

T
he EOAccess Framework

e
Framework: com.apple.yellow.eoaccess

Introduction

The EOAccess framework is one of a group of frameworks known collectively as the Enterprise Objects
Framework. The classes and interfaces that make up the EOAccess framework allow your applications to
interact with database servers at a high level of abstraction. These classes make up what is known as th
access layer. The access layer is divided into two main parts:

• The database level, which allows applications to treat records as full-fledged enterprise objects.

• The adaptor level, which provides server-independent database access.

Working with the access layer allows you to have a finer level of control over database operations.

EOAccess Framework Class Hierarchy

The EOAccess class hierarchy is rooted in the Foundation Framework’s NSObject class (see Figure 1). The
remainder of the EOAccess Framework consists of several related groups of classes, a few miscellaneous
classes, and a number of interfaces.

Figure 1 The EOAccess Framework class hierarchy

The Database Level

The database level is where enterprise objects are created from the dictionaries retreived by the adaptor
level. It’s also where snapshotting is performed. The database level is primarily made up of the following
classes:

• EODatabase is a class that represents a single database server.

• EODatabaseChannel is a class that represents an independent communication channel to the database
server.
2

 Classes:

.

l

k

on

• EODatabaseContext is subclass of EOObjectStore for accessing relational databases, creating and
saving objects based on EOEntity definitions in an EOModel.

• EODatabaseOperation is a class that represents an operation—insert, update, or delete—to perform on
an enterprise object and all the necessary information required to perform the operation.

The Adaptor Level

The adaptor level deals with database rows packaged as dictionaries. The adaptor level is primarily made
up of the following classes:

• EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database.

• EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for
performing database operations.

• EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects
Framework applications.

• EOAdaptorOperation is a class that represents a primitive operation in a database server and all the
necessary information required by the operation.

The Modeling Classes

A model defines, in entity-relationship terms, the mapping between enterprise object classes and a database
The following are the principal modeling classes in the EOAccess framework:

• EOAttribute is a class that represents a column, field or property in a database, and associates an interna
name with an external name or expression by which the property is known to the database.

• EOEntity is a class that describes a table in a database and associates a name internal to the Framewor
with an external name by which the table is known to the database.

• EOJoin is a class that describes one source-destination attribute pair for an EORelationship.

• EOModel is a class that represents a mapping between a database schema and a set of classes based
the entity-relationship model.

• EOModelGroup is a class that represents an aggregation of related models.

• EORelationship is a class that describes an association between two entities, based on attributes of those
two entities.

Faulting

These classes implement or are used to implement object faulting:
3

a
EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for
an array of enterprise objects.

EOAccessFaultHandler is a subclass of EOAccessGenericFaultHandler that implements an object fault
for enterprise objects.

EOAccessGenericFaultHandler is an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext.

Additions to Other Frameworks

The EOAccess framework adds methods to a number of classes in different frameworks:

EOGenericRecord Additions adds one method to the control layer’s class, for returning a generic record’s
associated EOEntity.

EOObjectStoreCoordinator Additions adds two methods to the EOControl class for accessing the
coordinator’s EOModelGroup.

EOQualifier Additions adds one method to the class, for “rerooting” a qualifier to another entity.

NSString Additions adds two methods to the class, to convert modeling object names to database schema
names, and database schema names to modeling object names

Miscellaneous Classes

The EOAccess framework also has a number of other useful classes, including:

• EODatabaseDataSource is a concrete subclass of EODataSource that fetches objects based on an
EOModel, using an EODatabaseContext that services the data source’s EOEditingContext.

• EOEntityClassDescription is a subclass of the control layer’s EOClassDescription and extends the
behavior of enterprise objects by deriving information about them from an associated EOModel.

• EOLoginPanel is an abstract class that defines how users provide database login information.

• EOSQLExpression is an abstract superclass that defines how to build SQL statements for adaptor
channels.

• EOSQLQualifier is a subclass of EOQualifier that contains unstructured text that can be transformed
into an SQL expression.

• EOStoredProcedure is a class that represents a stored procedure defined in a database, and associates
name internal to EOF with an external name known to the database.
4

 Classes:

Delegates

A number of EOAccess classes delegate behavior. The delegate methods are defined in these Java
interfaces:

• An EOAdaptorChannel delegate receives messages for nearly every operation that would affect data in
the database server, and it can preempt, modify, or track these operations.

• A EOAdaptorContext delegate receives messages for any transaction begin, commit, or rollback, and it
can preempt, modify, or track these operations.

• An EOAdaptor delegate implements a method that can perform a database-specific transformations on
a value.

• An EODatabaseContext delegate can intervene when objects are created and when they’re fetched from
the database.

• An EOModelGroupClass delegate implements a method that returns the default model group.

• An EOModelGroup delegate influences how the model group finds and loads models.

• Miscellaneous Interfaces EOCustomClassArchiving is an informal protocol that defines methods
that can write any object that conforms to NSCoding to the database as binary data, as generated by
NSArchiver.

• EOUtilities is a collection of convenience methods intended to make common operations with EOF
easier.

• EOPropertyListEncoding declares methods that read and write objects to property lists.

• EOQualifierSQLGeneration declares two methods that are adopted by qualifier classes to qualify
fetches from a database.
5

6

 Classes: EOAccessArrayFaultHandler

EOAccessArrayFaultHandler

Inherits From: EOAccessGenericFaultHandler : com.apple.yellow.eocontrol.EOFaultHandler :
NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOAccessArrayFaultHandler is a subclass of EOAccessGenericFaultHandler that implements a fault for an
array of enterprise objects.

Constructors

EOAccessArrayFaultHandler
public EOAccessArrayFaultHandler()

Returns an uninitialized array fault handler.

public EOAccessArrayFaultHandler(com.apple.yellow.eocontrol.EOKeyGlobalID sourceGID,
java.lang.String relationshipName,
EODatabaseContext databaseContext,
com.apple.yellow.eocontrol.EOEditingContext editingContext)

Returns a handler initialized with all of the information necessary to fetch the appropriate objects when the
fault is fired. When the fault is fired, the database context asks the editing context for the required objects
using the EOObjectStore protocol.

Instance Methods

completeInitializationOfObject
public void completeInitializationOfObject (java.lang.Object anObject)

Asks the receiver’s database context to fetch the object if it is not already in memory. This method is called
when the fault is fired and uses the EOObjectStore protocol to get the information from the reciever’s
editing context
7

databaseContext
public EODatabaseContext databaseContext()

Returns the receiver’s database context.

editingContext
public com.apple.yellow.eocontrol.EOEditingContext editingContext()

Returns the receiver’s editing context.

relationshipName
public java.lang.String relationshipName()

Returns the receiver’s relationship name.

sourceGlobalID
public com.apple.yellow.eocontrol.EOKeyGlobalID sourceGlobalID()

Returns the receiver’s source global ID.
8

 Classes: EOAccessFaultHandler

EOAccessFaultHandler

Inherits From: EOAccessGenericFaultHandler : com.apple.yellow.eocontrol.EOFaultHandler :
NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOAccessFaultHandler is a subclass of EOAccessGenericFaultHandler that implements an object fault for
enterprise objects.

Constructors

EOAccessFaultHandler
public EOAccessFaultHandler()

Returns an uninitialized array fault handler.

public EOAccessFaultHandler(com.apple.yellow.eocontrol.EOKeyGlobalID globalID,
EODatabaseContext databaseContext,
com.apple.yellow.eocontrol.EOEditingContext editingContext)

Returns a handler initialized with all of the information necessary to fetch the object when the fault is fired.

Instance Methods

completeInitializationOfObject
public void completeInitializationOfObject (java.lang.Object anObject)

Asks the receiver’s database context to fetch anObject if it is not already in memory. This method is called
called when the fault is fired and uses the EOObjectStore protocol to get the information from the receiver’s
editing context.

databaseContext
public EODatabaseContext databaseContext()

Returns the receiver’s database context.
9

editingContext
public com.apple.yellow.eocontrol.EOEditingContext editingContext()

Returns the receiver’s editing context.

globalID
public com.apple.yellow.eocontrol.EOKeyGlobalID globalID()

Returns the receiver’s global ID.
10

 Classes: EOAccessGenericFaultHandler

EOAccessGenericFaultHandler

Inherits From: com.apple.yellow.eocontrol.EOFaultHandler : NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOAccessGenericFaultHandler is an abstract class that helps an EOAccessFault to fire by fetching data
using an EODatabaseContext. Don’t use EOAcceessGenericFaultHandler directly; instead, use its
subclasses EOAccessFaultHandler and EOAccessArrayFaultHandler.

EOAccessGenericFaultHandler lets you chain together all the fault handlers in the access layer, so the batch
faulting mechanism can find other faults related to the one that triggered the batch. Use
linkAfterHandlerUsingGeneration to link one fault after another. Use next and previous to traverse the
chain.

Instance Methods

generation
public int generation()

Returns the the receiver’s generation, a number that represents when the fault handler was built.

linkAfterHandlerUsingGeneration
public void linkAfterHandlerUsingGeneration (EOAccessGenericFaultHandler faultHandler,

int generation)

Adds the receiver to a chain of fault handlers, after faultHandler. generation is a number that represents
when the handler was built. All faults in an access layer can be chained together, so the batch faulting
mechanism can find other faults related to the one that triggered the batch.

See also: next, previous

next
public EOAccessGenericFaultHandler next()

Returns the next fault in the chain.
11

previous
public EOAccessGenericFaultHandler previous()

Returns the previous fault in the chain.
12

 Classes: EOAdaptor

e

,

EOAdaptor

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database. A concrete subclass of EOAdaptor provides database-specific method implementations and
represents a single database server. You never interact with instances of the EOAdaptor class, but you us
its static methods, adaptorWithName and adaptorWithModel , to create instances of a concrete subclass.
The EOAdaptor class defines the methods that find and load the concrete adaptors from bundles. However
you rarely interact with a concrete adaptor either. Generally, adaptors are automatically created and used by
other classes in the Enterprise Objects Framework.

The EOAdaptor class has the following principal attributes:

• Dictionary of connection information
• Array of adaptor contexts

Other framework classes create EOAdaptor objects. adaptorWithModel creates a new adaptor with the
adaptor name in the specified model. adaptorWithName creates a new adaptor with the specified name.

The following table lists the most commonly-used methods in the EOAdaptor class:

For information on subclassing an EOAdaptor, see “Creating an EOAdaptor Subclass”.

assertConnectionDictionaryIsValid Verifies that the adaptor can connect with its connection information.

setConnectionDictionary Sets the connection dictionary.

assertConnectionDictionaryIsValid Verifies that the adaptor can connect with its connection information.

runLoginPanel Runs the login panel without affecting the connection dictionary.

runLoginPanelAndValidateConnectionDictionary
Runs the login panel until the user enters valid connection
information or cancels the panel.

setConnectionDictionary Sets the connection dictionary.
13

Method Types

Creating an EOAdaptor
adaptorWithName
adaptorWithModel

Accessing an adaptor’s name
name

Accessing the names of all available adaptors
availableAdaptorNames

Accessing connection information
assertConnectionDictionaryIsValid
connectionDictionary
setConnectionDictionary
runLoginPanelAndValidateConnectionDictionary
runLoginPanel
databaseEncoding

Performing database-specific transformations on values
fetchedValueForValue
fetchedValueForDataValue
fetchedValueForDateValue
fetchedValueForNumberValue
fetchedValueForStringValue

Servicing models
canServiceModel
internalTypeForExternalTypeInModel
externalTypesWithModel
assignExternalInfoForEntireModel
assignExternalInfoForEntity
assignExternalInfoForAttribute
isValidQualifierTypeInModel

Creating adaptor contexts
createAdaptorContext
contexts

Checking connection status
hasOpenChannels

Accessing a default expression class
setExpressionClassNameForAdaptorClassName
expressionClass
defaultExpressionClass
14

 Classes: EOAdaptor

Accessing an adaptor’s login panel
sharedLoginPanelInstance
runLoginPanelAndValidateConnectionDictionary
runLoginPanel

Accessing the delegate
delegate
setDelegate

Other
createDatabaseWithAdministrativeConnectionDictionary
dropDatabaseWithAdministrativeConnectionDictionary
prototypeAttributes

Constructors

public EOAdaptor ()
public EOAdaptor (java.lang.String name)

Creates and returns a new EOAdaptor with name. name is usually derived from the base filename (that is,
the filename without the “.framework” extension) of the framework from which the adaptor is loaded. For
example, the Oracle adaptor is loaded from the framework OracleEOAdaptor.framework . When you
create an adaptor subclass, override this method to create a new adaptor with name.

Never use this constructor directly. It is invoked automatically from adaptorWithName and
adaptorWithModel —EOAdaptor static methods you use to create a new adaptor.

Class Methods

adaptorWithModel
public static java.lang.Object adaptorWithModel (EOModel model)

Creates and returns a new adaptor by extracting the adaptor name from model, invoking
adaptorWithName, and assigning model’s connection dictionary to the new adaptor. Throws an exception
if model is null, if model’s adaptor name is null , or if the adaptor named in model can’t be loaded.

See also: – adaptorName (EOModel), setConnectionDictionary
15

or

adaptorWithName
public static java.lang.Object adaptorWithName(java.lang.String name)

Creates and returns a new adaptor, loading it from the framework named name if necessary. For example,
this code excerpt creates an adaptor from a framework named AcmeEOAdaptor.framework:

EOAdaptor myAdaptor = EOAdaptor.adaptorWithName("Acme");

This method searches the application’s main bundle, ~/Library/Frameworks ,
Network/Library/Frameworks , and System/Library/Frameworks for the first framework whose base
filename (that is, the filename without the “.framework” extension) corresponds to name. However, note
that dynamic loading isn’t available on PDO platforms. Consequently, you must statically link your adaptor
into applications for PDO: In this case, adaptorWithName simply looks in the runtime for an adaptor class
corresponding with the specified name. Throws an exception if name is null or if an adaptor class
corresponding with name can’t be found.

Usually you’d use adaptorWithModel to create a new adaptor, but you can use this method when you don’t
have a model. In fact, this method is typically used when you’re creating an adaptor for the purpose of
creating a model from an existing database.

assignExternalInfoForAttribute
public static void assignExternalInfoForAttribute (EOAttribute attribute)

Overridden by adaptor subclasses to assign database-specific characteristics to attribute. EOAdaptor’s
implementation assigns an external type and then assigns a column name based on the attribute name. F
example, assignExternalInfoForAttribute: assigns the column name “FIRST_NAME” to an attribute
named “firstName”. The method makes no changes to attribute’s column name if attribute is derived.

See also: assignExternalInfoForEntireModel

assignExternalInfoForEntireModel
public static void assignExternalInfoForEntireModel(EOModel model)

Assigns database-specific characteristics to model. Used in EOModeler to switch a model’s adaptor. This
method examines each entity in model. If an entity’s external name is not set and all of the entity’s attribute’s
external names are not set, then this method uses assignExternalInfoForEntity and
assignExternalInfoForAttribute to assign external names. If the entity’s external name is set or if any of
the entity’s attributes’ external names are set, then the method doesn’t assign external names to the entity
or any of its attributes. Regardless, this method assigns external types for all the model’s attributes.
16

 Classes: EOAdaptor

.

le
assignExternalInfoForEntity
public static void assignExternalInfoForEntity (EOEntity entity)

Overridden by adaptor subclasses to assign database-specific characteristics to entity. EOAdaptor’s
implementation assigns an external name to entity based on entity’s name. For example,
assignExternalInfoForEntity assigns the external name “MOVIE” to an entity named “Movie”. An
adaptor subclass should override this method to assign additional database-specific characteristics, if any

See also: assignExternalInfoForEntireModel

assignExternalTypeForAttribute
public static void assignExternalTypeForAttribute(EOAttribute attribute)

Overridden by adaptor subclasses to assign the external type to attribute. EOAdaptor’s implementation does
nothing. A subclass of EOAdaptor should override this method to assign an external type using attribute’s
internal type, precision, and length information.

See also: assignExternalInfoForEntireModel

availableAdaptorNames
public static NSArray availableAdaptorNames()

Returns an array containing the names of all available adaptors. If no adaptors are found, this method
returns an empty array.

See also: assignExternalInfoForEntireModel

externalTypesWithModel
public static NSArray externalTypesWithModel(EOModel model)

Implemented by subclasses to return the names of the database types (such as Sybase “varchar” or Orac
“NUMBER”) for use with the adaptor. model is an optional argument that can be used to supplement the
adaptor’s set of database types with additional, user-defined database types. See your adaptor’s
documentation for information on if and how it uses model.

An adaptor subclass should implement this method.
17

internalTypeForExternalTypeInModel
public static java.lang.String internalTypeForExternalTypeInModel (java.lang.String extType,

EOModel model)

Implemented by subclasses to return the name of the Java class used to represent values stored in the
database as extType. model is an optional argument that can be used to supplement the adaptor’s set of type
mappings with additional mappings for user-defined database types. See your adaptor’s documentation for
information on if and how it uses model. Returns null if no mapping for extType is found.An adaptor
subclass should implement this method.

setExpressionClassNameForAdaptorClassName
public static void

setExpressionClassNameForAdaptorClassName(java.lang.String sqlExpressionClassName,
java.lang.String adaptorClassName)

Sets the expression class for instances of the class named adaptorClassName to sqlExpressionClassName.
If sqlExpressionClassName is null , restores the expression class to the default. Throws an exception if
adaptorClassName is null or the empty string.

Use this method to substitute a subclass of EOSQLExpression for the expression class provided by the
adaptor.

Instance Methods

assertConnectionDictionaryIsValid
public void assertConnectionDictionaryIsValid

()Implemented by subclasses to verify that the adaptor can connect to the database server with its
connection dictionary. Briefly forms a connection to the server to validate the connection dictionary and
then closes the connection. Throws an exception if the connection dictionary contains invalid information.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: setConnectionDictionary

canServiceModel
public boolean canServiceModel(EOModel model)

Returns true if the receiver can service model, false otherwise. EOAdaptor’s implementation returns true
if the receiver’s connection dictionary is equal to model’s connection dictionary as determined by
NSDictionary’s isEqual: method.
18

 Classes: EOAdaptor

er.
A subclass of EOAdaptor doesn’t need to override this method.

connectionDictionary
public NSDictionary connectionDictionary()

Returns the receiver’s connection dictionary, or null if the adaptor doesn’t have one. The connection
dictionary contains the values, such as user name and password, needed to connect to the database serv
The dictionary’s keys identify the information the server expects, and its values are the values that the
adaptor will try when connecting. Each adaptor uses different keys; see your adaptor’s documentation for
keys it uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: setConnectionDictionary

contexts
public NSArray contexts()

Returns the adaptor contexts created by the receiver, or null if no adaptor contexts have been created. A
subclass of EOAdaptor doesn’t need to override this method.

See also: createAdaptorContext

createAdaptorContext
public EOAdaptorContext createAdaptorContext()

Implemented by subclasses to create and return a new EOAdaptorContext, or null if a new context can’t be
created. A newly created EOAdaptor has no contexts.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: contexts

createDatabaseWithAdministrativeConnectionDictionary
public void createDatabaseWithAdministrativeConnectionDictionary(

NSDictionary connectionDictionary)

Uses the administrative login information to create the database (or user for Oracle) defined by the
connectionDictionary.

See also: dropDatabaseWithAdministrativeConnectionDictionary, EOLoginPanel class
19

 is

r
e

ss
databaseEncoding
public int databaseEncoding()

Returns the string encoding used to encode and decode database strings. An adaptor’s database encoding
stored in the connection dictionary with the key “databaseEncoding”. If the connection dictionary doesn’t
have an entry for the database encoding, the default C string encoding is used. This method throws an
exception if the receiver’s database encoding isn’t valid.

A database system stores strings in a particular character set. The Framework needs to know what characte
set the database system uses so it can encode and decode strings coming from and going to the databas
server. The string encoding returned from this method specifies the character set the Framework uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: – availableStringEncodings (NSString), – defaultCStringEncoding (NSString)

defaultExpressionClass
public java.lang.Class defaultExpressionClass()

Implemented by subclasses to return the subclass of EOSQLExpression used as the default expression cla
for the adaptor. You wouldn’t ordinarily invoke this method directly. It’s invoked automatically to determine
which class should be used to represent query language expressions.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: setExpressionClassNameForAdaptorClassName

delegate
public java.lang.Object delegate()

See also: Returns the receiver’s delegate or null if a delegate has not been assigned. A subclass of
EOAdaptor doesn’t need to override this method.setDelegate

dropDatabaseWithAdministrativeConnectionDictionary
public void dropDatabaseWithAdministrativeConnectionDictionary(

NSDictionary connectionDictionary)

Uses the administrative login information to drop the database (or user for Oracle) defined by the
connectionDictionary.

See also: createDatabaseWithAdministrativeConnectionDictionary, EOLoginPanel class
20

 Classes: EOAdaptor

expressionClass
public java.lang.Class expressionClass()

Returns the subclass of EOSQLExpression used by the receiver for query language expressions. Returns
the expression class assigned using the class method setExpressionClassNameForAdaptorClassName. If
no class has been set for the receiver’s class, this method determines the expression class by sending
defaultExpressionClass to this.

You wouldn’t ordinarily invoke this method directly. It’s invoked automatically to determine which class
should be used to represent query language expressions.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

fetchedValueForDataValue
public NSData fetchedValueForDataValue(

NSData value,
EOAttribute attribute)

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue when the value argument is an NSData.

EOAdaptor’s implementation returns value unchanged. An adaptor subclass should override this method if
the adaptor’s database performs transformations on binary types, such as BLOBs.

fetchedValueForDateValue
public NSGregorianDate fetchedValueForDateValue(

NSGregorianDate value,
EOAttribute attribute)

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue when the value argument is a date.

EOAdaptor’s implementation returns value unchanged. An adaptor subclass should override this method to
convert or format date values. For example, a concrete adaptor subclass could set value’s millisecond value
to 0.
21

.

ce

.

fetchedValueForNumberValue
public java.lang.Number fetchedValueForNumberValue(java.lang.Number value,

EOAttribute attribute)

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue when the value argument is a number.

EOAdaptor’s implementation returns value unchanged. An adaptor subclass should override this method to
convert or format numeric values. For example, a concrete adaptor subclass should probably round value
according to the precision and scale attribute.

fetchedValueForStringValue
public java.lang.String fetchedValueForStringValue(java.lang.String value, EOAttribute attribute)

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. This method is invoked from
fetchedValueForValue when the value argument is a string.

EOAdaptor’s implementation trims trailing spaces and returns nullnil for zero-length strings. An adaptor
subclass should override this method to perform any additional conversion or formatting on string values.

fetchedValueForValue
public java.lang.Object fetchedValueForValue(java.lang.Object value, EOAttribute attribute)

Returns the value that the receiver’s database server would ultimately store for value if it was inserted or
updated in the column described by attribute. The Framework uses this method to keep enterprise object
snapshots in sync with database values. For example, assume that a product’s price is marked down 15%
If the product’s original price is 5.25, the sale price is 5.25*.85, or 4.4625. When the Framework updates
the product’s price, the database server truncates the price to 4.46 (assuming the scale of the database’s pri
column is 2). Before performing the update, the Framework sends the adaptor a fetchedValueForValue
message with the value 4.4625. The adaptor performs the database-specific transformation and returns 4.46
The Framework assigns the truncated value to the product object and to the product object’s snapshot and
then proceeds with the update.

An adaptor subclass can override this method or one of the data type-specific fetchedValue... methods.
EOAdaptor’s implementation of fetchedValueForValue invokes one of the data type-specific methods
depending on value’s class. If value is not a string, number, date, or data object (that is, an instance of
java.lang.String, java.lang.Number, NSGregorianDate, NSData, or any of their subclasses),
fetchedValueForValue returns value unchanged.
22

 Classes: EOAdaptor

This method invokes the EOAdaptorDelegates method adaptor:fetchedValueForAttributeValue:
attribute: which can override the adaptor’s default behavior.

See also: fetchedValueForDataValue, fetchedValueForDateValue, fetchedValueForNumberValue,
fetchedValueForStringValue, – valueFactoryMethod (EOAttribute)

hasOpenChannels
public boolean hasOpenChannels()

Returns true if any of the receiver’s contexts have open channels, false otherwise. A subclass of EOAdaptor
doesn’t need to override this method.

See also: – hasOpenChannels (EOAdaptorContext)

isValidQualifierTypeInModel
public boolean isValidQualifierTypeInModel (java.lang.String typeName, EOModel model)

Implemented by subclasses to return true if an attribute of type typeName can be used in a qualifier (a SQL
WHERE clause) sent to the database server, or false otherwise. typeName is the name of a type as required
by the database server, such as Sybase “varchar” or Oracle “NUMBER”. model is an optional argument that
can be used to supplement the adaptor’s set of type mappings with additional mappings for user-defined
database types. See your adaptor’s documentation for information on if and how it uses model.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

name
public java.lang.String name()

Returns the adaptor’s name; this is usually the base filename of the framework from which the adaptor was
loaded. For example, if an adaptor was loaded from a framework named AcmeEOAdaptor.framework, this
method returns “Acme”.

A subclass of EOAdaptor doesn’t need to override this method.

See also: adaptorWithName
23

t

prototypeAttributes
public NSArray prototypeAttributes ()

Returns an array of prototype attributes specific to the adaptor class. Adaptor implementers should note tha
this method looks for an EOModel named EOadaptorNamePrototypes in the resources directory of the
adaptor.

runLoginPanel
public NSDictionary runLoginPanel()

Runs the adaptor’s login panel by sending a runPanelForAdaptor:validate: message to the adaptor’s
login panel object with the validate flag false. Returns connection information entered in the panel without
affecting the adaptor’s connection dictionary. The connection dictionary returned isn’t validated by this
method.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: runLoginPanelAndValidateConnectionDictionary, setConnectionDictionary,
assertConnectionDictionaryIsValid, sharedLoginPanelInstance

runLoginPanelAndValidateConnectionDictionary
public boolean runLoginPanelAndValidateConnectionDictionary()

Runs the adaptor’s login panel by sending a runPanelForAdaptor:validate: message to the adaptor’s
login panel object with the validate flag true. Returns true if the user enters valid connection information,
or false if the user cancels the panel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: runLoginPanel, setConnectionDictionary, assertConnectionDictionaryIsValid,
sharedLoginPanelInstance

setConnectionDictionary
public void setConnectionDictionary(NSDictionary dictionary)

Sets the adaptor’s connection dictionary to dictionary, which must only contain java.lang.String,
NSData,NSDictionary, and NSArray objects. Throws an exception if there are any open channels—you
can’t change connection information while the adaptor is connected.
24

 Classes: EOAdaptor

l

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: connectionDictionary, hasOpenChannels, assertConnectionDictionaryIsValid

setDelegate
public void setDelegate(java.lang.Object delegate)

Sets the receiver’s delegate to delegate, or removes its delegate if delegate is null . A subclass of EOAdaptor
doesn’t need to override this method. A subclass that does override this method must incorporate the
superclass’s version through a message to super.

See also: delegate

sharedLoginPanelInstance
public static EOLoginPanel sharedLoginPanelInstance()

Returns the receiver’s login panel in applications that have a graphical user interface. Returns null if the
application doesn’t have an NSApplication object. Otherwise, looks for the bundle named “LoginPanel” in
the resources for the adaptor framework, loads the bundle, and returns an instance of the bundle’s principa
class (see the NSBundle class specification for information on loading bundles). The returned object is used
to implement runLoginPanelAndValidateConnectionDictionary and runLoginPanel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.
25

26

 Classes:

Creating an EOAdaptor Subclass

Enterprise Objects Framework provides concrete adaptors for three standard relational database
management systems—Informix, Oracle, and Sybase—as well as a concrete adaptor for ODBC-compliant
databases. You may want to create a subclass of one of these adaptors to extend its behavior, or you may
want to create a concrete EOAdaptor subclass for a different database or persistent storage system.
EOAdaptor provides many default method implementations that are sufficient for concrete subclasses:

• assignExternalInfoForEntireModel
• connectionDictionary
• contexts
• databaseEncoding
• delegate
• hasOpenChannels
• name

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

• adaptorWithModel
• adaptorWithName
• setExpressionClassNameForAdaptorClassName
• setConnectionDictionary
• setDelegate

If you override setConnectionDictionary or setDelegate, your implementations should incorporate the
superclass’s implementation through a message to super.

The remaining EOAdaptor methods must be overridden by concrete adaptor subclasses in terms of the
persistent storage system with which it interacts:

• assignExternalInfoForAttribute
• assignExternalInfoForEntity
• externalTypesWithModel
• internalTypeForExternalTypeInModel
• assertConnectionDictionaryIsValid
• createAdaptorContext
• fetchedValueForDataValue
• fetchedValueForDateValue
• fetchedValueForNumberValue
• fetchedValueForStringValue
• fetchedValueForValue
• isValidQualifierTypeInModel
27

28

 Classes: EOAdaptorChannel

s

l

ly
or

EOAdaptorChannel

Inherits From: NSObject

Package: com.apple.yellow.webobjects

Declared In:

Class Description

EOAdaptorChannel is an abstract class that provides its concrete subclasses with a structure for performing
database operations. It’s associated with EOAdaptor and EOAdaptorContext, which, together with
EOAdaptorChannel, form the adaptor level of Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorChannel provides database-specific method implementations and
represents an independent communication channel to the database server to which its EOAdaptor object i
connected. You never interact with instances of the EOAdaptorChannel class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to interact with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorChannel
subclass, you send a createAdaptorChannel message to an instance of the corresponding
EOAdaptorContext subclass. You rarely create adaptor channels yourself. They are generally created
automatically by other framework objects.

You use an adaptor channel to manipulate rows (records) by selecting, fetching, inserting, deleting, and
updating them. An adaptor channel also gives you access to some of the metadata on the server, such as
what stored procedures exist, what tables exist, and what their basic attributes and relationships are.

All of an adaptor channel’s operations take place within the context of transactions controlled or tracked by
its EOAdaptorContext. An adaptor context may manage several channels (though not all can), but a channe
is associated with only one context.

Notifying the Adaptor Channel’s Delegate

You can assign a delegate to an adaptor channel. The EOAdaptorChannel sends certain messages direct
to the delegate, and the delegate responds to these messages on the channel’s behalf. Many of the adapt
channel methods notify the channel’s delegate before and after an operation is performed. Some delegate
methods, such as adaptorChannelShouldEvaluateExpression, let the delegate determine whether the
channel should perform an operation. Others, such as adaptorChannel:didEvaluateExpression, are
simply notifications that an operation has occurred. The delegate has an opportunity to respond by
implementing the delegate methods. If the delegate wants to intervene, it implements adaptorChannel:
29

shouldEvaluateExpression:. If it simply wants notification when a transaction has begun, it implements
adaptorChannel:didEvaluateExpression:.

The principal attributes of the EOAdaptorChannel class are:

• Adaptor context
• Delegate

Other framework classes create EOAdaptorChannel objects, using EOAdaptorContext’s
createAdaptorChannel method, which both creates an adaptor channel and assigns its context.

The following table lists EOAdaptorChannel’s more commonly-used methods:

openChannel Opens the channel so it can perform database operations.

closeChannel Close the channel.

selectAttributes:fetchSpecification Selects rows matching the specified qualifier.

fetchRow

Fetches a row resulting from the last selectAttributes:
fetchSpecification:lock:entity: ,
executeStoredProcedure:withValues: , or
evaluateExpression: .

insertRow Inserts the specified row.

updateValues:inRowsDescribedByQualifier Updates the row described by the specified qualifier.

deleteRowDescribedByQualifier Deletes the row described by the specified qualifier.

executeStoredProcedure Performs the specified stored procedure.

evaluateExpression Sends the specified expression to the database.

openChannel Opens the channel so it can perform database operations.

closeChannel Close the channel.

selectAttributes:fetchSpecification Selects rows matching the specified qualifier.

fetchRow
Fetches a row resulting from the last select... ,
executeStoredProcedure... , or evaluateExpression: .

insertRow Inserts the specified row.

updateValues:inRowDescribedByQualifier Updates the row described by the specified qualifier.
30

 Classes: EOAdaptorChannel
For more information on subclassing EOAdaptorChannel, see “Creating an EOAdaptorChannel Subclass”.

Method Types

Accessing the adaptor context
adaptorContext

Opening and closing a channel
openChannel
closeChannel
isOpen

Modifying rows
insertRow
updateValues:inRowDescribedByQualifier
updateValues:inRowsDescribedByQualifier
deleteRowDescribedByQualifier
deleteRowsDescribedByQualifier
lockRowComparingAttributes

Fetching rows
selectAttributes:fetchSpecification
describeResults
setAttributesToFetch
attributesToFetch
fetchRow
cancelFetch
isFetchInProgress

Invoking stored procedures
executeStoredProcedure
returnValuesForLastStoredProcedureInvocation

Assigning primary keys
primaryKeyForNewRowWithEntity

deleteRowDescribedByQualifier Deletes the row described by the specified qualifier.

executeStoredProcedure Performs the specified stored procedure.

evaluateExpression Sends the specified expression to the database.

performAdaptorOperation
Performs an adaptor operation by invoking the
EOAdaptorChannel method appropriate for performing the
specified operation.
31

Sending SQL to the server
evaluateExpression

Batch processing operations
performAdaptorOperation
performAdaptorOperations

Accessing schema information
describeTableNames
describeStoredProcedureNames
addStoredProceduresWithNamesToModel
describeModelWithTableNames

Debugging
setDebugEnabled
isDebugEnabled

Accessing the delegate
delegate
setDelegate

Constructors

public EOAdaptorChannel()
public EOAdaptorChannel(EOAdaptorContext adaptorContext)

Creates and returns an EOAdaptorChannel, with adaptorContext. When you create an adaptor channel
subclass, override this method.

Don’t invoke this method directly unless you are implementing a concrete adaptor context. It is invoked
automatically from createAdaptorChannel—the EOAdaptorContext method you use to create a new
adaptor channel.

See also: adaptorContext

Instance Methods

adaptorContext
public EOAdaptorContext adaptorContext()

Returns the receiver’s EOAdaptorContext. A subclass of EOAdaptorChannel doesn’t need to override this
method.
32

 Classes: EOAdaptorChannel

addStoredProceduresWithNamesToModel
public void addStoredProceduresWithNamesToModel(NSArray storedProcedureNames,

EOModel model)

Overridden by subclasses to create EOStoredProcedure objects for the stored procedures named in
storedProcedureNames and then to add them to model. This method is used in conjunction with
describeStoredProcedureNames to build a default model in EOModeler. Throws an exception if an error
occurs.

attributesToFetch
public abstract NSArray attributesToFetch()

Implemented by subclasses to return the set of attributes to retrieve when fetchRow is next invoked. An
adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: setAttributesToFetch

cancelFetch
public abstract void cancelFetch()

()Implemented by subclasses to clear all result sets established by the last selectAttributes:
fetchSpecification, executeStoredProcedure, or evaluateExpression message and terminate the current
fetch, so that isFetchInProgress returns false.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

closeChannel
public abstract void closeChannel()

Implemented by subclasses to close the EOAdaptorChannel so that it can’t perform operations with the
server. Any fetch in progress is canceled. If the receiver is the last open channel in an adaptor context and
if the channel’s adaptor context has outstanding transactions, closing the channel has server-dependent
results: some database servers roll back all outstanding transactions but others do nothing. Regardless of
whether outstanding transactions are rolled back, this method has the side effect of closing the receiver’s
adaptor context’s connection with the database if the receiver is its adaptor context’s last open channel.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: cancelFetch, transactionNestingLevel (EOAdaptorContext)
33

delegate
public java.lang.Object delegate()

Returns the receiver’s delegate, or null if the receiver doesn’t have a delegate. A subclass of
EOAdaptorChannel doesn’t need to override this method.

See also: setDelegate

deleteRowDescribedByQualifier
public void deleteRowDescribedByQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier,

EOEntity entity)

Deletes the row described by qualifier from the database table corresponding to entity. Invokes
deleteRowsDescribedByQualifier and throws an exception unless exactly one row is deleted. A subclass
of EOAdaptorChannel doesn’t need to override this method.

deleteRowsDescribedByQualifier
public abstract int

deleteRowsDescribedByQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier,
EOEntity entity)

Implemented by subclasses to delete the rows described by qualifier from the database table corresponding
to entity. Returns the number of rows deleted. Throws an exception on failure. Some possible reasons for
failure are:

• The adaptor channel isn’t open.
• The adaptor channel is in an invalid state (for example, it’s fetching).
• An error occurs in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: deleteRowDescribedByQualifier, isOpen, isFetchInProgress, transactionNestingLevel
(EOAdaptorContext)

describeModelWithTableNames
public EOModel describeModelWithTableNames(NSArray tableNames)

Overridden by subclasses to create and return a default model containing entities for the tables specified in
tableNames. Assigns the adaptor name and connection dictionary to the new model. This method is
typically used in conjunction with describeTableNames and describeStoredProcedureNames.
34

 Classes: EOAdaptorChannel

EOAdaptorChannel’s implementation does nothing. An adaptor channel subclass should override this
method to create a default model from the database’s metadata.

describeResults
public abstract NSArray describeResults()

Implemented by subclasses to return an array of EOAttributes describing the properties available in the
current result set, as determined by selectAttributes:describedByQualifier:fetchOrder:lock:,
executeStoredProcedure, or a statement evaluated by evaluateExpression:. Only invoke this method if a
fetch is in progress as determined by isFetchInProgress.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

describeStoredProcedureNames
public NSArray describeStoredProcedureNames()

Overridden by subclasses to read and return an array of stored procedure names from the database. This
method is used in conjunction with addStoredProceduresNamed:toModel: to build a default model in
EOModeler. Throws an exception if an error occurs.

describeTableNames
public NSArray describeTableNames()

Overridden by subclasses to read and return an array of table names from the database. This method in
conjunction with describeModelWithTableNames is used to build a default model.

EOAdaptorChannel’s implementation simply returns null . An adaptor channel subclass should override this
method to construct an array of table names from database metadata.

evaluateExpression
public abstract void evaluateExpression(EOSQLExpression expression)

Implemented by subclasses to send expression to the database server for evaluation, beginning a transaction
first and committing it after evaluation if a transaction isn’t already in progress. Throws an exception if an
error occurs. An EOAdaptorChannel uses this method to send SQL expressions to the database.

If expression results in a select operation being performed, you can fetch the results as you would if you
had sent a selectAttributes:fetchSpecification. You must use the method setAttributesToFetch before
35

you begin fetching. Also, if expression evaluates to multiple result sets, you must invoke
setAttributesToFetch: before you begin fetching each subsequent set.

evaluateExpression: invokes the delegate methods adaptorChannelShouldEvaluateExpression and
adaptorChannel:didEvaluateExpression.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke evaluateExpression
directly. Thus, adaptors for data stores that don’t naturally support an expression language (for example, flat
file adaptors) don’t need to implement this method to work with the Framework.

See also: fetchRow

executeStoredProcedure
public abstract void executeStoredProcedure(EOStoredProcedure storedProcedure,

NSDictionary values)

Implemented by subclasses to execute storedProcedure. Any arguments to the stored procedure are in
values, a dictionary whose keys are the argument names. Use fetchRow to get result rows and
returnValuesForLastStoredProcedureInvocation to get return arguments and result status, if any.
Throws an exception if an error occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke
executeStoredProcedure directly. Thus, adaptors for data stores that don’t support stored procedures (for
example, flat file adaptors) don’t need to implement this method to work with the Framework

fetchRow
public abstract NSMutableDictionary fetchRow()

Implemented by subclasses to fetch the next row from the result set of the last selectAttributes:
fetchSpecification, executeStoredProcedure, or evaluateExpression message sent to the receiver.
Returns values for the receiver’s attributesToFetch in a dictionary whose keys are the attribute names.
When there are no more rows in the current result set, this method returns null , and invokes the delegate
method adaptorChannelDidChangeResultSet if there are more results sets. When there are no more rows
or result sets, this method returns null , ends the fetch, and invokes adaptorChannelDidFinishFetching.
isFetchInProgress returns true until the fetch is canceled or until this method exhausts all result sets and
returnsnull . This method also invoke the delegate methods adaptorChannelWillFetchRow and
adaptorChannelDidFetchRow. Throws an exception if an error occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: setAttributesToFetch
36

 Classes: EOAdaptorChannel

insertRow
public abstract void insertRow(NSDictionary row, EOEntity entity)

Implemented by subclasses to insert the values of row into the table in the database that corresponds to
entity. row is a dictionary whose keys are attribute names and whose values are the values to insert. Throws
an exception on failure. Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to insert a new row.
• The adaptor channel is in an invalid state (for example, fetching).
• The row fails to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

isDebugEnabled
public boolean isDebugEnabled()

Returns true if the adaptor channel logs evaluated SQL and other useful information to the console (or to
the standard error stream), false if not. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also: setDebugEnabled, setDebugEnabled (EOAdaptorContext)

isFetchInProgress
public abstract boolean isFetchInProgress()

Implemented by subclasses to return true if the receiver is fetching, false otherwise. An adaptor channel is
fetching if:

• It’s been sent a successful selectAttributes:describedByQualifier:fetchOrder:lock: message.
• A stored procedure that returns rows has been successfully executed using executeStoredProcedure.
• An expression sent through evaluateExpression: resulted in a select operation being performed.

An adaptor channel stops fetching when there are no more records to fetch or when it’s sent a cancelFetch
message.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: fetchRow
37

isOpen
public abstract boolean isOpen()

Implemented by subclasses to return true if the channel has been opened with openChannel, false if not.
An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: closeChannel

lockRowComparingAttributes
public void lockRowComparingAttributes (NSArray attributes, EOEntity entity,

com.apple.yellow.eocontrol.EOQualifier qualifier, NSDictionary snapshot)

Attempts to lock a row in the database by selecting it with locking on. The lock operation succeeds if a
select statement generated with qualifier retrieves exactly one row and the values in the row match the
values in snapshot, a dictionary whose keys are attribute names and whose values are the values that were
last fetched from the database.

lockRowComparingAttributes:entity:qualifier:snapshot: invokes selectAttributes:fetchSpecification
with attributes as the attributes to select, a fetch specification built from qualifier, locking on, and entity as
the entity. If the select returns no rows or more than one row, the method throws an exception. It also throws
an exception if the values in the returned row don’t match the corresponding values in snapshot.

The Framework uses this method whenever it needs to lock a row. When the Framework invokes it, qualifier
specifies the primary key of the row to be locked and attributes used for locking to be compared in the
database server. If any of the values specified in qualifier are different from the values in the database row,
the select operation will not retrieve or lock the row. When this happens, the row to be locked has been
updated in the database since it was last retrieved, and it isn’t safe to update it.

Some attributes (such as BLOB types) can’t be compared in the database. attributes should specify any such
attributes. (If the row doesn’t contain any such attributes, attributes can be null .) If qualifier generates a
select statement that returns and locks a single row, this method performs an in-memory comparison
between the value in the retrieved row and the value in snapshot for each attribute in attributes. Therefore,
snapshot must contain an entry for each attribute in attributes. In addition, it must contain an entry for the
row’s primary key.

A subclass of EOAdaptorChannel doesn’t need to override this method.
38

 Classes: EOAdaptorChannel

e
s
openChannel
public abstract void openChannel()

()Implemented by subclasses to put the channel and both its context and adaptor into a state where they ar
ready to perform database operations. Throws an exception if an error occurs. An adaptor channel subclas
should override this method without invoking EOAdaptorChannel’s implementation.

See also: isOpen, closeChannel

performAdaptorOperation
public void performAdaptorOperation (EOAdaptorOperation adaptorOperation)

Performs adaptorOperation by invoking the adaptor channel method appropriate for performing the
specified operation. For example, if the adaptor operator for adaptorOperation is
EOAdaptorInsertOperator, this method invokes insertRow using information in adaptorOperation to
supply the arguments. Throws an exception if an error occurs.

A subclass of EOAdaptorChannel doesn’t need to override this method.

See also: performAdaptorOperations

performAdaptorOperations
public void performAdaptorOperations (NSArray adaptorOperations)

Performs adaptor operations by invoking performAdaptorOperation with each EOAdaptorOperation
object in the array adaptorOperations. An adaptor channel subclass may be able to override this method to
take advantage of database-specific batch processing capabilities. Invokes the delegate methods
adaptorChannelWillPerformOperations and adaptorChannelDidPerformOperations. This method
throws an exception if an error occurs.

A subclass of EOAdaptorChannel doesn’t need to override the performAdaptorOperations: method.

primaryKeyForNewRowWithEntity
public NSDictionary primaryKeyForNewRowWithEntity (EOEntity entity)

Overridden by subclasses to return a primary key for a new row in the database table that corresponds to
entity. The primary key returned from this method is a dictionary whose keys are the primary key attribute
names. For example, suppose you’ve got a table MOVIE with primary key MOVIE_ID, and the
corresponding Movie Entity’s primary key attribute is movieID. In this scenario, the dictionary returned
from primaryKeyForNewRowWithEntity has one entry whose key is movieID and whose value is the
unique value to assign. If the primary key is compound (made up of more than one attribute), the dictionary
should contain an entry for each primary key attribute. Note, however, that the Enterprise Objects
39

Frameworks adaptors don’t handle compound primary keys; they return null from
primaryKeyForNewRowWithEntity if the primary key is compound.

If information in entity specifies an adaptor-specific means to assign a new primary key (for example, a
sequence name or stored procedure), then this method returns a new primary key. Otherwise, if the key is a
simple integer, the method tries to fetch a new primary key from the database using an adaptor-specific
scheme. Otherwise, the method returns null .

EOAdaptorChannel’s implementation simply returns null . See your adaptor channel’s documentation for
information on how it generates primary keys.

A subclass of EOAdaptorChannel must override this method. For example, to return a value generated by
a sequence, you’d create the proper SQL statement (using EOSQLExpression’s expressionForString:
method) and evaluate it (using the evaluateExpression method).

returnValuesForLastStoredProcedureInvocation
public abstract NSDictionary returnValuesForLastStoredProcedureInvocation()

Implemented by subclasses to return stored procedure parameter and return values. Used in conjunction
with executeStoredProcedure. The dictionary returned by this method has entries whose keys are stored
procedure parameter names and whose values are the parameter values. The dictionary also contains a
special entry for the stored procedures return value with the key “returnValue”. Returns an empty dictionary
for stored procedures that have void return types. Returns null if the stored procedure has results to fetch.
In this case, you must use fetchRow until there are no more results to fetch before the return value will be
available.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

selectAttributes:fetchSpecification
public abstract void selectAttributesWithFetchSpecification(NSArray attributes,

EOFetchSpecification fetchSpecification, boolean flag, EOEntity entity)

Implemented by subclasses to select attributes in rows matching the qualifier in fetchSpecification and set
the receiver’s attributes to fetch. The selected rows compose one or more result sets, each row of which will
be returned by subsequent fetchRow messages according to fetchSpecification’s sort orderings. If flag is
true, the rows are locked if possible so that no other user can modify them (the lock specification in
fetchSpecification is ignored). Throws an exception if an error occurs. Some possible reasons for failure are:

• The adaptor channel is in an invalid state (for example, fetching).
• The database failed to lock the specified rows.
40

 Classes: EOAdaptorChannel

g

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: setAttributesToFetch

setAttributesToFetch
public abstract void setAttributesToFetch(NSArray attributes)

Implemented by subclasses to specify the set of attributes used to describe fetch data from a correspondin
select. attributes is an array of the attributes to fetch. This method is invoked after evaluateExpression but
before the first call to fetchRow. For more information on using this method, see “Sending SQL Statements
Directly to the Server” in the “WebObjects Programming Topics.” Is that a good cross-reference? This
method throws an exception if invoked when there is no fetch in progress.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: attributesToFetch, selectAttributes:fetchSpecification

setDebugEnabled
public void setDebugEnabled(boolean flag)

Enables debugging in the receiver and all its channels. If flag is true, enables debugging; otherwise, disables
debugging. When debugging is enabled, the adaptor channel logs evaluated SQL and other useful
debugging information to the console (or to the standard error stream). The information provided may vary
from adaptor to adaptor and may change from release to release.

A subclass of EOAdaptorChannel doesn’t need to override this method. A subclass that does override it
must incorporate the superclass’s version through a message to super.

See also: isDebugEnabled, setDebugEnabled (EOAdaptorContext)

setDelegate
public void setDelegate(java.lang.Object anObject)

Sets the receiver’s delegate to delegate, or removes its delegate if delegate is null . A subclass of
EOAdaptorChannel doesn’t need to override this method. A subclass that does override it must incorporate
the superclass’s version through a message to super.

See also: delegate
41

updateValues:inRowDescribedByQualifier
public void updateValuesInRowDescribedByQualifier(NSDictionary values,

com.apple.yellow.eocontrol.EOQualifier qualifier,
EOEntity entity)

Updates the row described by qualifier. Invokes updateValues:inRowsDescribedByQualifier and raises an
exception unless exactly one row is updated.

A subclass of EOAdaptorChannel doesn’t need to override this method.

updateValues:inRowsDescribedByQualifier
public abstract int updateValuesInRowsDescribedByQualifier(NSDictionary values,

com.apple.yellow.eocontrol.EOQualifier qualifier,
EOEntity entity)

Implemented by subclasses to update the rows described by qualifier with the values in values. values is a
dictionary whose keys are attribute names and whose values are the new values for those attributes (the
dictionary need only contain entries for the attributes being changed). Returns the number of updated rows.
Throws an exception if an error occurs. Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to update.
• The adaptor channel is in an invalid state (for example, fetching).
• The new values fail to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: updateValues:inRowDescribedByQualifier
42

 Classes:

Creating an EOAdaptorChannel Subclass

EOAdaptorChannel provides many default method implementations that are sufficient for concrete
subclasses:

• adaptorContext
• delegate
• deleteRowDescribedByQualifier
• isDebugEnabled
• lockRowComparingAttributes
• performAdaptorOperation
• performAdaptorOperations
• updateValues:inRowDescribedByQualifier

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

• setDebugEnabled
• setDelegate

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a message to super.

The remaining EOAdaptorChannel methods must be overridden by concrete subclasses in terms of the
persistent storage system with which it interacts:

• attributesToFetch
• cancelFetch
• closeChannel
• deleteRowsDescribedByQualifier
• describeModelWithTableNames
• describeResults
• describeStoredProcedureNames
• describeTableNames
• evaluateExpression
• executeStoredProcedure
• fetchRow
• insertRow
• isFetchInProgress
• isOpen
• openChannel
• primaryKeyForNewRowWithEntity
• returnValuesForLastStoredProcedureInvocation
• selectAttributes:fetchSpecification
• setAttributesToFetch
43

• updateValues:inRowsDescribedByQualifier
44

 Classes: EOAdaptorContext

EOAdaptorContext

Inherits From: NSObject

Package: com.apple.yellow.webobjects

Class Description

EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects Framework
applications. You typically don’t interact with EOAdaptorContext API directly; rather, a concrete adaptor
context subclass inherits from EOAdaptorContext and overrides many of its methods, which are invoked
automatically by the Enterprise Objects Framework. If you’re not creating a concrete adaptor context
subclass, there aren’t very many methods you need to use, and you’ll rarely invoke them directly.

The EOAdaptorContext class has the following principal attributes:

• Array of adaptor channels
• Delegate
• Adaptor

Other framework classes create EOAdaptorContext objects automatically. This is typically done with
EOAdaptor’s createAdaptorContext method, which creates an adaptor context and assigns its adaptor.

The following table lists the most commonly-used EOAdaptorContext methods:

For more information, see “EOAdaptorContext”.

Method Types

Constructors
EOAdaptorContext

beginTransaction Begins a transaction in the database server.

commitTransaction Commits the last transaction begun.

rollbackTransaction Rolls back the last transaction begun.

setDebugEnabled Enables debugging in all the adaptor context’s channels.
45

Accessing the adaptor
adaptor

Creating adaptor channels
createAdaptorChannel
channels

Checking connection status
hasOpenChannels
hasBusyChannels

Controlling transactions
beginTransaction
commitTransaction
rollbackTransaction
transactionDidBegin
transactionDidCommit
transactionDidRollback
canNestTransactions
transactionNestingLevel

Debugging
setDebugEnabledDefault
debugEnabledDefault
setDebugEnabled
isDebugEnabled

Accessing the delegate
delegate
setDelegate

Constructors

EOAdaptorContext
public EOAdaptorContext()
public EOAdaptorContext(EOAdaptor anAdaptor)

Returns a new EOAdaptorContext. You never invoke either of the constructors directly. You must use the
Adaptor method createAdaptorContext to create a new adaptor context.

See also: adaptor
46

 Classes: EOAdaptorContext

Static Methods

debugEnabledDefault
public static boolean debugEnabledDefault()

Returns true if new adaptor context instances have debugging enabled by default, false otherwise. By
default, adaptor contexts have debugging enabled if the user default EOAdaptorDebugEnabled is true. (For
more information on user defaults, see the NSUserDefaults class specification in the Foundation
Framework Reference.) You can override the user default using the class method setDebugEnabledDefault,
or you can set debugging behavior for a specific instance with the instance method setDebugEnabled.

setDebugEnabledDefault
public static void setDebugEnabledDefault(boolean flag)

Sets default debugging behavior for new instances of EOAdaptorContext. If flag is true, debugging is
enabled for new instances. If flag is false, debugging is disabled. Use the instance method
setDebugEnabled to enable debugging for a specific adaptor context.

See also: debugEnabledDefault, isDebugEnabled

Instance Methods

adaptor
public EOAdaptor adaptor()

Returns the receiver’s EOAdaptor.

beginTransaction
public abstract void beginTransaction()

Implemented by subclasses to attempt to begin a new transaction, nested within the current one if nested
transactions are supported. Each successful invocation of beginTransaction must be paired with an
invocation of either commitTransaction or rollbackTransaction to end the transaction.

The Enterprise Objects Framework automatically wraps database operations in transactions, so you don’t
have to begin and end transactions explicitly. In fact, letting the framework manage transactions is
sometimes more efficient. You typically use beginTransaction only to execute more than one database
operation in the same transaction scope.

This method invokes the delegate method adaptorContextShouldBegin before beginning the transaction.
If the transaction is begun successfully, the method sends this a transactionDidBegin message and invokes
47

the delegate method adaptorContextDidBegin. Throws an exception if the attempt is unsuccessful. Some
possible reasons for failure are:

• A connection to the database hasn’t been established.
• Nested transactions aren’t supported, and a transaction is already in progress.
• A fetch is in progress.
• The delegate refuses.
• The database server fails to begin a transaction.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: canNestTransactions, transactionNestingLevel

canNestTransactions
public abstract boolean canNestTransactions()

Implemented by subclasses to return true if the database server and the adaptor context can nest
transactions, false otherwise. An adaptor context subclass should override this method without invoking
EOAdaptorContext’s implementation.

See also: transactionNestingLevel

channels
public NSArray channels()

Returns an array of channels created by the receiver.

See also: createAdaptorChannel

commitTransaction
public abstract void commitTransaction()

Implemented by subclasses to attempt to commit the last transaction begun. Invokes the delegate method
adaptorContextShouldCommit before committing the transaction. If the transaction is committed
successfully, the method sends this a transactionDidCommit message and invokes the delegate method
adaptorContextDidCommit. Throws an exception if the attempt is unsuccessful. Some possible reasons
for failure are:

• A transaction is not in progress.
• Fetches are in progress.
• The delegate refuses.
• The database server fails to commit.
48

 Classes: EOAdaptorContext
An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: beginTransaction, rollbackTransaction, hasBusyChannels

createAdaptorChannel
public abstract EOAdaptorChannel createAdaptorChannel()

Implemented by subclasses to create and return a new AdaptorChannel, or null if a new channel cannot be
created. Sets the new channel’s adaptorContext to this. A newly created adaptor context has no channels.
Specific adaptors have different limits on the maximum number of channels a context can have, and
createAdaptorChannel fails if a newly created channel would exceed the limits.

See also: channels

delegate
public java.lang.Object delegate()

Returns the receiver’s delegate, or null if the receiver doesn’t have a delegate.

See also: setDelegate

hasBusyChannels
public boolean hasBusyChannels()

Returns true if any of the receiver’s channels have outstanding operations (that is, have a fetch in progress),
false otherwise.

See also: isFetchInProgress (EOAdaptorChannel)

hasOpenChannels
public boolean hasOpenChannels()

Returns true if any of the receiver’s channels are open, false otherwise.

See also: openChannel (EOAdaptorChannel), isOpen (EOAdaptorChannel)
49

isDebugEnabled
public boolean isDebugEnabled()

Returns true if debugging is enabled in the receiver, false otherwise.

See also: setDebugEnabled, debugEnabledDefault, setDebugEnabledDefault

rollbackTransaction
public abstract void rollbackTransaction()

Implemented by subclasses to attempt to roll back the last transaction begun. Invokes the delegate method
adaptorContextShouldRollback before rolling back the transaction. If the transaction is begun
successfully, the method sends this a transactionDidRollback message and invokes the delegate method
adaptorContextDidRollback. Throws an exception if the attempt is unsuccessful. Some possible reasons
for failure are:

• A transaction is not in progress.
• Fetches are in progress.
• The delegate refuses.
• The database server fails to rollback.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: beginTransaction, commitTransaction

setDebugEnabled
public void setDebugEnabled(boolean flag)

Enables debugging in the receiver and all its channels. If flag is true, enables debugging; otherwise, disables
debugging.

See also: setDebugEnabled (EOAdaptorChannel), isDebugEnabled, setDebugEnabledDefault, channels

setDelegate
public void setDelegate(java.lang.Object delegate)

Sets the receiver’s delegate and the delegate of all the receiver’s channels to delegate, or removes their
delegates if delegate is null .

See also: delegate, channels
50

 Classes: EOAdaptorContext

te

transactionDidBegin
public void transactionDidBegin()

Informs the adaptor context that a transaction has begun in the database server, so the receiver can upda
its state to reflect this fact and send an EOAdaptorContextBeginTransactionNotification. This method is
invoked from beginTransaction after a transaction has successfully been started. It is also invoked when
the Enterprise Objects Framework implicitly begins a transaction.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
beginTransaction method and anywhere else it begins a transaction—either implicitly or explicitly. For
example, an adaptor channel’s implementation of evaluateExpression should check to see if a transaction
is in progress. If no transaction is in progress, it can start one explicitly by invoking beginTransaction.
Alternatively, it can start an implicit transaction by invoking transactionDidBegin.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a message to super.

See also: transactionDidCommit, transactionDidRollback

transactionDidCommit
public void transactionDidCommit()

Informs the adaptor context that a transaction has committed in the database server, so the receiver can
update its state to reflect this fact and send an EOAdaptorContextCommitTransactionNotification. This
method is invoked from commitTransaction after a transaction has successfully committed.

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
commitTransaction method and anywhere else it commits a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a message to super.

See also: transactionDidBegin, transactionDidRollback

transactionDidRollback
public void transactionDidRollback()

Informs the receiver that a transaction has rolled back in the database server, so the adaptor context can
update its state to reflect this fact and send an EOAdaptorContextRollbackTransactionNotification. This
method is invoked from rollbackTransaction after a transaction has successfully been rolled back.
51

You don’t need to invoke this method unless you are implementing a concrete adaptor. Your concrete
adaptor should invoke this method from within your adaptor context’s implementation of
rollbackTransaction method and anywhere else it rolls back a transaction—either implicitly or explicitly.

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it must
incorporate the superclass’s version through a message to super.

See also: transactionDidBegin, transactionDidCommit

transactionNestingLevel
public int transactionNestingLevel()

Returns the number of transactions in progress. If the database server and the adaptor support nested
transactions, this number may be greater than 1.

See also: canNestTransactions

Notifications

AdaptorContextBeginTransactionNotification
public static final java.lang.String AdaptorContextBeginTransactionNotification

Sent from transactionDidBegin to tell observers that a transaction has begun.

AdaptorContextCommitTransactionNotification
public static final java.lang.String AdaptorContextCommitTransactionNotification

Sent from transactionDidCommit to tell observers that a transaction has been committed.

AdaptorContextRollbackTransactionNotification
public static final java.lang.String AdaptorContextRollbackTransactionNotification

Sent from transactionDidRollback to tell observers that a transaction has been rolled back.
52

 Classes: EOAdaptorContext

s

s,

n

d

f

,

r

he
EOAdaptorContext
EOAdaptorContext is an abstract class that provides its concrete subclasses with a structure for handling
database transactions. It’s associated with EOAdaptor and EOAdaptorChannel, which, together with
EOAdaptorContext, form the adaptor level of Enterprise Objects Framework’s access layer. See the
EOAdaptor class specification for more information about accessing, creating, and using adaptor level
objects.

A concrete subclass of EOAdaptorContext provides database-specific method implementations and
represents a single transaction scope (logical user) on the database server to which its EOAdaptor object i
connected. You never interact with instances of the EOAdaptorContext class, rather your Enterprise Objects
Framework applications use instances of concrete subclasses that are written to work with a specific
database or other persistent storage system. To create an instance of a concrete EOAdaptorContext subclas
you send a createAdaptorContext message to an instance of the corresponding EOAdaptor subclass. You
rarely create adaptor contexts yourself. They are generally created automatically by other framework
objects.

If a database server supports multiple concurrent transaction sessions, an adaptor context’s EOAdaptor ca
have several contexts. When you use multiple EOAdaptorContexts for a single EOAdaptor, you can have
several database server transactions in progress simultaneously. You should be aware of the issues involve
in concurrent access if you do this.

An EOAdaptorContext has an EOAdaptorChannel, which handles actual access to the data on the server. I
the database server supports it, a context can have multiple channels. See your adaptor context’s
documentation to find out if your adaptor supports multiple channels. An EOAdaptorContext by default has
no EOAdaptorChannels; to create a new channel send your EOAdaptorContext a createAdaptorChannel
message.

Controlling Transactions

EOAdaptorContext defines a simple set of methods for explicitly controlling transactions:
beginTransaction, commitTransaction, and rollbackTransaction. Each of these messages confirms the
requested action with the adaptor context’s delegate, then performs the action if possible.

There’s also a set of methods for notifying an adaptor context that a transaction has been started, committed
or rolled back without using the beginTransaction, commitTransaction, or rollbackTransaction
methods. For example, if you invoke a stored procedure in the server that begins a transaction, you need to
notify the adaptor context that a transaction has been started. Use the following methods to keep an adapto
context synchronized with the state of the database server: transactionDidBegin,
transactionDidCommit, and transactionDidRollback. These methods post notifications.

The Adaptor Context’s Delegate and Notifications

You can assign a delegate to an adaptor context. The delegate responds to certain messages on behalf of t
context. An EOAdaptorContext sends these messages directly to its delegate. The transaction-controlling
53

s

r

methods—beginTransaction, commitTransaction, and rollbackTransaction—notify the adaptor
context’s delegate before and after a transaction operation is performed. Some delegate methods, such a
adaptorContextShouldBegin, let the delegate determine whether the context should perform an operation.
Others, such as adaptorContextDidBegin, are simply notifications that an operation has occurred. The
delegate has an opportunity to respond by implementing the delegate methods. If the delegate wants to
intervene, it implements adaptorContextShouldBegin:. If it simply wants notification when a transaction
has begun, it implements adaptorContextDidBegin:.

EOAdaptorContext also posts notifications to the application’s default notification center. Any object may
register to receive one or more of the notifications posted by an adaptor context by sending the message
addObserver to the default notification center (an instance of the NSNotificationCenter class). For more
information on notifications, see the NSNotificationCenter class specification in the Foundation Framework
Reference.

Creating an EOAdaptorContext Subclass

EOAdaptorContext provides many default method implementations that are sufficient for concrete
subclasses. The following methods establish structure and conventions that other Enterprise Objects
Framework classes depend on and should be overridden with caution:

• transactionDidBegin
• transactionDidCommit
• transactionDidRollback
• transactionNestingLevel

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a message to super.

Other methods require database-specific implementations that can be provided only by a concrete adapto
context subclass. A subclass must override the following methods in terms of the persistent storage system
to which it interacts:

• beginTransaction
• canNestTransactions
• commitTransaction
• createAdaptorChannel
• rollbackTransaction
54

 Classes: EOAdaptorOperation

.

EOAdaptorOperation

Inherits From: NSObject

Package: com.apple.yellow.webobjects

Class Description

An EOAdaptorOperation object represents a primitive operation in a database server—lock, insert, update,
or delete a row; or execute a stored procedure—and all the necessary information required by the operation
An EOAdaptorOperation is processed by an EOAdaptorChannel object in the method
performAdaptorOperation . You don’t ordinarily create instances of EOAdaptorOperation; rather, the
Framework automatically creates an EOAdaptorOperation object and sends it to an adaptor channel when
your application needs the database server to perform an operation. You generally interact with
EOAdaptorOperation objects only if you need to specify the order in which a set of operations are carried
out (see the description for the EODatabaseContext delegate method databaseContext:
willOrderAdaptorOperationsFromDatabaseOperations:).

An EOAdaptorOperation has an entity and an operator (the type of operation the object represents). An
adaptor operation’s operator (AdaptorLockOperator, AdaptorInsertOperator, AdaptorUpdateOperator,
AdaptorDeleteOperator, or AdaptorStoredProcedureOperator) determines additional, operator-dependent
information used by the EOAdaptorOperation object. For example, only a stored procedure operation has
an EOStoredProcedure object. The operator-dependent information is accessible using the methods
described below.

Method Types

Constructors
EOAdaptorOperation

Accessing the entity
entity

Accessing the operator
setAdaptorOperator
adaptorOperator

Accessing the qualifier

setQualifier
qualifier
55

Accessing locking attributes
setAttributes
attributes

Accessing operation values
setChangedValues
changedValues

Accessing a stored procedure
setStoredProcedure
storedProcedure

Handling errors during the operation
setException
exception

Comparing operations
compareAdaptorOperation

Constructors

EOAdaptorOperation
public EOAdaptorOperation ()
public EOAdaptorOperation (Entity entity)

Creates and returns a new EOAdaptorOperation, with entity as the entity to which the operation will be
applied.

See also: entity

Instance Methods

adaptorOperator
public int adaptorOperator

Returns the receiver’s adaptor operator. The operator indicates which of the other adaptor operation
attributes are valid. For example, an adaptor operation whose operator is AdaptorInsertOperator uses
changedValues, but not attributes, qualifier , or storedProcedure.

See also: setAdaptorOperator
56

 Classes: EOAdaptorOperation

attributes
public NSArray attributes()

Returns the array of attributes to select when locking the row. If attributes have not been assigned to the
receiver, the primary key attributes are selected. Only valid for adaptor operations with the
AdaptorLockOperator.

See also: setAttributes

changedValues
public NSDictionary changedValues()

Returns the dictionary of values that need to be updated, inserted, or compared for locking purposes.

See also: setChangedValues

compareAdaptorOperation
public int compareAdaptorOperation(EOAdaptorOperation anAdaptorOperation)

Orders adaptor operations alphabetically by entity name and by adaptor operator within the same entity. The
adaptor operators are ordered as follows:

• AdaptorLockOperator
• AdaptorInsertOperator
• AdaptorUpdateOperator
• AdaptorDeleteOperator
• AdaptorStoredProcedureOperator

AdaptorLockOperator precedes AdaptorInsertOperator, AdaptorInsertOperator precedes
AdaptorUpdateOperator, and so on.

An EODatabaseContext uses compareAdaptorOperation: to order adaptor operations before invoking
EOAdaptorChannel’s performAdaptorOperations method.

entity
public EOEntity entity()

Returns the entity to which the operation will be applied.

See also: “Constructors”
57

s

exception
public java.lang.Throwable exception()

Returns the exception that was thrown when an adaptor channel attempted to process the receiver. Return
null if no exception was thrown or if the receiver hasn’t been processed yet.

See also: setException

qualifier
public com.apple.yellow.eocontrol.EOQualifier qualifier ()

Returns the qualifier that identifies the specific row to which the operation applies. Not valid with adaptor
operations with the operators AdaptorInsertOperator and AdaptorStoredProcedureOperator.

See also: setStoredProcedure

setAdaptorOperator
public void setAdaptorOperator(int adaptorOperator)

Sets the receiver’s operator to adaptorOperator, which is one of the following:

• AdaptorLockOperator
• AdaptorInsertOperator
• AdaptorUpdateOperator
• AdaptorDeleteOperator
• AdaptorStoredProcedureOperator

For more information, see the discussion on adaptor operators in the class description above.

See also: adaptorOperator

setAttributes
public void setAttributes(NSArray attributes)

Sets the array of attributes to select when locking the row. The selected values are compared in memory to
the corresponding snapshot values to determine if a row has changed since the application last fetched it.
attributes is an array of EOAttribute objects that can’t be compared in a qualifier (generally BLOB types);
it should not be null or empty. Generally, an adaptor operation’s qualifier contains all the comparisons
needed to verify that a row hasn’t changed since the application last fetched, inserted, or updated it. In this
case (if there aren’t any attributes that can’t be compared in a qualifier), attributes should contain primary
key attributes. This method is only valid for adaptor operations with the AdaptorLockOperator.

See also: attributes, entity
58

 Classes: EOAdaptorOperation
setChangedValues
public void setChangedValues(NSDictionary changedValues)

Sets the dictionary of values that need to be updated, inserted, or compared for locking purposes.
changedValues is a dictionary object whose keys are attribute names and whose values are the values for
those attributes. As summarized in the following table, the contents of changedValues depends on the
receiver’s operator:

See also: changedValues

setException
public void setException(java.lang.Throwable exception)

Sets the receiver’s exception to exception. This method is typically invoked from EOAdaptorChannel’s
performAdaptorOperations method. If a database error occurs while processing an adaptor operation, the
adaptor channel creates an exception and assigns it to the adaptor operation.

See also: exception

setQualifier
public void setQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier)

Sets the qualifier that identifies the row to which the adaptor operation is to be applied to qualifier.

See also: qualifier

Operator Contents of changedValues Dictionary

AdaptorLockOperator
snapshot values used to verify that the database row hasn’t
changed since this application last fetched it

AdaptorInsertOperator the values to insert

AdaptorUpdateOperator the new values for the columns to update

AdaptorDeleteOperator
snapshot values (changedValues is only valid for
AdaptorDeleteOperation if the receiver’s entity uses a stored
procedure to perform delete operations.)

AdaptorStoredProcedureOperator snapshot values
59

setStoredProcedure
public void setStoredProcedure(EOStoredProcedure storedProcedure)

Sets the receiver’s stored procedure to storedProcedure.

See also: storedProcedure

storedProcedure
public EOStoredProcedure storedProcedure()

Returns the receiver’s stored procedure. Only valid with adaptor operations with the
AdaptorStoredProcedureOperation.

See also: setStoredProcedure
60

 Classes: EOAttribute

,

EOAttribute

Inherits From: NSObject

Implements: EOPropertyListEncoding

Package: com.apple.yellow.eoaccess

Class Description

An EOAttribute represents a column, field or property in a database, and associates an internal name with
an external name or expression by which the property is known to the database. The property an
EOAttribute represents may be a meaningful value, such as a salary or a name, or it may be an arbitrary
value used for identification but with no real-world applicability (ID numbers and foreign keys for
relationships fall into this category). An EOAttribute also maintains type information for binding values to
the instance variables of objects.

EOAttributes are also used to represent arguments for EOStoredProcedures.

You usually define attributes in your EOModel with the EOModeler application, which is documented in
WebObjects Tools and Techniques. Your code probably won’t need to programmatically interact with
EOAttribute unless you’re working at the adaptor level. See “Creating Attributes” for information on
creating your own attribute objects.

Fore detailed discussion of using attribute objects to map database data types to JavaObjective-C objects
see “Mapping Attributes.” EOAttributes can also alter the way values are selected, inserted, and updated in
the database by defining special format strings; see “SQL Statement Formats” for more information.

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodeIntoPropertyList

Method Types

Constructors
EOAttribute
61

Accessing the entity
entity
parent

Accessing the name
setName
name
validateName
beautifyName

Accessing date information
serverTimeZone
setServerTimeZone

Accessing external definitions
setColumnName
columnName
setDefinition
definition
setExternalType
externalType

Accessing value type information
setValueClassName
valueClassName
setValueType
valueType
setAllowsNull
allowsNull
setPrecision
precision
setScale
scale
setWidth
width

Converting to adaptor value types
adaptorValueByConvertingAttributeValue
adaptorValueType
62

 Classes: EOAttribute
Working with custom value types
setValueFactoryMethodName
valueFactoryMethod
valueFactoryMethodName
setFactoryMethodArgumentType
factoryMethodArgumentType
setAdaptorValueConversionMethodName
adaptorValueConversionMethod
adaptorValueConversionMethodName
archiveDataForObject

Accessing attribute characteristics
setReadOnly
isReadOnly
isDerived
isFlattened

Accessing SQL statement formats
setReadFormat
readFormat
setWriteFormat
writeFormat

Accessing the user dictionary
setUserInfo
userInfo

Working with stored procedures
setParameterDirection
parameterDirection
storedProcedure

Working with prototypes
overridesPrototypeDefinitionForKey
prototype
prototypeName
setPrototype

Constructors

EOAttribute
public EOAttribute ()

Creates a new EOAttribute.
63

public EOAttribute (NSDictionary propertyList, java.lang.Object owner)

Creates a new EOAttribute initialized from propertyList—a dictionary containing only property list
data types (that is, java.lang.Strings, NSDictionary, NSArrays, and NSDatas). This constructor is
used by EOModeler when it reads in a Model from a file, for example. The owner argument should
be the EOAttribute’s EOEntity or EOStoredProcedure. EOAttributes created from a property list
must receive an awakeWithPropertyList message immediately after creation before they are fully
functional, but the awake... message should be deferred until the all of the other objects in the model
have also been created.

See also: awakeWithPropertyList (EOPropertyListEncoding), encodeIntoPropertyList
(EOPropertyListEncoding)

Static Methods

archiveDataForObject
public static NSData archiveDataForObject(NSObject anObject)

Return anObject’s value as a NSData object whose bytes can be stored in an external repository.

<<Need to add more info to this on the implications to custom value classes.>>

Instance Methods

adaptorValueByConvertingAttributeValue
public java.lang.Object adaptorValueByConvertingAttributeValue (java.lang.Object value)

Ensures that value is either a String, Number, NSData, or NSDate, converting it if necessary. If value needs
to be converted, adaptorValueByConvertingAttributeValue: uses the adaptor conversion method to
convert value to one of these four primitive types. If the attribute hasn’t a specific adaptor conversion
method, and the type to be fetched from the database is EOAdaptorBytesType, archiveDataForObject will
be invoked to convert the attribute value.

See also: adaptorValueConversionMethod, adaptorValueType

adaptorValueConversionMethod
public NSSelector adaptorValueConversionMethod()

Returns the method used to convert a custom class into one of the primitive types that the adaptor knows
how to manipulate: String, Number, NSData, or NSDate. The return value of this method is derived from
64

 Classes: EOAttribute

the attribute’s adaptor value conversion method name. If that name doesn’t map to a valid selector in the
Java run-time, null is returned.

See also: adaptorValueByConvertingAttributeValue , adaptorValueConversionMethodName

adaptorValueConversionMethodName
public java.lang.String adaptorValueConversionMethodName()

Returns the name of the method used to convert a custom class into one of the primitive types that the
adaptor knows how to manipulate: String, Number, NSData, or NSDate.

See also: adaptorValueByConvertingAttributeValue

adaptorValueType
public int adaptorValueType()

Returns a constant that indicates the data type that will be fetched from the database. Currently, this method
returns one of the following values:

See also: factoryMethodArgumentType

allowsNull
public boolean allowsNull()

Returns true to indicate that the attribute can have a null value, false otherwise. If the attribute maps
directly to a column in the database, it also is used to determine whether the database column can have a
NULL value.

See also: setAllowsNull

Constant Description

AdaptorNumberType A number value

AdaptorCharactersType A string of characters

AdaptorBytesType Raw bytes

AdaptorDateType A date
65

awakeWithPropertyList
public void awakeWithPropertyList (NSDictionary propertyList)

Finishes initializing the receiver from propertyList, which must have been created with a constructor of the
form:

public ClassName(NSDictionary propertyList, java.lang.Object owner)

awakeWithPropertyList is responsible for restoring references to other objects. Consequently, it should
not be invoked until all other objects that the receiver might reference have been created from propertyList.

See also: encodeIntoPropertyList

beautifyName
public void beautifyName()

Makes the attribute name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”. This method is used in
reverse-engineering an EOModel.

See also: nameForExternalName (EOEntity), validateName, beautifyNames (EOModel)

columnName
public java.lang.String columnName()

Returns the name of the column in the database that corresponds to this attribute, or null if the attribute isn’t
simple (that is, if it’s derived or flattened). An adaptor uses this name to identify the column corresponding
to the attribute. Your application should never need to use this name. Note that columnName and definition
are mutually exclusive; if one returns a value, the other returns null .

See also: , externalType

definition
public java.lang.String definition()

Returns a derived or flattened attribute’s definition, or null if the attribute is simple. An attribute’s definition
is either a value expression defining a derived attribute, such as “salary * 12”, or a data path for a flattened
attribute, such as “toAuthor.name”. Note that columnName and definition are mutually exclusive; if one
returns a value, the other returns null .

See also: externalType, setDefinition
66

 Classes: EOAttribute
encodeIntoPropertyList
public void encodeIntoPropertyList(NSMutableDictionary propertyList)

Returns the receiver as a property list.

See also: awakeWithPropertyList

entity
public EOEntity entity()

Returns the entity that owns the attribute, or null if this attribute is acting as an argument for a stored
procedure.

See also: storedProcedure

externalType
public java.lang.String externalType()

Returns the attribute’s type as understood by the database; for example, a Sybase “varchar” or an Oracle
“NUMBER”.

See also: columnName, setExternalType

factoryMethodArgumentType
public int factoryMethodArgumentType()

Returns the type of argument that should be passed to the “factory method”—which is invoked by the
attribute to create an attribute value for a custom class. This method returns one of the following values:

See also: valueFactoryMethod, setFactoryMethodArgumentType

Constant Argument Type

FactoryMethodArgumentIsData NSData

FactoryMethodArgumentIsString java.lang.String NSString

FactoryMethodArgumentIsBytes raw bytes
67

isDerived
public boolean isDerived()

Returns false if the attribute corresponds exactly to one column in the table associated with its entity, and
true if it doesn’t. For example, an attribute with a definition of “otherAttributeName + 1” is derived.

Note that flattened attributes are also considered as derived attributes.

See also: isFlattened, definition

isFlattened
public boolean isFlattened()

Returns true if the attribute is flattened, false otherwise. A flattened attribute is one that’s accessed through
an entity’s relationships but belongs to another entity.

Note that flattened attributes are also considered to be derived attributes.

See also: isDerived, definition

isReadOnly
public boolean isReadOnly()

Returns true if the value of the attribute can’t be modified, false if it can.

See also: setReadOnly

name
public java.lang.String name()

Returns the attribute’s name.

See also: columnName, definition, setName

overridesPrototypeDefinitionForKey
public boolean overridesPrototypeDefinitionForKey(java.lang.String key)

Returns false if the requested key gets its value from the prototype attribute. If the attribute has an override,
then this method returns true. Valid values for key include “columnName,” “valueClass,” and so on.

See also: prototype
68

 Classes: EOAttribute

s

r
parameterDirection
public int parameterDirection()

Returns the parameter direction for attributes that are arguments to a stored procedure. This method return
one of the following values:

See also: storedProcedure, storedProcedureForOperation (EOEntity), setParameterDirection

parent
public java.lang.Object parent()

Returns the attribute’s parent, which is either an EOEntity or an EOStoredProcedure. Use this method when
you need to find the model for an attribute.

precision
public int precision()

Returns the precision of the database representation for attributes with a value class of java.lang.Number o
java.math.BigDecimal.

See also: scale

prototype
public EOAttribute prototype()

Returns the prototype attribute that is used to define default settings for the receiver.

See also: overridesPrototypeDefinitionForKey

Constant Description

Void No parameters

InParameter Input only parameters

OutParameter Output only parameters

InOutParameter Bidirectional parameters (input and output)
69

n
e
prototypeName
public java.lang.String prototypeName()

Returns the name of the prototype attribute of the receiver.

See also: prototype

readFormat
public java.lang.String readFormat()

Returns a format string of the appropriate type that can be used when building an expression that contains
the value of the attribute.

See also: setReadFormat, writeFormat

scale
public int scale()

Returns the scale of the database representation for attributes with a value class of Number or
java.math.BigDecimal. The returned value can be negative.

See also: precision, setScale

serverTimeZone
public TimeZone serverTimeZone()

Returns the time zone assumed for NSDates in the database server, or the local time zone if one hasn’t bee
set. An EOAdaptorChannel automatically converts dates between the time zones used by the server and th
client when fetching and saving values. Applies only to attributes that represent dates.

See also: setServerTimeZone

setAdaptorValueConversionMethodName
public void setAdaptorValueConversionMethodName(java.lang.String conversionMethodName)

Sets to conversionMethodName the name of the method used to convert a custom class into one of the
primitive types that the adaptor knows how to manipulate: java.lang.String, java.lang.Number,
com.apple.yellow.foundation.NSData, or com.apple.yellow.foundation.NSDate..

See also: adaptorValueConversionMethodName
70

 Classes: EOAttribute
setAllowsNull
public void setAllowsNull(boolean allowsNull)

Sets according to allowsNull whether or not the attribute can have a nullvalue. If the attribute maps directly
to a column in the database, it also controls whether the database column can have a NULL value.

See also: allowsNull

setColumnName
public void setColumnName(java.lang.String columnName)

Sets to columnName the name of the attribute used in communication with the database server. An adaptor
uses this name to identify the column corresponding to the attribute; this name must match the name of a
column in the database table corresponding to the attribute’s entity.

This method makes a derived or flattened attribute simple; the definition is released and the column name
takes its place for use with the server.

Note: setColumnName: and setDefinition are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to be set to null

See also: columnName

setDefinition
public void setDefinition(java.lang.String definition)

Sets to definition the attribute’s definition as recognized by the database server. definition should be either a
value expression defining a derived attribute, such as “salary * 12”, or a data path for a flattened attribute,
such as “toAuthor.name”.

Prior to invoking this method, the attribute’s entity must have been set by adding the attribute to an entity.
This method will not function correctly if the attribute’s entity has not been set.

This method converts a simple attribute into a derived or flattened attribute; the columnName is removed
and the definition takes its place for use with the server.

Note: setColumnName and setDefinition: are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to be set to null .

See also: definition
71

r.
setExternalType
public void setExternalType(java.lang.String typeName)

Sets to typeName the type used for the attribute in the database adaptor; for example, a Sybase “varchar” or
an Oracle7 “NUMBER”. Each adaptor defines the set of types that can be supplied to setExternalType:.
The external type you specify for a given attribute must correspond to the type used in the database serve

See also: setDefinition, externalType

setFactoryMethodArgumentType
public void setFactoryMethodArgumentType(int argumentType)

Sets the type of argument that should be passed to the “factory method”—which is invoked by the receiver
to create a value for a custom class. Factory methods can accept java.lang.Strings,
com.apple.yellow.foundation.NSDatas, or raw bytes; specify an argumentType as
EOFactoryMethodArgumentIsNSString, EOFactoryMethodArgumentIsNSData, or
EOFactoryMethodArgumentIsBytes as appropriate.

See also: setValueFactoryMethodName, factoryMethodArgumentType

setName
public void setName(java.lang.String name)

Sets the attribute’s name to name. Throws an exception if name is already in use by another attribute or
relationship of the same entity, or if name is not a valid attribute name.

See also: validateName, name

setParameterDirection
public void setParameterDirection(int parameterDirection)

Sets the parameter direction for attributes that are arguments to a stored procedure. parameterDirection
should be one of the following values:

• EOVoid
• EOInParameter
• EOOutParameter
• EOInOutParameter

See also: setStoredProcedure (EOEntity), parameterDirection
72

 Classes: EOAttribute
setPrecision
public void setPrecision(int precision)

Sets to precision the precision of the database representation for attributes with a value class of Number or
java.math.BigDecimal.

See also: setScale, precision

setPrototype
public void setPrototype(EOAttribute prototype)

Sets the prototype attribute. This overrides any existing settings in the attribute.

See also: prototype

setReadFormat
public void setReadFormat(java.lang.String aString)

Sets the format string that’s used to format the attribute’s value for SELECT statements. In aString, %P is
replaced by the attribute’s external name.

The read format string is used whenever the attribute is referenced in a select list or qualifier.

See also: setWriteFormat, readFormat

setReadOnly
public void setReadOnly(boolean flag)

Sets whether the value of the attribute can be modified according to flag. Throws an exception if flag is false
and the argument is derived but not flattened.

See also: isDerived, isFlattened, isReadOnly

setScale
public void setScale(int scale)

Sets to scale the scale of the database representation for attributes with a value class of Number or
java.math.BigDecimal. scale can be negative.

See also: setPrecision, scale
73

r
setServerTimeZone
public void setServerTimeZone(NSTimeZone aTimeZone)

Sets to aTimeZone the time zone used for NSDates in the database server. If aTimeZone is null then the local
time zone is used. An EOAdaptorChannel automatically converts dates between the time zones used by the
server and the client when fetching and saving values. Applies only to attributes that represent dates.

See also: serverTimeZone

setUserInfo
public void setUserInfo(NSDictionary dictionary)

Sets to dictionary the dictionary of auxiliary data, which your application can use for whatever it needs.
dictionary can only contain property list data types (that is, NSDictionary, NSArray, NSData, and
java.lang.String).

See also: userInfo

setValueClassName
public void setValueClassName(java.lang.String name)

Sets the class name for values of this attribute to name. When an EOAdaptorChannel fetches data for the
attribute, it’s presented to the application as an instance of this class.

The class need not exist in the run-time system when this message is sent, but it must exist when an adapto
channel performs a fetch; if the class isn’t present the result depends on the adaptor. See your adaptor’s
documentation for information on how absent value classes are handled.

See also: setValueType, valueClassName

setValueFactoryMethodName
public void setValueFactoryMethodName(java.lang.String factoryMethodName)

Sets the “factory method”—which is invoked by the attribute to create an attribute value for a custom
class—to factoryMethodName. The factory method should be a static method returning an object of your
custom value class. Use setFactoryMethodArgumentTypeto specify the type of argument that is to be
passed to your factory method.

See also: valueFactoryMethodName
74

 Classes: EOAttribute
setValueType
public void setValueType(java.lang.String typeName)

Sets to typeName the conversion character (such as “i” or “d”) for the data type a Number attribute is
converted to and from in your application. Value types are scalars such as int , float, and double. Each
adaptor supports a different set of conversion characters for numeric types. However, in most (if not all)
cases it’s safe to supply a value of “i” (int) or “d” (double).

See also: setValueClassName, valueType

setWidth
public void setWidth(int length)

Sets to length the maximum amount of bytes the attribute’s value may contain. Adaptors may use this
information to allocate space for fetch buffers.

See also: width

setWriteFormat
public void setWriteFormat(java.lang.String string)

Sets the format string that’s used to format the attribute’s value for INSERT or UPDATE expressions. In
string, %P is replaced by the attribute’s value.

See also: setReadFormat, writeFormat

storedProcedure
public EOStoredProcedure storedProcedure()

Returns the stored procedure for which this attribute is an argument. If this attribute isn’t an argument to a
stored procedure but instead is owned by an entity, this method returns null .

See also: entity

userInfo
public NSDictionary userInfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: setUserInfo
75

;

validateName
public java.lang.Throwable validateName(java.lang.String name)

Validates name and returns null if it is a valid name, or an exception if it isn’t. A name is invalid if it has
zero length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a
characterother than a letter, a number, “@”, “#”, “_”, or “$”. A name is also invalid if the receiver’s
EOEntity already has an EOAttribute with the same name, or if the model has a stored procedure that has
an argument with the same name.

setName: uses this method to validate its argument.

valueClassName
public java.lang.String valueClassName()

Returns the name of the class for custom value types. When data is fetched for the attribute, it’s presented
to the application as an instance of this class.

This class must be present in the run-time system when an EOAdaptorChannel fetches data for the attribute
if the class isn’t present the result depends on the adaptor. See your adaptor’s documentation for information
on how absent value classes are handled.

See also: valueType, setValueClassName

valueFactoryMethod
public NSSelector valueFactoryMethod()

Returns the factory method that’s invoked by the attribute when creating an attribute value that’s of a custom
class. The value returned from this method is derived from the attribute’s valueFactoryMethodName. If
that name doesn’t map to a valid method in the Java run-time, this method returns null .

valueFactoryMethodName
public java.lang.String valueFactoryMethodName()

Returns the name of the factory method that’s used for creating a custom class value.

See also: valueFactoryMethod, setValueFactoryMethodName
76

 Classes: EOAttribute

valueType
public java.lang.String valueType()

Returns the conversion character (such as “i” or “d”) for the data type a Number attribute is converted to
and from in your application. Value types are scalars such as int , float, and double.

See also: valueClassName, setValueType

width
public int width()

Returns the maximum length (in bytes) for values that are mapped to this attribute. Returns zero for numeric
and date types.

See also: setWidth

writeFormat
public java.lang.String writeFormat ()

Returns the format string that’s used to format the attribute’s value for INSERT or UPDATE expressions.
In the returned string, %P is replaced by the attribute’s value.

See also: readFormat, setWriteFormat
77

78

 Classes: EOAttribute
79

80

 Classes: EOAttribute
81

82

 Classes: EOAttribute
83

84

 Classes: EOAttribute
85

86

 Classes:

,

g
Creating Attributes

An attribute may be simple, derived, or flattened. A simple attribute typically corresponds to a single
column in the database, and may be read or updated directly from or to the database. A simple EOAttribute
may also be set as read-only with its setReadOnly method. Read-only attributes of enterprise objects are
never updated.

A derived attribute doesn’t necessarily correspond to a single database column in its entity’s database table
and is usually based on some other attribute, which is modified in some way. For example, if an Employee
entity has a simple monthly salary attribute, you can define a derived annualSalary attribute as “salary *
12”. Derived attributes, since they don’t correspond to actual values in the database, are read-only; it makes
no sense to write a derived value.

A flattened attribute of an entity is actually an attribute of some other entity that’s fetched through a
relationship with a database join. A flattened attribute’s external definition is a data path ending in an
attribute name. For example, if the Employee entity has the relationship toAddress and the Address entity
has the attribute street, you can define streetName as an attribute of your Employee EOEntity by creating
an EOAttribute for it with a definition of “toAddress.street”.

Creating a Simple Attribute

A simple attribute needs at least the following characteristics:

• A name unique within its EOEntity

• The name of a column in the database table for its entity (the EOAttribute’s external name)

• A declaration of the type of that column as defined by the database and adaptor (the EOAttribute’s
external type)

• A declaration of the Java class used to represent values outside the context of an enterprise object

• For Java value classes that require it, a subtype for such distinctions as between numeric types

You also have to set whether the attribute is part of its entity’s primary key, is a class property, or is used for
locking. See the EOEntity class description for more information.

Creating a Derived Attribute

A derived attribute depends on another attribute, so you base it on a definition including that attribute’s
name rather than on an external name. Because a derived attribute isn’t mapped directly to anything in the
database, you shouldn’t include it in the entity’s set of primary key attributes or attributes used for locking.

Creating a Flattened Attribute

A flattened attribute depends on a relationship, so you base it on a definition including that relationship’s
name rather than on an external name. Because a flattened attribute doesn’t correspond directly to anythin
87

in its entity’s table, you don’t have to specify an external name, and shouldn’t include it in the entity’s set
of primary key attributes or attributes used for locking.

Instead of flattening attributes in your model, a better approach is often to directly traverse the object graph
through relationships. See the chapter “Using EOModeler” in the Enterprise Objects Framework
Developer’s Guide for a discussion on when to use flattened attributes.
88

 Classes:

,

g

Mapping Attributes

Mapping from Database to Objects

Every EOAttribute has an external type, which is the type used by the database to store its associated data
and a Java class used as the type for that data in the client application. The type used by the database is
accessed with the setExternalType and externalType methods. The class type used by the application is
accessed with the valueClassName method. You can map database types to a set of standard value classes,
which includes:

• java.lang.String
• java.lang.Number
• java.math.BigDecimal
• NSData
• NSDate

Database-specific adaptors automatically handle value conversions for these classes. You can also create
your own custom value class, so long as you define a format that it uses to interpret data. For more
information on using EOAttribute methods to work with custom data types, see the next section, “Working
with Custom Data Types.”

The handling of dates assumes by default that both the database server and the client application are runnin
in the same, local, time zone. You can alter the server time zone with the setServerTimeZone method. If
you alter the server time zone, the adaptor automatically converts dates as they pass into and out of the
server.

Working with Custom Data Types

When you create a new model, EOModeler maps each attribute in your model to one of the primitive data
types the adaptor knows how to manipulate: String, Number, java.math.BigDecimal, NSData, and NSDate.
For example, suppose you have a photo attribute that’s stored in the database as a LONG RAW. When you
create a new model, this attribute is mapped to NSData. However, NSData is just an object wrapper for
binary data—for instance, it doesn’t have any methods for operating on images, which would limit what
you’d be able to do with the image in your application. This is a case in which you’d probably choose to
use a custom data type, such as com.apple.yellow.application.NSImage.

For a custom data type to be usable in Enterprise Objects Framework, it must supply methods for importing
and exporting itself as one of the primitive types so that it can be read from and written to the database.
Specifically, to use a custom data type you need to do the following:

• Set the attribute’s value class using the method setValueClassName.

• Set the factory method that will be used to create instances of your class from raw data using the method
setValueFactoryMethodName.
89

• Set the type of the argument that should be passed to the factory method using the method
setFactoryMethodArgumentType.

• Set the conversion method that is used to convert your data back into one of the primitive data types the
adaptor can work with using the method setAdaptorValueConversionMethodName; this enables the
data to be stored in the database.

If an EOAttribute represents a binary column in the database, the factory method argument type can be
either EOFactoryMethodArgumentIsNSData or EOFactoryMethodArgumentIsBytes, indicating that the
method takes an NSData object or raw bytes as an argument. If the EOAttribute represents a string or
character column, the factory method argument type can be either EOFactoryMethodArgumentIsNSString
or EOFactoryMethodArgumentIsBytes, indicating that the method takes a String object or raw bytes as an
argument. These types apply when fetching custom values.

Instead of setting the class information programmatically, you can use the Attributes Inspector in
EOModeler, which is more common. For more information, see the chapter “Advanced Modeling
Techniques” in the Enterprise Objects Framework Developer’s Guide.

Fetching Custom Values

Custom values are created during fetching in EOAdaptorChannel’s fetchRow method. This method
fetchesdata in the external (server) type and converts it to a value object, applying the custom value factory
method (valueFactoryMethod) to convert a value into the custom class if necessary. Once the value is
converted, the EOAdaptorChannel puts it into the dictionary for the row being fetched.

Converting Custom Values

Custom values are converted back to binary or character data in EOAdaptorChannel’s evaluateExpression
method. For each value in the EOSQLExpression to be evaluated, the EOAdaptorChannel sends the
appropriate EOAttribute an adaptorValueByConvertingAttributeValue message to convert it. If the value
is any of the standard value classes, it’s returned unchanged. If the value is of a custom class, though, it’s
converted by applying the conversion method (adaptorValueConversionMethod) specified in the
EOAttribute.
90

 Classes:

SQL Statement Formats

In addition to mapping database values to object values, an EOAttribute can alter the way values are
selected, inserted, and updated in the database by defining special format strings. These format strings allow
a client application to extend its reach right down to the server for certain operations. For example, you
might want to view an employee’s salary on a yearly basis, without defining a derived attribute as in a
previous example. In this case, you could set the salary attribute’s SELECT statement format to
“salary * 12” (with setReadFormat) and the INSERT and UPDATE statement formats to “salary / 12”
(setWriteFormat). Thus, whenever your application retrieves values for the salary attribute they’re
multiplied by 12, and when it writes values back to the database they’re divided by 12.

Your application can use any legal SQL value expression in a format string, and can even access
server-specific features such as functions and stored procedures (see EOEntity’s setStoredProcedure
method description for more information). Accessing server-specific features can offer your application
great flexibility in dealing with its server, but does limit its portability. You’re responsible for ensuring that
your SQL is well-formed and will be understood by the database server.

Format strings for the setReadFormat and setWriteFormat methods should use “%P” as the substitution
character for the value that is being formatted. “%@” will not work. For example:

myAttribute.setReadFormat("TO_UPPER(%P)");

myAttribute.setWriteFormat("TO_LOWER(%P)");

Instead of setting the read and write formats programmatically, you can set them in EOModeler, which is
more common. For more information, see the chapter “Using EOModeler” in WebObjects Tools and
Techniques.
91

92

 Classes: EODatabase

ll
EODatabase

Inherits From:

Package: com.apple.yellow.eoaccess

Class Description

An EODatabase object represents a single database server. It contains an EOAdaptor which is capable of
communicating with the server, a list of EOModels that describe the server’s schema, a list of
EODatabaseContexts that are connected to the server, and a set of snapshots representing the state of a
objects stored in the server.

For more information, see “EODatabase”.

Method Types

Constructors
EODatabase

Adding and removing models
addModel
addModelIfCompatible
removeModel
models

Accessing entities
entityForObject
entityNamed
93

Recording snapshots
recordSnapshot:forGlobalID:
forgetSnapshotForGlobalID
forgetSnapshotsForGlobalIDs
recordSnapshots
forgetAllSnapshots
snapshotForGlobalID
snapshots
recordSnapshotForSourceGlobalIDpublic void

recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

recordToManySnapshotspublic void
recordToManySnapshots(NSDictionary snapshots)

snapshotForSourceGlobalIDpublic NSArray
snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

Registering database contexts
registerContext
unregisterContext
registeredContexts

Accessing the adaptor
adaptor

Managing the result cache
invalidateResultCache
invalidateResultCacheForEntityNamed
resultCacheForEntityNamed
setResultCacheForEntityWithName

Constructors

EODatabase
public next.eo.EODatabase(EOAdaptor anAdaptor)
public next.eo.EODatabase(EOModel aModel)

Creates and returns a new EODatabase object. If anAdaptor is provided, it specifies the new EODatabase’s
adaptor. If aModel is provided, the constructor creates an instance of the EOAdaptor named in aModel and
assigns that EOAdaptor object as the new EODatabase’s adaptor.
94

 Classes: EODatabase
Typically, you don’t need to programmatically create EODatabase objects. Rather, they are created
automatically by the control layer. See the class description for more information. If you do need to create
an EODatabase programmatically, you should never associate more than one EODatabase with a given
EOAdaptor. In general, provide aModel instead of anAdaptor, which automatically selects the adaptor.

See also: addModel, adaptor, adaptorName (EOModel)

Instance Methods

adaptor
public EOAdaptor adaptor()

Returns the EOAdaptor used by the receiver for communication with the database server. Your application
can interact directly with the EOAdaptor, but should avoid altering its state (for example, by starting a
transaction with one of its adaptor contexts).

See also: “Constructors”

addModel
public void addModel(EOModel aModel)

Adds aModel to the receiver’s list of EOModels. This allows EODatabases to load entities and their
properties only as they’re needed, by dividing them among separate EOModels. aModel must use the same
EOAdaptor as the receiver and use the same connection dictionary as the receiver’s other EOModels.

See also: addModelIfCompatible, models, removeModel

addModelIfCompatible
public boolean addModelIfCompatible(EOModel aModel)

Adds aModel to the receiver’s list of EOModels, checking first to see whether it’s compatible with those
other EOModels. Returns true if aModel is already in the list or if it’s successfully added. Returns false if
aModel’s adaptor name differs from that of the receivers or if the receiver’s adaptor returns false to a
canServiceModel: message.

See also: addModel, models, removeModel
95

entityForObject
public EOEntity entityForObject(java.lang.Object anObject)

Returns the EOEntity from one of the receiver’s Models that’s mapped to anObject, or null if there is no
such EOEntity. This method works by sending entityForObject: messages to each of the receiver’s
EOModels and returning the first one found.

See also: entityNamed

entityNamed
public EOEntity entityNamed(java.lang.String entityName)

Returns the EOEntity from one of the receiver’s Models that’s named entityName, or null if there is no such
EOEntity. This method works by sending entityNamed: messages to each of the receiver’s EOModels and
returning the first one found.

See also: entityForObject

forgetAllSnapshots
public void forgetAllSnapshots

Clears all of the receiver’s snapshots and posts an ObjectsChangedInStoreNotification (defined in the
EOControl framework’s EOObjectStore class) describing the invalidated object. For a description of
snapshots and their role in an application, see the class description.

See also: forgetSnapshotForGlobalID, forgetSnapshotsForGlobalIDs, recordSnapshot:forGlobalID:,
recordSnapshots, recordSnapshotForSourceGlobalIDpublic void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
recordToManySnapshotspublic void recordToManySnapshots(NSDictionary snapshots)

forgetSnapshotForGlobalID
public void forgetSnapshotForGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID)

Clears the snapshot made for the enterprise object identified by globalID and posts an
ObjectsChangedInStoreNotification (defined in the EOControl framework’s EOObjectStore class)
describing the invalidated object. For a description of snapshots and their role in an application, see the class
description.

See also: forgetSnapshotsForGlobalIDs, forgetAllSnapshots, recordSnapshot:forGlobalID:
96

 Classes: EODatabase

forgetSnapshotsForGlobalIDs
public void forgetSnapshotsForGlobalIDs(NSArray globalIDs)

Clears the snapshots made for the enterprise objects identified by each of the EOGlobalIDs in globalIDs
and posts an ObjectsChangedInStoreNotification (defined in the EOControl framework’s EOObjectStore
class) describing the invalidated objects. For a description of snapshots and their role in an application, see
the class description.

See also: forgetSnapshotForGlobalID, forgetAllSnapshots, recordSnapshots

invalidateResultCache
public void invalidateResultCache

Invalidates the receiver’s result cache. See the class description for more discussion of this topic.

See also: invalidateResultCacheForEntityNamed, resultCacheForEntityNamed

invalidateResultCacheForEntityNamed
public void invalidateResultCacheForEntityNamed(java.lang.String entityName)

Invalidates the result cache containing an array of globalIDs for the objects associated with the entity
entityName. See the class description for more discussion of this topic.

See also: invalidateResultCache, resultCacheForEntityNamed

models
public NSArray models()

Returns the receiver’s EOModels.

See also: “Constructors”, addModel, addModelIfCompatible, removeModel

recordSnapshot:forGlobalID:
public void recordSnapshotForGlobalID(NSDictionary aSnapshot,

com.apple.yellow.eocontrol.EOGlobalID globalID)

Records aSnapshot under globalID. For a description of snapshots and their role in an application, see the
class description.

See also: – globalIDForRow: (EOEntity), recordSnapshots, forgetSnapshotForGlobalID
97

,

recordSnapshotForSourceGlobalID public void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

For the object identified by globalID, records an NSArray of globalIDs for the to-many relationship named
name. These globalIDs identify the objects at the destination of the relationship. For a description of
snapshots and their role in an application, see the class description.

See also: recordSnapshot:forGlobalID:, recordSnapshots, recordSnapshot:forGlobalID:,
snapshotForSourceGlobalIDpublic NSArray snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name)

recordSnapshots
public void recordSnapshots(NSDictionary snapshots)

Records the snapshots in snapshots. snapshots is a dictionary whose keys are EOGlobalIDs and whose
values are the snapshots for those global IDs. For a description of snapshots and their role in an application
see the class description.

See also: recordSnapshot:forGlobalID:, forgetSnapshotsForGlobalIDs

recordToManySnapshots public void recordToManySnapshots(NSDictionary snapshots)

Records the objects in snapshots. snapshots should be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globaID of the enterprise object for which to-many relationships are
being recorded. The key’s value is a dictionary whose keys are the names of the enterprise object’s to-many
relationships. Each of these keys in turn has as its value an array of globalIDs that identify the objects at the
destination of the relationship. For a description of snapshots and their role in an application, see the class
description.

See also: recordSnapshotForSourceGlobalIDpublic void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name), recordSnapshot:
forGlobalID: , snapshotForSourceGlobalIDpublic NSArray snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name)
98

 Classes: EODatabase

e
registerContext
public void registerContext(EODatabaseContext aContext)

Records aContext as one of the receiver’s EODatabaseContexts. The receiver must have been specified as
aContext’s EODatabase in the EODatabaseContext constructor (which invokes this method automatically).
You should never need to invoke this method directly.

See also: unregisterContext, registeredContexts

registeredContexts
public NSArray registeredContexts()

Returns all the EODatabaseContexts that have been registered with the receiver, generally all the databas
contexts that were created with the receiver as their EODatabase object.

See also: registerContext, unregisterContext

removeModel
public void removeModel(EOModel aModel)

Removes aModel from the receiver’s list of EOModels. Throws an exception if aModel isn’t one of the
receiver’s models.

See also: addModel, addModelIfCompatible, models

resultCacheForEntityNamed
public NSArray resultCacheForEntityNamed(java.lang.String entityName)

Returns an array containing the globalIDs of the objects associated with entityName. See the class
description for more discussion of this topic.

See also: invalidateResultCache, invalidateResultCacheForEntityNamed
99

setResultCache ForEntityWithName

public void setResultCacheForEntityWithName(NSArray cache, java.lang.String entityName)

Updates the receiver’s cache for entityName with cache, an array of EOGlobalID objects, for all the
enterprise objects associated with the EOEntity named entityName. This method is invoked automatically,
and you should never need to invoke it directly. For more information on this topic, see the class description.

See also: invalidateResultCache, invalidateResultCacheForEntityNamed,
resultCacheForEntityNamed

snapshotForGlobalID
public NSDictionary snapshotForGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID)

Returns the snapshot associated with globalID if there is one; otherwise returns null . For a description of
snapshots and their role in an application, see the class description.

See also: recordSnapshot:forGlobalID:, forgetSnapshotForGlobalID

snapshotForSourceGlobalID public NSArray snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

Returns a snapshot that consists of an array of globalIDs. These globalIDs identify the objects at the
destination of the to-many relationship named name, which is a property of the object identified by
globalID. If there is no snapshot, returns null . For a description of snapshots and their role in an application,
see the class description.

snapshots
public NSDictionary snapshots()

Returns all of the receiver’s snapshots, stored in a dictionary under their EOGlobalIDs.

See also: recordSnapshotForSourceGlobalIDpublic void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
recordToManySnapshotspublic void recordToManySnapshots(NSDictionary snapshots)
100

 Classes: EODatabase
unregisterContext
public void unregisterContext(EODatabaseContext aContext)

Removes aContext as one of the receiver’s EODatabaseContexts. An EODatabaseContext automatically
invokes this method when it’s finalized; you should never need to invoke it directly.

See also: registerContext, registeredContexts
101

102

 Classes: EODatabase

el
y
d

.

e
EODatabase
Each of an EODatabase’s EODatabaseContexts forms a separate transaction scope, and is in effect a
separate logical user to the server. An EODatabaseContext uses one or more pairs of EODatabaseChann
and EOAdaptorChannel objects to manage data operations (insert, update, delete, and fetch). Adaptors ma
support a limited number of contexts per database or channels per context, but an application is guarantee
at least one of each.

The EODatabase, EODatabaseContext, and EODatabaseChannel classes form the database level of the
Enterprise Objects Framework. The database level is a client of the adaptor level, which is defined by the
adaptor classes: EOAdaptor, EOAdaptorContext, and EOAdaptorChannel. Together, the database and
adaptor levels make up the access layer of the Enterprise Objects Framework.

Figure 2 The Access Layer

The database level acts as an intermediary between the adaptor level and the control layer, which includes
an EOObjectStoreCoordinator and an EOEditingContext (Figure 3). The control layer operates in terms of
enterprise objects, while the adaptor level operates in terms of database rows packaged as NSDictionaries
It’s the job of the database level to perform the necessary object-to-relational translation between the two.

There’s little need for your code to interact directly with an EODatabase object. An EOEditingContext
creates its own database level objects, which create their own corresponding adaptor level objects. Once th
network of objects is in place, your code might interact with an EODatabase to access its corresponding
EOAdaptor object, but additional programmatic interaction is usually unnecessary.
103

n

ck
ed

Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer

Snapshots

EODatabase’s most significant responsibility is to record snapshots for its EODatabaseContexts. A
snapshot is a dictionary whose keys are attribute names and whose values are the corresponding, last-know
database values. Enterprise Objects Framework records snapshots as it successfully fetches, inserts and
updates enterprise objects. Snapshot information is used when changes to enterprise objects are saved ba
out to the database to ensure that row data has not been changed by someone else since it was last record
by the application.

A snapshot contains entries for a row’s primary key, class properties, foreign keys for class property
relationships, and attributes used for locking. They are recorded under the globalIDs of their enterprise
objects. (EOGlobalIDs are based on an object’s primary key and its associated entity; see the class
specification for EOGlobalID in the EOControl framework for more information.)

The snapshots made by an EODatabase form the global view of data for nearly every other part of the
application, representing the current view of data in the server as far as the application is concerned (though
other applications may have made changes). This global view is temporarily overridden locally by
EODatabaseContexts, which form their own snapshots as they make changes during a transaction. When
an EODatabaseContext commits its top-level transaction, it reconciles all changed snapshots with the
104

 Classes: EODatabase

s

global view of the database object, so that other database contexts (except those with open transactions)
immediately use the new snapshots as well. EODatabaseContexts automatically use their EODatabase to
record snapshots, so there’s no need for your application to intervene in an EODatabase’s snapshotting
mechanism.

For more information on snapshots and how they relate to an application’s update strategy, see the
EODatabaseContext class specification.

Result Cache

An EODatabase object also performs the function of caching enterprise objects for entities that cache their
objects (see the EOEntity class specification). An EODatabase’s result cache stores the globalIDs of
enterprise objects for entities that cache their objects. The first time you perform a fetch against such an
entity, all of its objects are fetched, regardless of the fetch specification used. The globalIDs of the resulting
objects are stored in the EODatabase’s result cache by entity name. Whenever possible, subsequent fetche
are performed against the cache (in memory) rather than against the database. With a globalID, Enterprise
Objects Framework can look up the values for the corresponding object in its snapshot using EODatabase’s
or EODatabaseContext’s snapshotForGlobalID method.

As an example, suppose that you have an entity named Rating that contains all the valid ratings for Movies
(G, PG, R, and so on). Rather than store a Movie’s rating directly in the Movie as an attribute, Movie
maintains a relationship to a Rating. To specify a rating for a movie, users select the rating from a pop-up
list of the possible values. This Rating entity should cache its objects. The values that populate the rating
pop-up list are only fetched once, and there’s no need to fetch them again; the relationships between Movies
and Ratings can be maintained without subsequent fetches.

The result cache is managed automatically; you shouldn’t have to manipulate it explicitly. However, if you
need to access or alter the cache, EODatabase provides several methods for interacting with it.
105

106

 Classes: EODatabaseChannel

l,

ise
n

EODatabaseChannel

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Class Description

An EODatabaseChannel represents an independent communication channel to the database server. It’s
associated with an EODatabaseContext and an EODatabase, which, together with the EODatabaseChanne
form the database level of Enterprise Objects Framework’s access layer. See the EODatabase class
specification for more information.

An EODatabaseChannel has an EOAdaptorChannel that it uses to connect to the database server its
EODatabase object represents. An EODatabaseChannel fetches database records as instances of enterpr
object classes that are specified in its EODatabase’s EOModel objects. An EODatabaseChannel also has a
EODatabaseContext, which uses the channel to perform fetches and to lock rows in the database. All of the
database level objects are used automatically by EOEditingContexts and other components of Enterprise
Objects Framework. You rarely need to interact with them directly. In particular, you wouldn’t ordinarily
use an EODatabaseChannel to fetch objects. Rather, you’d use an EOEditingContext.

Method Types

Constructors
EODatabaseChannel

Accessing cooperating objects adaptorChannel
databaseContext

Fetching objects selectObjectsWithFetchSpecification
isFetchInProgress
fetchObject
cancelFetch

Accessing internal fetch state setCurrentEntity
setCurrentEditingContext
setIsLocking
isLocking
setIsRefreshingObjects
isRefreshingObjects
107

Accessing the delegate setDelegate
delegate

Constructors

EODatabaseChannel
public EODatabaseChannel()
public EODatabaseChannel(com.apple.yellow.eocontrol.EODatabaseContext aDatabaseContext)

Creates and returns a new EODatabaseChannel. Typically, you don’t need to programmatically create
EODatabaseChannel objects. Rather, they are created automatically by the control layer. See the
EODatabase class description for more information.

aDatabaseContext is assigned to the new EODatabaseChannel as the DatabaseContext in which the channel
works. The new EODatabaseChannel creates an AdaptorChannel with which to communicate with the
database server. The constructor throws an exception if the underlying adaptor context can’t create a
corresponding adaptor channel.

See also: databaseContext, adaptorChannel

Instance Methods

adaptorChannel
public com.apple.yellow.eocontrol.EOAdaptorChannel adaptorChannel()

Returns the EOAdaptorChannel used by the receiver for communication with the database server.

See also: “Constructors”

cancelFetch
public void cancelFetch

Cancels any fetch in progress.

See also: isFetchInProgress, selectObjectsWithFetchSpecification, fetchObject
108

 Classes: EODatabaseChannel

ee

e

databaseContext
public com.apple.yellow.eocontrol.EODatabaseContext databaseContext()

Returns the EODatabaseContext that controls transactions for the receiver.

See also: “Constructors”

delegate
public java.lang.Object delegate()

Returns the receiver’s delegate. An EODatabaseChannel shares the delegate of its EODatabaseContext. S
the EODatabaseContext class specification for the delegate methods you can implement.

See also: setDelegate

fetchObject
public java.lang.Object fetchObject()

Fetches and returns the next object in the result set produced by a selectObjectsWithFetchSpecification
message; returns null if there are no more objects in the current result set or if an error occurs. This method
uses the receiver’s EOAdaptorChannel to fetch a row, records a snapshot with the EODatabaseContext if
necessary, and creates an enterprise object from the row if a corresponding object doesn’t already exist. Th
new object is sent an awakeFromFetchInEditingContext: message to allow it to finish setting up its state.

If no snapshot exists for the fetched object, the receiver sends its EODatabase a recordSnapshot:
forGlobalID: message to record one. If a snapshot already exists (because the object was previously
fetched), the receiver checks whether it should overwrite the old snapshot with the new one. It does so by
asking the delegate with a databaseContextShouldUpdateCurrentSnapshot method. If the delegate
doesn’t respond to this method, the EODatabaseChannel overwrites the snapshot if it’s locking or refreshing
fetched objects. Further, if the EODatabaseChannel is refreshing fetched objects, it posts an
EOObjectsChangedInStoreNotification on behalf of its EODatabaseContext (which causes any
EOEditingContext using that EODatabaseContext to update its enterprise object with the values recorded
in the new snapshot).

For information on locking and update strategies, see the EODatabaseContext class specification. For
information on refreshing fetched objects, see the EOFetchSpecification class specification.

Ordinarily, you don’t directly use an EODatabaseChannel to fetch objects. Rather, you use an
EOEditingContext, which uses an underlying EODatabaseChannel to do its work.

See also: cancelFetch, isFetchInProgress, isLocking, isRefreshingObjects
109

isFetchInProgress
public boolean isFetchInProgress

Returns true if the receiver is fetching, false otherwise. An EODatabaseChannel is fetching if it’s been sent
a successful selectObjectsWithFetchSpecification message. An EODatabaseChannel stops fetching when
there are no more objects to fetch or when it is sent a cancelFetch message.

isLocking
public boolean isLocking()

Returns true if the receiver is locking the objects selected, as determined by its EODatabaseContext’s
update strategy or the EOFetchSpecification used to perform the select. Returns false otherwise. This
method always returns false when no fetch is in progress.

See also: – locksObjects (EOFetchSpecification), setIsLocking

isRefreshingObjects
public boolean isRefreshingObjects()

Returns true if the receiver overwrites existing snapshots with fetched values and causes the current
EOEditingContext to overwrite existing enterprise objects with those values as well. Returns false
otherwise. This behavior is controlled by the EOFetchSpecification used in a
selectObjectsWithFetchSpecification message.

See also: – refreshesRefetchedObjects (EOFetchSpecification), fetchObject, setIsRefreshingObjects

selectObjectsWithFetchSpecification
public void selectObjectsWithFetchSpecification(

com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Selects objects described by fetchSpecification so that they’ll be fetched into anEditingContext. The selected
objects compose one or more result sets, each object of which will be returned by subsequent fetchObject
messages in the order prescribed by fetchSpecification’s EOSortOrderings.

Throws an exception if an error occurs; the particular exception depends on the specific error, and is
indicated in the exception’s description. Some possible reasons for failure are:

• fetchSpecification is invalid.
• The receiver’s EODatabaseContext has no transaction in progress.
• The delegate disallows the select operation.
• The receiver’s EOAdaptorChannel fails to perform the select operation.
110

 Classes: EODatabaseChannel
This method invokes the delegate methods databaseContextShouldSelectObjects,
databaseContextShouldUsePessimisticLockWithFetchSpecification, and
databaseContextDidSelectObjects. See their descriptions in the EODatabaseContext class specification
for more information.

You wouldn’t ordinarily invoke this method directly; rather, you’d use an EOEditingContext to select and
fetch enterprise objects.

See also: fetchObject

setCurrentEditingContext
public void

setCurrentEditingContext(com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Sets the EOEditingContext that’s made the owner of fetched objects to anEditingContext. This method is
automatically invoked by selectObjectsWithFetchSpecification. You should never invoke it directly.

See also: setCurrentEntity

setCurrentEntity
public void setCurrentEntity (EOEntity anEntity)

Sets the EOEntity used when fetching enterprise objects to anEntity. Subsequent fetchObject messages
during a fetch operation create an object of the class associated with anEntity. This method is invoked
automatically by selectObjectsWithFetchSpecification.You should never need to invoke it directly.

See also: setCurrentEditingContext

setDelegate
public void setDelegate(java.lang.Object anObject)

Sets the receiver’s delegate to anObject. An EODatabaseChannel shares the delegate of its
EODatabaseContext; you should never invoke this method directly. See the EODatabaseContext class
specification for the delegate methods you can implement.

See also: delegate
111

e
setIsLocking
public void setIsLocking(boolean flag)

Records whether the receiver locks the records it selects. A EODatabaseChannel modifies its interaction
with the database server and its snapshotting behavior based on this setting. If flag is true the
EODatabaseChannel modifies its fetching behavior to lock objects; if flag is false it simply fetches them.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification message. You might invoke this method directly if evaluating SQL
directly with EOAdaptorChannel’s evaluateExpressionmethod.

See also: – locksObjects (EOFetchSpecification), setIsLocking

setIsRefreshingObjects
public void setIsRefreshingObjects(boolean flag)

Records whether the receiver causes existing snapshots and enterprise objects to be overwritten with
fetched values. If flag is true the receiver overwrites existing snapshots with fetched values and posts an
ObjectsChangedInStoreNotification on behalf of its EODatabaseContext (which typically causes the an
existing object’s EOEditingContext to replace its values with the new ones). If flag is false, the receiver
relies on the delegate to determine whether snapshots should be overwritten, and doesn’t cause enterpris
objects to be overwritten.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification message. You might invoke this method directly if evaluating SQL
directly with EOAdaptorChannel’s evaluateExpression: method.

See also: – refreshesRefetchedObjects (EOFetchSpecification)
112

 Classes: EODatabaseContext

g
g
EODatabaseContext

Inherits From: com.apple.yellow.eocontrol.EOCooperatingObjectStore :
com.apple.yellow.eocontrol.EOObjectStore :
NSObject

Package: com.apple.yellow.eoaccess

Class Description

An EODatabaseContext object is a com.apple.yellow.eocontrol.EOObjectStore
(com.apple.client.eocontrol if you’re using Siva) for accessing relational databases, creating and saving
objects based on EOEntity definitions in an EOModel.

An EODatabaseContext represents a single connection to a database server, and it determines the updatin
and locking strategy used by its EODatabaseChannel objects. An EODatabaseContext has a correspondin
EODatabase object. If the server supports multiple concurrent transactions, the EODatabase object may
have several database contexts. If the server and adaptor support it, a database context may in turn have
several database channels, which handle access to the data on the server.

For a more information, see “EODatabaseContext”.

Method Types

Constructors
EODatabaseContext

Fetching objects
objectsWithFetchSpecification
objectsForSourceGlobalID
arrayFaultWithSourceGlobalID
faultForGlobalID
faultForRawRow
batchFetchRelationship

Accessing the adaptor context
adaptorContext

Accessing the database object
database

Accessing the coordinator
coordinator
113

Managing channels
availableChannel
registerChannel
registeredChannels
unregisterChannel

Accessing the delegate
setDelegate
delegate

Committing or discarding changes
invalidateAllObjects
invalidateObjectsWithGlobalIDs
rollbackChanges
saveChangesInEditingContext
commitChanges
performChanges
prepareForSaveWithCoordinator
recordUpdateForObject
recordChangesInEditingContext
refaultObject

Determining if the EODatabaseContext is responsible for a particular operation
ownsObject
ownsGlobalID
handlesFetchSpecification
114

 Classes: EODatabaseContext
Managing Snapshots
forgetSnapshotForGlobalID
forgetSnapshotsForGlobalIDs
localSnapshotForGlobalID
recordSnapshotForGlobalID
recordSnapshots
snapshotForGlobalID
recordSnapshotForSourceGlobalIDpublic void

recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

snapshotForSourceGlobalIDpublic NSArray
snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

localSnapshotForSourceGlobalIDpublic NSArray
localSnapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

recordToManySnapshots

Initializing objects
initializeObject

Obtaining an EODatabaseContext
registeredDatabaseContextForModel

Locking objects
setUpdateStrategy
updateStrategy
registerLockedObjectWithGlobalID
isObjectLockedWithGlobalID
isObjectLockedWithGlobalIDpublic boolean

isObjectLockedWithGlobalID(com.apple.yellow.eocontrol.EOGlo
balID globalID, com.apple.yellow.eocontrol.EOEditingContext
anEditingContext)

forgetAllLocks
forgetLocksForObjectsWithGlobalIDs
lockObjectWithGlobalID

Returning information about objects
valuesForKeys

Setting the context class
contextClassToRegister
setContextClassToRegister
115

l.

Checking connection status
hasBusyChannels

Other
forceConnectionWithModel
lock
unlock

Constructors

EODatabaseContext
public EODatabaseContext()
public EODatabaseContext(EODatabase aDatabase)

Creates and returns a new EODatabaseContext. Typically, you don’t need to programmatically create
database contexts. Rather, they are created automatically by the control layer. See “Creating and Using an
EODatabaseContext” for more information.

aDatabase is assigned to the new database as the EODatabase object with which the new context works.
The new database context creates an EOAdaptorContext with which to communicate with the database
server. Throws an exception if the underlying adaptor context can’t create a corresponding adaptor channe

See also: database

Static Methods

contextClassToRegister
public static java.lang.Class contextClassToRegister()

Returns the class that is registered with an EOObjectStoreCoordinator when the coordinator broadcasts an
EOCooperatingObjectStoreNeeded notification. By default this is EODatabaseContext, but you can
use setContextClassToRegister to specify your own subclass of EODatabaseContext.

When an EOObjectStoreCoordinator sends an EOCooperatingObjectStoreNeeded notification for an
EOEntity in the default model group, if contextClassToRegister is non-null (and it should be—it makes
no sense to set contextClassToRegister to null), an instance of the that class is created, the EOModel for
the EOEntity is registered, and the context class is registered with the requesting
EOObjectStoreCoordinator.
116

 Classes: EODatabaseContext

or
forceConnectionWithModel
public static EODatabaseContext forceConnectionWithModel(EOModel aModel,

NSDictionary overrides,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Forces the stack of objects in the EOAccess layer to be instantiated, if necessary, and then makes a
connection to the database. If there is an existing connection for amodel, it is first closed and then
reconnected. The new connection dictionary is effectively made up of the model’s connection dictionary,
overlaid with overrides. All compatible models in the model’s group also are associated with the new
connection (so they share the same adaptor). Returns the EODatabaseContext associated with the model f
anEditingContext.

registeredDatabaseContextForModel
public static EODatabaseContext registeredDatabaseContextForModel(EOModel aModel,

com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Finds the com.apple.yellow.eocontrol.EOObjectStoreCoordinator for anEditingContext and checks to see
if it already contains an EODatabaseContext cooperating store for aModel. If it does, it returns that
EODatabaseContext. Otherwise it instantiates a new EODatabaseContext, adds it to the
EOObjectStoreCoordinator, and returns the EODatabaseContext.

setContextClassToRegister
public static void setContextClassToRegister(java.lang.Class contextClass)

Sets to contextClass the “contextClassToRegister.” For more discussion of this topic, see the method
description for contextClassToRegister.

Instance Methods

adaptorContext
public EOAdaptorContext adaptorContext()

Returns the EOAdaptorContext used by the EODatabaseContext for communication with the database
server.
117

t

,

arrayFaultWithSourceGlobalID
public NSArray arrayFaultWithSourceGlobalID (com.apple.yellow.eocontrol.EOGlobalID globalID,

java.lang.String name, com.apple.yellow.eocontrol.EOEditingContext anEditingContext);

Overrides the inherited implementation to create a to-many fault for anEditingContext. name must
correspond to an EORelationship in the EOEntity for the specified globalID.

See also: faultForGlobalID

availableChannel
public EODatabaseChannel availableChannel()

Returns an EODatabaseChannel that’s registered with the receiver and that isn’t busy. If the method can’t
find a channel that meets these criteria, it posts an EODatabaseChannelNeededNotification in the hopes tha
someone will provide a new channel. After posting the notification, the receiver checks its list of channels
again. If there are still no available channels, the receiver creates an EODatabaseChannel itself. However
if the list is not empty and there are no available channels, the method returns null .

See also: registerChannel, registeredChannels, unregisterChannel

batchFetchRelationship
public void batchFetchRelationship(EORelationship relationship, NSArray objects,

com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Clear all the faults for the relationship of anEditingContext’s objects and performs a single, efficient, fetch
(at most two fetches, if the relationship is many-to-many). This method provides a way to fetch the same
relationship for multiple objects. For example, given an array of Employee objects, this method can fetch
all of their departments with one round trip to the server, rather than asking the server for each of the
employee’s departments individually.

commitChanges
public void commitChanges()

Overrides the inherited implementation to instruct the adaptor to commit the transaction. If the commit is
successful, any primary and foreign key changes are written back to the saved objects, database locks are
released, and an EOObjectsChangedInStoreNotification (defined in
com.apple.yellow.eocontrol.EOObjectStore) is posted describing the committed changes. Raises an
exception if the adaptor is unable to commit the transaction; the error message indicates the nature of the
problem. You should never need to invoke this method directly.

See also: performChanges, rollbackChanges
118

 Classes: EODatabaseContext
coordinator
public com.apple.yellow.eocontrol.EOObjectStoreCoordinator coordinator()

Returns the receiver’s com.apple.yellow.eocontrol.EOObjectStoreCoordinator or null if there is none. This
method is only valid during a save operation.

database
public EODatabase database()

Returns the receiver’s EODatabase.

See also: “Constructors”

delegate
public java.lang.Object delegate()

Returns the receiver’s delegate.

See also: setDelegate

faultForGlobalID
public java.lang.Object faultForGlobalID (com.apple.yellow.eocontrol.EOGlobalID globalID,

com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Overrides the inherited implementation to create a to-one fault for the object identified by globalID and
register it in anEditingContext.

See also: arrayFaultWithSourceGlobalID

faultForRawRow
public java.lang.Object faultForRawRow(java.lang.Object row,

java.lang.String entityName,
com.apple.yellow.eocontrol.EOEditingContext editingContext)

Returns a fault for a raw row. row is the raw data, typically in the form of an NSDictionary. entityName is
the name of the appropriate entity for the EO you want to create (as a fault). editingContext is the
EOEditingContext in which to create the fault
119

r
forgetAllLocks
public void forgetAllLocks()

Clears all of the receiver’s locks. Doesn’t cause the locks to be forgotten in the server, only in the receiver.
This method is useful when something has happened to cause the server to forget the locks and the receive
needs to be synced up. This method is invoked whenever a transaction is committed or rolled back.

See also: registerLockedObjectWithGlobalID , isObjectLockedWithGlobalID ,
isObjectLockedWithGlobalIDpublic boolean
isObjectLockedWithGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext),
forgetLocksForObjectsWithGlobalIDs, lockObjectWithGlobalID ,
lockObject (com.apple.yellow.eocontrol.EOEditingContext)

forgetLocksForObjectsWithGlobalIDs
public void forgetLocksForObjectsWithGlobalIDs(NSArray anImmutableVector)

Clears the locks made for the enterprise objects identified by each of the
com.apple.yellow.eocontrol.EOGlobalIDs in globalIDs. Doesn’t cause the locks to be forgotten in the
server, only in the receiver.

See also: registerLockedObjectWithGlobalID , isObjectLockedWithGlobalID ,
isObjectLockedWithGlobalIDpublic boolean
isObjectLockedWithGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext), forgetAllLocks ,
lockObjectWithGlobalID , lockObject (com.apple.yellow.eocontrol.EOEditingContext)

forgetSnapshotForGlobalID
public void forgetSnapshotForGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID)

Deletes the snapshot made for the enterprise object identified by globalID.

See also: recordSnapshotForGlobalID, localSnapshotForGlobalID, recordSnapshots,
snapshotForGlobalID, forgetSnapshotsForGlobalIDs
120

 Classes: EODatabaseContext
forgetSnapshotsForGlobalIDs
public void forgetSnapshotsForGlobalIDs(NSArray globalIDs)

Deletes the snapshots made for the enterprise objects identified by globalIDs, an array of
com.apple.yellow.eocontrol.EOGlobalID objects.

See also: recordSnapshotForGlobalID, localSnapshotForGlobalID, recordSnapshots,
snapshotForGlobalID

handlesFetchSpecification
public boolean handlesFetchSpecification(

com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification)

Overrides the inherited implementation to return true if the receiver is responsible for fetching the objects
described by the entity name in fetchSpecification.

See also: ownsObject, ownsGlobalID

hasBusyChannels
public boolean hasBusyChannels()

Returns true if the receiver’s EOAdaptorContext has channels that have outstanding operations (that is,
have a fetch in progress), false otherwise.

initializeObject
public void initializeObject(java.lang.Object object,

com.apple.yellow.eocontrol.EOGlobalID globalID,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext);

Overrides the inherited implementation initialize object for anEditingContext by filling it with properties
based on row data fetched from the adaptor. The snapshot for globalID is looked up and those attributes in
the snapshot that are marked as class properties in the EOEntity are assigned to object. For relationship class
properties, faults are constructed and assigned to the object.

invalidateAllObjects
public void invalidateAllObjects();

Overrides the inherited implementation to discard all snapshots in the receiver’s EODatabase, forget all
locks, and post an EOInvalidatedAllObjectsInStoreNotification, as well as an
EOObjectsChangedInStoreNotification with the invalidated global IDs in the userInfo dictionary. Both of
121

these notifications are defined in com.apple.yellow.eocontrol.EOObjectStore. This method works by
invoking invalidateObjectsWithGlobalIDs for all of the snapshots in the receiver’s EODatabase.

invalidateObjectsWithGlobalIDs
public void invalidateObjectsWithGlobalIDs(NSArray globalIDs)

Overrides the inherited implementation to discard the snapshots for the objects identified by the
com.apple.yellow.eocontrol.EOGlobalIDs in globalIDs and broadcasts an
EOObjectsChangedInStoreNotification (defined in com.apple.yellow.eocontrol.EOObjectStore), which
causes the com.apple.yellow.eocontrol.EOEditingContext containing objects fetched from the receiver to
refault those objects. The result is that these objects will be refetched from the database the next time they’re
accessed.

isObjectLockedWithGlobalID
public boolean isObjectLockedWithGlobalID (com.apple.yellow.eocontrol.EOGlobalID globalID)

Returns true if the enterprise object identified by globalID is locked, false otherwise.

See also: registerLockedObjectWithGlobalID , forgetAllLocks , isObjectLockedWithGlobalIDpublic
boolean isObjectLockedWithGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext),
forgetLocksForObjectsWithGlobalIDs, lockObjectWithGlobalID , lockObject
(com.apple.yellow.eocontrol.EOEditingContext)

isObjectLockedWithGlobalID public boolean
isObjectLockedWithGlobalID (com.apple.yellow.eocontrol.EOGlobalID globalID,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Overrides the EOObjectStore method isObjectLockedWithGlobalID:editingContext: to return true if the
database row corresponding to globalID has been locked in an open transaction held by the receiver.

See also: registerLockedObjectWithGlobalID , isObjectLockedWithGlobalID , forgetAllLocks ,
forgetLocksForObjectsWithGlobalIDs, lockObjectWithGlobalID ,
lockObject (EOEditingContext)
122

 Classes: EODatabaseContext
localSnapshotForGlobalID
public NSDictionary localSnapshotForGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID)

Returns the snapshot for the object identified by globalID, if there is one; else returns null . Only searches
locally (in the transaction scope), not in the EODatabase.

See also: recordSnapshotForGlobalID, forgetSnapshotForGlobalID, recordSnapshots,
snapshotForGlobalID

localSnapshotForSourceGlobalID public NSArray localSnapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

Returns an array that is the snapshot for the objects at the destination of the to-many relationship named
name, which is a property of the object identified by globalID. The returned array contains the globalIDs
of the destination objects. If there is no snapshot, returns null . Only searches locally (in the transaction
scope), not in the EODatabase.

See also: recordSnapshotForSourceGlobalIDpublic void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
snapshotForSourceGlobalIDpublic NSArray snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name)

lock
public void lock()

Used internally to protect access to the receiver in a multi-threaded environment. Do not confuse this with
any methods which work with the database locking mechanism.

See also: unlock

lockObjectWithGlobalID
public void lockObjectWithGlobalID (com.apple.yellow.eocontrol.EOGlobalID globalID,

com.apple.yellow.eocontrol.EOEditingContext anEditingContext);

Overrides the inherited implementation to attempt to lock the database row corresponding to globalID in
the underlying database server, on behalf of anEditingContext. If a transaction is not already open at the
time of the lock request, the transaction is begun and is held open until either commitChanges or
123

invalidateAllObjects is invoked. At that point all locks are released. Raises an exception if unable to obtain
the lock.

See also: registerLockedObjectWithGlobalID , isObjectLockedWithGlobalID , forgetAllLocks ,
forgetLocksForObjectsWithGlobalIDs, lockObject
(com.apple.yellow.eocontrol.EOEditingContext)

objectsForSourceGlobalID
public NSArray objectsForSourceGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID,

java.lang.String name, com.apple.yellow.eocontrol.EOEditingContext anEditingContext);

Overrides the inherited implementation to service a to-many fault. The snapshot for the source object
identified by globalID is located and the EORelationship named name is used to construct a qualifier from
that snapshot. This qualifier is then used to fetch the requested objects into anEditingContext using the
method objectsWithFetchSpecification.

objectsWithFetchSpecification
public NSArray

objectsWithFetchSpecification(com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecifica
tion, com.apple.yellow.eocontrol.EOEditingContext anEditingContext);

Overrides the inherited implementation to fetch objects from an external store into anEditingContext. The
receiver obtains an available EODatabaseChannel and issues a fetch with fetchSpecification. If one of these
objects is already present in memory, by default this method doesn’t overwrite its values with the new
values from the database (you can change this behavior; see the setRefreshesRefetchedObjects method in
the com.apple.yellow.eocontrol.EOFetchSpecification class specification).

You can fine-tune the fetching behavior by adding hints to fetchSpecification’s hints dictionary. For this
purpose, EODatabaseContext defines the following keys (java.lang.Strings):

Constant Corresponding value in the hints dictionary

EOCustomQueryExpressionHintKey
A java.lang.String specifying raw SQL with which to perform the fetch. There is
no way to pass down parameters with this hint.

EOStoredProcedureNameHintKey

A java.lang.String specifying a name for a stored procedure in the model that
should be used rather than building the SQL statement. The stored procedure
must query the the exact same attributes in the same order as EOF would
query if generating the SELECT expression dynamically. If this key is supplied,
other aspects of the EOFetchSpecification such as isDeep , qualifier , and
sortOrderings are ignored (in that sense, this key is more of a directive than a
hint). There is no way to pass down parameters with this hint.
124

 Classes: EODatabaseContext

e
The class description contains additional information on using these hints. See “Using a Custom Query.”

You can also use this method to implement “on-demand” locking by using a fetchSpecification that includes
locking. For more discussion of this subject, see “Updating And Locking Strategies” in the class
description.

Raises an exception if an error occurs; the error message indicates the nature of the problem.

See also: objectsWithFetchSpecification (com.apple.yellow.eocontrol.EOEditingContext)

ownsGlobalID
public boolean ownsGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID)

Overrides the inherited implementation to return true if the receiver is responsible for fetching and saving
the object identified by globalID, false otherwise. The receiver is determined to be responsible if globalID
is a subclass of com.apple.yellow.eocontrol.EOKeyGlobalID and globalID has an entity from one of the
receiver’s EODatabase’s EOModels.

See also: handlesFetchSpecification, ownsObject

ownsObject
public boolean ownsObject(java.lang.Object object)

Overrides the inherited implementation to return true if the receiver is responsible for fetching and saving
object, false otherwise. The receiver is determined to be responsible if the entity corresponding to object is
in one of the receiver’s EODatabase’s EOModels.

See also: ownsGlobalID, handlesFetchSpecification

performChanges
public void performChanges()

Overrides the inherited implementation to construct EOAdaptorOperations from the
EODatabaseOperations produced during recordChangesInEditingContext and
recordUpdateForObject. Invokes the delegate method
databaseContextWillOrderAdaptorOperationsFromDatabaseOperations to give the delegate an
opportunity to construct alternative EOAdaptorOperations from the EODatabaseOperations. Then invokes
the delegate method databaseContext:willPerformAdaptorOperations:adaptorChannel: to let the
delegate substitute its own array of EOAdaptorOperations. Gives the EOAdaptorOperations to an available
EOAdaptorChannel for execution. If the save succeeds, updates the snapshots in the receiver to reflect th
new state of the server. You should never need to invoke this method directly.
125

,

r
This method raises an exception if the adaptor is unable to perform the operations.

See also: commitChanges, rollbackChanges

prepareForSaveWithCoordinator
public void

prepareForSaveWithCoordinator(com.apple.yellow.eocontrol.EOObjectStoreCoordinator anOb
jectStoreCoordinator, com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Overrides the inherited implementation to do whatever is necessary to prepare to save changes. If needed
generates primary keys for any new objects in anEditingContext that are owned by the receiver. This method
is invoked before the object graph is analyzed and foreign key assignments are performed. You should neve
need to invoke this method directly.

recordChangesInEditingContext
public void recordChangesInEditingContext()

Overrides the inherited implementation to construct a list of EODatabaseOperations for all changes to
objects in the com.apple.yellow.eocontrol.EOEditingContext that are owned by the receiver. Forwards any
relationship changes discovered but not owned by the receiver to the
com.apple.yellow.eocontrol.EOObjectStoreCoordinator. This method is typically invoked in the course of
an com.apple.yellow.eocontrol.EOObjectStoreCoordinator saving changes through its
saveChangesInEditingContext method. It’s invoked after prepareForSaveWithCoordinator and before
performChanges. You should never need to invoke this method directly.

recordSnapshotForGlobalID
public void recordSnapshotForGlobalID(NSDictionary aSnapshot,

com.apple.yellow.eocontrol.EOGlobalID aGlobalID)

Records aSnapshot under globalID. This method only records snapshots locally (in the transaction scope).
If you want to record snapshots globally, use the corresponding EODatabase method.

See also: forgetSnapshotForGlobalID, localSnapshotForGlobalID, recordSnapshots,
snapshotForGlobalID

recordSnapshotForSourceGlobalID public void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

For the object identified by globalID, records an NSArray of globalIDs for the to-many relationship named
name. These globalIDs identify the objects at the destination of the relationship. This method only records
126

 Classes: EODatabaseContext

snapshots locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: snapshotForSourceGlobalIDpublic NSArray snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
localSnapshotForSourceGlobalIDpublic NSArray localSnapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
recordToManySnapshots

recordSnapshots
public void recordSnapshots(NSDictionary snapshots)

Records the objects in snapshots, a dictionary of snapshots. The snapshots; keys are GlobalIDs and its values
are the corresponding snapshots represented as NSDicationaries. This method only records snapshots
locally (in the transaction scope). If you want to record snapshots globally, use the corresponding
EODatabase method.

See also: recordSnapshotForGlobalID, localSnapshotForGlobalID, forgetSnapshotForGlobalID,
snapshotForGlobalID

recordToManySnapshots
public void recordToManySnapshots(NSDictionary snapshots)

Records the objects in snapshots. snapshots should be an NSDictionary of NSDictionaries, in which the
top-level dictionary has as its key the globaID of the enterprise object for which to-many relationships are
being recorded. The key’s value is a dictionary whose keys are the names of the Enterprise Object’s to-many
relationships. Each of these keys in turn has as its value an array of globalIDs that identify the objects at the
destination of the relationship.

This method only records snapshots locally (in the transaction scope). If you want to record snapshots
globally, use the corresponding EODatabase method.

See also: recordSnapshotForSourceGlobalIDpublic void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
snapshotForSourceGlobalIDpublic NSArray snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
localSnapshotForSourceGlobalIDpublic NSArray localSnapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name)
127

recordUpdateForObject
public void recordUpdateForObject(java.lang.Object object, NSDictionary changes)

Overrides the inherited implementation to communicate to the receiver that changes from another
com.apple.yellow.eocontrol.EOCooperatingObjectStore (through the
com.apple.yellow.eocontrol.EOObjectStoreCoordinator) need to be made to an object in the receiver. For
example, an insert of an object in a relationship property might require changing a foreign key property in
an object owned by another cooperating store. This method can be invoked any time after
prepareForSaveWithCoordinator and before performChanges.

refaultObject
public void refaultObject(java.lang.Object object, com.apple.yellow.eocontrol.EOGlobalID globalID,

com.apple.yellow.eocontrol.EOEditingContext anEditingContext);

Overrides the inherited implementation to refault the enterprise object object identified by globalID in
anEditingContext. Newly-inserted objects should not be refaulted, since they can’t be refetched from the
external store. If you attempt to do this, an exception will be raised. Don’t refault to-many relationship
arrays, just recreate them.

This method should be used with caution since refaulting an object doesn’t remove the object snapshot from
the undo stack, after which the object snapshot may not refer to the proper object..

registerChannel
public void registerChannel(EODatabaseChannel channel)

Registers channel, which means that it adds it to the pool of available channels used to service fetch and
fault requests. You use this method if you need to perform more than one fetch simultaneously.

See also: availableChannel, registeredChannels, unregisterChannel

registeredChannels
public NSArray registeredChannels()

Returns all of the EODatabaseChannels that have been registered for use with the receiver.

See also: registerChannel, availableChannel, unregisterChannel
128

 Classes: EODatabaseContext

registerLockedObjectWithGlobalID
public void registerLockedObjectWithGlobalID (com.apple.yellow.eocontrol.EOGlobalID globalID)

Registers as a locked object the enterprise object identified by globalID. This method is used internally to
keep track of objects corresponding to rows that are locked in the database.

See also: forgetAllLocks , isObjectLockedWithGlobalID , forgetLocksForObjectsWithGlobalIDs,
lockObjectWithGlobalID , lockObject (com.apple.yellow.eocontrol.EOEditingContext)

rollbackChanges
public void rollbackChanges()

Overrides the inherited implementation to instruct the adaptor to roll back the transaction. Rolls back any
changed snapshots, and releases all locks.

See also: performChanges, commitChanges

saveChangesInEditingContext
public void

saveChangesInEditingContext(com.apple.yellow.eocontrol.EOEditingContext anEditingContext
);

Overrides the inherited implementation to save the changes made in anEditingContext. This message is sent
by an com.apple.yellow.eocontrol.EOEditingContext to its com.apple.yellow.eocontrol.EOObjectStore to
commit changes. Normally an editing context doesn’t send this message to an EODatabaseContext, but to
an com.apple.yellow.eocontrol.EOObjectStoreCoordinator. Raises an exception if an error occurs; the error
message indicates the nature of the problem.

setDelegate
public void setDelegate(java.lang.Object delegate)

Sets the receiver’s delegate to delegate, and propagates the delegate to all of the receiver’s
EODatabaseChannels. EODatabaseChannels share the delegate of their EODatabaseContext.

See also: delegate
129

setUpdateStrategy
public void setUpdateStrategy(int strategy)

Sets the update strategy used by the EODatabaseContext to strategy. See “Updating And Locking
Strategies” in the class description for information on the update strategies:

• EOUpdateWithOptimisticLocking
• EOUpdateWithPessimisticLocking

Raises an exception if the receiver has any transactions in progress or if you try to set strategy to
EOUpdateWithPessimisticLocking and the receiver’s EODatabase already has snapshots.

See also: updateStrategy

snapshotForGlobalID
public NSDictionary snapshotForGlobalID(com.apple.yellow.eocontrol.EOGlobalID globalID)

Returns the snapshot for the object identified by globalID, if there is one; else returns null . Searches first
locally (in the transaction scope) and then in the EODatabase.

See also: recordSnapshotForGlobalID, localSnapshotForGlobalID, forgetSnapshotForGlobalID,
recordSnapshots

snapshotForSourceGlobalID public NSArray snapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID,
java.lang.String name)

Returns a snapshot that consists of an array of global IDs. These global IDs identify the objects at the
destination of the to-many relationship named name, which is a property of the object identified by
globalID. If there is no snapshot, returns null .

See also: recordSnapshotForSourceGlobalIDpublic void
recordSnapshotForSourceGlobalID(NSArray globalIDs,
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
localSnapshotForSourceGlobalIDpublic NSArray localSnapshotForSourceGlobalID(
com.apple.yellow.eocontrol.EOGlobalID globalID, java.lang.String name),
recordToManySnapshots

unlock
public void unlock()

Used internally to release the lock that protects access to the receiver in a multi-threaded environment.

See also: lock
130

 Classes: EODatabaseContext

d
unregisterChannel
public void unregisterChannel(EODatabaseChannel channel)

Unregisters the EODatabaseChannel channel, which means that it removes it from the pool of available
channels used for database communication (for example, to service fetch and fault requests).

See also: registerChannel, registeredChannels, availableChannel

updateStrategy
public int updateStrategy()

Returns the update strategy used by the receiver, one of:

• EOUpdateWithOptimisticLocking
• EOUpdateWithPessimisticLocking

The default strategy is EOUpdateWithOptimisticLocking. See the class description for information on
update strategies.

See also: setUpdateStrategy

valuesForKeys
public NSDictionary valuesForKeys(NSArray keys, java.lang.Object object)

Overrides the inherited implementation to return values for the specified keys from the snapshot of object.
The returned values are used primarily by another EODatabaseContext to extract foreign key properties for
objects owned by the receiver.

Notifications

EODatabaseChannelNeededNotification

This notification is broadcast whenever an EODatabaseContext is asked to perform an object store
operation and it doesn’t have an available EODatabaseChannel. Subscribers can create a new channel an
add it to the EODatabaseContext at this time.

Notification Object The EODatabaseContext.

userInfo Dictionary None.
131

132

 Classes: EODatabaseContext

EODatabaseContext
The relationship between EODatabaseContext and other classes in the control and access layers is
illustrated in the following diagram.

As a subclass of com.apple.yellow.eocontrol.EOCooperatingObjectStore, EODatabaseContext acts as one
of possibly several EOCooperatingObjectStores for an
com.apple.yellow.eocontrol.EOObjectStoreCoordinator, which mediates between
com.apple.yellow.eocontrol.EOEditingContexts and EOCooperatingObjectStores.

An EODatabaseContext creates an EOAdaptorContext when initialized, and uses this object to
communicate with the database server.

Creating and Using an EODatabaseContext

Though you can create an EODatabaseContext explicitly by using the static method
registeredDatabaseContextForModel, you should rarely need to do so. If you’re using the “higher-level”
133

e

d

e

objects com.apple.yellow.eocontrol.EOEditingContexts and EODatabaseDataSources, the database
contexts those objects need are created automatically, on demand. When you create database data sourc
(typically for use with a display group—one ofcom.apple.client.eointerface.EODisplayGroup,
com.apple.yellow.eointerface.EODisplayGroup, or com.apple.yellow.webobjects.WODisplayGroup), it
registers a database context that’s capable of fetching objects for the data source’s entities. If objects fetche
into an editing context (described more in the following section) have references to objects from EOModels
that are based on another database, an EODatabaseContext is creates and registered for each of the
additional databases.

EODatabaseContexts are created on demand when an
com.apple.yellow.eocontrol.EOObjectStoreCoordinator posts an EOCooperatingObjectStoreNeeded
notification. The EODatabaseContext class registers for the notification, and it provides the coordinator
with a new EODatabaseContext instance that can handle the request. For more discussion of this topic, se
the chapter “Application Configurations” in the Enterprise Objects Framework Developer’s Guide.

For the most part, you don’t need to programmatically interact with an EODatabaseContext. However, some
of the reasons you might want to are as follows:

• To implement your own locking strategy, either application-wide, or on a per-fetch basis. This is
described in the section “Updating And Locking Strategies.”

• To do performance tuning, which is described in the section “Faulting.”

• To intervene when objects are created and fetched to provide custom behavior. This is described in the
section “Delegate Methods,” and in the individual delegate method descriptions in the section “Instance
Methods.”

Fetching and Saving Objects

Conceptually, an EODatabaseContext fetches and saves objects on behalf of a
com.apple.yellow.eocontrol.EOEditingContext. However, the two objects don’t interact with each other
directly—a com.apple.yellow.eocontrol.EOObjectStoreCoordinator acts as a mediator between them. The
relationship between EOEditingContext, EOObjectStoreCoordinator, and EODatabaseContext is
illustrated in the following figure. This configuration includes one EOObjectStoreCoordinator, and can
include one or more EOEditingContexts, and one or more EODatabaseContexts.
134

 Classes: EODatabaseContext

t

n
rs

e
When an editing context fetches objects, the request is passed through the coordinator, which forwards it to
the appropriate database context based on the fetch specification or global ID. When the database contex
receives a request to fetch or write information to the database, it tries to use one of its
EODatabaseChannels. If all of its channels are busy, it broadcasts an
EODatabaseChannelNeededNotification in the hopes that an observer can provide a new channel or that a
existing channel can be freed up. This observer could be a manager that decides how many database curso
can be opened by a particular client.

EODatabaseContext knows how to interact with other EOCooperatingObjectStores to save changes made
to an object graph in more than one database server. For a more detailed discussion of this subject, see th
class specifications for EOObjectStoreCoordinator and EOCooperatingObjectStore.

Setting a Fetch Limit

EODatabaseContext defines a hint for use with a com.apple.yellow.eocontrol.EOFetchSpecification in the
objectsWithFetchSpecification method. Named by the key EOFetchLimitHintKey, the hint’s value is a
java.lang.Number containing an integer value indicating the maximum number of objects to fetch.
Depending on the value of the EOPromptAfterFetchLimitHintKey (zero or a positive integer), the
EODatabaseContext will either stop fetching objects when this limit is reached or it will ask the
com.apple.yellow.eocontrol.EOEditingContext’s message handler to ask the user whether it should
continue fetching. For more information on hint keys, see the method description for
objectsWithFetchSpecification.

Using a Custom Query

EODatabaseContext defines a hint for use with a com.apple.yellow.eocontrol.EOFetchSpecification in the
objectsWithFetchSpecification method. Named by the key EOCustomQueryExpressionHintKey, the
hint’s value is a SQL string for performing the fetch. The expression must query the same attributes in the
same order that Enterprise Objects Framework would if it were generating the SELECT expression
135

t

dynamically. If this key is supplied, other characteristics of the EOFetchSpecification such as isDeep,
qualifier, and sortOrderings are ignored—in that sense this key is more of a directive than a hint. For more
information on hint keys, see the method description for objectsWithFetchSpecification.

Faulting

When an EODatabaseContext fetches an object, it examines the relationships defined in the model and
creates objects representing the destinations of the fetched object’s relationships. For example, if you fetch
an employee object, you can ask for its manager and immediately receive an object; you don’t have to get
the manager’s employee ID from the object you just fetched and fetch the manager yourself.

However, EODatabaseContext doesn’t immediately fetch data for the destination objects of relationships
since fetching is fairly expensive. To avoid this waste of time and resources, the destination objects aren’t
initially filled with fetched data. Instead, they exist without any of their values until those values are actually
needed. When the “empty” destination object (called a fault) is accessed (sent a message), the object
triggers its EODatabaseContext to fetch its data.

Faults come in two varieties: single object faults for to-one relationships, and array faults for to-many
relationships. When an array fault is accessed, it fetches all of the destination objects and replaces itself with
an array of those objects.

You can fine-tune faulting behavior for additional performance gains by using two different mechanisms:
batch faulting, and prefetching relationships.

Batch Faulting

When you access a fault, its data is fetched from the database. However, triggering one fault has no effec
on other faults—it just fetches the object or array of objects for the one fault. You can take advantage of this
expensive round trip to the database server by batching faults together. EODatabaseContext provides the
batchFetchRelationship method for doing this. For example, given an array of Employee objects, this
method can fetch all of their departments with one round trip to the server, rather than asking the server for
each of the employee’s departments individually. You can use the delegate methods and to fine-tune batch
faulting behavior.

You can also set batch faulting in an EOModel. In that approach, you specify the number of faults that
should be triggered along with the first fault; you don’t actually control which faults are triggered the way
you do with batchFetchRelationship. For more information on setting batch faulting in an EOModel, see
the chapter “Using EOModeler” in the Enterprise Objects Framework Developer’s Guide.

Prefetching Relationships

EODatabaseContext defines a hint for use with a com.apple.yellow.eocontrol.EOFetchSpecification in the
objectsWithFetchSpecification method. Named by the key EOPrefetchingRelationshipHintKey, the hint’s
value specifies relationships whose destinations should be fetched along with the objects matching the fetch
specification. Although prefetching increases the initial fetch cost, it can improve overall performance by
136

 Classes: EODatabaseContext

reducing the number of round trips made to the database server. For more information on this and other hint
keys, see the method description for objectsWithFetchSpecification.

Using this key also has an effect on how an EOFetchSpecification refreshes. “Refreshing” refers to existing
objects being overwritten with fetched values—this allows your application to see changes to the database
that have been made by someone else. Normally, when you set an EOFetchSpecification to refresh using
setRefreshesRefetchedObjects:, it only refreshes the objects you’re fetching. For example, if you fetch
employees, you don’t also fetch the employees’ departments. However, if you have the
EOPrefetchingRelationshipHintKey set, the refetch is propagated for all of the relationships specified for
the hint.

Delegate Methods

An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they’re defined in EODatabaseContext for ease of access:

• databaseContextDidSelectObjects
• databaseContextShouldSelectObjects
• databaseContextShouldUpdateCurrentSnapshot
• databaseContextShouldUsePessimisticLockWithFetchSpecification

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they’re fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generated (databaseContextNewPrimaryKeyForObject), how and if objects are
locked (databaseContextShouldLockObjectWithGlobalID), what fetch specification is used to fetch
objects (databaseContextShouldSelectObjects), how batch faulting is performed
(databaseContextShouldFetchArrayFault and databaseContextShouldFetchObjectFault), and so on.
For more information, see the individual delegate method descriptions in the section “Instance Methods.”

Snapshots

An EODatabase records snapshots for its EODatabaseContexts. These snapshots form the application’s
view of the current state of the database server. This global view is overridden locally by database contexts,
which form their own snapshots as they make changes during a transaction. When a database context
commits its top-level transaction, it reconciles all changed snapshots with the global view of the database
object, so that other database contexts (except those with open transactions) immediately use the new
snapshots as well.
137

r
Updating And Locking Strategies

EODatabaseContext supports two updating strategies defined in the EODatabaseContext class as intege
values:

EODatabaseContext also supports “on-demand” locking, in which specific optimistic locks can be
promoted to database locks during the course of program execution. You can either use
lockObjectWithGlobalID to lock a database row for a particular object, or
objectsWithFetchSpecification to fetch objects with a fetch specification that includes locking.

For more discussion of locking strategies, see the chapter “Behind the Scenes” in the Enterprise Objects
Framework Developer’s Guide.

Constant Description

EOUpdateWithOptimisticLocking

The default update strategy. Under optimistic locking, objects aren’t locked
immediately on being fetched from the server. Instead, whenever you attempt
to save updates to an object in the database, the object’s snapshot is used to
ensure that the values in the corresponding database row haven’t changed
since the object was fetched. As long as the snapshot matches the values in
the database, the update is allowed to proceed.

EOUpdateWithPessimisticLocking

Causes objects to be locked in the database when they’re selected. This
ensures that no one else can modify the objects until the transaction ends.
However, this doesn’t necessarily mean that either the select or the update
operation will succeed.
138

 Classes: EODatabaseDataSource

er

EODatabaseDataSource

Inherits From: com.apple.yellow.eocontrol.EODataSource : NSObject

Package: com.apple.yellow.eoaccess

Class Description

EODatabaseDataSource is a concrete subclass of EODataSource (defined in EOControl) that fetches
objects based on an EOModel, using an EODatabaseContext that services the data source’s
EOEditingContext (defined in EOControl). An EODatabaseDataSource can be set up to fetch all objects for
its root entity, to fetch objects matching a particular EOFetchSpecification, and to further filter its fetching
with an auxiliary qualifier.

EODatabaseDataSource implements all the functionality defined by EODataSource: In addition to fetching
objects, it can insert and delete them (provided the entity isn’t read-only). See the EODataSource class
specification for more information on these topics.

As with other data sources, EODatabaseDataSource can also provide a detail data source. The most
significant consequence of using an master-detail configuration is that the detail operates directly on the
master’s object graph. The EODetailDataSource has a master object and a detail key through which the
detail data source accesses the its objects. The master object is simply the object that’s selected in the mast
display group, and the detail key is the name of a relationship property in the master object. When the detail
display group asks its data source to fetch, the EODetailDataSource simply gets the value for the
relationship property named detail key from its master object and returns it. When you add and remove
objects from the detail, you’re directly modifying the master’s relationship array. In fact, you can think of
EODetailDataSource as an interface to its master object’s relationship property.

Method Types

Constructors
EODatabaseDataSource

Accessing selection criteria
auxiliaryQualifier
fetchSpecification
fetchSpecificationForFetch
fetchSpecificationName
setAuxiliaryQualifier
setFetchSpecification
setFetchSpecificationByName
139

s
Accessing objects used for fetching
entity
databaseContext

Enabling fetching
setFetchEnabled
isFetchEnabled

Accessing qualifier bindings
qualifierBindingKeys
qualifierBindings
setQualifierBindings

Other
deleteObject
insertObject
dataSourceQualifiedByKey
qualifyWithRelationshipKey

Constructors

EODatabaseDataSource
public EODatabaseDataSource()
public EODatabaseDataSource(com.apple.yellow.eocontrol.EOEditingContext anEditingContext,

java.lang.String anEntityName)
public EODatabaseDataSource(com.apple.yellow.eocontrol.EOEditingContext anEditingContext,

java.lang.String anEntityName, java.lang.String fetchSpecificationName)

Creates and returns a new EODatabaseDataSource object. The new EODatabaseDataSource fetche
objects into anEditingContext for the EOEntity named by anEntityName. If anEditingContext’s
com.apple.yellow.eocontrol.EOObjectStoreCoordinator doesn’t have an EODatabaseChannel that
services the EOModel containing the named EOEntity, this method creates one. The
fetchSpecificationName argument is used to find the named fetch specification in the entity. If the
fetchSpecificationName is not included or is nil , a new fetch specification will be instantiated that
will fetch all objects of the entity
140

 Classes: EODatabaseDataSource

ot
Instance Methods

auxiliaryQualifier
public com.apple.yellow.eocontrol.EOQualifier auxiliaryQualifier ()

Returns the EOQualifier used to further filter the objects fetched by the receiver’s EOFetchSpecification (in
EOControl).

See also: setAuxiliaryQualifier , fetchSpecificationForFetch, fetchSpecification

databaseContext
public EODatabaseContext databaseContext()

Returns the EODatabaseContext that the receiver uses to access the external database. This is either the ro
EOObjectStore for the receiver’s EOEditingContext, or if the root is an EOCooperatingObjectStore, it’s the
EODatabaseContext under that EOCooperatingObjectStore that services the EOModel containing the
EOEntity for the receiver. (EOObjectStore, EOEditingContext, and EOCooperatingObjectStore are all
defined in EOControl.)

dataSourceQualifiedByKey
public com.apple.yellow.eocontrol.EODataSource dataSourceQualifiedByKey(java.lang.String key)

Returns a detail data source that provides the destination objects of the relationship named by key. The
returned detail data source can be qualified by using qualifierWithKey to set a specific master object or to
change the relationship key.

deleteObject
public void deleteObject(java.lang.Object anObject)

Deletes anObject from the data source. This method raises an exception on failure. If the receiver registers
undos for the deletion, the receiver may receive a possibly redundant insertObject call.

entity
public EOEntity entity()

Returns the EOEntity from which the receiver fetches objects.

See also: “Constructors”
141

fetchSpecification
public com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification()

Returns the receiver’s basic EOFetchSpecification. Its EOQualifier is conjoined with the receiver’s
auxiliary EOQualifier when the receiver fetches objects. The sender of this message can alter the
EOFetchSpecification directly, or replace it using setFetchSpecification.

See also: fetchSpecificationForFetch, auxiliaryQualifier

fetchSpecificationForFetch
public com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecificationForFetch()

Returns a copy of the EOFetchSpecification that the receiver uses to fetch. This is constructed by conjoining
the EOQualifier of the receiver’s EOFetchSpecification with its auxiliary EOQualifier. Modifying the
returned EOFetchSpecification doesn’t affect the receiver’s fetching behavior; use setFetchSpecification
and setAuxiliaryQualifier for that purpose.

See also: fetchSpecification, auxiliaryQualifier

fetchSpecificationName
public java.lang.String fetchSpecificationName()

Returns the name of the fetch specification (or null if there is no name).

See also: setFetchSpecificationByName

insertObject
public void insertObject(java.lang.Object anObject)

Inserts object into the data source.

isFetchEnabled
public boolean isFetchEnabled()

Returns true if the receiver’s fetchObjects method actually fetches objects, false if it returns an empty array
without fetching. Fetching is typically disabled in a master-peer configuration when no object is selected in
the master.

See also: setFetchEnabled
142

 Classes: EODatabaseDataSource
qualifierBindingKeys
public NSArray qualifierBindingKeys()

Returns an array of strings which is a union of the binding keys from the fetch specification’s qualifier and
the data source’s auxiliary qualifier.

See also: setQualifierBindings

qualifierBindings
public NSDictionary qualifierBindings()

Returns a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and
the auxiliary qualifier before the fetch is executed.

See also: setQualifierBindings

qualifyWithRelationshipKey
public void qualifyWithRelationshipKey (java.lang.String key, java.lang.Object sourceObject)

Displays destination objects for the relationship named key belonging to sourceObject. key should be the
same as the key specified in the dataSourceQualifiedByKey message that created the receiver. If
sourceObject is null , the receiver qualifies itself to provide no objects.

setAuxiliaryQualifier
public void setAuxiliaryQualifier (com.apple.yellow.eocontrol.EOQualifier aQualifier)

Sets the receiver’s auxiliary qualifier to aQualifier. The auxiliary qualifier usually adds conditions to the
primary qualifier and is useful for narrowing the scope of a data source without altering its primary qualifier.
This is especially useful for setting a qualifier on a qualified peer data source, since a peer’s primary
qualifiers specifies the matching criteria for the relationship it fetches for. For more information on auxiliary
qualifiers, see “Creating a Master-Peer Configuration” in the “WebObjects Programming Topics.”

See also: fetchSpecificationForFetch, fetchSpecification, auxiliaryQualifier

setFetchEnabled
public void setFetchEnabled(boolean flag)

Controls whether the receiver can fetch. If flag is true the receiver’s fetchObjects method actually fetches
objects, if false it returns an empty array without fetching. Fetching is typically disabled in a master-peer
configuration when no object is selected in the master. For example, EODatabaseDataSource’s
143

implementation of qualifyWithRelationshipKey:ofObject: invokes this method to enable or disable
fetching based on whether a master object is provided.

See also: isFetchEnabled

setFetchSpecification
public void

setFetchSpecification(com.apple.yellow.eocontrol.EOFetchSpecification aFetchSpecification)

Sets the receiver’s basic EOFetchSpecification to aFetchSpecification. Its EOQualifier is conjoined with the
receiver’s auxiliary EOQualifier when the receiver fetches objects. This method also sets the name of the
fetch specification to null.

See also: setAuxiliaryQualifier , fetchSpecificationForFetch, fetchSpecification,
setFetchSpecificationByName

setFetchSpecificationByName
public void setFetchSpecificationByName(java.lang.String fetchSpecificationName)

Sets the fetchSpecificationName as given, and sets the fetch specification (used when supplying objects) to
the named fetch specification of the entity that was used to initialize the data source. This method is an
alternative to setFetchSpecification.

See also: fetchSpecificationName

setQualifierBindings
public void setQualifierBindings(NSDictionary bindings)

Sets a set of bindings that will be used for variable replacement on the fetch specification’s qualifier and the
auxiliary qualifier before the fetch is executed.

See also: qualifierBindingKeys, qualifierBindings
144

 Classes: EODatabaseOperation

re

s
EODatabaseOperation

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Class Description

An EODatabaseOperation object represents an operation—insert, update, or delete—to perform on an
enterprise object and all the necessary information required to perform the operation. You don’t ordinarily
create instances of EODatabaseOperation; rather, the Framework automatically creates an
EODatabaseOperation object for each new, updated, or deleted object in an EOEditingContext. An
EODatabaseContext object analyzes a set of database operations and maps each operation to one or mo
adaptor operations. The adaptor operations are then performed by an EOAdaptorChannel object. You
generally interact with EODatabaseOperation objects only if you need to specify the order in which a set
of operations are carried out (see the description for the EODatabaseContext delegate method
databaseContextWillOrderAdaptorOperationsFromDatabaseOperations).

An EODatabaseOperation specifies an enterprise object (called “object”) on which the operation is
performed, the EOGlobalID for the object, and the object’s entity. In addition, the database operation has a
snapshot containing the last known database values for the object and a newRow dictionary of new or
updated values to save in the database. Finally, a database operation specifies one of the following operator
(the type of operation represented by the database operation).

• DatabaseNothingOperator
• DatabaseInsertOperator
• DatabaseUpdateOperator
• DatabaseDeleteOperator

Method Types

Constructors
EODatabaseOperation

Accessing the global ID object
globalID

Accessing the object
object

Accessing the entity
entity
145

Accessing the operator
setDatabaseOperator
databaseOperator

Accessing the database snapshot
setDBSnapshot
dbSnapshot

Accessing the row
setNewRow
newRow

Accessing the adaptor operations
addAdaptorOperation
removeAdaptorOperation
adaptorOperations

Comparing new row and snapshot values
rowDiffs
rowDiffsForAttributes

Working with to-many snapshots
recordToManySnapshotpublic void

recordToManySnapshot(NSArray globalIDs, java.lang.String
name)

toManySnapshots

Constructors

EODatabaseOperation
public EODatabaseOperation()
public EODatabaseOperation(com.apple.yellow.eocontrol.EOGlobalID aGlobalID,

java.lang.Object anObject,
EOEntity anEntity)

Creates and returns a new EODatabaseOperation object, setting the object to which the operation will be
applied to anObject, globalID to aGlobalID, and entity to anEntity.
146

 Classes: EODatabaseOperation

t
Instance Methods

adaptorOperations
public NSArray adaptorOperations()

Returns the EOAdaptorOperation objects that need to be performed to carry out the operation represented
by the receiver.

See also: addAdaptorOperation, removeAdaptorOperation

addAdaptorOperation
public void addAdaptorOperation(EOAdaptorOperation adaptorOperation)

Adds adaptorOperation to the receiver’s list of adaptor operations. Throws an exception if
adaptorOperation is null .

See also: adaptorOperations, removeAdaptorOperation

databaseOperator
public int databaseOperator()

Returns the receiver’s database operator.

See also: setDatabaseOperator

dbSnapshot
public NSDictionary dbSnapshot()

Returns the database snapshot for the receiver’s enterprise object. The snapshot contains the last known
database values for the enterprise object. The dictionary returned from this method will be empty if the
receiver’s object has just been inserted into an EOEditingContext and has not yet been saved in persisten
storage. For more information on EOEditingContexts, see the EOEditingContext class specification in the
EOControl framework.

See also: setDBSnapshot, setDatabaseOperator
147

s
entity
public EOEntity entity()

Returns the entity that corresponds to the receiver’s enterprise object.

See also: “Constructors”

globalID
public com.apple.yellow.eocontrol.EOGlobalID globalID()

Returns the EOGlobalID object that corresponds to the receiver’s enterprise object.

See also: “Constructors”

newRow
public NSMutableDictionary newRow()

Returns a dictionary representation of the receiver’s enterprise object. In addition to all the properties of the
enterprise object that are stored in the database, the dictionary contains values for the non-derived attribute’
of the enterprise object’s entity that aren’t visible in the enterprise object. For example, primary and foreign
keys aren’t ordinarily properties of an enterprise object but are attributes of the object’s entity.

The newRow dictionary is initialized with the values in the receiver’s snapshot. New or updated values are
added to the newRow dictionary (replacing out-of-date values) as the Framework maps changes in the
object to an operation.

See also: setNewRow

object
public java.lang.Object object()

Returns the receiver’s enterprise object.

See also: “Constructors”
148

 Classes: EODatabaseOperation
primaryKeyDiffs
public NSDictionary primaryKeyDiffs ()

Returns a dictionary that contains any primary key values in newRow that are different from those in the
dbSnapshot. Returns null if the receiver doesn’t have EODatabaseUpdateOperator set as its database
operator.

See also: setDatabaseOperator, newRow

recordToManySnapshot public void recordToManySnapshot(NSArray globalIDs,
java.lang.String name)

Records the objects in globalIDs. globalIDs is an array of the globalIDs that identify the objects at the
destination of the to-many relationship named name; name is a property of the receiver’s enterprise object.

See also: toManySnapshots

removeAdaptorOperation
public void removeAdaptorOperation(EOAdaptorOperation adaptorOperation)

Removes adaptorOperation from the receiver’s list of adaptor operations.

See also: adaptorOperations, addAdaptorOperation

rowDiffs
public NSDictionary rowDiffs ()

Returns values in the receiver’s newRow dictionary that are different than the corresponding values in its
dbSnapshot. The dictionary returned from this method contains the new values from the enterprise object.

See also: primaryKeyDiffs

rowDiffsForAttributes
public NSDictionary rowDiffsForAttributes (NSArray attributes)

For the EOAttribute objects in attributes, this method returns values in the receiver’s newRow dictionary
that are different than the corresponding values in its dbSnapshot. The dictionary returned contains the new
values from the enterprise object.
149

setDatabaseOperator
public void setDatabaseOperator(int databaseOperator)

Sets the receiver’s database operator. databaseOperator can be one of the following:

• DatabaseNothingOperator
• DatabaseInsertOperator
• DatabaseUpdateOperator
• DatabaseDeleteOperator

See also: databaseOperator

setDBSnapshot
public void setDBSnapshot(NSDictionary dbSnapshot)

Sets the snapshot for the receiver’s enterprise object. If the object has just been inserted into an a
com.apple.yellow.eocontrol.EOEditingContext, it won’t have a snapshot. In this case, dbSnapshot should
be an empty dictionary.

See also: dbSnapshot

setNewRow
public void setNewRow(NSMutableDictionary newRow)

Sets the dictionary representation of the receiver’s enterprise object. newRow should contain values for all
the properties of the enterprise object that are stored in the database and for the non-derived attribute’s of
the enterprise object’s entity that aren’t visible in the enterprise object.

See also: newRow, databaseOperator

toManySnapshots
public NSDictionary toManySnapshots()

Returns the NSDictionary containing the snapshots for the to-many relationships of the receiver’s enterprise
object.

See also: recordToManySnapshotpublic void recordToManySnapshot(NSArray globalIDs,
java.lang.String name)
150

 Classes: EOEntity

ries
EOEntity

Inherits From: NSObject

Implements: EOPropertyListEncoding

Package: com.apple.yellow.eoaccess

Class Description

An EOEntity describes a table in a database and associates a name internal to the Framework with an
external name by which the table is known to the database. An EOEntity maintains a group of attributes and
relationships, which are collectively called properties. These are represented by the EOAttribute and
EORelationship classes, respectively; see their specifications for more information.

You usually define entities in a model with the EOModeler application, which is documented in WebObjects
Tools and Techniques. EOEntity objects are primarily used by the Enterprise Objects Framework for
mapping tables in the database to enterprise objects; your code will probably make limited use of them
unless you’re specifically working with models.

An EOEntity is associated with a specific class whose instances are used to represent records (rows) from
the database in applications using layers at or above the database layer of the Enterprise Objects
Framework. If an EOEntity doesn’t have a specific class associated with it, instances of EOGenericRecord
(defined in EOControl) are created.

An EOEntity may be marked as read-only, in which case any changes to rows or objects for that entity made
by the database level objects are denied.

You can define an external query for an EOEntity to be used when a selection is attempted with an
unrestricted qualifier (one that would select all rows in the entity’s table). An external query is sent unaltered
to the database server and so can use database-specific features such as stored procedures; external que
are thus useful for hiding records or invoking database-specific features. You can also assign stored
procedures to be invoked upon particular database operations through the use of EOEntity’s
setStoredProcedure method.

Like the other major modeling classes, EOEntity provides a user dictionary for your application to store any
application-specific information related to the entity.

For more information on programmatically creating EOEntity objects, see “Creating an Entity.”
151

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodeIntoPropertyList

Method Types

Constructors
EOEntity

Accessing the name
setName
name
validateName
beautifyName

Accessing the model
model

Specifying fetching behavior for the entity
setExternalQuery
externalQuery
setRestrictingQualifier
restrictingQualifier

Accessing primary key qualifiers
qualifierForPrimaryKey
isQualifierForPrimaryKey

Accessing a schema-based qualifier from a qualifier for in-memory evaluation
schemaBasedQualifier

Accessing attributes
addAttribute
anyAttributeNamed
attributeNamed
attributes
removeAttribute
attributesToFetch

Accessing relationships
addRelationship
anyRelationshipNamed
relationships
relationshipNamed
removeRelationship
152

 Classes: EOEntity
Checking referential integrity
externalModelsReferenced
referencesProperty

Accessing primary keys
globalIDForRow
isPrimaryKeyValidInObject
primaryKeyForGlobalID
primaryKeyForRow

Accessing primary key attributes
setPrimaryKeyAttributes
primaryKeyAttributes
primaryKeyAttributeNames
primaryKeyRootName
isValidPrimaryKeyAttribute

Accessing class properties
setClassProperties
classProperties
classPropertyNames
isValidClassProperty

Accessing the enterprise object class
classDescriptionForInstances
setClassName
className

Accessing locking attributes
setAttributesUsedForLocking
attributesUsedForLocking
isValidAttributeUsedForLocking

Accessing external name
setExternalName
externalName
externalNameForInternalName
nameForExternalName

Accessing whether an entity is read only
setReadOnly
isReadOnly

Accessing the user dictionary
setUserInfo
userInfo
153

Working with stored procedures
setStoredProcedure
storedProcedureForOperation

Working with fetch specifications
addFetchSpecification
fetchSpecificationNamed
fetchSpecificationNames
removeFetchSpecificationNamed

Working with entity inheritance hierarchies
parentEntity
subEntities
addSubEntity
removeSubEntity
setIsAbstractEntity
isAbstractEntity

Specifying fault behavior
setMaxNumberOfInstancesToBatchFetch
maxNumberOfInstancesToBatchFetch

Caching objects
setCachesObjects
cachesObjects

Constructors

EOEntity
public EOEntity ()

Creates a new EOEntity.

public EOEntity (NSDictionary propertyList, java.lang.Object owner)

Creates a new EOEntity initialized from propertyList—a dictionary containing only property list
data types (that is, NSDictionary, NSArray, NSData, and java.lang.String). This constructor is used
by EOModeler when it reads in an EOModel from a file, for example. The owner argument should
be the EOEntity’s EOModel. Entities created from a property list must receive an
awakeWithPropertyList message after creation before they are fully functional, but the awake...
message should be deferred until the all of the other objects in the model have also been created.

See also: awakeWithPropertyList (EOPropertyListEncoding), encodeIntoPropertyList
(EOPropertyListEncoding)
154

 Classes: EOEntity

.

o

Static Methods

externalNameForInternalName
public static java.lang.String externalNameForInternalName(java.lang.String name,

java.lang.String separatorString,
boolean useAllCaps)

Used by the Framework to convert modeling object names to database schema names that conform to a
standard convention. A conforming database schema name is upper-case and uses “_” to separate words
Consequently “name” becomes “NAME” and “firstName” becomes “FIRST_NAME”.

separatorString is a character that is used to separate words. The Framework uses “_” by default as in the
examples above. useAllCaps indicates whether to capitalize the name. For example, providing false
converts “firstName” to “first_name”.

nameForExternalName
public static java.lang.String nameForExternalName(java.lang.String name,

java.lang.String separatorString,
boolean initialCaps)

Used by name beautification to convert database schema names to modeling object names that conform t
a standard convention. A conforming attribute, relationship, or stored procedure name is lower-case except
for the initial letter of each embedded word other than the first, which is upper case. Consequently “NAME”
becomes “name” and “FIRST_NAME” becomes “firstName”. A conforming entity is all lower-case except
for the initial letter of each word. Consequently “CUSTOMER_ACCOUNT” becomes
“CustomerAccount”.

separatorString is a character that is used to separate words. The Framework uses “_” by default as in the
examples above. initialCaps indicates whether to capitalize the first letter of the first word. By default, the
Framework uses true for entities and false for everything else.

See also: beautifyNames (EOModel), beautifyName, – beautifyName (EOAttribute, EORelationship,
EOStoredProcedure)

Instance Methods

addAttribute
public void addAttribute (EOAttribute anAttribute)

Adds anAttribute to the receiver. Throws an exception if anAttribute’s name is already in use by another
attribute or relationship. Sets anAttribute’s entity to this.

See also: removeAttribute , attributes, attributeNamed
155

addFetchSpecification
public void addFetchSpecification(com.apple.yellow.eocontrol.EOFetchSpecification fetchSpec,

java.lang.String fetchSpecName)

Adds the fetch specification and associates fetchSpecName with it.

See also: fetchSpecificationNamed, fetchSpecificationNames, removeFetchSpecificationNamed

addRelationship
public void addRelationship(EORelationship aRelationship)

Adds aRelationship to the receiver. Throws an exception if aRelationship’s name is already in use by another
attribute or relationship. Sets aRelationship’s entity to this.

See also: removeRelationship, relationships, relationshipNamed

addSubEntity
public void addSubEntity(EOEntity child)

Causes the child entity child to “inherit” from the receiver. This is the first step in setting up an inheritance
hierarchy between entities.

See also: subEntities , removeSubEntity

anyAttributeNamed
public EOAttribute anyAttributeNamed(java.lang.String attributeName)

Returns the user-created attribute identified by attributeName. If no such attribute exists, this method looks
through the “hidden” attributes created by the Enterprise Objects Framework for one with the given name.
Hidden attributes are used for such things as primary keys on target entities of flattened attributes. If none
is found, null is returned.

See also: attributeNamed, attributes
156

 Classes: EOEntity

anyRelationshipNamed
public EORelationship anyRelationshipNamed(java.lang.String relationshipName)

Returns the user-created relationship identified by relationshipName. If none exists, this method looks
through the “hidden” relationships created by the Enterprise Objects Framework for one with the given
name. If none is found, null is returned.

See also: relationshipNamed, relationships

attributeNamed
public EOAttribute attributeNamed(java.lang.String attributeName)

Returns the attribute named attributeName, or null if no such attribute exists.

See also: anyAttributeNamed, attributes, relationshipNamed

attributes
public NSArray attributes()

Returns all of the receiver’s attributes, or null if the receiver has none.

See also: anyAttributeNamed, attributeNamed

attributesToFetch
public NSArray attributesToFetch()

Returns an array of the EOAttributes that need to be fetched so that they can be included in the row
snapshot. The set of attributes includes:

1. Attributes that are class properties, “used for locking,” or primary keys.

2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class property.

3. Source attributes of any non-flattened, to-one relationship that is a class property or that is used by a flattened
attribute that is a class property.

4. The foreign key attributes of any flattened, to-one relationship that is a class property or that is used by a class
property.
157

d.

n
 a

attributesUsedForLocking
public NSArray attributesUsedForLocking()

Returns an array containing those properties whose values must match a snapshot any time a row is update

Attributes used for locking are those whose values are compared when a database-level object performs a
update. When the database-level classes fetch an enterprise object, they cache these attributes’ values in
snapshot. Later, when the enterprise object is updated, the values of these attributes in the object are
checked with those in the snapshot—if they differ, the update fails. See the EODatabaseContext class
specification for more information.

beautifyName
public void beautifyName()

Makes the receiver’s name conform to a standard convention. EOEntity names that conform to this style are
all lower-case except for the initial letter of each word, which is upper case. Thus, “MOVIE” becomes
“Movie”, and “MOVIE_ROLE” becomes “MovieRole”.

See also: setName, validateName, beautifyNames (EOModel)

cachesObjects
public boolean cachesObjects()

Returns true if all of the objects from the receiver are to be cached in memory and queries are to be
evaluated in-memory using this cache rather than in the database. This method should only be used for fairly
small tables of read-only objects, since the first access to the receiver will trigger fetching the entire table.
You should generally restrict this method to read-only entities to avoid cached data getting out of sync with
database data. Also, you shouldn’t use this method if your application will be making queries against the
entity that can’t be evaluated in memory.

See also: setCachesObjects

classDescriptionForInstances
public com.apple.yellow.eocontrol.EOClassDescription classDescriptionForInstances()

Returns the EOClassDescription associated with the receiver. The EOClassDescription class provides a
mechanism for extending classes by giving them access to the metadata contained in an EOModel (or
another external source of information). In an application, EOClassDescriptions are registered on demand
for the EOEntity on which an enterprise object is based. For more information, see the class specifications
for EOClassDescription (in EOControl) and EOEntityClassDescription.
158

 Classes: EOEntity

t

s
className
public java.lang.String className()

Returns the name of the enterprise object class associated with the receiver. When a row is fetched for the
receiver by a database-level object, it’s returned as an instance of this class. This class might not be presen
in the run-time system, and in fact your application may have to load it on demand. If your application
doesn’t load a class, EOGenericRecord is used.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

classProperties
public NSArray classProperties()

Returns an array containing the properties that are bound to the receiver’s class (so that instances of the clas
will be passed values corresponding to those properties). This is a subset of the receiver’s attributes and
relationships.

See also: classPropertyNames

classPropertyNames
public NSArray classPropertyNames()

Returns an array containing the names of those properties that are bound to the receiver’s class (so that
instances of the class will be passed values corresponding to those properties). This is a subset of the
receiver’s attributes and relationships.

See also: classProperties

externalModelsReferenced
public NSArray externalModelsReferenced()

Examines each of the receiver’s relationships and returns a list of all external models referenced by the
receiver.

See also: referencesProperty

externalName
public java.lang.String externalName()

Returns the name of the receiver as understood by the database server.
159

externalQuery
public java.lang.String externalQuery()

Returns a query statement that’s used by an EOAdaptorChannel to select rows for the receiver when a
qualifier is empty, or null if the receiver has no external query. An empty qualifier is one that specifies only
the entity, and would thus fetch all enterprise objects for that entity.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

See also: setExternalQuery

fetchSpecificationNamed
public com.apple.yellow.eocontrol.EOFetchSpecification

fetchSpecificationNamed(java.lang.String fetchSpecName)

Returns the fetch specification associated with fetchSpecName.

See also: addFetchSpecification, fetchSpecificationNames, removeFetchSpecificationNamed

fetchSpecificationNames
public NSArray fetchSpecificationNames()

Returns an alphabetically sorted array of names of the entity’s fetch specifications.

See also: addFetchSpecification, fetchSpecificationNamed, removeFetchSpecificationNamed

globalIDForRow
public com.apple.yellow.eocontrol.EOGlobalID globalIDForRow(NSDictionary row)

Constructs a global identifier from the specified row for the receiver.

See also: primaryKeyForGlobalID

isAbstractEntity
public boolean isAbstractEntity()

Returns true to indicate that the receiver is abstract, false otherwise. An abstract entity is one that has no
corresponding enterprise objects in your application. Abstract entities are used to model inheritance
160

 Classes: EOEntity

d

relationships. For example, you might have a Person abstract entity that acts as the parent of Customer an
Employee entities. Customer and Employee would inherit certain characteristics from Person (such as name
and address attributes). However, though your application might have Customer and Employee objects, it
would never have a Person object.

See also: setIsAbstractEntity

isPrimaryKeyValidInObject
public boolean isPrimaryKeyValidInObject (java.lang.Object anObject)

Returns true if every key attribute is present in anObject and has a value that is not null . Returns false
otherwise. This method uses key-value coding so a dictionary may be provided instead of an enterprise
object.

See also: primaryKeyForRow

isQualifierForPrimaryKey
public boolean isQualifierForPrimaryKey (com.apple.yellow.eocontrol.EOQualifier aQualifier)

Returns true if aQualifier describes the primary key and nothing but the primary key, false otherwise.

isReadOnly
public boolean isReadOnly()

Returns true if the receiver can’t be modified, false if it can. If an entity can’t be modified, then enterprise
objects fetched for that entity also can’t be modified (that is, inserted, deleted, or updated).

isValidAttributeUsedForLocking
public boolean isValidAttributeUsedForLocking (EOAttribute anAttribute)

Returns false if anAttribute isn’t an EOAttribute, if the EOAttribute doesn’t belong to the receiver, or if
anAttribute is derived. Otherwise returns true. An attribute that isn’t valid for locking will cause
setAttributesUsedForLocking to fail.

See also: attributesUsedForLocking
161

isValidClassProperty
public boolean isValidClassProperty(java.lang.Object aProperty)

Returns false if either aProperty isn’t an EOAttribute or EORelationship, or if aProperty doesn’t belong to
the receiver. Otherwise returns true. Note that this method doesn’t tell you whether aProperty is a member
of the array returned by classProperties. In other words, unlike classProperties, classPropertyNames,
and setClassProperties, this method doesn’t interact with the properties bound to the entity’s enterprise
object class.

isValidPrimaryKeyAttribute
public boolean isValidPrimaryKeyAttribute (EOAttribute anAttribute)

Returns false if anAttribute isn’t an EOAttribute, doesn’t belong to the receiver, or is derived. Otherwise
returns true.

See also: setPrimaryKeyAttributes

maxNumberOfInstancesToBatchFetch
public int maxNumberOfInstancesToBatchFetch()

Returns the maximum number of to-one faults from the receiver to fire at one time. See the method
description for setMaxNumberOfInstancesToBatchFetch for more explanation of what this means.

model
public EOModel model()

Returns the model that contains the receiver.

See also: addEntity (EOModel)

name
public java.lang.String name()

Returns the receiver’s name.
162

 Classes: EOEntity
parentEntity
public EOEntity parentEntity ()

Returns the entity from which the receiver inherits.

See also: subEntities

primaryKeyAttributeNames
public NSArray primaryKeyAttributeNames ()

Returns an array containing the names of the attributes that make up the receiver’s primary key.

See also: primaryKeyAttributes

primaryKeyAttributes
public NSArray primaryKeyAttributes ()

Returns an array of those attributes that make up the receiver’s primary key.

See also: primaryKeyAttributeNames

primaryKeyForGlobalID
public NSDictionary

primaryKeyForGlobalID (com.apple.yellow.eocontrol.EOKeyGlobalID globalID)

Returns the primary key for the object identified by globalID.

See also: globalIDForRow

primaryKeyForRow
public NSDictionary primaryKeyForRow (NSDictionary aRow)

Returns the primary key for aRow, or null if the primary key can’t be computed. The primary key is
aDictionary whose keys are attribute names and whose values are values for those attributes.

See also: primaryKeyForGlobalID
163

.

s
primaryKeyRootName
public java.lang.String primaryKeyRootName()

Returns the external name (that is, the name as it’s understood by the database) of the receiver’s root entity
If the receiver has no parent entity, returns the receiver’s external name.

See also: externalName, name, parentEntity

qualifierForPrimaryKey
public com.apple.yellow.eocontrol.EOQualifier qualifierForPrimaryKey (NSDictionary aRow)

Returns a qualifier for the receiver that can be used to fetch an instance of the receiver with the primary key
extracted from aRow.

See also: isQualifierForPrimaryKey , restrictingQualifier

referencesProperty
public boolean referencesProperty(java.lang.Object aProperty)

Returns true if any of the receiver’s attributes or relationships reference aProperty, false otherwise. A
property can be referenced by a flattened attribute or by a relationship. For example, suppose a model ha
an Employee entity with a toDepartment relationship. If you flatten the department’s name attribute into
the Employee entity, creating a departmentName attribute, that flattened attribute references the
toDepartment relationship.

If an entity has any outstanding references to a property, you shouldn’t remove the property.

See also: removeAttribute , removeRelationship

relationshipNamed
public EORelationship relationshipNamed(java.lang.String name)

Returns the relationship named name, or null if the receiver has no such relationship.

See also: anyRelationshipNamed, attributeNamed, relationships
164

 Classes: EOEntity
relationships
public NSArray relationships()

Returns all of the receiver’s relationships, or null if the receiver has none.

See also: attributes

removeAttribute
public void removeAttribute (EOAttribute name)

Removes the attribute named name if it exists. You should always use referencesProperty to check that an
attribute isn’t referenced by another property before removing it.

See also: addAttribute , attributes

removeFetchSpecificationNamed
public void removeFetchSpecificationNamed(java.lang.String fetchSpecName)

Removes the fetch specification referred to by fetchSpecName.

See also: addFetchSpecification, fetchSpecificationNamed, fetchSpecificationNames

removeRelationship
public void removeRelationship(EORelationship name)

Removes the relationship named name if it exists. You should always use referencesProperty to check that
a relationship isn’t referenced by another property before removing it.

See also: addRelationship, relationships

removeSubEntity
public void removeSubEntity(EOEntity child)

Removes child from the receiver’s list of sub-entities.

See also: addSubEntity, subEntities
165

restrictingQualifier
public com.apple.yellow.eocontrol.EOQualifier restrictingQualifier ()

Returns the qualifier used to restrict all queries made against the receiver. Restricting qualifiers are useful
when there is not a one-to-one mapping between an entity and a particular database table, or when you
always want to filter the data that’s returned for a particular entity.

For example, if you’re using the “one table” inheritance model in which parent and child data is contained
in the same table, you’d use a restricting qualifier to fetch objects of the appropriate type. To give a
non-inheritance example, for an Employees table you might create a “Sales” entity that has a restricting
qualifier that only fetches employees who are in the Sales department.

See also: setRestrictingQualifier

schemaBasedQualifier
public com.apple.yellow.eocontrol.EOQualifier

schemaBasedQualifier(com.apple.yellow.eocontrol.EOQualifier aQualifier)

Returns a qualifier based on aQualifier suitable for evaluation by a database (as opposed to in-memory
evaluation). Invoked by an EODatabaseChannel object before it uses its EOAdaptorChannel to perform a
database operation.

Whereas in-memory qualifier evaluation uses object instance variables to resolve relationships, a database
qualifier must use foreign keys. For example, consider a qualifier that is used to fetch all employees who
work in a specified department:

Department dept; // Assume this exists.

Qualifier qualifer;

MutableVector qualArgs = new MutableVector();

qualArgs.addElement(dept);

qualifier = Qualifier.qualifierWithQualifierFormat("department = %@", qualArgs);

For an in-memory search, the Framework queries employee objects for their department object and includes
an employee in the result list if its department object is equal to dept. (See the EOQualifierEvaluation
interface description for more information on in-memory searching.)

For a database search, the Framework needs to qualify the fetch by specifying a foreign key value for dept.
The Framework sends the EOEntity class a schemaBasedQualifier message that creates a new EOQualifier
object from qualifier. Assume that the entity for employee objects has an attribute named departmentID
and that the primary key value for dept is 459, the resulting qualifier specifies the search conditions as:

department.departmentID = 459

See also: selectObjectsWithFetchSpecification (EODatabaseChannel)
166

 Classes: EOEntity

r,
setAttributesUsedForLocking
public boolean setAttributesUsedForLocking(NSArray attributes)

Sets attributes as the attributes used when an EODatabaseChannel locks enterprise objects for updates.
Returns false and doesn’t set the attributes used for locking if any of the attributes in attributes responds
false to isValidAttributeUsedForLocking ; returns true otherwise. See the EODatabase,
EODatabaseContext, and EODatabaseChannel class specifications for information on locking.

setCachesObjects
public void setCachesObjects(boolean flag)

Sets according to flag whether all of the receiver’s objects are cached the first time the associated table is
queried.

See also: cachesObjects

setClassName
public void setClassName(java.lang.String name)

Assigns name as the name of the class associated with the receiver. This class need not be present in the
run-time system when this message is sent. When an EODatabaseChannel fetches objects for the receive
they’re created as instances of this class. Your application may have to load the class on demand if it isn’t
present in the run-time system; if it doesn’t load the class, EOGenericRecord will be used.

Note: If you set the class name to null , the className method returns “EOGenericRecord”.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

See also: className

setClassProperties
public boolean setClassProperties(NSArray properties)

Sets the receiver’s class properties to the EOAttributes and EORelationships in properties and returns true,
unless the receiver responds false to isValidClassProperty for any of the objects in the array. In this event,
the receiver’s class properties aren’t changed and false is returned.
167

s

setExternalName
public void setExternalName(java.lang.String name)

Sets the name of the receiver as understood by the database server to name. For example, though your
application may know the entity as “JobTitle” the database may require a form such as “JOB_TTL”. An
adaptor uses the external name to communicate with the database; your application should never need to
use the external name.

setExternalQuery
public void setExternalQuery(java.lang.String aQuery)

Assigns aQuery as the query statement used for selecting rows from the receiver when there is no qualifier.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

An external query is sent unaltered to the database server, and so must contain the external (column) name
instead of the names of EOAttributes. However, to work properly with the adaptor the external query must
use the columns in alphabetical order by their corresponding EOAttributes’ names.

See also: columnName (EOAttribute), externalQuery

setIsAbstractEntity
public void setIsAbstractEntity(boolean flag)

Sets according to flag whether the receiver is an abstract entity. For more discussion of abstract entities, see
the method description for isAbstractEntity .

setMaxNumberOfInstancesToBatchFetch
public void setMaxNumberOfInstancesToBatchFetch(int size)

Sets the maximum number of faults from the receiver to trigger at one time. By default, only one object is
fetched from the database when you trigger a fault. You can optionally use this method to set to size the
number of faults of the same entity should be fetched from the database along with the first one. Using this
technique helps to optimize performance by taking advantage of round trips to the database.

See also: maxNumberOfInstancesToBatchFetch
168

 Classes: EOEntity

,
setName
public void setName(java.lang.String name)

Sets the receiver’s name to name. Throws an exception if name is already in use by another entity in the
same EOModel or if name is not a valid entity name.

See also: beautifyName, validateName

setPrimaryKeyAttributes
public boolean setPrimaryKeyAttributes (NSArray keys)

If the receiver responds false to isValidPrimaryKeyAttribute for any of the objects in keys, this method
returns false. Otherwise, this method sets the primary key attributes to the attributes in keys and returns true.

You should exercise care in choosing primary key attributes. Floating-point numbers, for example, can’t be
reliably compared for equality, and are thus unsuitable for use in primary keys. Integer and string types are
the safest choice for primary keys. BigDecimal objects will work, but they’ll entail more overhead than
integers.

setReadOnly
public void setReadOnly(boolean flag)

Sets according to flag whether the database rows for the receiver can be modified by the database level
objects.

See also: isReadOnly

setRestrictingQualifier
public void setRestrictingQualifier(com.apple.yellow.eocontrol.EOQualifier aQualifier)

Assigns aQualifier as the qualifier used to restrict all queries made against the receiver. The restricting
qualifier can be used to map an entity to a subset of the rows in a table. For more discussion of this subject
see the description for restrictingQualifier .
169

setStoredProcedure
public void setStoredProcedure(EOStoredProcedure storedProcedure, java.lang.String operation)

Sets storedProcedure for operation. operation can be one of the following:

This information is used when changes from the object graph have been transformed into
EODatabaseOperations that are being used to construct EOAdaptorOperations. At this point, Enterprise
Objects Framework checks the entities associated with the changed objects to see if the entities have any
stored procedures defined for the operation being performed.

See also: storedProcedureForOperation

setUserInfo
public void setUserInfo(NSDictionary dictionary)

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types—that is, String, NSDictionary, NSArray, and NSData.

storedProcedureForOperation
public EOStoredProcedure storedProcedureForOperation(java.lang.String operation)

Returns the stored procedure for the specified operation, if one has been set. Otherwise, returns null .
operation can be one of the following:

• EOFetchAllProcedureOperation
• EOFetchWithPrimaryKeyProcedureOperation
• EOInsertProcedureOperation
• EODeleteProcedureOperation

Constant Description

FetchAllProcedureOperation Procedure that fetches all records from the database.

FetchWithPrimaryKeyProcedureOperation Procedure that performs a fetch with primary key.

InsertProcedureOperation Procedure that performs an insert.

DeleteProcedureOperation Procedure that performs a delete.

NextPrimaryKeyProcedureOperation Procedure that performs generates a new primary key.
170

 Classes: EOEntity

.

• EONextPrimaryKeyProcedureOperation

See also: setStoredProcedure, parameterDirection (EOAttribute), storedProcedure (EOAttribute)

subEntities
public NSArray subEntities()

Returns a list of those entities which inherit from the receiver.

See also: addSubEntity, parentEntity , removeSubEntity

userInfo
public NSDictionary userInfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: setUserInfo

validateName
public java.lang.Throwable validateName(java.lang.String aString)

Validates name and returns null if it is a valid name, or an exception if it isn’t. A name is invalid if it has
zero length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character
other than a letter, a number, “@”, “#”, “_”, or “$”. A name is also invalid if the receiver’s model already
has an EOEntity that has the same name or a stored procedure with an argument that has the same name

setName uses this method to validate its argument.
171

172

 Classes:

.
Creating an Entity

An EOEntity requires at least the following to be usable:

• A name
• The name of a table in the database (the external name)
• The name of an enterprise object class
• A set of attributes to be used as the primary key

Note that if an entity has no enterprise object class name, the database-level objects use EOGenericRecord
173

174

 Classes: EOEntityClassDescription

a

.
EOEntityClassDescription

Inherits From: com.apple.yellow.eocontrol.EOClassDescription : NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOEntityClassDescription is the subclass of the control layer’s EOClassDescription. The
EOClassDescription class provides a mechanism for extending classes by giving them access to metadat
not available in the run-time system. EOEntityClassDescription extends the behavior of enterprise objects
by deriving information about them (such as NULL constraints and referential integrity rules) from an
associated EOModel.

In the typical scenario in which an enterprise object has a corresponding model file, the first time a
particular operation is performed on a class (such as validating a value), an EOClassDescriptionNeeded..
notification (either an EOClassDescriptionNeededForClassNotification or an
EOClassDescriptionNeededForEntityNameNotification) is broadcast. When an EOModel object receives
this notification it registers the metadata (class description) for the EOEntity on which the enterprise object
is based. This class description is used from that point on.

For a more detailed discussion of this subject, see the EOClassDescription class specification.

Constructors

EOEntityClassDescription
public EOEntityClassDescription()
public EOEntityClassDescription(next.eo.Entity entity)

Creates a new EOEntityClassDescription and assigns entity to it.

See also: entity
175

Instance Methods

entity
public next.eo.Entity entity()

Returns the entity associated with the receiver.

See also: “Constructors”
176

 Classes: EOJoin

p
EOJoin

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Class Description

An EOJoin describes one source-destination attribute pair for an EORelationship. See the EORelationship
class specification for more information and for examples.

Method Types

Constructors
EOJoin

Querying the join
destinationAttribute
isReciprocalToJoin
sourceAttribute

Constructors

EOJoin
public EOJoin()
public EOJoin(EOAttribute source, EOAttribute destination)

Creates and returns a new EOJoin with the given source and destination attributes. See the EORelationshi
class specification for an example of creating a relationship using EOJoins.

See also: addJoin (EORelationship)
177

Instance Methods

destinationAttribute
public EOAttribute destinationAttribute ()

Returns the destination (“right”) attribute used by the join.

See also: – destinationAttributes (EORelationship)

isReciprocalToJoin
public boolean isReciprocalToJoin(EOJoin otherJoin)

Returns true if this join’s source attribute is equal to otherJoin’s destination attribute and otherJoin’s source
attribute is equal to this join’s destination attribute. This is known as a back-referencing join.

See also: inverseRelationship (EORelationship)

sourceAttribute
public EOAttribute sourceAttribute()

Returns the source (“left”) attribute used by the join.

See also: sourceAttributes (EORelationship)
178

 Classes: EOLoginPanel

EOLoginPanel

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Declared In:

Class Description

EOLoginPanel is an abstract class that defines how users of an Enterprise Objects Framework application
provide database login information. Concrete subclasses of EOLoginPanel override its one method to run
a modal login panel. Unless you are writing a concrete adaptor subclass, you shouldn’t need to interact with
this class. Generally, the Framework automatically creates and runs an instance of a concrete login panel
object when your application needs connection information for the user. If you want to control when or how
the login panel is run, use the EOAdaptor methods runLoginPanelAndValidateConnectionDictionary
and runLoginPanel. When invoked, these methods create a concrete EOLoginPanel and interact with it for
you.

If you are writing a concrete adaptor, you must provide a concrete subclass of EOLoginPanel and a
graphical user interface (usually a .nib file). Enterprise Objects Framework expects these resources to be
provided in a bundle named “LoginPanel” in the adaptor’s framework. See the class specification for
EOAdaptor for more information.

Constructors

EOLoginPanel
public com.apple.yellow.eoaccess.EOLoginPanel()

Creates and returns an instance of EOLoginPanel.

Instance Methods

administrativeConnectionDictionaryForAdaptor
public NSDictionary administrativeConnectionDictionaryForAdaptor (EOAdaptor adaptor)

Adaptor subclass should implement a subclass that implements this. Returns null if the user cancels the
panel.
179

runPanelForAdaptor
public abstract NSDictionary runPanelForAdaptor (

EOAdaptor adaptor,
boolean flag,
boolean allowsCreation)

Implemented by subclasses to run the login panel, allowing a user to enter new connection information.
Returns the new connection information or null if the user cancels the panel. If flag is true, this method runs
the login panel until the user enters valid connection information or cancels the panel. If allowsCreation is
true, the panel will have an additional button that allows the user to creat a new database, and will prompt
them for any necessary administrative information. When valid login information is entered in the panel, it
is stored in adaptor's connection dictionary and returned. Login information is validated by sending adaptor
an assertConnectionDictionaryIsValid message.

If flag is false, login information entered in the panel isn’t validated and is returned without affecting the
adaptor's connection dictionary.

A subclass must override this method without invoking EOAdaptor’s implementation.

See also: setConnectionDictionary (EOAdaptor), assertConnectionDictionaryIsValid (EOAdaptor),
runLoginPanelAndValidateConnectionDictionary (EOAdaptor),
runLoginPanel (EOAdaptor)
180

 Classes: EOModel

y
EOModel

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Class Description

An EOModel represents a mapping between a database schema and a set of classes based on the
entity-relationship model. The model contains a number of EOEntity objects representing the entities
(tables) of the database schema. Each EOEntity object has a number of EOAttribute and EORelationship
objects representing the properties (columns or fields) of the entity in the database schema. For more
information on attributes and relationships, see their respective class specifications.

An EOModel maintains a mapping between each of its EOEntity objects and a corresponding enterprise
object class for use with the database level of the Enterprise Objects Framework. You can determine the
EOEntity for a particular enterprise object with the entityForObject method.

An EOModel is specific to a particular database server, and stores information needed to connect to that
server. This includes the name of an adaptor framework to load so that the Enterprise Objects Framework
can communicate with the database. Models are stored in the file system in a manner similar to adaptor
framework. EOModel objects are usually loaded from model files built with the EOModeler application
rather than built programmatically. If you need to programmatically load a model file, see the discussion in
“Loading a Model File.”

Models can have relationships that reference other models in the same model group. The other models ma
map to different databases and types of servers.

Models are organized into model groups; see the EOModelGroup class specification for more information.

Creating an EOModel Programmatically

The EOAdaptorChannel class declares methods for reading basic schema information from a relational
database. You can use this information to build up an EOModel programmatically, and then enhance that
model by defining extra relationships, flattening attributes, and so on. See the class description in the
EOAdaptorChannel class specification for information on reading basic schema information, and see the
other modeling classes’ specifications for information on creating additional attributes and relationships.
181

Method Types

Constructors
EOModel

Saving a model
encodeTableOfContentsIntoPropertyList
writeToFile

Loading a model’s objects
loadAllModelObjects

Working with entities
addEntity
removeEntity
removeEntityAndReferences
entityNames
entityNamed
entities

Naming a model’s components
beautifyNames

Accessing the model’s name
setName
name
path

Checking references
referencesToProperty
externalModelsReferenced

Getting an object’s entity
entityForObject

Accessing the adaptor bundle
adaptorName
setAdaptorName

Accessing the connection dictionary
setConnectionDictionary
connectionDictionary

Accessing the user dictionary
setUserInfo
userInfo
182

 Classes: EOModel
Working with stored procedures
addStoredProcedure
removeStoredProcedure
storedProcedureNames
storedProcedureNamed
storedProcedures

Accessing the model’s group
setModelGroup
modelGroup

Constructors

EOModel
public EOModel()

Creates a new EOModel object.

public EOModel(java.lang.String path)

Creates a new EOModel object by reading the contents of the file identified by path as a model
archive. Sets the EOModel’s name and path from the context of the model archive. Throws an
exception if for any reason it cannot initialize the model from the file specified by path.

public EOModel(NSDictionary tableOfContents, java.lang.String path)

Creates a new EOModel object from tableOfContents, which is the property list representation of a
EOModel). Sets the EOModel’s name and path using path.

See also: name, path, encodeTableOfContentsIntoPropertyList

Instance Methods

adaptorName
public java.lang.String adaptorName()

Returns the name of the adaptor for the receiver. This name can be used with EOAdaptor’s
adaptorWithName static method to create an adaptor.
183

addEntity
public void addEntity (EOEntity anEntity)

Adds anEntity to the receiver. Throws an exception if an error occurs (for example, if anEntity doesn’t exist,
if the entity belongs to another model, or if an entity of the same name is already in the receiver).

See also: entities, removeEntity, removeEntityAndReferences

addStoredProcedure
public void addStoredProcedure(EOStoredProcedure storedProcedure)

Adds storedProcedure to the receiver. Throws an exception if an error occurs (for example, if a stored
procedure of the same name is already in the receiver).

See also: removeStoredProcedure, storedProcedures, storedProcedureNamed

availablePrototypeAttributeNames
public NSArray availablePrototypeAttributeNames()

Returns a list of available prototype names.

See also: prototypeAttributeNamed

beautifyNames
public void beautifyNames()

See also: Makes all of the receiver’s named components conform to a standard
convention.nameForExternalName (EOEntity), beautifyName (EOEntity, EOAttribute,
EORelationship, EOStoredProcedure), name

connectionDictionary
public NSDictionary connectionDictionary()

Returns a dictionary containing information used to connect to the database server. The connection
dictionary is the place to specify default login information for applications using the model. See the
EOAdaptor class specification for more information.
184

 Classes: EOModel

encodeTableOfContentsIntoPropertyList
public void encodeTableOfContentsIntoPropertyList(NSMutableDictionary propertyList)

Encodes the receiver into propertyList. This method is used to get an ASCII representation of an EOModel
in property list format.

See also: “Constructors”

entities
public NSArray entities()

Returns an array containing the receiver’s entities. Note that this method loads every entity, and thus defeats
the benefits of incremental model loading.

See also: entityNames

entityForObject
public EOEntity entityForObject (java.lang.Object anEO)

Returns the entity associated with anEO, whether anEO is an instance of an enterprise object class, an
instance of EOGenericRecord, or a fault object . Returns null if anEO has no associated entity.

entityNamed
public EOEntity entityNamed(java.lang.String name)

Returns the entity named name, or null if no such entity exists. Posts an EOEntityLoadedNotification when
the entity is loaded.

See also: entityNames, entities

entityNames
public NSArray entityNames()

Returns an array containing the names of the EOModel’s entities.

See also: entities, entityNamed
185

externalModelsReferenced
public NSArray externalModelsReferenced()

Returns an array containing those models that are referenced by this model.

See also: referencesToProperty

loadAllModelObjects
public void loadAllModelObjects()

Loads any of the receiver’s entities, stored procedures, attributes, and relationships that have not yet been
loaded.

See also: attributes (EOEntity), entities, relationships (EOEntity), storedProcedures

modelGroup
public EOModelGroup modelGroup()

Returns the model group of which the receiver is a part.

See also: setModelGroup

name
public java.lang.String name()

Returns the receiver’s name.

See also: path, “Constructors”

path
public java.lang.String path()

Returns the name of the EOModel file used to create the receiver, or null if the model wasn’t initialized
from a file.

See also: name, “Constructors”
186

 Classes: EOModel
prototypeAttributeNamed
public EOAttribute prototypeAttributeNamed (java.lang.String attributeName)

Returns the prototype attribute for the given attributeName. prototypeAttributeNamed first looks for the
prototype in EOadaptorNamePrototypes. If the prototype isn’t found there, it then looks in EOPrototypes.
If the search is still unsuccessful, this method finally looks for the prototype in the list of prototypes
provided by the adaptor itself.

See also: availablePrototypeAttributeNames

referencesToProperty
public NSArray referencesToProperty(java.lang.Object aProperty)

Returns an array of all properties in the receiver that reference aProperty, whether derived attributes,
relationships that reference aProperty, and so on. Returns null if aProperty isn’t referenced by any of the
properties in the model.

See also: externalModelsReferenced

removeEntity
public void removeEntity(EOEntity name)

Removes the entity with the given name without performing any referential integrity checking.

See also: addEntity, removeEntityAndReferences

removeEntityAndReferences
public void removeEntityAndReferences(EOEntity entity)

Removes entity and any attributes or relationships in other entities that reference entity.

See also: removeEntity, addEntity

removeStoredProcedure
public void removeStoredProcedure(EOStoredProcedure aStoredProcedure)

Removes aStoredProcedure without checking to see if an entity uses it.

See also: addStoredProcedure, storedProcedures
187

setAdaptorName
public void setAdaptorName(java.lang.String adaptorName)

Sets the name of the receiver’s adaptor to adaptorName.

See also: availableAdaptorNames (EOAdaptor)

setConnectionDictionary
public void setConnectionDictionary(NSDictionary connectionDictionary)

Sets the dictionary containing information used to connect to the database to connectionDictionary. See the
EOAdaptor class specification for more information on working with connection dictionaries.

See also: adaptorWithModel (EOAdaptor)

setModelGroup
public void setModelGroup(EOModelGroup aModelGroup)

Sets the model group of which the receiver should be a part.

Note: You shouldn’t change an EOModel’s model group after it has been bound to other models in its
group.

See also: modelGroup

setName
public void setName(java.lang.String name)

Sets the name of the receiver to name.

setUserInfo
public void setUserInfo(NSDictionary dictionary)

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types—that is, String, NSDictionary, NSArray, and NSData.
188

 Classes: EOModel
storedProcedureNamed
public EOStoredProcedure storedProcedureNamed(java.lang.String name)

Returns the stored procedure named name, or null if the model doesn’t contain a stored procedure with the
given name.

See also: storedProcedureNames, storedProcedures

storedProcedureNames
public NSArray storedProcedureNames()

Returns an array containing the names of all of the model’s stored procedures.

See also: storedProcedureNamed, storedProcedures

storedProcedures
public NSArray storedProcedures()

Returns an array containing all of the model’s stored procedures. Note that this method loads each of the
model’s stored procedures, thus defeating the benefits of incremental model loading.

See also: storedProcedureNames, storedProcedureNamed

userInfo
public NSDictionary userInfo()

Returns a dictionary of user data. You can use this to store any auxiliary information it needs.

See also: setUserInfo

writeToFile
public void writeToFile (java.lang.String path)

Saves the receiver in the directory specified by path. If the file specified by path already exists, a backup
copy is first created (using path with a “~” character appended). As a side-effect, this method resets the
current path.

writeToFile: throws an exception on any error which prevents the file from being written.

See also: path
189

Notifications

EOModel declares and posts the following notification.

EntityLoadedNotification

Posted after an EOEntity is loaded into memory. The notification contains:

Notification Object The entity that was loaded.

Userinfo None
190

 Classes:
Loading a Model File

EOModels are usually loaded from model files built with the EOModeler application rather than built
programmatically. EOModel files are typically stored in a project or a framework.

To load an EOModel, provide a model file’s path to the constructor. Note that loading an EOModel doesn’t
have the effect of loading all of its entities. EOModel files can be quite large, so to reduce start-up time,
entity definitions are only loaded as needed. This incremental model loading is possible because an
EOModel actually consists of one index file and two files for each entity. Models have an .eomodeld file
wrapper (which is actually a directory), and the individual entity files within the model are in ASCII format.
The index file has the name index.eomodeld, and it contains the connection dictionary, the adaptor name,
and a list of all of the entities in the model. It is this file that gets loaded when you create a new model from
a pathinitWithContentsOfFile: . When an entity is loaded, EOModel posts an
EOEntityLoadedNotification. The entity files are a .plist file that describes the entity and a .fspec file that
describes any named fetch specifications for that entity.

Some of the EOModel methods contain the string “TableOfContents”. An EOModel’s “table of contents”
corresponds to its index.eomodeld file, which is used to access the model’s entities. index.eomodeld is just
the ASCII representation of a model’s table of contents.
191

192

 Classes: EOModelGroup

EOModelGroup

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Class Description

An EOModelGroup represents an aggregation of related models (see the EOModel class specification for
more information on models). When a model in the group needs to resolve a relationship to an entity in
another model, it looks for that model in its group. Model groups allow applications to load entities and
their properties only as they’re needed, by distributing them among separate EOModels.

The default model group contains all models for an application, as well as any frameworks the application
references. It is automatically created on demand. The entity name space among all of these models is
global; consequently, the same entity name shouldn’t appear in any two of the models. All cross-model
information is represented in the models by entity name only. Binding the entity name to an actual entity is
done at run-time within the EOModelGroup.

In the majority of applications, the automatic creation of the default model group is sufficient. However,
your code can override this automatic creation; see “Setting Up A Model Group Programmatically.”

EOModelGroup Delegates

Your EOModelGroup object should have a delegate which can influence how it finds and loads
models. In addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself
can have a delegate. The class delegate implements a single method—defaultModelGroup—while the
instance delegate can implement the methods defined in the EOModelGroup.Delegate interface. For more
information on EOModelGroup class delegate and instance delegate methods, see the
EOModelGroup.ClassDelegate and EOModelGroup.Delegate interface specifications, respectively.

Method Types

Constructors
EOModelGroup
193

Accessing the group
addModel
addModelWithPath
modelNamed
modelNames
models
modelWithPath
removeModel

Accessing model groups
defaultGroup
setDefaultGroup
globalModelGroup
modelGroupForObjectStoreCoordinator
setModelGroup

Searching a group
entityNamed
entityForObject
fetchSpecificationNamed
storedProcedureNamed

Loading all of a group’s objects
loadAllModelObjects

Assigning a delegate
classDelegate
delegate
setClassDelegate
setDelegate

Constructors

EOModelGroup
public EOModelGroup()

Creates a new EOModelGroup that contains no models.
194

 Classes: EOModelGroup
Static Methods

classDelegate
public static java.lang.Object classDelegate()

Returns the EOModelGroup’s class delegate. This delegate optionally implements the
defaultModelGroup method (see the EOModelGroup.ClassDelegate interface specification for more
information).

See also: setClassDelegate

defaultGroup
public static EOModelGroup defaultGroup()

Returns the default EOModelGroup. Unless you’ve either specified a default model group with
setDefaultGroup or implemented the defaultModelGroup class delegate method to return a non-null
value, this method is equivalent to globalModelGroup.

See also: classDelegate

globalModelGroup
public static EOModelGroup globalModelGroup()

Returns an EOModelGroup composed of all models in the resource directory of the main bundle, as well
as those in all the bundles and frameworks loaded into the application.

See also: defaultGroup

modelGroupForObjectStoreCoordinator
public static EOModelGroup

modelGroupForObjectStoreCoordinator(com.apple.yellow.eocontrol.EOObjectStoreCoordina
tor anObjectStoreCoordinator)

Returns the EOModelGroup used by anObjectStoreCoordinator.

See also: setModelGroup
195

setClassDelegate
public static void setClassDelegate(java.lang.Object anObject)

Assigns anObject as the EOModelGroup’s class delegate. The class delegate is optional; it allows you to
determine the default model group (see the EOModelGroup.ClassDelegate interface specification for more
information).

See also: classDelegate, defaultModelGroup

setDefaultGroup
public static void setDefaultGroup(EOModelGroup group)

Sets the default model group to group. If you’ve implemented the defaultModelGroup class delegate
method to return a non-null value, the delegate’s return value overrides group as the default model group.

See also: defaultGroup,setClassDelegate

setModelGroup
public static void setModelGroup(EOModelGroup group,

com.apple.yellow.eocontrol.EOObjectStoreCoordinator anObjectStoreCoordinator)

Assigns group to anObjectStoreCoordinator. By default, an EOObjectStoreCoordinator uses the
defaultGroup. You might want to assign a different group to an EOObjectStoreCoordinator if you need to
scope models to particular coordinators—if different models have the same name, or if different entities in
different models have the same name.

See also: modelGroupForObjectStoreCoordinator

Instance Methods

addModel
public void addModel(EOModel model)

Adds a model to the receiver, sets the model’s model group to the receiver, and posts
ModelAddedNotification. Throws an exception if the receiver already contains an EOModel with the
same name as the specified model.

See also: models, removeModel
196

 Classes: EOModelGroup
addModelWithPath
public EOModel addModelWithPath(java.lang.String path)

Creates an EOModel object with the contents of the file identified by path, and adds the newly created
model to the receiver. Adds the new model to the receiver with addModel. Throws an exception if for any
reason it cannot create the model from the file specified by path.

delegate
public java.lang.Object delegate()

Returns the receiver’s delegate, which is different from the EOModelGroup’s class delegate. Each
EOModelGroup object can have it’s own delegate in addition to the delegate that’s assigned to the
EOModelGroup class. See the EOModelGroup.Delegate interface specification for more information.

See also: setDelegate, classDelegate

entityForObject
public EOEntity entityForObject (java.lang.Object object)

Returns the EOEntity associated with object from any of the models in the receiver that handle object, or
null if none of the entities in the receiver handles object.

See also: entityForObject (EOModel)

entityNamed
public EOEntity entityNamed(java.lang.String entityName)

Searches each of the EOModels in the receiver for the entity specified by entityName, and returns the entity
if found. Returns null if it is unable to find the specified entity.

See also: entityNamed (EOModel)

fetchSpecificationNamed
public com.apple.yellow.eocontrol.EOFetchSpecification

fetchSpecificationNamed(java.lang.String fetchSpecName,
java.lang.String entityName)

Returns the named fetch specification from the entity specified by entityName in the receiving model group.
197

loadAllModelObjects
public void loadAllModelObjects()

Sends loadAllModelObjects to each of the receiver’s EOModels, thereby loading any EOEntities,
EOAttributes, EORelationships, and EOStoredProcedures that haven’t yet been loaded from each of the
EOModels in the receiver.

See also: loadAllModelObjects (EOModel)

modelNamed
public EOModel modelNamed(java.lang.String modelName)

Returns the EOModel named modelName if it’s part of the receiver, or null if the receiver doesn’t contain
an EOModel with the specified name.

See also: modelNames, models

modelNames
public NSArray modelNames()

Returns an array containing the names of all of the EOModels in the receiver, or an empty array if the
receiver contains no EOModels. The order of the model names in the array isn’t defined.

See also: modelNamed, models

models
public NSArray models()

Returns an array containing the receiver’s EOModels, or an empty array if the receiver contains no
EOModels. The order of the models in the array isn’t defined.

See also: modelNamed, modelNames, models

modelWithPath
public EOModel modelWithPath(java.lang.String path)

If the receiver contains an EOModel whose path (as determined by sending path to the EOModel object)
is equal to path, that EOModel is returned. Otherwise, returns null . String’s equals method is used to
compare the paths, and each path is standardized before comparison.

See also: modelNamed:, path (EOModel)
198

 Classes: EOModelGroup

s
removeModel
public void removeModel(EOModel aModel)

Removes aModel from the receiver, and unbinds any connections to aModel from other EOModels in the
receiver. Posts ModelInvalidatedNotification to the default notification center after removing aModel from
the receiver.

See also: addModel, models

setDelegate
public void setDelegate(java.lang.Object anObject)

Sets the receiver’s delegate to anObject. See the EOModelGroup.Delegate interface specification for more
information.

See also: delegate

storedProcedureNamed
public EOStoredProcedure storedProcedureNamed(java.lang.String aName)

Returns the stored procedure in the receiving model group having the given name.

Notifications

EOModelGroup declares and posts the following notifications.

ModelAddedNotification

Posted by an EOModelGroup when an EOModel is added to the group. This notification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the object
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the notification
(like data sources) can invoke modelNamed to re-fetch their models.

Notification Object The newly added model.

Userinfo None
199

s
ModelInvalidatedNotification

Posted by an EOModelGroup when an EOModel is removed from the group. This notification is sent, for
instance, inside Interface Builder when the user has saved changes to a model in EOModeler and the object
in Interface Builder must be brought back in sync. The old model is flushed and receivers of the notification
(like data sources) can invoke modelNamed to re-fetch their models.

Notification Object The invalidated model.

Userinfo None
200

 Classes:
Setting Up A Model Group Programmatically

In the majority of applications, the automatic creation of the default model group is sufficient. However, if
your particular application requires different model grouping semantics, you can create your own
EOModelGroup instance, add the appropriate models, and then use that instance to replace the default
EOModelGroup. The following code demonstrates the process:

String modelPath; // Assume this exists

ModelGroup group = new ModelGroup();

group.addModelWithPath(modelPath);

ModelGroup.setDefaultGroup(group);
201

202

 Classes: EORelationship

.

e

EORelationship

Inherits From: NSObject

Implements: EOPropertyListEncoding

Package: com.apple.yellow.eoaccess

Class Description

An EORelationship describes an association between two entities, based on attributes of those two entities
By defining EORelationships in your application’s EOModel, you can cause the relationships defined in the
database to be automatically resolved as enterprise objects are fetched. For example, a Movie entity may
contain its studioId as an attribute, but without an EORelationship studioId will only appear in a movie
enterprise object as a number. With an EORelationship explicitly connecting the Movie entity to a Studio
entity, a movie enterprise object will automatically be given its studio enterprise object when an
EODatabaseChannel fetches it from the database. The two entities that make up a relationship can be in th
same model or two different models, as long as they are in the same model group.

You usually define relationships in your EOModel with the EOModeler application, which is documented
in WebObjects Tools and Techniques. EORelationships are primarily for use by the Enterprise Objects
Framework; unless you have special needs you shouldn’t need to access them in your application’s code. If
you have such a need, you can create your own EORelationship objects as outlined in “Creating
Relationships.”

A relationship is directional: One entity is considered the source, and the other is considered the destination.
The relationship belongs to the source entity, and may only be traversed from source to destination. To
simulate a two-way relationship you have to create an EORelationship for each direction. Although the
relationship is directional, no inverse is implied (although an inverse relationship may exist).

A relationship maintains an array of joins identifying attributes from the related entities (see the EOJoin
class specification for more information). Most relationships simply relate the objects of one entity to those
of another by comparing attribute values between them. Such a relationship must be defined as to-one or
to-many based on how many objects of the destination match each object of the source. This is called the
cardinality of the relationship. In a to-one relationship, there must be exactly one destination object for each
source object; in a to-many relationship there can be any number of destination objects for each source
object. See “Creating a Simple Relationship” for more information.

A chain of relationships across several entities can be flattened, creating a single relationship that spans
them all. For example, suppose you have a relationship between movies and directors, and a relationship
between directors and talent. You can traverse these relationships to create a flattened relationship going
directly from movies to talent. A flattened relationship is determined to be to-many or to-one based on the
203

relationships it spans; if all are to-one, then the flattened relationship is to-one, but if any of them is to-many
the flattened relationship is to-many. See “Creating a Flattened Relationship” for more information.

Like the other major modeling classes, EORelationship provides a user dictionary that the application can
use to store application-specific information related to the relationship.

Specifying the Join Semantic

The relationship holds the join semantic; you specify this semantic with setJoinSemantic. There are four
types of join semantic: EOInnerJoin, EOFullOuterJoin, EOLeftOuterJoin, and EORightOuterJoin. An inner
join produces results only for destinations of the join relationship that have non-NULL values. A full outer
join produces results for all source records, regardless of the values of the relationships. A left outer join
preserves rows in the left (source) table, keeping them even if there’s no corresponding row in the right
table, while a right outer join preserves rows in the right (destination) table.

Note: Not all join semantics are supported by all database servers.

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodeIntoPropertyList

Method Types

Constructors
EORelationship

Accessing the relationship name beautifyName
name
setName
validateName

Using joins
addJoin
joins
joinSemantic
removeJoin
setJoinSemantic

Accessing attributes joined on
destinationAttributes
sourceAttributes
204

 Classes: EORelationship
Accessing the definition
componentRelationships
definition
setDefinition

Accessing the entities joined
anyInverseRelationship
destinationEntity
entity
inverseRelationship
setEntity

Checking the relationship type
isCompound
isFlattened
isMandatory
setIsMandatory
validateValue

Accessing whether the relationship is to-many
isToMany
setToMany

Relationship qualifiers
qualifierWithSourceRow

Checking references
referencesProperty

Controlling batch fetches
numberOfToManyFaultsToBatchFetch
setNumberOfToManyFaultsToBatchFetch

Taking action upon a change
deleteRule
propagatesPrimaryKey
setDeleteRule
setPropagatesPrimaryKey
ownsDestination
setOwnsDestination

Accessing the user dictionary
setUserInfo
userInfo
205

Constructors

EORelationship
public EORelationship()

Creates and returns a new EORelationship. You rarely create EORelationships in code; instead you
create them using the EOModeler application.

public EORelationship(NSDictionary propertyList, java.lang.Object owner)

Creates and returns a new EORelationship is initialized from propertyList—a dictionary containing
only property list data types (that is, NSDictionaries, java.lang.Strings, NSArrays, and
next.util.ImmutableBytes). This constructor is used by EOModeler when it reads in a Model from a
file, for example. The owner argument should be the EORelationship’s Entity. EORelationships
created from a property list must receive an awakeWithPropertyList message immediately after
creation before they are fully functional, but the awake... message should be deferred until the all of
the other objects in the model have also been created.

See also: awakeWithPropertyList (EOPropertyListEncoding), encodeIntoPropertyList
(EOPropertyListEncoding)

Instance Methods

addJoin
public void addJoin(EOJoin aJoin)

Adds a source-destination attribute pair to the relationship. Throws an exception if the relationship is
flattened, if either the source or destination attributes are flattened, or if either of aJoin’s attributes already
belongs to another join of the relationship.

See also: joins, isFlattened, setDefinition

anyInverseRelationship
public EORelationship anyInverseRelationship()

Searches the relationship’s destination entity for a user-created, back-referencing relationship joining on the
same keys. If none is found, it looks for a “hidden” inverse relationship that was manufactured by the
Framework. If none is found, the Enterprise Objects Framework creates a “hidden” inverse relationship and
returns that. Hidden relationships are used internally by the Framework.

See also: inverseRelationship
206

 Classes: EORelationship

f
beautifyName
public void beautifyName

Makes the relationship’s name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”. This method is used in
reverse-engineering a model.

See also: setName, validateName, beautifyNames (EOModel)

componentRelationships
public NSArray componentRelationships()

Returns an array of base relationships making up a flattened relationship, or null if the relationship isn’t
flattened.

See also: definition

definition
public java.lang.String definition()

Returns the data path of a flattened relationship; for example “department.facility”. If the relationship isn’t
flattened, definition returns null .

Returns the data path of a flattened relationship; for example “department.facility”. If the relationship isn’t
flattened, definition returns null .

See also: componentRelationships

deleteRule
public int deleteRule()

Returns a rule that describes the action to take when an object is being deleted. The returned rule is one o
the following:

Value Type Description

DeleteRuleNullify int
Delete the department and remove any back reference the employee has to the
department.

DeleteRuleCascade int Delete the department and all of the employees it contains.
207

destinationAttributes
public NSArray destinationAttributes()

Returns the destination attributes of the relationship. These correspond one-to-one with the attributes
returned by sourceAttributes. Returns null if the relationship is flattened.

See also: joins, destinationAttribute (EOJoin)

destinationEntity
public EOEntity destinationEntity()

Returns the relationship’s destination entity, which is determined by the destination entity of its joins for a
simple relationship, and by whatever ends the data path for a flattened relationship. For example, if a
flattened relationship’s definition is “department.facility”, the destination entity is the Facility entity.

See also: entity

entity
public EOEntity entity()

Returns the relationship’s source entity.

See also: destinationEntity, addRelationship (EOEntity)

inverseRelationship
public next.eo.Relationship inverseRelationship()

Searches the relationship’s destination entity for a user-created, back-referencing relationship joining on the
same keys. Returns the inverse relationship if one is found, null otherwise.

See also: anyInverseRelationship

DeleteRuleDeny int Refuse the deletion if the department contains employees.

DeleteRuleNoAction int
Delete the department, but ignore the department’s employees relationship. You
should use this delete rule with caution since it can leave dangling references in
your object graph.

Value Type Description
208

 Classes: EORelationship
isCompound
public boolean isCompound()

Returns true if the relationship contains more than one join (that is, if it joins more than one pair of
attributes), false if it has only one join. See “Creating a Simple Relationship” for information on compound
relationships.

See also: joins, joinSemantic

isFlattened
public boolean isFlattened()

Returns true if the relationship traverses more than two entities, false otherwise. See “Creating a Flattened
Relationship” for an example of a flattened relationship.

isMandatory
public boolean isMandatory()

Returns true if the target of the relationship is required, false if it can be null .

See also: setIsMandatory

isToMany
public boolean isToMany()

Returns true if the relationship is to-many, false if it’s to-one.

See also: setToMany
209

joinSemantic
public int joinSemantic()

Returns the semantic used to create SQL expressions for this relationship. The returned join semantic is one
of the following:

See also: joins

joins
public NSArray joins()

Returns all joins used by relationship.

See also: destinationAttributes, joinSemantic, sourceAttributes

name
public java.lang.String name()

Returns the relationship’s name.

numberOfToManyFaultsToBatchFetch
public int numberOfToManyFaultsToBatchFetch()

Returns the number of to-many faults that are triggered at one time.

Constant Description

InnerJoin
Produces results only for destinations of the join relationship that have non-NULL
values.

FullOuterJoin Produces results for all source records, regardless of the values of the relationships.

LeftOuterJoin
Preserves rows in the left (source) table, keeping them even if there’s no
corresponding row in the right table.

RightOuterJoin
Preserves rows in the right (destination) table, keeping them even if there’s no
corresponding row in the left table.
210

 Classes: EORelationship
ownsDestination
public boolean ownsDestination()

Returns true if the receiver’s source object owns its destination objects, false otherwise. See the method
description for setOwnsDestination for more discussion of this topic.

See also: destinationAttributes

propagatesPrimaryKey
public boolean propagatesPrimaryKey()

Returns true if objects should propagate their primary key to related objects through this relationship.
Objects only propagate their primary key values if the corresponding values in the destination object aren’t
already set.

qualifierWithSourceRow
public EOQualifier qualifierWithSourceRow(NSDictionary sourceRow)

Returns a qualifier that can be used to fetch the destination of the receiving relationship, given sourceRow.

referencesProperty
public boolean referencesProperty(java.lang.Object aProperty)

Returns true if aProperty is in the relationship’s data path or is an attribute belonging to one of the
relationship’s joins; otherwise, it returns false. See the class description for information on how
relationships reference properties.

See also: referencesProperty (EOEntity)

removeJoin
public void removeJoin(EOJoin aJoin)

Deletes aJoin from the relationship. Does nothing if the relationship is flattened.

See also: addJoin
211

setDefinition
public void setDefinition(java.lang.String definition)

Changes the relationship to a flattened relationship by releasing any joins and attributes (both source and
destination) associated with the relationship and setting definition as its data path. “department.facility” is
an example of a definition that could be supplied to this method.

If the relationship’s entity hasn’t been set, this method won’t work correctly. See “Creating a Flattened
Relationship” for more information on flattened relationships.

See also: addJoin, setEntity

setDeleteRule
public void setDeleteRule(int deleteRule)

Set a rule describing the action to take when object is being deleted. deleteRule can be one of the following:

• EODeleteRuleNullify
• EODeleteRuleCascade
• EODeleteRuleDeny
• EODeleteRuleNoAction

For more discussion of what these rules mean, see the method description for deleteRule.

setEntity
public void setEntity(EOEntity anEntity)

Sets the entity of the relationship to anEntity. If the relationship is currently owned by a different entity, this
method will remove the relationship from that entity. This method doesn’t add the relationship to the new
entity. EOEntity’s addRelationship method invokes this method.

You only need to use this method when creating a flattened relationship; use EOEntity’s addRelationship
to associate an existing relationship with an entity.

See also: setDefinition

setIsMandatory
public void setIsMandatory(boolean flag)

Specifies according to flag whether the target of the relationship must be supplied or can be null .
212

 Classes: EORelationship

d
setJoinSemantic
public void setJoinSemantic(int joinSemantic)

Sets the semantic used to create SQL expressions for this relationship. joinSemantic should be one of the
following:

• EOInnerJoin
• EOFullOuterJoin
• EOLeftOuterJoin
• EORightOuterJoin

See also: addJoin, joinSemantic

setName
public void setName(java.lang.String name)

Sets the relationship’s name to name. Throws a verification exception if name is not a valid relationship
name, and an invalid argument exception if name is already in use by an attribute or another relationship in
the same entity.

This method forces all objects in the model to be loaded into memory.

See also: beautifyName, validateName

setNumberOfToManyFaultsToBatchFetch
public void setNumberOfToManyFaultsToBatchFetch(int size)

Sets the number of “toMany” faults that are fired at one time to size.

See also: isToMany, numberOfToManyFaultsToBatchFetch

setOwnsDestination
public void setOwnsDestination(boolean flag)

Sets according to flag whether a receiver’s source object owns its destination objects. The default is false.
When a source object owns its destination objects, it means that the destination objects can’t exist
independently. For example, in a personnel database, dependents can’t exist without having an associate
employee. Removing a dependent from an employee’s dependents array would have the effect of also
deleting the dependent from the database, unless you transferred the dependent to a different employee.

See also: deleteRule, setDeleteRule, ownsDestination
213

setPropagatesPrimaryKey
public void setPropagatesPrimaryKey(boolean flag)

Specifies according to flag whether objects should propagate their primary key to related objects through
this relationship. For example, an Employee object might propagate its primary key to an EmployeePhoto
object. Objects only propagate their primary key values if the corresponding values in the destination object
aren’t already set.

setToMany
public void setToMany(boolean flag)

Sets a simple relationship as to-many according to flag. Throws an exception if the receiver is flattened. See
the class description for considerations in setting this flag.

See also: isFlattened

setUserInfo
public void setUserInfo(NSDictionary dictionary)

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, NSDictionary, String, NSArray, and NSData).

sourceAttributes
public NSArray sourceAttributes()

Returns the source attributes of a simple (non-flattened) relationship. These correspond one-to-one with the
attributes returned by destinationAttributes. Returns null if the relationship is flattened.

See also: joins, sourceAttribute (EOJoin)

userInfo
public NSDictionary userInfo()

Returns a dictionary of user data. Your application can use this data for whatever it needs.
214

 Classes: EORelationship

validateName
public java.lang.Throwable validateName(java.lang.String name)

Validates name and returns null if its a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character other
than a letter, a number, “@”, “#”, “_”, or “$”. A name is also invalid if the receiver’s EOEntity already has
an EORelationship with the same name, or if the model has a stored procedure that has an argument with
the same name.

setName uses this method to validate its argument.

validateValue
public java.lang.Throwable validateValue(NSMutableArray valueP)

For relationships marked as mandatory, returns a validation exception if the receiver is to-one and valueP
is null , or if the receiver is to-many an valueP has a count of 0. A mandatory relationship is one in which
the target of the relationship is required. Returns null to indicate success.

See also: isMandatory, setIsMandatory
215

216

 Classes:

,
Creating Relationships

Creating a Simple Relationship

A simple relationship is defined by the attributes it compares in connecting its source and destination
entities. Each source-destination pair of attributes is encapsulated in an EOJoin object. For example, to
create a relationship from the Movie entity to the Studio entity, a join has to be created from the studioId
attribute of the Movie entity to the same attribute of the Studio entity. The values of these two attributes
must be equal for a match to result. Note that studioId is the primary key attribute for the Studio entity, so
there can only be one studio per movie; this relationship is therefore to-one.

This code excerpt creates an EORelationship for the relationship described above and adds it to the
EOEntity for the Movie entity:

Entity movieEntity; // Assume this exists.

Entity studioEntity; // Assume this exists.

Attribute studioIDAttribute;

Attribute movieStudioIDAttribute;

Join toStudioJoin;

EORelationship toStudioRelationship;

studioIDAttribute = studioEntity.attributeNamed("studioId");

movieStudioIDAttribute = movieEntity.attributeNamed("studioId");

toStudioJoin = new Join(movieStudioIDAttribute, studioIDAttribute);

toStudioRelationship = new Relationship();

toStudioRelationship.setName("studio");

movieEntity.addRelationship(toStudioRelationship);

toStudioRelationship.addJoin(toStudioJoin);

toStudioRelationship.setToMany(false);

toStudioRelationship.setJoinSemantic(InnerJoin);

This code first gets the attributes from the source and destination entities, and then creates an EOJoin with
them. Next, a new EORelationship is created, its name is set, and it’s added to movieEntity. The EOJoin is
added to the relationship and the relationship is set to be to-one. Finally, in the setJoinSemantic line,
EOInnerJoin indicates that only objects that actually have a matching destination object will be included in
the result when the relationship is traversed.

Creating a to-many relationship in the opposite direction merely swaps the source and destination attributes
and assigns the relationship to the EOEntity for the Studio entity:
217

Join toMoviesJoin;

EORelationship toMoviesRelationship;

toMoviesJoin = new Join(studioIDAttribute, movieStudioIDAttribute);

toMoviesRelationship = new Relationship();

toMoviesRelationship.setName("movies");

studioEntity.addRelationship(toMoviesRelationship);

toMoviesRelationship.addJoin(toMoviesJoin);

toMoviesRelationship.setToMany(true);

toMoviesRelationship.setJoinSemantic(InnerJoin);

Note that this relationship is to-many precisely because the destination attribute isn’t the primary key for its
entity (Movie), and therefore isn’t unique with regard to that entity.

A relationship isn’t restricted to only one EOJoin. It’s entirely possible for a relationship to be defined based
on two or more attributes in the source and destination entities. For example, consider an employees
database that contains a picture of each employee identified by first and last name. You’d define the
relationship by joining each of the first and last names in the Employee entity to the same attribute in the
EmpPhoto attribute.

A simple relationship is considered to reference all of the attributes in its joins. You can use the
referencesProperty method to find out if an EORelationship references a particular attribute.

Creating a Flattened Relationship

A flattened relationship depends on several simple relationships already existing. Assuming that several do
exist, creating a flattened relationship is straightforward. For example, suppose that the Movie entity has a
to-many relationship to the Director entity, called toDirectors. The Director entity in turn has a relationship
to the Talent entity called toTalent. In the Movies database, the Director table acts as an intermediate table
between Movie and Talent. In this situation, it make sense to flatten the relationship Movies has to Director
(toDirectors) to give Movie access to the Talent table through Director’s toTalent relationship. For more
discussion of when to use flattened relationships, see the chapters “Designing Enterprise Objects” and
“Advanced Enterprise Object Modeling” in the Enterprise Objects Framework Developer’s Guide.

This code excerpt creates a flattened relationship from Movie to Talent:

Entity movieEntity; // Assume this exists.

EORelationship toDirectorsRelationship;

toDirectorsRelationship = new EORelationship();

toDirectorsRelationship.setName("directors");

toDirectorsRelationship.setEntity(movieEntity);

movieEntity.addRelationship(toDirectorsRelationship);

toDirectorsRelationship.setDefinition:("toDirector.toTalent");
218

 Classes:

y

All that’s needed to establish the relationship is a data path (also called the definition) naming each
component relationship connected, with the names separated by periods. Note that because the cardinalit
of a flattened relationship is determinable from its components, no setToMany message is required here.

A simple relationship is considered to reference all of the relationships in its definition, plus every attribute
referenced by the component relationships. You can use the referencesProperty method to find out if an
EORelationship references another relationship or attribute.
219

220

 Classes: EOSQLExpression

.

EOSQLExpression

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOSQLExpression is an abstract superclass that defines how to build SQL statements for adaptor channels
You don’t typically use instances of EOSQLExpression; rather, you use EOSQLExpression subclasses
written to work with a particular RDBMS and corresponding adaptor. A concrete subclass of
EOSQLExpression overrides many of its methods in terms of the query language syntax for its specific
RDBMS. EOSQLExpression objects are used internally by the Framework, and unless you’re creating a
concrete adaptor, you won’t ordinarily need to interact with EOSQLExpression objects yourself. You most
commonly create and use an EOSQLExpression object when you want to send an SQL statement directly
to the server. In this case, you simply create an expression with the EOSQLExpression static method
expressionForString, and send the expression object to an adaptor channel using EOAdaptorChannel’s
evaluateExpression: method.

For more information, see “EOSQLExpression”.

Method Types

Constructors
EOSQLExpression

Creating an EOSQLExpression object
selectStatementForAttributes
insertStatementForRow
updateStatementForRow
deleteStatementWithQualifier
expressionForString

Building SQL Expressions
prepareSelectExpressionWithAttributes
prepareInsertExpressionWithRow
prepareUpdateExpressionWithRow
prepareDeleteExpressionForQualifier
setStatement
statement
221

Generating SQL for attributes and values
formatSQLString
formatValue:forAttribute
formatStringValue
sqlStringForValue
sqlStringForAttributeNamed
sqlStringForAttribute
sqlStringForAttributePath

Generating SQL for names of database objects
sqlStringForSchemaObjectName
setUseQuotedExternalNames
useQuotedExternalNames
externalNameQuoteCharacter

Generating an attribute list
addSelectListAttribute
addInsertListAttribute
addUpdateListAttribute
appendItemToListString
listString

Generating a value list
addInsertListAttribute
addUpdateListAttribute
valueList

Generating a table list
tableListWithRootEntity
aliasesByRelationshipPath

Generating the join clause
joinExpression
addJoinClauseWithLeftName:rightName:joinSemantic:
assembleJoinClause
joinClauseString

Generating a search pattern
sqlPatternFromShellPattern
sqlPatternFromShellPattern:withEscapeCharacter

Generating a relational operator
sqlStringForSelector

Accessing the where clause
whereClauseString
222

 Classes: EOSQLExpression
Generating an order by clause
addOrderByAttributeOrdering
orderByString

Accessing the lock clause
lockClause

Assembling a statement
assembleSelectStatementWithAttributes
assembleInsertStatementWithRow
assembleUpdateStatementWithRow
assembleDeleteStatementWithQualifier

Generating SQL for qualifiers
sqlStringForQualifier
sqlStringForConjoinedQualifiers
sqlStringForDisjoinedQualifiers
sqlStringForKeyComparisonQualifier
sqlStringForKeyValueQualifier
sqlStringForNegatedQualifier

Managing bind variables
setUseBindVariables
useBindVariables
addBindVariableDictionary
bindVariableDictionaries
bindVariableDictionaryForAttribute
mustUseBindVariableForAttribute
shouldUseBindVariableForAttribute

Using table aliases
setUseAliases
useAliases

Accessing the entity
entity

Creating a schema generation script
schemaCreationScriptForEntities
schemaCreationStatementsForEntities
appendExpression

Generating table definition part of schema generation script for a list of entity groups
createTableStatementsForEntityGroups
dropTableStatementsForEntityGroups
primaryKeyConstraintStatementsForEntityGroups
primaryKeySupportStatementsForEntityGroups
dropPrimaryKeySupportStatementsForEntityGroups
223

Generating table definition part of schema generation script for an entity group
createTableStatementsForEntityGroup
dropTableStatementsForEntityGroup
primaryKeyConstraintStatementsForEntityGroup
primaryKeySupportStatementsForEntityGroup
dropPrimaryKeySupportStatementsForEntityGroup

Generating attribute definition part of schema generation script
addCreateClauseForAttribute
columnTypeStringForAttribute
allowsNullClauseForConstraint

Generating relationship constraint part of schema generation script
foreignKeyConstraintStatementsForRelationship
prepareConstraintStatementForRelationship

Other
createDatabaseStatementsForConnectionDictionary
dropDatabaseStatementsForConnectionDictionary
sqlStringForNumber
sqlStringForQualifier
sqlStringForString

Constructors

EOSQLExpression
public EOSQLExpression()
public EOSQLExpression(EOEntity anEntity)

Creates a new EOSQLExpression. If anEntity is provided, the new EOSQLExpression is rooted to anEntity.

See also: entity

Static Methods

appendExpression
public static void appendExpression(EOSQLExpression anSQLExpression, java.lang.String script)

Append’s anSQLExpression’s statement to script along with any necessary delimiter. EOSQLExpression’s
implementation append the SQL statement for anSQLExpression to script followed by a semicolon and a
newline. A subclass of EOSQLExpression only needs to override this method if the delimiter for its
224

 Classes: EOSQLExpression

e
database server is different. For example, the Oracle and Informix use the default implementation, whereas
the Sybase adaptor appends the word “go” instead of a semicolon.

See also: createTableStatementsForEntityGroups

createDatabaseStatementsForConnectionDictionary
public static NSArray createDatabaseStatementsForConnectionDictionary(

NSDictionary connectionDictionary,
NSDictionary adminDictionary,)

Generates the SQL statements that will create a database (or user, for Oracle) that can be accessed by th
provided connection dictionary and administrative connection dictionary.

See also: dropDatabaseStatementsForConnectionDictionary

createTableStatementsForEntityGroup
public static NSArray createTableStatementsForEntityGroup(NSArray entityGroup)

Returns an array of EOSQLExpression objects that define the SQL necessary to create a table for
entityGroup, an array of Entity objects that have the same externalName. Returns an empty array if
entityGroup is null or empty.

EOSQLExpression’s implementation does the following:

1. Creates an EOSQLExpression object.

2. Sets the expression’s entity to the first entity in entityGroup.

3. Adds a create clause for each Attribute in entityGroup’s Entities.

4. Sets the expression’s statement to CREATE TABLE TABLE_NAME (LIST_STRING), where TABLE_NAME
is the externalName of the Entity objects in entityGroup and LIST_STRING is the expression’s listString .

5. Adds the expression to an array.

6. Returns the array.

The following is an example of a CREATE TABLE statement produced by the default implementation:

create table EMPLOYEE (

 EMP_ID int not null ,

 DEPT_ID int null ,

 LAST_NAME varchar(40) not null ,

 PHONE char(12) null ,

 HIRE_DATE date null ,

 SALARY number(7 , 2) null

)

225

d

rk
If a subclass’s database server’s table creation semantics are different, the subclass should override this
method or one or more of the following methods as appropriate:

• addCreateClauseForAttribute
• columnTypeStringForAttribute
• allowsNullClauseForConstraint

See also: createTableStatementsForEntityGroups, dropTableStatementsForEntityGroup

createTableStatementsForEntityGroups
public static NSArray createTableStatementsForEntityGroups(NSArray entityGroups)

Returns an array of EOSQLExpression objects that define the SQL necessary to create the tables specifie
in entityGroups. An entity group is an array of Entity objects that have the same externalName, and
entityGroups is an array of entity groups. Returns an empty array if entityGroups is null or empty.
EOSQLExpression’s implementation invokes createTableStatementsForEntityGroup for each entity
group in entityGroups and returns an array of all the resulting SQLExpressions.

See also: schemaCreationStatementsForEntities

deleteStatementWithQualifier
public static EOSQLExpression

deleteStatementWithQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier,
java.lang.Object entity)

Creates and returns an SQL DELETE expression to delete the rows described by qualifier. Creates an
instance of EOSQLExpression, initializes it with entity (an EOEntity object), and sends it a
prepareDeleteExpressionForQualifier message. Throws an exception if qualifier is null .

The expression created with this method does not use table aliases because Enterprise Objects Framewo
assumes that all INSERT, UPDATE, and DELETE statements are single-table operations. As a result, all
keys in qualifier should be simple key names; no key paths are allowed. To generate DELETE statements
that do use table aliases, you must override prepareDeleteExpressionForQualifier: to send a
setUseAliases(true) message prior to invoking super’s version.
226

 Classes: EOSQLExpression

dropDatabaseStatementsForConnectionDictionary
public static NSArray dropDatabaseStatementsForConnectionDictionary(

NSDictionary connectionDictionary,
NSDictionary adminDictionary,)

Generates the SQL statements to drop the database (or user, for Oracle).

See also: createDatabaseStatementsForConnectionDictionary

dropPrimaryKeySupportStatementsForEntityGroup
public static NSArray dropPrimaryKeySupportStatementsForEntityGroup (NSArray entityGroup)

Returns an array of EOSQLExpression objects that define the SQL necessary to drop the primary key
generation support for entityGroup, an array of Entity objects that have the same externalName. The drop
statement generated by this method should be sufficient to remove the primary key support created by
primaryKeySupportStatementsForEntityGroup ’s statements.

EOSQLExpression’s implementation creates a statement of the following form:

drop sequence SEQUENCE_NAME

Where SEQUENCE_NAME is the primaryKeyRootName for the first entity in entityGroup concatenated
with “_SEQ” (EMP_ID_SEQ, for example).

If a subclass uses a different primary key generation mechanism or if the subclass’s database server’s drop
semantics are different, the subclass should override this method.

See also: dropPrimaryKeySupportStatementsForEntityGroups

dropPrimaryKeySupportStatementsForEntityGroups
public static NSArray dropPrimaryKeySupportStatementsForEntityGroups(

NSArray entityGroups)

Returns an array of EOSQLExpression objects that define the SQL necessary to drop the primary key
generation support for the Entities specified in entityGroups. An entity group is an array of Entity objects
that have the same externalName, and entityGroups is an array of entity groups. EOSQLExpression’s
implementation invokes dropPrimaryKeySupportStatementsForEntityGroup for each entity group in
entityGroups and returns an array of all the resulting SQLExpressions.

See also: schemaCreationStatementsForEntities
227

dropTableStatementsForEntityGroup
public static NSArray dropTableStatementsForEntityGroup(NSArray entityGroup)

Returns an array of EOSQLExpression objects that define the SQL necessary to drop the table identified by
entityGroup, an array of Entity objects that have the same externalName. The drop statement generated by
this method should be sufficient to remove the table created by createTableStatementsForEntityGroup’s
statements.

EOSQLExpression’s implementation creates a statement of the following form:

DROP TABLE TABLE_NAME

Where TABLE_NAME is the externalName of the first entity in entityGroup.

If a subclass’s database server’s drop semantics are different, the subclass should override this method.

See also: dropTableStatementsForEntityGroups

dropTableStatementsForEntityGroups
public static NSArray dropTableStatementsForEntityGroups(NSArray entityGroups)

Returns an array of EOSQLExpression objects that define the SQL necessary to drop the tables for
entityGroups. An entity group is an array of Entity objects that have the same externalName, and
entityGroups is an array of entity groups. EOSQLExpression’s implementation invokes
dropTableStatementsForEntityGroups for each entity group in entityGroups and returns an array of all
the resulting SQLExpressions.

See also: schemaCreationStatementsForEntities

expressionForString
public static EOSQLExpression expressionForString(java.lang.String string)

Creates and returns an SQL expression for string. string should be a valid expression in the target query
language. This method does not perform substitutions or formatting of any kind.

See also: setStatement
228

 Classes: EOSQLExpression

e
foreignKeyConstraintStatementsForRelationship
public static NSArray

foreignKeyConstraintStatementsForRelationship(EORelationship aRelationship)

Returns an array of EOSQLExpression objects that define the SQL necessary to create foreign key
constraints for aRelationship. EOSQLExpression’s implementation generates statements such as the
following:

ALTER TABLE EMPLOYEE ADD CONSTRAINT TO_DEPARTMENT FOREIGN KEY (DEPT_ID)

 REFERENCES DEPARTMENT(DEPT_ID)

It returns an empty array if either of the following are true:

• aRelationship spans models (if aRelationship’s destinationEntity is in a different model than
aRelationship’s source entity)

• aRelationship is a to-many relationship, or if the inverse relationship of aRelationship is not a to-many.
In other words, foreign key constraint statements are only created for to-one relationships whose inverse
is a to-many.

If neither of the above are true, this method creates a new EOSQLExpression, assigns its entity to
aRelationship’s entity, invokes prepareConstraintStatementForRelationship, and returns an array
containing the expression.

If a subclass’s database server’s foreign key constraint semantics are different, the subclass should overrid
this method or override the method prepareConstraintStatementForRelationship.

See also: schemaCreationStatementsForEntities

formatSQLString
public static java.lang.String formatSQLString (java.lang.String sqlString, java.lang.String format)

Applies format (an EOAttribute object’s “read” or “write” format) to sqlString (a value for the attribute). If
format is null , this method returns sqlString unchanged.

See also: – readFormat (EOAttribute), – writeFormat (EOAttribute)

formatStringValue
public static java.lang.String formatStringValue (java.lang.String string)

Formats string for use as a string constant in a SQL statement. EOSQLExpression’s implementation
encloses the string in single quotes, escaping any single quotes already present in string. Throws an
exception if string is null .
229

rk
formatValue:forAttribute
public static java.lang.String formatValueForAttribute (java.lang.Object value, EOAttribute attribute)

Overridden by subclasses to return a string representation of value suitable for use in an SQL statement.
EOSQLExpression’s implementation returns value unchanged. A subclass should override this method to
format value depending on attribute’s externalType. For example, a subclass might format a date using a
special database-specific syntax or standard form or truncate numbers to attribute’s precision and scale.

insertStatementForRow
public static EOSQLExpression insertStatementForRow(NSDictionary row, EOEntity entity)

Creates and returns an SQL INSERT expression to insert row. Creates an instance of EOSQLExpression,
initializes it with entity, and sends it prepareInsertExpressionWithRow. Throws an exception if entity is
null .

The expression created with this method does not use table aliases because Enterprise Objects Framewo
assumes that all INSERT, UPDATE, and DELETE statements are single-table operations. To generate
INSERT statements that do use table aliases, you must override prepareInsertExpressionWithRow: to
send a setUseAliases(true) message prior to invoking super’s version.

primaryKeyConstraintStatementsForEntityGroup
public static NSArray primaryKeyConstraintStatementsForEntityGroup (NSArray entityGroup)

Returns an array of EOSQLExpression objects that define the SQL necessary to create the primary key
constraints for entityGroup, an array of Entity objects that have the same externalName. Returns an empty
array if any of the primary key attributes in entityGroup don’t have a columnName.

EOSQLExpression’s implementation creates a statement of the following form:

ALTER TABLE TABLE_NAME ADD PRIMARY KEY (PRIMARY_KEY_COLUMN_NAMES)

Where TABLE_NAME is the externalName for the first entity in entityGroup and
PRIMARY_KEY_COLUMN_NAMES is a comma-separated list of the columnNames of the first entity’s
primaryKeyAttributes .

If the subclass’s database server’s primary key constraint semantics are different, the subclass should
override this method.

See also: primaryKeyConstraintStatementsForEntityGroups
230

 Classes: EOSQLExpression

primaryKeyConstraintStatementsForEntityGroups
public static NSArray primaryKeyConstraintStatementsForEntityGroups (NSArray entityGroups)

Returns an array of EOSQLExpression objects that define the SQL necessary to create the primary key
constraints for the Entities specified in entityGroups. An entity group is an array of Entity objects that have
the same externalName, and entityGroups is an array of entity groups. EOSQLExpression’s
implementation invokes primaryKeyConstraintStatementsForEntityGroup for each entity group in
entityGroups and returns an array of all the resulting SQLExpressions.

primaryKeySupportStatementsForEntityGroup
public static NSArray primaryKeySupportStatementsForEntityGroup (NSArray entityGroup)

Returns an array of EOSQLExpression objects that define the SQL necessary to create the primary key
generation support for entityGroup, an array of Entity objects that have the same externalName.
EOSQLExpression’s implementation creates a statement of the following form:

create sequence SEQUENCE_NAME

Where SEQUENCE_NAME is the primaryKeyRootName for the first entity in entityGroup concatenated
with “_SEQ” (EMP_ID_SEQ, for example).

If a subclass uses a different primary key generation mechanism or if the subclass’s database server’s drop
semantics are different, the subclass should override this method.

See also: primaryKeySupportStatementsForEntityGroups,
dropPrimaryKeySupportStatementsForEntityGroup , primaryKeyForNewRowWithEntity
(EOAdaptorChannel)

primaryKeySupportStatementsForEntityGroups
public static NSArray primaryKeySupportStatementsForEntityGroups(NSArray entityGroups)

Returns an array of EOSQLExpression objects that define the SQL necessary to create the primary key
generation support for the Entities specified in entityGroups. An entity group is an array of Entity objects
that have the same externalName, and entityGroups is an array of entity groups. EOSQLExpression’s
implementation invokes primaryKeySupportStatementsForEntityGroup for each entity group in
entityGroups and returns an array of all the resulting SQLExpressions.
231

schemaCreationScriptForEntities
public static java.lang.String schemaCreationScriptForEntities(NSArray entities,

NSDictionary options)

Returns a script of SQL statements suitable to create the schema for the Entity objects in entities. The
options dictionary specifies the aspects of the schema for which to create SQL statements as described in
the method description for schemaCreationStatementsForEntities. EOSQLExpression’s implementation
invokes schemaCreationStatementsForEntities:options: with entities and options and then uses
appendExpression to generate the script from the SQLExpressions generated by
schemaCreationStatementsForEntities:options:.

schemaCreationStatementsForEntities
public static NSArray schemaCreationStatementsForEntities(NSArray entities,

NSDictionary options)

Returns an array of SQLExpressions suitable to create the schema for the Entity objects in entities. The
options dictionary specifies the aspects of the schema for which to create SQLExpressions:

If you specify “createDatabase” or “dropDatabase,” the SQL for those statements must be executed by an
administrative user.

EOSQLExpression’s implementation uses the following methods:

• createTableStatementsForEntityGroups
• dropTableStatementsForEntityGroups

Dictionary Key Acceptable Values
(java.util.Strings) Default

createTables “YES” or “NO” YES

dropTables “YES” or “NO” YES

createPrimaryKeySupport “YES” or “NO” YES

dropPrimaryKeySupport “YES” or “NO” YES

primaryKeyConstraints “YES” or “NO” YES

foreignKeyConstraints “YES” or “NO” NO

createDatabase “YES” or “NO” NO

dropDatabase “YES” or “NO” NO
232

 Classes: EOSQLExpression

d
• primaryKeySupportStatementsForEntityGroups
• dropPrimaryKeySupportStatementsForEntityGroups
• primaryKeyConstraintStatementsForEntityGroups
• foreignKeyConstraintStatementsForRelationship

to generate SQLExpressions for the support identified in options.

See also: schemaCreationScriptForEntities

selectStatementForAttributes
public static EOSQLExpression selectStatementForAttributes(NSArray attributes,

boolean flag,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
EOEntity entity)

Creates and returns an SQL SELECT expression. Creates an instance of EOSQLExpression, initializes it
with entity, and sends it prepareSelectExpressionWithAttributes. The expression created with this
method uses table aliases. Throws an exception if attributes is null or empty, fetchSpecification is null , or
entity is null .

The expression created with this method uses table aliases. To generate SELECT statements that don’t use
them, you must override prepareSelectExpressionWithAttributes:lock:fetchSpecification: to send a
setUseAliases(false) message prior to invoking super’s version.

setUseBindVariables
public static void setUseBindVariables(boolean flag)

Sets according to flag whether all instances of EOSQLExpression subclasses use bind variables. By default,
instances don't use bind variables; if the value for the global user default named
EOAdaptorUseBindVariables is true, though, instances do use them. For more information on bind
variables, see the discussion in the class description.

See also: useBindVariables

setUseQuotedExternalNames
public static void setUseQuotedExternalNames(boolean flag)

Sets whether all instances of EOSQLExpression subclasses quote external names when they are reference
in SQL statements. By setting flag to true, you can access database tables with names such as “%return”,
“1st year”, and “TABLE” that you couldn’t otherwise access. By default, instances don't quote external
233

names; if the value for the global user default named EOAdaptorQuotesExternalNames is true, though,
instances do use quotes.

See also: useQuotedExternalNames, sqlStringForSchemaObjectName,
externalNameQuoteCharacter

sqlPatternFromShellPattern
public static java.lang.String sqlPatternFromShellPattern(java.lang.String pattern)

Translates a “like” qualifier to an SQL “like” expression. Invoked from sqlStringForKeyValueQualifier
when the qualifier argument is an EOKeyValueQualifier object whose selector is QualifierOperatorLike.
EOSQLExpression’s implementation performs the following substitutions

See also: sqlPatternFromShellPattern:withEscapeCharacter

sqlPatternFromShellPattern:withEscapeCharacter
public static java.lang.String

sqlPatternFromShellPatternWithEscapeCharacter(java.lang.String pattern,
char escapeCharacter)

Like sqlPatternFromShellPattern except the argument escapeCharacter allows you to specify a character
for escaping the wild card characters “%” and “_”.

updateStatementForRow
public static EOSQLExpression updateStatementForRow(NSDictionary row,

com.apple.yellow.eocontrol.EOQualifier qualifier,
EOEntity entity)

Creates and returns an SQL UPDATE expression to update the row identified by qualifier with the values
in row. row should only contain entries for values that have actually changed. Creates an instance of

Character in pattern Substitution string

* %

? _

% [%] (unless the percent character appears in square brackets)

_ [_] (unless the underscore character appears in square brackets)
234

 Classes: EOSQLExpression

rk
EOSQLExpression, initializes it with entity, and sends it prepareUpdateExpressionWithRow. Throws an
exception if row is null or empty, qualifier is null , or entity is null .

The expression created with this method does not use table aliases because Enterprise Objects Framewo
assumes that all INSERT, UPDATE, and DELETE statements are single-table operations. As a result, all
keys in qualifier should be simple key names; no key paths are allowed. To generate UPDATE statements
that do use table aliases, you must override prepareUpdateExpressionWithRow:qualifier: to send a
setUseAliases(true) message prior to invoking super’s version.

See also: setUseAliases

useBindVariables
public static boolean useBindVariables()

Returns true if instances use bind variables, false otherwise. For more information on bind variables, see
the discussion in the class description.

See also: setUseBindVariables

useQuotedExternalNames
public static boolean useQuotedExternalNames()

Returns true if instances use quoted external names, false otherwise.

See also: setUseQuotedExternalNames, sqlStringForSchemaObjectName,
externalNameQuoteCharacter

Instance Methods

addBindVariableDictionary
public void addBindVariableDictionary (NSMutableDictionary binding)

Adds binding to the receiver’s array of bind variable dictionaries. binding is generally created using the
method bindVariableDictionaryForAttribute and is added to the receiver’s bind variable dictionaries in
sqlStringForValue when the receiver uses a bind variable for the specified attribute. See the method
description for bindVariableDictionaryForAttribute:value: for a description of the contents of a bind
variable dictionary, and for more information on bind variables, see the discussion in the class description.

See also: bindVariableDictionaries
235

addCreateClauseForAttribute
public void addCreateClauseForAttribute(EOAttribute attribute)

Adds the SQL string for creating attribute to a comma-separated list of attribute creation clauses. The list
is constructed for use in a CREATE TABLE statement produced by
createTableStatementsForEntityGroup. Use the method listString to access creation clauses.

EOSQLExpression’s implementation creates clauses in the following form:

COLUMN_NAME COLUMN_TYPE ALLOWS_NULL_CLAUSE

Where

• COLUMN_TYPE is the string returned from columnTypeStringForAttribute for anAttribute.
• ALLOWS_NULL_CLAUSE is the string returned from allowsNullClauseForConstraint with true if

anAttribute allowsNull or with false if anAttribute doesn’t.

addInsertListAttribute
public void addInsertListAttribute (EOAttribute attribute, java.lang.String value)

Adds the SQL string for attribute to a comma-separated list of attributes and value to a comma-separated
list of values. Both lists are constructed for use in an INSERT statement. Use the methods listString and
valueList to access the attributes and value lists.

Invokes appendItemToListString to add an SQL string for attribute to the receiver’s listString , and again
to add a formatted SQL string for value to the receiver’s valueList.

See also: sqlStringForAttribute , sqlStringForValue, formatValue:forAttribute

addJoinClauseWithLeftName:rightName:joinSemantic:
public void addJoinClause(java.lang.String leftName, java.lang.String rightName, int semantic)

Creates a new join clause by invoking assembleJoinClause and adds it to the receiver’s join clause string.
Separates join conditions already in the join clause string with the word “and”. Invoked from
joinExpression.

See also: joinClauseString
236

 Classes: EOSQLExpression
addOrderByAttributeOrdering
public void

addOrderByAttributeOrdering (com.apple.yellow.eocontrol.EOSortOrdering sortOrdering)

Adds an attribute-direction pair (“LAST_NAME asc”, for example) to the receiver’s ORDER BY string. If
sortOrdering’s selector is CompareCaseInsensitiveAscending or CompareCaseInsensitiveDescending, the
string generated has the format “upper(attribute) direction”. Use the method orderByString to access the
ORDER BY string. addOrderByAttributeOrdering: invokes appendItemToListString to add the
attribute-direction pair.

See also: sqlStringForAttributeNamed

addSelectListAttribute
public void addSelectListAttribute(EOAttribute attribute)

Adds an SQL string for attribute to a comma-separated list of attribute names for use in a SELECT
statement. The SQL string for attribute is formatted with attribute’s “read” format. Use listString to access
the list. addSelectListAttribute: invokes appendItemToListString to add the attribute name.

See also: sqlStringForAttribute , formatSQLString , – readFormat (EOAttribute)

addUpdateListAttribute
public void addUpdateListAttribute (EOAttribute attribute, java.lang.String value)

Adds a attribute-value assignment (“LAST_NAME = ‘Thomas’”, for example) to a comma-separated list
for use in an UPDATE statement. Formats value with attribute’s “write” format. Use listString to access
the list. addUpdateListAttribute:value: invokes appendItemToListString to add the attribute-value
assignment.

See also: formatSQLString

aliasesByRelationshipPath
public NSMutableDictionary aliasesByRelationshipPath()

Returns a dictionary of table aliases. The keys of the dictionary are relationship paths—“department” and
“department.location”, for example. The values are the table aliases for the corresponding table—“t1” and
“t2”, for example. The aliasesByRelationshipPath dictionary always has at least one entry: an entry for the
EOSQLExpression’s entity. The key of this entry is the empty string (“”) and the value is “t0”. The
dictionary returned from this method is built up over time with successive calls to
sqlStringForAttributePath .

See also: tableListWithRootEntity
237

allowsNullClauseForConstraint
public java.lang.String allowsNullClauseForConstraint(boolean flag)

Returns according to flag an adaptor specific string for use in a CREATE TABLE statement. The returned
string indicates whether a column allows null values. EOSQLExpression’s implementation returns the
empty string if flag is true, “NOT NULL” otherwise. A subclass should override this if its database server’s
semantics are different. For example, the SybaseSLQExpression returns “null” if flag is true, the empty
string otherwise.

See also: addCreateClauseForAttribute

appendItemToListString
public void appendItemToListString(java.lang.String itemString, java.lang.String listString)

Adds itemString to a comma-separated list. If listString already has entries, this method appends a comma
followed by itemString. Invoked from addSelectListAttribute, addInsertListAttribute ,
addUpdateListAttribute , and addOrderByAttributeOrdering

assembleDeleteStatementWithQualifier
public java.lang.String

assembleDeleteStatementWithQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier,
java.lang.String tableList, java.lang.String whereClause)

Invoked from prepareDeleteExpressionForQualifier to return an SQL DELETE statement of the form:

DELETE FROM tableList

SQL_WHERE whereClause

qualifier is the argument to prepareDeleteExpressionForQualifier: from which whereClause was derived.
It is provided for subclasses that need to generate the WHERE clause in a particular way.

assembleInsertStatementWithRow
public java.lang.String assembleInsertStatementWithRow(NSDictionary row,

java.lang.String tableList, java.lang.String columnList, java.lang.String valueList)

Invoked from prepareInsertExpressionWithRow to return an SQL INSERT statement of the form:

INSERT INTO tableList (columnList)

VALUES valueList

or, if columnList is null :
238

 Classes: EOSQLExpression

.

INSERT INTO tableList

VALUES valueList

row is the argument to prepareInsertExpressionWithRow: from which columnList and valueList were
derived. It is provided for subclasses that need to generate the list of columns and values in a particular way

assembleJoinClause
public java.lang.String assembleJoinClause(java.lang.String leftName,

java.lang.String rightName,
int semantic)

Returns a join clause of the form:

leftName operator rightName

Where operator is “=” for an inner join, “*=” for a left-outer join, and “=*” for a right-outer join. Invoked
from addJoinClauseWithLeftName:rightName:joinSemantic:.

assembleSelectStatementWithAttributes
public java.lang.String assembleSelectStatementWithAttributes(NSArray attributes,

boolean lock,
com.apple.yellow.eocontrol.EOQualifier qualifier,
NSArray fetchOrder,
java.lang.String selectString,
java.lang.String columnList,
java.lang.String tableList,
java.lang.String whereClause,
java.lang.String joinClause,
java.lang.String orderByClause,
java.lang.String lockClause)

Invoked from prepareSelectExpressionWithAttributes to return an SQL SELECT statement of the form:

SELECT columnList

FROM tableList lockClause

WHERE whereClause AND joinClause

ORDER BY orderByClause

If lockClause is null , it is omitted from the statement. Similarly, if orderByClause is null , the “ORDER BY
orderByClause” is omitted. If either whereClause or joinClause is null , the “AND” and null -valued
argument are omitted. If both are null , the entire WHERE clause is omitted.
239

attributes, lock, qualifier, and fetchOrder are the arguments to prepareSelectExpressionWithAttributes:
lock:fetchSpecification: from which the other assembleSelect... arguments were derived. They are
provided for subclasses that need to generate the clauses of the SELECT statement in a particular way.

assembleUpdateStatementWithRow
public java.lang.String assembleUpdateStatementWithRow(NSDictionary row,

com.apple.yellow.eocontrol.EOQualifier qualifier, java.lang.String tableList,
java.lang.String updateList, java.lang.String whereClause)

Invoked from prepareUpdateExpressionWithRow to return an SQL UPDATE statement of the form:

UPDATE tableList

SET updateList

WHERE whereClause

row and qualifier are the arguments to prepareUpdateExpressionWithRow:qualifier: from which
updateList and whereClause were derived. They are provided for subclasses that need to generate the
clauses of the UPDATE statement in a particular way.

bindVariableDictionaries
public NSArray bindVariableDictionaries()

Returns the receiver’s bind variable dictionaries. For more information on bind variables, see the discussion
in the class description.

See also: addBindVariableDictionary

bindVariableDictionaryForAttribute
public abstract NSMutableDictionary bindVariableDictionaryForAttribute (EOAttribute attribute,

java.lang.Object value)

Implemented by subclasses to create and return the bind variable dictionary for attribute and value. The
dictionary returned from this method must contain at least the following key-value pairs:

Key Value

BindVariableNameKey the name of the bind variable for attribute

BindVariablePlaceHolderKey the placeholder string used in the SQL statement

BindVariableAttributeKey attribute
240

 Classes: EOSQLExpression
An adaptor subclass may define additional entries as required by its RDBMS.

Invoked from sqlStringForValue when the message mustUseBindVariableForAttribute (attribute)
returns true or when the receiver’s class uses bind variables and the message
shouldUseBindVariableForAttribute (attribute) returns true. For more information on bind variables, see
the discussion in the class description.

A subclass that uses bind variables should implement this method without invoking EOSQLExpression’s
implementation. The subclass implementation must return a dictionary with entries for the keys listed above
and may add additional keys.

See also: bindVariableDictionaryForAttribute , useBindVariables

columnTypeStringForAttribute
public java.lang.String columnTypeStringForAttribute (EOAttribute anAttribute)

Returns an adaptor specific type string for anAttribute that’s suitable for use in a CREATE TABLE
statement. EOSQLExpression’s implementation creates a string based on anAttribute’s externalType,
precision, and width as follows:

A subclass should override the default implementation if its database server requires column types in a
different format.

See also: addCreateClauseForAttribute

BindVariableValueKey value

If Condition Generated Type String

precision is non-zero externalType(precision, scale)

precision is zero and width is non-zero externalType(scale)

precision and width are zero externalType

Key Value
241

y
entity
public EOEntity entity()

Returns the receiver’s entity.

See also: “Constructors”

externalNameQuoteCharacter
public java.lang.String externalNameQuoteCharacter()

Returns the string ‘\”’ (an escaped quote character) if the receiver uses quoted external names, or the empt
string (“”) otherwise.

See also: useQuotedExternalNames, sqlStringForSchemaObjectName

joinClauseString
public java.lang.String joinClauseString()

Returns the part of the receiver’s WHERE clause that specifies join conditions. Together, the
joinClauseString and the whereClauseString make up a statement’s WHERE clause. If the receiver’s
statement doesn’t contain join conditions, this method returns an empty string.

An EOSQLExpression’s joinClauseString is generally set by invoking joinExpression.

See also: addJoinClauseWithLeftName:rightName:joinSemantic:

joinExpression
public void joinExpression()

Builds up the joinClauseString for use in a SELECT statement. For each relationship path in the
aliasesByRelationshipPath dictionary, this method invokes addJoinClauseWithLeftName:rightName:
joinSemantic: for each of the relationship’s EOJoin objects.

If the aliasesByRelationshipPath dictionary only has one entry (the entry for the EOSQLExpression’s
entity), the joinClauseString is empty.

You must invoke this method after invoking addSelectListAttribute for each attribute to be selected and
after sending sqlStringForSQLExpression(this)to the qualifier for the SELECT statement. (These
methods build up the aliasesByRelationshipPath dictionary by invoking sqlStringForAttributePath .)

See also: whereClauseString
242

 Classes: EOSQLExpression

listString
public java.lang.String listString ()

Returns a comma-separated list of attributes or “attribute = value” assignments. listString is built up with
successive invocations of addInsertListAttribute , addSelectListAttribute, or addUpdateListAttribute
for INSERT statements, SELECT statements, and UPDATE statements, respectively. The contents of
listString vary according to the type of statement the receiver is building:

lockClause
public java.lang.String lockClause()

Overridden by subclasses to return the SQL string used in a SELECT statement to lock selected rows. A
concrete subclass of EOSQLExpression must override this method to return the string used by its adaptor’s
RDBMS.

mustUseBindVariableForAttribute
public boolean mustUseBindVariableForAttribute (EOAttribute attribute)

Returns true if the receiver must use bind variables for attribute, false otherwise. EOSQLExpression’s
implementation returns false. An SQL expression subclass that uses bind variables should override this
method to return true if the underlying RDBMS requires that bind variables be used for attributes with
attribute’s external type.

See also: shouldUseBindVariableForAttribute , bindVariableDictionaryForAttribute

orderByString
public java.lang.String orderByString ()

Returns the comma-separated list of “attribute direction” pairs (“LAST_NAME asc, FIRST_NAME asc”,
for example) for use in a SELECT statement.

See also: addOrderByAttributeOrdering

Type of Statement Sample listString Contents

INSERT FIRST_NAME, LAST_NAME, EMPLOYEE_ID

UPDATE FIRST_NAME = “Timothy”, LAST_NAME = “Richardson”

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.DEPARTMENT_NAME
243

prepareConstraintStatementForRelationship
public void prepareConstraintStatementForRelationship(EORelationship relationship,

NSArray sourceColumns, NSArray destinationColumns)

Sets the receiver’s statement to an adaptor specific constraint for relationship. EOSQLExpression’s
implementation generates statements of the form:

ALTER TABLE TABLE_NAME ADD CONSTRAINT CONSTRAINT_NAME

 FOREIGN KEY (SOURCE_KEY_LIST)

 REFERENCES DESTINATION_TABLE_NAME (DESTINATION_KEY_LIST)

Where

• TABLE_NAME is the external name of the receiver’s entity.

• CONSTRAINT_NAME is the external name of the receiver’s entity, relationship’s name, and the string
“FK”, concatenated with underbars between them (EMPLOYEE_MANAGER_FK, for example),

• SOURCE_KEY_LIST is a comma-separated list of the source columns in sourceColumns.

• DESTINATION_TABLE_NAME is the external name of relationship’s destination entity.

• DESTINATION_KEY_LIST is a comma-separated list of the destination columns in destinationColumns

See also: foreignKeyConstraintStatementsForRelationship

prepareDeleteExpressionForQualifier
public void

prepareDeleteExpressionForQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier)

Generates a DELETE statement by performing the following steps:

1. Sends an sqlStringForSQLExpression(this)message to qualifier to generate the receiver’s
whereClauseString.

2. Invokes tableListWithRootEntity to get the table name for the FROM clause.

3. Invokes assembleDeleteStatementWithQualifier.

See also: deleteStatementWithQualifier

prepareInsertExpressionWithRow
public void prepareInsertExpressionWithRow(NSDictionary row)

Generates an INSERT statement by performing the following steps:
244

 Classes: EOSQLExpression
1. Invokes addInsertListAttribute for each entry in row to prepare the comma-separated list of attributes and
the corresponding list of values.

2. Invokes tableListWithRootEntity to get the table name.

3. Invokes assembleInsertStatementWithRow.

See also: insertStatementForRow

prepareSelectExpressionWithAttributes
public void prepareSelectExpressionWithAttributes(NSArray attributes, boolean flag,

com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification)

Generates a SELECT statement by performing the following steps:

1. Invokes addSelectListAttribute for each entry in attributes to prepare the comma-separated list of attributes.

2. Sends an sqlStringForSQLExpression(this)message to fetchSpecification’s qualifier to generate the receiver’s
whereClauseString.

3. Invokes addOrderByAttributeOrdering for each EOAttributeOrdering object in fetchSpecification. First
conjoins the qualifier in fetchSpecification with the restricting qualifier, if any, of the receiver’s entity.

4. Invokes joinExpression to generate the receiver’s joinClauseString.

5. Invokes tableListWithRootEntity to get the comma-separated list of tables for the FROM clause.

6. If flag is true, invokes lockClause to get the SQL string to lock selected rows.

7. Invokes assembleSelectStatementWithAttributes.

See also: selectStatementForAttributes

prepareUpdateExpressionWithRow
public void prepareUpdateExpressionWithRow(NSDictionary row,

com.apple.yellow.eocontrol.EOQualifier qualifier)

Generates an UPDATE statement by performing the following steps:

1. Invokes addUpdateListAttribute for each entry in row to prepare the comma-separated list of “attribute =
value” assignments.

2. Sends an sqlStringForSQLExpression(this)message to qualifier to generate the receiver’s
whereClauseString.

3. Invokes tableListWithRootEntity to get the table name for the FROM clause.
245

4. Invokes assembleUpdateStatementWithRow.

See also: updateStatementForRow

setStatement
public void setStatement(java.lang.String string)

Sets the receiver’s SQL statement to string, which should be a valid expression in the target query language.
Use this method—instead of a prepare... method—to directly assign an SQL string to an
EOSQLExpression object. This method does not perform substitutions or formatting of any kind.

See also: expressionForString, statement

setUseAliases
public void setUseAliases(boolean flag)

Tells the receiver whether or not to use table aliases.

See also: useAliases

shouldUseBindVariableForAttribute
public boolean shouldUseBindVariableForAttribute (EOAttribute attribute)

Returns true if the receiver can provide a bind variable dictionary for attribute, false otherwise. Bind
variables aren’t used for values associated with this attribute when the static method useBindVariables
returns false. EOSQLExpression’s implementation returns false. An SQL expression subclass should
override this method to return true if the receiver should use bind variables for attributes with attribute’s
external type. It should also return true for any attribute for which the receiver must use bind variables.

See also: mustUseBindVariableForAttribute

sqlStringForAttribute
public java.lang.String sqlStringForAttribute (EOAttribute attribute)

Returns the SQL string for attribute, complete with a table alias if the receiver uses table aliases. Invoked
from sqlStringForAttributeNamed when the attribute name is not a path.

See also: sqlStringForAttributePath
246

 Classes: EOSQLExpression

sqlStringForAttributeNamed
public java.lang.String sqlStringForAttributeNamed (java.lang.String name)

Returns the SQL string for the attribute named name, complete with a table alias if the receiver uses table
aliases. Generates the return value using sqlStringForAttributePath if name is an attribute path
(“department.name”, for example); otherwise, uses sqlStringForAttribute .

sqlStringForAttributePath
public java.lang.String sqlStringForAttributePath (NSArray path)

Returns the SQL string for path, complete with a table alias if the receiver uses table aliases. Invoked from
sqlStringForAttributeNamed when the specified attribute name is a path
(“department.location.officeNumber”, for example). path is an array of any number of EORelationship
objects followed by an EOAttribute object. The EORelationship and EOAttribute objects each correspond
to a component in path. For example, if the attribute name argument to sqlStringForAttributeNamed: is
“department.location.officeNumber”, path is an array containing the following objects in the order listed:

• The EORelationship object in the receiver’s entity named “department”. (Assume the relationship’s
destination entity is named “Department”.)

• The EORelationship object in the Department entity named “location”. (Assume the relationship’s
destination entity is named “Location”.)

• The EOAttribute object in the Location entity named “officeNumber”.

Assuming that the receiver uses aliases and the alias for the Location table is t2, the SQL string for this
sample attribute path is “t2.officeNumber”.

If the receiver uses table aliases, this method has the side effect of adding a “relationship path”-“alias name”
entry to the aliasesByRelationship dictionary.

See also: sqlStringForAttribute

sqlStringForConjoinedQualifiers
public java.lang.String sqlStringForConjoinedQualifiers(NSArray qualifiers)

Creates and returns an SQL string that is the result of interposing the word “AND” between the SQL strings
for the qualifiers in qualifiers. Generates an SQL string for each qualifier by sending
sqlStringForSQLExpression: messages to the qualifiers with this as the argument. If the SQL string for a
qualifier contains only white space, it isn’t included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ANDed together.
247

sqlStringForDisjoinedQualifiers
public java.lang.String sqlStringForDisjoinedQualifiers(NSArray qualifiers)

Creates and returns an SQL string that is the result of interposing the word “OR” between the SQL strings
for the qualifiers in qualifiers. Generates an SQL string for each qualifier by sending
sqlStringForSQLExpression: messages to the qualifiers with this as the argument. If the SQL string for a
qualifier contains only white space, it isn’t included in the return value. The return value is enclosed in
parentheses if the SQL strings for two or more qualifiers were ORed together.

sqlStringForKeyComparisonQualifier
public java.lang.String sqlStringForKeyComparisonQualifier(

com.apple.yellow.eocontrol.EOKeyComparisonQualifier qualifier)

Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for
the right and left keys in qualifier. Determines the SQL operator by invoking sqlStringForSelector with
qualifier’s selector and null for the value. Generates SQL strings for qualifier’s keys by invoking
sqlStringForAttributeNamed to get SQL strings. This method also formats the strings for the right and
left keys using formatSQLString with the corresponding attributes’ “read” formats.

sqlStringForKeyValueQualifier
public java.lang.String sqlStringForKeyValueQualifier (

com.apple.yellow.eocontrol.EOKeyValueQualifier qualifier)

Creates and returns an SQL string that is the result of interposing an operator between the SQL strings for
qualifier’s key and value. Determines the SQL operator by invoking sqlStringForSelector with qualifier’s
selector and value. Generates an SQL string for qualifier’s key by invoking sqlStringForAttributeNamed
to get an SQL string and formatSQLString with the corresponding attribute’s “read” format. Similarly,
generates an SQL string for qualifier’s value by invoking sqlStringForValue to get an SQL string and
formatValue:forAttribute to format it. (First invokes sqlPatternFromShellPattern for the value if
qualifier’s selector is QualifierOperatorLike.)

sqlStringForNegatedQualifier
public java.lang.String

sqlStringForNegatedQualifier(com.apple.yellow.eocontrol.EOQualifier qualifier)

Creates and returns an SQL string that is the result of surrounding the SQL string for qualifier in parentheses
and appending it to the word “not”. For example, if the string for qualifier is “FIRST_NAME = ‘John’”,
sqlStringForNegatedQualifier: returns the string “not (FIRST_NAME = ‘John’)”.
248

 Classes: EOSQLExpression
Generates an SQL string for qualifier by sending an sqlStringForSQLExpression:: message to qualifier
with this as the argument. If the SQL string for qualifier contains only white space, this method returns null .

sqlStringForNumber
public java.lang.String sqlStringForNumber(java.lang.Number aNumber)

Returns the SQL string for aNumber.

sqlStringForQualifier
public java.lang.String sqlStringForQualifier (com.apple.yellow.eocontrol.EOQualifier aQualifier)

Returns a SQL statement for aQualifier suitable for inclusion in a WHERE clause. Invoked from an
EOSQLExpression while it’s preparing a SELECT, UPDATE, or DELETE statement.

See also: whereClauseString

sqlStringForSchemaObjectName
public java.lang.String sqlStringForSchemaObjectName(java.lang.String name)

Returns name enclosed in the external name quote character if the receiver uses quoted external names,
otherwise simply returns name unaltered.

See also: useQuotedExternalNames, externalNameQuoteCharacter

sqlStringForSelector
public java.lang.String sqlStringForSelector(NSSelector selector, java.lang.Object value)

Returns an SQL operator for selector and value. The following table summarizes EOSQLExpression’s
default mapping:

Selector SQL Operator

QualifierOperatorIsEqual “is” if value is an EONull, “=” otherwise

QualifierOperatorNotEqual “is not” if value is an EONull, “<> otherwise

QualifierOperatorLessThan “<”

QualifierOperatorGreaterThan “>”
249

Throws an exception if selector is an unknown operator.

See also: sqlStringForKeyComparisonQualifier, sqlStringForKeyValueQualifier

sqlStringForString
public java.lang.String sqlStringForString (java.lang.String aString)

Returns the SQL string for aString.

sqlStringForValue
public java.lang.String sqlStringForValue(java.lang.Object value, java.lang.String name)

Returns a string for value appropriate for use in an SQL statement. If the receiver uses a bind variable for
the attribute named name, then sqlStringForValue:attributeNamed: gets the bind variable dictionary for
the attribute, adds it to the receiver’s array of bind variables dictionaries, and returns the value for the
binding’s EOBindVariablePlaceHolderKey. Otherwise, this method invokes formatValue:forAttribute
and returns the formatted string for value.

See also: mustUseBindVariableForAttribute , shouldUseBindVariableForAttribute , useBindVariables,
bindVariableDictionaries, addBindVariableDictionary

statement
public java.lang.String statement()

Returns the complete SQL statement for the receiver. An SQL statement can be assigned to an
EOSQLExpression object directly using the static method expressionForString or using the instance
method setStatement. Generally, however, an EOSQLExpression’s statement is built up using one of the
following methods:

• prepareSelectExpressionWithAttributes
• prepareInsertExpressionWithRow
• prepareUpdateExpressionWithRow
• prepareDeleteExpressionForQualifier

QualifierOperatorLessThanOrEqualTo “<=”

QualifierOperatorGreaterThanOrEqualTo “>=”

QualifierOperatorLike “like”

Selector SQL Operator
250

 Classes: EOSQLExpression
tableListWithRootEntity
public java.lang.String tableListWithRootEntity (EOEntity entity)

Returns the comma-separated list of tables for use in a SELECT, UPDATE, or DELETE statement’s FROM
clause. If the receiver doesn’t use table aliases, the table list consists only of the table name for entity—
“EMPLOYEE”, for example. If the receiver does use table aliases (only in SELECT statements by default),
the table list is a comma separated list of table names and their aliases, for example:

EMPLOYEE t0, DEPARTMENT t1

tableListWithRootEntity: creates a string containing the table name for entity and a corresponding table
alias (“EMPLOYEE t0”, for example). For each entry in aliasesByRelationshipPath, this method appends
a new table name and table alias.

See also: useAliases

useAliases
public boolean useAliases()

Returns true if the receiver generates statements with table aliases, false otherwise. For example, the
following SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME

FROM EMPLOYEE t0, DEPARTMENT t1

WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table has the alias t0, and the DEPARTMENT table has the alias t1.

By default, EOSQLExpression uses table aliases only in SELECT statements. Enterprise Objects
Framework assumes that INSERT, UPDATE, and DELETE statements are single-table operations. For
more information, see the discussion in the class description.

See also: setUseAliases, aliasesByRelationshipPath

valueList
public java.lang.String valueList()

Returns the comma-separated list of values used in an INSERT statement. For example, the value list for
the following INSERT statement:

INSERT EMPLOYEE (FIRST_NAME, LAST_NAME, EMPLOYEE_ID, DEPARTMENT_ID, SALARY)

VALUES (’Shaun’, ’Hayes’, 1319, 23, 4600)

is “‘Shaun’, ‘Hayes’, 1319, 23, 4600”. An EOSQLExpression’s valueList is generated a value at a time with
addInsertListAttribute messages.
251

y
whereClauseString
public java.lang.String whereClauseString()

Returns the part of the receiver’s WHERE clause that qualifies rows. The whereClauseString does not
specify join conditions; the joinClauseString does that. Together, the whereClauseString and the
joinClauseString make up a statement’s where clause. For example, a qualifier for an Employee entity
specifies that a statement only affects employees who belong to the Finance department and whose monthl
salary is greater than $4500. Assume the corresponding where clause looks like this:

WHERE EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’

 AND EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

EOSQLExpression generates both a whereClauseString and a joinClauseString for this qualifier. The
whereClauseString qualifies the rows and looks like this:

EMPLOYEE.SALARY > 4500 AND DEPARTMENT.NAME = ‘Finance’

The joinClauseString specifies the join conditions between the EMPLOYEE table and the DEPARTMENT
table and looks like this:

EMPLOYEE.DEPARTMENT_ID = DEPARTMENT.DEPARTMENT_ID

An EOSQLExpression’s whereClauseString is generally set by sending a sqlStringForSQLExpression:
message to an EOQualifier object.
252

 Classes: EOSQLExpression

e

EOSQLExpression

Building Expressions

The following four methods create EOSQLExpression objects for the four basic database operations—
select, insert, update, and delete:

• selectStatementForAttributes
• insertStatementForRow
• updateStatementForRow
• deleteStatementWithQualifier
• Unless you’re implementing an EOSQLExpression subclass, these and the static method

expressionForString are the only EOSQLExpression methods you should ever need. If, on the other
hand, you are creating a subclass, you need to understand the mechanics of how EOSQLExpression
builds SQL statements. Each of the creation methods above creates an EOSQLExpression, initializes the
expression with a specified entity, and sends the new expression object one of the following prepare...
methods:prepareSelectExpressionWithAttributes

• prepareInsertExpressionWithRow
• prepareUpdateExpressionWithRow
• prepareDeleteExpressionForQualifier

The prepare... methods, in turn, invoke a corresponding assemble... method, first generating values for the
assemble... method’s arguments. The assemble... methods:

• assembleSelectStatementWithAttributes
• assembleInsertStatementWithRow
• assembleUpdateStatementWithRow
• assembleDeleteStatementWithQualifier

combine their arguments into SQL statements that the database server can understand.

These three sets of methods establish a framework in which SQL statements are generated. The bulk of th
remaining methods generate pieces of an SQL statement.

An individual SQL statement is constructed by combining the SQL strings for any model or value objects
specified in the “build” method in the appropriate form. An SQL string for a modeling or value object is a
string representation of the object that the database understands; for example, the SQL string for an
EOEntity is ultimately its table name. An EOSQLExpression gets the SQL strings for attributes and values
with the methods sqlStringForAttributeNamed and sqlStringForValue. If necessary, it also formats the
SQL strings according to an EOAttribute’s “read” or “write” format with the static method
formatSQLString .

Each of the “build” methods above invokes a number of instance methods. These methods are documented
individually below.
253

t

r

t
Using Table Aliases

By default, EOSQLExpression uses table aliases in SELECT statements. For example, the following
SELECT statement uses table aliases:

SELECT t0.FIRST_NAME, t0.LAST_NAME, t1.NAME

FROM EMPLOYEE t0, DEPARTMENT t1

WHERE t0.DEPARTMENT_ID = t1.DEPARTMENT_ID

The EMPLOYEE table is aliased t0, and the DEPARTMENT table is aliased t1. Table aliases are necessary
in some SELECT statements—when a table contains a self-referential relationship, for example. Assume
the EMPLOYEE table contains a manager column. Managers are also employees, so to retrieve all the
employees whose manager is Bob Smith, the SELECT statement looks like this:

SELECT t0.FIRST_NAME, t0.LAST_NAME

FROM EMPLOYEE t0, EMPLOYEE t1

WHERE t1.FIRST_NAME = "BOB" AND t1.LAST_NAME = "SMITH" AND

 t0.MANAGER_ID = t1.EMPLOYEE_ID

When the Framework maps operations on enterprise objects to operations on database rows, it reduces
insert, update, and delete operations to one or more single-table operations. As a result, EOSQLExpression
assumes that INSERT, UPDATE, and DELETE statements are always single-table operations, and does no
use table aliases in the statements of these types.

In addition, if EOSQLExpression detects that all the attributes in a SELECT statement’s attribute list are
flattened attributes and they’re all flattened from the same table, the expression doesn’t use table aliases. Fo
example, suppose that an EOSQLExpression object is created to select a customer’s credit card. In the
application, a customer object has a credit card object as one of its properties, and all operations on credi
cards are described in terms of a customer. As a result, the expression object is initialized with the entity for
the Customer object. Rather than create a statement like the following:

SELECT t1.TYPE, t1.NUMBER, t1.EXPIRATION, t1.CREDIT_LIMIT, t1.CUSTOMER_ID

FROM CUSTOMER t0, CREDIT_CARD t1

WHERE t1.CUSTOMER_ID = t0.CUSTOMER_ID AND t1.CUSTOMER_ID = 459

EOSQLExpression detects that all the attributes correspond to columns in the CREDIT_CARD table and
creates the following statement:

SELECT TYPE, NUMBER, EXPIRATION, CREDIT_LIMIT, CUSTOMER_ID

FROM CREDIT_CARD

WHERE CUSTOMER_ID = 459

Bind Variables

Some RDBMS client libraries use bind variables. A bind variable is a placeholder used in an SQL statement
that is replaced with an actual value after the database server determines an execution plan. If you are
writing an adaptor for a database server that uses bind variables, you must override the following
EOSQLExpression methods:
254

 Classes: EOSQLExpression

• bindVariableDictionaryForAttribute
• mustUseBindVariableForAttribute
• shouldUseBindVariableForAttribute

If your adaptor doesn’t need to use bind variables, the default implementations of the bind variable methods
are sufficient.

Generating SQL for EOModeler’s Schema Generation

EOSQLExpression provides a set of methods that generate SQL that can be used to create a database.
EOModeler uses these methods to generate scripts that you can execute from within EOModeler to create
a database or that you can copy and paste into an interactive SQL shell for your database. If you are writing
an adaptor, you must ensure that the following EOSQLExpression method implementations are sufficient
to support EOModeler’s schema generation:

• schemaCreationScriptForEntities
• schemaCreationStatementsForEntities
• appendExpression
• createTableStatementsForEntityGroup
• createTableStatementsForEntityGroups
• dropTableStatementsForEntityGroup
• dropTableStatementsForEntityGroups
• primaryKeyConstraintStatementsForEntityGroup
• primaryKeyConstraintStatementsForEntityGroups
• primaryKeySupportStatementsForEntityGroup
• primaryKeySupportStatementsForEntityGroups
• dropPrimaryKeySupportStatementsForEntityGroup
• dropPrimaryKeySupportStatementsForEntityGroups
• prepareConstraintStatementForRelationship
• foreignKeyConstraintStatementsForRelationship
• addCreateClauseForAttribute
• columnTypeStringForAttribute
• allowsNullClauseForConstraint
255

256

 Classes: EOSQLQualifier

EOSQLQualifier

Inherits From: EOQualifier : NSObject

Package: com.apple.yellow.eoaccess

Class Description

EOSQLQualifier is a subclass of EOQualifier that contains unstructured text that can be transformed into
an SQL expression. EOSQLQualifier providesa way to create SQL expressions with any arbitrary SQL.
EOSQLQualifier formats are not parsed, they simply perform substitution for keys and format characters.
The qualifying information is expressed in the database server’s query language (nearly always SQL), and
you’re responsible for ensuring that the query language statement is valid for your database server.
EOSQLQualifiers can’t be evaluated against objects in memory. As a result, you should use EOQualifier
whenever possible and only use EOSQLQualifier in cases that absolutely require it.

To create an EOSQLQualifer, provide to the constructor a root entity for the qualifier and a format string
like that used with the EOQualifier creation method qualifierWithQualifierFormat . (You can’t use the
qualifierWithQualifierFormat method because it doesn’t take an entity as an argument and an SQL
qualifier must be rooted to an entity.)

Constructors

public EOSQLQualifier ()
public EOSQLQualifier (EOEntity entity,java.lang.String qualifierFormat)

Creates and returns a newly allocated EOSQLQualifier rooted in entity and built from a format string
qualifierFormat. qualifierFormat is a printf() -style format string like that used with EOQualifier’s
qualifierWithQualifierFormat: method. Returns a new EOSQLQualifier if it can parse qualifierFormat
successfully, null otherwise.
257

Static Methods

qualifierMigratedFromEntityWithRelationshipPath
public static com.apple.yellow.eocontrol.EOQualifier

qualifierMigratedFromEntityWithRelationshipPath (com.apple.yellow.eocontrol.EOQualifier
aQualifier, EOEntity entity, java.lang.String relationshipPath)

Creates a copy of aQualifier, translates all the copy’s keys to work with the entity specified in
relationshipPath, and returns the copy. The receiver’s keys are all specified in terms of entity. For example,
assume that an Employee entity has a relationship named “department” to a Department entity. You could
create a qualifier described in terms of the Employee entity (department.name = ‘Finance’, for example) to
a qualifier described in terms of the Department entity (name = ‘Finance’). To do so, send a
qualifierMigratedFromEntityWithRelationshipPath message with the Employee entity as the entity and
“department” as the relationship path.

qualifierWithQualifierFormat
public static com.apple.yellow.eocontrol.EOQualifier qualifierWithQualifierFormat (

java.lang.String format)

Throws an exception. An EOSQLQualifier must be created with an entity, and this method does not provide
one. Use a constructor and provide an entity to create an EOSQLQualifier.

Instance Methods

qualifierWithBindings
public com.apple.yellow.eocontrol.EOQualifier qualifierWithBindings (NSDictionary aDictionary,

boolean flag)

Returns a new qualifier created by substituting all EOQualifierVariables with the values contained in
aDictionary. If flag is true, then the new qualifier requires all its variables. If flag is false, then the new
qualifier doesn’t require all its variables; and if any variable is not found in aDictionary, the node containing
that variable is simply pruned from the qualifier tree. Note that null and EONull are not the same in this
context. If a value in aDictionary is null , this method prunes it from the qualifier tree. If a value is EONull,
this method assumes that you are looking for an object with a null value..
258

 Classes: EOSQLQualifier
validateKeysWithRootClassDescription
public java.lang.Throwable validateKeysWithRootClassDescription(

com.apple.yellow.eocontrol.EOClassDescription classDesc)

Validates that a qualifier contains keys and key paths that belong to or originate from classDesc. This
method returns an NSInternalInconsistencyException if an unknown key is found, otherwise it returns null
to indicate that the keys contained by the qualifier are valid.
259

260

 Classes: EOStoredProcedure

nal

EOStoredProcedure

Inherits From: NSObject

Implements: EOPropertyListEncoding

Package: com.apple.yellow.eoaccess

Class Description

An EOStoredProcedure represents a stored procedure defined in a database, and associates a name inter
to the Framework with an external name by which the stored procedure is known to the database. If a stored
procedure has arguments, its EOStoredProcedure object also maintains a group of EOAttributes which
represent the stored procedure’s arguments. See the EOAttribute class specification for more information

You usually define stored procedures in your EOModel with the EOModeler application, which is
documented in the Enterprise Objects Framework Developer’s Guide. EOStoredProcedures are primarily
used by the Enterprise Objects Framework to map operations for an EOEntity to stored procedures (see the
description for EOEntity’s setStoredProcedure method). You can assign stored procedures to an entity for
any of the following scenarios:

• Fetching all the objects for the entity
• Fetching a single object by its primary key
• Inserting a new object
• Deleting an object
• Generating a new primary key

Your code probably won’t use EOStoredProcedures unless you’re working at the adaptor level.

Like the other major modeling classes, EOStoredProcedure provides a user dictionary for your application
to store any application-specific information related to the stored procedure.

Interfaces Implemented

EOPropertyListEncoding
awakeWithPropertyList
encodeIntoPropertyList
261

Method Types

Constructors
EOStoredProcedure

Accessing the model
model

Accessing the name
setName
beautifyName
name

Accessing the external name
setExternalName
externalName

Accessing the arguments
setArguments
arguments

Accessing the user dictionary
setUserInfo
userInfo

Constructors

EOStoredProcedure
public next.eo.EOStoredProcedure()

Creates and returns a new EOStoredProcedure.

public next.eo.EOStoredProcedure(java.lang.String name)

Creates and returns a new EOStoredProcedure named name.

public next.eo.EOStoredProcedure(next.util.ImmutableHashtable propertyList,
java.lang.Object owner)

Creates and returns a new EOStoredProcedure initialized from propertyList—a dictionary
containing only property list data types (that is, String, NSDictionary, NSArray, and NSData). This
constructor is used by EOModeler when it reads in an EOModel object from a file, for example. The
owner argument should be the EOStoredProcedure’s EOModel. EOStoredProcedures created from
a property list must receive an awakeWithPropertyList message immediately after creation before
262

 Classes: EOStoredProcedure
they are fully functional, but the awake... message should be deferred until the all of the other objects
in the model have also been created.

See also: awakeWithPropertyList (PropertyListEncoding), encodeIntoPropertyList
(PropertyListEncoding) setName, name

Instance Methods

arguments
 public next.util.ImmutableVector arguments()

Returns the EOAttribute objects that describe the stored procedure’s arguments or null if the stored
procedure has no arguments.

beautifyName
 public void beautifyName()

Renames the receiver’s name and its arguments to conform to the Framework’s naming conventions. For
example, “NAME” is renamed “name” and “FIRST_NAME” is renamed “firstName”. This method is used
in reverse-engineering a model.

See also: setArguments, beautifyNames (EOModel)

externalName
public java.lang.String externalName()

Returns the name of the stored procedure as it is defined in the database, or null if the receiver doesn’t have
an external name.

See also: setExternalName

model
 public next.eo.Model model()

Returns the model to which the receiver belongs.

See also: addStoredProcedure (EOModel)
263

name
 public java.lang.String name()

Returns the name of the receiver.

See also: setName, “Constructors”

setArguments
public void setArguments(next.util.ImmutableVector arguments)

Sets arguments as the array of EOAttributes that describe the receiver’s arguments. The EOAttribute objects
in arguments must be ordered to match the database stored procedure definition.

See also: arguments

setExternalName
public void setExternalName(java.lang.String name)

Sets the external name of the stored procedure to name. name should be the name of the stored procedure
as it is defined in the database.

See also: externalName

setName
public void setName(java.lang.String name)

Sets the name of the receiver.

See also: name, “Constructors”

setUserInfo
public void setUserInfo(next.util.ImmutableHashtable dictionary)

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, String, NSDictionary, NSArray, and NSData).

See also: userInfo
264

 Classes: EOStoredProcedure
userInfo
public next.util.ImmutableHashtable userInfo()

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: setUserInfo
265

266

 Classes: EOAdaptorChannel.Delegate

r
EOAdaptorChannel.Delegate

Implemented By: EOAdaptorChannel delegate objects

Package: com.apple.yellow.eoaccess

Interface Description

EOAdaptorChannel sends messages to its delegate for nearly every operation that would affect data in the
database server. The delegate can use these methods to preempt these operations, modify their results, o
simply track activity.

Instance Methods

adaptorChannelDidChangeResultSet
public abstract void adaptorChannelDidChangeResultSet(java.lang.Object channel)

Invoked from fetchRow when a select operation resulted in multiple result sets. This method tells the
delegate that the next invocation of fetchRow will fetch from the next result set. This method is invoked
when fetchRow returns null and there are still result sets left to fetch. The delegate can invoke
setAttributesToFetch to prepare for fetching the new rows.

adaptorChannel:didEvaluateExpression
public abstract void adaptorChannelDidEvaluateExpression(java.lang.Object channel,

EOSQLExpression expression)

Invoked from evaluateExpression to tell the delegate that a query language expression has been evaluated
by the database server.

adaptorChannelDidExecuteStoredProcedure
public abstract void adaptorChannelDidExecuteStoredProcedure(java.lang.Object channel,

EOStoredProcedure procedure,
NSDictionary values)

Invoked from executeStoredProcedure after procedure is executed successfully.
267

adaptorChannelDidFetchRow
public abstract void adaptorChannelDidFetchRow(java.lang.Object channel, NSMutableDictionary

row)

Invoked from fetchRow after a row is fetched successfully. This method is not invoked if an exception
occurs during the fetch or if the same returns null because there are no more rows in the current result set.
The delegate may modify row, which will be returned from fetchRow.

adaptorChannelDidFinishFetching
public abstract void adaptorChannelDidFinishFetching(java.lang.Object channel)

Invoked from fetchRow to tell the delegate that fetching is finished for the current select operation. This
method is invoked when a fetch ends in fetchRow because there are no more result sets.

adaptorChannelDidPerformOperations
public abstract java.lang.Throwable adaptorChannelDidPerformOperations(

java.lang.Object channel,
NSArray operations,
java.lang.Throwable exception)

Invoked from performAdaptorOperations . exception is null if no exception was raised while operations
were performed. Otherwise, exception is the raised exception. The delegate can return the same or a
different exception, which is re-raised by performAdaptorOperations , or it can return null to prevent the
adaptor channel from raising an exception.

adaptorChannelDidSelectAttributes
public abstract void adaptorChannelDidSelectAttributes(java.lang.Object channel,

NSArray attributes,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
boolean flag,
EOEntity entity)

Invoked from selectAttributes:fetchSpecification to tell the delegate that rows have been selected in the
database server.
268

 Classes: EOAdaptorChannel.Delegate

e
k
adaptorChannelShouldConstructStoredProcedureReturnValues
public abstract NSDictionary

adaptorChannelShouldConstructStoredProcedureReturnValues(java.lang.Object channel)

Invoked from returnValuesForLastStoredProcedureInvocation to tell the delegate that channel is
constructing return values for the last stored procedure evaluated. If the delegate returns a value other than
null , that value will be returned immediately from returnValuesForLastStoredProcedureInvocation.

adaptorChannelShouldEvaluateExpression
public abstract boolean adaptorChannelShouldEvaluateExpression(java.lang.Object channel,

EOSQLExpression expression)

Invoked from evaluateExpression to tell the delegate that channel is sending an expression to the database
server. The delegate returns true to permit the adaptor channel to send expression to the server. If the
delegate returns false, the adaptor channel does not send the expression and returns immediately. When th
delegate returns false, the adaptor channel expects that the implementor of the delegate has done the wor
that evaluateExpression would have done. The delegate can create a new EOSQLExpression and send the
expression itself before returning false.

adaptorChannelShouldExecuteStoredProcedure
public abstract NSDictionary adaptorChannelShouldExecuteStoredProcedure(java.lang.Object

channel,
EOStoredProcedure procedure,
NSDictionary values)

Invoked from executeStoredProcedure to tell the delegate that channel is executing a stored procedure. If
the delegate returns a value other than null , that value is used as the arguments to the stored procedure
instead of values.

adaptorChannel:shouldReturnValuesForStoredProcedure
public abstract NSDictionary

adaptorChannelShouldReturnValuesForStoredProcedure(java.lang.Object channel,
NSDictionary returnValues)

Invoked from returnValuesForLastStoredProcedureInvocation to tell the delegate that channel is
returning values for a stored procedure. If the delegate returns a value other than null , that value is returned
from returnValuesForLastStoredProcedureInvocation instead of returnValues.
269

adaptorChannelShouldSelectAttributes
public abstract boolean adaptorChannelShouldSelectAttributes(java.lang.Object channel,

NSArray attributes,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
boolean flag,
EOEntity entity)

Invoked from selectAttributes:fetchSpecification to ask the delegate whether a select operation should be
performed. The delegate should not modify fetchSpecification. Instead, if the delegate wants to perform a
different select it should invoke selectAttributes:fetchSpecification itself with a new fetch specification,
and return false (indicating that the adaptor channel should not perform the select itself).

adaptorChannelWillFetchRow
public abstract void adaptorChannelWillFetchRow(java.lang.Object channel)

Invoked from fetchRow to tell the delegate that a single row will be fetched. The delegate can determine
the attributes used by the fetch by sending attributesToFetch to channel, and can change the set of
attributes to fetch by sending setAttributesToFetch to channel. The adaptor channel performs the actual
fetch.

adaptorChannelWillPerformOperations
public abstract NSArray adaptorChannelWillPerformOperations(java.lang.Object channel,

NSArray operations)

Invoked from performAdaptorOperations to tell the delegate that channel is performing the
EOAdaptorOperations in operations. The delegate may return operations or a different NSArray for the
adaptor channel to perform. If the delegate returns null , the adaptor channel does not perform the operations
and returns from the method immediately.
270

 Classes: EOAdaptorContext.Delegate

EOAdaptorContext.Delegate

Implemented By: EOAdaptorContext delegate objects

Package: com.apple.yellow.eoaccess

Interface Description

EOAdaptorContext sends messages to its delegate for any transaction begin, commit, or rollback. The
delegate can use these methods to preempt these operations, modify their results, or simply track activity.

Instance Methods

adaptorContextDidBegin
public abstract void adaptorContextDidBegin(java.lang.Object context)

Invoked from beginTransaction to tell the delegate that a transaction has begun.

adaptorContextDidCommit
public abstract void adaptorContextDidCommit(java.lang.Object context)

Invoked from commitTransaction to tell the delegate that a transaction has been committed.

adaptorContextDidRollback
public abstract void adaptorContextDidRollback(java.lang.Object context)

Invoked from rollbackTransaction to tell the delegate that a transaction has been rolled back.

adaptorContextShouldBegin
public abstract boolean adaptorContextShouldBegin(java.lang.Object context)

Invoked from beginTransaction to tell the delegate that context is beginning a transaction. If this method
returns false, the adaptor context does not begin a transaction. Return true to allow the adaptor context to
begin a transaction.
271

r
adaptorContextShouldCommit
public abstract boolean adaptorContextShouldCommit(java.lang.Object context)

Invoked from commitTransaction to tell the delegate that context is committing a transaction. If this
method returns false, the adaptor context does not commit the transaction. Return true to allow the adaptor
context to commit.

Note that if you implement this delegate method to return false, your delegate must perform the database
COMMIT itself; the rest of the Enterprise Objects Framework assumes that the commit has taken place.
adaptorContextShouldCommit doesn’t specify whether or not the commit should take place; it only
specifies whether or not the adaptor context should do it for you.

adaptorContextShouldConnect
public abstract boolean adaptorContextShouldConnect(java.lang.Object context)

Invoked before the adaptor attempts to connect. The delegate can return false if it wants to override the
connect, true if it wants the adaptor to attempt to connect in the usual way. The delegate should throw an
exception if it fails to connect.

adaptorContextShouldRollback
public abstract boolean adaptorContextShouldRollback(java.lang.Object context)

Invoked from rollbackTransaction to tell the delegate that context is rolling back a transaction. If this
method returns false, the adaptor context does not roll back the transaction. Return true to allow the adapto
context to roll back.
272

 Classes: EOAdaptor.Delegate

EOAdaptor.Delegate

Implemented By: EOAdaptor delegate objects

Package: com.apple.yellow.eoaccess

Interface Description

The delegate for EOAdaptor can implement the method adaptor:fetchedValueForAttributeValue:
attribute: to perform a database-specific transformations on a value.

Instance Methods

fetchedValueForAttribute
public abstract java.lang.Object fetchedValueForAttribute (EOAdaptor adaptor,

java.lang.Object value,
EOAttribute attribute)

Invoked from fetchedValueForValue to allow the delegate to perform a database-specific transformation
on value. The delegate should return the value that the adaptor’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute.

Ordinarily, fetchedValueForValue invokes one of the type-specific fetchedValue... methods depending on
the type of value. If you implement this delegate method, fetchedValueForValue does not invoke the other
fetchedValue... methods. It simply invokes your delegate method and returns the value returned from it.
Therefore, an implementation of adaptor:fetchedValueForAttributeValue:attribute: must handle values
of all types.
273

274

 Classes: EODatabaseContext.Delegate
EODatabaseContext.Delegate
Package: com.apple.yellow.eoaccess

Interface Description

An EODatabaseContext shares its delegate with its EODatabaseChannels. These delegate methods are
actually sent from EODatabaseChannel, but they’re defined in EODatabaseContext for ease of access:

databaseContextDidSelectObjects

databaseContextShouldSelectObjects

databaseContextShouldUpdateCurrentSnapshot

databaseContextShouldUsePessimisticLockWithFetchSpecification

You can use the EODatabaseContext delegate methods to intervene when objects are created and when
they’re fetched from the database. This gives you more fine-grained control over such issues as how an
object’s primary key is generated (databaseContextNewPrimaryKeyForObject), how and if objects are
locked (databaseContextShouldLockObjectWithGlobalID), what fetch specification is used to fetch
objects (databaseContextShouldSelectObjects), how batch faulting is performed
(databaseContextShouldFetchArrayFault and databaseContextShouldFetchObjectFault), and so on.
For more information, see the individual delegate method descriptions.

Instance Methods

databaseContextDidFetchObjects
public abstract void databaseContextDidFetchObjects(

EODatabaseContext aDatabaseContext,
NSArray objects,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Invoked from objectsWithFetchSpecification after aDatabaseContext fetches objects using the criteria
defined in fetchSpecification on behalf of anEditingContext.

See also: databaseContextShouldFetchObjectFault
275

databaseContextDidSelectObjects
public abstract void databaseContextDidSelectObjects(

EODatabaseContext aDatabaseContext,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
EODatabaseChannel channel)

Invoked from the EODatabaseChannel method selectObjectsWithFetchSpecification to tell the delegate
that channel selected the objects on behalf of aDatabaseContext as specified by fetchSpecification.

See also: databaseContextShouldSelectObjects

databaseContextFailedToFetchObject
public abstract boolean databaseContextFailedToFetchObject(

EODatabaseContext aDatabaseContext,
java.lang.Object object,
com.apple.yellow.eocontrol.EOGlobalID globalID)

Sent when a to-one fault cannot find its data in the database. The object is a cleared fault identified by
globalID. If this method returns true, aDatabaseContext assumes that the delegate has handled the situation
to its satisfaction, in whatever way it deemed appropriate (for example, by displaying an alert panel or
initializing a fault object with new values). If it returns false or if the delegate method is not implemented,
aDatabaseContext throws an exception.

databaseContextNewPrimaryKeyForObject
public abstract NSDictionary databaseContextNewPrimaryKeyForObject(

EODatabaseContext aDatabaseContext,
java.lang.Object object,
EOEntity anEntity)

Sent when a newly inserted enterprise object doesn’t already have a primary key set. This delegate method
can be used to implement custom primary key generation. If the delegate is not implemented or returns null ,
then aDatabaseContext will send an EOAdaptorChannel a primaryKeyForNewRowWithEntity message
in an attempt to generate the key.

The dictionary you return from this delegate method contains the attribute or attributes (if object has a
compound primary key) that make up object’s primary key.
276

 Classes: EODatabaseContext.Delegate
databaseContextShouldFetchArrayFault
public abstract boolean databaseContextShouldFetchArrayFault(

EODatabaseContext databaseContext,
java.lang.Object anObject)

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the array themselves (for example, by using the EODatabaseContext method
batchFetchRelationship) and return false, or return true to allow the databaseContext to do the fetch
itself. If databaseContext performs the fetch it will batch fault according to the batch count on the
relationship being fetched.

See also: databaseContextShouldFetchObjectFault

databaseContextShouldFetchObjectFault
public abstract boolean databaseContextShouldFetchObjectFault(

EODatabaseContext databaseContext,
java.lang.Object anObject)

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the fault themselves (for example, by using the EODatabaseContext method
objectsWithFetchSpecification) and return false, or return true to allow databaseContext to perform the
fetch. If databaseContext performs the fetch, it will batch fault according to the batch count on the entity
being fetched.

See also: databaseContextShouldFetchArrayFault

databaseContextShouldFetchObjects
public abstract NSArray databaseContextShouldFetchObjects(

EODatabaseContext aDatabaseContext,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
com.apple.yellow.eocontrol.EOEditingContext anEditingContext)

Invoked from objectsWithFetchSpecification to give the delegate the opportunity to satisfy
anEditingContext’s fetch request (using the criteria specified in fetchSpecification) from a local cache. If
the delegate returns null , aDatabaseContext performs the fetch. Otherwise, the returned array is returned
as the fetch result.

See also: databaseContextDidFetchObjects
277

databaseContextShouldInvalidateObjectWithGlobalID
public abstract boolean databaseContextShouldInvalidateObjectWithGlobalID(

EODatabaseContext aDatabaseContext,
com.apple.yellow.eocontrol.EOGlobalID globalID,
NSDictionary snapshot)

Invoked from invalidateObjectsWithGlobalIDs. Delegate can cause aDatabaseContext’s object as
identified by globalID to not be invalidated and that object’s snapshot to not be cleared by returning false.

databaseContextShouldLockObjectWithGlobalID
public abstract boolean databaseContextShouldLockObjectWithGlobalID(

EODatabaseContext aDatabaseContext,
com.apple.yellow.eocontrol.EOGlobalID globalID,
NSDictionary snapshot)

Invoked from lockObjectWithGlobalID . The delegate should return true if it wants the operation to
proceed or false if it doesn’t. Values from snapshot are used to create a qualifier from the attributes used for
locking specified for the object’s entity (that is, the object identified by globalID). Delegates can override
the locking mechanism by implementing their own locking procedure and returning false. Methods that
override the locking mechanism should throw an exception on the failure to lock exactly one object.

databaseContextShouldRaiseExceptionForLockFailure
public abstract boolean databaseContextShouldRaiseExceptionForLockFailure(

EODatabaseContext aDatabaseContext,
java.lang.Throwable exception)

Invoked from lockObjectWithGlobalID . This method allows the delegate to suppress an exception that has
occurred during aDatabaseContext’s attempt to lock the object.

databaseContextShouldSelectObjects
public abstract boolean databaseContextShouldSelectObjects(

EODatabaseContext aDatabaseContext,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
EODatabaseChannel channel)

Invoked from the EODatabaseChannel method selectObjectsWithFetchSpecification to tell the delegate
that channel will select objects on behalf of aDatabaseContext as specified by fetchSpecification. The
delegate should not modify fetchSpecification’s qualifier or fetch order. If the delegate returns true the
channel will go ahead and select the object; if the delegate returns false (possibly after issuing custom SQL
against the adaptor) the channel will skip the select and return.
278

 Classes: EODatabaseContext.Delegate

r
databaseContextShouldUpdateCurrentSnapshot
public abstract NSDictionary databaseContextShouldUpdateCurrentSnapshot(

EODatabaseContext aDatabaseContext,
NSDictionary currentSnapshot,
NSDictionary newSnapshot,
com.apple.yellow.eocontrol.EOGlobalID globalID,
EODatabaseChannel channel)

Invoked from the EODatabaseChannel method fetchObject when aDatabaseContext already has a
snapshot (currentSnapshot) for a row fetched from the database. This method is invoked without first
checking whether the snapshots are equivalent (the check would be too expensive to do in the common
case), so the receiver may be passed equivalent snapshots. The default behavior is to not update an olde
snapshot with newSnapshot. The delegate can override this behavior by returning a dictionary (possibly
newSnapshot) that will be recorded as the updated snapshot. This will result in aDatabaseContext
broadcasting an EOObjectsChangedInStoreNotification, causing the object store hierarchy to invalidate
existing objects (as identified by globalID) built from the obsolete snapshot. Returning null throws an
exception. You can use this method to achieve the same effect as using a
com.apple.yellow.eocontrol.EOFetchSpecification with setRefreshesRefetchedObjects: set to true—that
is, it allows you to overwrite in-memory object values with values from the database that may have been
changed by someone else.

Returning currentSnapshot causes the aDatabaseContext to perform the default behavior (that is, not
updating the older snapshot).

databaseContextShouldUsePessimisticLockWithFetchSpecification
public abstract boolean databaseContextShouldUsePessimisticLockWithFetchSpecification(

EODatabaseContext databaseContext,
com.apple.yellow.eocontrol.EOFetchSpecification fetchSpecification,
EODatabaseChannel channel)

Invoked from the EODatabaseChannel method selectObjectsWithFetchSpecification regardless of the
update strategy specified on channel’s databaseContext. The delegate should not modify the qualifier or
fetch order contained in fetchSpecification. If the delegate returns true the channel locks the rows being
selected; if the delegate returns false the channel selects the rows without locking.
279

databaseContextWillOrderAdaptorOperationsFromDatabaseOperations
public abstract NSArray

databaseContextWillOrderAdaptorOperationsFromDatabaseOperations(
EODatabaseContext aDatabaseContext,
NSArray databaseOperations)

Sent from performChanges. If the delegate responds to this message, it must return an array of
EOAdaptorOperations that aDatabaseContext can then submit to an EOAdaptorChannel for execution. The
delegate can fabricate its own array by asking each of the databaseOperations for its list of
EOAdaptorOperations, and adding them to the array which will eventually be returned by this method. The
delegate is free to optimize, order, or transform the list in whatever way it deems necessary. This method is
useful for applications that need a special ordering of the EOAdaptorOperations so as not to violate any
database referential integrity constraints.

databaseContextWillPerformAdaptorOperations
public abstract NSArray databaseContextWillPerformAdaptorOperations(

EODatabaseContext aDatabaseContext,
NSArray adaptorOperations,
EOAdaptorChannel adaptorChannel)

Sent from performChanges. The delegate can return a new adaptorOperations array which
aDatabaseContext will hand to adaptorChannel for execution in place of the old array of
EOAdaptorOperations. This method is useful for applications that need a special ordering of the
EOAdaptorOperations so as not to violate any database referential integrity constraints.
280

 Cla

E

In

De

Class Des

E
E
E

E
pa

No

Method Ty

Fe

Fe
sses: EOUtilities

OUtilities

herits From: NSObject

clared In: EOAccess/EOUtilities.h

cription

OUtilities is a collection of convenience methods intended to make common operations with EOF easier.
OUtilities is an EOAccess class that consists entirely of static methods—you never instantiate an
OUtilities object.

ach method requires an editing context into which the objects should be fetched; this editing context is
ssed as the first argument to each method in EOUtilities.

te: The Objective-C source code for EOUtilities is available as an example. On Mac OS X Server
systems, see /System/Developer/Examples/EnterpriseObjects/Sources/EOUtilities. On NT, see
$NEXT_ROOT\Developer\Examples\EnterpriseObjects\Sources\EOUtilities.

pes

tching multiple objects
objectsForEntityNamed
objectsWithQualifierFormat
objectsMatchingKeyAndValue
objectsMatchingValues
objectsOfClass
objectsWithFetchSpecificationAndBindings

tching single objects
objectWithQualifierFormat
objectMatchingKeyAndValue
objectMatchingValues
objectWithFetchSpecificationAndBindings
objectWithPrimaryKey
objectWithPrimaryKeyValue
281

282

Fe

A

A

A

Static Meth

co

C
ov
Ty
th
tching raw rows
executeStoredProcedureNamed
objectFromRawRow
rawRowsWithQualifierFormat
rawRowsMatchingKeyAndValue
rawRowsMatchingValues
rawRowsForSQL
rawRowsWithStoredProcedureNamed

ccessing the EOF stack
connectWithModelNamed
databaseContextForModelNamed

ccessing object data
destinationKeyForSourceObject
localInstanceOfObject
localInstancesOfObjects
primaryKeyForObject

ccessing model information
entityForClass
entityForObject
entityNamed
modelGroup

ods

nnectWithModelNamed
public static void connectWithModelNamed(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String modelName,
NSDictionary overrides)

onnects to the database using the connection information in the specified model and the provided
errides dictionary. This method facilitates per-session database logins in WebObjects applications.
pically, you’d put a login name and password in the overrides dictionary and otherwise use the values in
e model’s connection dictionary. Throws an exception if the connection failed.

 Cla

da

R

de

R
gi
D
5

Se

en

R
fo

Se

en

R
ca

Se
sses: EOUtilities

tabaseContextForModelNamed
public static EODatabaseContext databaseContextForModelNamed(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String entityName)

eturns the database context used to service the specified model.

stinationKeyForSourceObject

public static NSDictionary

destinationKeyForSourceObject

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.Object

object

,
java.lang.String

entityName

)

eturns the foreign key for the rows at the destination entity of the specified relationship. As an example,
ven entities Department and Employee with a relationship called “department” joining

epartment.ID Employee.deptID

, invoking this method on a Department object with ID equal to
will return a dictionary with a value of 5 for the deptID key.

e also:

primaryKeyForObject

tityForClass

public static EOEntity

entityForClass

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.Class

classObject

)

eturns the entity associated with the specified class. Throws an exception if the specified entity can’t be
und or if more than one entity is associated with the class.

e also:

entityForObject

,

entityNamed

,

objectsOfClass

tityForObject

public static EOEntity

entityForObject

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.Object

object

)

eturns the entity associated with the provided enterprise object. Throws an exception if the specified entity
n’t be found.

283

e also: entityForClass, entityNamed

284

en

R

Se

ex

E
va

Se

lo

Tr

Se

lo

Tr

Se

tityNamed

public static EOEntity

entityNamed

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

)

eturns the entity with the specified name. Throws an exception if the specified entity can’t be found.

e also:

entityForClass

,

entityForObject

ecuteStoredProcedureNamed

public static NSDictionary

executeStoredProcedureNamed

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

storedProcedureName

,
NSDictionary

arguments

)

xecutes the specified stored procedure with the provided arguments. Returns the stored procedure’s return
lues (if any). Use only with stored procedures that don’t return results rows.

e also:

rawRowsWithStoredProcedureNamed

calInstanceOfObject

public static java.lang.Object

localInstanceOfObject

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.Object

object

)

anslates the specified enterprise object from another editing context to the specified one.

e also:

localInstancesOfObjects

calInstancesOfObjects

public static NSArray

localInstancesOfObjects

(
com.apple.yellow.eocontrol.EOEditingContext,

editingContext,

NSArray

objects

)

anslates the specified enterprise objects from another editing context to the specified one.

e also:

localInstanceOfObject

 Cla

m

R
E

ob

C
Th

Se

ob

Fe
fa

ob

C
Th

Se

sses: EOUtilities

odelGroup

public static EOModelGroup

modelGroup

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

)

eturns the model group associated with the editing context’s root object store, an
OObjectStoreCoordinator.

jectWithQualifierFormat

public static java.lang.Object

objectWithQualifierFormat

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

,
java.lang.String

format

,
NSArray

arguments

)

reates a qualifier with the provided format string and arguments, and returns matching enterprise objects.
rows an exception unless exactly one object is retrieved.

e also:

objectsWithQualifierFormat

,

rawRowsWithQualifierFormat

jectFromRawRow

public static java.lang.Object

objectFromRawRow

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

,
NSDictionary

row

)

tches and returns the object corresponding to the specified raw row (using EOEditingContext’s

ultForRawRow

). This method can only be used on raw rows that include the row’s primary key.

jectMatchingKeyAndValue

public static java.lang.Object

objectMatchingKeyAndValue

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

,
java.lang.Object

value

,
java.lang.String

key

)

reates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects.

285

rows an exception unless exactly one object is retrieved.

e also: objectMatchingValues, objectsMatchingKeyAndValue

286

ob

C
to
ex

Se

ob

Fe

Se

ob

C

Se

ob

C

Se

jectMatchingValues

public static java.lang.Object

objectMatchingValues

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

,
NSDictionary

values

)

reates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
gether into an EOAndQualifier, and returns matching enterprise objects. Throws an exception unless
actly one object is retrieved.

e also:

objectMatchingKeyAndValue

,

objectsMatchingValues

jectsForEntityNamed

public static NSArray

objectsForEntityNamed

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

)

tches and returns the enterprise objects associated with the specified entity.

e also:

objectsWithQualifierFormat

,

objectsMatchingKeyAndValue

,

objectsMatchingValues

jectsWithQualifierFormat

public static NSArray

objectsWithQualifierFormat

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

,
java.lang.String

format

,
NSArray

arguments

)

reates a qualifier with the provided format string and arguments, and returns matching enterprise objects.

e also:

objectWithQualifierFormat

,

objectsForEntityNamed

jectsMatchingKeyAndValue

public static NSArray

objectsMatchingKeyAndValue

(
com.apple.yellow.eocontrol.EOEditingContext

editingContext

,
java.lang.String

entityName

,
java.lang.String

key

,

java.lang.Object value)

reates an EOKeyValueQualifier with the specified key and value and returns matching enterprise objects.

e also: objectMatchingKeyAndValue, objectsForEntityNamed, objectsMatchingValues

 Cla

ob

C
to

Se

ob

Fe
th

Se

ob

Fe

Se

sses: EOUtilities

jectsMatchingValues
public static NSArray objectsMatchingValues(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String entityName,
NSDictionary values)

reates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
gether into an EOAndQualifier, and returns matching enterprise objects.

e also: objectMatchingValues, objectsForEntityNamed, objectsMatchingKeyAndValue

jectsOfClass
public static NSArray objectsOfClass(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.Class classObject)

tches and returns the enterprise objects associated with the specified class. Throws an exception if more
an one entity for the class exists.

e also: entityForClass

jectsWithFetchSpecificationAndBindings
public static NSArray objectsWithFetchSpecificationAndBindings(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String fetchSpecName,
java.lang.String entityName,
NSDictionary bindings)

tches and returns the enterprise objects retrieved with the specified fetch specification and bindings.

e also: objectWithFetchSpecificationAndBindings
287

288

ob

Fe
Th

Se

ob

Fe
ex

Se

ob

Fe
en
re

Se
jectWithFetchSpecificationAndBindings
public static java.lang.Object objectWithFetchSpecificationAndBindings(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String fetchSpecName,
java.lang.String entityName,
NSDictionary bindings)

tches and returns the enterprise objects retrieved with the specified fetch specification and bindings.
rows an exception unless exactly one object is retrieved.

e also: objectsWithFetchSpecificationAndBindings

jectWithPrimaryKey
public static java.lang.Object objectWithPrimaryKey (

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String entityName,
NSDictionary keyDictionary)

tches and returns the enterprise object identified by the specified primary key dictionary. Throws an
ception unless exactly one object is retrieved.

e also: objectMatchingKeyAndValue, objectWithPrimaryKeyValue , primaryKeyForObject

jectWithPrimaryKeyValue
public static java.lang.Object objectWithPrimaryKeyValue (

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String entityName,
java.lang.Object value)

tches and returns the enterprise object identified by the specified primary key value. For use only with
terprise objects that have non-compound primary keys. Throws an exception unless exactly one object is
trieved.

e also: objectsMatchingValues, objectWithPrimaryKey

 Cla

pr

R

Se

ra

C
ro

Se

ra

C

Se

ra

C
to

Se
sses: EOUtilities

imaryKeyForObject
public static NSDictionary primaryKeyForObject (

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.Object object)

eturns the primary key dictionary for the specified enterprise object.

e also: objectWithPrimaryKey , objectWithPrimaryKeyValue

wRowsWithQualifierFormat
public static NSArray rawRowsWithQualifierFormat (

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String entityName,
java.lang.String format,
NSArray arguments)

reates a qualifier for the specified entity and with the specified qualifier format and returns matching raw
w dictionaries.

e also: objectsWithQualifierFormat , rawRowsForSQL

wRowsMatchingKeyAndValue
public static NSArray rawRowsMatchingKeyAndValue(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String entityName,
java.lang.String key,
java.lang.Object value);

reates an EOKeyValueQualifier with the specified key and value and returns matching raw rows.

e also: objectMatchingKeyAndValue, objectsMatchingKeyAndValue, rawRowsMatchingValues

wRowsMatchingValues
public static NSArray rawRowsMatchingValues(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String entityName,
NSDictionary values)
289

reates EOKeyValueQualifiers for each key-value pair in the specified dictionary, ANDs these qualifiers
gether into an EOAndQualifier, and returns matching raw rows.

e also: objectMatchingValues, objectsMatchingValues, rawRowsMatchingKeyAndValue

290

ra

E

Se

ra

E

Se
wRowsForSQL
public static NSArray rawRowsForSQL(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String sqlString,
java.lang.String modelName)

valuates the specified SQL and returns the resulting raw rows.

e also: rawRowsWithQualifierFormat , rawRowsWithStoredProcedureNamed

wRowsWithStoredProcedureNamed
public static NSArray rawRowsForStoredProcedureNamed(

com.apple.yellow.eocontrol.EOEditingContext editingContext,
java.lang.String storedProcedureName,
NSDictionary arguments)

xecutes the specified stored procedure with the provided arguments and returns the resulting raw rows.

e also: rawRowsForSQL

 Classes:

EOModelGroup.ClassDelegate

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Interface Description

An EOModelGroup object should have a delegate which can influence how it finds and loads models. In
addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can have
a delegate. The class delegate implements a single method—defaultModelGroup.

For more information on EOModelGroup instance delegate methods, see the EOModelGroup.Delegate
specifications.

Instance Methods

defaultModelGroup
public abstract EOModelGroup defaultModelGroup()

If implemented by the EOModelGroup class delegate, this method should return the EOModelGroup to be
returned in response to the message defaultModelGroup. If this delegate method returns null ,
EOModelGroup uses the default behavior of the defaultModelGroup class method.

Note: This method is implemented by the delegate assigned to the EOModelGroup class object.

See also: classDelegate (EOModelGroup class), setClassDelegate (EOModelGroup class)
291

292

 Classes:
EOModelGroup.Delegate

Inherits From: NSObject

Package: com.apple.yellow.eoaccess

Interface Description
• An EOModelGroup object should have a delegate which can influence how it finds and loads models.

The EOModelGroup instance delegate can implement the methods below:
entityRelationshipForRowpublic abstract EORelationship entityRelationshipForRow(EOEntity
entity, NSDictionary row, EORelationship relationship)

• subEntityForEntity:primaryKey:isFinal:
• entityFailedToLookupClassNamedpublic abstract java.lang.Class

entityFailedToLookupClassNamed(EOEntity entity, java.lang.String className)
• entity:classForObjectWithGlobalID:

In addition to the delegates you assign to EOModelGroup instances, the EOModelGroup class itself can
have a delegate. The class delegate implements a single method—defaultModelGroup. For more
information, see the EOModelGroup.ClassDelegate.

Instance Methods

classForObjectWithGlobalID
public abstract java.lang.Class classForObjectWithGlobalID(EOEntity entity,

com.apple.yellow.eocontrol.EOGlobalID globalID)

Used to fine-tune inheritance. The delegate can use globalID to determine a subclass to be used in place of
the one specified in entity.

entityFailedToLookupClassNamed public abstract java.lang.Class
entityFailedToLookupClassNamed(EOEntity entity,
java.lang.String className)

Invoked when the class name specified for entity cannot be found at run-time. The delegate can take action
(such as loading a bundle) to provide entity with a class corresponding to className. If the delegate cannot
provide anything, or if there is no delegate, EOGenericRecord is used.
293

entityRelationshipForRow public abstract EORelationship
entityRelationshipForRow(EOEntity entity,
NSDictionary row,
EORelationship relationship)

Invoked when relationships are instantiated for a newly fetched object. The delegate can use the information
in row to determine which entity the target enterprise object should be associated with, and replace the
relationship appropriately.

modelGroupEntityWithName
public abstract EOModel modelGroupEntityWithName (EOModelGroup group,

java.lang.String name)

If implemented by the delegate, this method should search the group for the entity named name and return
the entity’s EOModel. Return null if name is not an entity in group.

relationshipFailedToLookupDestinationWithName public abstract EOEntity
relationshipFailedToLookupDestinationWithName(
EORelationship relationship,
java.lang.String entityName)

Invoked when loading relationship and the destination entityName specified in the model file cannot be
found in the model group. This most often occurs when a model references entities in another model file
that can’t be found. If the delegate doesn’t implement this method, an exception is raised. If the delegate
does implement this method, the method’s return value is set as the destination entity. if the delegate returns
null , the destination entity is set to null .
294

 Classes:

 EOPropertyListEncoding

Implemented By: EOAttribute
EOEntity
EORelationship
EOStoredProcedure

Interface Description

The EOPropertyListEncoding interface declares methods that read and write objects to property lists—a
dictionary containing only property list data types (that is, NSDictionary objects, java.lang.Strings,
NSArray objects, and NSData objects).

Classes that implement this interface must also provide a constructor that creates objects from a property
list and an owner:

public ClassName(NSDictionary propertyList, java.lang.Object owner)

Objects created with a constructor of this type are initialized from propertyList. The owner argument is
optional and should be used only by objects requiring a reference to their owner. The newly created object
isn’t considered fully functional until it receives an awakeWithPropertyList message, which finishes
initializing the object. The awakeWithPropertyList invocation should be deferred until after all of the
objects identified in propertyList have been created.

The method encodeIntoPropertyList is responsible for encoding the receiver into a property list for later
restoration.

This interface is used to read and write modeling objects (EOModel, EOEntity, EOAttribute, and so on) to
a model file.

Methods

awakeWithPropertyList
public abstract void awakeWithPropertyList (NSDictionary propertyList)

Finishes initializing the receiver from propertyList, which must have been created with a constructor of the
form:

public ClassName(NSDictionary propertyList, java.lang.Object owner)

awakeWithPropertyList is responsible for restoring references to other objects. Consequently, it should
not be invoked until all other objects that the receiver might reference have been created from propertyList.
295

encodeIntoPropertyList
public abstract void encodeIntoPropertyList(NSMutableDictionary propertyList)

Returns the receiver as a property list.
296

	The EOAccess Framework
	Framework: com.apple.yellow.eoaccess
	Introduction
	EOAccess Framework Class Hierarchy
	Figure 1 The EOAccess Framework class hierarchy

	The Database Level
	The Adaptor Level
	The Modeling Classes
	Faulting
	Additions to Other Frameworks
	Miscellaneous Classes
	Delegates

	EOAccessArrayFaultHandler
	Class Description
	Constructors
	EOAccessArrayFaultHandler

	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	relationshipName
	sourceGlobalID

	EOAccessFaultHandler
	Class Description
	Constructors
	EOAccessFaultHandler

	Instance Methods
	completeInitializationOfObject
	databaseContext
	editingContext
	globalID

	EOAccessGenericFaultHandler
	Class Description
	Instance Methods
	generation
	linkAfterHandlerUsingGeneration
	next
	previous

	EOAdaptor
	Class Description
	Method Types
	Constructors
	Class Methods
	adaptorWithModel
	adaptorWithName
	assignExternalInfoForAttribute
	assignExternalInfoForEntireModel
	assignExternalInfoForEntity
	assignExternalTypeForAttribute
	availableAdaptorNames
	externalTypesWithModel
	internalTypeForExternalTypeInModel
	setExpressionClassNameForAdaptorClassName

	Instance Methods
	assertConnectionDictionaryIsValid
	canServiceModel
	connectionDictionary
	contexts
	createAdaptorContext
	createDatabaseWithAdministrativeConnectionDictionary
	databaseEncoding
	defaultExpressionClass
	delegate
	dropDatabaseWithAdministrativeConnectionDictionary
	expressionClass
	fetchedValueForDataValue
	fetchedValueForDateValue
	fetchedValueForNumberValue
	fetchedValueForStringValue
	fetchedValueForValue
	hasOpenChannels
	isValidQualifierTypeInModel
	name
	prototypeAttributes
	runLoginPanel
	runLoginPanelAndValidateConnectionDictionary
	setConnectionDictionary
	setDelegate
	sharedLoginPanelInstance
	Creating an EOAdaptor Subclass

	EOAdaptorChannel
	Class Description
	Notifying the Adaptor Channel’s Delegate

	Method Types
	Constructors
	Instance Methods
	adaptorContext
	addStoredProceduresWithNamesToModel
	attributesToFetch
	cancelFetch
	closeChannel
	delegate
	deleteRowDescribedByQualifier
	deleteRowsDescribedByQualifier
	describeModelWithTableNames
	describeResults
	describeStoredProcedureNames
	describeTableNames
	evaluateExpression
	executeStoredProcedure
	fetchRow
	insertRow
	isDebugEnabled
	isFetchInProgress
	isOpen
	lockRowComparingAttributes
	openChannel
	performAdaptorOperation
	performAdaptorOperations
	primaryKeyForNewRowWithEntity
	returnValuesForLastStoredProcedureInvocation
	selectAttributes:fetchSpecification
	setAttributesToFetch
	setDebugEnabled
	setDelegate
	updateValues:inRowDescribedByQualifier
	updateValues:inRowsDescribedByQualifier
	Creating an EOAdaptorChannel Subclass

	EOAdaptorContext
	Class Description
	Method Types
	Constructors
	EOAdaptorContext

	Static Methods
	debugEnabledDefault
	setDebugEnabledDefault

	Instance Methods
	adaptor
	beginTransaction
	canNestTransactions
	channels
	commitTransaction
	createAdaptorChannel
	delegate
	hasBusyChannels
	hasOpenChannels
	isDebugEnabled
	rollbackTransaction
	setDebugEnabled
	setDelegate
	transactionDidBegin
	transactionDidCommit
	transactionDidRollback
	transactionNestingLevel

	Notifications
	AdaptorContextBeginTransactionNotification
	AdaptorContextCommitTransactionNotification
	AdaptorContextRollbackTransactionNotification

	EOAdaptorContext
	Controlling Transactions
	The Adaptor Context’s Delegate and Notifications
	Creating an EOAdaptorContext Subclass

	EOAdaptorOperation
	Class Description
	Method Types
	Constructors
	EOAdaptorOperation

	Instance Methods
	adaptorOperator
	attributes
	changedValues
	compareAdaptorOperation
	entity
	exception
	qualifier
	setAdaptorOperator
	setAttributes
	setChangedValues
	setException
	setQualifier
	setStoredProcedure
	storedProcedure

	EOAttribute
	Class Description
	Interfaces Implemented
	Method Types
	Constructors
	EOAttribute

	Static Methods
	archiveDataForObject

	Instance Methods
	adaptorValueByConvertingAttributeValue
	adaptorValueConversionMethod
	adaptorValueConversionMethodName
	adaptorValueType
	allowsNull
	awakeWithPropertyList
	beautifyName
	columnName
	definition
	encodeIntoPropertyList
	entity
	externalType
	factoryMethodArgumentType
	isDerived
	isFlattened
	isReadOnly
	name
	overridesPrototypeDefinitionForKey
	parameterDirection
	parent
	precision
	prototype
	prototypeName
	readFormat
	scale
	serverTimeZone
	setAdaptorValueConversionMethodName
	setAllowsNull
	setColumnName
	setDefinition
	setExternalType
	setFactoryMethodArgumentType
	setName
	setParameterDirection
	setPrecision
	setPrototype
	setReadFormat
	setReadOnly
	setScale
	setServerTimeZone
	setUserInfo
	setValueClassName
	setValueFactoryMethodName
	setValueType
	setWidth
	setWriteFormat
	storedProcedure
	userInfo
	validateName
	valueClassName
	valueFactoryMethod
	valueFactoryMethodName
	valueType
	width
	writeFormat

	Creating Attributes
	Creating a Simple Attribute
	Creating a Derived Attribute
	Creating a Flattened Attribute

	Mapping Attributes
	Mapping from Database to Objects
	Working with Custom Data Types
	Fetching Custom Values
	Converting Custom Values

	SQL Statement Formats

	EODatabase
	Class Description
	Method Types
	Constructors
	EODatabase

	Instance Methods
	adaptor
	addModel
	addModelIfCompatible
	entityForObject
	entityNamed
	forgetAllSnapshots
	forgetSnapshotForGlobalID
	forgetSnapshotsForGlobalIDs
	invalidateResultCache
	invalidateResultCacheForEntityNamed
	models
	recordSnapshot:forGlobalID:
	recordSnapshots
	registerContext
	registeredContexts
	removeModel
	resultCacheForEntityNamed
	setResultCacheForEntityWithName
	snapshotForGlobalID
	snapshots
	unregisterContext

	EODatabase
	Figure 2 The Access Layer
	Figure 3 The EODatabase Level as an Intermediary Between the Adaptor Level and the Control Layer
	Snapshots
	Result Cache

	EODatabaseChannel
	Class Description
	Method Types
	Constructors
	EODatabaseChannel

	Instance Methods
	adaptorChannel
	cancelFetch
	databaseContext
	delegate
	fetchObject
	isFetchInProgress
	isLocking
	isRefreshingObjects
	selectObjectsWithFetchSpecification
	setCurrentEditingContext
	setCurrentEntity
	setDelegate
	setIsLocking
	setIsRefreshingObjects

	EODatabaseContext
	Class Description
	Method Types
	Constructors
	EODatabaseContext

	Static Methods
	contextClassToRegister
	forceConnectionWithModel
	registeredDatabaseContextForModel
	setContextClassToRegister

	Instance Methods
	adaptorContext
	arrayFaultWithSourceGlobalID
	availableChannel
	batchFetchRelationship
	commitChanges
	coordinator
	database
	delegate
	faultForGlobalID
	faultForRawRow
	forgetAllLocks
	forgetLocksForObjectsWithGlobalIDs
	forgetSnapshotForGlobalID
	forgetSnapshotsForGlobalIDs
	handlesFetchSpecification
	hasBusyChannels
	initializeObject
	invalidateAllObjects
	invalidateObjectsWithGlobalIDs
	isObjectLockedWithGlobalID
	localSnapshotForGlobalID
	lock
	lockObjectWithGlobalID
	objectsForSourceGlobalID
	objectsWithFetchSpecification
	ownsGlobalID
	ownsObject
	performChanges
	prepareForSaveWithCoordinator
	recordChangesInEditingContext
	recordSnapshotForGlobalID
	recordSnapshots
	recordToManySnapshots
	recordUpdateForObject
	refaultObject
	registerChannel
	registeredChannels
	registerLockedObjectWithGlobalID
	rollbackChanges
	saveChangesInEditingContext
	setDelegate
	setUpdateStrategy
	snapshotForGlobalID
	unlock
	unregisterChannel
	updateStrategy
	valuesForKeys

	Notifications
	EODatabaseChannelNeededNotification

	EODatabaseContext
	Creating and Using an EODatabaseContext
	Fetching and Saving Objects
	Setting a Fetch Limit
	Using a Custom Query
	Faulting
	Batch Faulting
	Prefetching Relationships

	Delegate Methods
	Snapshots
	Updating And Locking Strategies

	EODatabaseDataSource
	Class Description
	Method Types
	Constructors
	EODatabaseDataSource

	Instance Methods
	auxiliaryQualifier
	databaseContext
	dataSourceQualifiedByKey
	deleteObject
	entity
	fetchSpecification
	fetchSpecificationForFetch
	fetchSpecificationName
	insertObject
	isFetchEnabled
	qualifierBindingKeys
	qualifierBindings
	qualifyWithRelationshipKey
	setAuxiliaryQualifier
	setFetchEnabled
	setFetchSpecification
	setFetchSpecificationByName
	setQualifierBindings

	EODatabaseOperation
	Class Description
	Method Types
	Constructors
	EODatabaseOperation

	Instance Methods
	adaptorOperations
	addAdaptorOperation
	databaseOperator
	dbSnapshot
	entity
	globalID
	newRow
	object
	primaryKeyDiffs
	removeAdaptorOperation
	rowDiffs
	rowDiffsForAttributes
	setDatabaseOperator
	setDBSnapshot
	setNewRow
	toManySnapshots

	EOEntity
	Class Description
	Interfaces Implemented
	Method Types
	Constructors
	EOEntity

	Static Methods
	externalNameForInternalName
	nameForExternalName

	Instance Methods
	addAttribute
	addFetchSpecification
	addRelationship
	addSubEntity
	anyAttributeNamed
	anyRelationshipNamed
	attributeNamed
	attributes
	attributesToFetch
	1. Attributes that are class properties, “used for locking,” or primary keys.
	2. Source attributes of any to-many relationship (flattened or non-flattened) that is a class pro...
	3. Source attributes of any non-flattened, to-one relationship that is a class property or that i...
	4. The foreign key attributes of any flattened, to-one relationship that is a class property or t...

	attributesUsedForLocking
	beautifyName
	cachesObjects
	classDescriptionForInstances
	className
	classProperties
	classPropertyNames
	externalModelsReferenced
	externalName
	externalQuery
	fetchSpecificationNamed
	fetchSpecificationNames
	globalIDForRow
	isAbstractEntity
	isPrimaryKeyValidInObject
	isQualifierForPrimaryKey
	isReadOnly
	isValidAttributeUsedForLocking
	isValidClassProperty
	isValidPrimaryKeyAttribute
	maxNumberOfInstancesToBatchFetch
	model
	name
	parentEntity
	primaryKeyAttributeNames
	primaryKeyAttributes
	primaryKeyForGlobalID
	primaryKeyForRow
	primaryKeyRootName
	qualifierForPrimaryKey
	referencesProperty
	relationshipNamed
	relationships
	removeAttribute
	removeFetchSpecificationNamed
	removeRelationship
	removeSubEntity
	restrictingQualifier
	schemaBasedQualifier
	setAttributesUsedForLocking
	setCachesObjects
	setClassName
	setClassProperties
	setExternalName
	setExternalQuery
	setIsAbstractEntity
	setMaxNumberOfInstancesToBatchFetch
	setName
	setPrimaryKeyAttributes
	setReadOnly
	setRestrictingQualifier
	setStoredProcedure
	setUserInfo
	storedProcedureForOperation
	subEntities
	userInfo
	validateName

	Creating an Entity

	EOEntityClassDescription
	Class Description
	Constructors
	EOEntityClassDescription

	Instance Methods
	entity

	EOJoin
	Class Description
	Method Types
	Constructors
	EOJoin

	Instance Methods
	destinationAttribute
	isReciprocalToJoin
	sourceAttribute

	EOLoginPanel
	Class Description
	Constructors
	EOLoginPanel

	Instance Methods
	administrativeConnectionDictionaryForAdaptor
	runPanelForAdaptor

	EOModel
	Class Description
	Creating an EOModel Programmatically

	Method Types
	Constructors
	EOModel

	Instance Methods
	adaptorName
	addEntity
	addStoredProcedure
	availablePrototypeAttributeNames
	beautifyNames
	connectionDictionary
	encodeTableOfContentsIntoPropertyList
	entities
	entityForObject
	entityNamed
	entityNames
	externalModelsReferenced
	loadAllModelObjects
	modelGroup
	name
	path
	prototypeAttributeNamed
	referencesToProperty
	removeEntity
	removeEntityAndReferences
	removeStoredProcedure
	setAdaptorName
	setConnectionDictionary
	setModelGroup
	setName
	setUserInfo
	storedProcedureNamed
	storedProcedureNames
	storedProcedures
	userInfo
	writeToFile

	Notifications
	EntityLoadedNotification

	Loading a Model File

	EOModelGroup
	Class Description
	EOModelGroup Delegates

	Method Types
	Constructors
	EOModelGroup

	Static Methods
	classDelegate
	defaultGroup
	globalModelGroup
	modelGroupForObjectStoreCoordinator
	setClassDelegate
	setDefaultGroup
	setModelGroup

	Instance Methods
	addModel
	addModelWithPath
	delegate
	entityForObject
	entityNamed
	fetchSpecificationNamed
	loadAllModelObjects
	modelNamed
	modelNames
	models
	modelWithPath
	removeModel
	setDelegate
	storedProcedureNamed

	Notifications
	ModelAddedNotification
	ModelInvalidatedNotification

	Setting Up A Model Group Programmatically

	EORelationship
	Class Description
	Specifying the Join Semantic

	Interfaces Implemented
	Method Types
	Constructors
	EORelationship

	Instance Methods
	addJoin
	anyInverseRelationship
	beautifyName
	componentRelationships
	definition
	deleteRule
	destinationAttributes
	destinationEntity
	entity
	inverseRelationship
	isCompound
	isFlattened
	isMandatory
	isToMany
	joinSemantic
	joins
	name
	numberOfToManyFaultsToBatchFetch
	ownsDestination
	propagatesPrimaryKey
	qualifierWithSourceRow
	referencesProperty
	removeJoin
	setDefinition
	setDeleteRule
	setEntity
	setIsMandatory
	setJoinSemantic
	setName
	setNumberOfToManyFaultsToBatchFetch
	setOwnsDestination
	setPropagatesPrimaryKey
	setToMany
	setUserInfo
	sourceAttributes
	userInfo
	validateName
	validateValue

	Creating Relationships
	Creating a Simple Relationship
	Creating a Flattened Relationship

	EOSQLExpression
	Class Description
	Method Types
	Constructors
	EOSQLExpression

	Static Methods
	appendExpression
	createDatabaseStatementsForConnectionDictionary
	createTableStatementsForEntityGroup
	1. Creates an EOSQLExpression object.
	2. Sets the expression’s entity to the first entity in entityGroup.
	3. Adds a create clause for each Attribute in entityGroup’s Entities.
	4. Sets the expression’s statement to CREATE TABLE TABLE_NAME (LIST_STRING), where TABLE_NAME is ...
	5. Adds the expression to an array.
	6. Returns the array.

	createTableStatementsForEntityGroups
	deleteStatementWithQualifier
	dropDatabaseStatementsForConnectionDictionary
	dropPrimaryKeySupportStatementsForEntityGroup
	dropPrimaryKeySupportStatementsForEntityGroups
	dropTableStatementsForEntityGroup
	dropTableStatementsForEntityGroups
	expressionForString
	foreignKeyConstraintStatementsForRelationship
	formatSQLString
	formatStringValue
	formatValue:forAttribute
	insertStatementForRow
	primaryKeyConstraintStatementsForEntityGroup
	primaryKeyConstraintStatementsForEntityGroups
	primaryKeySupportStatementsForEntityGroup
	primaryKeySupportStatementsForEntityGroups
	schemaCreationScriptForEntities
	schemaCreationStatementsForEntities
	selectStatementForAttributes
	setUseBindVariables
	setUseQuotedExternalNames
	sqlPatternFromShellPattern
	sqlPatternFromShellPattern:withEscapeCharacter
	updateStatementForRow
	useBindVariables
	useQuotedExternalNames

	Instance Methods
	addBindVariableDictionary
	addCreateClauseForAttribute
	addInsertListAttribute
	addJoinClauseWithLeftName:rightName:joinSemantic:
	addOrderByAttributeOrdering
	addSelectListAttribute
	addUpdateListAttribute
	aliasesByRelationshipPath
	allowsNullClauseForConstraint
	appendItemToListString
	assembleDeleteStatementWithQualifier
	assembleInsertStatementWithRow
	assembleJoinClause
	assembleSelectStatementWithAttributes
	assembleUpdateStatementWithRow
	bindVariableDictionaries
	bindVariableDictionaryForAttribute
	columnTypeStringForAttribute
	entity
	externalNameQuoteCharacter
	joinClauseString
	joinExpression
	listString
	lockClause
	mustUseBindVariableForAttribute
	orderByString
	prepareConstraintStatementForRelationship
	prepareDeleteExpressionForQualifier
	1. Sends an sqlStringForSQLExpression(this)message to qualifier to generate the receiver’s whereC...
	2. Invokes tableListWithRootEntity to get the table name for the FROM clause.
	3. Invokes assembleDeleteStatementWithQualifier.

	prepareInsertExpressionWithRow
	1. Invokes addInsertListAttribute for each entry in row to prepare the comma-separated list of at...
	2. Invokes tableListWithRootEntity to get the table name.
	3. Invokes assembleInsertStatementWithRow.

	prepareSelectExpressionWithAttributes
	1. Invokes addSelectListAttribute for each entry in attributes to prepare the comma-separated lis...
	2. Sends an sqlStringForSQLExpression(this)message to fetchSpecification’s qualifier to generate ...
	3. Invokes addOrderByAttributeOrdering for each EOAttributeOrdering object in fetchSpecification....
	4. Invokes joinExpression to generate the receiver’s joinClauseString.
	5. Invokes tableListWithRootEntity to get the comma-separated list of tables for the FROM clause.
	6. If flag is true, invokes lockClause to get the SQL string to lock selected rows.
	7. Invokes assembleSelectStatementWithAttributes.

	prepareUpdateExpressionWithRow
	1. Invokes addUpdateListAttribute for each entry in row to prepare the comma-separated list of “a...
	2. Sends an sqlStringForSQLExpression(this)message to qualifier to generate the receiver’s whereC...
	3. Invokes tableListWithRootEntity to get the table name for the FROM clause.
	4. Invokes assembleUpdateStatementWithRow.

	setStatement
	setUseAliases
	shouldUseBindVariableForAttribute
	sqlStringForAttribute
	sqlStringForAttributeNamed
	sqlStringForAttributePath
	sqlStringForConjoinedQualifiers
	sqlStringForDisjoinedQualifiers
	sqlStringForKeyComparisonQualifier
	sqlStringForKeyValueQualifier
	sqlStringForNegatedQualifier
	sqlStringForNumber
	sqlStringForQualifier
	sqlStringForSchemaObjectName
	sqlStringForSelector
	sqlStringForString
	sqlStringForValue
	statement
	tableListWithRootEntity
	useAliases
	valueList
	whereClauseString

	EOSQLExpression
	Building Expressions
	Using Table Aliases
	Bind Variables
	Generating SQL for EOModeler’s Schema Generation

	EOSQLQualifier
	Class Description
	Constructors
	Static Methods
	qualifierMigratedFromEntityWithRelationshipPath
	qualifierWithQualifierFormat

	Instance Methods
	qualifierWithBindings
	validateKeysWithRootClassDescription

	EOStoredProcedure
	Class Description
	Interfaces Implemented
	Method Types
	Constructors
	EOStoredProcedure

	Instance Methods
	arguments
	beautifyName
	externalName
	model
	name
	setArguments
	setExternalName
	setName
	setUserInfo
	userInfo

	EOAdaptorChannel.Delegate
	Interface Description
	Instance Methods
	adaptorChannelDidChangeResultSet
	adaptorChannel:didEvaluateExpression
	adaptorChannelDidExecuteStoredProcedure
	adaptorChannelDidFetchRow
	adaptorChannelDidFinishFetching
	adaptorChannelDidPerformOperations
	adaptorChannelDidSelectAttributes
	adaptorChannelShouldConstructStoredProcedureReturnValues
	adaptorChannelShouldEvaluateExpression
	adaptorChannelShouldExecuteStoredProcedure
	adaptorChannel:shouldReturnValuesForStoredProcedure
	adaptorChannelShouldSelectAttributes
	adaptorChannelWillFetchRow
	adaptorChannelWillPerformOperations

	EOAdaptorContext.Delegate
	Interface Description
	Instance Methods
	adaptorContextDidBegin
	adaptorContextDidCommit
	adaptorContextDidRollback
	adaptorContextShouldBegin
	adaptorContextShouldCommit
	adaptorContextShouldConnect
	adaptorContextShouldRollback

	EOAdaptor.Delegate
	Interface Description
	Instance Methods
	fetchedValueForAttribute

	EODatabaseContext.Delegate
	Interface Description
	Instance Methods
	databaseContextDidFetchObjects
	databaseContextDidSelectObjects
	databaseContextFailedToFetchObject
	databaseContextNewPrimaryKeyForObject
	databaseContextShouldFetchArrayFault
	databaseContextShouldFetchObjectFault
	databaseContextShouldFetchObjects
	databaseContextShouldInvalidateObjectWithGlobalID
	databaseContextShouldLockObjectWithGlobalID
	databaseContextShouldRaiseExceptionForLockFailure
	databaseContextShouldSelectObjects
	databaseContextShouldUpdateCurrentSnapshot
	databaseContextShouldUsePessimisticLockWithFetchSpecification
	databaseContextWillOrderAdaptorOperationsFromDatabaseOperations
	databaseContextWillPerformAdaptorOperations

	EOUtilities
	Class Description
	Method Types
	Static Methods
	connectWithModelNamed
	databaseContextForModelNamed
	destinationKeyForSourceObject
	entityForClass
	entityForObject
	entityNamed
	executeStoredProcedureNamed
	localInstanceOfObject
	localInstancesOfObjects
	modelGroup
	objectWithQualifierFormat
	objectFromRawRow
	objectMatchingKeyAndValue
	objectMatchingValues
	objectsForEntityNamed
	objectsWithQualifierFormat
	objectsMatchingKeyAndValue
	objectsMatchingValues
	objectsOfClass
	objectsWithFetchSpecificationAndBindings
	objectWithFetchSpecificationAndBindings
	objectWithPrimaryKey
	objectWithPrimaryKeyValue
	primaryKeyForObject
	rawRowsWithQualifierFormat
	rawRowsMatchingKeyAndValue
	rawRowsMatchingValues
	rawRowsForSQL
	rawRowsWithStoredProcedureNamed

	EOModelGroup.ClassDelegate
	Interface Description
	Instance Methods
	defaultModelGroup

	EOModelGroup.Delegate
	Interface Description
	Instance Methods
	classForObjectWithGlobalID
	modelGroupEntityWithName

	EOPropertyListEncoding
	Interface Description
	Methods
	awakeWithPropertyList
	encodeIntoPropertyList

