

 The SybaseEOAdaptor Framework

r.

nd

bject

The SybaseEOAdaptor Framework

Framework: com.apple.yellow.sybaseeoadaptor

Header File Directories: System/Developer/Java/Headers

Introduction

The SybaseEOAdaptor framework is a set of classes that allow your programs to connect to a Sybase serve
These classes provide Sybase-specific method implementations for the EOAccess framework’s EOAdaptor,
EOAdaptorChannel, EOAdaptorContext, and EOSQLExpression abstract classes.

The following table lists the classes in the SybaseEOAdaptor Framework and provides a brief description
of each class.

The Connection Dictionary

The connection dictionary contains items needed to connect to a Sybase server, such as the server name a
database (it’s common to omit the user name and password from the connection dictionary, and prompt
users to enter those values in a login panel). The keys of this dictionary identify the information the server
expects, and the values of those keys are the values that the adaptor uses when trying to connect to the
server. For Sybase databases the required keys are as follows (all are defined constants):

hostName
databaseName
userName
password

Class Description

SybaseAdaptor
Represents a single connection to a Sybase database server, and is responsible for
keeping login and model information, performing Sybase-specific formatting of SQL
expressions, and reporting errors.

SybaseChannel
Represents an independent communication channel to the database server its
SybaseAdaptor is connected to.

SybaseContext
Represents a single transaction scope on the database server to which its adaptor o
is connected.

SybaseSQLExpression Defines how to build SQL statements for SybaseChannels.
1

ta

r

t

The connection dictionary can optionally include three other keys (which are also defined constants):
sybasePasswordEncryption, LC_ALL , and primitiveTypeMap . sybasePasswordEncryption provides
support for Sybase password encryption. LC_ALL declares to the Sybase server the character set being
used by the client (such as eucjis, ascii7, or iso_1). For a complete list of types available for this field, see
your Sybase documentation. primitiveTypeMap describes the mapping of user-defined data types to their
base Sybase type (such as varchar or datetime). For more information on user-defined data types, see “Da
Type Mapping”.

To add any of these optional keys and appropriate values to your connection dictionary, you can manually
edit your model file. For example:

connectionDictionary = {databaseName = People;

hostName = "";

LC_ALL = eucjis;

password = "";

primitiveTypeMap = {id = varchar; ssn = char(9); };

sybasePasswordEncryption = YES;

userName = "";

};

Subsequently changing the connection dictionary in your model file using the Set Adaptor Info command
in EOModeler has no effect on these keys and their values—they are preserved unless you edit the file to
remove them. Alternatively you can add the optional keys to a model’s connection dictionary
programmatically.

The default character set for non-Japanese systems is iso_1 (that is, ISO Latin 1), while the default characte
set for Japanese systems is eucjis. You only need to add the LC_ALL key to your connection dictionary if
you are using a character set other than your system’s default.

Error Handling

SybaseAdaptor, SybaseContext, and SybaseChannel can raise exceptions due to programming errors tha
result in invalid argument values or internal inconsistencies. In addition, messages, errors, and failure status
returned from the Sybase SQL Server and client libraries can also result in EOGeneralAdaptorExceptions.
When an exception results from a callback to the CS_CLIENTMSG_CB (Sybase ClientMessage callback)
or the CS_SERVERMSG_CB (Sybase ServerMessage callback), all of the information passed into this
routine is available in the userInfo dictionary contained by the exception. When an exception is raised in
response to a Sybase ClientMessage callback, you can get the information provided by the client library as
follows:

clientMsgDict = [[localException userInfo]

 objectForKey:@"sybaseClientMessageDictionary"];

The clientMsgDict contains the following keys which have values corresponding to those sent in the
callback function that raised the exception: msgstring, osstring, sqlstate, severity, msgnumber, osnumber,
status.
2

 The SybaseEOAdaptor Framework

Similarly, when the exception is raised in response to a Sybase ServerMessage callback, you can get the
information provided by the server as follows:

svrMsgDict = [[localException userInfo]

 objectForKey:@"sybaseServerMessageDictionary"];

The svrMsgDict contains the following keys which have values corresponding to those sent in the callback
function that raised the exception: text, svrname, proc, sqlstate, msgnumber, state, severity, line, status.

Locking

All adaptors use the database server’s native locking facilities to lock rows on the server. The Sybase
adaptor locks a row by using the HOLDLOCK keyword in SELECT statements. This occurs when:

• You send the adaptor channel a selectAttributesWithFetchSpecification message with true specified as
the value for the lock keyword.

• You explicitly lock an object's row with the EODatabaseContext's lockObjectWithGlobalID message.

• You set pessimistic locking at the database level and fetch objects.

The semantics of the HOLDLOCK keyword are such that when you lock a row other users can’t update it,
but it doesn’t guarantee that your update will succeed. This is because other users could be holding a lock
on the same row. However, you can still read rows that are locked by other users.

Data Type Mapping

Every adaptor provides a mapping between each server data type and the Objective-C type to which a
database value will be coerced when it’s fetched from the database. The following table lists the mapping
used by SybaseAdaptor.

Sybase Data Type Objective-C Data Type Java Data Type

binary NSData NSData

bit NSNumber Number

char NSString String

datetime NSCalendarDate NSGregorianDate

datetimn NSCalendarDate NSGregorianDate

decimal NSDecimalNumber BigDecimal
3

In addition, SybaseAdaptor provides a mapping for user-defined data types. For example, a custom data
type partnumber defined as char(10) is mapped to NSString—the Objective-C type to which

decimaln NSDecimalNumber BigDecimal

float NSNumber Number

floatn NSNumber Number

image NSData NSData

int NSNumber Number

intn NSNumber Number

money NSDecimalNumber BigDecimal

moneyn NSDecimalNumber BigDecimal

nchar NSString String

numeric NSDecimalNumber BigDecimal

numericn NSDecimalNumber BigDecimal

nvarchar NSString String

real NSNumber Number

smalldatetime NSCalendarDate NSGregorianDate

smallint NSNumber Number

smallmoney NSDecimalNumber BigDecimal

sysname NSString String

text NSString String

timestamp NSData NSData

tinyint NSNumber Number

varbinary NSString String

varchar NSString String

Sybase Data Type Objective-C Data Type Java Data Type
4

 The SybaseEOAdaptor Framework

partnumber ’s base data type (char) is mapped. SybaseAdaptor’s implementation of
describeModelWithTableNames automatically creates mappings for user-defined data types and saves
them in the connection dictionary of the newly created model. Consequently, even models created with
EOModeler automatically include information about custom data types.

Since information about custom types is stored in a model’s connection dictionary, the type mapping
methods—externalTypesWithModel:, internalTypeForExternalType:model: , and
isValidQualifierType—use the model argument if it is provided. If the model argument isn’t provided,
these methods don’t have user-defined data type information available to them.

Prototype Attributes

The SybaseEOAdaptor Framework provides the following set of prototype attributes:

Name External Type Value Class Name Other Attributes

binaryID varbinary NSData width = 12

city varchar NSString
columnName = CITY
width = 50

date datetime NSCalendarDate columnName = ""

longText text NSString

money money NSDecimalNumber columnName = "";

phoneNumber varchar NSString
columnName = PHONE
width = 20

rawImage image NSData columnName = RAW_IMAGE

state varchar NSString
columnName = STATE
width = 2

streetAddress varchar NSString
columnName = STREET_ADDRESS
width = 100

tiffImage image NSImage
adaptorValueConversionMethodName = TIFFRepresentation
columnName = PHOTO
valueFactoryMethodName = "imageWithData:"

uniqueID int NSNumber
columnName = "";
valueType = i

zipCode varchar NSString
columnName = ZIP
width = 10
5

t

ar
e

SQL and User-Defined Transactions

Certain data definition commands, such as CREATE TABLE, can’t be executed in a user-defined
transaction. However, the database channel and adaptor channel require you to start a transaction before
evaluating any SQL. To work around this problem, you need to send the adaptor context or database contex
a transactionDidBegin message to make it think a transaction is in progress. Then you can send it the SQL
statement, followed by a transactionDidCommit message.

Processing Compute Rows and Stored Procedures

SybaseChannel’s delegate methods used for processing compute rows and stored procedures give you
access to the three types of non-regular rows supported by Sybase: compute rows, return parameters (from
a stored procedure), and status from a stored procedure. Because the access layer can only handle regul
table rows, the Sybase adaptor channel normally skips non-regular rows. However, you can use the delegat
methods to intercept non-regular rows before they are skipped. These delegate methods are
sybaseChannelWillFetchAttributes and sybaseChannelWillReturnRow. The method
sybaseChannelWillFetchAttributes is invoked when a row is fetched, while
sybaseChannelWillReturnRow is invoked when a row is about to be returned. Based on the type of the
row, the delegate can specify the appropriate behavior. This enables you to use data in one of the three
non-regular row types and either extract the data from them or use the method describeResults to return an
array of attributes that describe the properties available in the current result set. Using describeResults is
appropriate if you’re not concerned with format—for example, if you’re just writing raw data to a report.

Note: The regular rows in the results from a stored procedure must map to the attributes in the
corresponding entity, and must be in alphabetical order.

Generating Primary Keys

Each adaptor provides a database-specific implementation of the method
primaryKeyForNewRowWithEntity for generating primary keys. The SybaseChannel’s implementation
uses a table named eo_sequence_table to keep track of the next available primary key value for a given
table. The table contains a row for each table for which the adaptor provides primary key values. The
statement used to create the eo_sequence_table is:

create table eo_sequence_table (

table_name varchar(32),

counter int null

)

SybaseChannel uses a stored procedure named eo_pk_for_table to access and maintain the primary key
counter in eo_sequence_table. The stored procedure is defined as follows:

create procedure

eo_pk_for_table @tname varchar(32) as

begin

define @max int
6

 The SybaseEOAdaptor Framework

s

e

update eo_sequence_table

set counter = counter + 1

where table_name = @tname

select counter

from eo_sequence_table

where table_name = @tname

end

The stored procedure increments the counter in the eo_sequence_table row for the specified table, select
the counter value, and returns it. SybaseChannel executes this eo_pk_for_table stored procedure from
primaryKeyForNewRowWithEntity and returns the stored procedure’s return value.

To use SybaseChannel’s database-specific primary key generation mechanism, be sure that your databas
accommodates the adaptor’s scheme. To modify your database so that it supports the adaptor’s mechanism
for generating primary keys, use EOModeler. For more information on this topic, see Enterprise Objects
Framework Developer’s Guide.
7

8

 Classes: SybaseAdaptor

ng

e

SybaseAdaptor

Inherits From: EOAdaptor : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

A SybaseAdaptor represents a single connection to a Sybase database server, and is responsible for keepi
login and model information, performing Sybase-specific formatting of SQL expressions, and reporting
errors.

The features SybaseAdaptor adds to EOAdaptor are as follows:

• The ability to specify a client character set and language
• Sybase password encryption

The SybaseAdaptor class has these restrictions: A context can only manage one channel at a time, and th
adaptor doesn’t support full outer joins because the Sybase server itself doesn’t support them.

Method Types

Mapping external types to internal types
externalTypesWithModel:
primitiveTypeForExternalTypeInModel

Getting information from the connection dictionary
connectionKeys

Bracketing calls to ct_connect()
prepareEnvironmentForConnect
resetEnvironmentAfterConnect

Callback methods
sybaseContextDidDisconnect
sybaseContextWillConnect
9

Class Methods

externalTypesWithModel:
public static com.apple.yellow.foundation.NSArray

externalTypesWithModel(com.apple.yellow.eoaccess.EOModel model)

Overrides the EOAdaptor method externalTypesWithModel: to return the Sybase database types.

primitiveTypeForExternalTypeInModel
public static java.lang.String primitiveTypeForExternalTypeInModel (java.lang.String externalType,

com.apple.yellow.eoaccess.EOModel model)
+ (NSString *)primitiveTypeForExternalType: (NSString *)externalType model:(EOModel *)model

Returns the primitive type on which a given custom type, defined on the server, is based.

Instance Methods

connectionKeys
public com.apple.yellow.foundation.NSArray connectionKeys()

Returns an NSArray containing the keys in the receiver’s connection dictionary. You can use this method to
prompt the user to supply values for the connection dictionary.

prepareEnvironmentForConnect
public void prepareEnvironmentForConnect()

A call to this method should preceed all calls to ct_connect() to set the LC_ALL environment variable
setting to the value specified in the model connection dictionary.

See also: resetEnvironmentAfterConnect

resetEnvironmentAfterConnect
public void resetEnvironmentAfterConnect()

A call to this method should follow all calls to ct_connect() to set the LC_ALL environment variable
setting to the value specified in the model connection dictionary.

See also: prepareEnvironmentForConnect
10

 Classes: SybaseAdaptor

sybaseContextDidDisconnect
public void sybaseContextDidDisconnect(SybaseContext aSybaseContext)

Callback method that is invoked after the associated Sybase context disconnects.

sybaseContextWillConnect
public void sybaseContextWillDisconnect(SybaseContext aSybaseContext)

Callback method that is invoked just before the associated Sybase context disconnects.
11

12

 Classes: SybaseChannel

SybaseChannel

Inherits From: EOAdaptorChannel : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

A SybaseChannel represents an independent communication channel to the database server its
SybaseAdaptor is connected to. All of a SybaseChannel’s operations take place within the context of
transactions controlled or tracked by its SybaseContext. A Sybase adaptor context manages one channel,
and a channel is associated with only one context.

The feature SybaseChannel adds to EOAdaptorChannel is processing for compute rows and stored
procedures (see the framework introduction for more information).

SybaseChannel has two delegate methods; for a complete description, see the SybaseChannel.Delegate
interface specification.
13

14

 Classes: SybaseContext

is
e

ss

c

se

SybaseContext

Inherits From: EOAdaptorContext : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

A SybaseContext represents a single transaction scope on the database server to which its adaptor object
connected. Since a Sybase server supports multiple concurrent transaction sessions, the adaptor may hav
several adaptor contexts. A SybaseContext may in turn have a SybaseChannel, which handles actual acce
to the data on the server.

The features the SybaseContext class adds to EOAdaptorContext are methods for returning Sybase-specifi
data structures that describe characteristics of the context.

The SybaseContext can have a delegate, which gives you access to all messages returned from the Syba
client library or from the Sybase Server. See the SybaseContext.Delegate interface specification for a
complete description. SybaseContext also provides the following callback methods for use by the
SybaseChannel:

• sybaseChannelDidClose
• sybaseChannelDidEndFetching
• sybaseChannelWillBeginFetching
• sybaseChannelWillOpen

Method Types

Setting the login time out interval loginTimeOutInterval
setLoginTimeOutInterval

Setting the time out interval setTimeOutInterval
timeOutInterval

Managing the connection connect
currentChannel
disconnect
isConnected

Setting the max text size default maxTextSizeDefault
setMaxTextSizeDefault
15

Setting the current exception raiseCurrentException
setCurrentException

Class Methods

loginTimeOutInterval
public static int loginTimeOutInterval ()

Returns the login time out interval used by SybaseContext.

See also: setLoginTimeOutInterval

setLoginTimeOutInterval
public static void setLoginTimeOutInterval (int seconds)

Sets the login time out interval value SybaseContext uses during the creation of new channels. The default
is 0, which means that there is no time out.

See also: loginTimeOutInterval

setTimeOutInterval
public static void setTimeOutInterval(int seconds)

Sets the time out interval valueSybaseContext uses during the creation of new channels. The default is 0,
which means that there is no time out.

See also: timeOutInterval

timeOutInterval
public static int timeOutInterval ()

Returns the time out interval used by SybaseContext.

See also: setTimeOutInterval
16

 Classes: SybaseContext

 it

 it

Instance Methods

connect
public void connect()

Opens a connection to the database server. SybaseChannel sends this message to SybaseContext when
(SybaseChannel) is about to open a channel to the server.

See also: disconnect

currentChannel
public SybaseChannel currentChannel()

Returns the SybaseChannel currently associated with the receiving context.

disconnect
public void disconnect()

Closes a connection to the database server. SybaseChannel sends this message to SybaseContext when
(SybaseChannel) has just closed a channel to the server.

See also: connect

isConnected
public boolean isConnected()

Returns YES if the receiver has an open connection to the database, NO otherwise.

See also: connect, disconnect

maxTextSizeDefault
public int maxTextSizeDefault()

Returns the maximum number of bytes to be returned from a Sybase image to text field. The default is set
to INT_MAX, as defined for the host machine. This number can be overwritten on a per-channel basis by
sending the appropriate SQL to the channel using the evaluateExpression: method.

See also: setMaxTextSizeDefault
17

s
raiseCurrentException
public void raiseCurrentException()

If the receiver has an exception, raises it.

See also: setCurrentException

setCurrentException
public void setCurrentException(java.lang.Throwable exception)

Sets to exception the receiver’s current exception.

When the SybaseAdaptor encounters an error, it uses the error message to build an NSException and store
the exception in the SybaseContext using this method. The exception can then be reviewed by other
components to determine if the error is fatal.

See also: raiseCurrentException

setMaxTextSizeDefault
public void setMaxTextSizeDefault(int textSize)

Sets to textSize the receiver’s default textsize. Any channels created after this method has been invoked will
use the newly specified textSize.

See also: maxTextSizeDefault
18

 Classes: SybaseSQLExpression
SybaseSQLExpression

Inherits From: EOSQLExpression : NSObject

Package: com.apple.yellow.sybaseeoadaptor

Class Description

SybaseSQLExpression defines how to build SQL statements for SybaseChannels.

Method Types

Getting the server type ID serverTypeIdForName

Getting the lock clause lockClause

Class Methods

serverTypeIdForName
public static int serverTypeIdForName(java.lang.String typeName)

Returns the Sybase type code (such as 47, 56, or 55) for typeName (such as “char”, “int”, or “decimal”).

Instance Methods

lockClause
public java.lang.String lockClause()

Overrides the EOSQLExpression method lockClause to return the SQL string used in a SELECT statement
to lock selected rows, which is @“HOLDLOCK”.
19

20

 Classes: SybaseChannel.Delegate

ar
e

SybaseChannel.Delegate

Implemented By: SybaseChannel delegate objects

Package: com.apple.yellow.sybaseeoadaptor

Interface Description

SybaseChannel’s delegate methods used for processing compute rows and stored procedures give you
access to the three types of non-regular rows supported by Sybase: compute rows, return parameters (from
a stored procedure), and status from a stored procedure. Because the access layer can only handle regul
table rows, the Sybase adaptor channel normally skips non-regular rows. However, you can use the delegat
methods to intercept non-regular rows before they are skipped. These delegate methods are
sybaseChannelWillFetchAttributes and sybaseChannelWillReturnRow. The method
sybaseChannelWillFetchAttributes is invoked when a row is fetched, while
sybaseChannelWillReturnRow is invoked when a row is about to be returned. Based on the type of the
row, the delegate can specify the appropriate behavior. This enables you to use data in one of the three
non-regular row types and either extract the data from them or use the method describeResults to return an
array of attributes that describe the properties available in the current result set. Using describeResults is
appropriate if you’re not concerned with format—for example, if you’re just writing raw data to a report.

Note: The regular rows in the results from a stored procedure must map to the attributes in the
corresponding entity, and must be in alphabetical order.

The SybaseChannel adaptor defines the following constants against which you can compare the returned
row type:

• SybaseRegularRow
• SybaseComputeRow
• SybaseReturnParameterRow
• SybaseReturnStatusRow
21

rn
Instance Methods

sybaseChannelWillFetchAttributes
public abstract NSArray sybaseChannelWillFetchAttributes(SybaseChannel channel,

NSArray attributes,
int rowType,
int computeRowId)

Invoked whenever a row is fetched. The delegate can return null , which causes the row to be skipped, or
can return a substitute set of attributes that is appropriate for the type of row being fetched. Delegates can
have the channel fabricate a set of attributes for the current non-regular row by calling describeResults.
See the interface introduction for a list of defined constants for rowType.

sybaseChannelWillReturnRow
public abstract boolean sybaseChannelWillReturnRow(SybaseChannel channel,

NSDictionary row,
int rowType,
int computeRowId)

Invoked once a row has been read from the database and packaged into the dictionary. Delegates can retu
true to cause the row to be returned from fetchAttributes , or they can return false to cause the row to be
skipped. See the interface introduction for a list of defined constants for rowType.
22

 Classes: SybaseContext.Delegate

se

SybaseContext.Delegate

Implemented By: SybaseContext delegate objects

Package: com.apple.yellow.sybaseeoadaptor

Class Description

The SybaseContext delegate object allows developers access to all the messages returned from the Syba
client library or the Sybase Server. If your implementation of these delegate methods returns false, the
SybaseContext will not report the message (or error). If your implementation returns true, the
SybaseContext will continue as usual. Most messages are reported in exceptions, but messages with a
severity of 0 are simply ignored.

Instance Methods

sybaseContextShouldReportClientMessage
public abstract boolean sybaseContextShouldReportClientMessage(SybaseContext context,

NSDictionary clientMessage)

Invoked when an exception results from a callback to the CS_CLIENTMSG_CB (Sybase ClientMessage
callback). Gives the delegate the opportunity to substitute clientMessage as the userInfo dictionary.

sybaseContextShouldReportServerMessage
public abstract boolean sybaseContextShouldReportServerMessage(SybaseContext context,

NSDictionary serverMessage)

Invoked when an exception results from a callback to the CS_SERVERMSG_CB (Sybase ServerMessage
callback). Gives the delegate the opportunity to substitute serverMessage as the userInfo dictionary.
23

24

	The SybaseEOAdaptor Framework
	SybaseAdaptor
	Class Description
	Method Types
	Class Methods
	externalTypesWithModel:
	primitiveTypeForExternalTypeInModel

	Instance Methods
	connectionKeys
	prepareEnvironmentForConnect
	resetEnvironmentAfterConnect
	sybaseContextDidDisconnect
	sybaseContextWillConnect

	Introduction
	The Connection Dictionary
	Error Handling
	Locking
	Data Type Mapping
	Prototype Attributes
	SQL and User-Defined Transactions
	Processing Compute Rows and Stored Procedures
	Generating Primary Keys

	Framework: com.apple.yellow.sybaseeoadaptor

	SybaseChannel
	Class Description

	SybaseContext
	Class Description
	Method Types
	Class Methods
	loginTimeOutInterval
	setLoginTimeOutInterval
	setTimeOutInterval
	timeOutInterval

	Instance Methods
	connect
	currentChannel
	disconnect
	isConnected
	maxTextSizeDefault
	raiseCurrentException
	setCurrentException
	setMaxTextSizeDefault

	SybaseSQLExpression
	Class Description
	Method Types
	Class Methods
	serverTypeIdForName

	Instance Methods
	lockClause

	SybaseChannel.Delegate
	Interface Description
	Instance Methods
	sybaseChannelWillFetchAttributes
	sybaseChannelWillReturnRow

	SybaseContext.Delegate
	Class Description
	Instance Methods
	sybaseContextShouldReportClientMessage
	sybaseContextShouldReportServerMessage

