

What’s New in WebObjects 4.0

This document describes changes made to the WebObjects product
between release 3.5 and release 4.0. Release 4.0 is compatible with release
3.5, but you must recompile any existing applications. This document tells
you how to convert applications to 4.0, describes changes made to existing
features, and then describes some new features you may want to start using
in your applications. This document is organized as follows:

• “Compatibility With Earlier Releases” (page 2)
• “Converting an Existing WebObjects Application” (page 3)
• “File Location Changes” (page 10)
• “Running an Application on WebObjects 4.0” (page 11)
• “Support for Multithreaded Applications” (page 17)
• “Direct Actions” (page 23)
• “Improved Nested Component Support” (page 32)
• “Improved Image Loading” (page 37)
• “New Methods” (page 37)
• “WOMailDelivery Class” (page 40)
• “Cookie API” (page 41)
• “WOExtensions Changes” (page 42)
• “Dynamic Elements Changes” (page 47)
• “Changes to Localization” (page 51)
• “Tool Changes” (page 53)
• “Rapid Turnaround Mode” (page 54)
• “Debugging” (page 57)
• “Other Changes” (page 58)

WebObjects 4.0 includes Enterprise Objects Framework release 3.0. For a
description of the changes to Enterprise Objects Framework, see “What’s
New in Enterprise Objects Framework 3.0.”

Note: This document describes changes in the Java and Objective-C versions
of the WebObjects APIs. Where Java and Objective-C method names are
dissimilar, both method names are provided. For methods that take zero
arguments, both languages use the same name. For single argument
methods, the Java name is the Objective-C name minus the trailing colon
(:).
1

What’s New in WebObjects 4.0

Compatibility With Earlier Releases

WebObjects 4.0 is backward compatible to WebObjects 3.5. However, you
must keep in mind the following:

• WebObjects 4.0 is the first release of WebObjects that runs on Mac OS X
Server and Yellow Box for Windows NT. It does not run on OpenStep 4.2.
Because of this change, the locations of WebObjects files have changed.
See “File Location Changes” (page 10).

• Because Mac OS X Server and Yellow Box are not upgrades to OpenStep
for Mach and OpenStep Enterprise, respectively, their underlying
frameworks are not necessarily upwardly-compatible. In particular, the
Foundation framework supplied with Mac OS X Server and Yellow Box
isn’t upwardly-compatible. As one example, NSArray’s
makeObjectsPerform: method doesn’t exist in the versions of Foundation
that ship with Mac OS X Server and Yellow Box.

• The file location changes require some changes to your Project Builder
projects. See “Converting an Existing WebObjects Application” (page 3).

• Yellow Box uses a different version of the Java-wrapped APIs. The
package names, class names, and some method names have changed.
There are scripts to help you convert your Java code. See “Converting an
Existing WebObjects Application” (page 3).

• WebObjects applications are launched differently in WebObjects 4.0, as
described in “Running an Application on WebObjects 4.0” (page 11).

• The WebObjects Framework contains many new optimizations that
should greatly improve your application’s performance. However, you
may find your code relied on some part of the request-response loop or
template parsing code that is no longer always performed. If so, there are
compatibility flags to disable these optimizations. These flags are
described in “Converting an Existing WebObjects Application” (page 3).

• The default adaptor now supports multithreaded request handling. This
change should have no effect on your running application other than to
make resource loading faster.
2 © Apple Computer, Inc. October 9, 1998

Converting an Existing WebObjects Application

Converting an Existing WebObjects Application

To convert a project to WebObjects 4.0, do the following:

1. Convert your project’s makefiles as described in the document
$NEXT_ROOT/Developer/Makefiles/Conversion/DirectoryLayout/ConvertMakefilesReadMe.rtf.

($NeXT_ROOT is the root installation directory specified when WebObjects
was installed.) The project files must change to point to new locations for
the build tools. The ConvertMakefilesReadMe.rtf document tells you how to
make those changes.

2. If your project contains Java code files, convert them as described in
“Converting Java Code” (page 4).

Note: The Java APIs have changed considerably. If you’ve written Java code,
you must convert it before you can compile.

3. Open your project in Project Builder, and click “Upgrade Now” when
prompted.

Among other things, upgrading your project in this fashion will:

- Upgrade your PB.project file to the latest version.

- Upgrade your makefiles to the latest versions.

- Convert your WebObject project suitcases to the new format.

- Convert your project so that it conforms to the new localization
scheme. As a result of this, script (.wos) and .api files are moved outside
of their component (.wo) directories. Script files now appear in the
Classes suitcase. For more information on the new localization
scheme, see the section “Changes to Localization” (page 51).

4. Build. If errors occur during the build, fix them and re-build the project.

The WebObjects Framework contains many new optimizations that
should greatly improve your application’s performance. However, you
may find your code relied on some part of the request-response loop or
template parsing code that is no longer always performed.

5. Run the project. If your application doesn’t run as expected, read the
sections “Troubleshooting WebObjects 4.0 Template Parsing” (page 5),
“Troubleshooting WebObjects 4.0 Request Handling” (page 7), and
“WebScript Changes” (page 10). Among other things, these sections
© Apple Computer, Inc. October 9, 1998 3

What’s New in WebObjects 4.0

outline the use of WebObjects 3.5 compatibility flags that allow you to
revert to the style of template parsing and request handling that was
performed in WebObjects 3.5.

6. At this stage, if you want, you can remove all usage of deprecated API.
WebObjects has been rewritten to be thread-safe, which required
deprecating some of the existing APIs. You can still use deprecated API as
long as you do not enable multithreading in your application. You’ll
receive warnings about deprecated API at run-time. For a complete list of
what’s deprecated, see “Support for Multithreaded Applications” (page
17).

Converting Java Code
This section covers the details of converting any Java code you may have in
an existing WebObjects application (see step 2 of “Converting an Existing
WebObjects Application,” above). In WebObjects 4.0, the Java APIs changed
considerably. These changes are summarized here:

• A two-letter prefix has been added to each Java class name so that class
names are unique without the package names. The Java class name is now
identical to its Objective-C counterpart in almost all cases. For example,
Component is now WOComponent, and WebApplication is now
WOApplication.

• The Java package names have changed to the following:

com.apple.yellow.eoaccess

com.apple.yellow.eocontrol

com.apple.yellow.foundation

com.apple.yellow.webobjects

Notice that the next.eo package has been split into two packages:
eoaccess and eocontrol.

• The basic classes (for arrays, dictionaries, and data) have become more
like their Foundation counterparts than their Java counterparts. For
example, ImmutableVector is now named NSArray and responds to count
instead of size. MutableHashtable is now named NSMutableDictionary
and responds to setObjectForKey instead of put.

Note that for numbers and strings, you still use the classes java.lang.Number
and java.lang.String.
4 © Apple Computer, Inc. October 9, 1998

Converting an Existing WebObjects Application

Warning: Changing to Foundation-style methods for the dictionary class
introduces a subtle change. The Java Hashtable classes take the arguments in
the key-value order. For example, the put method takes the key and then the
value. NSDictionary takes the value and then the key. The conversion scripts
change the order of the arguments for you. Unfortunately, these scripts
incorrectly convert uses of get() and put() on java.util.Hashtable objects as well
as on objects of other Foundation classes.

• DecimalNumber is no longer available. Use java.math.BigDecimal instead.

• CalendarDate is now named NSGregorianDate.

• The root object is now com.apple.yellow.foundation.NSObject.

• Delegate interfaces are now declared as inner interfaces of the appropriate
class. For example, the DisplayGroupDelegates interface is now
WODisplayGroup.Delegates.

Scripts are provided with the release to help you convert Java code to the new
APIs. They are located in /System/Developer/Java/Conversion/WebObjects or, on NT, in
$(NEXT_ROOT)/Developer/Java/Conversion/WebObjects. Descriptions of these scripts and
instructions for their use can be found in the ReadMe file, which is located in
the same directory as the script files.

Troubleshooting WebObjects 4.0 Template Parsing
The WebObjects template parser parses the HTML that is to be included in
a response. In WebObjects 4.0, the template parser preserves all of the static
HTML that you provide in a component’s template. Previously, the parser
recognized many HTML tags and performed special processing based on the
type of tag. The 4.0 template parser ignores all tags besides <WEBOBJECT> and
HTML comment tags.

The new parser has several advantages:

• It solves the problem many have encountered where WebObjects
attempts to “fix” your HTML. For example, it previously was difficult to
split a container element, such as a form, across two components because
WebObjects would insert a closing tag for you.

• It improves your application’s performance because it tends to treat larger
parts of a file as a single chunk than the previous parser did.
© Apple Computer, Inc. October 9, 1998 5

What’s New in WebObjects 4.0

• It allows you to suppress the copying of comments to the outgoing
response. This speeds up response generation and shortens download
times.

A WebObjects application may unknowingly depend upon the previous
behavior of the template parser. For this reason, a compatibility flag is
available on WOApplication to revert to the previous behavior.

Usually when 4.0 template parsing produces an error, it is because you have
included a WebObjects dynamic form element inside of a static HTML FORM
element. Change the FORM element to a WOForm, and your component should
operate normally again. An error may also arise if your HTML pages contain
BODY or IMG tags with src parameters containing relative pathnames (absolute
pathnames aren’t a problem). Change the affected tags to WOBody and
WOImage, respectively.

If you want, you can go back to the previous parser by implementing this
method in your application class (shown in Java and WebScript):

public boolean requiresWOF35TemplateParser() {

return true;

}

- requiresWOF35TemplateParser {

return YES;

}

If you use the WebObjects 4.0 template parser, you might want to suppress
the inclusion of HTML comments. Use the following methods, which have
been added to WOApplication (as an alternative, you can use the option
described in the section “Command-Line Options” (page 12)):
6 © Apple Computer, Inc. October 9, 1998

Converting an Existing WebObjects Application

WOApplication Template Parsing Methods.

Troubleshooting WebObjects 4.0 Request Handling
In previous WebObjects releases, the application, session, request
component, and all of the dynamic elements in the request component got a
chance to perform the takeValuesFromRequest:inContext: and
invokeActionForRequest:inContext: methods during each cycle of the request-response
loop. In WebObjects 4.0, there are some performance enhancements to this
request-handling scheme:

• The take values phase is not always performed.

In release 4.0 if the request has no form values to use as input, the take
values phase of the request-response loop (in which the application, the
session, the request component, and the component’s dynamic elements
are sent takeValuesFromRequest:inContext:) is not performed.

If you have overridden takeValuesFromRequest:inContext: at the application,
session, or component level and your method needs to be invoked even
when there are no input values, you must either change your logic or
disable 4.0 request handling at the application level. To disable 4.0
request handling, implement the following method in your application
class:

//WARNING! Put this method in Application class, not component.

//Java implementation

public boolean requiresWOF35RequestHandling() {

return true;

}

//WebScript implementation

- requiresWOF35RequestHandling {

return YES;

}

WOApplication

Method Description

setIncludeCommentsInResponses: (class or static method) Sets whether the application’s HTML parser includes comments
from a component’s HTML template as part of a response. The
default is YES or true. Use this method only in the application’s
initializer or constructor.

includeCommentsInResponses (class or static method) Returns YES or true if the HTML parser includes comments in the
responses. Returns NO or false if the application doesn’t include
any comments from a component’s HTML template in the response.
The default is YES or true.
© Apple Computer, Inc. October 9, 1998 7

What’s New in WebObjects 4.0

It is the application object that makes the decision to perform the take
values phase of the request-response loop; therefore, you must disable
4.0 request handling in the application class if you want to ensure that
the take values phase always occurs.

• The take values phase does not iterate through WOBrowser and
WOPopUpButton lists.

In previous releases, WebObjects would iterate through the list attribute
of the WOBrowser and WOPopUpButton looking for the item that the
user selected. In release 4.0, this is no longer necessary because
WebObjects can directly access the selected item without iterating.
WebObjects is able to do this because the use of the value attribute has
changed so that by default it is set to the index of the item.

- Use of the item attribute as the selection.

The item attribute is intended to point to the current item, and it is
updated upon each iteration through the list. Because WebObjects
used to iterate through the list until it found a selection, the item
attribute ended up pointing to the selected item.

If you need to refer to the selected item, use the selection attribute
instead of item. Make sure selection is bound to a variable in your
component’s code and then use that variable instead of the one
bound to item.

- Use of the value attribute.

The value attribute was previously used as the string displayed in the
browser or pop-up button. It also set the HTML value attribute for
the <OPTION> tag. In WebObjects 4.0, this attribute still sets the value
in HTML, but it no longer specifies the display string. By default, it
is set to an index value, which allows WebObjects to find the
selection without iterating through the list.

If you have a binding for the value attribute, change it to displayString,
which is a new attribute that specifies the display string. Change this:

value = aCollege.name;

to this:

displayString = aCollege.name;

Use value only if you really want to set the HTML value in the
<OPTION> tag.
8 © Apple Computer, Inc. October 9, 1998

Converting an Existing WebObjects Application

- An item attribute bound to a method.

If you bound the item attribute to a method, your method used to be
invoked several times during the take values phase, and now it is
invoked only once (for the selected item). If your component
depends upon the previous behavior, you either need to change your
logic or use WOApplication’s request-handling compatibility flag as
described above.

• The invoke action phase does not iterate through a WORepetition’s list.

When a repetition’s list is iterated upon, the item and index attribute values
are updated at each iteration. In previous releases, list iteration occurred
during the take values phase and during the invoke action phase of the
request-response loop. In WebObjects 4.0, WORepetition list iteration
occurs during take values only if the request has input values, and it
doesn’t occur during the invoke action phase. (WebObjects is able to
forgo iterating during the invoke action phase because by default it sets
the identifier attribute to the item’s element ID so that it is able to navigate
directly to the list item that responds to the requested action. If you
already declare a binding for the identifier attribute, your binding is used
instead of the element ID, and the invoke action phase does iterate
through the list.)

If you’ve bound the item or index attribute to a method, your method used
to be invoked several times during the take values phase, and then again
several more times during the invoke action phase. In WebObjects 4.0,
your method will only be invoked during the take values phase if there
are input values in the request, and it won’t be invoked during the
invoke action phase (unless you specify a non-default binding for the
identifier attribute).

If your component depends upon the previous behavior, you either need
to change your logic or use the component’s request-handling
compatibility flag. To set the component’s request handling
compatibility flag, implement this method in the component:

// Java implementation

public boolean requiresWOF35RequestHandling() {

return true;

}

// WebScript implementation

- requiresWOF35RequestHandling {

return YES;

}

© Apple Computer, Inc. October 9, 1998 9

What’s New in WebObjects 4.0

When you implement this method at the component level, WebObjects
uses the old behavior for invoke action on that component only. All other
components use the new behavior for the invoke action phase.

WebScript Changes
In WebObjects 3.5, WebScript would always evaluate both sides of an “&&”
or “||” expression. In WebObjects 4.0, these expressions are now short-
circuited, so that only the left side is evaluated unless evaluation of the right
side is necessary in order to determine the result. For example:

(YES || <this will NOT evaluate>)

(NO || <this will evaluate>)

(YES && <this will evaluate>)

(NO && <this will NOT evaluate>)

To aid in the debugging process, WebObjects 4.0 has a WebScript 3.5
compatibility mode. This mode is controlled by a method in WOApplication
named requiresWOF35Scripting. By default, this method returns NO; override it to
return YES to get backward compatibility.

File Location Changes

WebObjects 4.0 is the first release of WebObjects that runs on Mac OS X
Server and Yellow Box for Windows NT instead of OpenStep 4.2. Because of
this change, the locations of WebObjects files have changed.

On Mac OS X Server, most WebObjects files are installed in the System folder
(some can be found in /Local). On Windows NT, you still choose a folder in
which to install the software, and the NEXT_ROOT environment variable points to
that folder. The default has changed to C:\Apple.

The following table lists new directory names relative to the System folder or
NEXT_ROOT and what each directory contains.

Location Contains

Developer/Applications Developer applications such as Interface Builder, EOModeler, Project Builder,
and WebObjects Builder

Developer/Examples/EnterpriseObjects EOModels and database installation scripts needed to run the WebObjects
examples

Developer/Examples/WebObjects WebObjects examples
10 © Apple Computer, Inc. October 9, 1998

Running an Application on WebObjects 4.0

The following are new directories and files installed under the Local directory.
On Mac OS X Server, the Local directory is at the root level. On Windows NT,
it is under NEXT_ROOT.

Running an Application on WebObjects 4.0

There have been several changes to the way you start a WebObjects
application:

• The command line options have changed.

• Autostarting is no longer supported.

Developer/Examples/WebObjects/Java/Convers
ionScripts

Conversion scripts for Java APIs

Documentation/Developer Developer documentation for Mac OS X Server, Yellow Box, Enterprise Objects
Framework, and WebObjects.

Library/Frameworks Public frameworks such as WebObjects.framework, EOAccess.framework,
and so on

Library/Executables (Windows NT systems only) Framework DLLs

Library/Java Java packages for Yellow Box, WebObjects, and Enterprise Objects Framework

Library/WebObjects/Adaptors Executables for the various WebObjects adaptors

Library/WebObjects/Applications The Monitor application and PlaybackManager

Library/WebObjects/Configuration Configuration files

Library/WebObjects/Executables WODefaultApp and WOPlayBack

Location Contains

Local/Library/Frameworks Location where you install custom frameworks

Local/Library/WebObjects/Applications Location where you install WebObjects applications (.woa directories)

Local/Library/Webserver/CGI-Executables The cgi-bin directory for the Apache web server (Mac OS X Server systems only).
The WebObjects executable is installed here.

On Windows NT, you specify your web server’s cgi-bin directory at install time.

Local/Library/Webserver/Documents The document root for the Apache web server (Mac OS X Server systems only)

On Windows NT, you specify your web server’s document root directory at install
time.

Location Contains
© Apple Computer, Inc. October 9, 1998 11

What’s New in WebObjects 4.0

• A web server is no longer required for development.

• The public configuration file format has changed.

• The WebObjects application URL format has changed.

Command-Line Options
WebObjects 4.0 uses the Foundation NSUserDefaults object to specify
application command-line options. As a consequence, all options have been
renamed. The following table lists the WebObjects 3.5 options with their new
names.

Old Option New Option Description

-debug
ON|OFF

-WODebuggingEnabled
YES|NO

Sets whether the application prints messages to standard error
during startup. By default, this option is enabled.

WOApplication, WOComponent, and WOSession define a new
debugWithFormat: method (debugString in Java). This method is
similar to logWithFormat: except that it only prints messages if
the WODebuggingEnabled option is on

-browser
ON|OFF

-WOAutoOpenInBrowser
YES|NO

Sets whether the application automatically opens a web browser
window to the application’s URL (starting up the browser if
necessary). By default, this option is enabled.

-m
ON|OFF

-WOMonitorEnabled
YES|NO

Enables or disables monitoring. By default, this option is disabled.
If this option is enabled and you manually start an application, the
application tries to find a running Monitor.

-mhost
hostName | subnet

-WOMonitorHost
hostName | subnet

If the WOMonitorEnabled option is on and you use this option, the
application tries to find a running Monitor on the machine named
hostName instead of on the local machine. If subnet is used, the
application looks for a running Monitor in its network subnet.

-c -WOCachingEnabled
YES|NO

Requests that the application cache component definitions
(templates) instead of reparsing HTML and declaration files upon
each new HTTP request. By default, this option is disabled.

-d documentRoot None You are no longer required to specify the document root.

-a adaptorClass -WOAdaptor adaptorClass The WOAdaptor class name. The default is now
WOMultiThreadedAdaptor. See the section “Support for
Multithreaded Applications” (page 17) for more information on
WOMultiThreadedAdaptor.

-i instanceNumber None You are no longer required to specify instance numbers when load-
balancing applications. The instance number is now private to the
configuration file.
12 © Apple Computer, Inc. October 9, 1998

Running an Application on WebObjects 4.0

-p portNumber -WOPort portNumber The socket port used to connect to an application instance. Unlike
previous versions of WebObjects, this option is independent of the
adaptor option. A portNumber of -1 means use an arbitrary high
port number; however, you cannot specify -1 as the value on the
command line; to set the value to -1, you must use the defaults
command.

-q listenQueueSize -WOListenQueueSize
listenQueueSize

The depth of the listen queue. The default has changed from 4 to 5.

None -WOWorkerThreadCount int Maximum number of worker threads for a multithreaded
application. The default worker thread count is 8. Setting this
count to 0 results in single-threaded (WebObjects 3.5-style)
request dispatch.

None -WOOtherAdaptors plist Use this option to attach additional adaptors (other than the one
specified by -WOAdaptor) to the application. The plist option is an
array of dictionaries written in property list format.

None -WOCGIAdaptorURL
path

The absolute URL that points to the WebObjects CGI adaptor.

None -WOApplicationBaseURL The path from the web server’s document root to the directory
where your application (or project, if in rapid turnaround mode)
resides. The default is “/WebObjects”, but you may place your
application anywhere under the document root. See “Rapid
Turnaround Mode” (page 54) for more a complete discussion of
this option.

None -WOFrameworksBaseURL The location of frameworks under your document root if you’re
using a web server. The default is /WebObjects/Frameworks (as
it was in release 3.5). All frameworks that your application uses
must be in this directory.

None -NSProjectSearchPath
pList

An array of paths in which your project directories are located. (The
array is written in property list format.) The default is a single item:
“..”

If you specify this option, WebObjects looks in the locations you
specify for a project that has the same name as the application or
framework being loaded. If it finds a project, it uses the images,
scripted components, and other resources from the project
directory instead of from the application or framework’s main
bundle. This way, you can modify images and scripted components
in your project and test them without having to rebuild the
application.

None -WOIncludeComments
InResponses YES|NO

Sets whether the HTML parser includes comments from the
components’ HTML files in the responses. The default is YES. See
“Troubleshooting WebObjects 4.0 Template Parsing” (page 5) for
more information.

Old Option New Option Description
© Apple Computer, Inc. October 9, 1998 13

What’s New in WebObjects 4.0
As with all user defaults, you can set them three ways: on the application’s
command line, using the defaults utility, or programmatically.

Be careful when setting options programmatically. Most options require
knowledge of the environment in which the application runs, and the
appropriate values change if you move the application to a different machine.
For example, you should never set the WOPort option programmatically.

Autostarting
In WebObjects 4.0, applications can no longer be autostarted. To autostart an
application in WebObjects 3.5, you typed a URL in the client browser, and the
WebObjects adaptor would launch the appropriate application. This feature
was intended primarily to ease debugging; it was not supported for
deployment.

In WebObjects 4.0, you debug an application by launching it in the Project
Builder launch panel. By default, the browser is launched automatically and
shows the appropriate URL. Thus, autostarting is no longer necessary.

“Serverless” Applications
WebObjects 4.0 applications can receive HTTP requests directly. Previously,
a web server had to be running to receive HTTP requests and to forward
them through the WebObjects adaptor.

To run a WebObjects application when no HTTP server is present, you
simply specify the number of the port where the application should receive
requests using the WOPort option. By default, WOPort is -1, which assigns an
arbitrary high port number to the application. Thus, if you specify no port
number at all, you can still run your application without a web server.

This new feature has several advantages:

• You can debug applications on a machine that doesn’t have a web server
present.

• You don’t have to install project directories under the document root to
test them.

None -WOSessionTimeOut timeout Sets the timeout interval for sessions. By default, they now time
out after 3600 seconds (in prior releases of WebObjects, sessions
never timed out by default).

Old Option New Option Description
14 © Apple Computer, Inc. October 9, 1998

Running an Application on WebObjects 4.0
• Running without an HTTP server uses less memory on your
development machine.

• The WebObjects example applications no longer need to be installed
under the web server’s document root. Instead they are installed under
Developer/Examples/WebObjects.

Note that if you do want to use a web server to test WebObjects examples, you
can still do so. Before you do, do a “make install” to install the example’s web
server resources (such as image files and Java client-side classes) in the
document root, just as you do when installing a WebObjects application. If
you put your application in a directory other than “WebObjects” under your
document root, set the WOApplicationBaseURL option to the .woa directory’s path
relative to the document root (WOApplicationBaseURL is set to /WebObjects by default).
If you don’t perform these steps, the web server won’t be able to find web
server resources; when you run the application, you’ll see broken images, and
client-side classes won’t be loaded. (See “Rapid Turnaround Mode” (page 54)
for more on developing with and without a web server.)

Changes to Adaptor Configuration Files
The format of the private and public configuration files (WebObjects.conf) has
changed slightly. Along with this format change come two conceptual
changes:

• Entering the path to the WebObjects adaptor in the browser (usually
http://localhost/cgi-bin/WebObjects) used to provide a list of applications you had
installed under the document root. Selecting one of these applications
took you to it, autostarting the application if necessary.

Because the adaptor can no longer autostart applications, entering the
path to the adaptor now takes you to a list of already running
applications.

• You no longer specify the application instance number on the command
line. The instance number and the host name are now private to the
WebObjects.conf file.

If a client browser tries to access an application instance that isn’t running, the
adaptor attempts to perform load-balancing with all existing instances. For
example, suppose a user bookmarked a URL that contained 4 as the instance
number and tried to use that bookmark two weeks later when instance 4 is no
longer running. Instead of failing, WebObjects simply uses one of the
instances that is running.
© Apple Computer, Inc. October 9, 1998 15

What’s New in WebObjects 4.0
The Application Instance Number
For security reasons, an application instance’s host name and port number
cannot be visible either in a page or in a URL. There is a one-to-one mapping
between these values and an application’s instance number in the
WebObjects.conf file; this mapping is resolved by the adaptor. Because it is a one-
to-one mapping, the instance number must be unique across a deployment
environment for a given application name.

When the adaptor load-balances a request to an application at a given port and
host, it assigns an application instance number and places it into the request .
(Because of this, you now obtain the application instance number from the
WORequest rather than from the WOApplication object.) Application
instances take the instance number from the request and send that number
back in the response URLs. As far as the application instance is concerned,
the instance number could change with every request—the application
instance wouldn’t notice.

Changes to WebObjects Application URL
The typical WebObjects application URL now has the following format:

http:// host [: port]/ cgi-bin / WebObjects / App[[.woa][/ instance]/ key /...

where the variables are defined as follows:

Variable Description

host The host name of your computer or localhost.

port The port number. This is included if you want to direct connect.

cgi-bin The cgi-bin directory of your server, usually cgi-bin or Scripts.

WebObjects The name of the CGI adaptor, usually WebObjects or WebObjects.exe.

App The application name.

This field is no longer the path to the application relative to DocRoot/WebObjects. It is simply
the application name. The WOApplicationBaseURL option provides the path.

instance The application instance number.

key The request handler key. This key specifies which WORequestHandler object should be used to
process the request. The WORequestHandler class is new in WebObjects 4.0 and is described in
the section “WORequestHandler Class” (page 29).
16 © Apple Computer, Inc. October 9, 1998

Support for Multithreaded Applications
Support for Multithreaded Applications

In release 4.0, WebObjects and Enterprise Objects Framework provide
thread-safe APIs. This means that you can write a multithreaded WebObjects
application where you couldn’t before.

To support multithreaded applications, there are two major changes:

• The default adaptor has been rewritten to support multithreaded request
handling. By default, this adaptor does multithreaded adaptor I/O and
resource handling, but only single-threaded request handling. If you
rewrite your application so that it is thread safe, locking any access to
shared resources as necessary, you can enable concurrent request
handling. To rewrite your application to be thread safe, you’ll also need to
remove all invocations of some deprecated API; see “Deprecated API,”
below, for more information. To enable concurrent request handling,
override the allowsConcurrentRequestHandling method in your application class to
return YES or true.

The default adaptor can be made to operate in single-threaded mode by
setting the WOWorkerThreadCount command-line option to 0.

• Certain method names have changed. You can still use the old methods,
but their use is deprecated.

For information on multithreading Enterprise Objects Framework
operations, see “What’s New in Enterprise Objects Framework 3.0.” The rest
of this section lists the methods that have changed and describes new
methods that you can use to ensure that your application is thread-safe.

... Information specific to the request handler. Each WORequestHandler uses a different format for
the rest of the URL.

The two main request handlers are WOComponentRequestHandler and
WODirectActionRequestHandler. WOComponentRequestHandler handles requests in exactly the
same manner in which they were handled in earlier releases. Its format for the rest of the URL is:

componentName/sessionID/elementID

WODirectActionRequestHandler handles direct actions, a new feature in WebObjects 4.0. (You can
read more about this feature in “Direct Actions” (page 23).) Its URLs have this format:

[actionClass | actionName | actionClass/actionName][?key=value&key=value.....]

Variable Description
© Apple Computer, Inc. October 9, 1998 17

What’s New in WebObjects 4.0
Deprecated API
The following tables list methods whose use is deprecated in WebObjects 4.0
and list new methods to use in their place. If you don’t allow concurrent
request handling, you can continue to use the deprecated methods. You’ll
receive a warning at run-time. If you want to allow concurrent request
handling, you must change to the new methods. Use of deprecated methods
raises an exception when concurrent request handling is enabled (that is,
when you override WOApplication’s method allowsConcurrentRequestHandling to
return YES or true.)

WOApplication

Old API New API

session WOComponent session

context WOComponent context

pageWithName: WOComponent pageWithName:

WOApplication pageWithName:inContext: or pageWithName:forRequest:
(Objective-C)

WOApplication pageWithName (Java)

handleSessionCreationError handleSessionCreationErrorInContext:

handleSessionRestorationError handleSessionRestorationErrorInContext:

handlePageRestorationError handlePageRestorationErrorInContext:

handleException: handleException:inContext: (Objective-C)

handleException (Java)

pathForResourceNamed:ofType: WOResourceManager pathForResourceNamed:inFramework:languages:
(Objective-C)

WOResourceManager pathForResourceNamed (Java)

urlForResourceNamed:ofType: WOResourceManager
urlForResourceNamed:inFramework:languages:request: (Objective-C)

WOResourceManager urlForResourceNamed (Java)

stringForKey:inTableNamed:withDefaultValue: WOResourceManager
stringForKey:inTableNamed:withDefaultValue:languages: (Objective-C)

WOResourceManager stringForKey (Java)

handleRequest: dispatchRequest:

createSession createSessionForRequest:

restoreSession restoreSessionWithID:inContext: (Objective-C)

restoreSessionWithID (Java)
18 © Apple Computer, Inc. October 9, 1998

Support for Multithreaded Applications
restorePageForContextID: WOSession restorePageForContextID:

savePage: WOSession savePage:

saveSession: saveSessionForContext:

dynamicElementWithName:associations:
template:

dynamicElementWithName:associations:template:languages: (Objective-C)

dynamicElementWithName (Java)

isBrowserLaunchingEnabled autoOpenInBrowser

setBrowserLaunchingEnabled: Use the WOAutoOpenInBrowser command-line option (see “Command-Line
Options” (page 12))

runLoop mainThreadRunLoop

WOAssociation

Old API New API

value valueInComponent:

setValue: setValue:inComponent: (Objective-C)

setValue (Java)

WOContext

Old API New API

setDistributionEnabled: WOSession setDistributionEnabled:

isDistributionEnabled WOSession isDistributionEnabled

application WOApplication application class or static method

urlSessionPrefix None (deprecated functionality)

url componentActionURL

WORequest

Old API New API

applicationHost See NSProcessInfo or NSHost (Objective-C)

java.net.InetAddress (Java)

contextID WOContext contextID

pageName WOComponent name

WOApplication

Old API New API
© Apple Computer, Inc. October 9, 1998 19

What’s New in WebObjects 4.0
senderID WOContext senderID

WOResourceManager

Old API New API

pathForResourceNamed:inFramework: pathForResourceNamed:inFramework:languages: (Objective-C)

pathForResourceNamed (Java)

urlForResourceNamed:inFramework: urlForResourceNamed:inFramework:languages:request: (Objective-C)

urlForResourceNamed (Java)

WOSession

Old API New API

application WOApplication application class or static method

WOSessionStore

Old API New API

restoreSession restoreSessionWithID:request: (Objective-C)

restoreSessionWithID (Java)

saveSession: saveSessionForContext:

cookieSessionStoreWithDistributionDomain:sec
ure:

None. See “Cookie API” (page 41) for new API that allows you to store session
IDs in cookies.

WOStatisticsStore

Old API New API

validateLogin: validateLogin:forSession: (Objective-C)

validateLogin (Java)

setMovingAverageSampleSize: setTransactionMovingAverageSampleSize:

setSessionMovingAverageSampleSize:

movingAverageSampleSize transactionMovingAverageSampleSize

sessionMovingAverageSampleSize

WORequest

Old API New API
20 © Apple Computer, Inc. October 9, 1998

Support for Multithreaded Applications
WOComponent

Old API New API

pathForResourceNamed:ofType: WOResourceManager pathForResourceNamed:inFramework:languages:
(Objective-C)

WOResourceManager pathForResourceNamed (Java)

urlForResourceNamed:ofType: WOResourceManager
urlForResourceNamed:inFramework:languages:request: (Objective-C)

WOResourceManager urlForResourceNamed (Java)

stringForKey:inTableNamed:withDefaultValue: WOResourceManager
stringForKey:inTableNamed:withDefaultValue:languages: (Objective-C)

WOResourceManager stringForKey (Java)

templateWithHTMLString:declarationString: templateWithHTMLString:declarationString:languages: (Objective-C)

templateWithHTMLString (Java)

WODisplayGroup

Old API New API

setSortOrdering setSortOrderings:

sortOrdering sortOrderings

endEditing None (this method had no effect in WebObjects 3.5)

executeQuery queryMatch, queryMin, queryMax

inputObjectForQualifier queryMatch, queryMin, queryMax

secondObjectForQualifier queryMatch, queryMin, queryMax

setBuildsQualifierFromInput: queryMatch, queryMin, queryMax

buildsQualifierFromInput queryMatch, queryMin, queryMax

qualifierFromInputValues queryMatch, queryMin, queryMax

lastQualifierFromInputValues queryMatch, queryMin, queryMax

localKeys None (this method was inadvertently carried over from EODisplayGroup)

setLocalKeys: None (this method was inadvertently carried over from EODisplayGroup)
© Apple Computer, Inc. October 9, 1998 21

What’s New in WebObjects 4.0
New Methods to Support Multithreading
To support the writing of multithreaded applications, the following methods
have been added to the following classes:

WOApplication

Method Description

adaptorsDispatchRequestsConcurrently Returns YES or true if at least one adaptor contains multiple threads and will
attempt to concurrently invoke the request handlers.

allowsConcurrentRequestHandling Specifies whether the application has been written to be able to safely handle
concurrent requests. By default, returns NO or false. Subclasses should
override to return YES or true if the application is written to be thread-safe.

isConcurrentRequestHandlingEnabled Returns YES or true if the application can handle concurrent requests and the
adaptor will dispatch requests to the application concurrently.

lockRequestHandling Serializes request handler access through the use of an internal lock if
concurrent request handling is disabled. Request handlers should invoke this
method before calling into application code.

unlockRequestHandling Removes the request handling internal lock to allow access to the request
handler again.

lock Locks access to the WOApplication object.

unlock Unlocks access to the WOApplication object.

WORequestHandler

Method Description

lock Locks access to the WORequestHandler object

unlock Unlocks access to the WORequestHandler object

WOResourceManager

Method Description

lock Locks access to the WOResourceManager object.

unlock Unlocks access to the WOResourceManager object.

WOSessionStore

Method Description

checkOutSessionWithSessionID:request:
(checkOutSessionWithSessionID in Java)

Checks out a session for exclusive use. When you check a session out, all other
access to that session is blocked until the session is checked in again.
22 © Apple Computer, Inc. October 9, 1998

Direct Actions
Direct Actions

Previously, all WebObjects applications used the same request-handling
scheme: the request to perform an action is passed from the application to the
session to the request component. The request component is the component
that generated the response for the previous request. Thus, the component
that generates the response for one request must be preserved so that it can
perform the next requested action. Because components had to be preserved
across cycles of the request-response loop, all applications were required to
keep some session state.

In WebObjects 4.0, you can set up all or part of your application to handle
direct actions. With direct actions, the action is sent directly to an object that
can handle it. Direct actions have several advantages over component actions:

• Direct actions have simpler, static URLs. Your users can bookmark a
direct action URL and return to it at any time.

• Direct actions have simpler request handling.

• By default, direct actions don’t use session objects and thus don’t store
state. If you are writing a stateless application, you may find it easier to
frame your application logic using direct actions instead of component
actions.

How Direct Action Requests Are Sent
Dynamic elements that have an action attribute are bound to component
actions. Dynamic elements that have a directActionName attribute are bound to
direct actions. The list of dynamic elements bound to direct actions includes

checkInSessionForContext: Checks in a session.

WOStatisticsStore

Method Description

lock Locks access to the WOStatisticsStore object.

unlock Unlocks access to the WOStatisticsStore object.

WOSessionStore

Method Description
© Apple Computer, Inc. October 9, 1998 23

What’s New in WebObjects 4.0
WOActiveImage, WOForm, WOFrame, WOHyperlink, WOImageButton,
and WOSubmitButton.

When you create a WebObjectsApplication project in release 4.0, a subclass of
WODirectAction (a new class in WebObjects 4.0 that is a container for action
methods) named “DirectAction” is created for you (along with the
WOApplication subclass named “Application” and the WOSession subclass
named “Session”). “DirectAction” is the default name for a WODirectAction
subclass, and can be renamed if you prefer. You can create several
WODirectAction subclasses each performing a single action or a set of actions,
or you can have a single WODirectAction subclass perform all of the actions.

For example, the declaration for a WOHyperlink that triggers a direct action
might look like this:

myLink: WOHyperlink {

actionClass = "MyActions";

directActionName = "logout";

}

The actionClass parameter specifies a subclass of WODirectAction (it defaults to
“DirectAction” if omitted). The directActionName should refer to an action name;
if omitted, WebObjects invokes the method defaultAction within the specified
class. Method names are derived from action names by appending “Action”
to the action name; thus, a directActionName of “logout” corresponds to the
logoutAction method.

Putting Values into a WORequest
WebObjects 4.0 allows you to set arguments for an action as follows:

myLink : WOHyperlink {

directActionName = "display";

queryDictionary = arguments;

?sku = currentProduct.sku;

}

The queryDictionary attribute is set to an NSDictionary that contains arguments
for the displayAction method. The keys in this dictionary are variables in the
action method. The sku argument is an additional argument for the displayAction
method and is an alternate way of setting arguments for the action.

Note: Although the above example uses a direct action, use of the queryDictionary
and the “?” binding aren’t limited to direct actions: you can use them any time
you need to put a value into a WORequest.
24 © Apple Computer, Inc. October 9, 1998

Direct Actions
Suppressing Session IDs in a Direct Action URL
When you construct an HTML template that has some of its components
bound to direct actions and some bound to component actions, depending on
the placement of your direct action components their URLs may include
session IDs. You can prevent the inclusion of a session ID in a direct action
URL as shown in the following example:

MyLink:WOHyperlink {
directActionName = "something";
?wosid = NO;

}

How Direct Action Requests Are Received
Clicking the WOHyperlink from the previous section generates a URL that
looks something like this:

http://localhost/cgi-bin/WebObjects/AppName.woa/wa/
display?sku=value&aKey=aValue...

The wa after the application name is a request handler key. It specifies which
WORequestHandler should handle the request. WORequestHandler is a
new class in WebObjects 4.0. You can read more about it under
“WORequestHandler Class” (page 29). The wa string is the key for the
WODirectActionRequestHandler, a private subclass of WORequestHandler.

In WebObjects 4.0, when the WOApplication receives a request from the
WOAdaptor, it looks at the request handler key to determine which
WORequestHandler should handle the request. It then sends that
WORequestHandler a handleRequest: message.

If the URL doesn’t have a request handler key (as is the case with the initial
URL used to begin a session with a WebObjects application), WOApplication
uses whatever its default request handler is set to be. By default, the default
request handler is WOComponentRequestHandler, which performs the
request handling scheme that you’re used to. If you want to write an
application entirely using direct actions, set the default request handler in
your WOApplication’s init method or constructor in this way:

// Java implementation
public WOApplication() {

super();
...
setDefaultRequestHandler(requestHandlerForKey(

WOApplication.directActionRequestHandlerKey()));
...

}

© Apple Computer, Inc. October 9, 1998 25

What’s New in WebObjects 4.0
//WebScript implementation
- init {

self = [super init];
...
[self setDefaultRequestHandler:[self requestHandlerForKey:

[WOApplication directActionRequestHandlerKey]]];
...
return self;

}

If WODirectActionRequestHandler is the default request handler, the first
request triggers the defaultAction method, which is declared for you in your
DirectAction class.

In its implementation of handleRequest:, WODirectActionRequestHandler
extracts the direct action class and the action from the URL. (If your
WODirectAction subclass isn’t named DirectAction, the class name appears
in the URL immediately before the action.)
WODirectActionRequestHandler then sends the message performActionNamed: to
your WODirectAction object.

Each action method in your WODirectAction class should end with the string
“Action” and should return either a WOComponent or a WOResponse object.
For example:

- (WOComponent *)displayAction

There’s a new protocol and interface named WOActionResults conformed to
by WOResponse and WOComponent. Your action may actually return any
object that conforms to WOActionResults.

When the action method returns, WODirectActionRequestHandler sends the
message generateResponse to the object returned by the action method. This is
the method defined in the WOActionResults protocol. generateResponse returns
a WOResponse object. WOResponse’s implementation is simply to return
itself. WOComponent’s implementation translates the component into a
WOResponse by sending itself appendToResponse:inContext:.

Note: WOComponent’s generateResponse method is also useful for the
handleException... methods defined in WOApplication.

Upon receiving the WOResponse, WODirectActionRequestHandler returns
the response to the WOApplication, and the WOApplication passes it to the
WOAdaptor.

Comparison of Request Processing
The following table shows the sequence of events in processing a traditional,
component action request and compares it to the sequence of events for
26 © Apple Computer, Inc. October 9, 1998

Direct Actions
processing a new direct action. Note that in both component actions and
direct actions, the bulk of the time is spent in the generate response phase, in
which the component performs appendToResponse:inContext: and sends each of its
dynamic elements appendToResponse:inContext:. This step is the same in component
actions and direct actions.

Component Action Direct Action

The adaptor creates a WORequest object and
passes it to the application.

The adaptor creates a WORequest object
and passes it to the application.

The application determines that the
WOComponentRequestHandler should
handle the request.

The application determines that the
WODirectActionRequestHandler should
handle the request.

The application, session, and the request
component are created, if necessary, and
sent the awake message.

Application awake is called.

The takeValuesFromRequest:inContext:
message is propagated from the application
to the session to the request component to
each dynamic element in the request
component (if the request has input values).

WODirectActionRequestHandler parses
the URL and instantiates the
WODirectAction class.

The invokeActionForRequest:inContext:
message is propagated from the application
to the session to the request component to
each dynamic element in the request
component, resulting in the appropriate action
method in the component being invoked.

WODirectActionRequestHandler sends
the message performActionNamed: to
the WODirectAction, resulting in the
appropriate action being invoked.
If there are any input values,
WODirectAction uses
takeFormValues... methods to extract
them from the WORequest.

The action method creates and returns a
response component or response.

The action method creates and returns a
response component or response.

The application awakens the response
component.
The appendToResponse:inContext:
message is propagated from the application
to the session to the response component to
each dynamic element in the response
component.

The object returned by the action method
is sent a generateResponse method to
guarantee that the object returned is a
WOResponse.
If the action returns a WOComponent,
WOComponent’s generateResponse
invokes
appendToResponse:inContext: ,
which sends each dynamic element in the
component an
appendToResponse:inContext:
message as well.

The application forwards the WOResponse to
the adaptor.

The application forwards the
WOResponse to the adaptor.
© Apple Computer, Inc. October 9, 1998 27

What’s New in WebObjects 4.0
API for Direct Actions
This section describes the new classes, methods, protocols, and interfaces
added to support direct actions.

WODirectAction Class
The main purpose of WODirectAction is to act as a repository for action
methods. WODirectAction also defines these methods, which you can use in
your actions:

The application, session, and all of the
components are sent the sleep message.

The WODirectAction is release or marked
for garbage collection. Application sleep is
called.

The component is saved in the session so it
can handle any subsequent requests.

If the returned component contained any
component actions, the component is
saved in the session so it can handle any
subsequent requests.

WODirectAction

Method Description

initWithRequest: (Objective-C)

WODirectAction (Java)

Subclasses must override to provide any additional initialization.

request Returns the WORequest object that initiated the action.

session Returns the current session. If there is no session, which is a possibility if the application
is written entirely with direct actions, this method creates a new session before returning
it.

existingSession Attempts to restore and then return the session based upon the request. If the request
didn’t have a session ID or the session ID referred to a non-existent session, this method
returns nil (null in Java).

pageWithName: Creates and returns an instance of WOComponent with the specified name.

takeFormValuesforKeyArray: Extracts input values from the request URL and assigns them to the WODirectAction
instance using takeValue:forKey:. The argument is an NSArray of keys.

takeFormValuesForKeys: (Objective-C
only)

Extracts input values from the request URL. The argument is a comma-separated list of
NSStrings.

takeFormValueArraysForKeyArray: Extracts input values from the request URL where the values are arrays. The argument is
an NSArray of keys.

takeFormValueArraysForKeys:
(Objective-C only)

Extracts input values from the request URL where the values are arrays. The argument is
a comma-separated list of NSStrings.

performActionNamed: Performs the action with the specified name and returns the result of that action.

Component Action Direct Action
28 © Apple Computer, Inc. October 9, 1998

Direct Actions
WOActionResults Protocol and Interface
WOActionResults is an Objective-C protocol and Java interface that is now
adopted by WOResponse and WOComponent. It defines one method:

WOActiveImage, WOForm, WOFrame, WOHyperlink,
WOImageButton, WOSubmitButton
All elements that support direct actions have the following new attributes:

WORequestHandler Class
A WORequestHandler is an object that can handle requests received by the
WebObjects application server. The WORequestHandler class defines three
methods.

A WORequestHandler class must be registered with the WOApplication
object before it can be used. When you register a WORequestHandler, you

WOActionResults

Method Description

generateResponse Returns a WOResponse object. WOResponse’s implementation simply returns itself.
WOComponent creates a WOResponse object by sending itself the
appendToResponse:inContext: message.

Attribute Description

actionClass Specifies the WODirectAction subclass that contains the action named in the
directActionName attribute. The actionClass attribute defaults to “DirectAction” if
omitted.

directActionName Specifies the action to invoke when this element is activated. The name of the corresponding
method that is invoked is determined by appending “Action” to the directActionName (for
example, the “display” direct action corresponds to the “displayAction” method). The
directActionName attribute defaults to “defaultAction” if omitted.

WORequestHandler

Method Description

handleRequest: Request handlers must implement this method and perform all request-specific handling.
By default, a request is an HTTP request. You must supply your own server-side adaptor to
accept anything other than HTTP.

lock Locks access to the WORequestHandler object.

unlock Unlocks access to the WORequestHandler object.
© Apple Computer, Inc. October 9, 1998 29

What’s New in WebObjects 4.0
specify a key for that handler, which is used in the URL. This key can be any
alphanumeric string, but must contain at least one letter.

WOApplication Methods
The following methods have been added to WOApplication to support the
use of WORequestHandler objects:

WOApplication

Method Description

registerRequestHandler:forKey:
(Objective-C)

registerRequestHandler (Java)

Adds a new WORequestHandler to the list of request handlers. The key is a string that
will be used in the URL to indicate which request handler should process the request. The
key can be any string of letters and numbers, but it must include at least one letter.

removeRequestHandlerForKey: Removes a WORequestHandler from the list of request handlers.

defaultRequestHandler Returns the request handler that is used when the request URL doesn’t contain a request
handler key. This typically happens only on the first request.

setDefaultRequestHandler: Sets the request handler that should be used when the request URL doesn’t contain a
request handler key. If you don’t use this method, the default request handler is
WOComponentRequestHandler, which handles requests routed through a component.

handlerForRequest: Returns the WORequestHandler that can handle the current request, determined by the
request handler key in the URL. That handler is returned and is subsequently sent the
message handleRequest:, where all request-specific processing is done.

registeredRequestHandlerKeys Returns an array of request handler keys that have been registered with the application.

setComponentRequestHandlerKey:
(class or static method)

Sets the key used to indicate the WOComponentRequestHandler, which handles the
traditional WebObjects URL containing a component name, session ID, and context ID.
The default is “wo”.

setDirectActionRequestHandlerKey:
(class or static method)

Sets the key used to indicate the WODirectActionRequestHandler, which handles the
WODirectAction-style URLs containing an action name. The default is “wa”.

setResourceRequestHandlerKey:
(class or static method)

Sets the key used to indicate the WOResourceRequestHandler, which handles resource
requests, such as requests for images. The default is “wr”.

dispatchRequest: Determines which request handler should handle the request and then sends that
request handler a handleRequest: message. This method determines which
WORequestHandler should handle the request by looking up the request handler key in
the URL.
30 © Apple Computer, Inc. October 9, 1998

Direct Actions
WORequest Methods
The following methods have been added to WORequest to support the use
of WORequestHandler objects:

New Notifications
WOApplication now declares two notifications:

• WOApplicationWillFinishLaunchingNotification
• WOApplicationDidFinishLaunchingNotification

Objects can observe one or both of these notifications to add
WORequestHandlers to WOApplication’s list of request handlers.
Alternatively, you can register handlers in your application subclass’s init
method or constructor. However, if you define a request handler inside of a
framework, your framework’s class should observe this notification and
register itself when the notification is received.

WOSession now declares the following notifications:

• WOSessionDidTimeOutNotification
• WOSessionDidRestoreNotification
• WOSessionDidCreateNotification

WORequest

Method Description

requestHandlerPathArray Returns an array containing the portion of the URL following the request handler key, up to
the “?”, if present. Each part of the string separated by a “/” is stored in a separate element
of the returned array.

requestHandlerPath Returns the portion of the URL following the request handler key, up to the “?”, if present.

requestHandlerKey Returns the part of the request’s URL that identifies the request handler key. The returned
key identifies a request handler for the receiving request.
© Apple Computer, Inc. October 9, 1998 31

What’s New in WebObjects 4.0
WOContext Changes
The following methods have been added to WOContext to return
information from the request URL:

Improved Nested Component Support

In WebObjects 4.0, support for nested, reusable components has been
improved in these ways:

• Template parsing improvements make HTML generation for
components faster. Thus, you’ll see only a small performance loss by
using a component instead of a dynamic element.

• You can now create a nested component that serves as an HTML
container element, one that wraps other HTML and text inside of it
(similar to the way a WORepetition wraps other HTML elements).

• You can turn off component synchronization, in which values are pulled
from the parent component and pushed to the parent component before
and after each phase of the request-response loop, and perform
synchronization manually. When you perform synchronization manually,
components are more predictable and behave more like dynamic
elements.

• It’s now easier to use components to mimic and customize the behavior of
dynamic elements. Because of the performance improvements and the
ability to define non-synchronized components, you shouldn’t find it
necessary to have to write a subclass of WODynamicElement.

WOContext

Method Description

directActionURLForActionNamed:queryDictionary: (Objective-C)

directActionURLforActionNamed (Java)

Returns the complete URL for the specified action.

componentActionURL Returns the complete URL for the component action.

urlWithRequestHandlerKey:path:queryString: (Objective-C)

urlWithRequestHandlerKey (Java)

Returns a URL relative to cgi-bin/WebObjects.

completeURLWithRequestHandlerKey:path:queryString:isSecure:port:
(Objective-C)

completeURLWithRequestHandlerKey (Java)

Returns the complete URL for the specified request
handler.
32 © Apple Computer, Inc. October 9, 1998

Improved Nested Component Support
• WOComponent now has a parent method that returns the receiver’s parent
WOComponent.

“Container” Components (WOComponentContent)
WOComponentContent is a dynamic element that allows you to write nested
components as HTML container elements. A container element is an element
that can include text and other elements between its opening and closing tags.
For example, the HTML FORM element is a container element. As well,
WORepetition is a container element.

Using WOComponentContent you can, for example, write a component that
defines the header and footer for all of your application’s pages. To do so, you’d
define a component with HTML similar to the following:

<HTML>
<HEAD>

<TITLE>Cool WebObjects App</TITLE>
</HEAD>
<BODY>

<!-- A banner common to all pages here -->
<!-- Start of content defined by the parent element -->
<WEBOBJECT name=ParentContent></WEBOBJECT>
<!-- End of content defined by the parent element -->
<!-- Put a footer common to all pages here. -->

</BODY>
</HTML>

The <WEBOBJECT> element on this page is a WOComponentContent element
declared like this:

ParentContent : WOComponentContent {};

WOComponentContent is simply a marker that specifies where the contents
wrapped by this component’s WEBOBJECT tag should go. You can have only one
WOComponentContent element in a given component.

To use the component shown above, you’d wrap the contents of all of the other
components in the application with a <WEBOBJECT> tag that specifies the
component defined above. For example, suppose you named the above
component HeaderFooterPage.wo . You could use it in another component like
this:

<!-- HTML for a simple component wrapped with HeaderFooterPage -->
<WEBOBJECT name = templateWrapperElement>

<P>Hello, world!</P>
</WEBOBJECT>

Where templateWrapperElement is declared in the .wod file like this:

templateWrapperElement : HeaderFooterPage {};
© Apple Computer, Inc. October 9, 1998 33

What’s New in WebObjects 4.0
At run-time, the contents wrapped by templateWrapperElement are substituted
for the WOComponentContent definition. As a result, the HTML generated for
this component would be:

<!-- HTML for a simple component wrapped with HeaderFooterPage -->
<HTML>

<HEAD>
<TITLE>Cool WebObjects App</TITLE>

</HEAD>
<BODY>

<!-- A banner common to all pages here -->
<!-- Start of content defined by the parent element -->
<P>Hello, world!</P>
<!-- End of content defined by the parent element -->
<!-- Put a footer common to all pages here. -->

</BODY>
</HTML>

Non-Synchronizing Components
By default, a nested component pulls all values from its parent and pushes all
values to its parent before and after each phase of the request-response loop.
This can lead to problems where values are being set when you don’t want
them set. In addition, the reusability of components is diminished if you must
pre-compute everything a nested component needs before using it inside of
another component.

The solution to both of these problems is non-synchronizing components.
When components are not synchronized, they behave more like dynamic
elements in that values are not pushed or pulled until they are needed.

To create a non-synchronizing nested component, do the following:

• Override the synchronizesVariablesWithBindings method to return NO or false.

• Use these two methods to push and pull values:

For example, consider a nested component named NonSyncComponent that
you declare in a parent component in this way:

WOComponent

Method Description

valueForBinding: Gets (pulls) the value that the parent component bound to the specified attribute.

setValue:forBinding: (Objective-C)

setValueForBinding (Java)

Sets (pushes) the value of the variable that the parent component bound to the specified
attribute to the specified value.
34 © Apple Computer, Inc. October 9, 1998

Improved Nested Component Support
//parent component’s .wod file

MySubcomponent : NonSyncComponent {

stringValue = @"I’m a string!";

}

Suppose NonSyncComponent contains a WOString element that it declares
in this way:

// NonSyncComponent.wod

MyString : WOString {

value = someStringValue;

}

If NonSyncComponent’s script file looks like the following, the value that the
parent bound to the stringValue attribute is pushed and pulled to WOString’s
value attribute whenever WOString requests it. Thus, the WOString in this
NonSyncComponent displays “I’m a string!”

// NonSyncComponent.wos

- synchronizesVariablesWithBindings {

return NO;

}

- someStringValue {

return [self valueForBinding:@"stringValue"];

}

- setSomeStringValue:aValue {

[self setValue:aValue ForBinding:@"stringValue"];

}

If NonSyncComponent has no other need for someStringValue than to resolve the
value attribute for its WOString, then NonSyncComponent can instead use this
shorthand notation in its declarations file:

// Alternate NonSyncComponent.wod

MyString : WOString {

value = ^stringValue;

}

The carat (^) syntax means “use the value that my parent bound to my
stringValue attribute to resolve value.” This syntax is a convenience that saves you
from having to always write cover methods for valueForBinding: and
setValue:forBinding:. In addition to being more convenient, this syntax is often
more efficient because none of your code is invoked to do either the pushing
or the pulling.
© Apple Computer, Inc. October 9, 1998 35

What’s New in WebObjects 4.0
Components That Mimic Dynamic Elements
It’s common to want to be able to subclass a particular dynamic element to
provide behavior specific to your application. Creating a true subclass of a
particular dynamic element can be a difficult task. In WebObjects 4.0,
however, you can do this much more easily. Instead of subclassing the
dynamic element class, you write a reusable component that mimics the
behavior of the dynamic element and provides your own custom behavior.

To learn how to write components that mimic dynamic elements, see the
MinimalPrimitivesTest example application. You can use this example
application as a starting point for writing your own components.

The MinimalPrimitivesTest example uses some new WOGenericElement
and WOGenericContainer attributes that make it easy to use these two
elements to define other dynamic elements. The new attributes on
WOGenericElement and WOGenericContainer are listed below:

WOGenericElement and
WOGenericContainer Attributes

Attribute Description

elementName The name of the HTML element you want to create. This attribute isn’t new, but it has some
changes. It is now optional. You can now bind this attribute to a variable instead of a
constant string. You can also set the value of this attribute to nil or null, which effectively
shuts this element off (that is, WebObjects doesn’t generate HTML tags for this element).

formValue Bind this attribute to a variable that should contain the component’s input value. If this
attribute is specified, WebObjects extracts the form value with the key matching this
component’s element ID from the request and assigns it to the variable bound to this
attribute. If the request has no form value for this element, the variable isn’t set.

formValues Same as formValue, but should be bound to an array variable. Use this attribute if the
element should receive more than one input value. (For example, a WOBrowser with multiple
selections enabled could receive more than one input value.)

invokeAction The action to be invoked. Use this attribute to simulate elements like WOHyperlink,
WOSubmitButton, and so on, that define an action.

omitTags If YES, WebObjects doesn’t generate HTML tags for this element. This attribute allows you
to define an element that conditionally wraps HTML in a container tag. For example, if the
elementName attribute is bound to the string “B” and the omitTags attribute is bound to
a boolean variable, you can use that boolean variable to set whether this element generates
the bold tag or not. (The body contained in the element is generated regardless of this
setting.)

elementID Bind this attribute to a variable if you want to obtain programmatic access to the element
ID for this element.
36 © Apple Computer, Inc. October 9, 1998

Improved Image Loading
Improved Image Loading

To make it easier to display images from a database, the following attributes
have been added to WOActiveImage, WOImage, WOImageButton,
WOFrame, WOBody, and WOEmbeddedObject.

Images are cached by the WOResourceManager object. The following are
new methods on WOResourceManager that access the image cache:

New Methods

This section details various new methods added to the classes that make up
the WebObjects Framework.

Attribute Description

data An NSData object containing the image or embedded object.

mimeType The MIME type of the image to be put in the content-type header field.

key The key under which the data is stored in an application-wide cache. If the key is already in
the image cache table, then the value isn’t computed again. This attribute is optional; the
default is a random key, which means the data will be removed from the cache after access.

WOResourceManager

Method Description

flushDataCache Removes all data from the image data cache.

setData:forKey:mimeType:session:
(Objective-C)

setData (Java)

Adds image data of the specified type to the data cache with the specified key.

removeDataForKey:session:
(Objective-C)

removeDataForKey (Java)

Removes the data for the specified key from the image data cache. The session argument
is ignored.

WOAdaptor

Method Description

runOnce The main application run loop invokes this method for each iteration through
the request-response loop. This method is where adaptors should do the bulk
of their work.
© Apple Computer, Inc. October 9, 1998 37

What’s New in WebObjects 4.0
doesBusyRunOnce An adaptor should implement this method to return whether repeatedly
invoking runOnce would result in busy waiting.

dispatchesRequestsConcurrently An adaptor should implement this method to return YES or true if the adaptor
contains multiple threads and concurrently invokes request handlers.

WOApplication

Method Description

handleInitialTimer Initial timer callback method.

cancelInitialTimer Cancels the initial timer.

WOComponent

Method Description

validationFailedWithException:value:keyPath:
(Objective-C)

validationFailedWithException (Java)

Called when an enterprise object or a formatter failed validation during an
assignment. The default implementation of this method ignores the error.
Subclassers can override it to record the error and possibly return a different
page for the current action.

hasSession A convenience method that returns YES or true if there is a current session.

pageWithName: A convenience method that returns the WOComponent with the specified name.

WOContext

Method Description

contextWithRequest: Returns a new WOContext for the specified WORequest object.

initWithRequest: (Objective-C only) Initializes a newly-created WOContext object with the specified WORequest.

hasSession Returns whether the session exists.

isInForm Returns whether WebObjects is executing code within a WOForm. Invoking
setInForm: with true or YES also causes this method to return true or YES.
Use this method when writing your own WOForm dynamic element, or an
input type dynamic element.

setInForm: Forces the value returned by isInForm. Invoking this method impacts all
elements processed thereafter. Use this method when writing your own
WOForm dynamic element, or an input type dynamic element.

directActionURLForActionNamed:queryDictionary:
(Objective-C)

directActionURLForActionNamed (Java)

Returns the full URL for the named action.

WOAdaptor

Method Description
38 © Apple Computer, Inc. October 9, 1998

New Methods
componentActionURL Returns the full URL for the element you are currently at.

urlWithRequestHandlerKey:path:queryString:
(Objective-C)

urlWithRequestHandlerKey (Java)

Returns a URL relative to cgi-bin/WebObjects for the specified request
handler.

completeURLWithRequestHandlerKey:path:
queryString:isSecure:port: (Objective-C)

completeURLWithRequestHandlerKey (Java)

Returns the complete URL for the specified request handler, including
http:// or https://.

WODisplayGroup

Method Description

setSelectedObjects: Sets the selected objects.

setSelectedObject: Sets the selected object.

indexOfFirstDisplayedObject Returns the index of the first object in the current batch.

indexOfLastDisplayedObject Returns the index of the last object in the current batch.

WORequest

Method Description

browserLanguages Returns the language preference list from the user’s browser.

formValues Returns an NSDictionary containing all of the form data name/value pairs.

WOResponse

Method Description

disableClientCaching Disables caching of this response in the user’s browser.

defaultEncoding (Objective-C) Returns the default character encoding used to construct WOResponses. By
default, this encoding is NSISOLatin1.

setDefaultEncoding: (Objective-C) Allows you to specify the character encoding that is used by default when
constructing WOResponses.

stringByEscapingHTMLString: Returns the supplied string with certain characters escaped out. Use this
method to escape strings which will appear in the visible part of an html file
(that is, not inside a tag).

stringByEscapingHTMLAttributeValue: Returns the supplied string with certain characters escaped out. Use this
method to escape strings which will appear as attribute values of a tag.

WOContext

Method Description
© Apple Computer, Inc. October 9, 1998 39

What’s New in WebObjects 4.0
WOMailDelivery Class

WOMailDelivery uses the WOSendMail tool to construct an email from a file
and send it using SMTP. It requires an SMTP server to be set (the default
value for the SMTP hostname is “smtp”; you can change this value with
defaults write NSGlobalDomain WOSMTPHost hostName or by supplying the hostname as a
WOApplication command-line argument).

WOMailDelivery defines the following methods:

WOSession

Method Description

removeObjectForKey: (Objective-C only) Removes the object from the session dictionary that corresponds to the
specified key.

setDefaultEditingContext: Sets the editing context to be returned by defaultEditingContext. This can
be used to set an editing context initialized with a parent object store other
than the default (useful, for instance, when each session needs its own
login to the database).

WOMailDelivery

Method Description

sharedInstance Returns the shared WOMailDelivery object to which you should send the
composeEmailFrom... and sendEmail: messages.

composeEmailFrom:to:cc:subject:
plainText:send:

Composes an email message with a textual body and optionally sends it. The content type
is set to Content-type: TEXT/PLAIN; CHARSET=US-ASCII.

composeEmailFrom:to:cc:subject:
component:send:

Composes an email message (and optionally sends it) where the body is the HTML that
results when generateResponse is sent to the specified component. Note that the HTML
generated is different from what would be generated in a request-response loop: all URLs
in the page are complete (from http://) so that the mail reader can follow the links on the
mailed page.

sendEmail: Sends an email message created with one of the WOMailDelivery composeEmailFrom...
methods.
40 © Apple Computer, Inc. October 9, 1998

Cookie API
Cookie API

The WebObjects Framework contains new classes and methods that allow
you to use cookies more easily:

• The WORequest class has new methods that allow you to extract cookie
data from the request.

• The WOResponse class has new methods that allow you to add a cookie
to the response.

• The WOSession class has new methods that enable and disable the
cookie mechanism, and control various aspects of that mechanism.

• A new class, WOCookie, defines the cookies that you add to the response.

WORequest Cookie Methods

Method Description

cookieValuesForKey: Returns an array of values for a cookie key. Use this method to retrieve information stored
in a cookie in an HTTP header. Valid keys are specified in the cookie specification.

cookieValueForKey: Returns a string value for a cookie key.

cookieValues Returns a dictionary of cookie values and cookie keys.

WOResponse Cookie Methods

Method Description

addCookie: Adds a WOCookie object to the response.

removeCookie: Removes a WOCookie object from the response.

cookies Returns an array of WOCookie objects to be included in the response.

WOSession Cookie Methods

Method Description

setStoresIDsInCookies: Enables and disables the storing of session and instance IDs in cookies.

storesIDsInCookies Returns whether session and instance IDs are stored in cookies.

expirationDateForIDCookies
(Objective-C only)

Override to return an expiration date for cookies created for the purpose of storing session
and instance IDs (by default, no expiration is set).

domainForIDCookies (Objective-C
only)

Returns the path passed when creating a session or instance ID cookie.
© Apple Computer, Inc. October 9, 1998 41

What’s New in WebObjects 4.0
A WOCookie object defines a cookie that can be added to the HTTP header
for your response. You create a cookie using one of two methods:

Storing Session and Instance IDs
The WOSession class provides methods for storing session and instance IDs
in both cookies and in URLs. See “Cookie API” (page 41) for a listing of the
methods used to store IDs in cookies. The following table lists those
WOSession methods you use to store IDs in URLs:

You should store IDs either in URLs or in cookies, but not both. Enabling
both ID storage mechanisms (cookies and URLs) can have unpredictable
results.

WOExtensions Changes

WebObjects 4.0 includes the source code for the WOExtensions framework,
in /System/Developer/Examples/WebObjects/Source/WOExtensions (on NT,
$NEXT_ROOT/Developer/Examples/WebObjects/Source/WOExtensions).

New Components
A number of components have been added to the WOExtensions framework:
WOAppleScript, WOBatchNavigationBar, WOCompletionBar, WOIFrame,
and WOMetaRefresh.

WOCookie Creation Methods

Method

cookieWithName:value: (Objective-C)

cookieWithName(String, String) (Java)

cookieWithName:value:path:domain:expires:isSecure: (Objective-C)

cookieWithName(String, String, String, String, NSDate, boolean) (Java)

WOSession

Method Description

setStoresIDsInURLs: Controls whether session and instance IDs are stored in URLs.

storesIDsInURLs Returns whether session and instance IDs are stored in URLs.
42 © Apple Computer, Inc. October 9, 1998

WOExtensions Changes
WOAppleScript
The WOAppleScript component provides the ability to include client-side
AppleScript in web pages, allowing WebObjects to control Macintosh
computers that have the appropriate browser plug-in.

WOAppleScript has the following attributes:

WOAppleScript is a non-synchronizing component. See “Non-Synchronizing
Components” on page 34 for more information.

WOBatchNavigationBar
The WOBatchNavigationBar component provides the ability to navigate
through display batches of a WODisplayGroup. The component provides
buttons that allow you to navigate to the next batch and the previous batch. It
also tells you how many batches there are to display, the number of the batch
you are currently viewing, how many objects are in each batch.

WOBatchNavigationBar has the following attributes:

WOAppleScript

Attribute Description

scripttext A string identifying the AppleScript to be executed on the client. This attribute is required.

controller An optional string containing either “True” or “False” that determines whether or not the
controller panel should appear.

height The height of the AppleScript component in client browser. Optional.

width The width of the AppleScript component in the client browser. Optional.

scriptcomment An optional comment for the AppleScript plug-in.

scripttitle An optional title for the AppleScript.

WOBatchNavigationBar

Attribute Description

displayGroup The display group to be navigated through.

width The width of the navigation bar.
© Apple Computer, Inc. October 9, 1998 43

What’s New in WebObjects 4.0
WOCompletionBar Component
The WOCompletionBar component displays a progress bar on your page. You
might use WOCompletionBar in the status page of your long-running action
(see “WOLongResponsePage Class” (page 46)).

WOCompletionBar has the following attributes:

WOIFrame Component
The WOIFrame component inserts an IFRAME tag into your page. This tag
is a container to create an in-line or floating frame: a frame in which the
contents of another HTML document can be seen. The difference between
an IFRAME and a normal frame is that the floating frame can be seen inside
a document and is treated as a part of the document. This means that when
you scroll through the page the frame will scroll with it. IFRAME tags are
supported by Microsoft’s Internet Explorer browser.

WOIFrame has three special mutually-exclusive attributes, all of which are
identical to WOFrame:

WOCompletionBar

Attribute Description

valueMin Minimum value for the bar or value at which the bar begins.

valueMax Maximum value for the bar, or value at which the bar ends.

value The current amount completed. The bar sizes to this number and displays the number inside
itself.

numberformat Format in which to display the value number.

progressColor Color for showing the value. That is, this color shows the amount completed.

backgroundColor Color for the uncompleted portion.

width Table width used to make the bar.

border Table border used to make the bar.

align Alignment of the number to be displayed.

WOIFrame

Attribute Description

src External source that will supply the content for this frame.

pageName Name of a WebObjects component that will supply the content for this frame.

value Method that will supply the content for this frame.
44 © Apple Computer, Inc. October 9, 1998

WOExtensions Changes
The WOIFrame component’s remaining attributes are simply passed through
to the IFRAME:

WOMetaRefresh Component
The WOMetaRefresh component inserts a meta-refresh tag into your page.
You can set the number of seconds before the page is refreshed and either a
page to transition to or an action to perform after the delay.

WOMetaRefresh has the following attributes:

WOMetaRefresh is a non-synchronizing component. See “Non-
Synchronizing Components” on page 34 for more information.

WOIFrame

Attribute Description

frameborder Specifies whether or not a border should be displayed for the frame.

height Specify the height of the frame to the browser, either as a number of pixels or as a
percentage of the current screen height.

marginheight An optional attribute that controls the vertical margins for the frame (margins are specified
in pixels).

marginwidth An optional attribute that controls the horizontal margins for the frame (margins are
specified in pixels).

name An optional argument that assigns a name to a frame so it can be targeted by links in other
documents or, more commonly, from other frames in the same document.

scrolling Specifies whether or not the frame should have a scrollbar. Optional.

width Specifies the height of the frame to the browser, either as a number of pixels or as a
percentage of the current screen height.

WOMetaRefresh

Attribute Description

seconds Number of seconds before the page is refreshed.

pageName Component to navigate to after the page is refreshed.

action Action method to invoke after the page is refreshed.
© Apple Computer, Inc. October 9, 1998 45

What’s New in WebObjects 4.0
WOLongResponsePage Class
WOLongResponsePage, defined in the WOExtensions Framework, is an
abstract subclass of WOComponent. You use WOLongResponsePage when a
requested action will take a long time to complete, say more than 5 seconds.

To use WOLongResponsePage, your long-running action should instantiate
(with pageWithName:) and return a component that is a subclass of
WOLongResponsePage. The subclass of WOLongResponsePage should
override the method performAction, which is where the actual computation takes
place. WOLongResponsePage performs the computation in a separate thread
and returns a status page that indicates that the request is being processed.

Note: If you access WebObjects framework objects within performAction, you must
check out the session (using the WOSessionStore’s
checkOutSessionWithSessionID:request: method) just before the WebObjects call and
check it back in (with the checkInSessionForContext: method) just after the call.

WOLongResponsePage defines the following methods:

WOLongResponsePage

Method Description

performAction Override this method to perform the requested long computation. Returns the result of that
computation as an object.

pageForResult: Returns the result page that is displayed when performAction completes.

setStatus: Sets the status of the computation. The long computation should send this message
periodically so that the refresh page reflects the status of the computation.

refreshPageForStatus: Returns the page that is displayed while the computation is running. This page displays the
current status of the computation.

refreshInterval The interval after which the refresh page is refreshed.

setRefreshInterval: Sets the refresh interval.

refresh Called by the WOMetaRefresh invokeAction callback (can also be called manually if the
page is not self refreshing). This method calls either pageForException:, pageForResult:,
refreshPageForStatus: or cancelPageForStatus: depending of the state of the long
response.

isCancelled Returns YES or true if the request has been cancelled. The long running computation should
check this value to see if it should abort.

cancel Cancels the request. You should bind a cancel button on the refresh page to this method.

cancelPageForStatus: Returns the cancel page, displayed when the request is cancelled.

pageForException: Returns the exception page, displayed when an exception occurs in performAction.

lock Locks the page.
46 © Apple Computer, Inc. October 9, 1998

Dynamic Elements Changes
Dynamic Elements Changes

• All dynamic elements now define an otherTagString attribute. Use this
attribute to include a string directly in the element’s HTML tag. Some
HTML elements contain parameters that are not key-value pairs. If you
wish to include one of these parameters in your element, you can send it
using this attribute.

• Every element which supports the displayString binding now has an
escapeHTML attribute. For the following elements, escapeHTML defaults to YES:

WOBrowser
WOPopUpButton

For these following elements, escapeHTML defaults to YES if you use the
displayString binding, and NO if you use the (now deprecated) value binding:

WOCheckBoxList
WORadioButtonList
WONestedList

• Two new dynamic elements have been added to the WebObjects
framework to better support JavaScript. They are called WOActionURL,
which is similar to WOHyperlink; and WOResourceURL, which is similar
to WOImage.

• WOPopUpButton and WOBrowser have a new selectedValues attribute
which passes the selected objects to a popup or browser via a list of
selected values rather than a list of selected objects. The selected values
come directly from the form values of the request.

• The first item in a WOPopUpButton can now be an empty selection. Bind
the noSelectionString attribute to a string that, if chosen, represents an empty
selection. If the user leaves the WOPopUpButton at this item, then the
selection attribute is set to null or nil.

• WOTextField and WOString have a new attribute, formatter, which should
be bound to an NSFormatter instance. In the event a user enters a value

unlock Unlocks the page.

WOLongResponsePage

Method Description
© Apple Computer, Inc. October 9, 1998 47

What’s New in WebObjects 4.0
that cannot be formatted, these elements will pass the invalid value
through, allowing you to send back an error page that shows the invalid
value. Note that the prior behavior in this case was to pass back a blank
value for the field.

• The behavior of WORadioButton and WOCheckBox changed slightly so
that they now push NSNumber objects with a value of 1 or 0 rather than
@"1" or nil (null in Java) to indicate the state of the button or check box. The
old behavior still applies if WebObjects 3.5 request handling is enabled
(see “Troubleshooting WebObjects 4.0 Request Handling” (page 7)).

New Dynamic Element: WOFileUpload
A WOFileUpload element displays a form element in which a client browser
can specify a file to be uploaded to the server. It corresponds to the HTML:
<INPUT type=file>.

Note: WOFileUpload elements inside of a WOForm require that the WOForm
have the attribute’s encoding type set as follows:

enctype = "multipart/form-data"

For further information on the file upload specification, see RFC1867:
http://www.w3.org/RT/REC-html32.html#rfc1867.

WOFileUpload has the following attributes:

If you want to process a file upload in a direct action, use WORequest’s
formValueForKey: method to get the contents of the file that has been uploaded.
This method previously returned an NSString. It is now declared as follows:

- (id) formValueForKey:(NSString *) aKey

or, in Java,

public java.lang.Object formValueForKey(java.lang.String aKey)

WOFileUpload

Attribute Description

filePath The full file path and name of the file uploaded is sent by the browser and returned as a
string to the variable or method bound to this attribute.

data The file that is uploaded will be returned as an NSData object to the variable or method
bound to this attribute.
48 © Apple Computer, Inc. October 9, 1998

Dynamic Elements Changes
New Component: WOQuickTime
WOQuickTime is the component for incorporating QuickTime objects
(movie, sound, VR, ...) into your WebObjects applications. The
WOQuickTime API is essentially based on the QuickTime plug-ins API.

The WOQuickTime component supports QuickTime VR with hotspots. If
you specify a list of hotspots and the user clicks inside the QuickTime VR
object, the method specified by the action attribute is performed and the
parameter selection is set to the value of the selected hotspot.

WOQuickTime components should be used outside of an HTML form.

WOQuickTime has the following attributes. Those attributes relevant only to
VR movies are indicated with “[VR]” in the description column.

WOQuickTime

Attribute Description

filename Path to the QuickTime object relative to the WebServerResources directory.

src URL locating the QuickTime object. Use this attribute for complete URLs; for relative URLs
use filename instead.

framework The framework that contains the QuickTime object. This attribute is only necessary if the
QuickTime object is in a different location from the component. That is, if the component and
the QuickTime object are both in the application or if the component and the QuickTime
object are both in the same framework, this attribute isn’t necessary. If the QuickTime object
is in a framework and the component is in the application, specify the framework’s name
here (minus the .framework extension). If the QuickTime object should be in the application
but the component is in a framework, specify the app keyword in place of the framework
name.

width QuickTime object width in pixels. The width parameter is required. Never specify a width of
less than 2 as this can cause problems with some browsers. If you are trying to hide the
movie, use the hidden tag instead. If you don’t know the width of the movie, open your movie
with MoviePlayer (it comes with QuickTime) and select Get Info from the Movie menu. If you
don’t use the scale tag and you supply a width that is smaller than the actual width of the
movie, the movie will be cropped to fit. If you supply a width that is greater than the width
of the movie, the movie will be centered inside this width.

height Quicktime object height in pixels. If you want to display the movie’s controller, you’ll need to
add 16 pixels to the height. height is required unless you use the hidden attribute. Never
specify a height of less than 2 as this can cause problems with some browsers. If you are
trying to hide the movie, use the hidden tag instead. If you don't know the height of the
movie, open your movie with MoviePlayer and select Get Info from the Movie menu. If you do
not use the scale tag and you supply a height that is smaller than the actual height of the
movie (plus 16 if you are showing the controller), the movie will be cropped to fit. If you
supply a height that is greater than the height of the movie, the movie will be centered
inside this height.
© Apple Computer, Inc. October 9, 1998 49

What’s New in WebObjects 4.0
pluginsPage This optional attribute allows you to specify a URL from which the user can fetch the
necessary plug-in if it is not installed. This attribute is handled by your browser. If your
browser cannot find the plug-in when loading your page, it will warn the user and allow them
to bring up the specified URL. Generally this parameter should be set to
“http://www.apple.com/quicktime”. This attribute is appropriate for both QuickTime movies
and QuickTime VR Objects and Panoramas.

hotspotList [VR] The hotspot list is an array of strings, each of which should be mapped to a hotspot ID
as defined when the hotspots are created with the QuickTime VR authoring tools.

selection [VR] A string corresponding to the ID of the user-selected hotspot.

action Method to invoke when the QuickTime object is clicked. The selection parameter then
contains the ID of the selected hotspot if a hotspot list has been specified, or nil otherwise.

href URL to direct the browser to when the QuickTime object is clicked and no hotspots are hit.

pageName Name of the WebObjects page to display when the QuickTime object is clicked and no
hotspots are hit.

bgcolor Background color for the QuickTime object. This is an optional attribute. Use bgcolor to
specify the background color for any space that is not taken by the movie—as, for example,
if you embed a 160x120 movie in a 200x120 space. Specify the color as a hex value.

target (optional) When set, the target attribute is the name of a valid frame (including _self,
_top, _parent, _blank or an explicit frame name) that will be the target of a link specified
by the hotspot or href attribute.

volume (optional) Possible values are 0 through 100. A setting of 0 effectively mutes the audio; a
setting of 100 is maximum volume.

pan [VR] This optional attribute allows you to specify the initial pan angle for a QuickTime VR
movie.The range of values for a typical movie would be 0.0 to 360.0 degrees. If no value for
pan is specified, the value stored in the movie is used.

tilt [VR] This optional attribute allows you to specify the initial tilt angle for a QuickTime VR
movie. The range of values for a typical movie would be -42.5 to 42.5 degrees. If no value
for tilt is specified, the value stored in the movie is used.

fov [VR] This optional attribute allows you to specify the initial field of view angle for a
QuickTime VR movie.The range of values for a typical movie would be 5.0 to 85.0 degrees. If
no value is specified for fov, the value stored in the panoramic movie is used.

node [VR] This optional attribute allows you to specify the initial node for a multi-node QuickTime
VR movie. If no value is specified for node, the default node and view (specified at creation
time of the movie) is used.

correction [VR] (optional) Possible values are “NONE”, “PARTIAL”, or “FULL” (the default). This
attribute is only appropriate for QuickTime VR objects and panoramas.

cache (optional) If set to YES, the browser will cache movies when possible just like other
documents.

WOQuickTime

Attribute Description
50 © Apple Computer, Inc. October 9, 1998

Changes to Localization
Changes to Localization

In WebObjects 3.5 (and earlier releases), localized versions of a component’s
HTML templates are located in each component’s .wo folder, in subdirectories
called language.lproj (French.lproj, for example). This mechanism is functional, but
isn’t supported by developer tools such as Project Builder and WebObjects
Builder.

To improve support for developing multi-language web applications,
WebObjects 4.0 adopts a localization scheme that’s similar to the one for
Yellow Box applications. Now components (.wo’s) and other resources (such as
.gif images) are localizable from Project Builder.

The new scheme changes the locations of localized files as follows:

• Localized files go in language.lproj folders in the Web Components,
Resources, and Web Server Resources directories. Any component,
application resource, or web server resource can have a version in one or
more .lproj folders.

autoplay (optional) When set to YES, causes the movie to start playing as soon as the QuickTime Plug-
In estimates that it’ll be able to play the entire movie without waiting for additional data.
This attribute’s default is specified by a user setting in the QuickTime Plug-in Preferences.

hidden This optional attribute controls the visibility of the movie. By default the value is YES; if you
set it to NO the movie won’t be visible on the page. This option is not appropriate for
QuickTime VR Objects or Panoramas. You can use the hidden setting to hide a sound-only
movie.

playEveryFrame When this optional attribute is set to YES the QuickTime plug-in plays every frame, even if
it is necessary to play at a slower rate to do so. This parameter is particularly useful to play
simple animations, and is appropriate for QuickTime movies. Note that setting it to YES will
turn off any audio tracks your movie may have.

controller This optional attribute sets the visibility of the movie controller (with QTVR 2.1, you can have
a controller on VR Panarama or Object Movies). If you don’t specify controller, the default
is YES for QuickTime movies. For compatibility with existing web pages, the default is NO for
QuickTime VR movies.

prefixHost This attribute should be used to fix a bug with the QuickTime 2.x plug-in on Windows
platforms. Setting prefixHost to YES (the default is NO) will automatically add the http host
name at the beginning of each dynamic URL, allowing old plug-ins to correctly handle
WOQuickTime component.

WOQuickTime

Attribute Description
© Apple Computer, Inc. October 9, 1998 51

What’s New in WebObjects 4.0
• As with Java and Objective-C source code, script files now go at the top
level of the project (or subproject), outside the .wo, and they are visible in
Project Builder’s Classes suitcase. Note that Project Builder still keeps
track of the relationship between your script files and their components.
For example, if you select Main.wo/Main.html and then select the Classes
suitcase, Project Builder automatically displays Main.wos.

• Similarly .api files go at the top level of the project (or subproject), outside
the .wo, as they (like the script and source files) apply to all localized
versions of a component. In Project Builder, they are visible in the
Resources suitcase.

• All language versions of a localized component (.wo) must contain both the
.html and .wod files. If a .woo file exists for the component, it must be in
included in each version of the component as well.

Project Builder Support
To localize a component in Project Builder:

1. Select the component to localize.

2. Open the File Attributes Inspector.

3. Click Localized, then check the languages to support.

4. Click Apply.

Project Builder creates copies of the component in the appropriate Web
Components .lproj folders and offers to remove the global (non-localized)
version from the disk. You localize other kinds of resources the same way. To
view a localized resource, simply select it in its .lproj folder.

Building a localized application or framework creates a .woa or .framework that
contains Resources and WebServerResources directories, each containing the
.lproj folders for your project. The localized versions of each resource are
installed their corresponding .lproj folders following a successful build.

WebObjects Builder Support
WebObjects Builder can open both localized and non-localized components.
Since only one script or code file exists for a given component, WebObjects
Builder is always able to locate the correct file for adding actions and variables.
52 © Apple Computer, Inc. October 9, 1998

Tool Changes
Tool Changes

This section describes changes made to the tools that you use to create and
test WebObjects applications. Be sure to check the document titled “What’s
New in Enterprise Objects Framework 3.0” for changes to EOModeler, and
the Project Builder release notes for changes to Project Builder.

WOPlayback Changes
The WOPlayback tool has been rewritten in Java. You can use it as a
command-line tool like you did in WebObjects 3.5, or you can use it in the
Java applet viewer as a GUI tool.

There is also a new WebObjects application named PlaybackManager.
PlaybackManager helps you play back a recorded session through several
different clients so that you can simulate different loads that your application
might have to handle.

PlaybackManager is installed in Library/WebObjects/Applications. Before using it, read
the file Library/WebObjects/Applications/PlaybackManager.woa/Resources/ReadMe.rtf.

WebObjects Builder Changes
WebObjects Builder has two new major features for 4.0: Undo and frame
editing support.

• You can now undo changes using Control-z on Windows NT, Command-
z on Mac OS X Server, or by choosing Undo from the Edit menu.

• To create a frameset, execute the New Frameset command from the
Component menu. WebObjects Builder creates an HTML file that
defines a frameset. Within the frameset, you can define either static frame
elements or dynamic WOFrame elements.

In addition, the following changes have been made to WebObjects Builder:

• WebObjects Builder’s handling of incorrect HTML has been improved.

• WebObjects Builder now properly preserves whitespace in your HTML.

• WebObjects Builder now has an “HTML reformat” option in raw mode.

• The Palettes menu now has a SaveAs menu item, allowing you to save a
palette to a new location.

• The WebObjects Builder toolbar is now active in raw mode.
© Apple Computer, Inc. October 9, 1998 53

What’s New in WebObjects 4.0
• WebObjects Builder now understands fully-qualified Java classes.

• Escape completion is now supported in combo boxes.

• Performance has been improved when rendering large or complex pages.

• WebObjects Builder now supports a graphical alternative display for
shared/reusable components (WXY.wo contains WXY.tiff / WXY.bmp, for example).
It has no built-in support for generating them, however; you have to insert
the image file manually, without help from WebObjects Builder.

• WebObjects Builder now works on Japanese-language systems (it works
with the platform-provided language-input system, such as that provided
with the Japanese version of Windows NT).

Direct to Web Changes
Direct to Web in the 4.0 release has these improvements:

• Performance improvements

• Safe editing of relationships

• A new error page component

Currently, there is no component generation support for the new components.

Monitor Changes
Monitor’s user interface has been completely redesigned for this release (See
the document “Serving WebObjects” for more information). In addition, the
following additional features have been added:

• Monitor now allows you to set the Application Base URL under both
Application Configuration and Instance Configuration. See the default
value that appears in Monitor for an example of how you must format the
Application Base URL variable.

Rapid Turnaround Mode

For the most part, WebObjects is an interpreted environment. The HTML
templates, declarations files, and WebScript files each represent interpreted
languages. One of the main benefits of an interpreted environment is that you
needn’t recompile every time you make a change to the project. The ability
54 © Apple Computer, Inc. October 9, 1998

Rapid Turnaround Mode
to test your changes without rebuilding the project is called “rapid
turnaround” and, when using rapid turnaround capability, you’re said to be in
“rapid turnaround mode.”

WebObjects has always supported rapid turnaround of .html, .wod, and .wos files
within the application project. WebObjects 4.0 adds support for rapid
turnaround of these files within framework projects and within subprojects of
either application or framework projects.

To support rapid turnaround, WebObjects must be able to locate the resources
of your application and its associated frameworks within your system’s
projects rather than the built products (the .woa or .framework wrappers). To tell
WebObjects where to look for your system’s projects you must define the
NSProjectSearchPath user default. Set this default to an array of paths where
your projects may be found. (Relative paths are taken relative to the
executable of your project.) The order of the entries in the array defines the
order in which projects will be located. The default NSProjectSearchPath is
("../.."), which causes WebObjects to look for any other applicable projects in
the directory where your application’s project resides. For example, if your
application’s executable resides within:

c:\web\docroot\WebObjects\Projects\MyProject\MyProject.woa

then from the executable’s directory, "../.." would point to:

c:\web\docroot\WebObjects\Projects

If you’ve set your project’s “Build In” directory to something other than the
default, "../.." isn’t likely to be appropriate; you should set your
NSProjectSearchPath to point to the directories where you keep your projects
while you work on them.

When your application is starting up, pay close attention to those log messages
which indicate that a given project is found and will be used instead of the
built product. Many problems can be solved by understanding how to
interpret this output. If no such log message is seen for a given project, it won’t
be possible to use rapid turnaround for that project. As well, if you have
several projects with the same name in the same directory, a conflict will be
reported. This often happens when you have several copies of the same
project as backups in your project directory. For example, you might have:

c:\web\docroot\WebObjects\Projects\MyApp

c:\web\docroot\WebObjects\Projects\Copy of MyApp

c:\web\docroot\WebObjects\Projects\MyAppOld

Even though the folders containing the projects have different names, the
PB.project files within them might be identical. WebObjects uses the
© Apple Computer, Inc. October 9, 1998 55

What’s New in WebObjects 4.0
PROJECTNAME attribute inside your project’s PB.project file to determine
the name of the project, not the name of the directory for the project. If this
happens, you’ll need to move the backups to another directory to avoid the
conflict.

Rapid Turnaround and Direct Connect Mode
Direct connect mode is a new feature in WebObjects 4.0 which allows you to
test your application without involving a web server. This means that you
don’t have to install your WebServerResources under the document root of
your web server. The result is that rapid turnaround is even more convenient
when in direct connect mode because you needn’t rebuild to install
WebServerResources changes to the document root.

Testing With a Web Server
When you’re working in direct connect mode, few issues arise with respect to
rapid turnaround. If your application has features which require a web server
be used even for testing, however, there are a couple of things to know to
make rapid turnaround work for you. Specifically, since you are relying on the
web server to locate files within WebServerResources, you must follow these
guidelines:

1. Your projects must reside somewhere below your web server’s document
root.

2. NSProjectSearchPath should point to all projects of interest.

3. For application projects, the WOApplicationBaseURL user default
should specify the directory containing the application project. For
example, if your application’s project folder is:

c:\web\docroot\WebObjects\MyApp

then the WOApplicationBaseURL user default must be "/WebObjects".

4. For framework projects, the WOFrameworksBaseURL user default
should specify the directory containing all framework projects used by the
application. For example, if your application uses
MyFramework.framework and that project resides in:

c:\web\docroot\WebObjects\Frameworks\MyFramework

then the WOFrameworksBaseURL user default must be
"/WebObjects/Frameworks".
56 © Apple Computer, Inc. October 9, 1998

Debugging
Conveniently, the two examples above use the default locations for
WOApplicationBaseURL and WOFrameworksBaseURL; if your projects
reside in these default locations, you need only set NSProjectSearchPath.

Also, while it is possible to point WOApplicationBaseURL and
WOFrameworksBaseURL to other locations, it is not suggested that
WOFrameworksBaseURL be moved since all WebObjects applications use
WOExtensions.framework, which resides in the default location. If you set
WOFrameworksBaseURL to point elsewhere, one side effect will be that the
images in the “Raised Exception” panel will not render.

Debugging

In WebObjects 4.0, you debug an application by launching it in the Project
Builder launch panel. By default, the browser is launched automatically and
shows the appropriate URL.

A new feature of WebObjects 4.0 allows you to debug applications on a
machine that doesn’t have a web server present. See ““Serverless”
Applications” (page 14) for more information.

WOApplication, WOComponent, and WODirectAction define a method
named debugWithFormat: (debugString in Java). This method is similar to
logWithFormat:/logString except that you can control whether it displays output with
the WODebuggingEnabled user default option. If WODebuggingEnabled is YES, then the
debugWithFormat: messages display their output. If WODebuggingEnabled is NO, the
debugWithFormat: messages don’t display their output. WODirectAction also
defines logWithFormat:.

All dynamic elements and components now have a WODebug attribute that can
be helpful when you are trying to locate unwanted behavior (and can also help
you understand how non-synchronized components work). When WODebug is
set to YES, it turns on a “verbose mode” for all dynamic associations for the
element. This results in logs like the following being generated:

[NestedList:WXNestedList] (item: {label = Alpha.2.1; value = A.2.1; })
==> currentItem
[NestedList:WXNestedList] (index: 0) ==> currentIndex
[NestedList:WXNestedList] sublist <== (currentItem.sublist: *nil*)
[NestedList:WXNestedList] (item: {isNew = 1; label = Alpha.2.2; value =
A.2.2; }) ==> currentItem
[NestedList:WXNestedList] (index: 1) ==> currentIndex
[NestedList:WXNestedList] sublist <== (currentItem.sublist: *nil*)
© Apple Computer, Inc. October 9, 1998 57

What’s New in WebObjects 4.0
The format of these logs is controlled by two new methods on WOApplication
that can be overridden to customize the log messages:
logTakeValueForDeclarationNamed:type:bindingNamed:associationDescription:value:
(logTakeValueForDeclarationNamed in Java), and
logSetValueForDeclarationNamed:type:bindingNamed:associationDescription:value:
(logSetValueForDeclarationNamed in Java).

Other Changes

• The WebObjects Framework now allows you to save pages in a separate,
permanent page cache. This allows you to have pages that remain in the
cache; they won’t drop out as the page stack is filled by other pages; you
no longer have to write custom code to keep toolbars and other “static”
pages around. Use WOSession’s savePageInPermanentCache: method to save
pages in this new cache. Use WOApplication’s setPermanentPageCacheSize: and
permanentPageCacheSize methods to set and get the size of the permanent page
cache (the default size is 30 pages).

• WebScript now supports Objective-C style exception handling. See the
WebObjects Developer’s Guide for a complete discussion.

• WOStats is now a direct action; it no longer creates a session when you
access it, causing the statistics to be thrown off. Access it now with:

..../App.woa/wa/WOStats

• WebObjects now includes a native adaptor for the Apache web server, as
well as a WAI adaptor.

• WOContext’s session method will create a new session of one doesn’t
already exist.

• WOAdaptor’s init method now takes an NSDictionary instead of an
NSArray. WOApplication’s adaptorWithName:arguments: method also takes a
dictionary instead of an array.

• WebObjects documentation and examples are now accessible through the
WebObjects Info Center, instead of the “WOHomePage.” The Info
Center is a full-fledged WebObjects application that, in addition to acting
as a single point-of-entry to developer documentation and examples,
allows you to search the documentation and examples that are on your
disk.
58 © Apple Computer, Inc. October 9, 1998

Other Changes
• You can now use the debug and profile targets in Project Builder when
building your WebObjects applications. Parts of WebObjects—including
the WebObjects Framework, the WOExtensions Framework, and
MultiScript—are provided in profiled form.
© Apple Computer, Inc. October 9, 1998 59

What’s New in WebObjects 4.0
60 © Apple Computer, Inc. October 9, 1998

	Compatibility With Earlier Releases
	Converting an Existing WebObjects Application
	Converting Java Code
	Troubleshooting WebObjects 4.0 Template Parsing
	WOApplication Template Parsing Methods.

	Troubleshooting WebObjects 4.0 Request Handling
	WebScript Changes

	File Location Changes
	Running an Application on WebObjects 4.0
	Command-Line Options
	Autostarting
	“Serverless” Applications
	Changes to Adaptor Configuration Files
	The Application Instance Number

	Changes to WebObjects Application URL

	Support for Multithreaded Applications
	Deprecated API
	New Methods to Support Multithreading

	Direct Actions
	How Direct Action Requests Are Sent
	Putting Values into a WORequest
	Suppressing Session IDs in a Direct Action URL

	How Direct Action Requests Are Received
	Comparison of Request Processing
	API for Direct Actions
	WODirectAction Class
	WOActionResults Protocol and Interface
	WOActiveImage, WOForm, WOFrame, WOHyperlink, WOImageButton, WOSubmitButton
	WORequestHandler Class
	WOApplication Methods
	WORequest Methods
	New Notifications
	WOContext Changes

	Improved Nested Component Support
	“Container” Components (WOComponentContent)
	Non-Synchronizing Components
	Components That Mimic Dynamic Elements

	Improved Image Loading
	New Methods
	WOMailDelivery Class
	Cookie API
	Storing Session and Instance IDs

	WOExtensions Changes
	New Components
	WOAppleScript
	WOBatchNavigationBar
	WOCompletionBar Component
	WOIFrame Component
	WOMetaRefresh Component

	WOLongResponsePage Class

	Dynamic Elements Changes
	New Dynamic Element: WOFileUpload
	New Component: WOQuickTime

	Changes to Localization
	Project Builder Support
	WebObjects Builder Support

	Tool Changes
	WOPlayback Changes
	WebObjects Builder Changes
	Direct to Web Changes
	Monitor Changes

	Rapid Turnaround Mode
	Rapid Turnaround and Direct Connect Mode
	Testing With a Web Server

	Debugging
	Other Changes

