The EOAccess Framework

Framework: com.apple.yellow.eoaccess

Introduction

The EOAccess framework is one of a group of frameworks known collectively as the Enterprise Objects
Framework. The classes and interfaces that make up the EOAccess framework allow your applications to
interact with database servers at a high level of abstraction. These classes make up what is known as the
access layelThe access layer is divided into two main parts:

» Thedatabase levelWwhich allows applications to treat records as full-fledged enterprise objects.
» Theadaptor levelwhich provides server-independent database access.

Working with the access layer allows you to have a finer level of control over database operations.

EOAccess Framework Class Hierarchy

The EOAccess class hierarchy is rooted in the Foundation Framework’s NSObject class (see Figure 1). The
remainder of the EOAccess Framework consists of several related groups of classes, a few miscellaneous
classes, and a number of interfaces.

Figure 1 The EOAccess Framework class hierarchy

— EOAdaptor

= EOAdaptorChannel
— ECAdaptorContext
— ECdaptorOperation
— EOAftrbute
—EODatabase

= EODatabaseChannel
MWSOec! m—t—EODatabaseOperation
= ECEntity

— EOJoin

— ECLognPanel

— EOModel

— ECModelGroup

— ECRalaticnship

— EOSOLExpression
— EOStoredProcedure

—:EDFﬁuIIHanﬂlet W Component WOComponent
WOComponent

L — ECCooperatingObjectStore | ECDatabaseContext

= ECDataSource | ECDatabaseDataSource

— EOC|assDescription ; ECEntityClassDescription

— ECCualifier | ECSQLCualifier

EOControl Classes

The Database Level

The database level is where enterprise objects are created from the dictionaries retreived by the adaptor
level. It's also where snapshotting is performed. The database level is primarily made up of the following
classes:

« EODatabaseis a class that represents a single database server.

« EODatabaseChannels a class that represents an independent communication channel to the database
server.

Classes:

EODatabaseContextis subclass of EOObjectStore for accessing relational databases, creating and

saving objects based on EOEntity definitions in an EOModel.

EODatabaseOperationis a class that represents an operation—insert, update, or delete—to perform on
an enterprise object and all the necessary information required to perform the operation.

The Adaptor Level

The adaptor level deals with database rows packaged as dictionaries. The adaptor level is primarily made
up of the following classes:

EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database.

EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for
performing database operations.

EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects
Framework applications.

EOAdaptorOperation is a class that represents a primitive operation in a database server and all the
necessary information required by the operation.

The Modeling Classes

A model defines, in entity-relationship terms, the mapping between enterprise object classes and a database.
The following are the principal modeling classes in the EOAccess framework:

EOAttribute is a class that represents a column, field or property in a database, and associates an internal
name with an external name or expression by which the property is known to the database.

EOEntity is a class that describes a table in a database and associates a name internal to the Framework
with an external name by which the table is known to the database.

EOJoin is a class that describes one source-destination attribute pair for an EORelationship.

EOModel is a class that represents a mapping between a database schema and a set of classes based on
the entity-relationship model.

EOModelGroup is a class that represents an aggregation of related models.

EORelationshipis a class that describes an association between two entities, based on attributes of those
two entities.

Faulting

These classes implement or are used to implement object faulting:

EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for
an array of enterprise objects.

EOAccessFaultHandleris a subclass of EOAccessGenericFaultHandler that implements an object fault
for enterprise objects.

EOAccessGenericFaultHandlelis an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext.

Additions to Other Frameworks
The EOAccess framework adds methods to a number of classes in different frameworks:

EOGenericRecord Additionsadds one method to the control layer’s class, for returning a generic record’s
associated EOEntity.

EOODbjectStoreCoordinator Additions adds two methods to the EOControl class for accessing the
coordinator’s EOModelGroup.

EOQualifier Additions adds one method to the class, for “rerooting” a qualifier to another entity.

NSString Additions adds two methods to the class, to convert modeling object names to database schema
names, and database schema names to modeling object names

Miscellaneous Classes
The EOAccess framework also has a number of other useful classes, including:

« EODatabaseDataSources a concrete subclass of EODataSource that fetches objects based on an
EOModel, using an EODatabaseContext that services the data source’s EOEditingContext.

» EOEntityClassDescriptionis a subclass of the control layer's EOClassDescription and extends the
behavior of enterprise objects by deriving information about them from an associated EOModel.

« EOLoginPanelis an abstract class that defines how users provide database login information.

 EOSQLExpressionis an abstract superclass that defines how to build SQL statements for adaptor
channels.

» EOSQLQualifier is a subclass of EOQualifier that contains unstructured text that can be transformed
into an SQL expression.

« EOStoredProcedureis a class that represents a stored procedure defined in a database, and associates a
name internal to EOF with an external name known to the database.

Classes:

Delegates

A number of EOAccess classes delegate behavior. The delegate methods are defined in these Java
interfaces:

An EOAdaptorChannel delegate receives messages for nearly every operation that would affect data in
the database server, and it can preempt, modify, or track these operations.

A EOAdaptorContext delegate receives messages for any transaction begin, commit, or rollback, and it
can preempt, modify, or track these operations.

An EOAdaptor delegate implements a method that can perform a database-specific transformations on
a value.

An EODatabaseContextdelegate can intervene when objects are created and when they’re fetched from
the database.

An EOModelGroupClassdelegate implements a method that returns the default model group.
An EOModelGroup delegate influences how the model group finds and loads models.

Miscellaneous Interfaces EOCustomClassArchivingis an informal protocol that defines methods
that can write any object that conforms to NSCoding to the database as binary data, as generated by
NSArchiver.

EQUitilities is a collection of convenience methods intended to make common operations with EOF
easier.

EOPropertyListEncoding declares methods that read and write objects to property lists.

EOQualifierSQLGeneration declares two methods that are adopted by qualifier classes to qualify
fetches from a database.

Classes: EOAccessArrayFaultHandler

EOAccessArrayFaultHandler

Inherits From: EOAccessGenericFaultHandler : com.apple.yellow.eocontrol. EOFaultHandler :
NSObject
Package: com.apple.yellow.eoaccess

Class Description

EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for an
array of enterprise objects.

Constructors

EOAccessArrayFaultHandler
public EOAccessArrayFaultHandler()

Returns an uninitialized array fault handler.

public EOAccessArrayFaultHandler(com.apple.yellow.eocontrol. EOKeyGlobalidurceGID
java.lang.StringelationshipNamg
EODatabaseContegatabaseContext
com.apple.yellow.eocontrol. EOEditingContextitingContext

Returns a handler initialized with all of the information necessary to fetch the appropriate objects when the
fault is fired. When the fault is fired, the database context asks the editing context for the required objects
using the EOObjectStore protocol.

Instance Methods

completelnitializationOfObject
public voidcompletelnitializationOfObject (java.lang.ObjecanObjec)

Asks the receiver’s database context to fetch the object if it is not already in memory. This method is called

when the fault is fired and uses the EOObjectStore protocol to get the information from the reciever's
editing context

databaseContext
public EODatabaseContedatabaseContexf)

Returns the receiver’s database context.

editingContext
public com.apple.yellow.eocontrol. EOEditingContegitingContext()

Returns the receiver’s editing context.

relationshipName
public java.lang.StringelationshipName()

Returns the receiver’s relationship name.

sourceGloballD
public com.apple.yellow.eocontrol. EOKeyGlobakburceGloballX)

Returns the receiver’s source global ID.

Classes: EOAccessFaultHandler

EOAccessFaultHandler

Inherits From: EOAccessGenericFaultHandler : com.apple.yellow.eocontrol. EOFaultHandler :
NSObject
Package: com.apple.yellow.eoaccess

Class Description

EOAccessFaultHandler is a subclass of EOAccessGenericFaultHandler that implements an object fault for
enterprise objects.

Constructors
EOAccessFaultHandler
public EOAccessFaultHandle()
Returns an uninitialized array fault handler.

public EOAccessFaultHandlefcom.apple.yellow.eocontrol. EOKeyGlobalfjloballD,
EODatabaseContegfatabaseContext

com.apple.yellow.eocontrol. EOEditingContextitingContext

Returns a handler initialized with all of the information necessary to fetch the object when the fault is fired.

Instance Methods
completelnitializationOfObject
public voidcompletelnitializationOfObject (java.lang.ObjecanObjec}

Asks the receiver’s database context to fete@bjectf it is not already in memory. This method is called

called when the fault is fired and uses the EOObjectStore protocol to get the information from the receiver’s
editing context.

databaseContext
public EODatabaseContedatabaseContexf)

Returns the receiver’s database context.

10

editingContext
public com.apple.yellow.eocontrol. EOEditingContegitingContext()

Returns the receiver’s editing context.

globallD
public com.apple.yellow.eocontrol. EOKeyGlobalkijibballD ()

Returns the receiver’s global ID.

Classes: EOAccessGenericFaultHandler

EOAccessGenericFaultHandler

Inherits From: com.apple.yellow.eocontrol. EOFaultHandler : NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOAccessGenericFaultHandler is an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext. Don't use EOAcceessGenericFaultHandler directly; instead, use its
subclasses EOAccessFaultHandler and EOAccessArrayFaultHandler.

EOAccessGenericFaultHandler lets you chain together all the fault handlers in the access layer, so the batch
faulting mechanism can find other faults related to the one that triggered the batch. Use
linkAfterHandlerUsingGeneration to link one fault after another. Usext andpreviousto traverse the

chain.

Instance Methods
generation
public intgeneration()

Returns the the receiver's generation, a number that represents when the fault handler was built.

linkAfterHandlerUsingGeneration

public voidlinkAfterHandlerUsingGeneration (EOAccessGenericFaultHandkaultHandler
int generation

Adds the receiver to a chain of fault handlers, déteitHandler generationis a number that represents
when the handler was built. All faults in an access layer can be chained together, so the batch faulting
mechanism can find other faults related to the one that triggered the batch.

See also: hext, previous

next
public EOAccessGenericFaultHandiext()

Returns the next fault in the chain.

11

12

previous
public EOAccessGenericFaultHandpgevious()

Returns the previous fault in the chain.

Classes: EOAdaptor

EOAdaptor
Inherits From: NSObject
Package: com.apple.yellow.eoaccess

Class Description

EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database. A concrete subclass of EOAdaptor provides database-specific method implementations and
represents a single database server. You never interact with instances of the EOAdaptor class, but you use
its static methodsidaptorWithName andadaptorWithModel , to create instances of a concrete subclass.

The EOAdaptor class defines the methods that find and load the concrete adaptors from bundles. However,
you rarely interact with a concrete adaptor either. Generally, adaptors are automatically created and used by
other classes in the Enterprise Objects Framework.

The EOAdaptor class has the following principal attributes:

* Dictionary of connection information
« Array of adaptor contexts

Other framework classes create EOAdaptor objedéptorwithModel creates a new adaptor with the
adaptor name in the specified modehptorwithName creates a new adaptor with the specified name.

The following table lists the most commonly-used methods in the EOAdaptor class:

assertConnectionDictionarylsValid Verifies that the adaptor can connect with its connection information.
setConnectionDictionary Sets the connection dictionary.

assertConnectionDictionarylsValid Verifies that the adaptor can connect with its connection information.
runLoginPanel Runs the login panel without affecting the connection dictionary.

Runs the login panel until the user enters valid connection

runLoginPanelAndValidateConnectionDictionary information or cancels the panel

setConnectionDictionary Sets the connection dictionary.

For information on subclassing an EOAdaptor, see “Creating an EOAdaptor Subclass”.

13

Method Types

14

Creating an EOAdaptor

Accessing an adaptor’s name

adaptorWithName
adaptorWithModel

name

Accessing the names of all available adaptors

availableAdaptorNames

Accessing connection information

assertConnectionDictionarylsValid
connectionDictionary

setConnectionDictionary
runLoginPanelAndValidateConnectionDictionary
runLoginPanel

databaseEncoding

Performing database-specific transformations on values

Servicing models

Creating adaptor contexts

Checking connection status

fetchedValueForValue
fetchedValueForDataValue
fetchedValueForDateValue
fetchedValueForNumberValue
fetchedValueForStringValue

canServiceModel
internalTypeForExternalTypelnModel
externalTypesWithModel
assignExternallinfoForEntireModel
assignExternallnfoForEntity
assignExternallnfoForAttribute
isValidQualifierTypelnModel

createAdaptorContext
contexts

hasOpenChannels

Accessing a default expression class

setExpressionClassNameForAdaptorClassName
expressionClass
defaultExpressionClass

Classes: EOAdaptor

Accessing an adaptor’s login panel
sharedLoginPanelinstance
runLoginPanelAndValidateConnectionDictionary
runLoginPanel

Accessing the delegate

delegate
setDelegate
Other
createDatabaseWithAdministrativeConnectionDictionary
dropDatabaseWithAdministrativeConnectionDictionary
prototypeAttributes
Constructors

public EOAdaptor ()
public EOAdaptor (java.lang.Stringhameg

Creates and returns a new EOAdaptor wame nameis usually derived from the base filename (that is,
the filename without the “.framework” extension) of the framework from which the adaptor is loaded. For
example, the Oracle adaptor is loaded from the frame@oakleEOAdaptor.framework . When you

create an adaptor subclass, override this method to create a new adaptameith

Never use this constructor directly. It is invoked automatically frdaptorWithName and
adaptorWithModel —EOAdaptor static methods you use to create a new adaptor.

Class Methods
adaptorWithModel
public static java.lang.ObjeadaptorWithModel (EOModelmode)

Creates and returns a new adaptor by extracting the adaptor nammaddarinvoking
adaptorWithName, and assigningnodels connection dictionary to the new adaptor. Throws an exception
if modelis null, if models adaptor name isull, or if the adaptor named modelcan’t be loaded.

See also: — adaptorName(EOModel),setConnectionDictionary

15

16

adaptorWithName
public static java.lang.ObjeadaptorWithName(java.lang.Stringnamé

Creates and returns a new adaptor, loading it from the framework mamed necessary. For example,
this code excerpt creates an adaptor from a framework nacneeEOAdaptor.framework:

EOAdaptor myAdaptor = EOAdaptor.adaptorWithName("Acme");

This method searches the application’s main burdléhrary/Frameworks ,

Network/Library/Frameworks , andSystem/Library/Frameworks for the first framework whose base
filename (that is, the filename without the “.framework” extension) correspondsi®However, note

that dynamic loading isn’t available on PDO platforms. Consequently, you must statically link your adaptor
into applications for PDO: In this caselaptorWithName simply looks in the runtime for an adaptor class
corresponding with the specified name. Throws an excepti@miéis null or if an adaptor class
corresponding witlhamecan't be found.

Usually you'd usedaptorWithModel to create a new adaptor, but you can use this method when you don’t
have a model. In fact, this method is typically used when you're creating an adaptor for the purpose of
creating a model from an existing database.

assignExternallnfoForAttribute
public static voidassignExternallnfoForAttribute (EOAttributeattribute)

Overridden by adaptor subclasses to assign database-specific charactedttibsitto EOAdaptor’s
implementation assigns an external type and then assigns a column name based on the attribute name. For
example assignExternalinfoForAttribute: assigns the column name “FIRST_NAME” to an attribute

named “firstName”. The method makes no changasitibutes column name igttributeis derived.

See also: assignExternallnfoForEntireModel

assignExternallnfoForEntireModel
public static voidassignExternallnfoForEntireModel(EOModelmode)

Assigns database-specific characteristiagnadel Used in EOModeler to switch a model’s adaptor. This
method examines each entitymodel If an entity’s external name is not set and all of the entity’s attribute’s
external names are not set, then this methodassegnExternallnfoForEntity and
assignExternallnfoForAttribute to assign external names. If the entity’s external name is set or if any of
the entity’s attributes’ external names are set, then the method doesn’t assign external names to the entity
or any of its attributes. Regardless, this method assigns external types for all the model’s attributes.

Classes: EOAdaptor

assignExternallnfoForEntity
public static voidassignExternallnfoForEntity (EOEntity entity)

Overridden by adaptor subclasses to assign database-specific characteestits E®OAdaptor's
implementation assigns an external namentity based orentitys name. For example,
assignExternallnfoForEntity assigns the external name “MOVIE” to an entity named “Movie”. An

adaptor subclass should override this method to assign additional database-specific characteristics, if any.

See also: assignExternallnfoForEntireModel

assignExternalTypeForAttribute
public static voidassignExternalTypeForAttribute (EOAttributeattribute)

Overridden by adaptor subclasses to assign the external gitébiste EOAdaptor’s implementation does
nothing. A subclass of EOAdaptor should override this method to assign an external tygetiiisings
internal type, precision, and length information.

See also: assignExternallnfoForEntireModel

availableAdaptorNames
public static NSArrayvailableAdaptorNames)

Returns an array containing the names of all available adaptors. If no adaptors are found, this method
returns an empty array.

See also: assignExternallnfoForEntireModel

externalTypesWithModel
public static NSArraexternalTypesWithModel(EOModelmode)

Implemented by subclasses to return the names of the database types (such as Sybase “varchar” or Oracle
“NUMBER”) for use with the adaptomodelis an optional argument that can be used to supplement the
adaptor’s set of database types with additional, user-defined database types. See your adaptor’s
documentation for information on if and how it usesdel

An adaptor subclass should implement this method.

17

internalTypeForExternalTypelnModel

public static java.lang.StringternalTypeForExternalTypelnModel (java.lang.StringextType
EOModelmode)

Implemented by subclasses to return the name of the Java class used to represent values stored in the
database a=xtTypemodelis an optional argument that can be used to supplement the adaptor’s set of type
mappings with additional mappings for user-defined database types. See your adaptor’s documentation for
information on if and how it usesodel Returnsnull if no mapping foextTypes found.An adaptor

subclass should implement this method.

setExpressionClassNameForAdaptorClassName

public static void
setExpressionClassNameForAdaptorClassNanfjava.lang.StringqglExpressionClassName
java.lang.StringadaptorClassName

Sets the expression class for instances of the class rataptbrClassNamto sglExpressionClassName
If sglExpressionClassNanienull, restores the expression class to the default. Throws an exception if
adaptorClassNamgs null or the empty string.

Use this method to substitute a subclass of EOSQLEXxpression for the expression class provided by the
adaptor.

Instance Methods
assertConnectionDictionarylsValid
public voidassertConnectionDictionarylsValid

()lmplemented by subclasses to verify that the adaptor can connect to the database server with its
connection dictionary. Briefly forms a connection to the server to validate the connection dictionary and
then closes the connection. Throws an exception if the connection dictionary contains invalid information.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: setConnectionDictionary

canServiceModel
public boolearcanServiceMode{EOModelmode)

Returngrue if the receiver can serviegaode] false otherwise. EOAdaptor’'s implementation retutines
if the receiver’s connection dictionary is equaitodels connection dictionary as determined by
NSDictionary'sisEqual: method.

18

Classes: EOAdaptor

A subclass of EOAdaptor doesn’t need to override this method.

connectionDictionary
public NSDictionaryconnectionDictionary()

Returns the receiver’s connection dictionarynolt if the adaptor doesn’t have one. The connection

dictionary contains the values, such as user name and password, needed to connect to the database server.
The dictionary’s keys identify the information the server expects, and its values are the values that the
adaptor will try when connecting. Each adaptor uses different keys; see your adaptor's documentation for
keys it uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: setConnectionDictionary

contexts
public NSArraycontexty)

Returns the adaptor contexts created by the receiveullaf no adaptor contexts have been created. A
subclass of EOAdaptor doesn’t need to override this method.

See also: createAdaptorContext

createAdaptorContext
public EOAdaptorContextreateAdaptorContext()

Implemented by subclasses to create and return a new EOAdaptorComtalttif@a new context can't be
created. A newly created EOAdaptor has no contexts.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: contexts

createDatabaseWithAdministrativeConnectionDictionary

public voidcreateDatabaseWithAdministrativeConnectionDictionary
NSDictionaryconnectionDictionary

Uses the administrative login information to create the database (or user for Oracle) defined by the
connectionDictionary

See also: dropDatabaseWithAdministrativeConnectionDictionary, EOLoginPanel class

19

20

databaseEncoding
public intdatabaseEncoding()

Returns the string encoding used to encode and decode database strings. An adaptor’s database encoding is
stored in the connection dictionary with the key “databaseEncoding”. If the connection dictionary doesn’t
have an entry for the database encoding, the default C string encoding is used. This method throws an
exception if the receiver’s database encoding isn’t valid.

A database system stores strings in a particular character set. The Framework needs to know what character
set the database system uses so it can encode and decode strings coming from and going to the database
server. The string encoding returned from this method specifies the character set the Framework uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: — availableStringEncodings(NSString), -defaultCStringEncoding (NSString)

defaultExpressionClass
public java.lang.ClasdefaultExpressionClas$)

Implemented by subclasses to return the subclass of EOSQLEXxpression used as the default expression class
for the adaptor. You wouldn't ordinarily invoke this method directly. It's invoked automatically to determine
which class should be used to represent query language expressions.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: setExpressionClassNameForAdaptorClassName

delegate
public java.lang.Objedelegaté)

See also: Returns the receiver’s delegatenoitl if a delegate has not been assigned. A subclass of
EOAdaptor doesn’t need to override this methetDelegate

dropDatabaseWithAdministrativeConnectionDictionary

public voiddropDatabaseWithAdministrativeConnectionDictionary(
NSDictionaryconnectionDictionary

Uses the administrative login information to drop the database (or user for Oracle) defined by the
connectionDictionary

See also: createDatabaseWithAdministrativeConnectionDictionary EOLoginPanel class

Classes: EOAdaptor

expressionClass
public java.lang.ClassxpressionClas§

Returns the subclass of EOSQLExpression used by the receiver for query language expressions. Returns
the expression class assigned using the class megtiexpressionClassNameForAdaptorClassNamé

no class has been set for the receiver’s class, this method determines the expression class by sending
defaultExpressionClasgo this.

You wouldn't ordinarily invoke this method directly. It's invoked automatically to determine which class
should be used to represent query language expressions.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

fetchedValueForDataValue

public NSDatdetchedValueForDataValug
NSDatavalue
EOAttributeattribute)

Overridden by subclasses to return the value that the receiver's database server would ultimately store for
valueif it was inserted or updated in the column describedtiipute This method is invoked from
fetchedValueForValuewhen the value argument is an NSData.

EOAdaptor’s implementation returmalueunchanged. An adaptor subclass should override this method if
the adaptor’'s database performs transformations on binary types, such as BLOBs.

fetchedValueForDateValue

public NSGregorianDatietchedValueForDateValug
NSGregorianDatealue
EOAttributeattribute)

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
valueif it was inserted or updated in the column describedttripute This method is invoked from
fetchedValueForValuewhen the value argument is a date.

EOAdaptor's implementation returaalueunchanged. An adaptor subclass should override this method to
convert or format date values. For example, a concrete adaptor subclass c@llasenillisecond value
to 0.

21

22

fetchedValueForNumberValue

public java.lang.NumbdetchedValueForNumberValugjava.lang.Numbevalug
EOAttributeattribute)

Overridden by subclasses to return the value that the receiver's database server would ultimately store for
valueif it was inserted or updated in the column describedttripute This method is invoked from
fetchedValueForValuewhen the value argument is a number.

EOAdaptor’s implementation returaalueunchanged. An adaptor subclass should override this method to
convert or format numeric values. For example, a concrete adaptor subclass should probakgiueund
according to the precision and scat&ibute

fetchedValueForStringValue
public java.lang.StrindetchedValueForStringValug(java.lang.Stringzalug EOAttributeattribute)

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
valueif it was inserted or updated in the column describedttripute This method is invoked from
fetchedValueForValuewhen the value argument is a string.

EOAdaptor's implementation trims trailing spaces and retoufigil for zero-length strings. An adaptor
subclass should override this method to perform any additional conversion or formatting on string values.

fetchedValueForValue
public java.lang.ObjedetchedValueForValugjava.lang.Objectalug EOAttributeattribute)

Returns the value that the receiver's database server would ultimately stakiéf it was inserted or

updated in the column describedddyribute The Framework uses this method to keep enterprise object
shapshots in sync with database values. For example, assume that a product’s price is marked down 15%.
If the product’s original price is 5.25, the sale price is 5.25*.85, or 4.4625. When the Framework updates

the product’s price, the database server truncates the price to 4.46 (assuming the scale of the database’s price
column is 2). Before performing the update, the Framework sends the adigptbedValueForValue

message with the value 4.4625. The adaptor performs the database-specific transformation and returns 4.46.
The Framework assigns the truncated value to the product object and to the product object’s snapshot and
then proceeds with the update.

An adaptor subclass can override this method or one of the data type-$ewtiédValue...methods.
EOAdaptor's implementation détchedValueForValueinvokes one of the data type-specific methods
depending owalues class. Ifvalueis not a string, number, date, or data object (that is, an instance of
java.lang.String, java.lang.Number, NSGregorianDate, NSData, or any of their subclasses),
fetchedValueForValuereturnsvalueunchanged.

Classes: EOAdaptor

This method invokes the EOAdaptorDelegates methdaptor:fetchedValueForAttributeValue:
attribute: which can override the adaptor’s default behavior.

See also: fetchedValueForDataValue fetchedValueForDateValue fetchedValueForNumberValug
fetchedValueForStringValue — valueFactoryMethod (EOAttribute)

hasOpenChannels
public boolearhasOpenChannels()

Returngrue if any of the receiver’s contexts have open chanfateotherwise. A subclass of EOAdaptor
doesn’t need to override this method.

See also: — hasOpenChannel{EOAdaptorContext)

isValidQualifierTypelnModel
public booleansValidQualifierTypelnModel (java.lang.StringypeNameEOModelmode)

Implemented by subclasses to retuiure if an attribute of typéypeNamean be used in a qualifier (a SQL
WHERE clause) sent to the database servéa)seotherwisetypeNamés the name of a type as required

by the database server, such as Sybase “varchar” or Oracle “NUMBIBRElis an optional argument that

can be used to supplement the adaptor’s set of type mappings with additional mappings for user-defined
database types. See your adaptor's documentation for information on if and hownbdsés

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

name
public java.lang.Stringame()

Returns the adaptor’'s name; this is usually the base filename of the framework from which the adaptor was
loaded. For example, if an adaptor was loaded from a framework Aeomed OAdaptor.framework, this
method returns “Acme”.

A subclass of EOAdaptor doesn’t need to override this method.

See also: adaptorWithName

23

24

prototypeAttributes
public NSArrayprototypeAttributes ()

Returns an array of prototype attributes specific to the adaptor class. Adaptor implementers should note that
this method looks for an EOModel nameddaptorNamerototypes in the resources directory of the
adaptor.

runLoginPanel
public NSDictionaryrunLoginPanel()

Runs the adaptor’s login panel by sendingrePanelForAdaptor:validate: message to the adaptor’s

login panel object with the validate fleajse. Returns connection information entered in the panel without
affecting the adaptor’s connection dictionary. The connection dictionary returned isn't validated by this
method.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

See also: runLoginPanelAndValidateConnectionDictionary, setConnectionDictionary,
assertConnectionDictionarylsValid sharedLoginPanellnstance

runLoginPanelAndValidateConnectionDictionary
public booleanunLoginPanelAndValidateConnectionDictionary()

Runs the adaptor’s login panel by sendingrePanelForAdaptor:validate: message to the adaptor’s
login panel object with the validate flagie. Returndrue if the user enters valid connection information,
or falseif the user cancels the panel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

See also: runLoginPanel, setConnectionDictionary, assertConnectionDictionarylsValid
sharedLoginPanellnstance

setConnectionDictionary
public voidsetConnectionDictionay(NSDictionarydictionary)
Sets the adaptor’s connection dictionargiiionary, which must only contain java.lang.String,

NSData,NSDictionary, and NSArray objects. Throws an exception if there are any open channels—you
can’t change connection information while the adaptor is connected.

Classes: EOAdaptor

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

See also: connectionDictionary, hasOpenChannelsassertConnectionDictionarylsValid

setDelegate
public voidsetDelegat§ava.lang.Objectlelegaté

Sets the receiver’s delegatad@egate or removes its delegatedélegatds null. A subclass of EOAdaptor
doesn't need to override this method. A subclass that does override this method must incorporate the
superclass’s version through a messageiper.

See also: delegate

sharedLoginPanelinstance
public static EOLoginPansharedLoginPanellnstanc€)

Returns the receiver’s login panel in applications that have a graphical user interface. Riitifrtise

application doesn’t have an NSApplication object. Otherwise, looks for the bundle named “LoginPanel” in
the resources for the adaptor framework, loads the bundle, and returns an instance of the bundle’s principal
class (see the NSBundle class specification for information on loading bundles). The returned object is used
to implementunLoginPanelAndValidateConnectionDictionary andrunLoginPanel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a messsiggeto

25

26

Classes:

Creating an EOAdaptor Subclass

Enterprise Objects Framework provides concrete adaptors for three standard relational database
management systems—Informix, Oracle, and Sybase—as well as a concrete adaptor for ODBC-compliant
databases. You may want to create a subclass of one of these adaptors to extend its behavior, or you may
want to create a concrete EOAdaptor subclass for a different database or persistent storage system.
EOAdaptor provides many default method implementations that are sufficient for concrete subclasses:

« assignExternallnfoForEntireModel
» connectionDictionary

* contexts

 databaseEncoding

» delegate

« hasOpenChannels

* name

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

« adaptorWithModel

» adaptorWithName

» setExpressionClassNameForAdaptorClassName
« setConnectionDictionary

» setDelegate

If you overridesetConnectionDictionaryor setDelegateyour implementations should incorporate the
superclass’s implementation through a messagager.

The remaining EOAdaptor methods must be overridden by concrete adaptor subclasses in terms of the
persistent storage system with which it interacts:

« assignExternallinfoForAttribute

* assignExternallinfoForEntity

« externalTypesWithModel

« internalTypeForExternalTypelnModel
 assertConnectionDictionarylsValid
« createAdaptorContext
 fetchedValueForDataValue
 fetchedValueForDateValue

« fetchedValueForNumberValue

« fetchedValueForStringValue

« fetchedValueForValue

« isValidQualifierTypelnModel

27

28

Classes: EOAdaptorChannel

EOAdaptorChannel

Inherits From: NSObiject
Package: com.apple.yellow.webobjects
Declared In:

Class Description

EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for performing
database operations. It's associated with EOAdaptor and EOAdaptorContext, which, together with
EOAdaptorChannel, form tredaptor levebf Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorChannel provides database-specific method implementations and
represents an independent communication channel to the database server to which its EOAdaptor object is
connected. You never interact with instances of the EOAdaptorChannel class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to interact with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorChannel
subclass, you sendceeateAdaptorChannelmessage to an instance of the corresponding
EOAdaptorContext subclass. You rarely create adaptor channels yourself. They are generally created
automatically by other framework objects.

You use an adaptor channel to manipulate rows (records) by selecting, fetching, inserting, deleting, and
updating them. An adaptor channel also gives you access to some of the metadata on the server, such as
what stored procedures exist, what tables exist, and what their basic attributes and relationships are.

All of an adaptor channel’s operations take place within the context of transactions controlled or tracked by
its EOAdaptorContext. An adaptor context may manage several channels (though not all can), but a channel
is associated with only one context.

Notifying the Adaptor Channel’s Delegate

You can assign a delegate to an adaptor channel. The EOAdaptorChannel sends certain messages directly
to the delegate, and the delegate responds to these messages on the channel’s behalf. Many of the adaptor
channel methods notify the channel’'s delegate before and after an operation is performed. Some delegate
methods, such aglaptorChannelShouldEvaluateExpressionlet the delegate determine whether the

channel should perform an operation. Others, sucdagtorChannel:didEvaluateExpression are

simply notifications that an operation has occurred. The delegate has an opportunity to respond by
implementing the delegate methods. If the delegate wants to intervene, it impladsgtsChannel:

29

30

shouldEvaluateExpression: If it simply wants notification when a transaction has begun, it implements
adaptorChannel.didEvaluateExpression:

The principal attributes of the EOAdaptorChannel class are:

» Adaptor context
» Delegate

Other framework classes create EOAdaptorChannel objects, using EOAdaptorContext’s
createAdaptorChannel method, which both creates an adaptor channel and assigns its context.

The following table lists EOAdaptorChannel’s more commonly-used methods:

openChannel Opens the channel so it can perform database operations.
closeChannel Close the channel.
selectAttributes:fetchSpecification Selects rows matching the specified qualifier.

Fetches a row resulting from the last selectAttributes:
fetchSpecification:lock:entity:

fetchRow executeStoredProcedure:withValues: , or
evaluateExpression: .

insertRow Inserts the specified row.

updateValues:inRowsDescribedByQualifier Updates the row described by the specified qualifier.

deleteRowDescribedByQualifier Deletes the row described by the specified qualifier.

executeStoredProcedure Performs the specified stored procedure.

evaluateExpression Sends the specified expression to the database.

openChannel Opens the channel so it can perform database operations.

closeChannel Close the channel.

selectAttributes:fetchSpecification Selects rows matching the specified qualifier.

fetchRow Fetches a row resulting from the last select... , .
executeStoredProcedure... , or evaluateExpression: .

insertRow Inserts the specified row.

updateValues:inRowDescribedByQualifier Updates the row described by the specified qualifier.

Classes: EOAdaptorChannel

deleteRowDescribedByQualifier Deletes the row described by the specified qualifier.
executeStoredProcedure Performs the specified stored procedure.
evaluateExpression Sends the specified expression to the database.

Performs an adaptor operation by invoking the
performAdaptorOperation EOAdaptorChannel method appropriate for performing the
specified operation.

For more information on subclassing EOAdaptorChannel, see “Creating an EOAdaptorChannel Subclass”.

Method Types
Accessing the adaptor context
adaptorContext
Opening and closing a channel
openChannel
closeChannel
isOpen
Modifying rows
insertRow

updateValues:inRowDescribedByQualifier
updateValues:inRowsDescribedByQualifier
deleteRowDescribedByQualifier
deleteRowsDescribedByQualifier
lockRowComparingAttributes

Fetching rows
selectAttributes:fetchSpecification
describeResults
setAttributesToFetch
attributesToFetch
fetchRow
cancelFetch
isFetchinProgress

Invoking stored procedures
executeStoredProcedure
returnValuesForLastStoredProcedurelnvocation
Assigning primary keys
primaryKeyForNewRowWithEntity

31

Sending SQL to the server

Batch processing operations

Accessing schema information

Debugging

Accessing the delegate

Constructors
public EOAdaptorChannel()

evaluateExpression

performAdaptorOperation
performAdaptorOperations

describeTableNames
describeStoredProcedureNames
addStoredProceduresWithNamesToModel
describeModelWithTableNames

setDebugEnabled
isDebugEnabled

delegate
setDelegate

public EOAdaptorChannel(EOAdaptorContexadaptorContext

Creates and returns an EOAdaptorChannel, adtiptorContextWhen you create an adaptor channel
subclass, override this method.

Don't invoke this method directly unless you are implementing a concrete adaptor context. It is invoked
automatically frontreateAdaptorChannel—he EOAdaptorContext method you use to create a new

adaptor channel.

See also: adaptorContext

Instance Methods

adaptorContext

public EOAdaptorContexadaptorContext()

Returns the receiver's EOAdaptorContext. A subclass of EOAdaptorChannel doesn’t need to override this

method.

32

Classes: EOAdaptorChannel

addStoredProceduresWithNamesToModel

public voidaddStoredProceduresWithNamesToMod€NSArray storedProcedureNames
EOModelmode)

Overridden by subclasses to create EOStoredProcedure objects for the stored procedures named in
storedProcedureNamesd then to add them toodel This method is used in conjunction with
describeStoredProcedureNameto build a default model in EOModeler. Throws an exception if an error
occurs.

attributesToFetch
public abstract NSArragttributesToFetch()

Implemented by subclasses to return the set of attributes to retrievéetdigRow is next invoked. An
adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: setAttributesToFetch

cancelFetch
public abstract voidancelFetch)

()lmplemented by subclasses to clear all result sets established by Hedeletgtttributes:
fetchSpecification executeStoredProcedurgor evaluateExpressiormessage and terminate the current
fetch, so thaisFetchInProgressreturnsfalse.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

closeChannel
public abstract voidloseChanng)

Implemented by subclasses to close the EOAdaptorChannel so that it can’t perform operations with the
server. Any fetch in progress is canceled. If the receiver is the last open channel in an adaptor context and
if the channel’'s adaptor context has outstanding transactions, closing the channel has server-dependent
results: some database servers roll back all outstanding transactions but others do nothing. Regardless of
whether outstanding transactions are rolled back, this method has the side effect of closing the receiver’s
adaptor context’s connection with the database if the receiver is its adaptor context’s last open channel.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: cancelFetch transactionNestingLevel(EOAdaptorContext)

33

34

delegate
public java.lang.Objedelegate)

Returns the receiver’s delegatenail if the receiver doesn’t have a delegate. A subclass of
EOAdaptorChannel doesn’t need to override this method.

See also: setDelegate

deleteRowDescribedByQualifier

public voiddeleteRowDescribedByQualifieicom.apple.yellow.eocontrol. EOQualifigualifier,
EOEntity entity)

Deletes the row described byalifier from the database table correspondingrttity. Invokes
deleteRowsDescribedByQualifieand throws an exception unless exactly one row is deleted. A subclass
of EOAdaptorChannel doesn't need to override this method.

deleteRowsDescribedByQualifier

public abstract int
deleteRowsDescribedByQualifigicom.apple.yellow.eocontrol. EOQualifigualifier,
EOEntity entity)

Implemented by subclasses to delete the rows descritmpdhbffer from the database table corresponding
to entity. Returns the number of rows deleted. Throws an exception on failure. Some possible reasons for
failure are:

» The adaptor channel isn’t open.
« The adaptor channel is in an invalid state (for example, it's fetching).
» An error occurs in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: deleteRowDescribedByQualifierisOpen isFetchinProgress transactionNestingLevel
(EOAdaptorContext)

describeModelWithTableNames
public EOModeldescribeModelWithTableNamegNSArraytableNames
Overridden by subclasses to create and return a default model containing entities for the tables specified in

tableNamesAssigns the adaptor name and connection dictionary to the new model. This method is
typically used in conjunction wittlescribeTableNamesinddescribeStoredProcedureNames

Classes: EOAdaptorChannel

EOAdaptorChannel’'s implementation does nothing. An adaptor channel subclass should override this
method to create a default model from the database’s metadata.

describeResults
public abstract NSArraglescribeResult§)

Implemented by subclasses to return an array of EOAttributes describing the properties available in the
current result set, as determineddejectAttributes:describedByQualifier:fetchOrder:lock:,
executeStoredProcedurgor a statement evaluated éyaluateExpression: Only invoke this method if a
fetch is in progress as determinedidfyetchinProgress

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

describeStoredProcedureNames
public NSArraydescribeStoredProcedureName$

Overridden by subclasses to read and return an array of stored procedure nhames from the database. This
method is used in conjunction widlddStoredProceduresNamed:toModelto build a default model in
EOModeler. Throws an exception if an error occurs.

describeTableNames
public NSArraydescribeTableName§

Overridden by subclasses to read and return an array of table names from the database. This method in
conjunction withdescribeModelWithTableNamesis used to build a default model.

EOAdaptorChannel’s implementation simply retunno. An adaptor channel subclass should override this
method to construct an array of table names from database metadata.

evaluateExpression
public abstract voigvaluateExpressiofEOSQLEXxpressioexpressioh

Implemented by subclasses to sergressiono the database server for evaluation, beginning a transaction
first and committing it after evaluation if a transaction isn't already in progress. Throws an exception if an
error occurs. An EOAdaptorChannel uses this method to send SQL expressions to the database.

If expressiomesults in a select operation being performed, you can fetch the results as you would if you
had sent aelectAttributes:fetchSpecification You must use the methgétAttributesToFetch before

35

36

you begin fetching. Also, iéxpressiorevaluates to multiple result sets, you must invoke
setAttributesToFetch: before you begin fetching each subsequent set.

evaluateExpressioninvokes the delegate methaattaptorChannelShouldEvaluateExpressiorand
adaptorChannel:didEvaluateExpression

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework neveramahkate Expression

directly. Thus, adaptors for data stores that don’t naturally support an expression language (for example, flat
file adaptors) don’t need to implement this method to work with the Framework.

See also: fetchRow

executeStoredProcedure

public abstract voigxecuteStoredProcedure OStoredProcedurtoredProcedure
NSDictionaryvalue$

Implemented by subclasses to exeatiteedProcedureAny arguments to the stored procedure are in
values a dictionary whose keys are the argument namesfetiddRow to get result rows and
returnValuesForLastStoredProcedurelnvocationto get return arguments and result status, if any.
Throws an exception if an error occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke
executeStoredProcedurairectly. Thus, adaptors for data stores that don’t support stored procedures (for
example, flat file adaptors) don’t need to implement this method to work with the Framework

fetchRow
public abstract NSMutableDictionafgtchRow()

Implemented by subclasses to fetch the next row from the result set of taddatAttributes:
fetchSpecification executeStoredProcedurgor evaluateExpressiormessage sent to the receiver.
Returns values for the receiveattiributesToFetch in a dictionary whose keys are the attribute names.
When there are no more rows in the current result set, this method reilir@sd invokes the delegate
methodadaptorChannelDidChangeResultSeif there are more results sets. When there are no more rows
or result sets, this method retumsl, ends the fetch, and invokadaptorChannelDidFinishFetching
isFetchInProgressreturnstrue until the fetch is canceled or until this method exhausts all result sets and
returnsull. This method also invoke the delegate metlaatigptorChannelWillFetchRow and
adaptorChannelDidFetchRow Throws an exception if an error occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: setAttributesToFetch

Classes: EOAdaptorChannel

insertRow
public abstract voithsertRow(NSDictionaryrow, EOEntityentity)

Implemented by subclasses to insert the valueswinto the table in the database that corresponds to
entity row is a dictionary whose keys are attribute names and whose values are the values to insert. Throws
an exception on failure. Some possible reasons for failure are:

« The user logged in to the database doesn't have permission to insert a new row.
» The adaptor channel is in an invalid state (for example, fetching).
« The row fails to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

isDebugEnabled
public booleansDebugEnabled)

Returngrue if the adaptor channel logs evaluated SQL and other useful information to the console (or to
the standard error streanfglseif not. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also: setDebugEnabledsetDebugEnabled EOAdaptorContext)

isFetchinProgress
public abstract booleasFetchIinProgresg)

Implemented by subclasses to retuitre if the receiver is fetchindalse otherwise. An adaptor channel is
fetching if:

* It's been sent a success$dlectAttributes:describedByQualifier:fetchOrder:lock: message.
» A stored procedure that returns rows has been successfully executeelxesimig StoredProcedure
» An expression sent througlvaluateExpressionresulted in a select operation being performed.

An adaptor channel stops fetching when there are no more records to fetch or when itauiseglfFatch
message.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: fetchRow

37

38

isOpen
public abstract booleaaOpen()

Implemented by subclasses to retticre if the channel has been opened vaifienChanne] falseif not.
An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: closeChannel

lockRowComparingAttributes

public voidlockRowComparingAttributes (NSArray attributes EOEntityentity,
com.apple.yellow.eocontrol. EOQualifigualifier, NSDictionarysnapshot

Attempts to lock a row in the database by selecting it with locking on. The lock operation succeeds if a
select statement generated wijthalifier retrieves exactly one row and the values in the row match the
values insnapshata dictionary whose keys are attribute names and whose values are the values that were
last fetched from the database.

lockRowComparingAttributes:entity:qualifier;:snapshot: invokesselectAttributes:fetchSpecification

with attributesas the attributes to select, a fetch specification built froafifier, locking on, anentityas

the entity. If the select returns no rows or more than one row, the method throws an exception. It also throws
an exception if the values in the returned row don’t match the corresponding vadnapshat

The Framework uses this method whenever it needs to lock a row. When the Framework inyaddédeit,
specifies the primary key of the row to be locked and attributes used for locking to be compared in the
database server. If any of the values specifiegiftifier are different from the values in the database row,
the select operation will not retrieve or lock the row. When this happens, the row to be locked has been
updated in the database since it was last retrieved, and it isn’t safe to update it.

Some attributes (such as BLOB types) can’t be compared in the datdtrdmeesshould specify any such
attributes. (If the row doesn’t contain any such attribtsbutescan benull.) If qualifier generates a
select statement that returns and locks a single row, this method performs an in-memory comparison
between the value in the retrieved row and the valgaeapshofor each attribute iattributes Therefore,
shapshomust contain an entry for each attributaftributes In addition, it must contain an entry for the
row’s primary key.

A subclass of EOAdaptorChannel doesn’t need to override this method.

Classes: EOAdaptorChannel

openChannel
public abstract voidpenChanne()

()Implemented by subclasses to put the channel and both its context and adaptor into a state where they are
ready to perform database operations. Throws an exception if an error occurs. An adaptor channel subclass
should override this method without invoking EOAdaptorChannel’s implementation.

See also: isOpen, closeChannel

performAdaptorOperation
public voidperformAdaptorOperation (EOAdaptorOperatioadaptorOperation

PerformsadaptorOperatiorby invoking the adaptor channel method appropriate for performing the
specified operation. For example, if the adaptor operat@diaptorOperations
EOAdaptorinsertOperator, this method invokesertRow using information iradaptorOperatiorto
supply the arguments. Throws an exception if an error occurs.

A subclass of EOAdaptorChannel doesn’t need to override this method.

See also: performAdaptorOperations

performAdaptorOperations
public voidperformAdaptorOperations (NSArray adaptorOperations

Performs adaptor operations by invokperformAdaptorOperation with each EOAdaptorOperation

object in the arragdaptorOperationsAn adaptor channel subclass may be able to override this method to
take advantage of database-specific batch processing capabilities. Invokes the delegate methods
adaptorChannelWillPerformOperations andadaptorChannelDidPerformOperations. This method
throws an exception if an error occurs.

A subclass of EOAdaptorChannel doesn’t need to overrideetiermAdaptorOperations: method.

primaryKeyForNewRowWithEntity
public NSDictionaryprimaryKeyForNewRowWithEntity (EOEntity entity)

Overridden by subclasses to return a primary key for a new row in the database table that corresponds to
entity The primary key returned from this method is a dictionary whose keys are the primary key attribute
names. For example, suppose you've got a table MOVIE with primary key MOVIE_ID, and the
corresponding Movie Entity’s primary key attributamsvielD. In this scenario, the dictionary returned

from primaryKeyForNewRowWithEntity has one entry whose keynwovielD and whose value is the

unique value to assign. If the primary key is compound (made up of more than one attribute), the dictionary
should contain an entry for each primary key attribute. Note, however, that the Enterprise Objects

39

40

Frameworks adaptors don't handle compound primary keys; they retilirfnom
primaryKeyForNewRowWithEntity if the primary key is compound.

If information inentity specifies an adaptor-specific means to assign a new primary key (for example, a
sequence name or stored procedure), then this method returns a new primary key. Otherwise, if the key is a
simple integer, the method tries to fetch a new primary key from the database using an adaptor-specific
scheme. Otherwise, the method retural.

EOAdaptorChannel’'s implementation simply retunafi. See your adaptor channel’s documentation for
information on how it generates primary keys.

A subclass of EOAdaptorChannel must override this method. For example, to return a value generated by
a sequence, you'd create the proper SQL statement (using EOSQLEXxpresgcessionForString:
method) and evaluate it (using tialuateExpressiormethod).

returnValuesForLastStoredProcedurelnvocation
public abstract NSDictionanmgturnValuesForLastStoredProcedurelnvocation()

Implemented by subclasses to return stored procedure parameter and return values. Used in conjunction
with executeStoredProcedureThe dictionary returned by this method has entries whose keys are stored
procedure parameter names and whose values are the parameter values. The dictionary also contains a
special entry for the stored procedures return value with the key “returnValue”. Returns an empty dictionary
for stored procedures that have void return types. Retuth§f the stored procedure has results to fetch.

In this case, you must usgtchRow until there are no more results to fetch before the return value will be
available.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

selectAttributes:fetchSpecification

public abstract voidelectAttributesWithFetchSpecificatio(NSArrayattributes
EOFetchSpecificatiofetchSpecificatigrboolearflag, EOEntityentity)

Implemented by subclasses to seltiibutesin rows matching the qualifier fietchSpecificatioand set

the receiver’s attributes to fetch. The selected rows compose one or more result sets, each row of which will
be returned by subsequdatchRow messages accordingfetchSpecificatioa sort orderings. Iflagis

true, the rows are locked if possible so that no other user can modify them (the lock specification in
fetchSpecificatiors ignored). Throws an exception if an error occurs. Some possible reasons for failure are:

» The adaptor channel is in an invalid state (for example, fetching).
» The database failed to lock the specified rows.

Classes: EOAdaptorChannel

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: setAttributesToFetch

setAttributesToFetch
public abstract voidetAttributesToFetch(NSArray attributeg

Implemented by subclasses to specify the set of attributes used to describe fetch data from a corresponding
selectattributesis an array of the attributes to fetch. This method is invokedeafédmnate Expressiorbut

before the first call tietchRow. For more information on using this method, see “Sending SQL Statements
Directly to the Server” in the “WebObjects Programming Topics.” Is that a good cross-reference? This
method throws an exception if invoked when there is no fetch in progress.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: attributesToFetch, selectAttributes:fetchSpecification

setDebugEnabled
public voidsetDebugEnable@booleanflag)

Enables debugging in the receiver and all its channdlsg§true, enables debugging; otherwise, disables
debugging. When debugging is enabled, the adaptor channel logs evaluated SQL and other useful
debugging information to the console (or to the standard error stream). The information provided may vary
from adaptor to adaptor and may change from release to release.

A subclass of EOAdaptorChannel doesn’t need to override this method. A subclass that does override it
must incorporate the superclass’s version through a messsiggeto

See also: isDebugEnabled setDebugEnabled EOAdaptorContext)

setDelegate
public voidsetDelegat§ava.lang.ObjecanObjec}

Sets the receiver’s delegatedglegate or removes its delegatedélegateis null. A subclass of
EOAdaptorChannel doesn’'t need to override this method. A subclass that does override it must incorporate
the superclass’s version through a messagaper.

See also: delegate

41

42

updateValues:inRowDescribedByQualifier

public voidupdateValuesinRowDescribedByQualifie(NSDictionaryvalues,
com.apple.yellow.eocontrol. EOQualifigualifier,
EOEntity entity)

Updates the row described tyalifier. InvokesupdateValues:inRowsDescribedByQualifieand raises an
exception unless exactly one row is updated.

A subclass of EOAdaptorChannel doesn’t need to override this method.

updateValues:inRowsDescribedByQualifier

public abstract inipdateValuesinRowsDescribedByQualifiefNSDictionaryvalues
com.apple.yellow.eocontrol. EOQualifigualifier,
EOEntity entity)

Implemented by subclasses to update the rows descrilapaabifier with the values ivalues valuesis a
dictionary whose keys are attribute names and whose values are the new values for those attributes (the
dictionary need only contain entries for the attributes being changed). Returns the number of updated rows.
Throws an exception if an error occurs. Some possible reasons for failure are:

* The user logged in to the database doesn't have permission to update.
e The adaptor channel is in an invalid state (for example, fetching).
» The new values fail to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: updateValues:inRowDescribedByQualifier

Classes:

Creating an EOAdaptorChannel Subclass

EOAdaptorChannel provides many default method implementations that are sufficient for concrete
subclasses:

« adaptorContext

» delegate

¢ deleteRowDescribedByQualifier
 isDebugEnabled

* lockRowComparingAttributes

« performAdaptorOperation

» performAdaptorOperations

» updateValues:inRowDescribedByQualifier

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

» setDebugEnabled
» setDelegate

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a messageuper.

The remaining EOAdaptorChannel methods must be overridden by concrete subclasses in terms of the
persistent storage system with which it interacts:

 attributesToFetch

» cancelFetch

* closeChannel

» deleteRowsDescribedByQualifier
» describeModelWithTableNames
* describeResults

» describeStoredProcedureNames
» describeTableNames
 evaluateExpression

» executeStoredProcedure

* fetchRow

¢ insertRow

* isFetchinProgress

* isOpen

« openChannel

» primaryKeyForNewRowWithEntity
* returnValuesForLastStoredProcedurelnvocation
* selectAttributes:fetchSpecification
» setAttributesToFetch

43

44

« updateValues:inRowsDescribedByQualifier

Classes: EOAdaptorContext

EOAdaptorContext
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects Framework
applications. You typically don't interact with EOAdaptorContext API directly; rather, a concrete adaptor
context subclass inherits from EOAdaptorContext and overrides many of its methods, which are invoked
automatically by the Enterprise Objects Framework. If you're not creating a concrete adaptor context
subclass, there aren’t very many methods you need to use, and you'll rarely invoke them directly.

The EOAdaptorContext class has the following principal attributes:

» Array of adaptor channels
* Delegate
« Adaptor

Other framework classes create EOAdaptorContext objects automatically. This is typically done with
EOAdaptor'screateAdaptorContext method, which creates an adaptor context and assigns its adaptor.

The following table lists the most commonly-used EOAdaptorContext methods:

beginTransaction Begins a transaction in the database server.

commitTransaction Commits the last transaction begun.

rollbackTransaction Rolls back the last transaction begun.

setDebugEnabled Enables debugging in all the adaptor context’s channels.

For more information, see “EOAdaptorContext”.

Method Types

Constructors
EOAdaptorContext

45

Accessing the adaptor
adaptor

Creating adaptor channels
createAdaptorChannel
channels

Checking connection status
hasOpenChannels
hasBusyChannels

Controlling transactions
beginTransaction
commitTransaction
rollbackTransaction
transactionDidBegin
transactionDidCommit
transactionDidRollback
canNestTransactions
transactionNestingLevel

Debugging
setDebugEnabledDefault
debugEnabledDefault
setDebugEnabled
isDebugEnabled
Accessing the delegate
delegate

setDelegate

Constructors

EOAdaptorContext

public EOAdaptorContext()
public EOAdaptorContext(EOAdaptoranAdaptoy

Returns a new EOAdaptorContext. You never invoke either of the constructors directly. You must use the
Adaptor methodreateAdaptorContextto create a new adaptor context.

See also: adaptor

46

Classes: EOAdaptorContext

Static Methods

debugEnabledDefault
public static booleadebugEnabledDefaui()

Returngrue if new adaptor context instances have debugging enabled by digfiselotherwise. By
default, adaptor contexts have debugging enabled if the user default EOAdaptorDebugEtabladFor
more information on user defaults, see the NSUserDefaults class specificatioRanritiation
Framework ReferencgYou can override the user default using the class ms#ibébugEnabledDefault
or you can set debugging behavior for a specific instance with the instance setibelligEnabled

setDebugEnabledDefault
public static voidsetDebugEnabledDefaultbooleanflag)

Sets default debugging behavior for new instances of EOAdaptorConfitag.i¢ftrue, debugging is
enabled for new instancesfldg is false, debugging is disabled. Use the instance method
setDebugEnabledo enable debugging for a specific adaptor context.

See also: debugEnabledDefault isDebugEnabled

Instance Methods

adaptor
public EOAdaptordaptor()

Returns the receiver's EOAdaptor.

beginTransaction
public abstract voitheginTransaction()
Implemented by subclasses to attempt to begin a new transaction, nested within the current one if nested

transactions are supported. Each successful invocatimegaiTransaction must be paired with an
invocation of eithecommitTransaction or rollbackTransaction to end the transaction.

The Enterprise Objects Framework automatically wraps database operations in transactions, so you don't
have to begin and end transactions explicitly. In fact, letting the framework manage transactions is
sometimes more efficient. You typically useginTransactiononly to execute more than one database
operation in the same transaction scope.

This method invokes the delegate methddptorContextShouldBeginbefore beginning the transaction.
If the transaction is begun successfully, the method ghiststransactionDidBegin message and invokes

a7

48

the delegate methalaptorContextDidBegin. Throws an exception if the attempt is unsuccessful. Some
possible reasons for failure are:

» A connection to the database hasn’t been established.

* Nested transactions aren’t supported, and a transaction is already in progress.
« A fetch is in progress.

» The delegate refuses

The database server fails to begin a transaction.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: canNestTransactionstransactionNestingLevel

canNestTransactions
public abstract booleazanNestTransactiors()

Implemented by subclasses to retticre if the database server and the adaptor context can nest
transactionsfalse otherwise. An adaptor context subclass should override this method without invoking
EOAdaptorContext’'s implementation.

See also: transactionNestingLevel

channels
public NSArraychannelg)

Returns an array of channels created by the receiver.

See also: createAdaptorChannel

commitTransaction
public abstract voidommitTransaction()

Implemented by subclasses to attempt to commit the last transaction begun. Invokes the delegate method
adaptorContextShouldCommit before committing the transaction. If the transaction is committed
successfully, the method serttls atransactionDidCommit message and invokes the delegate method
adaptorContextDidCommit. Throws an exception if the attempt is unsuccessful. Some possible reasons
for failure are:

» A transaction is not in progress.

« Fetches are in progress.

* The delegate refuses.

* The database server fails to commit.

Classes: EOAdaptorContext

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: beginTransaction rollbackTransaction, hasBusyChannels

createAdaptorChannel
public abstract EOAdaptorChanrebate AdaptorChannel)

Implemented by subclasses to create and return a new AdaptorChanoé#ljfa new channel cannot be
created. Sets the new channatiaptorContext to this. A newly created adaptor context has no channels.
Specific adaptors have different limits on the maximum number of channels a context can have, and
createAdaptorChannelfails if a newly created channel would exceed the limits.

See also: channels

delegate
public java.lang.Objedelegate)

Returns the receiver’s delegate notl if the receiver doesn’'t have a delegate.

See also: setDelegate

hasBusyChannels
public boolearhasBusyChannel§)

Returngrue if any of the receiver’s channels have outstanding operations (that is, have a fetch in progress),
false otherwise.

See also: isFetchinProgress(EOAdaptorChannel)

hasOpenChannels
public boolearhasOpenChannel§)

Returngrue if any of the receiver’s channels are opiefse otherwise.

See also: openChannel(EOAdaptorChannel)sOpen (EOAdaptorChannel)

49

50

isDebugEnabled
public booleansDebugEnabled)

Returngrue if debugging is enabled in the receiviaise otherwise.

See also: setDebugEnableddebugEnabledDefault setDebugEnabledDefault

rollbackTransaction
public abstract voidollbackTransaction()

Implemented by subclasses to attempt to roll back the last transaction begun. Invokes the delegate method
adaptorContextShouldRollback before rolling back the transaction. If the transaction is begun

successfully, the method sentis atransactionDidRollback message and invokes the delegate method
adaptorContextDidRollback. Throws an exception if the attempt is unsuccessful. Some possible reasons
for failure are:

« A transaction is not in progress.

» Fetches are in progress.

The delegate refuses.

The database server fails to rollback.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: beginTransaction commitTransaction

setDebugEnabled
public voidsetDebugEnable@booleanflag)

Enables debugging in the receiver and all its channdélagiétrue, enables debugging; otherwise, disables
debugging.

See also: setDebugEnabled EOAdaptorChannellsDebugEnabled setDebugEnabledDefaultchannels

setDelegate
public voidsetDelegat§ava.lang.Objectlelegaté

Sets the receiver’s delegate and the delegate of all the receiver’'s chanetdgate or removes their
delegates itlelegates null.

See also: delegate channels

Classes: EOAdaptorContext

transactionDidBegin
public voidtransactionDidBegin()

Informs the adaptor context that a transaction has begun in the database server, so the receiver can update
its state to reflect this fact and send an EOAdaptorContextBeginTransactionNotification. This method is
invoked frombeginTransaction after a transaction has successfully been started. It is also invoked when

the Enterprise Objects Framework implicitly begins a transaction.

You don'’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
beginTransactionmethod and anywhere else it begins a transaction—either implicitly or explicitly. For
example, an adaptor channel’s implementatioevafuateExpressiorshould check to see if a transaction
is in progress. If no transaction is in progress, it can start one explicitly by indmgmgTransaction
Alternatively, it can start an implicit transaction by invokiransactionDidBegin.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a messagedo

See also: transactionDidCommit, transactionDidRollback

transactionDidCommit
public voidtransactionDidCommit()

Informs the adaptor context that a transaction has committed in the database server, so the receiver can
update its state to reflect this fact and send an EOAdaptorContextCommitTransactionNotification. This
method is invoked fromommitTransaction after a transaction has successfully committed.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’'s implementation of
commitTransaction method and anywhere else it commits a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a messagedo

See also: transactionDidBegin, transactionDidRollback

transactionDidRollback
public voidtransactionDidRollback()

Informs the receiver that a transaction has rolled back in the database server, so the adaptor context can
update its state to reflect this fact and send an EOAdaptorContextRollbackTransactionNotification. This
method is invoked fromollbackTransaction after a transaction has successfully been rolled back.

51

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’'s implementation of
rollbackTransaction method and anywhere else it rolls back a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a messaged¢o

See also: transactionDidBegin, transactionDidCommit

transactionNestingLevel
public inttransactionNestingLeve()

Returns the number of transactions in progress. If the database server and the adaptor support nested
transactions, this number may be greater than 1.

See also: canNestTransactions

Notifications
AdaptorContextBeginTransactionNotification
public static final java.lang.StrirgdaptorContextBeginTransactionNotification

Sent fromtransactionDidBegin to tell observers that a transaction has begun.

AdaptorContextCommitTransactionNotification
public static final java.lang.StrilgdaptorContextCommitTransactionNotification

Sent fromtransactionDidCommit to tell observers that a transaction has been committed.

AdaptorContextRollbackTransactionNotification
public static final java.lang.StrifgdaptorContextRollbackTransactionNotification

Sent fromtransactionDidRollback to tell observers that a transaction has been rolled back.

52

Classes: EOAdaptorContext

EOAdaptorContext

EOAdaptorContext is an abstract class that provides its concrete subclasses with a structure for handling
database transactions. It's associated with EOAdaptor and EOAdaptorChannel, which, together with
EOAdaptorContext, form thadaptor levebf Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorContext provides database-specific method implementations and
represents a single transaction scope (logical user) on the database server to which its EOAdaptor object is
connected. You never interact with instances of the EOAdaptorContext class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to work with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorContext subclass,
you send areateAdaptorContextmessage to an instance of the corresponding EOAdaptor subclass. You
rarely create adaptor contexts yourself. They are generally created automatically by other framework
objects.

If a database server supports multiple concurrent transaction sessions, an adaptor context’'s EOAdaptor can
have several contexts. When you use multiple EOAdaptorContexts for a single EOAdaptor, you can have
several database server transactions in progress simultaneously. You should be aware of the issues involved
in concurrent access if you do this.

An EOAdaptorContext has an EOAdaptorChannel, which handles actual access to the data on the server. If
the database server supports it, a context can have multiple channels. See your adaptor context’s
documentation to find out if your adaptor supports multiple channels. An EOAdaptorContext by default has
no EOAdaptorChannels; to create a new channel send your EOAdaptorCaméateAdaptorChannel

message.

Controlling Transactions

EOAdaptorContext defines a simple set of methods for explicitly controlling transactions:
beginTransaction commitTransaction, androllbackTransaction. Each of these messages confirms the
requested action with the adaptor context’s delegate, then performs the action if possible.

There’s also a set of methods for notifying an adaptor context that a transaction has been started, committed,
or rolled back without using tHeeginTransaction commitTransaction, orrollbackTransaction

methods. For example, if you invoke a stored procedure in the server that begins a transaction, you need to
notify the adaptor context that a transaction has been started. Use the following methods to keep an adaptor
context synchronized with the state of the database staresactionDidBegin,

transactionDidCommit, andtransactionDidRollback. These methods post notifications.

The Adaptor Context’s Delegate and Notifications

You can assign a delegate to an adaptor context. The delegate responds to certain messages on behalf of the
context. An EOAdaptorContext sends these messages directly to its delegate. The transaction-controlling

53

54

methods—beginTransaction, commitTransaction, androllbackTransaction—notify the adaptor

context's delegate before and after a transaction operation is performed. Some delegate methods, such as
adaptorContextShouldBegin let the delegate determine whether the context should perform an operation.
Others, such asdaptorContextDidBegin, are simply notifications that an operation has occurred. The
delegate has an opportunity to respond by implementing the delegate methods. If the delegate wants to
intervene, it implementadaptorContextShouldBegin: If it simply wants notification when a transaction

has begun, it implemengglaptorContextDidBegin:..

EOAdaptorContext also posts notifications to the application’s default notification center. Any object may
register to receive one or more of the notifications posted by an adaptor context by sending the message
addObserverto the default notification center (an instance of the NSNotificationCenter class). For more
information on notifications, see the NSNotificationCenter class specificatiorFouthe@ation Framework
Reference

Creating an EOAdaptorContext Subclass

EOAdaptorContext provides many default method implementations that are sufficient for concrete
subclasses. The following methods establish structure and conventions that other Enterprise Objects
Framework classes depend on and should be overridden with caution:

* transactionDidBegin

« transactionDidCommit
« transactionDidRollback
« transactionNestingLevel

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a messagesuper.

Other methods require database-specific implementations that can be provided only by a concrete adaptor
context subclass. A subclass must override the following methods in terms of the persistent storage system
to which it interacts:

* beginTransaction

+ canNestTransactions
* commitTransaction

» createAdaptorChannel
* rollbackTransaction

Classes: EOAdaptorOperation

EOAdaptorOperation
Inherits From: NSObiject
Package: com.apple.yellow.webobjects

Class Description

An EOAdaptorOperation object represents a primitive operation in a database server—lock, insert, update,
or delete a row; or execute a stored procedure—and all the necessary information required by the operation.
An EOAdaptorOperation is processed by an EOAdaptorChannel object in the method
performAdaptorOperation . You don't ordinarily create instances of EOAdaptorOperation; rather, the
Framework automatically creates an EOAdaptorOperation object and sends it to an adaptor channel when
your application needs the database server to perform an operation. You generally interact with
EOAdaptorOperation objects only if you need to specify the order in which a set of operations are carried
out (see the description for the EODatabaseContext delegate ndathbdseContext:
willOrderAdaptorOperationsFromDatabaseOperations:).

An EOAdaptorOperation has an entity and an operator (the type of operation the object represents). An
adaptor operation’s operator (AdaptorLockOperator, AdaptorinsertOperator, AdaptorUpdateOperator,
AdaptorDeleteOperator, or AdaptorStoredProcedureOperator) determines additional, operator-dependent
information used by the EOAdaptorOperation object. For example, only a stored procedure operation has
an EOStoredProcedure object. The operator-dependent information is accessible using the methods
described below.

Method Types
Constructors
EOAdaptorOperation
Accessing the entity
entity
Accessing the operator
setAdaptorOperator
adaptorOperator
Accessing the qualifier
setQualifier
qualifier

55

Accessing locking attributes
setAttributes
attributes

Accessing operation values
setChangedValues
changedValues

Accessing a stored procedure
setStoredProcedure
storedProcedure

Handling errors during the operation
setException
exception

Comparing operations
compareAdaptorOperation

Constructors

EOAdaptorOperation

public EOAdaptorOperation ()
public EOAdaptorOperation (Entity entity)

Creates and returns a new EOAdaptorOperation, emitity as the entity to which the operation will be
applied.

See also: entity

Instance Methods

adaptorOperator
public intadaptorOperator

Returns the receiver’s adaptor operator. The operator indicates which of the other adaptor operation
attributes are valid. For example, an adaptor operation whose operator is AdaptorinsertOperator uses
changedValues but notattributes, qualifier, or storedProcedure

See also: setAdaptorOperator

56

Classes: EOAdaptorOperation

attributes
public NSArrayattributes()

Returns the array of attributes to select when locking the row. If attributes have not been assigned to the
receiver, the primary key attributes are selected. Only valid for adaptor operations with the
AdaptorLockOperator.

See also: setAttributes

changedValues
public NSDictionarychangedValue$)

Returns the dictionary of values that need to be updated, inserted, or compared for locking purposes.

See also: setChangedValues

compareAdaptorOperation
public intcompareAdaptorOperation(EOAdaptorOperatioanAdaptorOperation

Orders adaptor operations alphabetically by entity name and by adaptor operator within the same entity. The
adaptor operators are ordered as follows:

AdaptorLockOperator
AdaptorinsertOperator
AdaptorUpdateOperator
AdaptorDeleteOperator
AdaptorStoredProcedureOperator

AdaptorLockOperator precedes AdaptorinsertOperator, AdaptorinsertOperator precedes
AdaptorUpdateOperator, and so on.

An EODatabaseContext ussmmpareAdaptorOperation: to order adaptor operations before invoking
EOAdaptorChannel'serformAdaptorOperations method.

entity
public EOEntityentity()

Returns the entity to which the operation will be applied.

See also: “Constructors”

57

58

exception
public java.lang.Throwablexception()

Returns the exception that was thrown when an adaptor channel attempted to process the receiver. Returns
null if no exception was thrown or if the receiver hasn't been processed yet.

See also: SetException

qualifier
public com.apple.yellow.eocontrol. EOQualifagralifier ()

Returns the qualifier that identifies the specific row to which the operation applies. Not valid with adaptor
operations with the operators AdaptorinsertOperator and AdaptorStoredProcedureOperator.

See also: setStoredProcedure

setAdaptorOperator
public voidsetAdaptorOperator(int adaptorOperatoy

Sets the receiver’s operatoradaptorOperatorwhich is one of the following:

« AdaptorLockOperator
AdaptorinsertOperator
AdaptorUpdateOperator
AdaptorDeleteOperator
AdaptorStoredProcedureOperator

For more information, see the discussion on adaptor operators in the class description above.

See also: adaptorOperator

setAttributes
public voidsetAttributes(NSArrayattributeg

Sets the array of attributes to select when locking the row. The selected values are compared in memory to
the corresponding snapshot values to determine if a row has changed since the application last fetched it.
attributesis an array of EOAttribute objects that can’t be compared in a qualifier (generally BLOB types);

it should not baewull or empty. Generally, an adaptor operation’s qualifier contains all the comparisons
needed to verify that a row hasn’t changed since the application last fetched, inserted, or updated it. In this
case (if there aren’t any attributes that can’t be compared in a quadifigbLitesshould contain primary

key attributes. This method is only valid for adaptor operations with the AdaptorLockOperator.

See also: attributes, entity

Classes: EOAdaptorOperation

setChangedValues
public voidsetChangedValueENSDictionarychangedValugs

Sets the dictionary of values that need to be updated, inserted, or compared for locking purposes.
changedValueis a dictionary object whose keys are attribute names and whose values are the values for
those attributes. As summarized in the following table, the contenbmnfedValuedepends on the

receiver’s operator:

Operator Contents of changedValues Dictionary

snapshot values used to verify that the database row hasn't
Adaptorl.ockOperator changed since this application last fetched it
AdaptorinsertOperator the values to insert
AdaptorUpdateOperator the new values for the columns to update

snapshot values (changedValues is only valid for
AdaptorDeleteOperator AdaptorDeleteOperation if the receiver’s entity uses a stored
procedure to perform delete operations.)

AdaptorStoredProcedureOperator snapshot values

See also: changedValues

setException
public voidsetExceptior{java.lang.Throwablexceptioh

Sets the receiver’s exceptiondxception This method is typically invoked from EOAdaptorChannel’s
performAdaptorOperations method. If a database error occurs while processing an adaptor operation, the
adaptor channel creates an exception and assigns it to the adaptor operation.

See also: exception

setQualifier
public voidsetQualifier(com.apple.yellow.eocontrol. EOQualifignalifier)

Sets the qualifier that identifies the row to which the adaptor operation is to be apglatifier.

See also: qualifier

59

60

setStoredProcedure
public voidsetStoredProcedur¢EOStoredProcedurstoredProcedure

Sets the receiver’s stored procedursttwedProcedure

See also: storedProcedure

storedProcedure
public EOStoredProcedustoredProcedurd)

Returns the receiver’s stored procedure. Only valid with adaptor operations with the
AdaptorStoredProcedureOperation.

See also: setStoredProcedure

Classes: EOAttribute

EOAttribute

Inherits From: NSObiject

Implements: EOPropertyListEncoding
Package: com.apple.yellow.eoaccess

Class Description

An EOAttribute represents a column, field or property in a database, and associates an internal name with
an external name or expression by which the property is known to the database. The property an
EOAttribute represents may be a meaningful value, such as a salary or a name, or it may be an arbitrary
value used for identification but with no real-world applicability (ID numbers and foreign keys for
relationships fall into this category). An EOAttribute also maintains type information for binding values to
the instance variables of objects.

EOAttributes are also used to represent arguments for EOStoredProcedures.

You usually define attributes in your EOModel with the EOModeler application, which is documented in
WebObjects Tools and Techniguésur code probably won't need to programmatically interact with
EOAttribute unless you're working at the adaptor level. See “Creating Attributes” for information on
creating your own attribute objects.

Fore detailed discussion of using attribute objects to map database data types to JavaObijective-C objects,
see “Mapping Attributes.” EOAttributes can also alter the way values are selected, inserted, and updated in
the database by defining special format strings; see “SQL Statement Formats” for more information.

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodelntoPropertyList

Method Types

Constructors
EOALttribute

61

62

Accessing the entity

Accessing the name

Accessing date information

Accessing external definitions

Accessing value type information

Converting to adaptor value types

entity
parent

setName
name
validateName
beautifyName

serverTimeZone
setServerTimeZone

setColumnName
columnName
setDefinition
definition
setExternalType
externalType

setValueClassName
valueClassName
setValueType
valueType
setAllowsNull
allowsNull
setPrecision
precision
setScale

scale

setWidth

width

adaptorValueByConvertingAttributeValue
adaptorValueType

Classes: EOAttribute

Working with custom value types
setValueFactoryMethodName
valueFactoryMethod
valueFactoryMethodName
setFactoryMethodArgumentType
factoryMethodArgumentType
setAdaptorValueConversionMethodName
adaptorValueConversionMethod
adaptorValueConversionMethodName
archiveDataForObject

Accessing attribute characteristics
setReadOnly
isReadOnly
isDerived
isFlattened

Accessing SQL statement formats
setReadFormat
readFormat
setWriteFormat
writeFormat

Accessing the user dictionary
setUserInfo
userinfo

Working with stored procedures
setParameterDirection
parameterDirection
storedProcedure

Working with prototypes
overridesPrototypeDefinitionForKey
prototype
prototypeName
setPrototype

Constructors

EOAttribute
public EOAttribute ()

Creates a new EOAttribute.

63

public EOAttribute (NSDictionarypropertyList java.lang.Objeabwnei)

Creates a new EOAttribute initialized frggropertyList—a dictionary containing only property list
data types (that is, java.lang.Strings, NSDictionary, NSArrays, and NSDatas). This constructor is
used by EOModeler when it reads in a Model from a file, for exampleowherargument should

be the EOAttribute’s EOEntity or EOStoredProcedure. EOAttributes created from a property list
must receive aawakeWithPropertyList message immediately after creation before they are fully
functional, but thewake...message should be deferred until the all of the other objects in the model
have also been created.

See also: awakeWithPropertyList (EOPropertyListEncodinggncodelntoPropertyList
(EOPropertyListEncoding)

Static Methods

archiveDataForObject
public static NSDatarchiveDataForObject(NSObjectanObjec}
ReturnanObjecs value as a NSData object whose bytes can be stored in an external repository.

<<Need to add more info to this on the implications to custom value classes.>>

Instance Methods

adaptorValueByConvertingAttributeValue
public java.lang.ObjecdaptorValueByConvertingAttributeValue (java.lang.Objectalug

Ensures thatalueis either a String, Number, NSData, or NSDate, converting it if necessaaudheeds
to be convertechdaptorValueByConvertingAttributeValue: uses the adaptor conversion method to
convertvalueto one of these four primitive types. If the attribute hasn't a specific adaptor conversion
method, and the type to be fetched from the database is EOAdaptorBytestgeDataForObject will

be invoked to convert the attribute value.

See also: adaptorValueConversionMethod adaptorValueType

adaptorValueConversionMethod
public NSSelectoadaptorValueConversionMethod)

Returns the method used to convert a custom class into one of the primitive types that the adaptor knows
how to manipulate: String, Number, NSData, or NSDate. The return value of this method is derived from

64

Classes: EOAttribute

the attribute’s adaptor value conversion method name. If that name doesn’t map to a valid selector in the
Java run-timenull is returned.

See also: adaptorValueByConvertingAttributeValue , adaptorValueConversionMethodName

adaptorValueConversionMethodName
public java.lang.StringdaptorValueConversionMethodNamg)

Returns the name of the method used to convert a custom class into one of the primitive types that the
adaptor knows how to manipulate: String, Number, NSData, or NSDate.

See also: adaptorValueByConvertingAttributeValue

adaptorValueType
public intadaptorValueType&()

Returns a constant that indicates the data type that will be fetched from the database. Currently, this method
returns one of the following values:

Constant Description
AdaptorNumberType A number value
AdaptorCharactersType A string of characters
AdaptorBytesType Raw bytes
AdaptorDateType A date

See also: factoryMethodArgumentType

allowsNull
public boolearallowsNull()

Returnstrue to indicate that the attribute can haveull value,false otherwise. If the attribute maps
directly to a column in the database, it also is used to determine whether the database column can have a
NULL value.

See also: setAllowsNull

65

66

awakeWithPropertyList
public voidawakeWithPropertyList (NSDictionarypropertyLis)

Finishes initializing the receiver fropropertyList which must have been created with a constructor of the
form:

public ClassNamé\SDictionarypropertyList java.lang.Objecvwner)

awakeWithPropertyList is responsible for restoring references to other objects. Consequently, it should
not be invoked until all other objects that the receiver might reference have been creaprddestylist

See also: encodelntoPropertyList

beautifyName
public voidbeautifyName()

Makes the attribute name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”. This method is used in
reverse-engineering an EOModel.

See also: nhameForExternalName(EOEntity),validateName beautifyNames(EOModel)

columnName
public java.lang.StringolumnNam«)

Returns the name of the column in the database that corresponds to this attnitlitéf, the attribute isn't

simple (that is, if it's derived or flattened). An adaptor uses this name to identify the column corresponding
to the attribute. Your application should never need to use this name. Ne@uhatNameanddefinition

are mutually exclusive; if one returns a value, the other retudhs

See also: , externalType

definition
public java.lang.Stringlefinition()

Returns a derived or flattened attribute’s definitiomudir if the attribute is simple. An attribute’s definition

is either a value expression defining a derived attribute, such as “salary * 127, or a data path for a flattened
attribute, such as “toAuthor.name”. Note tbalumnNameanddefinition are mutually exclusive; if one

returns a value, the other retumsl.

See also: externalType, setDefinition

Classes: EOAttribute

encodelntoPropertyList
public voidencodelntoPropertyListtNSMutableDictionarypropertyLis)

Returns the receiver as a property list.

See also: awakeWithPropertyL.ist

entity
public EOEntityentity ()

Returns the entity that owns the attributenalt if this attribute is acting as an argument for a stored
procedure.

See also: storedProcedure

externalType
public java.lang.Stringxternal Type()

Returns the attribute’s type as understood by the database; for example, a Sybase “varchar” or an Oracle
“NUMBER”.

See also: columnName, setExternalType

factoryMethodArgumentType
public intfactoryMethodArgumentType()

Returns the type of argument that should be passed to the “factory method"—which is invoked by the
attribute to create an attribute value for a custom class. This method returns one of the following values:

Constant Argument Type
FactoryMethodArgumentlsData NSData
FactoryMethodArgumentlsString java.lang.String NSString
FactoryMethodArgumentlsBytes raw bytes

See also: valueFactoryMethod, setFactoryMethodArgumentType

67

isDerived
public booleansDerived()

Returnsfalseif the attribute corresponds exactly to one column in the table associated with its entity, and
true if it doesn’t. For example, an attribute with a definition of “otherAttributeName + 1” is derived.

Note that flattened attributes are also considered as derived attributes.

See also: iSFlattened definition

isFlattened
public booleansFlattened()

Returndrue if the attribute is flattenedalse otherwise. A flattened attribute is one that's accessed through
an entity’s relationships but belongs to another entity.

Note that flattened attributes are also considered to be derived attributes.

See also: isDerived, definition

isReadOnly
public boolearisReadOnly()

Returngrue if the value of the attribute can’t be modifiéalseif it can.

See also: setReadOnly

name
public java.lang.Stringame()

Returns the attribute’s name.

See also: columnName definition, setName

overridesPrototypeDefinitionForKey
public boolearoverridesPrototypeDefinitionForKey(java.lang.Stringey)

Returns false if the requested key gets its value from the prototype attribute. If the attribute has an override,
then this method returns true. Valid values for key include “columnName,” “valueClass,” and so on.

See also: prototype

Classes: EOAttribute

parameterDirection
public intparameterDirection()

Returns the parameter direction for attributes that are arguments to a stored procedure. This method returns
one of the following values:

Constant Description

Void No parameters

InParameter Input only parameters

OutParameter Output only parameters

InOutParameter Bidirectional parameters (input and output)

See also: storedProcedure storedProcedureForOperation(EOENtity),setParameterDirection

parent
public java.lang.Objeqtarent()

Returns the attribute’s parent, which is either an EOEntity or an EOStoredProcedure. Use this method when
you need to find the model for an attribute.

precision
public intprecision()

Returns the precision of the database representation for attributes with a value class of java.lang.Number or
java.math.BigDecimal.

See also: scale

prototype
public EOAttributeprototype()

Returns the prototype attribute that is used to define default settings for the receiver.

See also: overridesPrototypeDefinitionForKey

69

70

prototypeName
public java.lang.StringrototypeName()

Returns the name of the prototype attribute of the receiver.

See also: prototype

readFormat
public java.lang.StringeadFormat()

Returns a format string of the appropriate type that can be used when building an expression that contains
the value of the attribute.

See also: setReadFormat writeFormat

scale
public intscale()

Returns the scale of the database representation for attributes with a value class of Number or
java.math.BigDecimal. The returned value can be negative.

See also: precision, setScale

serverTimeZone
public TimeZoneserverTimeZong)

Returns the time zone assumed for NSDates in the database server, or the local time zone if one hasn’t been
set. An EOAdaptorChannel automatically converts dates between the time zones used by the server and the
client when fetching and saving values. Applies only to attributes that represent dates.

See also: setServerTimeZone

setAdaptorValueConversionMethodName
public voidsetAdaptorValueConversionMethodNam@ava.lang.StringonversionMethodName

Sets toconversionMethodNarntae name of the method used to convert a custom class into one of the
primitive types that the adaptor knows how to manipulate: java.lang.String, java.lang.Number,
com.apple.yellow.foundation.NSData, or com.apple.yellow.foundation.NSDate..

See also: adaptorValueConversionMethodName

Classes: EOAttribute

setAllowsNull
public voidsetAllowsNull(booleanallowsNul)

Sets according tallowsNullwhether or not the attribute can haveulivalue. If the attribute maps directly
to a column in the database, it also controls whether the database column can have a NULL value.

See also: allowsNull

setColumnName
public voidsetColumnNaméjava.lang.StringcolumnNamg

Sets tacolumnNamehe name of the attribute used in communication with the database server. An adaptor
uses this name to identify the column corresponding to the attribute; this name must match the name of a
column in the database table corresponding to the attribute’s entity.

This method makes a derived or flattened attribute simplelgetfir@tion is released and the column name
takes its place for use with the server.

Note: setColumnName:andsetDefinition are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to bensét to

See also: columnName

setDefinition
public voidsetDefinition(java.lang.Stringlefinitior)

Sets tadefinitionthe attribute’s definition as recognized by the database s#efiaitionshould be either a
value expression defining a derived attribute, such as “salary * 12", or a data path for a flattened attribute,
such as “toAuthor.name”.

Prior to invoking this method, the attribute’s entity must have been set by adding the attribute to an entity.
This method will not function correctly if the attribute’s entity has not been set.

This method converts a simple attribute into a derived or flattened attributejuhenNameis removed
and the definition takes its place for use with the server.

Note: setColumnNameandsetDefinition: are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to bensiéit to

See also: definition

71

72

setExternalType
public voidsetExternalTypgjava.lang.StringypeNamg

Sets taypeNamehe type used for the attribute in the database adaptor; for example, a Sybase “varchar” or
an Oracle7 “NUMBER”. Each adaptor defines the set of types that can be suppé#axiernalType:.
The external type you specify for a given attribute must correspond to the type used in the database server.

See also: setDefinition, externalType

setFactoryMethodArgumentType
public voidsetFactoryMethodArgumentTypeg(int argumentType

Sets the type of argument that should be passed to the “factory method"—which is invoked by the receiver
to create a value for a custom class. Factory methods can accept java.lang.Strings,
com.apple.yellow.foundation.NSDatas, or raw bytes; specigygumentTypas
EOFactoryMethodArgumentisNSString, EOFactoryMethodArgumentlsNSData, or
EOFactoryMethodArgumentisBytes as appropriate.

See also: setValueFactoryMethodName, factoryMethodArgumentType

setName
public voidsetNamégjava.lang.Stringhamg

Sets the attribute’s namename Throws an exception ifameis already in use by another attribute or
relationship of the same entity, om&meis not a valid attribute name.

See also: validateName, name

setParameterDirection
public voidsetParameterDirectior(int parameterDirectioh

Sets the parameter direction for attributes that are arguments to a stored prpegdometerDirection
should be one of the following values:

+ EOVoid

* EOInParameter

¢ EOOutParameter
EOInQutParameter

See also: setStoredProcedurg EOENtity),parameterDirection

Classes: EOAttribute

setPrecision
public voidsetPrecisiorfint precision

Sets tgprecisionthe precision of the database representation for attributes with a value class of Number or
java.math.BigDecimal.

See also: setScale, precision

setPrototype
public voidsetPrototypg EOALttribute prototypé

Sets the prototype attribute. This overrides any existing settings in the attribute.

See also: prototype

setReadFormat
public voidsetReadFormafjava.lang.Strin@String

Sets the format string that's used to format the attribute’s value for SELECT statema8tsinip %P is
replaced by the attribute’s external name.

The read format string is used whenever the attribute is referenced in a select list or qualifier.

See also: setWriteFormat, readFormat

setReadOnly
public voidsetReadOnlybooleanflag)

Sets whether the value of the attribute can be modified accordiag fbhrows an exceptionflagisfalse
and the argument is derived but not flattened.

See also: isDerived, isFlattened, isReadOnly

setScale
public voidsetScal¢int scalg

Sets toscalethe scale of the database representation for attributes with a value class of Number or
java.math.BigDecimakcalecan be negative.

See also: setPrecision, scale

73

74

setServerTimeZone
public voidsetServerTimeZonéNSTimeZoneaTimeZong

Sets t@TimeZonehe time zone used for NSDates in the database se@miéZonés null then the local
time zone is used. An EOAdaptorChannel automatically converts dates between the time zones used by the
server and the client when fetching and saving values. Applies only to attributes that represent dates.

See also: serverTimeZone

setUserInfo
public voidsetUserInfaNSDictionarydictionary)

Sets tadictionarythe dictionary of auxiliary data, which your application can use for whatever it needs.
dictionary can only contain property list data types (that is, NSDictionary, NSArray, NSData, and
java.lang.String).

See also: userinfo

setValueClassName
public voidsetValueClassNam@ava.lang.Stringham@

Sets the class name for values of this attributeatne When an EOAdaptorChannel fetches data for the
attribute, it's presented to the application as an instance of this class.

The class need not exist in the run-time system when this message is sent, but it must exist when an adaptor
channel performs a fetch; if the class isn't present the result depends on the adaptor. See your adaptor’s
documentation for information on how absent value classes are handled.

See also: setValueType, valueClassName

setValueFactoryMethodName

public voidsetValueFactoryMethodNamégjava.lang.StrindactoryMethodName
Sets the “factory method"—which is invoked by the attribute to create an attribute value for a custom
class—tofactoryMethodNameT he factory method should be a static method returning an object of your

custom value class. UsetFactoryMethodArgumentTypeto specify the type of argument that is to be
passed to your factory method.

See also: valueFactoryMethodName

Classes: EOAttribute

setValueType
public voidsetValueTypdjava.lang.StringypeNamg

Sets taypeNamehe conversion character (such as “i” or “d”) for the data type a Number attribute is
converted to and from in your application. Value types are scalars sinthfisat, anddouble. Each

adaptor supports a different set of conversion characters for numeric types. However, in most (if not all)
cases it's safe to supply a value of “i” (int) or “d” (double).

See also: setValueClassName, valueType

setWidth
public voidsetWidth(int length

Sets tdengththe maximum amount of bytes the attribute’s value may contain. Adaptors may use this
information to allocate space for fetch buffers.

See also: width

setWriteFormat
public voidsetWriteFormat(java.lang.Stringstring)

Sets the format string that's used to format the attribute’s value for INSERT or UPDATE expressions. In
string, %P is replaced by the attribute’s value.

See also: setReadFormat, writeFormat

storedProcedure
public EOStoredProcedustoredProcedurd)

Returns the stored procedure for which this attribute is an argument. If this attribute isn’t an argument to a
stored procedure but instead is owned by an entity, this method netlirns

See also: entity

userinfo
public NSDictionaryuserinfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: setUserInfo

75

76

validateName
public java.lang.ThrowablealidateNamgjava.lang.Stringnam@

Validatesnameand returnsll if it is a valid name, or an exception if it isn’t. A name is invalid if it has

zero length; starts with a character other than a letter, a number, or “@”, “#”, or “_"; or contains a
characterother than a letter, a number, “@", “#”, “ ", or “$”. A name is also invalid if the receiver's
EOEntity already has an EOAttribute with the same name, or if the model has a stored procedure that has
an argument with the same name.

setName:uses this method to validate its argument.

valueClassName
public java.lang.StringalueClassNamé)

Returns the name of the class for custom value types. When data is fetched for the attribute, it's presented
to the application as an instance of this class.

This class must be present in the run-time system when an EOAdaptorChannel fetches data for the attribute;
if the class isn’t present the result depends on the adaptor. See your adaptor’s documentation for information
on how absent value classes are handled.

See also: valueType, setValueClassName

valueFactoryMethod
public NSSelectovalueFactoryMethod()

Returns the factory method that's invoked by the attribute when creating an attribute value that’s of a custom
class. The value returned from this method is derived from the attribate&FactoryMethodName If
that name doesn’t map to a valid method in the Java run-time, this method meturns

valueFactoryMethodName
public java.lang.StringalueFactoryMethodNam«)

Returns the name of the factory method that's used for creating a custom class value.

See also: valueFactoryMethod, setValueFactoryMethodName

Classes: EOAttribute

valueType
public java.lang.StringalueTyp&()

Returns the conversion character (such as “i” or “d”) for the data type a Number attribute is converted to
and from in your application. Value types are scalars suttt @®at, anddouble.

See also: valueClassName, setValueType

width
public intwidth()

Returns the maximum length (in bytes) for values that are mapped to this attribute. Returns zero for numeric
and date types.

See also: setWidth

writeFormat
public java.lang.StringvriteFormat ()

Returns the format string that’s used to format the attribute’s value for INSERT or UPDATE expressions.
In the returned string, %P is replaced by the attribute’s value.

See also: readFormat, setWriteFormat

77

78

Classes: EOAttribute

79

80

Classes: EOAttribute

81

82

Classes: EOAttribute

83

84

Classes: EOAttribute

85

86

Classes:

Creating Attributes

An attribute may be simple, derived, or flattened. A simple attribute typically corresponds to a single
column in the database, and may be read or updated directly from or to the database. A simple EOAttribute
may also be set as read-only withsetReadOnlymethod. Read-only attributes of enterprise objects are
never updated.

A derived attribute doesn’t necessarily correspond to a single database column in its entity’s database table,
and is usually based on some other attribute, which is modified in some way. For example, if an Employee
entity has a simple monthly salary attribute, you can define a daerivelSalary attribute as “salary *

12". Derived attributes, since they don’t correspond to actual values in the database, are read-only; it makes
no sense to write a derived value.

A flattened attribute of an entity is actually an attribute of some other entity that’s fetched through a
relationship with a database join. A flattened attribute’s external definition is a data path ending in an
attribute name. For example, if the Employee entity has the relatidogtuigressand the Address entity
has the attributstreet, you can definstreetNameas an attribute of your Employee EOEntity by creating
an EOAttribute for it with a definition of “toAddress.street”.

Creating a Simple Attribute
A simple attribute needs at least the following characteristics:
* A name unique within its EOEntity

« The name of a column in the database table for its entity (the EOAttribute’s external name)

A declaration of the type of that column as defined by the database and adaptor (the EOAttribute’s
external type)

A declaration of the Java class used to represent values outside the context of an enterprise object
« For Java value classes that require it, a subtype for such distinctions as between numeric types

You also have to set whether the attribute is part of its entity’s primary key, is a class property, or is used for
locking. See the EOEntity class description for more information.

Creating a Derived Attribute

A derived attribute depends on another attribute, so you base it on a definition including that attribute’s
name rather than on an external name. Because a derived attribute isn't mapped directly to anything in the
database, you shouldn’t include it in the entity’s set of primary key attributes or attributes used for locking.

Creating a Flattened Attribute

A flattened attribute depends on a relationship, so you base it on a definition including that relationship’s
name rather than on an external name. Because a flattened attribute doesn’t correspond directly to anything

87

88

in its entity’s table, you don't have to specify an external name, and shouldn’t include it in the entity’s set
of primary key attributes or attributes used for locking.

Instead of flattening attributes in your model, a better approach is often to directly traverse the object graph
through relationships. See the chapter “Using EOModeler” itierprise Objects Framework
Developer's Guidefor a discussion on when to use flattened attributes.

Classes:

Mapping Attributes

Mapping from Database to Objects

Every EOAttribute has an external type, which is the type used by the database to store its associated data,
and a Java class used as the type for that data in the client application. The type used by the database is
accessed with theetExternalType andexternalType methods. The class type used by the application is
accessed with thealueClassNamanmethod. You can map database types to a set of standard value classes,
which includes:

 java.lang.String

* java.lang.Number
 java.math.BigDecimal
* NSData

* NSDate

Database-specific adaptors automatically handle value conversions for these classes. You can also create
your own custom value class, so long as you define a format that it uses to interpret data. For more
information on using EOAttribute methods to work with custom data types, see the next section, “Working
with Custom Data Types.”

The handling of dates assumes by default that both the database server and the client application are running
in the same, local, time zone. You can alter the server time zone wibt8erverTimeZonemethod. If

you alter the server time zone, the adaptor automatically converts dates as they pass into and out of the
server.

Working with Custom Data Types

When you create a new model, EOModeler maps each attribute in your model to one of the primitive data
types the adaptor knows how to manipulate: String, Number, java.math.BigDecimal, NSData, and NSDate.
For example, suppose you havghato attribute that's stored in the database as a LONG RAW. When you
create a new model, this attribute is mapped to NSData. However, NSData is just an object wrapper for
binary data—for instance, it doesn’t have any methods for operating on images, which would limit what
you'd be able to do with the image in your application. This is a case in which you'd probably choose to
use a custom data type, such as com.apple.yellow.application.NSIimage.

For a custom data type to be usable in Enterprise Objects Framework, it must supply methods for importing
and exporting itself as one of the primitive types so that it can be read from and written to the database.
Specifically, to use a custom data type you need to do the following:

« Set the attribute’s value class using the megeitlalueClassName

» Set the factory method that will be used to create instances of your class from raw data using the method
setValueFactoryMethodName

89

90

« Set the type of the argument that should be passed to the factory method using the method
setFactoryMethodArgumentType

» Set the conversion method that is used to convert your data back into one of the primitive data types the
adaptor can work with using the methsmtAdaptorValueConversionMethodNamethis enables the
data to be stored in the database.

If an EOAttribute represents a binary column in the database, the factory method argument type can be
either EOFactoryMethodArgumentlsNSData or EOFactoryMethodArgumentisBytes, indicating that the
method takes an NSData object or raw bytes as an argument. If the EOAttribute represents a string or
character column, the factory method argument type can be either EOFactoryMethodArgumentIsNSString
or EOFactoryMethodArgumentlsBytes, indicating that the method takes a String object or raw bytes as an
argument. These types apply when fetching custom values.

Instead of setting the class information programmatically, you can use the Attributes Inspector in
EOModeler, which is more common. For more information, see the chapter “Advanced Modeling
Techniques” in th&nterprise Objects Framework Developer’s Guide

Fetching Custom Values

Custom values are created during fetching in EOAdaptorChanmeiefsRow method. This method

fetchesdata in the external (server) type and converts it to a value object, applying the custom value factory
method yalueFactoryMethod) to convert a value into the custom class if necessary. Once the value is
converted, the EOAdaptorChannel puts it into the dictionary for the row being fetched.

Converting Custom Values

Custom values are converted back to binary or character data in EOAdaptorClesahedise Expression

method. For each value in the EOSQLEXxpression to be evaluated, the EOAdaptorChannel sends the
appropriate EOAttribute aadaptorValueByConvertingAttributeValue message to convertit. If the value

is any of the standard value classes, it's returned unchanged. If the value is of a custom class, though, it’s
converted by applying the conversion methadaptorValueConversionMethod specified in the

EOAttribute.

Classes:

SQL Statement Formats

In addition to mapping database values to object values, an EOAttribute can alter the way values are
selected, inserted, and updated in the database by defining special format strings. These format strings allow
a client application to extend its reach right down to the server for certain operations. For example, you
might want to view an employee’s salary on a yearly basis, without defining a derived attribute as in a
previous example. In this case, you could set the salary attribute’s SELECT statement format to

“salary * 12” (withsetReadForma} and the INSERT and UPDATE statement formats to “salary / 12"
(setWriteFormat). Thus, whenever your application retrieves values for the salary attribute they're
multiplied by 12, and when it writes values back to the database they're divided by 12.

Your application can use any legal SQL value expression in a format string, and can even access
server-specific features such as functions and stored procedures (see EGEtitgiedProcedure

method description for more information). Accessing server-specific features can offer your application
great flexibility in dealing with its server, but does limit its portability. You're responsible for ensuring that
your SQL is well-formed and will be understood by the database server.

Format strings for theetReadFormatandsetWriteFormat methods should use “%P” as the substitution
character for the value that is being formatted. “%@” will not work. For example:

myAttribute.setReadFormat("TO_UPPER(%P)");
myAttribute.setWriteFormat("TO_LOWER(%P)");

Instead of setting the read and write formats programmatically, you can set them in EOModeler, which is
more common. For more information, see the chapter “Using EOModeM#®bjects Tools and
Techniques

91

92

Classes: EODatabase

EODatabase

Inherits From:

Package: com.apple.yellow.eoaccess

Class Description

An EODatabase object represents a single database server. It contains an EOAdaptor which is capable of
communicating with the server, a list of EOModels that describe the server’s schema, a list of

EODatabaseContexts that are connected to the server, and a set of snapshots representing the state of all
objects stored in the server.

For more information, see “EODatabase”.

Method Types
Constructors
EODatabase
Adding and removing models
addModel
addModellfCompatible
removeModel
models
Accessing entities
entityForObject
entityNamed

93

Recording snapshots

recordSnapshot:forGloballD:

forgetSnapshotForGloballD

forgetSnapshotsForGloballDs

recordSnapshots

forgetAllSnapshots

shapshotForGloballD

snapshots

recordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGloballD globallD,
java.lang.String name)

recordToManySnapshotspublic void
recordToManySnapshots(NSDictionary snapshots)

snapshotForSourceGloballDpublic NSArray
snapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGloballD globallD,
java.lang.String name)

Registering database contexts
registerContext
unregisterContext
registeredContexts

Accessing the adaptor
adaptor

Managing the result cache
invalidateResultCache
invalidateResultCacheForEntityNamed
resultCacheForEntityNamed
setResultCacheForEntityWithName

Constructors

EODatabase

public next.eo.EODatabasgE OAdaptoranAdaptoy
public next.eo.EODatabasgeOModelaMode)

Creates and returns a new EODatabase objextAdaptoris provided, it specifies the new EODatabase’s
adaptor. IfaModelis provided, the constructor creates an instance of the EOAdaptor naahadeland
assigns that EOAdaptor object as the new EODatabase’s adaptor.

94

Classes: EODatabase

Typically, you don’t need to programmatically create EODatabase objects. Rather, they are created
automatically by the control layer. See the class description for more information. If you do need to create
an EODatabase programmatically, you should never associate more than one EODatabase with a given
EOAdaptor. In general, providgModelinstead oinAdaptor which automatically selects the adaptor.

See also: addModel, adaptor, adaptorName (EOModel)

Instance Methods
adaptor
public EOAdaptoldaptor()

Returns the EOAdaptor used by the receiver for communication with the database server. Your application
can interact directly with the EOAdaptor, but should avoid altering its state (for example, by starting a
transaction with one of its adaptor contexts).

See also: “Constructors”

addModel
public voidaddModel(EOModelaMode)

AddsaModelto the receiver’s list of EOModels. This allows EODatabases to load entities and their
properties only as they're needed, by dividing them among separate EOMddgImust use the same
EOAdaptor as the receiver and use the same connection dictionary as the receiver’s other EOModels.

See also: addModellfCompatible, models removeModel

addModellfCompatible
public boolearaddModellfCompatible(EOModelaMode)

AddsaModelto the receiver’s list of EOModels, checking first to see whether it's compatible with those
other EOModels. Returrieue if aModelis already in the list or if it's successfully added. Rettfeatse if
aModels adaptor name differs from that of the receivers or if the receagaptor returnsfalseto a
canServiceModel:message.

See also: addModel, models removeModel

95

96

entityForObject
public EOEntityentityForObject (java.lang.ObjecanObjec}

Returns the EOEntity from one of the receiver's Models that's mappedbject or null if there is no
such EOEntity. This method works by sendamgityForObject: messages to each of the receiver’'s
EOModels and returning the first one found.

See also: entityNamed

entityNamed
public EOEntityentityNamed(java.lang.StringentityNamg

Returns the EOEntity from one of the receiver’s Models that's namtggiNameornull if there is no such
EOEntity. This method works by sendiegtityNamed: messages to each of the receiver's EOModels and
returning the first one found.

See also: entityForObject

forgetAllSnapshots
public voidforgetAllSnapshots

Clears all of the receiver’s snapshots and posts an ObjectsChangedinStoreNaotification (defined in the
EOControl framework’s EOObjectStore class) describing the invalidated object. For a description of
shapshots and their role in an application, see the class description.

See also: forgetSnapshotForGloballD, forgetSnapshotsForGloballDs recordSnapshot:forGloballD:,
recordSnapshotsrecordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)
recordToManySnapshotspublic void recordToManySnapshots(NSDictionary snapshots)

forgetSnapshotForGloballD
public voidforgetSnapshotForGloballD(com.apple.yellow.eocontrol. EOGlobalifoballD)

Clears the snapshot made for the enterprise object identifigldlimlID and posts an
ObjectsChangedinStoreNotification (defined in the EOControl framework’s EOObjectStore class)

describing the invalidated object. For a description of snapshots and their role in an application, see the class

description.

See also: forgetSnapshotsForGloballDs forgetAllSnapshots recordSnapshot:forGloballD:

Classes: EODatabase

forgetSnapshotsForGloballDs
public voidforgetSnapshotsForGlobalIDgNSArray globallDs)

Clears the snapshots made for the enterprise objects identified by each of the EOGIlolyiblizd s

and posts an ObjectsChangedinStoreNotification (defined in the EOControl framework’s EOObjectStore
class) describing the invalidated objects. For a description of snapshots and their role in an application, see
the class description.

See also: forgetSnapshotForGloballD, forgetAllSnapshots recordSnapshots

invalidateResultCache
public voidinvalidateResultCache

Invalidates the receiver’s result cache. See the class description for more discussion of this topic.

See also: invalidateResultCacheForEntityNamed resultCacheForEntityNamed

invalidateResultCacheForEntityNamed
public voidinvalidateResultCacheForEntityNamedjava.lang.StringentityNamé

Invalidates the result cache containing an array of globallDs for the objects associated with the entity
entityName See the class description for more discussion of this topic.

See also: invalidateResultCache resultCacheForEntityNamed

models
public NSArraymodelq)

Returns the receiver's EOModels.

See also: “Constructors” addModel, addModellfCompatible, removeModel

recordSnapshot:forGloballD:

public voidrecordSnapshotForGloballD(NSDictionaryaSnapshot
com.apple.yellow.eocontrol. EOGlobaltioballD)

RecordsaSnapshotindergloballD. For a description of snapshots and their role in an application, see the
class description.

See also: —globallDForRow: (EOEntity),recordSnapshotsforgetSnapshotForGloballD

97

98

recordSnapshotForSourceGloballD public void
recordSnapshotForSourceGloballINSArraygloballDs
com.apple.yellow.eocontrol. EOGlobalkoballD,
java.lang.Stringhame

For the object identified byloballD, records an NSArray gfloballDsfor the to-many relationship named
name ThesgyloballDsidentify the objects at the destination of the relationship. For a description of
shapshots and their role in an application, see the class description.

See also: recordSnapshot:forGloballD:, recordSnapshotsrecordSnapshot:forGloballD:,
shapshotForSourceGloballDpublic NSArray snapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)

recordSnapshots
public voidrecordSnapshot¢éNSDictionarysnapshots

Records the snapshotssnapshotssnapshotss a dictionary whose keys are EOGloballDs and whose
values are the snapshots for those global IDs. For a description of snapshots and their role in an application,
see the class description.

See also: recordSnapshot:forGloballD:, forgetSnapshotsForGloballDs
recordToManySnapshots public voidrecordToManySnapshotgNSDictionarysnapshots

Records the objects snapshotssnapshotshould be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globalD of the enterprise object for which to-many relationships are
being recorded. The key’s value is a dictionary whose keys are the names of the enterprise object’s to-many
relationships. Each of these keys in turn has as its value an array of globallDs that identify the objects at the
destination of the relationship. For a description of snapshots and their role in an application, see the class
description.

See also: recordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGloballD globallD, java.lang.String nameyecordSnapshot:
forGloballD: , snapshotForSourceGloballDpublic NSArray snapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)

Classes: EODatabase

registerContext
public voidregisterContext{EODatabaseConteatContext

RecordsaContextas one of the receiver's EODatabaseContexts. The receiver must have been specified as
aContexs EODatabase in the EODatabaseContext constructor (which invokes this method automatically).
You should never need to invoke this method directly.

See also: unregisterContext, registeredContexts

registeredContexts
public NSArrayregisteredContextg)

Returns all the EODatabaseContexts that have been registered with the receiver, generally all the database
contexts that were created with the receiver as their EODatabase object.

See also: registerContext, unregisterContext

removeModel
public voidremoveMode(EOModelaMode)

RemovesaModelfrom the receiver’s list of EOModels. Throws an excepti@Mbdelisn’'t one of the
receiver's models.

See also: addModel, addModellfCompatible, models

resultCacheForEntityNamed
public NSArrayresultCacheForEntityNamedjava.lang.StringentityNamé

Returns an array containing the globallDs of the objects associateentiifiName See the class
description for more discussion of this topic.

See also: invalidateResultCache invalidateResultCacheForEntityNamed

99

setResultCache ForEntityWithName
public voidsetResultCacheForEntityWithNamdNSArray cache java.lang.StringntityNamg

Updates the receiver’s cache &mtityNamewith cache an array of EOGloballD objects, for all the
enterprise objects associated with the EOEntity naenétyNameThis method is invoked automatically,
and you should never need to invoke it directly. For more information on this topic, see the class description.

See also: invalidateResultCache invalidateResultCacheForEntityNamed
resultCacheForEntityNamed

snapshotForGloballD
public NSDictionarysnapshotForGloballD(com.apple.yellow.eocontrol. EOGlobaltioballD)

Returns the snapshot associated witballD if there is one; otherwise returnsll. For a description of
shapshots and their role in an application, see the class description.

See also: recordSnapshot:forGloballD:, forgetSnapshotForGloballD

snapshotForSourceGloballD public NSArraysnapshotForSourceGloballl
com.apple.yellow.eocontrol. EOGlobalkoballD,
java.lang.Stringhame

Returns a snapshot that consists of an array of globallDs. These globallDs identify the objects at the
destination of the to-many relationship nameadhe which is a property of the object identified by
globallD. If there is no snapshot, retumdl. For a description of snapshots and their role in an application,
see the class description.

snapshots
public NSDictionarysnapshotg)
Returns all of the receiver's snapshots, stored in a dictionary under their EOGloballDs.

See also: recordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)
recordToManySnapshotspublic void recordToManySnapshots(NSDictionary snapshots)

100

Classes: EODatabase

unregisterContext

public voidunregisterContext{EODatabaseConteaContex}

RemovesaContexias one of the receiver's EODatabaseContexts. An EODatabaseContext automatically
invokes this method when it's finalized; you should never need to invoke it directly.

See also: registerContext, registeredContexts

101

102

Classes: EODatabase

EODatabase

Each of an EODatabase’s EODatabaseContexts forms a separate transaction scope, and is in effect a
separate logical user to the server. An EODatabaseContext uses one or more pairs of EODatabaseChannel
and EOAdaptorChannel objects to manage data operations (insert, update, delete, and fetch). Adaptors may
support a limited number of contexts per database or channels per context, but an application is guaranteed
at least one of each.

The EODatabase, EODatabaseContext, and EODatabaseChannel classesdatabdise levedf the
Enterprise Objects Framework. The database level is a client addpgor level which is defined by the
adaptor classes: EOAdaptor, EOAdaptorContext, and EOAdaptorChannel. Together, the database and
adaptor levels make up thecess layeof the Enterprise Objects Framework.

Databrase Lessal

EQDalabasa EQDalabase
Cofilaxt Chanal

| |
v v

) EQAdaplor — EQAdaptar
EQAdaptor Context Channel

EQDatabase [€—p

Adaplor Level
Figure 2 The Access Layer

The database level acts as an intermediary between the adaptor levelamtrthéayer which includes

an EOObjectStoreCoordinator and an EOEditingContext (Figure 3). The control layer operates in terms of
enterprise objects, while the adaptor level operates in terms of database rows packaged as NSDictionaries.
It's the job of the database level to perform the necessary object-to-relational translation between the two.

There’s little need for your code to interact directly with an EODatabase object. An EOEditingContext
creates its own database level objects, which create their own corresponding adaptor level objects. Once the
network of objects is in place, your code might interact with an EODatabase to access its corresponding
EOAdaptor object, but additional programmatic interaction is usually unnecessary.

103

104

EOQEditing
Contaxt
EQObjectStone
Coordinator
Controd Layer
Access Layer
EODatabase Ec’nn"“l T’ E%[I’_I:"::“
EOQAdaplor EQAdaptor
Skl Contaxt Chanmed

Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer

Snapshots

EODatabase’s most significant responsibility is to resaapshotgor its EODatabaseContexts. A

shapshot is a dictionary whose keys are attribute names and whose values are the corresponding, last-known
database values. Enterprise Objects Framework records snapshots as it successfully fetches, inserts and
updates enterprise objects. Snapshot information is used when changes to enterprise objects are saved back
out to the database to ensure that row data has not been changed by someone else since it was last recorded
by the application.

A snapshot contains entries for a row's primary key, class properties, foreign keys for class property
relationships, and attributes used for locking. They are recorded under the globallDs of their enterprise
objects. (EOGIoballDs are based on an object's primary key and its associated entity; see the class
specification for EOGloballD in the EOControl framework for more information.)

The snapshots made by an EODatabase form the global view of data for nearly every other part of the
application, representing the current view of data in the server as far as the application is concerned (though
other applications may have made changes). This global view is temporarily overridden locally by
EODatabaseContexts, which form their own snapshots as they make changes during a transaction. When
an EODatabaseContext commits its top-level transaction, it reconciles all changed snapshots with the

Classes: EODatabase

global view of the database object, so that other database contexts (except those with open transactions)
immediately use the new snapshots as well. EODatabaseContexts automatically use their EODatabase to
record snapshots, so there’s no need for your application to intervene in an EODatabase’s snapshotting
mechanism.

For more information on snapshots and how they relate to an application’s update strategy, see the
EODatabaseContext class specification.

Result Cache

An EODatabase object also performs the function of caching enterprise objects for entities that cache their
objects (see the EOEntity class specification). An EODatabase’s result cache stores the globallDs of
enterprise objects for entities that cache their objects. The first time you perform a fetch against such an
entity, all of its objects are fetched, regardless of the fetch specification used. The globallDs of the resulting
objects are stored in the EODatabase’s result cache by entity name. Whenever possible, subsequent fetches
are performed against the cache (in memory) rather than against the database. With a globallD, Enterprise
Objects Framework can look up the values for the corresponding object in its snapshot using EODatabase’s
or EODatabaseContextmapshotForGloballD method.

As an example, suppose that you have an entity named Rating that contains all the valid ratings for Movies
(G, PG, R, and so on). Rather than store a Movie’s rating directly in the Movie as an attribute, Movie
maintains a relationship to a Rating. To specify a rating for a movie, users select the rating from a pop-up
list of the possible values. This Rating entity should cache its objects. The values that populate the rating
pop-up list are only fetched once, and there’s no need to fetch them again; the relationships between Movies
and Ratings can be maintained without subsequent fetches.

The result cache is managed automatically; you shouldn’t have to manipulate it explicitly. However, if you
need to access or alter the cache, EODatabase provides several methods for interacting with it.

105

106

Classes: EODatabaseChannel

EODatabaseChannel
Inherits From: NSObiject
Package: com.apple.yellow.eoaccess

Class Description

An EODatabaseChannel represents an independent communication channel to the database server. It's
associated with an EODatabaseContext and an EODatabase, which, together with the EODatabaseChannel,
form thedatabase levedf Enterprise Objects Framework’s access layer. See the EODatabase class
specification for more information.

An EODatabaseChannel has an EOAdaptorChannel that it uses to connect to the database server its
EODatabase object represents. An EODatabaseChannel fetches database records as instances of enterprise
object classes that are specified in its EODatabase’s EOModel objects. An EODatabaseChannel also has an
EODatabaseContext, which uses the channel to perform fetches and to lock rows in the database. All of the
database level objects are used automatically by EOEditingContexts and other components of Enterprise
Objects Framework. You rarely need to interact with them directly. In particular, you wouldn’t ordinarily

use an EODatabaseChannel to fetch objects. Rather, you'd use an EOEditingContext.

Method Types

Constructors
EODatabaseChannel

Accessing cooperating objects adaptorChannel
databaseContext

Fetching objects selectObjectsWithFetchSpecification
isFetchinProgress
fetchObject
cancelFetch

Accessing internal fetch state setCurrentEntity

setCurrentEditingContext
setlsLocking

isLocking
setlsRefreshingObjects
isRefreshingObjects

107

Accessing the delegate setDelegate
delegate

Constructors

EODatabaseChannel

public EODatabaseChann€])
public EODatabaseChannglcom.apple.yellow.eocontrol. EODatabase Conadatabase Context

Creates and returns a new EODatabaseChannel. Typically, you don't need to programmatically create
EODatabaseChannel objects. Rather, they are created automatically by the control layer. See the
EODatabase class description for more information.

aDatabaseContexs$ assigned to the new EODatabaseChannel as the DatabaseContext in which the channel
works. The new EODatabaseChannel creates an AdaptorChannel with which to communicate with the
database server. The constructor throws an exception if the underlying adaptor context can’t create a
corresponding adaptor channel.

See also: databaseContextadaptorChannel

Instance Methods

108

adaptorChannel
public com.apple.yellow.eocontrol. EOAdaptorCharasdptorChannel()

Returns the EOAdaptorChannel used by the receiver for communication with the database server.

See also: “Constructors”

cancelFetch
public voidcancelFetch

Cancels any fetch in progress.

See also: isFetchinProgress selectObjectsWithFetchSpecificationfetchObject

Classes: EODatabaseChannel

databaseContext
public com.apple.yellow.eocontrol. EODatabaseCordatdbaseContexf)

Returns the EODatabaseContext that controls transactions for the receiver.

See also: “Constructors”

delegate
public java.lang.Objedelegate)

Returns the receiver’s delegate. An EODatabaseChannel shares the delegate of its EODatabaseContext. See
the EODatabaseContext class specification for the delegate methods you can implement.

See also: setDelegate

fetchObject
public java.lang.ObjedetchObject()

Fetches and returns the next object in the result set producesklctObjectsWithFetchSpecification
message; returmalll if there are no more objects in the current result set or if an error occurs. This method
uses the receiver's EOAdaptorChannel to fetch a row, records a snapshot with the EODatabaseContext if
necessary, and creates an enterprise object from the row if a corresponding object doesn'’t already exist. The
new object is sent aawakeFromFetchinEditingContext: message to allow it to finish setting up its state.

If no snapshot exists for the fetched object, the receiver sends its EODatedrame @napshot:

forGloballD: message to record one. If a snapshot already exists (because the object was previously
fetched), the receiver checks whether it should overwrite the old snapshot with the new one. It does so by
asking the delegate withdatabaseContextShouldUpdateCurrentSnapshanethod. If the delegate

doesn’t respond to this method, the EODatabaseChannel overwrites the snapshot if it's locking or refreshing
fetched objects. Further, if the EODatabaseChannel is refreshing fetched objects, it posts an
EOODbjectsChangedinStoreNatification on behalf of its EODatabaseContext (which causes any
EOEditingContext using that EODatabaseContext to update its enterprise object with the values recorded
in the new snapshot).

For information on locking and update strategies, see the EODatabaseContext class specification. For
information on refreshing fetched objects, see the EOFetchSpecification class specification.

Ordinarily, you don't directly use an EODatabaseChannel to fetch objects. Rather, you use an
EOEditingContext, which uses an underlying EODatabaseChannel to do its work.

See also: cancelFetchisFetchinProgressisLocking, isRefreshingObjects

109

110

isFetchinProgress
public booleansFetchinProgress

Returndrue if the receiver is fetchindalse otherwise. An EODatabaseChannel is fetching if it's been sent
a successfudelectObjectsWithFetchSpecificatiormessage. An EODatabaseChannel stops fetching when
there are no more objects to fetch or when it is seahaelFetchmessage.

isLocking
public boolearisLocking()

Returngrue if the receiver is locking the objects selected, as determined by its EODatabaseContext’s
update strategy or the EOFetchSpecification used to perform the select. Résermmiherwise. This
method always returrfalsewhen no fetch is in progress.

See also: —locksObjects(EOFetchSpecificationygetlsLocking

isRefreshingObjects
public boolearnsRefreshingObjecs()

Returngrue if the receiver overwrites existing snapshots with fetched values and causes the current
EOEditingContext to overwrite existing enterprise objects with those values as well. Raekens
otherwise. This behavior is controlled by the EOFetchSpecification used in a
selectObjectsWithFetchSpecificatiormessage.

See also: —refreshesRefetchedObject$EOFetchSpecificationfetchObject, setlsRefreshingObjects

selectObjectsWithFetchSpecification

public voidselectObjectsWithFetchSpecificatiof
com.apple.yellow.eocontrol. EOFetchSpecificafieichSpecificatian
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Selects objects describedfeychSpecificationo that they'll be fetched inemEditingContextThe selected
objects compose one or more result sets, each object of which will be returned by suliseip@ject
messages in the order prescribeddighSpecificatioa EOSortOrderings.

Throws an exception if an error occurs; the particular exception depends on the specific error, and is
indicated in the exception’s description. Some possible reasons for failure are:

fetchSpecificatiors invalid.

« The receiver's EODatabaseContext has no transaction in progress.
The delegate disallows the select operation.

* The receiver's EOAdaptorChannel fails to perform the select operation.

Classes: EODatabaseChannel

This method invokes the delegate methdatabaseContextShouldSelectObjects
databaseContextShouldUsePessimisticLockWithFetchSpecificatipand
databaseContextDidSelectObjectsSee their descriptions in the EODatabaseContext class specification
for more information.

You wouldn'’t ordinarily invoke this method directly; rather, you'd use an EOEditingContext to select and
fetch enterprise objects.

See also: fetchObject

setCurrentEditingContext

public void
setCurrentEditingContext(com.apple.yellow.eocontrol. EOEditingContextEditingContext

Sets the EOEditingContext that's made the owner of fetched objemt&ttitingContextThis method is
automatically invoked bgelectObjectsWithFetchSpecificationYou should never invoke it directly.

See also: setCurrentEntity

setCurrentEntity
public voidsetCurrentEntity (EOEntity anEntity)

Sets the EOEntity used when fetching enterprise objeatsHntity SubsequerfetchObject messages
during a fetch operation create an object of the class associateah®ittity This method is invoked
automatically byselectObjectsWithFetchSpecificatioriYou should never need to invoke it directly.

See also: setCurrentEditingContext

setDelegate
public voidsetDelegat§ava.lang.ObjecanObjec}

Sets the receiver’s delegateaitObject An EODatabaseChannel shares the delegate of its
EODatabaseContext; you should never invoke this method directly. See the EODatabaseContext class
specification for the delegate methods you can implement.

See also: delegate

111

setlsLocking
public voidsetlsLocking(boolearflag)

Records whether the receiver locks the records it selects. A EODatabaseChannel modifies its interaction
with the database server and its snapshotting behavior based on this sékigs tifue the
EODatabaseChannel modifies its fetching behavior to lock objefitsy i§ falseit simply fetches them.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecificationmessage. You might invoke this method directly if evaluating SQL
directly with EOAdaptorChannelsvaluateExpressiomethod.

See also: —locksObjects(EOFetchSpecificationygetlsLocking

setlsRefreshingObjects
public voidsetisRefreshingObjectgbooleanflag)

Records whether the receiver causes existing snapshots and enterprise objects to be overwritten with
fetched values. flagistrue the receiver overwrites existing snapshots with fetched values and posts an
ObjectsChangedinStoreNotification on behalf of its EODatabaseContext (which typically causes the an
existing object’s EOEditingContext to replace its values with the new onéay i false, the receiver

relies on the delegate to determine whether snapshots should be overwritten, and doesn't cause enterprise
objects to be overwritten.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecificatiormessage. You might invoke this method directly if evaluating SQL
directly with EOAdaptorChannelsvaluateExpression'method.

See also: —refreshesRefetchedObject$E OFetchSpecification)

112

Classes: EODatabaseContext

EODatabaseContext

Inherits From: com.apple.yellow.eocontrol. EOCooperatingObjectStore :
com.apple.yellow.eocontrol. EOObjectStore :
NSObject

Package: com.apple.yellow.eoaccess

Class Description

An EODatabaseContext object is a com.apple.yellow.eocontrol. EOObjectStore
(com.apple.client.eocontrol if you're using Siva) for accessing relational databases, creating and saving
objects based on EOEntity definitions in an EOModel.

An EODatabaseContext represents a single connection to a database server, and it determines the updating
and locking strategy used by its EODatabaseChannel objects. An EODatabaseContext has a corresponding
EODatabase object. If the server supports multiple concurrent transactions, the EODatabase object may
have several database contexts. If the server and adaptor support it, a database context may in turn have
several database channels, which handle access to the data on the server.

For a more information, see “EODatabaseContext”.

Method Types

Constructors
EODatabaseContext

Fetching objects
objectsWithFetchSpecification
objectsForSourceGloballD
arrayFaultWithSourceGloballD
faultForGloballD
faultForRawRow
batchFetchRelationship

Accessing the adaptor context
adaptorContext

Accessing the database object
database

Accessing the coordinator
coordinator

113

114

Managing channels

Accessing the delegate

availableChannel
registerChannel
registeredChannels
unregisterChannel

setDelegate
delegate

Committing or discarding changes

invalidateAllObjects
invalidateObjectsWithGloballDs
rollbackChanges
saveChangesInEditingContext
commitChanges
performChanges
prepareForSaveWithCoordinator
recordUpdateForObject
recordChangesinEditingContext
refaultObject

Determining if the EODatabaseContext is responsible for a particular operation

ownsObject
ownsGloballD
handlesFetchSpecification

Classes: EODatabaseContext

Managing Snapshots

forgetSnapshotForGloballD

forgetSnapshotsForGloballDs

localSnapshotForGloballD

recordSnapshotForGloballD

recordSnapshots

shapshotForGloballD

recordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGloballD globallD,
java.lang.String name)

shapshotForSourceGloballDpublic NSArray
shapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGloballD globallD,
java.lang.String name)

localSnapshotForSourceGloballDpublic NSArray
localSnapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGloballD globallD,
java.lang.String name)

recordToManySnapshots

Initializing objects
initializeObject

Obtaining an EODatabaseContext
registeredDatabaseContextForModel

Locking objects

setUpdateStrategy

updateStrategy

registerLockedObjectWithGloballD

isObjectLockedWithGloballD

isObjectLockedWithGloballDpublic boolean
isObjectLockedWithGloballD(com.apple.yellow.eocontrol. EOGlo
ballD globallD, com.apple.yellow.eocontrol. EOEditingContext
anEditingContext)

forgetAllLocks

forgetLocksForObjectsWithGloballDs

lockObjectWithGloballD

Returning information about objects
valuesForKeys

Setting the context class
contextClassToRegister
setContextClassToRegister

115

Checking connection status
hasBusyChannels

Other
forceConnectionWithModel
lock
unlock
Constructors
EODatabaseContext

public EODatabaseContext)
public EODatabaseContextEODatabasaDatabasg

Creates and returns a new EODatabaseContext. Typically, you don't need to programmatically create
database contexts. Rather, they are created automatically by the control layer. See “Creating and Using an
EODatabaseContext” for more information.

aDatabaséds assigned to the new database as the EODatabase object with which the new context works.
The new database context creates an EOAdaptorContext with which to communicate with the database
server. Throws an exception if the underlying adaptor context can’t create a corresponding adaptor channel.

See also: database

Static Methods

116

contextClassToRegister
public static java.lang.Clas®ntextClassToRegiste()

Returns the class that is registered with an EOObjectStoreCoordinator when the coordinator broadcasts an
EOCooperatingObjectStoreNeeded notification. By default this is EODatabaseContext, but you can
usesetContextClassToRegisteto specify your own subclass of EODatabaseContext.

When an EOObjectStoreCoordinator sends an EOCooperatingObjectStoreNeeded notification for an
EOEntity in the default model group,dbntextClassToRegisteiis nonnaull (and it should be—it makes

no sense to sebntextClassToRegisteto null), an instance of the that class is created, the EOModel for
the EOEntity is registered, and the context class is registered with the requesting
EOObjectStoreCoordinator.

Classes: EODatabaseContext

forceConnectionWithModel

public static EODatabaseContdatceConnectionWithModel(EOModelaMode]|
NSDictionaryoverrides
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Forces the stack of objects in the EOAccess layer to be instantiated, if necessary, and then makes a
connection to the database. If there is an existing connectiamfwde] it is first closed and then

reconnected. The new connection dictionary is effectively made up of the model’s connection dictionary,
overlaid withoverrides All compatible models in the model’s group also are associated with the new
connection (so they share the same adaptor). Returns the EODatabaseContext associated with the model for
anEditingContext

registeredDatabaseContextForModel

public static EODatabaseConteggisteredDatabaseContextForModdEOModelaModel|
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Finds the com.apple.yellow.eocontrol. EOObjectStoreCoordinatanteditingContexand checks to see
if it already contains an EODatabaseContext cooperating staa®ifudtel If it does, it returns that
EODatabaseContext. Otherwise it instantiates a new EODatabaseContext, adds it to the
EOODbjectStoreCoordinator, and returns the EODatabaseContext.

setContextClassToRegister
public static voidsetContextClassToRegistdjava.lang.ClassontextClasp

Sets tocontextClasshe “contextClassToRegister.” For more discussion of this topic, see the method
description forcontextClassToRegister

Instance Methods

adaptorContext
public EOAdaptorContexadaptorContext()

Returns the EOAdaptorContext used by the EODatabaseContext for communication with the database
server.

117

118

arrayFaultWithSourceGloballD

public NSArrayarrayFaultWithSourceGloballD (com.apple.yellow.eocontrol. EOGlobalkjoballD,
java.lang.Stringname com.apple.yellow.eocontrol. EOEditingContaxrtEditingContext

Overrides the inherited implementation to create a to-many fawdntditingContextnamemust
correspond to an EORelationship in the EOEntity for the spegiadilID.

See also: faultForGloballD

availableChannel
public EODatabaseChanralailableChannel)

Returns an EODatabaseChannel that's registered with the receiver and that isn't busy. If the method can’t
find a channel that meets these criteria, it posts an EODatabaseChannelNeededNotification in the hopes that
someone will provide a new channel. After posting the notification, the receiver checks its list of channels
again. If there are still no available channels, the receiver creates an EODatabaseChannel itself. However,
if the list is not empty and there are no available channels, the method retilirns

See also: registerChannel registeredChannelsunregisterChannel

batchFetchRelationship

public voidbatchFetchRelationshigEORelationshipelationship NSArrayobjects
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Clear all the faults for theelationshipof anEditingContex$ objectsand performs a single, efficient, fetch

(at most two fetches, if the relationship is many-to-many). This method provides a way to fetch the same
relationship for multiple objects. For example, given an array of Employee objects, this method can fetch
all of their departments with one round trip to the server, rather than asking the server for each of the
employee’s departments individually.

commitChanges
public voidcommitChanges()

Overrides the inherited implementation to instruct the adaptor to commit the transaction. If the commit is
successful, any primary and foreign key changes are written back to the saved objects, database locks are
released, and an EOObjectsChangedinStoreNotification (defined in

com.apple.yellow.eocontrol. EOODbjectStore) is posted describing the committed changes. Raises an
exception if the adaptor is unable to commit the transaction; the error message indicates the nature of the
problem. You should never need to invoke this method directly.

See also: performChanges rollbackChanges

Classes: EODatabaseContext

coordinator
public com.apple.yellow.eocontrol. EOObjectStoreCoordinatordinator()

Returns the receiver’s com.apple.yellow.eocontrol. EOObjectStoreCoordinatdr ibthere is noneThis
method is only valid during a save operation.

database
public EODatabasdatabas«)

Returns the receiver's EODatabase.

See also: “Constructors”

delegate
public java.lang.Objedelegatd)

Returns the receiver’s delegate.

See also: setDelegate

faultForGloballD

public java.lang.ObjedaultForGloballD (com.apple.yellow.eocontrol. EOGlobalifoballD,
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Overrides the inherited implementatitancreate a to-one fault for the object identifiecglyballD and
register it inanEditingContext.

See also: arrayFaultWithSourceGloballD

faultForRawRow

public java.lang.ObjedaultForRawRow(java.lang.Objectow,
java.lang.StringentityName
com.apple.yellow.eocontrol. EOEditingContextitingContext

Returns a fault for a raw rowow is the raw data, typically in the form of an NSDictionamytityNames
the name of the appropriate entity for the EO you want to create (as aefditilhyContexis the
EOEditingContext in which to create the fault

119

120

forgetAllLocks
public voidforgetAllLocks()

Clears all of the receiver’s locks. Doesn't cause the locks to be forgotten in the server, only in the receiver.
This method is useful when something has happened to cause the server to forget the locks and the receiver
needs to be synced up. This method is invoked whenever a transaction is committed or rolled back.

See also: registerLockedObjectWithGloballD , isObjectLockedWithGloballD ,
isObjectLockedWithGloballDpublic boolean
isObjectLockedWithGloballD(com.apple.yellow.eocontrol. EOGloballD globallD,
com.apple.yellow.eocontrol. EOEditingContext anEditingContext)
forgetLocksForObjectsWithGloballDs, lockObjectWithGloballD
lockObject (com.apple.yellow.eocontrol. EOEditingContext)

forgetLocksForObjectsWithGloballDs
public voidforgetLocksForObjectsWithGloballDs(NSArray animmutableVectgr

Clears the locks made for the enterprise objects identified by each of the
com.apple.yellow.eocontrol. EOGloballDsgioballDs Doesn't cause the locks to be forgotten in the
server, only in the receiver.

See also: registerLockedObjectWithGloballD , isObjectLockedWithGloballD ,
isObjectLockedWithGloballDpublic boolean
isObjectLockedWithGloballD(com.apple.yellow.eocontrol. EOGloballD globallD,
com.apple.yellow.eocontrol. EOEditingContext anEditingContext)forgetAllLocks,
lockObjectWithGloballD , lockObject (com.apple.yellow.eocontrol. EOEditingContext)

forgetSnapshotForGloballD
public voidforgetSnapshotForGloballD(com.apple.yellow.eocontrol. EOGlobalifoballD)

Deletes the snapshot made for the enterprise object identifgdddaliD.

See also: recordSnapshotForGloballD, localSnapshotForGloballD, recordSnapshots
snapshotForGloballD, forgetSnapshotsForGloballDs

Classes: EODatabaseContext

forgetSnapshotsForGloballDs
public voidforgetSnapshotsForGloballDgNSArray globallDs)

Deletes the snapshots made for the enterprise objects identifigabbiiDs an array of
com.apple.yellow.eocontrol. EOGloballD objects.

See also: recordSnapshotForGloballD, localSnapshotForGloballD, recordSnapshots
shapshotForGloballD

handlesFetchSpecification

public boolearhandlesFetchSpecificatiof
com.apple.yellow.eocontrol. EOFetchSpecificafisichSpecification

Overrides the inherited implementation to retinue if the receiver is responsible for fetching the objects
described by the entity namefgtchSpecification

See also: ownsObject ownsGloballD

hasBusyChannels
public boolearhasBusyChannels()

Returngrue if the receiver's EOAdaptorContext has channels that have outstanding operations (that is,
have a fetch in progresd$alse otherwise.

initializeObject
public voidinitializeObject (java.lang.Objecbbject
com.apple.yellow.eocontrol. EOGlobaltoballD,
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Overrides the inherited implementation initial@gectfor anEditingContexby filling it with properties
based on row data fetched from the adaptor. The snapslgtolaitiD is looked up and those attributes in
the snapshot that are marked as class properties in the EOEntity are assibjesd Eor relationship class
properties, faults are constructed and assigned to the object.

invalidateAllObjects
public voidinvalidateAllObjects();

Overrides the inherited implementation to discard all snapshots in the receiver's EODatabase, forget all
locks, and post an EOlnvalidatedAllObjectsinStoreNotification, as well as an
EOObjectsChangedinStoreNotification with the invalidated global IDs ingénfo dictionary. Both of

121

these notifications are defined in com.apple.yellow.eocontrol. EOObjectStore. This method works by
invoking invalidateObjectsWithGloballDs for all of the snapshots in the receiver's EODatabase.

invalidateObjectsWithGloballDs
public voidinvalidateObjectsWithGloballDs(NSArray globallDs)

Overrides the inherited implementation to discard the snapshots for the objects identified by the
com.apple.yellow.eocontrol. EOGloballDsgioballDs and broadcasts an
EOODbjectsChangedinStoreNatification (defined in com.apple.yellow.eocontrol. EOObjectStore), which
causes the com.apple.yellow.eocontrol. EOEditingContext containing objects fetched from the receiver to
refault those objects. The result is that these objects will be refetched from the database the next time they're
accessed.

isObjectLockedWithGloballD
public booleansObjectLockedWithGloballD (com.apple.yellow.eocontrol. EOGloballoballD)

Returngrue if the enterprise object identified lgyoballD is locked false otherwise.

See also: registerLockedObjectWithGloballD , forgetAllLocks, isObjectLockedWithGloballDpublic
boolean isObjectLockedWithGloballD(com.apple.yellow.eocontrol. EOGloballD globallD,
com.apple.yellow.eocontrol. EOEditingContext anEditingContext)
forgetLocksForObjectsWithGloballDs, lockObjectWithGloballD , lockObject
(com.apple.yellow.eocontrol. EOEditingContext)

iIsObjectLockedWithGloballD public boolean
isObjectLockedWithGloballD (com.apple.yellow.eocontrol. EOGlobalkioballD,
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Overrides the EOObjectStore methis@bjectLockedWithGloballD:editingContext: to return true if the
database row correspondinggioballD has been locked in an open transaction held by the receiver.

See also: registerLockedObjectWithGloballD , isObjectLockedWithGloballD , forgetAllLocks,
forgetLocksForObjectsWithGloballDs, lockObjectWithGloballD
lockObject (EOEditingContext)

122

Classes: EODatabaseContext

localSnapshotForGloballD
public NSDictionarylocalSnapshotForGloballD(com.apple.yellow.eocontrol. EOGlobalkoballD)

Returns the snapshot for the object identifiedlioyallD, if there is one; else returnsll. Only searches
locally (in the transaction scope), not in the EODatabase.

See also: recordSnapshotForGloballD, forgetSnapshotForGloballD, recordSnapshots
shapshotForGloballD

localSnapshotForSourceGloballD public NSArraylocalSnapshotForSourceGloball
com.apple.yellow.eocontrol.EOGloballpoballD,
java.lang.Stringhameg

Returns an array that is the snapshot for the objects at the destination of the to-many relationship named
name which is a property of the object identifiedddpballD. The returned array contains the globallDs

of the destination objects. If there is no snapshot, retwthsOnly searches locally (in the transaction
scope), not in the EODatabase.

See also: recordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGloballD globallD, java.lang.String name)
shapshotForSourceGloballDpublic NSArray snapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)

lock
public voidlock()

Used internally to protect access to the receiver in a multi-threaded environment. Do not confuse this with
any methods which work with the database locking mechanism.

See also: unlock

lockObjectWithGloballD

public voidlockObjectWithGloballD (com.apple.yellow.eocontrol. EOGlobaltjoballD,
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Overrides the inherited implementation to attempt to lock the database row correspogtbbgltd in
the underlying database server, on behadinditingContextlf a transaction is not already open at the
time of the lock request, the transaction is begun and is held open untiteiti@itChangesor

123

invalidateAllObjects is invoked. At that point all locks are released. Raises an exception if unable to obtain
the lock.

See also: registerLockedObjectWithGloballD , isObjectLockedWithGloballD , forgetAllLocks,
forgetLocksForObjectsWithGloballDs, lockObject
(com.apple.yellow.eocontrol. EOEditingContext)

objectsForSourceGloballD

public NSArrayobjectsForSourceGloball(com.apple.yellow.eocontrol. EOGlobaligoballD,
java.lang.Stringname com.apple.yellow.eocontrol. EOEditingContaxrtEditingContext

Overrides the inherited implementation to service a to-many fault. The snapshot for the source object
identified bygloballD is located and the EORelationship namatheis used to construct a qualifier from
that snapshot. This qualifier is then used to fetch the requested objeatsEdttingContextising the
methodobjectsWithFetchSpecification

objectsWithFetchSpecification

public NSArray
objectsWithFetchSpecificatiorfcom.apple.yellow.eocontrol. EOFetchSpecificafieichSpecifica
tion, com.apple.yellow.eocontrol. EOEditingContaxtEditingContext

Overrides the inherited implementation to fetch objects from an external stoamfddingContextThe
receiver obtains an available EODatabaseChannel and issues a fefeltciv@pecificatiorif one of these
objects is already present in memory, by default this method doesn’t overwrite its values with the new
values from the database (you can change this behavior; setRlefreshesRefetchedObjectaethod in

the com.apple.yellow.eocontrol. EOFetchSpecification class specification).

You can fine-tune the fetching behavior by adding hintstthSpecificatids hints dictionary. For this
purpose, EODatabaseContext defines the following keys (java.lang.Strings):

Constant Corresponding value in the hints dictionary

A java.lang.String specifying raw SQL with which to perform the fetch. There is

EOCustomQueryExpressionHintkey no way to pass down parameters with this hint.

A java.lang.String specifying a name for a stored procedure in the model that
should be used rather than building the SQL statement. The stored procedure
must query the the exact same attributes in the same order as EOF would

EOStoredProcedureNameHintKey query if generating the SELECT expression dynamically. If this key is supplied,
other aspects of the EOFetchSpecification such as isDeep, qualifier , and
sortOrderings are ignored (in that sense, this key is more of a directive than a
hint). There is no way to pass down parameters with this hint.

124

Classes: EODatabaseContext

The class description contains additional information on using these hints. See “Using a Custom Query.”

You can also use this method to implement “on-demand” locking by usetch&pecificatiothat includes
locking. For more discussion of this subject, see “Updating And Locking Strategies” in the class
description.

Raises an exception if an error occurs; the error message indicates the nature of the problem.

See also: ObjectsWithFetchSpecification(com.apple.yellow.eocontrol. EOEditingContext)

ownsGloballD
public boolearownsGloballD(com.apple.yellow.eocontrol. EOGlobaltioball D)

Overrides the inherited implementation to retimae if the receiver is responsible for fetching and saving
the object identified bgloballD, false otherwise. The receiver is determined to be responsigleallD

is a subclass of com.apple.yellow.eocontrol. EOKeyGloballDgéwiohlID has an entity from one of the
receiver's EODatabase’s EOModels.

See also: handlesFetchSpecificationownsObject

ownsObject
public boolearownsObjec{java.lang.Objecbbjec)

Overrides the inherited implementation to retioe if the receiver is responsible for fetching and saving
object falseotherwise. The receiver is determined to be responsible if the entity corresporabijegtis
in one of the receiver's EODatabase’s EOModels.

See also: ownsGloballD, handlesFetchSpecification

performChanges
public void performChanges()

Overrides the inherited implementation to construct EOAdaptorOperations from the
EODatabaseOperations produced durgmprdChangesinEditingContextand

recordUpdateForObiject. Invokes the delegate method
databaseContextWillOrderAdaptorOperationsFromDatabaseOperationgo give the delegate an

opportunity to construct alternative EOAdaptorOperations from the EODatabaseOperations. Then invokes
the delegate methathtabaseContext:willPerformAdaptorOperations:adaptorChannel: to let the

delegate substitute its own array of EOAdaptorOperations. Gives the EOAdaptorOperations to an available
EOAdaptorChannel for execution. If the save succeeds, updates the snapshots in the receiver to reflect the
new state of the server. You should never need to invoke this method directly.

125

126

This method raises an exception if the adaptor is unable to perform the operations.

See also: commitChanges rollbackChanges

prepareForSaveWithCoordinator

public void
prepareForSaveWithCoordinator(com.apple.yellow.eocontrol. EOObjectStoreCoordinatadb
jectStoreCoordinatqgrcom.apple.yellow.eocontrol. EOEditingContaxtE ditingContext

Overrides the inherited implementation to do whatever is necessary to prepare to save changes. If needed,
generates primary keys for any new objectmiBditingContexthat are owned by the receiver. This method

is invoked before the object graph is analyzed and foreign key assignments are performed. You should never
need to invoke this method directly.

recordChangesInEditingContext
public voidrecordChangesInEditingContext()

Overrides the inherited implementation to construct a list of EODatabaseOperations for all changes to
objects in the com.apple.yellow.eocontrol. EOEditingContext that are owned by the receiver. Forwards any
relationship changes discovered but not owned by the receiver to the

com.apple.yellow.eocontrol. EOObjectStoreCoordinator. This method is typically invoked in the course of
an com.apple.yellow.eocontrol. EOObjectStoreCoordinator saving changes through its
saveChangesInEditingConteximethod. It's invoked aftgarepareForSaveWithCoordinator and before
performChanges You should never need to invoke this method directly.

recordSnapshotForGloballD

public voidrecordSnapshotForGlobalID(NSDictionaryaSnapshot
com.apple.yellow.eocontrol. EOGlobalHisoballD)

RecordsaSnapshotindergloballD. This method only records snapshots locally (in the transaction scope).
If you want to record snapshots globally, use the corresponding EODatabase method.

See also: forgetSnapshotForGloballD, localSnapshotForGloballD, recordSnapshots
snapshotForGloballD

recordSnapshotForSourceGloballD public void
recordSnapshotForSourceGloballNSArraygloballDs,
com.apple.yellow.eocontrol. EOGlobaltjoballD,
java.lang.Stringnham@

For the object identified byloballD, records an NSArray @fioballDsfor the to-many relationship named
name TheseagloballDsidentify the objects at the destination of the relationship. This method only records

Classes: EODatabaseContext

shapshots locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: snapshotForSourceGloballDpublic NSArray snapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGloballD globallD, java.lang.String name)
localSnapshotForSourceGloballDpublic NSArray localSnapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)
recordToManySnapshots

recordSnapshots
public voidrecordSnapshot$NSDictionarysnapshots

Records the objects sfmapshotsa dictionary of snapshots. Taapshots; keyare GloballDs and its values

are the corresponding snapshots represented as NSDicationaries. This method only records snapshots
locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: recordSnapshotForGloballD, localSnapshotForGloballD, forgetSnapshotForGloballD,
shapshotForGloballD

recordToManySnapshots
public voidrecordToManySnapshotg¢NSDictionarysnapshots

Records the objects snapshotssnapshotshould be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globalD of the enterprise object for which to-many relationships are
being recorded. The key’s value is a dictionary whose keys are the hames of the Enterprise Object’s to-many
relationships. Each of these keys in turn has as its value an array of globallDs that identify the objects at the
destination of the relationship.

This method only records snapshots locally (in the transaction scope). If you want to record snapshots
globally, use the corresponding EODatabase method.

See also: recordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGloballD globallD, java.lang.String name)
shapshotForSourceGloballDpublic NSArray snapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)
localSnapshotForSourceGloballDpublic NSArray localSnapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGloballD globallD, java.lang.String name)

127

128

recordUpdateForObject
public voidrecordUpdateForObject(java.lang.Objecbbject NSDictionarychange$

Overrides the inherited implementation to communicate to the receivehdrajedrom another
com.apple.yellow.eocontrol. EOCooperatingObjectStore (through the

com.apple.yellow.eocontrol. EOObjectStoreCoordinator) need to be madelfeatin the receiver. For
example, an insert of an object in a relationship property might require changing a foreign key property in
an object owned by another cooperating store. This method can be invoked any time after
prepareForSaveWithCoordinator and beforg@erformChanges

refaultObject

public voidrefaultObject (java.lang.Objecbbject com.apple.yellow.eocontrol. EOGlobaliloballD,
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Overrides the inherited implementation to refault the enterprise object object identigjkdbaiyD in
anEditingContextNewly-inserted objects should not be refaulted, since they can’t be refetched from the
external store. If you attempt to do this, an exception will be raised. Don't refault to-many relationship
arrays, just recreate them.

This method should be used with caution since refaulting an object doesn’t remove the object snapshot from
the undo stack, after which the object snapshot may not refer to the proper object..

registerChannel
public voidregisterChanne(EODatabaseChannethanne)

Registerchanne] which means that it adds it to the pool of available channels used to service fetch and
fault requests. You use this method if you need to perform more than one fetch simultaneously.

See also: availableChanne] registeredChannelsunregisterChannel

registeredChannels
public NSArrayregisteredChannel$)

Returns all of the EODatabaseChannels that have been registered for use with the receiver.

See also: registerChannel availableChanne| unregisterChannel

Classes: EODatabaseContext

registerLockedObjectWithGloballD
public voidregisterLockedObjectWithGloballD (com.apple.yellow.eocontrol. EOGlobaltioballD)

Registers as a locked object the enterprise object identifigibbalID. This method is used internally to
keep track of objects corresponding to rows that are locked in the database.

See also: forgetAllLocks, isObjectLockedWithGloballD , forgetLocksForObjectsWithGloballDs,
lockObjectWithGloballD , lockObject (com.apple.yellow.eocontrol. EOEditingContext)

rollbackChanges
public voidrollbackChanges()

Overrides the inherited implementation to instruct the adaptor to roll back the transaction. Rolls back any
changed snapshots, and releases all locks.

See also: performChanges commitChanges

saveChangesInEditingContext

public void
saveChangesInEditingContexicom.apple.yellow.eocontrol. EOEditingContextEditingContext

);

Overrides the inherited implementation to save the changes meaaeditingContextThis message is sent

by an com.apple.yellow.eocontrol. EOEditingContext to its com.apple.yellow.eocontrol. EOObjectStore to
commit changes. Normally an editing context doesn’t send this message to an EODatabaseContext, but to
an com.apple.yellow.eocontrol. EOObjectStoreCoordinator. Raises an exception if an error occurs; the error
message indicates the nature of the problem.

setDelegate
public voidsetDelegat§ava.lang.Objectielegatg

Sets the receiver’s delegatedglegate and propagates the delegate to all of the receiver’s
EODatabaseChannels. EODatabaseChannels share the delegate of their EODatabaseContext.

See also: delegate

129

130

setUpdateStrategy
public voidsetUpdateStrategyint strategy

Sets the update strategy used by the EODatabaseCorgstegy See “Updating And Locking
Strategies” in the class description for information on the update strategies:

» EOUpdateWithOptimisticLocking
« EOUpdateWithPessimisticLocking

Raises an exception if the receiver has any transactions in progress or if you tstrategpito
EOUpdateWithPessimisticLocking and the receiver's EODatabase already has snapshots.

See also: updateStrategy

snapshotForGloballD
public NSDictionarysnapshotForGloballD(com.apple.yellow.eocontrol. EOGlobaltpoballD)

Returns the snapshot for the object identifiegjliopallD, if there is one; else returnsill. Searches first
locally (in the transaction scope) and then in the EODatabase.

See also: recordSnapshotForGloballD, localSnapshotForGloballD, forgetSnapshotForGloballD,
recordSnapshots

snapshotForSourceGloballD public NSArraysnapshotForSourceGloballQ
com.apple.yellow.eocontrol. EOGlobaltpoballD,
java.lang.Stringhame

Returns a snapshot that consists of an array of global IDs. These global IDs identify the objects at the
destination of the to-many relationship namathe which is a property of the object identified by
globallD. If there is no snapshot, retunmgil.

See also: recordSnapshotForSourceGloballDpublic void
recordSnapshotForSourceGloballD(NSArray globallDs,
com.apple.yellow.eocontrol. EOGIloballD globallD, java.lang.String name)
localSnapshotForSourceGloballDpublic NSArray localSnapshotForSourceGloballD(
com.apple.yellow.eocontrol. EOGloballD globallD, java.lang.String name)
recordToManySnapshots

unlock
public voidunlock()

Used internally to release the lock that protects access to the receiver in a multi-threaded environment.

See also: lock

Classes: EODatabaseContext

unregisterChannel
public voidunregisterChanne(EODatabaseChannehanne)

Unregisters the EODatabaseCharuielnne] which means that it removes it from the pool of available
channels used for database communication (for example, to service fetch and fault requests).

See also: registerChannel registeredChannelsavailableChannel

updateStrategy
public intupdateStrategy()

Returns the update strategy used by the receiver, one of:

» EOUpdateWithOptimisticLocking
» EOUpdateWithPessimisticLocking

The default strategy is EOUpdateWithOptimisticLocking. See the class description for information on
update strategies.

See also: setUpdateStrategy

valuesForKeys
public NSDictionarywaluesForkKeygNSArraykeys java.lang.Objeabbjec)

Overrides the inherited implementation to return values for the spddifjstiom the snapshot abject
The returned values are used primarily by another EODatabaseContext to extract foreign key properties for
objects owned by the receiver.

Notifications
EODatabaseChannelNeededNotification

This notification is broadcast whenever an EODatabaseContext is asked to perform an object store
operation and it doesn't have an available EODatabaseChannel. Subscribers can create a new channel and
add it to the EODatabaseContext at this time.

Notification Object The EODatabaseContext.

userinfo Dictionary None.

131

132

Classes: EODatabaseContext

EODatabaseContext

The relationship between EODatabaseContext and other classes in the control and access layers is
illustrated in the following diagram.

EQEditing
Context
E0ObjectStore
Coordinator
EQDatabase
Context
EQDatabase — L [ODatabase —k ECMadel
Channel GroUp
ECAdaptor EQAdaptor
Channel — Context EQAdaptor

As a subclass of com.apple.yellow.eocontrol. EOCooperatingObjectStore, EODatabaseContext acts as one
of possibly several EOCooperatingObjectStores for an

com.apple.yellow.eocontrol. EOObjectStoreCoordinator, which mediates between
com.apple.yellow.eocontrol. EOEditingContexts and EOCooperatingObjectStores.

An EODatabaseContext creates an EOAdaptorContext when initialized, and uses this object to
communicate with the database server.

Creating and Using an EODatabaseContext

Though you can create an EODatabaseContext explicitly by using the static method
registeredDatabaseContextForModelyou should rarely need to do so. If you're using the “higher-level”

133

134

objects com.apple.yellow.eocontrol. EOEditingContexts and EODatabaseDataSources, the database
contexts those objects need are created automatically, on demand. When you create database data source
(typically for use with a display group—one ofcom.apple.client.eointerface.EODisplayGroup,
com.apple.yellow.eointerface.EODisplayGroup, or com.apple.yellow.webobjects. WODisplayGroup), it
registers a database context that's capable of fetching objects for the data source’s entities. If objects fetched
into an editing context (described more in the following section) have references to objects from EOModels
that are based on another database, an EODatabaseContext is creates and registered for each of the
additional databases.

EODatabaseContexts are created on demand when an

com.apple.yellow.eocontrol. EOObjectStoreCoordinator posts an EOCooperatingObjectStoreNeeded
notification. The EODatabaseContext class registers for the notification, and it provides the coordinator
with a new EODatabaseContext instance that can handle the request. For more discussion of this topic, see
the chapter “Application Configurations” in tBmterprise Objects Framework Developer’s Guide

For the most part, you don’t need to programmatically interact with an EODatabaseContext. However, some
of the reasons you might want to are as follows:

» To implement your own locking strategy, either application-wide, or on a per-fetch basis. This is
described in the section “Updating And Locking Strategies.”

» To do performance tuning, which is described in the section “Faulting.”

« To intervene when objects are created and fetched to provide custom behavior. This is described in the
section “Delegate Methods,” and in the individual delegate method descriptions in the section “Instance
Methods.”

Fetching and Saving Objects

Conceptually, an EODatabaseContext fetches and saves objects on behalf of a
com.apple.yellow.eocontrol. EOEditingContext. However, the two objects don't interact with each other
directly—a com.apple.yellow.eocontrol. EOObjectStoreCoordinator acts as a mediator between them. The
relationship between EOEditingContext, EOObjectStoreCoordinator, and EODatabaseContext is
illustrated in the following figure. This configuration includes one EOObjectStoreCoordinator, and can
include one or more EOEditingContexts, and one or more EODatabaseContexts.

Classes: EODatabaseContext

EQEditing ECEditing EOEditing
Context Context Context
ECChjectStore
Coordinator
EdDalabase EQDatabase

Conlaxl Context

When an editing context fetches objects, the request is passed through the coordinator, which forwards it to
the appropriate database context based on the fetch specification or global ID. When the database context
receives a request to fetch or write information to the database, it tries to use one of its
EODatabaseChannels. If all of its channels are busy, it broadcasts an
EODatabaseChannelNeededNoatification in the hopes that an observer can provide a new channel or that an
existing channel can be freed up. This observer could be a manager that decides how many database cursors
can be opened by a particular client.

EODatabaseContext knows how to interact with other EOCooperatingObjectStores to save changes made
to an object graph in more than one database server. For a more detailed discussion of this subject, see the
class specifications for EOObjectStoreCoordinator and EOCooperatingObjectStore.

Setting a Fetch Limit

EODatabaseContext defines a hint for use with a com.apple.yellow.eocontrol. EOFetchSpecification in the
objectsWithFetchSpecificationmethod. Named by the key EOFetchLimitHintKey, the hint's value is a
java.lang.Number containing an integer value indicating the maximum number of objects to fetch.
Depending on the value of the EOPromptAfterFetchLimitHintke=yq or a positive integer), the
EODatabaseContext will either stop fetching objects when this limit is reached or it will ask the
com.apple.yellow.eocontrol. EOEditingContext's message handler to ask the user whether it should
continue fetching. For more information on hint keys, see the method description for
objectsWithFetchSpecification

Using a Custom Query

EODatabaseContext defines a hint for use with a com.apple.yellow.eocontrol. EOFetchSpecification in the
objectsWithFetchSpecificationmethod. Named by the key EOCustomQueryExpressionHintKey, the
hint's value is a SQL string for performing the fetch. The expression must query the same attributes in the
same order that Enterprise Objects Framework would if it were generating the SELECT expression

135

136

dynamically. If this key is supplied, other characteristics of the EOFetchSpecification ssldbeys
qualifier, andsortOrderings are ignored—in that sense this key is more of a directive than a hint. For more
information on hint keys, see the method descriptiomligectsWithFetchSpecification

Faulting

When an EODatabaseContext fetches an object, it examines the relationships defined in the model and
creates objects representing the destinations of the fetched object’s relationships. For example, if you fetch
an employee object, you can ask for its manager and immediately receive an object; you don't have to get
the manager’'s employee ID from the object you just fetched and fetch the manager yourself.

However, EODatabaseContext doesn’'t immediately fetch data for the destination objects of relationships
since fetching is fairly expensive. To avoid this waste of time and resources, the destination objects aren't
initially filled with fetched data. Instead, they exist without any of their values until those values are actually
needed. When the “empty” destination object (calléalH) is accessed (sent a message), the object

triggers its EODatabaseContext to fetch its data.

Faults come in two varieties: single object faults for to-one relationships, and array faults for to-many
relationships. When an array fault is accessed, it fetches all of the destination objects and replaces itself with
an array of those objects.

You can fine-tune faulting behavior for additional performance gains by using two different mechanisms:
batch faulting, and prefetching relationships.

Batch Faulting

When you access a fault, its data is fetched from the database. However, triggering one fault has no effect
on other faults—it just fetches the object or array of objects for the one fault. You can take advantage of this
expensive round trip to the database server by batching faults together. EODatabaseContext provides the
batchFetchRelationshipmethod for doing this. For example, given an array of Employee objects, this
method can fetch all of their departments with one round trip to the server, rather than asking the server for
each of the employee’s departments individually. You can use the delegate methods and to fine-tune batch
faulting behavior.

You can also set batch faulting in an EOModel. In that approach, you spedifyntiierof faults that

should be triggered along with the first fault; you don’t actually control which faults are triggered the way
you do withbatchFetchRelationship For more information on setting batch faulting in an EOModel, see
the chapter “Using EOModeler” in thnterprise Objects Framework Developer’s Guide

Prefetching Relationships

EODatabaseContext defines a hint for use with a com.apple.yellow.eocontrol. EOFetchSpecification in the
objectsWithFetchSpecificationmethod. Named by the key EOPrefetchingRelationshipHintKey, the hint's
value specifies relationships whose destinations should be fetched along with the objects matching the fetch
specification. Although prefetching increases the initial fetch cost, it can improve overall performance by

Classes: EODatabaseContext

reducing the number of round trips made to the database server. For more information on this and other hint
keys, see the method descriptiondbjectsWithFetchSpecification

Using this key also has an effect on how an EOFetchSpecification refreshes. “Refreshing” refers to existing
objects being overwritten with fetched values—this allows your application to see changes to the database
that have been made by someone else. Normally, when you set an EOFetchSpecification to refresh using
setRefreshesRefetchedObijectsit only refreshes the objects you're fetching. For example, if you fetch
employees, you don't also fetch the employees’ departments. However, if you have the
EOPrefetchingRelationshipHintKey set, the refetch is propagated for all of the relationships specified for
the hint.

Delegate Methods

An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they're defined in EODatabaseContext for ease of access:

« databaseContextDidSelectObjects

» databaseContextShouldSelectObjects

« databaseContextShouldUpdateCurrentSnapshot

» databaseContextShouldUsePessimisticLockWithFetchSpecification

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they're fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generatedbtabaseContextNewPrimaryKeyForObjec}, how and if objects are

locked @databaseContextShouldLockObjectWithGloballD), what fetch specification is used to fetch
objects (latabaseContextShouldSelectObjectshow batch faulting is performed
(databaseContextShouldFetchArrayFaultanddatabaseContextShouldFetchObjectFau)t and so on.

For more information, see the individual delegate method descriptions in the section “Instance Methods.”

Snapshots

An EODatabase records snhapshots for its EODatabaseContexts. These snapshots form the application’s
view of the current state of the database server. This global view is overridden locally by database contexts,
which form their own snapshots as they make changes during a transaction. When a database context
commits its top-level transaction, it reconciles all changed snapshots with the global view of the database
object, so that other database contexts (except those with open transactions) immediately use the new
shapshots as well.

137

Updating And Locking Strategies

EODatabaseContext supports two updating strategies defined in the EODatabaseContext class as integer
values:

Constant Description

The default update strategy. Under optimistic locking, objects aren’t locked
immediately on being fetched from the server. Instead, whenever you attempt
to save updates to an object in the database, the object’s snapshot is used to
ensure that the values in the corresponding database row haven't changed
since the object was fetched. As long as the snapshot matches the values in
the database, the update is allowed to proceed.

EOUpdateWithOptimisticLocking

Causes objects to be locked in the database when they're selected. This
ensures that no one else can modify the objects until the transaction ends.
However, this doesn’t necessarily mean that either the select or the update
operation will succeed.

EOUpdateWithPessimisticLocking

EODatabaseContext also supports “on-demand” locking, in which specific optimistic locks can be
promoted to database locks during the course of program execution. You can either use
lockObjectWithGloballD to lock a database row for a particular object, or
objectsWithFetchSpecificationto fetch objects with a fetch specification that includes locking.

For more discussion of locking strategies, see the chapter “Behind the Scene&ritethese Objects
Framework Developer’'s Guide

138

Classes: EODatabaseDataSource

EODatabaseDataSource
Inherits From: com.apple.yellow.eocontrol. EODataSource : NSObject
Package: com.apple.yellow.eoaccess

Class Description

EODatabaseDataSource is a concrete subclass of EODataSource (defined in EOControl) that fetches
objects based on an EOModel, using an EODatabaseContext that services the data source’s
EOEditingContext (defined in EOControl). An EODatabaseDataSource can be set up to fetch all objects for
its root entity, to fetch objects matching a particular EOFetchSpecification, and to further filter its fetching
with an auxiliary qualifier.

EODatabaseDataSource implements all the functionality defined by EODataSource: In addition to fetching
objects, it can insert and delete them (provided the entity isn’t read-only). See the EODataSource class
specification for more information on these topics.

As with other data sources, EODatabaseDataSource can also provide a detail data source. The most
significant consequence of using an master-detail configuration is that the detail operates directly on the
master’s object graph. The EODetailDataSource maasier objecand adetail keythrough which the

detail data source accesses the its objects. The master object is simply the object that’s selected in the master
display group, and the detail key is the name of a relationship property in the master object. When the detail
display group asks its data source to fetch, the EODetailDataSource simply gets the value for the
relationship property nameatktail keyfrom its master object and returns it. When you add and remove

objects from the detail, you're directly modifying the master’s relationship array. In fact, you can think of
EODetailDataSource as an interface to its master object’s relationship property.

Method Types

Constructors
EODatabaseDataSource

Accessing selection criteria
auxiliaryQualifier
fetchSpecification
fetchSpecificationForFetch
fetchSpecificationName
setAuxiliaryQualifier
setFetchSpecification
setFetchSpecificationByName

139

Accessing objects used for fetching

Enabling fetching

Accessing qualifier bindings

Other

Constructors

140

EODatabaseDataSource

entity
databaseContext

setFetchEnabled
isFetchEnabled

qualifierBindingKeys
qualifierBindings
setQualifierBindings

deleteObject
insertObject
dataSourceQualifiedByKey
qualifyWithRelationshipKey

public EODatabaseDataSourc@

public EODatabaseDataSourcgcom.apple.yellow.eocontrol. EOEditingContaxtEditingContext

java.lang.StringanEntityNamg

public EODatabaseDataSourcécom.apple.yellow.eocontrol. EOEditingContextEditingContext
java.lang.Strin@nEntityNamejava.lang.StrindetchSpecificationName

Creates and returns a new EODatabaseDataSource object. The new EODatabaseDataSource fetches
objects intoanEditingContexfor the EOEntity named kgnEntityNamelf anEditingContexs
com.apple.yellow.eocontrol. EOObjectStoreCoordinator doesn't have an EODatabaseChannel that
services the EOModel containing the named EOEntity, this method creates one. The
fetchSpecificationNamargument is used to find the named fetch specification in the entity. If the
fetchSpecificationNanis not included or igil, a new fetch specification will be instantiated that

will fetch all objects of the entity

Classes: EODatabaseDataSource

Instance Methods
auxiliaryQualifier
public com.apple.yellow.eocontrol. EOQualifearxiliaryQualifier ()

Returns the EOQualifier used to further filter the objects fetched by the receiver's EOFetchSpecification (in
EOCaontrol).

See also: setAuxiliaryQualifier , fetchSpecificationForFetch fetchSpecification

databaseContext
public EODatabaseContedatabaseContexf)

Returns the EODatabaseContext that the receiver uses to access the external database. This is either the root
EOODbjectStore for the receiver's EOEditingContext, or if the root is an EOCooperatingObjectStore, it's the
EODatabaseContext under that EOCooperatingObjectStore that services the EOModel containing the
EOEntity for the receiver. (EOObjectStore, EOEditingContext, and EOCooperatingObjectStore are all
defined in EOControl.)

dataSourceQualifiedByKey
public com.apple.yellow.eocontrol. EODataSouwletaSourceQualifiedByKeyjava.lang.Stringey)

Returns a detail data source that provides the destination objects of the relationship neegeichby
returned detail data source can be qualified by wgiatjfierWithKey to set a specific master object or to
change the relationship key.

deleteObject
public voiddeleteObjec{java.lang.ObjecanObjec}

DeletesanObjectfrom the data source. This method raises an exception on failure. If the receiver registers
undos for the deletion, the receiver may receive a possibly redundariObject call.

entity
public EOEntityentity()

Returns the EOEntity from which the receiver fetches objects.

See also: “Constructors”

141

fetchSpecification
public com.apple.yellow.eocontrol. EOFetchSpecificat@nohSpecificatior()

Returns the receiver’s basic EOFetchSpecification. Its EOQualifier is conjoined with the receiver's
auxiliary EOQualifier when the receiver fetches objects. The sender of this message can alter the
EOFetchSpecification directly, or replace it ussegF-etchSpecification

See also: fetchSpecificationForFetch auxiliaryQualifier

fetchSpecificationForFetch
public com.apple.yellow.eocontrol. EOFetchSpecificat@ohSpecificationForFetcl)

Returns a copy of the EOFetchSpecification that the receiver uses to fetch. This is constructed by conjoining
the EOQualifier of the receiver’'s EOFetchSpecification with its auxiliary EOQualifier. Modifying the
returned EOFetchSpecification doesn’t affect the receiver’s fetching behaviegtbstchSpecification
andsetAuxiliaryQualifier for that purpose.

See also: fetchSpecification auxiliaryQualifier

fetchSpecificationName
public java.lang.StrindetchSpecificationNamé)

Returns the name of the fetch specificatiom(dt if there is no name).

See also: setFetchSpecificationByName

insertObject
public voidinsertObject(java.lang.ObjecanObjec}

Insertsobjectinto the data source.

isFetchEnabled
public booleansFetchEnabled()

Returndrue if the receiver'setchObjectsmethod actually fetches objedaseif it returns an empty array
without fetching. Fetching is typically disabled in a master-peer configuration when no object is selected in
the master.

See also: setFetchEnabled

142

Classes: EODatabaseDataSource

qualifierBindingKeys
public NSArrayqualifierBindingKeys()

Returns an array of strings which is a union of the binding keys from the fetch specification’s qualifier and
the data source’s auxiliary qualifier.

See also: setQualifierBindings

qualifierBindings
public NSDictionaryqualifierBindings()

Returns a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and
the auxiliary qualifier before the fetch is executed.

See also: setQualifierBindings

qualifywithRelationshipKey
public voidqualifyWithRelationshipKey (java.lang.Stringey java.lang.ObjecsourceObjeqt

Displays destination objects for the relationship nakestbelonging tasourceObjectkeyshould be the
same as the key specified in tteaSourceQualifiedByKeymessage that created the receiver. If
sourceObjects null, the receiver qualifies itself to provide no objects.

setAuxiliaryQualifier
public voidsetAuxiliaryQualifier (com.apple.yellow.eocontrol. EOQualifi@Qualifier)

Sets the receiver’s auxiliary qualifieraQualifier The auxiliary qualifier usually adds conditions to the
primary qualifier and is useful for narrowing the scope of a data source without altering its primary qualifier.
This is especially useful for setting a qualifier on a qualified peer data source, since a peer’s primary
qualifiers specifies the matching criteria for the relationship it fetches for. For more information on auxiliary
qualifiers, see “Creating a Master-Peer Configuration” in the “WebObjects Programming Topics.”

See also: fetchSpecificationForFetch fetchSpecification auxiliaryQualifier

setFetchEnabled
public voidsetFetchEnabledbooleanflag)

Controls whether the receiver can fetcHldfj is true the receiver'setchObjectsmethod actually fetches
objects, iffalseit returns an empty array without fetching. Fetching is typically disabled in a master-peer
configuration when no object is selected in the master. For example, EODatabaseDataSource’s

143

144

implementation ofjualifyWithRelationshipKey:ofObject: invokes this method to enable or disable
fetching based on whether a master object is provided.

See also: isFetchEnabled

setFetchSpecification

public void
setFetchSpecificatiofcom.apple.yellow.eocontrol. EOFetchSpecificatdetchSpecification

Sets the receiver’s basic EOFetchSpecificati@iratichSpecificatiarits EOQualifier is conjoined with the
receiver’s auxiliary EOQualifier when the receiver fetches objects. This method also sets the name of the
fetch specification to null.

See also: setAuxiliaryQualifier , fetchSpecificationForFetch fetchSpecification
setFetchSpecificationByName

setFetchSpecificationByName
public voidsetFetchSpecificationByNam@gava.lang.StrindetchSpecificationName

Sets thdetchSpecificationNanas given, and sets the fetch specification (used when supplying objects) to
the named fetch specification of the entity that was used to initialize the data source. This method is an
alternative tesetFetchSpecification

See also: fetchSpecificationName

setQualifierBindings
public voidsetQualifierBindings(NSDictionarybinding9

Sets a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and the
auxiliary qualifier before the fetch is executed.

See also: qualifierBindingKeys, qualifierBindings

Classes: EODatabaseOperation

EODatabaseOperation
Inherits From: NSObiject
Package: com.apple.yellow.eoaccess

Class Description

An EODatabaseOperation object represents an operation—insert, update, or delete—to perform on an
enterprise object and all the necessary information required to perform the operation. You don'’t ordinarily
create instances of EODatabaseOperation; rather, the Framework automatically creates an
EODatabaseOperation object for each new, updated, or deleted object in an EOEditingContext. An
EODatabaseContext object analyzes a set of database operations and maps each operation to one or more
adaptor operations. The adaptor operations are then performed by an EOAdaptorChannel object. You
generally interact with EODatabaseOperation objects only if you need to specify the order in which a set

of operations are carried out (see the description for the EODatabaseContext delegate method
databaseContextWillOrderAdaptorOperationsFromDatabaseOperation$.

An EODatabaseOperation specifies an enterprise object (called “object”) on which the operation is
performed, the EOGloballD for the object, and the object’s entity. In addition, the database operation has a
snapshot containing the last known database values for the objech@n®aw dictionary of new or

updated values to save in the database. Finally, a database operation specifies one of the following operators
(the type of operation represented by the database operation).

» DatabaseNothingOperator
» DatabaselnsertOperator

DatabaseUpdateOperator
DatabaseDeleteOperator

Method Types
Constructors
EODatabaseOperation
Accessing the global ID object
globallD
Accessing the object
object
Accessing the entity
entity

145

Accessing the operator
setDatabaseOperator
databaseOperator

Accessing the database snapshot
setDBSnapshot
dbSnapshot

Accessing the row
setNewRow
newRow

Accessing the adaptor operations
addAdaptorOperation
removeAdaptorOperation
adaptorOperations

Comparing new row and snapshot values
rowDiffs
rowDiffsForAttributes

Working with to-many snapshots
recordToManySnapshotpublic void
recordToManySnapshot(NSArray globallDs, java.lang.String
name)
toManySnapshots

Constructors

EODatabaseOperation

public EODatabaseOperatior)

public EODatabaseOperatiorfcom.apple.yellow.eocontrol. EOGlobaldisloballD,
java.lang.ObjecanObject
EOEntityanEntity)

Creates and returns a new EODatabaseOperation object, settitjettte¢o which the operation will be
applied toanObject globallD to aGloballD, andentity to anEntity

146

Classes: EODatabaseOperation

Instance Methods
adaptorOperations
public NSArrayadaptorOperations()

Returns the EOAdaptorOperation objects that need to be performed to carry out the operation represented
by the receiver.

See also: addAdaptorOperation, removeAdaptorOperation

addAdaptorOperation
public voidaddAdaptorOperation(EOAdaptorOperatioadaptorOperatioh

AddsadaptorOperatiorto the receiver’s list of adaptor operations. Throws an exception if
adaptorOperatioris null.

See also: adaptorOperations, removeAdaptorOperation

databaseOperator
public intdatabaseOperator()

Returns the receiver’s database operator.

See also: setDatabaseOperator

dbSnapshot

public NSDictionarydbSnapshof)
Returns the database snapshot for the receiver’'s enterprise object. The snapshot contains the last known
database values for the enterpidgect. The dictionary returned from this method will be empty if the
receiver’s object has just been inserted into an EOEditingContext and has not yet been saved in persistent

storage. For more information on EOEditingContexts, see the EOEditingContext class specification in the
EOControl framework.

See also: setDBSnapshatsetDatabaseOperator

147

148

entity
public EOEntityentity()

Returns the entity that corresponds to the receiver’s enterprise object.

See also: “Constructors”

globallD
public com.apple.yellow.eocontrol. EOGlobalifibballD ()

Returns the EOGloballD object that corresponds to the receiver’'s enterprise object.

See also: “Constructors”

newRow
public NSMutableDictionarypewRow()

Returns a dictionary representation of the receiver’s enterprise object. In addition to all the properties of the
enterprise object that are stored in the database, the dictionary contains values for the non-derived attribute’s
of the enterprise object’s entity that aren’t visible in the enterprise object. For example, primary and foreign
keys aren’t ordinarily properties of an enterprise object but are attributes of the object’s entity.

ThenewRowdictionary is initialized with the values in the receiver’s snapshot. New or updated values are
added to th@ewRowdictionary (replacing out-of-date values) as the Framework maps changes in the
object to an operation.

See also: setNewRow

object
public java.lang.Objeatbject()

Returns the receiver’s enterprise object.

See also: “Constructors”

Classes: EODatabaseOperation

primaryKeyDiffs
public NSDictionaryprimaryKeyDiffs ()

Returns a dictionary that contains any primary key valuaswRowthat are different from those in the
dbSnapshot Returnsnull if the receiver doesn’t have EODatabaseUpdateOperator set as its database
operator.

See also: setDatabaseOperatornewRow

recordToManySnapshot public voidrecordToManySnapsho{NSArraygloballDs
java.lang.Stringname

Records the objects globallDs globallDsis an array of the globallDs that identify the objects at the
destination of the to-many relationship namedhe nameis a property of the receiver’s enterprise object.

See also: toManySnapshots

removeAdaptorOperation
public voidremoveAdaptorOperation(EOAdaptorOperatioadaptorOperatioh

RemovesadaptorOperatiorfrom the receiver’s list of adaptor operations.

See also: adaptorOperations, addAdaptorOperation

rowDiffs
public NSDictionaryrowDiffs ()

Returns values in the receivenswRowdictionary that are different than the corresponding values in its
dbSnapshot The dictionary returned from this method contains the new values from the enterprise object.

See also: primaryKeyDiffs

rowDiffsForAttributes
public NSDictionaryrowDiffsForAttributes (NSArrayattribute9

For the EOAttribute objects @ttributes this method returns values in the receiveesyRowdictionary
that are different than the corresponding values ahi&napshot The dictionary returned contains the new
values from the enterprise object.

149

150

setDatabaseOperator
public voidsetDatabaseOperatofint databaseOperatQr

Sets the receiver’s database operaatabaseOperatocan be one of the following:

» DatabaseNothingOperator
» DatabaselnsertOperator
« DatabaseUpdateOperator
» DatabaseDeleteOperator

See also: databaseOperator

setDBSnapshot
public voidsetDBSnapshafNSDictionarydbSnapshot

Sets the snapshot for the receiver’s enterprise object. If the object has just been inserted into an a
com.apple.yellow.eocontrol. EOEditingContext, it won't have a snapshot. In thisib&epshoshould
be an empty dictionary.

See also: dbSnapshot

setNewRow
public voidsetNewRowNSMutableDictionarynewRowy

Sets the dictionary representation of the receiver’s enterprise atgadtowshould contain values for all
the properties of the enterprise object that are stored in the database and for the non-derived attribute’s of
the enterprise object’s entity that aren't visible in the enterprise object.

See also: newRow, databaseOperator

toManySnapshots
public NSDictionarytoManySnapshotg)

Returns the NSDictionary containing the snapshots for the to-many relationships of the receiver’s enterprise
object.

See also: recordToManySnapshotpublic void recordToManySnapshot(NSArray globallDs,
java.lang.String name)

Classes: EOEntity

EOEntity

Inherits From: NSObiject
Implements: EOPropertyListEncoding
Package: com.apple.yellow.eoaccess

Class Description

An EOEntity describes a table in a database and associates a name internal to the Framework with an
external name by which the table is known to the database. An EOEntity maintains a group of attributes and
relationships, which are collectively called properties. These are represented by the EOAttribute and
EORelationship classes, respectively; see their specifications for more information.

You usually define entities in a model with the EOModeler application, which is documeweloldijects
Tools and TechniqgueEOEntity objects are primarily used by the Enterprise Objects Framework for
mapping tables in the database to enterprise objects; your code will probably make limited use of them
unless you're specifically working with models.

An EOEntity is associated with a specific class whose instances are used to represent records (rows) from
the database in applications using layers at or above the database layer of the Enterprise Objects
Framework. If an EOEntity doesn’t have a specific class associated with it, instances of EOGenericRecord
(defined in EOControl) are created.

An EOEntity may be marked as read-only, in which case any changes to rows or objects for that entity made
by the database level objects are denied.

You can define an external query for an EOEntity to be used when a selection is attempted with an
unrestricted qualifier (one that would select all rows in the entity’s table). An external query is sent unaltered

to the database server and so can use database-specific features such as stored procedures; external queries
are thus useful for hiding records or invoking database-specific features. You can also assign stored
procedures to be invoked upon particular database operations through the use of EOEntity’s
setStoredProceduremethod.

Like the other major modeling classes, EOEntity provides a user dictionary for your application to store any
application-specific information related to the entity.

For more information on programmatically creating EOEntity objects, see “Creating an Entity.”

151

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodelntoPropertyList

Method Types
Constructors
EOEntity
Accessing the name
setName
name
validateName
beautifyName
Accessing the model
model
Specifying fetching behavior for the entity
setExternalQuery
externalQuery

152

setRestrictingQualifier
restrictingQualifier

Accessing primary key qualifiers
qualifierForPrimaryKey
isQualifierForPrimaryKey

Accessing a schema-based qualifier from a qualifier for in-memory evaluation
schemaBasedQualifier

Accessing attributes
addAttribute
anyAttributeNamed
attributeNamed
attributes
removeAttribute
attributesToFetch

Accessing relationships
addRelationship
anyRelationshipNamed
relationships
relationshipNamed
removeRelationship

Classes: EOEntity

Checking referential integrity

Accessing primary keys

Accessing primary key attributes

Accessing class properties

externalModelsReferenced
referencesProperty

globallDForRow
isPrimaryKeyValidinObject
primaryKeyForGloballD
primaryKeyForRow

setPrimaryKeyAttributes
primaryKeyAttributes
primaryKeyAttributeNames
primaryKeyRootName
isValidPrimaryKeyAttribute

setClassProperties
classProperties
classPropertyNames
isValidClassProperty

Accessing the enterprise object class

Accessing locking attributes

Accessing external name

classDescriptionForinstances
setClassName
className

setAttributesUsedForLocking
attributesUsedForLocking
isValidAttributeUsedForLocking

setExternalName
externalName
externalNameForInternalName
nameForExternalName

Accessing whether an entity is read only

Accessing the user dictionary

setReadOnly
isSReadOnly

setUserInfo
userinfo

153

Working with stored procedures
setStoredProcedure
storedProcedureForOperation

Working with fetch specifications
addFetchSpecification
fetchSpecificationNamed
fetchSpecificationNames
removeFetchSpecificationNamed

Working with entity inheritance hierarchies
parentEntity
subEntities
addSubEntity
removeSubEntity
setlsAbstractEntity
isAbstractEntity

Specifying fault behavior
setMaxNumberOfinstancesToBatchFetch
maxNumberOfinstancesToBatchFetch

Caching objects
setCachesObjects
cachesObjects

Constructors
EOEntity
public EOEntity ()
Creates a new EOEntity.
public EOEntity (NSDictionarypropertyList java.lang.Objeabwnel)

Creates a new EOEntity initialized frgonopertyList—a dictionary containing only property list

data types (that is, NSDictionary, NSArray, NSData, and java.lang.String). This constructor is used
by EOModeler when it reads in an EOModel from a file, for exampleoWmerargument should

be the EOEntity's EOModel. Entities created from a property list must receive an
awakeWithPropertyList message after creation before they are fully functional, bavihé&e...
message should be deferred until the all of the other objects in the model have also been created.

See also: awakeWithPropertyList (EOPropertyListEncodinggncodelntoPropertyList
(EOPropertyListEncoding)

154

Classes: EOEntity

Static Methods

externalNameForInternalName

public static java.lang.StringxternalNameForInternalName(java.lang.Stringnhame
java.lang.StringeparatorString
booleanuseAllCap}

Used by the Framework to convert modeling object names to database schema names that conform to a
standard convention. A conforming database schema name is upper-case and uses “_" to separate words.
Consequently “name” becomes “NAME” and “firstName” becomes “FIRST_NAME”.

separatorStrings a character that is used to separate words. The Framework uses “_” by default as in the

examples aboveiseAllCapsndicates whether to capitalize the name. For example, provialsey
converts “firstName” to “first_name”.

nameForExternalName

public static java.lang.StringameForExternalNamegjava.lang.Stringname
java.lang.StringseparatorString
booleaninitialCaps)

Used by name beautification to convert database schema names to modeling object names that conform to
a standard convention. A conforming attribute, relationship, or stored procedure name is lower-case except
for the initial letter of each embedded word other than the first, which is upper case. Consequently “NAME”
becomes “name” and “FIRST_NAME" becomes “firstName”. A conforming entity is all lower-case except

for the initial letter of each word. Consequently “CUSTOMER_ACCOUNT” becomes

“CustomerAccount”.

separatorStrings a character that is used to separate words. The Framework uses “_” by default as in the
examples abovénitialCapsindicates whether to capitalize the first letter of the first word. By default, the
Framework usesue for entities andalse for everything else.

See also: beautifyNames(EOModel) beautifyName, —beautifyName (EOAttribute, EORelationship,
EOStoredProcedure)

Instance Methods

addAttribute
public voidaddAttribute (EOAttributeanAttribute

AddsanAttributeto the receiver. Throws an exceptiomifAttributés name is already in use by another
attribute or relationship. SeamAttributés entity tothis.

See also: removeAttribute, attributes, attributeNamed

155

156

addFetchSpecification

public voidaddFetchSpecificatioicom.apple.yellow.eocontrol. EOFetchSpecificafieichSpec
java.lang.StrindetchSpecName

Adds the fetch specification and associfééshSpecNamwith it.

See also: fetchSpecificationNamedfetchSpecificationNamesremoveFetchSpecificationNamed

addRelationship
public voidaddRelationshipEORelationshi@Relationship

AddsaRelationshigo the receiver. Throws an exceptioaielationshifs name is already in use by another
attribute or relationship. SeafRelationshifs entity tothis.

See also: removeRelationship relationships, relationshipNamed

addSubEntity
public voidaddSubEntity(EOEntity child)

Causes the child entithild to “inherit” from the receiver. This is the first step in setting up an inheritance
hierarchy between entities.

See also: SUbEnNtities , removeSubEntity

anyAttributeNamed

public EOAttributeanyAttributeNamed (java.lang.StringttributeNamég
Returns the user-created attribute identifiedtjbuteNamelf no such attribute exists, this method looks
through the “hidden” attributes created by the Enterprise Objects Framework for one with the given name.

Hidden attributes are used for such things as primary keys on target entities of flattened attributes. If none
is found,null is returned.

See also: attributeNamed, attributes

Classes: EOEntity

anyRelationshipNamed
public EORelationshipnyRelationshipNamedjava.lang.StringelationshipNamg

Returns the user-created relationship identifiecelationshipNamelf none exists, this method looks
through the “hidden” relationships created by the Enterprise Objects Framework for one with the given
name. If none is founchull is returned.

See also: relationshipNamed relationships

attributeNamed
public EOAttributeattributeNamed(java.lang.StringattributeNamég

Returns the attribute namattributeNameor null if no such attribute exists.

See also: anyAttributeNamed, attributes, relationshipNamed

attributes
public NSArrayattributes()

Returns all of the receiver’s attributes,noitl if the receiver has none.

See also: anyAttributeNamed, attributeNamed

attributesToFetch
public NSArrayattributesToFetch()

Returns an array of the EOAttributes that need to be fetched so that they can be included in the row
shapshot. The set of attributes includes:

1. Attributes that are class properties, “used for locking,” or primary keys.
2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class property.

3. Source attributes of any non-flattened, to-one relationship that is a class property or that is used by a flattened
attribute that is a class property.

4. The foreign key attributes of any flattened, to-one relationship that is a class property or that is used by a class
property.

157

158

attributesUsedForLocking
public NSArrayattributesUsedForLocking()

Returns an array containing those properties whose values must match a snapshot any time a row is updated.

Attributes used for locking are those whose values are compared when a database-level object performs an
update. When the database-level classes fetch an enterprise object, they cache these attributes’ values in a
shapshot. Later, when the enterprise object is updated, the values of these attributes in the object are
checked with those in the snapshot—if they differ, the update fails. See the EODatabaseContext class
specification for more information.

beautifyName
public voidbeautifyName()

Makes the receiver's name conform to a standard convention. EOEntity names that conform to this style are
all lower-case except for the initial letter of each word, which is upper case. Thus, “MOVIE” becomes
“Movie”, and “MOVIE_ROLE" becomes “MovieRole".

See also: setName validateName beautifyNames(EOModel)

cachesObjects
public boolearcachesObjects()

Returngrue if all of the objects from the receiver are to be cached in memory and queries are to be
evaluated in-memory using this cache rather than in the database. This method should only be used for fairly
small tables of read-only objects, since the first access to the receiver will trigger fetching the entire table.
You should generally restrict this method to read-only entities to avoid cached data getting out of sync with
database data. Also, you shouldn’t use this method if your application will be making queries against the
entity that can’t be evaluated in memory.

See also: setCachesObjects

classDescriptionForinstances
public com.apple.yellow.eocontrol. EOClassDescriptitassDescriptionForinstance§

Returns the EOClassDescription associated with the receiver. The EOClassDescription class provides a
mechanism for extending classes by giving them access to the metadata contained in an EOModel (or
another external source of information). In an application, EOClassDescriptions are registered on demand
for the EOEntity on which an enterprise object is based. For more information, see the class specifications
for EOClassDescription (in EOControl) and EOEntityClassDescription.

Classes: EOEntity

className
public java.lang.StringlassNamg)

Returns the name of the enterprise object class associated with the receiver. When a row is fetched for the
receiver by a database-level object, it's returned as an instance of this class. This class might not be present
in the run-time system, and in fact your application may have to load it on demand. If your application
doesn’t load a class, EOGenericRecord is used.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

classProperties
public NSArrayclassPropertieg)

Returns an array containing the properties that are bound to the receiver’s class (so that instances of the class
will be passed values corresponding to those properties). This is a subset of the receiver’s attributes and
relationships.

See also: classPropertyNames

classPropertyNames
public NSArrayclassPropertyNameg§)

Returns an array containing the names of those properties that are bound to the receiver’s class (so that
instances of the class will be passed values corresponding to those properties). This is a subset of the
receiver’s attributes and relationships.

See also: classProperties

externalModelsReferenced
public NSArrayexternalModelsReference¢)

Examines each of the receiver’s relationships and returns a list of all external models referenced by the
receiver.

See also: referencesProperty

externalName
public java.lang.StringxternalNamg)

Returns the name of the receiver as understood by the database server.

159

160

externalQuery
public java.lang.StringxternalQuery()

Returns a query statement that's used by an EOAdaptorChannel to select rows for the receiver when a
qualifier is empty, onull if the receiver has no external query. An empty qualifier is one that specifies only
the entity, and would thus fetch all enterprise objects for that entity.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

See also: setExternalQuery

fetchSpecificationNamed

public com.apple.yellow.eocontrol. EOFetchSpecification
fetchSpecificationNamedjava.lang.StrindetchSpecNanme

Returns the fetch specification associated fetthSpecName

See also: addFetchSpecificationfetchSpecificationNamesremoveFetchSpecificationNamed

fetchSpecificationNames
public NSArrayfetchSpecificationName§

Returns an alphabetically sorted array of names of the entity’s fetch specifications.

See also: addFetchSpecificationfetchSpecificationNamedremoveFetchSpecificationNamed

globallDForRow
public com.apple.yellow.eocontrol. EOGlobalifibballDForRow(NSDictionaryrow)

Constructs a global identifier from the specified row for the receiver.

See also: primaryKeyForGloballD

isAbstractEntity
public booleansAbstractEntity()

Returndgrue to indicate that the receiver is abstréalse otherwise. An abstract entity is one that has no
corresponding enterprise objects in your application. Abstract entities are used to model inheritance

Classes: EOEntity

relationships. For example, you might have a Person abstract entity that acts as the parent of Customer and
Employee entities. Customer and Employee would inherit certain characteristics from Person (such as name
and address attributes). However, though your application might have Customer and Employee objects, it
would never have a Person object.

See also: setlsAbstractEntity

isPrimaryKeyValidinObject
public booleansPrimaryKeyValidinObject (java.lang.ObjecanObjec}

Returngrue if every key attribute is presentéamObjectand has a value that is maill. Returndalse
otherwise. This method uses key-value coding so a dictionary may be provided instead of an enterprise
object.

See also: primaryKeyForRow

isQualifierForPrimaryKey
public booleansQualifierForPrimaryKey (com.apple.yellow.eocontrol. EOQualifi@®Qualifier)

Returngrue if aQualifierdescribes the primary key and nothing but the primaryfase otherwise.

isReadOnly
public boolearisReadOnly()

Returndgrue if the receiver can’t be maodifietilseif it can. If an entity can’t be modified, then enterprise
objects fetched for that entity also can’t be modified (that is, inserted, deleted, or updated).

isValidAttributeUsedForLocking
public booleansValidAttributeUsedForLocking (EOAttributeanAttribute

Returnsfalse if anAttributeisn’'t an EOAttribute, if the EOAttribute doesn’t belong to the receiver, or if
anAttributeis derived. Otherwise returtieie. An attribute that isn’t valid for locking will cause
setAttributesUsedForLocking to fail.

See also: attributesUsedForLocking

161

162

isValidClassProperty
public booleansValidClassProperty(java.lang.ObjecaProperty

Returndalseif eitheraPropertyisn’t an EOAttribute or EORelationship, omaiPropertydoesn’t belong to

the receiver. Otherwise returtnae. Note that this method doesn't tell you whet@ieropertyis a member

of the array returned bglassProperties In other words, unlikelassProperties classPropertyNames
andsetClassPropertiesthis method doesn't interact with the properties bound to the entity’s enterprise
object class.

isValidPrimaryKeyAttribute
public booleansValidPrimaryKeyAttribute (EOAttributeanAttribute

Returndfalseif anAttributeisn’t an EOAttribute, doesn’t belong to the receiver, or is derived. Otherwise
returnstrue.

See also: setPrimaryKeyAttributes

maxNumberOfinstancesToBatchFetch
public intmaxNumberOfinstancesToBatchFetck)

Returns the maximum number of to-one faults from the receiver to fire at one time. See the method
description forsetMaxNumberOfinstancesToBatchFetcHor more explanation of what this means.

model
public EOModelmodel()

Returns the model that contains the receiver.
See also: addEntity (EOModel)

name
public java.lang.Stringame()

Returns the receiver's name.

Classes: EOEntity

parentEntity
public EOEntityparentEntity ()

Returns the entity from which the receiver inherits.

See also: SUbEnNtities

primaryKeyAttributeNames
public NSArrayprimaryKeyAttributeNames ()

Returns an array containing the names of the attributes that make up the receiver’s primary key.

See also: primaryKeyAttributes

primaryKeyAttributes
public NSArrayprimaryKeyAttributes ()

Returns an array of those attributes that make up the receiver’s primary key.

See also: primaryKeyAttributeNames

primaryKeyForGloballD

public NSDictionary
primaryKeyForGloballD (com.apple.yellow.eocontrol. EOKeyGlobaltioballD)

Returns the primary key for the object identifiedgigballD.

See also: globallDForRow

primaryKeyForRow
public NSDictionaryprimaryKeyForRow (NSDictionaryaRow

Returns the primary key f@Row or null if the primary key can’t be computed. The primary key is
aDictionary whose keys are attribute names and whose values are values for those attributes.

See also: primaryKeyForGloballD

163

164

primaryKeyRootName
public java.lang.StringrimaryKeyRootName()

Returns the external name (that is, the name as it's understood by the database) of the receiver’s root entity.
If the receiver has no parent entity, returns the receiver’s external name.

See also: externalName name parentEntity

qualifierForPrimaryKey
public com.apple.yellow.eocontrol. EOQualifegralifierForPrimaryKey (NSDictionaryaRow

Returns a qualifier for the receiver that can be used to fetch an instance of the receiver with the primary key
extracted fromaRow

See also: isQualifierForPrimaryKey , restrictingQualifier

referencesProperty
public booleanreferencesPropertyjava.lang.ObjecaProperty

Returngtrue if any of the receiver’s attributes or relationships referafteperty false otherwise. A

property can be referenced by a flattened attribute or by a relationship. For example, suppose a model has
an Employee entity with @mDepartment relationship. If you flatten the department’s name attribute into

the Employee entity, creatingdepartmentNameattribute, that flattened attribute references the
toDepartment relationship.

If an entity has any outstanding references to a property, you shouldn’t remove the property.

See also: removeAttribute, removeRelationship

relationshipNamed
public EORelationshipelationshipNamed(java.lang.Stringname

Returns the relationship namedme or null if the receiver has no such relationship.

See also: anyRelationshipNamed attributeNamed, relationships

Classes: EOEntity

relationships
public NSArrayrelationships()

Returns all of the receiver’s relationshipsnall if the receiver has none.

See also: attributes

removeAttribute
public voidremoveAttribute (EOAttributenamé

Removes the attribute nameameif it exists. You should always useferencesPropertyto check that an
attribute isn't referenced by another property before removing it.

See also: addAttribute , attributes

removeFetchSpecificationNamed
public voidremoveFetchSpecificationName(ava.lang.StringetchSpecName

Removes the fetch specification referred tdetghSpecName

See also: addFetchSpecificationfetchSpecificationNamecdfetchSpecificationNames

removeRelationship
public voidremoveRelationshigEORelationshipmameg

Removes the relationship nameameif it exists. You should always useferencesPropertyto check that
a relationship isn’'t referenced by another property before removing it.

See also: addRelationship, relationships

removeSubEntity
public voidremoveSubEntity(EOEntity child)

Removeshild from the receiver’s list of sub-entities.

See also: addSubEntity, subEntities

165

166

restrictingQualifier
public com.apple.yellow.eocontrol. EOQualifrestrictingQualifier ()

Returns the qualifier used to restrict all queries made against the receiver. Restricting qualifiers are useful
when there is not a one-to-one mapping between an entity and a particular database table, or when you
always want to filter the data that's returned for a particular entity.

For example, if you're using the “one table” inheritance model in which parent and child data is contained
in the same table, you'd use a restricting qualifier to fetch objects of the appropriate type. To give a
non-inheritance example, for an Employees table you might create a “Sales” entity that has a restricting
qualifier that only fetches employees who are in the Sales department.

See also: SetRestrictingQualifier

schemaBasedQualifier

public com.apple.yellow.eocontrol. EOQualifier
schemaBasedQualifigfcom.apple.yellow.eocontrol. EOQualifi@Qualifien

Returns a qualifier based a@ualifiersuitable for evaluation by a database (as opposed to in-memory
evaluation). Invoked by an EODatabaseChannel object before it uses its EOAdaptorChannel to perform a
database operation.

Whereas in-memory qualifier evaluation uses object instance variables to resolve relationships, a database
qualifier must use foreign keys. For example, consider a qualifier that is used to fetch all employees who
work in a specified department:

Department dept; // Assume this exists.
Quialifier qualifer;

MutableVector qualArgs = new MutableVector();
qualArgs.addElement(dept);

qualifier = Qualifier.qualifierWithQualifierFormat("department = %@", qualArgs);

For an in-memory search, the Framework queries employee objects for their department object and includes
an employee in the result list if its department object is equldpb (See the EOQualifierEvaluation
interface description for more information on in-memory searching.)

For a database search, the Framework needs to qualify the fetch by specifying a foreign keydebtie for
The Framework sends the EOEntity classteemaBasedQualifiemessage that creates a new EOQualifier
object fromqualifier. Assume that the entity for employee objects has an attribute riapadmentID

and that the primary key value foept is 459, the resulting qualifier specifies the search conditions as:

department.departmentID = 459
See also: selectObjectsWithFetchSpecificatiofEODatabaseChannel)

Classes: EOEntity

setAttributesUsedForLocking
public boolearsetAttributesUsedForLocking(NSArray attributeg

Setsattributesas the attributes used when an EODatabaseChannel locks enterprise objects for updates.
Returnsfalse and doesn't set the attributes used for locking if any of the attribuddisibutesresponds
falsetoisValidAttributeUsedForLocking ; returnstrue otherwise. See the EODatabase,
EODatabaseContext, and EODatabaseChannel class specifications for information on locking.

setCachesObjects
public voidsetCachesObjectéboolearflag)

Sets according titag whether all of the receiver’s objects are cached the first time the associated table is
queried.

See also: cachesObjects

setClassName
public voidsetClassNam§ava.lang.Stringhame

Assignsnameas the name of the class associated with the receiver. This class need not be present in the
run-time system when this message is sent. When an EODatabaseChannel fetches objects for the receiver,
they’re created as instances of this class. Your application may have to load the class on demand if it isn’t
present in the run-time system; if it doesn’t load the class, EOGenericRecord will be used.

Note: If you set the class namenall, theclassNamemethod returns “EOGenericRecord”.
An enterprise object class other than EOGenericRecord can be mapped to only one entity.

See also: className

setClassProperties
public boolearsetClassPropertieNSArray properties

Sets the receiver’s class properties to the EOAttributes and EORelationgirqpzeiniesand returnsrue,
unless the receiver resporfdisetoisValidClassProperty for any of the objects in the array. In this event,
the receiver’s class properties aren't changedasdis returned.

167

168

setExternalName
public voidsetExternalNamdjava.lang.Stringhamé

Sets the name of the receiver as understood by the database seawee teor example, though your
application may know the entity as “JobTitle” the database may require a form such as “JOB_TTL”". An
adaptor uses the external name to communicate with the database; your application should never need to
use the external name.

setExternalQuery
public voidsetExternalQuery(java.lang.StringaQuery

AssignsaQueryas the query statement used for selecting rows from the receiver when there is no qualifier.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

An external query is sent unaltered to the database server, and so must contain the external (column) names
instead of the names of EOAttributes. However, to work properly with the adaptor the external query must
use the columns in alphabetical order by their corresponding EOAttributes’ names.

See also: columnName (EOAttribute),externalQuery

setlsAbstractEntity
public voidsetisAbstractEntity (boolearflag)

Sets according tilag whether the receiver is an abstract entity. For more discussion of abstract entities, see
the method description fasAbstractEntity .

setMaxNumberOflnstancesToBatchFetch

public voidsetMaxNumberOfinstancesToBatchFetckint size
Sets the maximum number of faults from the receiver to trigger at one time. By default, only one object is
fetched from the database when you trigger a fault. You can optionally use this method to set to size the

number of faults of the same entity should be fetched from the database along with the first one. Using this
technique helps to optimize performance by taking advantage of round trips to the database.

See also: maxNumberOflnstancesToBatchFetch

Classes: EOEntity

setName
public voidsetNamédjava.lang.Stringhamé

Sets the receiver's namertame Throws an exception ifameis already in use by another entity in the
same EOModel or ihameis not a valid entity name.

See also: beautifyName, validateName

setPrimaryKeyAttributes
public boolearsetPrimaryKeyAttributes (NSArraykey$

If the receiver respondalseto isValidPrimaryKeyAttribute for any of the objects ikeys this method
returnsfalse Otherwise, this method sets the primary key attributes to the attriblggsamd returngrue.

You should exercise care in choosing primary key attributes. Floating-point numbers, for example, can’t be
reliably compared for equality, and are thus unsuitable for use in primary keys. Integer and string types are
the safest choice for primary keys. BigDecimal objects will work, but they’ll entail more overhead than
integers.

setReadOnly
public voidsetReadOnlyboolearflag)

Sets according thhag whether the database rows for the receiver can be modified by the database level
objects.

See also: iISReadOnly

setRestrictingQualifier
public voidsetRestrictingQualifier(com.apple.yellow.eocontrol. EOQualifi@Qualifien

AssignsaQualifieras the qualifier used to restrict all queries made against the receiver. The restricting
qualifier can be used to map an entity to a subset of the rows in a table. For more discussion of this subject,
see the description foestrictingQualifier .

169

170

setStoredProcedure
public voidsetStoredProcedur¢EOStoredProcedustoredProcedurgiava.lang.Stringperation)

SetsstoredProcedurdor operation operationcan be one of the following:

Constant Description

FetchAllProcedureOperation Procedure that fetches all records from the database.

FetchWithPrimaryKeyProcedureOperation Procedure that performs a fetch with primary key.

InsertProcedureOperation Procedure that performs an insert.
DeleteProcedureOperation Procedure that performs a delete.
NextPrimaryKeyProcedureOperation Procedure that performs generates a new primary key.

This information is used when changes from the object graph have been transformed into
EODatabaseOperations that are being used to construct EOAdaptorOperations. At this point, Enterprise
Objects Framework checks the entities associated with the changed objects to see if the entities have any
stored procedures defined for the operation being performed.

See also: storedProcedureForOperation

setUserInfo
public voidsetUserInfaNSDictionarydictionary)

Sets thdictionary of auxiliary data, which your application can use for whatever it ndadimnary can
only contain property list data types—that is, String, NSDictionary, NSArray, and NSData.

storedProcedureForOperation
public EOStoredProcedustoredProcedureForOperatior(java.lang.Stringoperation

Returns the stored procedure for the specdjgetation if one has been set. Otherwise, retural.
operationcan be one of the following:

» EOFetchAllProcedureOperation

* EOFetchWithPrimaryKeyProcedureOperation
» EOInsertProcedureOperation

« EODeleteProcedureOperation

Classes: EOEntity

« EONextPrimaryKeyProcedureOperation

See also: setStoredProcedureparameterDirection (EOAttribute),storedProcedure(EOALttribute)

subEntities
public NSArraysubEntities()

Returns a list of those entities which inherit from the receiver.

See also: addSubEntity, parentEntity , removeSubEntity

userinfo
public NSDictionaryuserinfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: setUserInfo

validateName
public java.lang.ThrowablealidateNamejava.lang.Strin@String

Validatesnameand returnswll if it is a valid name, or an exception if it isn't. A name is invalid if it has

zero length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character
other than a letter, a number, “@”, “#”, “_", or “$”". A name is also invalid if the receiver’'s model already

has an EOEntity that has the same name or a stored procedure with an argument that has the same name.

setNameuses this method to validate its argument.

171

172

Classes:

Creating an Entity

An EOEntity requires at least the following to be usable:

* Aname

» The name of a table in the database (the external name)
« The name of an enterprise object class

* A set of attributes to be used as the primary key

Note that if an entity has no enterprise object class hame, the database-level objects use EOGenericRecord.

173

174

Classes: EOEntityClassDescription

EOEntityClassDescription
Inherits From: com.apple.yellow.eocontrol. EOClassDescription : NSObject
Package: com.apple.yellow.eoaccess

Class Description

EOEntityClassDescription is the subclass of the control layer's EOClassDescription. The
EOClassDescription class provides a mechanism for extending classes by giving them access to metadata
not available in the run-time system. EOEntityClassDescription extends the behavior of enterprise objects
by deriving information about them (such as NULL constraints and referential integrity rules) from an
associated EOModel.

In the typical scenario in which an enterprise object has a corresponding model file, the first time a
particular operation is performed on a class (such as validating a value), an EOClassDescriptionNeeded...
notification (either an EOClassDescriptionNeededForClassNotification or an
EOClassDescriptionNeededForEntityNameNotification) is broadcast. When an EOModel object receives
this notification it registers the metadata (class description) for the EOEntity on which the enterprise object
is based. This class description is used from that point on.

For a more detailed discussion of this subject, see the EOClassDescription class specification.

Constructors

EOEntityClassDescription

public EOEntityClassDescription()
public EOEntityClassDescription(next.eo.Entityentity)

Creates a new EOEntityClassDescription and assigtity to it.

See also: entity

175

Instance Methods

entity
public next.eo.Entitentity()
Returns the entity associated with the receiver.

See also: “Constructors”

176

Classes: EOJoin

EOQJoin
Inherits From: NSObiject
Package: com.apple.yellow.eoaccess

Class Description

An EOJoin describes one source-destination attribute pair for an EORelationship. See the EORelationship
class specification for more information and for examples.

Method Types

Constructors
EOJoin

Querying the join
destinationAttribute
isReciprocalToJoin
sourceAttribute

Constructors

EOQJoin

public EOJoin()
public EOJoin(EOAttributesource EOAttributedestination

Creates and returns a new EOJoin with the given source and destination attributes. See the EORelationship
class specification for an example of creating a relationship using EOJoins.

See also: addJoin (EORelationship)

177

Instance Methods

destinationAttribute
public EOAttributedestinationAttribute ()

Returns the destination (“right”) attribute used by the join.

See also: — destinationAttributes (EORelationship)

isReciprocalToJoin
public booleansReciprocalToJoin(EOJoinotherJoir)

Returndrue if this join's source attribute is equaldtherJoiris destination attribute aratherJoiris source
attribute is equal to this join’s destination attribute. This is known as a back-referencing join.

See also: inverseRelationship(EORelationship)

sourceAttribute
public EOAttributesourceAttribute()

Returns the source (“left”) attribute used by the join.

See also: sourceAttributes (EORelationship)

178

Classes: EOLoginPanel

EOLoginPanel

Inherits From: NSObiject

Package: com.apple.yellow.eoaccess
Declared In:

Class Description

EOLoginPanel is an abstract class that defines how users of an Enterprise Objects Framework application
provide database login information. Concrete subclasses of EOLoginPanel override its one method to run
a modal login panel. Unless you are writing a concrete adaptor subclass, you shouldn’t need to interact with
this class. Generally, the Framework automatically creates and runs an instance of a concrete login panel
object when your application needs connection information for the user. If you want to control when or how
the login panel is run, use the EOAdaptor methradtoginPanelAndValidateConnectionDictionary
andrunLoginPanel. When invoked, these methods create a concrete EOLoginPanel and interact with it for
you.

If you are writing a concrete adaptor, you must provide a concrete subclass of EOLoginPanel and a
graphical user interface (usuallyréb file). Enterprise Objects Framework expects these resources to be
provided in a bundle named “LoginPanel” in the adaptor’s framework. See the class specification for
EOAdaptor for more information.

Constructors

EOLoginPanel
public com.apple.yellow.eoaccds@LoginPanel()

Creates and returns an instance of EOLoginPanel.

Instance Methods

administrativeConnectionDictionaryForAdaptor
public NSDictionaryadministrativeConnectionDictionaryForAdaptor (EOAdaptoradaptor)

Adaptor subclass should implement a subclass that implements this. Reduifithe user cancels the
panel.

179

180

runPanelForAdaptor

public abstract NSDictionamunPanelForAdaptor (
EOAdaptoradaptor
boolearflag,
boolearallowsCreation)

Implemented by subclasses to run the login panel, allowing a user to enter new connection information.
Returns the new connection informatiomall if the user cancels the panelflfg is true, this method runs

the login panel until the user enters valid connection information or cancels the palf@hkd€Creationis

true, the panel will have an additional button that allows the user to creat a new database, and will prompt
them for any necessary administrative information. When valid login information is entered in the panel, it
is stored iradaptors connection dictionary and returned. Login information is validated by sesmthptpr
anassertConnectionDictionarylsValid message.

If flagis false, login information entered in the panel isn't validated and is returned without affecting the
adaptor's connection dictionary.

A subclass must override this method without invoking EOAdaptor’s implementation.

See also: setConnectionDictionary (EOAdaptor) assertConnectionDictionarylsValid (EOAdaptor),
runLoginPanelAndValidateConnectionDictionary (EOAdaptor),
runLoginPanel (EOAdaptor)

Classes: EOModel

EOModel

Inherits From: NSObiject

Package: com.apple.yellow.eoaccess

Class Description

An EOModel represents a mapping between a database schema and a set of classes based on the
entity-relationship model. The model contains a humber of EOEntity objects representing the entities
(tables) of the database schema. Each EOEntity object has a number of EOAttribute and EORelationship
objects representing the properties (columns or fields) of the entity in the database schema. For more
information on attributes and relationships, see their respective class specifications.

An EOModel maintains a mapping between each of its EOEntity objects and a corresponding enterprise
object class for use with the database level of the Enterprise Objects Framework. You can determine the
EOEntity for a particular enterprise object with #rgityForObject method.

An EOModel is specific to a particular database server, and stores information needed to connect to that
server. This includes the name of an adaptor framework to load so that the Enterprise Objects Framework
can communicate with the database. Models are stored in the file system in a manner similar to adaptor
framework. EOModel objects are usually loaded from model files built with the EOModeler application
rather than built programmatically. If you need to programmatically load a model file, see the discussion in
“Loading a Model File.”

Models can have relationships that reference other models in the same model group. The other models may
map to different databases and types of servers.

Models are organized into model groups; see the EOModelGroup class specification for more information.

Creating an EOModel Programmatically

The EOAdaptorChannel class declares methods for reading basic schema information from a relational
database. You can use this information to build up an EOModel programmatically, and then enhance that
model by defining extra relationships, flattening attributes, and so on. See the class description in the
EOAdaptorChannel class specification for information on reading basic schema information, and see the
other modeling classes’ specifications for information on creating additional attributes and relationships.

181

Method Types

Constructors
EOModel

Saving a model
encodeTableOfContentsintoPropertyList
writeToFile

Loading a model’s objects
loadAllModelObjects

Working with entities
addEntity
removeEntity
removeEntityAndReferences
entityNames
entityNamed
entities

Naming a model’s components
beautifyNames

Accessing the model's name
setName
name
path

Checking references
referencesToProperty
externalModelsReferenced

Getting an object’s entity
entityForObject

Accessing the adaptor bundle
adaptorName
setAdaptorName

Accessing the connection dictionary
setConnectionDictionary
connectionDictionary

Accessing the user dictionary
setUserInfo
userinfo

182

Classes: EOModel

Working with stored procedures
addStoredProcedure
removeStoredProcedure
storedProcedureNames
storedProcedureNamed
storedProcedures

Accessing the model’s group
setModelGroup
modelGroup

Constructors
EOModel
public EOModel()
Creates a new EOModel object.
public EOModel(java.lang.Stringpath)

Creates a new EOModel object by reading the contents of the file identifiedh@as a model
archive. Sets the EOModel's name and path from the context of the model archive. Throws an
exception if for any reason it cannot initialize the model from the file specifipdthy

public EOModel(NSDictionarytableOfContentgava.lang.Stringath)

Creates a new EOModel object fraableOfContentsyhich is the property list representation of a
EOModel). Sets the EOModel’'s name and path ugath

See also: hame, path, encodeTableOfContentsintoPropertyList

Instance Methods
adaptorName
public java.lang.StringdaptorName()

Returns the name of the adaptor for the receiver. This name can be used with EOAdaptor’s
adaptorWithName static method to create an adaptor.

183

184

addEntity
public voidaddEntity (EOEntity anEntity)

AddsanEntityto the receiver. Throws an exception if an error occurs (for examates iititydoesn't exist,
if the entity belongs to another model, or if an entity of the same name is already in the receiver).

See also: entities, removeEntity, removeEntityAndReferences

addStoredProcedure
public voidaddStoredProcedurédEOStoredProcedurstoredProcedure

AddsstoredProcedur¢o the receiver. Throws an exception if an error occurs (for example, if a stored
procedure of the same name is already in the receiver).

See also: removeStoredProcedurestoredProcedures storedProcedureNamed

availablePrototypeAttributeNames
public NSArrayavailablePrototypeAttributeNamesy)
Returns a list of available prototype names.

See also: prototypeAttributeNamed

beautifyNames
public voidbeautifyNames()

See also: Makes all of the receiver's named components conform to a standard
conventiomameForExternalName (EOEntity),beautifyName (EOEntity, EOAttribute,
EORelationship, EOStoredProcedureggme

connectionDictionary
public NSDictionaryconnectionDictionary()
Returns a dictionary containing information used to connect to the database server. The connection

dictionary is the place to specify default login information for applications using the model. See the
EOAdaptor class specification for more information.

Classes: EOModel

encodeTableOfContentsintoPropertyList
public voidencodeTableOfContentsintoPropertyLis{NSMutableDictionarypropertyLis)

Encodes the receiver inppopertyList This method is used to get an ASCII representation of an EOModel
in property list format.

See also: “Constructors”

entities
public NSArrayentities()

Returns an array containing the receiver’s entities. Note that this method loads every entity, and thus defeats
the benefits of incremental model loading.

See also: entityNames

entityForObject
public EOEntityentityForObject (java.lang.ObjecanEQ

Returns the entity associated wahEQ whetheranEOis an instance of an enterprise object class, an
instance of EOGenericRecord, or a fault object . Retauiisf anEOhas no associated entity.

entityNamed
public EOEntityentityNamed(java.lang.Stringhame

Returns the entity name@dme ornull if no such entity exists. Posts an EOEntityLoadedNotification when
the entity is loaded.

See also: entityNames entities

entityNames
public NSArrayentityNamesy)

Returns an array containing the names of the EOModel’s entities.

See also: entities, entityNamed

185

externalModelsReferenced
public NSArrayexternalModelsReferencef)

Returns an array containing those models that are referenced by this model.

See also: referencesToProperty

loadAlIModelObjects
public voidloadAllIModelObjects()

Loads any of the receiver’s entities, stored procedures, attributes, and relationships that have not yet been
loaded.

See also: attributes (EOEntity),entities, relationships (EOEntity),storedProcedures

modelGroup
public EOModelGroupnodelGroup()

Returns the model group of which the receiver is a patrt.

See also: setModelGroup

name
public java.lang.Stringame()

Returns the receiver’'s name.

See also: path, “Constructors”

path
public java.lang.Stringath()

Returns the name of the EOModel file used to create the receinei| drthe model wasn't initialized
from a file.

See also: hame, “Constructors”

186

Classes: EOModel

prototypeAttributeNamed
public EOAttributeprototypeAttributeNamed (java.lang.StringttributeNamég

Returns the prototype attribute for the giatributeNameprototypeAttributeNamed first looks for the
prototype in E@daptorNamerototypes. If the prototype isn’t found there, it then looks in EOPrototypes.
If the search is still unsuccessful, this method finally looks for the prototype in the list of prototypes
provided by the adaptor itself.

See also: availablePrototypeAttributeNames

referencesToProperty
public NSArrayreferencesToPropertyjava.lang.ObjecaProperty

Returns an array of all properties in the receiver that refesdfProperty whether derived attributes,
relationships that referene®roperty and so on. Returmslll if aPropertyisn't referenced by any of the
properties in the model.

See also: externalModelsReferenced

removeEntity
public voidremoveEntity(EOEntitynamé

Removes the entity with the giveamewithout performing any referential integrity checking.

See also: addEntity, removeEntityAndReferences

removeEntityAndReferences
public voidremoveEntityAndReference$E OEntity entity)

Removesentityand any attributes or relationships in other entities that reference entity.

See also: removeEntity, addEntity

removeStoredProcedure
public voidremoveStoredProcedur¢EOStoredProcedui@StoredProceduie

RemovesaStoredProceduraithout checking to see if an entity uses it.

See also: addStoredProcedure storedProcedures

187

188

setAdaptorName
public voidsetAdaptorNamegjava.lang.StringadaptorNamg

Sets the name of the receiver’s adapt@adaptorName

See also: availableAdaptorNames(EOAdaptor)

setConnectionDictionary
public voidsetConnectionDictionaryNSDictionaryconnectionDictionary

Sets the dictionary containing information used to connect to the datalcas@égationDictionarySee the
EOAdaptor class specification for more information on working with connection dictionaries.

See also: adaptorWithModel (EOAdaptor)

setModelGroup
public voidsetModelGroup(EOModelGrouppModelGroup

Sets the model group of which the receiver should be a part.

Note: You shouldn’t change an EOModel’'s model group after it has been bound to other models in its
group.

See also: modelGroup

setName
public voidsetNamdjava.lang.Stringhamé

Sets the name of the receiventmme

setUserlInfo
public voidsetUserInfaNSDictionarydictionary)

Sets thalictionary of auxiliary data, which your application can use for whatever it ndedmnary can
only contain property list data types—that is, String, NSDictionary, NSArray, and NSData.

Classes: EOModel

storedProcedureNamed
public EOStoredProcedustoredProcedureNamedjava.lang.Stringhamé

Returns the stored procedure namarhe ornull if the model doesn’t contain a stored procedure with the
given name.

See also: storedProcedureNamesstoredProcedures

storedProcedureNames
public NSArraystoredProcedureName§

Returns an array containing the names of all of the model’s stored procedures.

See also: storedProcedureNamedstoredProcedures

storedProcedures
public NSArraystoredProcedureg)

Returns an array containing all of the model's stored procedures. Note that this method loads each of the
model’s stored procedures, thus defeating the benefits of incremental model loading.

See also: storedProcedureNamesstoredProcedureNamed

userinfo
public NSDictionaryuserinfo()

Returns a dictionary of user data. You can use this to store any auxiliary information it needs.

See also: setUserInfo

writeToFile
public voidwrite ToFile (java.lang.Stringpath)

Saves the receiver in the directory specifieghdth If the file specified by path already exists, a backup
copy is first created (using path with a “~” character appended). As a side-effect, this method resets the
current path.

writeToFile: throws an exception on any error which prevents the file from being written.

See also: path

189

Notifications
EOModel declares and posts the following notification.
EntityLoadedNotification

Posted after an EOEntity is loaded into memory. The notification contains:

Notification Object The entity that was loaded.

Userinfo None

190

Classes:

Loading a Model File

EOModels are usually loaded from model files built with the EOModeler application rather than built
programmatically. EOModel files are typically stored in a project or a framework.

To load an EOModel, provide a model file's path to the constructor. Note that loading an EOModel doesn’t
have the effect of loading all of its entities. EOModel files can be quite large, so to reduce start-up time,
entity definitions are only loaded as needed. This incremental model loading is possible because an
EOModel actually consists of one index file and two files for each entity. Models haeadeldfile

wrapper (which is actually a directory), and the individual entity files within the model are in ASCII format.
The index file has the nantedex.eomodeld and it contains the connection dictionary, the adaptor name,
and a list of all of the entities in the model. It is this file that gets loaded when you create a new model from
a patlinitWithContentsOfFile: . When an entity is loaded, EOModel posts an

EOEntityLoadedNotification. The entity files arepéist file that describes the entity andspecfile that
describes any named fetch specifications for that entity.

Some of the EOModel methods contain the string “TableOfContents”. An EOModel’s “table of contents”
corresponds to itmdex.eomodeldfile, which is used to access the model’s entiinelex.eomodelds just
the ASCII representation of a model’s table of contents.

191

192

Classes: EOModelGroup

EOModelGroup

Inherits From: NSObiject

Package: com.apple.yellow.eoaccess

Class Description

An EOModelGroup represents an aggregation of related models (see the EOModel class specification for
more information on models). When a model in the group needs to resolve a relationship to an entity in
another model, it looks for that model in its group. Model groups allow applications to load entities and
their properties only as they’re needed, by distributing them among separate EOModels.

Thedefault model groupontains all models for an application, as well as any frameworks the application
references. It is automatically created on demand. The entity name space among all of these models is
global; consequently, the same entity name shouldn’t appear in any two of the models. All cross-model
information is represented in the models by entity name only. Binding the entity name to an actual entity is
done at run-time within the EOModelGroup.

In the majority of applications, the automatic creation of the default model group is sufficient. However,
your code can override this automatic creation; see “Setting Up A Model Group Programmatically.”

EOModelGroup Delegates

Your EOModelGroup object should have a delegate which can influence how it finds and loads

models. In addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself
can have a delegate. The class delegate implements a single md#fiaditModelGroup—while the

instance delegate can implement the methods defined in the EOModelGroup.Delegate interface. For more
information on EOModelGroup class delegate and instance delegate methods, see the
EOModelGroup.ClassDelegate and EOModelGroup.Delegate interface specifications, respectively.

Method Types

Constructors
EOModelGroup

193

Accessing the group

Accessing model groups

Searching a group

Loading all of a group’s objects

Assigning a delegate

Constructors

EOModelGroup
public EOModelGroup()

addModel
addModelWithPath
modelNamed
modelNames
models
modelWithPath
removeModel

defaultGroup

setDefaultGroup

globalModelGroup
modelGroupForObjectStoreCoordinator
setModelGroup

entityNamed
entityForObject
fetchSpecificationNamed
storedProcedureNamed

loadAlIModelObjects

classDelegate
delegate
setClassDelegate
setDelegate

Creates a new EOModelGroup that contains no models.

194

Classes: EOModelGroup

Static Methods
classDelegate
public static java.lang.ObjectassDelegatf

Returns the EOModelGroup’s class delegate. This delegate optionally implements the
defaultModelGroup method (see the EOModelGroup.ClassDelegate interface specification for more
information).

See also: setClassDelegate

defaultGroup
public static EOModelGrougefaultGroup()

Returns the default EOModelGroup. Unless you've either specified a default model group with
setDefaultGroup or implemented thdefaultModelGroup class delegate method to return a nolt-
value, this method is equivalentdgtobalModelGroup.

See also: classDelegate

globalModelGroup
public static EOModelGrouglobalModelGroup()

Returns an EOModelGroup composed of all models in the resource directory of the main bundle, as well
as those in all the bundles and frameworks loaded into the application.

See also: defaultGroup

modelGroupForObjectStoreCoordinator

public static EOModelGroup
modelGroupForObjectStoreCoordinator(com.apple.yellow.eocontrol. EOObjectStoreCoordina
tor anObjectStoreCoordinatdr

Returns the EOModelGroup useddnyObjectStoreCoordinator

See also: setModelGroup

195

setClassDelegate
public static voidsetClassDelegaigava.lang.ObjecanObjec}

AssignsanObjectas the EOModelGroup’s class delegate. The class delegate is optional; it allows you to
determine the default model group (see the EOModelGroup.ClassDelegate interface specification for more
information).

See also: classDelegatedefaultModelGroup

setDefaultGroup
public static voidsetDefaultGroup(EOModelGroupgroup)

Sets the default model groupgmup. If you've implemented thdefaultModelGroup class delegate
method to return a nomdll value, the delegate’s return value overrigesip as the default model group.

See also: defaultGroup,setClassDelegate

setModelGroup

public static voidsetModelGroup(EOModelGroupgroup,
com.apple.yellow.eocontrol. EOObjectStoreCoordinata®bjectStoreCoordinatpr

Assignsgroupto anObjectStoreCoordinatoBy default, an EOObjectStoreCoordinator uses the
defaultGroup. You might want to assign a different group to an EOObjectStoreCoordinator if you need to
scope models to particular coordinators—if different models have the same name, or if different entities in
different models have the same name.

See also: modelGroupForObjectStoreCoordinator

Instance Methods
addModel
public voidaddModel(EOModelmode)

Adds amodelto the receiver, sets tineodels model group to the receiver, and posts
ModelAddedNotification. Throws an exception if the receiver already contains an EOModel with the
same name as the specifraddel

See also: models removeModel

196

Classes: EOModelGroup

addModelWithPath
public EOModeladdModelWithPath(java.lang.Stringath)

Creates an EOModel object with the contents of the file identifigihthy and adds the newly created
model to the receiver. Adds the new model to the receiveraddModel. Throws an exception if for any
reason it cannot create the model from the file specifiquathy

delegate
public java.lang.Objedelegate)

Returns the receiver’s delegate, which is different from the EOModelGroup’s class delegate. Each
EOModelGroup object can have it's own delegate in addition to the delegate that’s assigned to the
EOModelGroup class. See the EOModelGroup.Delegate interface specification for more information.

See also: setDelegateclassDelegate

entityForObject
public EOEntityentityForObject (java.lang.Objecbbjec)

Returns the EOEntity associated wathjectfrom any of the models in the receiver that haothiect or
null if none of the entities in the receiver handaibgect

See also: entityForObject (EOModel)

entityNamed
public EOEntityentityNamed(java.lang.StringntityNamég

Searches each of the EOModels in the receiver for the entity specifiatittilameand returns the entity
if found. Returnsull if it is unable to find the specified entity.

See also: entityNamed (EOModel)

fetchSpecificationNamed

public com.apple.yellow.eocontrol. EOFetchSpecification
fetchSpecificationNamegjava.lang.StringetchSpecName
java.lang.StringentityNameg

Returns the named fetch specification from the entity specifiedtilyNamen the receiving model group.

197

loadAlIModelObjects
public voidloadAllIModelObjects()

SenddoadAllModelObjects to each of the receiver's EOModels, thereby loading any EOERntities,
EOAttributes, EORelationships, and EOStoredProcedures that haven’t yet been loaded from each of the
EOModels in the receiver.

See also: loadAlIModelObjects (EOModel)

modelNamed
public EOModeimodelNamedjava.lang.StringnodelNamg

Returns the EOModel nameabdelNaméf it's part of the receiver, anull if the receiver doesn’t contain
an EOModel with the specified name.

See also: modelNamesmodels

modelNames
public NSArraymodelNameg)

Returns an array containing the names of all of the EOModels in the receiver, or an empty array if the
receiver contains no EOModels. The order of the model names in the array isn't defined.

See also: modelNamed models

models
public NSArraymodely)

Returns an array containing the receiver's EOModels, or an empty array if the receiver contains no
EOModels. The order of the models in the array isn’t defined.

See also: modelNamed modelNamesmodels

modelWithPath
public EOModelmodelWithPath(java.lang.Stringath)

If the receiver contains an EOModel whose path (as determined by seatlirtg the EOModel object)
is equal tgpath that EOModel is returned. Otherwise, retunaolf. String’sequalsmethod is used to
compare the paths, and each path is standardized before comparison.

See also: modelNamed, path (EOModel)

198

Classes: EOModelGroup

removeModel
public voidremoveMode(EOModelaMode)

RemovesaModelfrom the receiver, and unbinds any connectiorsModelfrom other EOModels in the
receiver. Posts ModellnvalidatedNotification to the default notification center after rerabaatelfrom
the receiver.

See also: addModel, models

setDelegate
public voidsetDelegat§ava.lang.ObjecanObjec})

Sets the receiver’s delegateattObject See the EOModelGroup.Delegate interface specification for more
information.

See also: delegate

storedProcedureNamed
public EOStoredProcedustoredProcedureNamedava.lang.StringatName

Returns the stored procedure in the receiving model group having the given name.

Notifications
EOModelGroup declares and posts the following notifications.
ModelAddedNotification

Posted by an EOModelGroup when an EOModel is added to the group. This notification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the objects
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the notification
(like data sources) can invokeodelNamedto re-fetch their models.

Notification Object The newly added model.

Userinfo None

199

ModellnvalidatedNotification

Posted by an EOModelGroup when an EOModel is removed from the group. This natification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the objects
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the natification
(like data sources) can invokeodelNamedto re-fetch their models.

Notification Object The invalidated model.

Userinfo None

200

Classes:

Setting Up A Model Group Programmatically

In the majority of applications, the automatic creation of the default model group is sufficient. However, if
your particular application requires different model grouping semantics, you can create your own
EOModelGroup instance, add the appropriate models, and then use that instance to replace the default
EOModelGroup. The following code demonstrates the process:

String modelPath; /I Assume this exists
ModelGroup group = new ModelGroup();

group.addModelWithPath(modelPath);
ModelGroup.setDefaultGroup(group);

201

202

Classes: EORelationship

EORelationship

Inherits From: NSObiject

Implements: EOPropertyListEncoding
Package: com.apple.yellow.eoaccess

Class Description

An EORelationship describes an association between two entities, based on attributes of those two entities.
By defining EORelationships in your application’s EOModel, you can cause the relationships defined in the
database to be automatically resolved as enterprise objects are fetched. For example, a Movie entity may
contain itsstudiold as an attribute, but without an EORelationgtigdiold will only appear in a movie
enterprise object as a number. With an EORelationship explicitly connecting the Movie entity to a Studio
entity, a movie enterprise object will automatically be given its studio enterprise object when an
EODatabaseChannel fetches it from the database. The two entities that make up a relationship can be in the
same model or two different models, as long as they are in the same model group.

You usually define relationships in your EOModel with the EOModeler application, which is documented

in WebObjects Tools and TechniquE®Relationships are primarily for use by the Enterprise Objects
Framework; unless you have special needs you shouldn’t need to access them in your application’s code. If
you have such a need, you can create your own EORelationship objects as outlined in “Creating
Relationships.”

A relationship is directional: One entity is considered the source, and the other is considered the destination.
The relationship belongs to the source entity, and may only be traversed from source to destination. To
simulate a two-way relationship you have to create an EORelationship for each direction. Although the
relationship is directional, no inverse is implied (although an inverse relationship may exist).

A relationship maintains an array of joins identifying attributes from the related entities (see the EOJoin
class specification for more information). Most relationships simply relate the objects of one entity to those
of another by comparing attribute values between them. Such a relationship must be defined as to-one or
to-many based on how many objects of the destination match each object of the source. This is called the
cardinality of the relationship. In a to-one relationship, there must be exactly one destination object for each
source object; in a to-many relationship there can be any number of destination objects for each source
object. See “Creating a Simple Relationship” for more information.

A chain of relationships across several entities can be flattened, creating a single relationship that spans

them all. For example, suppose you have a relationship between movies and directors, and a relationship
between directors and talent. You can traverse these relationships to create a flattened relationship going
directly from movies to talent. A flattened relationship is determined to be to-many or to-one based on the

203

relationships it spans; if all are to-one, then the flattened relationship is to-one, but if any of them is to-many
the flattened relationship is to-many. See “Creating a Flattened Relationship” for more information.

Like the other major modeling classes, EORelationship provides a user dictionary that the application can
use to store application-specific information related to the relationship.

Specifying the Join Semantic

The relationship holds the join semantic; you specify this semanticetilbinSemantic There are four

types of join semantic: EOInnerJoin, EOFullOuterJoin, EOLeftOuterJoin, and EORightOuterJoin. An inner
join produces results only for destinations of the join relationship that have non-NULL values. A full outer
join produces results for all source records, regardless of the values of the relationships. A left outer join
preserves rows in the left (source) table, keeping them even if there’s no corresponding row in the right
table, while a right outer join preserves rows in the right (destination) table.

Note: Not all join semantics are supported by all database servers.

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodelntoPropertyList

Method Types

204

Constructors
EORelationship

Accessing the relationship name beautifyName
name
setName
validateName
Using joins
addJoin
joins
joinSemantic
removeJoin
setJoinSemantic

Accessing attributes joined on
destinationAttributes
sourceAttributes

Classes: EORelationship

Accessing the definition

Accessing the entities joined

Checking the relationship type

componentRelationships
definition
setDefinition

anylnverseRelationship
destinationEntity

entity
inverseRelationship
setEntity

isCompound
isFlattened
isMandatory
setlsMandatory
validateValue

Accessing whether the relationship is to-many

Relationship qualifiers
Checking references

Controlling batch fetches

Taking action upon a change

Accessing the user dictionary

isToMany
setToMany

qualifierwithSourceRow
referencesProperty

numberOfToManyFaultsToBatchFetch
setNumberOfToManyFaultsToBatchFetch

deleteRule
propagatesPrimaryKey
setDeleteRule
setPropagatesPrimaryKey
ownsDestination
setOwnsDestination

setUserInfo
userinfo

205

Constructors

EORelationship
public EORelationship()

Creates and returns a new EORelationship. You rarely create EORelationships in code; instead you
create them using the EOModeler application.

public EORelationship(NSDictionarypropertyList java.lang.Objeabwner)

Creates and returns a new EORelationship is initialized fropertyList—a dictionary containing

only property list data types (that is, NSDictionaries, java.lang.Strings, NSArrays, and
next.util.ImmutableBytes). This constructor is used by EOModeler when it reads in a Model from a
file, for example. Thewnerargument should be the EORelationship’s Entity. EORelationships
created from a property list must receiveaarakeWithPropertyList message immediately after
creation before they are fully functional, but t#veake...message should be deferred until the all of
the other objects in the model have also been created.

See also: awakeWithPropertyList (EOPropertyListEncodinggncodelntoPropertyList
(EOPropertyListEncoding)

Instance Methods

206

addJoin
public voidaddJoin(EOJoinaJoin)

Adds a source-destination attribute pair to the relationship. Throws an exception if the relationship is
flattened, if either the source or destination attributes are flattened, or if eifldeirisf attributes already
belongs to another join of the relationship.

See also: joins, isFlattened, setDefinition

anylnverseRelationship

public EORelationshipnylnverseRelationshif)
Searches the relationship’s destination entity for a user-created, back-referencing relationship joining on the
same keys. If none is found, it looks for a “hidden” inverse relationship that was manufactured by the

Framework. If none is found, the Enterprise Objects Framework creates a “hidden” inverse relationship and
returns that. Hidden relationships are used internally by the Framework.

See also: inverseRelationship

Classes: EORelationship

beautifyName
public voidbeautifyName

Makes the relationship’s name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME" becomes “firstName”. This method is used in
reverse-engineering a model.

See also: setName validateName beautifyNames(EOModel)

componentRelationships
public NSArraycomponentRelationship$)

Returns an array of base relationships making up a flattened relationstup,ibthe relationship isn’t
flattened.

See also: definition

definition
public java.lang.Stringlefinition()

Returns the data path of a flattened relationship; for example “department.facility”. If the relationship isn’t
flattened definition returnsnull.

Returns the data path of a flattened relationship; for example “department.facility”. If the relationship isn’t
flattened definition returnsnull.

See also: componentRelationships

deleteRule
public intdeleteRul€)

Returns a rule that describes the action to take when an object is being deleted. The returned rule is one of
the following:

Value Type Description

DeleteRuleNullify int Delete the department and remove any back reference the employee has to the
department.

DeleteRuleCascade int Delete the department and all of the employees it contains.

207

208

Value Type Description

DeleteRuleDeny int Refuse the deletion if the department contains employees.

Delete the department, but ignore the department's employees relationship. You
DeleteRuleNoAction int should use this delete rule with caution since it can leave dangling references in
your object graph.

destinationAttributes
public NSArraydestinationAttributes()

Returns the destination attributes of the relationship. These correspond one-to-one with the attributes
returned bysourceAttributes. Returnsnull if the relationship is flattened.

See also: joins, destinationAttribute (EOJoin)

destinationEntity
public EOEntitydestinationEntity()

Returns the relationship’s destination entity, which is determined by the destination entity of its joins for a
simple relationship, and by whatever ends the data path for a flattened relationship. For example, if a
flattened relationship’s definition is “department.facility”, the destination entity is the Facility entity.

See also: entity

entity
public EOEntityentity()

Returns the relationship’s source entity.

See also: destinationEntity, addRelationship (EOEntity)

inverseRelationship
public next.eo.RelationshipverseRelationshp()

Searches the relationship’s destination entity for a user-created, back-referencing relationship joining on the
same keys. Returns the inverse relationship if one is fowtidotherwise.

See also: anylnverseRelationship

Classes: EORelationship

isCompound
public boolearisCompound()

Returngrue if the relationship contains more than one join (that is, if it joins more than one pair of
attributes)falseif it has only one join. See “Creating a Simple Relationship” for information on compound
relationships.

See also: joins, joinSemantic

isFlattened
public booleansFlattened))

Returndrue if the relationship traverses more than two entifedse otherwise. See “Creating a Flattened
Relationship” for an example of a flattened relationship.

isMandatory
public boolearisMandatory()

Returnsrue if the target of the relationship is requiréalseif it can benull.

See also: setlsMandatory

isToMany
public boolearisToMany()

Returngrue if the relationship is to-manfalseif it's to-one.

See also: setToMany

209

210

joinSemantic
public intjoinSemantic()

Returns the semantic used to create SQL expressions for this relationship. The returned join semantic is one
of the following:

Constant Description

InnerJoin Produces results only for destinations of the join relationship that have non-NULL

values.
FullOuterJoin Produces results for all source records, regardless of the values of the relationships.
LeftOuterJoin Preserves rows in t_he left (source) table, keeping them even if there’s no
corresponding row in the right table.
RightOuterJoin Preserves rows in the right (destination) table, keeping them even if there’s no

corresponding row in the left table.

See also: joins

joins
public NSArrayjoins()

Returns all joins used by relationship.

See also: destinationAttributes, joinSemantic, sourceAttributes

name
public java.lang.Stringamg()

Returns the relationship’s name.

numberOfToManyFaultsToBatchFetch
public intnumberOfToManyFaultsToBatchFetch()

Returns the number of to-many faults that are triggered at one time.

Classes: EORelationship

ownsDestination
public boolearownsDestination()

Returngrue if the receiver’s source object owns its destination obj&dss otherwise. See the method
description forsetOwnsDestinationfor more discussion of this topic.

See also: destinationAttributes

propagatesPrimaryKey
public boolearpropagatesPrimaryKey()

Returnstrue if objects should propagate their primary key to related objects through this relationship.
Objects only propagate their primary key values if the corresponding values in the destination object aren’t
already set.

qualifierWithSourceRow
public EOQualifiequalifierWithSourceRow(NSDictionarysourceRow

Returns a qualifier that can be used to fetch the destination of the receiving relationshigngiveiRow

referencesProperty
public booleaneferencesPropertyjava.lang.ObjecaProperty

Returngrue if aPropertyis in the relationship’s data path or is an attribute belonging to one of the
relationship’s joins; otherwise, it returfise See the class description for information on how
relationships reference properties.

See also: referencesProperty (EOEntity)

removeJoin
public voidremoveJoinEOJoinaJoin)

DeletesaJoinfrom the relationship. Does nothing if the relationship is flattened.

See also: addJoin

211

212

setDefinition
public voidsetDefinition(java.lang.Stringlefinition

Changes the relationship to a flattened relationship by releasing any joins and attributes (both source and
destination) associated with the relationship and satefigitionas its data path. “department.facility” is
an example of a definition that could be supplied to this method.

If the relationship’s entity hasn’t been set, this method won't work correctly. See “Creating a Flattened
Relationship” for more information on flattened relationships.

See also: addJoin, setEntity

setDeleteRule
public voidsetDeleteRuléint deleteRule
Set a rule describing the action to take when object is being daletetRulean be one of the following:

» EODeleteRuleNullify

+ EODeleteRuleCascade
» EODeleteRuleDeny

+ EODeleteRuleNoAction

For more discussion of what these rules mean, see the method descripdieletiERule

setEntity
public voidsetEntity(EOEntity anEntity)

Sets the entity of the relationshipaioEntity If the relationship is currently owned by a different entity, this
method will remove the relationship from that entity. This method doesn’t add the relationship to the new
entity. EOEntity’saddRelationship method invokes this method.

You only need to use this method when creating a flattened relationship; use EO&ahdiResationship
to associate an existing relationship with an entity.

See also: setDefinition

setlIsMandatory
public voidsetisMandatory(boolearflag)

Specifies according titag whether the target of the relationship must be supplied or camlbe

Classes: EORelationship

setJoinSemantic
public voidsetJoinSemantigint joinSemantig

Sets the semantic used to create SQL expressions for this relatigmisRipmanticshould be one of the
following:

+ EOInnerJoin

+ EOFullOuterJoin
+ EOLeftOuterJoin
« EORIightOuterJoin

See also: addJoin, joinSemantic

setName
public voidsetNamédjava.lang.Stringramé

Sets the relationship’s namename Throws a verification exceptionritmeis not a valid relationship
name, and an invalid argument exceptiamaifneis already in use by an attribute or another relationship in
the same entity.

This method forces all objects in the model to be loaded into memory.

See also: beautifyName, validateName

setNumberOfToManyFaultsToBatchFetch
public voidsetNumberOfToManyFaultsToBatchFetcHint size

Sets the number of “toMany” faults that are fired at one tinsezéo

See also: isToMany, numberOfToManyFaultsToBatchFetch

setOwnsDestination

public voidsetOwnsDestinatiorfbooleanflag)
Sets according tthag whether a receiver’s source object owns its destination objects. The defialsht is
When a source object owns its destination objects, it means that the destination objects can’t exist
independently. For example, in a personnel database, dependents can't exist without having an associated

employee. Removing a dependent from an employlsgiendentsarray would have the effect of also
deleting the dependent from the database, unless you transferred the dependent to a different employee.

See also: deleteRule setDeleteRuleownsDestination

213

214

setPropagatesPrimaryKey
public voidsetPropagatesPrimaryKeyboolearflag)

Specifies according titag whether objects should propagate their primary key to related objects through
this relationship. For example, an Employee object might propagate its primary key to an EmployeePhoto
object. Objects only propagate their primary key values if the corresponding values in the destination object
aren't already set.

setToMany
public voidsetToMany(boolearflag)

Sets a simple relationship as to-many accordifiggoThrows an exception if the receiver is flattened. See
the class description for considerations in setting this flag.

See also: isFlattened

setUserInfo
public voidsetUserInfaNSDictionarydictionary)

Sets thaictionary of auxiliary data, which your application can use for whatever it ndadmnary can
only contain property list data types (that is, NSDictionary, String, NSArray, and NSData).

sourceAttributes
public NSArraysourceAttributes()

Returns the source attributes of a simple (hon-flattened) relationship. These correspond one-to-one with the
attributes returned bgestinationAttributes. Returnsnull if the relationship is flattened.

See also: joins, sourceAttribute (EOJoin)

userinfo
public NSDictionaryuserinfo()

Returns a dictionary of user data. Your application can use this data for whatever it needs.

Classes: EORelationship

validateName
public java.lang.ThrowablealidateNamegjava.lang.Stringhameé

Validatesnameand returnsull if its a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_"; or contains a character other
than a letter, a number, “@”, “#”, “_", or “$”. A name is also invalid if the receiver’'s EOEntity already has

an EORelationship with the same nhame, or if the model has a stored procedure that has an argument with
the same name.

setNameuses this method to validate its argument.

validateValue
public java.lang.ThrowablealidateValug(NSMutableArrayalueP

For relationships marked as mandatory, returns a validation exception if the receiver is to\@aiaethd
is null, or if the receiver is to-many amaluePhas a count of 0. A mandatory relationship is one in which
the target of the relationship is required. Retunuls to indicate success.

See also: isMandatory, setiIsMandatory

215

216

Classes:

Creating Relationships

Creating a Simple Relationship

A simple relationship is defined by the attributes it compares in connecting its source and destination
entities. Each source-destination pair of attributes is encapsulated in an EOJoin object. For example, to
create a relationship from the Movie entity to the Studio entity, a join has to be created fstunlitiid
attribute of the Movie entity to the same attribute of the Studio entity. The values of these two attributes
must be equal for a match to result. Note #adiold is the primary key attribute for the Studio entity, so
there can only be one studio per movie; this relationship is therefore to-one.

This code excerpt creates an EORelationship for the relationship described above and adds it to the
EOEntity for the Movie entity:

Entity movieEntity; // Assume this exists.
Entity studioEntity; // Assume this exists.
Attribute studiolDAttribute;

Attribute movieStudiolDAttribute;

Join toStudioJoin;

EOREelationship toStudioRelationship;

studiolDAttribute = studioEntity.attributeNamed('studiold");
movieStudiolDAttribute = movieEntity.attributeNamed(“studiold");

toStudioJoin = new Join(movieStudiolDAttribute, studiolDAttribute);

toStudioRelationship = new Relationship();
toStudioRelationship.setName("studio™);
movieEntity.addRelationship(toStudioRelationship);
toStudioRelationship.addJoin(toStudioJoin);
toStudioRelationship.setToMany(false);
toStudioRelationship.setJoinSemantic(InnerJoin);

This code first gets the attributes from the source and destination entities, and then creates an EOJoin with
them. Next, a new EORelationship is created, its name is set, and it's adumddgntity. The EOJoin is

added to the relationship and the relationship is set to be to-one. FinallysatlbmSemantidine,

EOInnerJoin indicates that only objects that actually have a matching destination object will be included in
the result when the relationship is traversed.

Creating a to-many relationship in the opposite direction merely swaps the source and destination attributes,
and assigns the relationship to the EOERntity for the Studio entity:

217

218

Join toMoviesJoin;
EOREelationship toMoviesRelationship;

toMoviesJoin = new Join(studiol DAttribute, movieStudiol DAttribute);

toMoviesRelationship = new Relationship();
toMoviesRelationship.setName("movies");
studioEntity.addRelationship(toMoviesRelationship);
toMoviesRelationship.addJoin(toMoviesJoin);
toMoviesRelationship.setToMany(true);
toMoviesRelationship.setJoinSemantic(InnerJoin);

Note that this relationship is to-many precisely because the destination attribute isn’t the primary key for its
entity (Movie), and therefore isn’t unique with regard to that entity.

A relationship isn’t restricted to only one EQJoin. It's entirely possible for a relationship to be defined based
on two or more attributes in the source and destination entities. For example, consider an employees
database that contains a picture of each employee identified by first and last name. You'd define the
relationship by joining each of the first and last names in the Employee entity to the same attribute in the
EmpPhoto attribute.

A simple relationship is considered to reference all of the attributes in its joins. You can use the
referencesPropertymethod to find out if an EORelationship references a particular attribute.

Creating a Flattened Relationship

A flattened relationship depends on several simple relationships already existing. Assuming that several do
exist, creating a flattened relationship is straightforward. For example, suppose that the Movie entity has a
to-many relationship to the Director entity, calteDirectors. The Director entity in turn has a relationship

to the Talent entity calledTalent. In the Movies database, the Director table acts as an intermediate table
between Movie and Talent. In this situation, it make sense to flatten the relationship Movies has to Director
(toDirectors) to give Movie access to the Talent table through Directofalent relationship. For more
discussion of when to use flattened relationships, see the chapters “Designing Enterprise Objects” and
“Advanced Enterprise Object Modeling” in tBmterprise Objects Framework Developer’'s Guide

This code excerpt creates a flattened relationship from Movie to Talent:

Entity movieEntity; // Assume this exists.
EOREelationship toDirectorsRelationship;

toDirectorsRelationship = new EORelationship();
toDirectorsRelationship.setName(“directors");
toDirectorsRelationship.setEntity(movieEntity);
movieEntity.addRelationship(toDirectorsRelationship);
toDirectorsRelationship.setDefinition:("toDirector.toTalent");

Classes:

All that’s needed to establish the relationship is a data path (also called the definition) naming each
component relationship connected, with the names separated by periods. Note that because the cardinality
of a flattened relationship is determinable from its componentgtioMany message is required here.

A simple relationship is considered to reference all of the relationships in its definition, plus every attribute
referenced by the component relationships. You can ugseférencesPropertymethod to find out if an
EORelationship references another relationship or attribute.

219

220

Classes: EOSQLEXxpression

EOSQLEXxpression

Inherits From: NSObiject

Package: com.apple.yellow.eoaccess

Class Description

EOSQLEXxpression is an abstract superclass that defines how to build SQL statements for adaptor channels.
You don't typically use instances of EOSQLEXxpression; rather, you use EOSQLExpression subclasses
written to work with a particular RDBMS and corresponding adaptor. A concrete subclass of
EOSQLEXxpression overrides many of its methods in terms of the query language syntax for its specific
RDBMS. EOSQLEXxpression objects are used internally by the Framework, and unless you're creating a
concrete adaptor, you won't ordinarily need to interact with EOSQLEXxpression objects yourself. You most
commonly create and use an EOSQLExpression object when you want to send an SQL statement directly
to the server. In this case, you simply create an expression with the EOSQLEXxpression static method
expressionForString and send the expression object to an adaptor channel using EOAdaptorChannel’s
evaluateExpression'method.

For more information, see “EOSQLExpression”.

Method Types

Constructors
EOSQLEXxpression

Creating an EOSQLEXxpression object
selectStatementForAttributes
insertStatementForRow
updateStatementForRow
deleteStatementWithQualifier
expressionForString

Building SQL Expressions
prepareSelectExpressionWithAttributes
preparelnsertExpressionWithRow
prepareUpdateExpressionWithRow
prepareDeleteExpressionForQualifier
setStatement
statement

221

222

Generating SQL for attributes and values

formatSQLString
formatValue:forAttribute
formatStringValue
sqlStringForValue
sqlStringForAttributeNamed
sqlStringForAttribute
sqlStringForAttributePath

Generating SQL for names of database objects

Generating an attribute list

Generating a value list

Generating a table list

Generating the join clause

Generating a search pattern

Generating a relational operator

Accessing the where clause

sqlStringForSchemaObjectName
setUseQuotedExternalNames
useQuotedExternalNames
externalNameQuoteCharacter

addSelectListAttribute
addInsertListAttribute
addUpdateListAttribute
appenditemToListString
listString

addInsertListAttribute
addUpdateListAttribute
valuelList

tableListWithRootEntity
aliasesByRelationshipPath

joinExpression
addJoinClauseWithLeftName:rightName:joinSemantic:
assembleJoinClause

joinClauseString

sglPatternFromShellPattern
sglPatternFromShellPattern:withEscapeCharacter

sqlStringForSelector

whereClauseString

Classes: EOSQLEXxpression

Generating an order by clause

Accessing the lock clause

Assembling a statement

Generating SQL for qualifiers

Managing bind variables

Using table aliases

Accessing the entity

addOrderByAttributeOrdering
orderByString

lockClause

assembleSelectStatementWithAttributes
assemblelnsertStatementWithRow
assembleUpdateStatementWithRow
assembleDeleteStatementWithQualifier

sqlStringForQualifier
sqlStringForConjoinedQualifiers
sqlStringForDisjoinedQualifiers
sqlStringForKeyComparisonQualifier
sqlStringForKeyValueQualifier
sqlStringForNegatedQualifier

setUseBindVariables
useBindVariables
addBindVariableDictionary
bindVariableDictionaries
bindVariableDictionaryForAttribute
mustUseBindVariableForAttribute
shouldUseBindVariableForAttribute

setUseAliases
useAliases

entity

Creating a schema generation script

schemaCreationScriptForEntities
schemaCreationStatementsForEntities
appendExpression

Generating table definition part of schema generation script for a list of entity groups

createTableStatementsForEntityGroups
dropTableStatementsForEntityGroups
primaryKeyConstraintStatementsForEntityGroups
primaryKeySupportStatementsForEntityGroups
dropPrimaryKeySupportStatementsForEntityGroups

223

Generating table definition part of schema generation script for an entity group
createTableStatementsForEntityGroup
dropTableStatementsForEntityGroup
primaryKeyConstraintStatementsForEntityGroup
primaryKeySupportStatementsForEntityGroup
dropPrimaryKeySupportStatementsForEntityGroup

Generating attribute definition part of schema generation script
addCreateClauseForAttribute
columnTypeStringForAttribute
allowsNullClauseForConstraint

Generating relationship constraint part of schema generation script
foreignKeyConstraintStatementsForRelationship
prepareConstraintStatementForRelationship

Other
createDatabaseStatementsForConnectionDictionary
dropDatabaseStatementsForConnectionDictionary
sqlStringForNumber
sqlStringForQualifier
sqlStringForString

Constructors
EOSQLEXxpression

public EOSQLEXxpression)
public EOSQLEXxpression EOEnNtity anEntity)

Creates a new EOSQLEXxpressioraniEntityis provided, the new EOSQLEXxpression is rooteghtentity

See also: entity

Static Methods

224

appendExpression
public static voicappendExpressiofEOSQLExpressioanSQLExpressignava.lang.Stringcript)
Append’'sanSQLEXxpressidnstatementto scriptalong with any necessary delimiter. EOSQLEXxpression’s

implementation append the SQL statemenaftB QLEXxpressioto script followed by a semicolon and a
newline. A subclass of EOSQLEXxpression only needs to override this method if the delimiter for its

Classes: EOSQLEXxpression

database server is different. For example, the Oracle and Informix use the default implementation, whereas
the Sybase adaptor appends the word “go” instead of a semicolon.

See also: createTableStatementsForEntityGroups

createDatabaseStatementsForConnectionDictionary

public static NSArragreateDatabaseStatementsForConnectionDictionaty
NSDictionaryconnectionDictionary,
NSDictionaryadminDictionary)

Generates the SQL statements that will create a database (or user, for Oracle) that can be accessed by the
provided connection dictionary and administrative connection dictionary.

See also: dropDatabaseStatementsForConnectionDictionary

createTableStatementsForEntityGroup
public static NSArragreateTableStatementsForEntityGrougNSArray entityGroup)

Returns an array of EOSQLEXxpression objects that define the SQL necessary to create a table for
entityGroup an array of Entity objects that have the saxternalName Returns an empty array if
entityGroup isull or empty.

EOSQLEXxpression’s implementation does the following:
1. Creates an EOSQLExpression object.
2. Sets the expressioresitity to the first entity irentityGroup
3. Adds a create clause for each AttributentityGrougs Entities.
4

. Sets the expressiorstatementto CREATE TABLETABLE_NAMELIST_STRING whereTABLE_NAME
is theexternalNameof the Entity objects ientityGroupandLIST_STRINGs the expressionkstString .

5. Adds the expression to an array.
6. Returns the array.

The following is an example of a CREATE TABLE statement produced by the default implementation:

create table EMPLOYEE (
EMP_ID int notnull,
DEPT_ID int null,
LAST_NAME varchar(40) notnull,
PHONE char(12) null,
HIRE_DATE date null,
SALARY number(7,2) null

225

226

If a subclass’s database server’s table creation semantics are different, the subclass should override this
method or one or more of the following methods as appropriate:

+ addCreateClauseForAttribute
¢ columnTypeStringForAttribute
+ allowsNullClauseForConstraint

See also: createTableStatementsForEntityGroupsdropTableStatementsForEntityGroup

createTableStatementsForEntityGroups
public static NSArragreateTableStatementsForEntityGroupgNSArray entityGroup$

Returns an array of EOSQLExpression objects that define the SQL necessary to create the tables specified
in entityGroupsAn entity group is an array of Entity objects that have the sxeenalName and

entityGroupsds an array of entity groups. Returns an empty arragtityGroupss null or empty.
EOSQLEXxpression’s implementation invol@sate TableStatementsForEntityGroupfor each entity

group inentityGroupsand returns an array of all the resulting SQLEXxpressions.

See also: schemacCreationStatementsForEntities

deleteStatementWithQualifier

public static EOSQLEXxpression
deleteStatementWithQualifie(com.apple.yellow.eocontrol. EOQualifigualifier,
java.lang.Objecentity)

Creates and returns an SQL DELETE expression to delete the rows descrijuedifigr. Creates an
instance of EOSQLEXxpression, initializes it wahtity (an EOEntity object), and sends it a
prepareDeleteExpressionForQualifiermessage. Throws an exceptioquflifier is null.

The expression created with this method does not use table aliases because Enterprise Objects Framework
assumes that all INSERT, UPDATE, and DELETE statements are single-table opesatiamssult, all

keys inqualifier should be simple key names; no key paths are allowed. To generate DELETE statements
that do use table aliases, you must ovempigpareDeleteExpressionForQualifier:to send a

setUseAliaserue) message prior to invokingupers version.

Classes: EOSQLEXxpression

dropDatabaseStatementsForConnectionDictionary

public static NSArragropDatabaseStatementsForConnectionDictionary
NSDictionaryconnectionDictionary,
NSDictionaryadminDictionary)

Generates the SQL statements to drop the database (or user, for Oracle).

See also: createDatabaseStatementsForConnectionDictionary

dropPrimaryKeySupportStatementsForEntityGroup
public static NSArragropPrimaryKeySupportStatementsForEntityGroup (NSArray entityGroup

Returns an array of EOSQLEXxpression objects that define the SQL necessary to drop the primary key
generation support fantityGroup an array of Entity objects that have the saxternalName The drop
statement generated by this method should be sufficient to remove the primary key support created by
primaryKeySupportStatementsForEntityGroup 's statements.

EOSQLEXxpression’s implementation creates a statement of the following form:
drop sequence SEQUENCE_NAME

WhereSEQUENCE_NAMES theprimaryKeyRootName for the first entity irentityGroupconcatenated
with “_SEQ” (EMP_ID_SEQ, for example).

If a subclass uses a different primary key generation mechanism or if the subclass’s database server’s drop
semantics are different, the subclass should override this method.

See also: dropPrimaryKeySupportStatementsForEntityGroups

dropPrimaryKeySupportStatementsForEntityGroups

public static NSArraygropPrimaryKeySupportStatementsForEntityGroups(
NSArray entityGroup$

Returns an array of EOSQLEXxpression objects that define the SQL necessary to drop the primary key
generation support for the Entities specifiedmtityGroupsAn entity group is an array of Entity objects
that have the sanexternalName andentityGroupss an array of entity groups. EOSQLEXxpression’s
implementation invokedropPrimaryKeySupportStatementsForEntityGroup for each entity group in
entityGroupsand returns an array of all the resulting SQLEXxpressions.

See also: schemaCreationStatementsForEntities

227

228

dropTableStatementsForEntityGroup
public static NSArrayropTableStatementsForEntityGroup(NSArray entityGroup)

Returns an array of EOSQLEXxpression objects that define the SQL necessary to drop the table identified by
entityGroup an array of Entity objects that have the saxternalName The drop statement generated by

this method should be sufficient to remove the table createctaie TableStatementsForEntityGroups
statements.

EOSQLEXxpression’s implementation creates a statement of the following form:
DROP TABLE TABLE_NAME
WhereTABLE_NAMEs theexternalNameof the first entity irentityGroup
If a subclass’s database server’s drop semantics are different, the subclass should override this method.

See also: dropTableStatementsForEntityGroups

dropTableStatementsForEntityGroups
public static NSArrayropTableStatementsForEntityGroupgNSArray entityGroup3}

Returns an array of EOSQLEXxpression objects that define the SQL necessary to drop the tables for
entityGroupsAn entity group is an array of Entity objects that have the sameenalName and
entityGroupsds an array of entity groups. EOSQLEXxpression’s implementation invokes
dropTableStatementsForEntityGroupsfor each entity group iantityGroupsand returns an array of all
the resulting SQLEXxpressions.

See also: schemaCreationStatementsForEntities

expressionForString
public static EOSQLExpressi@xpressionForStringjava.lang.Stringstring)

Creates and returns an SQL expressiorstiimg. string should be a valid expression in the target query
language. This method does not perform substitutions or formatting of any kind.

See also: setStatement

Classes: EOSQLEXxpression

foreignKeyConstraintStatementsForRelationship

public static NSArray
foreignKeyConstraintStatementsForRelationshigeORelationshimRelationship

Returns an array of EOSQLExpression objects that define the SQL necessary to create foreign key
constraints foaRelationshipEOSQLEXxpression’s implementation generates statements such as the
following:

ALTER TABLE EMPLOYEE ADD CONSTRAINT TO_DEPARTMENT FOREIGN KEY (DEPT_ID)
REFERENCES DEPARTMENT(DEPT_ID)

It returns an empty array if either of the following are true:

» aRelationshipspans models (d&Relationshifs destinationEntity is in a different model than
aRelationshifs sourceentity)

» aRelationshigs a to-many relationship, or if the inverse relationshigRélationshigs not a to-many.
In other words, foreign key constraint statements are only created for to-one relationships whose inverse
is a to-many.

If neither of the above are true, this method creates a new EOSQLEXxpression, assigns its entity to
aRelationshifs entity, invokegprepareConstraintStatementForRelationshipg and returns an array
containing the expression.

If a subclass’s database server’s foreign key constraint semantics are different, the subclass should override
this method or override the methpgepareConstraintStatementForRelationship

See also: schemaCreationStatementsForEntities

formatSQLString
public static java.lang.StrinfgrmatSQLString (java.lang.StringqglString java.lang.Strindorma

Appliesformat(an EOAttribute object’s “read” or “write” format) 8glString(a value for the attribute). If
formatis null, this method returnsglStringunchanged.

See also: — readFormat (EOAttribute),— writeFormat (EOAttribute)

formatStringValue
public static java.lang.StringrmatStringValue (java.lang.Stringtring)

Formatsstring for use as a string constant in a SQL statement. EOSQLEXxpression’s implementation
encloses the string in single quotes, escaping any single quotes already pissagt fhrows an
exception ifstringis null.

229

formatValue:forAttribute
public static java.lang.StrinfgrmatValueForAttribute (java.lang.Objectalue EOAttributeattribute)

Overridden by subclasses to return a string representati@uefsuitable for use in an SQL statement.
EOSQLEXxpression’s implementation retukaueunchanged. A subclass should override this method to
formatvaluedepending omttributes externalType. For example, a subclass might format a date using a
special database-specific syntax or standard form or truncate numatribtwes precision and scale.

insertStatementForRow
public static EOSQLEXxpressionsertStatementForRowNSDictionaryrow, EOEntityentity)

Creates and returns an SQL INSERT expression to imserCreates an instance of EOSQLEXxpression,
initializes it withentity, and sends jireparelnsertExpressionWithRow. Throws an exception éntityis
null.

The expression created with this method does not use table aliases because Enterprise Objects Framework
assumes that all INSERT, UPDATE, and DELETE statements are single-table op€efatiperserate

INSERT statements that do use table aliases, you must ovenejukrelnsertExpressionWithRow: to

send asetUseAliase@rue) message prior to invokingupers version.

primaryKeyConstraintStatementsForEntityGroup
public static NSArrayprimaryKeyConstraintStatementsForEntityGroup (NSArray entityGroup

Returns an array of EOSQLEXxpression objects that define the SQL necessary to create the primary key
constraints foentityGroup an array of Entity objects that have the saxternalName Returns an empty
array if any of the primary key attributesantityGroupdon’t have a&olumnName

EOSQLEXxpression’s implementation creates a statement of the following form:
ALTER TABLE TABLE_NAME ADD PRIMARY KEY (PRIMARY_KEY_COLUMN_NAMES)

WhereTABLE_NAMEs theexternalNamefor the first entity irentityGroupand
PRIMARY_KEY_COLUMN_NAMHESa comma-separated list of tidumnNames of the first entity’s
primaryKeyAttributes .

If the subclass’s database server’s primary key constraint semantics are different, the subclass should
override this method.

See also: primaryKeyConstraintStatementsForEntityGroups

230

Classes: EOSQLEXxpression

primaryKeyConstraintStatementsForEntityGroups
public static NSArrayprimaryKeyConstraintStatementsForEntityGroups (NSArray entityGroup$

Returns an array of EOSQLEXxpression objects that define the SQL necessary to create the primary key
constraints for the Entities specifiedeintityGroupsAn entity group is an array of Entity objects that have
the samexternalName andentityGroupss an array of entity groups. EOSQLEXxpression’s
implementation invokeprimaryKeyConstraintStatementsForEntityGroup for each entity group in
entityGroupsand returns an array of all the resulting SQLEXxpressions.

primaryKeySupportStatementsForEntityGroup
public static NSArrayprimaryKeySupportStatementsForEntityGroup (NSArray entityGroup)

Returns an array of EOSQLExpression objects that define the SQL necessary to create the primary key
generation support fantityGroup an array of Entity objects that have the saxternalName
EOSQLEXxpression’s implementation creates a statement of the following form:

create sequence SEQUENCE_NAME

WhereSEQUENCE_NAMIEs theprimaryKeyRootName for the first entity irentityGroupconcatenated
with *_SEQ” (EMP_ID_SEQ, for example).

If a subclass uses a different primary key generation mechanism or if the subclass’s database server’s drop
semantics are different, the subclass should override this method.

See also: primaryKeySupportStatementsForEntityGroups,
dropPrimaryKeySupportStatementsForEntityGroup , primaryKeyForNewRowWithEntity
(EOAdaptorChannel)

primaryKeySupportStatementsForEntityGroups
public static NSArrayprimaryKeySupportStatementsForEntityGroups(NSArray entityGroup$

Returns an array of EOSQLEXxpression objects that define the SQL necessary to create the primary key
generation support for the Entities specifiedritityGroupsAn entity group is an array of Entity objects

that have the sanexternalName andentityGroupss an array of entity groups. EOSQLEXxpression’s
implementation invokeprimaryKeySupportStatementsForEntityGroup for each entity group in
entityGroupsand returns an array of all the resulting SQLEXxpressions.

231

232

schemaCreationScriptForEntities

public static java.lang.StrirgchemaCreationScriptForEntitiegNSArray entities
NSDictionaryoptiong

Returns a script of SQL statements suitable to create the schema for the Entity objadissrlrhe
optionsdictionary specifies the aspects of the schema for which to create SQL statements as described in
the method description fschemaCreationStatementsForEntitiesEOSQLEXxpression’s implementation
invokesschemaCreationStatementsForEntities:optionswith entitiesandoptionsand then uses
appendExpressionto generate the script from the SQLEXpressions generated by
schemacCreationStatementsForEntities:options:

schemaCreationStatementsForEntities
public static NSArraschemaCreationStatementsForEntitie@NSArray entities
NSDictionaryoptiong

Returns an array of SQLEXpressions suitable to create the schema for the Entity objgtiesnThe
optionsdictionary specifies the aspects of the schema for which to create SQLEXxpressions:

Dictionary Key @ggg.%ﬁ%?r?%lg)es Default
createTables “YES” or “NO” YES
dropTables “YES” or “NO” YES
createPrimaryKeySupport “YES” or “NO” YES
dropPrimaryKeySupport “YES” or “NO” YES
primaryKeyConstraints “YES” or “NO” YES
foreignKeyConstraints “YES” or “NO” NO
createDatabase “YES” or “NO” NO
dropDatabase “YES” or “NO” NO

If you specify “createDatabase” or “dropDatabase,” the SQL for those statements must be executed by an
administrative user.

EOSQLEXxpression’s implementation uses the following methods:

« createTableStatementsForEntityGroups
» dropTableStatementsForEntityGroups

Classes: EOSQLEXxpression

» primaryKeySupportStatementsForEntityGroups

» dropPrimaryKeySupportStatementsForEntityGroups
« primaryKeyConstraintStatementsForEntityGroups
 foreignKeyConstraintStatementsForRelationship

to generate SQLExpressions for the support identifiegiions

See also: schemacCreationScriptForEntities

selectStatementForAttributes

public static EOSQLEXxpressiaelectStatementForAttribute§NSArray attributes
booleariflag,
com.apple.yellow.eocontrol. EOFetchSpecificafieichSpecificatian
EOEntity entity)

Creates and returns an SQL SELECT expression. Creates an instance of EOSQLEXxpression, initializes it
with entity, and sends pirepareSelectExpressionWithAttributes The expression created with this

method uses table aliases. Throws an exceptttributesis null or emptyfetchSpecificatiors null, or

entityis null.

The expression created with this method uses table all@sgsnerate SELECT statements that don't use
them, you must overridgrepareSelectExpressionWithAttributes:lock:fetchSpecification:to send a
setUseAliase@alse) message prior to invokirgupers version.

setUseBindVariables
public static voicsetUseBindVariablegbooleanflag)

Sets according tilagwhether all instances of EOSQLEXxpression subclasses use bind variables. By default,
instances don't use bind variables; if the value for the global user default named
EOAdaptorUseBindVariables taue, though, instances do use them. For more information on bind
variables, see the discussion in the class description.

See also: useBindVariables

setUseQuotedExternalNames
public static voidsetUseQuotedExternalNamg®oolearflag)

Sets whether all instances of EOSQLEXxpression subclasses quote external names when they are referenced
in SQL statements. By settifiag to true, you can access database tables with names such as “%return”,
“1st year”, and “TABLE" that you couldn’t otherwise access. By default, instances don't quote external

233

names; if the value for the global user default named EOAdaptorQuotesExternalNamesiough,
instances do use quotes.

See also: useQuotedExternalNamessqlStringForSchemaObjectName
externalNameQuoteCharacter

sqlPatternFromShellPattern
public static java.lang.StringplPatternFromShellPattern(java.lang.Stringpattern)

Translates a “like” qualifier to an SQL “like” expression. Invoked fegistringForKeyValueQualifier
when the qualifier argument is an EOKeyValueQualifier object whose selector is QualifierOperatorLike.
EOSQLExpression’s implementation performs the following substitutions

Character in pattern ~ Substitution string

* %

% [%0] (unless the percent character appears in square brackets)

] (unless the underscore character appears in square brackets)

See also: sqlPatternFromShellPattern:withEscapeCharacter

sqlPatternFromShellPattern:withEscapeCharacter

public static java.lang.String
sqlPatternFromShellPatternWithEscapeCharacte(java.lang.Stringpattern
charescapeCharactgr

Like sqlPatternFromShellPattern except the argumeascapeCharactaallows you to specify a character
for escaping the wild card characters “%” and “_".

updateStatementForRow

public static EOSQLEXxpressiapdateStatementForRowNSDictionaryrow,
com.apple.yellow.eocontrol. EOQualifigualifier,
EOEntity entity)

Creates and returns an SQL UPDATE expression to update the row identidjedlifigr with the values
in row. row should only contain entries for values that have actually changed. Creates an instance of

234

Classes: EOSQLEXxpression

EOSQLEXxpression, initializes it wigntity and sends firepareUpdateExpressionWithRow Throws an
exception ifrow is null or empty,qualifieris null, or entityis null.

The expression created with this method does not use table aliases because Enterprise Objects Framework
assumes that all INSERT, UPDATE, and DELETE statements are single-table opetatimmssult, all

keys inqualifier should be simple key names; no key paths are allowed. To generate UPDATE statements
that do use table aliases, you must ovempidpareUpdateExpressionWithRow:qualifier: to send a
setUseAliaserue) message prior to invokirgupers version.

See also: setUseAliases

useBindVariables
public static booleanseBindVariableg)

Returndgrue if instances use bind variabléalse otherwise. For more information on bind variables, see
the discussion in the class description.

See also: setUseBindVariables

useQuotedExternalNames
public static booleanseQuotedExternalName§

Returngrue if instances use quoted external nanfesg otherwise.

See also: setUseQuotedExternalNamessqlStringForSchemaObjectName
externalNameQuoteCharacter

Instance Methods
addBindVariableDictionary
public voidaddBindVariableDictionary (NSMutableDictionarnbinding

Addsbindingto the receiver’s array of bind variable dictionartdsdingis generally created using the
methodbindVariableDictionaryForAttribute and is added to the receiver’s bind variable dictionaries in
sqlStringForValue when the receiver uses a bind variable for the specified attribute. See the method
description folbindVariableDictionaryForAttribute:value: for a description of the contents of a bind
variable dictionary, and for more information on bind variables, see the discussion in the class description.

See also: bindVariableDictionaries

235

addCreateClauseForAttribute
public voidaddCreateClauseForAttribute(EOAttributeattribute)

Adds the SQL string for creatiratributeto a comma-separated list of attribute creation clauses. The list
is constructed for use in a CREATE TABLE statement produced by
createTableStatementsForEntityGroup Use the metholitString to access creation clauses.

EOSQLEXxpression’s implementation creates clauses in the following form:
COLUMN_NAME COLUMN_TYPE ALLOWS_NULL_CLAUSE
Where

* COLUMN_TYPEs the string returned froeolumnTypeStringForAttribute for anAttribute.
« ALLOWS NULL_CLAUSIs the string returned fromillowsNullClauseForConstraint with true if
anAttributeallowsNull or with falseif anAttributedoesn’t.

addInsertListAttribute
public voidaddinsertListAttribute (EOAttributeattribute java.lang.Stringalue

Adds the SQL string faattributeto a comma-separated list of attributes ealdeto a comma-separated
list of values. Both lists are constructed for use in an INSERT statement. Use the risttBithgy and
valueList to access the attributes and value lists.

InvokesappenditemToListString to add an SQL string fattributeto the receiver'distString, and again
to add a formatted SQL string fealueto the receiver'salueList.

See also: sqlIStringForAttribute , sqlStringForValue, formatValue:forAttribute

addJoinClauseWithLeftName:rightName:joinSemantic:
public voidaddJoinClausdjava.lang.StrindeftName java.lang.StringightName int semanti¢

Creates a new join clause by invokemgsembleJoinClaus@nd adds it to the receiver’s join clause string.
Separates join conditions already in the join clause string with the word “and”. Invoked from
joinExpression.

See also: joinClauseString

236

Classes: EOSQLEXxpression

addOrderByAttributeOrdering

public void
addOrderByAttributeOrdering (com.apple.yellow.eocontrol. EOSortOrdersmtOrdering

Adds an attribute-direction pair (“LAST_NAME asc”, for example) to the receiver's ORDER BY string. If
sortOrderings selector is CompareCaselnsensitiveAscending or CompareCaselnsensitiveDescending, the
string generated has the format “upper(attribute) direction”. Use the nmttherdByString to access the
ORDER BY stringaddOrderByAttributeOrdering: invokesappendltemToListString to add the
attribute-direction pair.

See also: sqlStringForAttributeNamed

addSelectListAttribute
public voidaddSelectListAttribute (EOAttributeattribute)

Adds an SQL string faattributeto a comma-separated list of attribute names for use in a SELECT
statement. The SQL string fattributeis formatted withattributes “read” format. UsdistString to access
the list.addSelectListAttribute: invokesappendltemToListString to add the attribute name.

See also: sqlStringForAttribute , formatSQLString , — readFormat (EOAttribute)

addUpdateListAttribute
public voidaddUpdateListAttribute (EOAttributeattribute, java.lang.Stringyalue

Adds a attribute-value assignment (“LAST_NAME = ‘Thomas™, for example) to a comma-separated list
for use in an UPDATE statement. Formeatuewith attributés “write” format. UselistString to access

the list.addUpdateListAttribute:value: invokesappendltemToListString to add the attribute-value
assignment.

See also: formatSQLString

aliasesByRelationshipPath
public NSMutableDictionaraliasesByRelationshipPatk)

Returns a dictionary of table aliases. The keys of the dictionary are relationship paths—“department” and
“department.location”, for example. The values are the table aliases for the corresponding table—"t1” and
“t2”, for example. ThaliasesByRelationshipPatidictionary always has at least one entry: an entry for the
EOSQLEXxpression’s entity. The key of this entry is the empty string (*”) and the value is “t0”. The
dictionary returned from this method is built up over time with successive calls to
sqlStringForAttributePath .

See also: tableListWithRootEntity

237

238

allowsNullClauseForConstraint
public java.lang.StringllowsNullClauseForConstraint(booleanflag)

Returns according titag an adaptor specific string for use in a CREATE TABLE statement. The returned
string indicates whether a column allows null values. EOSQLEXxpression’s implementation returns the
empty string iflagistrue, “NOT NULL” otherwise. A subclass should override this if its database server’s
semantics are different. For example, the SybaseSLQEXxpression returns ‘ftadiidrue, the empty

string otherwise.

See also: addCreateClauseForAttribute

appendltemToListString
public voidappendltemToListString (java.lang.StringtemString java.lang.StringjstString)

AddsitemStringto a comma-separated listliftStringalready has entries, this method appends a comma
followed byitemString Invoked fromaddSelectListAttribute, addinsertListAttribute ,
addUpdateListAttribute , andaddOrderByAttributeOrdering

assembleDeleteStatementWithQualifier

public java.lang.String
assembleDeleteStatementWithQualifi§gcom.apple.yellow.eocontrol. EOQualifigualifier,
java.lang.StrindableList java.lang.StringvhereClausg

Invoked fromprepareDeleteExpressionForQualifierto return an SQL DELETE statement of the form:

DELETE FROM tableList
SQL_WHERE whereClause

qualifieris the argument tprepareDeleteExpressionForQualifier:from whichwhereClausavas derived.
It is provided for subclasses that need to generate the WHERE clause in a particular way.

assemblelnsertStatementWithRow

public java.lang.StringssemblelnsertStatementWithRoWNSDictionaryrow,
java.lang.StrindableList java.lang.StringolumnList java.lang.StringalueLis)

Invoked frompreparelnsertExpressionWithRowto return an SQL INSERT statement of the form:

INSERT INTO tableList (columnList)
VALUES valuelList

or, if columnListis null;

Classes: EOSQLEXxpression

INSERT INTO tableList
VALUES valueList

row is the argument tpreparelnsertExpressionWithRow: from whichcolumnListandvalueListwere
derived. It is provided for subclasses that need to generate the list of columns and values in a particular way.

assembleJoinClause

public java.lang.String@ssembleJoinClausgava.lang.StrindeftName
java.lang.StringightName
int semanti¢

Returns a join clause of the form:
leftName operator rightName

Where operator is “=" for an inner join, “*=" for a left-outer join, and “=*" for a right-outer join. Invoked
from addJoinClauseWithLeftName:rightName:joinSemantic:.

assembleSelectStatementWithAttributes

public java.lang.StringssembleSelectStatementWithAttributedNSArray attributes
booleanock,
com.apple.yellow.eocontrol. EOQualifigualifier,
NSArrayfetchOrder
java.lang.StringselectString
java.lang.StringolumnList
java.lang.StringableList
java.lang.StringvhereClausg
java.lang.StringoinClause
java.lang.StringrderByClause
java.lang.StringockClausé

Invoked fromprepareSelectExpressionWithAttributesto return an SQL SELECT statement of the form:

SELECT columnList

FROM tableList lockClause

WHERE whereClause AND joinClause
ORDER BY orderByClause

If lockClausds null, it is omitted from the statement. SimilarlypilerByClauses null, the “ORDER BY
orderByClausgis omitted. If eithemwhereClauser joinClauseis null, the “AND” andnull-valued
argument are omitted. If both amell, the entire WHERE clause is omitted.

239

attributes lock, qualifier, andfetchOrderare the arguments epareSelectExpressionWithAttributes:
lock:fetchSpecification: from which the otheassembleSelect.arguments were derived. They are
provided for subclasses that need to generate the clauses of the SELECT statement in a particular way.

assembleUpdateStatementWithRow

public java.lang.StringssembleUpdate StatementWithRo@NSDictionaryrow,
com.apple.yellow.eocontrol. EOQualifigualifier, java.lang.StringableList
java.lang.StringipdateList java.lang.StringvhereClausg
Invoked fromprepareUpdateExpressionWithRowto return an SQL UPDATE statement of the form:

UPDATE tableList
SET updateList
WHERE whereClause

row andqualifier are the arguments pwepareUpdateExpressionWithRow:qualifier: from which
updateListandwhereClausavere derived. They are provided for subclasses that need to generate the
clauses of the UPDATE statement in a particular way.

bindVariableDictionaries
public NSArraybindVariableDictionaries()

Returns the receiver’s bind variable dictionaries. For more information on bind variables, see the discussion
in the class description.

See also: addBindVariableDictionary

bindVariableDictionaryForAttribute

public abstract NSMutableDictionabndVariableDictionaryForAttribute (EOAttributeattribute,
java.lang.Objectalug

Implemented by subclasses to create and return the bind variable dictioratsitfore andvalue The
dictionary returned from this method must contain at least the following key-value pairs:

Key Value

BindVariableNameKey the name of the bind variable for attribute
BindVariablePlaceHolderKey the placeholder string used in the SQL statement
BindVariableAttributeKey attribute

240

Classes: EOSQLEXxpression

Key Value

BindVariableValueKey value

An adaptor subclass may define additional entries as required by its RDBMS.

Invoked fromsqlStringForValue when the messageustUseBindVariableForAttribute (attribute)
returnstrue or when the receiver’s class uses bind variables and the message
shouldUseBindVariableForAttribute (attribute) returngrue. For more information on bind variables, see
the discussion in the class description.

A subclass that uses bind variables should implement this method without invoking EOSQLEXxpression’s
implementation. The subclass implementation must return a dictionary with entries for the keys listed above
and may add additional keys.

See also: bindVariableDictionaryForAttribute , useBindVariables

columnTypeStringForAttribute
public java.lang.StringolumnTypeStringForAttribute (EOAttributeanAttribute
Returns an adaptor specific type stringgoAttributethat’s suitable for use in a CREATE TABLE

statement. EOSQLEXxpression’s implementation creates a string baseAttmbutes externalType,
precision, andwidth as follows:

If Condition Generated Type String
precision is non-zero externalType(precision, scale)
precision is zero and width is non-zero externalType(scale)

precision and width are zero externalType

A subclass should override the default implementation if its database server requires column types in a
different format.

See also: addCreateClauseForAttribute

241

entity
public EOEntityentity()

Returns the receiver’s entity.

See also: “Constructors”

externalNameQuoteCharacter
public java.lang.StringxternalNameQuoteCharacte()

Returns the string \
string (*”) otherwise.

(an escaped quote character) if the receiver uses quoted external names, or the empty

See also: useQuotedExternalNamessqlStringForSchemaObjectName

joinClauseString
public java.lang.StringpinClauseString()

Returns the part of the receiver's WHERE clause that specifies join conditions. Together, the
joinClauseString and thewhereClauseStringmake up a statement’s WHERE clause. If the receiver’s
statement doesn’t contain join conditions, this method returns an empty string.

An EOSQLExpression’minClauseString is generally set by invokinginExpression.

See also: addJoinClauseWithLeftName:rightName:joinSemantic:

joinExpression
public voidjoinExpression()

Builds up thgoinClauseString for use in a SELECT statement. For each relationship path in the
aliasesByRelationshipPathdictionary, this method invokesldJoinClauseWithLeftName:rightName:
joinSemantic: for each of the relationship’s EOJoin objects.

If the aliasesByRelationshipPattdictionary only has one entry (the entry for the EOSQLEXxpression’s
entity), thejoinClauseString is empty.

You must invoke this methaafter invoking addSelectListAttribute for each attribute to be selected and
after sendingqlStringForSQLEXxpression(this)to the qualifier for the SELECT statement. (These
methods build up thaliasesByRelationshipPatidictionary by invokingsqlStringForAttributePath .)

See also: WhereClauseString

242

Classes: EOSQLEXxpression

listString
public java.lang.StringjstString ()

Returns a comma-separated list of attributes or “attribute = value” assignliseBiisng is built up with
successive invocations afldinsertListAttribute , addSelectListAttribute, oraddUpdateListAttribute

for INSERT statements, SELECT statements, and UPDATE statements, respectively. The contents of
listString vary according to the type of statement the receiver is building:

Type of Statement Sample listString Contents

INSERT FIRST_NAME, LAST_NAME, EMPLOYEE_ID

UPDATE FIRST_NAME =*“Timothy”, LAST_NAME = “Richardson”
SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.DEPARTMENT_NAME
lockClause

public java.lang.StringpckClausg)

Overridden by subclasses to return the SQL string used in a SELECT statement to lock selected rows. A
concrete subclass of EOSQLEXxpression must override this method to return the string used by its adaptor’s
RDBMS.

mustUseBindVariableForAttribute
public booleamustUseBindVariableForAttribute (EOAttributeattribute)

Returngrue if the receiver must use bind variablesddribute, false otherwise. EOSQLEXxpression’s
implementation returnalse. An SQL expression subclass that uses bind variables should override this
method to returtrue if the underlying RDBMS requires that bind variables be used for attributes with
attributés external type.

See also: shouldUseBindVariableForAttribute , bindVariableDictionaryForAttribute

orderByString
public java.lang.StringrderByString ()

Returns the comma-separated list of “attribute direction” pairs (“LAST_NAME asc, FIRST_NAME asc”,
for example) for use in a SELECT statement.

See also: addOrderByAttributeOrdering

243

244

prepareConstraintStatementForRelationship

public voidprepareConstraintStatementForRelationshig EORelationshigelationship
NSArray sourceColumnsNSArraydestinationColumns

Sets the receiverstatementto an adaptor specific constraint felationship EOSQLEXxpression’s
implementation generates statements of the form:

ALTER TABLE TABLE_NAME ADD CONSTRAINT CONSTRAINT_NAME
FOREIGN KEY (SOURCE_KEY_LIST)
REFERENCES DESTINATION_TABLE_NAME (DESTINATION_KEY_LIST)

Where
 TABLE_NAMEs the external name of the receiver’s entity.

* CONSTRAINT_NAMIS the external name of the receiver’s entélationshigs name, and the string
“FK”, concatenated with underbars between them (EMPLOYEE_MANAGER_FK, for example),

e SOURCE_KEY_LISiE a comma-separated list of the source columssunceColumns
« DESTINATION_TABLE_NAME the external name oflationshigs destination entity.
« DESTINATION_KEY_LISiE a comma-separated list of the destination columdestinationColumns

See also: foreignKeyConstraintStatementsForRelationship

prepareDeleteExpressionForQualifier

public void
prepareDeleteExpressionForQualifie(com.apple.yellow.eocontrol. EOQualifigualifier)

Generates a DELETE statement by performing the following steps:

1. Sends asglStringForSQLExpression(this)message tqualifier to generate the receiver’'s
whereClauseString

2. InvokestableListWithRootEntity to get the table name for the FROM clause.
3. InvokesassembleDeleteStatementWithQualifier

See also: deleteStatementWithQualifier

preparelnsertExpressionWithRow
public voidpreparelnsertExpressionWithRow(NSDictionaryrow)

Generates an INSERT statement by performing the following steps:

Classes: EOSQLEXxpression

1. InvokesaddInsertListAttribute for each entry imow to prepare the comma-separated list of attributes and
the corresponding list of values.

2. InvokestableListWithRootEntity to get the table name.
3. InvokesassemblelnsertStatementWithRow

See also: insertStatementForRow

prepareSelectExpressionWithAttributes

public voidprepareSelectExpressionWithAttributegNSArray attributes boolearflag,
com.apple.yellow.eocontrol. EOFetchSpecificafieichSpecification

Generates a SELECT statement by performing the following steps:
1. InvokesaddSelectListAttribute for each entry imttributesto prepare the comma-separated list of attributes.

2. Sends arqlStringForSQLExpressionthis)message tietchSpecificatioa qualifier to generate the receiver’'s
whereClauseString

3. InvokesaddOrderByAttributeOrdering for each EOAttributeOrdering objectfistchSpecificatiorirst
conjoins the qualifier ifetchSpecificatiowith the restricting qualifier, if any, of the receiver’s entity.

InvokesoinExpression to generate the receivej@nClauseString.
InvokestableListWithRootEntity to get the comma-separated list of tables for the FROM clause.

If flag is true, invokeslockClauseto get the SQL string to lock selected rows.

N oo g &

InvokesassembleSelectStatementWithAttributes

See also: selectStatementForAttributes

prepareUpdateExpressionWithRow

public voidprepareUpdateExpressionWithRowNSDictionaryrow,
com.apple.yellow.eocontrol. EOQualifigualifier)

Generates an UPDATE statement by performing the following steps:

1. InvokesaddUpdateListAttribute for each entry imow to prepare the comma-separated list of “attribute =
value” assignments.

2. Sends asqIStringForSQLEXxpressionthisymessage tqualifierto generate the receiver’s
whereClauseString

3. InvokestableListWithRootEntity to get the table name for the FROM clause.

245

246

4. InvokesassembleUpdateStatementWithRow

See also: updateStatementForRow

setStatement
public voidsetStatemengjava.lang.Stringstring)

Sets the receiver's SQL statemerstiang, which should be a valid expression in the target query language.
Use this method—instead opeepare... method—to directly assign an SQL string to an
EOSQLEXxpression object. This method does not perform substitutions or formatting of any kind.

See also: expressionForString statement

setUseAliases
public voidsetUseAliasefooleanflag)

Tells the receiver whether or not to use table aliases.

See also: useAliases

shouldUseBindVariableForAttribute
public boolearshouldUseBindVariableForAttribute (EOAttributeattribute)

Returnsgtrue if the receiver can provide a bind variable dictionaryattnibute, false otherwise. Bind
variables aren’t used for values associated with this attribute when the static osstBowiVariables
returnsfalse EOSQLEXxpression’s implementation retufalse An SQL expression subclass should
override this method to retutrue if the receiver should use bind variables for attributes atttibutes
external type. It should also returne for any attribute for which the receiver must use bind variables.

See also: mustUseBindVariableForAttribute

sqlStringForAttribute
public java.lang.StringqlStringForAttribute (EOAttributeattribute)

Returns the SQL string fattribute complete with a table alias if the receiver uses table aliases. Invoked
from sqlStringForAttributeNamed when the attribute name is not a path.

See also: sqlStringForAttributePath

Classes: EOSQLEXxpression

sqlStringForAttributeNamed
public java.lang.StringqlStringForAttributeNamed (java.lang.Stringhame

Returns the SQL string for the attribute namathe complete with a table alias if the receiver uses table
aliases. Generates the return value us@i§tringForAttributePath if nameis an attribute path
(“department.name”, for example); otherwise, usgStringForAttribute .

sqlStringForAttributePath
public java.lang.StringqlStringForAttributePath (NSArray path)

Returns the SQL string f@ath complete with a table alias if the receiver uses table aliases. Invoked from
sqlStringForAttributeNamed when the specified attribute name is a path
(“department.location.officeNumber”, for exampleathis an array of any number of EORelationship
objects followed by an EOAttribute object. The EORelationship and EOAttribute objects each correspond
to a component in path. For example, if the attribute name argunsgiStangForAttributeNamed: is
“department.location.officeNumberdathis an array containing the following objects in the order listed:

« The EORelationship object in the receiver’s entity named “department”. (Assume the relationship’s
destination entity is named “Department”.)

» The EOREelationship object in the Department entity named “location”. (Assume the relationship’s
destination entity is named “Location”.)

« The EOAttribute object in the Location entity named “officeNumber”.

Assuming that the receiver uses aliases and the alias for the Location table is t2, the SQL string for this
sample attribute path is “t2.officeNumber”.

If the receiver uses table aliases, this method has the side effect of adding a “relationship path”-“alias name”
entry to thealiasesByRelationshipdictionary.

See also: sqlStringForAttribute

sqlStringForConjoinedQualifiers
public java.lang.StringglStringForConjoinedQualifiers(NSArray qualifiery

Creates and returns an SQL string that is the result of interposing the word “AND” between the SQL strings
for the qualifiers imualifiers Generates an SQL string for each qualifier by sending
sqlStringForSQLExpression: messages to the qualifiers witlis as the argument. If the SQL string for a
qualifier contains only white space, it isn't included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ANDed together.

247

248

sqlStringForDisjoinedQualifiers
public java.lang.StringqlStringForDisjoinedQualifiers(NSArray qualifiery

Creates and returns an SQL string that is the result of interposing the word “OR” between the SQL strings
for the qualifiers imualifiers Generates an SQL string for each qualifier by sending
sqlIStringForSQLExpression: messages to the qualifiers witlis as the argument. If the SQL string for a
qualifier contains only white space, it isn’t included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ORed together.

sqlStringForKeyComparisonQualifier

public java.lang.StringqlStringForKeyComparisonQualifier (
com.apple.yellow.eocontrol. EOKeyComparisonQualidjealifier)

Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for
the right and left keys igualifier. Determines the SQL operator by invoksgjStringForSelectorwith

qualifiers selector andiull for the value. Generates SQL stringsdaalifiers keys by invoking
sqlStringForAttributeNamed to get SQL strings. This method also formats the strings for the right and

left keys usingormatSQLString with the corresponding attributes’ “read” formats.

sqlStringForKeyValueQualifier

public java.lang.StringqlStringForKeyValueQualifier
com.apple.yellow.eocontrol. EOKeyValueQualifigralifier)

Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for
qualifiers key and value. Determines the SQL operator by invokg§tringForSelectorwith qualifiers

selector and value. Generates an SQL stringdalifiers key by invokingsglStringForAttributeNamed

to get an SQL string arfdrmatSQLString with the corresponding attribute’s “read” format. Similarly,
generates an SQL string for qualifier's value by involdgistringForValue to get an SQL string and
formatValue:forAttribute to format it. (First invokesqlPatternFromShellPattern for the value if

qualifiers selector is QualifierOperatorLike.)

sqlStringForNegatedQualifier

public java.lang.String
sqlStringForNegatedQualifie(com.apple.yellow.eocontrol. EOQualifigualifier)

Creates and returns an SQL string that is the result of surrounding the SQL stjraifigrin parentheses
and appending it to the word “not”. For example, if the stringjémlifieris “FIRST_NAME = ‘John”",
sqglStringForNegatedQualifier: returns the string “not (FIRST_NAME = ‘John’)".

Classes: EOSQLEXxpression

Generates an SQL string fqualifier by sending asqlStringForSQLEXpression:: message tqualifier
with this as the argument. If the SQL string €pralifier contains only white space, this method retuulk

sqlStringForNumber
public java.lang.StringglStringForNumber (java.lang.NumbeaNumbey

Returns the SQL string f@aNumber

sqlStringForQualifier
public java.lang.StringqlStringForQualifier (com.apple.yellow.eocontrol. EOQualifi@Qualifier)

Returns a SQL statement @Qualifier suitable for inclusion in a WHERE clause. Invoked from an
EOSQLExpression while it's preparing a SELECT, UPDATE, or DELETE statement.

See also: whereClauseString

sqlStringForSchemaObjectName
public java.lang.StringqlStringForSchemaObjectNamégava.lang.Stringhamé

Returnsnameenclosed in the external name quote character if the receiver uses quoted external names,
otherwise simply returnsameunaltered.

See also: useQuotedExternalNamegsexternalNameQuoteCharacter

sqlStringForSelector
public java.lang.StringqlStringForSelectoNSSelectoselectoy java.lang.Objectalué

Returns an SQL operator feelectorandvalue The following table summarizes EOSQLEXxpression’s
default mapping:

Selector SQL Operator

QualifierOperatorisEqual “is” if value is an EONull, “=" otherwise
QualifierOperatorNotEqual “is not” if value is an EONull, “<> otherwise
QualifierOperatorLessThan <

QualifierOperatorGreaterThan “>"

249

250

Selector SQL Operator

QualifierOperatorLessThanOrEqualTo “g="
QualifierOperatorGreaterThanOrEqualTo “>="
QualifierOperatorLike “like”

Throws an exception if selector is an unknown operator.

See also: sqIStringForKeyComparisonQualifier, sglStringForKeyValueQualifier

sqlStringForString
public java.lang.StringqlStringForString (java.lang.Strin@String

Returns the SQL string f@String

sqlStringForValue
public java.lang.StringglStringForValue(java.lang.Objectalue java.lang.Stringname

Returns a string foralueappropriate for use in an SQL statement. If the receiver uses a bind variable for
the attribute namedame thensglStringForValue:attributeNamed: gets the bind variable dictionary for

the attribute, adds it to the receiver’s array of bind variables dictionaries, and returns the value for the
binding’s EOBindVariablePlaceHolderKey. Otherwise, this method invickegatValue:forAttribute

and returns the formatted string f@lue

See also: mustUseBindVariableForAttribute , shouldUseBindVariableForAttribute , useBindVariables
bindVariableDictionaries, addBindVariableDictionary

statement
public java.lang.Stringtatemen()

Returns the complete SQL statement for the receiver. An SQL statement can be assigned to an
EOSQLEXxpression object directly using the static methgutessionForStringor using the instance
methodsetStatement Generally, however, an EOSQLExpression’s statement is built up using one of the
following methods:

» prepareSelectExpressionWithAttributes
» preparelnsertExpressionWithRow

e prepareUpdateExpressionWithRow

» prepareDeleteExpressionForQualifier

Classes: EOSQLEXxpression

tableListWithRootEntity
public java.lang.StringableListWithRootEntity (EOEntity entity)

Returns the comma-separated list of tables for use in a SELECT, UPDATE, or DELETE statement’s FROM
clause. If the receiver doesn't use table aliases, the table list consists only of the table eatitg—for
“EMPLOYEE", for example. If the receiver does use table aliases (only in SELECT statements by default),
the table list is a comma separated list of table names and their aliases, for example:

EMPLOYEE t0, DEPARTMENT t1

tableListWithRootEntity: creates a string containing the table namembity and a corresponding table
alias (“EMPLOYEE t0”, for example). For each entnaliasesByRelationshipPaththis method appends
a new table name and table alias.

See also: useAliases

useAliases
public boolearuseAliases()

Returngrue if the receiver generates statements with table alitedss ptherwise. For example, the
following SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME
FROM EMPLOYEE t0, DEPARTMENT t1
WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table has the alias t0, and the DEPARTMENT table has the alias t1.

By default, EOSQLEXxpression uses table aliases only in SELECT statements. Enterprise Objects
Framework assumes that INSERT, UPDATE, and DELETE statements are single-table operations. For
more information, see the discussion in the class description.

See also: setUseAliasesaliasesByRelationshipPath

valuelList
public java.lang.StringalueList()

Returns the comma-separated list of values used in an INSERT statement. For example, the value list for
the following INSERT statement:

INSERT EMPLOYEE (FIRST_NAME, LAST_NAME, EMPLOYEE_ID, DEPARTMENT_ID, SALARY)
VALUES ('Shaun’, 'Hayes’, 1319, 23, 4600)

is “Shaun’, ‘Hayes’, 1319, 23, 4600". An EOSQLEXxpressiaalkieList is generated a value at a time with
addInsertListAttribute messages.

251

252

whereClauseString

public java.lang.StringvhereClauseString)
Returns the part of the receiver's WHERE clause that qualifies rows. The whereClauseString does not
specify join conditions; thinClauseString does that. Together, tihereClauseStringand the
joinClauseString make up a statement’s where clause. For example, a qualifier for an Employee entity

specifies that a statement only affects employees who belong to the Finance department and whose monthly
salary is greater than $4500. Assume the corresponding where clause looks like this:

WHERE EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’
AND EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

EOSQLEXxpression generates botileereClauseStringand goinClauseString for this qualifier. The
whereClauseStringqualifies the rows and looks like this:

EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’

ThejoinClauseString specifies the join conditions between the EMPLOYEE table and the DEPARTMENT
table and looks like this:

EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

An EOSQLExpression'ehereClauseStringis generally set by sendingalStringForSQLEXxpression:
message to an EOQuialifier object.

Classes: EOSQLEXxpression

EOSQLEXxpression

Building Expressions

The following four methods create EOSQLEXpression objects for the four basic database operations—
select, insert, update, and delete:

« selectStatementForAttributes

* insertStatementForRow

» updateStatementForRow

« deleteStatementWithQualifier

* Unless you're implementing an EOSQLExpression subclass, these and the static method
expressionForStringare the only EOSQLEXxpression methods you should ever need. If, on the other
hand, you are creating a subclass, you need to understand the mechanics of how EOSQLEXxpression
builds SQL statements. Each of the creation methods above creates an EOSQLEXxpression, initializes the
expression with a specified entity, and sends the new expression object one of the fpliepang ..
methods:prepareSelectExpressionWithAttributes

» preparelnsertExpressionWithRow

» prepareUpdateExpressionWithRow

» prepareDeleteExpressionForQualifier

Theprepare...methods, in turn, invoke a correspondasgemble..method, first generating values for the
assemble..method’s arguments. Ttassemble..methods:

* assembleSelectStatementWithAttributes
* assemblelnsertStatementWithRow

» assembleUpdateStatementWithRow

* assembleDeleteStatementWithQualifier

combine their arguments into SQL statements that the database server can understand.

These three sets of methods establish a framework in which SQL statements are generated. The bulk of the
remaining methods generate pieces of an SQL statement.

An individual SQL statement is constructed by combining the SQL strings for any model or value objects
specified in the “build” method in the appropriate form. An SQL string for a modeling or value object is a
string representation of the object that the database understands; for example, the SQL string for an
EOEntity is ultimately its table name. An EOSQLEXxpression gets the SQL strings for attributes and values
with the methodsqlStringForAttributeNamed andsqlStringForValue. If necessary, it also formats the

SQL strings according to an EOAttribute’s “read” or “write” format with the static method
formatSQLString .

Each of the “build” methods above invokes a number of instance methods. These methods are documented
individually below.

253

254

Using Table Aliases

By default, EOSQLEXxpression uses table aliases in SELECT statements. For example, the following
SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME
FROM EMPLOYEE t0, DEPARTMENT t1
WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table is aliased t0, and the DEPARTMENT table is aliased t1. Table aliases are necessary
in some SELECT statements—when a table contains a self-referential relationship, for example. Assume
the EMPLOYEE table contains a manager column. Managers are also employees, so to retrieve all the
employees whose manager is Bob Smith, the SELECT statement looks like this:

SELECT t0.FIRST_NAME, t0.LAST_NAME

FROM EMPLOYEE t0, EMPLOYEE t1

WHERE t1.FIRST_NAME ="BOB" AND t1.LAST_NAME ="SMITH" AND
t0.MANAGER_ID = t1.EMPLOYEE_ID

When the Framework maps operations on enterprise objects to operations on database rows, it reduces
insert, update, and delete operations to one or more single-table operations. As a result, EOSQLEXxpression
assumes that INSERT, UPDATE, and DELETE statements are always single-table operations, and does not
use table aliases in the statements of these types.

In addition, if EOSQLEXxpression detects that all the attributes in a SELECT statement’s attribute list are
flattened attributes and they're all flattened from the same table, the expression doesn't use table aliases. For
example, suppose that an EOSQLEXxpression object is created to select a customer’s credit card. In the
application, a customer object has a credit card object as one of its properties, and all operations on credit
cards are described in terms of a customer. As a result, the expression object is initialized with the entity for
the Customer object. Rather than create a statement like the following:

SELECT t1.TYPE, t1.NUMBER, t1.EXPIRATION, t1.CREDIT_LIMIT, t1. CUSTOMER_ID
FROM CUSTOMER t0, CREDIT_CARD t1
WHERE t1.CUSTOMER_ID =t0.CUSTOMER_ID AND t1.CUSTOMER_ID =459

EOSQLEXxpression detects that all the attributes correspond to columns in the CREDIT_CARD table and
creates the following statement:

SELECT TYPE, NUMBER, EXPIRATION, CREDIT_LIMIT, CUSTOMER_ID
FROM CREDIT_CARD
WHERE CUSTOMER_ID =459

Bind Variables

Some RDBMS client libraries use bind variables. A bind variable is a placeholder used in an SQL statement
that is replaced with an actual value after the database server determines an execution plan. If you are
writing an adaptor for a database server that uses bind variables, you must override the following
EOSQLEXxpression methods:

Classes: EOSQLEXxpression

« bindVariableDictionaryForAttribute
* mustUseBindVariableForAttribute
+ shouldUseBindVariableForAttribute

If your adaptor doesn’t need to use bind variables, the default implementations of the bind variable methods
are sufficient.

Generating SQL for EOModeler’'s Schema Generation

EOSQLEXxpression provides a set of methods that generate SQL that can be used to create a database.
EOModeler uses these methods to generate scripts that you can execute from within EOModeler to create
a database or that you can copy and paste into an interactive SQL shell for your database. If you are writing
an adaptor, you must ensure that the following EOSQLEXxpression method implementations are sufficient
to support EOModeler’'s schema generation:

« schemaCreationScriptForEntities

» schemaCreationStatementsForEntities

» appendExpression

« createTableStatementsForEntityGroup

» createTableStatementsForEntityGroups

« dropTableStatementsForEntityGroup

« dropTableStatementsForEntityGroups

» primaryKeyConstraintStatementsForEntityGroup

» primaryKeyConstraintStatementsForEntityGroups
* primaryKeySupportStatementsForEntityGroup

» primaryKeySupportStatementsForEntityGroups

» dropPrimaryKeySupportStatementsForEntityGroup
 dropPrimaryKeySupportStatementsForEntityGroups
» prepareConstraintStatementForRelationship
 foreignKeyConstraintStatementsForRelationship

* addCreateClauseForAttribute

¢ columnTypeStringForAttribute

« allowsNullClauseForConstraint

255

256

Classes: EOSQLQualifier

EOSQLQualifier

Inherits From: EOQualifier : NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOSQLQualifier is a subclass of EOQuialifier that contains unstructured text that can be transformed into
an SQL expression. EOSQLQualifier providesa way to create SQL expressions with any arbitrary SQL.
EOSQLQualifier formats are not parsed, they simply perform substitution for keys and format characters.
The qualifying information is expressed in the database server’s query language (nearly always SQL), and
you're responsible for ensuring that the query language statement is valid for your database server.
EOSQLQualifiers can’t be evaluated against objects in memory. As a result, you should use EOQualifier
whenever possible and only use EOSQLQualifier in cases that absolutely require it.

To create an EOSQLQualifer, provide to the constructor a root entity for the qualifier and a format string
like that used with the EOQualifier creation metlgqodlifierWithQualifierFormat . (You can’t use the
qualifierWithQualifierFormat method because it doesn't take an entity as an argument and an SQL
qualifier must be rooted to an entity.)

Constructors

public EOSQLQualifier ()
public EOSQLQualifier (EOEntity entityjava.lang.StringjualifierFormaj

Creates and returns a newly allocated EOSQLQualifier rootatitgand built from a format string
qualifierFormat qualifierFormatis aprintf() -style format string like that used with EOQualifier’s
qualifierwithQualifierFormat: method. Returns a new EOSQLQualifier if it can patsdifierFormat
successfullynull otherwise.

257

Static Methods

qualifierMigratedFromEntityWithRelationshipPath

public static com.apple.yellow.eocontrol. EOQualifier
qualifierMigratedFromEntityWithRelationshipPath (com.apple.yellow.eocontrol. EOQualifier
aQualifier, EOEntityentity, java.lang.StringelationshipPath

Creates a copy @Qualifier, translates all the copy’s keys to work with the entity specified in
relationshipPathand returns the copy. The receiver’s keys are all specified in teemstgfFor example,
assume that an Employee entity has a relationship named “department” to a Department entity. You could
create a qualifier described in terms of the Employee entity (department.name = ‘Finance’, for example) to
a qualifier described in terms of the Department entity (hame = ‘Finance’). To do so, send a
qualifierMigratedFromEntityWithRelationshipPath message with the Employee entity as the entity and
“department” as the relationship path.

qualifierWithQualifierFormat
public static com.apple.yellow.eocontrol. EOQualifiealifierWithQualifierFormat (
java.lang.Strindorma)

Throws an exception. An EOSQLQualifier must be created with an entity, and this method does not provide
one. Use a constructor and provide an entity to create an EOSQLQualifier.

Instance Methods

258

qualifierWithBindings
public com.apple.yellow.eocontrol. EOQualifegralifierWithBindings (NSDictionaryaDictionary;
boolearflag)

Returns a new qualifier created by substituting all EOQualifierVariables with the values contained in
aDictionary If flagis true, then the new qualifier requires all its variableffadfis false, then the new
qualifier doesn't require all its variables; and if any variable is not fousdiztionary, the node containing
that variable is simply pruned from the qualifier tree. Noterththtand EONull are not the same in this
context. If a value imDictionaryis null, this method prunes it from the qualifier tree. If a value is EONull,
this method assumes that you are looking for an object withl ¥alue..

Classes: EOSQLQualifier

validateKeysWithRootClassDescription

public java.lang.ThrowablealidateKeysWithRootClassDescriptior§
com.apple.yellow.eocontrol. EOClassDescriptitassDesg

Validates that a qualifier contains keys and key paths that belong to or originatdaiss®escThis

method returns an NSinternallnconsistencyException if an unknown key is found, otherwise it returns null
to indicate that the keys contained by the qualifier are valid.

259

260

Classes: EOStoredProcedure

EOStoredProcedure

Inherits From: NSObiject

Implements: EOPropertyListEncoding
Package: com.apple.yellow.eoaccess

Class Description

An EOStoredProcedure represents a stored procedure defined in a database, and associates a name internal
to the Framework with an external name by which the stored procedure is known to the database. If a stored
procedure has arguments, its EOStoredProcedure object also maintains a group of EOAttributes which
represent the stored procedure’s arguments. See the EOAttribute class specification for more information

You usually define stored procedures in your EOModel with the EOModeler application, which is
documented in thEnterprise Objects Framework Developer's Guil®StoredProcedures are primarily

used by the Enterprise Objects Framework to map operations for an EOEntity to stored procedures (see the
description for EOEntity’'setStoredProceduremethod). You can assign stored procedures to an entity for

any of the following scenarios:

Fetching all the objects for the entity

» Fetching a single object by its primary key
 Inserting a new object

* Deleting an object

» Generating a new primary key

Your code probably won't use EOStoredProcedures unless you're working at the adaptor level.

Like the other major modeling classes, EOStoredProcedure provides a user dictionary for your application
to store any application-specific information related to the stored procedure.

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodelntoPropertyList

261

Method Types

Constructors
EOStoredProcedure
Accessing the model
model
Accessing the name
setName
beautifyName
name

Accessing the external name
setExternalName
externalName

Accessing the arguments
setArguments
arguments

Accessing the user dictionary
setUserInfo
userinfo

Constructors
EOStoredProcedure
public next.eo.EOStoredProcedur§
Creates and returns a new EOStoredProcedure.
public next.eo.EOStoredProcedurg§ava.lang.Stringiamé
Creates and returns a new EOStoredProcedure rnaaneel

public next.eo.EOStoredProcedurénext.util.iImmutableHashtableropertyList
java.lang.Objecbwne)

Creates and returns a new EOStoredProcedure initializedofiapertyList—a dictionary

containing only property list data types (that is, String, NSDictionary, NSArray, and NSData). This
constructor is used by EOModeler when it reads in an EOModel object from a file, for example. The
ownerargument should be the EOStoredProcedure’s EOModel. EOStoredProcedures created from
a property list must receive awakeWithPropertyList message immediately after creation before

262

Classes: EOStoredProcedure

they are fully functional, but theewake...message should be deferred until the all of the other objects
in the model have also been created.

See also: awakeWithPropertyList (PropertyListEncodinggncodelntoPropertyList
(PropertyListEncodinggetName name

Instance Methods
arguments
public next.util.ImmutableVectargumenty)

Returns the EOAttribute objects that describe the stored procedure’s argunmenitsfahe stored
procedure has no arguments.

beautifyName
public voidbeautifyName()

Renames the receiver's name and its arguments to conform to the Framework’s naming conventions. For
example, “NAME” is renamed “name” and “FIRST_NAME” is renamed “firstName”. This method is used
in reverse-engineering a model.

See also: setArguments beautifyNames(EOModel)

externalName
public java.lang.StringxternalNamg)

Returns the name of the stored procedure as it is defined in the datababef tire receiver doesn't have
an external name.

See also: setExternalName

model
public next.eo.Modainodel()

Returns the model to which the receiver belongs.
See also: addStoredProcedure(EOModel)

263

264

name
public java.lang.Stringame()

Returns the name of the receiver.

See also: setName “Constructors”

setArguments
public voidsetArgumentgnext.util.ImmutableVectoargumenty

Setsargumentsas the array of EOAttributes that describe the receiver's arguments. The EOAttribute objects
in argumentanust be ordered to match the database stored procedure definition.

See also: arguments

setExternalName
public voidsetExternalNamdjava.lang.Stringhamg

Sets the external name of the stored procedumarte nameshould be the name of the stored procedure
as it is defined in the database.

See also: externalName

setName
public voidsetNamédjava.lang.Stringhamg

Sets the name of the receiver.

See also: hame, “Constructors”

setUserInfo
public voidsetUserInfanext.util.ImmutableHashtabltictionary)

Sets thalictionary of auxiliary data, which your application can use for whatever it ndedmnary can
only contain property list data types (that is, String, NSDictionary, NSArray, and NSData).

See also: userinfo

Classes: EOStoredProcedure

userinfo

public next.util.ImmutableHashtableserinfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.
See also: setUserlnfo

265

266

Classes: EOAdaptorChannel.Delegate

EOAdaptorChannel.Delegate

Implemented By: EOAdaptorChannel delegate objects

Package: com.apple.yellow.eoaccess

Interface Description

EOAdaptorChannel sends messages to its delegate for nearly every operation that would affect data in the
database server. The delegate can use these methods to preempt these operations, modify their results, or
simply track activity.

Instance Methods

adaptorChannelDidChangeResultSet
public abstract voiddaptorChannelDidChangeResultSdfava.lang.Objecthanne)

Invoked fromfetchRow when a select operation resulted in multiple result sets. This method tells the
delegate that the next invocationfefchRow will fetch from the next result set. This method is invoked
whenfetchRow returnsnull andthere are still result sets left to fetch. The delegate can invoke
setAttributesToFetch to prepare for fetching the new rows.

adaptorChannel:didEvaluateExpression

public abstract voiddaptorChannelDidEvaluateExpressioifjava.lang.Objecthanne)
EOSQLExpressioexpressioh

Invoked fromevaluateExpressiorto tell the delegate that a query language expression has been evaluated
by the database server.

adaptorChannelDidExecuteStoredProcedure

public abstract voiddaptorChannelDidExecuteStoredProcedurg§ava.lang.Objecthanne)
EOStoredProcedugrocedure
NSDictionaryvalueg

Invoked fromexecuteStoredProcedurafterprocedureis executed successfully.

267

268

adaptorChannelDidFetchRow

public abstract voiddaptorChannelDidFetchRow(java.lang.Objecthanne] NSMutableDictionary
row)

Invoked fromfetchRow after a row is fetched successfully. This method is not invoked if an exception
occurs during the fetch or if the same retura because there are no more rows in the current result set.
The delegate may modifgw, which will be returned frorfetchRow.

adaptorChannelDidFinishFetching
public abstract voiddaptorChannelDidFinishFetchingjava.lang.Objecthanne)

Invoked fromfetchRow to tell the delegate that fetching is finished for the current select operation. This
method is invoked when a fetch end$atcthRow because there are no more result sets.

adaptorChannelDidPerformOperations

public abstract java.lang.ThrowatadaptorChannelDidPerformOperations(
java.lang.Objecthanne)
NSArrayoperations
java.lang.Throwablexceptioi

Invoked fromperformAdaptorOperations. exceptioris null if no exception was raised whit@erations

were performed. Otherwisexceptiornis the raised exception. The delegate can return the same or a
different exception, which is re-raised ppgrformAdaptorOperations, or it can returmull to prevent the
adaptor channel from raising an exception.

adaptorChannelDidSelectAttributes

public abstract voiddaptorChannelDidSelectAttributegjava.lang.Objecthanne]
NSArrayattributes
com.apple.yellow.eocontrol. EOFetchSpecificafeichSpecification
boolearflag,
EOEntity entity)

Invoked fromselectAttributes:fetchSpecificationto tell the delegate that rows have been selected in the
database server.

Classes: EOAdaptorChannel.Delegate

adaptorChannelShouldConstructStoredProcedureReturnValues

public abstract NSDictionary
adaptorChannelShouldConstructStoredProcedureReturnValue§ava.lang.Objecthanne)

Invoked fromreturnValuesForLastStoredProcedurelnvocationto tell the delegate thahannelis
constructing return values for the last stored procedure evaluated. If the delegate returns a value other than
null, that value will be returned immediately froeturnValuesForLastStoredProcedurelnvocation

adaptorChannelShouldEvaluateExpression

public abstract booleaadaptorChannelShouldEvaluate Expressio(java.lang.Objecthanne]
EOSQLEXxpressioexpressioh

Invoked fromevaluateExpressiorto tell the delegate thahannelis sending an expression to the database
server. The delegate returns true to permit the adaptor channel &xpesgsiorio the server. If the

delegate returns false, the adaptor channel does not send the expression and returns immediately. When the
delegate returns false, the adaptor channel expects that the implementor of the delegate has done the work
thatevaluateExpressionwould have done. The delegate can create a new EOSQLEXxpression and send the
expression itself before returning false.

adaptorChannelShouldExecuteStoredProcedure

public abstract NSDictionargdaptorChannelShouldExecuteStoredProcedurgava.lang.Object
channe]
EOStoredProcedugrocedure
NSDictionaryvalue3

Invoked fromexecuteStoredProcedureo tell the delegate thahannelis executing a stored procedure. If
the delegate returns a value other thalh, that value is used as the arguments to the stored procedure
instead olvalues

adaptorChannel:shouldReturnValuesForStoredProcedure

public abstract NSDictionary
adaptorChannelShouldReturnValuesForStoredProcedurg§ava.lang.Objecthanne]
NSDictionaryreturnValue$

Invoked fromreturnValuesForLastStoredProcedurelnvocationto tell the delegate thahannelis
returning values for a stored procedure. If the delegate returns a value otmedithidsat value is returned
from returnValuesForLastStoredProcedurelnvocationinstead ofeturnValues

269

270

adaptorChannelShouldSelectAttributes

public abstract booleaadaptorChannelShouldSelectAttributegjava.lang.Objecthanne)
NSArrayattributes
com.apple.yellow.eocontrol. EOFetchSpecificafeichSpecification
boolearflag,
EOEntity entity)

Invoked fromselectAttributes:fetchSpecificationto ask the delegate whether a select operation should be
performed. The delegate should not modifichSpecificatiannstead, if the delegate wants to perform a
different select it should involgelectAttributes:fetchSpecificationitself with a new fetch specification,
and return false (indicating that the adaptor channel should not perform the select itself).

adaptorChannelWillFetchRow
public abstract voiddaptorChannelWillFetchRow(java.lang.Objecthanne)

Invoked fromfetchRow to tell the delegate that a single row will be fetched. The delegate can determine
the attributes used by the fetch by senditigbutesToFetch to channe] and can change the set of
attributes to fetch by sendisgtAttributesToFetch to channel The adaptor channel performs the actual
fetch.

adaptorChannelWillPerformOperations

public abstract NSArragdaptorChannelWillPerformOperations(java.lang.Objecthanne)
NSArrayoperation$

Invoked fromperformAdaptorOperations to tell the delegate thahannelis performing the
EOAdaptorOperations iaperations The delegate may retuoperationsor a different NSArray for the
adaptor channel to perform. If the delegate retnutis the adaptor channel does not perform the operations
and returns from the method immediately.

Classes: EOAdaptorContext.Delegate

EOAdaptorContext.Delegate

Implemented By: EOAdaptorContext delegate objects

Package: com.apple.yellow.eoaccess

Interface Description

EOAdaptorContext sends messages to its delegate for any transaction begin, commit, or rollback. The
delegate can use these methods to preempt these operations, modify their results, or simply track activity.

Instance Methods
adaptorContextDidBegin
public abstract voiddaptorContextDidBegin(java.lang.Objectontex}

Invoked frombeginTransactionto tell the delegate that a transaction has begun.

adaptorContextDidCommit
public abstract voiddaptorContextDidCommit(java.lang.Objectontexj

Invoked fromcommitTransaction to tell the delegate that a transaction has been committed.

adaptorContextDidRollback
public abstract voiddaptorContextDidRollback(java.lang.Objectontexj

Invoked fromrollbackTransaction to tell the delegate that a transaction has been rolled back.

adaptorContextShouldBegin
public abstract booleaadaptorContextShouldBegir(java.lang.Objectontexj

Invoked frombeginTransactionto tell the delegate thabntextis beginning a transaction. If this method
returns false, the adaptor context does not begin a transaction. Return true to allow the adaptor context to
begin a transaction.

271

272

adaptorContextShouldCommit
public abstract booleaadaptorContextShouldCommit(java.lang.Objectontex}

Invoked fromcommitTransaction to tell the delegate thabntextis committing a transaction. If this
method returns false, the adaptor context does not commit the transaction. Return true to allow the adaptor
context to commit.

Note that if you implement this delegate method to return false, your delegate must perform the database
COMMIT itself; the rest of the Enterprise Objects Framework assumes that the commit has taken place.
adaptorContextShouldCommit doesn’t specify whether or not the commit should take place; it only
specifies whether or not the adaptor context should do it for you.

adaptorContextShouldConnect
public abstract booleaadaptorContextShouldConnec(java.lang.Objectontexj

Invoked before the adaptor attempts to connect. The delegate can return false if it wants to override the
connect, true if it wants the adaptor to attempt to connect in the usual way. The delegate should throw an
exception if it fails to connect.

adaptorContextShouldRollback
public abstract booleaadaptorContextShouldRollbackjava.lang.Objectontex}
Invoked fromrollbackTransaction to tell the delegate thabntextis rolling back a transaction. If this

method returns false, the adaptor context does not roll back the transaction. Return true to allow the adaptor
context to roll back.

Classes: EOAdaptor.Delegate

EOAdaptor.Delegate
Implemented By: EOAdaptor delegate objects
Package: com.apple.yellow.eoaccess

Interface Description

The delegate for EOAdaptor can implement the metitaghtor:fetchedValueForAttributeValue:
attribute: to perform a database-specific transformations on a value.

Instance Methods

fetchedValueForAttribute

public abstract java.lang.ObjdetchedValueForAttribute (EOAdaptoradaptor
java.lang.Objectalue
EOAttributeattribute)

Invoked fromfetchedValueForValueto allow the delegate to perform a database-specific transformation
onvalue The delegate should return the value that the adaptor’s database server would ultimately store for
valueif it was inserted or updated in the column describedttjpute.

Ordinarily,fetchedValueForValueinvokes one of the type-specifetchedValue...methods depending on

the type ofvalue If you implement this delegate methéetchedValueForValuedoes not invoke the other
fetchedValue...methods. It simply invokes your delegate method and returns the value returned from it.
Therefore, an implementationadaptor:fetchedValueForAttributeValue:attribute: must handle values

of all types.

273

274

Classes: EODatabaseContext.Delegate

EODatabaseContext.Delegate

Package: com.apple.yellow.eoaccess

Interface Description
An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they're defined in EODatabaseContext for ease of access:
databaseContextDidSelectObjects
databaseContextShouldSelectObjects
databaseContextShouldUpdateCurrentSnapshot
databaseContextShouldUsePessimisticLockWithFetchSpecification

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they’re fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generatedbtabaseContextNewPrimaryKeyForObjec}, how and if objects are

locked @atabaseContextShouldLockObjectWithGloballD), what fetch specification is used to fetch
objects (latabaseContextShouldSelectObjectshow batch faulting is performed
(databaseContextShouldFetchArrayFaultanddatabaseContextShouldFetchObjectFau)t and so on.

For more information, see the individual delegate method descriptions.

Instance Methods

databaseContextDidFetchObjects

public abstract voidiatabaseContextDidFetchObjecté
EODatabaseContegDatabaseContext
NSArrayobjects
com.apple.yellow.eocontrol. EOFetchSpecificafistichSpecification
com.apple.yellow.eocontrol. EOEditingContextEditingContext

Invoked fromobjectsWithFetchSpecificationafteraDatabaseContexetchesobjectsusing the criteria
defined infetchSpecificatioomn behalf ofinEditingContext

See also: databaseContextShouldFetchObjectFault

275

276

databaseContextDidSelectObjects

public abstract voidlatabaseContextDidSelectObjec(s
EODatabaseConteaDatabaseContext
com.apple.yellow.eocontrol. EOFetchSpecificafistichSpecification
EODatabaseChannehanne)

Invoked from the EODatabaseChannel metbaldctObjectsWithFetchSpecificatioro tell the delegate
thatchannelselected the objects on behaliabiatabaseContexds specified bfetchSpecification

See also: databaseContextShouldSelectObjects

databaseContextFailedToFetchObject

public abstract booleatatabaseContextFailedToFetchObjedt
EODatabaseConteaDatabaseContext
java.lang.Objecbbject
com.apple.yellow.eocontrol. EOGlobaltioballD)

Sent when a to-one fault cannot find its data in the databasebjgutis a cleared fault identified by
globallD. If this method returnsue, aDatabaseContexssumes that the delegate has handled the situation
to its satisfaction, in whatever way it deemed appropriate (for example, by displaying an alert panel or
initializing a fault object with new values). If it returfadse or if the delegate method is not implemented,
aDatabaseContexthrows an exception.

databaseContextNewPrimaryKeyForObject

public abstract NSDictionaatabaseContextNewPrimaryKeyForObject
EODatabaseConteaDatabaseContext
java.lang.Objecbbject
EOEntityanEntity)

Sent when a newly inserted enterpofgectdoesn’t already have a primary key set. This delegate method
can be used to implement custom primary key generation. If the delegate is not implemented autkturns
thenaDatabaseContextill send an EOAdaptorChannebemaryKeyForNewRowWithEntity message

in an attempt to generate the key.

The dictionary you return from this delegate method contains the attribute or attribatgeciihas a
compound primary key) that make apjects primary key.

Classes: EODatabaseContext.Delegate

databaseContextShouldFetchArrayFault

public abstract booleatatabaseContextShouldFetchArrayFaulg
EODatabaseContegatabaseContext
java.lang.ObjecanObjec}

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the array themselves (for example, by using the EODatabaseContext method
batchFetchRelationship and returrfalse or returntrue to allow thedatabaseContexb do the fetch
itself. If databaseContexierforms the fetch it will batch fault according to the batch count on the
relationship being fetched.

See also: databaseContextShouldFetchObjectFault

databaseContextShouldFetchObjectFault

public abstract booleatatabaseContextShouldFetchObjectFault
EODatabaseContegtatabaseContext
java.lang.ObjecanObjec}

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the fault themselves (for example, by using the EODatabaseContext method
objectsWithFetchSpecificatior) and returrfalse, or returntrue to allowdatabaseContexb perform the
fetch. If databaseContexierforms the fetch, it will batch fault according to the batch count on the entity
being fetched.

See also: databaseContextShouldFetchArrayFault

databaseContextShouldFetchObjects

public abstract NSArraglatabaseContextShouldFetchObjec(s
EODatabaseConteaDatabaseContext
com.apple.yellow.eocontrol. EOFetchSpecificafieichSpecification
com.apple.yellow.eocontrol. EOEditingContaxtEditingContext

Invoked fromobjectsWithFetchSpecificationto give the delegate the opportunity to satisfy
anEditingContexs fetch request (using the criteria specifiefeitthSpecificationfrom a local cache. If

the delegate returmaill, aDatabaseContexierforms the fetch. Otherwise, the returned array is returned
as the fetch result.

See also: databaseContextDidFetchObjects

277

278

databaseContextShouldinvalidateObjectWithGloballD

public abstract booleatatabaseContextShouldinvalidateObjectWithGloball X
EODatabaseConteaDatabaseContext
com.apple.yellow.eocontrol.EOGloballoballD,

NSDictionarysnapshat

Invoked frominvalidateObjectsWithGloballDs. Delegate can caus®atabaseContestobject as
identified bygloballD to not be invalidated and that objeatsapshoto not be cleared by returnifigise

databaseContextShouldLockObjectWithGloballD

public abstract booleatatabaseContextShouldLockObjectWithGloballD
EODatabaseContegaDatabaseContext
com.apple.yellow.eocontrol. EOGlobaltpoballD,
NSDictionarysnapshat

Invoked fromlockObjectWithGloballD . The delegate should retumue if it wants the operation to
proceed ofalseif it doesn'’t. Values fronsnapshotre used to create a qualifier from the attributes used for
locking specified for the object’s entity (that is, the object identifiegldilyallD). Delegates can override
the locking mechanism by implementing their own locking procedure and retiafsagMethods that
override the locking mechanism should throw an exception on the failure to lock exactly one object.

databaseContextShouldRaiseExceptionForLockFailure

public abstract booleatatabaseContextShouldRaiseExceptionForLockFailure
EODatabaseContegaDatabaseContext
java.lang.Throwablexceptioi

Invoked fromlockObjectWithGloballD . This method allows the delegate to suppregxeeptiorthat has
occurred duringaDatabaseContestattempt to lock the object.

databaseContextShouldSelectObjects

public abstract booleagtatabaseContextShouldSelectObjects
EODatabaseContegaDatabaseContext
com.apple.yellow.eocontrol. EOFetchSpecificafieichSpecification
EODatabaseChannethanne)

Invoked from the EODatabaseChannel metbaldctObjectsWithFetchSpecificationo tell the delegate
thatchannelwill select objects on behalf aDatabaseContexs specified bfetchSpecificationThe
delegate should not modifgtchSpecificatioa qualifier or fetch order. If the delegate retumue the
channel will go ahead and select the object; if the delegate r&lse@ossibly after issuing custom SQL
against the adaptor) tlshannelwill skip the select and return.

Classes: EODatabaseContext.Delegate

databaseContextShouldUpdateCurrentSnapshot

public abstract NSDictionafatabaseContextShouldUpdateCurrentSnapsht
EODatabaseConteaDatabaseContext
NSDictionarycurrentSnapshot
NSDictionarynewSnapshot
com.apple.yellow.eocontrol. EOGlobaltpoballD,
EODatabaseChannehanne)

Invoked from the EODatabaseChannel mettedchObject whenaDatabaseContexlready has a
snapshotdurrentSnapshgtfor a row fetched from the database. This method is invoked without first
checking whether the snapshots are equivalent (the check would be too expensive to do in the common
case), so the receiver may be passed equivalent snapshots. The default behavior is to not update an older
shapshot witmewSnapshoiThe delegate can override this behavior by returning a dictionary (possibly
newSnapshdthat will be recorded as the updated snapshot. This will resaldatabaseContext
broadcasting an EOObjectsChangedInStoreNotification, causing the object store hierarchy to invalidate
existing objects (as identified lgyoballD) built from the obsolete snapshot. Returning throws an
exception. You can use this method to achieve the same effect as using a

com.apple.yellow.eocontrol. EOFetchSpecification wétRefreshesRefetchedObjectset tairue—that

is, it allows you to overwrite in-memory object values with values from the database that may have been
changed by someone else.

ReturningcurrentSnapshatauses thaDatabaseContexb perform the default behavior (that is, not
updating the older snapshot).

databaseContextShouldUsePessimisticLockWithFetchSpecification

public abstract booleatatabaseContextShouldUsePessimisticLockWithFetchSpecificatipn
EODatabaseContegaitabaseContext
com.apple.yellow.eocontrol. EOFetchSpecificafieichSpecification
EODatabaseChannethanne)

Invoked from the EODatabaseChannel metbaldctObjectsWithFetchSpecificatiomegardless of the
update strategy specified ohannek databaseContex@ he delegate should not modify the qualifier or
fetch order contained fietchSpecificationf the delegate returriaue the channel locks the rows being
selected; if the delegate returfatse the channel selects the rows without locking.

279

280

databaseContextWillOrderAdaptorOperationsFromDatabaseOperations

public abstract NSArray
databaseContextWillOrderAdaptorOperationsFromDatabaseOperation$
EODatabaseContegaDatabaseContext
NSArraydatabaseOperations

Sent fromperformChanges If the delegate responds to this message, it must return an array of
EOAdaptorOperations thaDatabaseContextan then submit to an EOAdaptorChannel for execution. The
delegate can fabricate its own array by asking each afafadaseOperationfor its list of
EOAdaptorOperations, and adding them to the array which will eventually be returned by this method. The
delegate is free to optimize, order, or transform the list in whatever way it deems necessary. This method is
useful for applications that need a special ordering of the EOAdaptorOperations so as not to violate any
database referential integrity constraints.

databaseContextWillPerformAdaptorOperations

public abstract NSArraglatabaseContextWillPerformAdaptorOperations(
EODatabaseConteaDatabaseContext
NSArrayadaptorOperations
EOAdaptorChanneddaptorChanngl

Sent fromperformChanges The delegate can return a nedaptorOperationsrray which
aDatabaseContextill hand toadaptorChannefor execution in place of the old array of
EOAdaptorOperations. This method is useful for applications that need a special ordering of the
EOAdaptorOperations so as not to violate any database referential integrity constraints.

Classes: EOUitilities

EQOUtilities
Inherits From: NSObiject
Declared In: EOAccess/EOUtilities.h

Class Description

EOUtilities is a collection of convenience methods intended to make common operations with EOF easier.
EOQUltilities is an EOAccess class that consists entirely of static methods—you never instantiate an
EOUtilities object.

Each method requires an editing context into which the objects should be fetched; this editing context is
passed as the first argument to each method in EOUtilities.

Note: The Objective-C source code for EOUilities is available as an exathphMac OS X Server
systems, see /System/Developer/Examples/EnterpriseObjects/Sources/EOULtilitie®n NT, see
SNEXT_ROOTDeveloper\Examples\EnterpriseObjects\Sources\EOUtilities

Method Types

Fetching multiple objects
objectsForEntityNamed
objectsWithQualifierFormat
objectsMatchingKeyAndValue
objectsMatchingValues
objectsOfClass
objectsWithFetchSpecificationAndBindings

Fetching single objects
objectWithQualifierFormat
objectMatchingKeyAndValue
objectMatchingValues
objectWithFetchSpecificationAndBindings
objectWithPrimaryKey
objectWithPrimaryKeyValue

281

Fetching raw rows
executeStoredProcedureNamed
objectFromRawRow
rawRowsWithQualifierFormat
rawRowsMatchingKeyAndValue
rawRowsMatchingValues
rawRowsForSQL
rawRowsWithStoredProcedureNamed

Accessing the EOF stack
connectWithModelNamed
databaseContextForModelNamed

Accessing object data
destinationKeyForSourceObject
locallnstance OfObject
locallnstancesOfObjects
primaryKeyForObject

Accessing model information
entityForClass
entityForObject
entityNamed
modelGroup

Static Methods

connectWithModelNamed

public static voidconnectWithModelNamed
com.apple.yellow.eocontrol. EOEditingContexiitingContext
java.lang.StringnodelName
NSDictionaryoverrides

Connects to the database using the connection information in the specified model and the provided
overrides dictionary. This method facilitates per-session database logins in WebObjects applications.
Typically, you'd put a login name and password in the overrides dictionary and otherwise use the values in
the model’s connection dictionary. Throws an exception if the connection failed.

282

Classes: EOUitilities

databaseContextForModelNamed

public static EODatabaseContebttabaseContextForModelNamed
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityNamé

Returns the database context used to service the specified model.

destinationKeyForSourceObject

public static NSDictionargestinationKeyForSourceObject
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.Objecbbject
java.lang.StringentityNamé

Returns the foreign key for the rows at the destination entity of the specified relationship. As an example,
given entities Department and Employee with a relationship called “department” joining

Department.ID Employee.deptID , invoking this method on a Department object with ID equal to

5 will return a dictionary with a value of 5 for the deptID key.

See also: primaryKeyForObject

entityForClass

public static EOEntityentityForClass(
com.apple.yellow.eocontrol. EOEditingContexiitingContext
java.lang.ClasslassObijedt

Returns the entity associated with the specified class. Throws an exception if the specified entity can't be
found or if more than one entity is associated with the class.

See also: entityForObject, entityNamed, objectsOfClass

entityForObject

public static EOEntitentityForObject (
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.Objecbbjec)

Returns the entity associated with the provided enterprise object. Throws an exception if the specified entity
can’t be found.

See also: entityForClass, entityNamed

283

284

entityNamed

public static EOEntityentityNamed(
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityNamé

Returns the entity with the specified name. Throws an exception if the specified entity can’t be found.

See also: entityForClass, entityForObject

executeStoredProcedureNamed

public static NSDictionargxecuteStoredProcedureNamed
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringtoredProcedureName
NSDictionaryargument}

Executes the specified stored procedure with the provided arguments. Returns the stored procedure’s return
values (if any). Use only with stored procedures that don't return results rows.

See also: rawRowsWithStoredProcedureNamed

locallnstanceOfObject

public static java.lang.ObjeticallnstanceOfObjecy(
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.Objecbbjec)

Translates the specified enterprise object from another editing context to the specified one.

See also: locallnstancesOfObjects

locallnstancesOfObjects

public static NSArrayocallnstancesOfObject$
com.apple.yellow.eocontrol. EOEditingConteadlitingContext,
NSArrayobject3

Translates the specified enterprise objects from another editing context to the specified one.

See also: locallnstanceOfObject

Classes: EOUitilities

modelGroup

public static EOModelGroumodelGroup(
com.apple.yellow.eocontrol. EOEditingContextitingContext

Returns the model group associated with the editing context’s root object store, an
EOODbjectStoreCoordinator.

objectWithQualifierFormat

public static java.lang.ObjeobjectWithQualifierFormat (
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
java.lang.Strindormat
NSArrayargumenty

Creates a qualifier with the provided format string and arguments, and returns matching enterprise objects.
Throws an exception unless exactly one object is retrieved.

See also: ObjectsWithQualifierFormat , rawRowsWithQualifierFormat

objectFromRawRow

public static java.lang.ObjeobjectFromRawRow(
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
NSDictionaryrow)

Fetches and returns the object corresponding to the specified raw row (using EOEditingContext’s
faultForRawRow). This method can only be used on raw rows that include the row’s primary key.

objectMatchingKeyAndValue

public static java.lang.ObjeobjectMatchingKeyAndValue(
com.apple.yellow.eocontrol. EOEditingContexiitingContext
java.lang.StringentityName
java.lang.Objectalug
java.lang.Stringey)

Creates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects.
Throws an exception unless exactly one object is retrieved.

See also: ObjectMatchingValues objectsMatchingKeyAndValue

285

286

objectMatchingValues

public static java.lang.ObjeobjectMatchingValueg
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
NSDictionaryvalue3

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQualifier, and returns matching enterprise objects. Throws an exception unless
exactly one object is retrieved.

See also: 0bjectMatchingKeyAndValue, objectsMatchingValues

objectsForEntityNamed

public static NSArraybjectsForEntityNamed(
com.apple.yellow.eocontrol. EOEditingContexiitingContext
java.lang.StringentityNamé

Fetches and returns the enterprise objects associated with the specified entity.

See also: ObjectsWithQualifierFormat, objectsMatchingKeyAndValue, objectsMatchingValues

objectsWithQualifierFormat

public static NSArrapbjectsWithQualifierFormat (
com.apple.yellow.eocontrol. EOEditingContexiitingContext
java.lang.StringentityName
java.lang.Strindormat
NSArrayargumenty

Creates a qualifier with the provided format string and arguments, and returns matching enterprise objects.

See also: ObjectWithQualifierFormat , objectsForEntityNamed

objectsMatchingKeyAndValue

public static NSArrapbjectsMatchingKeyAndValue(
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
java.lang.Stringkey
java.lang.Objectalug

Creates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects.

See also: ObjectMatchingKeyAndValue, objectsForEntityNamed, objectsMatchingValues

Classes: EOUitilities

objectsMatchingValues

public static NSArraypbjectsMatchingValueg
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
NSDictionaryvalue3

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQualifier, and returns matching enterprise objects.

See also: ObjectMatchingValues, objectsForEntityNamed, objectsMatchingKeyAndValue

objectsOfClass

public static NSArraybjectsOfClasg
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.ClasslassObijedt

Fetches and returns the enterprise objects associated with the specified class. Throws an exception if more
than one entity for the class exists.

See also: entityForClass

objectsWithFetchSpecificationAndBindings

public static NSArraybjectsWithFetchSpecificationAndBindingg
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StrindetchSpecName
java.lang.StringentityName
NSDictionarybinding9

Fetches and returns the enterprise objects retrieved with the specified fetch specification and bindings.

See also: ObjectWithFetchSpecificationAndBindings

287

objectWithFetchSpecificationAndBindings

public static java.lang.ObjeobjectWithFetchSpecificationAndBindingg
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StrindgetchSpecName
java.lang.StringentityName
NSDictionarybinding9

Fetches and returns the enterprise objects retrieved with the specified fetch specification and bindings.
Throws an exception unless exactly one object is retrieved.

See also: 0bjectsWithFetchSpecificationAndBindings

objectWithPrimaryKey

public static java.lang.ObjeobjectWithPrimaryKey (
com.apple.yellow.eocontrol. EOEditingContexiitingContext
java.lang.StringentityName
NSDictionarykeyDictionary

Fetches and returns the enterprise object identified by the specified primary key dictionary. Throws an
exception unless exactly one object is retrieved.

See also: ObjectMatchingKeyAndValue, objectWithPrimaryKeyValue , primaryKeyForObject

objectWithPrimaryKeyValue

public static java.lang.ObjeobjectWithPrimaryKeyValue (
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
java.lang.Objectalug

Fetches and returns the enterprise object identified by the specified primary key value. For use only with
enterprise objects that have hon-compound primary keys. Throws an exception unless exactly one object is
retrieved.

See also: ObjectsMatchingValues objectWithPrimaryKey

288

Classes: EOUitilities

primaryKeyForObject

public static NSDictionarprimaryKeyForObiject (
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.Objecbbjec)

Returns the primary key dictionary for the specified enterprise object.

See also: ObjectWithPrimaryKey , objectWithPrimaryKeyValue

rawRowsWithQualifierFormat

public static NSArrayawRowsWithQualifierFormat (
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
java.lang.Stringormat
NSArrayargumenty

Creates a qualifier for the specified entity and with the specified qualifier format and returns matching raw
row dictionaries.

See also: ObjectsWithQualifierFormat, rawRowsForSQL

rawRowsMatchingKeyAndValue

public static NSArrayawRowsMatchingKeyAndValue(
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
java.lang.Strindkey
java.lang.Objecvalug);

Creates an EOKeyValueQualifier with the specified key and value and returns matching raw rows.

See also: ObjectMatchingKeyAndValue, objectsMatchingKeyAndValue, rawRowsMatchingValues

rawRowsMatchingValues

public static NSArrayawRowsMatchingValueq
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringentityName
NSDictionaryvalue3

Creates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
together into an EOAndQualifier, and returns matching raw rows.

See also: ObjectMatchingValues objectsMatchingValues rawRowsMatchingKeyAndValue

289

rawRowsForSQL

public static NSArrayawRowsForSQL(
com.apple.yellow.eocontrol. EOEditingContextitingContext
java.lang.StringqlString
java.lang.StringnodelNamg

Evaluates the specified SQL and returns the resulting raw rows.

See also: rawRowsWithQualifierFormat , rawRowsWithStoredProcedureNamed

rawRowsWithStoredProcedureNamed

public static NSArrayawRowsForStoredProcedureNamed
com.apple.yellow.eocontrol. EOEditingContexlitingContext
java.lang.StringtoredProcedureName
NSDictionaryargumenty

Executes the specified stored procedure with the provided arguments and returns the resulting raw rows.

See also: rawRowsForSQL

290

Classes:

EOModelGroup.ClassDelegate

Inherits From: NSObiject

Package: com.apple.yellow.eoaccess

Interface Description

An EOModelGroup object should have a delegate which can influence how it finds and loads models. In
addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can have
a delegate. The class delegate implements a single metiedduitModelGroup.

For more information on EOModelGroup instance delegate methods, see the EOModelGroup.Delegate
specifications.

Instance Methods
defaultModelGroup
public abstract EOModelGrouwgefaultModelGroup()

If implemented by the EOModelGroup class delegate, this method should return the EOModelGroup to be
returned in response to the messagiaultModelGroup. If this delegate method returnaill,
EOModelGroup uses the default behavior ofde&aultModelGroup class method.

Note: This method is implemented by the delegate assigned to the EOModelGroup class object.

See also: classDelegatéEOModelGroup class¥etClassDelegatéEOModelGroup class)

201

292

Classes:

EOModelGroup.Delegate

Inherits From: NSObiject

Package: com.apple.yellow.eoaccess

Interface Description

« An EOModelGroup object should have a delegate which can influence how it finds and loads models.
The EOModelGroup instance delegate can implement the methods below:
entityRelationshipForRowpublic abstract EORelationship entityRelationshipForRow(EOEntity
entity, NSDictionary row, EORelationship relationship)

» subEntityForEntity:primaryKey:isFinal:

« entityFailedToLookupClassNamedpublic abstract java.lang.Class
entityFailedToLookupClassNamed(EOEntity entity, java.lang.String className)

« entity:classForObjectWithGloballD:

In addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can
have a delegate. The class delegate implements a single metbfaditModelGroup. For more
information, see the EOModelGroup.ClassDelegate.

Instance Methods

classForObjectWithGloballD

public abstract java.lang.ClaslessForObjectWithGloballD (EOEntity entity,
com.apple.yellow.eocontrol. EOGlobaltioballD)

Used to fine-tune inheritance. The delegate caglosallD to determine a subclass to be used in place of
the one specified iantity.

entityFailedToLookupClassNamed public abstract java.lang.Class
entityFailedToLookupClassNamedEOEntity entity,
java.lang.StringlassNamg

Invoked when the class name specifiecefaity cannot be found at run-time. The delegate can take action
(such as loading a bundle) to provetditywith a class correspondingdlassNamelf the delegate cannot
provide anything, or if there is no delegate, EOGenericRecord is used.

293

294

entityRelationshipForRow public abstract EORelationship
entityRelationshipForRow(EOEntity entity,
NSDictionaryrow,
EORelationshipelationship

Invoked when relationships are instantiated for a newly fetched object. The delegate can use the information
in row to determine which entity the target enterprise object should be associated with, and replace the
relationship appropriately.

modelGroupEntityWithName

public abstract EOModehodelGroupEntityWithName (EOModelGroupgroup,
java.lang.Stringhameg

If implemented by the delegate, this method should searg@idbpfor the entity namedameand return
the entity’s EOModel. Retumull if nameis not an entity imgroup

relationshipFailedToLookupDestinationWithName public abstract EOEntity
relationshipFailedToLookupDestinationWithName(
EORelationshigelationship
java.lang.StringentityNamé

Invoked when loadingelationshipand the destinatioentityNamespecified in the model file cannot be

found in the model group. This most often occurs when a model references entities in another model file
that can’t be found. If the delegate doesn’t implement this method, an exception is raised. If the delegate
does implement this method, the method'’s return value is set as the destination entity. if the delegate returns
null, the destination entity is setnall.

Classes:

EOPropertyListEncoding

Implemented By: EOAttribute
EOEntity
EORelationship
EOStoredProcedure

Interface Description

The EOPropertyListEncoding interface declares methods that read and write oljjegpetty lists—a
dictionary containing only property list data types (that is, NSDictionary objects, java.lang.Strings,
NSArray objects, and NSData objects).

Classes that implement this interface must also provide a constructor that creates objects from a property
list and an owner:

public ClassNamé@\SDictionarypropertyList java.lang.Objeabwnel)

Objects created with a constructor of this type are initialized fmapertyList Theownerargument is

optional and should be used only by objects requiring a reference to their owner. The newly created object
isn’t considered fully functional until it receives awakeWithPropertyList message, which finishes
initializing the object. ThawakeWithPropertyList invocation should be deferred until after all of the

objects identified ipropertyListhave been created.

The methodencodelntoPropertyList is responsible for encoding the receiver into a property list for later
restoration.

This interface is used to read and write modeling objects (EOModel, EOEntity, EOAttribute, and so on) to
a model file.

Methods
awakeWithPropertyList
public abstract voi@dwakeWithPropertyList (NSDictionarypropertyLis)

Finishes initializing the receiver fropropertyList which must have been created with a constructor of the
form:

public ClassNaméNSDictionarypropertyList java.lang.Objecvwner)

awakeWithPropertyList is responsible for restoring references to other objects. Consequently, it should
not be invoked until all other objects that the receiver might reference have been creapedgestylist

295

encodelntoPropertyList
public abstract voigéncodelntoPropertyListtNSMutableDictionarypropertyLis)

Returns the receiver as a property list.

296

	The EOAccess Framework
	Framework: com.apple.yellow.eoaccess
	Introduction
	EOAccess Framework Class Hierarchy
	Figure 1 The EOAccess Framework class hierarchy

	The Database Level
	The Adaptor Level
	The Modeling Classes
	Faulting
	Additions to Other Frameworks
	Miscellaneous Classes
	Delegates

	EOAccessArrayFaultHandler
	Class Description
	Constructors
	EOAccessArrayFaultHandler

	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	relationshipName
	sourceGlobalID

	EOAccessFaultHandler
	Class Description
	Constructors
	EOAccessFaultHandler

	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	globalID

	EOAccessGenericFaultHandler
	Class Description
	Instance Methods
	generation
	linkAfterHandlerUsingGeneration
	next
	previous

	EOAdaptor
	Class Description
	Method Types
	Constructors
	Class Methods
	adaptorWithModel
	adaptorWithName
	assignExternalInfoForAttribute
	assignExternalInfoForEntireModel
	assignExternalInfoForEntity
	assignExternalTypeForAttribute
	availableAdaptorNames
	externalTypesWithModel
	internalTypeForExternalTypeInModel
	setExpressionClassNameForAdaptorClassName

	Instance Methods
	assertConnectionDictionaryIsValid
	canServiceModel
	connectionDictionary
	contexts
	createAdaptorContext
	createDatabaseWithAdministrativeConnectionDictionary
	databaseEncoding
	defaultExpressionClass
	delegate
	dropDatabaseWithAdministrativeConnectionDictionary
	expressionClass
	fetchedValueForDataValue
	fetchedValueForDateValue
	fetchedValueForNumberValue
	fetchedValueForStringValue
	fetchedValueForValue
	hasOpenChannels
	isValidQualifierTypeInModel
	name
	prototypeAttributes
	runLoginPanel
	runLoginPanelAndValidateConnectionDictionary
	setConnectionDictionary
	setDelegate
	sharedLoginPanelInstance
	Creating an EOAdaptor Subclass

	EOAdaptorChannel
	Class Description
	Notifying the Adaptor Channel’s Delegate

	Method Types
	Constructors
	Instance Methods
	adaptorContext
	addStoredProceduresWithNamesToModel
	attributesToFetch
	cancelFetch
	closeChannel
	delegate
	deleteRowDescribedByQualifier
	deleteRowsDescribedByQualifier
	describeModelWithTableNames
	describeResults
	describeStoredProcedureNames
	describeTableNames
	evaluateExpression
	executeStoredProcedure
	fetchRow
	insertRow
	isDebugEnabled
	isFetchInProgress
	isOpen
	lockRowComparingAttributes
	openChannel
	performAdaptorOperation
	performAdaptorOperations
	primaryKeyForNewRowWithEntity
	returnValuesForLastStoredProcedureInvocation
	selectAttributes:fetchSpecification
	setAttributesToFetch
	setDebugEnabled
	setDelegate
	updateValues:inRowDescribedByQualifier
	updateValues:inRowsDescribedByQualifier
	Creating an EOAdaptorChannel Subclass

	EOAdaptorContext
	Class Description
	Method Types
	Constructors
	EOAdaptorContext

	Static Methods
	debugEnabledDefault
	setDebugEnabledDefault

	Instance Methods
	adaptor
	beginTransaction
	canNestTransactions
	channels
	commitTransaction
	createAdaptorChannel
	delegate
	hasBusyChannels
	hasOpenChannels
	isDebugEnabled
	rollbackTransaction
	setDebugEnabled
	setDelegate
	transactionDidBegin
	transactionDidCommit
	transactionDidRollback
	transactionNestingLevel

	Notifications
	AdaptorContextBeginTransactionNotification
	AdaptorContextCommitTransactionNotification
	AdaptorContextRollbackTransactionNotification

	EOAdaptorContext
	Controlling Transactions
	The Adaptor Context’s Delegate and Notifications
	Creating an EOAdaptorContext Subclass

	EOAdaptorOperation
	Class Description
	Method Types
	Constructors
	EOAdaptorOperation

	Instance Methods
	adaptorOperator
	attributes
	changedValues
	compareAdaptorOperation
	entity
	exception
	qualifier
	setAdaptorOperator
	setAttributes
	setChangedValues
	setException
	setQualifier
	setStoredProcedure
	storedProcedure

	EOAttribute
	Class Description
	Interfaces Implemented
	Method Types
	Constructors
	EOAttribute

	Static Methods
	archiveDataForObject

	Instance Methods
	adaptorValueByConvertingAttributeValue
	adaptorValueConversionMethod
	adaptorValueConversionMethodName
	adaptorValueType
	allowsNull
	awakeWithPropertyList
	beautifyName
	columnName
	definition
	encodeIntoPropertyList
	entity
	externalType
	factoryMethodArgumentType
	isDerived
	isFlattened
	isReadOnly
	name
	overridesPrototypeDefinitionForKey
	parameterDirection
	parent
	precision
	prototype
	prototypeName
	readFormat
	scale
	serverTimeZone
	setAdaptorValueConversionMethodName
	setAllowsNull
	setColumnName
	setDefinition
	setExternalType
	setFactoryMethodArgumentType
	setName
	setParameterDirection
	setPrecision
	setPrototype
	setReadFormat
	setReadOnly
	setScale
	setServerTimeZone
	setUserInfo
	setValueClassName
	setValueFactoryMethodName
	setValueType
	setWidth
	setWriteFormat
	storedProcedure
	userInfo
	validateName
	valueClassName
	valueFactoryMethod
	valueFactoryMethodName
	valueType
	width
	writeFormat

	Creating Attributes
	Creating a Simple Attribute
	Creating a Derived Attribute
	Creating a Flattened Attribute

	Mapping Attributes
	Mapping from Database to Objects
	Working with Custom Data Types
	Fetching Custom Values
	Converting Custom Values

	SQL Statement Formats

	EODatabase
	Class Description
	Method Types
	Constructors
	EODatabase

	Instance Methods
	adaptor
	addModel
	addModelIfCompatible
	entityForObject
	entityNamed
	forgetAllSnapshots
	forgetSnapshotForGlobalID
	forgetSnapshotsForGlobalIDs
	invalidateResultCache
	invalidateResultCacheForEntityNamed
	models
	recordSnapshot:forGlobalID:
	recordSnapshots
	registerContext
	registeredContexts
	removeModel
	resultCacheForEntityNamed
	setResultCacheForEntityWithName
	snapshotForGlobalID
	snapshots
	unregisterContext

	EODatabase
	Figure 2 The Access Layer
	Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer
	Snapshots
	Result Cache

	EODatabaseChannel
	Class Description
	Method Types
	Constructors
	EODatabaseChannel

	Instance Methods
	adaptorChannel
	cancelFetch
	databaseContext
	delegate
	fetchObject
	isFetchInProgress
	isLocking
	isRefreshingObjects
	selectObjectsWithFetchSpecification
	setCurrentEditingContext
	setCurrentEntity
	setDelegate
	setIsLocking
	setIsRefreshingObjects

	EODatabaseContext
	Class Description
	Method Types
	Constructors
	EODatabaseContext

	Static Methods
	contextClassToRegister
	forceConnectionWithModel
	registeredDatabaseContextForModel
	setContextClassToRegister

	Instance Methods
	adaptorContext
	arrayFaultWithSourceGlobalID
	availableChannel
	batchFetchRelationship
	commitChanges
	coordinator
	database
	delegate
	faultForGlobalID
	faultForRawRow
	forgetAllLocks
	forgetLocksForObjectsWithGlobalIDs
	forgetSnapshotForGlobalID
	forgetSnapshotsForGlobalIDs
	handlesFetchSpecification
	hasBusyChannels
	initializeObject
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs
	isObjectLockedWithGlobalID
	localSnapshotForGlobalID
	lock
	lockObjectWithGlobalID
	objectsForSourceGlobalID
	objectsWithFetchSpecification
	ownsGlobalID
	ownsObject
	performChanges
	prepareForSaveWithCoordinator
	recordChangesInEditingContext
	recordSnapshotForGlobalID
	recordSnapshots
	recordToManySnapshots
	recordUpdateForObject
	refaultObject
	registerChannel
	registeredChannels
	registerLockedObjectWithGlobalID
	rollbackChanges
	saveChangesInEditingContext
	setDelegate
	setUpdateStrategy
	snapshotForGlobalID
	unlock
	unregisterChannel
	updateStrategy
	valuesForKeys

	Notifications
	EODatabaseChannelNeededNotification

	EODatabaseContext
	Creating and Using an EODatabaseContext
	Fetching and Saving Objects
	Setting a Fetch Limit
	Using a Custom Query
	Faulting
	Batch Faulting
	Prefetching Relationships

	Delegate Methods
	Snapshots
	Updating And Locking Strategies

	EODatabaseDataSource
	Class Description
	Method Types
	Constructors
	EODatabaseDataSource

	Instance Methods
	auxiliaryQualifier
	databaseContext
	dataSourceQualifiedByKey
	deleteObject
	entity
	fetchSpecification
	fetchSpecificationForFetch
	fetchSpecificationName
	insertObject
	isFetchEnabled
	qualifierBindingKeys
	qualifierBindings
	qualifyWithRelationshipKey
	setAuxiliaryQualifier
	setFetchEnabled
	setFetchSpecification
	setFetchSpecificationByName
	setQualifierBindings

	EODatabaseOperation
	Class Description
	Method Types
	Constructors
	EODatabaseOperation

	Instance Methods
	adaptorOperations
	addAdaptorOperation
	databaseOperator
	dbSnapshot
	entity
	globalID
	newRow
	object
	primaryKeyDiffs
	removeAdaptorOperation
	rowDiffs
	rowDiffsForAttributes
	setDatabaseOperator
	setDBSnapshot
	setNewRow
	toManySnapshots

	EOEntity
	Class Description
	Interfaces Implemented
	Method Types
	Constructors
	EOEntity

	Static Methods
	externalNameForInternalName
	nameForExternalName

	Instance Methods
	addAttribute
	addFetchSpecification
	addRelationship
	addSubEntity
	anyAttributeNamed
	anyRelationshipNamed
	attributeNamed
	attributes
	attributesToFetch
	1. Attributes that are class properties, “used for locking,” or primary keys.
	2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class pro...
	3. Source attributes of any non-flattened, to-one relationship that is a class property or that i...
	4. The foreign key attributes of any flattened, to-one relationship that is a class property or t...

	attributesUsedForLocking
	beautifyName
	cachesObjects
	classDescriptionForInstances
	className
	classProperties
	classPropertyNames
	externalModelsReferenced
	externalName
	externalQuery
	fetchSpecificationNamed
	fetchSpecificationNames
	globalIDForRow
	isAbstractEntity
	isPrimaryKeyValidInObject
	isQualifierForPrimaryKey
	isReadOnly
	isValidAttributeUsedForLocking
	isValidClassProperty
	isValidPrimaryKeyAttribute
	maxNumberOfInstancesToBatchFetch
	model
	name
	parentEntity
	primaryKeyAttributeNames
	primaryKeyAttributes
	primaryKeyForGlobalID
	primaryKeyForRow
	primaryKeyRootName
	qualifierForPrimaryKey
	referencesProperty
	relationshipNamed
	relationships
	removeAttribute
	removeFetchSpecificationNamed
	removeRelationship
	removeSubEntity
	restrictingQualifier
	schemaBasedQualifier
	setAttributesUsedForLocking
	setCachesObjects
	setClassName
	setClassProperties
	setExternalName
	setExternalQuery
	setIsAbstractEntity
	setMaxNumberOfInstancesToBatchFetch
	setName
	setPrimaryKeyAttributes
	setReadOnly
	setRestrictingQualifier
	setStoredProcedure
	setUserInfo
	storedProcedureForOperation
	subEntities
	userInfo
	validateName

	Creating an Entity

	EOEntityClassDescription
	Class Description
	Constructors
	EOEntityClassDescription

	Instance Methods
	entity

	EOJoin
	Class Description
	Method Types
	Constructors
	EOJoin

	Instance Methods
	destinationAttribute
	isReciprocalToJoin
	sourceAttribute

	EOLoginPanel
	Class Description
	Constructors
	EOLoginPanel

	Instance Methods
	administrativeConnectionDictionaryForAdaptor
	runPanelForAdaptor

	EOModel
	Class Description
	Creating an EOModel Programmatically

	Method Types
	Constructors
	EOModel

	Instance Methods
	adaptorName
	addEntity
	addStoredProcedure
	availablePrototypeAttributeNames
	beautifyNames
	connectionDictionary
	encodeTableOfContentsIntoPropertyList
	entities
	entityForObject
	entityNamed
	entityNames
	externalModelsReferenced
	loadAllModelObjects
	modelGroup
	name
	path
	prototypeAttributeNamed
	referencesToProperty
	removeEntity
	removeEntityAndReferences
	removeStoredProcedure
	setAdaptorName
	setConnectionDictionary
	setModelGroup
	setName
	setUserInfo
	storedProcedureNamed
	storedProcedureNames
	storedProcedures
	userInfo
	writeToFile

	Notifications
	EntityLoadedNotification

	Loading a Model File

	EOModelGroup
	Class Description
	EOModelGroup Delegates

	Method Types
	Constructors
	EOModelGroup

	Static Methods
	classDelegate
	defaultGroup
	globalModelGroup
	modelGroupForObjectStoreCoordinator
	setClassDelegate
	setDefaultGroup
	setModelGroup

	Instance Methods
	addModel
	addModelWithPath
	delegate
	entityForObject
	entityNamed
	fetchSpecificationNamed
	loadAllModelObjects
	modelNamed
	modelNames
	models
	modelWithPath
	removeModel
	setDelegate
	storedProcedureNamed

	Notifications
	ModelAddedNotification
	ModelInvalidatedNotification

	Setting Up A Model Group Programmatically

	EORelationship
	Class Description
	Specifying the Join Semantic

	Interfaces Implemented
	Method Types
	Constructors
	EORelationship

	Instance Methods
	addJoin
	anyInverseRelationship
	beautifyName
	componentRelationships
	definition
	deleteRule
	destinationAttributes
	destinationEntity
	entity
	inverseRelationship
	isCompound
	isFlattened
	isMandatory
	isToMany
	joinSemantic
	joins
	name
	numberOfToManyFaultsToBatchFetch
	ownsDestination
	propagatesPrimaryKey
	qualifierWithSourceRow
	referencesProperty
	removeJoin
	setDefinition
	setDeleteRule
	setEntity
	setIsMandatory
	setJoinSemantic
	setName
	setNumberOfToManyFaultsToBatchFetch
	setOwnsDestination
	setPropagatesPrimaryKey
	setToMany
	setUserInfo
	sourceAttributes
	userInfo
	validateName
	validateValue

	Creating Relationships
	Creating a Simple Relationship
	Creating a Flattened Relationship

	EOSQLExpression
	Class Description
	Method Types
	Constructors
	EOSQLExpression

	Static Methods
	appendExpression
	createDatabaseStatementsForConnectionDictionary
	createTableStatementsForEntityGroup
	1. Creates an EOSQLExpression object.
	2. Sets the expression’s entity to the first entity in entityGroup.
	3. Adds a create clause for each Attribute in entityGroup’s Entities.
	4. Sets the expression’s statement to CREATE TABLE TABLE_NAME (LIST_STRING), where TABLE_NAME is ...
	5. Adds the expression to an array.
	6. Returns the array.

	createTableStatementsForEntityGroups
	deleteStatementWithQualifier
	dropDatabaseStatementsForConnectionDictionary
	dropPrimaryKeySupportStatementsForEntityGroup
	dropPrimaryKeySupportStatementsForEntityGroups
	dropTableStatementsForEntityGroup
	dropTableStatementsForEntityGroups
	expressionForString
	foreignKeyConstraintStatementsForRelationship
	formatSQLString
	formatStringValue
	formatValue:forAttribute
	insertStatementForRow
	primaryKeyConstraintStatementsForEntityGroup
	primaryKeyConstraintStatementsForEntityGroups
	primaryKeySupportStatementsForEntityGroup
	primaryKeySupportStatementsForEntityGroups
	schemaCreationScriptForEntities
	schemaCreationStatementsForEntities
	selectStatementForAttributes
	setUseBindVariables
	setUseQuotedExternalNames
	sqlPatternFromShellPattern
	sqlPatternFromShellPattern:withEscapeCharacter
	updateStatementForRow
	useBindVariables
	useQuotedExternalNames

	Instance Methods
	addBindVariableDictionary
	addCreateClauseForAttribute
	addInsertListAttribute
	addJoinClauseWithLeftName:rightName:joinSemantic:
	addOrderByAttributeOrdering
	addSelectListAttribute
	addUpdateListAttribute
	aliasesByRelationshipPath
	allowsNullClauseForConstraint
	appendItemToListString
	assembleDeleteStatementWithQualifier
	assembleInsertStatementWithRow
	assembleJoinClause
	assembleSelectStatementWithAttributes
	assembleUpdateStatementWithRow
	bindVariableDictionaries
	bindVariableDictionaryForAttribute
	columnTypeStringForAttribute
	entity
	externalNameQuoteCharacter
	joinClauseString
	joinExpression
	listString
	lockClause
	mustUseBindVariableForAttribute
	orderByString
	prepareConstraintStatementForRelationship
	prepareDeleteExpressionForQualifier
	1. Sends an sqlStringForSQLExpression(this)message to qualifier to generate the receiver’s whereC...
	2. Invokes tableListWithRootEntity to get the table name for the FROM clause.
	3. Invokes assembleDeleteStatementWithQualifier.

	prepareInsertExpressionWithRow
	1. Invokes addInsertListAttribute for each entry in row to prepare the comma-separated list of at...
	2. Invokes tableListWithRootEntity to get the table name.
	3. Invokes assembleInsertStatementWithRow.

	prepareSelectExpressionWithAttributes
	1. Invokes addSelectListAttribute for each entry in attributes to prepare the comma-separated lis...
	2. Sends an sqlStringForSQLExpression(this)message to fetchSpecification’s qualifier to generate ...
	3. Invokes addOrderByAttributeOrdering for each EOAttributeOrdering object in fetchSpecification....
	4. Invokes joinExpression to generate the receiver’s joinClauseString.
	5. Invokes tableListWithRootEntity to get the comma-separated list of tables for the FROM clause.
	6. If flag is true, invokes lockClause to get the SQL string to lock selected rows.
	7. Invokes assembleSelectStatementWithAttributes.

	prepareUpdateExpressionWithRow
	1. Invokes addUpdateListAttribute for each entry in row to prepare the comma-separated list of “a...
	2. Sends an sqlStringForSQLExpression(this)message to qualifier to generate the receiver’s whereC...
	3. Invokes tableListWithRootEntity to get the table name for the FROM clause.
	4. Invokes assembleUpdateStatementWithRow.

	setStatement
	setUseAliases
	shouldUseBindVariableForAttribute
	sqlStringForAttribute
	sqlStringForAttributeNamed
	sqlStringForAttributePath
	sqlStringForConjoinedQualifiers
	sqlStringForDisjoinedQualifiers
	sqlStringForKeyComparisonQualifier
	sqlStringForKeyValueQualifier
	sqlStringForNegatedQualifier
	sqlStringForNumber
	sqlStringForQualifier
	sqlStringForSchemaObjectName
	sqlStringForSelector
	sqlStringForString
	sqlStringForValue
	statement
	tableListWithRootEntity
	useAliases
	valueList
	whereClauseString

	EOSQLExpression
	Building Expressions
	Using Table Aliases
	Bind Variables
	Generating SQL for EOModeler’s Schema Generation

	EOSQLQualifier
	Class Description
	Constructors
	Static Methods
	qualifierMigratedFromEntityWithRelationshipPath
	qualifierWithQualifierFormat

	Instance Methods
	qualifierWithBindings
	validateKeysWithRootClassDescription

	EOStoredProcedure
	Class Description
	Interfaces Implemented
	Method Types
	Constructors
	EOStoredProcedure

	Instance Methods
	arguments
	beautifyName
	externalName
	model
	name
	setArguments
	setExternalName
	setName
	setUserInfo
	userInfo

	EOAdaptorChannel.Delegate
	Interface Description
	Instance Methods
	adaptorChannelDidChangeResultSet
	adaptorChannel:didEvaluateExpression
	adaptorChannelDidExecuteStoredProcedure
	adaptorChannelDidFetchRow
	adaptorChannelDidFinishFetching
	adaptorChannelDidPerformOperations
	adaptorChannelDidSelectAttributes
	adaptorChannelShouldConstructStoredProcedureReturnValues
	adaptorChannelShouldEvaluateExpression
	adaptorChannelShouldExecuteStoredProcedure
	adaptorChannel:shouldReturnValuesForStoredProcedure
	adaptorChannelShouldSelectAttributes
	adaptorChannelWillFetchRow
	adaptorChannelWillPerformOperations

	EOAdaptorContext.Delegate
	Interface Description
	Instance Methods
	adaptorContextDidBegin
	adaptorContextDidCommit
	adaptorContextDidRollback
	adaptorContextShouldBegin
	adaptorContextShouldCommit
	adaptorContextShouldConnect
	adaptorContextShouldRollback

	EOAdaptor.Delegate
	Interface Description
	Instance Methods
	fetchedValueForAttribute

	EODatabaseContext.Delegate
	Interface Description
	Instance Methods
	databaseContextDidFetchObjects
	databaseContextDidSelectObjects
	databaseContextFailedToFetchObject
	databaseContextNewPrimaryKeyForObject
	databaseContextShouldFetchArrayFault
	databaseContextShouldFetchObjectFault
	databaseContextShouldFetchObjects
	databaseContextShouldInvalidateObjectWithGlobalID
	databaseContextShouldLockObjectWithGlobalID
	databaseContextShouldRaiseExceptionForLockFailure
	databaseContextShouldSelectObjects
	databaseContextShouldUpdateCurrentSnapshot
	databaseContextShouldUsePessimisticLockWithFetchSpecification
	databaseContextWillOrderAdaptorOperationsFromDatabaseOperations
	databaseContextWillPerformAdaptorOperations

	EOUtilities
	Class Description
	Method Types
	Static Methods
	connectWithModelNamed
	databaseContextForModelNamed
	destinationKeyForSourceObject
	entityForClass
	entityForObject
	entityNamed
	executeStoredProcedureNamed
	localInstanceOfObject
	localInstancesOfObjects
	modelGroup
	objectWithQualifierFormat
	objectFromRawRow
	objectMatchingKeyAndValue
	objectMatchingValues
	objectsForEntityNamed
	objectsWithQualifierFormat
	objectsMatchingKeyAndValue
	objectsMatchingValues
	objectsOfClass
	objectsWithFetchSpecificationAndBindings
	objectWithFetchSpecificationAndBindings
	objectWithPrimaryKey
	objectWithPrimaryKeyValue
	primaryKeyForObject
	rawRowsWithQualifierFormat
	rawRowsMatchingKeyAndValue
	rawRowsMatchingValues
	rawRowsForSQL
	rawRowsWithStoredProcedureNamed

	EOModelGroup.ClassDelegate
	Interface Description
	Instance Methods
	defaultModelGroup

	EOModelGroup.Delegate
	Interface Description
	Instance Methods
	classForObjectWithGlobalID
	modelGroupEntityWithName

	EOPropertyListEncoding
	Interface Description
	Methods
	awakeWithPropertyList
	encodeIntoPropertyList

