

 The EOInterface Framework

The EOInterface Framework

Framework: System/Library/Frameworks/EOInterface.framework

Header File Directories: System/Library/Frameworks/EOInterface.framework/Headers

Introduction

The EOInterface framework defines one of the layers of the Enterprise Objects Framework architecture—
the interface layer.

The relationship between user interface objects and enterprise objects is managed by an instance of the
EODisplayGroup class. EODisplayGroups are used by EOAssociation objects to mediate between
enterprise objects and the user interface. EOAssociations link a single user interface object to one ore more
class properties (keys) of the objects managed by an EODisplayGroup. The properties’ values are displayed
in the association’s user interface object.

In the Interface layer, EOAssociation objects “observe” EODisplayGroups to make sure that the data
displayed in the user interface remains consistent with enterprise object data. EODisplayGroups interact
with a data source, which supplies them with enterprise objects.

The interface layer’s associations are listed in the following table:

Association Yellow Box Java Client Description

EOActionAssociation Yes Yes

Allows you to set up an interface object, such as a button,
to send a message to the objects selected in the
association’s display group when the interface object is
acted on

EOActionCellAssociation Yes No The default association class for use with NSActionCells

EOActionInsertionAssociation Yes Yes Inserts objects from one display group into another.

EOAssociation Yes Yes
Defines the mechanism that transfers values between
EODisplayGroups and the user interface of an
application.

EOColumnAssociation Yes No
Cooperates with an EOTableViewAssociation to display
values in a column of an NSTableView

EOComboBoxAssociation Yes Yes
Displays an attribute or to-one relationship value in a
combo box
1

EOControlAssociation Yes No
The default EOAssociation subclass for use with
NSControl objects

EODetailSelectionAssociation Yes No
Binds two EODisplayGroups together through a
relationship, so that the destination display group acts as
an editor for that relationship.

EOGenericControlAssociation Yes No
the abstract superclass of EOControlAssociation and
EOActionCellAssociation.

EOMasterCopyAssociation Yes No
Synchronizes two EODisplayGroups that share the same
data source but have different qualifiers.

EOMasterDetailAssociation Yes Yes

Binds one EODisplayGroup (the detail) to a relationship in
another (the master), so that the detail display group
contains the destination objects for the object selected in
the master.

EOMasterPeerAssociation Yes No

Binds two EODisplayGroups together in a master-detail
relationship, where the detail EODisplayGroup shows the
destination objects for the relationship of the master
EODisplayGroup.

EOMatrixAssociation Yes No Allows you to populate an NSMatrix’s cells.

EOPickTextAssociation Yes No
Allows the user to perform a similarity search based on
whole or partial values.

EOPopUpAssociation Yes No
Displays an attribute or to-one relationship value in an
NSPopUpButton

EORadioMatrixAssociation Yes No Displays a string or an integer in an NSMatrix.

EORecursiveBrowserAssociation Yes No
The default association for use with a multi-column
NSBrowser.

EOTableAssociation No Yes Associates a display group with a Swing JTable.

EOTableColumnAssociation No Yes
Associates a single attribute of all enterprise objects in a
display group with a Swing JTable TableColumn.

EOTableViewAssociation Yes No
Manages the individual EOColumnAssociations between
an NSTableView (Application Kit) and an
EODisplayGroup.

Association Yellow Box Java Client Description
2

 The EOInterface Framework

In addition to the above association classes, EOInterface defines the following classes for use exclusively
with Java Client applications:

• EOApplet

• EOApplication

• EOArchive

• EOInterfaceController

• EOViewLayout

EOTextAssociation Yes Yes

Displays a plain or rich text attribute in an NSText object
(Application Kit) or an EOTextField, EOTextArea, or
EOFormCell (Java Client) by binding the text object to a
string or NSData attribute.

Association Yellow Box Java Client Description
3

4

 Classes: EOActionAssociation

EOActionAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOActionAssociation.h

Class Description

An EOActionAssociation object allows you to set up an interface object, such as a button, to send a message
to the objects selected in the association’s display group when the interface object is acted on.

Examples

Suppose you have an application that manages member accounts, each of which has a restriction on the
outstanding balance allowed. You want a user to be able to increase the restriction limit by selecting one or

Usable With

Any control object (in the Yellow Box, any NSControl or NSActionCell)

Aspects

action
Bound to a key that names the method to invoke on the selected objects. If the argument aspect isn’t
bound, the method must take no arguments. If the argument aspect is bound, then the method must take
exactly one argument.

argument
An object attribute or relationship of the selected object, passed as an argument to the action method.
(Usually bound to a different EODisplayGroup than the one bound to action .)

enabled A boolean attribute of the selected object, which determines whether the display object is enabled.

Object Keys Taken

target
On receiving an action message from the display object, an EOActionAssocation sends its action to the
selected objects.
5

n

l.

more members and then clicking a button. To do this, you define a boostRestrictions method in the
Member class that increases the limit by 20%. In Interface Builder, control-drag a connection from the
button to the Member display group. Select EOActionAssociation in the Connections inspector, and bind
the association’s action aspect to the “boostRestrictions” key.

In another scenario, one EODisplayGroup shows Members, while another shows video tapes available for
rent. Here, you want a user to be able to select a member, select a video tape, and then click a Rent butto
that checks the selected tape out to the selected member. To do this, define a rentVideoTape: method in the
Member class that takes a VideoTape as an argument and handles the accounting involved in a video renta
Then, in Interface Builder, control-drag a connection from the button to the Members display group. Select
EOActionAssociation in the Connections inspector, and bind the association’s action aspect to Member’s
rentVideoTape: action. Similarly, control-drag a connection from the button to the VideoTape display
group. Select EOActionAssociation in the Connections inspector, and bind the association’s argument
aspect to the VideoTape display group. Now, when the user selects a Member, selects a VideoTape, and
clicks the button, the selected Member is sent a rentVideoTape: message with the selected VideoTape.

Instance Methods

action:
– (void)action:(id)sender

Invoked when the receiver’s display object is acted upon. Sends the method identified by the receiver’s
action aspect (with an argument, if the argument aspect is bound) to the selected objects.
6

 Classes: EOActionCellAssociation

.

EOActionCellAssociation

Inherits From: EOGenericControlAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOControlAssociation.h

Class Description

EOActionCellAssociation is the default association class for use with NSActionCells (Application Kit). An
EOActionCellAssociation object displays the value of the selected object in its NSActionCell, and updates
the object when the NSActionCell’s value changes. A sibling class, EOControlAssociation, can be used
with independent controls such as NSButtons and NSTextFields. Other associations, such as
EOPopUpAssociation and EOColumnAssociation, supersede these classes for more specialized behavior

When multiple EOActionCellAssociations are bound to cells in the same control (such as in an Application
Kit NSMatrix), one of them becomes the delegate of the control and forwards appropriate messages, such
as control:isValidObject: , to the others. This eliminates the need to add an EOControlAssociation just to
handle delegate messages.

EOActionCellAssociations access values using NSActionCell’s setObjectValue: method, which allows
values with non-string representations to be displayed. An EOActionCellAssociation can be bound to an
NSImageCell, for example, with an attribute whose class is NSImage.

Usable With

Any NSActionCell

Aspects

value An attribute of the selected object, displayed in the NSActionCell.

enabled A boolean attribute of the selected object, which determines whether the NSActionCell is enabled.
7

Examples

To display a movie’s budget in an NSTextFieldCell, in Interface Builder, control-drag a connection from
the text field to the Movie display group. Select EOActionCellAssociation in the Connections inspector, and
bind the value aspect to the “budget” key. Then, if the NSTextFieldCell is editable, when the user types a
new value and presses Enter or Tab, the selected movie’s budget attribute is changed.

Assuming that Movie objects implement an isBudgetNegotiable method, you can make the
NSTextFieldCell uneditable depending on the selected movie. To do so, bind the enabled aspect to the
“isBudgetNegotiable” key.

Instance Methods

control
– (NSControl *)control

Returns the NSControl that owns the receiver’s display object.

See also: – object (EOAssociation), – controlView (NSActionCell class of the Application Kit)

editingAssociation
– (EOGenericControlAssociation *)editingAssociation

For EOActionCellAssociations in an NSMatrix (defined in the Application Kit) or other multi-celled
control, returns the selected EOActionCellAssociation (or the one that’s editing text).

Object Keys Taken

target
On receiving an action message from the NSActionCell, an EOActionCellAssociation sends the
NSActionCell’s value to the EODisplayGroup.

delegate See the class description.
8

 Classes: EOActionInsertionAssociation

s

EOActionInsertionAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOActionInsertionAssociation.h

Class Description

An EOActionInsertionAssociation object inserts objects from one display group into another. In the Yellow
Box, the EOActionInsertion object uses NSControl’s action method as a signal to perform the insertion.

Example

Suppose an application shows Talent in one display group and Movies in another. You want a user to be able
to select a talent, select a movie, and then click an Assign Director button that assigns the selected talent a
one of the movie’s directors. To do this, in Interface Builder, control-drag a connection from the button to

Usable With

Any object that responds to setAction:, in the Yellow Box typically an NSControl.

Aspects

source Bound to the EODisplayGroup containing objects to insert. This aspect doesn’t use a key.

destination
A relationship of the selected object into which objects from the source EODisplayGroup are inserted.
Usually bound to a different EODisplayGroup than source .

enabled
A boolean attribute of the selected object (usually in the destination EODisplayGroup), which determines
whether the NSControl is enabled.

Object Keys Taken

target
On receiving an action message from the display object, an EOActionInsertionAssociation inserts objects
from the source EODisplayGroup into the destination EODisplayGroup.
9

t
the Talent display group. Select EOActionInsertionAssociation in the Connections inspector, and
double-click the association’s source aspect, binding it to the Talent display group. Similarly, control-drag
a connection from the button to the Movie display group. Select EOActionAssociation in the Connections
inspector, and bind the association’s destination aspect to the “directors” key. Now, when the user clicks
the button, the selected Talent is added to the directors relationship of the selected Movie. If more than one
talent is selected, both are added to the relationship. If more than one Movie is selected, the selected talen
are added to the relationship of the first Movie in the selection.
10

 Classes: EOApplet

EOApplet

Inherits From: com.sun.java.swing.JApplet

Package: com.apple.client.eointerface

Class Description

EOApplet is the default Applet class embedded in WebObjects pages containing a WOJavaClientApplet
WOElement. EOApplet is actually something of a shell, as all application initialization logic actually
resides in EOApplication. For maximum flexibility, any application specifics should be implemented in
EOApplication's finishInitialization rather than EOApplet's init .

EOApplet is for use in Java Client applications only; there isn’t an equivalent class for Yellow Box.

Instance Methods

init
public void init ()

Instantiates an EODistributionChannel before passing it to EOApplication's application method, using the
receiver's contentPane as container and className,languages and controllerClassName retrieved via
Applet's getParameter.
11

12

 Classes: EOApplication

EOApplication

Inherits From: com.sun.java.swing.JApplet

Package: com.apple.client.eointerface

Class Description

Java programs typically execute either as either an Applet running in a browser or care of a class
implementing the static method main (often referred to as an "application"). EOApplication insulates the
developer from the details of this distinction by serving as an execution-mode-independent repository for
application-level client-side logic. The provided JApplet subclass EOApplet is essentially nothing more
than an EOApplication-invoking shell.

EOApplication is for use in Java Client applications only; there isn’t an equivalent class for Yellow Box.

Constructors

protected EOApplication ()

This constructor is exposed simply so that subclasses may refer to it without compiler error. EOApplication
should always be instantiated through one of the two static initializers.

Static Methods

application
public static com.apple.client.eointerface.EOApplication

application(com.apple.client.eodistribution.EODistributionChannel channel)

One of two sharedApplication initializers, this variant should be invoked in contexts such as main where
the parameters required by the following edition are unavailable and must be requested from a server-side
WOJavaClientApplet via channel. Once these parameters have been retrieved this method performs the
same initialization as the following method.
13

public static com.apple.client.eointerface.EOApplication application(java.lang.String className,
com.apple.client.eodistribution.EODistributionChannel channel
com.apple.client.foundation.NSArray languages,
java.lang.String controllerClassName,
java.awt.container container)

Sets sharedApplication to a new instance of the EOApplication with className. After initializing an
EODistributedObjectStore with channel and establishing it as EOEditingContext's
defaultParentObjectStore, this method creates an instance of the EOInterfaceController with
controllerClassName and runs it in container (see createInterfaceController and languages for further
details).

Instance Methods

applicationWillExit
protected boolean applicationWillExit ()

Invoked whenever the last window registered with the receiver via registerWindow has been closed in a
non-Applet execution context, this method gives custom subclasses an opportunity to perform any
necessary cleanup before exit or simply reject EOApplication's window management logic by returning
false (see registerWindow). The default implementation returns true.

createInterfaceController
public static com.apple.client.eointerface.EOInterfaceController

createInterfaceController(java.lang.String className, java.awt.Container container)

This convenience method creates and runs a new instance of the EOInterfaceController with className. If
container is non-null, it is passed to the new controller's implementation of runInContainer , otherwise the
"presentation-neutral" method run is invoked. Returns the new instance.

finishInitialization
protected void finishInitialization ()

Invoked as the final step in the receiver's bootstrapping, this method represents a subclass initialization hook
somewhat analogous to Applet's init . By the time finishInitialization is invoked, EOEditingContext's
defaultParentObjectStore has been set, connecting the receiver to the server, and any specified
EOInterfaceController has been instantiated and run.
14

 Classes: EOApplication

d

t
languages
public void com.apple.client.foundation.NSArray languages()

Returns the array of languages supported by the receiver's localization as defined by developer and retrieve
from the server (note that only the first element of this array, typically defined by WOJavaClientApplet's
WOAppletLanguageKey, is currently used).

main
public static void main(java.lang.String arguments)

EOApplication's implementation of this method allows client-side programs to execute from the command
line in addition to running as an Applet. The first, required element of arguments must be the same
application URL users would enter to access the equivalent EOApplet in a browser. The optional second
element should be the name of any initial entry page other than Main. After instantiating an
EODistributionChannel on the basis of these two parameters,main simply invokes the channel-driven
version of application.

registerWindow
public void registerWindow(java.awt.Window window)

Disposing of all windows in a non-Applet-based user interface launched via main does not cause the
program to exit because the Java virtual machine continues to run. EOApplication attempts to manage this
problem for the consumer by maintaining a registry of all Windows. When the last remaining Window
registered with this method is disposed of in a non-Applet execution context, EOApplication invokes
shouldTerminate. If this method returns true, System's exit method is invoked with a zero status. Also
see windowRegistryEnabled and EOInterfaceController's shouldRegisterWindow.

Note the use of "disposing" rather than "closing" in the previous paragraph. Despite its name, the AWT
WindowListener message windowClosed is only sent by java.awt.Window within dispose, not setVisible.
As a result, the exit logic EOApplication provides is only activated by Window disposal.

setLanguages
public void setLanguages(com.apple.client.foundation.NSArray languages)

Sets the array of languages supported by the receiver's localization as defined by the developer. Note tha
only the first element of this array is currently referenced.
15

setWindowRegistryEnabled
public boolean setWindowRegistryEnabled(boolean enabled)

Sets whether or not the window registration logic described in registerWindow should be used by the
receiver.

shouldTerminate
protected boolean shouldTerminate()

This method acts as a subclass hook for application cleanup logic and refinement of the exit condition
described in registerWindow. A return value of false will inhibit invocation of exit when all registered
windows have been disposed. The default implementation returns true.

sharedApplication
public static void sharedApplication()

Returns the EOApplication instance initialized via one the two application methods, throwing an
IllegalStateException if neither has been invoked.

windowRegistryEnabled
public boolean windowRegistryEnabled()

Returns whether or not window registration logic described in registerWindow is used by the receiver. The
default is true, but this may be overridden via setWindowRegistryEnabled.
16

 Classes: EOArchive
EOArchive

Inherits From: java.lang.Object

Package: com.apple.client.eointerface

Class Description

An EOArchive is a client-side rendering of an Interface Builder archive document. By default, the
EOInterfaceController for a WOJavaClientApplet manages its associated archive transparently and the
developer never needs to interact directly with this class. The loadArchiveNamed method is exposed for
developers who do not wish to use EOInterfaceControllers. Please note that EOArchive’s implementation
is intentionally opaque because it is guaranteed to change in the next release.

Constructors

public EOArchive(Object owner)

Creates an EOArchive instance initialized with owner, the “File’s Owner” for the Interface Builder archive
document.

Static Methods

loadArchiveNamed
public static boolean loadArchiveNamed(String archiveName, Object owner, String packageName)

Loads a new instance of the EOArchive name, where name identifies an InterfaceBuilder document
(localization is driven by WOJavaClientApplet’s EOLanguageKey) and owner indicates the “File’s
Owner."“The packageName argument identifies a package and is used in constructing the complete path to
the archive. If packageName is null , the package of owner is used.
17

18

 Classes: EOAssociation

.
EOAssociation

Inherits From: EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOAssociation.h

Purpose
An EOAssociation maintains a two-way binding between the properties of a display object, such as a text field
or combo box, and the properties of one or more enterprise objects contained in one or more EODisplayGroups
You typically create and configure associations in Interface Builder, using the programmatic interface only when
you write your own EOAssociation subclasses. For information on the different kinds of associations you can
use, see the following subclass specifications:

Principal Attributes
• A display object (such as a text field or combo box)

EOActionAssociation EOActionCellAssociation

EOActionInsertionAssociation EOColumnAssociation

EOComboBoxAssociation EOControlAssociation

EODetailSelectionAssociation EOGenericControlAssociation

EOMasterCopyAssociation EOMasterDetailAssociation

EOMasterPeerAssociation EOMatrixAssociation

EOPickTextAssociation EOPopUpAssociation

EORadioMatrixAssociation EORecursiveBrowserAssociation

EOTableViewAssociation EOTextAssociation
19

• Aspects that control different parameters of the display object (such as value and enabled)
• One or more EODisplayGroups (no more than one per aspect)
• One or more keys (enteprise object properties) (as many as one key per aspect)

Creation
Interface Builder
– initWithObject: Designated initializer.

Class Description

EOAssociation defines the mechanism that transfers values between EODisplayGroups and the user
interface of an application. An EOAssociation instance is tied to a single display object, a user interface
object or other kind of object that manages values intended for display. The EOAssociation takes over
certain outlets of the display object and sets its value according to the selection in the EODisplayGroup. An
EOAssociation also has various aspects, which define the different parameters of the display object that it
controls, such as the value or values displayed and whether the display object is enabled or editable. Each
aspect can be bound to an EODisplayGroup with a key denoting a property of the enterprise objects in the
EODisplayGroup. The value or values of this property determine the value for the EOAssociation’s aspect.

EOAssociation is an abstract class, defining only the general mechanism for binding display objects to
EODisplayGroups. You always create instances of its various subclasses, which define behavior specific to
different kinds of display objects. See the listing in the Class at a Glance section for standard EOAssociation
subclasses.

You normally set up EOAssociations using Interface Builder; each of the class specifications for
EOAssociation’s subclasses provide an example using Interface Builder to set them up. EOAssociation’s
programmatic interface is more important when defining custom EOAssociation subclasses. For more
information on EOAssociations, see the sections:

• How EOAssociations Work
• Setting up an EOAssociation Programmatically
• Creating a Subclass of EOAssociation

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:
20

 Classes: EOAssociation
Method Types

Declaring capabilities
+ aspects
+ aspectSignatures
+ objectKeysTaken+ isUsableWithObject:
+ associationClassesSuperseded+ displayName
+ primaryAspect
– canBindAspect:displayGroup:key:

Getting all possible EOAssociations for a display object
+ associationClassesForObject:

Creating and configuring instances
– initWithObject:
– bindAspect:displayGroup:key:
– establishConnection
– breakConnection
– copyMatchingBindingsFromAssociation:

Getting the display object
– object

Examining bindings
– displayGroupForAspect:
– displayGroupKeyForAspect:

Updating values
– subjectChanged
– endEditing

Accessing enterprise object values
– setValue:forAspect:
– setValue:forAspect:atIndex:
– valueForAspect:
– valueForAspect:atIndex:

Handling validation errors
– shouldEndEditingForAspect:invalidInput:errorDescription:
– shouldEndEditingForAspect:invalidInput:errorDescription:index:
21

.

’t
Class Methods

aspects
+ (NSArray *)aspects

Overridden by subclasses to return the names of the receiving class’s aspects as an array of string objects
Subclasses should include their superclass’s aspects and add their own when overriding this method.

aspectSignatures
+ (NSArray *)aspectSignatures

Overridden by subclasses to return the signatures of the receiver’s aspects, an array of string objects
matching its aspects array index for index. Each signature string can contain the following characters:

An aspect signature string of “A1”, for example, means the corresponding aspect can be bound to either
attributes or to-one relationships. An empty signature indicates that the corresponding aspect can be bound
to an EODisplayGroup without a key (that is, the key is irrelevant). Interface Builder uses aspect signatures
to enable and disable keys in its Connections inspectors.

EOAssociation’s implementation of this method returns an array of “A1M” of the length of its aspects array.

associationClassesForObject:
+ (NSArray *)associationClassesForObject:(id)aDisplayObject

Returns the subclasses of EOAssociation usable with aDisplayObject. Sends isUsableWithObject: to
every loaded subclass of EOAssociation, adding those that respond YES to the array. Subclasses shouldn
override this method; override isUsableWithObject: instead.

Signature Character Meaning

A
The aspect can be bound to
attributes.

1 (one)
The aspect can be bound to
to-one relationships.

M
The aspect can be bound to
to-many relationships.
22

 Classes: EOAssociation

s

h

associationClassesSuperseded
+ (NSArray *)associationClassesSuperseded

Overridden by subclasses to return the other EOAssociation classes that the receiver supplants. This allow
a subclass to mask its superclasses from the Connection Inspector’s pop-up list in Interface Builder, since
the subclass always includes the aspects and functionality of its superclasses. For example,
EOPopUpAssociation supersedes EOControlAssociation, because for pop-up buttons an
EOPopUpAssociation is always more appropriate to use.

displayName
+ (NSString *)displayName

Returns the name used by Interface Builder in the Connection Inspector’s pop-up list. EOAssociation’s
implementation simply returns the name of the receiving class.

isUsableWithObject:
+ (BOOL)isUsableWithObject:(id)aDisplayObject

Overridden by subclasses to return YES if instances of the receiving class are usable with aDisplayObject,
NO if they aren’t. The receiving class can examine any relevant characteristic of aDisplayObject—its class,
configuration (such as whether an NSMatrix operates in radio mode), and so on.

objectKeysTaken
+ (NSArray *)objectKeysTaken

Overridden by subclasses to return the names of display object outlets that instances assume control of, suc
as “target” and “delegate”. Interface Builder uses this information to disable connections from these outlets
in its Connections Inspector.

primaryAspect
+ (NSString *)primaryAspect

Overridden by subclasses to return the default aspect, usually one denoting the displayed value, which by
convention is named “value”. EOAssociation’s implementation returns nil .
23

Instance Methods

bindAspect:displayGroup:key:
– (void)bindAspect:(NSString *)aspectName

displayGroup:(EODisplayGroup *)aDisplayGroup
key:(NSString *)key

Defines the receiver’s link between its display object and aDisplayGroup. aspectName is the name of the
aspect it observer in its display object, and key is the name of the property it observes in aDisplayGroup.
Invoke establishConnection after this method to finish setting up the binding. See “Setting up an
EOAssociation Programmatically” in the class description for more information.

See also: – initWithObject: , – establishConnection

breakConnection
– (void)breakConnection

Removes the receiver from its EODisplayGroup and display object. This causes it to be released, so be sure
to retain the EOAssociation before invoking this method if you want to keep it for another use. Subclasses
should override this method to remove the receiver from any outlets of the display object, such as target or
delegate, and invoke super’s implementation at the end.

See also: – establishConnection

canBindAspect:displayGroup:key:
– (BOOL)canBindAspect:(NSString *)aspectName

displayGroup:(EODisplayGroup *)aDisplayGroup
key:(NSString *)key

Overridden by subclasses to return YES if the receiver can tie an aspect named aspectName from its display
object to the property identified by key in aDisplayGroup, NO if it can’t. aspectName should name an aspect
supported by the receiver’s class.

Interface Builder uses this information to disable aspects in its Connections Inspector. Subclasses can
override this method to base their answers on other binds already made, or on characteristics of the
receiver’s display object or of aDisplayGroup. EOAssociation’s implementation always returns YES.

See also: – localKeys (EODisplayGroup), – attributeKeys (EOClassDescription),
– toOneRelationshipKeys (EOClassDescription),
– toManyRelationshipKeys (EOClassDescription)
24

 Classes: EOAssociation

copyMatchingBindingsFromAssociation:
– (void)copyMatchingBindingsFromAssociation:(EOAssociation *)anAssociation

Duplicates the bindings of anAssociation in the receiver. For each aspect of anAssociation that has an
EODisplayGroup, invokes bindAspect:displayGroup:key: with the EODisplayGroup and key for that
aspect.

displayGroupForAspect:
– (EODisplayGroup *)displayGroupForAspect:(NSString *)aspectName

Returns the EODisplayGroup bound to the receiver for aspectName, or nil if there’s no such object.

See also: – displayGroupKeyForAspect:

displayGroupKeyForAspect:
– (NSString *)displayGroupKeyForAspect:(NSString *)aspectName

Returns the EODisplayGroup key bound to the receiver for aspectName, or nil if there’s no
EODisplayGroup.

See also: – displayGroupForAspect:

endEditing
– (BOOL)endEditing

Overridden by subclasses to pass the value of the receiver’s display object to the EODisplayGroup, by
invoking setValue:forAspect: with the display object’s value and the appropriate aspect (typically
“value”). Returns YES if successful, NO if not—specifically if setValue:forAspect: returns NO. The
receiver should also send an associationDidEndEditing: message to its EODisplayGroup.

Subclasses whose display objects immediately pass their changes back to the EOAssociation—such as a
button or pop-up list—need not override this method. It’s only needed when the display object’s value is
edited rather than simply set.

EOAssociation’s implementation does nothing but return YES.
25

establishConnection
– (void)establishConnection

Overridden by subclasses to attach the receiver to the outlets of its display object, and to otherwise configure
the display object (such as by setting its action method). EOAssociation’s implementation subscribes the
receiver as an observer of its EODisplayGroups and causes the display object to retain the receiver.
Subclasses should invoke super’s implementation after establishing their own connections.

See “Setting up an EOAssociation Programmatically” in the class description for more information.

See also: – breakConnection

initWithObject:
– (id)initWithObject: (id)aDisplayObject

Initializes the receiver to monitor and update the value in aDisplayObject, which is typically a
user-interface object or an EODisplayGroup. This is the designated initializer for the EOAssociation class.
Returns self.

Note: Because of the way that EOAssociations are set up, this method doesn’t retain aDisplayObject. See
“Setting up an EOAssociation Programmatically” in the class description for more information.

See also: – bindAspect:displayGroup:key:, – establishConnection

object
– (id)object

Returns the receiver’s display object.

See also: – initWithObject:

setValue:forAspect:
– (BOOL)setValue:(id)value

forAspect:(NSString *)aspectName

Sets a value of the selected enterprise object in the EODisplayGroup bound to aspectName. Retrieves the
display group and key bound to aspectName, and sends the display group a setSelectedObjectValue:
forKey: message with value and the key as arguments. Returns YES if successful, or if there’s no display
group bound to aspectName. Returns NO if there’s an display group and it doesn’t accept the new value.

See also: – valueForAspect:
26

 Classes: EOAssociation
setValue:forAspect:atIndex:
– (BOOL)setValue:(id)value

forAspect:(NSString *)aspectName
atIndex:(unsigned int)index

Sets a value of the enterprise object at index in the EODisplayGroup bound to aspectName. Retrieves the
display group and key bound to aspectName, and sends the display group a setValue:forObjectAtIndex:
key: message with value, index, and the key as arguments. Returns YES if successful, or if there’s no
display group bound to aspectName. Returns NO if there’s a display group and it doesn’t accept the new
value.

See also: – valueForAspect:atIndex:

shouldEndEditingForAspect:invalidInput:errorDescription:
– (BOOL)shouldEndEditingForAspect:(NSString *)aspectName

invalidInput: (NSString *)inputString
errorDescription: (NSString *)errorDescription

Invoked by subclasses when the display object fails to validate its input, this method informs the
EODisplayGroup bound to aspectName with an association:failedToValidateValue:forKey:object:
errorDescription: message, using the display group’s selected object. Returns the result of that message,
or YES if there’s no display group.

For example, an association bound to an NSControl object (Application Kit) receives a control:
didFailToFormatString:errorDescription: delegate message when the control’s formatter fails to format
the input string. Its implementation of that method invokes shouldEndEditingForAspect:invalidInput:
errorDescription: .

See also: – shouldEndEditingForAspect:invalidInput:errorDescription:index:

shouldEndEditingForAspect:invalidInput:errorDescription:index:
– (BOOL)shouldEndEditingForAspect:(NSString *)aspectName

invalidInput: (NSString *)inputString
errorDescription: (NSString *)errorDescription
index:(unsigned int)index

Works in the same manner as shouldEndEditingForAspect:invalidInput:errorDescription: , but allows
you to specify a particular object by index rather than implicitly specifying the selected object.
27

s.
subjectChanged
– (void)subjectChanged

Overridden by subclasses to update state based when an EODisplayGroup’s selection or contents change
This method is invoked automatically anytime a display group that’s bound to the receiver changes. The
receiver can query its display group with selectionChanged and contentsChanged messages to determine
how it needs to update.

valueForAspect:
– (id)valueForAspect:(NSString *)aspectName

Returns a value of the selected enterprise object in the EODisplayGroup bound to aspectName. Retrieves
the display group and key bound to aspectName, and sends the display group a
selectedObjectValueForKey: message with the key. Returns nil if there’s no display group or key bound
to aspectName.

See also: – setValue:forAspect:

valueForAspect:atIndex:
– (id)valueForAspect:(NSString *)aspectName

atIndex:(unsigned int)index

Returns a value of the enterprise object at index in the EODisplayGroup bound to aspectName. Retrieves
the display group and key bound to aspectName, and sends the display group a valueForObjectAtIndex:
key: message with index and the key. Returns nil if there’s no display group or key bound to aspectName.

See also: – setValue:forAspect:atIndex:
28

 Classes: EOAssociation

ts
EOAssociation

How EOAssociations Work

An EOAssociation monitors its display object for user input or other events while also observing changes
in the selection or contents of its EODisplayGroups. The basic purpose of an EOAssociation is to assure
that changes at one end are reflected on the other. When the selection in a display group changes, for
example, the association updates the state of its display object to reflect this new selection. The following
sections describe this process in detail.

The Display Object

In the Yellow Box, an EOAssociation is tied to a single display object. Each EOAssociation assumes the
roles defined for one or more outlets of this object. An EOControlAssociation, for example, appropriates
the target and action outlets of the NSControl it is bound to. When the user activates the control or changes
its value, the action is fired and the EOAssociation correspondingly updates a property of the display
group's selected enterprise object. An EOControlAssociation also sets itself as the control’s delegate in
order to receive various editing and validation messages.

In the Yellow Box, any outlets an association claims cannot be used for other purposes. The class method
objectKeysTaken returns the names of any outlets a given EOAssociation subclass appropriates, and
InterfaceBuilder disables them in its Connections Inspector if the inspected object has been associated. A
button acting as an EOControlAssociation's display object, for example, has its target outlet dimmed.

Although display objects are typically user-interface controls such as text fields and pop-up menus, they
can be any kind of object. A notable example of this is an EOMasterDetailAssociation, where the display
object is a “detail” EODisplayGroup populated with the destination enterprise objects of a relationship in
the “master” display group. See the EOMasterDetailAssociation class specification for more information
on master-detail configurations.

Bindings: Aspects, EODisplayGroups, and Keys

Although an EOAssociation has only one display object it may have any number of aspects. Aspects define
the EODisplayGroup characteristics that the association observes. Aspects are bound to a display group by
a key of the enterprise objects contained by the association. Depending upon a given EOAssociation
subclass, aspects may be optional or mandatory. They might all have to be bound to a single
EODisplayGroup or they may span several. Some aspects can be mutually exclusive.

On the display side, aspects are typically bound to visible facets of the EOAssociation’s display object, such
as the value or values it displays and any interactive state. Each aspect’s value is determined by the conten
of the enterprise-object property in the EODisplayGroup that the aspect is bound to. This value may be
taken from all enterprise objects in the EODisplayGroup or only those in the current selection. Some
aspects are “read-only” in that they merely reflect the contents of the display group, but others change
enterprise-object values when the display object is manipulated.
29

r

An EOControlAssociation, for example, defines “value” and “enabled” aspects. To configure a text field to
display the salary for the selected enterprise object you must create an EOControlAssociation with the text
field as its display object and bind the EOControlAssociation’s “value” aspect to the appropriate display
group’s “salary” key. You might also bind the EOControlAssociation’s “enabled” aspect to some key such
as “eligibleForRaise” so that the text field is made editable if this property evaluates to non-zero. When
focus leaves the text field, the newly entered value is sent to the EODisplayGroup.

A multi-valued aspect can represent the destination of a to-many relationship or it can define a range of
possible values for an enterprise object’s property. EOComboBoxAssociation, for example, has a “titles”
aspect that defines all possible values for a key, and all these values then appear in the pop-up menu. If, fo
example, you bind the “titles” aspect to the “name” key of an EODisplayGroup containing Departments,
you get a pop-up menu containing the names of all departments. EOComboBoxAssociation also has a
“selectedObject” aspect which, when bound to a relationship property of an enterprise object, determines
the selection in the “titles” display group.

As EODelayedObservers, EOAssociations add themselves to the list of objects observing the display
groups they are bound to. When a display group changes its selection or contents, observing
EOAssociations are sent a subjectChanged message. This message does not indicate which
EODisplayGroup has changed, so the receiver must query each one. When an EOAssociation wishes to
modify the contents of a EODisplayGroup, it typically does so through the setValue:forAspect:. This
process and the querying of display groups are described under ““Monitoring Changes from the Display
Object”.”

Setting up an EOAssociation Programmatically

Although you normally use the Interface Builder application (and the EOPalette palette) to set up
EOAssociations, you can do so programmatically as well. Because EOAssociation coordinates the actions
of many objects, linking a display object to a display group is a multi-step process, as shown by the
following code fragment; this fragment assumes that salaryText and employeeGroup already exist.

NSTextField *salaryText;

EODisplayGroup *employeeGroup;

EOControlAssociation *association;

association = [[EOControlAssociation alloc] initWithObject:salaryText];

[association bindAspect:@"value" displayGroup:employeeGroup key:@"salary"];

[association bindAspect:@"enabled" displayGroup:employeeGroup key:@"eligibleForRaise"];

[association establishConnection];

[association release];

Although an association is initialized with the display object it monitors, this really represents only half of
the required initialization; the association and therefore the display object have yet to be bound to any
display group. The two invocations of bindAspect:displayGroup:key: define the specifics of the field’s
interaction with employeeGroup . Once these aspects have been bound, establishConnection causes the
association to register as an observer of employeeGroup and complete its internal initialization. Note
30

 Classes: EOAssociation

h

that in the Yellow Box you can safely release a newly instantiated association once you invoke
establishConnection because this method retains the association for the lifespan of the display object.

Creating a Subclass of EOAssociation

If none of the standard EOAssociation subclasses meets your needs, you can create a new one without muc
effort. To do so, you need to define four areas of functionality:

• What your subclass monitors and which display objects it can work with.
• How your subclass establishes its connections with its display object and its EODisplayGroups
• How it updates the display object to reflect display group changes.
• How it monitors the display object and updates the EODisplayGroups.

The following four sections describe how to do each of these.

Defining Capabilities

If you’re creating a Yellow Box subclass, a significant part of creating an EOAssociation subclass is
defining and advertising what the subclass works with. The characteristics that your subclass should define
are:

Characteristic Optional/
Required Description

Aspects Required
Your EOAssociation subclass must define an aspects class method that
returns an NSArray of aspect names, as NSStrings. Some standard
aspects are:

Aspect Name Use

value The value of an attribute or relationship

enabled
Whether the control should be enabled

titles
All existing values for an attribute

selectedTitle
The value of the selected attribute (bound to the same
key as “titles”)
31

What the subclass works with Required

 Interface Builder asks each EOAssociation subclass if it can work with a
given object when it displays its Connections Inspector. Your subclass
should implement the isUsableWithObject: class method to examine the
object provided and return YES if it can work with that object. This method
can examine the class of the object provided, or any of its attributes, to
determine whether it can work with the object. For example,
EOPopUpAssociation verifies that the object is an NSPopUpButton, while
EOMasterDetailAssociation checks that the object is an EODisplayGroup
whose data source is an EODetailDataSource.

Aspect signatures Optional

Aspects by default are made available for any kind of property—
single-valued attributes, to-one relationships, and to-many relationships. If
your subclass has aspects that only have meaning for one or two of these,
it should define an aspectSignatures class method that returns an
NSArray of NSStrings corresponding to the aspects defined for the class.
Each string should contain a subset of the string “A1M”, where “A”
indicates that the aspect can be used with attributes (where the value is a
value-bearing object such as NSString or NSNumber), “1” that it can be
used with to-one relationships (where the value is an enterprise object),
and “M” indicates that the aspect can be used with to-many relationships
(where the value is an array of enterprise objects). EOControlAssociation
only displays single attributes, so its aspect signature for “value” and
“enabled” is the array (“A”, “A”). EOMasterDetailAssociation only works
with relationships, so the aspect signature for its aspect “parent” is the
array (“1M”).

Which outlets it uses Optional

Interface Builder disables connections to outlets used by an
EOAssociation, so if your subclass uses any it should advertise them by
defining the objectKeysTaken class method to return an NSArray
containing the names of the outlets. These are typically the standard
“target”, “delegate”, “dataSource”, and so on.

EOAssociation classes superseded Optional

If your EOAssociation subclass applies uniquely to display objects that
other kinds of EOAssociations simply happen to work with, it should
implement the associationClassesSuperseded class method to return
an array of these classes. EOPopUpAssociation, for example, works with
EOPopUpButton, which as a subclass of NSControl is also eligible for the
EOControlAssociation. Since this isn’t a meaningful or useful
EOAssociation for a pop-up button, EOPopUpAssociation supersedes it,
and Interface Builder doesn’t present it in its Connections Inspector when
a pop-up button is selected.

Characteristic Optional/
Required Description
32

 Classes: EOAssociation

ct
Setting Up

EOAssociation’s designated initializer is initWithObject: , but you rarely need to override this method.
Instead, you override establishConnection, which is where the real initialization takes place, as described
above in “Setting up an EOAssociation Programmatically”. Your subclass’s implementation of this method
should first invoke the superclass implementation to initialize the observation of bound EODisplayGroups
and then establish their notification relationship with the display object. Once the association has been
bound to its display groups and appropriately attached to its display object it is ready to perform real work.

Monitoring Changes from the EODisplayGroup

An EOAssociation is notified of changes in EODisplayGroup selections and changes through
EODelayedObserver’s subjectChanged method. An EOAssociation sublcass, in its implementation of this
method, propagates these changes to the display object. Because subjectChanged provides no additional
information about the change that triggered its invocation, associations must query their bound display
groups for details. The EOAssociation method displayGroupForAspect:, in conjunction with
EODisplayGroup’s contentsChanged and selectionChanged, faciliate efficient aspect-by-aspect change
analysis. Once you have determined the set of affected aspects, your subclass must update its display obje

Display name Optional

If you want your subclass to be listed in Interface Builder’s Associations
pop-up list with a name other than that of its class, it can override the
displayName to return that name. This is often done to truncate long
names so they fit in the pop-up button.

Primary aspect Optional

If your subclass implements the primaryAspect class method, Interface
Builder automatically selects it the first time the user drags a connection
from the display object and chooses your EOAssociation subclass in the
Connections Inspector.

Binding ability Optional

 If your subclass defines aspects that are mutually exclusive, available only
for a particular kind of display object, or are otherwise not always available,
you might want to implement the instance method canBindAspect:
displayGroup:key: to check these types of conditions. Interface Builder
uses this information to enable and disable aspects, to guide the user in
property setting up EOAssociations.

Priority Optional

EOAssociation uses the default EODelayedObserver priority of
EODelayedObserverPriorityThird. If your subclass need a higher or lower
priority, it should override the priority method appropriately.
EOMasterDetailAssociation, for example, uses
EODelayedObserverPrioritySecond to catch updates before other
EOAssociations based on it.

Characteristic Optional/
Required Description
33

lay

e

l
to reflect their new values. How this is done is specific to the class of display object and to the aspects your
EOAssocation subclass supports.

Monitoring Changes from the Display Object

When an EOAssociation is notified of a change to the state of its display object, it must update the affected
display groups so that they reflect the new state. Updating can involve changing a display-group value,
sending messages to the display group, or sending messages to some set of the enterprise objects the disp
group contains. As a simple example, an association with a “value” aspect would update the value of the
bound display group’s selected enterprise object by invoking setValue:forAspect: with the display object's
new contents. Complex associations might set enterprise object values more directly via EODisplayGroup's
setSelectedObjectValue:forKey: , setValue:forObject:key:, or setValue:forObjectAtIndex:key: in
conjunction with EOAssocation”s displayGroupKeyForAspect:. An association with a button as its
display object might go even further, sending the message defined by its “action” aspect to the enterprise
objects selected in a display group whenever the button is clicked.

For display objects that support editing, such as text fields, an association must observe events signifying
the beginning or end of an editing operation and then inform the appropriate display groups using
EODisplayGroup's associationDidBeginEditing: and associationDidEndEditing:. This operation is
important because a display group requests an end to editing when it is asked to perform tasks such as th
insertion of a new enterprise object or a save. It requests and end to editing by sending an endEditing
message to the association it believes currently has an edit in progress. Implementations of endEditing
should attempt to propagate the current state of the display object to the receiver’s display groups and return
NO if this attempt fails, indicating that the request has been disallowed. EOAssociations that support the
display of multiple values and the notion of a selection must also propagate changes in this selection to the
appropriate display groups using EODisplayGroup’s setSelectionIndexes:.

Validation

Although validation of values entered by the user can happen in several places, EOAssociations generally
concern themselves only with data entry errors. These errors are typically caught by the display object or
an NSFormatter, and result in a message to the delegate of the display object. For example, an NSContro
sends control:isValidObject: and control:didFailToFormatString:errorDescription: to its delegate,
allowing the delegate to validate values itself or to handle errors caught by an NSFormatter. Your
implementation of a method such as control:isValidObject: should simply try to save the new value, using
EOAssociation’s setValue:forAspect: or setValue:forAspect:atIndex:, returning YES or NO as that
message does. For control:didFailToFormatString:errorDescription: , the typical response should be to
invoke shouldEndEditingForAspect:invalidInput:errorDescription: or shouldEndEditingForAspect:
invalidInput:errorDescription:index: .
34

 Classes: EOColumnAssociation

d

EOColumnAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOColumnAssociation.h

Class Description

An EOColumnAssociation object cooperates with an EOTableViewAssociation to display values in a
column of an NSTableView (Application Kit). A column association links an NSTableColumn (Application
Kit) to a single attribute of all displayed objects in an EODisplayGroup. The value of each object is displayed in
its corresponding row.

The EOTableViewAssociation receives target, delegate, and data source messages from the table view, an
forwards them as needed to the appropriate column association. Column associations provide values for the
cells of each NSTableColumn, and also accept edited values to set in their display groups.

EOColumnAssociations provide values using NSTableView’s DataSource methods tableView:
setObjectValue:forTableColumn:row: and tableView:objectValueForTableColumn:. This allows
values with non-string representations to be displayed. For example, if an NSImageCell (Application Kit)
is used as an NSTableColumn’s data cell, an EOColumnAssociation can be used to display NSImages
(Application Kit) in the NSTableView.

Usable With

NSTableColumn (Application Kit)

Aspects

value An attribute of the objects, displayed in each row of the NSTableColumn.

enabled
A boolean attribute of the objects, which determines whether each object’s value cell is editable. Note that
because EOTableViewAssociation also uses this aspect, you can use it with different keys to limit
editability to the whole row or to an individual cell (column) in that row.
35

Example

To display the last and first names of objects in a Talent display group, in Interface Builder, Control-drag a
connection from the last name column to the display group. Select EOColumnAssociation in the
Connections inspector, and bind the value aspect to the “lastName” key (this automatically creates an
EOTableViewAssociation to manage the individual columns). Repeat to set up a column association for the
first name. Now when you run the application, the last and first names of each Talent object in the display
group’s displayedObjects array are put in the correponding row.

Method Types

Sorting rows
– setSortingSelector:
– sortingSelector

Table view data source methods
– tableView:setObjectValue:forTableColumn:row:
– tableViewObjectValueForLocationtableView:

objectValueForTableColumn:row:

Table view delegate methods
– tableView:shouldEditTableColumn:row:
– tableView:willDisplayCell:forTableColumn:row:

Control delegate methods
– controlDidFailToFormatStringErrorDescriptioncontrol:

didFailToFormatString:errorDescription:
– control:isValidObject:
– control:textShouldBeginEditing:

Instance Methods

setSortingSelector:
– (void)setSortingSelector:(SEL)aSelector

Sets the method selector used to sort rows to aSelector, one of:

Object Keys Taken

identifier
An EOColumnAssociations sets itself as the identifer of its NSTableColumn. (Note: This key isn’t formally
reserved by the objectKeysTaken method, as Interface Builder doesn’t treat it as an outlet.)
36

 Classes: EOColumnAssociation
• EOCompareAscending
• EOCompareDescending
• EOCompareCaseInsensitiveAscending
• EOCompareCaseInsensitiveDescending
• nil (to tell the receiver not to sort)

For more information on these selectors, see the section “Comparison Methods” in the EOSortOrdering
class specification (EOControl). Additionally, for details on the sorting methods themselves, see the
compare... methods in the Value Class Additions specification.

If the EOTableViewAssociation for the receiver’s NSTableView (Application Kit) sorts its rows, it applies
this method as needed to sort them. The default sorting selector is EOCompareAscending.

sortingSelector
– (SEL)sortingSelector

Returns the method selector used to sort rows, or nil if the column isn’t sorted.

Data Source and Delegate Methods

These methods are forwarded by the corresponding NSTableView’s EOTableViewAssociation to the
appropriate EOColumnAssociation.

control:didFailToFormatString:errorDescription:
– (BOOL)control: (NSControl *)aTableView

didFailToFormatString: (NSString *)aString
errorDescription: (NSString *)errorDescription

Invokes shouldEndEditingForAspect:invalidInput:errorDescription: (defined by EOAssociation) and
returns the result.

control:isValidObject:
– (BOOL)control: (NSControl *)aTableView

isValidObject: (id)anObject

Saves the value of any cell being edited using setValue:forAspect:, and if successful sends an
associationDidEndEditing: message to the receiver’s EODisplayGroup. Returns YES if successful (or if
no changes need be saved), NO if unsuccessful.
37

control:textShouldBeginEditing:
– (BOOL)control: (NSControl *)aTableView

textShouldBeginEditing:(NSText *)fieldEditor

Sends an associationDidBeginEditing: message to the receiver’s EODisplayGroup and returns YES.

tableView:objectValueForTableColumn:row:
– (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Returns the value of the property of the object at rowIndex bound to the value aspect.

tableView:setObjectValue:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)value
forTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Sets the property of the object at rowIndex bound to the value aspect to value.

tableView:shouldEditTableColumn:row:
– (BOOL)tableView:(NSTableView *)aTableView

shouldEditTableColumn:(NSTableColumn *)aTableColumn
row: (int)rowIndex

Returns NO if the enabled aspect is bound and its value for the object at rowIndex is NO. Otherwise returns
YES. Note that because the enabled aspects of EOTableViewAssociation and EOColumnAssociation can
be bound to different keys, you can limit editability to the whole row or to an individual cell (column) in
that row.

tableView:willDisplayCell:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

willDisplayCell: (id)aCell
forTableColumn: (NSTableColumn *)aTableColumn
row: (int)rowIndex

Alters the display characteristics for aCell according to the values for the enabled aspect of the object at
rowIndex.
38

 Classes: EOComboBoxAssociation
EOComboBoxAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOComboBoxAssociation.h

Class Description

An EOComboBoxAssociation object displays an attribute or to-one relationship value in an NSComboBox
(Application Kit), or JComboBox (Swing). The items in the ComboBox can be entered manually, or for a
relationship, constructed dynamically from values supplied by an EODisplayGroup.
EOComboBoxAssociation is very similar to the EOPopUpAssociation (Yellow Box only).

Usable With

NSComboBox (Application Kit), JComboBox (Swing)

Aspects
(defined in EOAssociation for Java Client applications)

titles (Yellow Box)
TitlesAspect (Java Client)

Property of the enterprise objects in an EODisplayGroup that supplies the titles for the items
in the combo box list.

selectedTitle (Yellow Box)
SelectedTitlesAspect (Java
Client)

String property of the enterprise object supplying the title to display in the c ombo box. When
the value of the combo box changes either because a new value is typed in or a selection is
made using the pop up menu, the new text value is assigned to this property.

selectedObject (Yellow Box)
SelectedObjectAspect (Java
Client)

Relationship property of the enterprise object containing the enterprise object to select from
the titles EODisplayGroup. selectedObject is usually mutually exclusive with selectedTitle .
When the value of the combo box changes, the association updates the relationship to point
to the new object.

enabled (Yellow Box)
EnabledAspect (Java Client)

A boolean attribute of the selected object that determines whether the combo box is enabled.
39

ct
Examples

There are three basic ways to configure a combo box and it’s association. Each is described below.

Selecting a String from a Static List

Suppose you have a Movie display group and you want to provide a combo box for setting the rating from
a static list of strings. In this example, a Movie object’s rating is a string property rather than a relationship
to a Rating object). To do this, in Interface Builder, type the list of ratings into the combo box. Control-drag
a connection from the combo box to the Movie display group. Choose EOComboBoxAssociation in the
Connections inspector, and bind the selectedTitle aspect to the “rating” key.

Selecting a String from a Dynamic List

This example is similar to the previous one, except in this example, a Movie object’s rating is chosen from
strings in a Rating database table. There’s a Rating EODisplayGroup that fetches the ratings into Rating
objects, and the combo box is filled from the “ratingString” property of the rating display group’s Rating
objects. To do this, in Interface Builder, control-drag a connection from the combo box to the Ratings
display group. Choose EOComboBoxAssociation in the Connections inspector, and bind the titles aspect
to the “ratingString” key. Similarly, control-drag a connection from the combo box to the Movie display
group. Again choose EOComboBoxAssociation in the Connections inspector, and bind the selectedTitle
aspect to the “rating” key.

Selecting the Destination of a To-One Relationship

Suppose you have a list of employees and want to assign each employee a department. In terms of the obje
model, you want to assign a Department object as the destination of an Employee object’s department
relationship. To do this, in Interface Builder, control-drag a connection from the combo box to a Department
display group. Choose EOComboBoxAssociation in the Connections inspector, and bind the titles aspect
to the “name” key. Similarly, control-drag a connection from the combo box to the Employee display group.
Again choose EOComboBoxAssociation in the Connections inspector, and bind the selectedObject to the
“department” key.

Object Keys Taken
(none forJava Client)

target
When the user chooses an item in the pop-up menu, the EOComboBoxAssociation updates the selected
object’s property with the item’s title or object.

dataSource
When the NSComboBox requests values for its list, the EOComboBoxAssociation provides them by
querying the appropriate EODisplayGroup or groups.

delegate An EOComboBoxAssociation accepts the message comboBoxSelectionDidChange:.
40

 Classes: EOComboBoxAssociation
If the selectedObject aspect is bound and the user types a value that doesn’t match any of those currently
in the list, an error panel is displayed.
41

42

 Classes: EOControlAssociation
EOControlAssociation

Inherits From: EOGenericControlAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOControlAssociation.h

Class Description

EOControlAssociation is the default EOAssociation subclass for use with NSControl objects (Application
Kit). A control association displays the value of the selected object in its control, and updates the object
when the control’s value changes. A sibling class, EOActionCellAssociation, can be used with individual
cells in an NSMatrix or NSForm (both defined in the Application Kit). Some other subclasses of
EOAssociation, such as EOPopUpAssociation and EOColumnAssociation, supersede these classes for
more specialized behavior.

EOControlAssociations access values using NSControl’s setObjectValue: method, which allows values
with non-string representations to be displayed. An EOControlAssociation can be bound to an
NSImageView, for example, with an attribute whose class is NSImage (both NSImageView and NSImage
are defined in the Application Kit).

Usable With

Any NSControl (Application Kit)

Aspects

value An attribute of the selected object, displayed in the NSControl.

enabled A boolean attribute of the selected object, which determines whether the NSControl is enabled.
43

Examples

To display a movie’s budget in an NSTextField, in Interface Builder, control-drag a connection from the text
field and a Movie display group. In the Connections inspector, choose EOControlAssociation, and bind the
value aspect to the “budget” key. Then, if the NSTextField is editable, when the user types a new value and
presses Enter or Tab, the selected movie’s budget attribute is changed.

Assuming that Movie objects implement an isBudgetNegotiable method, you can make the NSTextField
uneditable depending on the selected movie. To do so, bind the enabled aspect to the “isBudgetNegotiable”
key.

Instance Methods

control
– (NSControl *)control

Returns the receiver’s control object. For EOControlAssociation, this method is equivalent to
EOAssociation’s object method.

editingAssociation
– (EOGenericControlAssociation *)editingAssociation

Returns self.

Object Keys Taken

target
On receiving an action message from the NSControl, an EOControlAssociation sends the NSControl’s
value to the EODisplayGroup.

delegate
An EOControlAssociation accepts messages related to editing and validation of text, such as control:
textShouldBeginEditing: and controlDidFailToFormatStringErrorDescriptioncontrol:
didFailToFormatString:errorDescription: .
44

 Classes: EODetailSelectionAssociation

n

EODetailSelectionAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EODetailSelectionAssociation.h

Class Description

An EODetailSelectionAssociation binds two EODisplayGroups together through a relationship, so that the
destination display group acts as an editor for that relationship. The destination display group shows all
possible values for the relationship and indicates the actual members of the relationship by selecting them.
The user can change the objects included in the relationship of the source by selecting and deselecting them
in the destination.

EODetailSelectionAssociation is a useful alternative to EOMasterDetailAssociation and
EOMasterPeerAssociation when it’s more important to add and remove objects from a relationship than it
is to edit the attributes of those objects.

Example

Suppose that an employee can be assigned any number of projects. Your application displays employees i
one table view and projects in another. When an employee is selected in the first table view, the employee’s

Usable With

EODisplayGroup

Aspects

selectedObjects A relationship from objects in the source EODisplayGroup.

Object Keys Taken

None
45

s
t
assigned projects are selected in the other. To change the employee’s project assignments, a user change
the selection in the project table view: to add a project to the set, the user selects it, and to remove a projec
from the set, the user deselects it. To do this, in Interface Builder control-drag a connection from the
Projects display group to the Employee display group. Choose EODetailSelectionAssociation in the
Connections inspector, and bind the selectedObjects aspect to the “projects” key.
46

 Classes: EODisplayGroup
EODisplayGroup

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: EOInterface/EODisplayGroup.h

Purpose
An EODisplayGroup collects an array of objects from an EODataSource, and works with a group of
EOAssociation objects to display and edit the properties of those objects.

Principal Attributes
• Array of objects supplied by an EODataSource
• EOQualifier and EOSortOrderings to filter the objects for display
• Array of selection indexes
• Delegate

Creation
Interface Builder
– init Designated initializer.

Commonly Used Methods
– allObjects Returns all objects in the EODisplayGroup.
– displayedObjects Returns the subset of all objects made available for display.
– selectedObjects Returns the selected objects.
– setQualifier: Sets a filter that limits the objects displayed.
– setSortOrderings: Sets the ordering used to sort the objects.
– updateDisplayedObjects Filters, sorts, and redisplays the objects.
– insertObjectAtIndex: Creates a new object and inserts it into the EODataSource.
47

t.
Class Description

An EODisplayGroup is the basic user interface manager for an Enterprise Objects Framework or Java
Client application. It collects objects from an EODataSource, filters and sorts them, and maintains a
selection in the filtered subset. It interacts with user interface objects and other display objects through
EOAssociations, which bind the values of objects to various aspects of the display objects.

An EODisplayGroup manipulates its EODataSource by sending it fetchObjects, insertObject:, and other
messages, and registers itself as an editor and message handler of the EODataSource’s EOEditingContex
The EOEditingContext allows the EODisplayGroup to intercede in certain operations, as described in the
EOEditors and EOMessageHandlers informal protocol specifications. EODisplayGroup implements all the
methods of these informal protocols; see the descriptions for editingContextWillSaveChanges:,
editorHasChangesForEditingContext:, and editingContext:presentErrorMessage:
(editingContextPresentException for Java Client applications) for more information.

Most of an EODisplayGroup’s interactions are with its associations, its EODataSource, and its
EOEditingContext. See the EOAssociation, EODataSource, and EOEditingContext class specifications for
more information on these interactions.

Creating an EODisplayGroup

You create most EODisplayGroups in Interface Builder, by dragging an entity icon from the EOModeler
application, which creates an EODisplayGroup with an EODatabaseDataSource
(EODistributedDataSource, for Java Client applications), or by dragging an EODisplayGroup with no
EODataSource from the EOPalette. EODisplayGroups with EODataSources operate independent of other
EODisplayGroups, while those without EODataSources must be set up in a master-detail association with
another EODisplayGroup.

To create an EODisplayGroup programmatically, simply initialize it and set its EODataSource:

EODataSource *myDataSource; /* Assume this exists. */

EODisplayGroup *myDisplayGroup;

myDisplayGroup = [[EODisplayGroup alloc] init];

[myDisplayGroup setDataSource:myDataSource];

After creating the EODisplayGroup, you can add associations as described in the EOAssociation class
specification.

Getting Objects

Since an EODisplayGroup isn’t much use without objects to manage, the first thing you do with an
EODisplayGroup is send it a fetch message. You can use the basic fetch method; the fetch: action method,
which can be invoked by a control in the EODisplayGroup’s nib file; or, you can configure the
EODisplayGroup in Interface Builder to fetch automatically when its nib file is loaded. These methods all
ask the EODisplayGroup’s EODataSource to fetch from its persistent store with a fetchObjects message.
48

 Classes: EODisplayGroup

n
Filtering and Sorting

An EODisplayGroup’s fetched objects are available through its allObjects method. These objects are
treated only as candidates for display, however. The array of objects actually displayed is filtered and sorted
by the EODisplayGroup’s delegate, or by a qualifier and sort ordering array. You set the qualifier and sort
orderings using the setQualifier: and setSortOrderings: methods. The displayedObjects method returns
this filtered and sorted array; index arguments to other EODisplayGroup methods are defined in terms of
this array.

If the EODisplayGroup has a delegate that responds to displayGroup:displayArrayForObjects: , it
invokes this method rather than using its own qualifier and sort ordering array. The delegate is then
responsible for filtering the objects and returning a sorted array. If the delegate only needs to perform one
of these steps, it can get the qualifier or sort orderings from the EODisplayGroup and apply either itself using
the NSArray methods filteredArrayUsingQualifier: and sortedArrayUsingKeyOrderArray: , which are
added by the control layer.

If you change the qualifier or sort ordering, or alter the delegate in a way that changes how it filters and sorts
the EODisplayGroup’s objects, you can send updateDisplayedObjects to the EODisplayGroup to get it to
refilter and resort its objects. Note that this doesn’t cause the EODisplayGroup to refetch.

Changing and Examining the Selection

An EODisplayGroup keeps a selection in terms of indexes into the array of displayed objects.
EOAssociations that display values for multiple objects are responsible for updating the selection in their
EODisplayGroups according to user actions on their display objects. This is typically done with the
setSelectionIndexes: method. Other methods available for indirect manipulation of the selection are the
action methods selectNext and selectPrevious, as well as selectObjectsIdenticalTo: and
selectObjectsIdenticalTo:.

To get the selection, you can use the selectionIndexes method, which returns an array of NSNumbers, or
selectedObjects, which returns an array containing the selected objects themselves. Another method,
selectedObject, returns the first selected object if there is one.

The Delegate

EODisplayGroup offers a number of methods for its delegate to implement; if the delegate does, it invokes
them as appropriate. Besides the aforementioned displayGroup:displayArrayForObjects: , there are
methods that inform the delegate that the EODisplayGroup has fetched, created an object (or failed to create
one), inserted or deleted an object, changed the selection, or set a value for a property. There are also
methods that request permission from the delegate to perform most of these same actions. The delegate ca
return YES to permit the action or NO to deny it. For more information, see each method’s description in
the EODisplayGroupDelegate protocol specification.
49

Methods for Use by EOAssociations

While most of your application code interacts with objects directly, EODisplayGroup also defines methods
for its associations to access properties of individual objects without having to know anything about which
methods they implement. Accessing properties through the EODisplayGroup offers associations the benefit
of automatic validation, as well.

Associations access objects by index into the displayed objects array, or by object identifier.
valueForObjectAtIndex:key: returns the value of a named property for the object at a given index, and
setValue:forObjectAtIndex:key: sets it. Similarly, valueForObject:key: and setValue:forObject:key:
access the objects by object identifer. EOAssociations can also get and set values for the first object in the
selection using selectedObjectValueForKey: and setSelectedObjectValue:forKey:.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

Method Types

Creating instances
– init

Configuring behavior
– defaultStringMatchFormat
– defaultStringMatchOperator
– fetchesOnLoad
– queryBindingValues
– queryOperatorValues
– selectsFirstObjectAfterFetch
– setDefaultStringMatchFormat:
– setDefaultStringMatchOperator:
– setFetchesOnLoad:
– setQueryBindingValues:
– setQueryOperatorValues:
– setSelectsFirstObjectAfterFetch:
– setUsesOptimisticRefresh:
– setValidatesChangesImmediately:
– usesOptimisticRefresh
– validatesChangesImmediately
50

 Classes: EODisplayGroup
Setting the data source
– setDataSource:
– dataSource

Setting the qualifier and sort ordering
– setQualifier:
– qualifier
– setSortOrderings:
– sortOrderings

Managing queries
– qualifierFromQueryValues
– setEqualToQueryValues:
– equalToQueryValues
– setGreaterThanQueryValues:
– greaterThanQueryValues
– setLessThanQueryValues:
– lessThanQueryValues
– qualifyDisplayGroup
– qualifyDisplayGroup:
– qualifyDataSource
– qualifyDataSource:
– enterQueryMode:
– inQueryMode
– setInQueryMode:
– enabledToSetSelectedObjectValueForKey:

Fetching objects from the data source
– fetch
– fetch:

Getting the objects – allObjects
– displayedObjects

Updating display of values
– redisplay
– updateDisplayedObjects

Setting the objects
– setObjectArray:
51

Changing the selection
– setSelectionIndexes:
– selectObjectsIdenticalTo:
– selectObjectsIdenticalTo:selectFirstOnNoMatch:
– selectObject:
– clearSelection
– selectNext
– selectNext:
– selectPrevious
– selectPrevious:

Examining the selection
– selectionIndexes
– selectedObject
– selectedObjects

Inserting and deleting objects
– delete:
– deleteObjectAtIndex:
– deleteSelection
– insert:
– insertedObjectDefaultValues
– insertObjectAtIndex:
– insertObject:atIndex:
– setInsertedObjectDefaultValues:

Adding keys
– setLocalKeys:
– localKeys

Getting the associations
– observingAssociations

Setting the delegate
– setDelegate:
– delegate

Changing values from associations
– setSelectedObjectValue:forKey:
– selectedObjectValueForKey:
– setValue:forObject:key:
– valueForObject:key:
– setValue:forObjectAtIndex:key:
– valueForObjectAtIndex:key:
52

 Classes: EODisplayGroup
Editing by associations
– associationDidBeginEditing:
– association:failedToValidateValue:forKey:object:errorDescription:
– associationDidEndEditing:
– editingAssociation
– endEditing

Querying changes for associations
– contentsChanged
– selectionChanged
– updatedObjectIndex

Interacting with the EOEditingContext
– editorHasChangesForEditingContext:
– editingContextWillSaveChanges:
– editingContext:presentErrorMessage:

Instance Methods

allObjects
– (NSArray *)allObjects

Returns all of the objects collected by the receiver.

See also: – displayedObjects, – fetch

associationDidBeginEditing:
– (void)associationDidBeginEditing:(EOAssociation *)anAssociation

Invoked by anAssociation when its display object begins editing to record that EOAssociation as the editing
association.

See also: – editingAssociation, – endEditing, – association:failedToValidateValue:forKey:object:
errorDescription:
53

associationDidEndEditing:
– (void)associationDidEndEditing:(EOAssociation *)anAssociation

Invoked by anAssociation to clear the editing association. If anAssociation is the receiver’s editing
association, clears the editing association. Otherwise does nothing.

See also: – editingAssociation, – endEditing, – association:failedToValidateValue:forKey:object:
errorDescription:

association:failedToValidateValue:forKey:object:errorDescription:
– (BOOL)association:(EOAssociation *)anAssociation

failedToValidateValue:(NSString *)value
forKey: (NSString *)key
object:(id)anObject
errorDescription: (NSString *)errorDescription

Invoked by anAssociation from its shouldEndEditingForAspect:invalidInput:errorDescription:index:
method to let the receiver handle a validation error. This method opens an attention panel with
errorDescription as the message and returns NO.

See also: – displayGroup:shouldDisplayAlertWithTitle:message: (EODisplayGroupDelegate)

clearSelection
– (BOOL)clearSelection

Invokes setSelectionIndexes: to clear the selection, returning YES on success and NO on failure.

contentsChanged
– (BOOL)contentsChanged

Returns YES if the receiver’s array of objects has changed and not all observers have been notified, NO
otherwise. EOAssociations use this in their subjectChanged methods to determine what they need to
update.

See also: – selectionChanged, – updatedObjectIndex
54

 Classes: EODisplayGroup
dataSource
– (EODataSource *)dataSource

Returns the receiver’s EODataSource.

See also: – setDataSource:

defaultStringMatchFormat
– (NSString *)defaultStringMatchFormat

Returns the format string that specifies how pattern matching will be performed on string values in the
queryMatch dictionary. If a key in the queryMatch dictionary does not have an associated operator in the
queryOperatorValues dictionary, then its value is matched using pattern matching, and the format string
returned by this method specifies how it will be matched.

See also: – defaultStringMatchOperator , – setDefaultStringMatchFormat:

defaultStringMatchOperator
– (NSString *)defaultStringMatchOperator

Returns the operator used to perform pattern matching for string values in the queryMatch dictionary. If a
key in the queryMatch dictionary does not have an associated operator in the queryOperatorValues
dictionary, then the operator returned by this method is used to perform pattern matching.

See also: – defaultStringMatchFormat , – setDefaultStringMatchOperator:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

delete:
– (void)delete:(id)sender

This action method invokes deleteSelection.
55

deleteObjectAtIndex:
– (BOOL)deleteObjectAtIndex:(unsigned int)index

Attempts to delete the object at index, returning YES if successful and NO if not. Checks with the delegate
using displayGroup:shouldDeleteObject:. If the delegate returns NO, this method fails and returns NO.
If successful, sends the delegate a displayGroup:didDeleteObject: message.

This method performs the delete by sending deleteObject: to the EODataSource. If that message raises an
exception, this method fails and returns NO.

deleteSelection
– (BOOL)deleteSelection

Attempts to delete the selected objects, returning YES if successful and NO if not.

displayedObjects
– (NSArray *)displayedObjects

Returns the objects that should be displayed or otherwise made available to the user, as filtered by the
receiver’s delegate or by its qualifier and sort ordering.

See also: – allObjects, – updateDisplayedObjects, – displayGroup:displayArrayForObjects:
 (EODisplayGroupDelegate), – qualifier , – sortOrderings

editingAssociation
– (EOAssociation *)editingAssociation

Returns the EOAssociation editing a value if there is one, NO if there isn’t.

See also: – associationDidBeginEditing:, – associationDidEndEditing:

editingContext:presentErrorMessage:
– (void)editingContext:(EOEditingContext *)anEditingContext

presentErrorMessage:(NSString *)errorMessage

Invoked by anEditingContext as part of the EOMessageHandlers informal protocol, this method presents
an attention panel with errorMessage as the message to display.
56

 Classes: EODisplayGroup
editingContextWillSaveChanges:
– (void)editingContextWillSaveChanges:(EOEditingContext *)anEditingContext

Invoked by anEditingContext in its saveChanges method as part of the EOEditors informal protocol, this
method allows the EODisplayGroup to prohibit a save operation. EODisplayGroup’s implementation of this
method invokes endEditing, and raises an NSInternalInconsistencyException if it returns NO. Thus, if
there’s an association that refuses to end editing, anEditingContext doesn’t save changes.

editorHasChangesForEditingContext:
– (BOOL)editorHasChangesForEditingContext:(EOEditingContext *)anEditingContext

Invoked by anEditingContext as part of the EOEditors informal protocol, this method returns NO if any
association is editing, YES otherwise.

enabledToSetSelectedObjectValueForKey:
– (BOOL)enabledToSetSelectedObjectValueForKey:(NSString *)key

Returns YES to indicate that a single value association (such as an EOControlAssociation for a
NSTextField) should be enabled for setting key, NO otherwise. Normally this is the case if the receiver has
a selected object. However, if key is a special query key (for example, “@query=.name”), then the control
should be enabled even without a selected object.

endEditing
– (BOOL)endEditing

Attempts to end any editing taking place. If there’s no editing association or if the editing association
responds YES to an endEditing message, returns YES. Otherwise returns NO.

See also: – editingAssociation

enterQueryMode:
– (void)enterQueryMode:(id)sender

This action method invokes setInQueryMode: with an argument of YES.
57

equalToQueryValues
– (NSDictionary *)equalToQueryValues

Returns the receiver’s dictionary of equalTo query values. This dictionary is typically manipulated by
associations bound to keys of the form @query=.propertyName. The qualifierFromQueryValues method
uses this dictionary along with the lessThan and greaterThan dictionaries to construct qualifiers.

See also: – setEqualToQueryValues:, – greaterThanQueryValues, – lessThanQueryValues,

fetch
– (BOOL)fetch

Attempts to fetch objects from the EODataSource, returning YES on success and NO on failure.

Before fetching, invokes endEditing and sends displayGroupShouldFetch: to the delegate, returning NO
if either of these methods does. If both return YES, sends a fetchObjects message to the receiver’s
EODataSource to replace the object array, and if successful sends the delegate a displayGroup:
didFetchObjects: message.

fetch:
– (void)fetch:(id)sender

This action method invokes fetch.

fetchesOnLoad
– (BOOL)fetchesOnLoad

Returns YES if the receiver fetches automatically after being loaded from a nib file, NO if it must be told
explicitly to fetch. The default is NO. You can set this behavior in Interface Builder using the Inspector
panel.

See also: – fetch, – setFetchesOnLoad:
58

 Classes: EODisplayGroup
greaterThanQueryValues
– (NSDictionary *)greaterThanQueryValues

Returns the receiver’s dictionary of greaterThan query values. This dictionary is typically manipulated by
associations bound to keys of the form @query>.propertyName. The qualifierFromQueryValues method
uses this dictionary along with the lessThan and equalTo dictionaries to construct qualifiers.

See also: – setGreaterThanQueryValues:, – lessThanQueryValues, – equalToQueryValues

init
– (id)init

Initializes a newly allocated EODisplayGroup. The new display group then needs to have an EODataSource
set with setDataSource:. This is the designated initializer for the EODisplayGroup class. Returns self.

See also: – bindAspect:displayGroup:key: (EOAssociation)

inQueryMode
– (BOOL)inQueryMode

Returns YES to indicate that the receiver is in query mode, NO otherwise. In query mode, user interface
controls that normally display values become empty, allowing users to type queries directly into them (this
is also known as a “Query By Example” interface). In effect, the receiver’s “displayedObjects” are replaced
with an empty equalTo query values dictionary. When qualifyDisplayGroup or qualifyDataSource is
subsequently invoked, the query is performed and the display reverts to displaying values—this time, the
objects returned by the query.

See also: – setInQueryMode:, – enterQueryMode:

insert:
– (void)insert:(id)sender

This action method invokes insertObjectAtIndex: with an index just past the first index in the selection,
or 0 if there’s no selection.

insertedObjectDefaultValues
– (NSDictionary *)insertedObjectDefaultValues

Returns the default values to be used for newly inserted objects. The keys into the dictionary are the
properties of the entity that the display group manages. If the dictionary returned by this method is empty,
59

the insert... method adds an object that is initially empty. Because the object is empty, the display group has
no value to display on the HTML page for that object, meaning that there is nothing for the user to select
and modify. Use the setInsertedObjectDefaultValues: method to set up a default value so that there is
something to display on the page.

insertObjectAtIndex:
– (id)insertObjectAtIndex: (unsigned int)anIndex

Asks the receiver’s EODataSource to create a new object by sending it a createObject message, then inserts
the new object using insertObject:atIndex: . The EODataSource createObject method has the effect of
inserting the object into the EOEditingContext.

If a new object can’t be created, this method sends the delegate a displayGroup:
createObjectFailedForDataSource: message or, if the delegate doesn’t respond, opens an attention panel
to inform the user of the error.

See also: – insert:

insertObject:atIndex:
– (void)insertObject:(id)anObject

atIndex:(unsigned int)index

Inserts anObject into the receiver’s EODataSource and displayedObjects array at index, if possible. This
method checks with the delegate before actually inserting, using displayGroup:shouldInsertObject:
atIndex:. If the delegate refuses, anObject isn’t inserted. After successfully inserting the object, this
method informs the delegate with a displayGroup:didInsertObject: message, and selects the newly
inserted object. Raises an NSRangeException if index is out of bounds.

Unlike the insertObjectAtIndex: method, this method does not insert the object into the
EOEditingContext. If you use this method, you’re responsible for inserting the object into the
EOEditingContext yourself.

See also: – insert:

lessThanQueryValues
– (NSDictionary *)lessThanQueryValues

Returns the receiver’s dictionary of lessThan query values. This dictionary is typically manipulated by
associations bound to keys of the form @query<.propertyName. The qualifierFromQueryValues method
uses this dictionary along with the greaterThan and equalTo dictionaries to construct qualifiers.

See also: – setLessThanQueryValues:, – greaterThanQueryValues, – equalToQueryValues
60

 Classes: EODisplayGroup
localKeys
– (NSArray *)localKeys

Returns the additional keys that EOAssociations can be bound to. An EODisplayGroup’s basic keys are
typically those of the attributes and relationships of its objects, as defined by their EOClassDescription
through an EOEntity in the model. Local keys are typically used to form associations with key paths, with
arbitrary methods of objects, or with properties of objects not associated with an EOEntity. Interface
Builder allows the user to add and remove local keys in the EODisplayGroup Attributes Inspector panel.

See also: – setLocalKeys:

observingAssociations
– (NSArray *)observingAssociations

Returns all EOAssociations that observe the receiver’s objects.

qualifier
– (EOQualifier *)qualifier

Returns the receiver’s qualifier, which it uses to filter its array of objects for display when the delegate
doesn’t do so itself.

See also: – updateDisplayedObjects, – displayedObjects, – setQualifier:

qualifierFromQueryValues
– (EOQualifier *)qualifierFromQueryValues

Builds a qualifier constructed from entries in the three query dictionaries: equalTo, greaterThan, and
lessThan. These, in turn, are typically manipulated by associations bound to keys of the form
@query=.firstName, @query>.budget, @query<.budget.

See also: – qualifyDisplayGroup , – qualifyDataSource

qualifyDataSource
– (void)qualifyDataSource

Takes the result of qualifierFromQueryValues and applies to the receiver's data source. The receiver then
sends itself a fetch message. If the receiver is in query mode, query mode is exited. This method differs
from qualifyDisplayGroup as follows: whereas qualifyDisplayGroup performs in-memory filtering of
already fetched objects, qualifyDataSource triggers a new qualified fetch against the database.
61

qualifyDataSource:
– (void)qualifyDataSource:(id)sender

This action method invokes qualifyDataSource.

qualifyDisplayGroup
– (void)qualifyDisplayGroup

Takes the result of qualifierFromQueryValues and applies to the receiver using setQualifier:. The method
updateDisplayedObjects is invoked to refresh the display. If the receiver is in query mode, query mode is
exited.

See also: – qualifyDataSource

qualifyDisplayGroup:
– (void)qualifyDisplayGroup: (id)sender

This action method invokes qualifyDisplayGroup: .

queryBindingValues
– (NSDictionary *)queryBindingValues

Returns a dictionary containing the actual values that the user wants to query upon. You use this method to
perform a query stored in the model file. Bind keys in this dictionary to elements on your component that
specify query values, then pass this dictionary to the fetch specification that performs the fetch.

queryOperatorValues
– (NSDictionary *)queryOperatorValues

Returns a dictionary of operators to use on items in the queryMatch dictionary. If a key in the queryMatch
dictionary also exists in queryOperatorValues, that operator for that key is used.

See also: – qualifierFromQueryValues
62

 Classes: EODisplayGroup
redisplay
– (void)redisplay

Notifies all observing associations to redisplay their values.

See also: – observingAssociations

selectedObject
– (id)selectedObject

Returns the first selected object in the displayed objects array, or nil if there’s no such object.

See also: – displayedObjects, – selectionIndexes

selectedObjects
– (NSArray *)selectedObjects

Returns the objects selected in the receiver’s displayed objects array.

See also: – displayedObjects, – selectionIndexes

selectedObjectValueForKey:
– (id)selectedObjectValueForKey:(NSString *)key

Returns the value corresponding to key for the first selected object in the receiver’s displayed objects array,
or nil if exactly one object isn’t selected.

See also: – valueForObject:key:

selectionChanged
– (BOOL)selectionChanged

Returns YES if the selection has changed and not all observers have been notified, NO otherwise.
EOAssociations use this in their subjectChanged methods to determine what they need to update.

See also: – contentsChanged
63

y.

selectionIndexes
– (NSArray *)selectionIndexes

Returns the indexes of the receiver’s selected objects as NSNumbers , in terms of its displayed objects arra

See also: – displayedObjects, – selectedObjects, – selectedObject, – setSelectionIndexes:

selectNext
– (BOOL)selectNext

Attempts to select the object just after the currently selected one, returning YES if successful and NO if not.
The selection is altered in this way:

• If there are no objects, does nothing and returns NO.

• If there’s no selection, selects the object at index zero and returns YES.

• If the first selected object is the last object in the displayed objects array, selects the first object and returns
YES.

• Otherwise selects the object after the first selected object.

See also: – selectPrevious, – setSelectionIndexes:

selectNext:
– (void)selectNext:(id)sender

This action method invokes selectNext.

See also: – selectPrevious:, – setSelectionIndexes:

selectObject:
– (BOOL)selectObject:(id)anObject

Returns YES to indicate that the receiver has found and selected anObject, NO if it can’t find a match for
anObject (in which case it clears the selection). The selection is performed on the receiver’s
displayedObjects, not on allObjects.
64

 Classes: EODisplayGroup
selectObjectsIdenticalTo:
– (BOOL)selectObjectsIdenticalTo:(NSArray *)objects

Attempts to select the objects in the receiver’s displayed objects array whose ids are equal to those of
objects, returning YES if successful and NO otherwise.

See also: – setSelectionIndexes:

selectObjectsIdenticalTo:selectFirstOnNoMatch:
– (BOOL)selectObjectsIdenticalTo:(NSArray *)objects

selectFirstOnNoMatch:(BOOL)flag

Selects the objects in the receiver’s displayed objects array whose ids are equal to those of objects, returning
YES if successful and NO otherwise. If no objects in the displayed objects array match objects and flag is
YES, attempts to select the first object in the displayed objects array.

See also: – setSelectionIndexes:

selectPrevious
– (BOOL)selectPrevious

Attempts to select the object just before the presently selected one, returning YES if successful and NO if
not. The selection is altered in this way:

• If there are no objects, does nothing and returns NO.

• If there’s no selection, selects the object at index zero and returns YES.

• If the first selected object is at index zero, selects the last object and returns YES.

• Otherwise selects the object before the first selected object.

See also: – selectNext, – redisplay

selectPrevious:
– (void)selectPrevious:(id)sender

This action method invokes selectPrevious.

See also: – selectNext:, – redisplay
65

selectsFirstObjectAfterFetch
– (BOOL)selectsFirstObjectAfterFetch

Returns YES if the receiver automatically selects its first displayed object after a fetch if there was no
selection, NO if it leaves an empty selection as-is.

See also: – displayedObjects, – fetch, – setSelectsFirstObjectAfterFetch:

setDataSource:
– (void)setDataSource:(EODataSource *)aDataSource

Sets the receiver’s EODataSource to aDataSource. In the process, it performs these actions:

• Unregisters self as an editor and message handler for the previous EODataSource’s EOEditingContext,
if necessary, and registers self with aDataSource’s editing context. If the new editing context already has
a message handler, however, the receiver doesn’t assume that role.

• Registers self for EOObjectsChangedInEditingContextNotification and
EOInvalidatedAllObjectsInStoreNotification from the new editing context.

• Clears the receiver’s array of objects.

• Sends displayGroupDidChangeDataSource: to the delegate if there is one.

See also: – dataSource

setDefaultStringMatchFormat:
– (void)setDefaultStringMatchFormat:(NSString *)format

Sets how pattern matching will be performed on NSString values in the queryMatch dictionary. This
format is used for properties listed in the queryMatch dictionary that have NSString values and that do not
have an associated entry in the queryOperatorValues dictionary. In these cases, the value is matched using
pattern matching and format specifies how it will be matched.

The default format string for pattern matching is “%@* ” which means that the string value in the
queryMatch dictionary is used as a prefix. For example, if the queryMatch dictionary contains a value
“Jo” for the key “Name”, the query returns all records whose name values begin with “Jo”.

See also: – defaultStringMatchFormat , – setDefaultStringMatchOperator:
66

 Classes: EODisplayGroup
setDefaultStringMatchOperator:
– (void)setDefaultStringMatchOperator:(NSString *)operator

Sets the operator used to perform pattern matching for NSString values in the queryMatch dictionary. This
operator is used for properties listed in the queryMatch dictionary that have NSString values and that do
not have an associated entry in the queryOperatorValues dictionary. In these cases, the operator operator
is used to perform pattern matching.

The default value for the query match operator is caseInsensitiveLike, which means that the query does
not consider case when matching letters. The other possible value for this operator is like, which matches
the case of the letters exactly.

See also: – defaultStringMatchOperator , – setDefaultStringMatchFormat:

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See also: – delegate

setEqualToQueryValues:
– (void)setEqualToQueryValues:(NSDictionary *)values

Sets to values the receiver’s dictionary of equalTo query values. The qualifierFromQueryValues method
uses this dictionary along with the lessThan and greaterThan dictionaries to construct qualifiers.

See also: – equalToQueryValues, – setLessThanQueryValues:, – setGreaterThanQueryValues:

setFetchesOnLoad:
– (void)setFetchesOnLoad:(BOOL)flag

Controls whether the receiver automatically fetches its objects after being loaded from a nib file. If flag is
YES it does; if flag is NO the receiver must be told explicitly to fetch. The default is NO. You can also set
this behavior in Interface Builder using the Inspector panel.

See also: – fetch, – fetchesOnLoad
67

setGreaterThanQueryValues:
– (void)setGreaterThanQueryValues:(NSDictionary *)values

Sets to values the receiver’s dictionary of greaterThan query values. The qualifierFromQueryValues
method uses this dictionary along with the lessThan and equalTo dictionaries to construct qualifiers.

See also: – greaterThanQueryValues, – setLessThanQueryValues:, – setEqualToQueryValues:

setInQueryMode:
– (void)setInQueryMode:(BOOL)flag

Sets according to flag whether the receiver is in query mode.

See also: – inQueryMode, – enterQueryMode:

setInsertedObjectDefaultValues:
– (void)setInsertedObjectDefaultValues:(NSDictionary *)defaultValues

Sets default values to be used for newly inserted objects. When you use the insert... method to add an object,
that object is initially empty. Because the object is empty, there is no value to be displayed on the HTML
page, meaning there is nothing for the user to select and modify. You use this method to provide at least one
field that can be displayed for the newly inserted object. The possible keys into the dictionary are the
properties of the entity managed by this display group. For example, a component that displays a list of
movie titles and allows the user to insert new movie titles might contain these statements to ensure that all
new objects have something to display as a movie title:

[defaultValues setObject:@"New title" forKey:@"title"];

[movies setInsertedObjectDefaultValues:defaultValues];

See also: – insertedObjectDefaultValues

setLessThanQueryValues:
– (void)setLessThanQueryValues:(NSDictionary *)values

Sets to values the receiver’s dictionary of lessThan query values. The qualifierFromQueryValues method
uses this dictionary along with the greaterThan and equalTo dictionaries to construct qualifiers.

See also: – lessThanQueryValues, – setGreaterThanQueryValues:, – setEqualToQueryValues:
68

 Classes: EODisplayGroup

setLocalKeys:
– (void)setLocalKeys:(NSArray *)keys

Sets the additional keys to which EOAssociations can be bound to the strings in keys. Instead of invoking
this method programmatically, you can use Interface Builder to add and remove local keys in the
EODisplayGroup Attributes Inspector panel.

See also: – localKeys

setObjectArray:
– (void)setObjectArray: (NSArray *)objects

Sets the receiver’s objects to objects, regardless of what its EODataSource provides. This method doesn’t
affect the EODataSource’s objects at all; specifically, it results in neither inserts or deletes of objects in the
EODataSource. objects should contain objects with the same property names or methods as those accessed
by the receiver. This method is used by fetch to set the array of fetched objects; you should rarely need to
invoke it directly.

After setting the object array, this method restores as much of the original selection as possible by invoking
selectObjectsIdenticalTo:. If there’s no match and the receiver selects after fetching, then the first object
is selected.

See also: – allObjects, – displayedObjects, – selectsFirstObjectAfterFetch

setQualifier:
– (void)setQualifier:(EOQualifier *)aQualifier

Sets the receiver’s qualifier to aQualifier. This qualifier is used to filter the receiver’s array of objects for
display when the delegate doesn’t do so itself. Use updateDisplayedObjects to apply the qualifier.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects: , that method is used
instead of the qualifier to filter the objects.

See also: – displayedObjects, – qualifier , – qualifierFromQueryValues
69

setQueryBindingValues:
– (void)setQueryBindingValues:(NSDictionary *)values

setQueryOperatorValues:
– (void)setQueryOperatorValues:(NSDictionary *)values

setSelectedObjectValue:forKey:
– (BOOL)setSelectedObjectValue:(id)value

forKey: (NSString *)key

Invokes setValue:forObject:key: with the first selected object, returning YES if successful and NO
otherwise. This method should be invoked only by EOAssociation objects to propagate changes from
display objects.

See also: – setValue:forObjectAtIndex:key: , – valueForObject:key:

setSelectionIndexes:
– (BOOL)setSelectionIndexes:(NSArray *)indexes

Selects the objects at indexes in the receiver’s array if possible, returning YES if successful and NO if not
(in which case the selection remains unaltered). indexes is an array of NSNumbers . This method is the
primitive method for altering the selection; all other such methods invoke this one to make the change.

This method invokes endEditing to wrap up any changes being made by the user. If endEditing returns
NO, this method fails and returns NO. This method then checks the delegate with a displayGroup:
shouldChangeSelectionToIndexes: message. If the delegate returns NO, this method also fails and returns
NO. If the receiver successfully changes the selection, its observers (typically EOAssociations) each receive
a subjectChanged message.

setSelectsFirstObjectAfterFetch:
– (void)setSelectsFirstObjectAfterFetch:(BOOL)flag

Controls whether the receiver automatically selects its first displayed object after a fetch when there were
no selected objects before the fetch. If flag is YES it does; if flag is NO then no objects are selected. By
default, display groups select the first object after a fetch when there was no previous selection.

See also: – displayedObjects, – fetch, – selectsFirstObjectAfterFetch
70

 Classes: EODisplayGroup
setSortOrderings:
– (void)setSortOrderings:(NSArray *)orderings

Sets the EOSortOrdering objects that updateDisplayedObjects uses to sort the displayed objects to
orderings. Use updateDisplayedObjects to apply the sort orderings.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects: , that method is used
instead of the sort orderings to order the objects.

See also: – displayedObjects, – sortOrderings

setUsesOptimisticRefresh:
– (void)setUsesOptimisticRefresh:(BOOL)flag

Controls how the receiver redisplays on changes to objects. If flag is YES it redisplays only when elements
of its displayed objects array change; if flag is NO it redisplays on any change in its EOEditingContext.
Because changes to other objects can affect the displayed objects (through flattened attributes or custom
methods, for example), EODisplayGroups by default use the more pessimistic refresh technique of
redisplaying on any change in the EOEditingContext. If you know that none of the EOAssociations for a
particular EODisplayGroup display derived values, you can turn on optimistic refresh to reduce redisplay
time.

The default is NO. You can also change this setting in Interface Builder’s Inspector panel using the Refresh
All check box.

See also: – usesOptimisticRefresh

setValidatesChangesImmediately:
– (void)setValidatesChangesImmediately:(BOOL)flag

Controls the receiver’s behavior on encountering a validation error. Whenever an EODisplayGroup sets a
value in an object, it sends the object a validateValue:forKey: message, allowing the object to coerce the
value’s type to a more appropriate one or to return an exception indicating that the value isn’t valid. If this
method is invoked with a flag of YES, the receiver immediately presents an attention panel indicating the
validation error. If this method is invoked with a flag of NO, the receiver leaves validation errors to be
handled when changes are saved. By default, display groups don’t validate changes immediately.

See also: – saveChanges (EOEditingContext), – validatesChangesImmediately
71

setValue:forObject:key:
– (BOOL)setValue:(id)value

forObject: (id)anObject
key:(NSString *)key

Sets a property of anObject, identified by key, to value. Returns YES if successful and NO otherwise. If a
new value is set, sends the delegate a displayGroup:didSetValue:forObject:key: message.

This method should be invoked only by EOAssociation objects to propagate changes from display objects.
Other application code should interact with the objects directly.

If the receiver validates changes immediately, it sends anObject a validateValue:forKey: message,
returning NO if the object refuses to validate value. Otherwise, validation errors are checked by the
EOEditingContext when it attempts to save changes.

See also: – setValue:forObjectAtIndex:key: , – setSelectedObjectValue:forKey:, – valueForObject:
key:, – validatesChangesImmediately

setValue:forObjectAtIndex:key:
– (BOOL)setValue:(id)value

forObjectAtIndex: (unsigned int)index
key:(NSString *)key

Invokes setValue:forObject:key: with the object at index, returning YES if successful and NO otherwise.
This method should be invoked only by EOAssociation objects to propagate changes from display objects.

See also: – setSelectedObjectValue:forKey:,– valueForObjectAtIndex:key:

sortOrderings
– (NSArray *)sortOrderings

Returns an array of EOSortOrdering objects that updateDisplayedObjects uses to sort the displayed
objects, as returned by the displayedObjects method.

See also: – setSortOrderings:

updateDisplayedObjects
– (void)updateDisplayedObjects

Recalculates the receiver’s displayed objects array and redisplays. If the receiver’s delegate responds to
displayGroup:displayArrayForObjects: , it’s sent this message and the returned array is set as the display
72

 Classes: EODisplayGroup

group’s displayed object. Otherwise, the receiver applies its qualifier and sort ordering to its array of objects.
In either case, any objects that were selected before remain selected in the new displayed objects array.

See also: – redisplay, – displayedObjects, – selectedObjects, – qualifier , – sortOrderings

updatedObjectIndex
– (int)updatedObjectIndex

Returns the index in the displayed objects array of the most recently updated object, or –1 if more than one
object has changed. The return value is meaningful only when contentsChanged returns YES.
EOAssociations can use this method to optimize redisplay of their user interface objects.

usesOptimisticRefresh
– (BOOL)usesOptimisticRefresh

Returns YES if the receiver redisplays only when its displayed objects change, NO if it redisplays on any
change in its EOEditingContext.

See also: – setUsesOptimisticRefresh:

validatesChangesImmediately
– (BOOL)validatesChangesImmediately

Returns YES if the receiver immediately handles validation errors, or NO if it leaves errors for the
EOEditingContext to handle when saving changes.

See also: – setValidatesChangesImmediately:

valueForObject:key:
– (id)valueForObject:(id)anObject

key:(NSString *)key

Returns anObject’s value for the property identified by key.

valueForObjectAtIndex:key:
– (id)valueForObjectAtIndex: (unsigned int)index

key:(NSString *)key

Returns the value of the object at index for the property identified by key.
73

74

 Classes:

EODisplayGroupDelegate
(informal protocol)

Category Of: NSObject

Declared In: EOInterface/EODisplayGroup.h

Category Description

The EODisplayGroupDelegate informal protocol defines methods that an EODisplayGroup can invoke in
its delegate. Delegates are not required to provide implementations for all of the methods in the informal
protocol. Instead, declare and implement any subset of the methods declared in the informal protocol that
you need, and use the EODisplayGroup method setDelegate: method to assign your object as the delegate.
A display group can determine if the delegate doesn’t implement a delegate method and only attempts to
invoke the methods the delegate actually implements.

Method Types

Fetching objects
– displayGroupShouldFetch:
– displayGroup:didFetchObjects:
– displayGroupShouldRefetchdisplayGroup:

shouldRefetchForInvalidatedAllObjectsNotification:

Inserting, updating, and deleting objects
– displayGroup:shouldInsertObject:atIndex:
– displayGroup:didInsertObject:
– displayGroup:createObjectFailedForDataSource:
– displayGroup:didSetValue:forObject:key:
– displayGroup:shouldDeleteObject:
– displayGroup:didDeleteObject:

Managing the display
– displayGroup:shouldDisplayAlertWithTitle:message:
– displayGroupShouldRedisplaydisplayGroup:

shouldRedisplayForChangesInEditingContext:
– displayGroup:displayArrayForObjects:

Managing the selection
– displayGroup:shouldChangeSelectionToIndexes:
– displayGroupDidChangeSelection:
– displayGroupDidChangeSelectedObjects:
75

Changing the data source
– displayGroupDidChangeDataSource:

Instance Methods

displayGroup:createObjectFailedForDataSource:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup

createObjectFailedForDataSource:(EODataSource *)aDataSource

Invoked from insertObjectAtIndex: to inform the delegate that aDisplayGroup has failed to create a new
object for aDataSource. If the delegate doesn’t implement this method, the EODisplayGroup instead runs
an alert panel to inform the user of the failure.

displayGroupDidChangeDataSource:
– (void)displayGroupDidChangeDataSource:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s EODataSource has changed.

displayGroupDidChangeSelectedObjects:
– (void)displayGroupDidChangeSelectedObjects:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s set of selected objects has changed, regardless of whether the
selection indexes have changed.

displayGroupDidChangeSelection:
– (void)displayGroupDidChangeSelection:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s selection has changed.

displayGroup:didDeleteObject:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup

didDeleteObject:(id)anObject

Informs the delegate that aDisplayGroup has deleted anObject.
76

 Classes:
displayGroup:didFetchObjects:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup

didFetchObjects:(NSArray *)objects

Informs the delegate that aDisplayGroup has fetched objects.

displayGroup:didInsertObject:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup

didInsertObject: (id)anObject

Informs the delegate that aDisplayGroup has inserted anObject.

displayGroup:didSetValue:forObject:key:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup

didSetValue:(id)value
forObject: (id)anObject
key:(NSString *)key

Informs the delegate that aDisplayGroup has altered a property value of anObject. key identifies the
property, and value is its new value.

displayGroup:displayArrayForObjects:
– (NSArray *)displayGroup:(EODisplayGroup *)aDisplayGroup

displayArrayForObjects: (NSArray *)objects

Invoked from updateDisplayedObjects, this method allows the delegate to filter and sort aDisplayGroup’s
array of objects to limit which ones get displayed. objects contains all of aDisplayGroup’s objects. The
delegate should filter any objects that shouldn’t be shown and sort the remainder, returning a new array
containing this group of objects. You can use the added NSArray methods filteredArrayUsingQualifier:
and sortedArrayUsingKeyOrderArray: to create the new array.

If the delegate doesn’t implement this method, the EODisplayGroup uses its own qualifier and sort ordering
to update its displayed objects array.

See also: – sortOrderings, – qualifier , – displayedObjects
77

s
displayGroup:shouldChangeSelectionToIndexes:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldChangeSelectionToIndexes:(NSArray *)newIndexes

Allows the delegate to prevent a change in selection by aDisplayGroup. newIndexes is the proposed new
selection, an array of NSNumbers . If the delegate returns YES, the selection changes; if the delegate return
NO, the selection remains as it is.

displayGroup:shouldDeleteObject:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldDeleteObject:(id)anObject

Allows the delegate to prevent aDisplayGroup from deleting anObject. If the delegate returns YES,
anObject is deleted; if the delegate returns NO, the deletion is abandoned.

displayGroup:shouldDisplayAlertWithTitle:message:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldDisplayAlertWithTitle: (NSString *)title
message:(NSString *)message

Allows the delegate to prevent aDisplayGroup from displaying an attention panel with title and message.
The delegate can return YES to allow aDisplayGroup to display the panel, or NO to prevent it from doing
so (perhaps displaying a different attention panel).

displayGroupShouldFetch:
– (BOOL)displayGroupShouldFetch:(EODisplayGroup *)aDisplayGroup

Allows the delegate to prevent aDisplayGroup from fetching. If the delegate returns YES, aDisplayGroup
performs the fetch; if the delegate returns NO, aDisplayGroup abandons the fetch.

displayGroup:shouldInsertObject:atIndex:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldInsertObject:(id)anObject
atIndex:(unsigned int)anIndex

Allows the delegate to prevent aDisplayGroup from inserting anObject at anIndex. If the delegate returns
YES, anObject is inserted; if the delegate returns NO, the insertion is abandoned.
78

 Classes:

e

e
displayGroup:shouldRedisplayForChangesInEditingContext:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldRedisplayForEditingContextChangeNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOObjectsChangedInEditingContextNotification, this
method allows the delegate to suppress redisplay based on the nature of the change that has occurred. If th
delegate returns YES, aDisplayGroup redisplays; if it returns NO, aDisplayGroup doesn’t. aNotification
supplies the EOEditingContext that has changed, as well as which objects have changed and how. See th
EOEditingContext class specification for information on EOObjectsChangedInEditingContextNotification.

See also: – redisplay

displayGroup:shouldRefetchForInvalidatedAllObjectsNotification:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldRefetchForInvalidatedAllObjectsNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOInvalidatedAllObjectsInStoreNotification, this method
allows the delegate to suppress refetching of the invalidated objects. If the delegate returns YES,
aDisplayGroup immediately refetches its objects. If the delegate returns NO, aDisplayGroup doesn’t
immediately fetch, instead delaying until absolutely necessary. aNotification is an NSNotification. See the
EOObjectStore and EOEditingContext class specifications for information on this notification.
79

80

 Classes: EOGenericControlAssociation

r
EOGenericControlAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOControlAssociation.h

Class Description

EOGenericControlAssociation is the abstract superclass of EOControlAssociation and
EOActionCellAssociation. You never use instances of this class directly; its isUsableWithObject: method
always returns NO. See the subclass specifications for more information.

Instance Methods

control
– (NSControl *)control

Overridden by subclasses to return the receiver’s display object—an NSControl (Application Kit).

editingAssociation
– (EOGenericControlAssociation *)editingAssociation

Overridden by subclasses to return the association responsible for handling text delegation messages. Fo
example, if the display object is a NSMatrix or NSTableView (Application Kit), this method returns the
association for the cell being edited.

Usable With Aspects Object Keys Taken

Nothing value target

enabled delegate
81

82

 Classes: EOInterfaceController
EOInterfaceController

Inherits From: java.lang.Object

Implements: EOKeyValueCodingAdditions (EOControl)
EOObserving (EOControl)
java.awt.event.WindowListener

Package: com.apple.client.eointerface

Class Description

EOInterfaceController serves as a convenient base class for logic related to the interface of client-side
applications. When the WebObjectsApplication wizard in Project Builder creates a new client-side
interface, it adds to the client-side subproject an Interface Builder nib file representing this interface and a
skeletal EOInterfaceController subclass defined as the nib file’s root object or “owner.”

In an application constructed in conformance to the Model-View-Controller paradigm,
EOInterfaceController plays the role of controller. It has four special outlets: its editingContext, its
component, its masterDisplayGroup, and its controllerDisplayGroup , all of which you can configure
using Interface Builder. The object identified by component is an AWT Component that functions as the
view, since it is the main entry point into the user interface. Because an enterprise objects must always
inhabit an editing context, editingContext and its contents serve as the “model.” The
masterDisplayGroup is an EODisplayGroup containing the “master” enterprise objects manipulated by
the controller's user interface (which may well involve many other display groups). The
controllerDisplayGroup is a convenience instance containing nothing but the interface controller itself.

Constructors

public EOInterfaceController ()
public EOInterfaceController (com.apple.client.eocontrol.EOEditingContext substitutionContext)
public EOInterfaceController (com.apple.client.eocontrol.EOEditingContext substitutionContext,

java.lang.String archiveName)

The two-argument constructor is EOInterfaceController's designated constructor. It initializes a new
instance and then attempts to load the associated EOArchive indentified by archiveName, using
substitutionContext as EOEditingContext's substitution editing context during the load. Archive loading
results in the restoration of any controller outlets such as editingContext and component connected within
InterfaceBuilder. The remaining constructors are convenience constructions that invoke the designated
83

constructor with nulls substituted for the missing arguments. These null values are passed along in the calls
to loadArchive and EOEditingContext’s setSubstitutionEditingContext .

Instance Methods

closeWindow
public void closeWindow()

Puts any window created through the runInFrame or runInModalDialog methods offscreen and disposes
of the window once the Component has been removed.

See also: – component

collectChangesFromServer

public void collectChangesFromServer()

Updates the receiver's editing context to reflect any changes to enterprise objects pending on the server.

component
public java.awt.Component component()

Returns the main entry point into the receiver's user interface, which is always an AWT Component.

controllerDisplayGroup
public EODisplayGroup controllerDisplayGroup ()

Returns an EODisplayGroup containing nothing but the receiver (EOInterfaceController implements
EOKeyValueCodingAdditions). You typically instantiate and connect this display group with Interface
Builder. This display group facilitates the use of the receiver with EOAssociations, as any properties defined
in a controller subclass may then be used as association aspect keys.

For example, to enable or disable the entire user interface, you could add a “uiEnabled” property to an
EOInterfaceController subclass and bind the “enabled” aspect of any EOAssociation with display objects
in its component to the key of the controller display group.
84

 Classes: EOInterfaceController

displayGroupDidChangeDataSource
public void displayGroupDidChangeDataSource(EODisplayGroup aDisplayGroup)

Overriden by subclasses to respond to a change in aDisplayGroup’s data source. In the
setMasterDisplayGroup and setControllerDisplayGroup methods EOInterfaceController sets itself as
the delegate of its master and controller display groups if no other object has claimed delegate status. The
default implementation of this delegation method simply invokes redisplayControllerDisplayGroup .

displayGroupDidChangeSelection
public void displayGroupDidChangeSelection(EODisplayGroup aDisplayGroup)

Overriden by subclasses to respond to a selection change in aDisplayGroup. In the
setMasterDisplayGroup and setControllerDisplayGroup methods EOInterfaceController sets itself as
the delegate of its master and controller display groups if no other object has claimed delegate status. The
default implementation of this delegation method simply invokes redisplayControllerDisplayGroup .

displayGroupDidDeleteObject
public void displayGroupDidDeleteObject(EODisplayGroup aDisplayGroup,

java.lang.Object anObject)

Overriden by subclasses to respond to the deletion of anObject in aDisplayGroup. In the
setMasterDisplayGroup and setControllerDisplayGroup methods EOInterfaceController sets itself as
the delegate of its master and controller display groups if no other object has claimed delegate status. The
default implementation of this delegation method simply invokes redisplayControllerDisplayGroup .

displayGroupDidFetchObjects
public void displayGroupDidFetchObjects(EODisplayGroup aDisplayGroup, NSArray anArray)

Overriden by subclasses to respond to the fetch of objects in anArray by aDisplayGroup. In the
setMasterDisplayGroup and setControllerDisplayGroup methods EOInterfaceController sets itself as
the delegate of its master and controller display groups if no other object has claimed delegate status. The
default implementation of this delegation method simply invokes redisplayControllerDisplayGroup .

displayGroupDidInsertObject
public void displayGroupDidInsertObject (EODisplayGroup aDisplayGroup,

java.lang.Object anObject)

Overriden by subclasses to respond to the insertion of object anObject into aDisplayGroup. In the
setMasterDisplayGroup and setControllerDisplayGroup methods EOInterfaceController sets itself as
85

the delegate of its master and controller display groups if no other object has claimed delegate status. The
default implementation of this delegation method simply invokes redisplayControllerDisplayGroup .

displayGroupDidSetValueForObject
public void displayGroupDidSetValueForObject(EODisplayGroup aDisplayGroup,

java.lang.Object anObject, java.lang.Object anObject, java.lang.String aString)

Overriden by subclasses to aDisplayGroup. In the setMasterDisplayGroup and
setControllerDisplayGroup methods EOInterfaceController sets itself as the delegate of its master and
controller display groups if no other object has claimed delegate status. The default implementation of this
delegation method simply invokes redisplayControllerDisplayGroup .

editingContext
public com.apple.client.eocontrol.EOEditingContext editingContext()

Returns the EOEditingContext established through setEditingContext, which should also be that of the
master display group's data source. All manipulation of enterprise objects must occur within an editing
context.

See also: – masterDisplayGroup

handleEditingContextChanges
public void handleEditingContextChanges(NSNotification aNotification)

Implemented by observers of EOEditingContext's ObjectsChangedInEditingContext and
EditingContextDidSaveChanges notifications; when setEditingContext is invoked, the receiver is
automatically registered as an observer. The default implementation simply invokes
redisplayControllerDisplayGroup and updateWindowTitle.

handleWindowClosing
protected void handleWindowClosing()

Invoked when the window containing the receiver's component is about to close. The default
implementation invokes saveIfUserConfirmsAndCloseWindow.

See also: – component
86

 Classes: EOInterfaceController
insertIntoControllerDisplayGroup
protected void insertIntoControllerDisplayGroup ()

Makes the receiver the only object in the controller display group and selects it. This method is invoked
whenever setControllerDisplayGroup is invoked.

isEdited
public boolean isEdited()

Returns whether the receiver’s editing context has changes and thus whether the receiver is “dirty.”

See also: – editingContext

isRunning
public boolean isRunning()

Returns whether component currently has a parent.

isRunningInContainer
public boolean isRunningInContainer()

Returns true if no JFrame or JDialog has been instantiated by the receiver but component still has a parent.

isRunningInFrame
public boolean isRunningInFrame()

Returns true if runInFrame has previously been invoked but closeWindow has not.

isRunningInModalDialog
public boolean isRunningInModalDialog()

Returns true if runInModalDialog has previously been invoked but closeWindow has not.

loadArchive
protected void loadArchive()

Convenience method equivalent invoking the following form with a null parameter.
87

protected void loadArchive(java.lang.String archiveName)

Loads a new instance of the EOArchive named archiveName with the receiver as its owner and a null
archive package name, throwing if the attempt fails (see EOArchive's loadArchiveNamed). If
archiveName is null the name of the receiver’s class will be used instead.

locateWindow

protected void locateWindow(java.awt.Window window)

Invoked within runInFrame and runInModalDialog , this method positions window at its appropriate
initial location, center screen in the default implementation.

masterDisplayGroup
public EODisplayGroup masterDisplayGroup()

Returns an EODisplayGroup containing the "master" enterprise objects primarily manipulated by the
receiver's user interface (the EOArchive associated with the receiver may well contain additional display
groups).

A component containing a display of Studios, for example, might contain additional displays of Movies the
selected Studio has produced and Talent in its stable, but the Studio EODisplayGroup would drive these
details and therefore be the "master."

masterObject
public com.apple.client.eocontrol.EOEnterpriseObject masterObject()

Returns that single enterprise object currently selected in the receiver's masterDisplayGroup.

masterObjectGlobalID
public com.apple.client.eocontrol.EOGlobalID masterObjectGlobalID()

Returns the EOGlobalID of the masterObject.

objectWillChange
public void objectWillChange(java.lang.Object object)

Actually EOObserverCenter's notification hook, this method is implemented by EOInterfaceController in
order to invoke redisplayControllerDisplayGroup whenever object is the receiver.
88

 Classes: EOInterfaceController
redisplayControllerDisplayGroup
public void redisplayControllerDisplayGroup ()

Invoked whenever the contents or selection of controllerDisplayGroup changes (see objectWillChange),
this method sends the display group a redisplay message.

run
public void run ()

A "presentation-neutral" form of the following three more specific editions, this method is intended to be
invoked when the consumer is content to leave component presentation details to the receiver. The default
implementation invokes runInFrame .

runInContainer
public void runInContainer (java.awt.Container container)

Adds the receiver's component to container.

runInFrame
public void runInFrame ()

Instantiates a JFrame containing the receiver's component and makes it visible atop the window stack.

runInModalDialog
public void runInModalDialog ()

Instantiates a modal JDialog containing the receiver's component and makes it visible atop the window
stack.

save
public boolean save()

Sends editingContext a saveChanges message with the receiver as its sender and presents an error dialog
containing any exception if this invocation fails. Returns true if saveChanges succeeds, false otherwise.
89

saveAndCloseWindow
public boolean saveAndCloseWindow()

Invokes save and, upon success, closeWindow, returning save's result.

saveIfUserConfirms
public boolean saveIfUserConfirms()

Convenience method invoking the following two parameter form with a null dialogTitle and message.

public boolean saveIfUserConfirms(java.lang.String dialogTitle, java.lang.String message)

Invokes save once the user has confirmed this operation in a dialog titled dialogTitle containing message
(both arguments take on default values if null). Returns true if the operation is confirmed and succeeds,
false otherwise.

saveIfUserConfirmsAndCloseWindow
public boolean saveIfUserConfirmsAndCloseWindow()

Invokes the two parameter form of saveIfUserConfirms with the dialogTitle "Close" and a null message.
If the operation is confirmed, closeWindow is invoked. Returns the result of saveIfUserConfirms.

setComponent
public void setComponent(java.awt.Component component)

Establishes component as the main entry point into the receiver's user interface. If component is a Window
or RootPaneContainer, the receiver's component will actually wind up being a new EOView containing its
subcomponents rather than component, as the appropriate root container will be determined by which run...
method is subsequently invoked. If component is not a Window it will be removed from any existing parent.

setControllerDisplayGroup
public void setControllerDisplayGroup(EODisplayGroup displayGroup)

Typically invoked only by EOArchive in re-establishing a connection made in the receiver's corresponding
InterfaceBuilder document, this method establishes displayGroup as the EODisplayGroup which will vend
the receiver's keys (also see controllerDisplayGroup). The default implementation invokes
insertIntoControllerDisplayGroup before making the receiver both an observer of displayGroup and its
delegate in the absence of any other.
90

 Classes: EOInterfaceController
setEditingContext
public void setEditingContext(com.apple.client.eocontrol.EOEditingContext editingContext)

Typically invoked only by EOArchive in re-establishing a connection made in the receiver's corresponding
InterfaceBuilder document, this method establishes editingContext as the EOEditingContext for any
manipulated enterprise objects (also see editingContext). This should be the same as that of
masterDisplayGroup's dataSource. The default implementation adds the receiver as a recipient of
ObjectsChangedInEditingContext and EditingContextDidSaveChanges notifications sent to
handleEditingContextChanges.

setMasterDisplayGroup
public void setMasterDisplayGroup(EODisplayGroup displayGroup)

Establishes displayGroup as the EODisplayGroup containing the "master" enterprise objects manipulated
in component (also see masterDisplayGroup).

setMasterWithGlobalID
public void setMasterWithGlobalID (com.apple.client.eocontrol.EOGlobalID gid)

Attempts to retrieve that enterprise object with gid from the EOEditingContext of masterDisplayGroup's
dataSource. If successful, this object is set as masterDisplayGroup's new contents and selection. If not,
the masterDisplayGroup will be emptied.

setMasterWithObject
public void setMasterWithObject(com.apple.client.eocontrol.EOEnterpriseObject anEO)

Retrieves anEO's EOGlobalID from its editing context and invokes setMasterWithGlobalID .

setTitle
public void setTitle(java.lang.String title)

Sets the receiver's title to title. Note that this value will be used in constructing the receiver's windowTitle .
Invocations of this method will have no effect on window titles until changes occur in the receiver's editing
context.
91

showWindow
public void showWindow()

If the receiver's root container is a Window, this method makes it visible atop the window stack.

title
public java.lang.String title ()

Returns any title explicitly set for the receiver via setTitle.

updateWindowTitle
public void updateWindowTitle()

Sets the title of any Window created by the receiver to the current value of windowTitle .

window
public java.awt.Window window()

Returns the Window created to contain the receiver's component, which will only be non-null if
runInFrame or runInModalDialog have previously been invoked.

windowTitle
protected java.lang.String windowTitle ()

Returns title if it has been explicitly set or an de-packaged, prettified edition of the receiver's class name.
Both will be prefixed by an asterisk if isEdited currently returns true.
92

 Classes: EOMasterCopyAssociation

r,
EOMasterCopyAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOMasterCopyAssociation.h

Class Description

An EOMasterCopyAssociation object synchronizes two EODisplayGroups that share the same data source
but have different qualifiers. By binding two display groups with an EOMasterCopyAssociation, any
changes performed in one display group are immediately reflected in the other. Similarly, changing the
selection in one display group immediately changes it in the other one.

Examples

Suppose you have an EODisplayGroup for displaying Talent objects (actors and directors) and another
display group for displaying the pictures of the Talents who are actors. When a Talent is selected in the first
display group, you want the “actor” display group to select that Talent’s picture if the selected Talent is an
actor. Since both display groups manage Talent objects, they can share the same EODataSource. Howeve
the first display group is unqualified—it fetches all Talent objects; the second display group is qualified to
fetch only the Talents who are actors.

Usable With

EODisplayGroup

Aspects

parent An EODisplayGroup with which the association’s display group should be synchronized.

Object Keys Taken

None
93

To do this, in Interface Builder, start with an unqualified display group for displaying all the Talents. Drag
a second display group from the Enterprise Objects palette into your nib. Control-drag a connection from
the new display group to the unqualified Talent display group. In the Connections inspector, choose
EOMasterCopyAssociation, select the parent aspect, and click Connect. This action automatically sets the
second display group’s data source. Initially, the data source is set to an EODetailDataSource—that’s what
you’ll see in Interface Builder. However, at runtime, the association switches the second display group’s
data source to that of the parent display group.

Now when you run the application, the display groups will be synchronized with one another. (You’ll
programmatically assign a qualifier to the second display group so that it filters out non-actor Talents.)
94

 Classes: EOMasterDetailAssociation

e

.

d

EOMasterDetailAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOMasterDetailAssociation.h

Class Description

An EOMasterDetailAssociation object binds one EODisplayGroup (the detail) to a relationship in another (the
master), so that the detail display group contains the destination objects for the object selected in the master. Th
display groups’ data sources also operate in a master-detail arrangement, meaning changes to one are
immediately reflected in the other. In this arrangement, the detail EODisplayGroup’s data source must be an
EODetailDataSource. The detail objects are taken directly from the selected object in the master
EODisplayGroup, so that changes to the objects in one EODisplayGroup are instantly reflected in the other

In Yellow Box, by contrast, with an EOMasterPeerAssociation, the two EODisplayGroups are independent
of each other (EOMasterPeerAssociation is not a Java Client class). In a master-peer setup, insertions an
deletions in the detail EODisplayGroup don’t affect the corresponding relationship property of the selected
object in the master EODisplayGroup. Master-peer setups are more appropriate when no insertions or
deletions will be made in the detail EODisplayGroup. See the EOMasterPeerAssociation class specification
for more information.

Example

Suppose you have a master EODisplayGroup displaying Movie objects and a detail display group
displaying Talent objects. The two display groups are bound to one another through Movie’s directors

Usable With

EODisplayGroups whose data sources are EODetailDataSources

Aspects

parent (Yellow Box)
ParentAspect (Java Client)

A relationship from the master EODisplayGroup.
95

relationship—a to-many relationship from Movie to Talent. When a Movie is selected, you want the Talent
display group to display the Talents who directed the Movie. Inserting a new director into the Talent display
group should add the director to the selected Movie’s directors relationship; and similarly, deleting a
director from the Talent display group should remove the director from the selected Movie’s directors
relationship.

To do this, in Interface Builder, control-drag a connection from the Talent display group to the Movie
display group. In the Connections inspector, choose EOMasterDetailAssociation, and bind parent aspect
to the “directors” key.

Instance Methods
96

 Classes: EOMasterPeerAssociation

y

EOMasterPeerAssociation

Inherits From: EOMasterDetailAssociation :
EOAssociation :
EODelayedObserver (EOControl) :
NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOMasterDetailAssociation.h

Class Description

An EOMasterPeerAssociation binds two EODisplayGroups together in a master-detail relationship, where
the detail EODisplayGroup shows the destination objects for the relationship of the master
EODisplayGroup. In a master-peer arrangement, the detail display group’s data source is independent.
Detail objects are fetched independently from the detail’s data source, which means that changes to one
display group aren’t automatically reflected in the other. To update the other display group, it’s necessary
to save the changes made and then have the other display group fetch its objects anew.

Contrast this with a master-detail setup using an EOMasterDetailAssociation. With an
EOMasterDetailAssociation, the display groups’ data sources also operate in a master-detail arrangement,
meaning changes to one are immediately reflected in the other. The detail objects are taken directly from the
selected object in the master display group, so that changes to the objects in one display group are instantl
reflected in the other. Master-peer setups display these advantages over master-detail setups:

• You can use them to display the destination objects for relationships that are defined in the model but not
declared as class properties. This is typically done for rarely accessed information—or information that’s
costly to access. By not defining the relationship as a class property, the destination objects aren’t stored
as instance variables in the source objects, which saves memory and the cost of constructing faults for
the relationship.

• Because the detail display group fetches objects with its own data source, you can configure the detail
data source with an auxiliary EOQualifier to limit the objects fetched. This further reduces the cost of
fetching data.

• You can use an EOMasterPeerAssociation to fetch detail information that may be updated in another
editing context or even in another application; thus this association helps you to remain “up to date” with
the database.
97

l

les

n
Generally, master-peer setups are only appropriate when no insertions or deletions will be made in the detai
display group. For a master-detail relationship that reflects changes between two display groups, including
insertions and deletions, use an EOMasterDetailAssociation.

Example

Suppose you have a database of salesmen and their associated sales. Each salesman has a city ID. The sa
are related to the salesmen by salesman ID, but also have a city ID. You want a list of all the sales in a
salesman’s city so you could evaluate it against other salesmen. For this, you create a relationshipo betwee
salesman and sales based on city ID (the relationship is not a class property). You can then display that
information using an EOMasterPeerAssociation.

Usable With

EODisplayGroups whose data sources are not EODetailDataSources

Aspects

parent A relationship from the master EODisplayGroup.

Object Keys Taken

None
98

 Classes: EOMatrixAssociation

EOMatrixAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOMatrixAssociation.h

Class Description

An EOMatrixAssociation allows you to populate an NSMatrix’s cells (Application Kit).
EOMatrixAssociation supports connections for both cell titles and icons, depending on the matrix’s
prototype cell. You define the prototype in Interface Builder (to display an icon only, text only, or both).

Examples

Suppose that you want to display actors’ names and pictures in an NSMatrix. Start with a TalentPhoto
display group (where a TalentPhoto object has a relationship to its Talent object). In interface builder, create
a button containing both an image and text. Then, alternate-drag to create a matrix of buttons. Control-drag
from the matrix to the photo display group. In the Connections inspector, choose EOMatrixAssociation, and

Usable With

NSMatrix (Application Kit)

Aspects

enabled A boolean attribute of the objects, which determines whether the matrix is enabled.

image An NSImage attribute of the objects to display in the cell.

title An attribute of the objects to display in the cell.

Object Keys Taken

target
On receiving an action message from the matrix, an EOMatrixAssociation updates its display group’s
selection.
99

bind the image aspect to the photo attribute. Repeat, binding the title aspect to the talent.lastName
attribute.

Note that you can group the matrix in a scroll view. An EOMatrixAssociation will automatically manage
the size of the matrix for this (for vertical scrolling only).
100

 Classes: EOPickTextAssociation
EOPickTextAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOPickTextAssociation.h

Class Description

An EOPickTextAssociation takes the value of its display object, an NSControl (Application Kit), and uses
it to form a qualifier with up to three LIKE operators, each compared to a different key of the
EODisplayGroup. This allows the user to perform a similarity search based on whole or partial values.

EOPickTextAssociations are most often used with a table view to qualify a list of fetched objects that is too
long for convenient scrolling.

Usable With

Any NSControl

Aspects

matchKey1 An attribute to match using a LIKE qualifier.

matchKey2 An attribute to match using a LIKE qualifier.

matchKey3 An attribute to match using a LIKE qualifier.

Object Keys Taken

target The EOPickTextAssociation applies its qualifier when sent an action message from the NSControl.

delegate
The EOPickTextAssociation applies its qualifier when sent a controlTextDidChange: message, causing
dynamic update as the user types.
101

Example

Make an EOPickTextAssociation between an NSTextField and an EODisplayGroup of People objects. Bind
the matchKey1 and matchKey2 aspects to the “lastName” and “firstName” keys. If the user types “Bi” in
the field, the EOPickTextAssociation applies the following qualifier to the EODisplayGroup:

(lastName like "*Bi*") OR (firstName like "*Bi*")

which matches names like “Bill Smith” and “Joe Biggs”. The list of objects displayed in the display group
is restricted to those that match the qualifier.
102

 Classes: EOPopUpAssociation
EOPopUpAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOPopUpAssociation.h

Class Description

An EOPopUpAssociation object displays an attribute or to-one relationship value in an NSPopUpButton
(Application Kit). The items in the NSPopUpButton can be entered manually, or for a relationship,
constructed dynamically from values supplied by the destination entity’s EODisplayGroup. The value
displayed by the NSPopUpButton can be bound by one of three aspects: selectedTitle, which is useful for
values representable as strings; selectedTag, for integer values; and selectedObject, for the destination
object of a relationship.

Usable With

NSPopUpButton (Application Kit)

Aspects

titles An attribute of the objects in an EODisplayGroup whose values can be represented as strings.

selectedTitle An attribute of the selected object whose values can be represented as strings.

selectedTag An integer attribute of the selected object.

selectedObject
A to-one relationship of the selected object; the value displayed is that for the attribute bound to the titles
aspect.

enabled A boolean attribute of the selected object, which determines whether the NSPopUpButton is enabled.
103

.
Examples

There are several basic ways to configure a combo box and it’s association. They are described below.

Selecting a String from a Static List

Suppose you have a Movie display group and you want to provide a pop-up list for setting the rating from
a static list of strings. In this example, a Movie object’s rating is a string property rather than a relationship
to a Rating object. To do this, in Interface Builder, type the list of ratings into the pop-up list. Control-drag
a connection from the pop-up list to the Movie display group. Choose EOPopUpAssociation in the
Connections inspector, and bind the selectedTitle aspect to the “rating” key. With this configuration, if an
object’s string attribute value isn’t in the pop-up list, it’s temporarily added while the object is selected.

Selecting a String from a Dynamic List

This example is similar to the previous one, except in this example, a Movie object’s rating is chosen from
strings in a Rating database table. There’s a Rating EODisplayGroup that fetches the ratings into Rating
objects, and the pop-up list is filled from the “ratingString” property of the rating display group’s Rating
objects. To do this, in Interface Builder, control-drag a connection from the pop-up list to the Ratings
display group. Choose EOPopUpAssociation in the Connections inspector, and bind the titles aspect to the
“ratingString” key. Similarly, control-drag a connection from the pop-up list to the Movie display group.
Again choose EOComboBoxAssociation in the Connections inspector, and bind the selectedTitle aspect to
the “rating” key.

Selecting an Integer Tag from a Static List

Suppose you have a Customer enterprise object whose credit card type (Visa, MasterCard, and so on) is
indicated by an integer tag. You want a user to be able to choose a customer’s card type from a pop-up list
To do this, in Interface Builder, set the credit card names and tags for the pop-up list. Control-drag a
connection from the pop-up list to the Customer display group. Choose EOPopUpAssociation in the
Connections inspector, and bind the selectedTag aspect to the “cardType” key. You can also allow for a
general “other” value by defining a special tag and setting it in the EOPopUpAssociation using
setTagValueForOther:. Credit card tags from the database not matching any in the pop-up list are then
displayed as the “other” value. (It would also make sense to disable the pop-up list in this case, to avoid
writing the meaningless tag back to the database.)

Object Keys Taken

target
When the user chooses an item in the pop-up list, the EOPopUpAssociation updates the selected object’s
property with the item’s title, tag, or object.
104

 Classes: EOPopUpAssociation

ct
Selecting the Destination of a To-One Relationship

Suppose you have a list of employees and want to assign each employee a department. In terms of the obje
model, you want to assign a Department object as the destination of an Employee object’s department
relationship. To do this, in Interface Builder, control-drag a connection from the pop-up list to a Department
display group. Choose EOComboBoxAssociation in the Connections inspector, and bind the titles aspect
to the “name” key. Similarly, control-drag a connection from the pop-up list to the Employee display group.
Again choose EOComboBoxAssociation in the Connections inspector, and bind the selectedObject to the
“department” key. This fills the pop-up list with the names of departments, and causes the name of the
selected Employee’s Department to be selected in the pop-up list.

Instance Methods

setTagValueForOther:
– (void)setTagValueForOther:(int)tag

Records tag as the “unknown” tag. When a property value doesn’t match any other tag in the pop-up list,
the EOPopUpAssociation automatically selects the item for this tag. If there’s no item for this tag, the
pop-up list’s selection isn’t changed. This tag value is by default –1.

tagValueForOther
– (int)tagValueForOther

Returns the “unknown” tag.
105

106

 Classes: EORadioMatrixAssociation
EORadioMatrixAssociation

Inherits From: EOAssociation : EODelayedObserver : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EORadioMatrixAssociation.h

Class Description

EORadioMatrixAssociation displays a string or an integer in an NSMatrix. EORadioMatrixAssociation
includes three aspects: selectedTitle, which is useful for values representable as strings; selectedTag, for
integer values; and enabled for enabling and disabling the NSMatrix.

Purpose
An EORadioMatrixAssociation binds titles or tags of controls in an NSMatrix to string or integer attributes.

Aspects

selectedTitle An attribute of the selected object whose values can be represented as strings.

selectedTag An integer attribute of the selected object.

enabled A boolean attribute of the selected object, which determines whether the matrix is enabled.

Object Keys Taken

target
When the user chooses an item in the matrix, the EORadioMatrixAssociation updates the selected object’s
property with the item’s title or tag.
107

Instance Methods

setTagValueForOther:
– (void)setTagValueForOther:(int)tag

Records tag as the “unknown” tag. When a property value doesn’t match any other tag in the matrix, the
EORadioMatrixAssociation automatically selects the item for this tag. If there’s no item for this tag, the
radio button selection isn’t changed. This tag value is by default –1.

tagValueForOther
– (int)tagValueForOther

Returns the “unknown” tag.
108

 Classes: EORecursiveBrowserAssociation
EORecursiveBrowserAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EORecursiveBrowserAssociation.h

Class Description

An EORecursiveBrowserAssociation is the default association for use with a multi-column NSBrowser
(Application Kit). EORecursiveBrowserAssociation manages hierarchical structures, such as a company’s
management chain—the first column is filled with top-level managers, the second column is filled with the
employees who report directly to the selected top-level manager, and so on.

Usable With

NSBrowser (Application Kit)

Aspects

rootChildren An array of objects with which to fill the browser’s first column.

title An attribute of objects to display in the browser’s cells.

isLeaf
A boolean attribute of objects that determines whether the corresponding browser cell is a leaf (YES) or a
branch (NO).

children
An NSArray attribute of the selected object, with which to fill the next column. This aspect is only used
when the selected object is a branch (responds NO to isLeaf).

Object Keys Taken

target
used to handle user click actions within the browser. The association sends the proper synchronization
msg to the DG.

delegate used to fill in the values of the browser
109

Example

Suppose you want to display a company’s management structure in a browser. Start with a display group
for Employee objects. Programmatically qualify this display group to fetch only the top-level management
(the Employees with which to fill the browser’s first column).

Drag a browser into a window. Be sure to set it to “Allow branch selection.” Control-drag from the browser
to your Employee display group. In the Interface Builder’s Connections Inspector
(EORecursiveBrowserAssociation—labeled EORecBrowser—is chosen by default), bind the
rootChildren aspect to Employee’s directReports relationship (a recursive, to-many relationship).
Making this binding has the effect of:

• Creating a new display group named “LastEmployeeColumn.” More generally, the new display group has
a name of the form, “LastNameOfFirstDisplayGroupColumn.”

• Preconnecting the new display group to a data source.

• Binding the EORecursiveBrowserAssociation’s children aspect to the directReports relationship—the
same relationship used for the rootChildren aspect.

Now bind the title and isLeaf aspects. (Note that if you try to bind these aspects before you bind the
rootChildren aspect, you’ll bypass work that the association can do for you automatically.) Control-drag
from the browser to either of the display groups, and bind the association’s title aspect to the fullName key
and the isLeaf aspect to the isIndividualContributor key (a method that returns NO if the Employee is a
manager with direct reports). It doesn’t matter what display group you make these bindings to, because the
association expects rootChildren and children to reference the same kind of objects (have the same keys).

Now the association populates the browser’s columns based on the selection in the previous column. You
might want to create a master-detail association between the LastColumn display group and another display
group. For example, the Employees application might display information about the employee selected in
the browser’s right-most column.

The rootChildren Aspect

When you bind an EORecursiveBrowserAssociation’s rootChildren aspect, the association assumes that
children will be bound to the same key. However, it’s possible for you to bind these aspects to different
keys. If you want to do this, you’ll have to disconnect the children binding that the association creates
automatically, and then rebind it to the key you want to use. Note that you only have this freedom with the
first column. Subsequent columns must all use the same key to satisfy the children aspect.
110

 Classes: EOTableViewAssociation
EOTableViewAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOColumnAssociation.h

Class Description

An EOTableViewAssociation object manages the individual EOColumnAssociations between an
NSTableView (Application Kit) and an EODisplayGroup. An EOTableViewAssociation can sort the objects
in the display group by the left-to-right order of the table columns. The first EOColumnAssociation to be
bound to a table view automatically creates the EOTableViewAssociation; you should rarely need to do so
yourself.

An EOTableViewAssociation receives data source and delegate messages from the table view, some of
which it handles itself, and some of which it forwards to the appropriate EOColumnAssociations. For more
information, see the EOColumnAssociation class specification.

Usable With

NSTableView

Aspects

source Bound to the EODisplayGroup providing objects. This aspect doesn’t use a key.

enabled
A boolean attribute of the objects, which determines whether each object’s row is editable. Note that
because EOColumnAssociation also uses this aspect, you can use it with different keys to limit
editability to the whole row or to an individual cell (column) in that row.

textColor
An NSColor attribute of the objects, which determines the color of text for each object’s row in the
NSTableView.

bold
A boolean attribute of the objects, which determines whether each objects row is displayed in bold or
regular weight text.
111

Example

For an example of using an EOTableViewAssociation, see the EOColumnAssociation class specification.

Method Types

Setting up a table view association
+ bindToTableView:displayGroup:

Sorting
– setSortsByColumnOrder:
– sortsByColumnOrder

Accessing the active EOColumnAssociation
– editingAssociation

Table view data source methods
– numberOfRowsInTableView:
– tableView:setObjectValue:forTableColumn:row:
– tableViewObjectValueForLocationtableView:

objectValueForTableColumn:row:

Table view delegate methods
– tableView:shouldEditTableColumn:row:
– tableView:willDisplayCell:forTableColumn:row:

Table view notification methods
– tableViewSelectionDidChange:

italic
A boolean attribute of the objects, which determines whether each objects row is displayed in italic or
normal angle text.

Object Keys Taken

dataSource
An EOTableViewAssociation responds to some data source messages and forwards others to the
appropriate EOColumnAssociation.

delegate An EOTableViewAssociation forwards delegate messages to the appropriate EOColumnAssociations.

target Reserved, but not used.

Aspects
112

 Classes: EOTableViewAssociation
Control delegate methods
– controlDidFailToFormatStringErrorDescriptioncontrol:

didFailToFormatString:errorDescription:
– control:isValidObject:
– controlTextShouldBeginEditingcontrol:textShouldBeginEditing:

Class Methods

bindToTableView:displayGroup:
+ (void)bindToTableView:(NSTableView *)aTableView

displayGroup:(EODisplayGroup *)aDisplayGroup

Creates an EOTableViewAssociation, binding aTableView to aDisplayGroup, if there isn’t already a table
view association for aTableView.

Instance Methods

editingAssociation
– (EOColumnAssociation *)editingAssociation

Returns the EOColumnAssociation for the NSTableView cell being edited, or nil if no cell is being edited.

setSortsByColumnOrder:
– (void)setSortsByColumnOrder:(BOOL)flag

Controls whether the receiver applies a sort ordering to its EODisplayGroup. If flag is YES, it builds
EOSortOrderings (EOControl) for each of the EOColumnAssociations, collects them into an NSArray
based on the left-to-right order of the columns, and assigns them to the display group with
setSortOrderings:. If flag is NO, it doesn’t alter the sort ordering of the display group.

An EOTableViewAssociation assigns sort orderings based on the left to right order of the table columns,
and reassigns them whenever the user moves a column.

See also: – sortingSelector (EOColumnAssociation)
113

sortsByColumnOrder
– (BOOL)sortsByColumnOrder

Returns YES if the receiver assigns EOSortOrderings (EOControl) to its EODisplayGroup based on the
sorting selectors of its EOColumnAssociations, NO if it doesn’t alter the display group’s sort ordering.

Data Source, Delegate, and Notification Methods

control:didFailToFormatString:errorDescription:
– (BOOL)control: (NSControl *)aTableView

didFailToFormatString: (NSString *)aString
errorDescription: (NSString *)errorDescription

Forwards the message to the receiver’s editing association.

See also: – editingAssociation

control:isValidObject:
– (BOOL)control: (NSControl *)aTableView

isValidObject: (id)anObject

Forwards the message to the receiver’s editing association.

See also: – editingAssociation

control:textShouldBeginEditing:
– (BOOL)control: (NSControl *)aTableView

textShouldBeginEditing:(NSText *)fieldEditor

Forwards the message to the receiver’s editing association.

See also: – editingAssociation

numberOfRowsInTableView:
– (int)numberOfRowsInTableView:(NSTableView *)aTableView

Returns the number of displayed objects in the receiver’s EODisplayGroup.

See also: – displayedObjects (EODisplayGroup)
114

 Classes: EOTableViewAssociation
tableView:objectValueForTableColumn:row:
– (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation bound to
that column—so that it can provide the value.

tableViewSelectionDidChange:
– (void)tableViewSelectionDidChange:(NSNotification *)aNotification

Updates the receiver’s EODisplayGroup based on the new selection in the table view.

See also: – setSelectionIndexes: (EODisplayGroup)

tableView:setObjectValue:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)value
forTableColumn:(NSTableColumn *)aTableColumn
row:(int)rowIndex

Forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation bound to
that column—so that it can set the value.

tableView:shouldEditTableColumn:row:
– (BOOL)tableView:(NSTableView *)aTableView

shouldEditTableColumn:(NSTableColumn *)aTableColumn
row: (int)rowIndex

Returns NO if the “enabled” aspect is bound and its value for the object at rowIndex is NO. Otherwise
forwards the message to aTableColumn’s identifier—assumed to be the EOColumnAssociation bound to
that column—and returns its response. Note that because the two associations’ enabled aspects can be
bound to different keys, you can limit editability to the whole row or to an individual cell (column) in that
row.
115

tableView:willDisplayCell:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

willDisplayCell: (id)aCell
forTableColumn: (NSTableColumn *)aTableColumn
row: (int)rowIndex

Alters the display characteristics for aCell according to the values for the enabled, textColor, bold, and
italic aspects of the object at rowIndex. Then forwards the message to aTableColumn’s identifier—assumed
to be the EOColumnAssociation bound to that column—allowing it to adjust aCell based on its own
enabled aspect.
116

 Classes: EOTextAssociation

EOTextAssociation

Inherits From: EOAssociation : EODelayedObserver (EOControl) : NSObject

Conforms To: NSCoding (EOAssociation)
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOTextAssociation.h

Class Description

In a Yellow Box application, an EOTextAssociation object displays a plain or rich text attribute in an
NSText object (Application Kit) by binding the text object to a string or NSData attribute. It determines the
kind of text received from an object by examining the beginning for signature codes specific to RTF and
RTFD. When writing text back to the object, the association examines the configuration of the NSText
object to determine the type to use according to the following table:

In a Java Client application, an EOTextAssociation object displays a plain text attribute in an EOTextField,
EOTextArea, or EOFormCell by binding the text object to a string. Text is written back to the object as an
NSString.

The following tables describe the display objects an EOTextAssociation can be used with, the aspects of an
EOTextAssociation, and the object keys it takes.

Multiple Fonts Allows Graphics Type Written to Object

NO NO NSString text

YES NO NSData containing RTF

YES YES NSData containing RTFD

Usable With

NSText, NSTextView, NSCStringText (Application Kit)

EOTextField, EOTextArea, EOFormCell (Java Client)
117

Aspects

value A text attribute of the selected object.

editable (Yellow Box only) A boolean attribute of the selected object, which determines whether the text object is editable.

enabled (Java Client only) A boolean attribute of the selected object, which determines whether the text object is enabled.

Object Keys Taken

delegate
(Yellow Box
only)

An EOTextAssociation accepts delegate messages related to the editing and validation of text; see the
NSText, NSTextView, and NSCStringText class specifications for more information.
118

 Classes: EOViewLayout
EOViewLayout

Inherits From: Object

Implements: java.awt.LayoutManager2
java.io.Serializable

Package: com.apple.client.eointerface

Class Description

EOViewLayout is an AWT LayoutManager that implements the geometry options available in
InterfaceBuilder's Size inspector. The size of a Component embedded in a Container using this layout will
be a function of both its autosizing mask and its initial size (see setAutosizingMask for details).

EOViewLayout is for use in Java Client applications only; there isn’t an equivalent class for Yellow Box.

Constructors

public EOViewLayout()

Any consumers of EOViewLayout should use the defaultInstance.

Static Methods

defaultInstance
public static EOViewLayout defaultInstance()

Returns that single instance of the receiver used to lay out all InterfaceBuilder-generated Containers.
119

Instance Methods

setAutosizingMask
public void setAutosizingMask(java.awt.Component component, int mask)

Sets the autosizing mask of component to mask. This information is subsequently used by the receiver to
calculate the new location and dimensions of component whenever its parent is resized. The mask should
be some bitwise combination of the following:

Note that unless mask is Fixed (the default),component's adjusted size will be some factor of its size at the
moment setAutosizingMask was invoked.

Fixed neither component's location nor its dimensions may be adjusted

MaxXMargin the distance between component's right edge and that of its parent may be adjusted

MinXMargin component's left edge distance may be adjusted

MaxYMargin the distance between component's bottom edge and that of its parent may be adjusted

MinYMargin component's top edge distance may be adjusted

WidthSizable component's width may be adjusted

HeightSizable component's height may be adjusted

BothSizable both width and height may be adjusted
120

121

 Classes: NSImage Additions

NSImage Additions

Inherits From: NSObject

Declared In: EOInterface/EOControlAssociation.h

Class Description

Enterprise Objects Framework adds one method to NSImage to aid in conversion of image data from
databases. This method is used as a factory method for custom value archiving, as described in the
EOCustomClassArchiving informal protocol specification. See the NSImage class specification in the
Application Kit documentation for a list supported image file formats.

Class Methods

imageWithData:
+ imageWithData:(NSData *)imageData

Creates an NSImage from imageData and returns it.

See also: – initWithData: (NSImage class of the Application Kit), – TIFFRepresentation (NSImage class
of the Application Kit)

	The EOInterface Framework
	Framework: System/Library/Frameworks/EOInterface.framework
	Introduction

	EOActionAssociation
	Class Description
	Examples

	Instance Methods
	action:

	EOActionCellAssociation
	Class Description
	Examples

	Instance Methods
	control
	editingAssociation

	EOActionInsertionAssociation
	Class Description
	Example

	EOApplet
	Class Description
	Instance Methods
	init

	EOApplication
	Class Description
	Constructors
	Static Methods
	application

	Instance Methods
	applicationWillExit
	createInterfaceController
	finishInitialization
	languages
	main
	registerWindow
	setLanguages
	setWindowRegistryEnabled
	shouldTerminate
	sharedApplication
	windowRegistryEnabled

	EOArchive
	Class Description
	Constructors
	Static Methods
	loadArchiveNamed

	EOAssociation
	An EOAssociation maintains a two-way binding between the properties of a display object, such as ...
	Interface Builder
	 initWithObject: Designated initializer.

	Class Description
	Adopted Protocols
	Method Types
	Class Methods
	aspects
	aspectSignatures
	associationClassesForObject:
	associationClassesSuperseded
	displayName
	isUsableWithObject:
	objectKeysTaken
	primaryAspect

	Instance Methods
	bindAspect:displayGroup:key:
	breakConnection
	canBindAspect:displayGroup:key:
	copyMatchingBindingsFromAssociation:
	displayGroupForAspect:
	displayGroupKeyForAspect:
	endEditing
	establishConnection
	initWithObject:
	object
	setValue:forAspect:
	setValue:forAspect:atIndex:
	shouldEndEditingForAspect:invalidInput:errorDescription:
	shouldEndEditingForAspect:invalidInput:errorDescription:index:
	subjectChanged
	valueForAspect:
	valueForAspect:atIndex:

	EOAssociation
	How EOAssociations Work
	The Display Object
	Bindings: Aspects, EODisplayGroups, and Keys

	Setting up an EOAssociation Programmatically
	Creating a Subclass of EOAssociation
	Defining Capabilities
	Setting Up
	Monitoring Changes from the EODisplayGroup
	Monitoring Changes from the Display Object
	Validation

	EOColumnAssociation
	Class Description
	Example

	Method Types
	Instance Methods
	setSortingSelector:
	sortingSelector

	Data Source and Delegate Methods
	control:didFailToFormatString:errorDescription:
	control:isValidObject:
	control:textShouldBeginEditing:
	tableView:objectValueForTableColumn:row:
	tableView:setObjectValue:forTableColumn:row:
	tableView:shouldEditTableColumn:row:
	tableView:willDisplayCell:forTableColumn:row:

	EOComboBoxAssociation
	Class Description
	Examples
	Selecting a String from a Static List
	Selecting a String from a Dynamic List
	Selecting the Destination of a To-One Relationship

	EOControlAssociation
	Class Description
	Examples

	Instance Methods
	control
	editingAssociation

	EODetailSelectionAssociation
	Class Description
	Example

	EODisplayGroup
	An EODisplayGroup collects an array of objects from an EODataSource, and works with a group of EO...
	 Array of objects supplied by an EODataSource
	 EOQualifier and EOSortOrderings to filter the objects for display
	 Array of selection indexes
	 Delegate
	Interface Builder
	 init Designated initializer.
	 allObjects Returns all objects in the EODisplayGroup.
	 displayedObjects Returns the subset of all objects made available for display.
	 selectedObjects Returns the selected objects.
	 setQualifier: Sets a filter that limits the objects displayed.
	 setSortOrderings: Sets the ordering used to sort the objects.
	 updateDisplayedObjects Filters, sorts, and redisplays the objects.
	 insertObjectAtIndex: Creates a new object and inserts it into the EODataSource.

	Class Description
	Creating an EODisplayGroup
	Getting Objects
	Filtering and Sorting

	Changing and Examining the Selection
	The Delegate
	Methods for Use by EOAssociations

	Adopted Protocols
	Method Types
	Instance Methods
	allObjects
	associationDidBeginEditing:
	associationDidEndEditing:
	association:failedToValidateValue:forKey:object:errorDescription:
	clearSelection
	contentsChanged
	dataSource
	defaultStringMatchFormat
	defaultStringMatchOperator
	delegate
	delete:
	deleteObjectAtIndex:
	deleteSelection
	displayedObjects
	editingAssociation
	editingContext:presentErrorMessage:
	editingContextWillSaveChanges:
	editorHasChangesForEditingContext:
	enabledToSetSelectedObjectValueForKey:
	endEditing
	enterQueryMode:
	equalToQueryValues
	fetch
	fetch:
	fetchesOnLoad
	greaterThanQueryValues
	init
	inQueryMode
	insert:
	insertedObjectDefaultValues
	insertObjectAtIndex:
	insertObject:atIndex:
	lessThanQueryValues
	localKeys
	observingAssociations
	qualifier
	qualifierFromQueryValues
	qualifyDataSource
	qualifyDataSource:
	qualifyDisplayGroup
	qualifyDisplayGroup:
	queryBindingValues
	queryOperatorValues
	redisplay
	selectedObject
	selectedObjects
	selectedObjectValueForKey:
	selectionChanged
	selectionIndexes
	selectNext
	selectNext:
	selectObject:
	selectObjectsIdenticalTo:
	selectObjectsIdenticalTo:selectFirstOnNoMatch:
	selectPrevious
	selectPrevious:
	selectsFirstObjectAfterFetch
	setDataSource:
	setDefaultStringMatchFormat:
	setDefaultStringMatchOperator:
	setDelegate:
	setEqualToQueryValues:
	setFetchesOnLoad:
	setGreaterThanQueryValues:
	setInQueryMode:
	setInsertedObjectDefaultValues:
	setLessThanQueryValues:
	setLocalKeys:
	setObjectArray:
	setQualifier:
	setQueryBindingValues:
	setQueryOperatorValues:
	setSelectedObjectValue:forKey:
	setSelectionIndexes:
	setSelectsFirstObjectAfterFetch:
	setSortOrderings:
	setUsesOptimisticRefresh:
	setValidatesChangesImmediately:
	setValue:forObject:key:
	setValue:forObjectAtIndex:key:
	sortOrderings
	updateDisplayedObjects
	updatedObjectIndex
	usesOptimisticRefresh
	validatesChangesImmediately
	valueForObject:key:
	valueForObjectAtIndex:key:

	EODisplayGroupDelegate
	(informal protocol)
	Category Description
	Method Types
	Instance Methods
	displayGroup:createObjectFailedForDataSource:
	displayGroupDidChangeDataSource:
	displayGroupDidChangeSelectedObjects:
	displayGroupDidChangeSelection:
	displayGroup:didDeleteObject:
	displayGroup:didFetchObjects:
	displayGroup:didInsertObject:
	displayGroup:didSetValue:forObject:key:
	displayGroup:displayArrayForObjects:
	displayGroup:shouldChangeSelectionToIndexes:
	displayGroup:shouldDeleteObject:
	displayGroup:shouldDisplayAlertWithTitle:message:
	displayGroupShouldFetch:
	displayGroup:shouldInsertObject:atIndex:
	displayGroup:shouldRedisplayForChangesInEditingContext:
	displayGroup:shouldRefetchForInvalidatedAllObjectsNotification:

	EOGenericControlAssociation
	Class Description
	Instance Methods
	control
	editingAssociation

	EOInterfaceController
	Class Description
	Constructors
	Instance Methods
	closeWindow
	collectChangesFromServer
	component
	controllerDisplayGroup
	displayGroupDidChangeDataSource
	displayGroupDidChangeSelection
	displayGroupDidDeleteObject
	displayGroupDidFetchObjects
	displayGroupDidInsertObject
	displayGroupDidSetValueForObject
	editingContext
	handleEditingContextChanges
	handleWindowClosing
	insertIntoControllerDisplayGroup
	isEdited
	isRunning
	isRunningInContainer
	isRunningInFrame
	isRunningInModalDialog
	loadArchive
	locateWindow
	masterDisplayGroup
	masterObject
	masterObjectGlobalID
	objectWillChange
	redisplayControllerDisplayGroup
	run
	runInContainer
	runInFrame
	runInModalDialog
	save
	saveAndCloseWindow
	saveIfUserConfirms
	saveIfUserConfirmsAndCloseWindow
	setComponent
	setControllerDisplayGroup
	setEditingContext
	setMasterDisplayGroup
	setMasterWithGlobalID
	setMasterWithObject
	setTitle
	showWindow
	title
	updateWindowTitle
	window
	windowTitle

	EOMasterCopyAssociation
	Class Description
	Examples

	EOMasterDetailAssociation
	Class Description
	In Yellow Box, by contrast, with an EOMasterPeerAssociation, the two EODisplayGroups are independ...
	Example

	Instance Methods

	EOMasterPeerAssociation
	Class Description
	Example

	EOMatrixAssociation
	Class Description
	Examples

	EOPickTextAssociation
	Class Description
	Example

	EOPopUpAssociation
	Class Description
	Examples
	Selecting a String from a Static List
	Selecting a String from a Dynamic List
	Selecting an Integer Tag from a Static List
	Selecting the Destination of a To-One Relationship

	Instance Methods
	setTagValueForOther:
	tagValueForOther

	EORadioMatrixAssociation
	Class Description
	An EORadioMatrixAssociation binds titles or tags of controls in an NSMatrix to string or integer ...

	Instance Methods
	setTagValueForOther:
	tagValueForOther

	EORecursiveBrowserAssociation
	Class Description
	Example
	The rootChildren Aspect

	EOTableViewAssociation
	Class Description
	Example

	Method Types
	Class Methods
	bindToTableView:displayGroup:

	Instance Methods
	editingAssociation
	setSortsByColumnOrder:
	sortsByColumnOrder

	Data Source, Delegate, and Notification Methods
	control:didFailToFormatString:errorDescription:
	control:isValidObject:
	control:textShouldBeginEditing:
	numberOfRowsInTableView:
	tableView:objectValueForTableColumn:row:
	tableViewSelectionDidChange:
	tableView:setObjectValue:forTableColumn:row:
	tableView:shouldEditTableColumn:row:
	tableView:willDisplayCell:forTableColumn:row:

	EOTextAssociation
	Class Description

	EOViewLayout
	Class Description
	Constructors
	Static Methods
	defaultInstance

	Instance Methods
	setAutosizingMask

	NSImage Additions
	Class Description
	Class Methods
	imageWithData:

