

 Classes:

ur
Dynamic Element Specifications

Dynamic elements serve as the basic building blocks of WebObjects applications by linking an application’s
scripted or compiled behavior to an HTML page. The linkage can be two-way, in that a dynamic element:

• Initially sets its attributes to values specified by scripted or compiled variables or methods.

• Represents itself as HTML when called upon to do so.

• Synchronizes the values of its attributes to those entered by the user, and passes these values back to yo
script or compiled code.

With WebObjects, most pages sent to the user’s browser are composed of HTML from a static template
combined with HTML that’s dynamically generated by dynamic elements embedded (directly, or in the
case of reusable components, indirectly) in that template.

Here are the dynamic elements defined in the WebObjects Framework:

WOActionURL
WOActiveImage
WOApplet
WOBody
WOBrowser
WOCheckBox
WOCheckBoxList
WOConditional
WOEmbeddedObject
WOForm
WOFrame
WOGenericContainer
WOGenericElement
WOHiddenField
WOHyperlink
WOImage
WOImageButton
WOJavaScript
WONestedList
WOParam
WOPasswordField
WOPopUpButton
1

WOQuickTime
WORadioButton
WORadioButtonList
WORepetition
WOResetButton
WOResourceURL
WOString
WOSubmitButton
WOSwitchComponent
WOText
WOTextField
WOVBScript

See the WebObjects Developer’s Guide for a more complete introduction to Dynamic Elements.

How to Use These Specifications

Each dynamic element specification that follows is divided into two sections: a synopsis and a description.
The synopsis is designed to give you ready reference to the element’s attributes, showing which ones are
mandatory and which ones optional. The description explains the purpose of the element and each of its
attributes.

The element synopses use several conventions that you should be aware of, for example:

WOSubmitButton { action =submitForm; value=aString; [disabled =YES|NO;] [name=aName;] ... };

• Bold denotes words or characters that are to be taken literally (typed as they appear). For example, the
action and value attributes are to be take literally in the synopsis above.

• Italic denotes words that represent something else or that can be varied. For example, submitForm
represents a method in your script—the exact name of the method is your choice.

• Square brackets ([]) mean that the enclosed attribute or attributes are optional. The name attribute and its
value are optional in the synopsis above.

• A vertical bar (|) separates two options that are mutually exclusive, as in “disabled=YES|NO” where the
attribute’s value must be either YES or NO.

• Ellipsis (...) represents additional attributes and values that you might add but that aren’t part of the
element’s specification. When a dynamic element is asked to produce its HTML representation, these
additional attributes and values are simply copied into the HTML stream. The values for these additional
attributes can be derived dynamically, just as with the built-in attributes.

The otherTagString Attribute

All dynamic elements include an optional attribute, otherTagString , Use this attribute to have the bound
string included directly in an element’s HTML tag. Some HTML elements contain parameters that are not
2

 Classes:

key-value pairs. If you wish to include one of these parameters in your element, you can send it using this
attribute.
3

WOActionURL

Synopsis
WOActionURL { action =aMethod | pageName=aString; | directActionName =anActionName;

actionClass =className; [fragmentIdentifier =anchorFragment;] [queryDictionary =aDict;
?key=value;]... };

Description

WOActionURL enables the creation of URLs to invoke methods or specify pages to return. You can use this
element for a variety of purposes, but it is primarily intended to support JavaScript within a WebObjects
application.

Bindings

action

Action method to invoke when the URL is accessed. This method must return a an object that
conforms to the WOActionResults protocol such as WOComponent or WOResponse.

pageName

The name of a WebObjects page to display when the URL is accessed.

directActionName

The direct action method to invoke when the URL is accessed (minus the "Action" suffix).

actionClass

The name of the class in which the directActionName can be found. Defaults to DirectAction.

fragmentIdentifier

Named location to display in the destination page (that is, an anchor in the destination page).

queryDictionary

NSDictionary with keys/value pairs to be placed into the URL’s query string.

?key

Adds a key/value pair to the specified queryDictionary (or replacees an existing key) by prefixing the
key with a "?". For example:

 ?x = y;

puts the key "x" into the query dictionary with the value of the keypath y.
4

 Classes: WOActiveImage

WOActiveImage

Synopsis
WOActiveImage {filename = imageFileName; [framework = frameworkBaseName|"app" ;] | src =aURL; |

value=aMethod; action =aMethod | href=aURL; | data=dataObject; mimeType =typeString;
[key=cacheKey;] [imageMapFile =aString]; [name=aString;] [x=aNumber; y=aNumber;]
[target =frameName;] [disabled =YES|NO;] ... };

Description

A WOActiveImage displays an image within the HTML page. If the WOActiveImage is disabled, it simply
displays its image as a passive element in the page. If enabled, the image is active, that is, clicking the image
generates a request.

WOActiveImages are intended to be used outside of an HTML form. WOActiveImage functions as a
mapped, active image. When the user clicks such a WOActiveImage, the coordinates of the click are sent
back to the server. Depending on where the user clicks, different actions can be invoked. An image map file
associates actions with each of the defined areas of the image. If an image map file is not specified, the
method specified by the action attribute is performed when the image is clicked, or if the href attribute is
specified, the image acts as a hyperlink and takes you to that destination.

Within an HTML form, a WOActiveImage functions as a graphical submit button. However, it is better to
use a WOImageButton instead of WOActiveImage to create a graphic submit button or a mapped image
within a form.

Bindings

filename

Path to the image relative to the WebServerResources directory.

framework

Framework that contains the image file. This attribute is only necessary if the image file is in a
different location from the component. That is, if the component and the image file are both in the
application or if the component and the image file are both in the same framework, this attribute isn’t
necessary. If the image file is in a framework and the component is in the application, specify the
framework’s name here (minus the .framework extension). If the image file should be in the
application but the component is in a framework, specify the "app" keyword in place of the
framework name.
5

src

URL containing the image data. Use this attribute for complete URLs; for relative URLs use filename
instead.

value

Image data in the form of a WOElement object. This data can come from a database, a file, or
memory.

action

Method to invoke when this element is clicked. If imageMapFile is specified, action is only invoked if
the click is outside any mapped area. In other words, action defines the default action of the active
image.

href

URL to direct the browser to as a default when the image is clicked and no hot zones are hit.

data

Specifies an image resource in the form of an NSData; this data can come from a database, a file, or
memory. If you specify resource data, you must specify a MIME type.

mimeType

A string designating a MIME resource type, such as “image/gif”, to be put in the content-type header
field; this type tells the client what to do with data. If you provide data but no MIME type,
WebObjects will raise.

key

A string that the application uses as a key for caching the data specified in data. If you do not provide
a key, the data object must be fetched each time it is needed. For further information, see the
reference documentation for WOResourceManager, particularly that for the flushDataCache method.

imageMapFile

Name of the image map file.

name

If name is specified then the hit point is specified as name.x=value; name.y=value; in the form. This
is useful when you need to use this element to submit a form to an external URL that expects the hit
point to be expressed in a certain format.

x, y

If specified, returns the coordinates of the user’s click within the image.
6

 Classes: WOActiveImage

,

target

Frame in a frameset that will receive the page returned as a result of the user’s click.

disabled

If YES, a regular image element () is generated rather than an active image.

The Image Map File

If the imageMapFile is specified, WebObjects searches for the image map file in the application and, if the
image is in a framework, the search continues in the framework where the image resides. You should put
image map files into the Resources suitcase in your Project Builder project. If your project has localized
images, the image map file may also need to be localized. If you choose to have localized mapped images
you must have a corresponding map file for each localized image (unless you only have one map file which
is not in any locale-specific .lproj directory).

Note: The image map file must be in the same location as the image. For example, if the image is in a
framework, the image map file must be in that same framework.

Each line in the image map file has this format:

shape action coordinate-list

shape

Either rect , circle , or poly . For rect shape, the coordinates x1,y1 specify the upper-left corner of the
hot zone, and x2,y2 specify lower-right corner. For circle shape, the x1,y1 is the origin, and x2,y2 is
a point on the circle. For the poly shape, each coordinate is a vertex. Up to 100 vertices are supported.

action

Name of the method to invoke when the image is clicked.

coordinate-list

The list of coordinates (x1,y1 x2,y2 ...) as described under shape, above.

Here’s a couple examples of image map files:

rect home 0,0 135,56

rect buy 135,0 270,56
7

WOApplet

Synopsis
WOApplet { code =javaClassName; width =aWidth; height =aHeight; [associationClass =className;]

[codeBase =aPath;] [archive =jarFile1[, jarFile2];] [archiveNames =jarFile1[, jarFile2];]
[object =serializedApplet;] [hspace = aSize;] [vspace =aSize;] [align =aString]... };

Description

WOApplet is a dynamic element that generates HTML to specify a Java applet. The applet’s parameters are
passed by one or more WOParam elements.

Bindings

code

Name of the Java class.

width

Width, in pixels, of the area to allocate for the applet.

height

Height, in pixels, of the area to allocate for the applet.

associationClass

Name of Java subclass of next.wo.client.Association that aids in communication between client applet
and the server.

codeBase

Directory that contains the applet code. If this attribute is omitted, the applet code is assumed to be
in the same directory as the template HTML file.

archive

Comma-separated list of URLs for jar archive files containing classes and other resources that will
be preloaded. (Note: Currently, most browser do not support a comma-separated list, so only a single
archive file may be used.) Use this attribute for archive files that you have generated outside of a
WebObjects application or framework. The value for this attribute is appended to the archiveNames
attribute value.
8

 Classes: WOActiveImage

archiveNames

Comma-separated list of archive files containing classes and other resources that will be preloaded.
(Note: Currently, most browser do not support a comma-separated list, so only a single archive file
may be used.) Use this attribute for archive files that are built as part of a WebObjects application or
framework project.

object

File containing serialized representation of the applet.

hspace

Amount of whitespace (in pixels) to the left and right of the applet.

vspace

Amount of whitespace (in pixels) at the top and bottom of the applet.

align

Alignment of the applet. Possible values are top , bottom , left , right , and middle .
9

WOBody

Synopsis
WOBody {src =aURL | filename = imageFileName; [framework = frameworkBaseName|"app" ;] |

data=dataObject; mimeType =typeString; [key=cacheKey;]... };

Description

WOBody specifies the background image to display for the HTML page. All bindings for this element are
related to the background image.

Bindings

src

URL containing the image data. Use this attribute for complete URLs; for relative URLs use filename
instead.

filename

Path to the image relative to the WebServerResources directory.

framework

Framework that contains the image file. This attribute is only necessary if the image file is in a
different location from the component. That is, if the component and the image file are both in the
application or if the component and the image file are both in the same framework, this attribute isn’t
necessary. If the image file is in a framework and the component is in an application, specify the
framework’s name here (minus the .framework extension). If the image file should be in the
application but the component is in a framework, specify the "app" keyword in place of the
framework name.

data

Specifies any resource in the form of an NSData; this data can come from a database, a file, or
memory. If you specify resource data, you must specify a MIME type.

mimeType

A string designating a MIME resource type, such as “image/gif”; this type tells the client what to do
with data. If you provide data but no MIME type, WebObjects will raise.
10

 Classes: WOBody
key

A string that functions as a key for caching the data specified in data. If you do not provide a key, the
data object must be fetched each time it is needed. For further information, see the reference
documentation for WOResourceManager, particularly that for the flushDataCache method.
11

WOBrowser

Synopsis
WOBrowser { list =anArray; item=anItem; [displayString =displayValue; value =optionValue;]

[escapeHTML =YES|NO;] [selections =objectArray;] [name=fieldName;] [disabled =YES|NO;]
[multiple = YES|NO;] [size=anInt;]... };

Description

WOBrowser displays itself as a selection list that displays multiple items at a time. The related element
WOPopUpButton is similar to WOBrowser except that it restricts the display to only one item at a time.

You should provide the title of an item in displayString rather than in value . If there is no binding for
displayString , the string assigned to value is used for the item.

Bindings

list

Array of objects from which the browser derives its values. For example, colleges could name the
list containing objects that represent individual schools.

item

Identifier for the elements of the list. For example, aCollege could represent an object in the colleges
array.

displayString

Value to display in the selection list; for example, aCollege.name for each college object in the list.

value

For each OPTION tag within the selection, this is the “value” attribute (that is, <OPTION
value=”someValue”>). This value can be used as an identifier of an item in the list.

escapeHTML

If escapeHTML is YES (the default), the string rendered by displayString is converted so that
characters which would be interpretted as HTML control characters become their escaped
equivalent. By default, WebObjects tries to ensure that data displays in the client browser just as it
does in a normal editor. Thus, if a your displayString is “a bold idea”, the string passed to
the client browser would be “a bold idea”, but it would display in the browser
as “a bold idea”. If escapeHTML is NO, WebObjects simply passes your data to the client
browser “as is.” In this case, the above example would display in the client browser as “a bold idea”.
12

 Classes: WOBrowser
If you are certain that your strings have no characters in them which might be interpretted as HTML
control characters, you get better performance if you set escapeHTML to NO.

selections

Array of objects that the user chose from list. For the college example, selections would hold college
objects.

name

Name that uniquely identifies this element within the form. You can specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, this element appears in the page but is not active. That is, selections
won’t contain the user’s selection when the page is submitted.

multiple

If multiple evaluates to YES, the user can select multiple items from the list. If NO, the user can select
only one item from the list. The default is NO.

size

How many items to display at one time. The default is 5. size must be greater than 1.
13

WOCheckBox

Synopsis
WOCheckBox {value =defaultValue; [selection =selectedValue;] [name=fieldName;] [disabled =YES|NO;]

... };
WOCheckBox {checked =YES|NO; [name=fieldName;] [disabled =YES|NO;] ... };

Description

A WOCheckBox object displays itself in the HTML page as its namesake, a check box user interface
control. It corresponds to the HTML element <INPUT TYPE="CHECKBOX"...>.

If you want to create a list of check boxes, use WOCheckBoxList instead of this element.

Bindings

value

Value of this input element. If not specified, WebObjects provides a default value.

selection

If selection and value are equal when the page is generated, the check box is checked. When the page
is submitted, selection is assigned the value of the check box.

checked

During page generation, if checked evaluates to YES, the check box appears in the checked state.
During request handling, checked reflects the state the user left the check box in: YES if checked;
NO if not.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, this element appears in the page but is not active. That is, selection won’t
contain the user’s selection when the page is submitted.
14

 Classes: WOCheckBoxList
WOCheckBoxList

Synopsis
WOCheckBoxList { list =anObjectList; item=anIteratedObject; displayString =displayedValue;

[value=aValue;] [index =aNumber;] [prefix =prefixString;] [suffix =suffixString;]
[selections =selectedValues;] [name=fieldName;] [disabled =YES|NO;] [escapeHTML =YES|NO;]...
};

Description

WOCheckBoxList displays a list of check boxes. The user may select several of the objects in the list, and
this sublist is returned as selections .

You should provide the title of a checkbox in displayString rather than in value . If there is no binding for
displayString , the string assigned to value is used to identify the checkbox.

Bindings

list

Array of objects that the WOCheckBoxList will iterate through.

item

Current item in the list array. (This attribute’s value is updated with each iteration.)

displayString

String to display beside the check box for the current item.

value

Value for the INPUT tag of the current item (INPUT type=”Checkbox” value=”someValue”>. You
can use this binding as an additional identifier of the itme.

index

Index of the current iteration of the WOCheckBoxList.

prefix

An arbitrary HTML string inserted before each value.

suffix

An arbitrary HTML string inserted after each value.
15

selections

An array of objects that the user chose from the list.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, this element appears in the page but is not active.

escapeHTML

If escapeHTML is YES (the default), the string rendered by displayString is converted so that
characters which would be interpretted as HTML control characters become their escaped
equivalent. By default, WebObjects tries to ensure that data displays in the client browser just as it
does in a normal editor. Thus, if a your displayString is “a bold idea”, the string passed to
the client browser would be “a bold idea”, but it would display in the browser
as “a bold idea”. If escapeHTML is NO, WebObjects simply passes your data to the client
browser “as is.” In this case, the above example would display in the client browser as “a bold idea”.
If you are certain that your strings have no characters in them which might be interpretted as HTML
control characters, you get better performance if you set escapeHTML to NO.
16

 Classes: WOConditional
WOConditional

Synopsis
WOConditional { condition =YES|NO; [negate=YES|NO;] ... };

Description

A WOConditional object controls whether a portion of the HTML page will be generated, based on the
evaluation of its assigned condition.

Bindings

condition

Expression to evaluate. If the expression evaluates to YES (assuming negate is NO), the HTML code
controlled by the WOConditional object is emitted; otherwise it is not.

negate

Inverts the sense of the condition. By default, negate is assumed to be NO.

Example

 The negate attribute lets you use the same test to display mutually exclusive information; for example:

HTML file

<HTML>

<WEBOBJECTS NAME="PAYING_CUSTOMER">Thank you for your order!</WEBOBJECTS>

<WEBOBJECTS NAME="WINDOW_SHOPPER">Thanks for visiting!</WEBOBJECTS>

</HTML>

Declarations File

PAYING_CUSTOMER: WOConditional {condition=payingCustomer;};

WINDOW_SHOPPER: WOConditional {condition=payingCustomer; negate=YES;};

Script File

- payingCustomer {

if (/* ordered something */) {

return YES;

}

return NO;

}

17

WOEmbeddedObject

Synopsis
WOEmbeddedObject {value =aMethod; | src =aURL; | filename = imageFileName; [framework =

frameworkBaseName|"app";] | data=dataObject; mimeType =typeString; [key=cacheKey;]... };

Description

A WOEmbeddedObject provides support for Netscape plug-ins. It corresponds to the HTML element
<EMBED SRC = >. If the embedded object’s content comes from outside the WebObjects application, use
the src attribute. If the embedded object’s content is returned by a method within the WebObjects
application, use the filename attribute or the data and mimeType attributes.

Bindings

value

The content for this embedded object in the form of a WOElement object. This data can come from
a database, a file, or memory.

src

URL containing the embedded object. Use this attribute for complete URLs; for relative URLs use
filename instead.

filename

Path to the embedded object relative to the WebServerResources directory.

framework

Framework that contains the embedded object. This attribute is only necessary if the object is in a
different location from the component. That is, if the component and the embedded object are both
in the application or if the component and the embedded object are both in the same framework, this
attribute isn’t necessary. If the embedded object is in a framework and the component is in an
application, specify the framework’s name here minus the .framework extension. If the embedded
object should be in the application but the component is in a framework, specify the "app" keyword
in place of the framework name.

data

Specifies any resource in the form of an NSData; this data can come from a database, a file, or
memory. If you specify resource data, you must specify a MIME type.
18

 Classes: WOEmbeddedObject

mimeType

A string designating a MIME resource type, such as “image/gif”; this type tells the client what to do
with data. If you provide data but no MIME type, WebObjects will raise.

key

A string that functions as a key for caching the data specified in data. If you do not provide a key, the
data object is fetched each time it is needed. For further information, see the reference documentation
for WOResourceManager, particularly that for the flushDataCache method.
19

WOForm

Synopsis
WOForm { [action =aMethod; | href=aURL;] [multipleSubmit =YES|NO;] ... };

Description

A WOForm is a container element that generates a fill-in form. It gathers the input from the input elements
it contains and sends it to the server for processing. WOForm corresponds to the HTML element <FORM
... > ... </FORM>.

Bindings

href

URL specifying where the form will be submitted.

action

Action method that’s invoked when the form is submitted. If the form contains a dynamic element
that has its own action (such as a WOSubmitButton or a WOActiveImage), that action is invoked
instead of the WOForm’s.

multipleSubmit

If multipleSubmit evaluates to YES, the form can have more than one WOSubmitButton, each with
its own action. By default, WOForm supports only a single WOSubmitButton. Note: Some older
browsers support only a single submit button in a form.
20

 Classes: WOFrame
WOFrame

Synopsis
WOFrame { value =aMethod; | src =aURL; | pageName=aString; | directActionName =anActionName;

actionClass =className;... };

Description

WOFrame represents itself as a dynamically generated Netscape Frame element.

Bindings

value

Method that will supply the content for this frame.

src

External source that will supply the content for this frame.

pageName

Name of WebObjects page that will supply the content for this frame.

directActionName

The name of the direct action method (minus the "Action" suffix) that will supply the content for the
frame.

actionClass

The name of the class in which the method designated in directActionName can be found. Defaults
to DirectAction.
21

WOGenericContainer

Synopsis
WOGenericContainer { elementName = aConstantString; [omitTags =YES|NO;] [elementID =identifier;]

[otherTagString =aString;] [formValue =singleValue;] [formValues =arrayOfValues;]
[invokeAction =aMethod;]... };

Description

WOGenericContainer supports development of reusable components that closely model the behavior of
common HTML elements. For example, along with WOComponentContent, you can use
WOGenericContainer to implement your own hyperlink element as a reusable component.
WOGenericContainer has attributes that support the takeValues ... and invokeAction ... phases of the
component-action request/response loop.

Bindings

elementName

Name of the HTML tag. This name (for example “TEXTAREA”) will be used to generate the
container’s opening and closing tags (<TEXTAREA>...</TEXTAREA>). elementName can either be
a constant or a variable, such as a key path. You can also set the value of this attribute to nil or null ,
which effectively shuts off this element (that is, WebObjects doesn’t generate HTML tags for this
element). Alternatively, you can use the omitTags attribute to achieve the same effect.

omitTags

A boolean specifying whether the element's tags should be displayed. This attribute is useful for
defining an element that conditionally wraps HTML in a container tag. The default value is NO. If
the flag is YES, the contents of the tag are rendered but not the tags themselves. Using omitTags for
a container makes the container itself optional.

elementID

Allows programmatic access to the element's element ID. This is a read-only attribute.

otherTagString

Enables any string to be part of the opening tag. This permits standalone attributes such as "checked"
or "selected" to be part of a tag.
22

 Classes: WOGenericContainer
formValue
formValues

Enables implementation of input-type elements (for example, WOTextField). Bind these attributes
to a variable that can contain the component’s input value. During the takeValues ... phase, if the
element ID of the current generic container matches an element ID of a form value in the request, the
form value is pushed into the component using this attribute. The formValue attribute corresponds to
WORequest’s formValueForKey: while the formValues atribute corresponds to WORequest’s
formValuesForKey: method; in other words, formValue pushes a single attribute while formValues
pushes an array of attributes.

invokeAction

Enables implementation of action elements (for example, WOHyperlink). During the invokeAction ...
phase, if the element ID of the current generic container matches the sender ID of the URL, the
method bound to this attribute is evaluated. Just as with any action method, it must return an object
that conforms to the WOActionResults protocol, such as WOComponent or WOResponse.
23

WOGenericElement

Synopsis
WOGenericElement { elementName = aConstantString; [omitTags =YES|NO;] [elementID =identifier;]

[otherTagString =aString;] [formValue =singleValue;] [formValues =arrayOfValues;]
[invokeAction =aMethod;]... };

Description

WOGenericElement supports development of reusable components that closely model the behavior of
common HTML elements. For example, you can now use WOGenericElement to implement your own
image (IMG) element as a reusable component. WOGenericElement has attributes that support the
takeValues ... and invokeAction ... phases of the component-action request/response loop.

Bindings

elementName

Name of the HTML tag. This name (for example “HR”) will be used to generate the element’s tag
(<HR>). elementName can either be a constant ora variable, such as a key path. You can also set the
value of this attribute to nil or null , which effectively shuts off this element (that is, WebObjects
doesn’t generate HTML tags for this element). Alternatively, you can use the omitTags attribute to
achieve the same effect.

omitTags

A boolean specifying whether the element's tag should be displayed. The default value is NO. If this
flag is YES, the entire element is not rendered.

elementID

Allows access to the element's element ID. This is a read-only attribute.

otherTagString

Enables any string to be part of the opening tag. This permits standalone attributes such as "checked"
or "selected" to be part of a tag.

formValue
formValues

Enables implementation of input-type elements (for example, WOTextField). Bind these attributes
to a variable that can contain the component’s input value. During the takeValues ... phase, if the
element ID of the current generic element matches an element ID of a form value in the request, the
form value is pushed into the component using this attribute. The formValue attribute corresponds to
24

 Classes: WOGenericElement

WORequest’s formValueForKey: while the formValues atribute corresponds to WORequest’s
formValuesForKey: method; in other words, formValue pushes a single attribute while formValues
pushes an array of attributes.

invokeAction

Enables implementation of action elements (for example, WOHyperlink). During the invokeAction ...
phase, if the element ID of the current generic element matches the sender ID of the URL, the method
bound to this attribute is evaluated. Just as with any action method, it must return an object that
conforms to the WOActionResults protocol, such as WOComponent or WOResponse.
25

WOHiddenField

Synopsis
WOHiddenField { value =defaultValue; [name=fieldName;] [disabled =YES|NO;] ... };

Description

A WOHiddenField adds hidden text to the HTML page. It corresponds to the HTML element <INPUT
TYPE="HIDDEN"...>. Hidden fields are sometimes used to store application state data in the HTML page.
In WebObjects, the WOStateStorage element is designed expressly for this purpose.

Bindings

value

Value for the hidden text field.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, the element appears in the page but is not active.
26

 Classes: WOHyperlink
WOHyperlink

Synopsis
WOHyperlink { action =aMethod | href=aURL; | pageName=aString; | directActionName =anActionName;

actionClass =className; [fragmentIdentifier =anchorFragment;] [string =aString;]
[target =frameName;] [disabled =YES|NO;] ... };

Description

WOHyperlink generates a hypertext link in an HTML document.

Bindings

action

Action method to invoke when this element is activated. The method must return a WOElement.

href

URL to direct the browser to when the link is clicked.

pageName

Name of WebObjects page to display when the link is clicked.

directActionName

The name of the direct action method (minus the "Action" suffix) to invoke when this element is
activated.

actionClass

The name of the class in which the method designated in directActionName can be found. Defaults
to DirectAction.

fragmentIdentifier

Named location to display in the destination page.

string

Text displayed to the user as the link. If you include any text between the <WEBOBJECT ...> and
</WEBOBJECT> tags for this element, the contents of string is appended to that text.

target

Frame in a frameset that will receive the page returned as a result of the user’s click.
27

disabled

If evaluates to YES, the content string is displayed, but the hyperlink is not active.
28

 Classes: WOImage

WOImage

Synopsis
WOImage { src =aURL; | value=imageData; | filename = imageFileName; [framework =

frameworkBaseName|"app" ;] | data=dataObject; mimeType =typeString; [key=cacheKey;]... };

Description

A WOImage displays an image in the HTML. It corresponds to the HTML element .

Bindings

src

URL containing the image data. Use this attribute for complete URLs; for relative URLs use filename
instead.

value

Image data in the form of a WOElement object. This data can come from a database, a file, or
memory.

filename

Path to the image relative to the WebServerResources directory.

framework

Framework that contains the image file. This attribute is only necessary if the image file is in a
different location from the component. That is, if the component and the image file are both in the
application or if the component and the image file are both in the same framework, this attribute isn’t
necessary. If the image file is in a framework and the component is in an application, specify the
framework’s name here (minus the .framework extension). If the image file should be in the
application but the component is in a framework, specify the "app" keyword in place of the
framework name.

data

Specifies an image resource in the form of an NSData; this data can come from a database, a file, or
memory. If you specify resource data, you must specify a MIME type.

mimeType

A string designating a MIME resource type, such as “image/gif”, to be put in the contnet-type
header; this type tells the client what to do with data. If you provide data but no MIME type,
WebObjects will raise.
29

key

A string that the application uses as a key for caching the data specified in data. If you do not provide
a key, the data object must be fetched each time it is needed. For further information, see the
reference documentation for WOResourceManager, particularly that for the flushDataCache method.
30

 Classes: WOImageButton
WOImageButton

Synopsis
WOImageButton { filename =anImageName; [framework =aFrameworkName|"app";] | src =aURL; |

value=aMethod; action =aMethod; | data=dataObject; mimeType =typeString; [key=cacheKey;]
[imageMapFile =aString;] [name=aString;] [x=aNumber; y=aNumber;] [disabled =YES|NO;] ... };

Description

WOImageButton is a graphical submit button. Clicking the image generates a request and submits the
enclosing form’s values. You often use WOImageButton when you need more than one submit button within
a form.

Bindings

filename

Path to the image relative to the WebServerResources directory.

framework

Framework that contains the image file. This attribute is only necessary if the image file is in a
different location from the component. That is, if the component and the image file are both in the
application or if the component and the image file are both in the same framework, this attribute isn’t
necessary. If the image file is in a framework and the component is in an application, specify the
framework’s name here (minus the .framework extension). If the image file should be in the
application but the component is in a framework, specify the "app" keyword in place of the
framework name.

src

URL containing the image data. Use this attribute for complete URLs; for relative URLs use filename
instead.

value

Image data in the form of a WOElement object. This data can come from a database, a file, or
memory.

action

Action method to invoke when this element is clicked.
31

data

Specifies an image resource in the form of an NSData; this data can come from a database, a file, or
memory. If you specify resource data, you must specify a MIME type.

mimeType

A string designating a MIME resource type, such as “image/gif”, to be put in the content-type
header; this type tells the client what to do with data. If you provide data but no MIME type,
WebObjects will raise.

key

A string that the application uses as a key for caching the data specified in data. If you do not provide
a key, the data object must be reloaded each time it is needed. For further information, see the
reference documentation for WOResourceManager, particularly that for the flushDataCache method.

imageMapFile

Name of the image map file. See the WOActiveImage description for more information.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

x, y

If specified, returns the coordinates of the user’s click within the image.

disabled

If disabled evaluates to YES, the element generates a static image () instead of an active
image.
32

 Classes: WOJavaScript
WOJavaScript

Synopsis
WOJavaScript { scriptFile =aPath; | scriptString =aString; | scriptSource =aURL;

[hideInComment =aBOOL;] ... };

Description

WOJavaScript lets you embed a script written in JavaScript in a dynamically generated page.

Bindings

scriptFile

Path to the file containing the script. The path can be statically specified in the declaration file or it
can be an NSString, an object that responds to a description message by returning an NSString, or a
method that returns an NSString.

scriptString

String containing the script. Typically, scriptString is an NSString object, an object that responds to
a description message by returning an NSString, or a method that returns an NSString.

scriptSource

URL specifying the location of the script.

hideInComment

If hideInComment evaluates to YES, the script will be enclosed in an HTML comment (<!-- script
//-->). Since scripts can generate errors in some older browsers that weren’t designed to execute
them, you may want to enclose your script in an HTML comment. Browsers designed to run these
scripts will still be able to execute them despite the surrounding comment tags.
33

WONestedList

Synopsis
WONestedList { list =anObjectList; item=anIteratedObject; displayString =displayedValue; sublist =

aSubarray; action =aMethod; selection =selectedValue; [index =aCurrentIndex;]
[level=aCurrentLevel;] [isOrdered =YES|NO;] [prefix =prefixString;] [suffix =suffixString;]
[escapeHTML =YES|NO;]... };

Description

WONestedList recursively displays a hierarchical, ordered (numbered) or unordered (bulleted) list of
hyperlinks. This element is useful when you want to display hierarchical lists. When the user clicks one of
the objects in the list, it is returned in selection and the action method is invoked.

At any point during iteration of the list, the method specified by the sublist attribute returns the current list’s
sublist (if any), level specifies the current nesting level (where the topmost level is zero), index gives index
of the current item within that nesting level (item returns the actual item), and isOrdered specifies whether
the current sublist should be a numbered list or a bulleted list.

Bindings

list

Hierarchical array of objects that the WONestedList will iterate through.

item

Current item in the list array. (This attribute’s value is updated with each iteration.)

displayString

String to display as a hyperlink for the current item.

sublist

Method that returns the sublist of the current item or nil if the current item is a leaf.

action

Action method to invoke when the element is activated. This method must return a WOElement.

selection

When the page is submitted, selection contains the item that the user clicked.
34

 Classes: WONestedList
index

Index of the current iteration of the WONestedList. The index is unique to each level—that is, it starts
at 0 for each sublist.

level

Nesting level of the current iteration of the WONestedList. The topmost level is level 0.

isOrdered

If isOrdered evaluates to YES, the current sublist is rendered as an ordered list. The default is to
render as an unordered list.

prefix

An arbitrary HTML string inserted before each value.

suffix

An arbitrary HTML string inserted after each value.

escapeHTML

If escapeHTML is YES (the default), the string rendered by displayString is converted so that
characters which would be interpretted as HTML control characters become their escaped
equivalent. By default, WebObjects tries to ensure that data displays in the client browser just as it
does in a normal editor. Thus, if a your displayString is “a bold idea”, the string passed to
the client browser would be “a bold idea”, but it would display in the browser
as “a bold idea”. If escapeHTML is NO, WebObjects simply passes your data to the client
browser “as is.” In this case, the above example would display in the client browser as “a bold idea”.
If you are certain that your strings have no characters in them which might be interpretted as HTML
control characters, you get better performance if you set escapeHTML to NO.
35

WOParam

Synopsis

WOParam { name=aString; value=aString; | action =aMethod; ... };

Description

The WOParam elements are used for passing the parameters of WOApplet.

Bindings

name

Symbolic name associated with this element's value.

value

Value of this parameter.

action

Method that sets the parameter’s value. Use this attribute instead of value if you want the parameter
to be a WebObjects component.
36

 Classes: WOPasswordField
WOPasswordField

Synopsis
WOPasswordField { value=defaultValue; [name=fieldName;] [disabled =YES|NO;] ... };

Description

A WOPasswordField represents itself as a text field that doesn’t echo the characters that a user enters. It
corresponds to the HTML element <INPUT TYPE="PASSWORD"...>.

Bindings

value

During page generation, value sets the default value of the text field. This value is not displayed to
the user. During request handling, value holds the value the user entered into the field, or the default
value if the user left the field untouched.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, the element appears in the page but is not active. That is, value does not
contain the user’s input when the page is submitted.
37

WOPopUpButton

Synopsis
WOPopUpButton { list =anArray; item=anItem; displayString =displayedValue; [value=optionValue;]

[selection =theSelection;] [name=fieldName;] [disabled =YES|NO;] [escapeHTML =YES|NO;]
[noSelectionString =aString]... };

Description

WOPopUpButton, when clicked, displays itself as a selection list that allows the user to select only one item
at a time. The related element WOBrowser is similar to WOPopUpButton except that it allows the user to
select more than one item at a time.

You should provide the title of an item in displayString rather than in value . If there is no binding for
displayString , the string assigned to value is used for the item.

Bindings

list

Array of objects from which the WOPopUpButton derives its values. For example, colleges could
name the array containing objects that represent individual schools.

item

Identifier for the elements of the list. For example, aCollege could represent an object in the colleges
array.

displayString

Value to display in the selection list; for example, aCollege.name for each college object in the list.

value

For each OPTION tag within the selection, this is the “value” attribute (that is, <OPTION
value=”someValue”>). You can use this binding to specify additional identifiers of each item in the
menu.

selection

Object that the user chose from the selection list. For the college example, selection would be a
college object.

name

Name that uniquely identifies this element within the form. You can specify a name or let
WebObjects automatically assign one at runtime.
38

 Classes: WOPopUpButton
disabled

If disabled evaluates to YES, this element appears in the page but is not active. That is, selection does
not contain the user’s selection when the page is submitted.

escapeHTML

If escapeHTML is YES (the default), the string rendered by displayString is converted so that
characters which would be interpretted as HTML control characters become their escaped
equivalent. By default, WebObjects tries to ensure that data displays in the client browser just as it
does in a normal editor. Thus, if a your displayString is “a bold idea”, the string passed to
the client browser would be “a bold idea”, but it would display in the browser
as “a bold idea”. If escapeHTML is NO, WebObjects simply passes your data to the client
browser “as is.” In this case, the above example would display in the client browser as “a bold idea”.
If you are certain that your strings have no characters in them which might be interpretted as HTML
control characters, you get better performance if you set escapeHTML to NO.

noSelectionString

Enables the first item to be “empty.” Bind this attribute to a string (such as an empty string) that, if
chosen, represents an empty selection. When this item is selected, then the selection attribute is set
to nil or null .
39

WOQuickTime

Synopsis
WOQuickTime { filename =imageFilePath; | src =aURL; | [framework =frameworkName|”app” ;]

width =anInt; height =anInt; [hidden =YES|NO;] [pluginsPage =aURL;] [hotspotList =arrayOfIDs;
selection =aString; action =aMethod; href=anHREF; | pageName=page; [target =frameTarget;]]
[bgcolor =hexString;] [volume =anInt;] [pan=panAngle;] [tilt =tiltAngle;] [fov=fieldOfView;]
[node=initialNode;] [correction =NONE|PARTIAL|FULL;] [cache=YES|NO;]
[autoplay =YES|NO;] [playeveryframe =YES|NO;] [controller =YES|NO;] [prefixhost =YES|NO;]

Description

WOQuickTime is a dynamic element that you can use to incorporate QuickTime objects (movie, sound,
VR, ...) into your WebObjects applications. The WOQuickTime API is essentially based on the QuickTime
plug-ins API.

WOQuickTime supports QuickTime VR with hotspots. If you specify a list of hotspots and the user clicks
inside the QuickTime VR object, the method specified by the action attribute is performed and the parameter
selection is set to the value of the selected hotspot.

You should use WOQuickTime components outside of an HTML form.

Bindings

WOQuickTime has the following attributes. Those attributes relevant only to VR movies are indicated with
“[VR]” in the description.

filename

Path to the QuickTime object relative to the WebServerResources directory.

src

URL locating the QuickTime object. Use this attribute for complete URLs; for relative URLs use
filename instead.

framework

The framework that contains the QuickTime object. This attribute is only necessary if the QuickTime
object is in a different location from the component. That is, if the component and the QuickTime
object are both in the application or if the component and the QuickTime object are both in the same
framework, this attribute isn’t necessary. If the QuickTime object is in a framework and the
component is in the application, specify the framework’s name here (minus the .framework
extension). If the QuickTime object should be in the application but the component is in a
framework, specify the app keyword in place of the framework name.
40

 Classes: WOQuickTime

width

QuickTime object width in pixels. The width parameter is required. Never specify a width of less
than 2 as this can cause problems with some browsers. If you are trying to hide the movie, use the
hidden tag instead. If you don’t know the width of the movie, open your movie with MoviePlayer (it
comes with QuickTime) and select Get Info from the Movie menu. If you don’t use the scale tag and
you supply a width that is smaller than the actual width of the movie, the movie will be cropped to
fit. If you supply a width that is greater than the width of the movie, the movie will be centered inside
this width.

height

Quicktime object height in pixels. If you want to display the movie’s controller, you’ll need to add
16 pixels to the height. height is required unless you use the hidden attribute. Never specify a height
of less than 2 as this can cause problems with some browsers. If you are trying to hide the movie, use
the hidden tag instead. If you don't know the height of the movie, open your movie with MoviePlayer
and select Get Info from the Movie menu. If you do not use the scale tag and you supply a height
that is smaller than the actual height of the movie (plus 16 if you are showing the controller), the
movie will be cropped to fit. If you supply a height that is greater than the height of the movie, the
movie will be centered inside this height.

pluginsPage

This optional attribute allows you to specify a URL from which the user can fetch the necessary
plug-in if it is not installed. This attribute is handled by your browser. If your browser cannot find the
plug-in when loading your page, it will warn the user and allow them to bring up the specified URL.
Generally this parameter should be set to “http://www.apple.com/quicktime”. This attribute is
appropriate for both QuickTime movies and QuickTime VR Objects and Panoramas.

hotspotList

[VR] The hotspot list is an array of strings, each of which should be mapped to a hotspot ID as
defined when the hotspots are created with the QuickTime VR authoring tools.

selection

[VR] A string corresponding to the ID of the user-selected hotspot or nil if none is selected.

action

Method to invoke when the QuickTime object is clicked. The selection parameter then contains the
ID of the selected hotspot if a hotspot list has been specified, or nil otherwise.

href

An optional attribute for specifying a URL to direct the browser to when the QuickTime object is
clicked and no hotspots are hit.
41

pageName

An optional attribute specifying the name of the WebObjects page to display when the QuickTime
object is clicked and no hotspots are hit.

bgcolor

Background color for the QuickTime object. This is an optional attribute. Use bgcolor to specify the
background color for any space that is not taken by the movie—as, for example, if you embed a
160x120 movie in a 200x120 space. Specify the color as a hex value.

target

(optional) When set, the target attribute is the name of a valid frame (including _self, _top, _parent,
_blank or an explicit frame name) that will be the target of a link specified by the hotspot or href
attribute.

volume

An optional attribute affecting the initial volume level. Possible values are 0 through 100. A setting
of 0 effectively mutes the audio; a setting of 100 is maximum volume.

pan

[VR] This optional attribute allows you to specify the initial pan angle for a QuickTime VR
movie.The range of values for a typical movie would be 0.0 to 360.0 degrees. If no value for pan is
specified, the value stored in the movie is used.

tilt

[VR] This optional attribute allows you to specify the initial tilt angle for a QuickTime VR movie.
The range of values for a typical movie would be -42.5 to 42.5 degrees. If no value for tilt is specified,
the value stored in the movie is used.

fov

[VR] This optional attribute allows you to specify the initial field of view angle for a QuickTime VR
movie.The range of values for a typical movie would be 5.0 to 85.0 degrees. If no value is specified
for fov, the value stored in the panoramic movie is used.

node

[VR] This optional attribute allows you to specify the initial node for a multi-node QuickTime VR
movie. If no value is specified for node , the default node and view (specified at creation time of the
movie) is used.

correction

[VR] (optional) Possible values are “NONE”, “PARTIAL”, or “FULL” (the default). This attribute
is only appropriate for QuickTime VR objects and panoramas.
42

 Classes: WOQuickTime
cache

(optional) If set to YES, the browser will cache movies when possible just like other documents.

autoplay

(optional) When set to YES, causes the movie to start playing as soon as the QuickTime Plug-In
estimates that it’ll be able to play the entire movie without waiting for additional data. This attribute’s
default is specified by a user setting in the QuickTime Plug-in Preferences.

hidden

This optional attribute controls the visibility of the movie. By default the value is YES; if you set it
to NO the movie won’t be visible on the page. This option is not appropriate for QuickTime VR
Objects or Panoramas. You can use the hidden setting to hide a sound-only movie.

playEveryFrame

When this optional attribute is set to YES the QuickTime plug-in plays every frame, even if it is
necessary to play at a slower rate to do so. This parameter is particularly useful to play simple
animations, and is appropriate for QuickTime movies. Note that setting it to YES will turn off any
audio tracks your movie may have.

controller

This optional attribute sets the visibility of the movie controller (with QTVR 2.1, you can have a
controller on VR Panarama or Object Movies). If you don’t specify controller, the default is YES for
QuickTime movies. For compatibility with existing web pages, the default is NO for QuickTime VR
movies.

prefixHost

This attribute should be used to fix a bug with the QuickTime 2.x plug-in on Windows platforms.
Setting prefixHost to YES (the default is NO) will automatically add the http host name at the
beginning of each dynamic URL, allowing old plug-ins to correctly handle WOQuickTime
component.
43

WORadioButton

Synopsis
WORadioButton {value =defaultValue; [selection =selectedValue;] [name=fieldName;]

[disabled =YES|NO;] ... };
WORadioButton {checked =YES|NO; [name=fieldName;] [disabled =YES|NO;] ... };

Description

WORadioButton represents itself as an on-off switch. Radio buttons are normally grouped, since the most
important aspect of their behavior is that they allow the user to select no more than one of several choices.
If the user selects one button, the previously selected button (if any) becomes deselected.

Since radio buttons normally appear as a group, WORadioButton is commonly found within a
WORepetition. Alternatively, you can use the WORadioButtonList element.

Bindings

value

Value of this input element. If not specified, WebObjects provides a default value.

selection

If selection and value are equal when the page is generated, the radio button is selected. When the
page is submitted, selection is assigned the value of the radio button.

checked

During page generation, if checked evaluates to YES, the radio button appears in the selected state.
During request handling, checked reflects the state the user left the radio button in: YES if checked;
NO if not.

name

Name that identifies the radio button’s group. Only one radio button at a time can be selected within
a group.

disabled

If disabled evaluates to YES, this element appears in the page but is not active. That is, selection does
not contain the user’s selection when the page is submitted.

Note that either checked or value is required in a WORadioButton declaration, but that they are mutually
exclusive.
44

 Classes: WORadioButtonList
WORadioButtonList

Synopsis
WORadioButtonList { list =anObjectList; item=anIteratedObject; displayString =displayedValue;

[value=aValue;] [index =aNumber;] [prefix =prefixString;] [suffix =suffixString;]
[selection =selectedValue;] [name=fieldName;] [disabled =YES|NO;] [escapeHTML =YES|NO;]... };

Description

WORadioButtonList displays a list of radio buttons. The user may select one of the objects in the list, and
this object is returned as selection .

You should provide the title of a radio button in displayString rather than in value . If there is no binding for
displayString , the string assigned to value is used as the label of the button.

Bindings

list

Array of objects that the WORadioButtonList will iterate through.

item

Current item in the list array. (This attribute’s value is updated with each iteration.)

displayString

String to display beside the radio button for the current item.

value

Value for the INPUT tag of the current item (INPUT type=”RadioButton” value=”someValue”>.

index

Index of the current iteration of the WORadioButtonList.

prefix

An arbitrary HTML string inserted before each value.

suffix

An arbitrary HTML string inserted after each value.

selection

An object that the user chose from the list.
45

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, this element appears in the page but is not active.

escapeHTML

If escapeHTML is YES (the default), the string rendered by displayString is converted so that
characters which would be interpretted as HTML control characters become their escaped
equivalent. By default, WebObjects tries to ensure that data displays in the client browser just as it
does in a normal editor. Thus, if a your displayString is “a bold idea”, the string passed to
the client browser would be “a bold idea”, but it would display in the browser
as “a bold idea”. If escapeHTML is NO, WebObjects simply passes your data to the client
browser “as is.” In this case, the above example would display in the client browser as “a bold idea”.
If you are certain that your strings have no characters in them which might be interpretted as HTML
control characters, you get better performance if you set escapeHTML to NO.
46

 Classes: WORepetition
WORepetition

Synopsis
WORepetition {list =anObjectList; item=anIteratedObject; [index =aNumber;] [identifier =aString;] ... };
WORepetition {count =aNumber; [index =aNumber;] ... };

Description

A WORepetition is a container element that repeats its contents (that is, everything between the
<WEBOBJECT...> and </WEBOBJECT...> tags in the template file) a given number of times. You can use
a WORepetition to create dynamically generated ordered and unordered lists or banks of check boxes or
radio buttons.

Bindings

list

Array of objects that the WORepetition will iterate through.

item

Current item in the list array. (This attribute’s value is updated with each iteration.)

index

Index of the current iteration of the WORepetition. (This attribute’s value is updated with each
iteration.

count

Number of times this element will repeat its contents.
47

WOResetButton

Synopsis
WOResetButton { value =aString; ... };

Description

A WOResetButton element generates a reset button in an HTML page. This element is used within HTML
forms.

Bindings

value

Title of the button.
48

 Classes: WOResourceURL

WOResourceURL

Synopsis
WOResourceURL { filename = imageFileName; [framework = frameworkBaseName|"app" ;] |

data=dataObject; mimeType =typeString; [key=cacheKey;]... };

Description

WOResourceURL enables the creation of URLs to return resources, such as images and sounds. You can
use this element for a variety of purposes, but it is primarily intended to support JavaScript within a
WebObjects application.

Bindings

filename

Path to the resource relative to the WebServerResources directory.

framework

Framework that contains the resource file. This attribute is only necessary if the file is in a different
location from the component. That is, if the component and the file are both in the application or if
the component and the file are both in the same framework, this attribute isn’t necessary. If the
resource file is in a framework and the component is in an application, specify the framework’s name
here (minus the .framework extension). If the resource file should be in the application but the
component is in a framework, specify the "app" keyword in place of the framework name.

data

Specifies any resource in the form of an NSData; this data can come from a database, a file, or
memory. If you specify resource data, you must specify a MIME type.

mimeType

A string designating a MIME resource type, such as “image/gif”; this type tells the client what to do
with data. If you provide data but no MIME type, WebObjects will raise.

key

A string that functions as a key for caching the data specified in data. If you do not provide a key, the
data object must be fetched each time it is needed. For further information, see the reference
documentation for WOResourceManager, particularly that for the flushDataCache method.
49

WOString

Synopsis
WOString { value=aString; [formatter =formatterObj;] [escapeHTML =YES|NO;]

[dateformat =dateFormatString;] [numberformat =numberFormatString;] ... };

Description

A WOString represents itself in the HTML page as a dynamically generated string.

Bindings

value

Text to display in the HTML page. value is typically assigned an NSString object, an object that
responds to a description message by returning an NSString, or a method that returns an NSString.
The NSString’s contents are substituted into the HTML in the place occupied by this dynamic
element.

escapeHTML

If escapeHTML is YES (the default), the string rendered by value is converted so that characters which
would be interpretted as HTML control characters become their escaped equivalent. By default,
WebObjects tries to ensure that data displays in the client browser just as it does in a normal editor.
Thus, if a your value is “a bold idea”, the string passed to the client browser would be “a
bold idea”, but it would display in the browser as “a bold idea”. If
escapeHTML is NO, WebObjects simply passes your data to the client browser “as is.” In this case,
the above example would display in the client browser as “a bold idea”. If you are certain that your
strings have no characters in them which might be interpretted as HTML control characters, you get
better performance if you set escapeHTML to NO.

formatter

An instance of an NSFormatter subclass to be used to format object values for display as strings, and
(in the case of NSTextField) format user entered strings back into object values. This attribute should
specify a variable containing (or method returning) a preconfigured formatter object. For instance,
a WOString might have the binding:

formatter = application.dateFormatter

With the following code:

 // Application.wos

 NSFormatter *_dateFormatter;
50

 Classes: WOString
 - (NSFormatter *)dateFormatter {

 if (!_dateFormatter) {

 _dateFormatter = [[NSDateFormatter alloc]

 initWithDateFormat:@"%m/%d/%Y" allowNaturalLanguage:NO];

 }

 return _dateFormatter;

 }

If a user an “unformattable” value, WOString passes the invalid value through, allowing you to send
back an error page that shows the invalid value.

dateformat

A format string that specifies how value should be formatted as a date. If a date format is used, value
must be assigned an NSCalendarDate object. If value can’t be interpreted according to the format you
specify, value is set to nil . See the NSCalendarDate class specification for a description of the date
format syntax.

numberformat

A format string that specifies how value should be formatted as a number. If a number format is used,
value must be assigned an NSNumber object. If the element’s value can’t be interpreted according to
the format you specify, value is set to nil . See the NSNumberFormatter class specification for a
description of the number format syntax.
51

WOSubmitButton

Synopsis

WOSubmitButton { action =submitForm; value=aString; [disabled =YES|NO;] [name=aName;] ... };

Description

A WOSubmitButton element generates a submit button in an HTML page. This element is used within
HTML forms.

Bindings

action

Action method to invoke when the form is submitted.

value

Title of the button.

disabled

If disabled evaluates to YES, the element appears in the page but is not active. That is, clicking the
button does not actually submit the form.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.
52

 Classes: WOSwitchComponent

WOSwitchComponent

Synopsis

WOSwitchComponent { WOComponentName =aComponentName; ... };

Description

WOSwitchComponent provides a way to determine at runtime which nested component should be
displayed. This component is useful when you want to decide how to display information based on the state
of the application.

Bindings

WOComponentName

Name of the component to display. This attribute can be a string or a method that returns the name
of a component.

If the component specified in WOComponentName takes attributes, pass these attributes along to
WOSwitchComponent following the WOComponentName attribute. Note that this means that all
components that can be displayed by this WOSwitchComponent must use the same API.
53

WOText

Synopsis
WOText { value=defaultValue; [name=fieldName;] [disabled =YES|NO;] ... };

Description

WOText generates a multi-line field for text input and display. It corresponds to the HTML element
<TEXTAREA>.

Bindings

value

During page generation, value specifies the text that is displayed in the text field. During request
handling, value contains the text as the user left it.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, the text area appears in the page but is not active. That is, value does not
contain the user’s input when the page is submitted.
54

 Classes: WOTextField

WOTextField

Synopsis
WOTextField { value=aValue; [formatter =formatterObj;] [dateformat =dateFormatString;]

[numberformat =numberFormatString;] [name=fieldName;] [disabled =YES|NO;] ... };

Description

A WOTextField represents itself as a text input field. It corresponds to the HTML element <INPUT
TYPE="TEXT"...>.

Bindings

value

During page generation, value sets the default value displayed in the single-line text field. During
request handling, it holds the value the user entered into the field, or the default value if the user left
the field untouched.

formatter

An instance of an NSFormatter subclass to be used to format object values for display as strings, and
(in the case of NSTextField) format user entered strings back into object values. This attribute should
specify a variable containing (or method returning) a preconfigured formatter object. For instance,
a WOTextField might have the binding:

formatter = application.dateFormatter

With the following code:

 // Application.wos

 NSFormatter *_dateFormatter;

 - (NSFormatter *)dateFormatter {

 if (!_dateFormatter) {

 _dateFormatter = [[NSDateFormatter alloc]

 initWithDateFormat:@"%m/%d/%Y" allowNaturalLanguage:NO];

 }

 return _dateFormatter;

 }

If a user an “unformattable” value, WOTextField passes the invalid value through, allowing you to
send back an error page that shows the invalid value.
55

dateformat

A format string that specifies how value should be formatted as a date. If a date format is used, value
must be assigned an NSCalendarDate object. If value can’t be interpreted according to the format you
specify, value is set to nil . See the NSCalendarDate class specification for a description of the date
format syntax.

numberformat

A format string that specifies how value should be formatted as a number. If a number format is used,
value must be assigned an NSNumber object. If the element’s value can’t be interpreted according to
the format you specify, value is set to nil . See the NSNumberFormatter class specification for a
description of the number format syntax.

name

Name that uniquely identifies this element within the form. You may specify a name or let
WebObjects automatically assign one at runtime.

disabled

If disabled evaluates to YES, the element appears in the page but is not active. That is, value does not
contain the user’s input when the page is submitted.
56

 Classes: WOVBScript

,
WOVBScript

Synopsis
WOVBScript { scriptFile =aPath | scriptString =aString | scriptSource =aURL; [hideInComment =aBOOL;] ...

};

Description

WOVBScript lets you embed a script written in Visual Basic in a dynamically generated page.

Bindings

scriptFile

Path to the file containing the script. The path can be statically specified in the declaration file or it
can be an NSString, an object that responds to a description message by returning an NSString, or a
method that returns an NSString.

scriptString

String containing the script. Typically, scriptString is an NSString object, an object that responds to
a description message by returning an NSString, or a method that returns an NSString.

scriptSource

URL specifying the location of the script.

hideInComment

If hideInComment evaluates to YES, the script will be enclosed in an HTML comment (<!-- script
-->). Since scripts can generate errors in some older browsers that weren’t designed to execute them
you may want to enclose your script in an HTML comment. Browsers designed to run these scripts
will still be able to execute them despite the surrounding comment tags.
57

	Dynamic Element Specifications
	How to Use These Specifications
	The otherTagString Attribute

	WOActionURL
	Synopsis
	Description
	Bindings
	action
	pageName
	directActionName
	actionClass
	fragmentIdentifier
	queryDictionary
	?key

	WOActiveImage
	Synopsis
	Description
	Bindings
	filename
	framework
	src
	value
	action
	href
	data
	mimeType
	key
	imageMapFile
	name
	x, y
	target
	disabled

	The Image Map File
	Description

	WOApplet
	Synopsis
	WOApplet { code=javaClassName; width=aWidth; height=aHeight; [associationClass=className;] [codeB...

	Description
	Bindings
	code
	width
	height
	associationClass
	codeBase
	archive
	archiveNames
	object
	hspace
	vspace
	align

	WOBody
	Synopsis
	Description
	Bindings
	src
	filename
	framework
	data
	mimeType
	key

	WOBrowser
	Synopsis
	Description
	Bindings
	list
	item
	displayString
	value
	escapeHTML
	selections
	name
	disabled
	multiple
	size

	WOCheckBox
	Synopsis
	Description
	Bindings
	value
	selection
	checked
	name
	disabled

	WOCheckBoxList
	Synopsis
	Description
	Bindings
	list
	item
	displayString
	value
	index
	prefix
	suffix
	selections
	name
	disabled
	escapeHTML

	WOConditional
	Synopsis
	Description
	Bindings
	condition
	negate

	Example
	HTML file
	Declarations File
	Script File

	WOEmbeddedObject
	Synopsis
	Description
	Bindings
	value
	src
	filename
	framework
	data
	mimeType
	key

	WOForm
	Synopsis
	Description
	Bindings
	href
	action
	multipleSubmit

	WOFrame
	Synopsis
	Description
	Bindings
	value
	src
	pageName
	directActionName
	actionClass

	WOGenericContainer
	Synopsis
	Description
	Bindings
	elementName
	omitTags
	elementID
	otherTagString
	formValue formValues
	invokeAction

	WOGenericElement
	Synopsis
	Description
	Bindings
	elementName
	omitTags
	elementID
	otherTagString
	formValue formValues
	invokeAction

	WOHiddenField
	Synopsis
	Description
	Bindings
	value
	name
	disabled

	WOHyperlink
	Synopsis
	Description
	Bindings
	action
	href
	pageName
	directActionName
	actionClass
	fragmentIdentifier
	string
	target
	disabled

	WOImage
	Synopsis
	Description
	Bindings
	src
	value
	filename
	framework
	data
	mimeType
	key

	WOImageButton
	Synopsis
	Description
	Bindings
	filename
	framework
	src
	value
	action
	data
	mimeType
	key
	imageMapFile
	name
	x, y
	disabled

	WOJavaScript
	Synopsis
	Description
	Bindings
	scriptFile
	scriptString
	scriptSource
	hideInComment

	WONestedList
	Synopsis
	Description
	Bindings
	list
	item
	displayString
	sublist
	action
	selection
	index
	level
	isOrdered
	prefix
	suffix
	escapeHTML

	WOParam
	Synopsis
	Description
	Bindings
	name
	value
	action

	WOPasswordField
	Synopsis
	Description
	Bindings
	value
	name
	disabled

	WOPopUpButton
	Synopsis
	Description
	Bindings
	list
	item
	displayString
	value
	selection
	name
	disabled
	escapeHTML
	noSelectionString

	WOQuickTime
	Synopsis
	Description
	Bindings
	filename
	src
	framework
	width
	height
	pluginsPage
	hotspotList
	selection
	action
	href
	pageName
	bgcolor
	target
	volume
	pan
	tilt
	fov
	node
	correction
	cache
	autoplay
	hidden
	playEveryFrame
	controller
	prefixHost

	WORadioButton
	Synopsis
	Description
	Bindings
	value
	selection
	checked
	name
	disabled

	WORadioButtonList
	Synopsis
	Description
	Bindings
	list
	item
	displayString
	value
	index
	prefix
	suffix
	selection
	name
	disabled
	escapeHTML

	WORepetition
	Synopsis
	Description
	Bindings
	list
	item
	index
	count

	WOResetButton
	Synopsis
	Description
	Bindings
	value

	WOResourceURL
	Synopsis
	Description
	Bindings
	filename
	framework
	data
	mimeType
	key

	WOString
	Synopsis
	Description
	Bindings
	value
	escapeHTML
	formatter
	dateformat
	numberformat

	WOSubmitButton
	Synopsis
	Description
	Bindings
	action
	value
	disabled
	name

	WOSwitchComponent
	Synopsis
	Description
	Bindings
	WOComponentName

	WOText
	Synopsis
	Description
	Bindings
	value
	name
	disabled

	WOTextField
	Synopsis
	Description
	Bindings
	value
	formatter
	dateformat
	numberformat
	name
	disabled

	WOVBScript
	Synopsis
	Description
	Bindings
	scriptFile
	scriptString
	scriptSource
	hideInComment

