

 The OracleEOAdaptor Framework

.

t

bject

The OracleEOAdaptor Framework

Framework: System/Library/Frameworks/OracleEOAdaptor.framework

Header File Directories: System/Library/Frameworks/OracleEOAdaptor.framework/Headers

Introduction

The OracleEOAdaptor framework is a set of classes that allow your programs to connect to an Oracle server
These classes provide Oracle-specific method implementations for the EOAccess framework’s EOAdaptor,
EOAdaptorChannel, EOAdaptorContext, and EOSQLExpression abstract classes.

The following table lists the classes in the OracleEOAdaptor Framework and provides a brief description
of each class.

The Connection Dictionary

The connection dictionary contains items needed to connect to an Oracle server, such as the server name
and database (it's common to omit the user name and password from the connection dictionary, and promp
users to enter those values in a login panel). The keys of this dictionary identify the information the server
expects, and the values of those keys are the values that the adaptor uses when trying to connect to the
server. The logon keys for Oracle are as follows:

serverId
userName
password

Class Description

OracleAdaptor
Represents a single connection to a Oracle database server, and is responsible for
keeping login and model information, performing Oracle-specific formatting of SQL
expressions, and reporting errors.

OracleChannel
Represents an independent communication channel to the database server its
OracleAdaptor is connected to.

OracleContext
Represents a single transaction scope on the database server to which its adaptor o
is connected.

OracleSQLExpression Defines how to build SQL statements for OracleChannels.
1

t

ult

s

The OracleAdaptor attempts to connect with a connection string of the form
“userName/password@serverId”. If all the values except the one for serverId are absent, then
OracleAdaptor attempts to connect with just the value for serverId. For more information on logon keys,
see ““Using SQL*Net”.”

The connection dictionary can optionally include two additional keys: connectionString and NLS_LANG.
The connectionString contains a string to be used to login to the database server. If the connectionString
key is present in the connection dictionary, the other logon keys are ignored and this string is used to connec
to the database.

NLS_LANG allows you to set the Oracle NLS_LANG environment variable. NLS_LANG declares to the
Oracle server the character set being used by the client, as well as the language in which you want server
error messages to appear. The format is as follows:

language_territory. characterSet

For example, supplying the value japanese_japan.jeuc for the NLS_LANG key tells the server that the
language is Japanese, the territory is Japan, and the character set is jeuc. See your Oracle documentation
for a complete list of types available for this field.

To add the NLS_LANG key and a value to your connection dictionary, you must manually edit your model
file. For example:

connectionDictionary = {

password = tiger;

serverId = sjOracle;

userName = scott;

NLS_LANG = american_america.us7ascii;

};

Subsequently changing the connection dictionary in your model file using the Set Adaptor Info command
in EOModeler has no effect on these keys and their values-they are preserved unless you edit the file to
remove them.

The default character set for Japanese systems is jeuc. If you are using a non-Japanese system, the defa
is whatever Oracle provides. You only need to add the NLS_LANG key to your connection dictionary if
you are using a character set other than your system's default.

Note: Enterprise Objects Framework uses Rhapsody encoding to represent string data, and it passes string
to the database without converting them to the database character set. If you require that the data
passed to your server is in an encoding other than Rhapsody encoding, you need to subclass
NSString.

Locking

All adaptors use the database server's native locking facilities to lock rows on the server. The Oracle adaptor
locks a row by using the SELECT... FOR UPDATE... statement. This occurs when:
2

 The OracleEOAdaptor Framework

e

• You send the adaptor channel a selectAttributes:fetchSpecification:lock:entity: message with YES
specified as the value for the lock: keyword.

• You explicitly lock an object’s row with the EODatabaseContext’s lockObjectWithGlobalID:
editingContext: message.

• You set pessimistic locking at the database level and fetch objects.

Data Type Mapping

Every adaptor provides a mapping between each server data type and the Objective-C type to which a
database value will be coerced when it’s fetched from the database. The following table lists the mapping
used by OracleAdaptor.

The type mapping methods—externalTypesWithModel:, internalTypeForExternalType:model: , and
isValidQualifierType:model:—allow for an adaptor to supplement its set of type mappings with additional
mappings for user-defined database types. OracleAdaptor does not make use of the model argument if on
is provided.

Oracle Data Type Objective-C Data Type Java Data Type

VARCHAR2 NSString String

NUMBER NSDecimalNumber BigDecimal

LONG NSString String

DATE NSCalendarDate NSGregorianDate

RAW NSData NSData

LONG RAW NSData NSData

CHAR NSString String

MLSLABEL NSString String

REFCURSOR OracleChannel OracleChannel
3

Prototype Attributes

The OracleAdaptor Framework provides the following set of prototype attributes:

Handling Errors

OracleChannel provides a method for handling errors: raiseOracleError . This method is invoked
whenever the channel encounters an error reported by the Oracle server. The methods cursorDataArea,
hostDataArea, and logonDataArea are used to retrieve Oracle-specific data structures from the channel
and context to determine what error has occurred. The hostDataArea and logonDataArea methods are
declared in the OracleContext class.

Name External Type Value Class Name Other Attributes

binaryID RAW NSData width = 12

city VARCHAR2 NSString
columnName = CITY
width = 50

date DATE NSCalendarDate columnName = "

longText LONG NSString

money NUMBER NSDecimalNumber columnName = ""

phoneNumber VARCHAR2 NSString
columnName = PHONE
width = 20

rawImage "LONG RAW" NSData columnName = RAW_IMAGE

state VARCHAR2 NSString
columnName = STATE
width = 2

streetAddress VARCHAR2 NSString
columnName = STREET_ADDRESS
width = 100

tiffImage "LONG RAW" NSImage
adaptorValueConversionMethodName = TIFFRepresentation
columnName = PHOTO
valueFactoryMethodName = "imageWithData:"

uniqueID NUMBER NSNumber
columnName = ""
valueType = i

zipCode VARCHAR2 NSString
columnName = ZIP
width = 10
4

 The OracleEOAdaptor Framework

Generating Primary Keys

Each adaptor provides a database-specific implementation of the method
primaryKeyForNewRowWithEntity: for generating primary keys. The OracleChannel’s implementation
uses sequence objects to provide primary key values. The statement used to create the sequence is:

create sequence table _SEQ

where table is the name of the table for which the adaptor provides primary key values. The adaptor sets the
sequence start value to the corresponding table’s maximum primary key value plus one.

To use OracleChannel’s database-specific primary key generation mechanism, be sure that your database
accommodates the adaptor’s scheme. To modify your database so that it supports the adaptor’s mechanism
for generating primary keys, use EOModeler. For more information on this topic, see Enterprise Objects
Framework Developer’s Guide.

Bind Variables

The OracleAdaptor uses bind variables. A bind variable is a placeholder used in an SQL statement that is
replaced with an actual value after the database server determines an execution plan. You use the following
OracleSQLExpression methods to operate on bind variables:

– bindVariableDictionaryForAttribute:value:
– mustUseBindVariableForAttribute:
– shouldUseBindVariableForAttribute:
5

6

 Classes: OracleAdaptor

't

OracleAdaptor

Inherits From: EOAdaptor : NSObject

Declared In: OracleEOAdaptor/OracleAdaptor.h

Class Description

An OracleAdaptor represents a single connection to an Oracle database server, and is responsible for
keeping login and model information, performing Oracle-specific formatting of SQL expressions, and
reporting errors.

The OracleAdaptor class has these restrictions: You can't have nested transactions, and the adaptor doesn
support full outer joins.

Method Types

Mapping external types to internal types
+ externalTypesWithModel:
+ internalTypeForExternalType:model:

Working with channels and contexts
– adaptorChannelClass
– adaptorContextClass

Testing the connection dictionary
– assertConnectionDictionaryIsValid

Getting information from the connection dictionary
– connectionKeys
– oracleConnectionString

Coercing fetched values
– fetchedValueForDataValue:attribute:
– fetchedValueForDateValue:attribute:
– fetchedValueForNumberValue:attribute:
– fetchedValueForStringValue:attribute:

Returning the default expression class
– defaultExpressionClass

Verifying a qualifier type
– isValidQualifierType:model:
7

Class Methods

externalTypesWithModel:
+ (NSArray *)externalTypesWithModel:(EOModel *)model

Overrides the EOAdaptor method externalTypesWithModel: to return the Oracle database types.

See also: – internalTypeForExternalType:model:

internalTypeForExternalType:model:
+ (NSString *)internalTypeForExternalType: (NSString *)externalType model:(EOModel *)model

Overrides the EOAdaptor method internalTypeForExternalType:model: to return the name of the
Objective-C class used to represent values stored in the database as externalType.

See also: + externalTypesWithModel:

Instance Methods

adaptorChannelClass
– (Class)adaptorChannelClass

Returns the OracleChannel class.

adaptorContextClass
– (Class)adaptorContextClass

Returns the OracleContext class.

assertConnectionDictionaryIsValid
– (void)assertConnectionDictionaryIsValid

Overrides the EOAdaptor method assertConnectionDictionaryIsValid to verify that the receiver can
connect to the database with its connection dictionary. Briefly forms a connection to the server to validate
the connection dictionary and then closes the connection. The adaptor uses this method in conjunction with
displaying a server login panel. Raises an exception if an error occurs.

Note that this method doesn’t open a connection to the database—that happens when the first adaptor
channel is sent an message.
8

 Classes: OracleAdaptor

connectionKeys
– (NSArray *)connectionKeys

Returns an NSArray containing the keys in the receiver’s connection dictionary. You can use this method to
prompt the user to supply values for the connection dictionary.

defaultExpressionClass
– (Class)defaultExpressionClass

Returns the OracleSQLExpression class.

fetchedValueForDataValue:attribute:
– (NSData *)fetchedValueForDataValue:(NSData *)value attribute: (EOAttribute *)attribute

Returns value.

fetchedValueForDateValue:attribute:
– (NSCalendarDate *)fetchedValueForDateValue:(NSCalendarDate *)date attribute: (EOAttribute

*)attribute

Returns an NSCalendarDate based on date whose millisecond value is set to 0.

fetchedValueForNumberValue:attribute:
– (NSNumber *)fetchedValueForNumberValue:(NSNumber *)numberValue

attribute: (EOAttribute *)attribute

Returns an NSNumber based on numberValue that has been rounded according to the precision and scale
specified for attribute.

fetchedValueForStringValue:attribute:
– (NSString *)fetchedValueForStringValue:(NSString *)value attribute: (EOAttribute *)attribute

Provides default processing for string values. Trims trailing spaces and returns nil for 0 length strings.
9

isValidQualifierType:model:
– (BOOL)isValidQualifierType: (NSString *)typeName model:(EOModel *)model

Overrides the EOAdaptor method isValidQualifierType:model: to return YES if an attribute of type
typeName can be used in a qualifier (a SQL WHERE clause) sent to the database server, NO otherwise.
typeName is the name of a type as required by the database server, such as an Oracle “NUMBER”.

oracleConnectionString
– (NSString *)oracleConnectionString

Returns the user name, password, host machine, and server id as a string suitable to be supplied as an
argument to orlon().
10

 Classes: OracleChannel

OracleChannel

Inherits From: EOAdaptorChannel : NSObject

Declared In: OracleEOAdaptor/OracleChannel.h
OracleEOAdaptor/OracleDescription.h

Class Description

An OracleChannel represents an independent communication channel to the database server its
OracleAdaptor is connected to. All of an OracleChannel’s operations take place within the context of
transactions controlled or tracked by its OracleContext. An OracleContext can manage multiple
OracleChannels, and a channel is associated with only one context.

The features OracleChannel adds to EOAdaptorChannel are as follows:

• Oracle-specific error handling
• The ability to configure the fetch buffer
• The ability to read a default list of table names from the database

Method Types

Setting channel characteristics + oracleTableNamesSQL
+ setOracleTableNamesSQL:
– cursorDataArea
– fetchBufferLength
– setFetchBufferLength:

Returning information from the server
– describeModelWithTableNames:
– describeTableNames

Error handling – raiseOracleError
11

Class Methods

oracleTableNamesSQL
+ (NSString *)oracleTableNamesSQL

Returns the SQL statement that will be executed when building a default model.

setOracleTableNamesSQL:
+ (void)setOracleTableNamesSQL:(NSString *)sql

Sets to sql the SQL statement that will be used to return a list of table names from the database. By default,
this list is the result of the SQL statement:

SELECT TABLE_NAME FROM USER_TABLES ORDER BY TABLE_NAME

This setting is used by all OracleChannels in an application. You can specify a different SQL statement
using the defaults write command, for example:

% defaults write NSGlobalDomain OracleTableNamesSQL "SELECT TABLE_NAME FROM..."

Once you use setOracleTableNamesSQL: to specify a setting, it supersedes values set with the defaults
write command.

Instance Methods

cursorDataArea
– (struct cda_def *)cursorDataArea

If the channel is connected, returns an Oracle-specific data structure (cda_def) describing characteristics of
the channel. Otherwise, returns NULL. This method is commonly used with the method raiseOracleError
to determine why an error occurred.

describeModelWithTableNames:
– (EOModel *)describeModelWithTableNames:(NSArray *)tableNames

Overrides the EOAdaptorChannel method describeModelWithTableNames: to create and return a default
model containing entities for the tables specified in tableNames. Assigns the adaptor name and connection
dictionary to the new model. This method is typically used in conjunction with describeTableNames.
Raises an exception if an error occurs.

See also: – describeTableNames
12

 Classes: OracleChannel

d
describeTableNames
– (NSArray *)describeTableNames

Overrides the EOAdaptorChannel method describeTableNames to return an array of the names of all the
tables owned by the current user. Uses the SQL defined in EOOracleTableNamesSQL if it exists.

This method is used in conjunction with describeModelWithTableNames: to build a default model.

See also: – describeModelWithTableNames:

fetchBufferLength
– (unsigned)fetchBufferLength

Returns the size, in bytes, of the fetch buffer. The larger the buffer, the more rows can be returned for each
round trip to the server.

See also: – setFetchBufferLength:

raiseOracleError
– (void)raiseOracleError

Examines Oracle structures for error flags and raises an exception if one is found. Takes an error code and
converts it into an error message. This method is invoked whenever the channel encounters an error reporte
by the Oracle server. This uses cursorDataArea, hostDataArea, and logonDataArea to retrieve
Oracle-specific data structures from the channel and context to determine what error has occurred. (The
hostDataArea and logonDataArea methods are declared in the OracleContext class.)

setFetchBufferLength:
– (void)setFetchBufferLength:(unsigned)length

Sets to length the size, in bytes, of the fetch buffer. The larger the buffer, the more rows can be returned for
each round trip to the server.

See also: – fetchBufferLength
13

14

 Classes: OracleContext

t
l

OracleContext

Inherits From: EOAdaptorContext : NSObject

Declared In: OracleEOAdaptor/OracleContext.h

Class Description

An OracleContext represents a single transaction scope on the database server to which its adaptor objec
is connected. If the server supports multiple concurrent transaction sessions, the adaptor may have severa
adaptor contexts. An OracleContext may in turn have several OracleChannels, which handle actual access
to the data on the server.

The features the OracleContext class adds to EOAdaptorContext are methods for returning Oracle-specific
data structures that describe characteristics of the context: hostDataArea and logonDataArea.
hostDataArea returns the hda_def data structure, and logonDataArea returns the lda_def data structure.
If you intend to extend the OracleContext by making calls to the Oracle API, you’ll need these data
structures.

Method Types

Managing a connection to the server – connect
– disconnect
– isConnected

Returning information about an OracleContext
– fetchesInProgress
– hostDataArea
– logonDataArea

Instance Methods

connect
– (void)connect

Opens a connection to the database server. OracleChannel sends this message to OracleContext when it
(OracleChannel) is about to open a channel to the server.

See also: – disconnect
15

disconnect
– (void)disconnect

Closes a connection to the database server. OracleChannel sends this message to OracleContext when it
(OracleChannel) has just closed a channel to the server.

See also: – connect

fetchesInProgress
– (unsigned)fetchesInProgress

Returns the number of fetches the receiver has in progress.

hostDataArea
– (unsigned char *)hostDataArea

If the channel is connected, returns an Oracle-specific data structure describing characteristics of the
context. Otherwise, returns NULL. This method is commonly used with the OracleChannel method
raiseOracleError to determine why an error occurred.

See also: – logonDataArea

isConnected
– (BOOL)isConnected

Returns YES if the receiver has an open connection to the database, NO otherwise.

See also: – connect, – disconnect

logonDataArea
– (void *)logonDataArea

If the channel is connected, returns an Oracle-specific data structure describing characteristics of the
context. Otherwise, returns NULL. This method is commonly used with the OracleChannel method
raiseOracleError to determine why an error occurred.

See also: – hostDataArea
16

 Classes: OracleSQLExpression
OracleSQLExpression

Inherits From: EOSQLExpression : NSObject

Declared In: OracleEOAdaptor/OracleSQLExpression.h

Class Description

OracleSQLExpression defines how to build SQL statements for OracleChannels.

Method Types

Generating SQL for attributes and values
+ formatValue:forAttribute:

Getting the server type ID + serverTypeIdForName:

Working with no wait locks + setUseNoWaitLocks:
+ useNoWaitLocks

Getting the lock clause – lockClause

Managing bind variables – mustUseBindVariableForAttribute:
– shouldUseBindVariableForAttribute:
– bindVariableDictionaryForAttribute:value:

Class Methods

formatValue:forAttribute:
+ (NSString *)formatValue: (id)value forAttribute: (EOAttribute *)attribute

Overrides the EOSQLExpression method formatValue:forAttribute: to return a formatted string
representation of value for attribute that is suitable for use in a SQL statement.

serverTypeIdForName:
+ (int)serverTypeIdForName:(NSString *)typeName

Returns the Oracle type code (such as OraVARCHAR2 or OraNumber) for typeName (such as
“VARCHAR2” or “NUMBER”).
17

setUseNoWaitLocks:
+ (void)setUseNoWaitLocks:(BOOL)flag

Sets according to flag whether the lock clause of the OracleSQLExpression is @“FOR UPDATE” (block
until the row is available) or @“FOR UPDATE NOWAIT” (return an error immediately if an attempt to lock
a row would block). By default OracleSQLExpression uses the clause @“FOR UPDATE”—that is, by
default it does not use NOWAIT locks. This behavior is also controllable through the
EOOracleUseNoWaitLocks user default.

See also: + useNoWaitLocks

useNoWaitLocks
+ (BOOL)useNoWaitLocks

Returns YES to indicate that the OracleSQLExpression uses NOWAIT locks, NO otherwise. The default is
NO.

See also: + setUseNoWaitLocks:

Instance Methods

bindVariableDictionaryForAttribute:value:
– (NSMutableDictionary *)bindVariableDictionaryForAttribute: (EOAttribute *)attribute

value:value

Overrides the EOSQLExpression method bindVariableDictionaryForAttribute:value: to return the
receiver’s bind variable dictionaries. For more information on bind variables, see the discussion in the class
description.

See also: – mustUseBindVariableForAttribute: , – shouldUseBindVariableForAttribute:

lockClause
– (NSString *)lockClause

Overrides the EOSQLExpression method lockClause to return the SQL string used in a SELECT statement
to lock selected rows. Queries the user default EOOracleUseNoWaitLocks. If this default is not set or if it
is set to NO, this method returns the string @“FOR UPDATE”. If the default is set to YES, this method
returns @“FOR UPDATE NOWAIT”.
18

 Classes: OracleSQLExpression
mustUseBindVariableForAttribute:
– (BOOL)mustUseBindVariableForAttribute: (EOAttribute *)attribute

Overrides the EOSQLExpression method mustUseBindVariableForAttribute: to return YES if the
receiver must use bind variables for attribute, NO otherwise. A returned value of YES indicates that the
underlying RDBMS requires that bind variables be used for attributes with attribute’s external type.

See also: – bindVariableDictionaryForAttribute:value: , – shouldUseBindVariableForAttribute:

shouldUseBindVariableForAttribute:
– (BOOL)shouldUseBindVariableForAttribute: (EOAttribute *)attribute

Overrides the EOSQLExpression method shouldUseBindVariableForAttribute: to return YES if the
receiver can provide a bind variable dictionary for attribute, NO otherwise. A returned value of YES
indicates that the receiver should use bind variables for attributes with attribute’s external type.

See also: – bindVariableDictionaryForAttribute:value: , – mustUseBindVariableForAttribute:
19

	The OracleEOAdaptor Framework
	Framework: System/Library/Frameworks/OracleEOAdaptor.framework
	Introduction
	The Connection Dictionary
	Locking
	Data Type Mapping
	Prototype Attributes
	Handling Errors
	Generating Primary Keys
	Bind Variables

	OracleAdaptor
	Class Description
	Method Types
	Class Methods
	externalTypesWithModel:
	internalTypeForExternalType:model:

	Instance Methods
	adaptorChannelClass
	adaptorContextClass
	assertConnectionDictionaryIsValid
	connectionKeys
	defaultExpressionClass
	fetchedValueForDataValue:attribute:
	fetchedValueForDateValue:attribute:
	fetchedValueForNumberValue:attribute:
	fetchedValueForStringValue:attribute:
	isValidQualifierType:model:
	oracleConnectionString

	OracleChannel
	Class Description
	Method Types
	Class Methods
	oracleTableNamesSQL
	setOracleTableNamesSQL:

	Instance Methods
	cursorDataArea
	describeModelWithTableNames:
	describeTableNames
	fetchBufferLength
	raiseOracleError
	setFetchBufferLength:

	OracleContext
	Class Description
	Method Types
	Instance Methods
	connect
	disconnect
	fetchesInProgress
	hostDataArea
	isConnected
	logonDataArea

	OracleSQLExpression
	Class Description
	Method Types
	Class Methods
	formatValue:forAttribute:
	serverTypeIdForName:
	setUseNoWaitLocks:
	useNoWaitLocks

	Instance Methods
	bindVariableDictionaryForAttribute:value:
	lockClause
	mustUseBindVariableForAttribute:
	shouldUseBindVariableForAttribute:

