with inheritance hierarchies when fetching
for an entity with sub-entities. A deep fetch produces all instances of the entity and its sub-entities, while
a shallow fetch produces instances only of the entity in the fetch specification.

A fetch limit indicating how many objects to fetch before giving the user or program an opportunity to
intervene.

A listing of relationships for which the destination of the relationship should be prefetched along with
the entity being fetched. Proper use of this feature allows for substantially increased performance in some
cases.

A dictionary of hints, which an EODatabaseContext or other object can use to optimize or alter the results
of the fetch.

EOFetchSpecifications are most often used with the methjedtsWithFetchSpecification:
editingContext:, defined by EOObjectStore, EOEditingContext, and EODatabaseContext.
EOAdaptorChannel and EODatabaseChannel also define methods that use EOFetchSpecifications.

105

Adopted Protocols

NSCoding (Java Client only)
classForCoder

encodeWithCoder
initWithCoder
Method Types
Constructors
EOFetchSpecification

Creating instances
fetchSpecificationWithQualifierBindings (Yellow Box only)

Setting the qualifier
setQualifier
qualifier

Sorting
setSortOrderings
sortOrderings

Removing duplicates
setUsesDistinct
usesDistinct

Fetching objects in an inheritance hierarchy
setlsDeep
isDeep
setEntityName
entityName

106

Classes: EOFetchSpecification

Controlling fetching behavior
setFetchLimit
fetchLimit
setFetchesRawRows
fetchesRawRows
setPrefetchingRelationshipKeyPaths
prefetchingRelationshipKeyPaths
setPromptsAfterFetchLimit
promptsAfterFetchLimit
setRawRowKeyPaths
rawRowKeyPaths
setRequiresAllQualifierBindingVariables
requiresAllQualifierBindingVariables
setHints
hints

Locking objects
setLocksObjects
locksObjects

Refreshing refetched objects
setRefreshesRefetchedObjects
refreshesRefetchedObjects

Constructors

EOFetchSpecification

public EOFetchSpecificatiorf)

public EOFetchSpecificatiorfjava.lang.StringentityName EOQualifierqualifier,
NSArraysortOrdering$

public EOFetchSpecificatiorfjava.lang.StringentityName EOQualifierqualifier,
NSArraysortOrderings booleardistinctFlag booleardeepFlag NSDictionaryhints)

Creates a new EOFetchSpecification with the arguments specified. If no arguments are provided, the new
EOFetchSpecification has no state, except that it fetches deeply and doesn’t use distincsdilse the
methods to add other parts of the specification. Minimally, you must set the entity name.

If only entityNamequalifier, andsortOrderingsare provided, the new EOFetchSpecification is deep,
doesn't perform distinct selection, and has no hints.

107

Instance Methods

108

entityName
public java.lang.StringntityName()

Returns the name of the entity to be fetched.

See also: iIsDeep setEntityName

fetchLimit
public intfetchLimit ()

Returns the fetch limit value which indicates the maximum number of objects to fetch. Depending on the
value of promptsAfterFetchLimit, the EODatabaseContext will either stop fetching objects when this limit

is reached or it will ask the editing context's message handler to prompt the user as to whether or not it

should continue fetching. Use 0 (zero) to indicate no fetch limit. The default is 0.

See also: setFetchLimit

fetchesRawRows
public boolearfetchesRawRow§)

Returns true ifawRowKeyPathsreturns non-nil.

See also: rawRowKeyPaths setFetchesRawRows

fetchSpecificationWithQualifierBindings
public EOFetchSpecificatidietchSpecificationWithQualifierBindings(NSDictionarybindingg

This method is only available in Yellow Box; there is no equivalent in Java Client. Applies bindings from
bindingsto its qualifier if there is one, and returns a new fetch specification that can be used in a fetch. The
default behavior is to prune any nodes for which there are no bindings. Invoke
setRequiresAllQualifierBindingVariables with an argument dfue to force an exception to be raised if

a binding is missing during variable substitution.

See also: setRequiresAllQualifierBindingVariables

Classes: EOFetchSpecification

hints
public NSDictionaryhints()

Returns the receiver’s hints, which other objects can use to alter or optimize fetch operations.

See also: setHints

isDeep
public boolearisDeep

Returngrue if a fetch should include sub-entities of the receiver’s effiitye if it shouldn't.
EOFetchSpecifications are deep by default.

For example, if you have a Person entity with two sub-entities, Employee and Customer, fetching Persons
deeply also fetches all Employees and Customers matching the qualifier. Fetching Persons shallowly
fetches only Persons matching the qualifier.

See also: setlsDeep

locksObjects
public boolearocksObjects

()Returndrue if a fetch should result in the selected objects being locked in the data reptageriyit
shouldn’t. The default ifalse

See also: setLocksObjects

prefetchingRelationshipKeyPaths
public NSArrayprefetchingRelationshipKeyPathg)

Returns an array of relationship key paths that should be prefetched along with the main fetch. For example,
if fetching from the Movie entity, you might specify paths of the form (@"directors", @"roles.talent",
@"plotSummary").

See also: setPrefetchingRelationshipKeyPaths

109

110

promptsAfterFetchLimit
public boolearpromptsAfterFetchLimit ()

Returns whether to prompt user after the fetch limit has been reached. Dddsét is

See also: setPromptsAfterFetchLimit

qualifier
EOQualifierqualifier ()
Returns the EOQualifier that indicates which records or objects the receiver is to fetch.

See also: setQualifier

rawRowKeyPaths
public NSArrayrawRowKeyPathy)

Returns an array of attribute key paths that should be fetched as raw data and returned as an array of
dictionaries (instead of the normal result of full objects). The raw fetch can increase speed, but forgoes most
of the benefits of full Enterprise Objects. The default value is nil, indicating that full objects will be returned
from the fetch. An empty array may be used to indicate that the fetch should query the entity named by the
fetch specification using the methaitributesToFetch. As long as the primary key attributes are included

in the raw attributes, the raw row may be used to generate a fault for the corresponding object using
EOEditingContext'faultForRawRow method. (Note that this faulting behavior does not occur in Java
Client.)

See also: fetchesRawRowssetFetchesRawRowsetRawRowKeyPaths

refreshesRefetchedObjects
public booleamefreshesRefetchedObjecis

()Returndrue if existing objects are overwritten with fetched values when they’'ve been updated or
changed. Returrfalseif existing objects aren’t touched when their data is refetched (the fetched data is
simply discarded). The defaultfeise Note that this setting does not affect relationships

See also: setRefreshesRefetchedObjects

Classes: EOFetchSpecification

requiresAllQualifierBindingVariables
public booleanmequiresAllQualifierBindingVariables ()

Returngrue to indicate that a missing binding will cause an exception to be raised during variable
substitution. The default valuefeslse, which says to prune any nodes for which there are no bindings.

See also: setRequiresAllQualifierBindingVariables

setEntityName
public voidsetEntityName(java.lang.StringentityNamé

Sets the name of the root entity to be fetcheshtilyName

See also: isDeep entityName

setFetchesRawRows
public voidsetFetchesRawRow®ooleanfetchRawRows

Sets the behavior for fetching raw rows. If sdtoe, the behavior is the same asetRawRowKeyPaths
were called with an empty array. If sefatse the behavior is as $etRawRowKeyPathsvere called with
a nil argument.

See also: fetchesRawRowssetRawRowKeyPathsrawRowKeyPaths

setFetchLimit
public voidsetFetchLimit(int fetchLimi)

Sets the fetch limit value which indicates the maximum number of objects to fetch. Depending on the value
of promptsAfterFetchLimit, the EODatabaseContext will either stop fetching objects when this limit is
reached or it will ask the editing context's message handler to prompt the user as to whether or not it should
continue fetching. Use 0 (zero) to indicate no fetch limit. The default is 0.

See also: fetchLimit

setHints
public voidsetHints(NSDictionaryhints)

Sets the receiver’s hintslhints Any object that uses an EOFetchSpecification can define its own hints that
it uses to alter or optimize fetch operations. For example, EODatabaseContext uses a hint identified by the
key CustomQueryExpressionHintKey. EODatabaseContext is the only class in Enterprise Objects

111

112

Framework that defines fetch specification hints. For information about EODatabaseContext’s hints, see the
EODatabaseContext class specification.

See also: hints

setlsDeep

public voidsetisDeegboolearnflag)Controls whether a fetch should include sub-entities of the receiver's
entity. If flagis true, sub-entities are also fetchedfldg is false they aren’t. EOFetchSpecifications are
deep by default.

For example, if you have a Person entity /class /table with two sub-entities and subclasses, Employee and
Customer, fetching Persons deeply also fetches all Employees and Customers matching the qualifier, while
fetching Persons shallowly fetches only Persons matching the qualifier.

See also: isDeep

setLocksObjects
public voidsetLocksObjectgbooleanflag)

Controls whether a fetch should result in the selected objects being locked in the data repdksitpisy. If
true it should, iffalseit shouldn’t. The default iglse

See also: locksObjects

setPrefetchingRelationshipKeyPaths
public voidsetPrefetchingRelationshipKeyPath@NSArray prefetchingRelationshipKeyPadhs

Sets an array of relationship key paths that should be prefetched along with the main fetch. For example, if
fetching from the Movie entity, you might specify paths of the form (@"directors”, @"roles.talent",
@"plotSummary").

See also: prefetchingRelationshipKeyPaths

setPromptsAfterFetchLimit
public voidsetPromptsAfterFetchLimit (booleanpromptsAfterFetchLim)t

Sets whether to prompt user after the fetch limit has been reached. Detdsé is

See also: promptsAfterFetchLimit

Classes: EOFetchSpecification

setQualifier
public voidsetQualifier(EOQualifierqualifier)
Sets the receiver’s qualifier tpalifier.

See also: qualifier

setRawRowKeyPaths
public voidsetRawRowKeyPathgNSArray rawRowKeyPaths

Sets an array of attribute key paths that should be fetched as raw data and returned as an array of dictionaries
(instead of the normal result of full objects). The raw fetch can increase speed, but forgoes most of the
benefits of full Enterprise Objects. The default value is nil, indicating that full objects will be returned from

the fetch. An empty array may be used to indicate that the fetch should query the entity named by the fetch
specification using the methattributesToFetch. As long as the primary key attributes are included in the

raw attributes, the raw row may be used to generate a fault for the corresponding object using
EOEditingContext'faultForRawRow method. (Note that this faulting behavior does not occur in Java
Client.)

See also: fetchesRawRowsrawRowKeyPaths setFetchesRawRows

setRefreshesRefetchedObjects
public voidsetRefreshesRefetchedObjedfisooleanflag)

Controls whether existing objects are overwritten with fetched values when they have been updated or
changed. Iflagistrue, they are; iflagis false they aren't (the fetched data is simply discarded). The
default isfalse

For example, suppose that you fetch an employee object and then refetch it, without changing the employee
between fetches. In this case, you want to refresh the employee when you refetch it, because another
application might have updated the object since your first fetch. To keep your employee in sync with the
employee data in the external repository, you'd need to replace the employee’s outdated values with the new
ones. On the other hand, if you were to fetch the employee, change it, and then refetch it, you would not
want to refresh the employee. If you to refreshed it—whether or not another application had changed the
employee—you would lose the changes that you had made to the object.

You can get finer-grain control on an EODatabaseContext’s refreshing behavior in Yellow Box than you can
with an EOFetchSpecification by using the delegate method
databaseContextShouldUpdateCurrentSnapshot-or more information see the EODatabaseContext
class specification and EODatabaseContext.Delegate interface specification.

See also: refreshesRefetchedObjects

113

114

setRequiresAllQualifierBindingVariables
public voidsetRequiresAllQualifierBindingVariables(boolearallVariablesRequirell

Sets the behavior when a missing binding is encountered during variable substitution. If
allVariablesRequireds true, then a missing binding will cause an exception to be raised during variable
substitution. The default valuefesise, which says to prune any nodes for which there are no bindings.

See also: fetchSpecificationWithQualifierBindings, requiresAllQualifierBindingVariables

setSortOrderings
public voidsetSortOrderinggNSArraysortOrdering3

Sets the receiver’s array of EOSortOrderingsoidOrderings When a fetch is performed with the receiver,
the results are sorted by applying each EOSortOrdering in the array.

See also: sortedArrayUsingKeyOrderArray (EOSortOrdering),
sortArrayUsingKeyOrderArray (EOSortOrdering)sortOrderings

setUsesDistinct
public voidsetUsesDistinc{boolearflag)

Controls whether duplicate objects or records are removed after fetcHiagistrue they’re removed; if
flag is false they aren’t. EOFetchSpecifications by default don’t use distinct.

See also: usesDistinct

sortOrderings
public NSArraysortOrderings()

See also: Returns the receiver’s array of EOSortOrderings. When a fetch is performed with the receiver,
the results are sorted by applying each EOSortOrdering in the
arraysortedArrayUsingKeyOrderArray (EOSortOrdering),
sortArrayUsingKeyOrderArray (EOSortOrdering)setSortOrderings

usesDistinct
public boolearusesDistinct

(Returngrue if duplicate objects or records are removed after fetclfétgg if they aren't.
EOFetchSpecifications by default don't use distinct.

See also: setUsesDistinct

Classes: EOGenericRecord

EOGenericRecord

Inherits From: EOCustomObject : Object(Java Client)
NSObject (Yellow Box)

Implements: EOEnterpriseObject
EOKeyValueCoding (EOEnterpriseObject)
EOKeyValueCodingAdditions (EOEnterpriseObiject)
EORelationshipManipulation (EOEnterpriseObject)
EOValidation (EOEnterpriseObject)
EOFaulting (EOEnterpriseObject)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOGenericRecord is a generic enterprise object class that can be used in place of custom classes when you
don’t need custom behavior. It implements the EOEnterpriseObject interface to provide the basic enterprise
object behavior. An EOGenericRecord object has an EOClassDescription that provides metadata about the
generic record, including the name of the entity that the generic record represents and the names of the
record’s attributes and relationships. A generic record stores its properties in a dictionary using its attribute
and relationship names as keys.

In the typical case of applications that access a relational database, the access layer's modeling objects are
an important part of how generic records map to database rows: If an EOModel doesn’t have a custom
enterprise object class defined for a particular entity, an EODatabaseChannel using that model creates
EOGenericRecords when fetching objects for that entity from the database server. During this process, the
EODatabaseChannel also sets each generic record’s class description to an EOEntityClassDescription,
providing the link to the record’s associated modeling objects. (EOModel, EODatabaseChannel, and
EOEntityClassDescription are defined in EOAccess.)

Creating an Instance of EOGenericRecord

The best way to create an instance of EOGenericRecord is using the EOClassDescription method
createlnstanceWithEditingContext as follows:

115

EOEnterpriseObject newEO;
String entityName; /I Assume this exists.

ClassDescription description =
ClassDescription.classDescriptionForEntityName(entityName);
newEO = description.createlnstanceWithEditingContext(null, null);

createlnstanceWithEditingContextis preferable to using the constructor because the same code works if
you later use a custom enterprise object class instead of EOGenericRecord. You can get an

EOClassDescription for an entity name as shown above. Alternatively, you can get an EOClassDescription
for a destination key of an existing enterprise object as follows:

EOEnterpriseObject newEO;

EOEnterpriseObject existingeO; // Assume this exists.

String relationshipName; /I Assume this exists.
ClassDescription sourceDesc = existingEO.classDescription();
ClassDescription desc =
sourceDesc.classDescriptionForDestinationKey(relationshipName);

newEO = desc.createlnstanceWithEditingContext(null, null);

The technique in this example is useful for inserting a new destination object into an existing enterprise
object—for creating a new Movie object to add to a Studio’s array of Movies, for example.

Constructors

116

EOGenericRecord

public EOGenericRecord EOEditingContexanEditingContext
EOCIlassDescriptioaClassDescriptionEOGIloballDgloballD)

Creates a new EOGenericRecord. The new EOGenericRecord gets its metada@Gldssiescription
You should passull for anEditingContexandgloballD, because the arguments are optional:
EOGenericRecord’s implementation does nothing with them. Throws an excepiitiassDescriptioris
null.

You shouldn’t use these constructors to create new EOGenericRecords. Rather, use EOClassDescription’s

createlnstanceWithEditingContext method. See the class description for more information.

Classes: EOGenericRecord

Instance Methods

storedValueForKey
public abstract java.lang.ObjestbredValueForKey(java.lang.Stringey)

Overrides the default implementation to simply invekiieForKey.

See also: storedValueForKey (EOKeyValueCoding)

takeStoredValueForKey

public abstract voithkeStoredValueForKey
java.lang.Objectalug
java.lang.Strindey)

Overrides the default implementation to simply invedesValueForKey.

See also: takeStoredValueForKey (EOKeyValueCoding)

takeValueForKey

public voidtakeValueForKey(
java.lang.Objectalug
java.lang.Strindey)

Invokes the receiveriwillChange method, and sets the value for the property identifidaebto value If
valueis null, this method removes the receiver’s dictionary entrkégr(EOGenericRecord overrides the
default implementation.) Keyis not one of the receiver’s attribute or relationship names,
EOGenericRecord’s implementation does not indodeedle TakeValueForUnboundKey Instead,
EOGenericRecord’s implementation does nothing.

valueForKey

public java.lang.ObjectalueForKey(java.lang.Strindey)
Returns the value for the property identifiedkey (EOGenericRecord overrides the default
implementation.) Ikeyis not one of the receiver’s attribute or relationship names, EOGenericRecord’s

implementation does not invokendleQueryWithUnboundKey. Instead, EOGenericRecord’s
implementation simply returrmaull. This method callsvillRead.

117

118

Classes: EOGloballD

EOGlIoballD

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Implements: java.lang.Cloneable (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

An EOGIloballD is a compact, universal identifier for a persistent object, forming the basis for uniquing in
Enterprise Objects Framework. An EOGloballD uniquely identifies the same object or record both between
EOEditingContexts in a single application and in multiple applications (as in distributed systems).
EOGloballD is an abstract class, declaring only the methods needed for identification. A concrete subclass
must define appropriate storage for identifying values (such as primary keys), as well as an initialization or
creation method to build IDs. See the EOKeyGloballD class specification for an example of a concrete ID
class.

Temporary ldentifiers

EOEditingContexts and other object stores support the insertion of new objects without established IDs,
creating temporary IDs that get replaced with permanent ones as soon as the new objects are saved to their
persistent stores. The temporary IDs are instances of the EOTemporaryGloballD class.

When an EOObjectStore saves these newly inserted objects, it must replace the temporary IDs with
persistent ones. When it does this, it must post an GloballDChangedNotification announcing the change so
that observers can update their accounts of which objects are identified by which global IDs. The
notification’suserinfo dictionary contains a mapping from the temporary IDs (the keys) to their permanent
replacements (the values).

Constants

The string constant, GloballDChangedNotification, defines the name of EOGIloballD’s single notification.
For more information, see the section “Notifications” below.

119

Interfaces Implemented

java.lang.Cloneable (Java Client only)

Instance Methods

isTemporary
public boolearisTemporary()

Returndfalse See the class description for more information.

Notifications
GloballDChangedNotification

Posted whenever EOTemporaryGloballDs are replaced by permanent EOGloballDs. The notification

contains:
Notification Object null
Userinfo A mapping from the temporary IDs (keys) to permanent IDs (values)

120

Classes: EOKeyComparisonQualifier

EOKeyComparisonQualifier

Inherits From: EOQualifier

Implements: EOQualifierEvaluation
NSCoding (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOKeyComparisonQualifier is a subclass of EOQualifier that compares a named property of an object with

a named value of another object. For example, to return all of the employees whose salaries are greater than
those of their managers, you might use an expression such as “salary > manager.salary”, where “salary” is
theleft keyand “manager.salary” is thight key The “left key” is the property of the first object that's being
compared to a property in a second object; the property in the second object is the “right key.” Both the left
key and the right key might be key paths. You can use EOKeyComparisonQualifier to compare properties
of two different objects or to compare two properties of the same object.

EOKeyComparisonQualifier implements the EOQualifierEvaluation interface, which defines the method
evaluateWithObject for in-memory evaluation. When an EOKeyComparisonQualifier object receives an
evaluateWithObject message, it evaluates the given object to determine if it satisfies the qualifier criteria.

In addition to performing in-memory filtering, EOKeyComparisonQualifier can be used to generate SQL.
When it's used for this purpose, the key should be a valid property name of the root entity for the qualifier
(or a valid key path).

Interfaces Implemented

EOQualifierEvaluation
evaluateWithObject

NSCoding (Java Client only)
classForCoder
encodeWithCoder

121

Constructors

EOKeyComparisonQualifier

public EOKeyComparisonQualifier(java.lang.StrindeftKey NSSelectoselector
java.lang.StringightKey)

Creates and returns a new EOKeyComparisonQualifier object that compares the properties named by
leftKeyandrightKey, using the operator methsdlector

* QualifierOperatorEqual

* QualifierOperatorNotEqual

* QualifierOperatorLessThan

» QualifierOperatorGreaterThan

« QualifierOperatorLessThanOrEqualTo

* QualifierOperatorGreaterThanOrEqualTo
* QualifierOperatorContains

* QualifierOperatorLike

» QualifierOperatorCaselnsensitiveLike

Enterprise Objects Framework supports SQL generation for these methods only. You can generate SQL
using the SQLExpression static mettsoiStringForKeyComparisonQualifier.

For example, the following excerpt creates an EOKeyComparisonQualiiethat has the left key
“lastName”, the operator method EOQualifierOperatorEqual, and the right key “member.lastName”. Once
constructed, the qualifigual is used to filter an in-memory array. The code excerpt returns an array of
Guest objects whodastNameproperties have the same value addabtNameproperty of the guest’s
sponsoring member (this example is based on the Rentals sample database).

NSArray guests; /* Assume this exists */

EOKeyComparisonQualifier qual = new EOKeyComparisonQualifier("lastName”,
EOQualifier.QualifierOperatorEqual,
"member.lastName");

return EOQualifier.filteredArrayWithQualifier(guests, qual);

Instance Methods

122

evaluateWithObject

EOQualifierEvaluation interface
public boolearevaluateWithObject(java.lang.Objecbbjec)

Returngrue if the objectobjectsatisfies the qualifiefalse otherwise. When an

EOKeyComparisonQualifier object receiveseamaluateWithObject message, it evaluatebjectto

determine if it meets the qualifier criteria. This method can throw one of several possible exceptions if an
error occurs. If your application allows users to construct arbitrary qualifiers (such as through a user

Classes: EOKeyComparisonQualifier

interface), you may want to write code to catch any exceptions and properly respond to errors (for example,
by displaying a panel saying that the user typed a poorly formed qualifier).

leftkey
public java.lang.StringeftKey()

Returns the receiver’s left key

rightKey
public java.lang.StringightKey ()

Returns the receiver’s right key.

selector
public NSSelectoselectol)

Returns the receiver’s selector.

123

124

Classes: EOKeyGloballD

EOKeyGloballD

Inherits From: EOGlIoballD : Object (Java Client)
EOGIoballD : NSObject (Yellow Box)

Implements: com.apple.client.foundation.NSCoding (Java Client only)
java.lang.Cloneable (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

EOKeyGloballD is a concrete subclass of EOGloballD whose instances represent persistent IDs based on
EOModel information: an entity and the primary key values for the object being identified. When creating
an EOKeyGloballD, the key values must be supplied following alphabetical order for their attribute names.
EOKeyGloballD defines thglobalIDWithEntityName for creating instances, but it's much more

convenient to create instances from fetched rows using EOEgfityallIDForRow method. (EOEntity

and EOModel are defined in EOAccess.) Note that you don’t use a constructor to create EOKeyGloballDs.

Interfaces Implemented

NSCoding
classForCoder (Java Client only)
encodeWithCoder (Java Client only)

Method Types

Creating instances
globallDWithEntityName

Getting the entity name
entityName

Getting the key values
keyValues
keyCount
— keyValuesArray

125

Comparison
equals

Static Methods

globallIDWithEntityName

public static EOKeyGloball@loballDWithEntityName (
java.lang.StringentityName
NSArraykeyValuep

Returns an EOKeyGloballD based emtityNameandkeyValues
EOKeyGloballDs are more conveniently created using EOEngitgtsallDForRow method (EOAccess).

Instance Methods

126

entityName
public java.lang.StringntityName()

Returns the name of the entity governing the object identified by the receiver. This is used by
EODatabaseContexts (EOAccess) to identify an EOEntity (EOAccess) in methods such as
faultForGloballD .

equals
public boolearequalgqjava.lang.ObjecanObjec}

Returngrue if the receiver andnObjectshare the same entity name and key vafaése if they don't.

See also: entityName, keyValues

hashcode
public inthashCod€)

Returns an integer that can be used as a table address in a hash table structure. If two objects are equal (as
determined byyqualg, they must have the same hash value.

Classes: EOKeyGloballD

keyCount
public intkeyCount()

Returns the number of key values in the receiver.

keyValues
public java.lang.ObjectkeyValuey)

Returns the receiver’s key values.

keyValuesArray
public NSArraykeyValuesArray()

Returns the receiver’s key values as an NSArray.

127

128

Classes: EOKeyValueQualifier

EOKeyValueQualifier

Inherits From: EOQualifier

Implements: EOQualifierEvaluation
NSCoding (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOKeyValueQualifier is a subclass of EOQualifier that compares a named property of an object with a
supplied value, for example, “salary > 1500”. EOKeyValueQualifier implements the
EOQualifierEvaluation interface, which defines the methaluateWithObject for in-memory

evaluation. When an EOKeyValueQualifier object receivesvaluateWithObject message, it evaluates
the given object to determine if it satisfies the qualifier criteria.

In addition to performing in-memory filtering, EOKeyValueQualifier can be used to generate SQL. When
it's used for this purpose, the key should be a valid property name of the root entity for the qualifier (or a
valid key path).

Interfaces Implemented

EOQualifierEvaluation
evaluateWithObject

NSCoding (Java Client only)
classForCoder
encodeWithCoder

Constructors

EOKeyValueQualifier
public EOKeyValueQualifier (java.lang.Strindey NSSelectoselector java.lang.Objectalug
Creates and returns a new EOKeyValueQualifier.

If key selector andvalueare provided, the EOKeyValueQualifier compares valuekdigtio valueusing
the operator methosklector The possible values feelectorare as follows:

129

* QualifierOperatorEqual

» QualifierOperatorNotEqual

¢ QualifierOperatorLessThan

* QualifierOperatorGreaterThan

* QualifierOperatorLessThanOrEqualTo

* QualifierOperatorGreaterThanOrEqualTo
» QualifierOperatorContains

¢ QualifierOperatorLike

* QualifierOperatorCaselnsensitiveLike

Enterprise Objects Framework supports SQL generation for these methods only. You can generate SQL
using the SQLEXxpression static methsiStringForKeyValueQualifier.

For example, the following excerpt creates an EOKeyValueQualiiedrthat has the key “name”, the
operator method QualifierOperatorEqual, and the value “Smith”. Once constructed, the qualifier
used to filter an in-memory array.

NSArray employees /* Assume this exists */

EOKeyValueQualifier qual = new EOKeyValueQualifier("name”,
EOQualifier.QualifierOperatorEqual, "Smith");

return EOQualifier filteredArrayWithQualifier(employees, qual);

Instance Methods

130

evaluateWithObject

EOQualifierEvaluation interface
public boolearevaluateWithObject(java.lang.ObjecanObjec}

Returngrue if the objectanObijectsatisfies the qualifiefalse otherwise. When an EOKeyValueQualifier
object receives thevaluateWithObject message, it evaluataaObjectto determine if it meets the

qualifier criteria. This method can throw one of several possible exceptions if an error occurs. If your
application allows users to construct arbitrary qualifiers (such as through a user interface), you may want
to write code to catch any exceptions and properly respond to errors (for example, by displaying a panel
saying that the user typed a poorly formed qualifier).

key
public java.lang.Stringey()

Returns the receiver’s key.

Classes: EOKeyValueQualifier

selector
public NSSelectoselectoK)

Returns the receiver’'s selector.

value
public java.lang.Objeatalue()

Returns the receiver’s value.

131

132

Classes: EONotQualifier

EONotQualifier

Inherits From: EOQualifier

Implements: EOQualifierEvaluation
NSCoding (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EONotQualifier is a subclass of EOQualifier that contains a single qualifier. When an EONotQualifier
object is evaluated, it returns the inverse of the result obtained by evaluating the qualifier it contains.

EONotQualifier implements the EOQualifierEvaluation interface, which defines the method
evaluateWithObject for in-memory evaluation. When an EONotQualifier object receives an
evaluateWithObject message, it evaluates the given object to determine if it satisfies the qualifier criteria.

Interfaces Implemented

EOQualifierEvaluation
evaluateWithObject

NSCoding (Java Client only)
classForCoder
encodeWithCoder

Constructors
EONotQualifier
public com.apple.yellow.eocontrBIONotQualifier (EOQualifieraQualifier)
Creates and returns a new EONotQualifier

If aQualifieris specified, it is used as the qualifier. For example, the following code excerpt constructs a
qualifier,baseQual and uses it to initialize an EONotQualifieegQual The EONotQualifienegQualis

then used to filter an in-memory array. The code excerpt returns an array of Guest objedstitae
properties dmot have the same value as tastNameproperty of the guest’s sponsoring member (this

133

example is based on the Rentals sample database). In other words, the EONotQrg(ifietinverts the
effects ofbaseQual

NSArray guests /* Assume this exists */
EOQualifier baseQual;
EONotQualifier negQual;

baseQual = EOQuialifier.qualifierWithQualifierFormat("lastName = member.lastName",
null);

negQual = new EONotQualifier(baseQual);

return EOQualifier filteredArrayWithQualifier(guests, negQual);

Instance Methods

evaluateWithObject

EOQualifierEvaluation interface
public boolearevaluateWithObject(java.lang.ObjecanObjec}

Returngrue if the objectanObjectsatisfies the EONotQualifigglse otherwise. This method can throw

one of several possible exceptions if an error occurs. If your application allows users to construct arbitrary
qualifiers (such as through a user interface), you may want to write code to catch any exceptions and
respond to errors (for example, by displaying a panel saying that the user typed a poorly formed qualifier).

qualifier
EOQualifierqualifier ()

Returns the receiver’s qualifier

134

Classes: EONullValue

EONullVValue

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Implements: NSCoding (Java Client only)
EOSortOrderingComparison (Java Client only)
java.lang.Cloneable (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

The EONullValue class defines a unique object used to represent null values in collection objects (which
don't allownull values). For example, NSDictionaries fetched by an EOAdaptorChannel contain an
EONullValue instance for such values. EONullValue is automatically translatedl o enterprise

objects, however, so most applications should rarely need to account for this class.

EONullValue has exactly one instance, returned byititi®alue class method. t You can safely cache this
instance and use the == operator to test for the presence of a null value:

EONullValue myNull = EONullValue.nullValue();
¥
if (value == myNull) {
[* .
}

Interfaces Implemented

NSCoding (Java Client only)
— classForCoder
— encodeWithCoder

EOSortOrderingComparison
compareAscending
compareCaselnsensitiveAscending
compareCaselnsensitiveDescending
compareDescending

java.lang.Cloneable (Java Client only)

135

Constructors

EONullvalue
public EONullValue()

Returns the unique instance of EONullValue.

Static Methods

nullValue
public static EONullValuaullValue()

Returns the unique instance of EONullValue.

136

Classes: EOObjectStore

EOODbjectStore

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOODbjectStore is the abstract class that defines the API for an “intelligent” repository of objects, the control
layer’s object storage abstraction. An object store is responsible for constructing and registering objects,
servicing object faults, and saving changes made to objects. For more information on the object storage
abstraction, see “Object Storage Abstraction” in the introduction to the EOControl Framework.

EOEditingContext is the principal EOObjectStore subclass and is used for managing objects in memory—
in fact, the primary purpose of the EOObjectStore class is to define an API for servicing editing contexts,
not to define a completely general API. Other subclasses of EOObjectStore are:

» EOCooperatingObjectStore
» EOODbjectStoreCoordinator
« EODatabaseContext (EOAccess)

A subclass of EOObjectStore must implement all of its methods. The default implementations simply throw
exceptions.

Constants

EOODbjectStore defines the following string constants for the names of the natifications it posts:
* InvalidatedAllObjectsInStoreNotification
* ObjectsChangedinStoreNotification

See the Noaotifications section for more information on the notifications.

Method Types

Initializing objects
initializeObject

137

Getting objects
objectsWithFetchSpecification
objectsForSourceGloballD

Getting faults
faultForGloballD
arrayFaultWithSourceGloballD
refaultObject
faultForRawRow (Yellow Box only)

Locking objects
lockObjectWithGloballD
isObjectLockedWithGloballD

Saving changes to objects
saveChangesInEditingContext

Invalidating objects
invalidateAllObjects
invalidateObjectsWithGloballDs

Interacting with the server (Java Client only)
invokeRemoteMethod (Java Client only)

Instance Methods

arrayFaultWithSourceGloballD

public abstract NSArragrrayFaultWithSourceGloballD (
EOGloballDgloballD,
java.lang.StringelationshipNameg
EOEditingContexanEditingContext

Implemented by subclasses to return the destination objects for a to-many relationship, whether as real
instances or as faults (empty enterprise objeglspallD identifies the source object for the relationship
(which doesn’t necessarily exist in memory yet), tationshipNamés the name of the relationship. The
object identified bygloballD and the destination objects for the relationship all beloagEalitingContext

If you implement this method to return a fault, you must define an EOFaultHandler subclass that stores
globallD andrelationshipNamegusing them to fetch the objects in a latbfectsForSourceGloballD
message and that turns the fault into an array containing those objects. See the EOFaultHandler class
specification for more information on faults.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

See also: faultForGloballD

138

Classes: EOObjectStore

faultForGloballD

public abstract EOEnterpriseObjdatiltForGloballD (
EOGlIoballDgloballD,
EOEditingContexanEditingContext

If the receiver imnEditingContexaind the object associated wifloballD is already registered in
anEditingContextthis method returns that object. Otherwise it creates a to-one fault, registers it in
anEditingContextand returns the fault. This method is always directed fiestEdlitingContextwhich
forwards the message to its parent object store if needed to create a fault.

If you implement this method to return a fault (an empty enterprise object), you must define an
EOFaultHandler subclass that stogésballD, uses it to fetch the object’s data, and initializes the object
with EOObjectStore’fitializeObject. See the EOFaultHandler class specification for more information
on faults.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

See also: arrayFaultWithSourceGloballD , recordObject (EOEditingContext)

faultForRawRow

public abstract EOEnterpriseObjéatiltForRawRow (
java.lang.Objectow,
java.lang.StringentityName
EOEditingContexanEOEditingContext

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returns a fault for the enterprise object correspondingaowhich is a dictionary of values containing at
least the primary key of the corresponding enterprise object. This is especially useful if you have fetched
raw rows and now want a unique enterprise object.

initializeObject
public abstract voidhitializeObject (
EOEnterpriseObje@nObject
EOGloballDgloballD,
EOEditingContexanEditingContext

Implemented by subclasses to@eObjecks properties, as obtained fgioballD. This method is typically
invoked aftemanObjecthas been created using EOClassDescriptmaatelnstanceWithEditingContext

139

or using EOGenericRecord’s or EOCustomObject’s constructors. This method is also invoked after a fault
has been fired.

See also: awakeFrominsertionInEditingContext (EnterpriseObject),
awakeFromFetchlnEditingContext (EnterpriseObject)

invalidateAllObjects
public abstract voidhvalidateAllObjects()

Discards the values of all objects held by the receiver and turns them into faults (empty enterprise objects).
This causes all locks to be dropped and any transaction to be rolled back. The next time any object is
accessed, its data is fetched anew. Any child object stores are also notified that the objects are no longer
valid. See the EOEditingContext class specification for more information on how this method works in
concrete subclasses.

This method should also post an InvalidatedAllObjectsinStoreNotification.

See also: invalidateObjectsWithGloballDs, refaultObject

invalidateObjectsWithGloballDs
public abstract voithvalidateObjectsWithGloballDs (NSArraygloballDs)

Signals that the objects identified by the EOGloballDgaballDs should no longer be considered valid

and that they should be turned into faults (empty enterprise objects). This causes data for each object to be
refetched the next time it's accessed. Any child object stores are also notified that the objects are no longer
valid.

See also: invalidateAllObjects, refaultObject

invokeRemoteMethod

public abstract voithvokeRemoteMethod
EOEditingContexanEditingContext
EOGIoballDreceiverGIDQ
java.lang.StringnethodName
java.lang.Object[prgument}¥

This method is available for Java Client applications only; there is no Yellow Box equivalent.

InvokesmethodNamen the enterprise object identified tegeiverGIDin anEditingContextiysing

argumentsTo pass an enterprise object as an argument, use its global ID. This method has the side effect
of saving all the changes from the editing context all the way down to the editing context in the server
session.

140

Classes: EOObjectStore

isObjectLockedWithGloballD

public abstract booleaaObjectLockedWithGloballD (
EOGloballDgloballD,
EOEditingContexanEditingContext

Returngrue if the object identified bgloballD is locked falseif it isn’t. See the EODatabaseContext
(EOACccess) class specification for more information on how this method works in concrete subclasses.

lockObjectWithGloballD

public abstract voitbckObjectWithGloballD (
EOGloballDgloballD,
EOEditingContexanEditingContext

Locks the object identified lgloballD. See the EODatabaseContext (EOAccess) class specification for
more information on how this method works in concrete subclasses.

objectsForSourceGloballD

public abstract NSArragbjectsForSourceGloballY
EOGloballDgloballD,
java.lang.StringelationshipNamg
EOEditingContexanEditingContext

Returns the destination objects for a to-many relationship. This method is used by an array fault previously
constructed usingrrayFaultWithSourceGloballD . globallD identifies the source object for the

relationship (which doesn’t necessarily exist in memory yet) relationshipNameés the name of the
relationship. The object identified pjoballD and the destination objects for the relationship all belong to
anEditingContext

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

objectsWithFetchSpecification

public abstract NSArragbjectsWithFetchSpecificatior{
EOFetchSpecificatioaFetchSpecificatign
EOEditingContexanEditingContext

Fetches objects from an external store according to the criteria specifetdi8pecificatioand returns

them in an array for inclusion enEditingContextlf one of these objects is already present in memory,

this method doesn't overwrite its values with the new values from the database. Throws an exception if an
error occurs.

141

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

refaultObject

public abstract voidefaultObject(
EOEnterpriseObjeanObject
EOGloballDgloballD,
EOEditingContexanEditingContext

TurnsanObjectinto a fault (an empty enterprise object), identifiedjlmpallD in anEditingContext

Objects that have been inserted but not saved, or that have been deleted, shouldn’t be refaulted. When using
the Yellow Box, use this method with caution since refaulting an object doesn’t remove the object snapshot
from the undo stack.

saveChangesInEditingContext
public abstract voidaveChangesInEditingContextt OEditingContexanEditingContext

Saves any changesanEditingContexto the receiver’s repository. SeridsertedObjects

deletedObjects andupdatedObjectsmessages tanEditingContexand applies the changes to the

receiver's data repository as appropriate. For example, EODatabaseContext (EOAccess) implements this
method to send operations to an EOAdaptor (EOAccess) for making the changes in a database.

Notifications

142

InvalidatedAllObjectsInStoreNotification

Posted whenever an EOObjectStore receivesvatidateAllObjects message. The notification contains:

Notification Object The EOObjectStore that received the invalidateAllObjects message.

Userinfo None

ObjectsChangedInStoreNotification

Posted whenever an EOObjectStore observes changes to its objects. The notification contains:

Notification Object The EOObjectStore that observed the change.

Classes: EOObjectStore

Userinfo
Key Value
An NSArray of EOGloballDs for objects whose properties have changed. A
updated receiving EOEditingContext typically responds by refaulting its corresponding
objects.
inserted An NSArray of EOGloballDs for objects that have been inserted into the
EOObjectStore.
An NSArray of EOGloballDs for objects that have been deleted from the
deleted .
EOODbjectStore.
invalidated

An NSArray of EOGloballDs for objects that have been turned into faults.

143

144

Classes: EOObjectStoreCoordinator

EOODbjectStoreCoordinator

Inherits From: EOODbjectStore : NSObject

Package: com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOODbjectStoreCoordinator is a part of the control layer’s object storage abstraction. An
EOObjectStoreCoordinator object acts as a single object store by directing one or more
EOCooperatingObjectStores in managing objects from distinct data repositories. It is for use in WebObjects
and Yellow Box applications only; there is no equivalent class for Java Client applications. For more general
information on the object storage abstraction, see “Object Storage Abstraction” in the introduction to the
EOControl Framework.

EOODbjectStore Methods
EOODbjectStoreCoordinator overrides the following EOObjectStore methods:

« objectsWithFetchSpecification
» objectsForSourceGloballD

« faultForGloballD
 arrayFaultWithSourceGloballD
« refaultObject

» saveChangesInEditingContext
« invalidateAllObjects

* invalidateObjectsWithGloballDs

With the exception ofaveChangesinEditingContext EOObjectStoreCoordinator’'s implementation of
these methods simply forwards the message to an EOCooperatingObjectStore or stores. The message
invalidateAllObijects is forwarded to all of a coordinator’s cooperating stores. The rest of the messages are
forwarded to the appropriate store based on which store respoads the messagesvnsGloballD,
ownsObject andhandlesFetchSpecificatio(which message is used depends on the context). The
EOODbjectStore methods listed above aren’t documented in this class specification (except for
saveChangeslInEditingContexXt—for descriptions of them, see the EOObjectStore and
EODatabaseContext (EOAccess) class specifications

For the methodaveChangesinEditingContextthe coordinator guides its cooperating stores through a
multi-pass save protocol in which each cooperating store saves its own changes and forwards remaining
changes to the other of the coordinator’s stores. For example, ifécasiChangesinEditingContext

method one cooperating store notices the removal of an object from an “owning” relationship but that object
belongs to another cooperating store, it informs the other store by sending the coordinator a

145

forwardUpdateForObject message. For a more details, see the method description for
saveChangesInEditingContext

Although it manages objects from multiple repositories, EOObjectStoreCoordinator doesn’t absolutely
guarantee consistent updates when saving changes across object stores. If your application requires
guaranteed distributed transactions, you can either provide your own solution by creating a subclass of
EOODbjectStoreCoordinator that integrates with a TP monitor, use a database server with built-in distributed
transaction support, or design your application to write to only one object store per save operation (though
it may read from multiple object stores). For more discussion of this subject, see the method description for
saveChangesInEditingContext

Constants

The following string constants define the names of EOObjectStoreCoordinator’s notifications:

» CooperatingObjectStoreWasAdded
« CooperatingObjectStoreWasRemoved
« CooperatingObjectStoreNeeded

For more information, see the section “Notifications” below.

Method Types

Constructors
EOODbjectStoreCoordinator

Setting the default coordinator
setDefaultCoordinator
defaultCoordinator

Managing EOCooperatingObjectStores
addCooperatingObjectStore
removeCooperatingObjectStore
cooperatingObjectStores

Saving changes
saveChangesInEditingContext

Communication between EOCooperatingObjectStores
forwardUpdateForObject
valuesForKeys

146

Classes: EOObjectStoreCoordinator

Returning EOCooperatingObjectStores
objectStoreForGloballD
objectStoreForFetchSpecification
objectStoreForObject

Getting the userinfo dictionary
userinfo
setUserInfo

Constructors

EOODbjectStoreCoordinator
public EOObjectStoreCoordinator()

Creates and returns an EOObjectStoreCoordinator.

Static Methods

defaultCoordinator
public static java.lang.ObjedefaultCoordinator ()

Returns a shared instance of EOObjectStoreCoordinator.

setDefaultCoordinator
public static voidsetDefaultCoordinator(EOObjectStoreCoordinataoordinatol)

Sets a shared instance EOObjectStoreCoordinator.

Instance Methods

addCooperatingObjectStore
public voidaddCooperatingObjectStord EOCooperatingObjectStostore

Addsstoreto the list of EOCooperatingObjectStores that need to be queried and notified about changes to
enterprise objects. Posts the notification CooperatingObjectStoreWasAdded.

See also: removeCooperatingObjectStore cooperatingObjectStores

147

148

cooperatingObjectStores
public NSArraycooperatingObjectStoreg)

Returns the receiver’s EOCooperatingObjectStores.

See also: addCooperatingObjectStore removeCooperatingObjectStore

forwardUpdateForObject

public voidforwardUpdateForObject (
java.lang.Objecbbject
NSDictionarychange$

Tells the receiver to forward a message from an EOCooperatingObjectStore to another store, informing it
thatchangeseed to be made tibject For example, inserting an object in a relationship property of one
EOCooperatingObjectStore might require changing a foreign key property in an object owned by another
EOCooperatingObjectStore.

This method first locates the EOCooperatingObjectStore that's responsible for apbiniggsand then
it sends the store the messageordUpdateForObject.

objectStoreForFetchSpecification

public EOCooperatingObjectStoobjectStoreForFetchSpecificatiolf
EOFetchSpecificatiofetchSpecification

Returns the EOCooperatingObjectStore responsible for fetching objecfetsitSpecificationrReturns
null if no EOCooperatingObjectStore can be found that respomel$o handlesFetchSpecification

See also: 0ObjectStoreForGloballD, objectStoreForObject

objectStoreForGloballD
public EOCooperatingObjectStoobjectStoreForGlobalID(EOGIloballDgloballD)

Returns the EOCooperatingObjectStore for the object identifigibbglID. Returnsnull if no
EOCooperatingObjectStore can be found that respmaego ownsGloballD.

See also: ObjectStoreForFetchSpecificationobjectStoreForObject

Classes: EOObjectStoreCoordinator

objectStoreForObject
public EOCooperatingObjectStoobjectStoreForObject(java.lang.Objecbbjec)

Returns the EOCooperatingObjectStore that avimect Returnsnull if no EOCooperatingObjectStore
can be found that respontlge to ownsObject

See also: objectStoreForFetchSpecificationobjectStoreForGloballD

removeCooperatingObjectStore
public voidremoveCooperatingObjectStoréEOCooperatingObjectStostore

Removesstorefrom the list of EOCooperatingObjectStores that need to be queried and notified about
changes to enterprise objects. Posts the notification CooperatingObjectStoreWasRemoved.

See also: addCooperatingObjectStore cooperatingObjectStores

saveChangesInEditingContext
public voidsaveChangesInEditingContextt OEditingContexanEditingContext

Overrides the EOObjectStore implementation to save the changes raa@iglitingContextThis message

is sent by an EOEditingContext to an EOObjectStoreCoordinator to commit changes. When an
EOODbjectStoreCoordinator receives this message, it guides its EOCooperatingObjectStores through a
multi-pass save protocol in which each EOCooperatingObjectStore saves its own changes and forwards
remaining changes to other EOCooperatingObjectStores. When this method is invoked, the following
sequence of events occurs:

1. The receiver sends each of its EOCooperatingObjectStores the nppegageForSaveWithCoordinator,
which informs them that a multi-pass save operation is beginning. When the EOCooperatingObjectStore is an
EODatabaseContext (EOAccess), it takes this opportunity to generate primary keys for any new objects in the
EOEditingContext.

2. The receiver sends each of its EOCooperatingObjectStores the nressag€hangesinEditingContext,
which prompts them to examine the changed objects in the editing context, record operations that need to be
performed, and notify the receiver of any changes that need to be forwarded to other stores. For example, if in
its recordChangesInEditingContextmethod ond=OCooperatingObjectStoretices the removal of an
object from an “owning” relationship but that object belongs to an&kHCooperatingObjectStarie
informs the other store by sending the coordinafona@ardUpdateForObject message.

3. The receiver sends each of its EOCooperatingObjectStores the npeséargeChanges This tells the stores
to transmit their changes to their underlying databases. Whé&QooperatingObjectStoigan
EODatabaseContext, it responds to this message by taking the EODatabaseOperations (EOAccess) that were
constructed in the previous step, constructing EOAdaptorOperations (EOAccess) from them, and giving the
EOAdaptorOperations to an available EOAdaptorChannel(EOAccess) for execution.

149

150

4. If performChangesfails for any of the EOCooperatingObjectStores, all stores are sent the message
rollbackChanges

5. If performChangessucceeds for all EOCooperatingObjectStores, the receiver sends them the message
commitChanges which has the effect of telling the adaptor to commit the changes.

6. If commitChangesfails for a particulaEOCooperatingObjectStariatstoreand all subsequent ones are
sent the messagellbackChanges However, the stores that have already committed their changes do not roll
back. In other words, the coordinator doesn'’t perform the two-phase commit protocol necessary to guarantee
consistent distributed update.

This method raises an exception if an error occurs.

setUserInfo
public voidsetUserInfaNSDictionarydictionary)

Sets thalictionary of auxiliary data, which your application can use for whatever it needs.

See also: userinfo

userinfo
public NSDictionaryuserinfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: setUserInfo

valuesForKeys

public NSDictionarywaluesForKeyg
NSArraykeys
java.lang.Objecbbjec)

Communicates with the appropriate EOCooperatingObjectStore to get the values idenkiégsfdry

object so that it can then forward them on to another EOCooperatingObjectStore.
EOCooperatingObjectStoresin hold values for an object that augment the properties in the object. For
instance, an EODatabaseContext (EOAccess) stores foreign key information for the objects it owns. These
foreign keys may well not be defined as properties of the object. Other EODatabaseContexts can find out
the object’s foreign keys by sending the EODatabaseContext that owns the ohjaes&orkKeys
messagé¢through the coordinator).

Classes: EOObjectStoreCoordinator

Notifications
The following notifications are declared and posted by EOObjectStoreCoordinator.
CooperatingObjectStoreWasAdded

When an EOObjectStoreCoordinator receiveadaCooperatingObjectStoremessage and adds an
EOCooperatingObjectStore to its list, it posts CooperatingObjectStoreWasAdded to notify observers.

Notification Object The EOODbjectStoreCoordinator

userinfo Dictionary None

CooperatingObjectStoreWasRemoved

When an EOObjectStoreCoordinator receivesnaoveCooperatingObjectStoremessage and removes
an EOCooperatingObjectStore from its list, it posts CooperatingObjectStoreWasRemoved to notify

observers.
Notification Object The EOODbjectStoreCoordinator
userlnfo Dictionary None

CooperatingObjectStoreNeeded

Posted when an EOObjectStoreCoordinator receives a request that it can’t service with any of its currently
registeredeOCooperatingObjectStoreshe observer can call back to the coordinator to register an
appropriate EOCooperatingObjectStore based on the information in the userinfo dictionary.

Notification Object The EOODbjectStoreCoordinator
userinfo Dictionary One of the following key-value pairs
Key Value

globallD globallD for the operation
fetchSpecification fetch specification for the operation
object object for the operation

151

152

Classes: EOObserverCenter

EOObserverCenter

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

EOObserverCenter is the central player in EOControl's change tracking mechanism. EOObserverCenter
records observers and the objects they observe, and it distributes notifications when the observable objects
change. For an overview of the change tracking mechanism, see “Tracking Enterprise Objects
ChangesEOControl provides four classes and an interface that form an efficient, specialized mechanism for
tracking changes to enterprise objects and for managing the notification of those changes to interested
observers. EOObserverCenter is the central manager of change notification. It records observers and the
objects they observe, and it distributes notifications when the observable objects change. Observers
implement the EOObserving interface, which defines one method, objectWillChange. Observable objects
(generally enterprise objects) invoke their willChange method before altering their state, which causes all
observers to receive an objectWillChange message.” in the introduction to the EOControl Framework.

You don’t ever create instances of EOObserverCenter. Instead, the class itself acts as the central manager
of change notification, registering observers and notifying them of changes. The EOObserverCenter APl is
provided entirely in static methods.

Registering an Observer

Objects that directly observe others must implement the EOObserving interface, which consists of the
single methoabjectWillChange. To register an object as an observer, invoke EOObserverCenter’s
addObserverwith the observer and the object to be observed. Once this is done, any time the observed
object invokes itsvillChange method, the observer is sentajectWillChange message informing it of

the pending change. You can also register an observer to be notified when any object changes using
addOmniscientObserver This can be useful in certain situations, but as it’s very costly to deal out frequent
change notifications, you should use omniscient observers sparingly. To unregister either kind of observer,
simply use the correspondingmove...method.

Change Notification

Objects that are about to change invei#Change, a method defined by the EOEnterpriseObject
interface. The implementations of this method invoke EOObserverCenter’s
notifyObserversObjectWillChange, which sends aabjectWillChange message to all observers

153

registered for the object that's changing, as well as to any omniscient observers.
notifyObserversObjectWillChange optimizes the process by suppressing redurmlgattWillChange

messages when the same object invekkShange several times in a row (as often happens when multiple
properties are changed). Change notification is immediate, and takdsgitaethe object’s state changes.

If you need to compare the object’s state before and after the change, you must arrange to examine the new
state at the end of the run loop.

You can suppress change notification when necessary, usisgpiessObserverNotificationand
enableObserverNotificationmethods. While notification is suppressed, neither regular nor omniscient
observers are informed of changes. These methods nest, so you caslipakesObserverNotification
multiple times, and notification isn’t re-enabled until a matching numbemaisle ObserverNotification
message have been sent.

Method Types
Registering and unregistering observers
addObserver
removeObserver

addOmniscientObserver
removeOmniscientObserver

Notifying observers of change
notifyObserversObjectWillChange

Getting observers
observersForObject
observerForObiject

Suppressing change notification
suppressObserverNotification
enableObserverNotification
observerNotificationSuppressCount

Static Methods

addObserver

public static voicaddObserver(
EOObservinganObserver
java.lang.ObjecanObjec)

RecordsanObserveto be notified with anbjectWillChange message wheanObjectchanges.

See also: removeObserver

154

Classes: EOObserverCenter

addOmniscientObserver
public static voidaddOmniscientObserve(EOObservinganObserver

RecordsanObserveto be notified with anbjectWillChange message when any object changes. This can
cause significant performance degradation, and so should be used with care. The ominiscient observer must
be prepared to receive thbjectWillChange message with aull argument.

See also: addObserver, removeOmniscientObserver

enableObserverNoaotification
public static voidcenableObserverNaotification)

Counters a priosuppressObserverNotificationmessage. When no such messages remain in effect, the
notifyObserversObjectWillChange method is re-enabled. Throws an exception if not paired with a prior
suppressObserverNotificationmessage.

notifyObserversObjectWillChange
public static voidhotifyObserversObjectWillChange(java.lang.ObjecanObjec)

Unless change notification is suppressed, sendbjantWillChange to all observers registered for
anObijectwith that object as the argument, and sends that message to all omniscient observers as well. If
invoked several times in a row with the same object, only the first invocation has any effect, since
subsequent change notifications are redundant.

If an observer wants to ensure that it receives naotification the next time the last object to change changes
again, it should use the statement:

EOObserverCenter.notifyObserversObjectWillChange(null);

An observable object (typically an enterprise object) invokes this method fraifi@eange
implementation, so you should never have to invoke this method directly.

See also: suppressObserverNotificationaddObserver, addOmniscientObserver

observerForObject

public static EOObservingbserverForObject(
java.lang.ObjecanObject
java.lang.ClasaClasg

Returns an observer fanObjectthat’s a kind ofaClass If more than one observer afiObjectis a kind
of aClass the specific observer returned is undetermined. You cambsseversForObjectinstead to get
all observers and examine their class membership.

155

observerNotificationSuppressCount
public static intobserverNotificationSuppressCoun()

Returns the number slippressObserverNotificationmessages in effect.

See also: enableObserverNotification

observersForObject
public static NSArraypbserversForObjec{java.lang.ObjecanObjec}

Returns all observers ahObject

removeObserver

public static voidemoveObservef
EOObservinganObserver
java.lang.ObjecanObjec)

RemovesanObservelas an observer ahObject

See also: addObserver

removeOmniscientObserver
public static voidemoveOmniscientObserve(EOObservinganObserver

UnregistersaanObserveias an observer of all objects.

See also: removeObserver addOmniscientObserver

suppressObserverNotification
public static voidsuppressObserverNaotificatior)

Disables thanotifyObserversObjectWillChange method, so that no change notifications are sent. This
method can be invoked multiple timesiableObserverNotificationmust then be invoked an equal
number of times to re-enable change notification.

156

Classes: EOObserverProxy

EOODbserverProxy

Inherits From: EODelayedObserver : Object (Java Client)
EODelayedObserver : NSObiject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

The EOObserverProxy class is a part of EOControl’'s change tracking mechanism. It provides a means for
objects that can’t inherit from EODelayedObserver to hasutkgectChangedmessages. For an overview

of the general change tracking mechanism, see “Tracking Enterprise Objects ChangesEOControl provides
four classes and an interface that form an efficient, specialized mechanism for tracking changes to
enterprise objects and for managing the notification of those changes to interested observers.
EOObserverCenter is the central manager of change notification. It records observers and the objects they
observe, and it distributes notifications when the observable objects change. Observers implement the
EOObserving interface, which defines one method, objectWillChange. Observable objects (generally
enterprise objects) invoke their willChange method before altering their state, which causes all observers to
receive an objectWillChange message.” in the introduction to the EOControl Framework.

An EOObserverProxy has a target object on whose behalf it observes objects. EOObserverProxy overrides
subjectChangedto send an action message to its target object, allowing the target to act as though it had
receivedsubjectChangeddirectly from an EODelayedObserverQueue. See the EOObserverCenter and
EODelayedObserverQueue class specifications for more information.

Constructors

EOObserverProxy

public EOObserverProxy(
java.lang.ObjecanObject
NSSelectoanAction
int priority)

Creates a new EOObserverProxy to seméictionto anObjectupon receiving aubjectChangedmessage.
anActionshould be a selector for a typical action method, taking one java.util.Object argument and
returningvoid. priority indicates when the receiver is sent this message from EODelayedObserverQueue’s
notifyObserversUpToPriority method.

157

158

Classes: EOOrQualifier

EOOrQualifier

Inherits From: EOQualifier

Implements: EOQualifierEvaluation
NSCoding (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOOrQualifier is a subclass of EOQualifier that contains multiple qualifiers. EOOrQualifier implements the
EOQualifierEvaluation interface, which defines the methaduateWithObject for in-memory

evaluation. When an EOOrQualifier object receives\atuate WithObject message, it evaluates each of

its qualifiers until one of them returns true. If one of its qualifiers returns true, the EOOrQualifier object
returns true immediately. If all of its qualifiers return false, the EOOrQualifier object returns false.

Interfaces Implemented

EOQualifierEvaluation
evaluateWithObject

NSCoding (Java Client only)
classForCoder
encodeWithCoder

Constructors

EOOrQualifier
public EOOrQualifier (NSArray qualifiery

Creates and returns a new EOOrQualifier.

If qualifiersis specified, the EOOrQualifier is initialized with the qualifierqualifiers

159

Instance Methods

160

evaluateWithObject:

EOQualifierEvaluation interface
public boolearevaluateWithObject(java.lang.ObjecanObjec}

Returndrue if anObjectsatisfies the qualifiefalse otherwise. When an EOOrQualifier object receives an
evaluateWithObject message, it evaluates each of its qualifiers until one of them raugns any of its
qualifiers returnsrue, the EOOrQualifier object returtisie immediately. If all of its qualifiers return

false, the EOOrQualifier object returfeslse This method can throw one of several possible exceptions if
an error occurs. If your application allows users to construct arbitrary qualifiers (such as through a user
interface), you may want to write code to catch any exceptions and respond to errors (for example, by
displaying a panel saying that the user typed a poorly formed qualifier).

qualifiers
NSArrayqualifiers()
Returns the receiver’s qualifiers.

Classes: EOQualifier

EOQualifier

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

EOQualifier is an abstract class for objects that hold information used to restrict selections on objects or

database rows according to specified criteria. With the exception of EOSQLQualifier (EOAccess), qualifiers
aren’t based on SQL and they don't rely upon an EOModel (EOAccess). Thus, the same qualifier can be
used both to perform in-memory searches and to fetch from the database.

You never instantiate an instance of EOQualifier. Rather, you use one of its subclasses—one of the
following or your own custom EOQualifier subclass:

Subclass Purpose

Compares the named property of an object to a supplied value, for example,

EOKeyValueQualifier “weight > 150"

EOKeyComparisonQuali Compares the named property of one object with the named property of
fier another, for example “name = wife.name”.

Contains multiple qualifiers, which it conjoins. For example, “name = 'Fred’ AND

EOANdQualifier age < 20",

Contains multiple qualifiers, which it disjoins. For example, “name = 'Fred’ OR

EOOrQuialifier name = 'Ethel”.

Contains a single qualifier, which it negates. For example, “NOT (name =

EONotQualifier ‘Fred)’.

Contains unstructured text that can be transformed into a SQL expression.
EOSQLQualifier provides a way to create SQL expressions with any arbitrary

EOSQLQuialifier SQL. Because EOSQLQuialifiers can't be evaluated against objects in memory
and because they contain database and SQL-specific content, you should use
EOQualifier wherever possible.

161

The interface EOQualifierEvaluation defines how qualifiers are evaluated in memory. To evaluate qualifiers
in a database, methods in EOSQLEXxpression (EOAccess) and EOEntity (EOAccess) are used to generate
SQL for qualifiers. Note that all of the SQL generation functionality is contained in the access layer.

For more information on using EOQualifiers, see the sections

» Creating a Qualifier

» Constructing Format Strings
¢ Checking for NULL Values

» Using Wildcards and the like Operator

» Using Selectors in Qualifier Expressions

» Using Different Data Types in Format Strings
» Using EOQualifier's Subclasses

¢ Creating Subclasses

Constants

The following NSSelector constants are defined to represent the different qualifier operators:

QualifierOperatorEqual

QualifierOperatorLessThanOrEqualTo

QualifierOperatorNotEqual

QualifierOperatorGreaterThanOrEqualTo

QualifierOperatorLessThan

QualifierOperatorContains

QualifierOperatorGreaterThan

QualifierOperatorLike

QualifierOperatorCaselnsensitiveLike

Method Types

Constructors

Creating a qualifier

162

EOQualifier

qualifierwithQualifierFormat (Yellow Box only)
gualifierToMatchAllValues
gualifierToMatchAnyValue
qualifierwithBindings

Classes: EOQualifier

In-memory filtering
filteredArrayWithQualifier
filterArrayWithQualifier

Converting strings and operators
operatorSelectorForString
stringForOperatorSelector

Get EOQualifier operators
allQualifierOperators
relationalQualifierOperators

Accessing a qualifier's keys
bindingKeys
keyPathForBindingKey
Validating a qualifier's keys
validateKeysWithRootClassDescription

Constructors

EOQualifier

public com.apple.yellow.eocontrol. EOQualifie(java.lang.StringjualifierFormat
next.util.ImmutableVectoargument®

Creates and returns a new EOQualifier object. Parses the formagstilifgerFormatand the specified
argumentsinitializes the new EOQualifier with them, and returns that EOQualifier. Conversion
specifications (occurrences of %@ ymalifierFormatare replaced using the value objectarguments

For more information on hogualifierFormatandargumentsare used, see the method description for the
static methodjualifierwithQualifierFormat .

You would never use this constructor to create an EOQualifier. Instead, you'd use the static method
qualifierWithQualifierFormat to create an instance of one of the qualifier subclasses.

A subclass of EOQualifier should write a constructor with the $ammatStringandargumentsarguments
that invokes the EOQualifier implementation.

163

Static Methods

164

allQualifierOperators
public static NSArrayallQualifierOperators ()

Returns an NSArray containing all of the operators supported by EOQualifier: =, 1=, <, <=, >, >=, “like”,
and “caselnsensitiveLike”.

See also: relationalQualifierOperators

filterArrayWithQualifier
public static voidilterArrayWithQualifier (NSMutableArrayobjects EOQualifieraQualifier)

Filtersobjectsin place so that it contains only objects matclaQualifier.

See also: filteredArrayWithQualifier

filteredArrayWithQualifier
public static NSArrayilteredArrayWithQualifier (NSArrayobjects EOQualifieraQualifien

Returns a new array that contains only the objects &lojectsmatchingaQualifier.

See also: filterArrayWithQualifier

operatorSelectorForString
public static NSSelectaperatorSelectorForString(java.lang.Strin@String

Returns an operator selector based on the sifétigng This method is used in parsing a qualifier. For
example, the following statement returns the selector QualifierOperatorNotEqual.

Selector selector = Qualifier.operatorSelectorForString("!=");
The possible values afStringare =, ==, I=, <, >, <=, >=, “like”, and “caselnsensitiveLike”.
You'd probably only use this method if you were writing your own qualifier parser.

See also: stringForOperatorSelector

Classes: EOQualifier

qualifierToMatchAllValues
public static EOQualifiequalifierToMatchAllValues (NSDictionaryaNSDictionary

This method is only available in Yellow Box; there is no equivalent in Java Client. Takes a dictionary of
search criteria, from which the method creates EOKeyValueQualifiers (one for each dictionary entry). The
method ANDs these qualifiers together, and returns the resulting EOAndQualifier.

See also:

qualifierToMatchAnyValue
public static EOQualifiequalifierToMatchAnyValue (NSDictionaryaNSDictionary

This method is only available in Yellow Box; there is no equivalent in Java Client. Takes a dictionary of
search criteria, from which the method creates EOKeyValueQualifiers (one for each dictionary entry). The
method ORs these qualifiers together, and returns the resulting EOOrQualifier.

See also:

qualifierWithQualifierFormat

public static EOQualifiequalifierWithQualifierFormat (java.lang.StringjualifierFormat
NSArrayargumenty

This method is only available in Yellow Box; there is no equivalent in Java Client. Parses the format string
qualifierFormatand the specifiedrgumentsuses them to create an EOQuialifier, and returns the
EOQualifier. Conversion specifications (occurrences of %@UatifierFormatare replaced using the

value objects imrguments

Based on the content qtialifierFormat this method generates a tree of the basic qualifier types. For
example, the format string “firstName ='Joe’ AND department = 'Facilities™ generates an EOAndQualifier
that contains two “sub” EOKeyValueQualifiers. The following code excerpt shows a typical way to use the
qualifierWithQualifierFormat method. The excerpt constructs an EOFetchSpecification, which includes
an entity name and a qualifier. It then applies the EOFetchSpecification to the EODisplayGroup’s data
source and tells the EODisplayGroup to fetch.

165

166

EODisplayGroup displayGroup; /* Assume this exists.*/
EOQualifier qualifier;

EOFetchSpecification fetchSpec;
EODatabaseDataSource dataSource;

dataSource = (EODatabaseDataSource)displayGroup.dataSource();
qualifier = EOQualifier.qualifierwWithQualifierFormat(“"cardType = 'Visa™);
fetchSpec = new EOFetchSpecification("Member", qualifier, null), null);

dataSource.setFetchSpecification(fetchSpec);
displayGroup.fetch();

qualifierWithQualifierFormat performs no verification to ensure that keys referred to by the format string
qualifierFormatexist. It throws an exceptiongiualifierFormatcontains any syntax errors.

relationalQualifierOperators
public static NSArrayelationalQualifierOperators ()

Returns an NSArray containing all of the relational operators supported by EOQualifier: =, I=, <, <=, >, and
>=, In other words, returns all of the EOQualifier operators except for the ones that work exclusively on
strings: “like” and “caselnsensitivelLike”.

See also: allQualifierOperators

stringForOperatorSelector
public static java.lang.StringtringForOperatorSelector(NSSelectoaSelectoy

Returns a string representation of the selexB®mlectorFor example, the following statement returns the
string “1=":

java.lang.String operator =
EOQualifier.stringForOperatorSelector(EOQualifier.QualifierOperatorNotEqual);

The possible values faelectorare as follows:

* QualifierOperatorEqual

» QualifierOperatorNotEqual

» QualifierOperatorLessThan

¢ QualifierOperatorGreaterThan

* QualifierOperatorLessThanOrEqualTo

* QualifierOperatorGreaterThanOrEqualTo
* QualifierOperatorContains

» QualifierOperatorLike

« QualifierOperatorCaselnsensitiveLike

Classes: EOQualifier

You'd probably only use this method if you were writing your own parser.

See also: operatorSelectorForString

Instance Methods

bindingKeys
NSArraybindingKeys()
This method is only available in Yellow Box; there is no equivalent in Java Client. Returns an array of

strings which are the names of the known variables. Multiple occurrences of the same variable will only
appear once in this list.

keyPathForBindingKey
public java.lang.StringeyPathForBindingKey(java.lang.Strindey)

This method is only available in Yellow Box; there is no equivalent in Java Client. Returns a string which
is the "left-hand-side" of the variable in the qualifier. e.g. If you have a qualifier "salary > $amount and
manager.lastName = $manager”, then calling bindingKeys would return the array ("amount”, "manager").
Calling keyPathForBindingKey would return salary for amount, and manager.lastname for manager.

qualifierWithBindings
public abstract EOQualifigualifierWithBindings (NSDictionarybindings boolearrequiresAl)

This method is only available in Yellow Box; there is no equivalent in Java Client. Returns a new qualifier
substituting all variables with values foundaimdings If requiresAllis YES, any variable not found in
bindingswill throw a QualifierVariableSubstitutionExceptionréfjuiresAllis NO, missing variable values

will cause the qualifier node to be pruned from the tree.

validateKeysWithRootClassDescription

public abstract java.lang.Throwable
validateKeysWithRootClassDescriptiofEOClassDescriptionlassDesE

This method is only available in Yellow Box; there is no equivalent in Java Client. Validates that the receiver
contains keys and key paths that belong to or originate dlassDescThis method returns an exception

if an unknown key is found, otherwise it retumal to indicate that the keys contained by the qualifier are
valid.

167

168

Classes: EOQualifier

EOQualifier

Creating a Qualifier

As described above, there are several EOQualifier subclasses, each of which represents a different semantic.
However, in most cases you simplycreate a qualifier using the EOQualifier static method
qualifierWithQualifierFormat: , as follows:

EOQuialifier qual = Qualifier.qualifierWithQualifierFormat("lastName = 'Smith™,
null);

The qualifier or group of qualifiers that result from such a statement is based on the contents of the format
string you provide. For example, giving the format string “lastName = 'Smith™ as an argument to

qualifierWithQualifierFormat returns an EOKeyValueQualifier object. But you don’t normally need to
be concerned with this level of detail.

The format strings you use to create a qualifier can be compound logical expressions, such as “firstName =
'Fred’ AND age < 20". When you create a qualifier, compound logical expressions are translated into a tree
of EOQualifier nodes. Logical operators such as AND and OR become EOAndQualifiers and
EOOrQualifiers, respectively. These qualifiers conjoin (AND) or disjoin (OR) a group of sub-qualifiers.
This is illustrated in Figure 4, in which the format string “salary > 300 AND firstName = 'Angela’ AND
manager.name = 'Fred™ has been translated into a tree of qualifiers.

EQAndCualitier
EQKeyValuelalifier [EQKayValuelhalifier ' EQKeayValuelalifier
key salary key firstName key manager.name
selector = selector = selector =
value 3000 value “Angela" value “Fred®

Figure 4 EOQualifier Tree fosalary > 300 AND firstName = “Angela” AND manager.name = “Fred”

Note: ThequalifierWithQualifierFormat method can’t be used to create an instance of EOSQLQualifier.
This is because EOSQLQualifier uses a non-structured syntax. It also requires an entity. To create an
instance of EOSQLQualifier, you'd use a statement such as the following:

EOQualifier myQual = new EOSQLQualifier(myEntity, myFormatString);

169

170

Constructing Format Strings

As described above, you typically create a qualifier from a format string by using
qualifierWithQualifierFormat . This method takes as an argument a format string somewhat like that used
with the standard @rintf() function. The format string can embed strings, numbers, and other objects
using the conversion specification %@. The second argunaumlierWithQualifierFormat is an array

that contains the value or result to substitute for any %@ conversion specifications. This allows qualifiers
to be built dynamically. The following table lists the conversion specifications you can use in a format string
and their corresponding data types.

Conversion Specification Expected Value or Result

It can either be an object whose toString (or description) method
returns a key (in other words, a java.lang.String), or a value object

0,

»@ such as an java.lang.String, java.lang.Number, java.util. CalendarDate,
and so on.

%% Results in a literal % character.

Note: If you use an unrecognized character in a conversion specification (for example, %x), an exception
is thrown.

For example, suppose you have an Employee entity with the progentieB, firstName, lastName

salary, anddepartment (representing a to-one relationship to the employee’s department), and a
Department entity with properties deptID, and name. You could construct simple qualifier strings like the
following:

lastName = 'Smith’
salary > 2500
department.name = 'Personnel’

The following examples build qualifiers similar to the qualifier strings described above, but take the specific
values from already-fetched enterprise objects:

Classes: EOQualifier

Employee anEmployee; // Assume this exists.
Department aDept; /I Assume this exists.
EOQualifier myQuialifier;

MutableVector args = new MutableVector();

args.addElement("lastName");
args.addElement(anEmployee.lastName());
myQualifier = EOQualifier.qualifierWithQualifierFormat("%@ = %@", args);

args.removeAllElements();

args.addElement("salary");

args.addElement(anEmployee.salary());

myQualifier = EOQualifier.qualifierwWithQualifierFormat("%@ > %f", args);

args.removeAllElements();

args.addElement("department.name");

args.addElement(aDept.name());

myQualifier = EOQualifier.qualifierWithQualifierFormat("%@ = %@", args);

The enterprise objects here implement methods for directly accessing the given atlaisiName and
salary for Employee objects, anthme for Department objects.

Note: Unlike a string literal, the %@ conversion specification is never surrounded by single quotes:

// For a literal string value such as Smith, you use single quotes.
EOQualifier.qualifierWithQualifierFormat(“lastName = 'Smith™, null);

Il For the conversion specification %@, you don’t use quotes
args.removeAllElements();

args.addElement("Jones");
EOQuialifier.qualifierWithQualifierFormat(“lastName = %@", args);

Typically format strings include only two data types: strings and numbers. Single-quoted or double-quoted
strings correspond to java.lang.String objects in the argument array, non-quoted numbers correspond to
java.lang.Numbers, and non-quoted strings are keys. You can get around this limitation by performing
explicit casting, as described in the section “Using Different Data Types in Format Strings”.

The operators you can use in constructing qualifiers are =, ==, I=, <, >, <=, >=, “like”, and
“caselnsensitiveLike”. Thiéke andcaselnsensitiveLikeoperators can be used with wildcards to perform
pattern matching, as described in “Using Wildcards and the like Operator,” below.

Checking for NULL Values

To construct a qualifier that fetches rows matching NULLvalues, use either of the approaches shown in the
following example:

171

NSMutableArrayargs = new NSMutableArray();

/l Approach 1
EOQuialifier.qualifierWithQualifierFormat("bonus = nil", null);

I/l Approach 2
args.addElement(NullValue.nullValue());
EOQuialifier.qualifierWithQualifierFormat("bonus = %@", args);

Using Wildcards and the like Operator

When you use thike or caselnsensitiveLikeoperator in a qualifier expression, you can use the wildcard
characters * and ? to perform pattern matching, for example:

"lastName like "Jo*™

matches Jones, Johnson, Jolsen, Josephs, and so on.

The ? character just matches a single character, for example:
"lastName like 'Jone?™

matches Jones.

The asterisk character (*) is only interpreted as a wildcard in expressions thatlikse dhe
caselnsensitiveLikeoperator. For example, in the following statement, the character * is treated as a literal
value, not as a wildcard:

"lastName = 'Jo*™"

Using Selectors in Qualifier Expressions

The format strings you use to initialize a qualifier can include methods. The parser recognizes an unquoted
string followed by a colon (such asyMethod:) as a method. For example:

pointl isinside: area
firstName isAnagramOfString: "Computer"

Methods specified in a qualifier are parsed and applied only in memory; that is, they can’t be used in to
qualify fetches in a database.

Using Different Data Types in Format Strings

As stated in the section “Constructing Format Strings”, format strings normally include only two data types:
strings and numbers. To get around this limitation, you can perform explicit casting.

For example, NSCalendarDate and NSDecimalNumber are two classes that are likely to be used in
qualifiers. You can construct format strings for objects of these classes as follows:

172

Classes: EOQualifier

"dateReleased < (NSCalendarDate)'1990-01-26 00:00:00 +0000™
"salary = (NSDecimalNumber)'15000.02"

When you use this approach, qualifiers are constructed by looking up the class and invoking a constructor
that takes a java.lang.String argument. Therefore, this technique only works for classes that have such a
constructor.

Note that to construct a date qualifier using a format string, you must use the default CalendarDate format,
which is %Y-%m-%d %H:%M:%S %z. This limitation doesn’t apply when you're working with
NSCalendarDate objects—you can just construct a qualifier in the usual way:

NSMutableArray args = new NSMutableArray();
args.addElement(new CalendarDate());
qual = EOQualifier.qualifierwithQualifierFormat("dateReleased > %@", args);

Using EOQuialifier's Subclasses

You rarely need to explicitly create an instance of EOAndQualifier, EOOrQualifier, or EONotQualifier.
However, you may want to create instances of EOKeyValueQualifier and EOKeyComparisionQualifier. The
primary advantage of this is that it lets you exercise more control over how the qualifier is constructed,
which is desirable in some cases.

If you want to explicitly create a qualifier subclass, you can do it using code such as the following excerpt,
which uses EOKeyValueQualifier to select all objects whose “isOut” key is equal to 1 (meaning true). In
the excerpt, the qualifier is used to filter an in-memory array.

/I Create the qualifier
EOQualifier qual = new KeyValueQualifier("isOut", Qualifier.QualifierOperatorEqual,
new Integer(1));

/I Filter an array and return it
return Qualifier.filteredVectorWithQualifier(allRentals(), qual);

filteredArrayWithQualifier is a method that returns an array containing objects from the provided array
that match the provided qualifier.

Creating Subclasses

A custom subclass of EOQualifier must implement the EOQualifierEvaluation interface if they are to be
evaluated in memory. <<Would they have to do something special to be translatable to SQL?>>

173

174

Classes: EOSortOrdering

EOSortOrdering

Inherits From: Object (Java Client)
NSObject (Yellow Box)

Implements: NSCoding (Java Client only)

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Class Description

An EOSortOrdering object specifies the way that a group of objects should be sorted, using a property key
and a method selector for comparing values of that property. EOSortOrderings are used both to generate
SQL when fetching rows from a database server, and to sort objects in memory. EOFetchSpecification
objects use an array of EOSortOrderings, which are applied in series to perform sorts by more than one

property.

Sorting with SQL

When an EOSortOrdering is used to fetch data from a relational database, it's rendered into an ORDER BY
clause for a SQL SELECT statement according to the concrete adaptor you're using. For more information,
see the class description for EOSQLEXxpression. The Framework predefines symbols for four comparison
selectors, listed in the table below. The table also shows an example of how the comparison selectors can
be mapped to SQL.

Defined Name SQL Expression
CompareAscending (key) asc
CompareDescending (key) desc
CompareCaselnsensitiveAscending upper(key) asc
CompareCaselnsensitiveDescending upper(key) desc

Using the mapping in the table above, the array of EOSortOrdenagsQOrdering) created in the
following code example:

175

176

EOSortOrdering lastNameOrdering =

EOSortOrdering.sortOrderingWithKey("lastName", EOSortOrdering.CompareAscending);
EOSortOrdering firstNameOrdering =

(EOSortOrdering.sortOrderingWithKey("firstName",
EOSortOrdering.CompareAscending);
NSMutableArray nameOrdering = new NSMutableArray();
nameOrdering.addObject(lastNameOrdering);
nameOrdering.addObiject(firstNameOrdering);

results in this ORDER BY clause:

order by (lastName) asc, (firstName) asc

In-Memory Sorting

The methodsortedArrayUsingKeyOrderArray andsortArrayUsingKeyOrderArray are used to sort

objects in memory. Given an array of objects and an array of EOSortOrderings,
sortedArrayUsingKeyOrderArray returns a new array of objects sorted according to the specified
EOSortOrderings. SimilarlgortArrayUsingKeyOrderArray sorts the provided array of objects in place.

This code fragment, for example, sorts an array of Employee objects in place, by last name, then first name
using the array of EOSortOrderings created above:

SortOrdering.sortVectorUsingKeyOrderVector(employees, nameOrdering);

Comparison Methods

The predefined comparison methods are:

Defined Name Method

CompareAscending compareAscending
CompareDescending compareDescending
CompareCaselnsensitiveAscending compareCaselnsensitiveAscending
CompareCaselnsensitiveDescending compareCaselnsensitiveDescending

The first two can be used with any value class; the second two with java.lang.String objects only. The sorting
methods extract property values using key-value coding and apply the selectors to the values. If you use
custom value classes, you should be sure to implement the appropriate comparison methods to avoid
exceptions when sorting objects.

Classes: EOSortOrdering

Interfaces Implemented

NSCoding (Java Client only)

encodeWithCoder
Method Types

Constructors

EOSortOrdering
Creating instances

sortOrderingWithKey
Examining a sort ordering

key

selector

In-memory sorting
sortedArrayUsingKeyOrderArray
sortArrayUsingKeyOrderArray

Constructors
EOSortOrdering
public EOSortOrdering (java.lang.Strinckey NSSelectoselecto)

Creates and returns a new EOSortOrdering objekeyiindselectorare provided, the new
EOSortOrdering is initialized with them.

See also: sortOrderingWithKey

Static Methods

sortArrayUsingKeyOrderArray

public static voidsortArrayUsingKeyOrderArray (NSMutableArrayobjects
NSArraysortOrdering$

Sortsobjectsin place according to the EOSortOrderingsantOrderings The objects are compared by
extracting the sort properties using the EnterpriseObject metiiodForKey and sending them
compare...messages. See the table in “Sorting with SQL” for a list of the compare methods.

See also: sortedArrayUsingKeyOrderArray

177

sortOrderingWithKey
public static EOSortOrderingprtOrderingWithKey (java.lang.Strindkey NSSelectoselecto)

Creates and returns an EOSortOrdering basdeyandselector

See also: “Constructors”

sortedArrayUsingKeyOrderArray
public static NSArraygortedArrayUsingKeyOrderArray (NSArrayobjects NSArraysortOrdering$
Creates and returns a new array by sominjgctsaccording to the SortOrderingssartOrderings The

objects are compared by extracting the sort properties using the added NSObjecvalaetgtadKey and
sending thencompare...messages. See the table in “Sorting with SQL” for a list of the compare methods.

Instance Methods

178

key
public java.lang.Stringey()

Returns the key by which the receiver orders items.

See also: selector

selector
public NSSelectoselectox)

Returns the method selector used to compare values when sorting.

See also: key

Classes: EOTemporaryGloballD

EOTemporaryGloballD

Inherits From: EOGlIoballD : NSObject
Implements: java.lang.Cloneable (Java Client only)
Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Class Description

An EOTemporaryGloballD object identifies a newly created enterprise object before it's saved to an

external store. When the object is saved, the temporary ID is converted to a permanent one, as described in
the EOGloballD class specification.

Constructors

EOTemporaryGloballD
public EOTemporaryGloballD ()

Creates and returns an EOTemporaryGloballD as a unique instance. The returned object contains a
byte string that's guaranteed to be unique network-wide. As a result, EOTemporaryGloballDs can be

safely passed between processes and machines while still preserving global uniqueness. The returned
byte string has the format:

< Sequence [2], ProcessID [2] , Time [4], IP Addr [4] >

Instance Methods

isTemporary
public booleansTemporary()

Returnstrue.

179

Classes:

EOClassDescription.ClassDelegate

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Interface Description

The EOClassDescription.ClassDelegate interface defines a method that the EOClassDescription class can
invoke in its delegate. Delegates are not required to provide an implementation for the method, and you
don’t have to use thiemplements keyword to specify that the object implements the ClassDelegate

interface. Instead, declare and implement the method if you need it, and use the EOClassDescription
methodsetClassDelegatenethod to assign your object as the class delegate. The EOClassDescription class
can determine if the delegate doesn’t implement the delegate method and only attempts to invoke it if it's
actually implemented.

Instance Methods

shouldPropagateDeleteForObject

public abstract booleashouldPropagateDeleteForObjedt
EOEnterpriseObje@nObject
EOEditingContexanEditingContext
java.lang.Strindey);

Invoked frompropagateDeleteForObiject If the class delegate returfadse, it preventsaanObjectin
anEditingContexfrom propagating deletion to the objects at the destinatikayoT his can be useful if

you have a large model and a small application that only deals with a subset of the model’s entities. In such
a case you might want to disable delete propagation to entities that will never be accessed. You should use
this method with caution, however—returnifadse and not propagating deletion can lead to dangling
references in your object graph.

Classes:

EOEditingContext.Delegate

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Interface Description

The EOEditingContext.Delegate interface defines methods that an EOEditingContext can invoke in its
delegate. Delegates are not required to provide implementations for all of the methods in the interface, and
you don’t have to use thmplementskeyword to specify that the object implements the Delegate interface.
Instead, declare and implement any subset of the methods declared in the interface that you need, and use
the EOEditingContext metha@tDelegatanethod to assign your object as the delegate. An editing context

can determine if the delegate doesn’t implement a delegate method and only attempts to invoke the methods
the delegate actually implements.

Method Types

Fetching objects
editingContextShouldFetchObjects

Invalidating objects
editingContextShouldInvalidateObject (Yellow Box only)

Saving changes
editingContextWillSaveChanges

Handling failures
editingContextShouldValidateChanges
editingContextShouldPresentException
editingContextShouldUndoUserActionsAfterFailure (Yellow Box

only)

Merging changes (Yellow Box only)
editingContextShouldMergeChangesForObject (Yellow Box only)
editingContextDidMergeChanges (Yellow Box only)

Instance Methods

editingContextDidMergeChanges
public abstract voigditingContextDidMergeChangesEOEditingContexanEditingContext

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Invoked once after a batch of objects has been updateEtitingContexs parent object store (in
response to a ObjectsChangedInStoreNotification). A delegate might implement this method to define
custom merging behavior, most likely in conjunction with
editingContextShouldMergeChangesForObijectlt is safe for this method to make changes to the objects
in the editing context.

editingContextShouldFetchObjects

public abstract NSArragditingContextShouldFetchObject$
EOEditingContexeditingContext
EOFetchSpecificatiofetchSpecification

Invoked fromobjectsWithFetchSpecification If the delegate has appropriate results cached it can return
them and the fetch will be bypassed. Returminly causes the fetch to be propagated to the parent object
store.

editingContextShouldinvalidateObject

public abstract booleagditingContextShouldinvalidateObject(
EOEditingContexanEOEditingContext
EOEnterpriseObje@nObject
EOGloballDanEOGIoballD

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Sent when anbjectidentified bygloballD has been explicitly invalidated. If the delegate rettalsg the
invalidation is refused. This allows the delegate to selectively override object invalidations.

See also: invalidateAllObjects, revert

editingContextShouldMergeChangesForObject

public abstract booleagditingContextShouldMergeChangesForObjedt
EOEditingContexanEditingContext
EOEnterpriseObjeatbjec)

This method is available for Yellow Box applications only; there is nho Java Client equivalent.

When an EOObjectsChangedinStoreNotification is receamgditingContexinvokes this method in its
delegate once for each of the objects that has both uncommitted changes and an update from the
EOODbjectStore. This method is invoked before any updates actually occur.

If this method returnsue, all of the uncommitted changes should be merged into the object after the update
is applied, in effect preserving the uncommitted changes (the default behavior). The delegate method
editingContextShouldinvalidateObject will not be sent for the object in question.

Classes:

If this method returnfalse, no uncommitted changes are applied. Thus, the object is updated to reflect the
values from the database exactly. This method should not make any changes to the object since it is about
to be invalidated.

If you want to provide custom merging behavior, you need to implement both this method and
editingContextDidMergeChanges You useeditingContextShouldMergeChangesForObjecto save
information about each changed object and retuento allow merging to continue. After the default
merging behavior occureditingContextDidMergeChangesis invoked, at which point you implement
your custom behavior.

editingContextShouldPresentException

Java Client:

public abstract booleagditingContextShouldPresentExceptiof
EOEditingContexanEditingContext
java.lang.Exceptioexception

Yellow Box:

public abstract booleagditingContextShouldPresentExceptiof
EOEditingContexanEditingContext
java.lang.Throwablexceptioi

Sent whenever an exception is caught by an EOEditingContext. If the delegatefadteresceptionis
ignored. Otherwise (if the delegate retumme, if the editing context doesn’t have a delegate, or if the
delegate doesn’t implement this methexyeptioris passed to the message handler for further processing,

See also: messageHandler

editingContextShouldUndoUserActionsAfterFailure

public abstract booleagditingContextShouldUndoUserActionsAfterFailure(
EOEditingContexanEditingContext

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Sent when a validation error occurs while processipgpeessRecentChangesiessage. If the delegate
returnsfalse, it disables the automatic undoing of user actions after validation has resulted in an error.

By default, if a user attempts to perform an action that results in a validation failure (such as deleting a
department object that has a delete rule stating that the department can’t be deleted if it contains
employees), the user’s action is immediately rolled back. However, if this delegate methodakseithe

user action is allowed to stand (though attempting to save the changes to the database without solving the
validation error will still result in a failure). Returnifgise gives the user an opportunity to correct the
validation problem so that the operation can proceed (for example, the user might delete all of the
department’s employees so that the department itself can be deleted).

editingContextShouldValidateChanges

public abstract booleagditingContextShouldValidateChangeé
EOEditingContexanEditingContext

Sent when an EOEditingContext receivesageChangesnessage. If the delegate retufase, changes
are saved without first performing validation. This method can be useful if the delegate wants to provide its
own validation mechanism.

editingContextWillSaveChanges
public abstract voi@ditingContextWillSaveChange$EOEditingContexeditingContext

Sent when an EOEditingContext receivesgeChangesnessage. The delegate can throw an exception to
abort the save operation.

Classes:

EOEditingContext.Editor

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Interface Description

The EOEditingContext.Editor interface defines methods for objects that act as higher-level editors of the
objects an EOEditingContext contains. An editing context sends messages to its editors to determine
whether they have any changes that need to be saved, and to allow them to flush pending changes before a
save (possibly throwing an exception to abort the save). See the EOEditingContext and EODisplayGroup
(EOInterface) class specifications for more information.

Editors are not required to provide implementations for all of the methods in the interface. When you write
an editor, you don't have to use thglementskeyword to specify that the object implements the Editors
interface. Instead, simply use the EOEditingContext megldlodEditor method to assign your object as

one of the EOEditingContext’s editors and then declare and implement any subset of the methods declared
in the Editors interface. An EOEditingContext can determine if the editor doesn’t implement a method and
only attempts to invoke the methods the editor actually implements.

Instance Methods

editingContextWillSaveChanges
public abstract voi@ditingContextWillSave Change$E OEditingContexanEditingContext

Invoked byanEditingContexin its saveChangesnethod, this method allows theceiver tdlush any
pending edits and, if necessary, prohibit a save operation. The receiver should validate and flush any
unprocessed edits it has, throwing an exception if it can’t do so to peeveditingContexfrom saving.

editorHasChangesForEditingContext
public abstract booleagditorHasChangesForEditingContex{(EOEditingContexanEditingContext

Invoked byanEditingContextthis method should retutrue if the receiver has any unapplied edits that
need to be savethlseif it doesn't.

Classes:

EOEnterpriseObject

Implemented By: EOCustomObject
EOGenericRecord

Implements: EOFaulting

EOKeyValueCoding (EOKeyValueCodingAdditions)
EOKeyValueCodingAdditions
EORelationshipManipulation

EOValidation

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Interface Description

The EOEnterpriseObiject interface identifies basic enterprise object behavior, defining methods for
supporting operations common to all enterprise objects. Among these are methods for initializing instances,
announcing changes, setting and retrieving property values, and performing validation of state. Some of
these methods are for enterprise objects to implement or override, and some are meant to be used as defined
by the Framework. Many methods are used internally by the Framework and rarely invoked by application
code.

Many of the functional areas are defined in smaller, more specialized interfaces and incorporated in the
overarching EOEnterpriseObiject interface:

« EOKeyValueCoding defines Enterprise Objects Framework’s main data transport mechanism, in which
the properties of an object are accessed indirectly by narkeyprather than directly through
invocation of an accessor method or as instance variables.

« EOKeyValueCodingAdditions defines extensions to the basic EOKeyValueCoding interface, giving
access to groups of properties and to properties across relationships.

« EORelationshipManipulation builds on the basic EOKeyValueCoding interface to allow you to modify
to-many relationship properties.

« EOValidation defines the way that enterprise objects validate their values.
« EOFaulting forms a general mechanism for postponing an object’s initialization until its actually needed.

The remaining methods are introduced in the EOEnterpriseObject interface itself and can be broken down
into three functional groups discussed in the following sections:

* Initialization
« Change Notification

* Object and Class Metadata Access
» Snapshots

You rarely need to implement the EOEnterpriseObject interface from scratch. The Framework provides
default implementations of the methods in EOCustomObject and EOGenericRecord. Use
EOGenericRecords to represent enterprise objects that don't require custom behavior, and create subclasses
of EOCustomObiject to represent enterprise objects that do. The section “Writing an Enterprise Object
Class” highlights the methods that you typically provide or override in a custom enterprise object class.

Interfaces Implemented

EOKeyValueCoding
handleQueryWithUnboundKey
handleTakeValueForUnboundKey
storedValueForKey
takeStoredValueForKey
takeValueForKey
unableToSetNullForKey
valueForKey

EOKeyValueCodingAdditions
takeValueForKeyPath
takeValuesFromDictionary
valueForKeyPath
valuesForKeys

EORelationshipManipulation
addObjectToBothSidesOfRelationshipWithKey
addObjectToPropertyWithKey
removeObjectFromBothSidesOfRelationshipWithKey
removeObjectFromPropertyWithKey

EOValidation
validateForDelete
validateForInsert
validateForSave
validateForUpdate
validateValueForKey

EOFaulting
clearFault
isFault
turnintoFault
willRead

10

Classes:

Method Types

Initializing enterprise objects
awakeFromFetch
awakeFromlInsertion

Announcing changes
willChange

Getting an object’'s EOEditingContext
editingContext

Getting class description information
allPropertyKeys
attributeKeys
classDescription
classDescriptionForDestinationKey
deleteRuleForRelationshipKey
entityName
inverseForRelationshipKey
isToManyKey
ownsDestinationObjectsForRelationshipKey
toManyRelationshipKeys
toOneRelationshipKeys

Modifying relationships
propagateDeleteWithEditingContext
clearProperties

Working with snapshots
shapshot
updateFromSnapshot

Merging values (Yellow Box only)
changesFromSnapshot (Yellow Box only)
reapplyChangesFromDictionary (Yellow Box only)

Invoking behavior on the server (Java Client only)
invokeRemoteMethod (Java Client only)

Getting descriptions
eoDescription
eoShallowDescription
userPresentableDescription (Yellow Box only)

11

Instance Methods

12

allPropertyKeys
public abstract NSArragllPropertyKeys()

Returns all of the receiver’s property keys. EOCustomObject’s implementation returns the union of the keys
returned byattributeKeys, toOneRelationshipKeys andtoManyRelationshipKeys

attributeKeys
public abstract NSArragttributeKeys()

Returns the names of the receiver’s attributes (not relationship properties). EOCustomObject’s
implementation simply invokestributeKeys in the object's EOClassDescription and returns the results.
You might wish to override this method to add keys for attributes not defined by the EOClassDescription.
The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns the names of
attributes designated as class properties.

See also: toOneRelationshipKeys toManyRelationshipKeys

awakeFromFetch
public abstract voidwakeFromFetch(EOEditingContexanEditingContext

Overridden by subclasses to perform additional initialization on the receiver upon its being fetched from
the external repository intanEditingContextEOCustomObject’s implementation merely sends an
awakeObjectFromFetchto the receiver's EOClassDescription. Subclasses should isuplegs
implementation before performing their own initialization.

awakeFrominsertion
public abstract voidwakeFrominsertion(EOEditingContexanEditingContext

Overridden by subclasses to perform additional initialization on the receiver upon its being inserted into
anEditingContextThis is commonly used to assign default values or record the time of insertion.
EOCustomObject’s implementation merely sendawakeObjectFrominsertion to the receiver’s
EOClassDescription. Subclasses should inwleers implementation before performing their own
initialization.

Classes:

changesFromSnapshot
public abstract NSDictionaghangesFromSnapshdiNSDictionarysnapshat

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Returns a dictionary whose keys correspond to the receiver’s properties with uncommitted changes relative
to snapshgtand whose values are the uncommitted values. Indnaghshotind the returned dictionary,

where a key represents a to-many relationship, the corresponding value is an NSArray containing two other
NSArrays: the first is an array of objects to be added to the relationship property, and the second is an array
of objects to be removed.

See also: reapplyChangesFromDictionary

classDescription
public abstract EOClassDescriptiolassDescriptiorf)

Returns the EOClassDescription registered for the receiver’s class.EOCustomObject’'s implementation
invokes the EOClassDescription static methathasDescriptionForClass

classDescriptionForDestinationKey
public abstract EOClassDescriptiociassDescriptionForDestinationKeyjava.lang.Striney)

Returns the EOClassDescription for the destination objects of the relationship identikesd by
EOCustomObject’s implementation senddassDescriptionForDestinationKeymessage to the
receiver's EOClassDescription.

clearProperties
public abstract voidlearPropertieq)

Sets all of the receiver’s to-one and to-many relationshipaltoEOEditingContexts use this method to

break cyclic references among objects when they’re finalized. EOCustomObject’s implementation should
be sufficient for all purposes. If your enterprise object maintains references to other objects and these
references are not to-one or to-many keys, then you should probably subclass this method ensure unused
objects can be finalized.

13

14

deleteRuleForRelationshipKey
public abstract intleleteRuleForRelationshipKeyjava.lang.StringelationshipKey

Returns a rule indicating how to handle the destination of the receiver’s relationship named by
relationshipKeywhen the receiver is deleted. The delete rule is one of:

» DeleteRuleNullify
» DeleteRuleNullify
» DeleteRuleNullify
« DeleteRuleNullify

For example, an Invoice object might return DeleteRuleNullify for the relationship named “lineltems”,
since when an invoice is deleted, its line items should be deleted as well. For more information on the delete
rules, see the method description for EOClassDescripti@eteRuleForRelationshipKeyin the class
specification for EOClassDescription, the class in which they’re defined.

EOCustomObiject’'s implementation of this method simply senftdeieRuleForRelationshipKey
message to the receiver's EOClassDescription.

See also: propagateDeleteWithEditingContext validateForDelete (EOValidation)

editingContext
public abstract EOEditingContestitingContext()

Returns the EOEditingContext that holds the receiver.

entityName
public abstract java.lang.StrirgtityName()

Returns the name of the receiver’s entityquli if it doesn’t have one. EOCustomObject’s implementation
simply sends amntityName message to the receiver's EOClassDescription.

eoDescription
public abstract java.lang.StrimpDescription)

Returns a string that describes the receiver. EOCustomObject’s implementation returns a full description of
the receiver’s property values by extracting them using the key-value coding methods. An object referenced
through relationships is listed with the results oEaBhallowDescriptionmessage (to avoid infinite

recursion through cyclical relationships).

Classes:

This method is useful for debugging. You can implemdoS#&ring method that invokes this one, and the
debugger’s print-object commangio(on the command line) automatically displays this description. You
can also invoke this method directly on the command line of the debugger.

See also: userPresentableDescription

eoShallowDescription
public abstract java.lang.StrirgpShallowDescriptiorf)

Similar toeoDescription but doesn’t descend into relationshigagDescriptioninvokes this method for
relationship destinations to avoid infinite recursion through cyclical relationships. EOCustomObiject’s
implementation simply returns a string containing the receiver’s class and entity names.

See also: userPresentableDescription

inverseForRelationshipKey
public abstract java.lang.StrimgverseForRelationshipKeyjava.lang.StringelationshipKey

Returns the name of the relationship pointing back to the receiver’s class or entity from that named by
relationshipKeyor null if there isn’t one. With the access layer's EOEntity and EORelationship, for
example, reciprocality is determined by the join attributes of the two EORelationships. EOCustomObject’s
implementation simply sends awverseForRelationshipKeymessage to the receiver’s

EOClassDescription.

You might override this method for reciprocal relationships that aren’t defined using the same join
attributes. For example, if a Member object has a relationship to CreditCard based on the card number, but
a CreditCard has a relationship to Member based on the Member’s primary key, both classes need to
override this method. This is how Member might implement it:

public String inverseForRelationshipKey(java.lang.String relationshipKey) {
if (relationshipKey.equals("creditCard"))
return "'member";
else
return super.inverseForRelationshipKey(relationshipKey);

invokeRemoteMethod

public abstract java.lang.ObjeotvokeRemoteMethod
java.lang.StringnethodName
java.lang.Object[prgument¥

This method is available for Java Client applications only; there is no Yellow Box equivalent.

15

16

InvokesmethodNamesingargumentsTo pass an enterprise object as an argument, use its global ID. This
method has the side effect of saving all the changes from the receiver’s editing context all the way down to
the editing context in the server session.

iIsToManyKey
public abstract booleasaToManyKey(java.lang.Stringey)

Returngrue if the receiver has a to-many relationship identifiedtdoyfalse otherwise.
EOCustomObject’s implementation of this method simply checksManyRelationshipKeysarray for
key

ownsDestinationObjectsForRelationshipKey
public abstract booleamwnsDestinationObjectsForRelationshipKeyjava.lang.Strinkey)

Returndrue if the receiver has a relationship identifieckieythat owns its destinatiofglse otherwise. If

an object owns the destination for a relationship, then when that destination object is removed from the
relationship, it's automatically deleted. Ownership of a relationship thus contrasts with a delete rule, in that
the first applies when the destination is removed and the second applies when the source is deleted.
EOCustomObiject’s implementation of this method simply sends an
ownsDestinationObjectsForRelationshipKeymessage to the receiver's EOClassDescription.

See also: deleteRuleForRelationshipKey —ownsDestination(the access layer's EORelationship)

propagateDeleteWithEditingContext
public abstract voighropagateDeleteWithEditingContex{ EOEditingContexanEditingContext

Deletes the destination objects of the receiver’s relationships according to the delete rule for each
relationship. EOCustomObject’s implementation simply semitspagateDeleteForObjectmessage to

the receiver's EOClassDescription. For more information on delete rules, see the method description for
deleteRuleForRelationshipKeyin the EOClassDescription class specification.

See also: deleteRuleForRelationshipKey

reapplyChangesFromDictionary
public abstract voideapplyChangesFromDictionary(NSDictionarychange$

This method is available for Yellow Box applications only; there is no Java Client equivalent.

Similar totakeValuesFromDictionary, but thechangedictionary can contain arrays for to-many
relationships. Where a key represents a to-many relationship, the dictionary’s value is an NSArray

Classes:

containing two other NSArrays: the first is an array of objects to be added to the relationship property, and
the second is an array of objects to be removed. EOCustomObiject’s implementation should be sufficient for
all purposes; you shouldn’t have to override this method.

See also: changesFromSnapshot

snapshot

public abstract NSDictionarsnapshof)
Returns a dictionary whose keys are those of the receiver’s attributes, to-one relationships, and to-many
relationships, and whose values are the values of those properties, with EONullValue substitutied for

For to-many relationships, the dictionary contains shallow copies of the arrays. EOCustomObject’s
implementation should be sufficient for all purposes; you shouldn’t have to override this method.

See also: updateFromSnapshot

toManyRelationshipKeys
public abstract NSArrapoManyRelationshipKey<)

Returns the names of the receiver’s to-many relationships. EOCustomObject’s implementation simply
invokestoManyRelationshipKeysin the object's EOClassDescription and returns the results. You might
wish to override this method to add keys for relationships not defined by the EOClassDescription, but it's
rarely necessary: The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns
the names of to-many relationships designated as class properties.

See also: attributeKeys, toOneRelationshipKeys

toOneRelationshipKeys

public abstract NSArrapoOneRelationshipKeyg)
Returns the names of the receiver’s to-one relationships. EOCustomObject’'s implementation simply
invokestoOneRelationshipKeysin the object’s EOClassDescription and returns the results. You might
wish to override this method to add keys for relationships not defined by the EOClassDescription, but it's

rarely necessary: The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns
the names of to-one relationships designated as class properties.

See also: attributeKeys, toManyRelationshipKeys

17

18

updateFromSnapshot
public abstract voidipdateFromSnapshof(NSDictionaryaSnapshgt

Takes the values fromSnapshqtand sets the receiver’s properties to them. EOCustomObject’s
implementation sets each one udiskeStoredValueForKey. In the process, EONullValues are converted
to null, and array values are set as shallow mutable copies.

See also: shapshot

userPresentableDescription
public abstract java.lang.StringerPresentableDescriptiof)

This method is available for Yellow Box applications only; there is ho Java Client equivalent.

Returns a short (no longer than 60 characters) description of an enterprise object based on its data.
EOCustomObject’s implementation enumerates the obgttibuteKeys and returns the values of all of
its properties, separated by commas (applying the default formatter for numbers and dates).

See also: eoDescription eoShallowDescription

willChange
public abstract voiavillChange()

Notifies any observers that the receiver’s state is about to change, by sendingagebt@nllChange
message (see the EOObserverCenter class specification for more information). A subclass should not
override this method, but should invoke it prior to altering the subclass’s state, most typically in “set”
methods such as the following:

public void setRoleName(String value) {
willChange();
roleName = value;

}
In Java Client, this method invokesIRead:.

Classes:

EOEnterpriseObject

Initialization
The Framework creates enterprise objects with a constructor of the following form:

public MyClass(
EOEditingContexanEditingContext
EOCIlassDescriptionlassDescription
EOGlIoballDgloballD)

This constructor should create a new instance of your enterprise object class with the provided arguments
and it can perform any custom initialization that you require. Enterprise objects created in a Java client (with
Java Client) and enterprise objects created on the server (with Yellow Box) require this constructor.

After an enterprise object is created, it receiveaveaike...message. The particular message depends on
whether the object has been fetched from a database or created anew in the application. In the former case,
it receives amwakeFromFetchmessage. In the latter, it receivesasarakeFrominsertion message. The

receiver can override either method to perform extra initialization—such as setting default values—based
on how it was created.

Change Notification

For the Framework to keep all areas of an application synchronized, enterprise objects must notify their
observers when their state changes. Objects do this by inwgkiGhange before altering any instance
variable or other kind of state. This method informs all observers that the invoker is about to change. See
the EOObserverCenter class specification for more information on change notification.

The primary observer of changes in an object is the object's EOEditingContext. EOEditingContext is a
subclass of EOObjectStore that manages collections of objects in memory, tracking inserts, deletes, and
updates, and propagating changes to the persistent store as needed. You can get the EOEditingContext that
contains an object by sending the objeceditingContext message.

Object and Class Metadata Access

One of the larger groups of methods in the EOEnterpriseObject interface provides information about an
object’s properties. Most of these methods consult an EOClassDescription to provide their answers. An
object’'sclassDescriptionmethod returns it’s class description. See the EOClassDescription class
specification for the methods it implements. Methods you can send directly to an enterprise object include
entityName, which provides the name of the entity mapped to the receiver'sal&sespertyKeys, which

returns the names of all the receiver’s class properties, attributes and relationships aitebatekeys,

which returns just the names of the attributes.

Some methods return information about relationshgi3neRelationshipKeysand
toManyRelationshipKeysreturn the names of the receiver’s relationships, vigilleManyKey tells

19

20

which kind a particular relationship ideleteRuleForRelationshipKeyindicates what should happen to

the receiver’s relationships when it's deleted. SimilanynsDestinationObjectsForRelationshipKey

indicates what should happen when another object is added to or removed from the receiver’s relationship.
Another methodglassDescriptionForDestinationKey returns the EOClassDescription for the objects at

the destination of a relationship.

Snapshots

The key-value coding methods define a general mechanism for accessing an object’s properties, but you first
have to know what those properties are. Sometimes, however, the Framework needs to preserve an object’s
entire state for later use, whether to undo changes to the object, compare the values that have changed, or
just keep a record of the changes. The snapshotting methods provide this service, extracting or setting all
properties at once and performing the necessary conversions for proper behapsiotreturns a

dictionary containing all the receiver’s properties, apdateFromSnapshotsets properties of the receiver

to the values in a snapshot.

A special kind of snapshot is also used to merge an object's uncommitted changes with changes that have
been committed to the external store since the object was fetched (in Yellow Box only). These methods are
changesFromSnapshoandreapplyChangesFromDictionary.

Writing an Enterprise Object Class

Some of the EOEnterpriseObject methods are for enterprise objects to implement or override, and some are
meant to be used as defined by the Framework. Many methods are used internally by the Framework and
rarely invoked by application code. The tables in this section highlight the methods that you typically
override or implement in a custom enterprise object.

Creation

The framework creates enterprise objects with this
MyClass(EOEditingContext, EOClassDescription, method if it exists. Yellow Box resorts to the empty
EOGlIoballD) constructor if this constructor doesn’t exist, but Java

Client requires this constructor.

Performs additional initialization after the object is
awakeFromFetch

fetched.

Performs additional initialization after the object is

awakeFromInsertion .
created in memory.

Key-Value Coding: Accessing Properties and Relationships

setKey Sets the value for the property named key.

Classes:

Key-Value Coding: Accessing Properties and Relationships

key Retrieves the value for the property named key.
addToKey Adds an object to a relationship property named key.
removeFromKey Removes an object from the property named key.

handleTakeValueForUnboundKey

Handles a failure of takeValueForKey to find a
property.

handleQueryWithUnboundKey

Handles a failure of valueForKey to find a property.

unableToSetNullForKey

Handles an attempt to set a non-object property’s value
to null .

Validation

validateKey

Validates a value for the property named key.

validateForDelete

Validates all properties before deleting the receiver.

validateForlnsert

Validates all properties before inserting the receiver.

validateForSave

Validates all properties before saving the receiver.

validateForUpdate

Validates all properties before updating the receiver.

21

22

Classes:

EOFaulting
Implemented By: EOEnterpriseObject
EOCustomObiject
EOGenericRecord
Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (Yellow Box)

Interface Description

The EOFaulting interface together with the EOFaultHandler class forms a general mechanism for
postponing an object’s initialization until its actually needed. In it's pre-initialization state, an EOFaulting
object is known as fault. When the object is sent a message to which it can't respond without initializing,

it uses a fault handler foe, or to finish initializing. Faults are most commonly used by the access layer to
represent an object not yet fetched from the database, but that must nonetheless exist as an instance in the
application—typically because it's the destination of a relationship. Consequently, a fault typically fires
when an attempt is made to access any of its data. In this case, firing a fault involves fetching the object’s
data.

The default implementations of EOFaulting in EOCustomObject and EOGenericRecord are sufficient for
most purposes. If you need custom faulting behavior, you typically create a subclass of EOFaultHandler to
accommodate different means of converting faults into regular objects; there’s rarely a need to override the
default implementations of EOFaulting.

Creating a Fault

In Yellow Box, you create a fault with the EOFaultHandler metha#eObjectintoFault. In Java Client,

you create a fault by sending an newly created objechintoFault message, providing an

EOFaultHandler that will later help the fault to fire. This fault handler should be considered completely the
private property of the fault. You shouldn’t send it any messages, instead dealing exclusively with the fault.

Firing a Fault

A fault is fired when it can’t respond to a message without completing its initialization. Any of the object’s
methods that requires initialization trigger the firing, This is generally accomplished by invoking the
willRead method. For example, in the typical case of an object that needs to fetch it's data from a database
upon firing,willRead is invoked from the object’s “get” methods, such as the following:

23

public String roleName() {
willRead();
return roleName;

}

The default implementations wfillRead provided by EOCustomObject and EOGenericRecord take care
of using the object’s fault handler to finish initialization. For more information on a fault handler’s role, see
the EOFaultHandler class specification.

Instance Methods

24

clearFault
public abstract voidlearFault()

This method is available for Java Client applications only; there is no Yellow Box equivalent.

Restores the receiver to its status prior tattinelntoFault message that turned the object into a fault.
Throws an exception if the receiver isn't a fault.

You rarely use this method. Rather, it's invoked by an EOFaultHandler during the process of firing the fault.
For more information, see the EOFaultHandler class specification.

isFault
public abstract booledaFault()

This method is available for Java Client applications only; there is no Yellow Box equivalent.

Returngrue if anObjectis an EOFaultfalse otherwise.

turnintoFault
public abstract voidurnintoFault (EOFaultHandleaFaultHandle)
This method is available for Java Client applications only; there is no Yellow Box equivalent.

Converts the receiver into a fault, assigrafgultHandleras the object that stores its original state and later
converts the fault back into a normal object (typically by fetching data from an external repository). The
receiver becomes the owneraiaultHandler you shouldn’t assign it to another object.

Classes:

willRead
public abstract voiavillRead()

Fills the receiver with values fetched from the database. Before your application attempts to message an
object, you must ensure that it has been filled with its data. To do this, enterprise objects invoke the method

willRead prior to any attempt to access the object’s state, most typically in “get” methods such as the
following:

public String roleName() {
willRead();
return roleName;

25

26

Classes:

EOKeyValueCoding

Implemented By: EOEnterpriseObject

EOCustomObiject

EOGenericRecord
Implements: com.apple.client.foundation.NSKeyValueCoding (Java Client only)
Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Interface Description

The EOKeyValueCoding interface defines Enterprise Objects Framework’s main data transport mechanism,
in which the properties of an object are accessed indirectly by nake)aather than directly through
invocation of an accessor method or as instance variables. Thus, all of an object’s properties can be accessed
in a consistent manner. EOCustomObject and EOGenericRecord provide default implementations of
EOKeyValueCoding, which are sufficient for most purposes.

The basic methods for accessing an object’s valudske¥®alueForKey, which sets the value for the

property identified by the specified key, aradueForKey, which returns the value for the property

identified by the specified key. The default implementations provided by EOCustomObiject use the accessor
methods normally implemented by objects (or to access instance variables directly if need be), so that you
don't have to write special code simply to integrate your objects into the Enterprise Objects Framework.

The corresponding methotikeStoredValueForKey andstoredValueForKey are similar, but they're
considered to be a private API, for use by the Framework for transporting data to atrdstedsources.

For exampletakeStoredValueForKeyis used to initialize an object’s properties with values fetched from

the database, whereakeValueForKey is used to modify an object’s properties to values provided by a

user or other business logic. How these methods work and how they’re used by the framework is discussed
in more detail in the section “Stored Value Methods.”

The remaining methodbandleQueryWithUnboundKey, handleTakeValueForUnboundKey, and
unableToSetNullForKey, are provided to handle error conditions. The default versions of
handleQueryWithUnboundKey andhandleTakeValueForUnboundKeythrow an exception.

For more information on EOKeyValueCoding, see the sections:

« Stored Value Methods
« Type Checking and Type Conversion

27

Interfaces Implemented

NSKeyValueCoding (Java Client only)
takeValueForKey
valueForKey

Method Types

Accessing values
storedValueForKey
takeStoredValueForKey
takeValueForKey
valueForKey

Handling error conditions
handleQueryWithUnboundKey
handleTakeValueForUnboundKey
unableToSetNullForKey

Instance Methods

28

handleQueryWithUnboundKey
public abstract java.lang.ObjdzandleQueryWithUnboundKey(java.lang.Stringey)

Invoked fromvalueForKey when it finds no property binding faey EOCustomObject’s implementation
throws an exception. Subclasses can override this method to handle the query in some other way.

handleTakeValueForUnboundKey

public abstract voithandle TakeValueForUnboundKey
java.lang.Objectalueg
java.lang.Stringey)

Invoked fromtakeValueForKey when it finds no property binding feey EOCustomObiject’s
implementation throws an exception. Subclasses can override it to handle the request in some other way.

Classes:

storedValueForKey
public abstract java.lang.ObjestbredValueForKey(java.lang.Stringey)

Returns the property identified kgy This method is used when the value is retrieved for storage in an
object store (generally, this is ultimately in a database) or for inclusion in a snapshot. The default
implementation provided by EOCustomObject is similar to the implementaticdueEForKey, but it
resolveskeywith a different method-instance variable search order:

1. Searches for a private accessor method baskey{a method preceded by an underbar). For example, with
a key of “lastName”storedValueForKey looks for a method namedjetLastNameor _lastName.

2. If a private accessor isn’t found, searches for an instance variable basthod returns its value directly.
For example, with a key of “lastNamestoredValueForKey looks for an instance variable named
_lastNameor lastName

3. If neither a private accessor or an instance variable is fetorddValueForKey searches for a public
accessor method basedlk®y For the key “lastName”, this would lpetLastNameor lastName

4. If keyis unknown storedValueForKey callshandleTakeValueForUnboundKey:.

This different search order allows an object to bypass processing that is performed before returning a value
through public API. However, if you always want to use the search ordaluieForKey, you can

implement the static methatseStoredAccessoto returnfalse. And as withvalueForKey, you can

prevent direct access of an instance variable with the métbathtic method

accesslnstanceVariablesDirectly

takeStoredValueForKey

public abstract voithkeStoredValueForKey
java.lang.Objectalug
java.lang.Strindey)

Sets the property identified kgyto value This method is used to initialize the receiver with values from
an object store (generally, this is ultimately from a database) or to restore a value from a snapshot. The
default implementation provided by EOCustomObiject is similar to the implementation of
takeValueForKey, but it resolvegeywith a different method-instance variable search order:

1. Searches for a private accessor method baskedyfa method preceded by an underbar). For example, with
a key of “lastName”takeStoredValueForKeylooks for a method namedetLastName.

2. If a private accessor isn't found, searches for an instance variable b&sythod and sets its value directly.
For example, with a key of “lastName&keStoredValueForKeylooks for an instance variable named
_lastNameor lastName

3. If neither a private accessor or an instance variable is ftaketoredValueForKey searches for a
public accessor method basedkay For the key “lastName”, this would setLastName

4. If keyis unknown storedValueForKey callshandleTakeValueForUnboundKey.

29

This different search order allows an object to bypass processing that is performed before setting a value
through public API. However, if you always want to use the search orthkaWalueForKey, you can
implement the static methageStoredAccessoto returnfalse And as withvalueForKey, you can

prevent direct access of an instance variable with the métbathtic method

accesslnstanceVariablesDirectly

takeValueForKey

public abstract voitkeValueForKey(
java.lang.Objectalug
java.lang.Stringey)

Sets the value for the property identifieddayto valug invoking handleTakeValueForUnboundKeyif
the receiver doesn’t recognikeyandunableToSetNullForKey if valueis null andkeyidentifies a scalar

property.
The default implementation provided by EOCustomObject works as follows:

1. Searches for a public accessor method of the $eitikey, invoking it if there is one.

2. If a public accessor method isn't found, searches for a private accessor method of tleefeyninvoking
it if there is one.

3. If an accesor method isn’'t found and the static meglcodssinstanceVariablesDirectlyeturnstrue,
takeValueForKey searches for an instance variable basekkgand sets the value directly. For the key
“lastName”, this would belastNameor lastName

4. If neither an accessor method nor an instance variable is found, the default implementation invokes
handleTakeValueForUnboundKey.

unableToSetNullForKey
public abstract voidinableToSetNullForKey(java.lang.Stringey)

Invoked fromtakeValueForKey (andtakeStoredValueForKey) when it’s given awull value for a scalar

property (such as dnt or afloat). EOCustomObiject’'s implementation throws an exception. Subclasses

can override it to handle the request in some other way, such as by substituting zero or a sentinel value and
invoking takeValueForKey again.

valueForKey
public abstract java.lang.ObjeatlueForKey(java.lang.Stringey)

Returns the value for the property identifiedkey invoking handleQueryWithUnboundKey if the
receiver doesn'’t recognizey

Classes:

The default implementation provided by EOCustomObject works as follows:

1. Searches for a public accessor method bas&dyRor example, with a key of “lastName&/alueForKey
looks for a method namegktlLastNameor lastName

2. If a public accessor method isn’t found, searches for a private accessor method baygd orethod
preceded by an underbar). For example, with a key of “lastNaraleleForKey looks for a method named
_getLastNameor _lastName.

3. If an accesor method isn't found and the static medlcodssinstanceVariablesDirectlyeturnstrue,
valueForKey searches for an instance variable baseldeytand returns its value directly. For the key
“lastName”, this would belastNameor lastName

4. If neither an accessor method nor an instance variable is found, the default implementation invokes
handleQueryWithUnboundKey.

31

32

Classes:

EOKeyValueCoding

Stored Value Methods

The stored value methodgpredValueForKey andtakeStoredValueForKey, are used by the framework

to store and restore an enterprise object’s properties, either from the database or from an in-memory
shapshot. This access is considered private to the enterprise object and is invoked by the framework to effect
persistence on the object’s behalf.

On the other hand, the basic key-value coding methatie ForKeyandtakeValueForKey, are the public
API to an enterprise object. They are invoked by clients external to the object, such as for interactions with
the user interface or with other enterprise objects.

All of the key-value coding methods access an object’s properties by invoking property-specific accessor
methods or by directly accessing instance variables. The basic methods resolve the specified property key
as follows:

1. Search for a public accessor method based on the specified key, invoking it if there is one. For example, with
a key of “lastName”takeValueForKey looks for a method namestey:, andvalueForKey looks for
a method namegdetLastNameor lastName

2. If a public accessor method isn’'t found the basic methods search for a private accessor method based on the
key. For example, with a key of “lastNam#dkeValueForKey looks for a method namedeKey:, and
valueForKey looks for a method namedjetLastNameor _lastName

3. If an accesor method isn’'t found, the basic methods search for an instance variable based on the key and set
the value directly. For the key “lastName”, this would bestNameor lastName

The stored value methods use a different search order for resolving the property key: they search for a
private accessor first, then for an instance variable, and finally for a public accessor. Enterprise object
classes can take advantage of this distinction to simply set or get values when properties are accessed
through the private API (on behalf of a trusted source) and to perform additional processing when properties
are accessed through the public API. Put another way, the stored value methods allow you bypass the logic
in your public accessor methods, whereas the basic key-value coding methods execute that logic.

The stored value methods are especially useful in cases where property values are interdependent. For
example, suppose you need to update a total whenever an dijectsproperty is set:

void setBonus(double newBonus) {
willChange();
_total += (newBonus - _bonus);
_bonus = newBonus;

}

This total-updating code should be activated when the object is updated with values provided by a user
(through the user interface), but not whenlibaus property is restored from the database. Since the
Framework restores the property usiageStoredValueForKeyand since this method accesses the

33

34

_bonusinstance variable in preference to calling the public accessor, the unnecessary (and possibly
harmful) recomputation oftotal is avoided. If the object actually wants to intervene when a property is set
from the database, it has two options:

* Implement_setBonus.
* Replace the Framework’s default stored value search order with the same search order used by the basic
methods by overriding the static methakStoredAccessoto returnfalse.

Type Checking and Type Conversion

The default implementations of the key-value coding methods accept any object as a value, and do no type
checking or type conversion among object classes. It's possible, for example, to pass a String to
takeValueForKey as the value for a property the receiver expects to be an NSDate. The sender of a
key-value coding message is thus responsible for ensuring that a value is of the proper class, typically by
using thevalidateValueForKey method to coerce it to the proper type. The interface layer’s
EODisplayGroup uses this on all values received from interface user objects, for example, as well as relying
on number and date formatters to interpret string values typed by the user. For more information on the
validateValueForKey method, see the EOValidation interface specification.

The key-value coding methods handle one special case with regard to value types. For enterprise objects
that access numeric values as scalar types, these methods automatically convert between the scalar types
and java.lang.Number objects. For example, suppose your enterprise object defines these accessor methods:

public void setSalary(irgalary)
public int salary()

For thesetSalarymethodtakeValueForKey converts the object value it receives as the argument for the
“salary” key to arnnt and passes it aalarytosetSalary Similarly,valueForKey converts the return value
of thesalary method to a java.lang.Number and returns that.

The default implementations of the key-value coding methods support the scalanttyfyest, and

double. Object values are converted to these types with the standard mésBéaas, floatValue, and

so on. Note that the key-value coding methods don’t check that an object value actually responds to these
messages; this can result in a run-time error if the object doesn't respond to the appropriate message.

One type of conversion these methods can't perform is thatfodino a scalar value. Scalar values define

no equivalent of a database system’s NULL value, so these must be handled by the object itself. Upon
encounteringull while setting a scalar valuakeValueForKey invokesunableToSetNullForKey, which

by default simply throws an exception. Enterprise object classes that use scalar values which may be NULL
in the database should override this method to substitute the appropriate scalar vailier&nvoking
takeValueForKey to set the substitute value.

Classes:

EOKeyValueCodingAdditions

Implemented By: EOEnterpriseObject
EOCustomObiject
EOGenericRecord

Implements: com.apple.client.foundation.NSKeyValueCoding (Java Client only)
EOKeyValueCoding

Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Interface Description

The EOKeyValueCodingAdditions interface defines extensions to the basic EOKeyValueCoding interface.
One pair of methodsakeValuesFromDictionary andvaluesForKeys gives access to groups of

properties. Another pair of methodakeValueForKeyPath andvalueForKeyPath give access to

properties across relationships with key paths of the felationship.propertyfor example,
“department.name”. EOCustomObject and EOGenericRecord provide default implementations of
EOKeyValueCodingAdditions, which you rarely (if ever) need to override.

EONullValue in Collections

Because collection objects such as NSArray and NSDictionary can’t canthas a valuenull must be
represented by a special object, EONullValue. EONullValue provides a single instance that represents the
NULL value for object attributes. The default implementationskéValuesFromDictionary and
valuesForKeystranslate EONullValue anmaull between between NSDictionaries and enterprise objects

S0 your objects don't have to explicitly test for EONullValues.

Instance Methods

takeValueForKeyPath

public abstract voidakeValueForKeyPath(
java.lang.Objectalug
java.lang.StringkeyPath

Sets the value for the property identifieckeyPathto value A key path has the forrelationship.property
(with one or more relationships); for example “movieRole.roleName” or “movieRole.Talent.lastName”.

35

36

EOCustomObject’s implementation of this method gets the destination object for each relationship using

valueForKey, and sends the final objectakeValueForKeymessage witlralueandproperty

takeValuesFromDictionary
public abstract voithkeValuesFromDictionary(NSDictionaryaDictionary)

Sets properties of the receiver with values fadDictionary, using its keys to identify the properties.
EOCustomObject’'s implementation invokekeValueForKey for each key-value pair, substitutingll
for EONullValues imaDictionary:

valueForKeyPath
public abstract java.lang.ObjealueForKeyPath(java.lang.StringeyPath

Returns the value for the derived property identifiettdyPath A key path has the form
relationship.propertywith one or more relationships); for example “movieRole.roleName” or
“movieRole.Talent.lastName”. EOCustomObject’s implementation of this method gets the destination
object for each relationship usimglueForKey, and returns the result ofvalueForKey message to the
final object.

valuesForKeys
public abstract NSDictionayaluesForKeygNSArraykeys
Returns a dictionary containing the property values identified by eday®EOCustomObject’s

implementation invokegalueForKey for each key itkeys substituting EONullValues in the dictionary for
returnednull values.

Classes:

EOEditingContext.MessageHandler

Package: com.apple.client.eocontrol (Java Client)
com.apple.yellow.eocontrol (Yellow Box)

Interface Description

The EOEditingContext.MessageHandler interface declares methods used for error reporting and
determining fetch limits. See the EOEditingContext, EODatabaseContext (EOAccess), and
EODisplayGroup (EOInterface) class specifications for more information.

Message handlers are primarily used to implement exception handling in the interface layer’s
EODisplayGroup, and wouldn't ordinarily be used in a command line tool or WebObjects application.

Message handlers are not required to provide implementations for all of the methods in the interface. When
you write a handler, you don’t have to useithplementskeyword to specify that the object implements

the MessageHandler interface. Instead, simply use the EOEditingContext metiedsageHandler

method to assign your object as the EOEditingContext’s handler and then declare and implement any subset
of the methods declared in the MessageHandler interface. An EOEditingContext can determine if the
handler doesn’t implement a method and only attempts to invoke the methods the handler actually
implements

Instance Methods

editingContextPresentException

public abstract voigditingContextPresentExceptior
EOEditingContexanEditingContext
java.lang.ExceptioanExceptioi

This method is available for Java Client applications only; the Yellow Box equivalent is
editingContextPresentErrorMessage

Invoked byanEditingContextthis method should present an error message to the user in whatever way is
appropriate (whether by opening an attention panel or printing the message in a terminal window, for
example). The error message can be derived #miaxceptionan exception that was thrown as the result

of some error.

37

38

editingContextPresentErrorMessage

public abstract voi@ditingContextPresentErrorMessagé
EOEditingContexanEditingContext
java.lang.Stringnessage

This method is available for Yellow Box applications only; the Java Client equivalent is
editingContextPresentException

Invoked byanEditingContextthis method should presenessagéo the user in whatever way is
appropriate (whether by opening an attention panel or printing the message in a terminal window, for
example). This message is sent only if the method is implemented.

editingContextShouldContinueFetching

public abstract booleagditingContextShouldContinueFetching

EOEditingContexanEditingContext

int count

int limit,

EOObjectStor®bjectStorg
Invoked by arobjectStorgsuch as an access layer EODatabaseContext) to allow the message handler for
anEditingContex{often an interface layer EODisplayGroup) to prompt the user about whether or not to
continue fetching the current result set. Thantargument is the number of objects fetched sdiffiait. is
the original limit specified an EOFetchSpecification. This message is sent only if the method is
implemented.

Classes:

EOObserving

Implemented By: EODelayedObserver
EOEditingContext
Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Protocol Description

The EOObserving interface,a part of EOControl’'s change tracking mechanism, declares the
objectWillChange method, used by observers to receive notifications that an object has changed. This
message is sent by EOObserverCenter to all observers registered wsild@ivserver method. For an

overview of the general change tracking mechanism, see “Tracking Enterprise Objects ChangesEOControl
provides four classes and an interface that form an efficient, specialized mechanism for tracking changes to
enterprise objects and for managing the notification of those changes to interested observers.
EOObserverCenter is the central manager of change notification. It records observers and the objects they
observe, and it distributes notifications when the observable objects change. Observers implement the
EOObserving interface, which defines one method, objectWillChange. Observable objects (generally
enterprise objects) invoke their willChange method before altering their state, which causes all observers to
receive an objectWillChange message.” in the introduction to the EOControl Framework. The
EOObserving interface

Instance Methods

objectWillChange
public abstract voidbjectWillChange(java.lang.ObjecanObjec}

Informs the receiver thanObjecks state is about to change. The receiver can readddjec’s state, mark
or record it as changed, and examine it later (such as at the end of the run loop) to see how it's changed.

39

40

Classes:

EOQualifier.Comparison

Implemented By: NSObiject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)

Interface Description

The EOQualifierComparison interface defines methods for comparing values. These methods are used for
evaluating qualifiers in memory. Though declared for NSObject in Yellow Box, most of these methods work
properly only with value classes: NSString, NSDate, NSNumber, NSDecimalNumber, and EONullValue.
Yellow Box implements these methods as part of NSObject—there is no separate interface. In Java Client,
support for these methods is provided for java.lang.String, java.lang.Number, and java.lang.Date using
EOQualifier.ComparisonSupport. You should implement this interface for any value classes you write that
you want to be evaluated in memory by EOQualifier instances.

Method Types

Testing value objects
doesContain
isEqualTo
isGreaterThan
isGreaterThanOrEqualTo
isLessThan
isLessThanOrEqualTo
isLike
isCaselnsensitiveLike
isNotEqualTo

Instance Methods
doesContain
public abstract booleatnesContair(java.lang.ObjecanObjec}

Returngrue if the receiver containenObject false if it doesn’t. NSObject’'s implementation of this
method returngrue only if the receiver is a kind of NSArray and contaan©bject In all other cases it
returnsfalse

41

42

isCaselnsensitiveLike
public abstract booleaaCaselnsensitiveLik€java.lang.ObjecanObjec}

Returngrue if the receiver is a case-insensitive matchef@tring falseif it isn’t. See “Using Wildcards”

in the EOQuialifier class specification for the wildcard characters allowed. NSObject’'s implementation

returnsfalse NSString’s performs a proper case-insensitive comparison.

See also: isLike, doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThan
isLessThanOrEqualTaisNotEqualTo

isEqualTo
public abstract booleasEqualTo(java.lang.ObjecanObjec)

Returngrue if the receiver is equal @mnObject falseif it isn’t. NSObject’'s implementation invokes
isEqual and returns the result.

See also: doesContain isGreaterThan, isGreaterThanOrEqualTo, isLessThan
isLessThanOrEqualTa isLike, isCaselnsensitiveLikeisNotEqualTo

isGreaterThan
public abstract booleaaGreaterThan(java.lang.ObjecanObjecy

Returngrue if the receiver is greater thamObject falseif it isn't. NSObject’s implementation invokes
compare: and returngrue if the result is NSOrderedDescending.

See also: doesContain isEqualTo, isGreaterThanOrEqualTo, isLessThan isLessThanOrEqualTo,
isLike, isCaselnsensitiveLikeisNotEqualTo

isGreaterThanOrEqualTo
public abstract booleaaGreaterThanOrEqualTo(java.lang.ObjecanObjec}

Returndrue if the receiver is greater than or equadt®bjectfalseif it isn't. NSObject’s implementation
invokescompare: and returngrue if the result is NSOrderedAscending.

See also: doesContain isEqualTo, isGreaterThan, isLessThan isLessThanOrEqualTo, isLike,
isCaselnsensitiveLikeisNotEqualTo

Classes:

isLessThan
public abstract booleadslLessThar{java.lang.ObjecanObjec}

Returngrue if the receiver is less thanObject falseif it isn't. NSObject’s implementation invokes
compare: and returngrue if the result is NSOrderedAscending.

See also: doesContainisEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThanOrEqualTo,
isLike, isCaselnsensitiveLikeisNotEqualTo

isLessThanOrEqualTo
public abstract booleasLessThanOrEqualTajava.lang.ObjecanObjec}

Returngrue if the receiver is less than or equabttObject falseif it isn't. NSObject’s implementation
invokescompare: and returngrue if the result is NSOrderedAscending or NSOrderedSame.

See also: doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThan isLike,
isCaselnsensitiveLikgisNotEqualTo

isLike
public abstract booledsLike (java.lang.ObjecanObjec}

Returngrue if the receiver matchesStringaccording to the semantics of the Slide comparison
operatorfalseif it doesn’t. See “Using Wildcards” in the EOQualifier class specification for the wildcard
characters allowed. NSObject’s implementation rettats® NSString’s performs a proper comparison.

See also: isCaselnsensitiveLike doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo,
isLessThan isLessThanOrEqualTo, isNotEqualTo

isNotEqualTo
public abstract booleasNotEqualTo(java.lang.ObjecanObjecy

Returngrue if the receiver is not equal mObject falseif it is. NSObject’s implementation invokes
isEqual, inverts the result, and returns it.

See also: doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThan
isLessThanOrEqualTa isLike, isCaselnsensitiveLike

43

44

Classes: EOQualifierEvaluation

EOQualifierEvaluation

Implemented By:

EOKeyValueQualifier
EOKeyComparisonQualifier
EOANndQualifier
EOOrQualifier
EONotQualifier

Protocol Description

The EOQualifierEvaluation interface defines a metkwdluate WithObject, that performs in-memory
evaluation of qualifiers. All qualifier classes whose objects can be evaluated in memory must implement
this interface.

Instance Methods

evaluateWithObject
public boolearevaluateWithObject(java.lang.Objecbbjec)

Returngrue if the argumenbbjectsatisfies the qualifiefalse otherwise. This method can throw one of
several possible exceptions if an error occurs, depending on the implementation.

45

46

Classes:

EORelationshipManipulation
Implemented By: EOEnterpriseObject
EOCustomObiject
EOGenericRecord
Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Interface Description

The EORelationshipManipulation interface builds on the basic EOKeyValueCoding interface to allow you
to modify to-many relationship properties. EOCustomObject and EOGenericRecord provide default
implementations of EORelationshipManipulation, which you rarely (if ever) need to override.

The primitive methodaddObjectToPropertyWithKey andremoveObjectFromPropertyWithKey add

and remove single objects from to-many relationship arrays. The two other methods in the interface,
addObjectToBothSidesOfRelationshipWithKeyand

removeObjectFromBothSidesOfRelationshipWithKey are implemented in terms of the two primitives

to handle reciprocal relationships. These methods find the inverse relationship to the one identified by the
specified key (if there is such an inverse relationship) anddd®bjectToPropertyWithKey and
removeObjectFromPropertyWithKey to alter both relationships, whether they’re to-one or to-many.

The primitive methods check first for a method you might implenaetofToKey or removeFromKey,

invoking that method if it's implemented, otherwise using the basic key-value coding methods to do the
work. Consequently, you rarely need to provide your own implementations of
EORelationshipManipulation. Rather, you can provide relationship acceaddi®Key or

removeFromKey) whenever you need to implement custom business logic.

Instance Methods

addObjectToBothSidesOfRelationshipWithKey

public abstract voidddObjectToBothSidesOfRelationshipWithKey
EORelationshipManipulatioanObject
java.lang.Stringkey)

Sets or addanObjectas the destination for the receiver’s relationship identifidatipyand also sets or adds
the receiver foanObjecks reciprocal relationship if there is one. For a to-one relationahipbjectis set
usingtakeValueForKey. For a to-many relationshipnObjectis added using
addObjectToBothSidesOfRelationshipWithKey.

a7

48

This method also properly handles removinig andanObjectfrom their previous relationship as needed.
For example, if an Employee object belongs to the Research department, invoking this method with the
Maintenance department removes the Employee from the Research department as well as setting the
Employee’s department to Maintenance.

addObjectToPropertyWithKey

public abstract voi@ddObjectToPropertyWithKey (
java.lang.ObjecanObject
java.lang.Stringey)

AddsanObijectto the receiver’s to-many relationship identifieddey without setting a reciprocal
relationship. Similar to the implementationtakeValueForKey, EOCustomObiject’'s implementation of
this method first attempts to invoke a method of the fadaiToKey. If the receiver doesn’t have such a
method, this method gets the property array ugahgeForKey and operates directly on that. For a to-many
relationship, this method addeObjectto the array if it is not already in the array. For a to-one relationship,
this method replaces the previous value aitbject.

removeObjectFromBothSidesOfRelationshipWithKey

public abstract voidemoveObjectFromBothSidesOfRelationshipWithKey
EORelationshipManipulatioanObject
java.lang.Strindey)

RemovesanObjectfrom the receiver’s relationship identified kgy and also removes the receiver from
anObjecs reciprocal relationship if there is one. For a to-one relationahipbjectis removed using
takeValueForKey with null as the value. For a to-many relationshipObjectis removed using
removeObjectFromPropertyWithKey .

removeObjectFromPropertyWithKey

public abstract voidemoveObjectFromPropertyWithKey (
java.lang.ObjecanObject
java.lang.Stringey)

RemovesanObjectfrom the receiver’s to-many relationship identifieddey without modifying a
reciprocal relationship. Similar to the implementatiotadkeValueForKey, EOCustomObject’s
implementation of this method first attempts to invoke a method of theréonoveFromKey. If the
receiver doesn’t have such a method, this method gets the property arrayalsi@rkey and operates
directly on that. For a to-many relationship, this method remaw@bjectfrom the array. For a to-one
relationship, this method replaca&sObjectwith null.

Classes:

EOSortOrdering.Comparison

Implemented By: EONullValue (Java Client)
NSObject (Yellow Box)

Package: com.apple.client.eocontrol (Java Client)

Interface Description

The EOSortOrdering.Comparison interface defines methods for comparing values. These methods are used
for sorting value objects. Though declared for NSObject in Yellow Box, most of these methods work
properly only with value classes: NSString, NSDate, NSNumber, NSDecimalNumber, and EONullValue.
Yellow Box implements these methods as part of NSObject—there is no separate interface. In Java Client,
support for these methods is provided for java.lang.String, java.lang.Number, and java.lang.Date using
EOSortOrdering.ComparisonSupport. EONullValue implements the interface directly. You should

implement this interface for any value classes you write that you want to be properly sorted by
EOSortOrdering instances.

Sorting value objects
compareAscending
compareCaselnsensitiveAscending
compareCaselnsensitiveDescending
compareDescending

Instance Methods
compareAscending
public abstract intompareAscendingjava.lang.ObjecanObjec)

Returns NSOrderedAscendingifiObjectis naturally ordered after the receiver, NSOrderedDescending if
it's naturally ordered before the receiver, and NSOrderedSame if they’re equivalent for ordering purposes.
NSObiject’'s implementation of this method simply invokempare

See also: compareDescendingcompareCaselnsensitiveAscending
compareCaselnsensitiveDescending

49

50

compareCaselnsensitiveAscending
public abstract intcompareCaselnsensitiveAscendir(gava.lang.ObjecanObjec)

Returns NSOrderedAscendingaiiObjectis naturally ordered—ignoring case—atfter the receiver,
NSOrderedDescending if it's naturally ordered before the receiver, and NSOrderedSame if they're
equivalent for ordering purposes. NSObject’s implementation of this method ircarkesre, while
NSString’s invokegsaselnsensitiveCompare

See also: compareCaselnsensitiveDescendingompareAscending compareDescending

compareCaselnsensitiveDescending
public abstract intompareCaselnsensitiveDescendiligva.lang.ObjecanObjec}

Returns NSOrderedAscendingaiiObjectis naturally ordered—ignoring casdseforethe receiver,
NSOrderedDescending if it's naturally ordeedtér the receiver, and NSOrderedSame if they're equivalent
for ordering purposes. NSObject’s implementation of this method ineakapare and inverts the result,
while NSString’s invokesaselnsensitiveComparend inverts the result.

See also: compareCaselnsensitiveAscendingompareDescendingcompareAscending

compareDescending
public abstract intompareDescendinava.lang.ObjecanObjecj

Returns NSOrderedAscendingaifiObjectis naturally orderetieforethe receiver, NSOrderedDescending
if it's naturally orderedfter the receiver, and NSOrderedSame if they're equivalent for ordering purposes.
NSObiject’'s implementation of this method simply invo&espare and inverts the result.

See also: compareAscendingcompareCaselnsensitiveDescendingompareCaselnsensitiveAscending

Classes:

EQValidation
Implemented By: EOEnterpriseObject
EOCustomObiject
EOGenericRecord
Package: com.apple.client.eocontrol (Java Client)

com.apple.yellow.eocontrol (WebObjects and Yellow Box)

Inherits From: java.lang.Obiject

Package: com.apple.client.eocontrol

Interface Description

The EOValidation interface defines the way that enterprise objects validate their values. The validation
methods check for illegal value types, values outside of established limits, illegal relationships, and so on.
EOCustomObject and EOGenericRecord provide default implementations of EOValidation, which are
described in detail in this specification.

There are two kinds of validation methods. The first validates individual properties, and the second validates
an entire object to see if it's ready for a specific operation (inserting, updating, and deleting). The two
different types are discussed in more detail in the sections “Validating Individual Properties” and
“Validating Before an Operation.”

Instance Methods
validateForDelete
public abstract voidalidateForDeletg) throws EOValidation.Exception

Confirms that the receiver can be deleted in its current state, throwing an EOValidation.Exception if it can’t.
For example, an object can’t be deleted if it has a relationship with a delete rule of
EOCIlassDescription.DeleteRuleDeny and that relationship has a destination object.

EOCustomObiject’s implementation sends the receiver's EOClassDescription a message (which performs
basic checking based on the presence or absence of values). Subclasses shoglgpersmke

51

52

implementation before performing their own validation, and should combine any exception thrown by
supers implementation with their own.

See also: propagateDeleteWithEditingContext (EOEnterpriseObject),
“Constructors” (EOValidationException)

validateForinsert
public abstract voidalidateForinsert() throws EOValidation.Exception

Confirms that the receiver can be inserted in its current state, throwing an EOValidation.Exception if it can't.
EOCustomObject’s implementation simply invokedidateForSave

The methodralidateForSaveis the generic validation method for when an object is written to the external
store. If an object performs validation that isn't specific to insertion, it should\gdidate ForSave

validateForSave
public abstract voidalidateForSave)

Confirms that the receiver can be saved in its current state, throwing an EOValidation.Exception if it can't.
EOCustomObiject’s implementation sends the receiver's EOClassDescriptibdaeObjectForSave
message, then iterates through all of the receiver’s properties, invakioiate ValueForKey for each one.

If this results in more than one exception, the exception returned contains the additional onssrinits
dictionary under the EOValidation.Exception.AdditionalExceptions key. Subclasses shouldsupeke
implementation before performing their own validation, and should combine any exception thrown by
supers implementation with their own.

Enterprise objects can implement this method to check that certain relations between properties hold; for
example, that the end date of a vacation period follows the begin date. To validate an individual property,
you can simply implement a method for it as described wadielate ValueForKey.

See also: “Constructors” (EOValidationException)

validateForUpdate
public abstract voidalidateForUpdate() throws EOValidation.Exception

Confirms that the receiver can be inserted in its current state, throwing an EOValidation.Exception if it can’t.
EOCustomObject’'s implementation simply invokedidateForSave

The methodralidateForSaveis the generic validation method for when an object is written to the external
store. If an object performs validation that isn't specific to updating, it shouldvgdidiate ForSave

Classes:

validateValueForKey

public abstract java.lang.ObjealidateValueForKey(
java.lang.Objectalug
java.lang.Strindey) throws EOValidation.Exception

Confirms thatvalueis legal for the receiver’s property namedkey Throws an EOValidation.Exception if

it can’t confirm that the value is legal. The implementation can provide a coerced value by returning the
value. This lets you convert strings to dates or numbers or maybe convert strings to an enumerated type
value. EOCustomObiject’s implementation sendalalateValueForKey message to the receiver’s
EOClassDescription.

Enterprise objects can implement individualidateKey methods to check limits, test for nonsense values,
and otherwise confirm individual properties. To validate multiple properties based on relations among them,
override the appropriatalidateFor... method.

“Constructors” (EOValidationException)

53

54

Classes:

EOValidation

Validating Individual Properties

The most general method for validating individual propentiaticlateValueForKey, validates a property
indirectly by name (or key). This method is responsible for two things: coercing the value into an
appropriate type for the object, and validating it according to the object’s rules. The default implementation
provided by EOCustomObject consults the object's EOClassDescription (using the EOEnterpriseObject
interface methodlassDescription to coerce the value and to check for basic errors, suchwdbalue

when that isn't allowed. If no basic errors exist, this default implementation then validates the value
according to the object itself. It searches for a method of thevalidateKey and invokes it if it exists.

These are the methods that your custom classes can implement to validate individual properties, such as
validateAgeto check that the value the user entered is within acceptable limits.

Coercion is performed automatically for you (by the EOClassDescription), so all you need handle is
validation itself. Since you can implement custom validation logic indlidateKey methods, you rarely
need to override the EOValidation methadidateValueForKey. Rather, the default implementation
provided by EOCustomObject is generally sufficient.

As an example of how validating a single property works, suppose that Member objects dgee an

attribute stored as an integer. This attribute has a lower limit of 16, defined by the Member class. Now,
suppose a user types “12” into a text field for the age of a member. The value comes into the Framework as
a string. WhervalidateValueForKey is invoked to validate the new value, the method uses its
EOCIlassDescription to convert the string “12” into an NSNumber, then invakdateAge with that

NSNumber. The@alidateAgemethod compares the age to its limit of 16 and throws an exception to indicate
that the new value is not acceptable.

public void validateAge(java.lang.Object age) throws EOvalidation.Exception {
if ((((Number)age).intValue) < 16)
throw new EOValidation.Exception("Age of " + age + " is below minimum.");

When Properties are Validated

The Framework validates all of an object’s properties before the object is saved to an external source—
either inserted or updated. Additionally, you can design your application so that changes to a property’s
value are validated immediately, as soon as a user attempts to leave an editable field in the user interface (in
Java Client and Application Kit applications only). Whenever an EODisplayGroup sets a value in an object,

it sends the objectalidateValueForKey message, allowing the object to coerce the value’s type, perform

any additional validation, and throw an exception if the value isn't valid. By default, the display group leaves
validation errors to be handled when the object is saved, usiidgteValueForKey only for type

coersion. However, you can use the EODisplayGroup maitd@lidatesChangesimmediatelywith an

argument ofrue to tell the display group to immediately present an attention panel whenever a validation
error is encountered.

55

56

Validating Before an Operation

The remaining EOValidation methodsalidateForinsert, validateForUpdate, validateForSave and
validateForDelete—validate an entire object to see if it's valid for a particular operation. These methods

are invoked automatically by the Framework when the associated operation is initiated. EOCustomObject
provides default implementations, so you only have to implement them yourself when special validation
logic is required. For example, you can override these methods in your custom enterprise object classes to
allow or refuse the operation based on property values. For example, a Fee object might refuse to be deleted
if it hasn’t been paid yet. Or you can override these methods to perform delayed validation of properties or
to compare multiple properties against one another; for example, you might verify that a pair of dates is in
the proper temporal order.

If you override any of these operation-specific validation methods, be sure to sonmkis

implementation. This is important, as the default implementations ehthiateFor... methods pass the

check on to the object’'s EOClassDescription, which performs basic checking among properties, including
invoking validateValueForKey for each property. The access layer's EOEntityClassDescription class
verifies constraints based on an EOModel, such as delete rules. For example, the delete rule for a
Department object might state that it can’t be deleted if it still contains Employee objects.

The methodralidateForSaveis the generic validation method for when an object is written to the external
store. If an object performs validation that isn’t specific to insertion or to updating, it should go in
validateForSave

Classes: EOQualifier.ComparisonSupport

EOQualifier.ComparisonSupport

Inherits From:

Package:

Class Description

Siva’s class EOQualifier.ComparisonSupport provides default implementations of the
EOQualifierComparison interface. It is for use in client-side enterprise object classes only; there is ho

java.lang.Object

com.apple.client.eocontrol (Siva)

equivalent Yellow Box class for server-side enterprise objects.

Siva’s EOCustomObject uses EOQualifier.ComparisonSupport’s default implementations. Typically your
custom enterprise object classes inherit from EOCustomObject and inherit the default implementations. If
your custom enterprise object class doesn’t inherit from EOCustomObiject, you should implement the

EOQualifierComparison interface directly.

Method Types

Setting up automatic support

Comparing two objects

EOQualifierComparison methods

setSupportForClass
supportForClass

compareValues

compareValues
setSupportForClass
supportForClass
EOQualifier.ComparisonSupport
doesContain
isCaselnsensitiveLike
isEqualTo

isGreaterThan
isGreaterThanOrEqualTo
isLessThan
isLessThanOrEqualTo
isLike

isNotEqualTo

Static Methods

compareValues

public static intompareValuegjava.lang.ObjecanObiject java.lang.ObjecanotherObject
com.apple.client.foundation.NSSelecsetecto)

Compares the two objects usisgjector You should use this method to compare value objects instead of
calling selectordirectly. This method is the entry point for the comparison support, and calls methods in
support classes if appropriate.

See also: setSupportForClass supportForClass

setSupportForClass

public static voidsetSupportForClasgEOSortOrdering. ComparisonSuppsupportClass
java.lang.ClasaClas3

SetssupportClasas the support class to be used for comparing instana€$asis WhencompareValues
is called, the methods supportClasswill be used to do the comparison for instances@ifss

See also: compareValues

supportForClass
public static EOSortOrdering. ComparisonSupgopportForClasgjava.lang.ClasaClas$

Returns the support class used for doing sort ordering comparisons for instaaCkEssf

See also: compareValues setSupportForClass

Instance Methods

doesContain
public booleardoesContair{java.lang.Objecteceiver java.lang.ObjecanObjec}
Returns YES ifeceivercontainsanObject NO if it doesn’t. NSObject’s implementation of this method

returns YES only ifeceiveris a kind of NSArray and contaiasiObject In all other cases it returns NO.
This method is used in the Framework only by EOQualifier for in-memory evaluation.

Classes: EOQualifier.ComparisonSupport

isCaselnsensitiveLike
public booleansCaselnsensitiveLikgjava.lang.Objecteceiver java.lang.ObjecanObjec}

Returns YES ifeceiveris a case-insensitive match &string NO if it isn't. See “Using Wildcards” in the
EOQuialifier class specification for the wildcard characters allowed. NSObject’s implementation returns
NO; NSString’s performs a proper case-insensitive comparison. This method is used in the Framework only
by EOQualifier for in-memory evaluation.

See also: isLike, doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThan
isLessThanOrEqualToisNotEqualTo

isEqualTo
public booleansEqualTo(java.lang.Objecteceiver java.lang.ObjecanObjec}

InvokesisEqual: and returns the result. This method is used in the Framework only by EOQualifier for
in-memory evaluation.

See also: doesContain isGreaterThan, isGreaterThanOrEqualTo, isLessThan
isLessThanOrEqualTa isLike, isCaselnsensitiveLikgeisNotEqualTo

isGreaterThan
public booleansGreaterThan(java.lang.Objecteceiver java.lang.ObjecanObjec}

Invokescompare: and returns YES if the result is NSOrderedDescending. This method is used in the
Framework only by EOQualifier for in-memory evaluation.

See also: doesContain isEqualTo, isGreaterThanOrEqualTo, isLessThan isLessThanOrEqualTg
isLike, isCaselnsensitiveLikeisNotEqualTo

isGreaterThanOrEqualTo
public booleansGreaterThanOrEqualTo(java.lang.Objecteceiver java.lang.ObjecanObjec}

Invokescompare:and returns YES if the result is NSOrderedDescending or NSOrderedSame. This method
is used in the Framework only by EOQualifier for in-memory evaluation.

See also: doesContain isEqualTo, isGreaterThan, isLessThan isLessThanOrEqualTo, isLike,
isCaselnsensitiveLikeisNotEqualTo

isLessThan
public boolearisLessThar(java.lang.Objecteceiver java.lang.ObjecanObjec)

Invokescompare: and returns YES if the result is NSOrderedAscending. This method is used in the
Framework only by EOQualifier for in-memory evaluation.

See also: doesContainisEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThanOrEqualTg,
isLike, isCaselnsensitiveLikeisNotEqualTo

isLessThanOrEqualTo
public booleansLessThanOrEqualTqjava.lang.Objecteceiver java.lang.ObjecanObjec)

Invokescompare:and returns YES if the result is NSOrderedAscending or NSOrderedSame. This method
is used in the Framework only by EOQualifier for in-memory evaluation.

See also: doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThan isLike,
isCaselnsensitiveLikgisNotEqualTo

isLike
public booleansLike (java.lang.Objecteceiver java.lang.ObjecanObjec}

Returns YES ifeceivermatcheaStringaccording to the semantics of the Siie comparison operator,

NO if it doesn’t. See “Using Wildcards” in the EOQualifier class specification for the wildcard characters
allowed. NSObject’s implementation returns NO; NSString’s performs a proper comparison. This method
is used in the Framework only by EOQualifier for in-memory evaluation.

See also: isCaselnsensitiveLike doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo,
isLessThan isLessThanOrEqualTo isNotEqualTo

isNotEqualTo
public booleansNotEqualTo(java.lang.Objecteceiver java.lang.ObjecanObjec}

InvokesisEqual:, inverts the result, and returns it. This method is used in the Framework only by
EOQualifier for in-memory evaluation.

See also: doesContain isEqualTo, isGreaterThan, isGreaterThanOrEqualTo, isLessThan
isLessThanOrEqualTa isLike, isCaselnsensitiveLike

Classes: EOSortOrdering.ComparisonSupport

EOSortOrdering.ComparisonSupport

Inherits From: java.lang.Object

Package: com.apple.client.eocontrol (Siva)

Class Description

Siva’s class EOSortOrdering.ComparisonSupport provides default implementations of the
EOSortOrderingComparison interface. It is for use in client-side enterprise object classes only; there is no
equivalent Yellow Box class for server-side enterprise objects.

Siva’s EOCustomObject uses EOSortOrdering.ComparisonSupport's default implementations. Typically
your custom enterprise object classes inherit from EOCustomObject and inherit the default
implementations. If your custom enterprise object class doesn't inherit from EOCustomObiject, you should
implement the EOSortOrderingComparison interface directly.

Method Types

Setting up automatic support
setSupportForClass
supportForClass

Comparing two objects
compareValues

EOSortOrderingComparison methods
compareAscending
compareCaselnsensitiveAscending
compareCaselnsensitiveDescending
compareDescending

Static Methods

compareValues

public static intompareValuegjava.lang.ObjecanObiject java.lang.ObjecanotherObject
com.apple.client.foundation.NSSelecsetecto)

Compares the two objects usisgjector You should use this method to compare value objects instead of
calling selectordirectly. This method is the entry point for the comparison support, and calls methods in
support classes if appropriate.

See also: setSupportForClass supportForClass

setSupportForClass

public static voidsetSupportForClasgEOSortOrdering. ComparisonSuppsupportClass
java.lang.ClasaClas3

SetssupportClasas the support class to be used for comparing instana€$asis WhencompareValues
is called, the methods supportClasswill be used to do the comparison for instances@ifss

See also: compareValues

supportForClass
public static EOSortOrdering. ComparisonSupgopportForClasgjava.lang.ClasaClas$

Returns the support class used for doing sort ordering comparisons for instaaCkEssf

See also: compareValues setSupportForClass

Instance Methods

compareAscending
public intcompareAscendingjava.lang.Objecteceiver java.lang.ObjecanObjec)
Returns NSOrderedAscendin@ifiObjectis naturally ordered afteeceiver NSOrderedDescending if it's

naturally ordered befomeceiver and NSOrderedSame if they’re equivalent for ordering purposes.
NSObject’'s implementation of this method simply invokempare..

See also: compareDescendingcompareCaselnsensitiveAscending
compareCaselnsensitiveDescending

Classes: EOSortOrdering.ComparisonSupport

compareCaselnsensitiveAscending
public intcompareCaselnsensitiveAscendir{iava.lang.Objecteceiver java.lang.ObjecanObjec)

Returns NSOrderedAscendingaiObjectis naturally ordered—ignoring case—afteceiver
NSOrderedDescending if it's naturally ordered befereiver and NSOrderedSame if they’re equivalent
for ordering purposes. NSObject’'s implementation of this method inwakepare:, while NSString’s
invokescaselnsensitiveCompatre:

See also: compareCaselnsensitiveDescendingompareAscendingcompareDescending

compareCaselnsensitiveDescending
public intcompareCaselnsensitiveDescendifigva.lang.Objecteceiver java.lang.ObjecanObjec}

Returns NSOrderedAscendingaiiObjectis naturally ordered—ignoring case—befogeeiver
NSOrderedDescending if it's naturally ordered akeeiver and NSOrderedSame if they're equivalent for
ordering purposes. NSObject’s implementation of this method invcakapare: and inverts the result,
while NSString’s invokesaselnsensitiveCompareand inverts the result.

See also: compareCaselnsensitiveAscendingompareDescendingcompareAscending

compareDescending
public intcompareDescendinfjava.lang.ObjecanObject java.lang.ObjecanObjec)

Returns NSOrderedAscendingaifiObjectis naturally ordered beforeceiver NSOrderedDescending if
it's naturally ordered afteeceiver and NSOrderedSame if they're equivalent for ordering purposes.
NSObiject’'s implementation of this method simply invokempare: and inverts the result.

See also: compareAscendingcompareCaselnsensitiveDescendingompareCaselnsensitiveAscending

	The EOControl Framework
	Introduction
	Object Storage Abstraction
	Subclasses of EOObjectStore
	Registering Enterprise Objects
	Servicing Faults

	Classes
	EOArrayDataSource
	Class Description
	Constructors
	EOArrayDataSource

	Instance Methods
	setArray

	EOAndQualifier
	Class Description
	Interfaces Implemented
	Constructors
	EOAndQualifier

	Instance Methods
	evaluateWithObject
	qualifiers

	EOClassDescription
	Class Description
	Constants
	Method Types
	classDelegate
	classDescriptionForClass
	classDescriptionForEntityName
	invalidateClassDescriptionCache
	registerClassDescription
	setClassDelegate

	Instance Methods
	attributeKeys
	awakeObjectFromFetch
	awakeObjectFromInsertion
	classDescriptionForDestinationKey
	createInstanceWithEditingContext
	defaultFormatterForKey
	defaultFormatterForKeyPath
	deleteRuleForRelationshipKey
	displayNameForKey
	entityName
	inverseForRelationshipKey
	ownsDestinationObjectsForRelationshipKey
	propagateDeleteForObject
	toManyRelationshipKeys
	toOneRelationshipKeys
	userPresentableDescriptionForObject
	validateObjectForDelete
	validateObjectForSave
	validateValueForKey

	Notifications
	EOClassDescription More
	How Does It Work?
	Using EOClassDescription
	Overriding Methods in an Enterprise Object
	Working with Objects That Don’t Have EOModels
	Creating a Subclass of EOClassDescription

	EOEntityClassDescription
	The EOClassDescription’s Delegate
	EOClassDescriptionNeededForClassNotification
	EOClassDescriptionNeededForEntityNameNotification

	EOCooperatingObjectStore
	Class Description
	Method Types
	Instance Methods
	commitChanges
	handlesFetchSpecification
	ownsGlobalID
	ownsObject
	performChanges
	prepareForSaveWithCoordinator
	recordChangesInEditingContext
	recordUpdateForObject
	rollbackChanges
	valuesForKeys

	EOCustomObject
	Class Description
	Interfaces Implemented
	Constructors
	accessInstanceVariablesDirectly
	flushAllKeyBindings
	useStoredAccessor

	EODataSource
	Class Description
	Method Types
	Instance Methods
	classDescriptionForObjects
	createObject
	dataSourceQualifiedByKey
	deleteObject
	editingContext
	fetchObjects
	insertObject
	qualifyWithRelationshipKeyAndObject

	EODataSource More
	Creating a Subclass
	Manipulating Objects
	Implementing Master-Detail Data Sources

	EODelayedObserver
	Class Description
	Constants
	Interfaces Implemented
	Method Types
	Instance Methods
	discardPendingNotification
	objectWillChange
	observerQueue
	priority
	subjectChanged

	EODelayedObserver More
	Creating a Subclass of EODelayedObserver

	EODelayedObserverQueue
	Class Description
	Constants
	Method Types
	Constructors
	EODelayedObserverQueue
	defaultObserverQueue

	Instance Methods
	dequeueObserver
	enqueueObserver
	notifyObserversUpToPriority
	runLoopModes
	setRunLoopModes

	EODelayedObserverQueue More
	Enqueuing a Delayed Observer
	Change Notification
	Observer Proxies

	EODetailDataSource
	Class Description
	Method Types
	Constructors
	EODetailDataSource

	Instance Methods

	EOEditingContext
	Purpose
	Class Description
	Constants
	Interfaces Implemented
	Method Types
	Constructors
	EOEditingContext
	defaultParentObjectStore
	encodeObjectWithCoder
	initObjectWithCoder
	setDefaultParentObjectStore
	setSubstitutionEditingContext
	setUsesContextRelativeEncoding
	substitutionEditingContext
	usesContextRelativeEncoding

	Instance Methods
	addEditor
	arrayFaultWithSourceGlobalID
	committedSnapshotForObject
	currentEventSnapshotForObject
	delegate
	deleteObject
	deletedObjects
	editors
	faultForGlobalID
	faultForRawRow
	forgetObject
	globalIDForObject
	hasChanges
	initializeObject
	insertedObjects
	insertObject
	insertObjectWithGlobalID
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs
	invalidatesObjectsWhenFreed
	invokeRemoteMethod
	isObjectLockedWithGlobalID
	lock
	lockObject
	lockObjectWithGlobalID
	locksObjectsBeforeFirstModification
	messageHandler
	objectForGlobalID
	objectsForSourceGlobalID
	objectsWithFetchSpecification
	objectWillChange
	parentObjectStore
	processRecentChanges
	propagatesDeletesAtEndOfEvent
	recordObject
	redo
	refault:
	refaultObject
	refaultObjects
	refetch
	registeredObjects
	removeEditor
	revert
	rootObjectStore
	saveChanges
	saveChangesInEditingContext
	setDelegate
	setInvalidatesObjectsWhenFreed
	setLocksObjectsBeforeFirstModification
	setMessageHandler
	setPropagatesDeletesAtEndOfEvent
	setStopsValidationAfterFirstError
	setUndoManager
	stopsValidationAfterFirstError
	undo
	undoManager
	unlock
	updatedObjects

	Notifications
	EditingContextDidSaveChangesNotification
	InvalidatedAllObjectsInStoreNotification
	ObjectsChangedInStoreNotification
	ObjectsChangedInEditingContextNotification

	EOEditingContext More
	Other Classes that Participate in Object Graph Management
	Programmatically Creating an EOEditingContext
	Accessing An Editing Context’s Adaptor Level Objects

	Using EOEditingContexts in Different Configurations
	Peer EOEditingContexts
	Figure 1 Peer EOEditingContexts

	Nested EOEditingContexts
	Figure 2 Nested EOEditingContexts

	Getting Data from Multiple Sources
	Figure 3 An EOEditingContext Containing Objects from Multiple Sources

	Fetching Objects
	Managing Changes in Your Application
	Getting Information About Changed Objects
	Undo and Redo
	Saving Changes

	Methods for Managing the Object Graph
	Breaking Reference Cycles
	Discarding Changes to Enterprise Objects
	Refreshing Objects
	Discarding the View of Objects Cached in Memory
	Working with Objects Across Multiple EOEditingContexts
	Updates from the Parent EOObjectStore

	General Guidelines for Managing the Object Graph
	You don’t have to worry about the database...
	...but you do have to worry about the object graph

	Using EOEditingContext to Archive Custom Objects in Web Objects Framework

	EOFaultHandler
	Class Description
	Firing a Fault

	Method Types
	Constructors
	EOFaultHandler
	clearFault
	handlerForFault
	isFault
	makeObjectIntoFault
	targetClassForFault

	Instance Methods
	classForFault
	completeInitializationOfObject
	decrementExtraRefCountIsZero
	descriptionForObject
	extraRefCount
	faultWillFire
	incrementExtraRefCount
	isKindOfClass
	isMemberOfClass
	respondsToSelectorForFault
	targetClass

	EOFetchSpecification
	Class Description
	Adopted Protocols
	Method Types
	Constructors
	EOFetchSpecification

	Instance Methods
	entityName
	fetchLimit
	fetchesRawRows
	fetchSpecificationWithQualifierBindings
	hints
	isDeep
	locksObjects
	prefetchingRelationshipKeyPaths
	promptsAfterFetchLimit
	qualifier
	rawRowKeyPaths
	refreshesRefetchedObjects
	requiresAllQualifierBindingVariables
	setEntityName
	setFetchesRawRows
	setFetchLimit
	setHints
	setIsDeep
	setLocksObjects
	setPrefetchingRelationshipKeyPaths
	setPromptsAfterFetchLimit
	setQualifier
	setRawRowKeyPaths
	setRefreshesRefetchedObjects
	setRequiresAllQualifierBindingVariables
	setSortOrderings
	setUsesDistinct
	sortOrderings
	usesDistinct

	EOGenericRecord
	Class Description
	Creating an Instance of EOGenericRecord

	Constructors
	EOGenericRecord

	Instance Methods
	storedValueForKey
	takeStoredValueForKey
	takeValueForKey
	valueForKey

	EOGlobalID
	Class Description
	Temporary Identifiers

	Constants
	Interfaces Implemented
	Instance Methods
	isTemporary

	Notifications
	GlobalIDChangedNotification

	EOKeyComparisonQualifier
	Class Description
	Interfaces Implemented
	Constructors
	EOKeyComparisonQualifier

	Instance Methods
	evaluateWithObject
	leftKey
	rightKey
	selector

	EOKeyGlobalID
	Class Description
	Interfaces Implemented
	Method Types
	globalIDWithEntityName

	Instance Methods
	entityName
	equals
	hashcode
	keyCount
	keyValues
	keyValuesArray

	EOKeyValueQualifier
	Class Description
	Interfaces Implemented
	Constructors
	EOKeyValueQualifier

	Instance Methods
	evaluateWithObject
	key
	selector
	value

	EONotQualifier
	Class Description
	Interfaces Implemented
	Constructors
	EONotQualifier

	Instance Methods
	evaluateWithObject
	qualifier

	EONullValue
	Class Description
	Interfaces Implemented
	Constructors
	EONullValue
	nullValue

	EOObjectStore
	Class Description
	Constants
	Method Types
	Instance Methods
	arrayFaultWithSourceGlobalID
	faultForGlobalID
	faultForRawRow
	initializeObject
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs
	invokeRemoteMethod
	isObjectLockedWithGlobalID
	lockObjectWithGlobalID
	objectsForSourceGlobalID
	objectsWithFetchSpecification
	refaultObject
	saveChangesInEditingContext

	Notifications
	InvalidatedAllObjectsInStoreNotification
	ObjectsChangedInStoreNotification

	EOObjectStoreCoordinator
	Class Description
	EOObjectStore Methods

	Constants
	Method Types
	Constructors
	EOObjectStoreCoordinator
	defaultCoordinator
	setDefaultCoordinator

	Instance Methods
	addCooperatingObjectStore
	cooperatingObjectStores
	forwardUpdateForObject
	objectStoreForFetchSpecification
	objectStoreForGlobalID
	objectStoreForObject
	removeCooperatingObjectStore
	saveChangesInEditingContext
	1. The receiver sends each of its EOCooperatingObjectStores the message prepareForSaveWithCoordin...
	2. The receiver sends each of its EOCooperatingObjectStores the message recordChangesInEditingCon...
	3. The receiver sends each of its EOCooperatingObjectStores the message performChanges. This tell...
	4. If performChanges fails for any of the EOCooperatingObjectStores, all stores are sent the mess...
	5. If performChanges succeeds for all EOCooperatingObjectStores, the receiver sends them the mess...
	6. If commitChanges fails for a particular EOCooperatingObjectStore, that store and all subsequen...

	setUserInfo
	userInfo
	valuesForKeys

	Notifications
	CooperatingObjectStoreWasAdded
	CooperatingObjectStoreWasRemoved
	CooperatingObjectStoreNeeded

	EOObserverCenter
	Class Description
	Registering an Observer
	Change Notification

	Method Types
	addObserver
	addOmniscientObserver
	enableObserverNotification
	notifyObserversObjectWillChange
	observerForObject
	observerNotificationSuppressCount
	observersForObject
	removeObserver
	removeOmniscientObserver
	suppressObserverNotification

	EOObserverProxy
	Class Description
	Constructors
	EOObserverProxy

	EOOrQualifier
	Class Description
	Interfaces Implemented
	Constructors
	EOOrQualifier

	Instance Methods
	evaluateWithObject:
	qualifiers

	EOQualifier
	Class Description
	Constants
	Method Types
	Constructors
	EOQualifier
	allQualifierOperators
	filterArrayWithQualifier
	filteredArrayWithQualifier
	operatorSelectorForString
	qualifierToMatchAllValues
	qualifierToMatchAnyValue
	qualifierWithQualifierFormat
	relationalQualifierOperators
	stringForOperatorSelector

	Instance Methods
	bindingKeys
	keyPathForBindingKey
	qualifierWithBindings
	validateKeysWithRootClassDescription

	EOQualifier More
	Creating a Qualifier
	Figure 4 EOQualifier Tree for salary > 300 AND firstName = “Angela” AND manager.name = “Fred”

	Constructing Format Strings
	Checking for NULL Values
	Using Wildcards and the like Operator
	Using Selectors in Qualifier Expressions
	Using Different Data Types in Format Strings
	Using EOQualifier’s Subclasses
	Creating Subclasses

	EOSortOrdering
	Class Description
	Sorting with SQL
	In-Memory Sorting
	Comparison Methods

	Interfaces Implemented
	Method Types
	Constructors
	EOSortOrdering
	sortArrayUsingKeyOrderArray
	sortOrderingWithKey
	sortedArrayUsingKeyOrderArray

	Instance Methods
	key
	selector

	EOTemporaryGlobalID
	Class Description
	Constructors
	EOTemporaryGlobalID

	Instance Methods
	isTemporary

	EOQualifier.ComparisonSupport
	Class Description
	Method Types
	Static Methods
	compareValues
	setSupportForClass
	supportForClass

	Instance Methods
	doesContain
	isCaseInsensitiveLike
	isEqualTo
	isGreaterThan
	isGreaterThanOrEqualTo
	isLessThan
	isLessThanOrEqualTo
	isLike
	isNotEqualTo

	EOSortOrdering.ComparisonSupport
	Class Description
	Method Types
	Static Methods
	compareValues
	setSupportForClass
	supportForClass

	Instance Methods
	compareAscending
	compareCaseInsensitiveAscending
	compareCaseInsensitiveDescending
	compareDescending

	Protocols
	EOClassDescription.ClassDelegate
	Interface Description
	Instance Methods
	shouldPropagateDeleteForObject

	EOEditingContext.Delegate
	Interface Description
	Method Types
	Instance Methods
	editingContextDidMergeChanges
	editingContextShouldFetchObjects
	editingContextShouldInvalidateObject
	editingContextShouldMergeChangesForObject
	editingContextShouldPresentException
	editingContextShouldUndoUserActionsAfterFailure
	editingContextShouldValidateChanges
	editingContextWillSaveChanges

	EOEditingContext.Editor
	Interface Description
	Instance Methods
	editingContextWillSaveChanges
	editorHasChangesForEditingContext

	EOEnterpriseObject
	Interface Description
	Interfaces Implemented
	Method Types
	Instance Methods
	EOEnterpriseObject More
	Initialization
	Change Notification
	Object and Class Metadata Access
	Snapshots
	Writing an Enterprise Object Class
	allPropertyKeys
	attributeKeys
	awakeFromFetch
	awakeFromInsertion
	changesFromSnapshot
	classDescription
	classDescriptionForDestinationKey
	clearProperties
	deleteRuleForRelationshipKey
	editingContext
	entityName
	eoDescription
	eoShallowDescription
	inverseForRelationshipKey
	invokeRemoteMethod
	isToManyKey
	ownsDestinationObjectsForRelationshipKey
	propagateDeleteWithEditingContext
	reapplyChangesFromDictionary
	snapshot
	toManyRelationshipKeys
	toOneRelationshipKeys
	updateFromSnapshot
	userPresentableDescription
	willChange

	EOFaulting
	Interface Description
	Creating a Fault
	Firing a Fault

	Instance Methods
	clearFault
	isFault
	turnIntoFault
	willRead

	EOKeyValueCoding
	Interface Description
	Interfaces Implemented
	Method Types
	Instance Methods
	EOKeyValueCoding More
	Stored Value Methods
	1. Search for a public accessor method based on the specified key, invoking it if there is one. F...
	2. If a public accessor method isn’t found the basic methods search for a private accessor method...
	3. If an accesor method isn’t found, the basic methods search for an instance variable based on t...

	Type Checking and Type Conversion
	handleQueryWithUnboundKey
	handleTakeValueForUnboundKey
	storedValueForKey
	1. Searches for a private accessor method based on key (a method preceded by an underbar). For ex...
	2. If a private accessor isn’t found, searches for an instance variable based on key and returns ...
	3. If neither a private accessor or an instance variable is found, storedValueForKey searches for...
	4. If key is unknown, storedValueForKey calls handleTakeValueForUnboundKey.

	takeStoredValueForKey
	1. Searches for a private accessor method based on key (a method preceded by an underbar). For ex...
	2. If a private accessor isn’t found, searches for an instance variable based on key and and sets...
	3. If neither a private accessor or an instance variable is found, takeStoredValueForKey searches...
	4. If key is unknown, storedValueForKey calls handleTakeValueForUnboundKey.

	takeValueForKey
	1. Searches for a public accessor method of the form setKey, invoking it if there is one.
	2. If a public accessor method isn’t found, searches for a private accessor method of the form _s...
	3. If an accesor method isn’t found and the static method accessInstanceVariablesDirectly returns...
	4. If neither an accessor method nor an instance variable is found, the default implementation in...

	unableToSetNullForKey
	valueForKey
	1. Searches for a public accessor method based on key. For example, with a key of “lastName”, val...
	2. If a public accessor method isn’t found, searches for a private accessor method based on key (...
	3. If an accesor method isn’t found and the static method accessInstanceVariablesDirectly returns...
	4. If neither an accessor method nor an instance variable is found, the default implementation in...

	EOKeyValueCodingAdditions
	Interface Description
	EONullValue in Collections

	Instance Methods
	takeValueForKeyPath
	takeValuesFromDictionary
	valueForKeyPath
	valuesForKeys

	EOEditingContext.MessageHandler
	Interface Description
	Instance Methods
	editingContextPresentException
	editingContextPresentErrorMessage
	editingContextShouldContinueFetching

	EOObserving
	Protocol Description
	Instance Methods
	objectWillChange

	EOQualifier.Comparison
	Interface Description
	Method Types
	Instance Methods
	doesContain
	isCaseInsensitiveLike
	isEqualTo
	isGreaterThan
	isGreaterThanOrEqualTo
	isLessThan
	isLessThanOrEqualTo
	isLike
	isNotEqualTo

	EOQualifierEvaluation
	Protocol Description
	Instance Methods
	evaluateWithObject

	EORelationshipManipulation
	Interface Description
	Instance Methods
	addObjectToBothSidesOfRelationshipWithKey
	addObjectToPropertyWithKey
	removeObjectFromBothSidesOfRelationshipWithKey
	removeObjectFromPropertyWithKey

	EOSortOrdering.Comparison
	Interface Description
	Instance Methods
	compareAscending
	compareCaseInsensitiveAscending
	compareCaseInsensitiveDescending
	compareDescending

	EOValidation
	Interface Description
	Instance Methods
	validateForDelete
	validateForInsert
	validateForSave
	validateForUpdate
	validateValueForKey

	EOValidation More
	Validating Individual Properties
	When Properties are Validated

	Validating Before an Operation

