



11/24/98
Technical Publications
© Apple Computer, Inc. 1998



M A C O S R U N T I M E F O R
J A V A

Programming With MRJToolkit



 Apple Computer, Inc. 11/24/98



Apple Computer, Inc.
© 1997, 1998 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying, recording,
or otherwise, without prior written
permission of Apple Computer, Inc.,
except to make a backup copy of any
documentation provided on
CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop
applications only for Apple-labeled
or Apple-licensed computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Mac,
MacinTalk, and Macintosh are
trademarks of Apple Computer, Inc.,
registered in the United States and
other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and
may be registered in certain
jurisdictions.

Helvetica and Palatino are registered
trademarks of Linotype-Hell AG
and/or its subsidiaries.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Java and all Java-based trademarks
are trademarks or registered
trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

Simultaneously published in the
United States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL, ITS
QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE PURCHASER, ARE
ASSUMING THE ENTIRE RISK AS TO
ITS QUALITY AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS, ORAL
OR WRITTEN, EXPRESS OR IMPLIED.
No Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

Contents

Tables and Listings v

Preface About This Document 7

How to Use This Document 7
Additional Resources 7
Conventions Used in This Document 8

Special Fonts 8
Command Syntax 9
Types of Notes 9

Chapter 1 Using MRJToolkit 11

Including MRJToolkit With Your Application 13
Manipulating Files 14

File Types and Creators 14
The MRJOSType Data Type 16
Setting the Default File Type and Creator 16
Setting or Reading File Types and Creators for Existing Files 17
Finding an Application With a Given Creator 18
Finding Special Folders 19

Responding to Simple System Events 20
Assigning Keyboard Equivalents to Menu Items 23

Chapter 2 MRJToolkit Reference 27

The MRJOSType Class 29
Description 29
Methods 29

The MRJFileUtils Class 31
Description 31
Special Folder Constants 32
Methods 33
iii
 Apple Computer, Inc. 11/24/98

The MRJApplicationUtils Class 39
Description 39
Methods 40

The MRJMenuUtils Class 43
Description 43
Methods 43

Application-Defined Methods 44
The MRJAboutHandler Interface 44
The MRJOpenDocumentHandler Interface 45
The MRJPrintDocumentHandler Interface 46
The MRJQuitHandler Interface 47

Glossary 49

Index 51
iv
 Apple Computer, Inc. 11/24/98

Chapter 1

Chapter 2

Tables and Listings

Using MRJToolkit 11

Table 1-1 Event handling methods 22
Table 1-2 Some Mac OS keyboard equivalent conventions 25

Listing 1-1 Setting the default file type and creator 16
Listing 1-2 Reading and setting the file type and creator 17
Listing 1-3 Finding the path to an application 18
Listing 1-4 Finding the Preferences folder 19
Listing 1-5 The MRJQuitHandler interface 20
Listing 1-6 Implementing the quit event handler 21
Listing 1-7 Assigning a keyboard equivalent to a menu item. 23

MRJToolkit Reference 27
v
 Apple Computer, Inc. 11/24/98

vi
 Apple Computer, Inc. 11/24/98

P R E F A C E

About This Document

MRJToolkit is a set of Java-based classes that you use to access some Mac OS
functionality from a Java application. For example, if your Java application
allows you to save files, you can use MRJToolkit methods to assign a file type
and creator to such a file saved on the Mac OS platform.

You should use MRJToolkit if you are interested in doing any of the following:

■ Packaging a Java application using JBindery

■ Creating or opening files from the Mac OS Finder for your Java application

■ having your application launch or activate when files are dropped onto its
desktop icon

■ Setting keyboard equivalents for menu items in your Java application

IMPORTANT

MRJToolkit methods are not available for use by Java
applets. ▲

How to Use This Document 0

To understand how to use the MRJToolkit methods to prepare and execute Java
applications on the Mac OS platform, you should first read Chapter 1, “Using
MRJToolkit,” which gives tutorial information and sample code examples.
Chapter 2, “MRJToolkit Reference,” contains descriptions of all the MRJToolkit
methods and the required application-defined callback methods. You can
reference this chapter while reading Chapter 1 or while writing your code.

Additional Resources 0

In most cases, extensive knowledge of the Mac OS platform is not necessary
when using MRJToolkit methods. However, you should be familiar with
7
 Apple Computer, Inc. 11/24/98

P R E F A C E

concepts such as file types and creators and have some knowledge of Mac OS
menus. If you are not familiar with these concepts, please consult Inside
Macintosh: Macintosh Toolbox Essentials and Inside Macintosh: More Macintosh
Toolbox before using MRJToolkit methods. These and other developer resources
are available at the following Web site:

http//www.apple.com/developer/

All of the MRJToolkit methods require that your Java application be packaged
using JBindery. JBindery, which does not require any Mac OS programming
knowledge, allows you to package a Java application so that you can launch it
like any Mac OS application. For information on JBindery, see the document
Using JBindery.

For more information about Apple’s use of Java technology, see the following
Web page:

http://developer.apple.com/java/

This document does not describe the Java language or low-level details of the
Java virtual machine. For that information, you should consult JavaSoft
documentation, which you can access through the Java home page:

http://java.sun.com/

Conventions Used in This Document 0

This document uses special conventions to present certain types of information.
Words that require special treatment appear in specific fonts or font styles.

Special Fonts 0

This document uses several typographical conventions.

All code listings, reserved words, command options, resource types, and the
names of actual libraries are shown in Letter Gothic (this is Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.
8

 Apple Computer, Inc. 11/24/98

P R E F A C E

Command Syntax 0

This document uses the following syntax conventions:

Types of Notes 0

This document uses two types of notes.

Note
A note like this contains information that is useful but that
you do not have to read to understand the main text. ◆

IMPORTANT

A note like this contains information that is crucial to
understanding the main text. ▲

literal Letter Gothic text indicates a word that must appear exactly as
shown.

italics Italics indicate a parameter that you must replace with anything
that matches the parameter’s definition.
9
 Apple Computer, Inc. 11/24/98

P R E F A C E
10

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Contents



 Apple Computer, Inc. 11/24/98

Contents

Figure 1-0
Listing 1-0
Table 1-0
1 Using MRJToolkit
Including MRJToolkit With Your Application 13
Manipulating Files 14

File Types and Creators 14
The MRJOSType Data Type 16
Setting the Default File Type and Creator 16
Setting or Reading File Types and Creators for Existing Files 17
Finding an Application With a Given Creator 18
Finding Special Folders 19

Responding to Simple System Events 20
Assigning Keyboard Equivalents to Menu Items 23
11

C H A P T E R 1

12 Contents

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Using MRJToolkit 1

Although most Java code can run unchanged on multiple host platforms, in
some cases you might want to access certain platform-specific functions.
MRJToolkit allows Java code limited access to the Mac OS platform. Specifically,
it allows you to do any of the following from your Java code:

■ Set or read special file identifiers (file types and creators) that are used by the
Mac OS Finder

■ Determine paths to special Mac OS folders, such as the Preferences folder or
the Desktop folder

■ Respond to simple system events such as requests to open a file, to print, or
to quit

■ Implement an About box that can be activated from the Apple menu, as Mac
OS users expect

■ Create keyboard equivalents (shortcut keys) to menu items

Allowing access to the Mac OS platform means that your Java application
becomes platform-specific. However, since calls to MRJToolkit do nothing if the
appropriate implementations are not available, you can still easily adapt your
Java application to work on different platforms.

Although Mac OS programming knowledge is not required to use MRJToolkit,
you should read the “Finder Interface” chapter in Inside Macintosh: Macintosh
Toolbox Essentials for information on how the Finder handles files.

Including MRJToolkit With Your Application 1

When building your Java application, you must link against the file
MRJToolkitStubs.zip, which allows your application to access the proper
MRJToolkit methods at runtime. This file contains the proper class declarations,
but only stub implemenations (that is, the code does nothing).

The Java class files that make up MRJToolkit are stored in the file
MRJClasses.zip, which is placed in the Extensions folder as part of the normal
MRJ installation for MRJ 1.5 and later. If desired, you can choose to package the
file MRJToolkitStubs.zip with your Java application using JBindery. Doing so
ensures that your application can always find a set of MRJToolkit classes (even
if they are the stub versions that do nothing). For more information about
including Java classes with your application, see the document Using JBindery.
Including MRJToolkit With Your Application 13
 Apple Computer, Inc. 11/24/98

 C H A P T E R 1

Using MRJToolkit

Note
MRJToolkit classes are included in MRJClasses.zip only
with MRJ 1.5 and later. If the MRJToolkit libraries are not
available on the host computer at execution time and you
have not included MRJToolkitStubs.zip with your
application, an error occurs. ◆

If you are writing code meant to be compatible with multiple platforms, you
can check for the presence of MRJToolkit using the isMRJToolkitAvailable
method in the class com.apple.mrj.MRJApplicationUtils.

Manipulating Files 1

At times you might want to save files to a Mac OS disk drive from your Java
application (such as a text document or a preferences file). While saving files to
the Mac OS platform is simple, accessing them afterwards can be more
problematic, since files created by a Java application do not normally contain
any Mac OS–specific information and therefore cannot be assigned a custom
desktop icon. A plain file without a custom icon offers the user no clues as to
what application created the file or what its contents may be. Attempts to open
such a file from the Mac OS Finder (the system application that manages files
and the desktop) may not work, since the Finder does not know which
application it should use to open it.

To solve this problem, MRJToolkit allows you to assign special Mac OS
identifiers to files saved from Java applications. You can then open or search for
such files just as you could from a Mac OS application. MRJToolkit also allows
you to search for specific applications or special folders (such as the Preferences
folder).

File Types and Creators 1

To identify and handle files properly, the Mac OS Finder requires two 4-byte
identifiers: the file type and the creator. A file type is a string that specifies the
contents of a file. For example, the file type 'APPL' identifies the file as an
application and therefore executable. A file type of 'TEXT' means that the file
contains raw text. Any application that can read raw text can open a file of type
'TEXT'.
14 Manipulating Files

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Using MRJToolkit

However, many applications create files that contain application-specific
information. For example, a word processor document might contain
formatting and style information in addition to the raw text. Since only the
application that created it can make use of the information, the application often
assigns the file a proprietary file type.

To identify the application that created a document, the Finder relies on a string
called a creator. For example, the SimpleText application (the default text editor
installed with Mac OS system software) assigns the creator 'ttxt' to all its
documents. If you double-click on a document that has the 'ttxt' creator, the
Finder knows to look for the SimpleText application to open it (the application
also bears the creator 'ttxt'). The Finder also uses the creator to assign the
“correct” icon to a file so that users can tell what application created it. Creators
also allow the Finder to provide useful information about a file when you select
the Get Info item in the File menu.

Note
Creators may not necessarily indicate the actual creator of a
file, but rather what application should open it. For
example, if you use an editor to create an HTML document,
you might want to assign a browser’s creator of the file
rather than the HTML editor’s creator. Double-clicking on
the document then opens the appropriate browser rather
than the HTML editor. ◆

The MRJToolkit class com.apple.mrj.MRJFileUtils contains a number of
methods that you can use to set the file type and creator of a file.

If you plan to publicly distribute your application, you must register its creator
and any proprietary file types with Apple through Developer Technical Support
to avoid collisions between names used by different developers. You can
register a creator online or view currently registered creators at the following
Web site:

http://devworld.apple.com/dev/cftype/main.html
For more detailed information about how the Finder handles file types and
creators, see the “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox
Essentials.
Manipulating Files 15
 Apple Computer, Inc. 11/24/98

 C H A P T E R 1

Using MRJToolkit

The MRJOSType Data Type 1

The Mac OS designates the data type OSType to hold file types, creators, or the
name of a folder. MRJToolkit allows access to OSType data through a wrapper
object of type MRJOSType. You manipulate an MRJ OS type in the Java
environment just as you would a Mac OS type in the Mac OS environment.

Setting the Default File Type and Creator 1

When packaging your Java application JBindery assigns the default creator you
specify (or '????' if you do not choose one) and assumes that all files created by
the application will have the file type 'TEXT'. To override these settings, you use
the setDefaultFileType and setDefaultCreator methods. Any files that your
application creates will then automatically have these default values set.
Listing 1-1 sets the default creator and file type and creates a file on the Mac OS.

Listing 1-1 Setting the default file type and creator

import com.apple.mrj.*;
import java.io.*;

...

public static void testFileUtils() {
/* first, set the current file and creator */
MRJOSType newType = new MRJOSType("TEXT");
MRJOSType newCreator = new MRJOSType("ttxt");

MRJFileUtils.setDefaultFileType(newType);
MRJFileUtils.setDefaultFileCreator(newCreator);

/* create a File object with the current file and creator */
File f = new File("TestFile");

if (f.exists())
f.delete();

try {
PrintStream ps = new PrintStream(new FileOutputStream(f));
16 Manipulating Files

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Using MRJToolkit

ps.println("Hello, World");
ps.close();
}

catch (IOException e) {
fail("Failed to write output file", e);
return;
}

The created file TestFile has the file type 'TEXT' and the creator 'ttxt',
indicating that it is a text file and should be opened using SimpleText. Since no
path was specified, TestFile appears in the default directory (typically the
application’s directory).

Setting or Reading File Types and Creators for Existing Files 1

Sometimes you may want to determine or set a file type or creator for a file that
already exists. For example, if the user requests that a file be opened, the
application might check the file type to make sure it can handle that type of file.
You can read the file type and creator using the getFileType and getFileCreator
methods respectively. To set the file type and creator, you can use either the
setFileType and setFileCreator methods or the setFileTypeAndCreator method.
The code fragment in Listing 1-2 shows an example of reading and setting the
file type and creator.

Listing 1-2 Reading and setting the file type and creator

try {
MRJOSType curType = MRJFileUtils.getFileType(f);
MRJOSType curCreator = MRJFileUtils.getFileCreator(f);

// make sure they're what we expect
if (! (curType.equals(new MRJOSType ("TEXT") &&

curCreator.equals(new MRJOSType ("ttxt"))))
throw new IOException("Unexpected file type or creator");

} catch (IOException e) {
fail("Couldn't get file type or creator", e);
return;
}

Manipulating Files 17
 Apple Computer, Inc. 11/24/98

 C H A P T E R 1

Using MRJToolkit

try {
MRJFileUtils.setFileTypeAndCreator(f, new MRJOSType("TEXT"),

new MRJOSType("CWIE"));
} catch (Exception e) {

fail("Can't set file type and creator", e);
return;
}

This example checks to see if the file in question is a SimpleText text file (file
type 'TEXT', creator 'ttxt'). If so, it then changes the file type and creator to be
that of a CodeWarrior text file. Note that since the file type is not changed, you
could have called the setFileCreator method to just set the creator to 'CWIE'.
After changing the creator, double-clicking on the file causes the file to be
opened using CodeWarrior rather than SimpleText.

Finding an Application With a Given Creator 1

If you want to find an application with a given creator, you can call the
findApplication method. For example, if you have an HTML file with a given
browser’s creator, you can search for the browser and then open the file with it.
The code fragment in Listing 1-3 searches for the SimpleText application and
then launches it by passing the file to Runtime.runtime.exec. (In a similar
manner, you could search for a browser and have it open a local HTML file.)

Listing 1-3 Finding the path to an application

try {
File cw = MRJFileUtils.findApplication(new MRJOSType("ttxt"));

// launch SimpleText with our new text file
String params[] = { cw.toString(), f.toString() };

// parameters to runtime exec:
// { AppToRun, FileToOpen, ... }
Runtime.getRuntime().exec(params);

} catch (Exception e) {
18 Manipulating Files

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Using MRJToolkit
fail("Can't find SimpleText", e);
return;
}

The findApplication method searches the Mac OS desktop database looking for
an application with the correct creator. If more than one copy of the application
exists, findApplication may find a copy different from the one you expect,
depending on the state of the desktop database.

Finding Special Folders 1

The Mac OS platform has numerous special folders (that is, directories) that
contain specialized files. For example, system extensions are stored in the
Extensions folder, while fonts are stored in the Fonts folder. If your Java
application accesses or saves files on the Mac OS platform, you may need to
find the path to a special folder. For example, if you want to save application
default settings, you should store these in the Preferences folder.

To find the path to a particular folder, you must call the findFolder method
while specifying the folder you want to locate. Listing 1-4 shows a code
fragment that locates the Preferences folder and prints out the path to standard
output.

Listing 1-4 Finding the Preferences folder

try {
System.out.println("Preferences folder is: " +

MRJFileUtils.findFolder(
MRJFileUtils.kPreferencesFolderType));

}
catch (FileNotFoundException e) {

fail("Couldn't get Preferences folder", e);
return;
}

The kPreferencesFolderType constant specifies that you are looking for the
Preferences folder. See “Special Folder Constants” (page 32) for a complete
listing of possible folders and their constants.
Manipulating Files 19
 Apple Computer, Inc. 11/24/98

 C H A P T E R 1

Using MRJToolkit
Responding to Simple System Events 1

On the Mac OS platform, applications can respond to simple events passed to it
by the Finder or other applications. For example, if the user drops a file onto an
application’s icon, the Finder launches the application (if not already open) and
passes it an “open file” event instructing it to open the file if possible.

Note
Events on the Mac OS platform are handled through Apple
Events, which are described in detail in Inside Macintosh:
Interapplication Communication. No knowlege of Apple
Events is needed when using MRJToolkit. ◆

MRJToolkit allows your Java application to respond to the following system
events:

■ requests to open a document

■ requests to print a document

■ requests to quit

MRJToolkit also allows your application to respond to an “About box selected”
event when the About item in the Apple menu is selected. An About box is a
window that gives information about the application, such as the version
number, serial number, and credits (members of the development team and so
on).

To make your application aware of the event, you must implement an interface
that handles the particular event and then register the handler method with
MRJToolkit. For example, to create a quit handler, you must implement the
interface MRJQuitHandler. This interface has the form shown in Listing 1-5.

Listing 1-5 The MRJQuitHandler interface

package.com.apple.mrj

public interface MRJQuitHandler {
public void handleQuit();

}

20 Responding to Simple System Events

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Using MRJToolkit
To use this interface, the class that implements it must contain a method named
handleQuit that defines the actions to take when the application receives a quit
request. In addition, the application must also register the method name with
MRJToolkit by calling the appropriate registration method in the class
com.apple.mrj.MRJApplicationUtils. For example, to register the quit event
handler, you must call the MRJRegisterQuitHandler method. Listing 1-6 shows
an example of implementing a quit handler.

Listing 1-6 Implementing the quit event handler

import com.apple.mrj.*;
import java.io.*;

...

class QuitTest implements MRJQuitHandler {

public QuitTest() {
System.out.println("Select Quit from the Apple menu or shutdown

to test event handler.");

MRJApplicationUtils.registerQuitHandler(this);
}

public void handleQuit() {
System.exit(0); /* Quit the MRJ runtime */
}

}

Since the call to registerQuitHandler occurs within the class that contains
handleQuit, it can use the this variable to reference the handler.

Table 1-1 shows the available handler interfaces, their corresponding
registration methods, and the conditions under which an event is sent. All the
Responding to Simple System Events 21
 Apple Computer, Inc. 11/24/98

 C H A P T E R 1

Using MRJToolkit
registration methods are members of the class
com.apple.mrj.MRJApplicationUtils.

Table 1-1 Event handling methods

Interface Handler Name Registration Method When Activated

MRJOpenDocumentHandler handleOpenFile registerOpenDocumentHandler When the Finder
requests that a file
be opened (for
example, when the
user drags an
appropriate file
onto the
application icon).

MRJQuitHandler handleQuit registerQuitHandler When the
application receives
a request to quit
(for example,
before shutting
down, or if the user
selected the default
Quit Item in the
Apple Menu).

MRJPrintDocumentHandler handlePrintFile registerPrintDocumentHandler When the Finder
requests that the
application print
(for example, if the
user selects a file in
the Finder and
chooses the Print
menu item).

MRJAboutHandler handleAbout registerAboutHandler When the user
selects the About
item in the
application’s Apple
Menu.
22 Responding to Simple System Events

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Using MRJToolkit
Assigning Keyboard Equivalents to Menu Items 1

Many Mac OS applications allow the user to select a menu item by entering a
special key combination, such as the Command key followed by a letter or
number. Such combinations are called keyboard equivalents (or, sometimes,
shortcut keys). For example, many Mac OS applications have assigned the
keyboard equivalent Command-o to the Open File menu item. Entering this key
combination functions exactly as if the user selected the Open File menu item
with the mouse.

If you want to assign keyboard equivalents to menu items in your Java
application, you can do so using the SetMenuItemCmdKey method in the class
com.apple.mrj.MRJMenuUtils.

IMPORTANT

Future versions of MRJ, which implement Sun’s JDK 1.1
standards, will let you assign keyboard equivalents by
binding MenuAccelerator objects to a menu item, so you do
not need to use SetMenuItemCmdKey. ▲

The SetMenuItemCmdKey method allows you to assign a keyboard equivalent of
the form “Command-character” to a menu item. The SetMenuItemCmdKey method
is overloaded; you can specify the menu item by referencing the menu item by
name or by menu name and menu index. Listing 1-7 shows code that creates
items in a menu and assigns them keyboard equivalents.

Listing 1-7 Assigning a keyboard equivalent to a menu item.

import com.apple.mrj.*;
import java.io.*;
import java.awt.*;

...

class MenuTest extends Frame {
MenuTest() {

MenuBar mb = new MenuBar();
Menu menu = new Menu("Menu");
Assigning Keyboard Equivalents to Menu Items 23
 Apple Computer, Inc. 11/24/98

 C H A P T E R 1

Using MRJToolkit
menu.add("Hop");
menu.add("Skip");
menu.add("Jump");
mb.add(menu);
setMenuBar(mb);

MRJMenuUtils.setMenuItemCmdKey(menu, 0, '1');
MRJMenuUtils.setMenuItemCmdKey(menu, 1, '2');
MRJMenuUtils.setMenuItemCmdKey(menu, 2, '3');

show();
}

public boolean handleEvent(Event eve) {
if (eve.id == Event.ACTION_EVENT)

System.out.println(eve);
return false;

}
}

This code creates a menu named Menu which has three menu items associated
with it: Hop, Skip, and Jump. It then assigns each a keyboard equivalent. For
example, entering Command-1 would select the menu item Hop. The keyboard
equivalent appears in the menu item next to the item name.

The rest of the code is a simple event handler that traps an event (that is, the
selection of a menu item) and prints the contents of the Apple Event record to
the standard output.
24 Assigning Keyboard Equivalents to Menu Items

 Apple Computer, Inc. 11/24/98

C H A P T E R 1

Using MRJToolkit
Although you can choose any letter or number to go with the Command key,
most Mac OS applications have certain keyboard equivalent conventions, which
you should follow. Table 1-2 shows some of the more common conventions.

For more information about keyboard equivalents, see the “Menu Manager”
chapter of Inside Macintosh: Macintosh Toolbox Essentials.

Table 1-2 Some Mac OS keyboard equivalent conventions

Keyboard Equivalent Menu Action

Command-N Create a new document

Command-O Open a file

Command-W Close a window

Command-Q Quit the application

Command-P Print the current document

Command-S Save the current document

Command-A Select all

Command-C Copy selection

Command-X Cut selection

Command-V Paste into selection

Command-Z Undo last action
Assigning Keyboard Equivalents to Menu Items 25
 Apple Computer, Inc. 11/24/98

 C H A P T E R 1

Using MRJToolkit
26 Assigning Keyboard Equivalents to Menu Items

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

Contents

 Apple Computer, Inc. 11/24/98

Contents
Figure 2-0
Listing 2-0
Table 2-0
2 MRJToolkit Reference
The MRJOSType Class 29
Description 29
Methods 29

MRJOSType 29
equals 30
toInt 31
toString 31

The MRJFileUtils Class 31
Description 31
Special Folder Constants 32
Methods 33

setDefaultFileType 33
setDefaultFileCreator 34
setFileTypeAndCreator 34
setFileType 35
setFileCreator 36
getFileType 37
getFileCreator 37
findFolder 38
findApplication 39

The MRJApplicationUtils Class 39
Description 39
Methods 40

isMRJToolkitAvailable 40
registerAboutHandler 40
registerOpenDocumentHandler 41
registerPrintDocumentHandler 41
27

C H A P T E R 2
registerQuitHandler 42
The MRJMenuUtils Class 43

Description 43
Methods 43

setMenuItemCmdKey 43
Application-Defined Methods 44

The MRJAboutHandler Interface 44
handleAbout 44

The MRJOpenDocumentHandler Interface 45
handleOpenFile 45

The MRJPrintDocumentHandler Interface 46
myHandlePrintFile 46

The MRJQuitHandler Interface 47
handleQuit 47
28 Contents

 Apple Computer, Inc. 11/24/98

C H A P T E R 2
MRJToolkit Reference 2

This chapter describes all the MRJToolkit classes, constants, and methods.

All the MRJToolkit Java classes are stored in the package com.apple.mrj, which
is part of the MRJClasses.zip file distributed with Mac OS Runtime for Java. For
development, your application should import the package MRJToolkitStubs.zip
to be able to access the MRJToolkit classes.

The MRJOSType Class 2

Description 2

The following methods belong to the class com.apple.mrj.MRJOSType. These
methods allow you to handle a special type MRJOSType, which acts as a Mac OS
type in the Java runtime environment.

Methods 2

MRJOSType 2

Converts a string, value, or byte array to a value of type MRJOSType.

public MRJOSType(String fromString);

public MRJOSType(int fromInt);

public MRJOSType(byte fromBytes[]);

fromString The string to convert to type MRJOSType. This string must be four
characters in length. Since each character is represented by 2
bytes in the Unicode standard, this method uses only the
low-order byte of each character in fromString.

fromInt The integer value to convert to type MRJOSType.
The MRJOSType Class 29
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
fromBytes The array of bytes to convert to type MRJOSType. The array must
contain 4 bytes.

DISCUSSION

This overloaded method defines a wrapper object that acts as the equivalent of
a Mac OS 4-byte character constant (such as a creator, file type, or special folder
name). When specifying a Mac OS creator, file type, or special folder name in
the Java environment, you must refer to it using an MRJ OS type.

SEE ALSO

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about file types, creators, and folder names.

equals 2

Compares a value to one of type MRJOSType or an integer.

public final boolean equals (MRJOSType type);

public final boolean equals (int type);

type The value to compare against.

method result True if the value matches what you compared it against, false
otherwise.

DISCUSSION

For example, if you received an MRJ OS type in the variable myType, then

myType.equals(new MRJOSType ("TEXT")) ;

is true if the MRJ OS type is of type 'TEXT'.
30 The MRJOSType Class

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
toInt 2

Converts a value of type MRJOSType to an integer.

public int toInt();

method result The converted integer value.

DISCUSSION

myVal.toInt() is the value myVal converted to an integer.

toString 2

Converts a value of type MRJOSType to a string.

public String toString();

method result The converted string.

DISCUSSION

myVal.toString() is the value myVal converted to a string.

The MRJFileUtils Class 2

Description 2

The following constants and static methods belong to the class
com.apple.mrj.MRJFileUtils. You use these methods to set or modify
parameters for a Mac OS file and to locate special folders (such as the System
Folder) from your Java application. For example, if your Java program saves a
file to disk, you can set the Mac OS creator and the file type. Doing so makes it
possible to launch the Java application by double-clicking on the associated file.
The MRJFileUtils Class 31
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
Special Folder Constants 2

When searching for the path for special folders, you must specify the folder that
you are looking for using the following constants.

public static final MRJOSType
kSystemFolderType = newMRJOSType(0x6D616373), // 'macs'
kDesktopFolderType = newMRJOSType(0x6465736B), // 'desk'
kTrashFolderType = newMRJOSType(0x74727368), // 'trsh'
kWhereToEmptyTrashFolderType = new MRJOSType(0x656D7074), // 'empt'
kPrintMonitorDocsFolderType = new MRJOSType(0x70726E74), // 'prnt'
kStartupFolderType = new MRJOSType(0x73747274), // 'strt'
kShutdownFolderType = new MRJOSType(0x73686466), // 'shdf'
kAppleMenuFolderType = new MRJOSType(0x616D6E75), // 'amnu'
kControlPanelFolderType = new MRJOSType(0x6374726C), // 'ctrl'
kExtensionFolderType = new MRJOSType(0x6578746E), // 'extn'
kFontsFolderType = new MRJOSType(0x666F6E74), // 'font'
kPreferencesFolderType = new MRJOSType(0x70726566), // 'pref'
kTemporaryFolderType = new MRJOSType(0x74656D70); // 'temp'

Constant Descriptions

kSystemFolderType
The System Folder.

kDesktopFolderType
The Desktop folder.

kTrashFolderType
The Trash folder (for single-user systems).

kWhereToEmptyTrashFolderType
The shared Trash folder for networked users.

kPrintMonitorDocsFolderType
The PrintMonitor folder.

kStartupFolderType
The Startup Items folder.

kShutdownFolderType
The Shutdown Items folder.

kAppleMenuFolderType
The Apple Menu folder.

kControlPanelFolderType
The Control Panels folder.
32 The MRJFileUtils Class

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
kExtensionFolderType
The Extensions folder.

kFontsFolderType
The Fonts folder.

kPreferencesFolderType
The Preferences folder.

kTemporaryFolderType
The Temporary Items folder. This folder is invisible to the
user.

Some of the folders may be absent due to differences in system software
versions or system configuration.

Methods 2

setDefaultFileType 2

Sets the default file type for the Java application.

public static void setDefaultFileType (
MRJOSType defaultType);

defaultType The 4-byte file type you wish to assign as the default.

DISCUSSION

On the Mac OS, a file type is a 4-byte character constant that identifies the type
of file to the Finder (for example, 'TEXT' for a text file, or 'APPL' for an
application). If you do not specify a default file type, any saved files will have
the file type 'TEXT'.

SEE ALSO

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about file types.
The MRJFileUtils Class 33
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
setDefaultFileCreator 2

Sets the default creator for the Java application.

public static void setDefaultFileCreator (
MRJOSType defaultCreator);

defaultCreator
The 4-byte creator you wish to assign as the default.

DISCUSSION

On the Mac OS platform, the creator is a 4-byte character constant that the
Finder uses to identify the application that should open a document. The
application itself has the same creator as its documents. If you do not specify a
default creator, any saved files will have the current application’s creator.

SEE ALSO

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about creators.

setFileTypeAndCreator 2

Sets the file type and creator of an existing Mac OS file.

public static final void setFileTypeAndCreator (
File file,
MRJOSType type,
MRJOSType creator)
throws IOException;

file The file whose file type and creator you want to set.

type The 4-byte file type you want to assign.

creator The 4-byte creator you wish to assign.
34 The MRJFileUtils Class

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
DISCUSSION

On the Mac OS, a file type is a 4-byte character constant that identifies the type
of file to the Finder (for example, 'TEXT' for a text file, or 'APPL' for an
application). A creator is a 4-byte character constant that the Finder uses to
identify the application that created a document; doing so allows the Finder to
launch or activate the appropriate application when the document is opened.

SEE ALSO

The setFileType method (page 35).

The setFileCreator method (page 36).

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about file types and creators.

setFileType 2

Sets the file type for an existing Mac OS file.

public static final void setFileType (
File file,
MRJOSType type)
throws IOException;

file The file whose file type you want to set.

type The 4-byte file type you wish to assign.

DISCUSSION

On the Mac OS, a file type is a 4-byte character constant that identifies the type
of file to the Finder (for example, 'TEXT' for a text file, or 'APPL' for an
application). This method throws IOException if the desired file cannot be
found.

SEE ALSO

The setFileTypeAndCreator method (page 34).
The MRJFileUtils Class 35
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
The setFileCreator method (page 36).

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about file types.

setFileCreator 2

Sets the creator for an existing Mac OS file.

public static final void setFileCreator (
File file,
MRJOSType creator)
throws IOException;

file The file whose creator you want to set.

creator The 4-byte creator you wish to assign as the default.

DISCUSSION

On the Mac OS, a creator is a 4-byte character constant that the Finder uses to
identify the application that should be used to open the document file. This
method throws IOException if the desired file cannot be found.

SEE ALSO

The setFileTypeAndCreator method (page 34).

The setFileType method (page 35).

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about creators.
36 The MRJFileUtils Class

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
getFileType 2

Gets the file type of an existing Mac OS file.

public static final MRJOSType getFileType (
File file)
throws IOException;

file The file whose file type you want to obtain.

method result The 4-byte file type of the file.

DISCUSSION

On the Mac OS platform, a file type is a 4-byte character constant that identifies
the type of file to the Finder (for example, 'TEXT' for a text file, or 'APPL' for an
application). This method throws IOException if the desired file cannot be
found.

SEE ALSO

The setFileTypeAndCreator method (page 34).

The setFileType method (page 35).

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about file types.

getFileCreator 2

Gets the creator of an existing Mac OS file.

public static final MRJOSType getFileCreator (
File file)
throws IOException;

file The file whose creator you want to obtain.

method result The 4-byte creator of the file.
The MRJFileUtils Class 37
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
DISCUSSION

On the Mac OS, a creator is a 4-byte character constant that the Finder uses to
identify the application that should open the document file. If the desired file
cannot be found, this method throws IOException.

SEE ALSO

The setFileTypeAndCreator method (page 34).

The setFileCreator method (page 36).

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about creators.

findFolder 2

Returns the path to a special Mac OS folder.

public static File findFolder (MRJOSType
folderType)
throws FileNotFoundException;

folderType The folder you are looking for. For the list of constants you can
specify in this parameter, see “Special Folder Constants”
(page 32).

method result The file object that references the folder you specified.

DISCUSSION

The Mac OS has several special folders that applications often need to access
(for example, the Preferences folder); this method searches the startup volume
for the desired folder and returns the path. If the folder cannot be found, the
method throws FileNotFoundException.

SEE ALSO

The “File Manager” chapter in Inside Macintosh: Files.
38 The MRJFileUtils Class

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
findApplication 2

Returns the path to an application.

public static File findApplication (
MRJOSType applSig)
throws FileNotFoundException;

applSig The 4-byte creator of the application you are looking for.

method result The file object that references the application you specified.

DISCUSSION

This method searches all local disks for the application. The search algorithm is
identical to that used by the Finder. If the application cannot be found, the
method throws FileNotFoundException.

SEE ALSO

The “Finder Interface” chapter in Inside Macintosh: Macintosh Toolbox Essentials
for information about search paths and creators.

The MRJApplicationUtils Class 2

Description 2

The following static methods belong to the class
com.apple.mrj.MRJApplicationUtils. You use these methods to check for the
presence of MRJToolkit or to register handlers for high-level user events, such
as printing or selecting the About box. See “Application-Defined Methods”
(page 44) for more information about the form required for the event handlers.

IMPORTANT

You can use these methods only with Java applications
packaged with JBindery. ▲
The MRJApplicationUtils Class 39
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
Methods 2

isMRJToolkitAvailable 2

Checks for the presence of MRJToolkit.

public static final boolean isMRJToolkitAvailable();

method result True if MRJToolkit is present on the host platform, false
otherwise.

DISCUSSION

You can include this method only if you are building your application with the
version of MRJToolkit included with the MRJ 2.0 SDK or later. However, it will
still return the correct value (true) when called on host platforms running MRJ
1.5.

registerAboutHandler 2

Registers the handler method to be called when the About menu item is
selected.

public static final void registerAboutHandler (
MRJAboutHandler handler);

handler The name of the object that implements the handleAbout method.

DISCUSSION

You must have defined the handler method before calling this method. If you
do not register the handler method, selecting the About menu item does
nothing.

The default About menu item included in the Apple menu, while usable,
should be replaced to conform to Apple’s human interface guidelines; you do
40 The MRJApplicationUtils Class

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
so by defining a new menu (in a resource of type 'MENU' with ID 1128) when
you package your application.

SEE ALSO

The handleAbout method (page 44).

registerOpenDocumentHandler 2

Registers the handler method to be called when the application receives a
request to open a document.

public static final void registerOpenDocumentHandler (
MRJOpenDocumentHandler handler);

handler The name of the method that handles the file drop event.

DISCUSSION

You must have defined the handler before calling this method.

SEE ALSO

The handleOpenFile method (page 45).

registerPrintDocumentHandler 2

Registers the handler method to be called when the user requests that a
document be printed from the Finder.

public static final void registerPrintDocumentHandler (
MRJPrintDocumentHandler handler);

handler The name of the method that handles the print request.
The MRJApplicationUtils Class 41
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
DISCUSSION

You may not be able to fully implement a print handler method due to lack of
printing support in JDK 1.0.2 or earlier. You must have defined the handler
method before calling this method.

SEE ALSO

The myHandlePrintFile method (page 46).

registerQuitHandler 2

Registers the handler method to be called when the application receives a
request to quit.

public static final void registerQuitHandler (
MRJQuitHandler handler);

handler The name of the method that handles the quit request.

DISCUSSION

You must have defined the handler method before calling this method.

Java applications packaged with JBindery have a default Quit selection in the
Apple Menu. However, to conform to Apple’s human interface guidelines, you
should replace the default Apple Menu (by defining a new menu in a resource
of type 'MENU' with ID 1128 when you package your application) and include a
Quit selection in one of the Java-based menus (typically the File menu).

SEE ALSO

The handleQuit method (page 47).
42 The MRJApplicationUtils Class

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
The MRJMenuUtils Class 2

Description 2

The following overloaded method belongs to the class
com.apple.mrj.MRJMenuUtils. You use this method to assign keyboard
equivalents to Java menu items (that is, java.awt.MenuItem objects). You can
specify the menu item by name or as an indexed member of a menu.

Methods 2

setMenuItemCmdKey 2

Sets a key as a keyboard equivalent for a menu item.

public static final void setMenuItemCmdKey (Menu menu,
int itemIndex, char ch);

public static final void setMenuItemCmdKey (MenuItem item, char ch);

menu The name of the menu that contains the desired menu item.

itemindex The index number of the menu item. This index is zero-based.

ch The character to set as the keyboard equivalent. The menu item
is activated by selecting Command + ch.

item The name of the desired menu item.

DISCUSSION

You can specify the menu item by its name or by indicating the menu that
contains it and its index number (the first item in the menu has index 0, the
The MRJMenuUtils Class 43
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
second has index 1, and so on). You can assign only one character to act as the
keyboard equivalent (for example, “A” but not “option- A”). For example, if
you assign G as the character, Command-G selects the menu item.

SEE ALSO

The “Menu Manager” chapter in Inside Macintosh: Macintosh Toolbox Essentials.

Application-Defined Methods 2

The following public interfaces contain methods that you must define yourself.
These methods handle various user events such as selecting the About box,
quitting the application, and so on. You can use these interfaces only with Java
applications packaged with JBindery.

IMPORTANT

The names of the methods described are fixed. For
example, if you implement the MRJAboutHandler interface,
you must include a method with the name handleAbout. ▲

The MRJAboutHandler Interface 2

The com.apple.mrj.MRJAboutHandler interface contains one method,
handleAbout, which is called when the user selects the About menu item.

handleAbout 2

Performs an action when the user selects the About menu item.

public void handleAbout ();
44 Application-Defined Methods

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
DISCUSSION

This application-defined method is called when the user selects the About
menu item in the Apple menu. Typically this method displays a splash screen
containing information about the application, such as a brief description,
copyright information, the names of the development team, and so on.You must
register the method name by calling the registerAboutHandler method (page 40)
when initializing the application. The handleAbout method is only useful if you
have packaged your Java application using JBindery.

SEE ALSO

The registerAboutHandler method (page 40).

The MRJOpenDocumentHandler Interface 2

The com.apple.mrj.MRJOpenDocumentHandler interface contains one method,
handleOpenFile, which is called when a document file needs to be opened.

handleOpenFile 2

Handles opening a document file.

public void handleOpenFile (File fileName);

fileName The name of the file to be opened.

DISCUSSION

This application-defined method is called when a document needs to be opened
from the Finder. For example, this situation occurs when the user selects an
Open menu item in the Finder or if the user double-clicks a file that bears the
application’s creator. You must register the method name by calling the
registerOpenDocumentHandler method (page 41) when initializing the
application. The handleOpenFile method is only useful if you have packaged
your Java application using JBindery.
Application-Defined Methods 45
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
SEE ALSO

The registerOpenDocumentHandler method (page 41).

The MRJPrintDocumentHandler Interface 2

The com.apple.mrj.MRJPrintDocumentHandler interface contains one method,
handlePrintFile, which is called when a user prints a document file from the
Finder.

myHandlePrintFile 2

Handles printing a file.

public void handlePrintFile (File file);

file The name of the file to be printed.

DISCUSSION

This application-defined method is called when the application receives a
request to print a file. For example, this occurs when the user attempts to print a
file from the Finder that bears the application’s creator. You must register the
method name by calling the registerPrintDocumentHandler method (page 41)
when initializing the application. The handlePrintFile method is only useful if
you have packaged your Java application using JBindery.

IMPORTANT

Printing is not supported in JDK 1.0.2 and earlier. ▲

SEE ALSO

The registerPrintDocumentHandler method (page 41).
46 Application-Defined Methods

 Apple Computer, Inc. 11/24/98

C H A P T E R 2

MRJToolkit Reference
The MRJQuitHandler Interface 2

The com.apple.mrj.MRJQuitHandler interface contains one method, handleQuit,
which is called when the Finder requests that the application quit.

handleQuit 2

Handles a quit request.

public void handleQuit ();

DISCUSSION

This application-defined method is called when the Finder requests that the
application quit. For example, this occurs when the user selects the Shutdown
menu item in the Finder. Typically, your method should perform any necessary
cleanup (and possibly ask if the user really wants to quit) and then call the
method java.lang.System.exit(). You must register the method name by
calling the registerQuitHandler method (page 42) when initializing the
application. The handleQuit method is only useful if you have packaged your
Java application using JBindery.

SEE ALSO

The registerQuitHandler method (page 42).
Application-Defined Methods 47
 Apple Computer, Inc. 11/24/98

 C H A P T E R 2

MRJToolkit Reference
48 Application-Defined Methods

 Apple Computer, Inc. 11/24/98

Glossary
Abstract Window Toolkit (AWT) In the
Java runtime environment, a collection of
functions that allows Java programs to
manipulate virtual graphics (windows,
images, buttons, and so on). These abstract
graphics can be translated into user-visible
windows and controls on the client
platform. See also AWT Context.

applet In the Java runtime environment,
an executable program that must run within
a larger host application. In JManager, an
instantiated applet is called a
JMAppletViewerRef object.

applet tag Text in an HTML document that
describes an embedded applet. This text is
bounded by the <APPLET> and
</APPLET> delimiters. See also Hypertext
Markup Language (HTML).

AWT context An instantiation of an
execution environment in the Java runtime
environment. An AWT context is a separate
thread and may represent a thread group.
An AWT context typically contains an applet
and one or more frames. In JManager, an
AWT context is called a JMAWTContextRef
object. See also Abstract Window Toolkit
(AWT).

code verifier A bytecode verifier that is
part of the Java runtime environment. The
code verifier acts as a security measure to
make sure the Java code to be executed

cannot crash the Java virtual machine or
otherwise attempt illegal actions that might
allow the code access to the host platform.

creator On the Mac OS platform, a 4-byte
character string that identifies the
application that created a file.

embedding application The application
on a host platform (for example, a Web
browser) that instantiates a Java session and
executes Java applets or applications.

file system specification record On
Mac OS–based platforms, a method of
describing the name and location of a file or
directory. File system specification records
are defined by the FSSpec data type.

Finder The Mac OS application that
manages the desktop. The Finder handles
opening files and applications as well as
maintaining the directory hierarchy.

file type On the Mac OS platform, a 4-byte
character string that indicates the contents of
a file. For example, files containing raw
ASCII text are assigned the file type 'TEXT'.

frame A user interface window in the Java
virtual machine. Frames usually contain a
title bar and often correspond to a
user-visible window. Frames are analogous
to a window record on the Mac OS platform.
See also parent frame.

HTML See Hypertext Markup Language.
49
 Apple Computer, Inc. 11/24/98

G L O S S A R Y
Hypertext Markup Language (HTML) A
standard for describing the layout and
contents of a hypertext document. An
HTML document can contain an applet tag
that specifies the name and location of an
applet. See also applet tag.

Java runtime environment The Java
virtual machine and the associated software
required to load and execute Java code. See
also virtual machine.

Java runtime session An instantiation of
the Java runtime environment (that is, an
instantiation of the Java virtual machine and
associated software). In JManager a Java
runtime session is called a JMSessionRef
object. See also virtual machine.

keyboard equivalent A key combination
that performs the same action as a menu
item.

parent frame The main user interface
window associated with an applet. The
parent frame is created when the applet is
instantiated. In an AWT context, the parent
frame has the index value 0. See also frame.

property A data item associated with an
object.

session See Java runtime session.

thread An independent event loop in the
Java virtual machine. Multiple threads can
run concurrently in a Java virtual machine.
A thread is also called a lightweight process.

Uniform Resource Locator (URL) A text
string that describes the location of an
HTML document. A URL may point to a file
or to a server that contains the file.

URL See Uniform Resource Locator.

virtual machine (VM) A software package
that simulates the actions of a
microprocessor. A virtual machine can
mimic an existing processor (such as the 68K
emulator on PowerPC-based,
Mac OS–compatible computers) or parse
special VM-specific code. Java code requires
a virtual machine environment to execute.
See also Java runtime environment, Java
runtime session.
50
 Apple Computer, Inc. 11/24/98

Index
A

applets 7
applications, finding with a given creator 18

C

checking for the presence of MRJToolkit 14
creators

defined 15
finding applications with 18
setting default 16

E

equals method 30
events, handling 20–22

F

file types
defined 14
setting default 16

findApplication method 39
findFolder method 38
folders, finding special 19

G

getFileCreator method 37
getFileType method 37

H

handleAbout method 44
handleOpenFile method 45
handlePrintFile method 46
handleQuit method 47

I

isMRJToolkitAvailable method 40

J

JBindery, using with MRJToolkit 8

K

kAppleMenuFolderType constant 32
kControlPanelFolderType constant 32
kDesktopFolderType constant 32
kExtensionFolderType constant 33
keyboard equivalents, assigning 23–25
kFontsFolderType constant 33
kPreferencesFolderType constant 33
kPrintMonitorDocsFolderType constant 32
kShutdownFolderType constant 32
kStartupFolderType constant 32
kSystemFolderType constant 32
kTemporaryFolderType constant 33
kTrashFolderType constant 32
kWhereToEmptyTrashFolderType constant 32
51
 Apple Computer, Inc. 11/24/98

I N D E X
M

Mac OS creators, defined 15
Mac OS file types, defined 14
Mac OS Type 16
MRJClasses.zip file 29
MRJOSType method 29
MRJOSType type, defined 16
MRJToolkit class files 13
MRJToolkitStubs.zip file 13, 29

R

registerAboutHandler method 40
registerOpenDocumentHandler method 41
registerPrintDocumentHandler method 41
registerQuitHandler method 42

S

setDefaultFileCreator method 34
setDefaultFileType method 33
setFileCreator method 36
setFileTypeAndCreator method 34
setFileType method 35
setMenuItemCmdKey method 43
syntax conventions 9

T

toInt method 31
toString method 31
52
 Apple Computer, Inc. 11/24/98

I N D E X
53
 Apple Computer, Inc. 11/24/98

T H E A P P L E P U B L I S H I N G S Y S T E M

 Apple Computer, Inc. 11/24/98

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe™ Illustrator and
Adobe Photoshop.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
Jun Suzuki

DEVELOPMENTAL EDITOR
Donna S. Lee

PRODUCTION EDITOR
Glen Frank

Special thanks to Steve Zellers,
Barry Langdon-Lassagne, and Rachel
Rischpater.

Acknowledgments to Patrick Beard,
Tony Francis, Peri Frantz, Gary Little, Tom
O’Brien, and Shaan Pruden.

	Programming With MRJToolkit
	Contents
	Tables and Listings
	About This Document
	How to Use This Document
	Additional Resources
	Conventions Used in This Document
	Special Fonts
	Command Syntax
	Types of Notes

	Using MRJToolkit
	Including MRJToolkit With Your Application
	Manipulating Files
	File Types and Creators
	The MRJOSType Data Type
	Setting the Default File Type and Creator
	Setting or Reading File Types and Creators for Existing Files
	Finding an Application With a Given Creator
	Finding Special Folders

	Responding to Simple System Events
	Assigning Keyboard Equivalents to Menu Items

	MRJToolkit Reference
	The MRJOSType Class
	Description
	Methods

	The MRJFileUtils Class
	Description
	Special Folder Constants
	Methods

	The MRJApplicationUtils Class
	Description
	Methods

	The MRJMenuUtils Class
	Description
	Methods

	Application-Defined Methods
	The MRJAboutHandler Interface
	The MRJOpenDocumentHandler Interface
	The MRJPrintDocumentHandler Interface
	The MRJQuitHandler Interface

	Glossary
	Index

