The EOControl Framework

The EOControl Framework

Framework: System/Library/Frameworks/EOInterface.framework

Header File Directories: System/Library/Frameworks/EOInterface.framework/Headers

Introduction

The EOInterface framework defines one of the layers of the Enterprise Objects Framework architecture—
the control layer. It provides an infrastructure for enterprise objects that is independent of your application’s
user interface and its storage mechanism. The control layer dynamically manages the interaction between
enterprise objects, the access layer, and the interface layer by:

« Tracking changes to enteprise objects

» Prompting the user interface to change when object values change

* Prompting the database to change when changes to objects are committed
» Managing undo in the object graph

« Managing uniquing (the mechanism by which Enterprise Objects Framework uniquely identifies
enterprise objects and maintains their mapping to stored data in the database)

The control layer's major areas of responsibility and the key classes involved are described in the following

table:

Responsibility Classes
EOObserverCenter
EODelayedObserverQueue

Tracking Enterprise Objects Changes EODelayedObserver
EOObserverProxy

EOObserving (protocol)

EOObjectStore
EOCooperatingObjectStore
EOObjectStoreCoordinator
EOGlIoballD
EOKeyGloballD
EOTemporaryGloballD

Object Storage Abstraction

Responsibility Classes

EOFetchSpecification
Query specification EOQualifier
EOSortOrdering

EOClassDescription (validation)

Interaction with enterprise objects NSObjectAdditions (basic enterprise object behavior)

Simple source of objects (for display groups) EODataSource, EODetailDataSource

The following sections describe each responsibility in greater detail.

Tracking Enterprise Objects Changes

EOCaontrol provides four classes and a protocol that form an efficient, specialized mechanism for tracking
changes to enterprise objects and for managing the notification of those changes to interested observers.
EOObserverCenter is the central manager of change notification. It records observers and the objects they
observe, and it distributes notifications when the observable objects change. Observers implement the
EOObserving protocol, which defines one metludyjlectWillChange:. Observable objects (generally
enterprise objects) invoke thewllChange method before altering their state, which causes all observers

to receive ambjectWillChange: message.

The other three classes add to the basic observation mechanism. EODelayedObserverQueue alters the basic,
synchronous change notification mechanism by offering different priority levels, which allows observers to
specify the order in which they're notified of changes. EODelayedObserver is an abstract superclass for
objects that observe other objects (such as the EOQInterface layer's EOAssociation classes). Finally,
EOObserverProxy is a subclass of EODelayedObserver that forwards change messages to a target object,
allowing objects that don't inherit from EODelayedObserver to take advantage of this mechanism.

The major observer in Enterprise Objects Framework is EOEditingContext, which implements its
objectWillChange: method to record a snapshot for the object about to change, register undo operations
in an NSUndoManager, and record the changes needed to update objects in its EOObjectStore. Because
some of these actions—such as examining the object’'s new state—can only be performed after the object
has changed, an EOEditingContext sets up a delayed message to itself, which it gets at the end of the run
loop. Observers that only need to examine an object after it has changed can use the delayed observer
mechanism, described in the EODelayedObserver and EODelayedObserverQueue class specifications.

Object Storage Abstraction

The control layer provides an infrastructure that’s independent of your application’s storage mechanism
(typically a database) by defining an API for an “intelligent” repository of objects, whether it's based on
external data or whether it manages objects entirely in memory. EOObjectStore is an abstract class that
defines that basic API, setting up the framework for constructing and registering enterprise objects,

The EOControl Framework

servicing object faults, and committing changes made in an EOEditingContext. Subclasses of
EOODbjectStore implement the API in terms of their specific storage mechanism.

Subclasses of EOObjectStore

EOEditingContext is the principal subclass of EOObjectStore and is used for managing objects in memory.
For stores based on external data, there are several subclasses. EOCooperatingObjectStore defines stores
that work together to manage data from several distinct sources (such as different databases). The access
layer's EODatabaseContext is actually a subclass of this class. A group of cooperating stores is managed
by another subclass of EOObjectStore, EOObjectStoreCoordinator. If you're defining a subclass of
EOODbjectStore, it's probably one based on an external data repository, and it should therefore inherit from
EOCooperatingObjectStore so as to work well with an EOObjectStoreCoordinator—though this isn’t
required.

EODatabaseContext provides objects from relational databases and is therefore provided by Enterprise
Objects Framework’s access layer. It is the class that defines the interaction between the control and access
layers. Database contexts and other object stores based on external data are often shared by several editing
contexts to conserve database connections.

Object store subclasses cooperate with one another as illustrated in the following:

EDEditing EQEditing EQEdRing
Conbext Coniext Context
ELilatabrese ECiDalsbase
Conbext Cantexi

Registering Enterprise Objects
An object store identifies its objects in two ways:

« By reference for identification within a specific editing context
» By global ID for universal identification of the same record among multiple stores.

A global ID is defined by three classes: EOGloballD, EOKeyGloballD, and EOTemporaryGloballD.
EOGlIoballD is an abstract class that forms the basis for uniquing in Enterprise Objects Framework.

EOKeyGloballD is a concrete subclass of EOGloballD whose instances represent persistent IDs based on
the access layer's EOModel information: an entity and the primary key values for the object being
identified. An EOTemporaryGloballD object is used to identify a newly created enterprise object before it's
saved to an external store. For more information, see the EOGloballD class specification.

Servicing Faults

For external repositories, an object store might delay fetching an object’s data, instead creating an EOFault
as a placeholder. When a fault is accessed (sent a message), it triggers its object store to fetch its data and
transform it into an instance of the appropriate object class. This preserves both theidlgadtis

EOGIoballD, while saving the cost of fetching data that might not be used. Faults are typically created for
the destinations of relationships for objects that are explicitly fetched. See the EOFault and EOFaultHandler
class specifications for more information.

Classes: EOArrayDataSource

EOArrayDataSource
Inherits From: EODataSource : NSObject
Conforms To: NSCoding

NSObject (NSObject)

Declared In: EOControl/EOArrayDataSource.h

Class Description

EOArrayDataSource is a concrete subclass of EODataSource that can be used to provide enterprise objects
to a display group (EODisplayGroup from EOInterface or WODisplayGroup from WebObjects) without
having to fetch them from the database. In an EOArrayDataSource, objects are maintained in an in-memory
NSArray.

EOArrayDataSource can fetch, insert, and delete objects—operations it performs directly with its array. It
can also provide a detail data source.

Adopted Protocols

NSCoding
encodeWithCoder:
initWithCoder:

Instance Methods

initWithClassDescription:editingContext:

— initwithClassDescription: (EOClassDescription tJassDescription
editingContext:(EOEditingContext *gditingContext

The designated initializer of the EOArrayDataSource class, this method initializes a newly allocated
EOArrayDataSource object wittlassDescriptiorandeditingContextboth of which it retains.
classDescriptiorcontains information about the objects provided by the EOArrayDataSource and
editingContexis the EOArrayDataSource’s EOEditingContext. Either argument may be nil. Retlfrns

setArray:
— (void)setArray: (NSArray *)array

Sets the receiver’s array of objectsatoay.

Classes: EOAndQuialifier

EOANndQualifier

Inherits From: EOQualifier : NSObject

Conforms To: EOQualifierEvaluation
EOQualifierSQLGeneration

Declared In: EOControl/EOQualifier.h

Class Description

EOAnNdQualifier is a subclass of EOQualifier that contains multiple qualifiers. EOAndQualifier adopts the
EOQualifierEvaluation protocol, which defines the metleamluate WithObject: for in-memory

evaluation. When an EOAndQualifier object receives\atuate WithObject: message, it evaluates each

of its qualifiers until one of them returns NO. If one of its qualifiers returns NO, the EOAndQuialifier object
returns NO immediately. If all of its qualifiers return YES, the EOAndQualifier object returnsYES.

Adopted Protocols

EOQualifierEvaluation
— evaluateWithObject:

EOQualifierSQLGeneration
— sqIStringForSQLEXxpression:
— schemaBasedQualifierWithRootEntity:

Instance Methods

evaluateWithObject:

@protocol EOQualifierEvaluation
— (BOOL)evaluateWithObject:(id)anObject

Returns YES ifinObjectsatisfies the qualifier, NO otherwise. When an EOAndQualifier object receives an
evaluateWithObject: message, it evaluates each of its qualifiers until one of them returns NO. If any of its
qualifiers returns NO, the EOAndQualifier object returns NO immediately. If all of its qualifiers return YES,
the object returns YES. This method can raise one of several possible exceptions if an error occurs. If your
application allows users to construct arbitrary qualifiers (such as through a user interface), you may want
to write code to catch any exceptions and properly respond to errors (for example, by displaying a panel
saying that the user typed a poorly formed qualifier).

initWithQualifierArray:
—initwithQualifierArray: (NSArray *)qualifiers

Initializes the receiver with the qualifieggalifiersand returnself. This method is the designated initializer
for EOAndQuialifier.

initWithQualifiers:

—initWithQualifiers: (EOQualifier *yjualifiers, ...
Initializes the receiver with thail-terminated list of qualifiergualifiers Works by invoking
initWithQualifierArray: . For example, the following code excerpt constructs two qualifjeedl and

qual2. It then uses these qualifiers to initialize an EOAndQual#ietQual. andQual is then used to filter
an in-memory array.

NSArray *guests; /* Assume this exists. */
EOQualifier *quall, *qual2, *andQual;

quall = [EOQualifier qualifierWithQualifierFormat: @"lastName = '‘Nunez"7;
qual2 = [EOQualifier qualifierWithQualifierFormat: @"firstName = 'Maria™];
andQual = [[EOAndQualifier alloc] initWithQualifiers:quall, qual2, nil];
return [guests filteredArrayUsingQualifier:andQual];

qualifiers

— (NSArray *Qualifiers

Returns the receiver’s qualifiers.

Classes: EOClassDescription

EOCIlassDescription
Inherits From: NSObiject
Declared In: EOControl/EOClassDescription.h

Class Description

The EOClassDescription class provides a mechanism for extending classes by giving them access to
metadata not available in the run-time system. This is achieved as follows:

« EOCIlassDescription provides a bridge between enterprise objects and the metadata contained in an
external source of information, such as an EOModel (EOAccess). It defines a standard API for accessing
the information in an external source. It also manages the registration of EOClassDescription objects in
your application.

» The EOEnterpriseObject informal protocol declares several EOClassDescription-related methods that
define basic enterprise objects behavior, such as undo and validation. The Enterprise Objects Framework
extends NSObject by providing implementations of these methods. An enterprise object class can either
accept the default implementations or it can provide its own implementation by overriding. This is
discussed in more detail in the section “Using EOClassDescription.”

Enterprise Objects Framework implements a default subclass of EOClassDescription in EOAccess,
EOEntityClassDescription. EOEntityClassDescription extends the behavior of enterprise objects by
deriving information about them (such as NULL constraints and referential integrity rules) from an
associated EOModel.

For more information on using EOClassDescription, see the sections

* How Does It Work?

» Using EOClassDescription

« EOEntityClassDescription

* The EOClassDescription’s Delegate

Method Types

Managing EOClassDescriptions
+ invalidateClassDescriptionCache
+ registerClassDescription:forClass:

10

Getting EOClassDescriptions
+ classDescriptionForClass:
+ classDescriptionForEntityName:

Creating new object instances

— createlnstanceWithEditingContext:globallD:zone:

Propagating delete
— propagateDeleteForObject:editingContext:

Returning information from the EOClassDescription
— entityName
— attributeKeys
— classDescriptionForDestinationKey:
— toManyRelationshipKeys
— toOneRelationshipKeys
— inverseForRelationshipKey:
— ownsDestinationObjectsForRelationshipKey:
— deleteRuleForRelationshipKey:

Performing validation
— validateObjectForDelete:
— validateObjectForSave:
— validateValue:forKey:

Providing default characteristics for key display
— defaultFormatterForKey:
— defaultFormatterForKeyPath:
— displayNameForKey:

Handling newly inserted and newly fetched objects
— awakeObject:fromFetchInEditingContext:
— awakeObject:frominsertionInEditingContext:

Setting the delegate
+ classDelegate
+ setClassDelegate:

Getting an object’s description
— userPresentableDescriptionForObiject:

Classes: EOClassDescription

Class Methods

classDelegate
+ (id)classDelegate

Returns the delegate for the EOClassDescription class (as opposed to EOClassDescription instances).

See also: + setClassDelegate:

classDescriptionForClass:
+ (EOClIlassDescription tJassDescriptionForClasqClassaClass

Invoked by the default implementations of the EOEnterpriseObject informal protocol method
classDescriptionto return the EOClassDescription &€lass It's generally not safe to use this method
directly—for example, individual EOGenericRecord instances can have different class descriptions. If a
class description faaClassisn’t found, this method posts an
EOClassDescriptionNeededForClassNotification on behalf of the receiver’s class, allowing an observer to
register a an EOClassDescription.

classDescriptionForEntityName:
+ (EOClassDescription tJassDescriptionForEntityName(NSString *)entityName

Returns the EOClassDescription registered uedétyName

invalidateClassDescriptionCache
+ (void)invalidateClassDescriptionCache
Flushes the EOClassDescription cache. Because the EOModel objects in an application supply and register

EOCIlassDescriptions on demand, the cache continues to be repopulated as needed after you invalidate it.
(The EOModel class is defined in EOAccess.)

You'd use this method when a provider of EOClassDescriptions (such as an EOModel) has newly become
available, or is about to go away. However, you should rarely need to directly invoke this method unless
you're using an external source of information other than an EOModel.

11

registerClassDescription:forClass:
+ (void)registerClassDescription(EOClassDescription 8escriptionforClass:(Classglass

Registers an EOClassDescription objecttassin the EOClassDescription caceu should rarely need
to directly invoke this method unless you're using an external source of information other than an EOModel
(EOAccess).

setClassDelegate:
+ (void)setClassDelegatéid)delegate

Sets the delegate for the EOClassDescription class (as opposed to EOClassDescription instances) to
delegate without retaining it. For more information on the class delegate, see the
EOCIlassDescriptionClassDelegate informal protocol specification.

Seealso: + classDelegate

Instance Methods

12

attributeKeys
— (NSArray *attributeKeys

Overridden by subclasses to return an array of attribute keys (NSStrings) for objects described by the
receiver. “Attributes” contain immutable data (such as NSNumbers and NSStrings), as opposed to

“relationships” that are references to other enterprise objects. For example, a class description that describes

Movie objects could return the attribute keys “title,” “dateReleased,” and “rating.”
EOClassDescription’s implementation of this method simply returns .

See also: —entityName, —toOneRelationshipKeys—toManyRelationshipKeys

awakeObject:fromFetchInEditingContext:
— (voidjawakeObiject:(id)object
fromFetchIinEditingContext: (EOEditingContext *3nEditingContext

Overridden by subclasses to perform standard post-fetch initializatiobjémtin anEditingContext.
EOCIlassDescription’s implementation of this method does nothing.

Classes: EOClassDescription

awakeObject:fromInsertioninEditingContext:

— (voidjawakeObiject:(id)object
fromInsertionIinEditingContext: (EOEditingContext *anEditingContext

Assigns empty arrays to to-many relationship properties of newly inserted enterprise objects. Can be
overridden by subclasses to propagate inserts for the newly ingbjitetin anEditingContextMore
specifically, ifobjecthas a relationship (or relationships) that propagates the object’s primary key and if no
object yet exists at the destination of that relationship, subclasses should create the new object at the
destination of the relationship. Use this method to put default values in your enterprise object.

classDescriptionForDestinationKey:
— (EOClassDescription &)assDescriptionForDestinationKey(NSString *)detailKey

Overridden by subclasses to return the class description for objects at the destination of the to-one
relationship identified byletailkKey For example, the statement:

[movie classDescriptionForDestinationKey:@"studio"]

might return the class description for the Studio class. EOClassDescription’s implementation of this method
returnsnil.

createlnstanceWithEditingContext:globallD:zone:

— (id)createlnstanceWithEditingContext:(EOEditingContext *xnEditingContext
globallD: (EOGloballD *)ygloballD
zone(NSZone *fone

Overridden by subclasses to create an object of the appropriate alaEslitingContextvith globallD and

in zone In typical usage, all three of the method’s argumentgikard the object responds to
initWithEditingContext:classDescription:globallD subclasses should invoke that method, otherwise

they should invokénit . Implementations of this method should return an autoreleased object. Enterprise
Objects Framework uses this method to create new instances of objects when fetching existing enterprise
objects or inserting new ones in an interface layer EODisplayGroup. EOClassDescription’s implementation
of this method returnsil .

defaultFormatterForKey:

— (NSFormatter jJefaultFormatterForKey: (NSString *key
Returns the default NSFormatter to use when parsing values for assignke®nEClassDescription’s
implementation returnsil. The access layer's EOEntityClassDescription’s implementation returns an

NSFormatter based on the Objective-C valueClass specifikdyfor the associated model file. Code that
creates a user interface, like a wizard, can use this method to assign formatters to user interface elements.

13

14

defaultFormatterForKeyPath:
— (NSFormatter ®jefaultFormatterForKeyPath: (NSString *keyPath

Similar todefaultFormatterForKey: , except this method traverdesyPathand returns the formatter for
the key at the end of the path (ustgjaultFormatterForKey:).

deleteRuleForRelationshipKey:
— (EODeleteRulageleteRuleForRelationshipKey(NSString *YyelationshipKey

Overridden by subclasses to return a delete rule indicating how to treat the destination of the given
relationship when the receiving object is deleted. The delete rule is one of:

Constant Description

When the source object is deleted, any references a destination object has to the source
are removed or “nullified.” For example, suppose a department has a to-many
relationship to multiple employees. When the department is deleted, any back references
an employee has to the department are set to nil.

EODeleteRuleNullify

When the source object (department) is deleted, any destination objects (employees) are

EODeleteRuleCascade
also deleted.

If the source object (department) has any destination objects (employees), a delete

EODeleteRuleDeny operation is refused.

When the source object is deleted, its relationship is ignored and no action is taken to
propagate the deletion to destination objects.

This rule is useful for tuning performance.To perform a deletion, Enterprise Objects
Framework fires all the faults of the deleted object and then fires any to-many faults that
point back to the deleted object. For example, suppose you have a simple application
based on the sample Movies database. Deleting a Movie object has the effect of firing a
to-one fault for the Movie’s studio relationship, and then firing the to-many movies fault
for that studio. In this scenario, it would make sense to set the delete rule
EODeleteRuleNoAction for Movie’s studio relationship. However, you should use this
delete rule with great caution since it can result in dangling references in your object
graph.

EODeleteRuleNoAction

EOCIlassDescription’s implementation of this method returns the delete rule EODeleteRuleNullify. In the
common case, the delete rule for an enterprise object is defined in its EOModel. (The EOModel class is
defined in EOAccess.)

See also: — propagateDeleteWithEditingContext: (EOEnterpriseObject)

Classes: EOClassDescription

displayNameForKey:

— (NSString *flisplayNameForKey:(NSString *key
Returns the default string to use in the user interface when dispkayi®y convention, lowercase words
are capitalized (for example, “revenue” becomes “Revenue”), and spaces are inserted into words with

mixed case (for example, “firstName” becomes “First Name”). This method is useful if you're creating a
user interface from only a class description, such as with a wizard or a Direct To Web application.

entityName
— (NSString *entityName
Overridden by subclasses to return a unique type name for objects of this class. For example, the access

layer's EOEntityClassDescription returns its EOEntity’s name. EOClassDescription’s implementation of
this method returnsil.

See also: — attributeKeys, —toOneRelationshipKeys—~toManyRelationshipKeys

inverseForRelationshipKey:

— (NSString *)nverseForRelationshipKey(NSString *yelationshipKey
Overridden by subclasses to return the name of the relationship pointing back at the receiver from the
destination of the relationship specifiedrblationshipKeyFor example, suppose an Employee object has

a relationship calledepartment to a Department object, and Department has a relationship called
employeeshack to Employee. The statement:

[employee inverseForRelationshipKey:@"department"]
returns the string “employees”.

EOClassDescription’s implementation of this method retaoiins

ownsDestinationObjectsForRelationshipKey:
— (BOOL)wnsDestinationObjectsForRelationshipKey(NSString *yelationshipKey

Overridden by subclasses to return YES or NO to indicate whether the objects at the destination of the
relationship specified biglationshipKeyshould be deleted if they are removed from the relationship (and
not transferred to the corresponding relationship of another object). For example, an Invoice object owns
its line items. If a Lineltem object is removed from an Invoice it should be deleted since it can't exist outside
of an Invoice. EOClassDescription’s implementation of this method returninNid2 common case, this
behavior for an enterprise object is defined in its EOModel. (The EOModel class is defined in EOAccess.)

15

16

propagateDeleteForObject:editingContext:
— (void)propagateDeleteForObject(id)object
editingContext:(EOEditingContext *3nEditingContext

Propagates a delete operationdbjectin anEditingContextaccording to the delete rules specified in the
EOModel. This method is invoked whenever a delete operation needs to be propagated, as indicated by the
delete rule specified for the corresponding EOEntity’s relationship key. (The EOModel and EOEntity
classes are defined in EOAccess.) For more discussion of delete rules, see the EOEnterpriseObject informal
protocol specification.

See also: —deleteRuleForRelationshipKey:

toManyRelationshipKeys
— (NSArray *YoManyRelationshipKeys

Overridden by subclasses to return the keys for the to-many relationship properties of the receiver. To-many
relationship properties contain arrays of enterprise objects. EOClassDescription’s implementation of this
method returnsil .

See also: —entityName, —toOneRelationshipKeys— attributeKeys

toOneRelationshipKeys
— (NSArray *xoOneRelationshipKeys

Overridden by subclasses to return the keys for the to-one relationship properties of the receiver. To-one
relationship properties are other enterprise objects. EOClassDescription’s implementation of this method
returnsnil.

See also: —entityName, —toManyRelationshipKeys,— attributeKeys

userPresentableDescriptionForObiject:
— (NSString *userPresentableDescriptionForObject{id)anObject
Returns a short (no longer than 60 characters) descriptemQifjectbased on its data. This method

enumerateanObjecs attributeKeys and returns each attribute’s value, separated by commas and with the
default formatter applied for numbers and dates.

Classes: EOClassDescription

validateObjectForDelete:
— (NSException ®alidateObjectForDelete{id)object

Overridden by subclasses to determine whether it's permissible to dlgleté Subclasses should return
nil if the delete operation should proceed, or return an exception containing a user-presentable (localized)
error message if not. EOClassDescription’s implementation of this method m&turns

validateObjectForSave:
— (NSException ®yalidateObjectForSave(id)object

Overridden by subclasses to determine whether the values being salgddtare acceptable. Subclasses
should returmil if the values are acceptable and the save operation should proceed, or return an exception
containing a user-presentable (localized) error message if not. EOClassDescription’s implementation of
this method returnsil.

validateValue:forKey:
— (NSException ®alidateValue:(id *)valuePforKey: (NSString *key

Overridden by subclasses to validate the value pointedvalbgP Subclasses should retunihif the value

is acceptable, or return an exception containing a user-presentable (localized) error message if not.
Implementations can replagaluePwith a converted value (for example, an EOAttribute might convert an
NSString to an NSNumber). EOClassDescription’s implementation of this method m&turns

Notifications

The following notifications are declared by EOClassDescription and posted by enterprise objects in your
application.

EOClassDescriptionNeededForClassNaotification

One of the EOClassDescription-related methods that Enterprise Objects Framework adds to NSObject to
extend the behavior of enterprise objects is classDescription. The first time an enterprise object receives a
classDescription message (for example, when changes to the object are being saved to the database), it posts
EOCIlassDescriptionNeededForClassNotification to notify observers that a class description is needed. The
observer then locates the appropriate class description and registers it in the application. By default,
EOModel objects are registered as observers for this notification and register EOClassDescriptions on
demand.

Notification Object Enterprise object class

17

18

userinfo Dictionary None

EOCIlassDescriptionNeededForEntityNameNotification

WhenclassDescriptionForEntityName:is invoked for a previously unregistered entity name, this
notification is broadcast with the requested entity name as the object of the notification. By default,
EOModel objects are registered as observers for this notification and register EOClassDescriptions on
demand.

Notification Object Entity name (NSString)

userlnfo Dictionary None

Classes: EOClassDescription

EOClassDescription

How Does It Work?

As noted above, Enterprise Objects Framework implements a default subclass of EOClassDescription in
EOAccess, EOEntityClassDescription. In the typical scenario in which an enterprise object has a
corresponding model file, a particular operation (such as validating a value) results in the broadcast of an
EOCIlassDescriptionNeeded... notification (an EOClassDescriptionNeededForClassNotification or an
EOCIlassDescriptionNeededForEntityNameNotification). When an EOModel object receives such a
notification, it registers the metadata (class description) for the EOEntity on which the enterprise object is
based. (EOModel and EOEntity are defined in EOAccess.)

An enterprise object takes advantage of the metadata registered for it by using the
EOCIlassDescription-related methods defined in the EOEnterpriseObject informal protocol (and
implemented in a category of NSObject). Primary among these methtaissiSescription which returns

the class description associated with the enterprise object. Through this class description the enterprise
object has access to all of the information relating to its entity in a model file.

In addition to methods that return information based on an enterprise object’s class description, the
EOCIlassDescription-related methods the EnterpriseObject informal protocol defines include methods that
are automatically invoked when a particular operation occurs. These include validation methods and
methods that are invoked whenever an enterprise object is inserted or fetched.

All of this comes together in your running application. When a user tries to perform a particular operation
on an enterprise object (such as attempting to delete it), the EOEditingContext sends these validation
messages to your enterprise object, which in turn (by default) forwards them to its EOClassDescription.
Based on the result, the operation is either accepted or refused. For example, referential integrity constraints
in your model might state that you can't delete a department object that has employees. If a user attempts
to delete a department that has employees, an exception is returned and the deletion is refused.

Using EOClassDescription

For the most part, you don't need to programmatically interact with EOClassDescription. It extends the
behavior of your enterprise objects transparently. However, there are two cases in which you do need to
programmatically interact with it:

« When you override EOClassDescription-related EOEnterpriseObject methods in an enterprise object
class. These methods are used to perform validation and to intervene when enterprise objects based on
EOModels are created and fetched. (The EOModel class is defined in EOAccess.) For objects that don'’t
have EOModels, you can override a different set of EOEnterpriseObject methods; this is described in
more detail in the section “Working with Objects That Don’t Have EOModels.”

* When you create a subclass of EOClassDescription

19

20

Overriding Methods in an Enterprise Object

As described above, EOEnterpriseObject defines several EOClassDescription-related methods. It's
common for enterprise object classes to override the following methods to either perform validation, to
assign default values\vakeFrominsertionIinEditingContext:), or to provide additional initialization to
newly fetched objectavakeFromFetchInEditingContext:):

+ validateForSave

« validateForDelete

« validateForlnsert

« validateForUpdate

» awakeFrominsertionInEditingContext:
» awakeFromFetchinEditingContext:
 userPresentableDescriptionForObject:

For example, an enterprise object class can implematidateForSavemethod that checks the values of
salary andjobLevel properties before allowing the values to be saved to the database:

- (NSException *)validateForSave

{
if (salary > 1500 && jobLevel < 2)
return [NSException validationExceptionWithFormat:
@"The salary is too high for that position!"];
/I pass the check on to the EOClassDescription
return [super validateForSave];

}

For more discussion of this subject, see the chapter “Designing Enterprise ObjectErnitetipeise
Objects Framework Developer’s Guijdind the EOEnterpriseObject informal protocol specification.

Working with Objects That Don’'t Have EOModels

Although an EOModel is the most common source of an EOClassDescription for a class, it isn’t the only

one. Objects that don’t have an EOModel can implement EOClassDescription methods directly as instance

methods, and the rest of the Framework will treat them just as it does enterprise objects that have this
information provided by an external EOModel.

There are a few reasons you might want to do this. First of all, if your object implements the methods
entityName, attributeKeys, toOneRelationshipKeys andtoManyRelationshipKeys,
EOEditingContexts can snapshot the object and thereby provide undo for it.

For example, the following code excerpt shows an implementatiattrilfuteKeys for a Circle class:

Classes: EOClassDescription

- (NSArray *)attributeKeys {
static NSArray *array = nil;
if (larray)
array = [[NSArray alloc] initWithObjects: @"radius", @"x",
@"y", @"color", nil];
return array;

}

Secondly, you might want to implement EOClassDescription’s validation or referential integrity methods
to add these features to your classes.

Implementing EOClassDescription methods on a per-class basis in this way is a good alternative to creating
a subclass of EOClassDescription.

Creating a Subclass of EOClassDescription

You create a subclass of EOClassDescription when you want to use an external source of information other
than an EOModel to extend your objects. Another possible scenario is if you've added information to an
EOModel (such as in its user dictionary) and you want that information to become part of your class
description—in that case, you'd probably want to create a subclass of the access layer’s
EOEntityClassDescription.

When you create a subclass of EOClassDescription, you only need to implement the methods that have
significance for your subclass.

If you're using an external source of information other than an EOModel, you need to decide when to
register class descriptions, which you do by invoking the metgisterClassDescription:forClass: You

can either register class descriptions in response to a EOClassDescriptionNeeded... notification (an
EOCIlassDescriptionNeededForClassNotification or an
EOCIlassDescriptionNeededForEntityNameNotification), or you can register class descriptions at the time
you initialize your application (in other words, you can register all potential class descriptions ahead of
time). The default implementation in Enterprise Objects Framework is based on responding to the
EOCIlassDescriptionNeeded... notifications. When an EOModel receives one of these notifications, it
supplies a class description for the specified class or entity name by inkedfistgrClassDescription:
forClass:

EOEntityClassDescription

There are only three methods in EOClassDescription that have meaningful implementations (that is, that
don't either returmil or simply return without doing anythinghvalidateClassDescriptionCache
registerClassDescription:forClass; andpropagateDeleteForObject:editingContext: The default

behavior of the rest of the methods in Enterprise Objects Framework comes from the implementation in the
access layer's EOClassDescription subclass EOEntityClassDescription. For more information, see the
EOEntityClassDescription class specification.

21

22

The EOClassDescription’s Delegate

You can assign a delegate to the EOClassDescription class. EOClassDescription sends the message
shouldPropagateDeleteForObject:inEditingContext:forRelationshipKey:to its delegate when delete
propagation is about to take place for a particular object. The delegate can either allow or deny the operation
for a specified relationship key. For more information, see the method description for
shouldPropagateDeleteForObject:inEditingContext:forRelationshipKey:

Classes: EOCooperatingObjectStore

EOCooperatingObjectStore

Inherits From: EOODbjectStore : NSObject
Conforms To: NSObject (NSObject)
Declared In: EOControl/EOObjectStoreCoordinator.h

Class Description

EOCooperatingObjectStore is a part of the control layer’s object storage abstraction. It is an abstract class
that defines the basic API for object stores that work together to manage data from several distinct data
repositories. For more general information on the object storage abstraction, see “Object Storage
Abstraction” in the introduction to the EOControl Framework.

The interaction between EOCooperatingObjectStores is managed by another class,
EOODbjectStoreCoordinator. The EOODbjectStoreCoordinator communicates changes to its
EOCooperatingObjectStores by passing them an EOEditingContext. Each cooperating store examines the
modified objects in the editing context and determines if it's responsible for handling the changes. When a
cooperating store has changes that need to be handled by another store, it communicates the changes to the
other store back through the coordinator.

For relational databases, Enterprise Objects Framework provides a concrete subclass of
EOCooperatingObjectStore, EODatabaseContext (EOAccess). A database context represents a single
connection to a database server, fetching and saving objects on behalf of one or more editing contexts.
However, a database context and an editing context don't interact with each other directly—a coordinator
acts as a mediator between them.

23

EDEdi EQEdR EQEdR
S = B3
ECObectitons
Casrdinator
EdiDatabase | ECiDatabase
Cantexl
Method Types

Committing or discarding changes
— commitChanges
— performChanges
— rollbackChanges
— prepareForSaveWithCoordinator:editingContext:
— recordChangesInEditingContext
— recordUpdateForObject:.changes:

Returning information about objects
— valuesForKeys:object:

Determining if the EOCooperatingObjectStore is responsible for an operation
— ownsObject:
— ownsGloballD:
— handlesFetchSpecification:

24

Classes: EOCooperatingObjectStore

Instance Methods
commitChanges
— (void)commitChanges

Overridden by subclasses to commit the transaction. Raises an exception if an error occurs; the error
message indicates the nature of the problem.

See also: — performChanges —commitChanges —saveChangesInEditingContext:
(EOODbjectStoreCoordinator)

handlesFetchSpecification:
— (BOOL)handlesFetchSpecification(EOFetchSpecification f@tchSpecification

Overridden by subclasses to return YES if the receiver is responsible for fetching the objects described by
fetchSpecificationFor example, EODatabaseContext (EOAccess) determines whether it's responsible
based orietchSpecification entity name.

See also: —ownsGloballD:, —ownsObiject:

ownsGloballD :
— (BOOL)ownsGloballD:(EOGIloballD *)globallD

Overridden by subclasses to return YES if the receiver is responsible for fetching and saving the object
identified bygloballD. For example, EODatabaseContext (EOAccess) determines whether it's responsible
based on the entity associated vgtbballD.

See also: — handlesFetchSpecification:—ownsObject:

ownsObject:
— (BOOL)wnsObject:(id)object

Overridden by subclasses to return YES if the receiver is responsible for fetching anakgdhéor
example, EODatabaseContext (EOAccess) determines whether it's responsible based on the entity
associated witlobject

See also: —ownsGloballD:, —handlesFetchSpecification:

25

26

performChanges
— (void)performChanges

Overridden by subclasses to transmit changes to the receiver’s underlying database. Raises an exception if
an error occurs; the error message indicates the nature of the problem.

See also: —commitChanges —rollbackChanges —saveChangesinEditingContext:
(EOObjectStoreCoordinator)

prepareForSaveWithCoordinator:editingContext:

— (void)prepareForSaveWithCoordinator: (EOObjectStoreCoordinator ¢dordinator
editingContext:(EOEditingContext *xnEditingContext

Overridden by subclasses to notify the receiver that a multi-store save operation oveceeedihgtoris
beginning foranEditingContextFor example, the receiver might prepare primary keys for newly inserted
objects so that they can be handed out to other EOCooperatingObjectStores upon request. The receiver
should be prepared to receive the messagrsdChangesinEditingContextand
recordUpdateForObject:changes:

After performing these methods, the receiver should be prepared to receive the possible messages
performChangesand thercommitChangesor rollbackChanges

recordChangesInEditingContext
— (voidyecordChangesinEditingContext

Overridden by subclasses to instruct the receiver to examine the changed objects in the receiver’s
EOEditingContext, record any operations that need to be performed, and notify the receiver’s
EOODbjectStoreCoordinator of any changes that need to be forwarded to other EOCooperatingObjectStores.

See also: — prepareForSaveWithCoordinator:editingContext:, —recordUpdateForObject:changes:

recordUpdateForObject:changes:

— (voidyecordUpdateForObject:(id)objectchanges{NSDictionary *thanges
Overridden by subclasses to communicate from one EOCooperatingObjectStore to another (through the
EOObjectStoreCoordinator) thetiangesieed to be made to abject For example, an insert of an object

in a relationship property might require changing a foreign key property in an object owned by another
EOCooperatingObjectStore. This method is primarily used to manipulate relationships.

See also: — prepareForSaveWithCoordinator:editingContext:, —recordChangesInEditingContext

Classes: EOCooperatingObjectStore

rollbackChanges
— (void¥ollbackChanges

Overridden by subclasses to roll back changes to the underlying database. Raises one of several possible
exceptions if an error occurs; the error message should indicate the nature of the problem.

See also: —commitChanges —performChanges —saveChangesinEditingContext:
(EOObjectStoreCoordinator)

valuesForKeys:object:

— (NSDictionary *yaluesForKeys(NSArray *)keys
object:(id)object

Overridden by subclasses to return values (as identifikdysyheld by the receiver that augment

properties irobject For instance, an EODatabaseContext (EOAccess) stores foreign keys for the objects it
owns (and primary keys for new objects). These foreign and primary keys may well not be defined as
properties of the object. Other database contexts can find out these keys by sending the database context
that owns the object\amluesForKeys:object:message. Note that you use this for properties thatodre

stored in the object, so using key-value coding directly on the object won't always work.

27

28

Classes: EODataSource

EODataSource

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: EOControl/EODataSource.h

Class Description

EODataSource is an abstract class that defines a basic API for providing enterprise objects. It exists
primarily as a simple means for a display group (EODisplayGroup from EOlnterface or WODisplayGroup
from WebObijects) or other higher-level class to access a store of objects. EODataSource defines functional
implementations of very few methods; concrete subclasses, such as EODatabaseDataSource (defined in
EOAccess) and EODetailDataSource, define working data sources by implementing the others.
EODatabaseDataSource, for example, provides objects fetched through an EOEditingContext, while
EODetailDataSource provides objects from a relationship property of a master object. For information on
creating your own EODataSource subclass, see the section “Creating a Subclass.”

An EODataSource provides its objects withatehObjectsmethodinsertObject: anddeleteObject:add
and remove individual objects, aosateObjectinstantiates a new object. Other methods provide
information about the objects, as described below.

Method Types
Accessing the objects
— fetchObjects
Inserting and deleting objects
— createObject
— insertObject:
— deleteObiject:

Creating detail data sources
— dataSourceQualifiedByKey:
— qualifyWithRelationshipKey:ofObject:

Accessing the editing context
— editingContext

Accessing the class description
— classDescriptionForObjects

29

Instance Methods

30

classDescriptionForObjects
— (EOClassDescription ¢JassDescriptionForObjects

Implemented by subclasses to return an EOClassDescription that provides information about the objects
provided by the receiver. EODataSource’s implementation retilins

createObject
— (id)createObject

Creates a new object, inserts it in the receiver’s collection of objects if appropriate, and returns the object.
Returnsnil if the receiver can't create the object or can’t insert it. You should irinsketObject: after
this method to actually add the new object to the receiver.

As a convenience, EODataSource’s implementation sends the receiver's EOClassDescription a
createlnstanceWithEditingContext:globallD:zone: message to create the object. If this succeeds and the
receiver has an EOEditingContext, it sends the EOEditingContéxdenObject: message to register the
new object with the EOEditingContext (note that this dumsnsert the object into the EODataSource).
Subclasses that don’t use EOClassDescriptions or EOEditingContexts should override thiswitiediod
invoking supers implementation.

See also: — classDescriptionForObjects —editingContext

dataSourceQualifiedByKey:

— (EODataSource HataSourceQualifiedByKey(NSString *YyelationshipKey
Implemented by subclasses to return a detail EODataSource that provides the destination objects of the
relationship named brelationshipKey The detail EODataSource can be qualified using
qualifyWithRelationshipKey:ofObject: to set a specific master object (or to change the relationship key).

EODataSource’s implementation merely raises an NSinvalidArgumentException; subclasses shouldn’t
invoke supers implementation.

deleteObject:
— (void)deleteObject{id)anObject

Implemented by subclasses to deb®bject EODataSource’s implementation merely raises an
NSinvalidArgumentException; subclasses shouldn’t invagger's implementation.

Classes: EODataSource

editingContext
— (EOEditingContext *ditingContext

Implemented by subclasses to return the receiver's EOEditingContext. EODataSource’s implementation
returnsnil.

fetchObjects
— (NSArray *¥etchObjects

Implemented by subclasses to fetch and return the objects provided by the receiver. EODataSource’s
implementation returnsil .

insertObject:
— (void)insertObject:(id)object

Implemented by subclasses to insdaject EODataSource’s implementation merely raises an
NSiInvalidArgumentException; subclasses shouldn’'t inakgers implementation.

qualifyWithRelationshipKey:ofObject:

— (void)qualifyWithRelationshipKey: (NSString *key
ofObiject: (id)sourceObject

Implemented by subclasses to qualify the receiver, a detail EODataSource, to display destination objects
for the relationship namdatybelonging tasourceObjectkeyshould be the same as the key specified in the
dataSourceQualifiedByKey:message that created the receivaolirceObjecis nil, the receiver qualifies

itself to provide no objects. EODataSource’s implementation merely raises an
NSiInvalidArgumentException; subclasses shouldn’t inakeers implementation.

31

32

Classes: EODataSource

EODataSource

Creating a Subclass

The job of an EODataSource is to provide objects that share a set of properties so that they can be managed
uniformly by its client, such as an EODisplayGroup (defined in EOInterface) or a WODisplayGroup

(defined in WebObijects). Typically, these objects are all of the same class or share a superclass that defines
the common properties managed by the client. All that's needed, however, is that every object have the
properties expected by the client. For example, if an EODataSource provides Member and Guest objects,
they can be implemented as subclasses of a more general Customer class, or they can be independent classes
defining the same propertidagtName firstName, andaddress for example). You typically specify the

kind of objects an EODataSource provides when you initialize it. Subclasses usually define mgpecial
method whose arguments describe the objects. EODatabaseDataSource, for example, defines
initWithEditingContext:entityName: , which uses an EOEntity to describe the set of objects. Another
subclass might use an EOClassDescription, a class or superclass for the objects, or even a collection of
existing instances.

A subclass can provide two other pieces of information about its objects, using methods declared by
EODataSource. First, if your subclass keeps its objects in an EOEditingContext, it should override the
editingContext method to return that EOEditingContext. It doesn't have to use an EOEditingContext,
though, in which case it can just use the default implementatixditafgContext, which returnsil. Keep

in mind, however, the amount of work EOEditingContexts do for you, especially when you use
EODisplayGroups. For example, EODisplayGroups depend on change notifications from
EOEditingContexts to update changes in the objects displayed. If your subclass or its clients depend on
change notification, you should use an EOEditingContext for object storage and change notification. If you
don’t use one, you'll have to implement that functionality yourself. For more information, see these class
specifications:

* EOObjectStore

« EOEditingContext

« EODisplayGroup (EOInterface)
« EODelayedObserverQueue

» EODelayedObserver

The other piece of information—also optional—is an EOClassDescription for the objects. Interface Builder
uses an EOClassDescription to get the keys it displays in its Connections Inspector, and EODataSource uses
it by default when creating new objects. Your subclass should ovelaisEDescriptionForObjectsto

return the class description if it uses one and if it's providing objects of a single superclass. Your subclass
can either record an EOClassDescription itself, or get it from some other object, such as an EOEntity or
from the objects it provides (through the EOEnterpriseObject methssgDescription which is

implemented in a category of NSObject and also by and EOGenericRecord). If your EODataSource
subclass doesn’t use an EOClassDescription at all it, can use the default implementation of
classDescriptionForObjects which returnsiil .

33

34

Manipulating Objects

A concrete subclass of EODataSource must at least provide objects by implerfstcii@bjects If it

supports insertion of new objects, it should impleniesertObject:, and if it supports deletion it should

also implementieleteObject. An EODataSource that implements its own store must define these methods
from scratch. An EODataSource that uses another object as a store can forward these messages to that store.
For example, an EODatabaseDataSource turns these three requedtieoisWithFetchSpecification;
insertObject:, anddeleteObject: messages to its EOEditingContext.

Implementing Master-Detail Data Sources

An EODataSource subclass can also implement a pair of methods that allow it to be used in master-detail
configurations. The first methadhtaSourceQualifiedByKey:;, should create and return a new data source,

set up to provide objects of the destination class for a relationship in a master-detail setup. In a master-detail
setup, changes to the detail apply to the objects in the master; for example, adding an object to the detail
also adds it to the relationship of the master object. The standard EODetailDataSource class works well for
this purpose, so you can simply impleméataSourceQualifiedByKey:to create and return one of these.

Once you have a detail EODataSource, you can set the master object by sending the detail a
qualifyWithRelationshipKey:ofObject: message. The detail then uses the master object in evaluating the
relationship and applies inserts and deletes to that master object.

Another kind of paired EODataSource setup, called master-peer, is exemplified by the
EODatabaseDataSource class. In a master-peer setup, the two EODataSources are independent, so that
changes to one don'’t affect the other. Inserting into the “peer,” for example, does not update the relationship
property of the master object. See that class description for more information.

Classes: EODelayedObserver

EODelayedObserver
Inherits From: NSObiject
Conforms To: EODelayedObserving

NSObject (NSObject)

Declared In: EOControl/EOObserver.h

Class Description

The EODelayedObserver class is a part of EOControl's change tracking mechanism. It is an abstract
superclass that defines the basic functionality for coalescing change notifications for multiple objects and
postponing notification according to a prioritized queue. For an overview of the general change tracking
mechanism, see “Tracking Enterprise Objects Changes” in the introduction to the EOControl Framework.

EODelayedObserver is primarily used to implement the interface layer’s associations and wouldn’t
ordinarily be used outside the scope of a Java Client or Yellow Box application (not in a command line tool

or WebObijects application, for example). See the EODelayedObserverQueue class specification for general
information.

You would never create an instance of EODelayedObserver. Instead, you use subclasses—typically
EOAssociations (EOInterface). For information on creating your own EODelayedObserver subclass, see
“Creating a Subclass of EODelayedObserver.”

Constants

The following integer constants are defined to represent the priority of a notification in the queue:

EOObserverPrioritylmmediate EOObserverPriorityFourth
EOObserverPriorityFirst EOObserverPriorityFifth
EOObserverPrioritySecond EOObserverPrioritySixth
EOObserverPriority Third EOObserverPriorityLater

35

Adopted Protocols

EOObserving
— objectWillChange:

Method Types

Change notification
— subjectChanged

Canceling change notification
— discardPendingNotification

Getting the queue and priority
— observerQueue
— priority

Instance Methods

36

discardPendingNotification
— (void)iscardPendingNotification

Sends alequeueObservermessage to the receiver's EODelayedObserverQueue to clear it from receiving
a change notification. A subclass of EODelayedObserver should invoke this method in its implementation
of dealloc

See also: ObserverQueue

objectWillChange:

@protocol EOObserving
— (void)objectWillChange:(id)anObject

Implemented by EODelayedObserver to enqueue the receiver on its EODelayedObserverQueue.
Subclasses shouldn’t need to override this method; if they do, they must be sure tsupeske
implementation.

See also: ObserverQueug —enqueueObserver(EODelayedObserverQueuehjectWillChange:
(EOObserving)

Classes: EODelayedObserver

observerQueue
— (EODelayedObserverQueumbserverQueue

Overridden by subclasses to return the receiver’s designated EODelayedObserverQueue.
EODelayedObserver’s implementation returns the default EODelayedObserverQueue.

See also: defaultObserverQueue(EODelayedObserverQueue)

priority
— (EOObserverPriorityyiority
Overridden by subclasses to return the receiver’'s change notification priority, one of:

» EOODbserverPriorityimmediate
* EOObserverPriorityFirst

« EOObserverPrioritySecond

« EOObserverPriority Third

» EOObserverPriorityFourth

« EOObserverPriorityFifth

» EOODbserverPrioritySixth

« EOObserverPriorityLater

EODelayedObserver's implementation returns EOObserverPriorityThird. See the
EODelayedObserverQueue class specification for more information on priorities.

subjectChanged
— (voidsubjectChanged

Implemented by subclasses to examine the receiver’s observed objects and take whatever action is
necessary. EODelayedObserver’s implementation does nothing.

37

38

Classes: EODelayedObserver

EODelayedObserver

Creating a Subclass of EODelayedObserver

EODelayedObserver implements the badiectWillChange: method to simply enqueue the receiver on

an EODelayedObserverQueue. Regardless of how many of these messages the receiver gets during the run
loop, it receives a singlubjectChangedmessage from the queue—at the end of the run loop. In this

method the delayed observer can check for changes and take whatever action is necessary. Subclasses
should record objects they're interested in, perhaps iniamethod, and examine them in

subjectChanged An EOAssociation.(EQOInterface) for example, examines each of the EODisplayGroups
(EQOInterface) it's bound to in order to find out what has changed. Another kind of subclass might record
each changed object for later examination by overridbjgctWillChange:, but it must be sure to invoke

supers implementation when doing so.

The rest of EODelayedObserver's methods have meaningful, if static, default implementations.
EODelayedObserverQueue sends change notifications according to the priority of each enqueued observer.
EODelayedObserver’s implementation of grerity method returns EOObserverPriority Third. Your

subclass can override it to return a higher or lower priority, or to have a settable priority. The other method
a subclass might overrideabserverQueue which returns a default EODelayedObserverQueue normally
shared by all EODelayedObservers. Because sharing a single queue keeps all EODelayedObserver’s
synchronized according to their priority, you should rarely override this method, doing so only if your
subclass is involved in a completely independent system.

A final methoddiscardPendingNotification need never be overridden by subclasses, but must be invoked
from their implementation alealloc. This prevents observers from being sent change notifications after
they've been deallocated.

39

40

Classes: EODelayedObserverQueue

EODelayedObserverQueue

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOControl/EOObserver.h

Class Description

The EODelayedObserverQueue class is a part of EOControl’'s change tracking mechanism. An
EODelayedObserverQueue collects change notifications for observers of multiple objects and notifies them
of the changesn masseluring the application’s run loop, according to their individual priorities. For an
overview of the general change tracking mechanism, see “Tracking Enterprise Objects Changes” in the
introduction to the EOControl Framework.

EODelayedObserverQueue’s style of notification is particularly useful for coalescing and prioritizing
multiple changes; the interface layer's EOAssociation classes use it extensively to update Java Client and
Yellow Box user interfaces, for example. Instead of being told that an object will change, an
EODelayedObserver is told that it did change, witlulsjectChangedmessage, as described in the
EODelayedObserver class specification. Delayed observation is thus not useful for comparing old and new
states, but only for examining the new state. Delayed observation also isn’t ordinarily used outside the scope
of a Java Client or Yellow Box application (in a command line tool or WebObjects application, for
example).

The motivation for a delayed change notification mechanism arises mainly from issues in observing
multiple objects. Any single change to an observed object typically requires the observer to update some
state or perform an action. When many such objects change, it makes no sense to recalculate the new state
and perform the action for each object. EODelayedObserverQueue allows these changes to be collected into
a single notification. It further orders change notifications according to priorities, allowing observers to be
updated in sequence according to dependencies among them. For example, an EOMasterDetailAssociation
(EOInterface), which must update its detail EODisplayGroup (EOInterface) according to the selection in

the mastebeforeany redisplay occurs, has an earlier priority than the default for EOAssociations. This
prevents regular EOAssociations from redisplaying old values and then displaying the new values after the
EOMasterDetailAssociation updates.

For more information on using EODelayedObserverQueues, see the sections

* Enqueuing a Delayed Observer
« Change Notification
» Observer Proxies

41

Method Types

Creating instances
—init
Getting the default queue
+ defaultObserverQueue

Enqueuing and dequeuing observers
— enqueueObserver:
— dequeueObserver:

Sending change notifications
— notifyObserversUpToPriority:

Configuring notification behavior
—runLoopModes
— setRunLoopModes:

Class Methods

defaultObserverQueue
+ (EODelayedObserverQueua&faultObserverQueue

Returns the EODelayedObserverQueue that EODelayedObservers use by default.

Instance Methods

42

dequeueObserver:
— (voiddequeueObserverfEODelayedObserver &hObserver
RemovesanObserverffrom the receiver.

See also: —enqueueObserver:

enqueueObserver:
— (voidenqueueObserverfEODelayedObserver &nhObserver

RecordsanObserveto be sensubjectChangedmessages. HnObserves priority is
EOObserverPriorityimmediate, it's immediately sent the message and not enqueued. Otherwise
anObservelis sent the message the next timaifyObserversUpToPriority: is invoked with a priority
later than or equal anObserves. Does nothing iinObservels already recorded.

Classes: EODelayedObserverQueue

The first time this method is invoked during the run loop with an observer whose priority isn’t
EOObserverPriorityimmediate, it registers the receiver to be sarifgObserversUpToPriority:

message at the end of the run loop, using EOFlushDelayedObserversRunLoopOrdering and the receiver’s
run loop modes. This causes enqueued observers up to a priority of EOObserverPrioritySixth to be notified
automatically during each pass of the run loop.

This method doesot retainanObserverWhenanObserveis deallocated, it should invoke
dequeueObserverto remove itself from the queue.

See also: —dequeueObserver; —priority (EODelayedObserver),
—discardPendingNotification (EODelayedObserver),ranLoopModes, —performSelector:
target:argument:order:modes: (NSRunLoop class of the Foundation Kit)

init

— (id)init
Initializes a newly allocated EODelayedObserverQueue with NSDefaultRunLoopMode as its only run loop
mode. This is the designated initializer for the EODelayedObserverQueue class. sadfurns

notifyObserversUpToPriority:
— (void) notifyObserversUpToPriority: (EOObserverPriorityjriority

SendssubjectChangedmessages to all of the receiver's enqueued observers whose priprityity or

earlier. This method cycles through the receiver’s enqueued observers in priority order, sending each a
subjectChangedmessage and then returning to the very beginning of the queue, in case another observer
with an earlier priority was enqueued as a result of the message.

EODelayedObserverQueue invokes this method automatically as needed during the run loop, with a
priority of EOObserverPrioritySixth.

See also: —enqueueObserver; —priority (EODelayedObserver)

runLoopModes
— (NSArray *runLoopModes

Returns the receiver’s run loop modes.

43

44

setRunLoopModes:
— (void)setRunLoopModes(NSArray *ymodes

Sets the receiver’s run loop modestodesan array of NSString objects representing run loop modes. For
more information see the Foundation class NSRunLoop.

Classes: EODelayedObserverQueue

EODelayedObserverQueue

Enqueuing a Delayed Observer

TheenqueueObservermethod records an EODelayedObserver for later change notification. However,
enqueuing is usually performed automatically by an EODelayedObserveoljeicsWillChange:

method. Hence, it’s typically enough that an object being observed imitbtkbange as needed. For

example, in Java Client and Yellow Box applications, an EODisplayGroup (EOInterface) does this (among
many other things) on receiving an EOObjectsChangedInEditingContextNotififratioits

EOEditingContext.

Although you can create individual EODelayedObserverQueuesalkiogndinit, you typically use the

single instance provided by the class mettefdultObserverQueue Using separate queues bypasses the
prioritization mechanism, which may cause problems between the objects using the separate queues. If you
do use separate queues, your EODelayedObserver subclasses should record a designated
EODelayedObserverQueue that they always use, and impletremverQueueto return that object.

If you need to remove an enqueued observer, you can do so usilegjtieieObservermethod.
EODelayedObserver also defines discardPendingNotification method, which removes the receiver
from its designated queue. This is useful in an object’'s implementatitgaldbc, for example, to prevent
a change notification being sent to it.

Change Notification

The actual process of change notification is initiated bytiggieueObservermessages that line

observers up to receive notifications. Regardless of how manydimesueObserveris invoked for a

particular observer, that observer is only put in the queue once. The first observer enqueued during the run
loop also triggers the EODelayedObserverQueue to set up a delayed invocation of
notifyObserversUpToPriority: , which causes it to receive that message at the end of the run loop.
EODelayedObserver sets up this delayed invocation in NSDefaultRunLoopMode, but you can change the
mode or add additional modes in which delayed invocation occursaetiRgnLoopModes:

notifyObserversUpToPriority: cycles through the queue of EODelayedObservers in priority order, from
EOObserverPriorityFirst to the priority given, sending each obses@sjactChangedmessage. Each

time, it returns to the earliest priority (rather than continuing through the queue) in case the message
resulted in another EODelayedObserver with a earlier priority being enqueued. This guarantees an optimal
delivery of change notifications.

Observer Proxies

It may not always be possible for a custom observer class to inherit from EODelayedObserver. To aid such
objects in participating in delayed change notifications, the Framework defines a subclass of
EODelayedObserver, EOObserverProxy, which implemenssiiiiectChangedmethod to invoke an

action method of your custom object. You create an EOObserverProxy,using\hth Target:action:

45

46

priority: method, which records the “real” observer, the action method to invoke, and the priority at which
the EOObserverProxy should be enqueued. Then, instead of registering the custom object as an observer of
objects, you register the proxy (using EOObserverCeradd®©bserver:forObject:). When the proxy

receives ambjectWillChange: message, it enqueues itself for delayed change notification, receives the
subjectChangedmessage from the EODelayedObserverQueue, and then sends the action message to the
“real” observer.

Classes: EODetailDataSource

EODetailDataSource

Inherits From: EODataSource : NSObject
Conforms To: NSObject (NSObject)
Declared In: EOControl/EODetailDataSource.h

Class Description

EODetailDataSource defines a data source for use in master-detail configurations, where operations in the
detail data source are applied directly to properties of a master object. EODetailDataSource implements the
standardetchObjects insertObject:, anddeleteObject: methods to operate on a relationship property of

its master object, so it works for any concrete subclass of EODataSource, including another
EODetailDataSource (for a chain of three master and detail data sources).

To set up an EODetailDataSource programmatically, you typically create it by sending a
dataSourceQualifiedByKey: message to the master data source, then establish the master object with a
qualifyWithRelationshipKey:ofObject: message. The latter method records the name of a relationship
for a particular object to resolvefietchObjectsand to modify innsertObject:, anddeleteObject. These

three methods then manipulate the relationship property of the master object to perform the operations
requested. See the individual method descriptions for more information.

Method Types

Creating instances
— initWithMasterClassDescription:detailKey:
— initWithMasterDataSource:detailKey:

Qualifying instances
— qualifyWithRelationshipKey:ofObject:

Examining instances
— masterDataSource
— detailKey
— masterObject

Accessing the master class description
— masterClassDescription
— setMasterClassDescription:

a7

Accessing the objects
— fetchObijects

Inserting and deleting objects
— insertObiject:
— deleteObject:

Accessing the master editing context
— editingContext

Instance Methods

deleteObject:
— (void)deleteObject(id)anObject
Sends aemoveObject:fromPropertyWithKey: message (defined in the EORelationshipManipulation

informal protocol) to the master object withObjectand the receiver’s detail key as the arguments. Raises
an NSinternallnconsistencyException if there’'s no master object or no detail key set.

detailKey
— (NSString *)detailKey
Returns the name of the relationship for which the receiver provides objects, as provided to

initWithMasterDataSource:detailKey: or as set igualifyWithRelationshipKey:ofObject: . If none has
been set yet, returmdl.

editingContext
— (EOEditingContext *¢ditingContext

Returns the EOEditingContext of the master objeatjlaf there isn't one.

fetchObjects

— (NSArray *¥etchObjects
SendsvalueForKey: (defined in the EOKeyValueCoding informal protocol) to the master object with the
receiver’'s detail key as the argument, constructs an array for the returned object or objects, and returns it.

Returns an empty array if there’s no master object, or returns an array containing the master object itself if
no detail key is set.

48

Classes: EODetailDataSource

initWithMasterClassDescription:detailKey:

— initWithMasterClassDescription: (EOClassDescription thasterClassDescription
detailKey: (NSString *YyelationshipKey

Initializes a newly allocated EODetailDataSource to provide objects based on a relationship of objects in
the master object associated withsterClassDescriptiorinvokesqualifyWithRelationshipKey:

ofObject: with relationshipKeyspecified as the relationship key aniidspecified as the object. The receiver
initially has no master object selected; to select ongqualeyWithRelationshipKey:ofObject: . This is

the designated initializer for the EODetailDataSource class. Redeifns

See also: —masterClassDescription —detailKey

initWithMasterDataSource:detailKey:

— (id)initWithMasterDataSource: (EODataSource thasterDataSource
detailKey: (NSString *yelationshipKey

Initializes a newly allocated EODetailDataSource to provide objects based on a relationship of objects in
masterDataSourceamed byelationshipKeylnvokesnitWithMasterClassDescription:detailKey: with

nil specified for the class description aalhtionshipKeyspecified as the detail key. The receiver initially

has no master object selected; to select ongqueddyWithRelationshipKey:ofObject: . Returnsself.

See also: —masterDataSource —detailKey

insertObject:
— (void)insertObject: (id)anObject

Sends amddObject:toBothSidesOfRelationshipWithKey: message (defined in the
EORelationshipManipulation informal protocol) to the master objectavi®bjectand the receiver’s

detail key as the arguments. Raises an NSinternallnconsistencyException if there’s no master object or no
detail key set.

masterClassDescription
— (EOClassDescription MasterClassDescription

Returns the EOClassDescription of the receiver's master object.

See also: — setMasterClassDescription; — initWithMasterClassDescription:detailKey:

49

50

masterDataSource
— (EODataSource masterDataSource

Returns the receiver's master data source.

See also: —detailKey, — initWithMasterDataSource:detailKey:

masterObject
— (id)masterObject

Returns the object in the master data source for which the receiver provides objects. You can change this
with aqualifyWithRelationshipKey:ofObject: message.

See also: —detailKey

qualifyWithRelationshipKey:ofObject:

— (void)gualifyWithRelationshipKey: (NSString *yelationshipKey
ofObject: (id)masterObject

Configures the receiver to provide objects based on the relationshgstdrObjechamed by
relationshipKeyrelationshipKeycan be different from the one used withWithMasterDataSource:
detailKey:, which changes the relationship the receiver operates maskerObjects nil, this method
causes the receiver to return an empty array when $etth®bjects message.

See also: —detailKey

setMasterClassDescription:
— (void)setMasterClassDescriptionfEOClassDescription tJassDescription

AssignsclassDescriptioras the EOClassDescription for the receiver’s master object.

See also: —masterClassDescription

Classes: EOEditingContext

EOEditingContext
Inherits From: EOODbjectStore : NSObject
Conforms To: EOObserving

NSLocking
Declared In: EOControl/EOEditingContext.h
Purpose

An EOEditingContext object manages a graph of enterprise objects in an application; this object graph
represents an internally consistent view of one or more external stores (most often a database).

Principal Attributes

The set of enterprise objects managed by the EOEditingContext

The EOEditingContext’'s parent EOObjectStore

The set of EOEditor objects messaged by the EOEditingContext

The EOEditingContext's EOMessageHandler

51

Creation

— initWithParentObjectStore: Designated initializer.

Commonly Used Methods

— objectsWithFetchSpecification: Fetches objects from an external store.

. — Registers a new object to be inserted into the parent EOObjectStore when changes are
— insertObject:

saved.
o Registers that an object should be removed from the parent EOObjectStore when
— deleteObject:
changes are saved.
— lockObject: Attempts to lock an object in the external store.
Returns YES if any of the receiver has any pending changes to the parent
hasChanges EOObjectStore.
— saveChanges Commits changes made in the receiver to the parent EOObjectStore.
Removes everything from the undo stack, discards all insertions and deletions, and
— revert . L
restores updated objects to their original values.
— objectForGloballD: Given a globallD, returns its associated object.
— globallDForObject: Given an object, returns its globallD.
— setDelegate: Sets the receiver’s delegate.
— parentObjectStore Returns the receiver’s parent EOObjectStore.
— rootObjectStore Returns the receiver’s root EOObjectStore.

Class at a Glance”

52

Classes: EOEditingContext

Class Description

An EOEditingContext object represents a single “object space” or document in an application. Its primary
responsibility is managing a graph of enterprise objects.olijxt graphis a group of related business
objects that represent an internally consistent view of one or more external stores (usually a database).

All objects fetched from an external store are registered in an editing context along with a global identifier
(EOGIoballD) that's used to uniquely identify each object to the external store. The editing context is
responsible for watching for changes in its objects (using the EOObserving protocol) and recording
shapshots for object-based undo. A single enterprise object instance exists in one and only one editing
context, but multiple copies of an object can exist in different editing contexts. Thus object uniquing is
scoped to a particular editing context.

For more information on EOEditingContext, see the sections:

» Other Classes that Participate in Object Graph Management

» Programmatically Creating an EOEditingContext

» Using EOEditingContexts in Different Configurations

» Fetching Objects

» Managing Changes in Your Application

* Methods for Managing the Object Graph

« General Guidelines for Managing the Object Graph

» Using EOEditingContext to Archive Custom Objects in Web Objects Framework

Constants
The following string constants name notifications EOEditingContext posts:

« EOEditingContextDidSaveChangesNotification
» EOODbjectsChangedInEditingContextNotification

See the Notifications section for more information on the notifications.

The following string constants are the keys to the EOObjectsChangedInEditingContextNotification’s user
info dictionary:

e updated
* deleted
* inserted
invalidated

EditingContextFlushChangesRunLoopOrdering, is an integer that defines the order in which the editing
context performs end of event processingrimcessRecentChangedessages with lower order numbers

are processed before messages with higher order numbers. In an application built with the Application Kit,
the constant order value schedules the editing context to perform its processing before the undo stack group
is closed or window display is updated.

53

Adopted Protocols

EOObserving
— objectWillChange:
NSLocking
— lock
— unlock
Method Types

Initializing an EOEditingContext
— initWithParentObjectStore:

Controlling EOEditingContext’s memory management strategy

Fetching objects
— objectsWithFetchSpecification:

Committing or discarding changes
— saveChanges
— saveChanges:
— tryToSaveChanges
— refaultObjects
— refault:
— refetch:
— revert
— revert:
— invalidateAllObjects

Registering changes
— deleteObiject:
— insertObject:
— insertObject:withGloballD:
— objectWillChange:
— processRecentChanges

Checking changes
— deletedObijects
— insertedObijects
— updatedObijects
— hasChanges

54

Classes: EOEditingContext

Object registration and snapshotting
— forgetObiject:
— recordObject:globallD:
— committedSnapshotForObject:
— currentEventSnapshotForObject:
— objectForGloballD:
— globallDForObiject:
— registeredObjects

Locking objects
— lockObject:
— lockObjectWithGloballD:editingContext:
— isObjectLockedWithGloballD:editingContext:
— setLocksObjectsBeforeFirstModification:
— locksObjectsBeforeFirstModification

Undoing operations
— redo:
— undo:
— setUndoManager:
— undoManager

Deletion and Validation Behavior
— setPropagatesDeletesAtEndOfEvent:
— propagatesDeletesAtEndOfEvent
— setStopsValidationAfterFirstError:
— stopsValidationAfterFirstError

Returning related object stores
— parentObjectStore
— rootObjectStore

Managing editors
— editors
— addEditor:
— removeEditor:

Setting the delegate
— setDelegate:
— delegate

Setting the message handler
— setMessageHandler:
— messageHandler

Invalidating objects
— setlnvalidatesObjectsWhenFreed:
— invalidatesObjectsWhenFreed

55

Locking
—lock

— unlockWorking with raw rows
— faultForRawRow:entityNamed:

Unarchiving from nib
+ defaultParentObjectStore
+ setDefaultParentObjectStore:
+ setSubstitutionEditingContext:
+ substitutionEditingContext

Nested EOEditingContext support
— objectsWithFetchSpecification:editingContext:
— objectsForSourceGloballD:relationshipName:editingContext:
— arrayFaultWithSourceGloballD:relationshipName:editingContext:
— faultForGloballD:editingContext:
— saveChangesInEditingContext:
— refaultObject:withGloballD:editingContext:
— invalidateObjectsWithGloballDs:
— initializeObject:withGloballD:editingContext:

Archiving and unarchiving objects
+ encodeObject:withCoder:
+ initObject:withCoder:
+ setUsesContextRelativeEncoding:
+ usesContextRelativeEncoding

Class Methods
defaultParentObjectStore
+ (EOODbjectStore fefaultParentObjectStore

Returns the EOObjectStore that is the default parent object store for new editing contexts. Normally this is
the EOObjectStoreCoordinator returned from the EOObjectStoreCoordinator class method
defaultCoordinator.

See also: + setDefaultParentObjectStore:

56

Classes: EOEditingContext

encodeObject:withCoder:

+ (void)encodeObject(id)object
withCoder: (NSCoder *gncoder

Invoked by an enterprise objemttjectto ask the EOEditingContext to encamgectusingencoder For
more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the class description.

See also: + initObject:withCoder: , + setUsesContextRelativeEncoding:
+ usesContextRelativeEncoding

initObject:withCoder:

+ (id)initObject: (id)object
withCoder: (NSCoder *Hecoder

Invoked by an enterprise objedijectto ask the EOEditingContext to initialinbjectfrom data irdecoder
For more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web
Objects Framework” in the class description.

See also: + encodeObject:withCoder; + setUsesContextRelativeEncoding:
+ usesContextRelativeEncoding

setDefaultParentObjectStore:
+ (void)setDefaultParentObjectStore(EOODbjectStore *§tore

Sets thalefault parent EOODbjectStoregtwre You use this method before loading a nib file to change the
default parent EOObjectStores of the EOEditingContexts in the nib file. The object you sugiasefran

be a different EOObjectStoreCoordinator or another EOEditingContext (if you're using a nested
EOEditingContext). After loading a nib with an EOEditingContext substituted as the default parent
EOODbjectStore, you should restore the default behavior by setting the default parent EOObjectibtore to
For example:

[EOEditingContext setDefaultParentObjectStore:editingContext];
nibLoaded = [NSBundle loadNibNamed:@"thirdNib" owner:self];
[EOEditingContext setDefaultObjectStore:nil]; // Restore default

A default parent object store is global until it is changed again. For more discussion of this topic, see the
chapter “Application Configurations” in thenterprise Objects Framework Developer’s Guide

See also: + defaultParentObjectStore

57

58

setSubstitutionEditingContext:
+ (void)setSubstitutionEditingContext:(EOEditingContext *anEditingContext

AssignsanEditingContexas the EOEditingContext to substitute for the one specified in a nib file you're
about to load. Using this method causes all of the connections in your nib file to be redirected to
anEditingContextThis can be useful when you want an interface loaded from a second nib file to use an
existing EOEditingContext. After loading a nib with a substitution EOEditingContext, you should restore
the default behavior by setting the substitution EOEditingContanit.t&or example:

[EOEditingContext setSubstitutionEditingContext:editingContext];
nibLoaded = [NSBundle loadNibNamed:@"thirdNib" owner:self];
[EOEditingContext setSubstitutionEditingContext:nil]; // Restore default

A substitution editing context is global until it is changed again. For more discussion of this topic, see the
chapter “Application Configurations” in thHenterprise Objects Framework Developer's Guide

See also: + substitutionEditingContext

setUsesContextRelativeEncoding:
+ (void)setUsesContextRelativeEncodingBOOL)flag

Sets according titag whetherencodeObject:withCoder: uses context-relative encoding. For more
discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the class description.

See also: + usesContextRelativeEncoding+ encodeObject:withCoder:,

substitutionEditingContext
+ (EOEditingContext *3ubstitutionEditingContext

Returns the substitution EOEditingContext if one has been specified. Otherwiseniturns

See also: + setSubstitutionEditingContext:

usesContextRelativeEncoding
+ (BOOL)usesContextRelativeEncoding

Returns YES to indicate thancodeObject:withCoder:uses context relative encoding, NO otherwise. For
more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the class description.

See also: + setUsesContextRelativeEncoding:

Classes: EOEditingContext

Instance Methods

addEditor:
— (void)addEditor: (id)editor

Addseditorto the receiver’s set of EOEditors. For more explanation, see the method descrigititofer
and the EOEditors informal protocol specification.

See also: — removeEditor:

arrayFaultWithSourceGloballD:relationshipName:editingContext:

— (NSArray *arrayFaultWithSourceGloballD: (EOGloballD *)globallD
relationshipName:(NSString *name
editingContext:(EOEditingContext *anEditingContext

Overrides the implementation inherited from EOObjectStore. If the objects associated with the
EOGIoballDgloballD are already registered in the receiver, returns those objects. Otherwise, propagates
the message down the object store hierarchy, through the parent object store, ultimately to the associated
EODatabaseContext. The EODatabaseContext creates and returns a to-many fault.

When a parent EOEditingContext receives this on behalf of a child EOEditingContext and the EOGloballD
globallD identifies a newly inserted object in the parent, the parent returns a copy of its object’s relationship
array with the member objects translated into objects in the child EOEditingContext.

For more information on faults, see the EOObjectStore, EODatabaseContext (EOAccess), EOFault, and
EOFaultHandler class specifications.

See also: —faultForGloballD:editingContext:

committedSnapshotForObject:
— (NSDictionary *rommittedSnapshotForObject{id)object

Returns a dictionary containing a snapshailgéctthat reflects its committed values (that is, its values as
they were last committed to the databakepther words, this snapshot represents the state of the object
before any modifications were made to it. The snapshot is updated to the newest object state after a save.

See also: — currentEventSnapshotForObiject:

59

60

currentEventSnapshotForObject:
— (NSDictionary *rurrentEventSnapshotForObject(id)object

Returns a dictionary containing a snapshailgéctthat reflects its state as it was at the beginning of the
current event loop. After the end of the current event—upon invocatimocéssRecentChangesthis
snapshot is updated to hold the modified state of the object.

See also: —committedSnapshotForObject; —processRecentChanges

delegate
— (id)delegate
Returns the receiver’s delegate.

See also: —setDelegate:

deleteObject:
— (void)deleteObject{id)object

Specifies thabbjectshould be removed from the receiver's parent EOObjectStore when changes are
committed. At that time, the object will be removed from the uniquing tables.

See also: —deletedObjects

deletedObjects
— (NSArray *deletedObjects
Returns the objects that have been deleted from the receiver’s object graph.

See also: — updatedObjects — insertedObjects

editors
— (NSArray *editors

Returns the receiver’s editors. Editors are special-purpose delegate objects that may contain uncommitted
changes that need to be validated and applied to enterprise objects before the EOEditingContext saves
changes. For example, EODisplayGroups (EOInterface) register themselves as editors with the
EOEditingContext of their data sources so that they can save any changes in the key text field. For more

Classes: EOEditingContext

information, see the EOEditors informal protocol specification and the EODisplayGroup class
specification.

See also: — addEditor:, — removeEditor:

faultForGloballD:editingContext:

— (id)faultForGloballD: (EOGIloballD *)globallD
editingContext:(EOEditingContext *3nEditingContext

Overrides the implementation inherited from EOObjectStore. If the object associated with the EOGloballD
globallD is already registered in the receiver, this method returns that object. Otherwise, the method
propagates the message down the object store hierarchy, through the parent object store, ultimately to the
associated EODatabaseContext. The EODatabaseContext creates and returns a to-one fault.

For example, suppose you want the department object wleps® has a particular value. The most
efficient way to get it is to look it up by its globallD usiiagiltForGloballD:editingContext: :

EOEntity *entity = [[[editingContext rootObjectStore] modelGroup] entityNamed:

entityName];

EOGIoballD *gid = [entity globallDForRow:[NSDictionary
dictionaryWithObjectsAndKeys:deptldentifier, @"deptID", nil]];

return [editingContext faultForGloballD:gid editingContext:editingContext];

If the department object is already registered in the EOEditingContext, this code returns the object (without
going to the database). If not, a fault for this object is created, and the object is fetched only when you
trigger the fault.

In a nested editing context configuration, when a parent EOEditingContext falddfarGloballD:
editingContext: on behalf of a child EOEditingContext agldballD identifies a newly inserted object in
the parent, the parent registers a copy of the object in the child.

For more discussion of this method, see the section “Working with Objects Across Multiple
EOEditingContexts” in the class description. For more information on faults, see the EOObjectStore,
EODatabaseContext (EOAccess), EOFault, and EOFaultHandler class specifications.

See also: —arrayFaultWithSourceGloballD:relationshipName:editingContext:

faultForRawRow:entityNamed:

— (id)faultForRawRow: (id)row
entityNamed:(NSString *entityName

Returns a fault for the raw romww by invokingfaultForRawRow:entityNamed:editingContext: with
self as the editing context.

61

62

forgetObject:
— (void)forgetObiject: (id)object

Removesbjectfrom the uniquing tables and causes the receiver to remove itself as the object’s observer.
This method is invoked whenever an object being observed by an EOEditingContext is deallocated. Note
that this method doast have the effect of releasing and freeing the object. You should never invoke this
method directly. The correct way to remove an object from its editing context is to remove every reference
to the object by refaulting any object that references it (usiiagltObjects orinvalidateAllObjects).

Also note that this method doret have the effect of deleting an object—to delete an object you should
either use thdeleteObject: method or remove the object from an owning relationship.

globallDForObject:
— (EOGIoballD *globallDForObject: object

Returns the EOGloballD faybject All objects fetched from an external store are registered in an
EOEditingContext along with a global identifier (EOGloballD) that's used to uniquely identify each object
to the external store. ébjecthasn’t been registered in the EOEditingContext (that is, if no match is found),
this method returnsil. Objects are registered in an EOEditingContext usingnegtObject. method, or,

when fetching, withrecordObject:globallD: .

See also: — objectForGloballD:

hasChanges
— (BOOL)hasChanges

Returns YES if any of the objects in the receiver’s object graph have been modified—that is, if any objects
have been inserted, deleted, or updated.

initWithParentObjectStore:
— initWithParentObjectStore: (EOObjectStore *gnObjectStore
Initializes the receiver witanObjectStoras its parent EOObjectStore. RetuseH. This method is the

designated initializer for EOEditingContext. For more discussion of parent EOObjectStores, see “Other
Classes that Participate in Object Graph Management” in the class description.

Classes: EOEditingContext

initializeObject:withGloballD:editingContext:

— (void)initializeObiject: (id)object
withGloballD: (EOGloballD *)globallD
editingContext:(EOEditingContext *xanEditingContext

Overrides the implementation inherited from EOObjectStore to build the propertiesdbjebidentified

by globallD. When a parent EOEditingContext receives this on behalf of a child EOEditingContext (as
represented bgnEditingContext and thagloballD identifies an object instantiated in the parent, the parent
returns properties extracted from its object and translated into the child’s context. This ensures that a nested
context “inherits” modified values from its parent EOEditingContext. If the receiver doesnlhjace

the request is forwarded the receiver’s parent EOObjectStore.

insertedObjects
— (NSArray *)nsertedObjects

Returns the objects that have been inserted into the receiver’s object graph.

See also: — deletedObjects— updatedObjects

insertObject:
— (void)insertObiject: (id)object
Registers (by invokingnsertObject:withGloballD:) objectto be inserted in the receiver’s parent

EOODbjectStore the next time changes are saved. In the meartijewijs registered in the receiver with a
temporary globallD.

See also: —insertedObjects —deletedObjects —insertObject:withGloballD:

insertObject:withGloballD:

— (void)insertObject: objectwithGloballD: (EOGloballD *)globallD
Registers a newbjectidentified bygloballD that should be inserted in the parent EOObjectStore when
changes are saved. Works by invokiagordObject:globallD: , unless the receiver already contains the
object. Sendsbjectthe messagawakeFrominsertionIinEditingContext: . globallD must respond YES

toisTemporary. When the external store commitsject it re-records it with the appropriate permanent
globallD.

It is an error to insert an object that’s already registered in an editing context unless you are effectively
undeleting the object by reinserting it.

See also: —insertObject:

63

64

invalidateAllObjects
— (void)invalidateAllObjects

Overrides the implementation inherited from EOObjectStore to discard the values of objects cached in
memory and refault them, which causes them to be refetched from the external store the next time they’re
accessed. This method sends the megsagkdateObjectsWithGloballDs: to the parent object store

with the globallDs of all of the objects cached in the receiver. When an EOEditingContext receives this
message, it propagates the message down the object store hierarchy. EODatabaseContexts discard their
shapshots for invalidated objects and broadcast an EOObjectsChangedinStoreNotification.
(EODatabaseContext is defined in EOAccess.)

The final effect of this method is to refault all objects currently in memory. This refaulting in turn releases
all objects not retained by your application or by an EODisplayGroup. The next time you access one of
these objects, it's refetched from the database.

To flush the entire application’s cache of all values fetched from an external store, use a statement such as
the following:

[[editingContext rootObjectStore] invalidateAllObjects];

If you just want to discard uncommitted changes but you don't want to sacrifice the values cached in
memory, use the EOEditingConteriert method, which reverses all changes and clears the undo stack.
For more discussion of this topic, see the section “Methods for Managing the Object Graph” in the class
description.

See also: —refetch:, —invalidateObjectsWithGloballDs:

invalidateObjectsWithGloballDs:
— (void)invalidateObjectsWithGloballDs: (NSArray *)globallDs

Overrides the implementation inherited from EOODbjectStore to signal to the parent object store that the
cached values for the objects identifiedgigballDs should no longer be considered valid and that they
should be refaulted. Invok@socessRecentChangelsefore refaulting the objects. This message is
propagated to any underlying object store, resulting in a refetch the next time the objects are accessed. Any
related (child or peer) object stores are notified that the objects are no longer valid. All uncommitted
changed to the objects are lost. For more discussion of this topic, see the section “Methods for Managing
the Object Graph” in the class description.

See also: —invalidateAllObjects

Classes: EOEditingContext

invalidatesObjectsWhenFreed
— (BOOL)invalidatesObjectsWhenFreed

Returns YES to indicate that the receiver clears and “booby-traps” all of the objects registered with it when
the receiver is deallocated, NO otherwise. The default is YES. In this method, “invalidate” has a different
meaning than it does in the othevalidate... methods. For more discussion of this topic, see the method
description forsetinvalidatesObjectsWhenFreed.:

isObjectLockedWithGloballD:editingContext:

— (BOOL)isObjectLockedWithGloballD: (EOGloballD *)globallD
editingContext:(EOEditingContext *3nEditingContext

Returns YES if the object identified gioballD in anEditingContexis locked, NO otherwise. This method
works by forwarding the messaig®bjectLockedWithGloballD:editingContext: to its parent object
store.

See also: —lockObject:, —lockObjectWithGloballD:editingContext: ,
—locksObjectsBeforeFirstModification

lock

Locks access to the receiver to prevent other threads from accessing it. You should lock an editing context
when you are accessing or modifying objects managed by the editing context. The thread-saftey provided
by Enterprise Objects Framework allows one thread to be active in each EOEditingContext and one thread
to be active in each EODatabaseContext (EOAccess). In other words, multiple threads can access and
modify objects concurrently in different editing contexts, but only one thread can access the database at a
time (to save, fetch, or fault).

warning: This method creates an NSAutoreleasePool that is releasedimtbek is called. Consequently,
objects that have been autoreleased within the scopead/anlock pair may not be valid after
theunlock.

See also: —unlock

lockObiject:
— (void)ockObiject: (id)anObject

Attempts to loclkanObjectin the external store. This method works by involkauogObjectWithGloballD:
editingContext:. Raises an NSiInvalidArgumentException if it can’t find the globallafbjectto pass
to lockObjectWithGloballD:editingContext: .

See also: —isObjectLockedWithGloballD:editingContext: , —locksObjectsBeforeFirstModification

65

66

lockObjectWithGloballD:editingContext:

— (void)ockObjectWithGloballD: (EOGIoballD *)globallD
editingContext:(EOEditingContext *3nEditingContext

Overrides the implementation inherited from EOObjectStore to attempt to lock the object identified by
globallD in anEditingContexin the external store. Raises an NSinternallnconsistencyException if unable
to obtain the lock. This method works by forwarding the meseag®bjectWithGloballD:

editingContext: to its parent object store.

See also: —lockObject:, —isObjectLockedWithGloballD:editingContext: ,
—locksObjectsBeforeFirstModification

locksObjectsBeforeFirstModification
— (BOOL)ocksObjectsBeforeFirstModification

Returns YES if the receiver lockbjectin the external store (witlockObject:) the first timeobjectis
modified.

See also: — setLocksObjectsBeforeFirstModification; —isObjectLockedWithGloballD:
editingContext:, —lockObject:, —lockObjectWithGloballD:editingContext:

messageHandler
— (idmessageHandler

Returns the EOEditingContext’s message handler. A message handler is a special-purpose delegate
responsible for presenting errors to the user. Typically, an EODisplayGroup (EOInterface) registers itself
as the message handler for its EOEditingContext. For more information, see the EOMessageHandlers
informal protocol specification.

See also: —setMessageHandler:

objectForGloballD:
— (id)objectForGloballD: (EOGloballD *)globallD

Returns the object identified IgyoballD, ornil if no object has been registered in the EOEditingContext
with globallD.

See also: —globallDForObject:

Classes: EOEditingContext

objectsForSourceGloballD:relationshipName:editingContext:

— (NSArray *pbjectsForSourceGloballD{EOGIoballD *)globallD
relationshipName:(NSString *name
editingContext:(EOEditingContext *anEditingContext

Overrides the implementation inherited from EOODbjectStore to service a to-many fault for a relationship
namedname When a parent EOEditingContext receivebgctsForSourceGloballD:
relationshipName:editingContext: message on behalf of a child editing contextgladallD matches an

object instantiated in the parent, the parent returns a copy of its relationship array and translates its objects
into the child editing context. This ensures that a child editing context “inherits” modified values from its
parent. If the receiving editing context does not have the specified object or if the parent’s relationship
property is still a fault, the request is fowarded to its parent object store.

objectsWithFetchSpecification:
— (NSArray *pbjectsWithFetchSpecification(EOFetchSpecification f@tchSpecification

InvokesobjectsWithFetchSpecification:editingContext:with self as the EOEditingContext and returns
the result.

objectsWithFetchSpecification:editingContext:

— (NSArray *pbjectsWithFetchSpecification(EOFetchSpecification f@tchSpecification
editingContext:(EOEditingContext *anEditingContext

Overrides the implementation inherited from EOObjectStore to fetch objects from an external store
according to the criteria specified fegchSpecificatiomand return them in an array. If one of these objects

is already present in memory, this method doesn’t overwrite its values with the new values from the
database. This method raises an exception if an error occurs; the error message indicates the nature of the
problem.

When an EOEditingContext receives this message, it forwards the message to its root object store. Typically
the root object store is an EOObjectStoreCoordinator with underlying EODatabaseContexts. In this case,
the object store coordinator forwards the request to the appropriate database context based on the entity
name infetchSpecificationThe database context then obtains an EODatabaseChannel and performs the
fetch, registering all fetched objectsanEditingContext(EODatabaseContext and EODatabaseChannel

are defined in EOAccess.)

67

68

objectWillChange:
— (void)objectWillChange:(id)object

This method is automatically invoked when any of the objects registered in the receiver invokes its
willChange method. This method is EOEditingContext’s implementation of the EOObserving protocol.

parentObjectStore
— (EOODbjectStore ParentObjectStore

Returns the EOObjectStore from which the receiver fetches and to which it saves objects.

processRecentChanges
— (void)processRecentChanges

Forces the receiver to process pending insertions, deletions, and uldateslly, when objects are

changed, the processing of the changes is deferred until the end of the current event. At that point, an
EOEditingContext moves objects to the inserted, updated, and deleted lists, delete propagation is
performed, undos are registered, and EOObjectsChangedinStoreNotification and
EOODbjectsChangedInEditingContextNotification are posted (In a Yellow Box application, this usually
causes the user interface to update). You can use this method to explicitly force changes to be processed.
An EOEditingContext automatically invokes this method on itself before performing certain operations
such asaveChanges

propagatesDeletesAtEndOfEvent
— (BOOL)ropagatesDeletesAtEndOfEvent

Returns YES if the receiver propagates deletes at the end of the event in which a change was made, NO if
it propagates deletes only right before saving changes. The default is YES.

See also: — setPropagatesDeletesAtEndOfEvent:

recordObject:globallD:

— (voidyecordObject: (id)object
globallD: (EOGloballD *)globallD

Makes the receiver aware of an object identifiegloypallD existing in its parent object store.

EOODbjectStores (such as the access layer's EODatabaseContext) usually invoke this method for each object
fetched. When it receives this message, the receiver enters the object in its uniquing table and registers itself
as an observer of the object.

Classes: EOEditingContext

redo:

— (voidyedo:(id)sender
This method forwardsrdo message to the receiver's NSUndoManager, asking it to reverse the latest undo
operation applied to objects in the object graph.

See also: —undo:

refault:
— (voidyefault: (id)sender

This action method simply invokesfaultObjects.

refaultObjects
— (voidyefaultObjects

Refaults all objects cached in the receiver that haven't been inserted, deleted, or updated. Invokes
processRecentChangeshen invokesrefaultObject:withGloballD:editingContext: for all objects that

haven't been inserted, deleted, or updated. For more discussion of this topic, see the section “Methods for
Managing the Object Graph” in the class description.

refaultObject:withGloballD:editingContext:

— (voidyefaultObject: (id)anObject
withGloballD: (EOGloballD *)globallD
editingContext:(EOEditingContext *3nEditingContext

Overrides the implementation inherited from EOObjectStore to refault the enterpriseobigett

identified bygloballD in anEditingContextThis method should be used with caution since refaulting an
object does not remove the object snapshot from the undo stack. Objects that have been newly inserted or
deleted should not be refaulted.

The main purpose of this method is to break retain cycles between enterprise objects. For example, suppose
you have an Employee object that has a to-one relationship to its Department, and the Department object in
turn has an array of Employee objects. You can use this method to break the retain cycle. Note that retain
cycles are automatically broken if you release the EOEditingContext. For more discussion of this topic, see
the section “Methods for Managing the Object Graph” in the class description.

See also: —invalidateObjectsWithGloballDs:

69

70

refetch:
— (voidyefetch:(id)sender

This action method simply invokes thwalidate AllObjects method.

registeredObjects
— (NSArray *yegisteredObjects

Returns the enterprise objects managed by the receiver.

removeEditor:
— (voidyemoveEditor:(id)editor

Unregister®ditor from the receiver. For more discussion of EOEditors, seedit@rs method description
and the EOEditors informal protocol specification.

See also: —addEditor:

revert
— (voidyevert

Removes everything from the undo stack, discards all insertions and deletions, and restores updated objects
to their last committed values. Does not refetch from the database. Nawvdratdoesn’'t automatically

cause higher level display groups (WebObject’'s WODisplayGroups or the interface layer's
EODisplayGroups) to refetch. Display groups that allow insertion and deletion of objects need to be
explicitly synchronized whenever this method is invoked on their EOEditingContext.

See also: —invalidateAllObjects

revert:
— (voidyevert: (id)sender

This action method simply invokesvert.

Classes: EOEditingContext

rootObjectStore
— (EOObjectStore TpotObjectStore

Returns the EOObjectStore at the base of the object store hierarchy (usually an
EOODbjectStoreCoordinator).

saveChanges
— (void)saveChanges

Commits changes made in the receiver to its parent EOObjectStore by sending it the message
saveChangeslInEditingContext: If the parent is an EOObjectStoreCoordinator, it guides its
EOCooperatingObjectStores, typically EODatabaseContexts, through a multi-pass save operation (see the
EOODbjectStoreCoordinator class specification for more information). If a database error occurs, an
exception is raised; the error message indicates the nature of the problem.

saveChanges:
— (void)saveChangegid)sender

This action method invokesaveChangeshandling an exception by passing it to the message handler. For
example, if a validation error occurs, the message handler (usually an EODisplayGroup) presents an alert
panel with the text of the validation exception.

See also: —editingContext:presentErrorMessage(EOMessageHandlers) editingContext:
shouldPresentException(EOEditingContext Delegate)

saveChangesInEditingContext:
— (voidsaveChangesInEditingContexttEOEditingContext *anEditingContext

Overrides the implementation inherited from EOObjectStore to tell the receiver's EOObjectStore to accept
changes from a child EOEditingContext. This method shouldn’t be invoked directly. It's invoked by a nested
EOEditingContext when it's committing changes to a parent EOEditingContext. The receiving parent
EOEditingContext incorporates all changes from the nested EOEditingContext into its own copies of the
objects, but it doesn’t immediately save those changes to the database. If the parent itself is later sent
saveChangesit propagates any changes received from the child along with any other changes to its parent
EOODbjectStore. Raises an exception if an error occurs; the error message indicates the nature of the
problem.

71

72

setDelegate:
— (void)setDelegate(id)anObject
Set the receiver’s delegate tod®Object without retaining it.

See also: —delegate

setlnvalidatesObjectsWhenFreed:
— (void)setlnvalidatesObjectsWhenFreed'BOOL)flag

Sets according tthag whether the receiver clears and “booby-traps” all of the objects registered with it
when the receiver is deallocated. If an editing context invalidates objects when it's deallocated, it sends a
clearPropertiesmessage to all of its objects, thereby breaking any retain cycles between objects that would
prevent them from being deallocated. This method leaves the objects in a state in which sending them any
message other thaealloc or releaseraises an exception.

The default is YES, and as a general rule, this setting must be YES for enterprise objects with cyclic
references to be freed when their EOEditingContext is freed.

Note that the word “invalidate” in this method name has a different meaning than it does in the other
invalidate... methods, which discard object values and refault them.

See also: —invalidatesObjectsWhenFreed

setLocksObjectsBeforeFirstModification:
— (void)setLocksObjectsBeforeFirstModification(BOOL)flag

Sets according titag whether the receiver lockdbjectin the external store (witlockObject:) the first

time objectis modified. The default is NO.flagis YES, an exception will be thrown raised if a lock can’t

be obtained wheabjectinvokeswillChange. There are two reasons a lock might fail: because the row is
already locked in the server, or because your snapshot is out of date. If your snapshot is out of date, you can
explicitly refetch the object using an EOFetchSpecification sétRefreshesRefetchedObjectset to

YES. To handle the exception, you can implement the EODatabaseContext delegate method
databaseContextShouldRaiseExceptionForLockFailure:

You should avoid using this method or pessimistic locking in an interactive end-user application. For
example, a user might make a change in a text field and neglect to save it, thereby leaving the data locked
in the server indefinitely. Consider using optimistic locking or application level explicit check-in/check-out
instead.

See also: —locksObjectsBeforeFirstModification

Classes: EOEditingContext

setMessageHandler:
— (void)setMessageHandlefid)handler

Set the receiver's message handler thdedlet

See also: —messageHandler

setPropagatesDeletesAtEndOfEvent:
— (void)setPropagatesDeletesAtEndOfEventBOOL)flag

Sets according tihag whether the receiver propagates deletes at the end of the event in which a change was
made, or only just before saving changes.

If flagis YES, deleting an enterprise object triggers delete propagation at the end of the event in which the
deletion occurred (this is the default behaviorjlad is NO, delete propagation isn’t performed until
saveChangess invoked.

You can delete enterprise objects explicitly by usingitfleteObject: method or implicitly by removing

the enterprise object from an owning relationship. Delete propagation uses the delete rules in the
EOCIlassDescription to determine whether objects related to the deleted object should also be deleted (for
more information, see the EOClassDescription class specification and the EOEnterpriseObject informal
protocol specification). If delete propagation fails (that is, if an enterprise object refuses to be deleted—
possibly due to a deny rule), all changes made during the event are rolled back.

See also: — propagatesDeletesAtEndOfEvent

setStopsValidationAfterFirstError:
— (void)setStopsValidationAfterFirstError: (BOOL)flag

Sets according tilag whether the receiver stops validating after the first error is encountered, or continues
for all objects (validation typically occurs during a save operation). The default is YES. Setting it to NO is
useful if the delegate implememditingContext:shouldPresentExceptionto handle the presentation of
aggregate exceptions.

See also: — stopsValidationAfterFirstError

73

74

setUndoManager:
— (void)setUndoManager(NSUndoManager Y)ndoManager

Sets the receiver's NSUndoManageutmloManagerYou might invoke this method withil if your
application doesn’t need undo and you want to avoid the overhead of an undo stack. For more information
on editing context’s undo support, see the section “Undo and Redo.”

See also: —undoManager

stopsValidationAfterFirstError
— (BOOL)stopsValidationAfterFirstError

Returns YES to indicate that the receiver should stop validating after it encounters the first error, or NO to
indicate that it should continue for all objects.

See also: — setStopsValidationAfterFirstError:

tryToSaveChanges
— (NSException #ryToSaveChanges

Invokes thesaveChangesnethod, and catches and returns any exceptions that are raised.

undo:
— (voidundo:(id)sender

This action method forwards amdo message to the receiver's NSUndoManager, asking it to reverse the
latest uncommitted changes applied to objects in the object graph. For more information on editing
context’'s undo support, see the section “Undo and Redo.”

See also: redo:

undoManager
— (NSUndoManager tindoManager

Returns the receiver's NSUndoManager.

See also: —setUndoManager:

Classes: EOEditingContext

unlock
— (voidunlock

Unlocks access to the receiver so that other threads may access it.

Warning: This method creates an NSAutoreleasePool that is releasedmibek is called. Consequently,
objects that have been autoreleased within the scopeak/anlock pair may not be valid after
theunlock.

See also: —lock

updatedObjects
— (NSArray *updatedObjects

Returns the objects in the receiver’s object graph that have been updated.

See also: — deletedObjects— insertedObjects

Notifications

The following notifications are declared (except where otherwise noted) and posted by EOEditingContext.

EOEditingContextDidSaveChangesNotification

This notification is broadcast after changes are saved to the EOEditingContext’s parent EOObjectStore. The
notification contains:

Notification Object The EOEditingContext

userinfo Dictionary

Key Value

updated An NSArray containing the changed objects
deleted An NSArray containing the deleted objects
inserted An NSArray containing the inserted objects

75

76

EOInvalidatedAllObjectsInStoreNotification

This notification is defined by EOObjectStore. When posted by an EOEditingContext, it’s the result of the
editing context invalidating all its objects. When an EOEditingContext receives an
EOInvalidatedAllObjectsIinStoreNotification from its parent EOObjectStore, it clears its lists of inserted,
updated, and deleted objects, and resets its undo stack. The notification contains:

Notification Object The EOEditingContext

userlnfo Dictionary None.

An interface layer EODisplayGroup (not a WebObjects WODisplayGroup) listens for this notification to
refetch its contents. See the EOODbjectStore class specification for more information on this notification.

EOObjectsChangedinStoreNotification

This notification is defined by EOObjectStore. When posted by an EOEditingContext, it's the result of the
editing context processimapjectWillChange: observer natifications iprocessRecentChangesvhich is

usually as the end of the event in which the changes occurred. See the EOObjectStore class specification
for more information on EOObjectsChangedinStoreNotification.

This notification contains:

Notification Object The EOEditingContext

userinfo Dictionary

Key Value

updated An NSArray of EOGIqbaIIDs for objects whose_ propertie_s have changed. A receiving
EOEditingContext typically responds by refaulting the objects.

inserted An NSArray of EOGloballDs for objects that have been inserted into the EOObjectStore.

deleted An NSArray of EOGloballDs for objects that have been deleted from the EOObjectStore.

An NSArray of EOGloballDs for objects that have been turned into faults. Invalidated objects
invalidated are those for which the cached view should no longer be trusted. Invalidated objects should
be refaulted so that they are refetched when they're next examined.

Classes: EOEditingContext

EOODbjectsChangedInEditingContextNotification

This notification is broadcast whenever changes are made in an EOEditingContext. It's similar to
EOODbjectsChangedinStoreNatification, except that it contains objects rather than globallDs. The
notification contains:

Notification Object The EOEditingContext

userinfo Dictionary

Key Value

updated An NSArray containing the changed objects
deleted An NSArray containing the deleted objects
inserted An NSArray containing the inserted objects
invalidated An NSArray containing invalidated objects.

Interface layer EODisplayGroups (not WebObjects WODisplayGroups) listen for this notification to
redisplay their contents.

77

78

Classes: EOEditingContext

EOEditingContext

Other Classes that Participate in Object Graph Management

EOEditingContexts work in conjunction with instances of other classes to manage the object graph. Two
other classes that play a significant role in object graph management are NSUndoManager and
EOObserverCenter. NSUndoManager objects provide a general-purpose undo stack. As a client of
NSUndoManager, EOEditingContext registers undo events for all changes made the enterprise objects that
it watches.

EOObserverCenter provides a notification mechanism for an observing object to find out when another
object is about to change its state. “Observable” objects (typically all enterprise objects) are responsible for
invoking theirwillChange method prior to altering their state (in a “set” method, for instance). Objects

(such as instances of EOEditingContext) can add themselves as observers to the objects they care about in
the EOObserverCenter. They then receive a notification (alsjactWillChange: message) whenever an
observed object invokesillChange.

TheobjectWillChange: method is defined in the EOObserving protocol. EOEditingContext implements
the EOObserving interface. For more information about the object change notification mechanism, see the
EOObserving protocol specification.

Programmatically Creating an EOEditingContext

Typically, an EOEditingContext is created automatically for your application as a by product of some other
operation. For example, the following operations result in the creation of network of objects that include an
EOEditingContext:

* Running the EOF Wizard in Project Builder to create an OpenStep application with a graphical user
interface

« Dragging an entity from EOModeler into a nib file in Interface Builder
« Accessing the default editing context of a WebObjects WOSession in a WebObjects application

Under certain circumstances, however, you may need to create an EOEditingContext programmatically—
for example, if you're writing an application that doesn’t include a graphical interface. To create an
EOEditingContext, do this:

EOEditingContext *editingContext = [[EOEditingContext alloc] init];

This creates an editing context that's connected to the default EOObjectStoreCoordinator. You can change
this default setting by initializing an EOEditingContext with a particular parent EOObjectStore. This is
useful if you want your EOEditingContext to use a different EOObjectStoreCoordinator than the default,
or if your EOEditingContext is nested. For example, the following code excerpt initializes
childeditingContext with a parent object stoparentEditingContext:

79

80

EOEditingContext *parentEditingContext; // Assume this exists.
EOEditingContext *childEditingContext = [[EOEditingContext alloc]
initWithParentObjectStore:parentEditingContext];

For more discussion of working programmatically with EOEditingContexts, see the chapter “Application
Configurations” in thé&nterprise Objects Framework Developer's Guide

Accessing An Editing Context's Adaptor Level Objects

You can use an EOEditingContext with any EOObjectStore. However, in a typical configuration, you use
an EOEditingContext with the objects in the access layer. To access an EOEditingContext’s adaptor level
objects, you get the editing context’s EOObjectStoreCoordinator from the editing context, you get an
EODatabaseContext (EOAccess) from the object store coordinator, and you get the adaptor level objects
from there. The following code demonstrates the process.

EOEditingContext *editingContext; // Assume this exists.
NSString *myEntityName; /I Assume this exists.
EOFetchSpecification *fspec;

EOObjectStoreCoordinator *rootStore;
EODatabaseContext *dbContext;

EOAdaptor *adaptor;

EOAdaptorContext *adContext;

fspec = [EOFetchSpecification fetchSpecificationWithEntityName:myEntityName
qualifier:nil
sortOrderings:nil];

rootStore = (EOCooperatingObjectStore *)[editingContext rootObjectStore];
dbContext = [rootStore objectStoreForFetchSpecification:fspec];

adaptor = [[dbContext database] adaptor];
adContext = [dbContext adaptorContext];

This example first creates a fetch specification, providing just the entity name as an argument. Of course,
you can use a fetch specification that hasmibralues for all of its arguments, but only the entity name is
used by the EOODbjectStoobjectStoreForFetchSpecification:method. Next, the example gets the

editing context’s EOObjectStoreCoordinator using the EOEditingContext mestbtidbjectStore.
rootObjectStore returns an EOObjectStore and not an EOODbjectStoreCoordinator, because it's possible to
substitute a custom object store in place of an object store coordinator. Similarly, the
EOODbjectStoreCoordinator methobjectStoreForFetchSpecification:returns an

EOCooperatingObjectStore instead of an access layer EODatabaseContext because it's possible to
substitute a custom cooperating object store in place of a database context. If your code performs any such
substitutions, you should alter the above code example to match your custom object store’'s API. See the
class specifications for EOObjectStore, EOObjectStoreCoordinator, and EOCooperatingObjectStore for
more information.

Classes: EOEditingContext

An EOEditingContext’s EOObjectStoreCoordinator can have more than one set of database and adaptor
level objects. Consequently, to get a database context from the object store coordinator, you have to provide
information that the coordinator can use to choose the correct database context. The code example above
provides an EOFetchSpecification using the metijectStoreForFetchSpecification; but you could

specify different criteria by using one of the following EOObjectStoreCoordinator methods instead:

Method Description

cooperatingObjectStores Returns an array of the EOODbjectStoreCoordinator’s cooperating object stores.

Returns the cooperating object store for the enterprise object identified by the

objectStoreForGloballD: provided EOGIoballD.

objectStoreForObject: Returns the cooperating object store for the provided enterprise object.

After you have the EODatabaseContext, you can get the corresponding EOAdaptor and EOAdaptorContext
as shown above. (EODatabaseContext, EOAdaptor, and EOAdaptorContext are all defined in EOAccess.)

Using EOEditingContexts in Different Configurations

The fundamental relationship an EOEditingContext has is to its parent EOObjectStore, which creates the
object graph the EOEditingContext monitors. EOObjectStore is an abstract class that defines a source and
sink of objects for an EOEditingContext. The EOObjectStore is responsible for constructing and registering
objects, servicing object faults, and committing changes made in an EOEditingContext.

You can augment the basic configuration of an EOEditingContext and its parent EOObjectStore in several
different ways. For example, multiple EOEditingContexts can share the same EOObjectStore, one
EOEditingContext can act as an EOObjectStore for another, and so on. The most commonly used scenarios
are described in the following sections.

Peer EOEditingContexts

One or more “peer” EOEditingContexts can share a single EOObjectStore (Figure 1). Each
EOEditingContext has its own object graph—so, for example, a given Employee row in a database can have
separate object instances in each EOEditingContext. Changes to an object in one EOEditingContext don't
affect the corresponding object in another EOEditingContext until all changes are successfully committed
to the shared object store. At that time the objects in all EOEditingContexts are synchronized with the
committed changes. This arrangement is useful when an application allows the user to edit multiple
independent “documents.”

81

82

EOEditing EOEditing

Contaxt Cantext
ohject store abject store
EﬂﬂhiEEtEIcI'EI

Figure 1 Peer EOEditingContexts

Nested EOEditingContexts

EOEditingContext is a subclass of EOObjectStore, which gives its instances the ability to act as
EOObjectStores for other EOEditingContexts. In other words, EOEditingContexts can be nested (Figure
2), thereby allowing a user to make edits to an object graph in one EOEditingContext and then discard or
commit those changes to another object graph (which, in turn, may commit them to an external store). This
is useful in a “drill down” style of user interface where changes in a nested dialog can be okayed
(committed) or canceled (rolled back) to the previous panel.

EQEditing
Context

abject store

ECEditing
Context

r.h|.—'.-:! shore

EDD-bi&:tStcuI

Figure 2 Nested EOEditingContexts

When an object is fetched into a nested EOEditingContext, it incorporates any uncommitted changes that
were made to it in its parent EOEditingContext. For example, suppose that in one panel you have a list of
employees that allows you to edit salaries, and that the panel includes a button to display a nested panel
where you can edit detail information. If you edit the salary in the parent panel, you see the modified salary

Classes: EOEditingContext

in the nested panel, not the old (committed) salary from the database. Thus, conceptually, nested
EOEditingContexts fetch through their parents.

EOEditingContext overrides several of EOObjectStore’s methods:

» — arrayFaultWithSourceGloballD:relationshipName:editingContext:
» — faultForGloballD:editingContext:

» —invalidateAllObjects

* —invalidateObjectsWithGloballDs:

— objectsForSourceGloballD:relationshipName:editingContext:

» — objectsWithFetchSpecification:editingContext:

— refaultObject:withGloballD:editingContext:

» — saveChangesInEditingContext:

These methods are generally used when an EOEditingContext acts as an EOObjectStore for another
EOEditingContext. For more information, see the individual method descriptions. For information on
setting up this configuration for interfaces loaded from nib files, see the method description for
setDefaultParentObjectStore:

For a description of how to implement nested EOEditingContexts, see the chapter “Application
Configurations” in thé&nterprise Objects Framework Developer’s Guide

Getting Data from Multiple Sources

An EOEditingContext’s object graph can contain objects from more than one external store (Figure 3). In
this scenario, the object store is an EOObjectStoreCoordinator, which provides the abstraction of a single
object store by redirecting operations to one or more EOCooperatingObjectStores.

EQEditing
Contaext

ol slara

ECObjectStore
Coordinator

ECDatabase ECDatabase
Cantext Confext

Figure 3 An EOEditingContext Containing Objects from Multiple Sources

83

84

In writing an application, it's likely that you'll use combinations of the different scenarios described in the
above sections.

Fetching Objects

The most common way to explicitly fetch objects from an external store in an Enterprise Objects
Framework application is to use EOEditingContesbgectsWithFetchSpecification:method. This

method takes a fetch specification and returns an array of objects. A fetch specification includes the name
of the entity for which you want to fetch objects, the qualifier (query) you want to use in the fetch, and the
sort order in which you want the objects returned (if any). For example, the following code excerpt uses
objectsWithFetchSpecification:to fetch all video store members who have Visa credit cards:

EOFetchSpecification *fetchSpec;

NSArray *results;

fetchSpec = [EOFetchSpecification
fetchSpecificationWithEntityName: @"Member"
qualifier:[EOQuialifier qualifierWithQualifierFormat:
@"cardType = 'Visa' "]
sortOrderings:nil];

results = [editingContext objectsWithFetchSpecification:fetchSpec];

Note that objects are allocated in the same zone as the EOEditingContext into which they’re fetched.

Managing Changes in Your Application

EOEditingContext provides several methods for managing the changes made to objects in your application.
You can use these methods to get information about objects that have changed, to selectively undo and redo
changes, and to discard all changes made to objects before these changes are committed to the database.
These methods are described in the following sections.

Getting Information About Changed Objects

An EOEditingContext maintains information about three different kinds of changes to objects in its object
graph: insertions, deletions, and updates. After these changes have been made and before they’re committed
to the database, you can find out which objects have changes in each of these categories by using the
insertedObjects deletedObjects andupdatedObjectsmethods. Each method returns an array containing

the objects that have been inserted, deleted, and updated, respectivehsThangesnethod returns

YES or NO to indicate whether any of the objects in the object graph have been inserted, deleted, or
updated.

Undo and Redo

EOEditingContext includes thendo:, redo:, andrevert: methods for managing changes to objects in the
object graphundo: asks the EOEditingContext’s NSUndoManager to reverse the latest changes to objects
in the object graphredo: asks the NSUndoManager to reverse the latest undo operatiert: clears the

Classes: EOEditingContext

undo stack, discards all insertions and deletions, and restores updated objects to their last committed (saved)
values.

EOEditingContext’s undo support is arbitrarily deep; you can undo an object repeatedly until you restore it
to the state it was in when it was first created or fetched into its editing context. Even after saving, you can
undo a change. To support this feature, the NSUndoManager can keep a lot of data in memory.

For example, whenever an object is removed from a relationship, the corresponding editing context creates
a snapshot of the modified, source object. The snapshot, which retains the removed object, is retained by
the editing context and by the undo manager. The editing context releases the snapshot when the change is
saved, but the undo manager doesn't. It continues holding the snapshot, so it can undo the deletion if
requested.

If the typical usage patterns for your application generate a lot of change processing, you might want to
limit the undo feature to keep its memory usage in check. For example, you could clear an undo manager
whenever its editing context saves. To do so, simply send the undo maremgeveAllActions message

(or aremoveAllActionsWithTarget: message with the editing context as the argument). If your

application doesn’t need undo at all, you can avoid any undo overhead by setting the editing context’s undo
manager tmil with setUndoManager:

Saving Changes

ThesaveChangesnethod commits changes made to objects in the object graph to an external store. When
you save changes, EOEditingContext’s lists of inserted, updated, and deleted objects are flushed.

Upon a successful save operation, the EOEditingContext's parent EOObjectStore broadcasts an
EOODbjectsChangedInStoreNaotification. Peers of the saved EOEditingContext receive this notification and
respond by synchronizing their objects with the committed versions. See also

Methods for Managing the Object Graph

EOEditingContext provides methods for managing the enterprise objects in the context’s object graph. This
section describes these methods, as well as other techniques you can use to manage the object graph.

At different points in your application, you might want to do the following:
» Break retain cycles between enterprise objects
» Discard changes that have been made to enterprise objects

« Make sure that when you refetch objects from the database, any changed database values are used instead
of the original values

« Discard the view of objects cached in memory
« Work with objects across multiple editing contexts

These scenarios are discussed in the following sections.

85

86

Breaking Retain Cycles

You use the EOEditingContext methadfaultObjects andrefaultObject:withGloballD:

editingContext: to break retain cycles between your enterprise objects. For example, suppose you have an
Employee object that has a to-one relationship to its Department, and the Department object in turn has an
array of Employee objects. This circular reference constitutes a retain cycle, which you can break using the
refault... methods.

Note: Retain cycles are automatically broken if you release the EOEditingContext.

You should use theefault... methods with caution, since refaulting an object doesn’t remove the object
snapshot from the undo stack. Objects that have been newly inserted or deleted should not be refaulted. In
general, it's safer to ugefaultObjects than it is to useefaultObject:withGloballD:editingContext:
sincerefaultObjects only refaults objects that haven't been inserted, deleted or updated. The method
refaultObject:withGloballD:editingContext: doesn’t make this distinction, so you should only use it

when you're sure you know what you're doing.

If you want to reset your EOEditingContext and free all of its objects, do the following:

EOEditingContext *editingContext; // Assume this exists.
[editingContext revert]; // Discard uncommitted changes
[editingContext refaultObjects];

Note that you must release any other retains on the enterprise objects in the EOEditingContext for them to
actually be freed. For example, to clear a display group that references a list of enterprise objects, you'd do
something like the following:

[displayGroup setObjectArray:nil];

Releasing the EODisplayGroup (and any user interface objects that refer to it) also has the effect of
releasing the object array.

Using theinvalidate... methods (described below) also has the effect of breaking retain cycles, but these
methods have a more far-reaching effect. It's not recommended that you use them simply to break retain
cycles.

Discarding Changes to Enterprise Objects

EOEditingContext provides different techniques for discarding changes to enterprise objects. These
techniques are as follows:

« Perform a simpleindo:, which reverses the latest uncommitted changes applied to objects in the object
graph.

 Invoke the EOEditingContext methoelert, which removes everything from the undo stack, discards
all insertions and deletions, and restores updated objects to their last committed values. If you just want
to discard uncommitted changes but you don’t want to sacrifice the original values from the database
cached in memory, use thevert method.

Classes: EOEditingContext

A different approach is to use thiwvalidate... methods, described in ““Discarding the View of Objects

M 1

Cached in Memory”.

Refreshing Objects

One characteristic of an object graph is that it represents an internally consistent view of your application’s
data. By default, when you refetch data, Enterprise Objects Framework maintains the integrity of your
object graph by not overwriting your object values with database values that have been changed by someone
else. But what if you want your application to see those changes? You can accomplish this by using the
EOFetchSpecification metheétRefreshesRefetchedObjectstnvoking

setRefreshesRefetchedObjectsvith the argument YES causes existing objects to be overwritten with
fetched values that have been changed. Alternatively, you can use the EODatabaseContext (EOAccess)
delegate methodatabaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globallD:channel:

Normally, when you set an EOFetchSpecification to refresh asiiRgfreshesRefetchedObjectsit only
refreshes the objects you're fetching. For example, if you refetch employees, you don't also refetch the
employees’ departments. However, if you use the EOPrefetchingRelationshipHintKey with an
EOFetchSpecification in the EODatabaseContext mathjttsWithFetchSpecification:

editingContext:, the refetch is propagated for all of the fetched objects’ relationships that are specified for
the hint. For more discussion of this topic, see the EODatabaseContext class specification.

Refreshing refetched objects only affects the objects you specify. If you want to refetch your entire object
graph, you can use the EOEditingConiextlidate... methods, described below.

Discarding the View of Objects Cached in Memory

As described in the section “Discarding Changes to Enterprise Objects,” you ecardaser revert to

selectively discard the changes you've made to enterprise objects. Using these methods preserves the
original cache of values fetched from the database. But what if you want to flush your in-memory object
view all together—in the most likely scenario, to see changes someone else has made to the database? You
can invalidate your enterprise objects usingitivalidateAllObjects method or the
invalidateObjectsWithGloballDs: method. (You can also use the action metiedetch:, which simply
invokesinvalidateAllObjects). Unlike fetching with the EOFetchSpecification method
setRefreshesRefetchedObjectset to YES (described above), thealidate... methods result in the

refetch of your entire object graph.

The effect of theénvalidateAllObjects method depends on how you use it. For example, if you send
invalidateAllObjects to an EOEditingContext, it sendw/alidateObjectsWithGloballDs: to its parent

object store with all the globallDs for the objects registered in it. If the EOEditingContext is nested, its
parent object store is another EOEditingContext; otherwise its parent object store is typically an
EOODbjectStoreCoordinator. Regardless, the message is propagated down the object store hierarchy. Once
it reaches the EOODbjectStoreCoordinator, it's propagated to the EODatabaseContext(s). The
EODatabaseContext discards the row snapshots for these globallDs and sends an
EOODbjectsChangedinStoreNaotification, thereby refaulting all the enterprise objects in the object graph.

87

This refaulting in turn releases all objects not retained by your application or by an EODisplayGroup. The
next time you access one of these objects, it's refetched from the database.

SendingnvalidateAllObjects to an EOEditingContext affects not only that context’s objects, but objects
with the same globallDs in other EOEditingContexts. For example, supgibisgjContextthasobjectA
andobjectB andeditingContexthasobjectA objectB andobjectC When you senhvalidate AllObjects

to editingContextlobjectAandobjectBare refaulted in bothaditingContextlandeditingContext2
However,objectCin editingContextds left intact sinceditingContextidoesn’t have anbjectC

If you sendnvalidateAllObjects directly to the EOObjectStoreCoordinator, it seimgalidate AllObjects
to all of its EODatabaseContexts, which then discard all of the snapshots in your application and refault
every single enterprise object in all of your EOEditingContexts.

Theinvalidate... methods are the only way to get rid of a database lock without saving your changes.

Working with Objects Across Multiple EOEditingContexts

Any time your application is using more than one EOEditingContext (as described in the section ““Using
EOEditingContexts in Different Configurations™), it’s likely that one editing context will need to access
objects in another.

On the face of it, it may seem like the most reasonable solution would be for the first editing context to just
get a pointer to the desired object in the second editing context and modify the object directly. But this
would violate the cardinal rule of keeping each editing context’s object graph internally consistent. Instead
of modifying the second editing context’s object, the first editing context needs to get its own copy of the
object. It can then modify its copy without affecting the original. When it saves changes, they're propagated
to the original object, down the object store hierarchy. The method that you use to give one editing context
its own copy of an object that's in another editing contexaidtForGloballD:editingContext: .

For example, suppose you have a nested editing context configuration in which a user interface displays a
list of objects—this maps to the parent editing context. From the list, the user can select an object to inspect
and modify in a “detail view"—this maps to the child editing context. To give the child its own copy of the
object to modify in the detail view, you would do something like the following:

EOEditingContext *childEC, *parentEC; // Assume these exist.
id newObject = [childEC faultForGloballD:[parentEC globallDForObject:origObject]
editingContext:childEC];

whereorigObject is the object the user selected for inspection from the list.

The child can make changeswObjectwithout affectingorigObject in the parent. Then when the child
saves changesrigObject is updated accordingly.

Updates from the Parent EOObjectStore

When changes are successfully saved in an EOObjectStore, it broadcasts an
EOObjectsChangedinStoreNotification. An EOEditingContext receiving this notification will synchronize

Classes: EOEditingContext

its objects with the committed values by refaulting objects needing updates so the new values will be
retrieved from the EOODbjectStore the next time they are needed. However, locally uncommitted changes to
objects in the EOEditingContext are by default reapplied to the objects, in effect preserving the
uncommitted changes in the object graph. After the update, the uncommitted changes remain uncommitted,
but the committed snapshots have been updated to reflect the values in the EOObjectStore.

You can control this process by implementing two delegate methods. Before any updates have occurred, the
delegate methodditingContext:shouldMergeChangesForObjectwill be invoked for each of the

objects that has both uncommitted changes and an update in the EOObjectStore. If the delegate returns
YES, the uncommitted chnages will be merged with the update (the default behavior). If it returns NO, then
the object will be invalidated (and refaulted) without preserving ay uncommitted changes. As a side effect,
the delgate might cache information about the object (globallD, shapshot, etc.) so that a specialized merging
behavior could be implemented. At this point, the delegate should not make changes to the object becuse it
is about to be invalidated. However, the delegate metHiithgContextDidMergeChanges:is invoked

after all of the updates for the EOObjectsChangedInStoreNotification have been completed, including the
merginf of all uncommitted changes. By default, it does nothing, but this delegate method might perform
the customized merging behavior based on whatever information was cael@thgContext:
shouldMergeChangesForObjectfor each of the objects that needed an update. See the informal protocol
EOValueMerging for the descriptions of the methoklangesFromSnapshotand
reapplyChangesFromDictionary:, which might be useful for implementing custom merging behaviors.

General Guidelines for Managing the Object Graph

When you fetch objects into your application, you create a graph of objects instantiated from database data.
From that point on, your focus should be on working with the object graph—not on interacting with your
database. This distinction is an important key to working with Enterprise Objects Framework.

You don’t have to worry about the database...

One of the primary benefits of Enterprise Objects Framework is that it insulates you from having to worry
about database details. Once you've defined the mapping between your database and your enterprise objects
in a model file, you don’t need to think about issues such as foreign key propagation, how object deletions
are handled, how operations in the object graph are reflected in your database tables, and so on.

This can be illustrated by considering the common scenario in which one object has a relationship to
another. For example, suppose an Employee has a relationship to a Department. In the object graph, this
relationship is simply expressed as an Employee object having a pointer to its Department object. The
Department object might in turn have a pointer to an array of Employee objects. When you manipulate
relationships in the object graph (for example, by moving an Employee to a different Department),
Enterprise Objects Framework changes the appropriate relationship pointers. For example, moving an
Employee to a different Department changes the Employee’s department pointer and adds the Employee to
the new Department’s employee array. When you save your changes to the database, Enterprise Objects
Framework knows how to translate these object graph manipulations into database operations.

89

90

...but you do have to worry about the object graph

As described above, you generally don’t need to concern yourself with how changes to the object graph are
saved to the database. However, you do need to concern yourself with managing the object graph itself.
Since the object graph is intended to represent an internally consistent view of your application’s data, one
of your primary considerations should be maintaining its consistency. For example, suppose you have a
relationship from Employee to Project, and from Employee to Manager. When you create a new Employee
object, you must make sure that it has relationships to the appropriate Projects and to a Manager.

Just as you need to maintain the internal consistency of an EOEditingContext’s object graph, you should
never directly modify the objects in one EOEditingContext from another EOEditingContext. If you do so,
you risk creating major synchronization problems in your application. If you need to access the objects in
one EOEditingContext from another, use the metaattForGloballD:editingContext: , as described in
“Working with Objects Across Multiple EOEditingContexts.” This gives the receiving EOEditingContext

its own copy of the object, which it can modify without affecting the original. Then when it saves its
changes, the original is updated accordingly.

One of the implications of needing to maintain the consistency of your object graph is that you should never
copy an enterprise object (though you can snapshot its properties), since this would be in conflict with
uniquing. Uniquing dictates that an EOEditingContext can have one and only one copy of a particular
object. For more discussion of uniquing, see the chapter “Behind the SceneEimetpmise Objects
Framework Developer’s Guid&imilarly, your enterprise objects shouldn't overrideigiigual: method.
Enterprise Objects Framework relies on the default NSObject implementation which checks instance
(pointer) equality rather than value equality.

Using EOEditingContext to Archive Custom Objects in Web Objects Framework

In WebObjects, applications that use the Enterprise Objects Framework must enlist the help of the
EOEditingContext to archive enterprise objects. The primary reason is so that the EOEditingContext can
keep track, from one transaction to the next, of the objects it manages. But using an EOEditingContext for
archiving also benefits your application in these other ways:

< During archiving, an EOEditingContext stores only as much information about its enterprise objects as
is needed to reconstitute the object graph at a later time. For example, unmodified objects are stored as
simple references (by globallD) that will allow the EOEditingContext to recreate the object from the
database. Thus, your application can store state very efficiently by letting an EOEditingContext archive
your enterprise objects.

< During unarchiving, an EOEditingContext can recreate individual objects in the graph only as they are
needed by the application. This approach can significantly improve application performance.

An enterprise object (like any other object that uses the OpenStep archiving scheme) makes itself available
for archiving by declaring that it conforms to the NSCoding protocol, by implementing the protocol’s two
methodsencodeWithCoder: andinitWithCoder: . It implements these methods like this:

Classes: EOEditingContext

- (void)encodeWithCoder:(NSCoder *)aCoder {
[EOEditingContext encodeObiject:self withCoder:aCodery];

}

- (id)initWithCoder:(NSCoder *)aDecoder {
return [EditingContext initObject:self withCoder:aDecoder];

}

The enterprise object simply passes on responsibility for archiving and unarchiving itself to the
EOEditingContext class, by invoking tkacodeObject:withCoder: andinitObject:withCoder: class
methods. The EOEditingContext takes care of the rest. For more discussimodéWithCoder: and
initWithCoder: , see the NSCoding protocol specification infhendation Framework Reference

EOEditingContext includes two additional methods that affect the archiving and unarchiving of objects:
setUsesContextRelativeEncodingandusesContextRelativeEncodingWhen you use context relative
encoding, it means that enterprise objects that archive themselves using the EOEditingContext
encodeObject:withCoder: method archive their current state (that is, all of their class properties) only if
they (the objects) are marked as inserted or updated in the EOEditingContext. Otherwise, they archive just
their globallD’s since their state matches what'’s stored in the database and can be retrieved from there. If
usesContextRelativeEncodingeturns NO, it means the current state will always be archived, even if the
enterprise object is unmodified. The default is NO for OpenStep applications, and YES for WebObjects
applications.

91

92

Classes: EOFault

EOFault
Inherits From: none(EOFault is a root class)
Declared In: EOControl/EOFault.h

Class Description

EOFault and EOFaultHandler form a general mechanism for substituting placeholder objects that convert
themselves into regular objects. An EOFault is most commonly used by the Access Layer to represent an
object not yet fetched from the database, but that must nonetheless exist as an instance in the application—
typically because it's the destination of a relationship. EOFault is a completely general class; there’s no
need to create subclasses to customize fault handling. Instead, you create subclasses of EOFaultHandler to
accommodate different means of converting faults into regular objects.

The faulting mechanism provides for continuity of an objaedtsven when that object’s state isn't yet
available. An EOFault simply holds the place for an ultimate “real” object, handling all methods that it can
without causing the state to be loaded. When an EOFault receives a message that it can't handle, it calls
upon its EOFaultHandler fire it, converting it into a “real” object. This often involves accessing the
external, persistent state of the object.

Creating an EOFault

Rather than allocating and initializing an EOFault, you turn an existing object into one using EOFault’s
makeObjectintoFault:withHandler: class method. When you do so, you must provide an
EOFaultHandler that will later help the fault to fireakeObjectintoFault:withHandler: preserves thiel

of the original object, overlaying itsa pointer with that of the EOFault class and slipping the
EOFaultHandler among its instance variables. Once this is done, the original object is an EOFault that will
fire when accessed.

The EOFaultHandler should be considered completely private property of the EOFault once you've created
it. You should neither retain the EOFaultHandler or send it any other messages, instead dealing exclusively
with the newly created EOFault or the EOFault class itself.

EOFault Behavior
EOFault implements many basic object methods in a manner that doesn’t cause the receiver to fire. The

following methods all behave as though normal for the original object:

— retain — isMemberOfClass:

93

94

—release — conformsToProtocol:

— autorelease — isProxy

— retainCount — methodSignatureForSelector:
—class — respondsToSelector:

— superclass —zone

—isKindOfClass: — doesNotRecognizeSelector:

doesNotRecognizeSelectois a special case here, in that it's only invoked if the selector in question isn’t
found for the original class. Normally, methods not implemented by EOFault, but implemented by the
original class, cause the receiver to fire as described below.

These methods don’t cause the receiver to fire, but also don't hide the presence of the EOFault class:

— description — descriptionWithLocale:
— descriptionWithindent: — descriptionWithLocale:indent:
— eoDescription — eoShallowDescription

The following common methods, along with any others not explicitly mentioned in this section, do cause
the receiving EOFault to fire.

« —dealloc
¢ —self
+ — forwardInvocation:

When an EOFault receives one of these messages, it fires in one of a few differedealiysinvokes

the — clearFault: class method to revert the receiver back to its original state, then reiestieto clean

up instance variables and deallocate the object. The other methods all send a special message,
completelnitializationOfObject: , to the EOFaultHandler to transform the EOFault into a regular object,
possibly different from its original state. In additidoxwardInvocation: sends a

shouldPerforminvocation: to the EOFaultHandler first, which allows it to perform the method itself
without causing the EOFault to be transformed. If the EOFaultHandler returns YES, though, the EOFault
then sends it aompletelnitializationOfObject: message.

Examining an EOFault

Three additional EOFault methods allow you to explicitly check whether an object is an EOFault without
causing it to fire, and to get its original class and EOFaultHandler if it is an EOFault. These methods are:

Classes: EOFault

e +isFault:
» + targetClassForFault:
¢ + handlerForFault:

You can use these methods to base some decisions on whether an object is an EOFault, though you should
rarely need to do so.

Method Types

Creating and examining faults
+ makeObjectintoFault:withHandler:
+ isFault:
+ clearFault:
+ handlerForFault:
+ targetClassForFault:
+ respondsToSelector:

Checking class informatio
— class
— isKindOfClass:
— isMemberOfClass:
— respondsToSelector:
— conformsToProtocol:
— methodSignatureForSelector:

Run-time support
— forwardInvocation:
— doesNotRecognizeSelector:

Getting a fault’s description
— description
— descriptionWithIindent:
— descriptionWithLocale:
— descriptionWithLocale:indent:
— eoDescription
— eoShallowDescription

Reference-counting
—retain
— release
— retainCount
— autorelease
— dealloc

95

Miscellaneous object methods
— self
— isProxy
— superclass
— zone

Class Methods

96

clearFault;
+ (void)clearFault: (id)aFault

Restores@Faultto its status prior to th@akeObjectintoFault:withHandler: message that created it.
Raises an NSInvalidArgumentExceptioraRaultisn't an EOFault.

You rarely use this method. Faults typically fire automatically when accessed, using EOFaultHandler’s
completelnitializationOfObject. method. See the EOFaultHandler class specification for more
information.

handlerForFault:
+ (EOFaultHandler *andlerForFault: (id)aFault

Returns the EOFaultHandler that will helpault to fire. Returngil if aFaultisn’'t an EOFault.

isFault:
+ (BOOL)isFault:(id)anObject
Returns YES ifanObjectis an EOFault, NO otherwise.

makeObjectintoFault:withHandler:
+ (void)makeObjectintoFault: (id)anObjectwithHandler: (EOFaultHandler *aFaultHandler
ConvertsanObjectinto an EOFault, assignirag-aultHandleras the object that stores its original state and

later converts the EOFault back into a normal object (typically by fetching data from an external repository).
The new EOFault becomes the owneaBfultHandler you shouldn’t assign it to another object.

Classes: EOFault

respondsToSelector:
+ (BOOL)espondsToSelecto(SEL)aSelector

Returns YES if the receiving class responda3electorNO otherwise.

targetClassForFault:
+ (ClasshargetClassForFault:(id)aFault

Returns the original class of the object that was turnedaffaalt, or nil if aFaultisn’'t an EOFault. When

the EOFault fires, it's guaranteed to be an instance of this class or possibly of a subclass. To get the actual
class, you must sendciassmessage to the EOFault, which may fire to determine its actual class
membership.

Instance Methods
autorelease
— (id)autorelease

Performs as NSObjectautoreleasemethod.

class
— (Classglass

Returns the class of the object that the receiving EOFault will become. This may cause the EOFault to fire
in order to determine its actual class membership.

See also: — classForFault: (EOFaultHandler), targetClassForFault:

conformsToProtocol:
— (BOOL)onformsToProtocol:(Protocol *aProtocol

Returns YES if the object that the receiving EOFault will become conforafrdtocol NO if it doesn't.
This may cause the EOFault to fire in order to determine its actual class membership.

See also: — conformsToProtocol:forFault: (EOFaultHandler)

97

98

dealloc
— (void)dealloc

Invokes theclearFault: class method to revert the receiving EOFault to its original class membership and
state, then reinvoketealloc

description
— (NSString *ylescription

SendgdescriptionForObject: to the receiver's EOFaultHandler and returns the result.

descriptionWithindent:
— (NSString *yescriptionWithindent: (unsigned inthdentLevel

Invokesdescription and returns the result.

descriptionWithLocale:
— (NSString *pescriptionWithLocale: (NSDictionary *Jocale

Invokesdescription and returns the result.

descriptionWithLocale:indent:
— (NSString *¥escriptionWithLocale: (NSDictionary *Jocaleindent:(unsigned inthdentLevel

Invokesdescription and returns the result.

doesNotRecognizeSelector:
— (voiddoesNotRecognizeSelectdiSEL)aSelector

Raises an NSinvalidArgumentException.

eoDescription
— (NSString *poDescription

Invokesdescription and returns the result.

See also: —eoDescription(NSObject Additions)

Classes: EOFault

eoShallowDescription
— (NSString *poShallowDescription

Invokesdescription and returns the result.

See also: —eoShallowDescription(NSODbject Additions)

forwardInvocation:
— (void)orwardInvocation: (NSInvocation *aninvocation

Causes the receiving EOFault to fire, if allowed by its EOFaultHandler, and famlavcatiorto its new
incarnation. SendsshouldPerforminvocation: to the receiver's EOFaultHandler first, giving it a chance

to bypass the conversion. If the EOFaultHandler returns NO, returns immediately. If it returns YES, sends
acompletelnitializationOfObject: message to the EOFaultHandler vg#if as the argument. Once the
receiver has fired it invokesInvocation

iIsKindOfClass:
— (BOOL)sKindOfClass:(ClassaClass

Returns YES ifaClassis the class, or a superclass, of the object that the receiving EOFault will become,
NO otherwise. This may cause the EOFault to fire in order to determine its actual class membership.

See also: —isMemberOfClass; —isKindOfClass:forFault: (EOFaultHandler)

iIsMemberOfClass:
— (BOOL)sMemberOfClass{ClassaClass

Returns YES ifiClassis the class of the object that the receiving EOFault will become, NO otherwise. This
may cause the EOFault to fire in order to determine its actual class membership.

See also: —isKindOfClass:, —isMemberOfClass:forFault: (EOFaultHandler)

iIsProxy
— (BOOL)sProxy

Returns NO.

99

100

methodSignatureForSelector:
— (NSMethodSignature M)ethodSignatureForSelector{SEL)aSelector

Returns a method signature &Belectorfor the object that the receiving EOFault will becomeiloif one
can’t be found. This may cause the EOFault to fire in order to determine its actual class membership.

See also: —methodSignatureForSelector:(EOFaultHandler)

release
— (voidyelease

Performs as NSObjectieleasemethod.

respondsToSelector:
— (BOOLYespondsToSelector(SEL)aSelector

Returns YES if the object that the receiving EOFault will become respoa8slectorNO otherwise. This
may cause the EOFault to fire in order to determine its actual class membership.

See also: —respondsToSelector:forFault: (EOFaultHandler)

retain
— (id)retain

Performs as NSObjectretain method.

retainCount
— (unsigned intetainCount

Performs as NSObjectretainCount method.

self
— (id)self

Fires the receiver and retursalf. This is the recommended way to simply fire an EOFault.

Classes: EOFault

superclass
— (Class$uperclass

Returns the superclass of the object that the receiving EOFault will become. This may cause the EOFault
to fire in order to determine its actual class membership.

See also: — classForFault: (EOFaultHandler)

zone
— (NSZone *yone

Performs as NSObjectzonemethod.

101

102

Classes: EOFaultHandler

EOFaultHandler

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: EOControl/EOFault.h

Class Description

EOFaultHandler is an abstract class that defines the mechanisms that create EOFaults (or faults) and help
them to fire Faultsare used as placeholders for an enterprise object’s relationship destinations. For
example, suppose an Employee object ldepartment relationship to the employee’s department. When

an employee is fetched, faults are created for its relationship destinations. In the cadedrtneent
relationship, an empty Department object is created. The Department object’s data isn't fetched until the
Department is accessed, at which time the fault is sdigkto

Subclasses of EOFaultHandler perform the specific steps necessary to get data for the fault and fire it. The
Access Layer, for example, uses private subclasses to fetch data using an EODatabaseContext (defined in
EOAccess). Most of EOFaultHandler's methods are properly defined; you need only override
completelnitializationOfObject: to provide appropriate behavior. In Yellow Box applications, you can
optionally implementaultWillFire: to prepare for conversion, asiglouldPerforminvocation: to intercept
particular messages sent to the fault without causing it to fire.

In a Yellow Box application you create an EOFaultHandler using the staalttardndinit methods,

possibly using a more specifigt method with your subclass. To create a fault you invoke EOFault’'s
makeObjectintoFault:withHandler: class method with the object to turn into a fault and the
EOFaultHandler. An EOFaultHandler belongs exclusively to a single fault, and shouldn’t be shared or used
by any other object.

Firing a Fault

When a fault receives a message that requires it to fire, it seadgpéetelnitializationOfObject: method

to its EOFaultHandler. This method is responsible for invoking EOFaldtisFault: class method to revert
the fault to its original state, and then do whatever is necessary to complete initialization of the object.
Doing so typically involves fetching data from an external repository and passing it to the object.

As a trivial example, consider a subclass called FileFaultHandler, that simply stores a filename whose
contents it reads from disk. Its initialization axminpletelnitializationOfObject: methods might look like
these:

103

- (id)initWithFile:(NSString *)path
{

self = [super init];

filename = [path copy];

return self;

}

- (void)completelnitializationOfObject:(id)anObject

{
NSString *fileContents;

[self retain]; // retain self so we won't get released by clearing the
/l fault. Otherwise, accessing “filename” will cause a
crash.

[EOFault clearFault:anObject];

fileContents = [NSString stringWithContentsOfFile:filename];
[anObject takeValue:fileContents forKey: @"fileContents"];
[self release];

return;

}

initWithFile: just stores the path of the file to read in the instance vafikname
completelnitializationOfObject: invokes EOFault’'€learFault: method, which reverts the fault into its
original state (and also releases the fault handler, so referersedfsafter this are illegal). It then gets the
contents of the file it was created with and passes them to the reverted object. Note that this implementation
doesn't assume the class of the cleared EOFault, instead using the gde®&atue:forkKey: method to

assign the file contents to it.

Method Types

104

Setting the target class and extra data
— setTargetClass:extraData:
— targetClass
— extraData

Reference counting
— incrementExtraRefCount
— decrementExtraRefCountlsZero
— extraRefCount

Getting the original class
— classForFault:

Classes: EOFaultHandler

Firing a fault
— completelnitializationOfObject:
— faultWillFire:
— shouldPerforminvocation:

Getting a description
— descriptionForObject:

Checking class information
— isKindOfClass:forFault:
— isMemberOfClass:forFault:
— conformsToProtocol:forFault:
— methodSignatureForSelector:forFault:
— respondsToSelector:forFault:

Instance Methods

classForFault:

— (ClassglassForFault:(id)fault
Returns the target class of the receiver’'s EOFault, which must be paafadltis case the receiver needs
to fire it (EOFaultHandlers don’t store back pointers to their faults). For example, to support entity

inheritance, the Access layer fires faults for entities with subentities to confirm their precise class
membership.

See also: —targetClass

completelnitializationOfObject:
— (void)completelnitializationOfObject: (id)aFault

Implemented by subclasses to rew#fault to its original state and complete its initialization in whatever
means is appropriate to the subclass. For example, the Access layer subclasses of EOFaultHandler fetch
data from the database and pass it to the object. This method is invoked automatically by an EOFaultwhen
it's sent a message it can’'t handle without fetching its data. EOFaultHandler's implementation merely
throws an exception.

105

106

conformsToProtocol:forFault:
— (BOOL)onformsToProtocol:(Protocol *aProtocolforFault: (id)aFault

Returns YES if the target class of the receiver's EOFault conforairédocol This EOFault must be

passed aaFaultin case the receiver needs to fire it (EOFaultHandlers don't store back pointers to their
faults). For example, to support entity inheritance, the Access layer fires faults for entities with subentities
to confirm their precise class membership.

See also: —completelnitializationOfObject:

decrementExtraRefCountlsZero
— (BOOL)ecrementExtraRefCountlsZero

Decrements the reference count for the receiver's EOFault. An object’s reference count is the number of
objects that are accessing it. Newly created objects have a reference count of one. If another object is
referencing an object, the object is said to havex#iia reference count

If, after decrementing the reference count, the fault's new reference count is zero, this method returns YES,
If the reference count has not become zero, this method returns NO. Objects that have a zero reference count
are released at the end of the current event loop.

This method is used by EOFaultHandler’s internal reference counting mechanism—it functions as the
Foundation functiotNSDecrementExtraRefCountWasZero()for the receiver's EOFault.

descriptionForObiject:
— (NSString *yescriptionForObject: (id)aFault

Returns a string naming the original class of the receiver’s EOFault and @fauoljs id, and also noting
that it's a fault; for example: “<Employé€Bault 0x3a07)>". (The fault must be passedfault because
EOFaultHandlers don’t store back pointers to their faults.)

extraData
— (void *)extraData

Returns the bytes replaced by the receivdria the original object’s state, as a pointevaad. When the
receiver's EOFault is reverted to its original state, botisdtpointer and this data are replaced.

Classes: EOFaultHandler

extraRefCount
— (unsigned ingxtraRefCount

Returnsthe receiver’s current reference count. This method is used by EOFaultHandler’s internal reference
counting mechanism and functions as the Foundation fundtdxtraRefCount() for the receiver’s
EOFault.

faultWillFire:
— (voidyaultWillFire: (id)aFault

Informs the receiver thatFaultis about to be reverted to its original state. EOFaultHandler’s
implementation does nothing. This method is invoked by EOFalgésFault: method.

incrementExtraRefCount
— (voidincrementExtraRefCount

Increments the reference count for the receiver’s EOFault. An object’s reference count is the number of
objects that are accessing it. Newly created objects have a reference count of one. If another object is
referencing an object, the object is said to havex#na reference count

This method is used by EOFaultHandler’s internal reference counting mechanism and functions as the
Foundation functiotNSIncrementExtraRefCount() for the receiver's EOFault.

See also: —extraRefCount

isKindOfClass:forFault:
— (BOOL)isKindOfClass:(ClassaClassforFault: (id)aFault

Returns YES if the target class of the receiver’s EOFaalCliassor a subclass @&Class The fault must

be passed in adaultin case the receiver needs to fire it (EOFaultHandlers don’t store back pointers to their
faults). For example, to support entity inheritance, the Access layer fires faults for entities with subentities
to confirm their precise class membership.

See also: —completelnitializationOfObject:

isMemberOfClass:forFault:
— (BOOL)sMemberOfClass{ClassaClassforFault: (id)aFault

Returns YES if the target class of the receiver's EOFaaltiass This fault must be passedaisaultin
case the receiver needs to fire it (EOFaultHandlers don't store back pointers to their faults). For example,

107

108

to support entity inheritance, the Access layer fires faults for entities with subentities to confirm their precise
class membership.

See also: —completelnitializationOfObject:

methodSignatureForSelector:forFault:
— (NSMethodSignature methodSignatureForSelector{(SEL)aSelectofforFault: (id)aFault

Returns the NSMethodSignature &Belectolin the target class of the receiver's EOFault, which must be
passed aaFaultin case the receiver needs to fire it (EOFaultHandlers don't store back pointers to their
faults). For example, to support entity inheritance, the Access layer fires faults for entities with subentities
to confirm their precise class membership.

See also: —completelnitializationOfObject:

respondsToSelector:forFault:
— (BOOLYespondsToSelectoSEL)aSelectorforFault: (id)aFault

Returns YES if the target class of the receiver's EOFault respoa@etectar This fault must be passed
asaFaultin case the receiver needs to fire it (EOFaultHandlers don't store back pointers to their faults). For
example, to support entity inheritance, the Access layer fires faults for entities with subentities to confirm
their precise class membership.

See also: —completelnitializationOfObject:

setTargetClass:extraData:
— (void)setTargetClass{ClassjargetClassextraData:(void *)extraData

StoregdargetClassandextraDataas state of the original object overwritten when an EOFault is created by
EOFault'smakeObjectintoFault:withHandler: <<should be XRef>> method, which replatagetClass
with the EOFault class, amxtraDatawith the EOFaultHandlersl.

shouldPerformInvocation:
— (BOOL)shouldPerforminvocation:(NSinvocation *aninvocation

Overridden by subclasses to circumvent reversion of an EOFault to its original state. Returns YES if the
EOFault should revert and perfoeminvocation NO if it shouldn’t. If this method returns NO, the receiver
should seaininvocatiors return value appropriately. EOFaultHandler’'s implementation returns YES.

See also: —setReturnValue: (NSInvocation class of the Foundation Framework)

Classes: EOFaultHandler

targetClass
— (ClassfargetClass

Returns the target class of the receiver's EOFault . The EOFault may, however, be converted to a member

of this class or of a subclass of this class. For example, to support entity inheritance, the Access layer fires
EOFaults for entities with subentities into the appropriate class on fetching their data.

109

110

Classes: EOFetchSpecification

EOFetchSpecification

Inherits From: NSObiject

Conforms To: NSCoding
NSCopying

NSObject (NSObject)

Declared In: EOControl/EOFetchSpecification.h

Class Description

An EOFetchSpecification collects the criteria needed to select and order a group of records or enterprise
objects, whether from an external repository such as a relational database or an internal store such as an
EOEditingContext. An EOFetchSpecification contains these elements:

The name of an entity for which to fetch records or objects. This is the only mandatory element.
An EOQuialifier, indicating which properties to select by and how to do so.

An array of EOSortOrderings, which indicate how the selected records or objects should be ordered when
fetched.

An indicator of whether to produce distinct results or not. Normally if a record or object is selected
several times, such as when forming a join, it appears several times in the fetched results. An
EOFetchSpecification that makes distinct selections causes duplicates to be filtered out, so each record
or object selected appears exactly once in the result set.

An indicator of whether to fetch deeply or not. This is used with inheritance hierarchies when fetching
for an entity with sub-entities. A deep fetch produces all instances of the entity and its sub-entities, while
a shallow fetch produces instances only of the entity in the fetch specification.

A fetch limit indicating how many objects to fetch before giving the user or program an opportunity to
intervene.

A listing of relationships for which the destination of the relationship should be prefetched along with
the entity being fetched. Proper use of this feature allows for substantially increased performance in some
cases.

A dictionary of hints, which an EODatabaseContext or other object can use to optimize or alter the results
of the fetch.

EOFetchSpecifications are most often used with the methjedtsWithFetchSpecification:
editingContext:, defined by EOObjectStore, EOEditingContext, and EODatabaseContext, as well as

111

objectsWithFetchSpecification; defined by EOEditingContext alone. EOAdaptorChannel and
EODatabaseChannel also define methods that use EOFetchSpecifications.

Adopted Protocols

NSCoding
— encodeWithCoder:
— initwithCoder:
NSCopying
— copyWithZone:
Method Types

Creating instances
+ fetchSpecificationWithEntityName:qualifier:sortOrderings:
— fetchSpecificationWithQualifierBindings:
— init
— initWithEntityName:qualifier:sortOrderings:usesDistinct:
isDeep:hints:

Setting the qualifier
— setQualifier:
— qualifier

Sorting
— setSortOrderings:
— sortOrderings:

Removing duplicates
— setUsesDistinct:
— usesDistinct:

Fetching objects in an inheritance hierarchy
— setlsDeep:
— isDeep
— setEntityName:
— entityName

112

Classes: EOFetchSpecification

Controlling fetching behavior
— setFetchLimit:
— fetchLimit
— setFetchesRawRows:
— fetchesRawRows
— setPrefetchingRelationshipKeyPaths:
— prefetchingRelationshipKeyPaths
— setPromptsAfterFetchLimit:
— promptsAfterFetchLimit
— setRawRowKeyPaths:
— rawRowKeyPaths
— setRequiresAllQualifierBindingVariables:
— requiresAllQualifierBindingVariables
— setHints:
— hints

Locking objects
— setLocksObjects:
— locksObjects

Refreshing refetched objects
— setRefreshesRefetchedObjects:
— refreshesRefetchedObjects

Class Methods

fetchSpecificationWithEntityName:qualifier:sortOrderings:

+ (EOFetchSpecification fgtchSpecificationWithEntityName:(NSString *entityName
qualifier: (EOQualifier *gualifier
sortOrderings: (NSArray *)sortOrderings

Returns an EOFetchSpecification &mtityNameusingqualifier to select andortOrderingsto sort the
results. The EOFetchSpecification created with this method is deep, doesn’t perform distinct selection, and
has no hints.

See also: — initWithEntityName:qualifier:sortOrderings:usesDistinct:isDeep:hints:

113

Instance Methods

114

entityName
— (NSString *pntityName
Returns the name of the entity to be fetched.

See also: —IisDeep —setEntityName:

fetchLimit
— (unsignedgetchLimit

Returns the fetch limit value which indicates the maximum number of objects to fetch. Depending on the
value of promptsAfterFetchLimit, the EODatabaseContext will either stop fetching objects when this limit

is reached or it will ask the editing context's message handler to prompt the user as to whether or not it

should continue fetching. Use 0 (zero) to indicate no fetch limit. The default is 0.

See also: —setFetchLimit:

fetchesRawRows
— (BOOLY)etchesRawRows

Returns YES ifawRowKeyPaths returns non-nil.

See also: —rawRowKeyPaths —setFetchesRawRows:

fetchSpecificationWithQualifierBindings:

— (EOFetchSpecification fgtchSpecificationWithQualifierBindings: (NSDictionary *hindings
Applies bindings fronbindingsto its qualifier if there is one, and returns a new fetch specification that can
be used in a fetch. The default behavior is to prune any nodes for which there are no bindings. Invoke

setRequiresAllQualifierBindingVariables: with an argument of YES to force an exception to be raised if
a binding is missing during variable substitution.

See also: —setRequiresAllQualifierBindingVariables:

Classes: EOFetchSpecification

hints
— (NSDictionary *hints
Returns the receiver’s hints, which other objects can use to alter or optimize fetch operations.

See also: —setHints:

init
— (id)init
Initializes a new EOFetchSpecification with no state, except that it fetches deeply and doesn't use distinct.

Use theset...methods to add other parts of the specification. This is the designated initializer for the
EOFetchSpecification class. Retusadf.

See also: — initWithEntityName:qualifier:sortOrderings:usesDistinct:isDeep:hints:

initWithEntityName:qualifier:sortOrderings:usesDistinct:isDeep:hints:

— (id)initWithEntityName: (NSString *entityName
qualifier: (EOQualifier *gualifier
sortOrderings: (NSArray *)sortOrderings
usesDistinct{BOOL)distinctFlag
isDeep(BOOL)deepFlag
hints: (NSDictionary *hints

Initializes a new EOFetchSpecification with the given arguments. Restelfns

See also: + fetchSpecificationWithEntityName:qualifier:sortOrderings:

isDeep
— (BOOL)isDeep

Returns YES if a fetch should include sub-entities of the receiver’s entity, NO if it shouldn’t.
EOFetchSpecifications are deep by default.

For example, if you have a Person entity with two sub-entities, Employee and Customer, fetching Persons
deeply also fetches all Employees and Customers matching the qualifier. Fetching Persons shallowly
fetches only Persons matching the qualifier.

See also: —setlsDeep:

115

116

locksObjects
— (BOOL)ocksObjects

Returns YES if a fetch should result in the selected objects being locked in the data repository, NO if it
shouldn’t. The default is NO.

See also: —setLocksObijects:

prefetchingRelationshipKeyPaths
— (NSArray *prefetchingRelationshipKeyPaths

Returns an array of relationship key paths that should be prefetched along with the main fetch. For example,
if fetching from the Movie entity, you might specify paths of the form (@"directors”, @"roles.talent”,
@"plotSummary").

See also: — setPrefetchingRelationshipKeyPaths:

promptsAfterFetchLimit
— (BOOL)promptsAfterFetchLimit

Returns whether to prompt user after the fetch limit has been reached. Default is NO.

See also: — setPromptsAfterFetchLimit:

qualifier
— (EOQualifier *yualifier
Returns the EOQualifier that indicates which records or objects the receiver is to fetch.

See also: —setQualifier:

rawRowKeyPaths
— (NSArray *rawRowKeyPaths

Returns an array of attribute key paths that should be fetched as raw data and returned as an array of
dictionaries (instead of the normal result of full objects). The raw fetch can increase speed, but forgoes most
of the benefits of full Enterprise Objects. The default value is nil, indicating that full objects will be returned
from the fetch. An empty array may be used to indicate that the fetch should query the entity named by the
fetch specification using the methaitkributesToFetch. As long as the primary key attributes are included

Classes: EOFetchSpecification

in the raw attributes, the raw row may be used to generate a fault for the corresponding object using
EOEditingContext'faultForRawRow:entityNamed: method.

See also: —fetchesRawRows—setFetchesRawRows—setRawRowKeyPaths:

refreshesRefetchedObjects
— (BOOLYefreshesRefetchedObjects

Returns YES if existing objects are overwritten with fetched values when they've been updated or changed.
Returns NO if existing objects aren’t touched when their data is refetched (the fetched data is simply
discarded). The default is NO. Note that this setting does not affect relationships

See also: — setRefreshesRefetchedObijects:

requiresAllQualifierBindingVariables
— (BOOLYequiresAllQualifierBindingVariables

Returns YES to indicate that a missing binding will cause an exception to be raised during variable
substitution. The default value is NO, which says to prune any nodes for which there are no bindings.

See also: —setRequiresAllQualifierBindingVariables:

setEntityName:
— (void)setEntityName:(NSString *entityName
Sets the name of the root entity to be fetcheshtdyName

See also: —isDeep —entityName

setFetchesRawRows:
— (void)setFetchesRawRow¢BOOL fetchRawRows

Sets the behavior for fetching raw rows. If set to YES, the behavior is the sametBRawRowKeyPaths:
were called with an empty array. If set to NO, the behavior issetRawRowKeyPathswere called with
a nil argument.

See also: —fetchesRawRows—setRawRowKeyPaths; —rawRowKeyPaths

117

118

setFetchLimit:
— (void)setFetchLimit: (unsignedietchLimit

Sets the fetch limit value which indicates the maximum number of objects to fetch. Depending on the value
of promptsAfterFetchLimit, the EODatabaseContext will either stop fetching objects when this limit is
reached or it will ask the editing context's message handler to prompt the user as to whether or not it should
continue fetching. Use 0 (zero) to indicate no fetch limit. The default is O.

See also: —fetchLimit

setHints:
— (void)setHints:(NSDictionary *hints

Sets the receiver’s hints lhints Any object that uses an EOFetchSpecification can define its own hints that

it uses to alter or optimize fetch operations. For example, EODatabaseContext uses a hint identified by the
key EOCustomQueryExpressionHintKey. EODatabaseContext is the only class in Enterprise Objects
Framework that defines fetch specification hints. For information about EODatabaseContext’s hints, see the
EODatabaseContext class specification.

See also: —hints

setlsDeep:

— (void)setlsDeep(BOOL)flag

Controls whether a fetch should include sub-entities of the receiver’s erftig if YES, sub-entities are
also fetched; iflagis NO, they aren’t. EOFetchSpecifications are deep by default.

For example, if you have a Person entity /class /table with two sub-entities and subclasses, Employee and
Customer, fetching Persons deeply also fetches all Employees and Customers matching the qualifier, while
fetching Persons shallowly fetches only Persons matching the qualifier.

See also: —isDeep

setLocksObijects:
— (void)setLocksObjects(BOOL)flag

Controls whether a fetch should result in the selected objects being locked in the data repdkitpisy. If
YES it should, if NO it shouldn't. The default is NO.

See also: —locksObjects

Classes: EOFetchSpecification

setPrefetchingRelationshipKeyPaths:
— (void)setPrefetchingRelationshipKeyPathgNSArray *)prefetchingRelationshipKeyPaths

Sets an array of relationship key paths that should be prefetched along with the main fetch. For example, if
fetching from the Movie entity, you might specify paths of the form (@"directors", @"roles.talent",
@"plotSummary").

See also: — prefetchingRelationshipKeyPaths

setPromptsAfterFetchLimit:
— (void)setPromptsAfterFetchLimit: (BOOL)promptsAfterFetchLimit

Sets whether to prompt user after the fetch limit has been reached. Default is NO.

See also: — promptsAfterFetchLimit

setQualifier:
— (void)setQualifier:(EOQualifier *)yualifier
Sets the receiver’s qualifier tpalifier.

See also: —qualifier

setRawRowKeyPaths:
— (void)setRawRowKeyPaths:(NSArrayrayvRowKeyPaths

Sets an array of attribute key paths that should be fetched as raw data and returned as an array of dictionaries
(instead of the normal result of full objects). The raw fetch can increase speed, but forgoes most of the
benefits of full Enterprise Objects. The default value is nil, indicating that full objects will be returned from

the fetch. An empty array may be used to indicate that the fetch should query the entity named by the fetch
specification using the methattributesToFetch. As long as the primary key attributes are included in the

raw attributes, the raw row may be used to generate a fault for the corresponding object using
EOEditingContext'saultForRawRow:entityNamed: method.

See also: —fetchesRawRows—rawRowKeyPaths —setFetchesRawRows:

119

120

setRefreshesRefetchedObijects:
— (voidsetRefreshesRefetchedObjectBOOL)flag

Controls whether existing objects are overwritten with fetched values when they have been updated or
changed. Iflagis YES, they are; flagis NO, they aren't (the fetched data is simply discarded). The default
is NO.

For example, suppose that you fetch an employee object and then refetch it, without changing the employee
between fetches. In this case, you want to refresh the employee when you refetch it, because another
application might have updated the object since your first fetch. To keep your employee in sync with the
employee data in the external repository, you'd need to replace the employee’s outdated values with the new
ones. On the other hand, if you were to fetch the employee, change it, and then refetch it, you would not
want to refresh the employee. If you to refreshed it—whether or not another application had changed the
employee—you would lose the changes that you had made to the object.

You can get finer-grain control on an EODatabaseContext’s refreshing behavior than you can with an
EOFetchSpecification by using the delegate mettatdbaseContext:shouldUpdateCurrentSnapshot:
newSnapshot:globallD:databaseChannel:For more information see the EODatabaseContext class
specification.

See also: —refreshesRefetchedObjects

setRequiresAllQualifierBindingVariables:
— (void)setRequiresAllQualifierBindingVariables:(BOOL)allVariablesRequired

Sets the behavior when a missing binding is encountered during variable substitution. If
allVariablesRequireds YES, then a missing binding will cause an exception to be raised during variable
substitution. The default value is NO, which says to prune any nodes for which there are no bindings.

See also: —fetchSpecificationWithQualifierBindings:, —requiresAllQualifierBindingVariables

setSortOrderings:
— (void)setSortOrderings:(NSArray *)sortOrderings

Sets the receiver’s array of EOSortOrderingsoi@Orderings When a fetch is performed with the receiver,
the results are sorted by applying each EOSortOrdering in the array.

See also: —sortedArrayUsingKeyOrderArray: (NSArray Additions), -sortOrderings:

Classes: EOFetchSpecification

setUsesDistinct:
— (void)setUsesDistinct{BOOL)flag

Controls whether duplicate objects or records are removed after fetctiag.isf YES they're removed;
if flagis NO they aren’t. EOFetchSpecifications by default don’t use distinct.

See also: —usesDistinct:

sortOrderings:
— (NSArray *)sortOrderings

Returns the receiver’s array of EOSortOrderings. When a fetch is performed with the receiver, the results
are sorted by applying each EOSortOrdering in the array.

See also: —sortedArrayUsingKeyOrderArray: (NSArray Additions), -setSortOrderings:

usesDistinct:
— (BOOL)usesDistinct

Returns YES if duplicate objects or records are removed after fetching, NO if they aren't.
EOFetchSpecifications by default don't use distinct.

See also: —setUsesDistinct:

121

122

Classes: EOGenericRecord

EOGenericRecord

Inherits From: NSObiject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EOGenericRecord.h

Class Description

EOGenericRecord is a generic enterprise object class that can be used in place of custom classes when you
don’t need custom behavior. It implements the EOEnterpriseObject interface to provide the basic enterprise
object behavior. An EOGenericRecord object has an EOClassDescription that provides metadata about the
generic record, including the name of the entity that the generic record represents and the names of the
record’s attributes and relationships. A generic record stores its properties in a dictionary using its attribute
and relationship names as keys.

In the typical case of applications that access a relational database, the access layer's modeling objects are
an important part of how generic records map to database rows: If an EOModel doesn’t have a custom
enterprise object class defined for a particular entity, an EODatabaseChannel using that model creates
EOGenericRecords when fetching objects for that entity from the database server. During this process, the
EODatabaseChannel also sets each generic record’s class description to an EOEntityClassDescription,
providing the link to the record’s associated modeling objects. (EOModel, EODatabaseChannel, and
EOEntityClassDescription are defined in EOAccess.)

Creating an Instance of EOGenericRecord

The best way to create an instance of EOGenericRecord is using the EOClassDescription method
createlnstanceWithEditingContext:globallD:zone: as follows:

id newEO;
NSString *entityName; /I Assume this exists.

newEQO = [[EOClassDescription classDescriptionForEntityName:entityName]
createlnstanceWithEditingContext:nil
globallD:nil
zone:nil];

createlnstanceWithEditingContext:globallD:zone: is preferable to EOGenericRecoritig... method

because the same code works if you later use a custom enterprise object class instead of EOGenericRecord.
You can get an EOClassDescription for an entity name as shown above. Alternatively, you can get an
EOClassDescription for a destination key of an existing enterprise object as follows:

123

id newEO;

id existingeO; /I Assume this exists.

NSString *relationshipName; // Assume this exists.
EOClassDescription *description = [existingEO classDescription];

newEO = [[description classDescriptionForDestinationKey:relationshipName]
createlnstanceWithEditingContext:editingContext
loballD:nil
zone:nil];

The technique in this example is useful for inserting a new destination object into an existing enterprise
object—for creating a new Movie object to add to a Studio’s array of Movies, for example.

Instance Methods

124

initWithEditingContext:classDescription:globallD:

— (id)initwithEditingContext: (EOEditingContext *anEditingContext
classDescription(EOCIlassDescription gClassDescription
globallD: (EOGIoballD *)globallD

The designated initializer, this method initializes a newly allocated EOGenericRecord to get its metadata
from aClassDescriptionYou should passil for anEditingContexandgloballD, because the arguments are
optional: EOGenericRecord’s implementation does nothing with them. Raises an
NSinternallnconsistencyExceptionad€lassDescriptioris nil. Returnsself.

You shouldn’t use this method to create new EOGenericRecords. Rather, use EOClassDescription’s
createlnstanceWithEditingContext:globallD:zone: method. See the class description for more
information.

storedValueForKey:
— (id)storedValueForKey:(NSString *key

Overrides the default implementation to simply invektueForKey:..

See also: storedValueForKey: (EOKeyValueCoding)

Classes: EOGenericRecord

takeStoredValue:forKey:
— (void)akeStoredValuefid)value
forKey: (NSString *key
Overrides the default implementation to simply invede=Value:forKey: .

See also: takeStoredValue:forKey: (EOKeyValueCoding)

takeValue:forKey:

— (void}akeValue:(id)value
forKey: (NSString *key

Invokes the receiverwillChange method, and sets the value for the property identifiddepio value If
valueis nil, this method removes the receiver’s dictionary entrkégr(EOGenericRecord overrides the
default implementation.) Keyis not one of the receiver’s attribute or relationship hames,
EOGenericRecord’s implementation does not invakiedle TakeValue:forUnboundKey:. Instead,
EOGenericRecord’s implementation does nothing.

valueForKey:
— (id)valueForKey:(NSString *key

Returns the value for the property identifiedkiey (EOGenericRecord overrides the default
implementation.) Ikeyis not one of the receiver’s attribute or relationship names, EOGenericRecord’s
implementation does not invokandleQueryWithUnboundKey:. Instead, EOGenericRecord’s
implementation simply returnsl.

125

126

Classes: EOGloballD

EOGlIoballD

Inherits From: NSObiject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: EOControl/EOGIoballD.h

Class Description

An EOGIloballD is a compact, universal identifier for a persistent object, forming the basis for uniquing in
Enterprise Objects Framework. An EOGIloballD uniquely identifies the same object or record both between
EOEditingContexts in a single application and in multiple applications (as in distributed systems).
EOGloballD is an abstract class, declaring only the methods needed for identification. A concrete subclass
must define appropriate storage for identifying values (such as primary keys), as well as an initialization or
creation method to build IDs. See the EOKeyGloballD class specification for an example of a concrete ID
class.

Temporary ldentifiers

EOEditingContexts and other object stores support the insertion of new objects without established IDs,
creating temporary IDs that get replaced with permanent ones as soon as the new objects are saved to their
persistent stores. The temporary IDs are instances of the EOTemporaryGloballD class.

When an EOObjectStore saves these newly inserted objects, it must replace the temporary IDs with
persistent ones. When it does this, it must post an EOGloballDChangedNotification announcing the change
so that observers can update their accounts of which objects are identified by which global IDs. The
notification’suserinfo dictionary contains a mapping from the temporary 1Ds (the keys) to their permanent
replacements (the values).

Adopted Protocols

NSCopying
— copyWithZone:

127

Instance Methods

isTemporary
— (BOOL)sTemporary

Returns NO. See the class description for more information.

Notifications
EOGIoballDChangedNotification

Posted whenever EOTemporaryGloballDs are replaced by permanent EOGloballDs. The notification

contains:
Notification Object nil
Userinfo A mapping from the temporary IDs (keys) to permanent IDs (values)

128

Classes: EOKeyComparisonQualifier

EOKeyComparisonQualifier

Inherits From: EOQualifier : NSObject

Conforms To: EOQualifierEvaluation
EOQualifierSQLGeneration

Declared In: EOControl/EOQualifier.h

Class Description

EOKeyComparisonQualifier is a subclass of EOQualifier that compares a named property of an object with

a named value of another object. For example, to return all of the employees whose salaries are greater than
those of their managers, you might use an expression such as “salary > manager.salary”, where “salary” is
theleft keyand “manager.salary” is thight key The “left key” is the property of the first object that's being
compared to a property in a second object; the property in the second object is the “right key.” Both the left
key and the right key might be key paths. You can use EOKeyComparisonQualifier to compare properties
of two different objects or to compare two properties of the same obiject.

EOKeyComparisonQualifier adopts the EOQualifierEvaluation protocol, which defines the method
evaluateWithObiject: for in-memory evaluation. When an EOKeyComparisonQualifier object receives an
evaluateWithObject: message, it evaluates the given object to determine if it satisfies the qualifier criteria.

In addition to performing in-memory filtering, EOKeyComparisonQualifier can be used to generate SQL.
When it's used for this purpose, the key should be a valid property name of the root entity for the qualifier
(or a valid key path).

Adopted Protocols
EOQualifierEvaluation
— evaluateWithObiject:

EOQualifierSQLGeneration
— sqIStringForSQLEXxpression:
— schemaBasedQualifierWithRootEntity:

129

Instance Methods

evaluateWithObject:

@protocol EOQualifierEvaluation
— (BOOL)evaluateWithObject:object

Returns YES if the objecbjectsatisfies the qualifier, NO otherwise. When an EOKeyComparisonQualifier
object receives aavaluateWithObject: message, it evaluatebjectto determine if it meets the qualifier
criteria. This method can raise one of several possible exceptions if an error occurs. If your application
allows users to construct arbitrary qualifiers (such as through a user interface), you may want to write code
to catch any exceptions and properly respond to errors (for example, by displaying a panel saying that the
user typed a poorly formed qualifier).

initWithLeftKey:operatorSelector:rightKey:

—initWithLeftKey: (NSString *JeftKeyoperatorSelector{SEL)selectorrightKey:
(NSString *YyightKey

Initializes the receiver to compare the properties naméeftieyandrightKey, using the operator selector
selector

» EOQualifierOperatorEqual

« EOQualifierOperatorNotEqual

* EOQualifierOperatorLessThan

« EOQualifierOperatorGreaterThan

« EOQualifierOperatorLessThanOrEqualTo

« EOQualifierOperatorGreaterThanOrEqualTo
» EOQualifierOperatorContains

« EOQualifierOperatorLike

* EOQualifierOperatorCaselnsensitiveLike

Enterprise Objects Framework supports SQL generation for these selectors only.

For example, the following excerpt creates an EOKeyComparisonQualifiethat has the left key
“lastName”, the operator selector EOQualifierOperatorEqual, and the right key “member.lastName”. Once
constructed, the qualifigual is used to filter an in-memory array. The code excerpt returns an array of
Guest objects whodastName properties have the same value addbtNameproperty of the guest’s
sponsoring member (this example is based on the Rentals sample database).

NSArray *guests; /* Assume this exists. */

EOQuialifier *qual = [[EOKeyComparisonQualifier alloc]
initwWithLeftKey: @"lastName"
operatorSelector:EOQualifierOperatorEqual
rightkKey:@"member.lastName'];

return [guests filteredArrayUsingQualifier:qual];

130

Classes: EOKeyComparisonQualifier

leftkey
— (NSString *)eftkey

Returns the receiver’s left key

rightKey
— (NSString *yightKey

Returns the receiver’s right key.

selector
— (SEL}elector

Returns the receiver’s selector.

131

132

Classes: EOKeyGloballD

EOKeyGloballD

Inherits From: NSObiject

Conforms To: NSCoding
NSCopying (EOGIoballD)
NSObject (NSObject)

Declared In: EOAccess/EOKeyGloballD.h

Class Description

EOKeyGloballD is a concrete subclass of EOGloballD whose instances represent persistent IDs based on
EOModel information: an entity and the primary key values for the object being identified. When creating
an EOKeyGloballD, the key values must be supplied following alphabetical order for their attribute names.
EOKeyGloballD defines thgloballDWithEntityName:keys:keyCount:zone: for creating instances, but

it's much more convenient to create instances from fetched rows using EOEyibad DForRow:

method. (EOEntity and EOModel are defined in EOAccess.)

Adopted Protocols

NSCoding
— encodeWithCoder:
— initWithCoder:

Method Types

Creating instances
+ globalIDWithEntityName:keys:keyCount:zone:

Getting the entity name

— entityName
Getting the key values

— keyValues

— keyCount

— keyValuesArray
Comparison

— isequal:

133

Class Methods

globallDWithEntityName:keys:keyCount:zone:
+ (id)globallDWithEntityName: (NSString *entityName
keys:(id *)keyValues
keyCount:(unsigned intyount
zone(NSZone *kone

Returns an EOKeyGloballD based emtityNameandkeyValuesFor performance reasons, the key values
are given as a C arrayidf countindicates how many key values there are. The object returned is allocated

from zone

EOKeyGloballDs are more conveniently created using EOEngjiglsallDForRow: method (EOAccess).

Instance Methods

134

entityName
— (NSString *gntityName
Returns the name of the entity governing the object identified by the receiver. This is used by

EODatabaseContexts (EOAccess) to identify an EOEntity (EOAccess) in methods such as
faultForGloballD:editingContext: .

hash — (unsigned int)ash

Returns an integer that can be used as a table address in a hash table structure. If two objects are equal (as
determined bysEqual:), they must have the same hash value. For more information, see the descriptions
of this method in the NSObject class and protocol specifications of the Foundation Framework.

iIsEqual:
@protocol NSObject
— (BOOL)sEqual:(id)anObject

Returns YES if the receiver andObjectshare the same entity name and key values, NO if they don't. For
more information, see the descriptions of this method in the NSObject class and protocol specifications of
the Foundation Framework.

See also: —entityName, —keyValues

Classes: EOKeyGloballD

keyCount
— (unsigned inReyCount

Returns the number of key values in the receiver.

keyValues
— (id *)keyValues

Returns the receiver’s key values as a C arréy (fbr performance reasons).

keyValuesArray
— (NSArray *keyValuesArray

Returns the receiver’s key values as an NSArray.

135

136

Classes: EOKeyValueQualifier

EOKeyValueQualifier

Inherits From: EOQualifier : NSObject

Conforms To: EOQualifierEvaluation
EOQualifierSQLGeneration

Declared In: EOControl/EOQualifier.h

Class Description

EOKeyValueQualifier is a subclass of EOQualifier that compares a named property of an object with a
supplied value, for example, “salary > 1500”. EOKeyValueQualifier adopts the EOQualifierEvaluation
protocol, which defines the methedaluateWithObject: for in-memory evaluation. When an
EOKeyValueQualifier object receives evaluateWithObject: message, it evaluates the given object to
determine if it satisfies the qualifier criteria.

In addition to performing in-memory filtering, EOKeyValueQualifier can be used to generate SQL. When
it's used for this purpose, the key should be a valid property name of the root entity for the qualifier (or a
valid key path).

Adopted Protocols
EOQualifierEvaluation
— evaluateWithObiject:

EOQualifierSQLGeneration
— sqIStringForSQLEXxpression:
— schemaBasedQualifierWithRootEntity:

Instance Methods

evaluateWithObject

@protocol EOQualifierEvaluation
— (BOOL)evaluateWithObject:anObject

Returns YES if the objea@nObjectsatisfies the qualifier, NO otherwise. When an EOKeyValueQualifier
object receives thevaluateWithObject: message, it evaluatasObjectto determine if it meets the
qualifier criteria. This method can raise one of several possible exceptions if an error occurs. If your

137

138

application allows users to construct arbitrary qualifiers (such as through a user interface), you may want
to write code to catch any exceptions and properly respond to errors (for example, by displaying a panel
saying that the user typed a poorly formed qualifier).

initWithKey:operatorSelector:value:
—initWithKey: (NSString *keyoperatorSelector(SEL)selectorvalue:(id)value

Initializes the receiver to compare valuesKeyto valueusing the operator selectglector The possible
values forselectorare as follows:

« EOQualifierOperatorEqual

» EOQualifierOperatorNotEqual

« EOQualifierOperatorLessThan

« EOQualifierOperatorGreaterThan

« EOQualifierOperatorLessThanOrEqualTo

» EOQualifierOperatorGreaterThanOrEqualTo
¢ EOQualifierOperatorContains

» EOQualifierOperatorLike

« EOQualifierOperatorCaselnsensitiveLike

Enterprise Objects Framework supports SQL generation for these selectors only.

For example, the following excerpt creates an EOKeyValueQualiierthat has the key “name”, the
operator selector EOQualifierOperatorEqual, and the value “Smith”. Once constructed, the qualifier
is used to filter an in-memory array.

NSArray *employees; /* Assume this exists. */

EOQuialifier *qual = [[EOKeyValueQualifier alloc] initWithKey:@"name"
operatorSelector:EOQualifierOperatorEqual
value:@"Smith"];

return [employees filteredArrayUsingQualifier:qual];

key
— (NSString *key

Returns the receiver’s key.

selector
— (SELXelector

Returns the receiver’s selector.

Classes: EOKeyValueQualifier

value
— (id)value

Returns the receiver’s value.

139

140

Classes: EONotQualifier

EONotQualifier

Inherits From: EOQualifier : NSObject

Conforms To: EOQualifierEvaluation
EOQualifierSQLGeneration

Declared In: EOControl/EOQualifier.h

Class Description

EONotQualifier is a subclass of EOQualifier that contains a single qualifier. When an EONotQualifier
object is evaluated, it returns the inverse of the result obtained by evaluating the qualifier it contains.

EONotQualifier adopts the EOQualifierEvaluation protocol, which defines the method
evaluateWithObject: for in-memory evaluation. When an EONotQualifier object receives an
evaluateWithObject: message, it evaluates the given object to determine if it satisfies the qualifier criteria.

Adopted Protocols

EOQualifierEvaluation
— evaluateWithObiject:

EOQualifierSQLGeneration
— sqIStringForSQLEXxpression:
— schemaBasedQualifierWithRootEntity:

Instance Methods

evaluateWithObject:

@protocol EOQualifierEvaluation
— (BOOL)evaluateWithObject:anObject

Returns YES if the objeeinObjectsatisfies the EONotQualifier, NO otherwise. This method can raise one

of several possible exceptions if an error occurs. If your application allows users to construct arbitrary
qualifiers (such as through a user interface), you may want to put exception handlers around this method to
properly respond to errors (for example, by displaying a panel saying that the user typed a poorly formed
qualifier).

141

initWithQualifier:
— initwithQualifier: (EOQualifier *aQualifier

Initializes the receiver with the EOQualife@ualifier For example, the following code excerpt constructs
a qualifierbaseQual and uses it to initialize an EONotQualifieegQual The EONotQualifienegQual

is then used to filter an in-memory array. The code excerpt returns an array of Guest objects whose
lastName properties dmot have the same value as thstName property of the guest’s sponsoring
member (this example is based on the Rentals sample database). In other words, the EONotQualifier
negQualinverts the effects dfiaseQual

NSArray *guests; /* Assume this exists. */
EOQualifier *baseQual, *negQual;

baseQual = [EOQuialifier qualifierWithQualifierFormat: @"lastName =
member.lastName'];

negQual = [[EONotQualifier alloc] initWithQualifier:baseQual];

return [guests filteredArrayUsingQualifier:negQual];

qualifier
— (EOQualifier *gualifier

Returns the receiver’s qualifier

142

Classes: EONull

EONull

Inherits From: NSObiject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: EOControl/EONull.h

Class Description

The EONull class defines a unique object used to represent null values in collection objects (which don't
allow nil values). For example, NSDictionaries fetched by an EOAdaptorChannel contain an EONull
instance for such values. EONull is automatically translated io enterprise objects, however, so most

applications should rarely need to account for this class. See the NSObject Additions class specification for
details on where this translation is performed.

EONull has exactly one instance, returned bynilie class method. This object isn’t reference-counted,
can't be copiedqopyWithZone: returnsself), and is never deallocated. You can thus safely cache this
instance and use pointer comparison to test for the presence of a null value:

static id NULL_VALUE;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification
{

T

NULL_VALUE = [EONull null];

return;

}

if (value == NULL_VALUE) {
/x4
}

Adopted Protocols

NSCoding
— encodeWithCoder:
— initWithCoder:

143

EOSortOrderingComparison
— compareAscending:
— compareCaselnsensitiveAscending:
— compareCaselnsensitiveDescending:
— compareDescending:

NSCopying
— copyWithZone:

Class Methods

null
+ (EONull *)null

Returns the unique instance of EONull.

144

Classes: EOObjectStore

EOODbjectStore

Inherits From: NSObiject
Conforms To: NSObject (NSObject)
Declared In: EOControl/EOObjectStore.h

Class Description

EOODbjectStore is the abstract class that defines the API for an “intelligent” repository of objects, the control
layer’s object storage abstraction. An object store is responsible for constructing and registering objects,
servicing object faults, and saving changes made to objects. For more information on the object storage
abstraction, see “Object Storage Abstraction” in the introduction to the EOControl Framework.

EOEditingContext is the principal EOObjectStore subclass and is used for managing objects in memory—
in fact, the primary purpose of the EOObjectStore class is to define an API for servicing editing contexts,
not to define a completely general API. Other subclasses of EOObjectStore are:

» EOCooperatingObjectStore
« EOObjectStoreCoordinator
« EODatabaseContext (EOAccess)

A subclass of EOObjectStore must implement all of its methods. The default implementations simply raise
exceptions.

Method Types

Initializing objects
— initializeObject:withGloballD:editingContext:

Getting objects
— objectsWithFetchSpecification:editingContext:
— objectsForSourceGloballD:relationshipName:editingContext:

Getting faults
— faultForGloballD:editingContext:
— arrayFaultWithSourceGloballD:relationshipName:editingContext:
— refaultObject:withGloballD:editingContext:
— faultForRawRow:entityNamed:editingContext:

145

Locking objects
— lockObjectWithGloballD:editingContext:
— isObjectLockedWithGloballD:editingContext:

Saving changes to objects
— saveChangesInEditingContext:

Invalidating objects
— invalidateAllObjects
— invalidateObjectsWithGloballDs:

Instance Methods

146

arrayFaultwWithSourceGloballD:relationshipName:editingContext:

— (NSArray *arrayFaultWithSourceGloballD: (EOGloballD *)globallD
relationshipName:(NSString *yelationshipName
editingContext:(EOEditingContext *anEditingContext

Implemented by subclasses to return the destination objects for a to-many relationship, whether as real
instances or as faults (EOFault objeagdballD identifies the source object for the relationship (which
doesn't necessarily exist in memory yet), agldtionshipNames the name of the relationship. The object
identified bygloballD and the destination objects for the relationship all beloagEalitingContext

If you implement this method to return a fault, you must define an EOFaultHandler subclass that stores
globallD andrelationshipNameusing them to fetch the objects in a latbfectsForSourceGloballD:
relationshipName:editingContext: message and that turns the fault into an array containing those objects.
See the EOFaultHandler and EOFault class specifications for more information on faults.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

See also: —faultForGloballD:editingContext:

faultForGloballD:editingContext:

— (id)faultForGloballD: (EOGloballD *)globallD
editingContext:(EOEditingContext *anEditingContext

If the receiver imnEditingContexaind the object associated wifloballD is already registered in
anEditingContextthis method returns that object. Otherwise it creates a to-one fault, registers it in
anEditingContextand returns the fault. This method is always directed fiestEdlitingContextwhich
forwards the message to its parent object store if needed to create a fault.

If you implement this method to return a fault (an EOFault object), you must define an EOFaultHandler
subclass that storgtoballD, uses it to fetch the object and turn the EOFault into that object, and initializes

Classes: EOObjectStore

the object with EOObjectStoreisitializeObject:withGloballD:editingContext: . See the
EOFaultHandler and EOFault class specifications for more information on faults.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

See also: —arrayFaultWithSourceGloballD:relationshipName:editingContext: , —recordObject:
globallD: (EOEditingContext)

faultForRawRow:entityNamed:editingContext:

— (id)faultForRawRow: (id)row
entityNamed:(NSString *entityName
editingContext:(EOEditingContext *anEditingContext

Returns a fault for the enterprise object correspondimgaonhich is a dictionary of values containing at
least the primary key of the corresponding enterprise object. This is especially useful if you have fetched
raw rows and now want a unigue enterprise object.

initializeObject:withGloballD:editingContext:

— (void)initializeObject: (id)anObject
withGloballD: (EOGloballD *)globallD
editingContext:(EOEditingContext *anEditingContext

Implemented by subclasses to@eDbjects properties, as obtained fgloballD. This method is typically
invoked aftemnObjecthas been created using EOClassDescription’s
createlnstanceWithEditingContext:globallD:zone: or using NSObject'mitWithEditingContext:
classDescription:globallD: This method is also invoked after a fault has been fired.

See also: —initWithEditingContext:classDescription:globallD: (NSObject Additions),
—awakeFrominsertionInEditingContext: (NSObject Additions),
—awakeFromFetchInEditingContext: (NSObject Additions)

invalidateAllObjects
— (void)invalidateAllObjects

Discards the values of all objects held by the receiver and turns them into faults (EOFault objects). This
causes all locks to be dropped and any transaction to be rolled back. The next time any object is accessed,
its data is fetched anew. Any child object stores are also notified that the objects are no longer valid. See the
EOEditingContext class specification for more information on how this method works in concrete
subclasses.

147

This method should also post an EOlnvalidatedAllObjectsIinStoreNotification.

See also: —invalidateObjectsWithGloballDs:, —refaultObject:withGloballD:editingContext:

invalidateObjectsWithGloballDs:
— (void)nvalidateObjectsWithGloballDs: (NSArray *)globallDs
Signals that the objects identified by the EOGloballDgaballDs should no longer be considered valid

and that they should be turned into faults (EOFault objects). This causes data for each object to be refetched
the next time it's accessed. Any child object stores are also notified that the objects are no longer valid.

See also: —invalidateAllObjects, —refaultObject:withGloballD:editingContext:

iIsObjectLockedWithGloballD:editingContext:

— (BOOL)isObjectLockedWithGloballD: (EOGIloballD *)globallD
editingContext:(EOEditingContext *anEditingContext

Returns YES if the object identified gjoballD is locked, NO if it isn't. See the EODatabaseContext
(EOAccess) class specification for more information on how this method works in concrete subclasses.

lockObjectWithGloballD:editingContext:

— (void)ockObjectWithGloballD: (EOGIloballD *)globallD
editingContext:(EOEditingContext *xanEditingContext

Locks the object identified lgloballD. See the EODatabaseContext (EOAccess) class specification for
more information on how this method works in concrete subclasses.

objectsForSourceGloballD:relationshipName:editingContext:

— (NSArray *pbjectsForSourceGloballD{EOGIoballD *)globallD
relationshipName:(NSString *yelationshipName
editingContext:(EOEditingContext *anEditingContext

Returns the destination objects for a to-many relationship. This method is used by an array fault previously
constructed usingrrayFaultWithSourceGloballD:relationshipName:editingContext: . globallD

identifies the source object for the relationship (which doesn't necessarily exist in memory yet), and
relationshipNamés the name of the relationship. The object identifiedlbigallD and the destination

objects for the relationship all belonganEditingContext

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

148

Classes: EOObjectStore

objectsWithFetchSpecification:editingContext:
— (NSArray *pbjectsWithFetchSpecification(EOFetchSpecification &FetchSpecification
editingContext:(EOEditingContext *xnEditingContext

Fetches objects from an external store according to the criteria specifetdi$pecificatioand returns

them in an array for inclusion enEditingContextlf one of these objects is already present in memory,

this method doesn't overwrite its values with the new values from the database. Raises an exception if an
error occurs.

See the EOEditingContext and EODatabaseContext (EOAccess) class specifications for more information
on how this method works in concrete subclasses.

refaultObject:withGloballD:editingContext:

— (voidyefaultObject: (id)anObject
withGloballD: (EOGloballD *)globallD
editingContext:(EOEditingContext *3nEditingContext

TurnsanObjectinto a fault (an EOFault), identified lgyoballD in anEditingContextObjects that have

been inserted but not saved, or that have been deleted, shouldn't be refaulted. When using the Yellow Box,
use this method with caution since refaulting an object doesn’t remove the object snapshot from the undo
stack.

saveChangesInEditingContext:
— (voidsaveChangesInEditingContexttEOEditingContext *anEditingContext

Saves any changesanEditingContexto the receiver’s repository. SeridsertedObjects

deletedObjects andupdatedObjectsmessages tanEditingContexand applies the changes to the

receiver's data repository as appropriate. For example, EODatabaseContext (EOAccess) implements this
method to send operations to an EOAdaptor (EOAccess) for making the changes in a database.

Notifications
EOInvalidatedAllObjectsinStoreNotification

Posted whenever an EOObjectStore receivesvatidateAllObjects message. The notification contains:

Notification Object The EOObjectStore that received the invalidateAllObjects message.

Userinfo None

149

EOObjectsChangedinStoreNotification

Posted whenever an EOObjectStore observes changes to its objects. The notification contains:

Notification Object The EOODbjectStore that observed the change.

Userinfo
Key Value
An NSArray of EOGloballDs for objects whose properties have changed. A
updated receiving EOEditingContext typically responds by refaulting its corresponding
objects.
inserted An NSArray of EOGloballDs for objects that have been inserted into the
EOObjectStore.
An NSArray of EOGloballDs for objects that have been deleted from the
deleted .
EOODbjectStore.
invalidated An NSArray of EOGloballDs for objects that have been turned into faults.

150

Classes: EOObjectStoreCoordinator

EOODbjectStoreCoordinator

Inherits From: EOODbjectStore : NSObject
Conforms To: NSObject (NSObject)
Declared In: EOControl/EOObjectStoreCoordinator.h

Class Description

EOODbjectStoreCoordinator is a part of the control layer’s object storage abstraction. An
EOODbjectStoreCoordinator object acts as a single object store by directing one or more
EOCooperatingObjectStores in managing objects from distinct data repositories. For more general
information on the object storage abstraction, see “Object Storage Abstraction” in the introduction to the
EOControl Framework.

EOODbjectStore Methods
EOODbjectStoreCoordinator overrides the following EOODbjectStore methods:

» — objectsWithFetchSpecification:editingContext:

» — objectsForSourceGloballD:relationshipName:editingContext:

— faultForGloballD:editingContext:

» — arrayFaultWithSourceGloballD:relationshipName:editingContext:
— refaultObject:withGloballD:editingContext:

» — saveChangesInEditingContext:

« —invalidateAllObjects

» —invalidateObjectsWithGloballDs:

With the exception odaveChangesInEditingContext; EOObjectStoreCoordinator’s implementation of
these methods simply forwards the message to an EOCooperatingObjectStore or stores. The message
invalidateAllObjects is forwarded to all of a coordinator's cooperating stores. The rest of the messages are
forwarded to the appropriate store based on which store responds YES to the noeass@ésballD:,
ownsObject:;, andhandlesFetchSpecification(which message is used depends on the context). The
EOODbjectStore methods listed above aren’t documented in this class specification (except for
saveChangesInEditingContext)—for descriptions of them, see the EOODbjectStore and
EODatabaseContext (EOAccess) class specifications

For the methodaveChangesInEditingContext; the coordinator guides its cooperating stores through a
multi-pass save protocol in which each cooperating store saves its own changes and forwards remaining
changes to the other of the coordinator’s stores. For example, ifécdtsiChangesinEditingContext

method one cooperating store notices the removal of an object from an “owning” relationship but that object

151

belongs to another cooperating store, it informs the other store by sending the coordinator a
forwardUpdateForObject:.changes: message. For a more details, see the method description for
saveChangesInEditingContext:

Although it manages objects from multiple repositories, EOObjectStoreCoordinator doesn't absolutely
guarantee consistent updates when saving changes across object stores. If your application requires
guaranteed distributed transactions, you can either provide your own solution by creating a subclass of
EOODbjectStoreCoordinator that integrates with a TP monitor, use a database server with built-in distributed
transaction support, or design your application to write to only one object store per save operation (though
it may read from multiple object stores). For more discussion of this subject, see the method description for
saveChangesInEditingContext:

Method Types

Initializing instances
— init
Setting the default coordinator

+ setDefaultCoordinator:
+ defaultCoordinator

Managing EOCooperatingObjectStores
— addCooperatingObjectStore:
— removeCooperatingObjectStore:
— cooperatingObjectStores

Saving changes
— saveChangesInEditingContext:

Communication between EOCooperatingObjectStores
— forwardUpdateForObject:.changes:
— valuesForKeys:object:

Returning EOCooperatingObjectStores
— objectStoreForGloballD:
— objectStoreForFetchSpecification:
— objectStoreForObject:

Getting the userinfo dictionary
— userinfo
— setUserlInfo:

152

Classes: EOObjectStoreCoordinator

Class Methods
defaultCoordinator
+ (id)defaultCoordinator

Returns a shared instance of EOObjectStoreCoordinator.

setDefaultCoordinator:
+ (void)setDefaultCoordinator:(EOODbjectStoreCoordinator ¢pordinator

Sets a shared instance EOObjectStoreCoordinator.

Instance Methods
addCooperatingObjectStore:
— (void)addCooperatingObjectStore(EOCooperatingObjectStorestpre

Addsstoreto the list of EOCooperatingObjectStores that need to be queried and notified about changes to
enterprise objects. Posts the notification EOCooperatingObjectStoreWasAdded.

See also: —removeCooperatingObjectStore; —cooperatingObjectStores

cooperatingObjectStores
— (NSArray *xooperatingObjectStores

Returns the receiver's EOCooperatingObjectStores.

See also: —addCooperatingObjectStore; —removeCooperatingObjectStore:

forwardUpdateForObject:changes:

— (void)forwardUpdateForObiject: (id)object
changes{NSDictionary *changes

Tells the receiver to forward a message from an EOCooperatingObjectStore to another store, informing it
thatchangeseed to be made tibject For example, inserting an object in a relationship property of one
EOCooperatingObjectStore might require changing a foreign key property in an object owned by another
EOCooperatingObjectStore.

This method first locates the EOCooperatingObjectStore that's responsible for apbiniggsand then
it sends the store the messagmordUpdateForObject:changes:

153

init

—init
Initializes a newly allocated EOObjectStoreCoordinator and res@lh§ his is the designated initializer
for the EOObjectStoreCoordinator class.

objectStoreForFetchSpecification

— (EOCooperatingObjectStoreot)jectStoreForFetchSpecification:
(EOFetchSpecification f@tchSpecification

Returns the EOCooperatingObjectStore responsible for fetching objecfeteitBpecificationrReturns
nil if no EOCooperatingObjectStore can be found that responds YiEtilesFetchSpecification:

See also: — ObjectStoreForGloballD:, —objectStoreForObject:

objectStoreForGloballD
— (EOCooperatingObjectStoreofjectStoreForGloballD: (EOGIoballD *)globallD

Returns the EOCooperatingObjectStore for the object identifigibbwlID. Returnanil if no
EOCooperatingObjectStore can be found that responds Y&gnwGloballD:.

See also: — objectStoreForFetchSpecification; —objectStoreForObject:

objectStoreForObject:
— (EOCooperatingObjectStoreotjectStoreForObject:(id)object

Returns the EOCooperatingObjectStore that avinjsct Returnsnil if no EOCooperatingObjectStore can
be found that responds YESdwnsObiject..

See also: —objectStoreForFetchSpecification; —objectStoreForGloballD:

removeCooperatingObjectStore:
— (voidyemoveCooperatingObjectStore(EOCooperatingObjectStorestpre

Removesstorefrom the list of EOCooperatingObjectStores that need to be queried and notified about
changes to enterprise objects. Posts the notification EOCooperatingObjectStoreWasRemoved.

See also: —addCooperatingObjectStore; —cooperatingObjectStores

154

Classes: EOObjectStoreCoordinator

saveChangesInEditingContext:
— (void)saveChangesInEditingContexttEOEditingContext *anEditingContext

Overrides the EOObijectStore implementation to save the changes rma#elitingContextThis message

is sent by an EOEditingContext to an EOObjectStoreCoordinator to commit changes. When an
EOODbjectStoreCoordinator receives this message, it guides its EOCooperatingObjectStores through a
multi-pass save protocol in which each EOCooperatingObjectStore saves its own changes and forwards
remaining changes to other EOCooperatingObjectStores. When this method is invoked, the following
sequence of events occurs:

1. The receiver sends each of its EOCooperatingObjectStores the nmasgpageForSaveWithCoordinator:
editingContext:, which informs them that a multi-pass save operation is beginning. When the
EOCooperatingObjectStore is an EODatabaseContext (EOAccess), it takes this opportunity to generate
primary keys for any new objects in the EOEditingContext.

2. The receiver sends each of its EOCooperatingObjectStores the nressag€hangesinEditingContext,
which prompts them to examine the changed objects in the editing context, record operations that need to be
performed, and notify the receiver of any changes that need to be forwarded to other stores. For example, if in
its recordChangesInEditingContextmethod ondeOCooperatingObjectStoretices the removal of an
object from an “owning” relationship but that object belongs to an&kHCooperatingObjectStarie
informs the other store by sending the coordinaforwardUpdateForObject.changes: message.

3. The receiver sends each of its EOCooperatingObjectStores the npeséargeChanges This tells the stores
to transmit their changes to their underlying databases. Whé&QkmoperatingObjectStorean
EODatabaseContext, it responds to this message by taking the EODatabaseOperations (EOAccess) that were
constructed in the previous step, constructing EOAdaptorOperations (EOAccess) from them, and giving the
EOAdaptorOperations to an available EOAdaptorChannel(EOAccess) for execution.

4. If performChangesfails for any of the EOCooperatingObjectStores, all stores are sent the message
rollbackChanges

5. If performChangessucceeds for all EOCooperatingObjectStores, the receiver sends them the message
commitChanges which has the effect of telling the adaptor to commit the changes.

6. If commitChangesfails for a particulaEOCooperatingObjectStardatstoreand all subsequent ones are
sent the messagellbackChanges However, the stores that have already committed their changes do not roll
back. In other words, the coordinator doesn’t perform the two-phase commit protocol necessary to guarantee
consistent distributed update.

This method raises an exception if an error occurs.

setUserlInfo:
— (void)setUserInfa(NSDictionary *dictionary

Sets thdictionary of auxiliary data, which your application can use for whatever it needs.

See also: —userinfo

155

userinfo
— (NSDictionary *userinfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: — setUserlnfo:

valuesForKeys:object:

— (NSDictionary *yaluesForKeys(NSArray *)keys
object:(id)object

Communicates with the appropriate EOCooperatingObjectStore to get the values idenkiégsfdry

object so that it can then forward them on to another EOCooperatingObjectStore.
EOCooperatingObjectStoresin hold values for an object that augment the properties in the object. For
instance, an EODatabaseContext (EOAccess) stores foreign key information for the objects it owns. These
foreign keys may well not be defined as properties of the object. Other EODatabaseContexts can find out
the object’s foreign keys by sending the EODatabaseContext that owns the vhljeeskorKeys:object:
messagéthrough the coordinator).

Notifications

156

The following notifications are declared and posted by EOObjectStoreCoordinator.
EOCooperatingObjectStoreWasAdded

When an EOObjectStoreCoordinator receivea@gCooperatingObjectStore:message and adds an
EOCooperatingObjectStore to its list, it posts EOCooperatingObjectStoreWasAdded to notify observers.

Notification Object The EOODbjectStoreCoordinator

userlnfo Dictionary None

EOCooperatingObjectStoreWasRemoved

When an EOObjectStoreCoordinator receivesnaoveCooperatingObjectStore:message and removes
an EOCooperatingObjectStore from its list, it posts EOCooperatingObjectStoreWasRemoved to notify
observers.

Notification Object The EOObjectStoreCoordinator

Classes: EOObjectStoreCoordinator

userinfo Dictionary None

EOCooperatingObjectStoreNeeded

Posted when an EOODbjectStoreCoordinator receives a request that it can’t service with any of its currently
registered=OCooperatingObjectStoreshe observer can call back to the coordinator to register an
appropriate EOCooperatingObjectStore based on the information in the userinfo dictionary.

Notification Object The EOODbjectStoreCoordinator
userinfo Dictionary One of the following key-value pairs
Key Value

globallD globallD for the operation
fetchSpecification fetch specification for the operation
object object for the operation

157

158

Classes: EOObserverCenter

EOODbserverCenter

Inherits From: NSObiject

Conforms To: NSObject (NSObject)
Declared In: EOControl/EOObserver.h

Class Description

EOObserverCenter is the central player in EOControl's change tracking mechanism. EOObserverCenter
records observers and the objects they observe, and it distributes notifications when the observable objects
change. For an overview of the change tracking mechanism, see “Tracking Enterprise Objects Changes” in
the introduction to the EOControl Framework.

You don'’t ever create instances of EOObserverCenter. Instead, the class itself acts as the central manager
of change notification, registering observers and notifying them of changes. The EOObserverCenter APl is
provided entirely in class methods.

Registering an Observer

Objects that directly observe others must adopt the EOObserving protocol, which consists of the single
methodobjectWillChange:. To register an object as an observer, invoke EOObserverCenter's
addObserver:forObject: with the observer and the object to be observed. Once this is done, any time the
observed object invokes itgllChange method, the observer is sentabjectWillChange: message

informing it of the pending change. You can also register an observer to be notified when any object changes
usingaddOmniscientObserver: This can be useful in certain situations, but as it's very costly to deal out
frequent change notifications, you should use omniscient observers sparingly. To unregister either kind of
observer, simply use the correspondiegnove...method.

Change Notification

Objects that are about to change invei#Change, a method that the Framework adds to NSObject. The
implementations of this method invoke EOObserverCemtetifyObserversObjectWillChange:, which

sends ambjectWillChange: message to all observers registered for the object that's changing, as well as

to any omniscient observerstifyObserversObjectWillChange: optimizes the process by suppressing
redundanbbjectWillChange: messages when the same object invekbEhange several times in a row

(as often happens when multiple properties are changed). Change notification is immediate, and takes place
beforethe object’s state changes. If you need to compare the object’s state before and after the change, you
must arrange to examine the new state at the end of the run loop.

159

You can suppress change notification when necessary, usisgpiessObserverNotificationand
enableObserverNotificationmethods. While notification is suppressed, neither regular nor omniscient
observers are informed of changes. These methods nest, so you casupmkesObserverNotification
multiple times, and notification isn’t re-enabled until a matching numbemaisle ObserverNotification
message have been sent.

Method Types

Registering and unregistering observers
+ addObserver:forObject:
+ removeObserver:forObject:
+ addOmniscientObserver:
+ removeOmniscientObserver:

Notifying observers of change
+ notifyObserversObjectWillChange:

Getting observers
+ observersForObject:
+ observerForObject:ofClass:

Suppressing change notification
+ suppressObserverNotification
+ enableObserverNotification
+ observerNotificationSuppressCount

Class Methods

addObserver:forObject:

+ (void)addObserver:(id <EOObserving=gnObserver
forObiject: (id)anObject

RecordsanObserveto be notified with ambjectWillChange: message whesnObjectchanges.

See also: + removeObserver:forObject:

160

Classes: EOObserverCenter

addOmniscientObserver:
+ (void)JaddOmniscientObserver(id <EOObserving>gnObserver

RecordsanObserveto be notified with anbjectWillChange: message when any object changes. This can
cause significant performance degradation, and so should be used with care. The ominiscient observer must
be prepared to receive thbjectWillChange: message with ail argument.

See also: +addObserver:forObject:, + removeOmniscientObserver:

enableObserverNoaotification
+ (void)enableObserverNotification

Counters a priosuppressObserverNotificationmessage. When no such messages remain in effect, the
notifyObserversObjectWillChange: method is re-enabled. Raises an NSinternallnconsistencyException
if not paired with a priosuppressObserverNotificationmessage.

notifyObserversObjectWillChange:
+ (void)notifyObserversObjectWillChange:(id)anObject

Unless change notification is suppressed, sendbjantWillChange: to all observers registered for
anObijectwith that object as the argument, and sends that message to all omniscient observers as well. If
invoked several times in a row with the same object, only the first invocation has any effect, since
subsequent change notifications are redundant.

If an observer wants to ensure that it receives naotification the next time the last object to change changes
again, it should use the statement:

[EOObserverCenter notifyObserversObjectWillChange:nil];

An observable object (typically an enterprise object) invokes this method fraifi@eange
implementation, so you should never have to invoke this method directly.

See also: + suppressObserverNoatification + addObserver:forObject:, + addOmniscientObserver:

observerForObject.ofClass:
+ (id)observerForObject:(id)anObject
ofClass(ClassaClass

Returns an observer fanObjectthat’'s a kind oiClass If more than one observer ahObjectis a kind
of aClass the specific observer returned is undetermined. You casbgseversForObject:instead to get
all observers and examine their class membership.

161

observerNotificationSuppressCount
+ (unsigned inpbserverNotificationSuppressCount

Returns the number slippressObserverNotificationmessages in effect.

See also: + enableObserverNotification

observersForObject:
+ (NSArray *observersForObjectyid)anObject

Returns all observers ahObject

removeObserver:forObject:
+ (void)removeObserver(id <EOObserving=gnObserveforObject: (id)anObject

RemovesanObservemas an observer @nObject

See also: —addObserver:forObject:

removeOmniscientObserver:
+ (void)removeOmniscientObserver(id <EOObserving=gnObserver

UnregisteranObservems an observer of all objects.

See also: + removeODbserver:forObject:, + addOmniscientObserver:

suppressObserverNotification
+ (void)suppressObserverNotification

Disables thenotifyObserversObjectWillChange: method, so that no change notifications are sent. This
method can be invoked multiple timesiableObserverNotificationmust then be invoked an equal
number of times to re-enable change notification.

162

Classes: EOObserverProxy

EOODbserverProxy
Inherits From: EODelayedObserver : NSObject
Conforms To: EOObserving (EODelayedObserver)

NSObject (NSObject)

Declared In: EOControl/EOObserver.h

Class Description

The EOObserverProxy class is a part of EOControl’'s change tracking mechanism. It provides a means for
objects that can't inherit from EODelayedObserver to hasutkectChangedmessages. For an overview

of the general change tracking mechanism, see “Tracking Enterprise Objects Changes” in the introduction
to the EOControl Framework.

An EOObserverProxy has a target object on whose behalf it observes objects. EOObserverProxy overrides
subjectChangedto send an action message to its target object, allowing the target to act as though it had
receivedsubjectChangeddirectly from an EODelayedObserverQueue. See the EOObserverCenter and
EODelayedObserverQueue class specifications for more information.

Instance Methods

initWithTarget:action:priority:
— (id)initWithTarget: (id)anObject
action:(SEL)anAction
priority: (EOObserverPriorityriority

Initializes a new EOObserverProxy to semictionto anObjectupon receiving aubjectChanged
messageanActionshould be a selector for a typical action method, takingcdbaggument and returning
void. priority indicates when the receiver is sent this message from EODelayedObserverQueue’s
notifyObserversUpToPriority: method. This is the designated initializer for the EOObserverProxy class.
Returnsself.

163

164

Classes: EOOrQualifier

EOOrQualifier

Inherits From: EOQualifier : NSObject

Conforms To: EOQualifierEvaluation
EOQualifierSQLGeneration

Declared In: EOControl/EOQualifier.h

Class Description

EOOrQuialifier is a subclass of EOQualifier that contains multiple qualifiers. EOOrQualifier adopts the
EOQualifierEvaluation protocol, which defines the metlemluate WithObject: for in-memory

evaluation. When an EOOrQualifier object receivesvatuate WithObject: message, it evaluates each of

its qualifiers until one of them returns YES. If one of its qualifiers returns YES, the EOOrQualifier object
returns YES immediately. If all of its qualifiers return NO, the EOOrQualifier object returns NO.

Adopted Protocols

EOQualifierEvaluation
— evaluateWithObject:

EOQualifierSQLGeneration
— sqIStringForSQLEXxpression:
— schemaBasedQualifierWithRootEntity:

Instance Methods

evaluateWithObject:

@protocol EOQualifierEvaluation
— (BOOL)evaluateWithObject:(id)anObiject

Returns YES ifanObjectsatisfies the qualifier, NO otherwise. When an EOOrQualifier object receives an
evaluateWithObject: message, it evaluates each of its qualifiers until one of them returns YES. If any of
its qualifiers returns YES, the EOOrQualifier object returns YES immediately. If all of its qualifiers return
NO, the EOOrQualifier object returns NO. This method can raise one of several possible exceptions if an
error occurs. If your application allows users to construct arbitrary qualifiers (such as through a user
interface), you may want to write code to catch any exceptions and respond to errors (for example, by
displaying a panel saying that the user typed a poorly formed qualifier).

165

166

initWithQualifierArray:
—initwithQualifierArray: (NSArray *)qualifiers

Initializes the receiver with the qualifieggalifiersand returnself. This method is the designated initializer
for EOOrQualifier.

initWithQualifiers:
—initWithQualifiers: (EOQualifier *yualifiers,...

Initializes the receiver with thail-terminated list of qualifiergualifiers Works by invoking
initWithQualifierArray: . For example, the following code excerpt constructs three qualdiemt,,
qual2, andqual3. It then uses these qualifiers to initialize an EOOrQualdi€yual. orQual is then used
to filter an in-memory array.

NSArray *guests; /* Assume this exists. */
EOQuialifier *quall, *qual2, *qual3, *orQual;

quall = [EOQualifier qualifierWithQualifierFormat: @"lastName = '‘Nunez"7;
qual2 = [EOQualifier qualifierWithQualifierFormat: @"lastName = "Wren™];
qual3 = [EOQualifier qualifierWithQualifierFormat: @"lastName = 'Wilson™];

[* Initialize the EOOrQualifier orQual using a nil-terminated list of

* qualifiers.

*/

orQual = [[EOOrQualifier alloc] initWithQualifiers:quall, qual2, qual3, nil];
[* Use orQual to filter the array guests. */

return [guests filteredArrayUsingQualifier:orQual];

qualifiers
— (NSArray *Qualifiers
Returns the receiver’s qualifiers.

Classes: EOQualifier

EOQualifier

Inherits From: NSObiject
Conforms To: NSCopying
Declared In: EOControl/EOQualifier.h

Class Description

EOQuialifier is an abstract class for objects that hold information used to restrict selections on objects or

database rows according to specified criteria. With the exception of EOSQLQualifier (EOAccess), qualifiers
aren’'t based on SQL and they don't rely upon an EOModel (EOAccess). Thus, the same qualifier can be
used both to perform in-memory searches and to fetch from the database.

You never instantiate an instance of EOQualifier. Rather, you use one of its subclasses—one of the
following or your own custom EOQualifier subclass:

Subclass Purpose

Compares the named property of an object to a supplied value, for example,

EOKeyValueQuialifier “weight > 150”.

EOKeyComparisonQuali Compares the named property of one object with the named property of
fier another, for example “name = wife.name”.

Contains multiple qualifiers, which it conjoins. For example, “name ='Fred’ AND

EOANdQualifier age < 20",

Contains multiple qualifiers, which it disjoins. For example, “name = 'Fred’ OR

EOOrQuialifier name = 'Ethel”.

Contains a single qualifier, which it negates. For example, “NOT (name =

EONotQualifier ‘Fred".

Contains unstructured text that can be transformed into a SQL expression.
EOSQLQualifier provides a way to create SQL expressions with any arbitrary
SQL. Because EOSQLQuialifiers can't be evaluated against objects in memory

EOSQLQualifier and because they contain database and SQL-specific content, you should use
EOQualifier wherever possible. EOSQLQualifier is also provided for backward
compatibility with pre-2.0 Enterprise Objects Framework releases, which didn’t
offer a SQL-independent qualifier.

167

The protocol EOQualifierEvaluation defines how qualifiers are evaluated in memory. To evaluate qualifiers
in a database, methods in EOSQLEXxpression (EOAccess) and EOEntity (EOAccess) are used to generate
SQL for qualifiers. Note that all of the SQL generation functionality is contained in the access layer.

For more information on using EOQualifiers, see the sections

» Creating a Qualifier

» Constructing Format Strings

¢ Checking for NULL Values

» Using Wildcards and the like Operator

» Using Selectors in Qualifier Expressions

» Using Different Data Types in Format Strings
» Using EOQualifier's Subclasses

¢ Creating Subclasses

Constants

The following selector constants are defined to represent the different qualifier operators:

EOQualifierOperatorEqual EOQuialifierOperatorLessThanOrEqualTo
EOQualifierOperatorNotEqual EOQualifierOperatorGreaterThanOrEqualTo
EOQualifierOperatorLessThan EOQualifierOperatorContains
EOQualifierOperatorGreaterThan EOQualifierOperatorLike

EOQualifierOperatorCaselnsensitiveLike

Adopted Protocols
NSCopying

168

Classes: EOQualifier

Method Types

Creating a qualifier
+ qualifierWithQualifierFormat:
+ qualifierWithQualifierFormat:arguments:
+ qualifierToMatchAllValues:
+ qualifierToMatchAnyValue:
— qualifierwithBindings:requiresAllVariables:

Converting strings and operators
+ operatorSelectorForString:
+ stringForOperatorSelector:

Get EOQualifier operators
+ allQualifierOperators
+ relationalQualifierOperators

Accessing a qualifier's keys
— bindingKeys
— keyPathForBindingKey:

Validating a qualifier’s keys
— validateKeysWithRootClassDescription:

Class Methods
allQualifierOperators
+ (NSArray *)allQualifierOperators

Returns an NSArray containing all of the operators supported by EOQualifier: =, 1=, <, <=, >, >=, “like”,
and “caselnsensitiveLike”.

See also: + relationalQualifierOperators

operatorSelectorForString:
+ (SEL)operatorSelectorForString:(NSString *JaString

Returns an operator selector based on the saftigng This method is used in parsing a qualifier. For
example, the following statement returns the selésiotEqualTo:.

selector = [EOQualifier operatorSelectorForString:@"!="7;

The possible values afStringare =, ==, I=, <, >, <=, >=, “like”, and “caselnsensitiveLike”.

169

170

You'd probably only use this method if you were writing your own qualifier parser.

See also: + stringForOperatorSelector:

qualifierToMatchAllValues:
+ (EOQualifier *)qualifierToMatchAllValues:(NSDictionaryvalues

Takes a dictionary of search criteria, from which the method creates EOKeyValueQualifiers (one for each
dictionary entry). The method ANDs these qualifiers together, and returns the resulting EOAndQualifier.

See also:

qualifierToMatchAnyValue:
+ (EOQualifier *)qualifierToMatchAnyValue:(NSDictionaryvalues

Takes a dictionary of search criteria, from which the method creates EOKeyValueQualifiers (one for each
dictionary entry). The method ORs these qualifiers together, and returns the resulting EOOrQualifier.

See also:

qualifierWithQualifierFormat:
+ (EOQualifier *gualifierwithQualifierFormat: (NSString *gualifierFormat, ...

Parses the format striggialifierFormat usesit to create an EOQualifier, and returns the EOQualifier. Based
on the content ajualifierFormat this method generates a tree of the basic qualifier types. For example, the
format string “firstName ='Joe’ AND department = 'Facilities™ generates an EOAndQualifier that contains
two “sub” EOKeyValueQualifiers. The following code excerpt shows a typical way to use the
qualifierWithQualifierFormat: method. The excerpt constructs an EOFetchSpecification, which includes
an entity name and a qualifier. It then applies the EOFetchSpecification to the EODisplayGroup’s data
source and tells the EODisplayGroup to fetch.

EODisplayGroup *displayGroup; /* Assume this exists.*/
EOFetchSpecification *fetchSpec;
EODatabaseDataSource *dataSource;

dataSource = [displayGroup dataSource];

fetchSpec = [EOFetchSpecification
fetchSpecificationWithEntityName:@"Member"
qualifier:[EOQualifier qualifierWithQualifierFormat:
@"cardType = 'Visa' "]
sortOrderings:nil];

[dataSource setFetchSpecification:fetchSpec];

[displayGroup fetch];

Classes: EOQualifier

qualifierWithQualifierFormat performs no verification to ensure that keys referred to by the format string
qualifierFormatexist. It raises an NSiInvalidArgumentExceptioquglifierFormatcontains any syntax
errors.

qualifierWithQualifierFormat:arguments:

+ (EOQualifier *gualifierWithQualifierFormat: (NSString *ualifierFormat
arguments:(NSArray *)Jarguments

Parses the format strirggialifierFormatand the specifiedrgumentsuses them to create an EOQuialifier,

and returns the EOQuialifier. This method is equivalequ#difierWithQualifierFormat: except that

format characters (for example, %@, %d, %fyjualifierFormatcause the method to search in the

arguments array for values rather than in a variable argument list. Note that although %d and %f can be used
when constructing qualifiers, they don’'t work with most other string formatting methods such as NSString’s
stringWithFormat:.

relationalQualifierOperators
+ (NSArray *YelationalQualifierOperators

Returns an NSArray containing all of the relational operators supported by EOQualifier: =, =, <, <=, >, and
>=. In other words, returns all of the EOQualifier operators except for the ones that work exclusively on
strings: “like” and “caselnsensitivelLike”.

Seealso: + allQualifierOperators

stringForOperatorSelector:
+ (NSString *ptringForOperatorSelector:(SEL)aSelector

Returns an NSString representation of the sele@etectarFor example, the following statement returns
the string “I="

operator = [EOQualifier stringForOperatorSelector:EOQualifierOperatorNotEquall;
The possible values faelectorare as follows:

e EOQualifierOperatorEqual

» EOQualifierOperatorNotEqual

« EOQualifierOperatorLessThan

« EOQualifierOperatorGreaterThan

« EOQualifierOperatorLessThanOrEqualTo

» EOQualifierOperatorGreaterThanOrEqualTo
« EOQualifierOperatorContains

» EOQualifierOperatorLike

171

« EOQualifierOperatorCaselnsensitiveLike
You'd probably only use this method if you were writing your own parser.

See also: + operatorSelectorForString:

Instance Methods

172

bindingKeys
— (NSArray *bindingKeys

Returns an array of strings which are the names of the known variables. Multiple occurrences of the same
variable will only appear once in this list.

keyPathForBindingKey:

— (NSString *keyPathForBindingKey: (NSString *key
Returns a string which is the "left-hand-side" of the variable in the qualifier. e.g. If you have a qualifier
"salary > $amount and manager.lastName = $manager", then calling bindingKeys would return the array

("amount", "manager"). CallingeyPathForBindingKey would return salary for amount, and
manager.lastname for manager.

qualifierWithBindings:requiresAllVariables:

— (EOQualifier *)qualifierWithBindings:(NSDictionary B)ndingsrequiresAllVariables:
(BOOL)requiresAll

Returns a new qualifier substituting all variables with values fouhohdings If requiresAllis YES, any
variable not found imindingswill cause an EOQualifierVariableSubstitutionException to be raised. If
requiresAllis NO, missing variable values will cause the qualifier node to be pruned from the tree.

validateKeysWithRootClassDescription:
— (NSException *yalidateKeysWithRootClassDescription(EOClassDescription tJassDesc
Validates that the receiver contains keys and key paths that belong to or originatagsidescThis

method returns an NSinternallnconsistencyException if an unknown key is found, otherwise it returns nil
to indicate that the keys contained by the qualifier are valid.

Classes: EOQualifier

EOQualifier

Creating a Qualifier

As described above, there are several EOQualifier subclasses, each of which represents a different semantic.
However, in most cases you simply create a qualifier using the EOQualifier class method
qualifierWithQualifierFormat: , as follows:

EOQualifier *qual = [EOQuialifier qualifierWithQualifierFormat: @"lastName =
'Smith™];

The qualifier or group of qualifiers that result from such a statement is based on the contents of the format
string you provide. For example, giving the format string “lastName = 'Smith™ as an argument to

qualifierWithQualifierFormat: returns an EOKeyValueQualifier object. But you don’t normally need to
be concerned with this level of detail.

The format strings you use to create a qualifier can be compound logical expressions, such as “firstName =
'Fred’ AND age < 20". When you create a qualifier, compound logical expressions are translated into a tree
of EOQualifier nodes. Logical operators such as AND and OR become EOAndQualifiers and
EOOrQualifiers, respectively. These qualifiers conjoin (AND) or disjoin (OR) a group of sub-qualifiers.
This is illustrated in Figure 4, in which the format string “salary > 300 AND firstName = 'Angela’ AND
manager.name = 'Fred™ has been translated into a tree of qualifiers.

EQAndCualitier
EQKeyValuelalifier [EQKayValuelhalifier ' EQKeayValuelalifier
key salary key firstName key manager.name
selector = selector = selector =
value 3000 value “Angela" value “Fred®

Figure 4 EOQualifier Tree fosalary > 300 AND firstName = “Angela” AND manager.name = “Fred”

Note: ThequalifierWithQualifierFormat: method can’t be used to create an instance of EOSQLQualifier.
This is because EOSQLQualifier uses a non-structured syntax to provide backward compatibility
with pre-2.0 Enterprise Objects Framework releases. It also requires an entity. To create an instance
of EOSQLQualifier, you'd use a statement such as the following:

myQual = [[EOSQLQualifier alloc] initWithEntity:myEntity format:myFormatString];

173

174

Constructing Format Strings

As described above, you typically create a qualifier from a format string by using
qualifierWithQualifierFormat: . This method takes as an argument a format string somewhat like that
used with the standardpZintf() function. The format string can embed strings, numbers, and objects using
the conversion specifications listed below. This allows qualifiers to be built dynamically. The following
table lists the conversion specifications you can use in a format string and their corresponding data types.

Conversion Specification Expected Value or Result

%s A constant C string (const char *).
%d Anint.

%f A float or double .

An id argument. The behavior of this conversion specification depends on its
position. It can either be an object whose description method returns a key (in

0,

»e other words, an NSString), or a value such as an NSString, NSNumber,
NSCalendarDate, and so on.

%% Results in a literal % character.

Note: If you use an unrecognized character in a conversion specification (for example, %x), an
NSInvalidArgumentException is raised.

For example, suppose you have an Employee entity with the proaniieb, firstName, lastName

salary, anddepartment (representing a to-one relationship to the employee’s department), and a
Department entity with properties deptID, and name. You could construct simple qualifier strings like the
following:

lastName = 'Smith’
salary > 2500
department.name = 'Personnel’

The following examples build qualifiers similar to the qualifier strings described above, but take the specific
values from already-fetched enterprise objects:

myQualifier = [EOQuialifier qualifierWithQualifierFormat: @"%@ = %@",
@"lastName", [anEmployee lastName]];

myQualifier = [EOQualifier qualifierWithQualifierFormat: @"%@ > %f",
@"salary", [anEmployee salary]];

myQualifier = [EOQualifier qualifierWithQualifierFormat: @"%@ = %@",
@"department.name", [aDept name]];

Classes: EOQualifier

The enterprise objects here implement methods for directly accessing the given atlaisiName and
salary for Employee objects, anthme for Department objects.

Note: Unlike a string literal, the %@ conversion specification is never surrounded by single quotes:

/I For a literal string value such as Smith, you use single quotes.
[EOQualifier qualifierwithQualifierFormat: @"lastName = 'Smith™, null)];

/I For the conversion specification %@, you don’t use quotes
[EOQualifier qualifierwithQualifierFormat: @"lastName = %@", @"Jones"];

Typically format strings include only two data types: strings and numbers. Single-quoted or double-quoted
strings are NSStrings, non-quoted numbers are NSNumbers, and non-quoted strings are keys. You can get
around this limitation by performing explicit casting, as described in the section “Using Different Data
Types in Format Strings”.

The operators you can use in constructing qualifiers are =, ==, 1=, <, >, <=, >=, “like”, and
“caselnsensitiveLike”. Thike andcaselnsensitiveLikeoperators can be used with wildcards to perform
pattern matching, as described in “Using Wildcards and the like Operator,” below.

Checking for NULL Values

To construct a qualifier that fetches rows matching null values, use either of the approaches shown in the
following example:

[EOQualifier qualifierwithQualifierFormat: @"bonus = nil"];
[EOQualifier qualifierwithQualifierFormat: @"bonus = %@", [EONull null]];
[EOQualifier qualifierwWithQualifierFormat: @"bonus = %@", nil];

Using Wildcards and the like Operator

When you use thiike or caselnsensitiveLikeoperator in a qualifier expression, you can use the wildcard
characters * and ? to perform pattern matching, for example:

@"lastName like 'Jo*™

matches Jones, Johnson, Jolsen, Josephs, and so on.

The ? character just matches a single character, for example:
@"lastName like 'Jone?™

matches Jones.

The asterisk character (*) is only interpreted as a wildcard in expressions thatlikee dhe
caselnsensitiveLikeoperator. For example, in the following statement, the character * is treated as a literal
value, not as a wildcard:

@"lastName ='Jo*"// The * character doesn’t act as a wildcard in this statement.

175

176

Using Selectors in Qualifier Expressions

The format strings you use to initialize a qualifier can include selectors. The parser recognizes a selector as
an unquoted string followed by a colon, suclmgd/lethod:. For example:

pointl isinside: area
firstName isAnagramOfString: "Computer"

Selectors in a qualifier are parsed and applied only in memory; that is, they can’t be used in SQL generation.

Using Different Data Types in Format Strings

As stated in the section “Constructing Format Strings”, format strings normally include only two data types:
strings and numbers. To get around this limitation, you can perform explicit casting.

For example, NSCalendarDate and NSDecimalNumber are two classes that are likely to be used in
qualifiers. You can construct format strings for objects of these classes as follows:

hireDate = (NSCalendarDate)’'1990-03-16 00:00:00 +0000’
salary = (NSDecimalNumber)'15000.02’

When you use this approach, qualifiers are constructed by looking up the class and [fslakisig
alloc] initWithString:stringValue] . Therefore, this technique only works for classes that
implementinitWithString: .

Note that to construct a date qualifier using a format string, you must use the default CalendarDate format,
which is %Y-%m-%d %H:%M:%S %z—for example:

EOQuialifier *qual = [EOQualifier qualifierWithQualifierFormat:
@"dateReleased < (NSCalendarDate)'1990-01-26 00:00:00 +0000"7;

This limitation doesn’t apply when you're working with NSCalendarDate objects—you can just construct
a qualifier in the usual way:

EOQualifier *qual = [EOQuialifier qualifierWithQualifierFormat:
@"dateReleased > %@", [NSCalendarDate calendarDate]];

Using EOQuialifier's Subclasses

You rarely need to explicitly create an instance of EOAndQualifier, EOOrQualifier, or EONotQualifier.
However, you may want to create instances of EOKeyValueQualifier and EOKeyComparisionQualifier. The
primary advantage of this is that it lets you exercise more control over how the qualifier is constructed,
which is desirable in some cases.

If you want to explicitly create a qualifier subclass, you can do it using code such as the following excerpt,
which uses EOKeyValueQualifier to select all objects whose “isOut” key is equal to YES. In the excerpt,
the qualifier is used to filter an in-memory array.

Classes: EOQualifier

/I Create the qualifier

EOQualifier *qual = [[EOKeyValueQualifier alloc] initWithKey: @"isOut"
operatorSelector:EOQualifierOperatorEqual
value:[NSNumber numberWithBool:YES]];

/I Filter an array and return it
return [[self allRentals] filteredArrayUsingQualifier:qual];

filteredArrayUsingQualifier: is a method that Enterprise Objects Framework adds to NSArray. It's used
for filtering in-memory arrays.

Creating Subclasses

EOQualifier offers extensibility across two dimensions: new classes can be added to extend qualifier
semantics, and categories can be added to extend functionality (for example, to provide in-memory
evaluation).

Subclasses used to evaluate objects in memory must implement the EOQualifierEvaluation protocol.
Subclasses used to generate SQL queries must conform to the EOQualifierSQLGeneration protocol.

177

178

Classes: EOSortOrdering

EOSortOrdering

Inherits From: NSObiject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: EOControl/EOSortOrdering.h

Class Description

An EOSortOrdering object specifies the way that a group of objects should be sorted, using a property key
and a method selector for comparing values of that property. EOSortOrderings are used both to generate
SQL when fetching rows from a database server, and to sort objects in memory. Both the
EOFetchSpecification class and the added NSArray sorting methods accept an array of EOSortOrderings,
which are applied in series to perform sorts by more than one property.

Sorting with SQL

When an EOSortOrdering is used to fetch data from a relational database, it's rendered into an ORDER BY
clause for a SQL SELECT statement according to the concrete adaptor you're using. For more information,
see the class description for EOSQLEXxpression. The Framework predefines symbols for four comparison
selectors, listed in the table below. The table also shows an example of how the comparison selectors can
be mapped to SQL.

Defined Name SQL Expression
EOCompareAscending (key) asc
EOCompareDescending (key) desc

EOCompareCaselnsensitiveAscending upper(key) asc

EOCompareCaselnsensitiveDescending upper(key) desc

Using the mapping in the table above, the array of EOSortOrdenagseQrdering) created in the
following code example:

179

NSArray *nameOrdering = [NSArray arrayWithObjects:
[EOSortOrdering sortOrderingWithKey: @"lastName" selector:EOCompareAscending],
[EOSortOrdering sortOrderingWithKey: @"firstName" selector:EOCompareAscending],
nil];

results in this ORDER BY clause:

order by (lastName) asc, (firstName) asc

In-Memory Sorting

Enterprise Objects Framework adds a method each to NSArray and NSMutableArray for sorting
objects in memory. NSArraysortedArrayUsingKeyOrderArray: returns a new array of objects

sorted according to the specified EOSortOrderings. Similarly, NSMutableArray’s
sortUsingKeyOrderArray: sorts the array of objects. This code fragment, for example, sorts an array
of Employee objects by last name, then first name using the array of EOSortOrderings created above:
NSArray *sortedEmployees = [employees sortedArrayUsingKeyOrderArray:nameOrdering];

Comparison Methods

The predefined comparison selectors are:

Defined Name

EOCompareAscending — compareAscending:
EOCompareDescending — compareDescending:
EOCompareCaselnsensitiveAscending — compareCaselnsensitiveAscending:
EOCompareCaselnsensitiveDescending — compareCaselnsensitiveDescending:

The first two can be used with any value class; the second two with NSString objects only. The sorting
methods extract property values using key-value coding and apply the selectors to the values. If you use
custom value classes, you should be sure to implement the appropriate comparison methods to avoid
exceptions when sorting objects.

Adopted Protocols

180

NSCoding
— encodeWithCoder:
— initWithCoder:

Classes: EOSortOrdering

Method Types

Creating instances
+ sortOrderingWithKey:selector:
— initWithKey:selector:

Examining a sort ordering
— key
— selector

Class Methods

sortOrderingWithKey:selector:
+ (EOSortOrdering 9ortOrderingWithKey: (NSString *keyselector(SEL)selector

Creates and returns an EOSortOrdering basdeyandselector

See also: —initWithKey:selector:

Instance Methods

initWithKey:selector:
— (id)initWithKey: (NSString *keyselector(SEL)aSelector

Initializes a newly allocated EOSortOrdering baset#t@randselectorand returnself. This is the
designated initializer for the EOSortOrdering class.

See also: + sortOrderingWithKey:selector:

key
— (NSString *key
Returns the key by which the receiver orders items.

See also: — selector

181

selector
— (SEL}elector

Returns the method selector used to compare values when sorting.

See also: —key

182

Classes: EOTemporaryGloballD

EOTemporaryGloballD

Inherits From: EOGlIoballD : NSObject

Conforms To: NSCoding
NSCopying (EOGIoballD)
NSObject (NSObject)

Declared In: EOControl/EOGIoballD.h

Class Description

An EOTemporaryGloballD object identifies a newly created enterprise object before it's saved to an

external store. When the object is saved, the temporary ID is converted to a permanent one, as described in
the EOGloballD class specification.

Adopted Protocols

NSCoding

— encodeWithCoder:
— initWithCoder:

Class Methods
assignGloballyUniqueBytes:
+ (void)assignGloballyUniqueBytesfunsigned char tuffer
Assigns a network-wide unique ID of the format:
< Sequence [2], ProcessID [2] , Time [4], IP Addr [4] >

buffer should have space for EOUniqueBinaryKeyLength (12) bytes.

183

Instance Methods
init
— (id)init
Initializes a newly allocated EOTemporaryGloballD as a unique instance. The new temporary global ID

contains a byte string obtained frassignGloballyUniqueBytesithat's guaranteed to be unique
network-wide. As a result, EOTemporaryGloballDs can be safely passed between processes and machines

while still preserving global uniqueness.
buffer should have space for EOUniqueBinaryKeyLength (12) bytes.

isTemporary
— (BOOL)isTemporary

Returns YES.

184

Classes: EOUndoManager

EOUndoManager

Inherits From: NSObiject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EOUndoManager.h

Class Description

EOUndoManager is a general purpose recorder of operations for undo and redo. You register an undo
operation by specifying the object that's changing (or the owner of that object), along with a method to
invoke to revert its state, and the arguments for that method. EOUndoManager automatically groups all
operations within a single cycle of the run loop, so that performing an undo reverts all changes that occurred
during the loop. Also, when performing undo an EOUndoManager saves the operations reverted so that you
can redo the undos.

Operations and Groups

An undo operatioris a method for reverting a change to an object, along with the arguments needed to revert
the change (for example, its state before the change). Undo operations are typically colleatetbinto

groups which represent whole undoable actidRedo operationand groups are simply undo operations
stored on a separate stack (described below). When an EOUndoManager performs undo or redo, it’s
actually undoing or redoing an entire group of operations. To undo a single operation, it must be packaged
in a group.

EOUndoManager normally creates undo groups automatically during the run loop. The first time it's asked
to record an undo operation in the run loop, it creates a new group. Then, at the end of the loop, it closes
the group. You can create additional, nested undo groups within these default groups using the
beginUndoGrouping andendUndoGrouping methods. You can also turn off the default grouping

behavior usingetGroupsByEvent:

The Undo and Redo Stacks

Undo groups are stored on a stack, with the oldest groups at the bottom and the newest at the top. The undo
stack is unlimited by default, but you can restrict it to a maximum number of groups using the
setLevelsOfUndo:method. When the stack exceeds the maximum, the oldest undo groups are dropped
from the bottom.

Initially, both stacks are empty. Recording undo operations adds to the undo stack, but the redo stack
remains empty until undo is performed. Performing undo causes the undo operations in the latest group to

185

be applied to their objects. Since these operations cause changes to the objects’ states, the objects
presumably register new operations with the EOUndoManager, this time in the reverse direction from the
original operations. Since the EOUndoManager is in the process of performing undo, it records these
operations as redo operations on the redo stack. Consecutive undos add to the redo stack. Subsequent redo
operations pull the operations off the redo stack and apply them to the objects.

The redo stack’s contents last as long as undo and redo is performed. However, because applying a new
change to objects invalidates the previous changes, as soon as a new undo operation is registered, the redo
stack is cleared. This prevents redo from returning objects to an inappropriate prior state. You can check for
the ability to undo and redo with tkanUndo andcanRedomethods.

Registering Undo Operations

EOUndoManager supports two types of undo operations: one based on a simple selector with a single object
argument, and one based on a general NSInvocation (which allows any number and type of arguments). The
first method is commonly used by EOEditingContext for changes to enterprise objects. When an object
changes, the EOEditingContext records a simple undo operation with an NSDictionary containing the old
property values of the object. Performing undo then applies this object snapshot via the key-value coding
protocol'stakeValues:forKeys: method. Invocation-based undo is useful for undoing specific

state-changing methods, such as a document olgetient:color:. This more general undo operation is

useful for already-defined methods, especially when their arguments aren't objects.

Regardless of the type of operations recorded, a single instance of EOUndoManager typically belongs to a
single document or container of objects, called the EOUndoManatiens Each EOEditingContext in

an application, for example, has its own private EOUndoManager. This keeps each pair of undo and redo
stacks separate so that when an undo is performed, it applies to the focal document in the application
(typically the one displayed in the key window). It also relieves the individual objects from having to know
the identity of their EOUndoManager.

In order to use undo effectively, either the client must claim exclusive right to alter its undoable objects—
in order to record undo operations for all changes—or the objects themselves must participate in recording
their changes. The first case is exemplified by a text document that holds a private NSTextView, handling
all text operations by registering undo operations and forwarding the change to the NSTextView. For the
second case, thllChange method defined by Enterprise Objects Framework allows any object to notify
observers that it's about to change. EOEditingContexts, being containers for enterprise objects, receive
these change notifications and record undo operations (among many other things). Even in this case,
interaction with the EOUndoManager is handled exclusively by the container object.

Simple Undo

To record a simple undo operation, you need only inveggsterUndoWithTarget:selector:arg:, giving

the object to be sent the undo operation selector, the selector to invoke, and an argument to pass with that
message. The target object is rarely the actual object whose state is changing; instead, it's the client object,
a document or container that holds many undoable objects. An object like EOEditingContext, for example,

186

Classes: EOUndoManager

can record an undo operation fesertObject: by registering @eleteObject: message with the object
inserted IndoManager is an instance variable):

[undoManager registerUndoWithTarget:self selector: @selector(deleteObject:)
arg:anObject];

An update might be recorded for undo like so:

NSDictionary *updateDict = [NSDictionary dictionaryWithObjectsAndKeys:anObject,
@"object", [anObject snapshot], @"snapshot"];

[undoManager registerUndoWithTarget:self
selector:@selector(revertUpdate:)
arg:updateDict];

This fragment is likely to be executed as a resudtn@bject invoking the standardillChange method,

which announces that the object’s state is going to change. Since it hasn’t changed yet, the state can be
recorded for later undo. This fragment, then, registers the dielfitto be sent eevertUpdate: message

with the object and its old state when undo is performed. The old values are retrievednaitisizot
messageevertUpdate: can be implemented to pass the old state back to the object:

- (void)revertUpdate:(NSDictionary *)updateDict

{
[[updateDict objectForKey:@"object"]
udpateFromSnapshot:[updateDict objectForKey:@"snapshot"]];
return;

}

Both snapshotandupdateFromSnapshot:are methods added to NSObject by the Framework. See the
NSObject Additions specification for more information.

Invocation-Based Undo

For other changes involving specific methods or arguments that aren't objects, you can use invocation-based
undo, which records an actual message to revert the target object’s state. As with simple undo, you record
a message that reverts the object to its state before the change. However, in this case you do so by sending
the message directly to the EOUndoManager, after preparing it with a special message to note the target:

[[myUndoManager prepareWithinvocationTarget:textObject]
setFont:[textObject font] color:[textObject textColor]];
[textObject setFont:newFont color:newColor];

prepareWithinvocationTarget: records the argument as the target of the undo operation about to be
established. Following this, you send the message that will revert the target's state—in teetieast,

color:. Because EOUndoManager doesn’t respond to this mdtdra@rdinvocation: is invoked, which
EOUndoManager implements to record the NSInvocation containing the target, selector, and all arguments.
Performing undo later results iextObject being sent aetFont:color: message with the old values.

187

188

Performing Undo and Redo

Performing undo and redo is usually as simple as senditig andredo messages to the
EOUndoManageundo closes the last open undo group and then applies all of the undo operations in that
group (recording any undo operations as redo operations ingtegal)ikewise applies all of the redo
operations on the top redo group.

undo is intended for undoing top-level groups, and shouldn’t be used for nested undo groups. If any
unclosed, nested undo groups are on the stack widinis invoked, it raises an exception. To undo nested
groups, you must use explicitly close the group witlke@alUndoGrouping message, then use
undoNestedGroupto undo it. Note also that if you turn off automatic grouping by event with
setGroupsByEvent; you must explicitly close the current undo group eitidlUndoGrouping before
invoking either undo method.

Cleaning the Undo Stack

EOUndoManager doesn't retain the targets of undo operations, for several reasons. Foremost is that the
client—the object registering operations—typically owns the EOUndoManager, so retaining it would create
cycles. The EOUndoManager does contain references to the targets of undo operations, however, which it
uses to send undo messages when undo is performed. If a target object has been deallocated, this will cause
errors.

To remedy this, the client must take care to clear undo operations for targets that are being deallocated. This
typically occurs in one of three ways:

« The client is the exclusive owner of the EOUndoManager and the target of all undo operations. In this
case the client can simply release the EOUndoManagerdadtic method.

» The client shares the EOUndoManager with other clients. To handle this the client should send
forgetAllWithTarget: to the EOUndoManager before releasing it idéalloc method.

* The client registers objects other than itself for undo operations. Here either the client must watch for the
other objects being deallocated in order to dergetAllWithTarget: , or the other objects must do so
themselves when deallocated (which requires that they have a reference to the EOUndoManager). This
is likely to be needed with invocation-based undo.

In a more general sense, it sometimes makes sense to clear all undo and redo operations. Some applications
might want to do this when saving a document, for example. To this end, EOUndoManager defines the
forgetAll method, which clears both stacks.

Undo Checkpoint Notifications

Objects sometimes delay performing changes, for various reasons. This means they may also delay
registering undo operations for those changes. Because EOUndoManager collects individual operations
into groups, it must be sure to synchronize its client with the creation of these groups so that operations are
entered into the proper undo groups. To this end, whenever an EOUndoManager opens or closes a new undo

Classes: EOUndoManager

group (except when it opens a top-level group), it posts an “UndoManagerCheckpointNotification” so that
observers can apply their pending undo operations to the group in effect. The EOUndoManager’s client
should register itself as an observer for this notification and record undo operations for all pending changes
upon receiving it.

Method Types

Registering undo operations
— registerUndoWithTarget:selector:arg:
— prepareWithinvocationTarget:
— forwardInvocation:

Checking undo ability
— canUndo
— canRedo

Performing undo and redo
—undo
— undoNestedGroup
—redo

Limiting the undo stack
— setLevelsOfUndo:
— levelsOfUndo

Creating undo groups
— beginUndoGrouping
— endUndoGrouping
— setGroupsByEvent:
— groupsByEvent

Disabling undo
— disableUndoRegistration
— reenableUndoRegistration

Checking whether undo or redo is being performed
— isUndoing
— isRedoing

Clearing undo operations

189

Instance Methods

190

beginUndoGrouping

— (void)beginUndoGrouping
— forgetAll
— forgetAllWithTarget:

Marks the beginning of an undo group. All individual undo operations before a subsequent
endUndoGrouping message are grouped together and reversed by aridtemessage. Undo groups can
be nested, thus providing functionality similar to nested transactions.

This method posts an “UndoManagerCheckpointNaotification”.

canRedo
— (BOOL)anRedo

Returns YES if the receiver has any actions to redo, NO if it doesn't.

Because any undo operation registered clears the redo stack, this method posts an
“UndoManagerCheckpointNotification” to allow clients to apply their pending operations before testing the
redo stack.

See also: —canUndo, —redo

canUndo
— (BOOL)canUndo

Returns YES if the receiver has any actions to undo, NO if it doesn’t. Thisakmaean that you can safely
invokeundo or undoNestedGroup you may have to close open undo groups first.

See also: —canRedq —endUndoGrouping, —registerUndoWithTarget:selector:arg:

disableUndoRegistration
— (void)disableUndoRegistration
Disables the recording of undo operations, whetheegigterUndoWithTarget:selector:arg: or by

invocation-based undo. This method can be invoked multiple tie@sableUndoRegistrationmust be
invoked an equal number of times to actually re-enable undo registration.

Classes: EOUndoManager

endUndoGrouping
— (voidendUndoGrouping

Marks the end of an undo group. All individual undo operations back to the méatelgimgndoGrouping
message are grouped together and reversed by anat@or undoNestedGroupmessage. Undo groups
can be nested, thus providing functionality similar to nested transactions. Raises an
NSinternallnconsistencyException if there’sbepinUndoGrouping message in effect.

This method posts an “UndoManagerCheckpointNotification”.

forgetAll
— (void)forgetAll
Clears the undo and redo stacks and reenables the receiver.

See also: —levelsOfUndg-reenableUndoRegistration —forgetAllWithTarget:

forgetAllWithTarget:
— (void)YforgetAllwithTarget: (id)target
Clears the undo and redo stacks of all operations invotaiggtas the recipient of the undo message.

Doesn’t re-enable the receiver if it's disabled. An object that shares an EOUndoManager with other clients
should invoke this message in its implementatiodeatoc

See also: —reenableUndoRegistration —forgetAll

forwardInvocation:
— (void)forwardInvocation: (NSinvocation *aninvocation

Overrides NSObject’s implementation to recardnvocationas an undo operation. Also clears the redo
stack. Raises an NSinternallinconsistencyExceptiprefiare WithinvocationTarget: wasn't invoked

before this method; this method then clears the prepared invocation target. See ““Invocation-Based Undo
in the class description for more information.

Raises an NSinternallnconsistencyException if invoked when no undo group has been established using
beginUndoGrouping. Undo groups are normally set by default, so you should rarely need to begin a top-level
undo group explicitly.

See also: —undoNestedGroup —registerUndoWithTarget:selector:arg:, —groupsByEvent

191

192

groupsByEvent
— (BOOL)roupsByEvent

Returns YES if the receiver automatically creates undo groups around each pass of the run loop, NO if it
doesn’t. The default is YES.

See also: —beginUndoGrouping, —setGroupsByEvent:

isRedoing
— (BOOL)sRedoing

Returns YES if the receiver is in the process of performingds method, NO otherwise.

See also: —isRedoing

isUndoing
— (BOOL)sUndoing

Returns YES if the receiver is in the process of performingnit® or undoNestedGroupmethod, NO
otherwise.

levelsOfUndo
— (unsigned intgvelsOfUndo

Returns the maximum number of top-level undo groups the receiver will hold. When ending an undo group
results in the number of groups exceeding this limit, the oldest groups are dropped from the stack. A limit
of zero indicates no limit, so that old undo groups are never dropped. The default is zero.

See also: —endUndoGrouping, —isUndoing, —setLevelsOfUndo:

prepareWithinvocationTarget:
— (id)prepareWithinvocationTarget: (id)target

Prepares the receiver for invocation-based undotaigetas the subject of the next undo operation and
returnsself. See “Invocation-Based Undo™ in the class description for more information.

See also: —forwardInvocation:

Classes: EOUndoManager

redo
— (voidyedo

Performs the operations in the last group on the redo stack, if there are any, recording them on the undo
stack as a single group.

This method posts an “UndoManagerCheckpointNotification”.

See also: —redo, —registerUndoWithTarget:selector:arg:

reenableUndoRegistration
— (voidyeenableUndoRegistration

Balances a priadisableUndoRegistrationmessage. Undo registration isn’t actually re-enabled until a
re-enable message balances the last disable message in effect. Raises an NSinternallnconsistencyException
if invoked while nodisableUndoRegistrationmessage is in effect.

registerUndoWithTarget:selector:arg:
— (voidyegisterUndoWithTarget: (id)target selector(SEL)aSelectolarg: (id)anObject

Records a single undo operationtimget so that when undo is performed it's seBelectomwith anObject
as the sole argument. Also clears the redo stack. Doesn'tta@tgen See ““Simple Undo™ in the class
description for more information.

Raises an NSinternallnconsistencyException if invoked when no undo group has been established using
beginUndoGrouping. Undo groups are normally set by default, so you should rarely need to begin a top-level
undo group explicitly.

See also: —undoNestedGroup —forwardInvocation: , —groupsByEvent

setGroupsByEvent:
— (void)setGroupsByEvent(BOOL)flag

Sets whether the receiver automatically groups undo operations during the runflagis ¥ES, the
receiver creates undo groups around each pass through the runflagps iINO it doesn’t. The default is
YES.

If you turn automatic grouping off, you must close groups explicitly before invoking eitideror
undoNestedGroup

See also: —groupsByEvent

193

194

setLevelsOfUndo:
— (void)setLevelsOfUndo(unsigned in@nint

Sets the maximum number of top-level undo groups the receiver will hatdrib When ending an undo
group results in the number of groups exceeding this limit, the oldest groups are dropped from the stack. A
limit of zero indicates no limit, so that old undo groups are never dropped. The default is zero.

If invoked with a limit below the prior limit, old undo groups are immediately dropped.

See also: —endUndoGrouping, —levelsOfUndo

undo
— (voidundo

Closes the top-level undo group if necessary and inuak@sNestedGroup Raises an
NSinternallinconsistencyException if more than one undo group is open (that is, if the last group isn’t at the
top level).

This method posts an “UndoManagerCheckpointNotification”.

See also: —endUndoGrouping, —groupsByEvent

undoNestedGroup
— (voidundoNestedGroup

Performs the undo operations in the last undo group (whether top-level or nested), recording the operations
on the redo stack as a single group. Raises an NSinternallnconsistencyException if any undo operations
have been registered since the &aslUndoGrouping message.

This method posts an “UndoManagerCheckpointNotification”.

Classes: EOUndoManager

Notifications
UndoManagerCheckpointNotification

Posted whenever an EOUndoManager opens or closes an undo group (except when it opens a top-level
group), and when checking the redo stackanReda The notification contains:

Notification Object The EOUndoManager

Userinfo nil

See also: —undo

195

196

Classes:

@ NSArray Additions

Class Cluster Description

Enterprise Objects Framework adds some methods to the Foundation Framework’s NSArray class cluster,
for filtering objects according to an EOQuialifier and sorting them according to a series of EOSortOrderings.
It also adds methods for key-value coding, with special support for aggregates, and a convenience method
for filtering an array with a specified qualifier.

197

NSArray

Inherits From: NSObiject

Declared In: EOControl/EOQualifier.h
EOControl/EOSortOrdering.h
EOControl/EOCIassDescription.h
EOControl/EOKeyValueCoding.h

Class Description

Enterprise Objects Framework adds two methods to the Foundation Framework’s NSArray class, for
filtering objects according to an EOQualifier and sorting them according to a series of EOSortOrderings.

Instance Methods
computeAvgForKey:
— (id)}computeAvgForKey:(NSString *key

Returns as an NSDecimalNumber the average of the values the receiver’s objectskegvi toe array
is empty, returnsil.

See also: —VvalueForKey:, —computeCountForKey:, —computeMaxForKey:, —computeMinForKey:,
—computeSumForKey:

computeCountForKey:
— (id)computeCountForKey:(NSString *key
Returns the number of elements in the receiver as an NSNumber; the argeyieignored.

See also: —valueForKey:, —computeAvgForKey:, —computeMaxForKey:, —computeMinForKey:,
—computeSumForKey:

198

Classes: NSArray

computeMaxForKey:
— (id)computeMaxForKey:(NSString *key

Returns the value fdweythat is the highest for all of the objects in the receiver. If the array is empty, returns
nil.

See also: —VvalueForKey:, —computeAvgForKey:, —computeCountForKey:, —computeMinForKey:,
— computeSumForKey:

computeMinForKey:
— (id)computeMinForKey: (NSString *key
Returns the object in the receiver that has the lowest valleydf the array is empty, returmsi.

See also: —VvalueForKey:, —computeAvgForKey:, —computeCountForKey:, —computeMaxForKey:,
—computeSumForKey:

computeSumForKey:
— (id)computeSumForKey(NSString *key

Returns as an NSDecimalNumber the sum of the values the receiver’s objects kaye for

See also: —valueForKey:,—computeAvgForKey:, —computeCountForKey:, —computeMaxForKey:,
—computeMinForKey:, —computeSumForKey:

filteredArrayUsingQualifier:
— (NSArray *¥ilteredArrayUsingQualifier: (EOQualifier *aQualifier

Returns a new NSArray that contains only the objects from the receiver maQuatifier.

shallowCopy
— (NSArray *shallowCopy

Returns an NSArray that represents a shallow copy of the receiver. Used by Enterprise Objects Framework
to snapshot to-many relationship properties.

199

200

sortedArrayUsingKeyOrderArray:
— (NSArray *sortedArrayUsingKeyOrderArray: (NSArray *)orderings

Creates and returns a new NSArray by sorting the objects of the receiver according to the EOSortOrderings
in orderings The objects are compared by extracting the sort properties using the added NSObject method
valueForKey: and sending themompare: messages.

See also: —sortUsingKeyOrderArray: (NSMutableArray)

valueForKey:
— (id)valueForKey:(NSString *key

When passed a “normal” key, returns an array composed of the results of sehdefgrKey: to all
elements of the array. When passed a key prefixed with “@", returns a single value that is the result of
invoking an aggregate function on the values of the array.

For instance, if this method were passed the@®eym.budget , it would invoke
computeSumForKey:@"budget" on the array, which would add the values for the budget keys for all

of the objects in the array. The returned value would be the sum of all of the objects’ budgets. The following
aggregates are defined: @sum, @count, @avg, @min, @max. You can extend this set by adding methods
to NSArray of the forntomputeName~orKey:.

See also: —computeAvgForKey:, —computeCountForKey:, —computeMaxForKey:,
— computeMinForKey:, —computeSumForKey:

Classes: NSMutableArray

NSMutableArray
Inherits From: NSObiject
Declared In: EOControl/EOSortOrdering.h

NSMutableArray has one added method for sorting its elements according to a series of EOSortOrderings.

Instance Methods
sortUsingKeyOrderArray:
— (void)sortUsingKeyOrderArray: (NSArray *)orderings

Sorts the objects of the receiver according to the EOSortOrderingieirings The objects are compared

by extracting the sort properties using the added NSObject medhae-orKey: and sending them
compare: messages.

See also: —sortedArrayUsingKeyOrderArray: (NSArray)

201

202

Classes: NSException Additions

NSException Additions
Inherits From: NSObiject
Declared In: EOControl/EOClassDescription.h

Class Description

Enterprise Objects Framework adds methods to the Foundation Framework’s NSException class for
handling validating errors and augmenting an exceptimsesinfo dictionary. The methods used for

validation errors arealidationExceptionWithFormat: andaggregateExceptionWithExceptions:You
usevalidationExceptionWithFormat: in an enterprise objectalidateFor... or validateProperty.

method, as described in the NSObject Additions class specification. The other method used for validation
errors,aggregateExceptionWithExceptions; is used internally by the Framework to group multiple
validation exceptions together.

The methoaxceptionAddingEntriesToUserInfo: is used to augment an exceptiam®rinfo dictionary.

Method Types

Creating a validation exception
+ validationExceptionWithFormat:

Collecting exceptions
+ aggregateExceptionWithExceptions:

Returning an exception with an augmented userinfo dictionary
— exceptionAddingEntriesToUserInfo:

Class Methods

aggregateExceptionWithExceptions:
+ (NSException *aggregateExceptionWithExceptions{NSArray *)subexceptions

Returns an NSException with the same name, reasomisankhfo dictionary of the first exception in the
subexceptionarray, but with theiserinfo dictionary augmented with the list of subexceptions under the
key EOAdditionalExceptionsKey.

See also: —exceptionAddingEntriesToUserInfo:

203

validationExceptionWithFormat:
+ (NSException *yalidationExceptionWithFormat: (NSString *format, ...

Returns an NSException whose name is EOValidationException and whose reason is an NSString created
from formatand subsequent arguments. For example:

[NSException validationExceptionWithFormat: @"invalid name \"%@\": entity names
cannot be nil or empty", name];

Instance Methods

204

exceptionAddingEntriesToUserInfo:
— (NSException *¢xceptionAddingEntriesToUserInfo:(NSDictionary *additions

Returns an NSException whosgerlInfo dictionary has been augmented with the object and property
information contained iadditions When exceptions are raised by certain validation methods such as
validateValue:forKey:, this message is sent to the exception to create a duplicate exception with object and
property information added to the new exceptiassrinfo dictionary. This information is stored in the
userlinfo dictionary under the keys EOValidatedObjectUserInfoKey and

EOValidatedPropertyUserinfoKey, respectively. The exception that’s returned by this method has the same
class with the same name and reason as the original exception; the only difference is the augmented
userlInfo dictionary.

Classes: NSObject Additions

NSObject Additions

Inherits From: none(NSObiject is a root class)

Declared In: EOControl/EOClassDescription.h
EOControl/EOEditingContext.h
EOControl/EOKeyValueCoding.h
EOControl/EOQObserver.h

205

Purpose
Defines basic functionality for all enterprise objects. Create a subclass when you need a custom enterprise object

class to perform business logic; otherwise use EOGenericRecords.

Principal Attributes
« EOClassDescription
» EOEditingContext

Creation

—init Designated initializer.

— initWithEditingContext:classDescription:globallD: Optional initializer.

Performs additional initialization after the

— awakeFromFetchinEditingContext: object is fetched.

Performs additional initialization after the

— awakeFrominsertionIinEditingContext: Lo .
object is created in memory.

Commonly Used Methods

— willChange Notifies observers of a change in state.

— editingContext Returns the receiver's EOEditingContext.

Adds an object to a relationship property and the receiver to

— addObject:toBothSidesOfRelationshipWithKey: the reciprocal relationship

Removes an object from a relationship property and the

— removeObject:fromBothSidesOfRelationshipWithKey: receiver from the reciprocal relationship

Methods to Implement or Override

The followingmethods are invoked by the Framework.

— setKey. Sets the value for the property named key.

— key Retrieves the value for the property named key.

206

Classes: NSObject Additions

—addToKey. Adds an object to a relationship property named key.

— removeFromKey. Removes an object from the property named key.

— handleTakeValue:forUnboundKey: Handles a failure of takeValue:forKey: to find a property.

— handleQueryWithUnboundKey: Handles a failure of valueForKey: to find a property.

— unableToSetNilForKey: Handles an attempt to set a non-object property’s value to nil .
— validateKey:. Validates a value for the property named key.

— validateForDelete Validates all properties before deleting the receiver.

— validateForInsert Validates all properties before inserting the receiver.

— validateForSave Validates all properties before saving the receiver.

— validateForUpdate Validates all properties before updating the receiver.

Class at a Glance™

Class Description

Enterprise Objects Framework adds a number of methods to NSObject for supporting operations common
to all enterprise objects. Among these are methods for initializing instances, announcing changes, setting
and retrieving property values, and performing validation of state. Some of these methods are for enterprise
objects to implement or override, and some are meant to be used as defined by the Framework. Many
methods are used internally by the Framework and rarely invoked by application code. The implementation
or use of each method is highlighted in the following sections, which describe the major functional groups.

Initialization Methods

Enterprise objects are initialized using theWithEditingContext:classDescription:globallD: , which

by default simply invokesnit. You can place your custom initialization codeénith, or you can override
initWithEditingContext:classDescription:globallD: to take advantage of the extra information available
with this method.

After initialization, an enterprise object receivesamrake...message. The particular message depends on
whether the object has been fetched from a database or created anew in the application. In the former case,
it receives armwakeFromFetchInEditingContext: message. In the latter, it receives an
awakeFromlinsertionInEditingContext: message. The receiver can override either method to perform

extra initialization—such as setting default values—based on how it was created.

207

Announcing Changes

For the Framework to keep all areas of an application synchronized, enterprise objects must notify their
observers when their state changes. Objects do this by simply inwaikidgange before altering any
instance variable or other kind of state. This method informs all observers that the invoker is about to
change. See the EOObserverCenter class specification for more information on change notification.

The primary observer of changes in an object is its EOEditingContext. EOEditingContext is a subclass of
EOODbjectStore that manages collections of objects in memory, tracking inserts, deletes, and updates, and
propagating changes to the persistent store as needed. You can get the EOEditingContext that contains an
object by sending the object aditingContext message.

Getting Object and Class Metadata

One of the larger groups of methods added to NSObject provides information about an object’s properties.
Most of these methods consult an EOClassDescription to provide their answestasERescription

method return an object’s EOClassDescription. See that class specification for the methods it implements.
Methods you can send directly to any object inclemityName, which provides the name of the entity
mapped to the receiver’s clasdiPropertyKeys, which returns the names of all the receiver’s class
properties, attributes and relationships alike; atiibuteKeys, which returns just the names of the

attributes.

Some methods return information about relationsh@i@neRelationshipKeysand
toManyRelationshipKeysreturn the names of the receiver’s relationships, vigilleManyKey: tells

which kind a particular relationship deleteRuleForRelationshipKey:indicates what should happen to

the receiver’s relationships when it's deleted. SimilamynsDestinationObjectsForRelationshipKey:

indicates what should happen when another object is added to or removed from the receiver’s relationship.
Another methodglassDescriptionForDestinationKey; returns the EOClassDescription for the objects at

the destination of a relationship.

These methods are all properly implemented in terms of the receiver’s EOClassDescription, so unless your
object class doesn’t have an EOClassDescription, there’s little need to override them. One method you
might override in your enterprise object class, howevényerseForRelationshipKey: Given the name

of one of the receiver’s relationships, this method finds the destination object’s class data and determines
the name of the relationship that points back at the receiver. The default implementation of this method
looks for a relationship predicated on the same attributes in both the source and destination, which works
correctly in most cases. If, however, you define a reciprocal pair of relationships on different attributes, you
should override this method to take that into account. See the method description for an example.

Key-Value Coding Methods

A special set of methods form the Framework’s main data transport mechanism, in which the properties of
an enterprise object are accessed indirectly by name (or key), rather than directly through invocation of an
accessor method or as instance variables. Thus, any object’s state can be accessed in a consistent manner.

208

Classes: NSObject Additions

The basic methods for accessing an enterprise object’s valuakevalue:forKey: andvalueForKey:.

These two methods are defined by NSObject to use the accessor methods normally implemented by objects
(or to access instance variables directly if need be), so that you don’t have to write special code simply to
integrate your enterprise objects into the Framework. Another pair of methods,

takeValuesFromDictionary: andvaluesForKeys; gives access to groups of properties. Lastly,
valueForKeyPath: andvalueForKeyPath: give access to properties across key paths of the form
relationship.propertyfor example, “department.name”.

All of the takeValue...methods have corresponditadge StoredValue...methods for setting object values
from object store valuetakeStoredValue:forKey:, takeStoredValue:forkeyPath:,
andtakeStoredValuesFromDictionary:. To enable them, overrideseStoredAccessoto return YES.
This is discussed in more detail below.

Default Implementations; Handling Access Errors

The Framework provides default implementationkéValue:forkey: andvalueForKey: that work for

all objects. The other four access methods are implemented in terms of these two. These implementations
are general enough that your enterprise object classes should rarely need to override either key-value coding
method. In accessing an object’s property, the default NSObject implementations of the key-value coding
methods use the class definition as follows:

1. The key-value coding method looks for an accessor method based on the key. For example, with a key of
“lastName” takeValue:forKey: looks for a method namextLastName:(note that the first letter of the
property name is made uppercase), \@aldeForKey: looks for a method of the forlastName

2. If the key-value coding method doesn't find an accessor method, and the class responds YES to an
accesslnstanceVariablesDirectlynessage (which it does by default), it looks for an instance variable whose
name is the same as the key and sets or retrieves its value directly. In setting an instance variable that's an
object,takeValue:forKey: retains the new value and autoreleases the old one.

3. If neither an accessor method nor an instance variable can be found, the default implementations invoke
methods that your custom objects can override to handle faihaedle TakeValue:forUnboundKey: is
invoked fromtakeValue:forKey:, andhandleQueryWithUnboundKey: is invoked fronmvalueForKey:.
Normally these methods raise an exception, but you can implement them to set or get a value in whatever way
is needed.

The Framework also provides methods for setting object values from object store values:
takeStoredValue:forKey:, takeStoredValue:forKeyPath:, andtakeStoredValuesFromDictionary:.

You cause these methods to be used instead otakeWalue...counterparts by
overridinguseStoredAccessoto return YES. When you overridseStoredAccessoto return YES, the
takeStoredValue...methods are used whenever an object moves from one object store to another—for
example, when you instantiate objects from database data, or when you transfer objects between
EOEditingContexts. In all other cases the regiakeValue... methods are used, such as when a user
modifies an object by providing a new value for it in a user interface. To think of it another way, the
takeStoredValue...methods let you bypass the logic in ysat...methods, whereas tiakeValue...

methods execute that logic.

209

210

ThetakeStoredValue...methods are especially useful in cases where an object has instance variables
whose values are interdependent. For example, suppose you have a Product olgttusithd
dateOfSaleattributes. When the Producstatuschanges to “sold,” you'd also want to setdéteOfSale
value—in all likelihood, by invokingetDateOfSale:from the object'setStatus:method. If you were
usingtakeValue:forKey:, initializing a Product object from database data would have the effect of
invoking the object'setStatus:method, which in turn would attempt to change the objdeteOfSale
date. You can prevent this from happening from usingatkeStoredValue...methods.

When you overrideiseStoredAccessoto return YES and you're changing the value of an object’s
property, the default NSObject implementations of the key-value coding methods use the class definition as
follows:

1. The key-value coding method looks for an instance variable whose name is the same as the key, but preceded
by an underbar. It then sets the instance variable’s value directly. For example, with a key of
“lastName” takeStoredValue:forKey: looks for an instance variable calleldstName

2. If the key-value coding method doesn’t find an instance variable, it looks for an accessor method based on key,
preceded by an underbar. For example, with a key of “lastNaak&StoredValue:forKey: looks for a
method called setLastName.

3. If the key-value coding method doesn’t find an underbar-preceded instance variable or accessor method, it
looks for an instance variable whose name is the same as tHadtBlafne and sets its value directly.

4. Finally, the key-value coding method looks for an accessor method based on the key. For the key “lastName”,
this would besetLastName:

5. If none of the above instance variables or accessor methods can be found, the default implementations invoke
methods that your custom objects can override to handle faihanedle TakeValue:forUnboundKey: is
invoked fromtakeValue:forKey:, andhandleQueryWithUnboundKey: is invoked fronvalueForKey:.
Normally these methods raise an exception, but you can implement them to set or get a value in whatever way
is needed.

The key-value coding methods cache attribute bindings for both accessor methods and instance variables,
making lookups efficient. If you need to clear these bindings—as when you add or remove a class from the
run-time system—you can invoReishAllKeyBindings to do so.

Some subclasses of NSObject override the default implementations. EOGenericRecord’s implementations,
for example, simply store and retrieve the properties in an NSDictionary object held by the
EOGenericRecord. NSDictionary and NSMutableDictionary, though not suitable for use as enterprise
objects, meaningfully implement these methods by directly accessing their key-value pairs.

Type Checking and Type Conversion

The default implementations of the key-value coding methods accept any object as a value, and do no type
checking or type conversion among object classes. It's possible, for example, to pass an NSString to
takeValue:forKey: as the value for a property the receiver expects to be an NSDate. The sender of a
key-value coding message is thus responsible for ensuring that a values is of the proper class, typically by
using thevalidateValue:forKey: method to coerce it to the proper type. The interface layer’s

Classes: NSObject Additions

EODisplayGroup uses this on all values received from interface user objects, for example, as well as relying
on number and date formatters to interpret string values typed by the user. For more information on the
validateValue:forKey: method, see the EOClassDescription and EOEntityClassDescription class
specifications.

The key-value coding methods handle one special case with regard to value types. For enterprise objects
that access numeric values as C scalar types, these methods automatically convert between the scalar types
and NSNumber objects. For example, suppose your enterprise object defines these accessor methods:

— (void)setSalary(unsigned ingalary
— (unsigned ingalary

For thesetSalary: method takeValue:forKey: converts the object value for the “salary” key in the
dictionary to anunsigned intand passes it @alary. Similarly, valueForKey: converts the return value of
the salary method to an NSNumber and returns that.

The default implementations support the following scalar types:

char unsigned char
short unsigned short
int unsigned int
long unsigned long
float double

Object values are converted to these types with the standard medsaydue, intValue, floatValue,
and so on. Note that the key-value coding methods don’t check that an object value actually responds to
these messages; this can result in a run-time error if the object doesn’t respond to the appropriate message.

One type of conversion these methods can't perform is that fnéinolject value to a scalar value. C scalar
values define no equivalent of a database system’s NULL value, so these must be handled by the object
itself. Upon encountering aml while setting a scalar value, ttekeValue:forKey: invokes
unableToSetNilForKey:, which by default simply raises an exception. Enterprise object classes that use
scalar values which may be NULL in the database should override this method to substitute the appropriate
scalar value fonil, reinvokingtakeValue:forKey: to set the substitute value. This method works in general

to handle setting scalar propertiesitio

EONull in Collections

Because collection objects such as NSArray and NSDictionary can’t coiltaga value, it must
represented by a special object, EONull. EONull provides a single instance that represents the NULL value
for object attributes. The default implementationtakeValuesFromDictionary: andvaluesForKeys:

211

212

translate EONull andil between NSDictionaries and enterprise objects, removing the need for your
objects to explicitly test for EONull values.

Relationship Accessor Methods

Building on the key-value coding methods, another group of methods allows you to modify relationship
properties by adding and removing single objects, rather than replacing the entire content of the
relationship, and to modify relationships so that reciprocal relationships are automatically adjusted.
addObject:toPropertyWithKey: andremoveObject:fromPropertyWithKey: handle the first situation,

doing all the work of altering arrays for to-many relationships. They both check first for a method you might
implementaddToKey. orremoveFromKey:, invoking that method if it's implemented, otherwise using the
basic key-value coding methods to do the work.

Reciprocal relationships are handledaulg Object:toBothSidesOfRelationshipWithKey: and
removeObject:fromBothSidesOfRelationshipWithKey:. For example, when you add an Employee to a
Department'®mployeegelationship, or remove it, you also want the Employgefsmrtment relationship
altered to suit. These two methods take care of tracing the inverse relationship acdiQisject:
toPropertyWithKey: andremoveObject:fromPropertyWithKey: to alter both relationships, whether
they're to-one or to-many. Unless you have specific reasons to do otherwise, you should always use the
methods that handle reciprocal relationships so that back pointers are properly updated.

Two other methods that affect relationships are typically used internally by the Framework. You should
rarely have a need either to invoke or override th@opagateDeleteWithEditingContext: applies an

object’s delete rule to the destinations of its relationships. The delete rule specifies whether a destination
object should be ignored, also deleted, or whether the deletion should be disallowed if a destination exists.
clearPropertiessimply sets all of the receiver’s relationship propertigsltcAn EOEditingContext uses

this method to break circular references between its objects when the context is deallocated.

Snapshots

The key-value coding methods define a general mechanism for accessing an object’s properties, but you first
have to know what those properties are. Sometimes, however, you just want to preserve an object’s entire
state for later use, whether to undo changes to the object, compare the values that have changed, or just keep
a record of the changes. The snapshotting methods provide this service, extracting or setting all properties
at once and performing the necessary conversions for proper belagmshotreturns an NSDictionary
containing all the receiver’s properties, with EONull substitutediifoand arrays reproduced as shallow,
immutable copiesupdateFromSnapshot:sets properties of the receiver to the values in a snapshot,
converting EONull tanil, and making shallow, mutable copies of any array values (allowing the object to

add to and remove from the array).

Validation

Validating new values is a vital part of business logic. Several methods added to NSObject support
validation at different stages of an object’s life. Validation methods check for illegal value types, values

Classes: NSObject Additions

outside of established limits, illegal relationships, and so on. All validation methodsni¢tfithe values
under consideration are valid, or an NSException indicating how the values aren't valid.

There are two kinds of validation methods that you can override. The first covers individual properties,
when it's important to validate a value before it changes. These methods are invoked automatically by the
Framework when it changes a property value, such as when the user makes an edit in the user interface.
These methods are dynamically invoked based on the property name. The second kind covers operations to
the external store—inserting, updating, and deleting. These methods are invoked when the associated
operation is performed. You can override these methods in your custom enterprise object classes to perform
delayed validation of properties, to compare multiple properties against one another, and to allow or refuse
the operation based on property values. For example, a Fee object might refuse to be deleted if it hasn’t been
paid yet.

Immediate Validation of Individual Properties

The most general methoehlidateValue:forKey:, is used by the Framework when an EODisplayGroup

passes an updated value to the object and when the object is saved. This method does two things: coerce the
value into an appropriate type for the object, and validate it according to the object’s rules. Coercion is
performed automatically for you, so all you need handle is validation itself.

The default implementation @hlidateValue:forKey: consults the object's EOClassDescription for basic
errors, such asral value when that isn't allowed. If no basic errors exist, this method then examines the
object’s class itself for a method of the fovalidateKey. and invokes that. These are the methods that your
custom classes can implement to validate individual properties, suglidase Age: to check that the value

the user entered is within acceptable limits.

For example, suppose that Member objects hawagaattribute stored as an integer. This attribute has an
lower limit of 16, defined by the Member class. Now, suppose the user types “12” into a text field for the
age. Before the EODisplayGroup updates the selected object, it sends the vdljdateValue:forKey:
message. The object uses its EOEntityClassDescription to convert the string “12” into an NSNumber, then
invokesvalidateAge: with that NSNumber. Member’s implementation of this method compares the age to
its limit of 16 and returns an EOValidationException:

- (NSException *)validateAge:(NSNumber *)age

{
if ([age intValue] < 16) {
return [NSException
validationExceptionWithFormat: @"Age of %@ is below minimum.", age];

}

return nil;

}

The Framework adds thalidationExceptionWithFormat: method to NSException for convenient
creation of validation exceptions. The userInfo dictionaries in the exceptions raised by these methods
contain the enterprise object being validated and the key (where applicable).

213

Validation for Specific Operations

The other validation methods are invoked at specific times—such as before the object is written to or deleted
from the external store—and are particularly useful when properties must be compared or when expensive
calculation is necessary. The methodsvatelateForinsert, validateForUpdate, validateForSave and
validateForDelete and they're invoked automatically for the operations indicated by the method name.
You can override these methods to check values individually or in groups; for example, you might verify
that a pair of dates is in the proper temporal order:

- (NSException *)validateForSave

{
if ([startDate compare:endDate] == NSOrderedDescending) {

return [NSException
validationExceptionWithFormat:@"Start date must not follow end date."];

}

return [super validateForSave];

}

Note that this method also invok&spers implementation. This is important, as the default

implementations of thealidateFor... pass the check on to the object's EOClassDescription, which

performs basic checking among properties. The access layer's EOEntityClassDescription class verifies
constraints based on an EOModel, such as delete rules. For example, the delete rule for a Department object
might state that it can’t be deleted if it still contains Employee objects.

validateForSaveis the generic validation method for when an object is written to the external store. The
default implementations efilidateForinsert andvalidateForUpdate both invoke this method. If an
object performs validation that isn’t specific to insertion or to updating, it shouldvgdidateForSave

Method Types

214

Initializing enterprise objects
— initWithEditingContext:classDescription:globallD:
— awakeFromFetchInEditingContext:
— awakeFrominsertionInEditingContext:

Announcing changes
— willChange

Getting an object’s EOEditingContext
— editingContext

Classes: NSObject Additions

Getting class description information
— allPropertyKeys
— attributeKeys
— classDescription
— classDescriptionForDestinationKey:
— deleteRuleForRelationshipKey:
— entityName
— inverseForRelationshipKey:
— isToManyKey:
— ownsDestinationObjectsForRelationshipKey:
— toManyRelationshipKeys
— toOneRelationshipKeys

Key-value coding
— takeValue:forKey:
— valueForKey:
— takeValuesFromDictionary:
— valuesForKeys:
— takeValue:forKeyPath:
— valueForKeyPath:
— takeStoredValue:forKey:
— takeStoredValue:forKeyPath:
— takeStoredValuesFromDictionary:
— handleQueryWithUnboundKey:
— handleTakeValue:forUnboundKey:
— unableToSetNilForKey:
+ accesslnstanceVariablesDirectly
+ flushClassKeyBindings
+ flushAllKeyBindings
+ useStoredAccessor

Modifying relationships
— addObject:toPropertyWithKey:
— removeObject:fromPropertyWithKey:
— addObject:toBothSidesOfRelationshipWithKey:
— removeObject:fromBothSidesOfRelationshipWithKey:
— propagateDeleteWithEditingContext:
— clearProperties

Working with snapshots
— shapshot
— updateFromSnapshot:

215

Validating values
— validateForDelete
— validateForInsert
— validateForSave
— validateForUpdate
— validateValue:forKey:

Getting descriptions
— eoDescription
— eoShallowDescription
— userPresentableDescription

Class Methods

216

accesslinstanceVariablesDirectly
+ (BOOL)accesslInstanceVariablesDirectly

Returns YES if the default implementations of the key-value coding methods, on finding no accessor
method for a property, should access the corresponding instance variable directly. Returns NO if they
shouldn’t. NSObject’s implementation of this method returns YES. Subclasses can override it to return NO,
in which case the other methods won't access instance variables.

flushAllKeyBindings
+ (void)flushAllKeyBindings

Invalidates the cached key binding information for all classes (caches are kept of key-to-method or instance
variable bindings in order to make key-value coding efficient).

See also: + flushClassKeyBindings

flushClassKeyBindings
+ (void)flushClassKeyBindings

Invalidates the cached key binding information for the receiving class. This method should be invoked
whenever a class is modified or removed from the run-time system.

See also: + flushAllKeyBindings

Classes: NSObject Additions

useStoredAccessor
+ (BOOL)useStoredAccessor

Returns YES if the default implementations of the key-value coding methods should be accessed using the
takeStoredValue...methods, NO otherwise. NSObject’s implementation of this method returns NO.
Subclasses can override it to return YES. For more discussion of this topic, see the section “Key-Value
Coding Methods™ in the class description.

See also: —takeStoredValue:forKey:, —takeStoredValue:forKeyPath:,
—takeStoredValuesFromDictionary:

Instance Methods

addObject:toBothSidesOfRelationshipWithKey:
— (voidaddObiject:(id)anObjecttoBothSidesOfRelationshipWithKey:(NSString *key

Sets or addanObjectas the destination for the receiver’s relationship identifidaipyand also sets or adds
the receiver foanObjecks reciprocal relationship if there is one. For a to-one relationahipbjectis set
usingtakeValue:forKey:. For a to-many relationshipnObijectis added usingddObject:
toPropertyWithKey: .

This method also properly handles removéetf andanObjectfrom their previous relationship as needed.
For example, if an Employee object belongs to the Research department, invoking this method with the
Maintenance department removes the Employee from the Research department as well as setting the
Employee’s department to Maintenance.

See also: —removeObject:fromBothSidesOfRelationshipWithKey:

addObject:toPropertyWithKey:
— (void)addObiject:(id)anObjecttoPropertyWithKey: (NSString *key

AddsanObijectto the receiver’s to-many relationship identifieddey without setting a reciprocal
relationship. Similar to the implementationtakeValue:forkey:, NSObject’s implementation of this
method first attempts to invoke a method of the fadaiToKey:.. If the receiver doesn’t have such a method,
this method gets the property array usmatueForKey: and operates directly on that. If the array is
mutable, this method simply addsObject Otherwise it constructs a new array containing any existing
objects anénObject then sets it usintakeValue:forKey: .

See also: —removeObject.fromPropertyWithKey: , —addObject:
toBothSidesOfRelationshipWithKey:

217

218

allPropertyKeys
— (NSArray *allPropertyKeys

Returns all of the receiver’s property keys, as returneattbiputeKeys, toOneRelationshipKeys and
toManyRelationshipKeys.

attributeKeys

— (NSArray *attributeKeys
Returns the names of the receiver’s attributes, as determined from the EOClassDescription. You might wish
to override this method to add keys for attributes not defined by the EOClassDescription. The access layer's

subclass of EOClassDescription, EOEntityClassDescription, returns the names of attributes designated as
class properties.

See also: —toOneRelationshipKeys —toManyRelationshipKeys,
—attributeKeys (EOClassDescription)

awakeFromFetchInEditingContext:

— (voidlawakeFromFetchIinEditingContext:(EOEditingContext *anEditingContext
Overridden by subclasses to perform additional initialization on the receiver upon its being fetched from
the external repository inenEditingContextNSObject’s implementation merely sendsasarakeObject:

fromFetchIinEditingContext: to the receiver's EOClassDescription. Subclasses should isuplegs
implementation before performing their own initialization.

See also: —awakeFrominsertionInEditingContext:

awakeFromlinsertionInEditingContext:
— (voidJawakeFromIinsertionIinEditingContext: (EOEditingContext *anEditingContext

Overridden by subclasses to perform additional initialization on the receiver upon its being inserted into
anEditingContextThis is commonly used to assign default values or record the time of insertion.
NSObject’'s implementation merely sendsaavakeObject:fromInsertionInEditingContext: to the

receiver's EOClassDescription. Subclasses should irsighers implementation before performing their
own initialization.

See also: —awakeFromFetchInEditingContext:

Classes: NSObject Additions

classDescription
— (EOClassDescription &assDescription

Returns the EOClassDescription registered for the receiver’s class. If none is found, posts an
EOClassDescriptionNeededForClassNotification on behalf of the receiver’s class, allowing an observer to
register a an EOClassDescription. See the EOClassDescription class specification for more information.

See also: + registerClassDescription:forClass:(EOClassDescription)

classDescriptionForDestinationKey:

— (EOClassDescription ¢JassDescriptionForDestinationKey(NSString *key
Returns the EOClassDescription for the destination objects of the relationship identk@adlibgone is
found, posts an EOClassDescriptionNeededForClassNotification on behalf of the destination objects’ class,

allowing an observer to register a an EOClassDescription. See the EOClassDescription class specification
for more information.

See also: + registerClassDescription:forClass:(EOClassDescription),
— classDescriptionForDestinationKey(EOClassDescription)

clearProperties
— (void)clearProperties
Sets all of the receiver’s to-one and to-many relationships.t&OEditingContexts use this method to

break circular references among objects when they're deallocated. You should never need to invoke this
method or override it.

See also: —toOneRelationshipKeys —toManyRelationshipKeys, —takeValue:forKey:

deleteRuleForRelationshipKey:
— (EODeleteRula)eleteRuleForRelationshipKey(NSString *YelationshipKey

Returns a rule indicating how to handle the destination of the receiver’s relationship named by
relationshipKeywhen the receiver is deleted. The delete rule is one of:

EODeleteRuleNullify
EODeleteRuleCascade
EODeleteRuleDeny
EODeleteRuleNoAction

219

For example, an Invoice object might return EODeleteRuleCascade for the relationship named “lineltems”,
since when an invoice is deleted, its line items should be deleted as well.

See also: — propagateDeleteWithEditingContext:, —validateForDelete
— deleteRuleForRelationshipKey:(EOClassDescription)

editingContext
— (EOEditingContext BditingContext

Returns the EOEditingContext that holds the receiver.

entityName
— (NSString *entityName
Returns the name of the receiver’s entitynibiif it doesn’t have one.

See also: —entityName (EOClassDescription)

eoDescription
— (NSString *poDescription

Returns a full description of the receiver’s property values by extracting them using the key-value coding
methods. An object referenced through relationships is listed with the resultsalaalowDescription
message (to avoid infinite recursion through cyclical relationships).

This method is useful for debugging. You can implemetgszription method that invokes this one, and
the debugger’s print-object commanmb ©n the command line) automatically displays this description.
You can also invoke this method directly on the command line of the debugger.

See also: — userPresentableDescription

eoShallowDescription
— (NSString *poShallowDescription

Returns a string containing the receiver’s class and entity names, along with the memory addidss of its

See also: — userPresentableDescription

220

Classes: NSObject Additions

handleQueryWithUnboundKey:
— (id)handleQueryWithUnboundKey: (NSString *key

Invoked fromvalueForKey: when it finds no property binding faey NSObject’s implementation raises
an NSinvalidArgumentException. Subclasses can override it to handle the query in some other way.

handleTakeValue:forunboundKey:
— (voidhandleTakeValue(id)valueforUnboundKey: (NSString *key

Invoked fromtakeValue:forKey: when it finds no property binding faey NSObject’s implementation
raises an NSinvalidArgumentException. Subclasses can override it to handle the request in some other way.

initWithEditingContext:classDescription:globallD:

— initwithEditingContext: (EOEditingContext *anEditingContext
classDescription(EOClassDescription §ClassDescription
globallD: (EOGloballD *)yloballD

Overridden by subclasses to perform initialization with the extra arguments provided. NSObject’s
implementation simply invokesit .

See also: — createlnstanceWithEditingContext:globallD:zone: (EOClassDescription)

inverseForRelationshipKey:
— (NSString *)nverseForRelationshipKey(NSString *yelationshipKey

Returns the name of the relationship pointing back to the receiver’s class or entity from that named by
relationshipKeyornil if there isn’t one. With the access layer's EOEntity and EORelationship, for example,
reciprocality is determined by the join attributes of the two EORelationships.

You might override this method for reciprocal relationships that aren’t defined using the same join
attributes. For example, if a Member object has a relationship to CreditCard based on the card humber, but
a CreditCard has a relationship to Member based on the Member’s primary key, both classes need to
override this method. This is how Member might implement it:

- (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

{
if ([relationshipKey isEqual:@"creditCard"]) return @"member";

return [super inverseForRelationshipKey:relationshipKey];

}
See also: —inverseForRelationshipKey: (EOClassDescription)

221

222

isToManyKey:
— (BOOL)sToManyKey: (NSString *key
Returns YES if the receiver has a to-many relationship identifiée\biNO otherwise.

See also: —toManyRelationshipKeys —toOneRelationshipKeys

ownsDestinationObjectsForRelationshipKey:
— (BOOL)wnsDestinationObjectsForRelationshipKey{NSString *key

Returns YES if the receiver has a relationship identifiekiegyhat owns its destination, NO otherwise. If

an object owns the destination for a relationship, then when that destination object is removed from the
relationship, it's automatically deleted. Ownership of a relationship thus contrasts with a delete rule, in that
the first applies when the destination is removed and the second applies when the source is deleted.

See also: —deleteRuleForRelationshipKey; —ownsDestinationObjectsForRelationshipKey:
(EOClassDescription), ewnsDestination(the access layer's EORelationship)

Classes: NSObject Additions

propagateDeleteWithEditingContext:
— (void)propagateDeleteWithEditingContext:(EOEditingContext *anEditingContext

Sends @ropagateDeleteForObject:editingContext:message to the receiver’s EOClassDescription. This
causes the destination objects of the receiver’s relationships to be deleted according to the delete rule for
each relationship:

Delete Rule Action

The destination object is simply removed from the relationship, and the receiver is

EODeleteRuleNullify likewise removed from the destination’s reciprocal | relationship if there is one.

As above, but the destination object is also deleted and sent a

EODeleteRuleCascade propagateDeleteWithEditingContext: message.

EODeleteRuleDeny Applied in validateForDelete , not in this method.

The relationship is ignored when the receiver is deleted.

The EODeleteRuleNoAction option is useful for tuning performance. In order to perform a
deletion, Enterprise Objects Framework fires all the faults of the deleted object and then
fires any to-many faults that point back to the deleted object. For example, suppose you
have a simple application based on the sample Movies database. Deleting a Movie
object has the effect of firing a to-one fault for the Movie’s studio relationship, and then
firing the to-many movies fault for that studio. In this scenario, it would make sense to set
the delete rule EODeleteRuleNoAction for Movie’s studio relationship. However, you
should use this delete rule with great caution since it can result in dangling references in
your object graph.

EODeleteRuleNoAction

See also: —deleteRuleForRelationshipKey:

removeObject:fromBothSidesOfRelationshipWithKey:
— (voidyemoveObiject:(id)anObjectfromBothSidesOfRelationshipWithKey:(NSString *key

RemovesanObjectfrom the receiver’s relationship identified kgy and also removes the receiver from
anObjecks reciprocal relationship if there is one. For a to-one relationahipbjectis removed using
takeValue:forKey: with nil as the value. For a to-many relationshipQbjectis removed using
removeObject:fromPropertyWithKey: .

See also: —addObject:toBothSidesOfRelationshipWithKey:

223

224

removeObject.fromPropertyWithKey:
— (voidyemoveObject;(id)anObjectfromPropertyWithKey: (NSString *key

RemovesanObjectfrom the receiver’s to-many relationship identifieddey without modifying a
reciprocal relationship. Similar to the implementatioted® Value:forKey:, NSObject’s implementation

of this method first attempts to invoke a method of the fermoveFromKey:.. If the receiver doesn’t have
such a method, this method gets the property array usingForKey: and operates directly on that. If the
array is mutable, this method simply loca@©bjectand removes it. Otherwise it constructs a new array
containing any existing objects minasObject then sets it usintakeValue:forKey: .

See also: —addObject:toPropertyWithKey: , —removeObject:
fromBothSidesOfRelationshipWithKey:

snapshot
— (NSDictionary *knapshot

Returns a dictionary whose keys are those of the receiver’s attributes, to-one relationships, and to-many
relationships, and whose values are the values of those properties, with EONull substihite&dor

to-many relationships, the dictionary contains shallow copies of the arrays to presaigeofitbe

contents.

See also: — updateFromSnapshot; —allPropertyKeys, —valueForKey:

takeStoredValue:forKey:
— (void)akeStoredValuefid)valueforKey: (NSString *key

Sets the property identified lgyto value If you haven't overriddenseStoredAccessoto return YES,
this method simply invokeasikeValue:forKey:. If you have overriddenseStoredAccessato return YES,
the default implementation does the following:

1. Searches for an instance variable whose name is the same as the key, but preceded by an underbar. Sets its value
directly. For example, with a key of “lastNam#&gdkeStoredValue:forKey: looks for an instance variable
called_lastName

2. If the instance variable isn’t found, searches for an accessor method based on the key, but preceded by an
underbar. For example, with a key of “lastNantakeStoredValue:forKey: looks for a method called
_setLastName.

3. If neither an underbar-preceded instance variable or accessor method is found, searches for an instance variable
whose name is the same as the key and sets its value directly.

4. Finally, searches for an accessor method based on the key. For the key “lastName”, this would be
setLastName:

Classes: NSObject Additions

Classes can override this method to add custom behavior. The default implementation raises an exception
if an unknown key is passed in. For more discussion of key-value coding, see the section ““Key-Value
Coding Methods” in the class description.

See also: + useStoredAccessgrtakeStoredValue:forKeyPath:, —takeStoredValuesFromDictionary:

takeStoredValue:forKeyPath:
— (void)akeStoredValuefid)valueforKeyPath: (NSString *keyPath

Sets the value for the derived property identifiedédyPathto value For example, suppose you have the
following code:

[myEmployee takeStoredValue:aStreet forKeyPath: @"address.street"];

This code would first get the address object by invokimgEmployee valueForKey:
@"address"] , and then it would set the value us[address setStoredValue:aStreet
forkey: @"street"]

See also: + useStoredAccessgr-takeValue:forKey:, —takeStoredValuesFromDictionary:

takeStoredValuesFromDictionary:
— (void)akeStoredValuesFromDictionary:(NSDictionary *aDictionary
Sets properties of the receiver with values fadbictionary, using their keys to identify the properties.

NSObiject’'s implementation invokéske StoredValue:forKey: for each key-value pair, substituting for
EONull values iraDictionary.

See also: + useStoredAccessqrtakeValue:forKey:, —takeValue:forKeyPath:

takeValue:forKey:
— (void)akeValue:(id)valueforKey: (NSString *key

Sets the value for the property identifiedkeyto value NSObject’'s implementation does so by first

checking the receiver for a selector of the fegtey:, invoking it if there is one. If there’s no such method,
andaccesslinstanceVariablesDirectlyeturns YES, NSObject’s implementation checks for an instance
variable name#teyand sets the value directly, autoreleasing the old value and retaining the new one.

If there’s neither an accessor method nor an instance variable matehiNgGObject’'s implementation
invokeshandleTakeValue:forUnboundKey: as a fallback mechanism. Subclasses can override
handleTakeValue:forUnboundKey: to handle the request in some other way. For more discussion of
key-value coding, see the section “Key-Value Coding Methods” in the class description.

See also: —takeValue:forKeyPath:, —takeValuesFromDictionary:, —valueForKey:

225

226

takeValue:forKeyPath:
— (voidtakeValue:(id)valueforKeyPath: (NSString *keyPath

Sets the value for the derived property identifieddayPathto value A key path has the form
relationship.propertywith one or more relationships); for example “department.name”. NSObject’s
implementation of this method gets the destination object for each relationshipalsigigorKey:, and
sends the final objecttakeValue:forKey: message withialueandproperty

See also: —takeValuesFromDictionary:, —valueForKeyPath:

takeValuesFromDictionary:
— (voidakeValuesFromDictionary:(NSDictionary *aDictionary

Sets properties of the receiver with values faddictionary, using the keys to identify the properties.
NSObject’'s implementation invokéskeValue:forkey: for each key-value pair, substituting for
EONull values imaDictionary;

See also: — updateFromSnapshot; —takeValue:forKeyPath:, —valuesForKeys:

toManyRelationshipKeys
— (NSArray *toManyRelationshipKeys

Returns the names of the receiver’s to-many relationships, as determined from the EOClassDescription. You
might wish to override this method to add keys for relationships not defined by the EOClassDescription.
The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns the names of
to-many relationships designated as class properties.

See also: —toOneRelationshipKeys, —attributeKeys,
—toManyRelationshipKeys (EOClassDescription)

toOneRelationshipKeys
— (NSArray *xoOneRelationshipKeys

Returns the names of the receiver’s to-one relationships, as determined from the EOClassDescription. You
might wish to override this method to add keys for relationships not defined by the EOClassDescription.
The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns the names of to-one
relationships designated as class properties.

See also: — attributeKeys, —toManyRelationshipKeys,
—toOneRelationshipKeys(EOClassDescription)

Classes: NSObject Additions

unableToSetNilForKey:

— (voidunableToSetNilForKey:(NSString *key
Invoked fromtakeValue:forKey: when it's given anil value for a scalar property (such asrdror afloat).
NSObject’'s implementation raises an NSinvalidArgumentException. Subclasses can override it to handle

the request in some other way, such as by substituting zero or a sentinel value and takekmige:
forKey: again.

updateFromSnapshot:
— (voidupdateFromSnapshot(NSDictionary *aSnapshot
Takes the values fromSnapshgtsetting each one according to its key usakgValue:forkey:. In the

process, EONull values are converteditpand array values are set as shallow mutable copies to preserve
theids of the contents.

See also: —takeValuesFromDictionary:, —snapshot

userPresentableDescription
— (NSString *userPresentableDescription

Returns a short (no longer than 60 characters) description of an enterprise object based on its data.
NSObject’s implementation first checks to see if the enterprise object has an attribute called “name” and if
so, it returns its value. Otherwise, checks for an attribute called “title”. If neither of those attributes exists,
this method enumerates the objeatisibuteKeys and returns the values of all of its properties, separated

by commas (applying the default formatter for numbers and dates).

See also: —eoDescription —eoShallowDescription

validateForDelete
— (NSException ®alidateForDelete

Confirms that the receiver can be deleted in its current state, retaiinihig can or an NSException that
the sender may raise if it can’t. For example, an object can’t be deleted if it has a relationship with a delete
rule of EODeleteRuleDeny and that relationship has a destination object.

NSObject’'s implementation sends the receiver's EOClassDescriptaidateObjectForDelete:

message (which performs basic checking based on the presence or absence of values). Subclasses should
invokesupers implementation before performing their own validation, and should combine any exception
returned bysupers implementation with their own:

227

228

- (NSException *)validateForDelete
{

NSException *exception = [super validateForDelete];

if (/* some other violation */) {
NSException *newException = /* the extra exception */;
exception = [NSException aggregateExceptionWithExceptions:[NSArray
arrayWithObjects:exception, newException, nil]];

}

return exception;

}

See also: —validateForinsert, —validateForSave —validateForUpdate, —validateValue:forKey:,
+ validationExceptionWithFormat: (NSException Additions)

validateForinsert
— (NSException ®alidateForlnsert

Confirms that the receiver can be inserted in its current state, retoinihigcan or an NSException that
can be raised if it can’t. NSObject’s implementation simply invelaisiateForSave

See also: —VvalidateForDelete —validateForUpdate, —validateValue:forKey:,
+ validationExceptionWithFormat: (NSException Additions)

validateForSave
— (NSException ®¥alidateForSave

Confirms that the receiver can be saved in its current state, retailnifigcan or an NSException that the
sender may raise if it can’t. NSObject’s implementation sends the receiver’s EOClassDescription a
validateObjectForSave:message, then iterates through all of the receiver’s properties, invoking
validateValue:forKey: for each one. If this results in more than one exception, the exception returned
contains the additional ones inutserinfo dictionary under the EOAdditionalExceptions key . Subclasses
should invokesupers implementation before performing their own validation, and should combine any
exception returned byupers implementation with their own:

Classes: NSObject Additions

- (NSException *)validateForSave

{

NSException *exception = [super validateForSave];

if (/* some other violation */) {
NSException *newException = /* the extra exception */;
exception = [NSException aggregateExceptionWithExceptions:[NSArray
arrayWithObjects:exception, newException, nil]];

}

return exception;

}

Enterprise objects can implement this method to check that certain relations between properties hold; for
example, that the end date of a vacation period follows the begin date. To validate an individual property,
you can simply implement a method for it as described uwadielateValue:forKey: .

See also: —VvalidateForDelete —validateForinsert, —validateForUpdate,
+ validationExceptionWithFormat: (NSException Additions),
+ aggregateExceptionWithExceptions{NSEXxception Additions)

validateForUpdate
— (NSException ®alidateForUpdate

Confirms that the receiver can be updated in its current state, retailnifnigcan or an NSException that
the sender may raise if it can’t. NSObject’s implementation simply inwaketateForSave

See also: —validateForDelete —validateForinsert, —validateForSave —validateValue:forKey:,
+ validationExceptionWithFormat: (NSException Additions)

validateValue:forKey:
— (NSException ®alidateValue:(id *)valuePointerforKey: (NSString *key

Confirms that the value referencedMayuePointelis legal for the receiver’s property namedby Returns

nil if it can confirm that the value is legal or an EOValidationException that the sender may raise if it can't.
NSObiject’'s implementation sendgaidateValue:forKey: message to the receiver’s EOClassDescription.

If that message doesn'’t return an exception, it checks for a method of theafatateKey. (for example,
validateBudget: for akeyof “budget”) and invokes it, returning the result.

229

230

Enterprise objects can implement individualidateKey. methods to check limits, test for nonsense values,
and otherwise confirm individual properties. To validate multiple properties based on relations among them,
override the appropriatalidateFor... method.

See also: —validateForDelete —validateForinsert, —validateForSave —validateForUpdate,
+ validationExceptionWithFormat: (NSException Additions)

valueForKey:

— (id)valueForKey:(NSString *key
Returns the value for the property identifiedkey NSObject’s implementation does so by first checking
the receiver for a method namiegly invoking it if there is one. If there’s no such method, and
accesslinstanceVariablesDirectlyeturns YES, NSObject’'s implementation checks for an instance
variable name#teyand returns the instance variable. If there’s neither an accessor method nor an instance
variable matchingey NSObject’s implementation invokbandleQueryWithUnboundKey: as a fallback

mechanism. Subclasses can overidedleQueryWithUnboundKey: to handle the request in some other
way.

See also: —valueForKeyPath:, —valuesForKeys; —takeValue:forKey:

valueForKeyPath:
— (id)valueForKeyPath:(NSString *keyPath

Returns the value for the derived property identifiettdyPath A key path has the form
relationship.propertywith one or more relationships); for example “movieRole.roleName” or
“movieRole.Talent.lastName”. NSObject’'s implementation of this method gets the destination object for
each relationship usingalueForKey:, and returns the result ofalueForKey: message to the final object.

See also: —valuesForKeys; —takeValue:forKeyPath:

valuesForKeys:
— (NSDictionary *yaluesForKeys(NSArray *)keys

Returns a dictionary containing the property values identified by e&ely®NSObject’s implementation
invokesvalueForKey: for each key irkeys substituting EONull in the dictionary for returnei values.

See also: —valueForKeyPath:, —takeValuesFromDictionary:

Classes: NSObject Additions

willChange
— (voidwillChange

Notifies any observers that the receiver’s state is about to change, by sendingagett@fillChange:
message (see the EOObserverCenter class specification for more information). A subclass should not

override this method, but should invoke it prior to altering their state, most typically in “set” methods such
as the following:

- (void)setRoleName:(NSString *)value {
[self willChange];
[roleName autorelease];
roleName = [value retain];

231

Classes:

EOClassDescriptionClassDelegate

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOClassDescription.h

Category Description

The EOClassDescriptionClassDelegate informal protocol defines a method that the EOClassDescription
class can invoke in its delegate. Delegates are not required to provide an implementation for the method.
Instead, declare and implement the method if you need it, and use the EOClassDescription method
setClassDelegatemethod to assign your object as the class delegate. The EOClassDescription class can
determine if the delegate doesn’t implement the delegate method and only attempts to invoke it if it's
actually implemented.

Instance Methods

shouldPropagateDeleteForObject:inEditingContext:forRelationshipKey:

— (BOOL)shouldPropagateDeleteForObjeci(id)anObject
inEditingContext: (EOEditingContext *anEditingContext
forRelationshipKey: (NSString *key

Invoked frompropagateDeleteForObject:editingContext: If the class delegate returns NO, it prevents
anObjectin anEditingContexfrom propagating deletion to the objects at the destinati&ayoT his can

be useful if you have a large model and a small application that only deals with a subset of the model’s
entities. In such a case you might want to disable delete propagation to entities that will never be accessed.
You should use this method with caution, however—returning NO and not propagating deletion can lead to
dangling references in your object graph.

Classes:

EOEditingContextDelegate

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOEditingContext.h

Category Description

The EOEditingContextDelegate informal protocol defines methods that an EOEditingContext can invoke
in its delegate. Delegates are not required to provide implementations for all of the methods in the informal
protocol. Instead, declare and implement any subset of the methods declared in the informal protocol that
you need, and use the EOEditingContext metimiDelegatemethod to assign your object as the delegate.

An editing context can determine if the delegate doesn’t implement a delegate method and only attempts to
invoke the methods the delegate actually implements.

Method Types

Fetching objects
— editingContext:
shouldFetchObjectsDescribedByFetchSpecification:

Invalidating objects
— editingContext:shouldinvalidateObject:globallD:

Saving changes
— editingContextWillSaveChanges:

Handling failures
— editingContextShouldValidateChanges:
— editingContext:shouldPresentException:
— editingContextShouldUndoUserActionsAfterFailure:

Merging changes
— editingContext:shouldMergeChangesForObject:
— editingContextDidMergeChanges:

Instance Methods

editingContextDidMergeChanges:
— (void)editingContextDidMergeChanges(EOEditingContext *anEditingContext

Invoked once after a batch of objects has been updatatEtitingContexs parent object store (in

response to a EOObjectsChangedinStoreNotification). A delegate might implement this method to define
custom merging behavior, most likely in conjunction vétlitingContext:

shouldMergeChangesForObiject: It is safe for this method to make changes to the objects in the editing
context.

editingContext:shouldFetchObjectsDescribedByFetchSpecification:

— (NSArray *editingContext:(EOEditingContext *@ditingContext
shouldFetchObjectsDescribedByFetchSpecificatiofEOFetchSpecification
*)fetchSpecification

Invoked fromobjectsWithFetchSpecification:editingContext: If the delegate has appropriate results
cached it can return them and the fetch will be bypassed. Retaihoayses the fetch to be propagated to
the parent object store.

editingContext:shouldinvalidateObject:globallD:

— (BOOL)editingContext:(EOEditingContext *xnEditingContext
shouldinvalidateObject:(id)object
globallD: (EOGIoballD *)globallD

Sent when aobjectidentified bygloballD has been explicitly invalidated. If the delegate returns NO, the
invalidation is refused. This allows the delegate to selectively override object invalidations.

See also: — invalidateAllObjects, — revert

editingContext:shouldMergeChangesForObject:

— (BOOL)editingContext:(EOEditingContext *anEditingContext
shouldMergeChangesForObject{id)object

When an EOObjectsChangedInStoreNotification is receamditingContexinvokes this method in its
delegate once for each of the objects that has both uncommitted changes and an update from the
EOODbjectStore. This method is invoked before any updates actually occur.

If this method returns YES, all of the uncommitted changes should be merged into the object after the
update is applied, in effect preserving the uncommitted changes (the default behavior). The delegate method
editingContext:shouldinvalidateObject:globallD: will not be sent for the object in question.

Classes:

If this method returns NO, no uncommitted changes are applied. Thus, the object is updated to reflect the
values from the database exactly. This method should not make any changes to the object since it is about
to be invalidated.

If you want to provide custom merging behavior, you need to implement both this method and
editingContextDidMergeChanges: You useaditingContext:shouldMergeChangesForObjectto save
information about each changed object and return YES to allow merging to continue. After the default
merging behavior occursditingContextDidMergeChanges:is invoked, at which point you implement
your custom behavior.

editingContext:shouldPresentException:

— (BOOL)editingContext:(EOEditingContext *3nEditingContext
shouldPresentExceptionfNSException *gxception

Sent whenever an exception is caught by an EOEditingContext. If the delegate retuemseéyp@ons
ignored. Otherwise (if the delegate returns YES, if the editing context doesn’t have a delegate, or if the
delegate doesn’'t implement this methexigeptioris passed to the message handler for further processing,

See also: —messageHandler

editingContextShouldUndoUserActionsAfterFailure:

— (BOOL)editingContextShouldUndoUserActionsAfterFailure:(EOEditingContext
*)anEditingContext

Sent when a validation error occurs while processipgeessRecentChangemessage. If the delegate
returns NO, it disables the automatic undoing of user actions after validation has resulted in an error.

By default, if a user attempts to perform an action that results in a validation failure (such as deleting a
department object that has a delete rule stating that the department can’t be deleted if it contains
employees), the user’s action is immediately rolled back. However, if this delegate method returns NO, the
user action is allowed to stand (though attempting to save the changes to the database without solving the
validation error will still result in a failure). Returning NO gives the user an opportunity to correct the
validation problem so that the operation can proceed (for example, the user might delete all of the
department’s employees so that the department itself can be deleted).

editingContextShouldValidateChanges:
— (BOOL)editingContextShouldValidate Changes(EOEditingContext *anEditingContext
Sent when an EOEditingContext receivesi@geChangesnessage. If the delegate returns NO, changes are

saved without first performing validation. This method can be useful if the delegate wants to provide its own
validation mechanism.

editingContextWillSaveChanges:
— (void)editingContextWillSaveChanges{EOEditingContext *@ditingContext

Sent when an EOEditingContext receivesaeChangesnessage. The delegate can raise an exception to
abort the save operation.

Classes:

EOEditors

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOEditingContext.h

Category Description

The EOEditors informal protocol defines methods for objects that act as higher-level editors of the objects
an EOEditingContext contains. An editing context sends messages to its editors to determine whether they
have any changes that need to be saved, and to allow them to flush pending changes before a save (possibly
raising an exception to abort the save). See the EOEditingContext and EODisplayGroup (EOInterface) class
specifications for more information.

Instance Methods

editingContextWillSaveChanges:
— (void)editingContextWillSaveChanges{EOEditingContext *anEditingContext

Invoked byanEditingContextin its saveChangesnethod, this method allows theceiver tdflush any
pending edits and, if necessary, prohibit a save operation. The receiver should validate and flush any
unprocessed edits it has, raising an exception if it can’t do so to pamditingContexfrom saving.

editorHasChangesForEditingContext:
— (BOOL)editorHasChangesForEditingContext(EOEditingContext *anEditingContext

Invoked byanEditingContextthis method should return YES if the receiver has any unapplied edits that
need to be saved, NO if it doesn't.

Classes:

EOEnterpriseObject
(informal protocol)
Category Of: NSObject
Declared In: EOControl/EOClassDescription.h

EOControl/EOEditingContext.h
EOControl/EOKeyValueCoding.h
EOControl/EOObserver.h

Protocol Description

The EOEnterpriseObject informal protocol identifies basic enterprise object behavior, defining methods for
supporting operations common to all enterprise objects. Among these are methods for initializing instances,
announcing changes, setting and retrieving property values, and performing validation of state. Some of
these methods are for enterprise objects to implement or override, and some are meant to be used as defined
by the Framework. Many methods are used internally by the Framework and rarely invoked by application
code.

Many of the functional areas are defined in smaller, more specialized informal protocols and incorporated
in the overarching EOEnterpriseObject informal protocol:

« EOKeyValueCoding defines Enterprise Objects Framework’s main data transport mechanism, in which
the properties of an object are accessed indirectly by narkeyprather than directly through
invocation of an accessor method or as instance variables.

» EOKeyValueCodingAdditions defines extensions to the basic EOKeyValueCoding informal protocol,
giving access to groups of properties and to properties across relationships.

« EORelationshipManipulation builds on the basic EOKeyValueCoding informal protocol to allow you to
modify to-many relationship properties.

« EOValidation defines the way that enterprise objects validate their values.

The remaining methods are introduced in the EOEnterpriseObject informal protocol itself and can be
broken down into three functional groups discussed in the following sections:

* Initialization

» Change Notification

* Object and Class Metadata Access
* Snapshots

You rarely need to implement the EOEnterpriseObject informal protocol from scratch. The Framework
provides default implementations of the methods in categories on NSObject. Use EOGenericRecords to
represent enterprise objects that don't require custom behavior, and create subclasses of NSObject to
represent enterprise objects that do. The section “Writing an Enterprise Object Class” highlights the
methods that you typically provide or override in a custom enterprise object class.

Informal Protocols Incorporated

EOKeyValueCoding
+ accesslinstanceVariablesDirectly
+ flushAllKeyBindings
+ useStoredAccessor
— handleQueryWithUnboundKey:
— handleTakeValue:forUnboundKey:
— storedValueForKey:
— takeStoredValue:forKey:
— takeValue:forKey:
— unableToSetNullForKey:
— valueForKey:

EOKeyValueCodingAdditions
— takeValue:forKeyPath:
— takeValuesFromDictionary:
— valueForKeyPath:
— valuesForKeys:

EORelationshipManipulation
— addObject:toBothSidesOfRelationshipWithKey:
— addObject:toPropertyWithKey:
— removeObject:fromBothSidesOfRelationshipWithKey:
— removeObject:fromPropertyWithKey:

EOValidation
— validateForDelete
— validateForinsert
— validateForSave
— validateForUpdate
— validateValue:forKey:
Method Types

Initializing enterprise objects
— initWithEditingContext:classDescription:globallD:
— awakeFromFetchInEditingContext:
— awakeFrominsertioninEditingContext:

Announcing changes
— willChange

Getting an object’s EOEditingContext
— editingContext

10

Classes:

Getting class description information
— allPropertyKeys
— attributeKeys
— classDescription
— classDescriptionForDestinationKey:
— deleteRuleForRelationshipKey:
— entityName
— inverseForRelationshipKey:
— isToManyKey:
— ownsDestinationObjectsForRelationshipKey:
— toManyRelationshipKeys
— toOneRelationshipKeys

Modifying relationships
— propagateDeleteWithEditingContext:
— clearProperties

Working with snapshots
— shapshot
— updateFromSnapshot:

Merging values
— changesFromSnapshot
— reapplyChangesFromDictionary:

Getting descriptions
— eoDescription
— eoShallowDescription
— userPresentableDescription

Instance Methods

allPropertyKeys
— (NSArray *allPropertyKeys

Returns all of the receiver’s property keys. NSObject’'s implementation returns the union of the keys
returned byattributeKeys, toOneRelationshipKeys andtoManyRelationshipKeys.

12

attributeKeys
— (NSArray *attributeKeys

Returns the names of the receiver’s attributes (not relationship properties). NSObject’s implementation
simply invokesattributeKeys in the object's EOClassDescription and returns the results. You might wish

to override this method to add keys for attributes not defined by the EOClassDescription. The access layer’'s
subclass of EOClassDescription, EOEntityClassDescription, returns the names of attributes designated as
class properties.

See also: —toOneRelationshipKeys —toManyRelationshipKeys

awakeFromFetchInEditingContext:
— (voidlawakeFromFetchinEditingContext:(EOEditingContext *anEditingContext

Overridden by subclasses to perform additional initialization on the receiver upon its being fetched from
the external repository innEditingContextNSObject’s implementation merely sendsaarakeObject:
fromFetchIinEditingContext: to the receiver's EOClassDescription. Subclasses should isuples
implementation before performing their own initialization.

awakeFrominsertionInEditingContext:
— (voidlawakeFrominsertionIinEditingContext: (EOEditingContext *anEditingContext

Overridden by subclasses to perform additional initialization on the receiver upon its being inserted into
anEditingContextThis is commonly used to assign default values or record the time of insertion.
NSObiject’'s implementation merely sendsaavakeObject:frominsertionInEditingContext: to the

receiver's EOClassDescription. Subclasses should irsgiers implementation before performing their
own initialization.

changesFromSnapshot
— (NSDictionary *rhangesFromSnapsho{NSDictionary *snapshot

Returns a dictionary whose keys correspond to the receiver’s properties with uncommitted changes relative
to snapshgtand whose values are the uncommitted values. Indnaghshotind the returned dictionary,

where a key represents a to-many relationship, the corresponding value is an NSArray containing two other
NSArrays: the first is an array of objects to be added to the relationship property, and the second is an array
of objects to be removed.

See also: —reapplyChangesFromDictionary:

Classes:

classDescription
— (EOClassDescription ¢JassDescription

Returns the EOClassDescription registered for the receiver’s class.NSObject’s implementation invokes the
EOClassDescription class methodlassDescriptionForClass:

classDescriptionForDestinationKey:
— (EOClassDescription &JassDescriptionForDestinationKey(NSString *key

Returns the EOClassDescription for the destination objects of the relationship identiiegdNS§Object’s
implementation sendsaassDescriptionForDestinationKey:message to the receiver’s
EOClassDescription.

clearProperties
— (voidclearProperties

Sets all of the receiver’s to-one and to-many relationships.t&OEditingContexts use this method to

break cyclic references among objects when they're deallocated. NSObject’'s implementation should be
sufficient for all purposes. If your enterprise object maintains references to other objects and these
references are not to-one or to-many keys, then you should probably subclass this method ensure unused
objects can be deallocated.

deleteRuleForRelationshipKey:
— (EODeleteRulaeleteRuleForRelationshipKey(NSString *yelationshipKey

Returns a rule indicating how to handle the destination of the receiver’s relationship named by
relationshipKeywhen the receiver is deleted. The delete rule is one of:

EODeleteRuleNullify
EODeleteRuleNullify
EODeleteRuleNullify
EODeleteRuleNullify

For example, an Invoice object might return EODeleteRuleNullify for the relationship named “lineltems”,
since when an invoice is deleted, its line items should be deleted as well. For more information on the delete
rules, see the method description for EOClassDescriptieteteRuleForRelationshipKey:in the class
specification for EOClassDescription.

NSObiject’'s implementation of this method simply sendslateRuleForRelationshipKey:message to
the receiver’s EOClassDescription.

See also: — propagateDeleteWithEditingContext:, —validateForDelete (EOValidation)

13

14

editingContext
— (EOEditingContext *®ditingContext

Returns the EOEditingContext that holds the receiver.

entityName
— (NSString *entityName

Returns the name of the receiver’s entitynibif it doesn’t have one. NSObject’s implementation simply
sends amntityName message to the receiver's EOClassDescription.

eoDescription

— (NSString *poDescription
Returns a string that describes the receiver. NSObject’s implementation returns a full description of the
receiver’s property values by extracting them using the key-value coding methods. An object referenced

through relationships is listed with the results oEaBhallowDescriptionmessage (to avoid infinite
recursion through cyclical relationships).

This method is useful for debugging. You can implematdstription method that invokes this one, and
the debugger’s print-object commanmb ©n the command line) automatically displays this description.
You can also invoke this method directly on the command line of the debugger.

See also: —userPresentableDescription

eoShallowDescription

— (NSString *poShallowDescription
Similar toeoDescription but doesn’t descend into relationshipeDescriptioninvokes this method for
relationship destinations to avoid infinite recursion through cyclical relationships. NSObject’s

implementation simply returns a string containing the receiver’s class and entity names, along with the
memory address of iid.

See also: —userPresentableDescription

Classes:

initWithEditingContext:classDescription:globallD:

— initwithEditingContext: (EOEditingContext *anEditingContext
classDescription(EOClassDescription ClassDescription
globallD: (EOGIloballD *)globallD

Initializes the receiver with the arguments provided. NSObject’'s implementation simply invibkesd
ingoresanEditingContext

See also: — createlnstanceWithEditingContext:globallD:zone: (EOClassDescription)

inverseForRelationshipKey:
— (NSString *)nverseForRelationshipKey(NSString *yelationshipKey

Returns the name of the relationship pointing back to the receiver’s class or entity from that named by
relationshipKeyornil if there isn’t one. With the access layer's EOEntity and EORelationship, for example,
reciprocality is determined by the join attributes of the two EORelationships. NSObject’s implementation
simply sends amverseForRelationshipKey: message to the receiver’s EOClassDescription.

You might override this method for reciprocal relationships that aren’t defined using the same join
attributes. For example, if a Member object has a relationship to CreditCard based on the card number, but
a CreditCard has a relationship to Member based on the Member’s primary key, both classes need to
override this method. This is how Member might implement it:

public String inverseForRelationshipKey(java.lang.String relationshipKey) {
if (relationshipKey.equals("creditCard"))
- (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

{
if ([relationshipKey isEqual:@"creditCard"]) return @"member";

return [super inverseForRelationshipKey:relationshipKey];

isToManyKey:
— (BOOL)sToManyKey: (NSString *key

Returns YES if the receiver has a to-many relationship identifig@ypi}O otherwise. NSObject’s
implementation of this method simply checkgsd@®lanyRelationshipKeys array forkey

ownsDestinationObjectsForRelationshipKey:
— (BOOL)wnsDestinationObjectsForRelationshipKey{NSString *key

Returns YES if the receiver has a relationship identifiekegyhat owns its destination, NO otherwise. If
an object owns the destination for a relationship, then when that destination object is removed from the

15

16

relationship, it's automatically deleted. Ownership of a relationship thus contrasts with a delete rule, in that
the first applies when the destination is removed and the second applies when the source is deleted.
NSObject’'s implementation of this method simply sends an
ownsDestinationObjectsForRelationshipKey:message to the receiver's EOClassDescription.

See also: —deleteRuleForRelationshipKey; —ownsDestination(the access layer's EORelationship)

propagateDeleteWithEditingContext:

— (void)propagateDeleteWithEditingContext:(EOEditingContext *xnEditingContext
Deletes the destination objects of the receiver’s relationships according to the delete rule for each
relationship. NSObject’'s implementation simply sengsopagateDeleteForObject:editingContext:

message to the receiver’s EOClassDescription. For more information on delete rules, see the method
description fordeleteRuleForRelationshipKey:in the EOClassDescription class specification.

See also: —deleteRuleForRelationshipKey:

reapplyChangesFromDictionary:
— (voidyeapplyChangesFromDictionary:(NSDictionary *changes

Similar totakeValuesFromDictionary:, but thechangedictionary can contain arrays for to-many
relationships. Where a key represents a to-many relationship, the dictionary’s value is an NSArray
containing two other NSArrays: the first is an array of objects to be added to the relationship property, and
the second is an array of objects to be removed. NSObject’s implementation should be sufficient for all
purposes; you shouldn’t have to override this method.

See also: —changesFromSnapshot

snapshot
— (NSDictionary *snapshot

Returns a dictionary whose keys are those of the receiver’s attributes, to-one relationships, and to-many
relationships, and whose values are the values of those properties, with EONull substihite&dor

to-many relationships, the dictionary contains shallow copies of the arrays to presétgeothtbe

contents. NSObject’s implementation should be sufficient for all purposes; you shouldn’t have to override
this method.

See also: —updateFromSnapshot:

Classes:

toManyRelationshipKeys
— (NSArray *toManyRelationshipKeys

Returns the names of the receiver’s to-many relationships. NSObject’'s implementation simply invokes
toManyRelationshipKeysin the object's EOClassDescription and returns the results. You might wish to
override this method to add keys for relationships not defined by the EOClassDescription, but it's rarely
necessary: The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns the
names of to-many relationships designated as class properties.

See also: — attributeKeys, —toOneRelationshipKeys

toOneRelationshipKeys
— (NSArray *toOneRelationshipKeys

Returns the names of the receiver’s to-one relationships. NSObject’'s implementation simply invokes
toOneRelationshipKeysin the object’s EOClassDescription and returns the results. You might wish to
override this method to add keys for relationships not defined by the EOClassDescription, but it's rarely
necessary: The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns the
names of to-one relationships designated as class properties.

See also: — attributeKeys, —toManyRelationshipKeys

updateFromSnapshot:
— (voidupdateFromSnapshot(NSDictionary *aSnapshot

Takes the values fromSnapshgtand sets the receiver’s properties to them. NSObject’s implementation
sets each one usitakeStoredValue:forKey:. In the process, EONull values are converteatdlt@nd array
values are set as shallow mutable copies to preserigstioéthe contents.

See also: —snapshot

userPresentableDescription
— (NSString *userPresentableDescription

Returns a short (no longer than 60 characters) description of an enterprise object based on its data.
NSObject’'s implementation enumerates the objedttidouteKeys and returns the values of all of its
properties, separated by commas (applying the default formatter for numbers and dates).

See also: —eoDescription —eoShallowDescription

17

18

willChange
— (voidwillChange

Notifies any observers that the receiver’s state is about to change, by sendingagett@fillChange:
message (see the EOObserverCenter class specification for more information). A subclass should not
override this method, but should invoke it prior to altering the subclass’s state, most typically in “set”
methods such as the following:

- (void)setRoleName:(NSString *)value {
[self willChange];
[roleName autorelease];
roleName = [value retain];

Classes:

EOEnterpriseObject

Initialization

Enterprise objects are initialized usimiWithEditingContext:classDescription:globallD: , which by
default simply invokesnit. You can place your custom initialization codénith, or you can override
initWithEditingContext:classDescription:globallD: to take advantage of the extra information available
with this method.

After an enterprise object is created, it receiveaveaike...message. The particular message depends on
whether the object has been fetched from a database or created anew in the application. In the former case,
it receives armwakeFromFetchInEditingContext: message. In the latter, it receives an
awakeFrominsertionInEditingContext: message. The receiver can override either method to perform

extra initialization—such as setting default values—based on how it was created.

Change Notification

For the Framework to keep all areas of an application synchronized, enterprise objects must notify their
observers when their state changes. Objects do this by inwgkiGhange before altering any instance
variable or other kind of state. This method informs all observers that the invoker is about to change. See
the EOObserverCenter class specification for more information on change notification.

The primary observer of changes in an object is the object’s EOEditingContext. EOEditingContext is a
subclass of EOObjectStore that manages collections of objects in memory, tracking inserts, deletes, and
updates, and propagating changes to the persistent store as needed. You can get the EOEditingContext that
contains an object by sending the objecediingContext message.

Object and Class Metadata Access

One of the larger groups of methods in the EOEnterpriseObject interface provides information about an
object’s properties. Most of these methods consult an EOClassDescription to provide their answers. An
object’'sclassDescriptionmethod returns it’s class description. See the EOClassDescription class
specification for the methods it implements. Methods you can send directly to an enterprise object include
entityName, which provides the name of the entity mapped to the receiver'sal&sespertyKeys, which

returns the names of all the receiver’s class properties, attributes and relationships aitebatekeys,

which returns just the names of the attributes.

Some methods return information about relationshgi3neRelationshipKeysand
toManyRelationshipKeysreturn the names of the receiver’s relationships, vidilleManyKey: tells

which kind a particular relationship deleteRuleForRelationshipKey:indicates what should happen to

the receiver’s relationships when it's deleted. SimilanynsDestinationObjectsForRelationshipKey:

indicates what should happen when another object is added to or removed from the receiver’s relationship.
Another methodglassDescriptionForDestinationKey; returns the EOClassDescription for the objects at

the destination of a relationship.

19

20

Snapshots

The key-value coding methods define a general mechanism for accessing an object’s properties, but you first
have to know what those properties are. Sometimes, however, the Framework needs to preserve an object’s
entire state for later use, whether to undo changes to the object, compare the values that have changed, or
just keep a record of the changes. The snapshotting methods provide this service, extracting or setting all
properties at once and performing the necessary conversions for proper behapitotreturns a

dictionary containing all the receiver’s properties, apdateFromSnapshot:sets properties of the

receiver to the values in a snapshot.

A special kind of snapshot is also used to merge an object’s uncommitted changes with changes that have
been committed to the external store since the object was fetched. These methods are
changesFromSnapshoandreapplyChangesFromDictionary..

Writing an Enterprise Object Class

Some of the EOEnterpriseObject methods are for enterprise objects to implement or override, and some are
meant to be used as defined by the Framework. Many methods are used internally by the Framework and
rarely invoked by application code. The tables in this section highlight the methods that you typically
override or implement in a custom enterprise object.

Creation
—init Designated initializer.
— initwithEditingContext:classDescription:globallD: Optional initializer.

Performs additional initialization after the object is

— awakeFromFetchInEditingContext: fetched.

Performs additional initialization after the object is

— awakeFrominsertionIinEditingContext: .
created in memory.

Key-Value Coding: Accessing Properties and Relationships

— setKey. Sets the value for the property named key.

— key Retrieves the value for the property named key.
—addToKey. Adds an object to a relationship property named key.
— removeFromKey: Removes an object from the property named key.

Handles a failure of takeValue:forKey: to find a

— handleTakeValue:forUnboundKey: property.

Classes:

Key-Value Coding: Accessing Properties and Relationships

— handleQueryWithUnboundKey:

Handles a failure of valueForKey: to find a property.

— unableToSetNullForKey:

Handles an attempt to set a non-object property’s value
to nil.

Validation

— validateKey.

Validates a value for the property named key.

— validateForDelete

Validates all properties before deleting the receiver.

— validateForlnsert

Validates all properties before inserting the receiver.

— validateForSave

Validates all properties before saving the receiver.

— validateForUpdate

Validates all properties before updating the receiver.

21

22

Classes:

EOKeyValueCoding

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOKeyValueCoding.h

Protocol Description

The EOKeyValueCoding informal protocol defines Enterprise Objects Framework’s main data transport
mechanism, in which the properties of an object are accessed indirectly by n&eyg (ather than

directly through invocation of an accessor method or as instance variables. Thus, all of an object’s
properties can be accessed in a consistent manner. the Framework additions to NSObject provide default
implementations of EOKeyValueCoding, which are sufficient for most purposes.

The basic methods for accessing an object’s valudsalka¥®alue:forKey:, which sets the value for the
property identified by the specified key, armdueForKey:, which returns the value for the property

identified by the specified key. The default implementations provided by NSObject use the accessor
methods normally implemented by objects (or to access instance variables directly if need be), so that you
don’t have to write special code simply to integrate your objects into the Enterprise Objects Framework.

The corresponding methotikeStoredValue:forKey: andstoredValueForKey: are similar, but they're
considered to be a private API, for use by the Framework for transporting data to atrds$tedsources.

For exampletakeStoredValue:forKey: is used to initialize an object’s properties with values fetched from

the database, wheretakeValue:forKey: is used to modify an object’s properties to values provided by a
user or other business logic. How these methods work and how they're used by the framework is discussed
in more detail in the section “Stored Value Methods.”

Both the basic and stored value key-value coding methods cache attribute bindings for both accessor
methods and instance variables, making lookups efficient. The nfaibbAllKeyBindings is provided
to clear these bindings—as you should when you add or modify a class in the run-time system.

The the methodaccessinstanceVariablesDirecthanduseStoredAccessoare used by enterprise object
classes to modify the behavior of the default implementations of key-value coding methods. The remaining
methodshandleQueryWithUnboundKey:, handleTakeValue:forUnboundKey:, and
unableToSetNullForKey:, are provided to handle error conditions. The default versions of
handleQueryWithUnboundKey: andhandleTakeValue:forUnboundKey: raise

EOUnknownKeyException, with the target objde(TargetObjectUserIinfoKgynd key
(EOUNnknownUserInfoKgyin the user info.

For more information on EOKeyValueCoding, see the sections:

» Stored Value Methods
» Type Checking and Type Conversion

23

Method Types

Accessing values
— storedValueForKey:
— takeStoredValue:forKey:
— takeValue:forKey:
— valueForKey:

Changing default behavior
+ accesslinstanceVariablesDirectly
+ useStoredAccessor

Flushing key bindings
+ flushAllKeyBindings

Handling error conditions
— handleQueryWithUnboundKey:
— handleTakeValue:forUnboundKey:
— unableToSetNullForKey:

Class Methods

24

accesslinstanceVariablesDirectly
+ (BOOL)accesslInstanceVariablesDirectly

Returns YES if the key-value coding methods should access the corresponding instance variable directly on
finding no accessor method for a property. Returns NO if they shouldn’t. NSObject’s implementation of this
method returns YES. Subclasses can override it to return NO, in which case the key-value coding methods
won't access instance variables.

flushAllKeyBindings
+ (void)flushAllKeyBindings
Invalidates the cached key binding information for all classes (caches are kept of key-to-method or instance

variable bindings in order to make key-value coding efficient). This method should be invoked whenever a
class is modified in or removed from the run-time system.

useStoredAccessor
+ (BOOL)useStoredAccessor

Returns YES if the stored value methagte edValueForKey: andtakeStoredValue:forKey:) should use
private accessor methods in preference to public accessors. Returning NO causes the stored value methods

Classes:

to use the same accessor method-instance variable search order as the corresponding basic key-value coding
methodsyalueForKey: andtakeValue:forKey:). NSObject’s implementation of this method returns YES.

Instance Methods

handleQueryWithUnboundKey:
— (id)handleQueryWithUnboundKey: (NSString *key

Invoked fromvalueForKey: when it finds no property binding faey NSObject’s implementation raises
an EOUnknownKeyException, with the target objé&DTargetObjectUserinfoKgynd key
(EOUnknownUserInfoKéyin the user info. Subclasses can override this method to handle the query in
some other way.

handleTakeValue:forunboundKey:

— (void)handleTakeValuefid)value
forUnboundKey: (NSString *key

Invoked fromtakeValue:forKey: when it finds no property binding faey NSObject’'s implementation

raises an EOUnknownKeyException, with the target obfeGargetObjectUserinfoKgyand key
(EOUnknownUserInfoKeyin the user info. Subclasses can override it to handle the request in some other
way.

storedValueForKey:

— (id)storedValueForKey:(NSString *key
Returns the property identified kgy This method is used when the value is retrieved for storage in an
object store (generally, this is ultimately in a database) or for inclusion in a snapshot. The default

implementation provided by the Framework additions to NSObject is similar to the implementation of
valueForKey:, but it resolve&eywith a different method-instance variable search order:

1. Searches for a private accessor method baskey{a method preceded by an underbar). For example, with
a key of “lastName”storedValueForKey: looks for a method namedjetLastNameor _lastName.

2. If a private accessor isn’t found, searches for an instance variable bdsthad returns its value directly.
For example, with a key of “lastNametpredValueForKey: looks for an instance variable naméastName
or lastName

3. If neither a private accessor or an instance variable is fetorddValueForKey: searches for a public
accessor method basedksy For the key “lastName”, this would lpetLastNameor lastName

4. If keyis unknown storedValueForKey: callshandleTakeValue:forUnboundKey:.

25

26

This different search order allows an object to bypass processing that is performed before returning a value
through public API. However, if you always want to use the search ordalieForKey:, you can

implement the class methadeStoredAccessoto return NO. And as withalueForKey:, you can prevent

direct access of an instance variable with the metieodass methodccessinstanceVariablesDirectly

takeStoredValue:forKey:

— (void}akeStoredValue{id)value
forKey: (NSString *key

Sets the property identified kgyto value This method is used to initialize the receiver with values from

an object store (generally, this is ultimately from a database) or to restore a value from a snapshot. The
default implementation provided by the Framework additions to NSObject is similar to the implementation
of takeValue:forKey:, but it resolve&eywith a different method-instance variable search order:

1. Searches for a private accessor method baskey{a method preceded by an underbar). For example, with
a key of “lastName”takeStoredValue:forKey: looks for a method namedetLastName.

2. If a private accessor isn't found, searches for an instance variable b&sythod and sets its value directly.
For example, with a key of “lastName&keStoredValue:forKey: looks for an instance variable named
_lastNameor lastName

3. If neither a private accessor or an instance variable is ftakeBtoredValue:forkKey: searches for a public
accessor method basedk®y For the key “lastName”, this would lsetLastName.

4. If keyis unknownstoredValueForKey: callshandleTakeValue:forUnboundKey:.

This different search order allows an object to bypass processing that is performed before setting a value
through public API. However, if you always want to use the search ortikaialue:forKey:, you can
implement the class methadeStoredAccessoto return NO. And as withalueForKey:, you can prevent

direct access of an instance variable with the meti®dass methodccessinstanceVariablesDirectly

takeValue:forKey:
— (voidtakeValue:(id)value
forKey: (NSString *key

Sets the value for the property identifieddeyto value invokinghandleTakeValue:forUnboundKey: if
the receiver doesn’t recognikeyandunableToSetNullForKey: if valueis nil andkeyidentifies a scalar

property.
The default implementation provided by the Framework additions to NSObject works as follows:
1. Searches for a public accessor method of the $etidey:, invoking it if there is one.

2. If a public accessor method isn’t found, searches for a private accessor method of tise&eyn invoking
it if there is one.

Classes:

3. If an accesor method isn’'t found and the class methoessinstanceVariablesDirectlyeturns YES,
takeValue:forKey: searches for an instance variable basddgand sets the value directly, autoreleasing the
old value and retaining the new one. For the key “lastName”, this woulth&iiNameor lastName

4. If neither an accessor method nor an instance variable is found, the default implementation invokes
handleTakeValue:forUnboundKey:.

unableToSetNullForKey:

— (voidlunableToSetNilForKey:(NSString *key
Invoked fromtakeValue:forKey: (andtakeStoredValue:forKey:) when it’s given ail value for a scalar
property (such as @nt or afloat). NSObject’s implementation raises an NSlInvalidArgumentException.

Subclasses can override it to handle the request in some other way, such as by substituting zero or a sentinel
value and invokingakeValue:forKey: again.

valueForKey:
— (id)valueForKey:(NSString *key

Returns the value for the property identifiedkey invokinghandleQueryWithUnboundKey: if the
receiver doesn'’t recognizey

The default implementation provided by the Framework additions to NSObject works as follows:

1. Searches for a public accessor method bas&dyFRor example, with a key of “lastName/’alueForKey:
looks for a method namegbtLastNameor lastName

2. If a public accessor method isn’t found, searches for a private accessor method baygd orethod
preceded by an underbar). For example, with a key of “lastNamalefeForKey: looks for a method named
_getLastNameor _lastName.

3. If an accesor method isn't found and the class meihoessinstanceVariablesDirectlyeturns YES,
valueForKey: searches for an instance variable baseldayand returns its value directly. For the key
“lastName”, this would belastNameor lastName

4. If neither an accessor method nor an instance variable is found, the default implementation invokes
handleQueryWithUnboundKey:.

27

28

Classes:

EOKeyValueCoding

Stored Value Methods

The stored value methodgpredValueForKey: andtakeStoredValue:forKey:, are used by the
framework to store and restore an enterprise object’s properties, either from the database or from an
in-memory snapshot. This access is considered private to the enterprise object and is invoked by the
framework to effect persistence on the object’s behalf.

On the other hand, the basic key-value coding methatiseForKey: andtakeValue:forKey:, are the
public API to an enterprise object. They are invoked by clients external to the object, such as for interactions
with the user interface or with other enterprise objects.

All of the key-value coding methods access an object’s properties by invoking property-specific accessor
methods or by directly accessing instance variables. The basic methods resolve the specified property key
as follows:

1. Search for a public accessor method based on the specified key, invoking it if there is one. For example, with
a key of “lastName"takeValue:forKey: looks for a method namesey:., andvalueForKey: looks for a
method namedetLastNameor lastName

2. If a public accessor method isn't found arsgéStoredAccessoreturns YES, the basic methods search for a
private accessor method based on the key. For example, with a key of “lastideed)ue:forKey: looks
for a method namedseKey., andvalueForKey: looks for a method namedjetLastNameor _lastName

3. If an accesor method isn’'t found, the basic methods search for an instance variable based on the key and set
the value directly. For the key “lastName”, this would lastNameor lastName Note that lastNameis used
only if useStoredAccessoreturns YES.

The stored value methods use a different search order for resolving the property key: they search for a
private accessor first, then for an instance variable, and finally for a public accessor. Enterprise object
classes can take advantage of this distinction to simply set or get values when properties are accessed
through the private API (on behalf of a trusted source) and to perform additional processing when properties
are accessed through the public API. Put another way, the stored value methods allow you bypass the logic
in your public accessor methods, whereas the basic key-value coding methods execute that logic.

The stored value methods are especially useful in cases where property values are interdependent. For
example, suppose you need to update a total whenever an dijectsproperty is set:

- (void)setBonus : (double)newBonus {
[self willChange];
_total += (newBonus - _bonus);
_bonus = newBonus;

}

This total-updating code should be activated when the object is updated with values provided by a user
(through the user interface), but not whenlibaus property is restored from the database. Since the

29

30

Framework restores the property usiageStoredValue:forKey: and since this method accesses the
_bonusinstance variable in preference to calling the public accessor, the unnecessary (and possibly
harmful) recomputation oftotal is avoided. If the object actually wants to intervene when a property is set
from the database, it has two options:

* Implement_setBonus:.
» Replace the Framework’s default stored value search order with the same search order used by the basic
methods by overriding the class methm#StoredAccessoto return NO.

Type Checking and Type Conversion

The default implementations of the key-value coding methods accept any object as a value, and do no type
checking or type conversion among object classes. It's possible, for example, to pass an NSString to
takeValue:forKey: as the value for a property the receiver expects to be an NSDate. The sender of a
key-value coding message is thus responsible for ensuring that a value is of the proper class, typically by
using thevalidateValue:forKey: method to coerce it to the proper type. The interface layer’s
EODisplayGroup uses this on all values received from interface user objects, for example, as well as relying
on number and date formatters to interpret string values typed by the user. For more information on the
validateValue:forKey: method, see the EOValidation informal protocol specification.

The key-value coding methods handle one special case with regard to value types. For enterprise objects
that access numeric values as C scalar types, these methods automatically convert between the scalar types
and NSNumber objects. For example, suppose your enterprise object defines these accessor methods:

— (voidsetSalary(unsigned inBalary
— (unsigned inyalary

For thesetSalary:methodtakeValue:forKey: converts the object value it receives as the argument for the
“salary” key to arunsigned intand passes it aalaryto setSalary: Similarly,valueForKey: converts the
return value of thealary method to an NSNumber and returns that.

The default implementations of the key-value coding methods support the following scalar types:

char unsigned char
short unsigned short
int unsigned int
long unsigned long
float double

Classes:

Object values are converted to these types with the standard maedsaydue, intValue, floatValue,
and so on. Note that the key-value coding methods don't check that an object value actually responds to
these messages; this can result in a run-time error if the object doesn’t respond to the appropriate message.

One type of conversion these methods can't perform is thatifdima scalar value. C scalar values define

no equivalent of a database system’s NULL value, so these must be handled by the object itself. Upon
encounteringnil while setting a scalar valuekeValue:forKey: invokesunableToSetNullForKey:,

which by default simply raises an exception. Enterprise object classes that use scalar values which may be
NULL in the database should override this method to substitute the appropriate scalar valye for
reinvokingtakeValue:forKey: to set the substitute value.

31

32

Classes:

EOKeyValueCodingAdditions

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOKeyValueCoding.h

Protocol Description

The EOKeyValueCodingAdditions informal protocol defines extensions to the basic EOKeyValueCoding
informal protocol. One pair of methodakeValuesFromDictionary: andvaluesForKeys; gives access

to groups of properties. Another pair of methddkeValue:forKeyPath: andvalueForKeyPath: give

access to properties across relationships with key paths of theslatianship.propertyfor example,
“department.name”. the Framework additions to NSObject provide default implementations of
EOKeyValueCodingAdditions, which you rarely (if ever) need to override.

EONull in Collections

Because collection objects such as NSArray and NSDictionary can’t cailtagma valuenil must be
represented by a special object, EONull. EONull provides a single instance that represents the NULL value
for object attributes. The default implementationsaiEValuesFromDictionary: andvaluesForKeys:

translate EONull andil between NSDictionaries and enterprise objects so your objects don't have to
explicitly test for EONull values.

Instance Methods

takeValue:forKeyPath:

— (void)akeValue:(id)value
forKeyPath: (NSString *keyPath

Sets the value for the property identifieddeyPathto value A key path has the formelationship.property
(with one or more relationships); for example “movieRole.roleName” or “movieRole.Talent.lastName”.
NSObject’'s implementation of this method gets the destination object for each relationship using
valueForKey:, and sends the final objectakeValue:forKey: message witlralueandproperty

33

34

takeValuesFromDictionary:
— (voidtakeValuesFromDictionary:(NSDictionary *aDictionary
Sets properties of the receiver with values fadbictionary, using its keys to identify the properties.

NSObject’'s implementation invokéskeValue:forkey: for each key-value pair, substituting for
EONull values imaDictionary.

valueForKeyPath:

— (id)valueForKeyPath:(NSString *keyPath
Returns the value for the derived property identifiettdyyPath A key path has the form
relationship.propertywith one or more relationships); for example “movieRole.roleName” or

“movieRole.Talent.lastName”. NSObject’'s implementation of this method gets the destination object for
each relationship usingilueForKey:, and returns the result o/alueForKey: message to the final object.

valuesForKeys:
— (NSDictionary *yaluesForKeys(NSArray *)keys
Returns a dictionary containing the property values identified by e&ely®NSObject’s implementation

invokesvalueForKey: for each key irkeys substituting EONull values in the dictionary for returnéd
values.

Classes:

EOMessageHandlers

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOEditingContext.h

Category Description

The EOMessageHandlers informal protocol declares methods used for error reporting and determining
fetch limits. See the EOEditingContext, EODatabaseContext (EOAccess), and EODisplayGroup
(EOInterface) class specifications for more information.

Message handlers are primarily used to implement exception handling in the interface layer’s
EODisplayGroup, and wouldn't ordinarily be used in a command line tool or WebObjects application.

Instance Methods

editingContext:presentErrorMessage:

— (void)editingContext:(EOEditingContext *anEditingContext
presentErrorMessage(NSString *message

Invoked byanEditingContextthis method should presenessagéo the user in whatever way is
appropriate (whether by opening an attention panel or printing the message in a terminal window, for
example). This message is sent only if the method is implemented.

editingContext: shouldContinueFetchingWithCurrentObjectCount:originalLimit:
objectStore:

— (BOOL)editingContext:(EOEditingContext *xnEditingContext
shouldContinueFetchingWithCurrentObjectCount: (unsignedyount
originalLimit: (unsignedjmit
objectStore(EOObjectStore YbjectStore

Invoked by arobjectStorgsuch as an access layer EODatabaseContext) to allow the message handler for
anEditingContex{often an interface layer EODisplayGroup) to prompt the user about whether or not to
continue fetching the current result set. Thantargument is the number of objects fetched sdiffiait. is

the original limit specified an EOFetchSpecification. This message is sent only if the method is
implemented.

35

36

Classes:

EOObserving

Adopted By: EODelayedObserver
EOEditingContext

Declared In: EOControl/EOObserver.h

Protocol Description

The EOObserving protocol,a part of EOControl’s change tracking mechanism, declares the
objectWillChange: method, used by observers to receive notifications that an object has changed. This
message is sent by EOObserverCenter to all observers registered wid@itserver:forObject:

method. For an overview of the general change tracking mechanism, see “Tracking Enterprise Objects
Changes” in the introduction to the EOControl Framework. The EOObserving protocol

Instance Methods

objectWillChange:
— (void)objectWillChange:(id)anObject

Informs the receiver thanObjeck state is about to change. The receiver can resudijects state, mark
or record it as changed, and examine it later (such as at the end of the run loop) to see how it's changed.

37

38

Classes: EOQualifierEvaluation

EOQualifierEvaluation

Adopted By:

EOKeyValueQualifier
EOKeyComparisonQualifier
EOANndQualifier
EOOrQualifier
EONotQualifier

Protocol Description

The EOQualifierEvaluation protocol defines a metleedjuateWithObject:, that performs in-memory
evaluation of qualifiers. All qualifier classes whose objects can be evaluated in memory must implement
this protocol.

Instance Methods

evaluateWithObject:
— (BOOL)evaluateWithObject:object

Returns YES if the argumeabjectsatisfies the qualifier, NO otherwise. This method can raise one of
several possible exceptions if an error occurs, depending on the implementation.

39

40

Classes:

EORelationshipManipulation

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOClassDescription.h

Protocol Description

The EORelationshipManipulation informal protocol builds on the basic EOKeyValueCoding informal
protocol to allow you to modify to-many relationship properties. the Framework additions to NSObject
provide default implementations of EORelationshipManipulation, which you rarely (if ever) need to
override.

The primitive methodaddObject:toPropertyWithKey: andremoveObject:fromPropertyWithKey:

add and remove single objects from to-many relationship arrays. The two other methods in the informal
protocol,addObject:toBothSidesOfRelationshipWithKey: andremoveObiject:
fromBothSidesOfRelationshipWithKey:, are implemented in terms of the two primitives to handle
reciprocal relationships. These methods find the inverse relationship to the one identified by the specified
key (if there is such an inverse relationship) ancadsbject:toPropertyWithKey: andremoveObiject:
fromPropertyWithKey: to alter both relationships, whether they’re to-one or to-many.

The primitive methods check first for a method you might implenaetofToKey or removeFromKey,

invoking that method if it's implemented, otherwise using the basic key-value coding methods to do the
work. Consequently, you rarely need to provide your own implementations of
EORelationshipManipulation. Rather, you can provide relationship acceaddi®Key or

removeFromKey) whenever you need to implement custom business logic.

Instance Methods

addObject:toBothSidesOfRelationshipWithKey:

— (void)addObiject:(id)anObject
toBothSidesOfRelationshipWithKey:(NSString *key

Sets or addanObjectas the destination for the receiver’s relationship identifidaipwnd also sets or adds
the receiver foanObjecss reciprocal relationship if there is one. For a to-one relationahipbjectis set
usingtakeValue:forKey:. For a to-many relationshipnObijectis added usingddObject:
toBothSidesOfRelationshipWithKey:.

This method also properly handles remowsetf andanObjectfrom their previous relationship as needed.
For example, if an Employee object belongs to the Research department, invoking this method with the
Maintenance department removes the Employee from the Research department as well as setting the
Employee’s department to Maintenance.

41

42

addObject:toPropertyWithKey:

— (void)addObiject:(id)anObject
toPropertyWithKey: (NSString *key

AddsanObijectto the receiver’s to-many relationship identifiedkey without setting a reciprocal
relationship. Similar to the implementationtakeValue:forKey:, NSObject’s implementation of this
method first attempts to invoke a method of the fadaiToKey.. If the receiver doesn’t have such a method,
this method gets the property array usmtueForKey: and operates directly on that. For a to-many
relationship, this method addeObjectto the array if it is not already in the array. For a to-one relationship,
this method replaces the previous value &itbject.

removeObject:fromBothSidesOfRelationshipWithKey:

— (voidyemoveObject:(id)anObject
fromBothSidesOfRelationshipWithKey:(NSString *key

RemovesanObjectfrom the receiver’s relationship identified kgy and also removes the receiver from
anObjecks reciprocal relationship if there is one. For a to-one relationahipbjectis removed using
takeValue:forKey: with nil as the value. For a to-many relationshipObjectis removed using
removeObject:fromPropertyWithKey: .

removeObject:fromPropertyWithKey:

— (voidyemoveObject:(id)anObject
fromPropertyWithKey: (NSString *key

RemovesanObjectfrom the receiver’'s to-many relationship identifieddey without modifying a
reciprocal relationship. Similar to the implementatiotaskValue:forKey:, NSObject’'s implementation

of this method first attempts to invoke a method of the femoveFromKey.. If the receiver doesn’t have
such a method, this method gets the property array ualngForKey: and operates directly on that. For
a to-many relationship, this method remaoame®bjectirom the array. For a to-one relationship, this method
replacesaanObjectwith nil.

Classes:

EOQualifierComparison

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOQualifier.h

Protocol Description

The EOQualifierComparison informal protocol defines methods for comparing values. These methods are
used for evaluating qualifiers in memory. Though declared for NSObject, most of these methods work
properly only with value classes: NSString, NSDate, NSNumber, NSDecimalNumber, and EONull

Method Types

Testing value objects
— doesContain:
— isEqualTo:
— isGreaterThan:
— isGreaterThanOrEqualTo:
—isLessThan:
— isLessThanOrEqualTo:
— isLike:
— isCaselnsensitiveLike:
— isNotEqualTo:

Instance Methods

doesContain:
— (BOOL)doesContain{(id)anObject

Returns YES if the receiver contaersObject NO if it doesn’t. NSObject’s implementation of this method
returns YES only if the receiver is a kind of NSArray and contaii®bject In all other cases it returns NO.

43

44

isCaselnsensitiveLike:
— (BOOL)isCaselnsensitiveLike(NSString *anObject

Returns YES if the receiver is a case-insensitive mataStimg NO if it isn’t. See “Using Wildcards” in

the EOQuialifier class specification for the wildcard characters allowed. NSObject's implementation returns

NO; NSString’s performs a proper case-insensitive comparison.

See also: —isLike:, —doesContain; —isEqualTo:, —isGreaterThan:, —isGreaterThanOrEqualTo:,
—isLessThan; —isLessThanOrEqualTo:,—isNotEqualTo:

isEqualTo:
— (BOOL)sEqualTo:(id)anObject

Returns YES if the receiver is equalaioObject NO if it isn’t. NSObject’'s implementation invokes
isEqual: and returns the result.

See also: —doesContain; —isGreaterThan:, —isGreaterThanOrEqualTo:, —isLessThan;
—isLessThanOrEqualTo:, —isLike:, —isCaselnsensitiveLike; —isNotEqualTo:

isGreaterThan:
— (BOOL)isGreaterThan:(id)anObject

Returns YES if the receiver is greater tlaa®©bject NO if it isn’t. NSObject’s implementation invokes
compare: and returns YES if the result is NSOrderedDescending.

See also: —doesContain; —isEqualTo:, —isGreaterThanOrEqualTo:, —isLessThan;
—isLessThanOrEqualTo:, —isLike:, —isCaselnsensitiveLike; —isNotEqualTo:

isGreaterThanOrEqualTo:
— (BOOL)isGreaterThanOrEqualTo: (id)anObject

Returns YES if the receiver is greater than or equah@bject NO if it isn’t. NSObject’s implementation
invokescompare: and returns YES if the result is NSOrderedAscending.

See also: —doesContain; —isEqualTo:, —isGreaterThan:, —isLessThan; —isLessThanOrEqualTo;,
—isLike:, —isCaselnsensitiveLike; —isNotEqualTo:

Classes:

isLessThan:
— (BOOL)sLessThan{id)anObject

Returns YES if the receiver is less ttarObject NO if it isn’'t. NSObject’s implementation invokes
compare: and returns YES if the result is NSOrderedAscending.

See also: —doesContain; —isEqualTo:, —isGreaterThan:, —isGreaterThanOrEqualTo:,
—isLessThanOrEqualTo:, —isLike:, —isCaselnsensitiveLike; —isNotEqualTo:

isLessThanOrEqualTo:
— (BOOL)isLessThanOrEqualTo:(id)anObject

Returns YES if the receiver is less than or equahtobject NO if it isn’t. NSObject’s implementation
invokescompare: and returns YES if the result is NSOrderedAscending or NSOrderedSame.

See also: —doesContain; —isEqualTo:, —isGreaterThan:, —isGreaterThanOrEqualTo:,
—isLessThan; —isLike:, —isCaselnsensitiveLike; —isNotEqualTo:

isLike:
— (BOOL)sLike: (NSString *rString

Returns YES if the receiver match&Stringaccording to the semantics of the Slixe comparison
operator, NO if it doesn’t. See “Using Wildcards” in the EOQualifier class specification for the wildcard
characters allowed. NSObject’s implementation returns NO; NSString’s performs a proper comparison.

See also: —isCaselnsensitiveLike; —doesContain; —isEqualTo:, —isGreaterThan:,
—isGreaterThanOrEqualTo:, —isLessThan; —isLessThanOrEqualTo:, —isNotEqualTo:

isNotEqualTo:
— (BOOL)isNotEqualTo:(id)anObject

Returns YES if the receiver is not equahtiObject NO if it is. NSObject’s implementation invokes
isequal:, inverts the result, and returns it.

See also: —doesContain; —isEqualTo:, —isGreaterThan:, —isGreaterThanOrEqualTo:,
—isLessThan; —isLessThanOrEqualTo:, —isLike:, —isCaselnsensitiveLike:

45

46

Classes:

EOSortOrderingComparison

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOSortOrdering.h

Protocol Description

The EOSortOrderingComparison informal protocol defines methods for comparing values. These methods
are used for sorting value objects. Though declared for NSObject, most of these methods work properly
only with value classes: NSString, NSDate, NSNumber, NSDecimalNumber, and EONull

Sorting value objects
— compareAscending:
— compareCaselnsensitiveAscending:
— compareCaselnsensitiveDescending:
— compareDescending:

Instance Methods
compareAscending:
— (NSComparisonResuthmpareAscending(id)anObject

Returns NSOrderedAscendingifiObjectis naturally ordered after the receiver, NSOrderedDescending if
it's naturally ordered before the receiver, and NSOrderedSame if they’re equivalent for ordering purposes.
NSObject’'s implementation of this method simply invokempare..

See also: —compareDescending:—compareCaselnsensitiveAscending:
—compareCaselnsensitiveDescending:

compareCaselnsensitiveAscending:
— (NSComparisonResutfhympareCaselnsensitiveAscendingd)anObject

Returns NSOrderedAscendingaifiObjectis naturally ordered—ignoring case—after the receiver,
NSOrderedDescending if it's naturally ordered before the receiver, and NSOrderedSame if they're
equivalent for ordering purposes. NSObject’s implementation of this method irnakesare:, while
NSString’s invokegaselnsensitiveCompare:

See also: —compareCaselnsensitiveDescending:-compareAscending; —compareDescending:

a7

48

compareCaselnsensitiveDescending:
— (NSComparisonResuthmpareCaselnsensitiveDescendingd)anObject

Returns NSOrderedAscendingaiObjectis naturally ordered—ignoring casdseforethe receiver,
NSOrderedDescending if it's naturally ordeedtérthe receiver, and NSOrderedSame if they're equivalent
for ordering purposes. NSObject's implementation of this method inweakepare: and inverts the result,
while NSString’s invokesaselnsensitiveCompareand inverts the result.

See also: —compareCaselnsensitiveAscending:-compareDescending:.—compareAscending:

compareDescending:
— (NSComparisonResuthmpareDescendingid)anObject
Returns NSOrderedAscendingaifiObjectis naturally orderetieforethe receiver, NSOrderedDescending

if it's naturally orderedfter the receiver, and NSOrderedSame if they’re equivalent for ordering purposes.
NSObiject’'s implementation of this method simply invokempare: and inverts the result.

See also: —compareAscending; —compareCaselnsensitiveDescending:
—compareCaselnsensitiveAscending:

Classes:

EOValidation

(informal protocol)

Category Of: NSObject

Declared In: EOControl/EOClassDescription.h
Inherits From: java.lang.Object

Package: com.apple.client.eocontrol

Protocol Description

The EQOValidation informal protocol defines the way that enterprise objects validate their values. The
validation methods check for illegal value types, values outside of established limits, illegal relationships,
and so on. the Framework additions to NSObject provide default implementations of EOValidation, which
are described in detail in this specification.

There are two kinds of validation methods. The first validates individual properties, and the second validates
an entire object to see if it's ready for a specific operation (inserting, updating, and deleting). The two
different types are discussed in more detail in the sections “Validating Individual Properties” and
“Validating Before an Operation.”

Instance Methods

validateForDelete
— (NSException ®alidateForDelete

Confirms that the receiver can be deleted in its current state, retaiinifig can or an NSException that
the sender may raise if it can’t. For example, an object can’'t be deleted if it has a relationship with a delete
rule of EODeleteRuleDeny and that relationship has a destination object.

NSObiject’'s implementation sends the receiver's EOClassDescription a message (which performs basic
checking based on the presence or absence of values). Subclasses shoudtrarskienplementation

before performing their own validation, and should combine any exception retursaddss

implementation with their own:

49

50

- (NSException *)validateForDelete
{

NSException *exception = [super validateForDelete];

if ([balance intValue] != 0) {
NSException *validationExample = [NSException
validationExceptionWithFormat: @"The balance must be zero."];
if (lexception)
exception = validationException;
else
exception = [NSException aggregateExceptionWithExceptions:
[NSArray arrayWithObjects:exception, validationException, nil]];

}

return exception;

}

See also: — propagateDeleteWithEditingContext: (EOEnterpriseObject),
+ validationExceptionWithFormat: (NSException Additions)

validateForinsert
— (NSException ®alidateForlnsert

Confirms that the receiver can be inserted in its current state, retoiinihiggcan or an NSException that
the sender may raise if it can't. NSObject’s implementation simply inwaketateForSave

The methodalidateForSaveis the generic validation method for when an object is written to the external
store. If an object performs validation that isn’t specific to insertion, it should\gidateForSave

validateForSave
— (NSException ®alidateForSave

Confirms that the receiver can be saved in its current state, retailnifigcan or an NSException that the
sender may raise if it can’'t. NSObject’s implementation sends the receiver’s EOClassDescription a
validateObjectForSave:message, then iterates through all of the receiver’s properties, invoking
validateValue:forKey: for each one. If this results in more than one exception, the exception returned
contains the additional ones in itserinfo dictionary under the EOAdditionalExceptions key. Subclasses
should invokesupers implementation before performing their own validation, and should combine any
exception returned byupers implementation with their own:

Classes:

- (NSException *)validateForSave

{

NSException *exception = [super validateForDelete];

if ([balance intValue] != 0) {
NSException *validationExample = [NSException
validationExceptionWithFormat: @"The balance must be zero."];
if (lexception)
exception = validationException;
else
exception = [NSException aggregateExceptionWithExceptions:
[NSArray arrayWithObjects:exception, validationException, nil]];

}

return exception;

}

Enterprise objects can implement this method to check that certain relations between properties hold; for
example, that the end date of a vacation period follows the begin date. To validate an individual property,
you can simply implement a method for it as described uwradielateValue:forKey: .

See also: + validationExceptionWithFormat: (NSException Additions),
+ aggregateExceptionWithExceptions{NSException Additions)

validateForUpdate
— (NSException ®alidateForUpdate

Confirms that the receiver can be inserted in its current state, retaiinihiggcan or an NSException that
the sender may raise if it can’t. NSObject's implementation simply inwadetateForSave

The method/alidateForSaveis the generic validation method for when an object is written to the external
store. If an object performs validation that isn't specific to updating, it shouldvgdidiate ForSave

validateValue:forKey:
— (NSException ®alidateValue:(id *)valuePointerforKey: (NSString *key

Confirms that the value referencedajyuePointeiis legal for the receiver’s property namedkby Returns

nil if it can confirm that the value is legal or an NSException that the sender may raise if it can’t. The
implementation can provide a coerced value by putting the new valuwatbePointer. This lets you
convert strings to dates or numbers or maybe convert strings to an enumerated type value. NSObject’s
implementation sendsvalidateValue:forKey: message to the receiver’'s EOClassDescription. If that
message doesn’t return an exception, it checks for a method of thedimlateKey. (for example,
validateBudget: for akeyof “budget”) and invokes it, returning the result.

51

52

Enterprise objects can implement individualidateKey. methods to check limits, test for nonsense values,
and otherwise confirm individual properties. To validate multiple properties based on relations among them,
override the appropriatalidateFor... method.

See also: + validationExceptionWithFormat: (NSException Additions)

Classes:

EOValidation

Validating Individual Properties

The most general method for validating individual propertigiilate Value:forKey:, validates a property
indirectly by name (or key). This method is responsible for two things: coercing the value into an
appropriate type for the object, and validating it according to the object’s rules. The default implementation
provided by NSObject consults the object's EOClassDescription (using the EOEnterpriseObject informal
protocol methoatlassDescriptior) to coerce the value and to check for basic errors, suchudk\alue

when that isn't allowed. If no basic errors exist, this default implementation then validates the value
according to the object itself. It searches for a method of thevialidateKey. and invokes it if it exists.

These are the methods that your custom classes can implement to validate individual properties, such as
validateAge to check that the value the user entered is within acceptable limitgalldete Age method

sholuld return nil, indicating the value is acceptable, or an NSException created by calling the NSException
methodvalidationException:withFormat: .

Coercion is performed automatically for you (by the EOClassDescription), so all you need handle is
validation itself. Since you can implement custom validation logic indhidateKey. methods, you rarely
need to override the EOValidation methadidateValue:forKey:. Rather, the default implementation
provided by NSObject is generally sufficient.

As an example of how validating a single property works, suppose that Member objects dg&e an

attribute stored as an integer. This attribute has a lower limit of 16, defined by the Member class. Now,
suppose a user types “12” into a text field for the age of a member. The value comes into the Framework as
a string. WhervalidateValue:forKey: is invoked to validate the new value, the method uses its
EOCIlassDescription to convert the string “12” into an NSNumber, then invakdateAge: with that
NSNumber. ThevalidateAge: method compares the age to its limit of 16 and returns an exception to
indicate that the new value is not acceptable:

public void validateAge(java.lang.Object age) throws EOvalidation.Exception {
if ((Number)age).intValue) < 16)
throw new EOValidation.Exception("Age of " + age + " is below minimum.");

}
- (NSException *)validateAge:(NSNumber *)age

{
if ([age intValue] < 16) {
return [NSException
validationExceptionWithFormat: @"Age of %@ is below minimum.", age];

}

return nil;

}

The methodalidationExceptionWithFormat: used in the above example is a method that the Framework
adds to NSException for convenient creation of validation exceptions.

53

When Properties are Validated

The Framework validates all of an object’s properties before the object is saved to an external source—
either inserted or updated. Additionally, you can design your application so that changes to a property’s
value are validated immediately, as soon as a user attempts to leave an editable field in the user interface (in
Java Client and Application Kit applications only). Whenever an EODisplayGroup sets a value in an object,

it sends the object\alidateValue:forKey: message, allowing the object to coerce the value’s type,

perform any additional validation, and return an exception if the value isn't valid. By default, the display
group leaves validation errors to be handled when the object is savedvalglateValue:forkey: only

for type coersion. However, you can use the EODisplayGroup meg¢itdalidatesChangesimmediately:

with an argument of YES to tell the display group to immediately present an attention panel whenever a
validation error is encountered.

Validating Before an Operation

The remaining EOValidation methodsalidateForinsert, validateForUpdate, validateForSave and
validateForDelete—validate an entire object to see if it's valid for a particular operation. These methods
are invoked automatically by the Framework when the associated operation is initiated. NSObject provides
default implementations, so you only have to implement them yourself when special validation logic is
required. For example, you can override these methods in your custom enterprise object classes to allow or
refuse the operation based on property values. For example, a Fee object might refuse to be deleted if it
hasn’'t been paid yet. Or you can override these methods to perform delayed validation of properties or to
compare multiple properties against one another; for example, you might verify that a pair of dates is in the
proper temporal order.

- (NSException *)validateForSave

{
NSException *exception = [super validateForSave];
NSException *myException = nil;

if ([startDate compare:endDate] == NSOrderedDescending) {
myException = [NSException
validationExceptionWithFormat: @"Start date must precede end date."];
}
if (exception && myException) {
exception = [NSException aggregateExceptionWithExceptions:
[NSArray arrayWithObjects:exception, myException, nil]];
} else if (myException) {
exception = myException;
}

return exception;

}

Note that this method also invokaspers implementation. This is important, as the default
implementations of thealidateFor... methods pass the check on to the object’s EOClassDescription, which
performs basic checking among properties, including invokatigateValue:forKey: for each property.

Classes:

The access layer's EOEntityClassDescription class verifies constraints based on an EOModel, such as

delete rules. For example, the delete rule for a Department object might state that it can't be deleted if it still
contains Employee objects.

The method/alidateForSaveis the generic validation method for when an object is written to the external

store. If an object performs validation that isn’t specific to insertion or to updating, it should go in
validateForSave

55

56

Classes:

EOValueMerging

(informal protocol)
Category Of: NSObject

Declared In: EOControl/EOClassDescription.h

Protocol Description

Description forthcoming.

Method Types

Merging values
— changesFromSnapshot:
— reapplyChangesFromDictionary:

Instance Methods

changesFromSnapshot:
— (NSDictionary *rhangesFromSnapshotNSDictionary *snapshot

The result is like a snapshot except that it contains only those keys that refer to uncommitted changes in the
object relative to the given snapshot. For to-many keys, the uncommitted value is an array of two arrays:
uncommitted additions and uncommitted deletions. The return value is autoreleased.

reapplyChangesFromDictionary:
— (voidyeapplyChangesFromDictionary:(NSDictionary *changes

Similar totakeValuesFromDictionary: but thechangedlictionary is not quite the same as a snapshot. For
to-many relationship keys, the value is an array with exactly two arrays in it: the first is an array of objects
to be added to the relation, and the second is an array of objects to be removed from the relation. Attribute
and to-one relationship keys refer to values that should replace the current value. An instance of EONull is
used in thehangedictionary as a placeholder for nil.

57

	The EOControl Framework
	Framework: System/Library/Frameworks/EOInterface.framework
	Introduction
	Tracking Enterprise Objects Changes
	Object Storage Abstraction
	Subclasses of EOObjectStore
	Registering Enterprise Objects
	Servicing Faults

	Classes
	EOArrayDataSource
	Class Description
	Adopted Protocols
	Instance Methods
	initWithClassDescription:editingContext:
	setArray:

	EOAndQualifier
	Class Description
	Adopted Protocols
	Instance Methods
	evaluateWithObject:
	initWithQualifierArray:
	initWithQualifiers:
	qualifiers

	EOClassDescription
	Class Description
	Method Types
	Class Methods
	classDelegate
	classDescriptionForClass:
	classDescriptionForEntityName:
	invalidateClassDescriptionCache
	registerClassDescription:forClass:
	setClassDelegate:

	Instance Methods
	attributeKeys
	awakeObject:fromFetchInEditingContext:
	awakeObject:fromInsertionInEditingContext:
	classDescriptionForDestinationKey:
	createInstanceWithEditingContext:globalID:zone:
	defaultFormatterForKey:
	defaultFormatterForKeyPath:
	deleteRuleForRelationshipKey:
	displayNameForKey:
	entityName
	inverseForRelationshipKey:
	ownsDestinationObjectsForRelationshipKey:
	propagateDeleteForObject:editingContext:
	toManyRelationshipKeys
	toOneRelationshipKeys
	userPresentableDescriptionForObject:
	validateObjectForDelete:
	validateObjectForSave:
	validateValue:forKey:

	Notifications
	EOClassDescriptionNeededForClassNotification
	EOClassDescriptionNeededForEntityNameNotification

	EOClassDescription More
	How Does It Work?
	Using EOClassDescription
	Overriding Methods in an Enterprise Object
	Working with Objects That Don’t Have EOModels
	Creating a Subclass of EOClassDescription

	EOEntityClassDescription
	The EOClassDescription’s Delegate

	EOCooperatingObjectStore
	Class Description
	Method Types
	Instance Methods
	commitChanges
	handlesFetchSpecification:
	ownsGlobalID:
	ownsObject:
	performChanges
	prepareForSaveWithCoordinator:editingContext:
	recordChangesInEditingContext
	recordUpdateForObject:changes:
	rollbackChanges
	valuesForKeys:object:

	EODataSource
	Class Description
	Method Types
	Instance Methods
	classDescriptionForObjects
	createObject
	dataSourceQualifiedByKey:
	deleteObject:
	editingContext
	fetchObjects
	insertObject:
	qualifyWithRelationshipKey:ofObject:

	EODataSource More
	Creating a Subclass
	Manipulating Objects
	Implementing Master-Detail Data Sources

	EODelayedObserver
	Class Description
	Constants
	Adopted Protocols
	Method Types
	Instance Methods
	discardPendingNotification
	objectWillChange:
	observerQueue
	priority
	subjectChanged

	EODelayedObserver More
	Creating a Subclass of EODelayedObserver

	EODelayedObserverQueue
	Class Description
	Method Types
	Class Methods
	defaultObserverQueue

	Instance Methods
	dequeueObserver:
	enqueueObserver:
	init
	notifyObserversUpToPriority:
	runLoopModes
	setRunLoopModes:

	EODelayedObserverQueue More
	Enqueuing a Delayed Observer
	Change Notification
	Observer Proxies

	EODetailDataSource
	Class Description
	Method Types
	Instance Methods
	deleteObject:
	detailKey
	editingContext
	fetchObjects
	initWithMasterClassDescription:detailKey:
	initWithMasterDataSource:detailKey:
	insertObject:
	masterClassDescription
	masterDataSource
	masterObject
	qualifyWithRelationshipKey:ofObject:
	setMasterClassDescription:

	EOEditingContext
	Class Description
	Constants
	Adopted Protocols
	Method Types
	Class Methods
	defaultParentObjectStore
	encodeObject:withCoder:
	initObject:withCoder:
	setDefaultParentObjectStore:
	setSubstitutionEditingContext:
	setUsesContextRelativeEncoding:
	substitutionEditingContext
	usesContextRelativeEncoding

	Instance Methods
	addEditor:
	arrayFaultWithSourceGlobalID:relationshipName:editingContext:
	committedSnapshotForObject:
	currentEventSnapshotForObject:
	delegate
	deleteObject:
	deletedObjects
	editors
	faultForGlobalID:editingContext:
	faultForRawRow:entityNamed:
	forgetObject:
	globalIDForObject:
	hasChanges
	initWithParentObjectStore:
	initializeObject:withGlobalID:editingContext:
	insertedObjects
	insertObject:
	insertObject:withGlobalID:
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs:
	invalidatesObjectsWhenFreed
	isObjectLockedWithGlobalID:editingContext:
	lock
	lockObject:
	lockObjectWithGlobalID:editingContext:
	locksObjectsBeforeFirstModification
	messageHandler
	objectForGlobalID:
	objectsForSourceGlobalID:relationshipName:editingContext:
	objectsWithFetchSpecification:
	objectsWithFetchSpecification:editingContext:
	objectWillChange:
	parentObjectStore
	processRecentChanges
	propagatesDeletesAtEndOfEvent
	recordObject:globalID:
	redo:
	refault:
	refaultObjects
	refaultObject:withGlobalID:editingContext:
	refetch:
	registeredObjects
	removeEditor:
	revert
	revert:
	rootObjectStore
	saveChanges
	saveChanges:
	saveChangesInEditingContext:
	setDelegate:
	setInvalidatesObjectsWhenFreed:
	setLocksObjectsBeforeFirstModification:
	setMessageHandler:
	setPropagatesDeletesAtEndOfEvent:
	setStopsValidationAfterFirstError:
	setUndoManager:
	stopsValidationAfterFirstError
	tryToSaveChanges
	undo:
	undoManager
	unlock
	updatedObjects

	Notifications
	EOEditingContextDidSaveChangesNotification
	EOInvalidatedAllObjectsInStoreNotification
	EOObjectsChangedInStoreNotification
	EOObjectsChangedInEditingContextNotification

	EOEditingContext More
	Other Classes that Participate in Object Graph Management
	Programmatically Creating an EOEditingContext
	Accessing An Editing Context’s Adaptor Level Objects

	Using EOEditingContexts in Different Configurations
	Peer EOEditingContexts
	Figure 1 Peer EOEditingContexts

	Nested EOEditingContexts
	Figure 2 Nested EOEditingContexts

	Getting Data from Multiple Sources
	Figure 3 An EOEditingContext Containing Objects from Multiple Sources

	Fetching Objects
	Managing Changes in Your Application
	Getting Information About Changed Objects
	Undo and Redo
	Saving Changes

	Methods for Managing the Object Graph
	Breaking Retain Cycles
	Discarding Changes to Enterprise Objects
	Refreshing Objects
	Discarding the View of Objects Cached in Memory
	Working with Objects Across Multiple EOEditingContexts
	Updates from the Parent EOObjectStore

	General Guidelines for Managing the Object Graph
	You don’t have to worry about the database...
	...but you do have to worry about the object graph

	Using EOEditingContext to Archive Custom Objects in Web Objects Framework

	EOFault
	Class Description
	Creating an EOFault
	EOFault Behavior
	Examining an EOFault

	Method Types
	Class Methods
	clearFault:
	handlerForFault:
	isFault:
	makeObjectIntoFault:withHandler:
	respondsToSelector:
	targetClassForFault:

	Instance Methods
	autorelease
	class
	conformsToProtocol:
	dealloc
	description
	descriptionWithIndent:
	descriptionWithLocale:
	descriptionWithLocale:indent:
	doesNotRecognizeSelector:
	eoDescription
	eoShallowDescription
	forwardInvocation:
	isKindOfClass:
	isMemberOfClass:
	isProxy
	methodSignatureForSelector:
	release
	respondsToSelector:
	retain
	retainCount
	self
	superclass
	zone

	EOFaultHandler
	Class Description
	Firing a Fault

	Method Types
	Instance Methods
	classForFault:
	completeInitializationOfObject:
	conformsToProtocol:forFault:
	decrementExtraRefCountIsZero
	descriptionForObject:
	extraData
	extraRefCount
	faultWillFire:
	incrementExtraRefCount
	isKindOfClass:forFault:
	isMemberOfClass:forFault:
	methodSignatureForSelector:forFault:
	respondsToSelector:forFault:
	setTargetClass:extraData:
	shouldPerformInvocation:
	targetClass

	EOFetchSpecification
	Class Description
	Adopted Protocols
	Method Types
	Class Methods
	fetchSpecificationWithEntityName:qualifier:sortOrderings:

	Instance Methods
	entityName
	fetchLimit
	fetchesRawRows
	fetchSpecificationWithQualifierBindings:
	hints
	init
	initWithEntityName:qualifier:sortOrderings:usesDistinct:isDeep:hints:
	isDeep
	locksObjects
	prefetchingRelationshipKeyPaths
	promptsAfterFetchLimit
	qualifier
	rawRowKeyPaths
	refreshesRefetchedObjects
	requiresAllQualifierBindingVariables
	setEntityName:
	setFetchesRawRows:
	setFetchLimit:
	setHints:
	setIsDeep:
	setLocksObjects:
	setPrefetchingRelationshipKeyPaths:
	setPromptsAfterFetchLimit:
	setQualifier:
	setRawRowKeyPaths:
	setRefreshesRefetchedObjects:
	setRequiresAllQualifierBindingVariables:
	setSortOrderings:
	setUsesDistinct:
	sortOrderings:
	usesDistinct:

	EOGenericRecord
	Class Description
	Creating an Instance of EOGenericRecord

	Instance Methods
	initWithEditingContext:classDescription:globalID:
	storedValueForKey:
	takeStoredValue:forKey:
	takeValue:forKey:
	valueForKey:

	EOGlobalID
	Class Description
	Temporary Identifiers

	Adopted Protocols
	Instance Methods
	isTemporary

	Notifications
	EOGlobalIDChangedNotification

	EOKeyComparisonQualifier
	Class Description
	Adopted Protocols
	Instance Methods
	evaluateWithObject:
	initWithLeftKey:operatorSelector:rightKey:
	leftKey
	rightKey
	selector

	EOKeyGlobalID
	Class Description
	Adopted Protocols
	Method Types
	Class Methods
	globalIDWithEntityName:keys:keyCount:zone:

	Instance Methods
	entityName
	isEqual:
	keyCount
	keyValues
	keyValuesArray

	EOKeyValueQualifier
	Class Description
	Adopted Protocols
	Instance Methods
	evaluateWithObject
	initWithKey:operatorSelector:value:
	key
	selector
	value

	EONotQualifier
	Class Description
	Adopted Protocols
	Instance Methods
	evaluateWithObject:
	initWithQualifier:
	qualifier

	EONull
	Class Description
	Adopted Protocols
	Class Methods
	null

	EOObjectStore
	Class Description
	Method Types
	Instance Methods
	arrayFaultWithSourceGlobalID:relationshipName:editingContext:
	faultForGlobalID:editingContext:
	faultForRawRow:entityNamed:editingContext:
	initializeObject:withGlobalID:editingContext:
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs:
	isObjectLockedWithGlobalID:editingContext:
	lockObjectWithGlobalID:editingContext:
	objectsForSourceGlobalID:relationshipName:editingContext:
	objectsWithFetchSpecification:editingContext:
	refaultObject:withGlobalID:editingContext:
	saveChangesInEditingContext:

	Notifications
	EOInvalidatedAllObjectsInStoreNotification
	EOObjectsChangedInStoreNotification

	EOObjectStoreCoordinator
	Class Description
	EOObjectStore Methods

	Method Types
	Class Methods
	defaultCoordinator
	setDefaultCoordinator:

	Instance Methods
	addCooperatingObjectStore:
	cooperatingObjectStores
	forwardUpdateForObject:changes:
	init
	objectStoreForFetchSpecification:
	objectStoreForGlobalID:
	objectStoreForObject:
	removeCooperatingObjectStore:
	saveChangesInEditingContext:
	1. The receiver sends each of its EOCooperatingObjectStores the message prepareForSaveWithCoordin...
	2. The receiver sends each of its EOCooperatingObjectStores the message recordChangesInEditingCon...
	3. The receiver sends each of its EOCooperatingObjectStores the message performChanges. This tell...
	4. If performChanges fails for any of the EOCooperatingObjectStores, all stores are sent the mess...
	5. If performChanges succeeds for all EOCooperatingObjectStores, the receiver sends them the mess...
	6. If commitChanges fails for a particular EOCooperatingObjectStore, that store and all subsequen...

	setUserInfo:
	userInfo
	valuesForKeys:object:

	Notifications
	EOCooperatingObjectStoreWasAdded
	EOCooperatingObjectStoreWasRemoved
	EOCooperatingObjectStoreNeeded

	EOObserverCenter
	Class Description
	Registering an Observer
	Change Notification

	Method Types
	Class Methods
	addObserver:forObject:
	addOmniscientObserver:
	enableObserverNotification
	notifyObserversObjectWillChange:
	observerForObject:ofClass:
	observerNotificationSuppressCount
	observersForObject:
	removeObserver:forObject:
	removeOmniscientObserver:
	suppressObserverNotification

	EOObserverProxy
	Class Description
	Instance Methods
	initWithTarget:action:priority:

	EOOrQualifier
	Class Description
	Adopted Protocols
	Instance Methods
	evaluateWithObject:
	initWithQualifierArray:
	initWithQualifiers:
	qualifiers

	EOQualifier
	Class Description
	Constants
	Adopted Protocols
	Method Types
	Class Methods
	allQualifierOperators
	operatorSelectorForString:
	qualifierToMatchAllValues:
	qualifierToMatchAnyValue:
	qualifierWithQualifierFormat:
	qualifierWithQualifierFormat:arguments:
	relationalQualifierOperators
	stringForOperatorSelector:

	Instance Methods
	bindingKeys
	keyPathForBindingKey:
	qualifierWithBindings:requiresAllVariables:
	validateKeysWithRootClassDescription:

	EOQualifier More
	Creating a Qualifier
	Figure 4 EOQualifier Tree for salary > 300 AND firstName = “Angela” AND manager.name = “Fred”

	Constructing Format Strings
	Checking for NULL Values
	Using Wildcards and the like Operator
	Using Selectors in Qualifier Expressions
	Using Different Data Types in Format Strings
	Using EOQualifier’s Subclasses
	Creating Subclasses

	EOSortOrdering
	Class Description
	Sorting with SQL
	In-Memory Sorting
	Comparison Methods

	Adopted Protocols
	Method Types
	Class Methods
	sortOrderingWithKey:selector:

	Instance Methods
	initWithKey:selector:
	key
	selector

	EOTemporaryGlobalID
	Class Description
	Adopted Protocols
	Class Methods
	assignGloballyUniqueBytes:

	Instance Methods
	init
	isTemporary

	EOUndoManager
	Class Description
	Operations and Groups
	The Undo and Redo Stacks
	Registering Undo Operations
	Simple Undo
	Invocation-Based Undo

	Performing Undo and Redo
	Cleaning the Undo Stack
	Undo Checkpoint Notifications

	Method Types
	Instance Methods
	beginUndoGrouping
	canRedo
	canUndo
	disableUndoRegistration
	endUndoGrouping
	forgetAll
	forgetAllWithTarget:
	forwardInvocation:
	groupsByEvent
	isRedoing
	isUndoing
	levelsOfUndo
	prepareWithInvocationTarget:
	redo
	reenableUndoRegistration
	registerUndoWithTarget:selector:arg:
	setGroupsByEvent:
	setLevelsOfUndo:
	undo
	undoNestedGroup

	Notifications
	UndoManagerCheckpointNotification

	c NSArray Additions
	Class Cluster Description
	NSArray
	Class Description
	Instance Methods
	computeAvgForKey:
	computeCountForKey:
	computeMaxForKey:
	computeMinForKey:
	computeSumForKey:
	filteredArrayUsingQualifier:
	shallowCopy
	sortedArrayUsingKeyOrderArray:
	valueForKey:

	NSMutableArray
	Instance Methods
	sortUsingKeyOrderArray:

	NSException Additions
	Class Description
	Method Types
	Class Methods
	aggregateExceptionWithExceptions:
	validationExceptionWithFormat:

	Instance Methods
	exceptionAddingEntriesToUserInfo:

	NSObject Additions
	Defines basic functionality for all enterprise objects. Create a subclass when you need a custom ...
	 EOClassDescription
	 EOEditingContext
	Class Description
	Initialization Methods
	Announcing Changes
	Getting Object and Class Metadata
	Key-Value Coding Methods
	Default Implementations; Handling Access Errors
	1. The key-value coding method looks for an accessor method based on the key. For example, with a...
	2. If the key-value coding method doesn’t find an accessor method, and the class responds YES to ...
	3. If neither an accessor method nor an instance variable can be found, the default implementatio...
	1. The key-value coding method looks for an instance variable whose name is the same as the key, ...
	2. If the key-value coding method doesn’t find an instance variable, it looks for an accessor met...
	3. If the key-value coding method doesn’t find an underbar-preceded instance variable or accessor...
	4. Finally, the key-value coding method looks for an accessor method based on the key. For the ke...
	5. If none of the above instance variables or accessor methods can be found, the default implemen...

	Type Checking and Type Conversion
	EONull in Collections

	Relationship Accessor Methods
	Snapshots
	Validation
	Immediate Validation of Individual Properties
	Validation for Specific Operations

	Method Types
	Class Methods
	accessInstanceVariablesDirectly
	flushAllKeyBindings
	flushClassKeyBindings
	useStoredAccessor

	Instance Methods
	addObject:toBothSidesOfRelationshipWithKey:
	addObject:toPropertyWithKey:
	allPropertyKeys
	attributeKeys
	awakeFromFetchInEditingContext:
	awakeFromInsertionInEditingContext:
	classDescription
	classDescriptionForDestinationKey:
	clearProperties
	deleteRuleForRelationshipKey:
	editingContext
	entityName
	eoDescription
	eoShallowDescription
	handleQueryWithUnboundKey:
	handleTakeValue:forUnboundKey:
	initWithEditingContext:classDescription:globalID:
	inverseForRelationshipKey:
	isToManyKey:
	ownsDestinationObjectsForRelationshipKey:
	propagateDeleteWithEditingContext:
	removeObject:fromBothSidesOfRelationshipWithKey:
	removeObject:fromPropertyWithKey:
	snapshot
	takeStoredValue:forKey:
	1. Searches for an instance variable whose name is the same as the key, but preceded by an underb...
	2. If the instance variable isn’t found, searches for an accessor method based on the key, but pr...
	3. If neither an underbar-preceded instance variable or accessor method is found, searches for an...
	4. Finally, searches for an accessor method based on the key. For the key “lastName”, this would ...

	takeStoredValue:forKeyPath:
	takeStoredValuesFromDictionary:
	takeValue:forKey:
	takeValue:forKeyPath:
	takeValuesFromDictionary:
	toManyRelationshipKeys
	toOneRelationshipKeys
	unableToSetNilForKey:
	updateFromSnapshot:
	userPresentableDescription
	validateForDelete
	validateForInsert
	validateForSave
	validateForUpdate
	validateValue:forKey:
	valueForKey:
	valueForKeyPath:
	valuesForKeys:
	willChange

	Protocols
	EOClassDescriptionClassDelegate
	(informal protocol)
	Category Description
	Instance Methods
	shouldPropagateDeleteForObject:inEditingContext:forRelationshipKey:

	EOEditingContextDelegate
	(informal protocol)
	Category Description
	Method Types
	Instance Methods
	editingContextDidMergeChanges:
	editingContext:shouldFetchObjectsDescribedByFetchSpecification:
	editingContext:shouldInvalidateObject:globalID:
	editingContext:shouldMergeChangesForObject:
	editingContext:shouldPresentException:
	editingContextShouldUndoUserActionsAfterFailure:
	editingContextShouldValidateChanges:
	editingContextWillSaveChanges:

	EOEditors
	(informal protocol)
	Category Description
	Instance Methods
	editingContextWillSaveChanges:
	editorHasChangesForEditingContext:

	EOEnterpriseObject
	(informal protocol)
	Protocol Description
	Informal Protocols Incorporated
	Method Types
	Instance Methods
	allPropertyKeys
	attributeKeys
	awakeFromFetchInEditingContext:
	awakeFromInsertionInEditingContext:
	changesFromSnapshot
	classDescription
	classDescriptionForDestinationKey:
	clearProperties
	deleteRuleForRelationshipKey:
	editingContext
	entityName
	eoDescription
	eoShallowDescription
	initWithEditingContext:classDescription:globalID:
	inverseForRelationshipKey:
	isToManyKey:
	ownsDestinationObjectsForRelationshipKey:
	propagateDeleteWithEditingContext:
	reapplyChangesFromDictionary:
	snapshot
	toManyRelationshipKeys
	toOneRelationshipKeys
	updateFromSnapshot:
	userPresentableDescription
	willChange

	EOEnterpriseObject More
	Initialization
	Change Notification
	Object and Class Metadata Access
	Snapshots
	Writing an Enterprise Object Class

	EOKeyValueCoding
	(informal protocol)
	Protocol Description
	Method Types
	Class Methods
	accessInstanceVariablesDirectly
	flushAllKeyBindings
	useStoredAccessor

	Instance Methods
	handleQueryWithUnboundKey:
	handleTakeValue:forUnboundKey:
	storedValueForKey:
	1. Searches for a private accessor method based on key (a method preceded by an underbar). For ex...
	2. If a private accessor isn’t found, searches for an instance variable based on key and returns ...
	3. If neither a private accessor or an instance variable is found, storedValueForKey: searches fo...
	4. If key is unknown, storedValueForKey: calls handleTakeValue:forUnboundKey:.

	takeStoredValue:forKey:
	1. Searches for a private accessor method based on key (a method preceded by an underbar). For ex...
	2. If a private accessor isn’t found, searches for an instance variable based on key and and sets...
	3. If neither a private accessor or an instance variable is found, takeStoredValue:forKey: search...
	4. If key is unknown, storedValueForKey: calls handleTakeValue:forUnboundKey:.

	takeValue:forKey:
	1. Searches for a public accessor method of the form setKey:, invoking it if there is one.
	2. If a public accessor method isn’t found, searches for a private accessor method of the form _s...
	3. If an accesor method isn’t found and the class method accessInstanceVariablesDirectly returns ...
	4. If neither an accessor method nor an instance variable is found, the default implementation in...

	unableToSetNullForKey:
	valueForKey:
	1. Searches for a public accessor method based on key. For example, with a key of “lastName”, val...
	2. If a public accessor method isn’t found, searches for a private accessor method based on key (...
	3. If an accesor method isn’t found and the class method accessInstanceVariablesDirectly returns ...
	4. If neither an accessor method nor an instance variable is found, the default implementation in...

	EOKeyValueCoding More
	Stored Value Methods
	1. Search for a public accessor method based on the specified key, invoking it if there is one. F...
	2. If a public accessor method isn’t found and useStoredAccessor returns YES, the basic methods s...
	3. If an accesor method isn’t found, the basic methods search for an instance variable based on t...

	Type Checking and Type Conversion

	EOKeyValueCodingAdditions
	(informal protocol)
	Protocol Description
	EONull in Collections

	Instance Methods
	takeValue:forKeyPath:
	takeValuesFromDictionary:
	valueForKeyPath:
	valuesForKeys:

	EOMessageHandlers
	(informal protocol)
	Category Description
	Instance Methods
	editingContext:presentErrorMessage:
	editingContext: shouldContinueFetchingWithCurrentObjectCount:originalLimit: objectStore:

	EOObserving
	Protocol Description
	Instance Methods
	objectWillChange:

	EOQualifierEvaluation
	Protocol Description
	Instance Methods
	evaluateWithObject:

	EORelationshipManipulation
	(informal protocol)
	Protocol Description
	Instance Methods
	addObject:toBothSidesOfRelationshipWithKey:
	addObject:toPropertyWithKey:
	removeObject:fromBothSidesOfRelationshipWithKey:
	removeObject:fromPropertyWithKey:

	EOQualifierComparison
	(informal protocol)
	Protocol Description
	Method Types
	Instance Methods
	doesContain:
	isCaseInsensitiveLike:
	isEqualTo:
	isGreaterThan:
	isGreaterThanOrEqualTo:
	isLessThan:
	isLessThanOrEqualTo:
	isLike:
	isNotEqualTo:

	EOSortOrderingComparison
	(informal protocol)
	Protocol Description
	Instance Methods
	compareAscending:
	compareCaseInsensitiveAscending:
	compareCaseInsensitiveDescending:
	compareDescending:

	EOValidation
	(informal protocol)
	Protocol Description
	Instance Methods
	validateForDelete
	validateForInsert
	validateForSave
	validateForUpdate
	validateValue:forKey:

	EOValidation More
	Validating Individual Properties
	When Properties are Validated

	Validating Before an Operation

	EOValueMerging
	(informal protocol)
	Protocol Description
	Method Types
	Instance Methods
	changesFromSnapshot:
	reapplyChangesFromDictionary:

