
Perl Programmers Reference Guide
Win32, 5.6.1
24−Apr−2001

"There’s more than one way to do it."
−− Larry Wall, Author of the Perl Programming Language

blank

ChangeNotify Perl Programmers Reference Guide ChangeNotify
NAME
Win32::ChangeNotify − Monitor events related to files and directories

SYNOPSIS
require Win32::ChangeNotify;

$notify = Win32::ChangeNotify−>new($Path,$WatchSubTree,$Events);
$notify−>wait or warn "Something failed: $!\n";
There has been a change.

DESCRIPTION
This module allows the user to use a Win32 change notification event object from Perl. This allows the Perl
program to monitor events relating to files and directory trees.

The wait method and wait_all & wait_any functions are inherited from the "Win32::IPC" module.

Methods

$notify = Win32::ChangeNotify−new($path, $subtree, $filter)
Constructor for a new ChangeNotification object. $path is the directory to monitor. If $subtree
is true, then all directories under $path will be monitored. $filter indicates what events should
trigger a notification. It should be a string containing any of the following flags (separated by
whitespace and/or |).

 ATTRIBUTES Any attribute change
 DIR_NAME Any directory name change
 FILE_NAME Any file name change (creating/deleting/renaming)
 LAST_WRITE Any change to a file’s last write time
 SECURITY Any security descriptor change
 SIZE Any change in a file’s size

($filter can also be an integer composed from the FILE_NOTIFY_CHANGE_* constants.)

$notify−close
Shut down monitoring. You could just undef $notify instead (but close works even if there are
other copies of the object). This happens automatically when your program exits.

$notify−reset
Resets the ChangeNotification object after a change has been detected. The object will become
signalled again after the next change. (It is OK to call this immediately after new, but it is not
required.)

$notify−wait
See "Win32::IPC". Remember to call reset afterwards if you want to continue monitoring.

Deprecated Functions and Methods
Win32::ChangeNotify still supports the ActiveWare syntax, but its use is deprecated.

FindFirst($Obj,$PathName,$WatchSubTree,$Filter)
Use

 $Obj = Win32::ChangeNotify−>new($PathName,$WatchSubTree,$Filter)

instead.

$obj−FindNext()
Use $obj−>reset instead.
24−Apr−2001 Win32, 5.6.1 3

ChangeNotify Perl Programmers Reference Guide ChangeNotify
$obj−Close()
Use $obj−>close instead.

AUTHOR
Christopher J. Madsen <chris_madsen@geocities.com>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
4 Win32, 5.6.1 24−Apr−2001

Clipboard Perl Programmers Reference Guide Clipboard
NAME
Win32::Clipboard − Interaction with the Windows clipboard

SYNOPSIS
 use Win32::Clipboard;

 $CLIP = Win32::Clipboard();

 print "Clipboard contains: ", $CLIP−>Get(), "\n";

 $CLIP−>Set("some text to copy into the clipboard");

 $CLIP−>Empty();

 $CLIP−>WaitForChange();
 print "Clipboard has changed!\n";

DESCRIPTION
This module lets you interact with the Windows clipboard: you can get its content, set it, empty it, or let your
script sleep until it changes. This version supports 3 formats for clipboard data:

 text (CF_TEXT)

The clipboard contains some text; this is the only format you can use to set clipboard data; you get it
as a single string.

Example:

 $text = Win32::Clipboard::GetText();
 print $text;

 bitmap (CF_DIB)

The clipboard contains an image, either a bitmap or a picture copied in the clipboard from a graphic
application. The data you get is a binary buffer ready to be written to a bitmap (BMP format) file.

Example:

 $image = Win32::Clipboard::GetBitmap();
 open BITMAP, ">some.bmp";
 binmode BITMAP;
 print BITMAP $image;
 close BITMAP;

 list of files (CF_HDROP)

The clipboard contains files copied or cutted from an Explorer−like application; you get a list of
filenames.

Example:

 @files = Win32::Clipboard::GetFiles();
 print join("\n", @files);

REFERENCE
All the functions can be used either with their full name (eg. Win32::Clipboard::Get) or as methods of a
Win32::Clipboard object. For the syntax, refer to /SYNOPSIS above. Note also that you can create a
clipboard object and set its content at the same time with:

 $CLIP = Win32::Clipboard("blah blah blah");

or with the more common form:

 $CLIP = new Win32::Clipboard("blah blah blah");
24−Apr−2001 Win32, 5.6.1 5

Clipboard Perl Programmers Reference Guide Clipboard
If you prefer, you can even tie the Clipboard to a variable like this:

tie $CLIP, ’Win32::Clipboard’;

print "Clipboard content: $CLIP\n";

$CLIP = "some text to copy to the clipboard...";

In this case, you can still access other methods using the tied() function:

tied($CLIP)−>Empty;
print "got the picture" if tied($CLIP)−>IsBitmap;

Empty()
Empty the clipboard.

=for html <P

EnumFormats()
Returns an array of identifiers describing the format for the data currently in the clipboard. Formats
can be standard ones (described in the /CONSTANTS section) or application−defined custom ones. See
also IsFormatAvailable().

=for html <P

Get()
Returns the clipboard content; note that the result depends on the nature of clipboard data; to ensure
that you get only the desired format, you should use GetText(), GetBitmap() or GetFiles()
instead. Get() is in fact implemented as:

if(IsBitmap()) { return GetBitmap(); }
elsif(IsFiles()) { return GetFiles(); }
else { return GetText(); }

See also IsBitmap(), IsFiles(), IsText(), EnumFormats() and
IsFormatAvailable() to check the clipboard format before getting data.

=for html <P

GetAs(FORMAT)
Returns the clipboard content in the desired FORMAT (can be one of the constants defined in the
/CONSTANTS section or a custom format). Note that the only meaningful identifiers are CF_TEXT,
CF_DIB and CF_HDROP; any other format is treated as a string.

=for html <P

GetBitmap()
Returns the clipboard content as an image, or undef on errors.

=for html <P

GetFiles()
Returns the clipboard content as a list of filenames, or undef on errors.

=for html <P

GetFormatName(FORMAT)
Returns the name of the specified custom clipboard format, or undef on errors; note that you cannot
get the name of the standard formats (described in the /CONSTANTS section).

=for html <P
6 Win32, 5.6.1 24−Apr−2001

Clipboard Perl Programmers Reference Guide Clipboard
GetText()
Returns the clipboard content as a string, or undef on errors.

=for html <P

IsBitmap()
Returns a boolean value indicating if the clipboard contains an image. See also GetBitmap().

=for html <P

IsFiles()
Returns a boolean value indicating if the clipboard contains a list of files. See also GetFiles().

=for html <P

IsFormatAvailable(FORMAT)
Checks if the clipboard data matches the specified FORMAT (one of the constants described in the
/CONSTANTS section); returns zero if the data does not match, a nonzero value if it matches.

=for html <P

IsText()
Returns a boolean value indicating if the clipboard contains text. See also GetText().

=for html <P

Set(VALUE)
Set the clipboard content to the specified string.

=for html <P

WaitForChange([TIMEOUT])
This function halts the script until the clipboard content changes. If you specify a TIMEOUT value (in
milliseconds), the function will return when this timeout expires, even if the clipboard hasn‘t changed.
If no value is given, it will wait indefinitely. Returns 1 if the clipboard has changed, undef on errors.

CONSTANTS
These constants are the standard clipboard formats recognized by Win32::Clipboard:

CF_TEXT 1
CF_DIB 8
CF_HDROP 15

The following formats are not recognized by Win32::Clipboard; they are, however, exported constants and
can eventually be used with the EnumFormats(), IsFormatAvailable() and GetAs() functions:

CF_BITMAP 2
CF_METAFILEPICT 3
CF_SYLK 4
CF_DIF 5
CF_TIFF 6
CF_OEMTEXT 7
CF_PALETTE 9
CF_PENDATA 10
CF_RIFF 11
CF_WAVE 12
CF_UNICODETEXT 13
CF_ENHMETAFILE 14
CF_LOCALE 16
24−Apr−2001 Win32, 5.6.1 7

Clipboard Perl Programmers Reference Guide Clipboard
AUTHOR
Aldo Calpini <dada@perl.it

Original XS porting by Gurusamy Sarathy <gsar@activestate.com.
8 Win32, 5.6.1 24−Apr−2001

Console Perl Programmers Reference Guide Console
NAME
Win32::Console − Win32 Console and Character Mode Functions

DESCRIPTION
This module implements the Win32 console and character mode functions. They give you full control on the
console input and output, including: support of off−screen console buffers (eg. multiple screen pages)

 reading and writing of characters, attributes and whole portions of the screen

 complete processing of keyboard and mouse events

 some very funny additional features :)

Those functions should also make possible a port of the Unix‘s curses library; if there is anyone interested
(and/or willing to contribute) to this project, e−mail me. Thank you.

REFERENCE

Methods

Alloc
Allocates a new console for the process. Returns undef on errors, a nonzero value on success. A
process cannot be associated with more than one console, so this method will fail if there is already an
allocated console. Use Free to detach the process from the console, and then call Alloc to create a new
console. See also: Free

Example:

 $CONSOLE−>Alloc();

Attr [attr]
Gets or sets the current console attribute. This attribute is used by the Write method.

Example:

 $attr = $CONSOLE−>Attr();
 $CONSOLE−>Attr($FG_YELLOW | $BG_BLUE);

Close
Closes a shortcut object. Note that it is not "strictly" required to close the objects you created, since
the Win32::Shortcut objects are automatically closed when the program ends (or when you elsehow
destroy such an object).

Example:

 $LINK−>Close();

Cls [attr]
Clear the console, with the specified attr if given, or using ATTR_NORMAL otherwise.

Example:

 $CONSOLE−>Cls();
 $CONSOLE−>Cls($FG_WHITE | $BG_GREEN);

Cursor [x, y, size, visible]
Gets or sets cursor position and appearance. Returns undef on errors, or a 4−element list containing:
x, y, size, visible. x and y are the current cursor position; ...

Example:

 ($x, $y, $size, $visible) = $CONSOLE−>Cursor();

 # Get position only
24−Apr−2001 Win32, 5.6.1 9

Console Perl Programmers Reference Guide Console
 ($x, $y) = $CONSOLE−>Cursor();

 $CONSOLE−>Cursor(40, 13, 50, 1);

 # Set position only
 $CONSOLE−>Cursor(40, 13);

 # Set size and visibility without affecting position
 $CONSOLE−>Cursor(−1, −1, 50, 1);

Display
Displays the specified console on the screen. Returns undef on errors, a nonzero value on success.

Example:

 $CONSOLE−>Display();

FillAttr [attribute, number, col, row]
Fills the specified number of consecutive attributes, beginning at col, row, with the value specified in
attribute. Returns the number of attributes filled, or undef on errors. See also: FillChar.

Example:

 $CONSOLE−>FillAttr($FG_BLACK | $BG_BLACK, 80*25, 0, 0);

FillChar char, number, col, row
Fills the specified number of consecutive characters, beginning at col, row, with the character specified
in char. Returns the number of characters filled, or undef on errors. See also: FillAttr.

Example:

 $CONSOLE−>FillChar("X", 80*25, 0, 0);

Flush
Flushes the console input buffer. All the events in the buffer are discarded. Returns undef on errors,
a nonzero value on success.

Example:

 $CONSOLE−>Flush();

Free
Detaches the process from the console. Returns undef on errors, a nonzero value on success. See
also: Alloc.

Example:

 $CONSOLE−>Free();

GenerateCtrlEvent [type, processgroup]
Sends a break signal of the specified type to the specified processgroup. type can be one of the
following constants:

 CTRL_BREAK_EVENT
 CTRL_C_EVENT

they signal, respectively, the pressing of Control + Break and of Control + C; if not specified, it
defaults to CTRL_C_EVENT. processgroup is the pid of a process sharing the same console. If
omitted, it defaults to 0 (the current process), which is also the only meaningful value that you can pass
to this function. Returns undef on errors, a nonzero value on success.

Example:

 # break this script now
 $CONSOLE−>GenerateCtrlEvent();
10 Win32, 5.6.1 24−Apr−2001

Console Perl Programmers Reference Guide Console
GetEvents
Returns the number of unread input events in the console‘s input buffer, or undef on errors. See also:
Input, InputChar, PeekInput, WriteInput.

Example:

 $events = $CONSOLE−>GetEvents();

Info Returns an array of informations about the console (or undef on errors), which contains:

 columns (X size) of the console buffer.

 rows (Y size) of the console buffer.

 current column (X position) of the cursor.

 current row (Y position) of the cursor.

 current attribute used for Write.

 left column (X of the starting point) of the current console window.

 top row (Y of the starting point) of the current console window.

 right column (X of the final point) of the current console window.

 bottom row (Y of the final point) of the current console window.

 maximum number of columns for the console window, given the current buffer size, font and the
screen size.

 maximum number of rows for the console window, given the current buffer size, font and the
screen size.

See also: Attr, Cursor, Size, Window, MaxWindow.

Example:

 @info = $CONSOLE−>Info();
 print "Cursor at $info[3], $info[4].\n";

Input
Reads an event from the input buffer. Returns a list of values, which depending on the event‘s nature
are:

keyboard event
The list will contain:

 event type: 1 for keyboard

 key down: TRUE if the key is being pressed, FALSE if the key is being released

 repeat count: the number of times the key is being held down

 virtual keycode: the virtual key code of the key

 virtual scancode: the virtual scan code of the key

 char: the ASCII code of the character (if the key is a character key, 0 otherwise)

 control key state: the state of the control keys (SHIFTs, CTRLs, ALTs, etc.)

mouse event
The list will contain:
24−Apr−2001 Win32, 5.6.1 11

Console Perl Programmers Reference Guide Console

:)
 event type: 2 for mouse

 mouse pos. X: X coordinate (column) of the mouse location

 mouse pos. Y: Y coordinate (row) of the mouse location

 button state: the mouse button(s) which are pressed

 control key state: the state of the control keys (SHIFTs, CTRLs, ALTs, etc.)

 event flags: the type of the mouse event

This method will return undef on errors. Note that the events returned are depending on the input
Mode of the console; for example, mouse events are not intercepted unless
ENABLE_MOUSE_INPUT is specified. See also: GetEvents, InputChar, Mode, PeekInput,
WriteInput.

Example:

 @event = $CONSOLE−>Input();

InputChar number
Reads and returns number characters from the console input buffer, or undef on errors. See also:
Input, Mode.

Example:

 $key = $CONSOLE−>InputChar(1);

InputCP [codepage]
Gets or sets the input code page used by the console. Note that this doesn‘t apply to a console object,
but to the standard input console. This attribute is used by the Write method. See also: OutputCP.

Example:

 $codepage = $CONSOLE−>InputCP();
 $CONSOLE−>InputCP(437);

 # you may want to use the non−instanciated form to avoid confuzion
 $codepage = Win32::Console::InputCP();
 Win32::Console::InputCP(437);

MaxWindow
Returns the size of the largest possible console window, based on the current font and the size of the
display. The result is undef on errors, otherwise a 2−element list containing col, row.

Example:

 ($maxCol, $maxRow) = $CONSOLE−>MaxWindow();

Mode [flags]
Gets or sets the input or output mode of a console. flags can be a combination of the following
constants:

 ENABLE_LINE_INPUT
 ENABLE_ECHO_INPUT
 ENABLE_PROCESSED_INPUT
 ENABLE_WINDOW_INPUT
 ENABLE_MOUSE_INPUT
 ENABLE_PROCESSED_OUTPUT
 ENABLE_WRAP_AT_EOL_OUTPUT

For more informations on the meaning of those flags, please refer to the "Microsoft‘s Documentation".
12 Win32, 5.6.1 24−Apr−2001

Console Perl Programmers Reference Guide Console

:)
Example:

 $mode = $CONSOLE−>Mode();
 $CONSOLE−>Mode(ENABLE_MOUSE_INPUT | ENABLE_PROCESSED_INPUT);

MouseButtons
Returns the number of the buttons on your mouse, or undef on errors.

Example:

 print "Your mouse has ", $CONSOLE−>MouseButtons(), " buttons.\n";

new Win32::Console standard_handle
new Win32::Console [accessmode, sharemode]

Creates a new console object. The first form creates a handle to a standard channel, standard_handle
can be one of the following:

 STD_OUTPUT_HANDLE
 STD_ERROR_HANDLE
 STD_INPUT_HANDLE

The second form, instead, creates a console screen buffer in memory, which you can access for reading
and writing as a normal console, and then redirect on the standard output (the screen) with Display.
In this case, you can specify one or both of the following values for accessmode:

 GENERIC_READ
 GENERIC_WRITE

which are the permissions you will have on the created buffer, and one or both of the following values
for sharemode:

 FILE_SHARE_READ
 FILE_SHARE_WRITE

which affect the way the console can be shared. If you don‘t specify any of those parameters, all 4
flags will be used.

Example:

 $STDOUT = new Win32::Console(STD_OUTPUT_HANDLE);
 $STDERR = new Win32::Console(STD_ERROR_HANDLE);
 $STDIN = new Win32::Console(STD_INPUT_HANDLE);

 $BUFFER = new Win32::Console();
 $BUFFER = new Win32::Console(GENERIC_READ | GENERIC_WRITE);

OutputCP [codepage]
Gets or sets the output code page used by the console. Note that this doesn‘t apply to a console object,
but to the standard output console. See also: InputCP.

Example:

 $codepage = $CONSOLE−>OutputCP();
 $CONSOLE−>OutputCP(437);

 # you may want to use the non−instanciated form to avoid confuzion
 $codepage = Win32::Console::OutputCP();
 Win32::Console::OutputCP(437);

PeekInput
Does exactly the same as Input, except that the event read is not removed from the input buffer. See
also: GetEvents, Input, InputChar, Mode, WriteInput.
24−Apr−2001 Win32, 5.6.1 13

Console Perl Programmers Reference Guide Console
Example:

 @event = $CONSOLE−>PeekInput();

ReadAttr [number, col, row]
Reads the specified number of consecutive attributes, beginning at col, row, from the console. Returns
the attributes read (a variable containing one character for each attribute), or undef on errors. You
can then pass the returned variable to WriteAttr to restore the saved attributes on screen. See also:
ReadChar, ReadRect.

Example:

 $colors = $CONSOLE−>ReadAttr(80*25, 0, 0);

ReadChar [number, col, row]
Reads the specified number of consecutive characters, beginning at col, row, from the console.
Returns a string containing the characters read, or undef on errors. You can then pass the returned
variable to WriteChar to restore the saved characters on screen. See also: ReadAttr, ReadRect.

Example:

 $chars = $CONSOLE−>ReadChar(80*25, 0, 0);

ReadRect left, top, right, bottom
Reads the content (characters and attributes) of the rectangle specified by left, top, right, bottom from
the console. Returns a string containing the rectangle read, or undef on errors. You can then pass the
returned variable to WriteRect to restore the saved rectangle on screen (or on another console). See
also: ReadAttr, ReadChar.

Example:

 $rect = $CONSOLE−>ReadRect(0, 0, 80, 25);

Scroll left, top, right, bottom, col, row, char, attr,
 [cleft, ctop, cright, cbottom]

Moves a block of data in a console buffer; the block is identified by left, top, right, bottom, while row,
col identify the new location of the block. The cells left empty as a result of the move are filled with
the character char and attribute attr. Optionally you can specify a clipping region with cleft, ctop,
cright, cbottom, so that the content of the console outside this rectangle are unchanged. Returns
undef on errors, a nonzero value on success.

Example:

 # scrolls the screen 10 lines down, filling with black spaces
 $CONSOLE−>Scroll(0, 0, 80, 25, 0, 10, " ", $FG_BLACK | $BG_BLACK);

Select standard_handle
Redirects a standard handle to the specified console. standard_handle can have one of the following
values:

 STD_INPUT_HANDLE
 STD_OUTPUT_HANDLE
 STD_ERROR_HANDLE

Returns undef on errors, a nonzero value on success.

Example:

 $CONSOLE−>Select(STD_OUTPUT_HANDLE);
14 Win32, 5.6.1 24−Apr−2001

Console Perl Programmers Reference Guide Console
Size [col, row]
Gets or sets the console buffer size.

Example:

 ($x, $y) = $CONSOLE−>Size();
 $CONSOLE−>Size(80, 25);

Title [title]
Gets or sets the title bar the string of the current console window.

Example:

 $title = $CONSOLE−>Title();
 $CONSOLE−>Title("This is a title");

Window [flag, left, top, right, bottom]
Gets or sets the current console window size. If called without arguments, returns a 4−element list
containing the current window coordinates in the form of left, top, right, bottom. To set the window
size, you have to specify an additional flag parameter: if it is 0 (zero), coordinates are considered
relative to the current coordinates; if it is non−zero, coordinates are absolute.

Example:

 ($left, $top, $right, $bottom) = $CONSOLE−>Window();
 $CONSOLE−>Window(1, 0, 0, 80, 50);

Write string
Writes string on the console, using the current attribute, that you can set with Attr, and advancing the
cursor as needed. This isn‘t so different from Perl‘s "print" statement. Returns the number of
characters written or undef on errors. See also: WriteAttr, WriteChar, WriteRect.

Example:

 $CONSOLE−>Write("Hello, world!");

WriteAttr attrs, col, row
Writes the attributes in the string attrs, beginning at col, row, without affecting the characters that are
on screen. The string attrs can be the result of a ReadAttr function, or you can build your own
attribute string; in this case, keep in mind that every attribute is treated as a character, not a number
(see example). Returns the number of attributes written or undef on errors. See also: Write,
WriteChar, WriteRect.

Example:

 $CONSOLE−>WriteAttr($attrs, 0, 0);

 # note the use of chr()...
 $attrs = chr($FG_BLACK | $BG_WHITE) x 80;
 $CONSOLE−>WriteAttr($attrs, 0, 0);

WriteChar chars, col, row
Writes the characters in the string attr, beginning at col, row, without affecting the attributes that are
on screen. The string chars can be the result of a ReadChar function, or a normal string. Returns the
number of characters written or undef on errors. See also: Write, WriteAttr, WriteRect.

Example:

 $CONSOLE−>WriteChar("Hello, worlds!", 0, 0);
24−Apr−2001 Win32, 5.6.1 15

Console Perl Programmers Reference Guide Console
WriteInput (event)
Pushes data in the console input buffer. (event) is a list of values, for more information see Input.
The string chars can be the result of a ReadChar function, or a normal string. Returns the number of
characters written or undef on errors. See also: Write, WriteAttr, WriteRect.

Example:

 $CONSOLE−>WriteInput(@event);

WriteRect rect, left, top, right, bottom
Writes a rectangle of characters and attributes (contained in rect) on the console at the coordinates
specified by left, top, right, bottom. rect can be the result of a ReadRect function. Returns undef
on errors, otherwise a 4−element list containing the coordinates of the affected rectangle, in the format
left, top, right, bottom. See also: Write, WriteAttr, WriteChar.

Example:

 $CONSOLE−>WriteRect($rect, 0, 0, 80, 25);

Constants
The following constants are exported in the main namespace of your script using Win32::Console:

 BACKGROUND_BLUE
 BACKGROUND_GREEN
 BACKGROUND_INTENSITY
 BACKGROUND_RED
 CAPSLOCK_ON
 CONSOLE_TEXTMODE_BUFFER
 ENABLE_ECHO_INPUT
 ENABLE_LINE_INPUT
 ENABLE_MOUSE_INPUT
 ENABLE_PROCESSED_INPUT
 ENABLE_PROCESSED_OUTPUT
 ENABLE_WINDOW_INPUT
 ENABLE_WRAP_AT_EOL_OUTPUT
 ENHANCED_KEY
 FILE_SHARE_READ
 FILE_SHARE_WRITE
 FOREGROUND_BLUE
 FOREGROUND_GREEN
 FOREGROUND_INTENSITY
 FOREGROUND_RED
 LEFT_ALT_PRESSED
 LEFT_CTRL_PRESSED
 NUMLOCK_ON
 GENERIC_READ
 GENERIC_WRITE
 RIGHT_ALT_PRESSED
 RIGHT_CTRL_PRESSED
 SCROLLLOCK_ON
 SHIFT_PRESSED
 STD_INPUT_HANDLE
 STD_OUTPUT_HANDLE
 STD_ERROR_HANDLE

Additionally, the following variables can be used:
16 Win32, 5.6.1 24−Apr−2001

Console Perl Programmers Reference Guide Console
 $FG_BLACK
 $FG_BLUE
 $FG_LIGHTBLUE
 $FG_RED
 $FG_LIGHTRED
 $FG_GREEN
 $FG_LIGHTGREEN
 $FG_MAGENTA
 $FG_LIGHTMAGENTA
 $FG_CYAN
 $FG_LIGHTCYAN
 $FG_BROWN
 $FG_YELLOW
 $FG_GRAY
 $FG_WHITE

 $BG_BLACK
 $BG_BLUE
 $BG_LIGHTBLUE
 $BG_RED
 $BG_LIGHTRED
 $BG_GREEN
 $BG_LIGHTGREEN
 $BG_MAGENTA
 $BG_LIGHTMAGENTA
 $BG_CYAN
 $BG_LIGHTCYAN
 $BG_BROWN
 $BG_YELLOW
 $BG_GRAY
 $BG_WHITE

 $ATTR_NORMAL
 $ATTR_INVERSE

ATTR_NORMAL is set to gray foreground on black background (DOS‘s standard colors).

Microsoft‘s Documentation
Documentation for the Win32 Console and Character mode Functions can be found on Microsoft‘s site at
this URL:

http://www.microsoft.com/msdn/sdk/platforms/doc/sdk/win32/sys/src/conchar.htm

A reference of the available functions is at:

http://www.microsoft.com/msdn/sdk/platforms/doc/sdk/win32/sys/src/conchar_34.htm

VERSION HISTORY

 0.031 (24 Sep 1999)
 Fixed typo in GenerateCtrlEvent().

 Converted and added pod documentation (from Jan Dubois <jand@activestate.com).

 0.03 (07 Apr 1997)
 Added "GenerateCtrlEvent" method.

 The PLL file now comes in 2 versions, one for Perl version 5.001 (build 110) and one for Perl
version 5.003 (build 300 and higher, EXCEPT 304).
24−Apr−2001 Win32, 5.6.1 17

Console Perl Programmers Reference Guide Console
 added an installation program that will automatically copy the right version in the right place.

 0.01 (09 Feb 1997)
 First public release.

AUTHOR
Aldo Calpini <a.calpini@romagiubileo.it

CREDITS
Thanks to: Jesse Dougherty, Dave Roth, ActiveWare, and the Perl−Win32−Users community.

DISCLAIMER
This program is FREE; you can redistribute, modify, disassemble, or even reverse engineer this software at
your will. Keep in mind, however, that NOTHING IS GUARANTEED to work and everything you do is
AT YOUR OWN RISK − I will not take responsibility for any damage, loss of money and/or health that may
arise from the use of this program!

This is distributed under the terms of Larry Wall‘s Artistic License.
18 Win32, 5.6.1 24−Apr−2001

Event Perl Programmers Reference Guide Event
NAME
Win32::Event − Use Win32 event objects from Perl

SYNOPSIS
use Win32::Event;

$event = Win32::Event−>new($manual,$initial,$name);
$event−>wait();

DESCRIPTION
This module allows access to the Win32 event objects. The wait method and wait_all & wait_any
functions are inherited from the "Win32::IPC" module.

Methods

$event = Win32::Event−new([$manual, [$initial, [$name]]])
Constructor for a new event object. If $manual is true, you must manually reset the event after it is
signalled (the default is false). If $initial is true, the initial state of the object is signalled (default
false). If $name is omitted, creates an unnamed event object.

If $name signifies an existing event object, then $manual and $initial are ignored and the object
is opened.

$event = Win32::Event−open($name)
Constructor for opening an existing event object.

$event−pulse
Signal the $event and then immediately reset it. If $event is a manual−reset event, releases all
threads currently blocking on it. If it‘s an auto−reset event, releases just one thread.

If no threads are waiting, just resets the event.

$event−reset
Reset the $event to nonsignalled.

$event−set
Set the $event to signalled.

$event−wait([$timeout])
Wait for $event to be signalled. See "Win32::IPC".

AUTHOR
Christopher J. Madsen <chris_madsen@geocities.com>
24−Apr−2001 Win32, 5.6.1 19

EventLog Perl Programmers Reference Guide EventLog
NAME
Win32::EventLog − Process Win32 Event Logs from Perl

SYNOPSIS
use Win32::EventLog
$handle=Win32::EventLog−>new("Application");

DESCRIPTION
This module implements most of the functionality available from the Win32 API for accessing and
manipulating Win32 Event Logs. The access to the EventLog routines is divided into those that relate to an
EventLog object and its associated methods and those that relate other EventLog tasks (like adding an
EventLog record).

The EventLog Object and its Methods
The following methods are available to open, read, close and backup EventLogs.

Win32::EventLog−new(SOURCENAME [,SERVERNAME]);
The new() method creates a new EventLog object and returns a handle to it. This hande is then used
to call the methods below.

The method is overloaded in that if the supplied SOURCENAME argument contains one or more
literal ‘\’ characters (an illegal character in a SOURCENAME), it assumes that you are trying to open a
backup eventlog and uses SOURCENAME as the backup eventlog to open. Note that when opening a
backup eventlog, the SERVERNAME argument is ignored (as it is in the underlying Win32 API). For
EventLogs on remote machines, the SOURCENAME parameter must therefore be specified as a UNC
path.

$handle−Backup(FILENAME);
The Backup() method backs up the EventLog represented by $handle. It takes a single arguemt,
FILENAME. When $handle represents an EventLog on a remote machine, FILENAME is filename
on the remote machine and cannot be a UNC path (i.e you must use C:\TEMP\App.EVT). The method
will fail if the log file already exists.

$handle−Read(FLAGS, OFFSET, HASHREF);
The Read() method read an EventLog entry from the EventLog represented by $handle.

$handle−Close();
The Close() method closes the EventLog represented by $handle. After Close() has been
called, any further attempt to use the EventLog represented by $handle will fail.

$handle−GetOldest(SCALARREF);
The GetOldest() method number of the the oldest EventLog record in the EventLog represented
by $handle. This is required to correctly compute the OFFSET required by the Read() method.

$handle−GetNumber(SCALARREF);
The GetNumber() method returns the number of EventLog records in the EventLog represented by
$handle. The number of the most recent record in the EventLog is therefore computed by

$handle−>GetOldest($oldest);
$handle−>GetNumber($lastRec);
$lastRecOffset=$oldest+$lastRec;

$handle−Clear(FILENAME);
The Clear() method clears the EventLog represented by $handle. If you provide a non−null
FILENAME, the EventLog will be backed up into FILENAME before the EventLog is cleared. The
method will fail if FILENAME is specified and the file refered to exists. Note also that FILENAME
specifies a file local to the machine on which the EventLog resides and cannot be specified as a UNC
name.
20 Win32, 5.6.1 24−Apr−2001

EventLog Perl Programmers Reference Guide EventLog
$handle−Report(HASHREF);
The Report() method generates an EventLog entry. The HASHREF should contain the following
keys:

Computer
The Computer field specfies which computer you want the EventLog entry recorded. If this
key doesn‘t exist, the server name used to create the $handle is used.

Source
The Source field specifies the source that generated the EventLog entry. If this key doesn‘t
exist, the source name used to create the $handle is used.

EventType
The EventType field should be one of the constants

EVENTLOG_ERROR_TYPE
An Error event is being logged.

EVENTLOG_WARNING_TYPE
A Warning event is being logged.

EVENTLOG_INFORMATION_TYPE
An Information event is being logged.

EVENTLOG_AUDIT_SUCCESS
A Success Audit event is being logged (typically in the Security EventLog).

EVENTLOG_AUDIT_FAILURE
A Failure Audit event is being logged (typically in the Security EventLog).

These constants are exported into the main namespace by default.

Category
The Category field can have any value you want. It is specific to the particular Source.

EventID
The EventID field should contain the ID of the message that this event pertains too. This
assumes that you have an associated message file (indirectly referenced by the field Source).

Data
The Data field contains raw data associated with this event.

Strings
The Strings field contains the single string that itself contains NUL terminated sub−strings.
This are used with the EventID to generate the message as seen from (for example) the Event
Viewer application.

Other Win32::EventLog functions.
The following functions are part of the Win32::EventLog package but are not callable from an EventLog
object.

GetMessageText(HASHREF);
The GetMessageText() function assumes that HASHREF was obtained by a call to
$handle−>Read(). It returns the formatted string that represents the fully resolved text of the
EventLog message (such as would be seen in the Windows NT Event Viewer). For convenience, the
key ‘Message’ in the supplied HASHREF is also set to the return value of this function.

If you set the variable $Win32::EventLog::GetMessageText to 1 then each call to
$handle−>Read() will call this function automatically.
24−Apr−2001 Win32, 5.6.1 21

EventLog Perl Programmers Reference Guide EventLog

on $myServ
Example 1
The following example illustrates the way in which the EventLog module can be used. It opens the System
EventLog and reads through it from oldest to newest records. For each record from the Source EventLog it
extracts the full text of the Entry and prints the EventLog message text out.

 use Win32::EventLog;

 $handle=Win32::EventLog−>new("System", $ENV{ComputerName})
 or die "Can’t open Application EventLog\n";
 $handle−>GetNumber($recs)
 or die "Can’t get number of EventLog records\n";
 $handle−>GetOldest($base)
 or die "Can’t get number of oldest EventLog record\n";

 while ($x < $recs) {
 $handle−>Read(EVENTLOG_FORWARDS_READ|EVENTLOG_SEEK_READ,
 $base+$x,
 $hashRef)
 or die "Can’t read EventLog entry #$x\n";
 if ($hashRef−>{Source} eq "EventLog") {
 Win32::EventLog::GetMessageText($hashRef);
 print "Entry $x: $hashRef−>{Message}\n";
 }
 $x++;
 }

Example 2
To backup and clear the EventLogs on a remote machine, do the following :−

 use Win32::EventLog;

 $myServer="\\\\my−server"; # your servername here.
 my($date)=join("−", ((split(/\s+/, scalar(localtime)))[0,1,2,4]));
 my($dest);

 for my $eventLog ("Application", "System", "Security") {
 $handle=Win32::EventLog−>new($eventLog, $myServer)
 or die "Can’t open Application EventLog on $myServer\n";

 $dest="C:\\BackupEventLogs\\$eventLog\\$date.evt";
$handle−>Backup($dest)

or warn "Could not backup and clear the $eventLog EventLog

$handle−>Close;
 }

Note that only the Clear method is required. Note also that if the file $dest exists, the function will fail.

BUGS
None currently known.

The test script for ‘make test’ should be re−written to use the EventLog object.

AUTHOR
Original code by Jesse Dougherty for HiP Communications. Additional fixes and updates attributed to
Martin Pauley <martin.pauley@ulsterbank.ltd.uk) and Bret Giddings (bret@essex.ac.uk).
22 Win32, 5.6.1 24−Apr−2001

File Perl Programmers Reference Guide File
NAME
Win32::File − manage file attributes in perl

SYNOPSIS
use Win32::File;

DESCRIPTION
This module offers the retrieval and setting of file attributes.

Functions

NOTE
All of the functions return FALSE (0) if they fail, unless otherwise noted. The function names are exported
into the caller‘s namespace by request.

GetAttributes(filename, returnedAttributes)
Gets the attributes of a file or directory. returnedAttributes will be set to the OR−ed
combination of the filename attributes.

SetAttributes(filename, newAttributes)
Sets the attributes of a file or directory. newAttributes must be an OR−ed combination of the
attributes.

Constants
The following constants are exported by default.

ARCHIVE
COMPRESSED
DIRECTORY
HIDDEN
NORMAL
OFFLINE
READONLY
SYSTEM
TEMPORARY
24−Apr−2001 Win32, 5.6.1 23

FileSecurity Perl Programmers Reference Guide FileSecurity
NAME
Win32::FileSecurity − manage FileSecurity Discretionary Access Control Lists in perl

SYNOPSIS
use Win32::FileSecurity;

DESCRIPTION
This module offers control over the administration of system FileSecurity DACLs. You may want to use
Get and EnumerateRights to get an idea of what mask values correspond to what rights as viewed from File
Manager.

CONSTANTS
 DELETE, READ_CONTROL, WRITE_DAC, WRITE_OWNER,
 SYNCHRONIZE, STANDARD_RIGHTS_REQUIRED,
 STANDARD_RIGHTS_READ, STANDARD_RIGHTS_WRITE,
 STANDARD_RIGHTS_EXECUTE, STANDARD_RIGHTS_ALL,
 SPECIFIC_RIGHTS_ALL, ACCESS_SYSTEM_SECURITY,
 MAXIMUM_ALLOWED, GENERIC_READ, GENERIC_WRITE,
 GENERIC_EXECUTE, GENERIC_ALL, F, FULL, R, READ,
 C, CHANGE

FUNCTIONS

NOTE:
All of the functions return FALSE (0) if they fail, unless otherwise noted. Errors returned via $! containing
both Win32 GetLastError() and a text message indicating Win32 function that failed.

constant($name, $set)
Stores the value of named constant $name into $set. Same as $set =
Win32::FileSecurity::NAME_OF_CONSTANT();.

Get($filename, \%permisshash)
Gets the DACLs of a file or directory.

Set($filename, \%permisshash)
Sets the DACL for a file or directory.

EnumerateRights($mask, \@rightslist)
Turns the bitmask in $mask into a list of strings in @rightslist.

MakeMask(qw(DELETE READ_CONTROL))
Takes a list of strings representing constants and returns a bitmasked integer value.

%permisshash
Entries take the form $permisshash{USERNAME} = $mask ;

EXAMPLE1
 # Gets the rights for all files listed on the command line.
 use Win32::FileSecurity qw(Get EnumerateRights);

 foreach(@ARGV) {
next unless −e $_ ;
if (Get($_, \%hash)) {
 while(($name, $mask) = each %hash) {

print "$name:\n\t";
EnumerateRights($mask, \@happy) ;
print join("\n\t", @happy), "\n";

 }
24 Win32, 5.6.1 24−Apr−2001

FileSecurity Perl Programmers Reference Guide FileSecurity

ies

; # for di

es only!
}
else {
 print("Error #", int($!), ": $!") ;
}

 }

EXAMPLE2
 # Gets existing DACL and modifies Administrator rights
 use Win32::FileSecurity qw(MakeMask Get Set);

 # These masks show up as Full Control in File Manager
 $file = MakeMask(qw(FULL));

 $dir = MakeMask(qw(
 FULL
GENERIC_ALL

));

 foreach(@ARGV) {
s/\\$//;
next unless −e;
Get($_, \%hash) ;
$hash{Administrator} = (−d) ? $dir : $file ;
Set($_, \%hash) ;

 }

COMMON MASKS FROM CACLS AND WINFILE

READ
MakeMask(qw(FULL)); # for files
MakeMask(qw(READ GENERIC_READ GENERIC_EXECUTE)); # for director

CHANGE
MakeMask(qw(CHANGE)); # for files
MakeMask(qw(CHANGE GENERIC_WRITE GENERIC_READ GENERIC_EXECUTE))

ADD & READ
MakeMask(qw(ADD GENERIC_READ GENERIC_EXECUTE)); # for directori

FULL
MakeMask(qw(FULL)); # for files
MakeMask(qw(FULL GENERIC_ALL)); # for directories

RESOURCES
From Microsoft: check_sd

http://premium.microsoft.com/download/msdn/samples/2760.exe

(thanks to Guert Schimmel at Sybase for turning me on to this one)

VERSION
1.03 ALPHA 97−12−14

REVISION NOTES

1.03 ALPHA 1998.01.11
Imported diffs from 0.67 (parent) version

1.02 ALPHA 1997.12.14
Pod fixes, @EXPORT list additions <gsar@activestate.com
24−Apr−2001 Win32, 5.6.1 25

FileSecurity Perl Programmers Reference Guide FileSecurity
Fix unitialized vars on unknown ACLs <jmk@exc.bybyte.de

1.01 ALPHA 1997.04.25
CORE Win32 version imported from 0.66 <gsar@activestate.com

0.67 ALPHA 1997.07.07
Kludged bug in mapping bits to separate ACE‘s. Notably, this screwed up CHANGE access
by leaving out a delete bit in the INHERIT_ONLY_ACE | OBJECT_INHERIT_ACE
Access Control Entry.

May need to rethink...

0.66 ALPHA 1997.03.13
Fixed bug in memory allocation check

0.65 ALPHA 1997.02.25
Tested with 5.003 build 303

Added ISA exporter, and @EXPORT_OK

Added F, FULL, R, READ, C, CHANGE as composite pre−built mask names.

Added server\ to keys returned in hash from Get

Made constants and MakeMask case insensitive (I don‘t know why I did that)

Fixed mask comparison in ListDacl and Enumerate Rights from simple & mask to exact bit
match ! ((x & y) ^ x) makes sure all bits in x are set in y

Fixed some "wild" pointers

0.60 ALPHA 1996.07.31
Now suitable for file and directory permissions

Included ListDacl.exe in bundle for debugging

Added "intuitive" inheritance for directories, basically functions like FM triggered by
presence of GENERIC_ rights this may need to change

see EXAMPLE2

Changed from AddAccessAllowedAce to AddAce for control over inheritance

0.51 ALPHA 1996.07.20
Fixed memory allocation bug

0.50 ALPHA 1996.07.29
Base functionality

Using AddAccessAllowedAce

Suitable for file permissions

KNOWN ISSUES / BUGS

1 May not work on remote drives.

2 Errors croak, don‘t return via $! as documented.
26 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet
NAME
Win32::Internet − Access to WININET.DLL functions

INTRODUCTION
This extension to Perl implements the Win32 Internet APIs (found in WININET.DLL). They give a
complete support for HTTP, FTP and GOPHER connections.

See the "Version History" and the "Functions Table" for a list of the currently supported features. You
should also get a copy of the "Microsoft Win32 Internet Functions" documentation.

REFERENCE
To use this module, first add the following line at the beginning of your script:

 use Win32::Internet;

Then you have to open an Internet connection with this command:

 $Connection = new Win32::Internet();

This is required to use any of the function of this module. It will create an Internet object in Perl on which
you can act upon with the "General Internet Functions" explained later.

The objects available are:

 Internet connections (the main object, see new)

 URLs (see OpenURL)

 FTP sessions (see FTP)

 HTTP sessions (see HTTP)

 HTTP requests (see OpenRequest)

As in the good Perl tradition, there are in this extension different ways to do the same thing; there are, in fact,
different levels of implementation of the Win32 Internet Functions. Some routines use several Win32 API
functions to perform a complex task in a single call; they are simpler to use, but of course less powerful.

There are then other functions that implement nothing more and nothing less than the corresponding API
function, so you can use all of their power, but with some additional programming steps.

To make an example, there is a function called FetchURL that you can use to fetch the content of any
HTTP, FTP or GOPHER URL with this simple commands:

 $INET = new Win32::Internet();
 $file = $INET−>FetchURL("http://www.yahoo.com");

You can have the same result (and this is actually what is done by FetchURL) this way:

 $INET = new Win32::Internet();
 $URL = $INET−>OpenURL("http://www.yahoo.com");
 $file = $URL−>ReadFile();
 $URL−>Close();

Or, you can open a complete HTTP session:

 $INET = new Win32::Internet();
 $HTTP = $INET−>HTTP("www.yahoo.com", "anonymous", "dada@divinf.it");
 ($statuscode, $headers, $file) = $HTTP−>Request("/");
 $HTTP−>Close();

Finally, you can choose to manage even the HTTP request:

 $INET = new Win32::Internet();
 $HTTP = $INET−>HTTP("www.yahoo.com", "anonymous", "dada@divinf.it");
24−Apr−2001 Win32, 5.6.1 27

Internet Perl Programmers Reference Guide Internet

da\@divinf
 $HTTP−>OpenRequest($REQ, "/");
 $REQ−>AddHeader("If−Modified−Since: Saturday, 16−Nov−96 15:58:50 GMT");
 $REQ−>SendRequest();
 $statuscode = $REQ−>QueryInfo("",HTTP_QUERY_STATUS_CODE);
 $lastmodified = $REQ−>QueryInfo("Last−Modified");
 $file = $REQ−>ReadEntireFile();
 $REQ−>Close();
 $HTTP−>Close();

To open and control a complete FTP session, type:

 $Connection−>FTP($Session, "ftp://ftp.activeware.com", "anonymous", "da

This will create an FTP object in Perl to which you can apply the "FTP functions" provided by the package:

 $Session−>Cd("/ntperl/perl5.001m/CurrentBuild");
 $Session−>Ascii();
 $Session−>Get("110−i86.zip");
 $Session−>Close();

For a more complete example, see the TEST.PL file that comes with the package.

General Internet Functions
General Note

All methods assume that you have the line:

 use Win32::Internet;

somewhere before the method calls, and that you have an Internet object called $INET which was created
using this call:

 $INET = new Win32::Internet();

See new for more information.

Methods

CanonicalizeURL URL, [flags]
Converts a URL to a canonical format, which includes converting unsafe characters to escape
sequences. Returns the canonicalized URL or undef on errors. For the possible values of flags, refer
to the "Microsoft Win32 Internet Functions" document. See also CombineURL and OpenURL.

Example:

 $cURL = $INET−>CanonicalizeURL($URL);
 $URL = $INET−>CanonicalizeURL($cURL, ICU_DECODE);

Close
Close object

Closes an Internet connection. This can be applied to any Win32::Internet object (Internet
connections, URLs, FTP sessions, etc.). Note that it is not "strictly" required to close the connections
you create, since the Win32::Internet objects are automatically closed when the program ends (or when
you elsehow destroy such an object).

Example:

 $INET−>Close();
 $FTP−>Close();
 $INET−>Close($FTP); # same as above...
28 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet

 "..");
CombineURL baseURL, relativeURL, [flags]
Combines a base and relative URL into a single URL. Returns the (canonicalized) combined URL or
undef on errors. For the possible values of flags, refer to the "Microsoft Win32 Internet Functions"
document. See also CombineURL and OpenURL.

Example:

 $URL = $INET−>CombineURL("http://www.divinf.it/dada/perl/internet",

ConnectBackoff [value]
Reads or sets the delay value, in milliseconds, to wait between connection retries. If no value
parameter is specified, the current value is returned; otherwise, the delay between retries is set to value.
 See also ConnectTimeout, ConnectRetries, QueryOption and SetOption.

Example:

 $HTTP−>ConnectBackoff(2000);
 $backoff = $HTTP−>ConnectBackoff();

ConnectRetries [value]
Reads or sets the number of times a connection is retried before considering it failed. If no value
parameter is specified, the current value is returned; otherwise, the number of retries is set to value.
The default value for ConnectRetries is 5. See also ConnectBackoff, ConnectTimeout,
QueryOption and SetOption.

Example:

 $HTTP−>ConnectRetries(20);
 $retries = $HTTP−>ConnectRetries();

ConnectTimeout [value]
Reads or sets the timeout value (in milliseconds) before a connection is considered failed. If no value
parameter is specified, the current value is returned; otherwise, the timeout is set to value. The default
value for ConnectTimeout is infinite. See also ConnectBackoff, ConnectRetries,
QueryOption and SetOption.

Example:

 $HTTP−>ConnectTimeout(10000);
 $timeout = $HTTP−>ConnectTimeout();

ControlReceiveTimeout [value]
Reads or sets the timeout value (in milliseconds) to use for non−data (control) receive requests before
they are canceled. Currently, this value has meaning only for FTP sessions. If no value parameter is
specified, the current value is returned; otherwise, the timeout is set to value. The default value for
ControlReceiveTimeout is infinite. See also ControlSendTimeout, QueryOption and
SetOption.

Example:

 $HTTP−>ControlReceiveTimeout(10000);
 $timeout = $HTTP−>ControlReceiveTimeout();

ControlSendTimeout [value]
Reads or sets the timeout value (in milliseconds) to use for non−data (control) send requests before
they are canceled. Currently, this value has meaning only for FTP sessions. If no value parameter is
specified, the current value is returned; otherwise, the timeout is set to value. The default value for
ControlSendTimeout is infinite. See also ControlReceiveTimeout, QueryOption and
SetOption.
24−Apr−2001 Win32, 5.6.1 29

Internet Perl Programmers Reference Guide Internet

op

feedback")

2/index.sh
Example:

 $HTTP−>ControlSendTimeout(10000);
 $timeout = $HTTP−>ControlSendTimeout();

CrackURL URL, [flags]
Splits an URL into its component parts and returns them in an array. Returns undef on errors,
otherwise the array will contain the following values: scheme, host, port, username, password, path,
extrainfo.

For example, the URL "http://www.divinf.it/index.html#top" can be splitted in:

 http, www.divinf.it, 80, anonymous, dada@divinf.it, /index.html, #t

If you don‘t specify a flags parameter, ICU_ESCAPE will be used by default; for the possible values
of flags refer to the "Microsoft Win32 Internet Functions" documentation. See also CreateURL.

Example:

 @parts=$INET−>CrackURL("http://www.activeware.com");
 ($scheme, $host, $port, $user, $pass, $path, $extra) =
 $INET−>CrackURL("http://www.divinf.it:80/perl−win32/index.sht#

CreateURL scheme, hostname, port, username, password, path, extrainfo, [flags]
CreateURL hashref, [flags]

Creates a URL from its component parts. Returns undef on errors, otherwise the created URL.

If you pass hashref (a reference to an hash array), the following values are taken from the array:

 %hash=(
 "scheme" => "scheme",
 "hostname" => "hostname",
 "port" => port,
 "username" => "username",
 "password" => "password",
 "path" => "path",
 "extrainfo" => "extrainfo",
);

If you don‘t specify a flags parameter, ICU_ESCAPE will be used by default; for the other possible
values of flags refer to the "Microsoft Win32 Internet Functions" documentation. See also
CrackURL.

Example:

 $URL=$I−>CreateURL("http", "www.divinf.it", 80, "", "", "/perl−win3
 $URL=$I−>CreateURL(\%params);

DataReceiveTimeout [value]
Reads or sets the timeout value (in milliseconds) to use for data receive requests before they are
canceled. If no value parameter is specified, the current value is returned; otherwise, the timeout is set
to value. The default value for DataReceiveTimeout is infinite. See also DataSendTimeout,
QueryOption and SetOption.

Example:

 $HTTP−>DataReceiveTimeout(10000);
 $timeout = $HTTP−>DataReceiveTimeout();

DataSendTimeout [value]
Reads or sets the timeout value (in milliseconds) to use for data send requests before they are canceled.
 If no value parameter is specified, the current value is returned; otherwise, the timeout is set to value.
30 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet

zip");
The default value for DataSendTimeout is infinite. See also DataReceiveTimeout,
QueryOption and SetOption.

Example:

 $HTTP−>DataSendTimeout(10000);
 $timeout = $HTTP−>DataSendTimeout();

Error
Returns the last recorded error in the form of an array or string (depending upon the context)
containing the error number and an error description. Can be applied on any Win32::Internet object
(FTP sessions, etc.). There are 3 types of error you can encounter; they are recognizable by the error
number returned:

 −1 A "trivial" error has occurred in the package. For example, you tried to use a method on the
wrong type of object.

 1 .. 11999
A generic error has occurred and the Win32::GetLastError error message is returned.

 12000 and higher
An Internet error has occurred; the extended Win32 Internet API error message is returned.

See also GetResponse.

Example:

 die $INET−>Error(), qq(\n);
 ($ErrNum, $ErrText) = $INET−>Error();

FetchURL URL
Fetch the content of an HTTP, FTP or GOPHER URL. Returns the content of the file read (or undef
if there was an error and nothing was read). See also OpenURL and ReadFile.

Example:

 $file = $INET−>FetchURL("http://www.yahoo.com/");
 $file = $INET−>FetchURL("ftp://www.activeware.com/contrib/internet.

FTP ftpobject, server, username, password, [port, pasv, context]
FTP ftpobject, hashref

Opens an FTP connection to server logging in with the given username and password.

The parameters and their values are:

 server
The server to connect to. Default: none.

 username
The username used to login to the server. Default: anonymous.

 password
The password used to login to the server. Default: none.

 port
The port of the FTP service on the server. Default: 21.

 pasv
If it is a value other than 0, use passive transfer mode. Default is taken from the parent Internet
connection object; you can set this value with the Pasv method.
24−Apr−2001 Win32, 5.6.1 31

Internet Perl Programmers Reference Guide Internet

\@divinf.i

t");
 context
A number to identify this operation if it is asynchronous. See SetStatusCallback and
GetStatusCallback for more info on asynchronous operations. Default: none.

If you pass hashref (a reference to an hash array), the following values are taken from the array:

 %hash=(
 "server" => "server",
 "username" => "username",
 "password" => "password",
 "port" => port,
 "pasv" => pasv,
 "context" => context,
);

This method returns undef if the connection failed, a number otherwise. You can then call any of the
"FTP functions" as methods of the newly created ftpobject.

Example:

 $result = $INET−>FTP($FTP, "ftp.activeware.com", "anonymous", "dada
 # and then for example...
 $FTP−>Cd("/ntperl/perl5.001m/CurrentBuild");

 $params{"server"} = "ftp.activeware.com";
 $params{"password"} = "dada\@divinf.it";
 $params{"pasv"} = 0;
 $result = $INET−>FTP($FTP,\%params);

GetResponse
Returns the text sent by a remote server in response to the last function executed. It applies on any
Win32::Internet object, particularly of course on FTP sessions|"FTP functions". See also the Error
function.

Example:

 print $INET−>GetResponse();
 $INET−>FTP($FTP, "ftp.activeware.com", "anonymous", "dada\@divinf.i
 print $FTP−>GetResponse();

GetStatusCallback context
Returns information about the progress of the asynchronous operation identified by context; those
informations consist of two values: a status code (one of the INTERNET_STATUS_* "Constants")
and an additional value depending on the status code; for example, if the status code returned is
INTERNET_STATUS_HANDLE_CREATED, the second value will hold the handle just created. For
more informations on those values, please refer to the "Microsoft Win32 Internet Functions"
documentation. See also SetStatusCallback.

Example:

 ($status, $info) = $INET−>GetStatusCallback(1);

HTTP httpobject, server, username, password, [port, flags, context]
HTTP httpobject, hashref

Opens an HTTP connection to server logging in with the given username and password.

The parameters and their values are:

 server
The server to connect to. Default: none.
32 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet

@divinf.it

 username
The username used to login to the server. Default: anonymous.

 password
The password used to login to the server. Default: none.

 port
The port of the HTTP service on the server. Default: 80.

 flags
Additional flags affecting the behavior of the function. Default: none.

 context
A number to identify this operation if it is asynchronous. See SetStatusCallback and
GetStatusCallback for more info on asynchronous operations. Default: none.

Refer to the "Microsoft Win32 Internet Functions" documentation for more details on those
parameters.

If you pass hashref (a reference to an hash array), the following values are taken from the array:

 %hash=(
 "server" => "server",
 "username" => "username",
 "password" => "password",
 "port" => port,
 "flags" => flags,
 "context" => context,
);

This method returns undef if the connection failed, a number otherwise. You can then call any of the
"HTTP functions" as methods of the newly created httpobject.

Example:

 $result = $INET−>HTTP($HTTP,"www.activeware.com","anonymous","dada\
 # and then for example...
 ($statuscode, $headers, $file) = $HTTP−>Request("/gifs/camel.gif");

 $params{"server"} = "www.activeware.com";
 $params{"password"} = "dada\@divinf.it";
 $params{"flags"} = INTERNET_FLAG_RELOAD;
 $result = $INET−>HTTP($HTTP,\%params);

new Win32::Internet [useragent, opentype, proxy, proxybypass, flags]
new Win32::Internet [hashref]

Creates a new Internet object and initializes the use of the Internet functions; this is required before
any of the functions of this package can be used. Returns undef if the connection fails, a number
otherwise. The parameters and their values are:

 useragent
The user agent passed to HTTP requests. See OpenRequest. Default:
Perl−Win32::Internet/version.

 opentype
How to access to the Internet (eg. directly or using a proxy). Default:
INTERNET_OPEN_TYPE_DIRECT.
24−Apr−2001 Win32, 5.6.1 33

Internet Perl Programmers Reference Guide Internet

, "www.mic
 proxy
Name of the proxy server (or servers) to use. Default: none.

 proxybypass
Optional list of host names or IP addresses, or both, that are known locally. Default: none.

 flags
Additional flags affecting the behavior of the function. Default: none.

Refer to the "Microsoft Win32 Internet Functions" documentation for more details on those
parameters. If you pass hashref (a reference to an hash array), the following values are taken from the
array:

 %hash=(
 "useragent" => "useragent",
 "opentype" => "opentype",
 "proxy" => "proxy",
 "proxybypass" => "proxybypass",
 "flags" => flags,
);

Example:

 $INET = new Win32::Internet();
 die qq(Cannot connect to Internet...\n) if ! $INET;

 $INET = new Win32::Internet("Mozilla/3.0", INTERNET_OPEN_TYPE_PROXY

 $params{"flags"} = INTERNET_FLAG_ASYNC;
 $INET = new Win32::Internet(\%params);

OpenURL urlobject, URL
Opens a connection to an HTTP, FTP or GOPHER Uniform Resource Location (URL). Returns
undef on errors or a number if the connection was succesful. You can then retrieve the URL content
by applying the methods QueryDataAvailable and ReadFile on the newly created urlobject.
See also FetchURL.

Example:

 $INET−>OpenURL($URL, "http://www.yahoo.com/");
 $bytes = $URL−>QueryDataAvailable();
 $file = $URL−>ReadEntireFile();
 $URL−>Close();

Password [password]
Reads or sets the password used for an FTP or HTTP connection. If no password parameter is
specified, the current value is returned; otherwise, the password is set to password. See also
Username, QueryOption and SetOption.

Example:

 $HTTP−>Password("splurfgnagbxam");
 $password = $HTTP−>Password();

QueryDataAvailable
Returns the number of bytes of data that are available to be read immediately by a subsequent call to
ReadFile (or undef on errors). Can be applied to URL or HTTP request objects. See OpenURL
or OpenRequest.

Example:
34 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet

 80, 0, 1)
 $INET−>OpenURL($URL, "http://www.yahoo.com/");
 $bytes = $URL−>QueryDataAvailable();

QueryOption option
Queries an Internet option. For the possible values of option, refer to the
"Microsoft Win32 Internet Functions" document. See also SetOption.

Example:

 $value = $INET−>QueryOption(INTERNET_OPTION_CONNECT_TIMEOUT);
 $value = $HTTP−>QueryOption(INTERNET_OPTION_USERNAME);

ReadEntireFile
Reads all the data available from an opened URL or HTTP request object. Returns what have been
read or undef on errors. See also OpenURL, OpenRequest and ReadFile.

Example:

 $INET−>OpenURL($URL, "http://www.yahoo.com/");
 $file = $URL−>ReadEntireFile();

ReadFile bytes
Reads bytes bytes of data from an opened URL or HTTP request object. Returns what have been read
or undef on errors. See also OpenURL, OpenRequest, QueryDataAvailable and
ReadEntireFile.

Note: be careful to keep bytes to an acceptable value (eg. don‘t tell him to swallow megabytes at
once...). ReadEntireFile in fact uses QueryDataAvailable and ReadFile in a loop to
read no more than 16k at a time.

Example:

 $INET−>OpenURL($URL, "http://www.yahoo.com/");
 $chunk = $URL−>ReadFile(16000);

SetOption option, value
Sets an Internet option. For the possible values of option, refer to the
"Microsoft Win32 Internet Functions" document. See also QueryOption.

Example:

 $INET−>SetOption(INTERNET_OPTION_CONNECT_TIMEOUT,10000);
 $HTTP−>SetOption(INTERNET_OPTION_USERNAME,"dada");

SetStatusCallback
Initializes the callback routine used to return data about the progress of an asynchronous operation.

Example:

 $INET−>SetStatusCallback();

This is one of the step required to perform asynchronous operations; the complete procedure is:

 # use the INTERNET_FLAG_ASYNC when initializing
 $params{’flags’}=INTERNET_FLAG_ASYNC;
 $INET = new Win32::Internet(\%params);

 # initialize the callback routine
 $INET−>SetStatusCallback();

 # specify the context parameter (the last 1 in this case)
 $INET−>HTTP($HTTP, "www.yahoo.com", "anonymous", "dada\@divinf.it",

At this point, control returns immediately to Perl and $INET−Error() will return 997, which means an
24−Apr−2001 Win32, 5.6.1 35

Internet Perl Programmers Reference Guide Internet
asynchronous I/O operation is pending. Now, you can call

 $HTTP−>GetStatusCallback(1);

in a loop to verify what‘s happening; see also GetStatusCallback.

TimeConvert time
TimeConvert seconds, minute, hours, day, month, year,

 day_of_week, RFC

The first form takes a HTTP date/time string and returns the date/time converted in the following
array: seconds, minute, hours, day, month, year, day_of_week.

The second form does the opposite (or at least it should, because actually seems to be malfunctioning):
it takes the values and returns an HTTP date/time string, in the RFC format specified by the RFC
parameter (OK, I didn‘t find yet any accepted value in the range 0..2000, let me know if you have
more luck with it).

Example:

 ($sec, $min, $hour, $day, $mday, $year, $wday) =
 $INET−>TimeConvert("Sun, 26 Jan 1997 20:01:52 GMT");

 # the opposite DOESN’T WORK! which value should $RFC have???
 $time = $INET−>TimeConvert(52, 1, 20, 26, 1, 1997, 0, $RFC);

UserAgent [name]
Reads or sets the user agent used for HTTP requests. If no name parameter is specified, the current
value is returned; otherwise, the user agent is set to name. See also QueryOption and SetOption.

Example:

 $INET−>UserAgent("Mozilla/3.0");
 $useragent = $INET−>UserAgent();

Username [name]
Reads or sets the username used for an FTP or HTTP connection. If no name parameter is specified,
the current value is returned; otherwise, the username is set to name. See also Password,
QueryOption and SetOption.

Example:

 $HTTP−>Username("dada");
 $username = $HTTP−>Username();

Version
Returns the version numbers for the Win32::Internet package and the WININET.DLL version, as an
array or string, depending on the context. The string returned will contain
"package_version/DLL_version", while the array will contain: "package_version", "DLL_version".

Example:

 $version = $INET−>Version(); # should return "0.06/4.70.1215"
 @version = $INET−>Version(); # should return ("0.06", "4.70.1215")

FTP Functions
General Note

All methods assume that you have the following lines:

 use Win32::Internet;
 $INET = new Win32::Internet();
 $INET−>FTP($FTP, "hostname", "username", "password");
36 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet
somewhere before the method calls; in other words, we assume that you have an Internet object called
$INET and an open FTP session called $FTP.

See new and FTP for more information.

Methods

Ascii
Asc Sets the ASCII transfer mode for this FTP session. It will be applied to the subsequent Get functions.

See also the Binary and Mode function.

Example:

 $FTP−>Ascii();

Binary
Bin Sets the binary transfer mode for this FTP session. It will be applied to the subsequent Get functions.

See also the Ascii and Mode function.

Example:

 $FTP−>Binary();

Cd path
Cwd path
Chdir path

Changes the current directory on the FTP remote host. Returns path or undef on error.

Example:

 $FTP−>Cd("/pub");

Delete file
Del file

Deletes a file on the FTP remote host. Returns undef on error.

Example:

 $FTP−>Delete("110−i86.zip");

Get remote, [local, overwrite, flags, context]
Gets the remote FTP file and saves it locally in local. If local is not specified, it will be the same name
as remote. Returns undef on error. The parameters and their values are:

 remote
The name of the remote file on the FTP server. Default: none.

 local
The name of the local file to create. Default: remote.

 overwrite
If 0, overwrites local if it exists; with any other value, the function fails if the local file already
exists. Default: 0.

 flags
Additional flags affecting the behavior of the function. Default: none.

 context
A number to identify this operation if it is asynchronous. See SetStatusCallback and
GetStatusCallback for more info on asynchronous operations. Default: none.

Refer to the "Microsoft Win32 Internet Functions" documentation for more details on those
parameters.
24−Apr−2001 Win32, 5.6.1 37

Internet Perl Programmers Reference Guide Internet

");

tr’}, "\n"
Example:

 $FTP−>Get("110−i86.zip");
 $FTP−>Get("/pub/perl/languages/CPAN/00index.html", "CPAN_index.html

List [pattern, listmode]
Ls [pattern, listmode]
Dir [pattern, listmode]

Returns a list containing the files found in this directory, eventually matching the given pattern (which,
if omitted, is considered "*.*"). The content of the returned list depends on the listmode parameter,
which can have the following values:

 listmode=1 (or omitted)
the list contains the names of the files found. Example:

 @files = $FTP−>List();
 @textfiles = $FTP−>List("*.txt");
 foreach $file (@textfiles) {
 print "Name: ", $file, "\n";
 }

 listmode=2
the list contains 7 values for each file, which respectively are:

 the file name
 the DOS short file name, aka 8.3
 the size
 the attributes
 the creation time
 the last access time
 the last modified time

Example:

 @files = $FTP−>List("*.*", 2);
 for($i=0; $i<=$#files; $i+=7) {
 print "Name: ", @files[$i], "\n";
 print "Size: ", @files[$i+2], "\n";
 print "Attr: ", @files[$i+3], "\n";
 }

 listmode=3
the list contains a reference to an hash array for each found file; each hash contains:

 name = the file name
 altname = the DOS short file name, aka 8.3
 size = the size
 attr = the attributes
 ctime = the creation time
 atime = the last access time
 mtime = the last modified time

Example:

 @files = $FTP−>List("*.*", 3);
 foreach $file (@files) {
 print $file−>{’name’}, " ", $file−>{’size’}, " ", $file−>{’at
 }
38 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet

at 10:58:0

");
Note: all times are reported as strings of the following format: second, hour, minute, day, month,
year.

Example:

 $file−>{’mtime’} == "0,10,58,9,12,1996" stands for 09 Dec 1996

Mkdir name
Md name

Creates a directory on the FTP remote host. Returns undef on error.

Example:

 $FTP−>Mkdir("NextBuild");

Mode [mode]
If called with no arguments, returns the current transfer mode for this FTP session ("asc" for ASCII or
"bin" for binary). The mode argument can be "asc" or "bin", in which case the appropriate transfer
mode is selected. See also the Ascii and Binary functions. Returns undef on errors.

Example:

 print "Current mode is: ", $FTP−>Mode();
 $FTP−>Mode("asc"); # ... same as $FTP−>Ascii();

Pasv [mode]
If called with no arguments, returns 1 if the current FTP session has passive transfer mode enabled, 0 if
not.

You can call it with a mode parameter (0/1) only as a method of a Internet object (see new), in which
case it will set the default value for the next FTP objects you create (read: set it before, because you
can‘t change this value once you opened the FTP session).

Example:

 print "Pasv is: ", $FTP−>Pasv();

 $INET−>Pasv(1);
 $INET−>FTP($FTP,"ftp.activeware.com", "anonymous", "dada\@divinf.it
 $FTP−>Pasv(0); # this will be ignored...

Put local, [remote, context]
Upload the local file to the FTP server saving it under the name remote, which if if omitted is the same
name as local. Returns undef on error.

context is a number to identify this operation if it is asynchronous. See SetStatusCallback and
GetStatusCallback for more info on asynchronous operations.

Example:

 $FTP−>Put("internet.zip");
 $FTP−>Put("d:/users/dada/temp.zip", "/temp/dada.zip");

Pwd
Returns the current directory on the FTP server or undef on errors.

Example:

 $path = $FTP−>Pwd();

Rename oldfile, newfile
Ren oldfile, newfile

Renames a file on the FTP remote host. Returns undef on error.
24−Apr−2001 Win32, 5.6.1 39

Internet Perl Programmers Reference Guide Internet

 GMT");
CE);
Example:

 $FTP−>Rename("110−i86.zip", "68i−011.zip");

Rmdir name
Rd name

Removes a directory on the FTP remote host. Returns undef on error.

Example:

 $FTP−>Rmdir("CurrentBuild");

HTTP Functions
General Note

All methods assume that you have the following lines:

 use Win32::Internet;
 $INET = new Win32::Internet();
 $INET−>HTTP($HTTP, "hostname", "username", "password");

somewhere before the method calls; in other words, we assume that you have an Internet object called
$INET and an open HTTP session called $HTTP.

See new and HTTP for more information.

Methods

AddHeader header, [flags]
Adds HTTP request headers to an HTTP request object created with OpenRequest. For the possible
values of flags refer to the "Microsoft Win32 Internet Functions" document.

Example:

 $HTTP−>OpenRequest($REQUEST,"/index.html");
 $REQUEST−>AddHeader("If−Modified−Since: Sunday, 17−Nov−96 11:40:03
 $REQUEST−>AddHeader("Accept: text/html\r\n", HTTP_ADDREQ_FLAG_REPLA

OpenRequest requestobject, [path, method, version, referer, accept, flags, context]
OpenRequest requestobject, hashref

Opens an HTTP request. Returns undef on errors or a number if the connection was succesful. You
can then use one of the AddHeader, SendRequest, QueryInfo, QueryDataAvailable and
ReadFile methods on the newly created requestobject. The parameters and their values are:

 path
The object to request. This is generally a file name, an executable module, etc. Default: /

 method
The method to use; can actually be GET, POST, HEAD or PUT. Default: GET

 version
The HTTP version. Default: HTTP/1.0

 referer
The URL of the document from which the URL in the request was obtained. Default: none

 accept
The content types accepted. They must be separated by a "\0" (ASCII zero). Default: text/*
image/gif image/jpeg

 flags
Additional flags affecting the behavior of the function. Default: none
40 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet

will get a
 context
A number to identify this operation if it is asynchronous. See SetStatusCallback and
GetStatusCallback for more info on asynchronous operations. Default: none

Refer to the "Microsoft Win32 Internet Functions" documentation for more details on those
parameters. If you pass hashref (a reference to an hash array), the following values are taken from the
array:

 %hash=(
 "path" => "path",
 "method" => "method",
 "version" => "version",
 "referer" => "referer",
 "accept" => "accept",
 "flags" => flags,
 "context" => context,
);

See also Request.

Example:

 $HTTP−>OpenRequest($REQUEST, "/index.html");
 $HTTP−>OpenRequest($REQUEST, "/index.html", "GET", "HTTP/0.9");

 $params{"path"} = "/index.html";
 $params{"flags"} = "
 $HTTP−>OpenRequest($REQUEST, \%params);

QueryInfo header, [flags]
Queries information about an HTTP request object created with OpenRequest. You can specify an
header (for example, "Content−type") and/or one or more flags. If you don‘t specify flags,
HTTP_QUERY_CUSTOM will be used by default; this means that header should contain a valid
HTTP header name. For the possible values of flags refer to the "Microsoft Win32 Internet Functions"
document.

Example:

 $HTTP−>OpenRequest($REQUEST,"/index.html");
 $statuscode = $REQUEST−>QueryInfo("", HTTP_QUERY_STATUS_CODE);
 $headers = $REQUEST−>QueryInfo("", HTTP_QUERY_RAW_HEADERS_CRLF); #
 $length = $REQUEST−>QueryInfo("Content−length");

Request [path, method, version, referer, accept, flags]
Request hashref

Performs an HTTP request and returns an array containing the status code, the headers and the content
of the file. It is a one−step procedure that makes an OpenRequest, a SendRequest, some
QueryInfo, ReadFile and finally Close. For a description of the parameters, see
OpenRequest.

Example:

 ($statuscode, $headers, $file) = $HTTP−>Request("/index.html");
 ($s, $h, $f) = $HTTP−>Request("/index.html", "GET", "HTTP/1.0");

SendRequest [postdata]
Send an HTTP request to the destination server. postdata are any optional data to send immediately
after the request header; this is generally used for POST or PUT requests. See also OpenRequest.

Example:
24−Apr−2001 Win32, 5.6.1 41

Internet Perl Programmers Reference Guide Internet

d");
 $HTTP−>OpenRequest($REQUEST, "/index.html");
 $REQUEST−>SendRequest();

 # A POST request...
 $HTTP−>OpenRequest($REQUEST, "/cgi−bin/somescript.pl", "POST");

 #This line is a must −> (thanks Philip :)
 $REQUEST−>AddHeader("Content−Type: application/x−www−form−urlencode

 $REQUEST−>SendRequest("key1=value1&key2=value2&key3=value3");

APPENDIX

Microsoft Win32 Internet Functions
Complete documentation for the Microsoft Win32 Internet Functions can be found, in both HTML and
zipped Word format, at this address:

 http://www.microsoft.com/intdev/sdk/docs/wininet/

Functions Table
This table reports the correspondence between the functions offered by WININET.DLL and their
implementation in the Win32::Internet extension. Functions showing a "—−" are not currently implemented.
Functions enclosed in parens () aren‘t implemented straightforwardly, but in a higher−level routine, eg.
together with other functions.

 WININET.DLL Win32::Internet

 InternetOpen new Win32::Internet
 InternetConnect FTP / HTTP
 InternetCloseHandle Close
 InternetQueryOption QueryOption
 InternetSetOption SetOption
 InternetSetOptionEx −−−
 InternetSetStatusCallback SetStatusCallback
 InternetStatusCallback GetStatusCallback
 InternetConfirmZoneCrossing −−−
 InternetTimeFromSystemTime TimeConvert
 InternetTimeToSystemTime TimeConvert
 InternetAttemptConnect −−−
 InternetReadFile ReadFile
 InternetSetFilePointer −−−
 InternetFindNextFile (List)
 InternetQueryDataAvailable QueryDataAvailable
 InternetGetLastResponseInfo GetResponse
 InternetWriteFile −−−
 InternetCrackUrl CrackURL
 InternetCreateUrl CreateURL
 InternetCanonicalizeUrl CanonicalizeURL
 InternetCombineUrl CombineURL
 InternetOpenUrl OpenURL
 FtpFindFirstFile (List)
 FtpGetFile Get
 FtpPutFile Put
 FtpDeleteFile Delete
 FtpRenameFile Rename
 FtpOpenFile −−−
 FtpCreateDirectory Mkdir
 FtpRemoveDirectory Rmdir
 FtpSetCurrentDirectory Cd
42 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet
 FtpGetCurrentDirectory Pwd
 HttpOpenRequest OpenRequest
 HttpAddRequestHeaders AddHeader
 HttpSendRequest SendRequest
 HttpQueryInfo QueryInfo
 InternetErrorDlg −−−

Actually, I don‘t plan to add support for Gopher, Cookie and Cache functions. I will if there will be
consistent requests to do so.

There are a number of higher−level functions in the Win32::Internet that simplify some usual procedures,
calling more that one WININET API function. This table reports those functions and the relative WININET
functions they use.

 Win32::Internet WININET.DLL

 FetchURL InternetOpenUrl
 InternetQueryDataAvailable
 InternetReadFile
 InternetCloseHandle

 ReadEntireFile InternetQueryDataAvailable
 InternetReadFile

 Request HttpOpenRequest
 HttpSendRequest
 HttpQueryInfo
 InternetQueryDataAvailable
 InternetReadFile
 InternetCloseHandle

 List FtpFindFirstFile
 InternetFindNextFile

Constants
Those are the constants exported by the package in the main namespace (eg. you can use them in your
scripts); for their meaning and proper use, refer to the Microsoft Win32 Internet Functions document.

 HTTP_ADDREQ_FLAG_ADD
 HTTP_ADDREQ_FLAG_REPLACE
 HTTP_QUERY_ALLOW
 HTTP_QUERY_CONTENT_DESCRIPTION
 HTTP_QUERY_CONTENT_ID
 HTTP_QUERY_CONTENT_LENGTH
 HTTP_QUERY_CONTENT_TRANSFER_ENCODING
 HTTP_QUERY_CONTENT_TYPE
 HTTP_QUERY_COST
 HTTP_QUERY_CUSTOM
 HTTP_QUERY_DATE
 HTTP_QUERY_DERIVED_FROM
 HTTP_QUERY_EXPIRES
 HTTP_QUERY_FLAG_REQUEST_HEADERS
 HTTP_QUERY_FLAG_SYSTEMTIME
 HTTP_QUERY_LANGUAGE
 HTTP_QUERY_LAST_MODIFIED
 HTTP_QUERY_MESSAGE_ID
 HTTP_QUERY_MIME_VERSION
 HTTP_QUERY_PRAGMA
 HTTP_QUERY_PUBLIC
24−Apr−2001 Win32, 5.6.1 43

Internet Perl Programmers Reference Guide Internet
 HTTP_QUERY_RAW_HEADERS
 HTTP_QUERY_RAW_HEADERS_CRLF
 HTTP_QUERY_REQUEST_METHOD
 HTTP_QUERY_SERVER
 HTTP_QUERY_STATUS_CODE
 HTTP_QUERY_STATUS_TEXT
 HTTP_QUERY_URI
 HTTP_QUERY_USER_AGENT
 HTTP_QUERY_VERSION
 HTTP_QUERY_WWW_LINK
 ICU_BROWSER_MODE
 ICU_DECODE
 ICU_ENCODE_SPACES_ONLY
 ICU_ESCAPE
 ICU_NO_ENCODE
 ICU_NO_META
 ICU_USERNAME
 INTERNET_CONNECT_FLAG_PASSIVE
 INTERNET_FLAG_ASYNC
 INTERNET_FLAG_HYPERLINK
 INTERNET_FLAG_KEEP_CONNECTION
 INTERNET_FLAG_MAKE_PERSISTENT
 INTERNET_FLAG_NO_AUTH
 INTERNET_FLAG_NO_AUTO_REDIRECT
 INTERNET_FLAG_NO_CACHE_WRITE
 INTERNET_FLAG_NO_COOKIES
 INTERNET_FLAG_READ_PREFETCH
 INTERNET_FLAG_RELOAD
 INTERNET_FLAG_RESYNCHRONIZE
 INTERNET_FLAG_TRANSFER_ASCII
 INTERNET_FLAG_TRANSFER_BINARY
 INTERNET_INVALID_PORT_NUMBER
 INTERNET_INVALID_STATUS_CALLBACK
 INTERNET_OPEN_TYPE_DIRECT
 INTERNET_OPEN_TYPE_PROXY
 INTERNET_OPEN_TYPE_PROXY_PRECONFIG
 INTERNET_OPTION_CONNECT_BACKOFF
 INTERNET_OPTION_CONNECT_RETRIES
 INTERNET_OPTION_CONNECT_TIMEOUT
 INTERNET_OPTION_CONTROL_SEND_TIMEOUT
 INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT
 INTERNET_OPTION_DATA_SEND_TIMEOUT
 INTERNET_OPTION_DATA_RECEIVE_TIMEOUT
 INTERNET_OPTION_HANDLE_TYPE
 INTERNET_OPTION_LISTEN_TIMEOUT
 INTERNET_OPTION_PASSWORD
 INTERNET_OPTION_READ_BUFFER_SIZE
 INTERNET_OPTION_USER_AGENT
 INTERNET_OPTION_USERNAME
 INTERNET_OPTION_VERSION
 INTERNET_OPTION_WRITE_BUFFER_SIZE
 INTERNET_SERVICE_FTP
 INTERNET_SERVICE_GOPHER
 INTERNET_SERVICE_HTTP
44 Win32, 5.6.1 24−Apr−2001

Internet Perl Programmers Reference Guide Internet
 INTERNET_STATUS_CLOSING_CONNECTION
 INTERNET_STATUS_CONNECTED_TO_SERVER
 INTERNET_STATUS_CONNECTING_TO_SERVER
 INTERNET_STATUS_CONNECTION_CLOSED
 INTERNET_STATUS_HANDLE_CLOSING
 INTERNET_STATUS_HANDLE_CREATED
 INTERNET_STATUS_NAME_RESOLVED
 INTERNET_STATUS_RECEIVING_RESPONSE
 INTERNET_STATUS_REDIRECT
 INTERNET_STATUS_REQUEST_COMPLETE
 INTERNET_STATUS_REQUEST_SENT
 INTERNET_STATUS_RESOLVING_NAME
 INTERNET_STATUS_RESPONSE_RECEIVED
 INTERNET_STATUS_SENDING_REQUEST

VERSION HISTORY

 0.081 (25 Sep 1999)
 Documentation converted to pod format by Jan Dubois <jand@activestate.com.

 Minor changes from Perl 5.005xx compatibility.

 0.08 (14 Feb 1997)
 fixed 2 more bugs in Option(s) related subs (thanks to Brian Helterline!).

 Error() now gets error messages directly from WININET.DLL.

 The PLL file now comes in 2 versions, one for Perl version 5.001 (build 100) and one for Perl
version 5.003 (build 300 and higher). Everybody should be happy now :)

 added an installation program.

 0.07 (10 Feb 1997)
 fixed a bug in Version() introduced with 0.06...

 completely reworked PM file, fixed *lots* of minor bugs, and removed almost all the warnings
with "perl −w".

 0.06 (26 Jan 1997)
 fixed another hideous bug in "new" (the ‘class’ parameter was still missing).

 added support for asynchronous operations (work still in embryo).

 removed the ending \0 (ASCII zero) from the DLL version returned by "Version".

 added a lot of constants.

 added safefree() after every safemalloc() in C... wonder why I didn‘t it before :)

 added TimeConvert, which actually works one way only.

 0.05f (29 Nov 1996)
 fixed a bug in "new" (parameters passed were simply ignored).

 fixed another bug: "Chdir" and "Cwd" were aliases of RMDIR instead of CD..

 0.05 (29 Nov 1996)
 added "CrackURL" and "CreateURL".

 corrected an error in TEST.PL (there was a GetUserAgent instead of UserAgent).

 0.04 (25 Nov 1996)
 added "Version" to retrieve package and DLL versions.
24−Apr−2001 Win32, 5.6.1 45

Internet Perl Programmers Reference Guide Internet
 added proxies and other options to "new".

 changed "OpenRequest" and "Request" to read parameters from a hash.

 added "SetOption/QueryOption" and a lot of relative functions (connect, username, password,
useragent, etc.).

 added "CanonicalizeURL" and "CombineURL".

 "Error" covers a wider spectrum of errors.

 0.02 (18 Nov 1996)
 added support for HTTP sessions and requests.

 0.01 (11 Nov 1996)
 fetching of HTTP, FTP and GOPHER URLs.

 complete set of commands to manage an FTP session.

AUTHOR
Version 0.08 (14 Feb 1997) by Aldo Calpini <a.calpini@romagiubileo.it

CREDITS
Win32::Internet is based on the Win32::Registry code written by Jesse Dougherty.

Additional thanks to: Carl Tichler for his help in the initial development; Tore Haraldsen, Brian Helterline
for the bugfixes; Dave Roth for his great source code examples.

DISCLAIMER
This program is FREE; you can redistribute, modify, disassemble, or even reverse engineer this software at
your will. Keep in mind, however, that NOTHING IS GUARANTEED to work and everything you do is AT
YOUR OWN RISK − I will not take responsability for any damage, loss of money and/or health that may
arise from the use of this program!

This is distributed under the terms of Larry Wall‘s Artistic License.
46 Win32, 5.6.1 24−Apr−2001

IPC Perl Programmers Reference Guide IPC
NAME
Win32::IPC − Base class for Win32 synchronization objects

SYNOPSIS
 use Win32::Event 1.00 qw(wait_any);
 #Create objects.

 wait_any(@ListOfObjects,$timeout);

DESCRIPTION
This module is loaded by the other Win32 synchronization modules. You shouldn‘t need to load it yourself.
It supplies the wait functions to those modules.

The synchronization modules are "Win32::ChangeNotify", "Win32::Event", "Win32::Mutex", &
"Win32::Semaphore".

Methods
Win32::IPC supplies one method to all synchronization objects.

$obj−wait([$timeout])
Waits for $obj to become signalled. $timeout is the maximum time to wait (in milliseconds). If
$timeout is omitted, waits forever. If $timeout is 0, returns immediately.

Returns:

 +1 The object is signalled
 −1 The object is an abandoned mutex
 0 Timed out
 undef An error occurred

Functions

wait_any(@objects, [$timeout])
Waits for at least one of the @objects to become signalled. $timeout is the maximum time to wait
(in milliseconds). If $timeout is omitted, waits forever. If $timeout is 0, returns immediately.

The return value indicates which object ended the wait:

 +N $object[N−1] is signalled
 −N $object[N−1] is an abandoned mutex
 0 Timed out
 undef An error occurred

If more than one object became signalled, the one with the lowest index is used.

wait_all(@objects, [$timeout])
This is the same as wait_any, but it waits for all the @objects to become signalled. The return
value indicates the last object to become signalled, and is negative if at least one of the @objects is
an abandoned mutex.

Deprecated Functions and Methods
Win32::IPC still supports the ActiveWare syntax, but its use is deprecated.

INFINITE
Constant value for an infinite timeout. Omit the $timeout argument instead.

WaitForMultipleObjects(\@objects, $wait_all, $timeout)
Warning: WaitForMultipleObjects erases @objects! Use wait_all or wait_any
instead.
24−Apr−2001 Win32, 5.6.1 47

IPC Perl Programmers Reference Guide IPC
$obj−Wait($timeout)
Similar to not $obj−>wait($timeout).

AUTHOR
Christopher J. Madsen <chris_madsen@geocities.com>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
48 Win32, 5.6.1 24−Apr−2001

Mutex Perl Programmers Reference Guide Mutex
NAME
Win32::Mutex − Use Win32 mutex objects from Perl

SYNOPSIS
require Win32::Mutex;

$mutex = Win32::Mutex−>new($initial,$name);
$mutex−>wait;

DESCRIPTION
This module allows access to the Win32 mutex objects. The wait method and wait_all & wait_any
functions are inherited from the "Win32::IPC" module.

Methods

$mutex = Win32::Mutex−new([$initial, [$name]])
Constructor for a new mutex object. If $initial is true, requests immediate ownership of the mutex
(default false). If $name is omitted, creates an unnamed mutex object.

If $name signifies an existing mutex object, then $initial is ignored and the object is opened.

$mutex = Win32::Mutex−open($name)
Constructor for opening an existing mutex object.

$mutex−release
Release ownership of a $mutex. You should have obtained ownership of the mutex through new or
one of the wait functions. Returns true if successful.

$mutex−wait([$timeout])
Wait for ownership of $mutex. See "Win32::IPC".

Deprecated Functions and Methods
Win32::Mutex still supports the ActiveWare syntax, but its use is deprecated.

Create($MutObj,$Initial,$Name)
Use $MutObj = Win32::Mutex−>new($Initial,$Name) instead.

Open($MutObj,$Name)
Use $MutObj = Win32::Mutex−>open($Name) instead.

$MutObj−Release()
Use $MutObj−>release instead.

AUTHOR
Christopher J. Madsen <chris_madsen@geocities.com>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
24−Apr−2001 Win32, 5.6.1 49

NetAdmin Perl Programmers Reference Guide NetAdmin
NAME
Win32::NetAdmin − manage network groups and users in perl

SYNOPSIS
use Win32::NetAdmin;

DESCRIPTION
This module offers control over the administration of groups and users over a network.

FUNCTIONS

NOTE
All of the functions return FALSE (0) if they fail, unless otherwise noted. server is optional for all the
calls below. If not given the local machine is assumed.

GetDomainController(server, domain, returnedName)
Returns the name of the domain controller for server.

GetAnyDomainController(server, domain, returnedName)
Returns the name of any domain controller for a domain that is directly trusted by the server.

UserCreate(server, userName, password, passwordAge, privilege, homeDir, comment, flags,
scriptPath) Creates a user on server with password, passwordAge, privilege, homeDir, comment, flags,
and scriptPath.

UserDelete(server, user)
Deletes a user from server.

UserGetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment,
flags, scriptPath)
Gets password, passwordAge, privilege, homeDir, comment, flags, and scriptPath for user.

UserSetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment, flags,
scriptPath) Sets password, passwordAge, privilege, homeDir, comment, flags, and scriptPath for user.

UserChangePassword(domainname, username, oldpassword, newpassword)
Changes a users password. Can be run under any account.

UsersExist(server, userName)
Checks if a user exists.

GetUsers(server, filter, userRef)
Fills userRef with user names if it is an array reference and with the user names and the full
names if it is a hash reference.

GroupCreate(server, group, comment)
Creates a group.

GroupDelete(server, group)
Deletes a group.

GroupGetAttributes(server, groupName, comment)
Gets the comment.

GroupSetAttributes(server, groupName, comment)
Sets the comment.

GroupAddUsers(server, groupName, users)
Adds a user to a group.
50 Win32, 5.6.1 24−Apr−2001

NetAdmin Perl Programmers Reference Guide NetAdmin
GroupDeleteUsers(server, groupName, users)
Deletes a users from a group.

GroupIsMember(server, groupName, user)
Returns TRUE if user is a member of groupName.

GroupGetMembers(server, groupName, userArrayRef)
Fills userArrayRef with the members of groupName.

LocalGroupCreate(server, group, comment)
Creates a local group.

LocalGroupDelete(server, group)
Deletes a local group.

LocalGroupGetAttributes(server, groupName, comment)
Gets the comment.

LocalGroupSetAttributes(server, groupName, comment)
Sets the comment.

LocalGroupIsMember(server, groupName, user)
Returns TRUE if user is a member of groupName.

LocalGroupGetMembers(server, groupName, userArrayRef)
Fills userArrayRef with the members of groupName.

LocalGroupGetMembersWithDomain(server, groupName, userRef)
This function is similar LocalGroupGetMembers but accepts an array or a hash reference.
Unlike LocalGroupGetMembers it returns each user name as DOMAIN\USERNAME. If a hash
reference is given, the function returns to each user or group name the type (group, user, alias
etc.). The possible types are as follows:

 $SidTypeUser = 1;
 $SidTypeGroup = 2;
 $SidTypeDomain = 3;
 $SidTypeAlias = 4;
 $SidTypeWellKnownGroup = 5;
 $SidTypeDeletedAccount = 6;
 $SidTypeInvalid = 7;
 $SidTypeUnknown = 8;

LocalGroupAddUsers(server, groupName, users)
Adds a user to a group.

LocalGroupDeleteUsers(server, groupName, users)
Deletes a users from a group.

GetServers(server, domain, flags, serverRef)
Gets an array of server names or an hash with the server names and the comments as seen in
the Network Neighborhood or the server manager. For flags, see SV_TYPE_* constants.

GetTransports(server, transportRef)
Enumerates the network transports of a computer. If transportRef is an array reference, it is
filled with the transport names. If transportRef is a hash reference then a hash of hashes is
filled with the data for the transports.
24−Apr−2001 Win32, 5.6.1 51

NetAdmin Perl Programmers Reference Guide NetAdmin
LoggedOnUsers(server, userRef)
Gets an array or hash with the users logged on at the specified computer. If userRef is a hash
reference, the value is a semikolon separated string of username, logon domain and logon
server.

GetAliasFromRID(server, RID, returnedName)
GetUserGroupFromRID(server, RID, returnedName)

Retrieves the name of an alias (i.e local group) or a user group for a RID from the specified
server. These functions can be used for example to get the account name for the administrator
account if it is renamed or localized.

Possible values for RID:

 DOMAIN_ALIAS_RID_ACCOUNT_OPS
 DOMAIN_ALIAS_RID_ADMINS
 DOMAIN_ALIAS_RID_BACKUP_OPS
 DOMAIN_ALIAS_RID_GUESTS
 DOMAIN_ALIAS_RID_POWER_USERS
 DOMAIN_ALIAS_RID_PRINT_OPS
 DOMAIN_ALIAS_RID_REPLICATOR
 DOMAIN_ALIAS_RID_SYSTEM_OPS
 DOMAIN_ALIAS_RID_USERS
 DOMAIN_GROUP_RID_ADMINS
 DOMAIN_GROUP_RID_GUESTS
 DOMAIN_GROUP_RID_USERS
 DOMAIN_USER_RID_ADMIN
 DOMAIN_USER_RID_GUEST

GetServerDisks(server, arrayRef)
Returns an array with the disk drives of the specified server. The array contains two−character
strings (drive letter followed by a colon).

EXAMPLE
 # Simple script using Win32::NetAdmin to set the login script for
 # all members of the NT group "Domain Users". Only works if you
 # run it on the PDC. (From Robert Spier <rspier@seas.upenn.edu>)
 #
 # FILTER_TEMP_DUPLICATE_ACCOUNTS
 # Enumerates local user account data on a domain controller.
 #
 # FILTER_NORMAL_ACCOUNT
 # Enumerates global user account data on a computer.
 #
 # FILTER_INTERDOMAIN_TRUST_ACCOUNT
 # Enumerates domain trust account data on a domain controller.
 #
 # FILTER_WORKSTATION_TRUST_ACCOUNT
 # Enumerates workstation or member server account data on a domain
 # controller.
 #
 # FILTER_SERVER_TRUST_ACCOUNT
 # Enumerates domain controller account data on a domain controller.

 use Win32::NetAdmin qw(GetUsers GroupIsMember
 UserGetAttributes UserSetAttributes);
52 Win32, 5.6.1 24−Apr−2001

NetAdmin Perl Programmers Reference Guide NetAdmin
 my %hash;
 GetUsers("", FILTER_NORMAL_ACCOUNT , \%hash)

or die "GetUsers() failed: $^E";

 foreach (keys %hash) {
my ($password, $passwordAge, $privilege,
 $homeDir, $comment, $flags, $scriptPath);
if (GroupIsMember("", "Domain Users", $_)) {
 print "Updating $_ ($hash{$_})\n";
 UserGetAttributes("", $_, $password, $passwordAge, $privilege,

 $homeDir, $comment, $flags, $scriptPath)
or die "UserGetAttributes() failed: $^E";

 $scriptPath = "dnx_login.bat"; # this is the new login script
 UserSetAttributes("", $_, $password, $passwordAge, $privilege,

 $homeDir, $comment, $flags, $scriptPath)
or die "UserSetAttributes() failed: $^E";

}
 }
24−Apr−2001 Win32, 5.6.1 53

NetResource Perl Programmers Reference Guide NetResource

yed.

omain.

 does not

erver.

harepoint.

 is
NAME
Win32::NetResource − manage network resources in perl

SYNOPSIS
 use Win32::NetResource;

 $ShareInfo = {
 ’path’ => "C:\\MyShareDir",
 ’netname’ => "MyShare",
 ’remark’ => "It is good to share",
 ’passwd’ => "",
 ’current−users’ =>0,
 ’permissions’ => 0,
 ’maxusers’ => −1,
 ’type’ => 0,
 };

 Win32::NetResource::NetShareAdd($ShareInfo,$parm)
 or die "unable to add share";

DESCRIPTION
This module offers control over the network resources of Win32.Disks, printers etc can be shared over a
network.

DATA TYPES
There are two main data types required to control network resources. In Perl these are represented by hash
types.

%NETRESOURCE
 KEY VALUE

 ’Scope’ => Scope of an Enumeration
 RESOURCE_CONNECTED,
 RESOURCE_GLOBALNET,
 RESOURCE_REMEMBERED.

 ’Type’ => The type of resource to Enum
 RESOURCETYPE_ANY All resources
 RESOURCETYPE_DISK Disk resources
 RESOURCETYPE_PRINT Print resources

 ’DisplayType’ => The way the resource should be displa
 RESOURCEDISPLAYTYPE_DOMAIN
 The object should be displayed as a d
 RESOURCEDISPLAYTYPE_GENERIC
 The method used to display the object
 RESOURCEDISPLAYTYPE_SERVER
 The object should be displayed as a s
 RESOURCEDISPLAYTYPE_SHARE
 The object should be displayed as a s

 ’Usage’ => Specifies the Resources usage:
 RESOURCEUSAGE_CONNECTABLE
 RESOURCEUSAGE_CONTAINER.

 ’LocalName’ => Name of the local device the resource
 connected to.

 ’RemoteName’ => The network name of the resource.
54 Win32, 5.6.1 24−Apr−2001

NetResource Perl Programmers Reference Guide NetResource

 ’Comment’ => A string comment.

 ’Provider’ => Name of the provider of the resource.

%SHARE_INFO
This hash represents the SHARE_INFO_502 struct.

 KEY VALUE
 ’netname’ => Name of the share.
 ’type’ => type of share.
 ’remark’ => A string comment.
 ’permissions’ => Permissions value
 ’maxusers’ => the max # of users.
 ’current−users’ => the current # of users.
 ’path’ => The path of the share.
 ’passwd’ => A password if one is req’d

FUNCTIONS

NOTE
All of the functions return FALSE (0) if they fail.

GetSharedResources(\@Resources,dwType)
Creates a list in @Resources of %NETRESOURCE hash references.

The return value indicates whether there was an error in accessing any of the shared
resources. All the shared resources that were encountered (until the point of an error, if any)
are pushed into @Resources as references to %NETRESOURCE hashes. See example
below.

AddConnection(\%NETRESOURCE,$Password,$UserName,$Connection)
Makes a connection to a network resource specified by %NETRESOURCE

CancelConnection($Name,$Connection,$Force)
Cancels a connection to a network resource connected to local device
$name.$Connection is either 1 − persistent connection or 0, non−persistent.

WNetGetLastError($ErrorCode,$Description,$Name)
Gets the Extended Network Error.

GetError($ErrorCode)
Gets the last Error for a Win32::NetResource call.

GetUNCName($UNCName, $LocalPath);
Returns the UNC name of the disk share connected to $LocalPath in $UNCName.

NOTE
$servername is optional for all the calls below. (if not given the local machine is assumed.)

NetShareAdd(\%SHARE,$parm_err,$servername = NULL)
Add a share for sharing.

NetShareCheck($device,$type,$servername = NULL)
Check if a share is available for connection.

NetShareDel($netname, $servername = NULL)
Remove a share from a machines list of shares.
24−Apr−2001 Win32, 5.6.1 55

NetResource Perl Programmers Reference Guide NetResource
NetShareGetInfo($netname, \%SHARE,$servername=NULL)
Get the %SHARE_INFO information about the share $netname on the server $servername.

NetShareSetInfo($netname,\%SHARE,$parm_err,$servername=NULL)
Set the information for share $netname.

EXAMPLE
 #
 # This example displays all the share points in the entire
 # visible part of the network.
 #

 use strict;
 use Win32::NetResource qw(:DEFAULT GetSharedResources GetError);
 my $resources = [];
 unless(GetSharedResources($resources, RESOURCETYPE_ANY)) {

my $err = undef;
GetError($err);
warn Win32::FormatMessage($err);

 }

 foreach my $href (@$resources) {
next if ($$href{DisplayType} != RESOURCEDISPLAYTYPE_SHARE);
print "−−−−−\n";
foreach(keys %$href){
 print "$_: $href−>{$_}\n";
}

 }

AUTHOR
Jesse Dougherty for Hip Communications.

Additional general cleanups and bug fixes by Gurusamy Sarathy <gsar@activestate.com.
56 Win32, 5.6.1 24−Apr−2001

ODBC Perl Programmers Reference Guide ODBC
NAME
Win32::ODBC − ODBC Extension for Win32

SYNOPSIS
To use this module, include the following statement at the top of your script:

 use Win32::ODBC;

Next, create a data connection to your DSN:

 $Data = new Win32::ODBC("MyDSN");

NOTE: MyDSN can be either the DSN as defined in the ODBC Administrator, or it can be an
honest−to−God DSN Connect String.

 Example: "DSN=My Database;UID=Brown Cow;PWD=Moo;"

You should check to see if $Data is indeed defined, otherwise there has been an error.

You can now send SQL queries and retrieve info to your heart‘s content! See the description of the methods
provided by this module below and also the file TEST.PL as referred to in INSTALLATION NOTES to see
how it all works.

Finally, MAKE SURE that you close your connection when you are finished:

 $Data−>Close();

DESCRIPTION

Background
This is a hack of Dan DeMaggio‘s <dmag@umich.edu NTXS.C ODBC implementation. I have recoded and
restructured most of it including most of the ODBC.PM package, but its very core is still based on Dan‘s
code (thanks Dan!).

The history of this extension is found in the file HISTORY.TXT that comes with the original archive (see
INSTALLATION NOTES below).

Benefits
And what are the benefits of this module?

 The number of ODBC connections is limited by memory and ODBC itself (have as many as you
want!).

 The working limit for the size of a field is 10,240 bytes, but you can increase that limit (if needed) to a
max of 2,147,483,647 bytes. (You can always recompile to increase the max limit.)

 You can open a connection by either specifing a DSN or a connection string!

 You can open and close the connections in any order!

 Other things that I can not think of right now... :)

CONSTANTS
This package defines a number of constants. You may refer to each of these constants using the notation
ODBC::xxxxx, where xxxxx is the constant.

Example:

 print ODBC::SQL_SQL_COLUMN_NAME, "\n";

SPECIAL NOTATION
For the method documentation that follows, an * following the method parameters indicates that that method
is new or has been modified for this version.
24−Apr−2001 Win32, 5.6.1 57

ODBC Perl Programmers Reference Guide ODBC
CONSTRUCTOR

new (ODBC_OBJECT | DSN [, (OPTION1, VALUE1), (OPTION2, VALUE2) ...])
*

Creates a new ODBC connection based on DSN, or, if you specify an already existing ODBC object,
then a new ODBC object will be created but using the ODBC Connection specified by
ODBC_OBJECT. (The new object will be a new hstmt using the hdbc connection in ODBC_OBJECT.)

DSN is Data Source Name or a proper ODBCDriverConnect string.

You can specify SQL Connect Options that are implemented before the actual connection to the DSN
takes place. These option/values are the same as specified in
GetConnectOption/SetConnectOption (see below) and are defined in the ODBC API specs.

Returns a handle to the database on success, or undef on failure.

METHODS

Catalog (QUALIFIER, OWNER, NAME, TYPE)
Tells ODBC to create a data set that contains table information about the DSN. Use Fetch and Data
or DataHash to retrieve the data. The returned format is:

 [Qualifier] [Owner] [Name] [Type]

Returns true on error.

ColAttributes (ATTRIBUTE [, FIELD_NAMES])
Returns the attribute ATTRIBUTE on each of the fields in the list FIELD_NAMES in the current record
set. If FIELD_NAMES is empty, then all fields are assumed. The attributes are returned as an
associative array.

ConfigDSN (OPTION, DRIVER, ATTRIBUTE1 [, ATTRIBUTE2, ATTRIBUTE3, ...
])

Configures a DSN. OPTION takes on one of the following values:

 ODBC_ADD_DSN.......Adds a new DSN.
 ODBC_MODIFY_DSN....Modifies an existing DSN.
 ODBC_REMOVE_DSN....Removes an existing DSN.

 ODBC_ADD_SYS_DSN.......Adds a new System DSN.
 ODBC_MODIFY_SYS_DSN....Modifies an existing System DSN.
 ODBC_REMOVE_SYS_DSN....Removes an existing System DSN.

You must specify the driver DRIVER (which can be retrieved by using DataSources or Drivers).

ATTRIBUTE1 should be "DSN=xxx" where xxx is the name of the DSN. Other attributes can be any
DSN attribute such as:

 "UID=Cow"
 "PWD=Moo"
 "Description=My little bitty Data Source Name"

Returns true on success, false on failure.

NOTE 1: If you use ODBC_ADD_DSN, then you must include at least "DSN=xxx" and the location of
the database.

Example: For MS Access databases, you must specify the DatabaseQualifier:

 "DBQ=c:\\...\\MyDatabase.mdb"
58 Win32, 5.6.1 24−Apr−2001

ODBC Perl Programmers Reference Guide ODBC
NOTE 2: If you use ODBC_MODIFY_DSN, then you need only specify the "DNS=xxx" attribute. Any
other attribute you include will be changed to what you specify.

NOTE 3: If you use ODBC_REMOVE_DSN, then you need only specify the "DSN=xxx" attribute.

Connection ()
Returns the connection number associated with the ODBC connection.

Close ()
Closes the ODBC connection. No return value.

Data ([FIELD_NAME])
Returns the contents of column name FIELD_NAME or the current row (if nothing is specified).

DataHash ([FIELD1, FIELD2, ...])
Returns the contents for FIELD1, FIELD2, ... or the entire row (if nothing is specified) as an
associative array consisting of:

 {Field Name} => Field Data

DataSources ()
Returns an associative array of Data Sources and ODBC remarks about them. They are returned in the
form of:

 $ArrayName{’DSN’}=Driver

where DSN is the Data Source Name and ODBC Driver used.

Debug ([1 | 0])
Sets the debug option to on or off. If nothing is specified, then nothing is changed.

Returns the debugging value (1 or).

Drivers ()
Returns an associative array of ODBC Drivers and their attributes. They are returned in the form of:

 $ArrayName{’DRIVER’}=Attrib1;Attrib2;Attrib3;...

where DRIVER is the ODBC Driver Name and AttribX are the driver−defined attributes.

DropCursor ([CLOSE_TYPE])
Drops the cursor associated with the ODBC object. This forces the cursor to be deallocated. This
overrides SetStmtCloseType, but the ODBC object does not lose the StmtCloseType setting.
CLOSE_TYPE can be any valid SmtpCloseType and will perform a close on the stmt using the
specified close type.

Returns true on success, false on failure.

DumpData ()
Dumps to the screen the fieldnames and all records of the current data set. Used primarily for
debugging. No return value.

Error ()
Returns the last encountered error. The returned value is context dependent:

If called in a scalar context, then a 3−element array is returned:

 (ERROR_NUMBER, ERROR_TEXT, CONNECTION_NUMBER)

If called in a string context, then a string is returned:

 "[ERROR_NUMBER] [CONNECTION_NUMBER] [ERROR_TEXT]"

If debugging is on then two more variables are returned:
24−Apr−2001 Win32, 5.6.1 59

ODBC Perl Programmers Reference Guide ODBC
 (..., FUNCTION, LEVEL)

where FUNCTION is the name of the function in which the error occurred, and LEVEL represents extra
information about the error (usually the location of the error).

FetchRow ([ROW [, TYPE]])
Retrieves the next record from the keyset. When ROW and/or TYPE are specified, the call is made using
SQLExtendedFetch instead of SQLFetch.

NOTE 1: If you are unaware of SQLExtendedFetch and its implications, stay with just regular
FetchRow with no parameters.

NOTE 2: The ODBC API explicitly warns against mixing calls to SQLFetch and
SQLExtendedFetch; use one or the other but not both.

If ROW is specified, it moves the keyset RELATIVE ROW number of rows.

If ROW is specified and TYPE is not, then the type used is RELATIVE.

Returns true when another record is available to read, and false when there are no more records.

FieldNames ()
Returns an array of fieldnames found in the current data set. There is no guarantee on order.

GetConnections ()
Returns an array of connection numbers showing what connections are currently open.

GetConnectOption (OPTION)
Returns the value of the specified connect option OPTION. Refer to ODBC documentation for more
information on the options and values.

Returns a string or scalar depending upon the option specified.

GetCursorName ()
Returns the name of the current cursor as a string or undef.

GetData ()
Retrieves the current row from the dataset. This is not generally used by users; it is used internally.

Returns an array of field data where the first element is either false (if successful) and true (if not
successful).

getDSN ([DSN])
Returns an associative array indicating the configuration for the specified DSN.

If no DSN is specified then the current connection is used.

The returned associative array consists of:

 keys=DSN keyword; values=Keyword value. $Data{$Keyword}=Value

GetFunctions ([FUNCTION1, FUNCTION2, ...])
Returns an associative array indicating the ability of the ODBC Driver to support the specified
functions. If no functions are specified, then a 100 element associative array is returned containing all
possible functions and their values.

FUNCTION must be in the form of an ODBC API constant like SQL_API_SQLTRANSACT.

The returned array will contain the results like:

 $Results{SQL_API_SQLTRANSACT}=Value

Example:
60 Win32, 5.6.1 24−Apr−2001

ODBC Perl Programmers Reference Guide ODBC
 $Results = $O−>GetFunctions(
 $O−>SQL_API_SQLTRANSACT,
 SQL_API_SQLSETCONNECTOPTION
);
 $ConnectOption = $Results{SQL_API_SQLSETCONNECTOPTION};
 $Transact = $Results{SQL_API_SQLTRANSACT};

GetInfo (OPTION)
Returns a string indicating the value of the particular option specified.

GetMaxBufSize ()
Returns the current allocated limit for MaxBufSize. For more info, see SetMaxBufSize.

GetSQLState () *
Returns a string indicating the SQL state as reported by ODBC. The SQL state is a code that the
ODBC Manager or ODBC Driver returns after the execution of a SQL function. This is helpful for
debugging purposes.

GetStmtCloseType ([CONNECTION])
Returns a string indicating the type of closure that will be used everytime the hstmt is freed. See
SetStmtCloseType for details.

By default, the connection of the current object will be used. If CONNECTION is a valid connection
number, then it will be used.

GetStmtOption (OPTION)
Returns the value of the specified statement option OPTION. Refer to ODBC documentation for more
information on the options and values.

Returns a string or scalar depending upon the option specified.

MoreResults ()
This will report whether there is data yet to be retrieved from the query. This can happen if the query
was a multiple select.

Example:

 "SELECT * FROM [foo] SELECT * FROM [bar]"

NOTE: Not all drivers support this.

Returns 1 if there is more data, undef otherwise.

RowCount (CONNECTION)
For UPDATE, INSERT and DELETE statements, the returned value is the number of rows affected by
the request or −1 if the number of affected rows is not available.

NOTE 1: This function is not supported by all ODBC drivers! Some drivers do support this but not for
all statements (e.g., it is supported for UPDATE, INSERT and DELETE commands but not for the
SELECT command).

NOTE 2: Many data sources cannot return the number of rows in a result set before fetching them; for
maximum interoperability, applications should not rely on this behavior.

Returns the number of affected rows, or −1 if not supported by the driver in the current context.

Run (SQL)
Executes the SQL command SQL and dumps to the screen info about it. Used primarily for debugging.

No return value.
24−Apr−2001 Win32, 5.6.1 61

ODBC Perl Programmers Reference Guide ODBC
SetConnectOption (OPTION) *
Sets the value of the specified connect option OPTION. Refer to ODBC documentation for more
information on the options and values.

Returns true on success, false otherwise.

SetCursorName (NAME) *
Sets the name of the current cursor.

Returns true on success, false otherwise.

SetPos (ROW [, OPTION, LOCK]) *
Moves the cursor to the row ROW within the current keyset (not the current data/result set).

Returns true on success, false otherwise.

SetMaxBufSize (SIZE)
This sets the MaxBufSize for a particular connection. This will most likely never be needed but...

The amount of memory that is allocated to retrieve the field data of a record is dynamic and changes
when it need to be larger. I found that a memo field in an MS Access database ended up requesting 4
Gig of space. This was a bit much so there is an imposed limit (2,147,483,647 bytes) that can be
allocated for data retrieval.

Since it is possible that someone has a database with field data greater than 10,240, you can use this
function to increase the limit up to a ceiling of 2,147,483,647 (recompile if you need more).

Returns the max number of bytes.

SetStmtCloseType (TYPE [, CONNECTION])
Sets a particular hstmt close type for the connection. This is the same as ODBCFreeStmt(hstmt,
TYPE). By default, the connection of the current object will be used. If CONNECTION is a valid
connection number, then it will be used.

TYPE may be one of:

 SQL_CLOSE
 SQL_DROP
 SQL_UNBIND
 SQL_RESET_PARAMS

Returns a string indicating the newly set type.

SetStmtOption (OPTION) *
Sets the value of the specified statement option OPTION. Refer to ODBC documentation for more
information on the options and values.

Returns true on success, false otherwise.

ShutDown ()
Closes the ODBC connection and dumps to the screen info about it. Used primarily for debugging.

No return value.

Sql (SQL_STRING)
Executes the SQL command SQL_STRING on the current connection.

Returns ? on success, or an error number on failure.

TableList (QUALIFIER, OWNER, NAME, TYPE)
Returns the catalog of tables that are available in the DSN. For an unknown parameter, just specify the
empty string "".
62 Win32, 5.6.1 24−Apr−2001

ODBC Perl Programmers Reference Guide ODBC
Returns an array of table names.

Transact (TYPE) *
Forces the ODBC connection to perform a rollback or commit transaction.

TYPE may be one of:

 SQL_COMMIT
 SQL_ROLLBACK

NOTE: This only works with ODBC drivers that support transactions. Your driver supports it if true is
returned from:

 $O−>GetFunctions($O−>SQL_API_SQLTRANSACT)[1]

(See GetFunctions for more details.)

Returns true on success, false otherwise.

Version (PACKAGES)
Returns an array of version numbers for the requested packages (ODBC.pm or ODBC.PLL). If the list
PACKAGES is empty, then all version numbers are returned.

LIMITATIONS
What known problems does this thing have?

 If the account under which the process runs does not have write permission on the default directory
(for the process, not the ODBC DSN), you will probably get a runtime error during a
SQLConnection. I don‘t think that this is a problem with the code, but more like a problem with
ODBC. This happens because some ODBC drivers need to write a temporary file. I noticed this using
the MS Jet Engine (Access Driver).

 This module has been neither optimized for speed nor optimized for memory consumption.

INSTALLATION NOTES
If you wish to use this module with a build of Perl other than ActivePerl, you may wish to fetch the original
source distribution for this module at:

 ftp://ftp.roth.net:/pub/ntperl/ODBC/970208/Bin/Win32_ODBC_Build_CORE.zip

or one of the other archives at that same location. See the included README for hints on installing this
module manually, what to do if you get a parse exception, and a pointer to a test script for this module.

OTHER DOCUMENTATION
Find a FAQ for Win32::ODBC at:

 http://www.roth.net/odbc/odbcfaq.htm

AUTHOR
Dave Roth <rothd@roth.net

CREDITS
Based on original code by Dan DeMaggio <dmag@umich.edu

DISCLAIMER
I do not guarantee ANYTHING with this package. If you use it you are doing so AT YOUR OWN RISK! I
may or may not support this depending on my time schedule.

HISTORY
Last Modified 1999.09.25.
24−Apr−2001 Win32, 5.6.1 63

ODBC Perl Programmers Reference Guide ODBC
COPYRIGHT
Copyright (c) 1996−1998 Dave Roth. All rights reserved.

Courtesy of Roth Consulting: http://www.roth.net/consult/

Use under GNU General Public License. Details can be found at: http://www.gnu.org/copyleft/gpl.html
64 Win32, 5.6.1 24−Apr−2001

OLE Perl Programmers Reference Guide OLE

});

;
NAME
Win32::OLE − OLE Automation extensions

SYNOPSIS
 $ex = Win32::OLE−>new(’Excel.Application’) or die "oops\n";
 $ex−>Amethod("arg")−>Bmethod−>{’Property’} = "foo";
 $ex−>Cmethod(undef,undef,$Arg3);
 $ex−>Dmethod($RequiredArg1, {NamedArg1 => $Value1, NamedArg2 => $Value2

 $wd = Win32::OLE−>GetObject("D:\\Data\\Message.doc");
 $xl = Win32::OLE−>GetActiveObject("Excel.Application");

DESCRIPTION
This module provides an interface to OLE Automation from Perl. OLE Automation brings VisualBasic like
scripting capabilities and offers powerful extensibility and the ability to control many Win32 applications
from Perl scripts.

The Win32::OLE module uses the IDispatch interface exclusively. It is not possible to access a custom OLE
interface. OLE events and OCX‘s are currently not supported.

Actually, that‘s no longer strictly true. This module now contains ALPHA level support for OLE events.
This is largely untested and the specific interface might still change in the future.

Methods

Win32::OLE−new(PROGID[, DESTRUCTOR])
The new() class method starts a new instance of an OLE Automation object. It returns a
reference to this object or undef if the creation failed.

The PROGID argument must be either the OLE program id or the class id of the required
application. The optional DESTRUCTOR specifies a DESTROY−like method. This can be
either a CODE reference or a string containing an OLE method name. It can be used to cleanly
terminate OLE applications in case the Perl program dies.

To create an object via DCOM on a remote server you can use an array reference in place of
PROGID. The referenced array must contain the machine name and the program id or class id.
For example:

my $obj = Win32::OLE−>new([’my.machine.com’, ’Program.Id’])

If the PROGID is a program id then Win32::OLE will try to resolve the corresponding class id
locally. If the program id is not registered locally then the remote registry is queried. This will
only succeed if the local process has read access to the remote registry. The safest (and fastest)
method is to specify the class id directly.

Win32::OLE−EnumAllObjects([CALLBACK])
This class method returns the number Win32::OLE objects currently in existance. It will call the
optional CALLBACK function for each of these objects:

$Count = Win32::OLE−>EnumAllObjects(sub {
 my $Object = shift;
 my $Class = Win32::OLE−>QueryObjectType($Object);
 printf "# Object=%s Class=%s\n", $Object, $Class;
});

The EnumAllObjects() method is primarily a debugging tool. It can be used e.g. in an
END block to check if all external connections have been properly destroyed.
24−Apr−2001 Win32, 5.6.1 65

OLE Perl Programmers Reference Guide OLE

al OLE stu
Win32::OLE−FreeUnusedLibraries()
The FreeUnusedLibraries() class method unloads all unused OLE resources. These are
the libraries of those classes of which all existing objects have been destroyed. The unloading of
object libraries is really only important for long running processes that might instantiate a huge
number of different objects over time.

Be aware that objects implemented in Visual Basic have a buggy implementation of this
functionality: They pretend to be unloadable while they are actually still running their cleanup
code. Unloading the DLL at that moment typically produces an access violation. The
probability for this problem can be reduced by calling the SpinMessageLoop() method and
sleep()ing for a few seconds.

Win32::OLE−GetActiveObject(CLASS[, DESTRUCTOR])
The GetActiveObject() class method returns an OLE reference to a running instance of the
specified OLE automation server. It returns undef if the server is not currently active. It will
croak if the class is not even registered. The optional DESTRUCTOR method takes either a
method name or a code reference. It is executed when the last reference to this object goes away.
 It is generally considered impolite to stop applications that you did not start yourself.

Win32::OLE−GetObject(MONIKER[, DESTRUCTOR])
The GetObject() class method returns an OLE reference to the specified object. The object
is specified by a pathname optionally followed by additional item subcomponent separated by
exclamation marks ‘!’. The optional DESTRUCTOR argument has the same semantics as the
DESTRUCTOR in new() or GetActiveObject().

Win32::OLE−Initialize([COINIT])
The Initialize() class method can be used to specify an alternative apartment model for
the Perl thread. It must be called before the first OLE object is created. If the
Win32::OLE::Const module is used then the call to the Initialize() method must be
made from a BEGIN block before the first use statement for the Win32::OLE::Const
module.

Valid values for COINIT are:

 Win32::OLE::COINIT_APARTMENTTHREADED − single threaded
 Win32::OLE::COINIT_MULTITHREADED − the default
 Win32::OLE::COINIT_OLEINITIALIZE − single threaded, addition

COINIT_OLEINITIALIZE is sometimes needed when an OLE object uses additional OLE
compound document technologies not available from the normal COM subsystem (for example
MAPI.Session seems to require it). Both COINIT_OLEINITIALIZE and
COINIT_APARTMENTTHREADED create a hidden top level window and a message queue for
the Perl process. This may create problems with other application, because Perl normally
doesn‘t process its message queue. This means programs using synchronous communication
between applications (such as DDE initiation), may hang until Perl makes another OLE method
call/property access or terminates. This applies to InstallShield setups and many things started to
shell associations. Please try to utilize the Win32::OLE−>SpinMessageLoop and
Win32::OLE−>Uninitialize methods if you can not use the default
COINIT_MULTITHREADED model.

OBJECT−Invoke(METHOD[, ARGS])
The Invoke() object method is an alternate way to invoke OLE methods. It is normally
equivalent to $OBJECT−METHOD(@ARGS). This function must be used if the METHOD name
contains characters not valid in a Perl variable name (like foreign language characters). It can
also be used to invoke the default method of an object even if the default method has not been
given a name in the type library. In this case use <undef or ‘’ as the method name. To invoke
an OLE objects native Invoke() method (if such a thing exists), please use:
66 Win32, 5.6.1 24−Apr−2001

OLE Perl Programmers Reference Guide OLE
$Object−>Invoke(’Invoke’, @Args);

Win32::OLE−LastError()
The LastError() class method returns the last recorded OLE error. This is a dual value like
the $! variable: in a numeric context it returns the error number and in a string context it returns
the error message. The error number is a signed HRESULT value. Please use the
HRESULT(ERROR) function to convert an unsigned hexadecimal constant to a signed
HRESULT.

The last OLE error is automatically reset by a successful OLE call. The numeric value can also
explicitly be set by a call (which will discard the string value):

Win32::OLE−>LastError(0);

OBJECT−LetProperty(NAME,ARGS,VALUE)
In Win32::OLE property assignment using the hash syntax is equivalent to the Visual Basic Set
syntax (by reference assignment):

$Object−>{Property} = $OtherObject;

corresponds to this Visual Basic statement:

Set Object.Property = OtherObject

To get the by value treatment of the Visual Basic Let statement

Object.Property = OtherObject

you have to use the LetProperty() object method in Perl:

$Object−>LetProperty($Property, $OtherObject);

LetProperty() also supports optional arguments for the property assignment. See
OBJECT−SetProperty(NAME,ARGS,VALUE) for details.

Win32::OLE−MessageLoop()
The MessageLoop() class method will run a standard Windows message loop, dispatching
messages until the QuitMessageLoop() class method is called. It is used to wait for OLE
events.

Win32::OLE−Option(OPTION)
The Option() class method can be used to inspect and modify Module Options. The single
argument form retrieves the value of an option:

my $CP = Win32::OLE−>Option(’CP’);

A single call can be used to set multiple options simultaneously:

Win32::OLE−>Option(CP => CP_ACP, Warn => 3);

Win32::OLE−QueryObjectType(OBJECT)
The QueryObjectType() class method returns a list of the type library name and the objects
class name. In a scalar context it returns the class name only. It returns undef when the type
information is not available.

Win32::OLE−QuitMessageLoop()
The QuitMessageLoop() class method posts a (user−level) "Quit" message to the current
threads message loop. QuitMessageLoop() is typically called from an event handler. The
MessageLoop() class method will return when it receives this "Quit" method.

OBJECT−SetProperty(NAME,ARGS,VALUE)
The SetProperty() method allows to modify properties with arguments, which is not
supported by the hash syntax. The hash form
24−Apr−2001 Win32, 5.6.1 67

OLE Perl Programmers Reference Guide OLE
$Object−>{Property} = $Value;

is equivalent to

$Object−>SetProperty(’Property’, $Value);

Arguments must be specified between the property name and the new value:

$Object−>SetProperty(’Property’, @Args, $Value);

It is not possible to use "named argument" syntax with this function because the new value must
be the last argument to SetProperty().

This method hides any native OLE object method called SetProperty(). The native method
will still be available through the Invoke() method:

$Object−>Invoke(’SetProperty’, @Args);

Win32::OLE−SpinMessageLoop
This class method retrieves all pending messages from the message queue and dispatches them to
their respective window procedures. Calling this method is only necessary when not using the
COINIT_MULTITHREADED model. All OLE method calls and property accesses
automatically process the message queue.

Win32::OLE−Uninitialize
The Uninitialize() class method uninitializes the OLE subsystem. It also destroys the
hidden top level window created by OLE for single threaded apartments. All OLE objects will
become invalid after this call! It is possible to call the Initialize() class method again with
a different apartment model after shutting down OLE with Uninitialize().

Win32::OLE−WithEvents(OBJECT[, HANDLER[, INTERFACE]])
This class method enables and disables the firing of events by the specified OBJECT. If no
HANDLER is specified, then events are disconnected. For some objects Win32::OLE is not able
to automatically determine the correct event interface. In this case the INTERFACE argument
must contain either the COCLASS name of the OBJECT or the name of the event DISPATCH
interface. Please read the Events section below for detailed explanation of the Win32::OLE
event support.

Whenever Perl does not find a method name in the Win32::OLE package it is automatically used as the name
of an OLE method and this method call is dispatched to the OLE server.

There is one special hack built into the module: If a method or property name could not be resolved with the
OLE object, then the default method of the object is called with the method name as its first parameter. So

my $Sheet = $Worksheets−>Table1;
or

my $Sheet = $Worksheets−{Table1};

is resolved as

my $Sheet = $Worksheet−>Item(’Table1’);

provided that the $Worksheets object doesnot have a Table1 method or property. This hack has been
introduced to call the default method of collections which did not name the method in their type library. The
recommended way to call the "unnamed" default method is:

my $Sheet = $Worksheets−>Invoke(’’, ’Table1’);

This special hack is disabled under use strict ‘subs‘;.

Object methods and properties
The object returned by the new() method can be used to invoke methods or retrieve properties in the same
fashion as described in the documentation for the particular OLE class (eg. Microsoft Excel documentation
68 Win32, 5.6.1 24−Apr−2001

OLE Perl Programmers Reference Guide OLE
describes the object hierarchy along with the properties and methods exposed for OLE access).

Optional parameters on method calls can be omitted by using undef as a placeholder. A better way is to
use named arguments, as the order of optional parameters may change in later versions of the OLE server
application. Named parameters can be specified in a reference to a hash as the last parameter to a method
call.

Properties can be retrieved or set using hash syntax, while methods can be invoked with the usual perl
method call syntax. The keys and each functions can be used to enumerate an object‘s properties. Beware
that a property is not always writable or even readable (sometimes raising exceptions when read while being
undefined).

If a method or property returns an embedded OLE object, method and property access can be chained as
shown in the examples below.

Functions
The following functions are not exported by default.

HRESULT(ERROR)
The HRESULT() function converts an unsigned number into a signed HRESULT error value as
used by OLE internally. This is necessary because Perl treats all hexadecimal constants as
unsigned. To check if the last OLE function returned "Member not found" (0x80020003) you
can write:

if (Win32::OLE−>LastError == HRESULT(0x80020003)) {
 # your error recovery here
}

in(COLLECTION)
If COLLECTION is an OLE collection object then in $COLLECTION returns a list of all
members of the collection. This is a shortcut for Win32::OLE::Enum−All($COLLECTION).
 It is most commonly used in a foreach loop:

foreach my $value (in $collection) {
 # do something with $value here
}

valof(OBJECT)
Normal assignment of Perl OLE objects creates just another reference to the OLE object. The
valof() function explictly dereferences the object (through the default method) and returns the
value of the object.

my $RefOf = $Object;
my $ValOf = valof $Object;

 $Object−>{Value} = $NewValue;

Now $ValOf still contains the old value wheras $RefOf would resolve to the $NewValue
because it is still a reference to $Object.

The valof() function can also be used to convert Win32::OLE::Variant objects to Perl values.

with(OBJECT, PROPERTYNAME = VALUE, ...)
This function provides a concise way to set the values of multiple properties of an object. It
iterates over its arguments doing $OBJECT−{PROPERTYNAME} = $VALUE on each trailing
pair.

Overloading
The Win32::OLE objects can be overloaded to automatically convert to their values whenever they are used
in a bool, numeric or string context. This is not enabled by default. You have to request it through the
OVERLOAD pseudoexport:
24−Apr−2001 Win32, 5.6.1 69

OLE Perl Programmers Reference Guide OLE
use Win32::OLE qw(in valof with OVERLOAD);

You can still get the original string representation of an object (Win32::OLE=0xDEADBEEF), e.g. for
debugging, by using the overload::StrVal() method:

print overload::StrVal($object), "\n";

Please note that OVERLOAD is a global setting. If any module enables Win32::OLE overloading then it‘s
active everywhere.

Events
The Win32::OLE module now contains ALPHA level event support. This support is only available when
Perl is running in a single threaded apartment. This can most easily be assured by using the EVENTS
pseudo−import:

use Win32::OLE qw(EVENTS);

which implicitly does something like:

use Win32::OLE;
Win32::OLE−>Initialize(Win32::OLE::COINIT_OLEINITIALIZE);

The current interface to OLE events should be considered experimental and is subject to change. It works as
expected for normal OLE applications, but OLE control events often don‘t seem to work yet.

Events must be enabled explicitly for an OLE object through the Win32::OLE−WithEvents() class method.
 The Win32::OLE module uses the IProvideClassInfo2 interface to determine the default event source of the
object. If this interface is not supported, then the user must specify the name of the event source explicitly in
the WithEvents() method call. It is also possible to specify the class name of the object as the third
parameter. In this case Win32::OLE will try to look up the default source interface for this COCLASS.

The HANDLER argument to Win32::OLE−WithEvents() can either be a CODE reference or a package
name. In the first case, all events will invoke this particular function. The first two arguments to this
function will be the OBJECT itself and the name of the event. The remaining arguments will be event
specific.

sub Event {
 my ($Obj,$Event,@Args) = @_;
 print "Event triggered: ’$Event’\n";
}
Win32::OLE−>WithEvents($Obj, \&Event);

Alternatively the HANDLER argument can specify a package name. When the OBJECT fires an event,
Win32::OLE will try to find a function of the same name as the event in this package. This function will be
called with the OBJECT as the first argument followed again by the event specific parameters:

package MyEvents;
sub EventName1 {
 my ($Obj,@Args) = @_;
 print "EventName1 event triggered\n";
}

package main;
Win32::OLE−>WithEvents($Obj, ’MyEvents’, ’IEventInterface’);

If Win32::OLE doesn‘t find a function with the name of the event then nothing happens.

Event parameters passed by reference are handled specially. They are not converted to the corresponding
Perl datatype but passed as Win32::OLE::Variant objects. You can assign a new value to these objects with
the help of the Put() method. This value will be passed back to the object when the event function returns:
70 Win32, 5.6.1 24−Apr−2001

OLE Perl Programmers Reference Guide OLE
package MyEvents;
sub BeforeClose {
 my ($self,$Cancel) = @_;
 $Cancel−>Put(1) unless $MayClose;
}

Direct assignment to $Cancel would have no effect on the original value and would therefore not
command the object to abort the closing action.

Module Options
The following module options can be accessed and modified with the Win32::OLE−Option class method.
In earlier versions of the Win32::OLE module these options were manipulated directly as class variables.
This practice is now deprecated.

CP This variable is used to determine the codepage used by all translations between Perl strings and
Unicode strings used by the OLE interface. The default value is CP_ACP, which is the default
ANSI codepage. Other possible values are CP_OEMCP, CP_MACCP, CP_UTF7 and
CP_UTF8. These constants are not exported by default.

LCID This variable controls the locale idnetifier used for all OLE calls. It is set to
LOCALE_NEUTRAL by default. Please check the Win32::OLE::NLS module for other locale
related information.

Warn This variable determines the behavior of the Win32::OLE module when an error happens. Valid
values are:

Ignore error, return undef
1 Carp::carp if $^W is set (−w option)
2 always Carp::carp
3 Carp::croak

The error number and message (without Carp line/module info) are available through the
Win32::OLE−LastError class method.

Alternatively the Warn option can be set to a CODE reference. E.g.

 Win32::OLE−>Option(Warn => 3);

is equivalent to

 Win32::OLE−>Option(Warn => \&Carp::croak);

This can even be used to emulate the VisualBasic On Error Goto Label construct:

 Win32::OLE−>Option(Warn => sub {goto CheckError});
 # ... your normal OLE code here ...

 CheckError:
 # ... your error handling code here ...

_NewEnum
This option enables additional enumeration support for collection objects. When the _NewEnum
option is set, all collections will receive one additional property: _NewEnum. The value of this
property will be a reference to an array containing all the elements of the collection. This option
can be useful when used in conjunction with an automatic tree traversal program, like
Data::Dumper or an object tree browser. The value of this option should be either 1
(enabled) or 0 (disabled, default).

 Win32::OLE−>Option(_NewEnum => 1);
 # ...
 my @sheets = @{$Excel−>Worksheets−>{_NewEnum}};
24−Apr−2001 Win32, 5.6.1 71

Win32::OLE::NLS

OLE Perl Programmers Reference Guide OLE
In normal application code, this would be better written as:

 use Win32::OLE qw(in);
 # ...
 my @sheets = in $Excel−>Worksheets;

_Unique The _Unique options guarantees that Win32::OLE will maintain a one−to−one mapping
between Win32::OLE objects and the native COM/OLE objects. Without this option, you can
query the same property twice and get two different Win32::OLE objects for the same
underlying COM object.

Using a unique proxy makes life easier for tree traversal algorithms to recognize they already
visited a particular node. This option comes at a price: Win32::OLE has to maintain a global
hash of all outstanding objects and their corresponding proxies. Identity checks on COM objects
can also be expensive if the objects reside out−of−process or even on a different computer.
Therefore this option is off by default unless the program is being run in the debugger.

Unfortunately, this option doesn‘t always help. Some programs will return new COM objects for
even the same property when asked for it multiple times (especially for collections). In this case,
there is nothing Win32::OLE can do to detect that these objects are in fact identical (because
they aren‘t at the COM level).

The _Unique option can be set to either 1 (enabled) or 0 (disabled, default).

EXAMPLES
Here is a simple Microsoft Excel application.

use Win32::OLE;

use existing instance if Excel is already running
eval {$ex = Win32::OLE−>GetActiveObject(’Excel.Application’)};
die "Excel not installed" if $@;
unless (defined $ex) {
 $ex = Win32::OLE−>new(’Excel.Application’, sub {$_[0]−>Quit;})

 or die "Oops, cannot start Excel";
}

 # get a new workbook
 $book = $ex−>Workbooks−>Add;

write to a particular cell
$sheet = $book−>Worksheets(1);
$sheet−>Cells(1,1)−>{Value} = "foo";

 # write a 2 rows by 3 columns range
 $sheet−>Range("A8:C9")−>{Value} = [[undef, ’Xyzzy’, ’Plugh’],
 [42, ’Perl’, 3.1415]];

 # print "XyzzyPerl"
 $array = $sheet−>Range("A8:C9")−>{Value};

for (@$array) {
 for (@$_) {

print defined($_) ? "$_|" : "<undef>|";
 }
 print "\n";
}

save and exit
 $book−>SaveAs(’test.xls’);

undef $book;
undef $ex;
72 Win32, 5.6.1 24−Apr−2001

OLE Perl Programmers Reference Guide OLE

n";
Please note the destructor specified on the Win32::OLE−new method. It ensures that Excel will shutdown
properly even if the Perl program dies. Otherwise there could be a process leak if your application dies after
having opened an OLE instance of Excel. It is the responsibility of the module user to make sure that all
OLE objects are cleaned up properly!

Here is an example of using Variant data types.

use Win32::OLE;
use Win32::OLE::Variant;
$ex = Win32::OLE−>new(’Excel.Application’, \&OleQuit) or die "oops\
$ex−>{Visible} = 1;
$ex−>Workbooks−>Add;
should generate a warning under −w
$ovR8 = Variant(VT_R8, "3 is a good number");
$ex−>Range("A1")−>{Value} = $ovR8;
$ex−>Range("A2")−>{Value} = Variant(VT_DATE, ’Jan 1,1970’);

sub OleQuit {
 my $self = shift;
 $self−>Quit;
}

The above will put value "3" in cell A1 rather than the string "3 is a good number". Cell A2 will contain the
date.

Similarly, to invoke a method with some binary data, you can do the following:

$obj−>Method(Variant(VT_UI1, "foo\000b\001a\002r"));

Here is a wrapper class that basically delegates everything but new() and DESTROY(). The wrapper class
shown here is another way to properly shut down connections if your application is liable to die without
proper cleanup. Your own wrappers will probably do something more specific to the particular OLE object
you may be dealing with, like overriding the methods that you may wish to enhance with your own.

package Excel;
use Win32::OLE;

sub new {
 my $s = {};
 if ($s−>{Ex} = Win32::OLE−>new(’Excel.Application’)) {

return bless $s, shift;
 }
 return undef;
}

sub DESTROY {
 my $s = shift;
 if (exists $s−>{Ex}) {

print "# closing connection\n";
$s−>{Ex}−>Quit;
return undef;

 }
}

sub AUTOLOAD {
 my $s = shift;
 $AUTOLOAD =~ s/^.*:://;
 $s−>{Ex}−>$AUTOLOAD(@_);
}
24−Apr−2001 Win32, 5.6.1 73

OLE Perl Programmers Reference Guide OLE

);
1;

The above module can be used just like Win32::OLE, except that it takes care of closing connections in case
of abnormal exits. Note that the effect of this specific example can be easier accomplished using the optional
destructor argument of Win32::OLE::new:

my $Excel = Win32::OLE−>new(’Excel.Application’, sub {$_[0]−>Quit;}

Note that the delegation shown in the earlier example is not the same as true subclassing with respect to
further inheritance of method calls in your specialized object. See perlobj, perltoot and perlbot for details.
True subclassing (available by setting @ISA) is also feasible, as the following example demonstrates:

Add error reporting to Win32::OLE

package Win32::OLE::Strict;
use Carp;
use Win32::OLE;

use strict qw(vars);
use vars qw($AUTOLOAD @ISA);
@ISA = qw(Win32::OLE);

sub AUTOLOAD {
 my $obj = shift;
 $AUTOLOAD =~ s/^.*:://;
 my $meth = $AUTOLOAD;
 $AUTOLOAD = "SUPER::" . $AUTOLOAD;
 my $retval = $obj−>$AUTOLOAD(@_);
 unless (defined($retval) || $AUTOLOAD eq ’DESTROY’) {

my $err = Win32::OLE::LastError();
croak(sprintf("$meth returned OLE error 0x%08x",$err))
 if $err;

 }
 return $retval;
}

1;

This package inherits the constructor new() from the Win32::OLE package. It is important to note that you
cannot later rebless a Win32::OLE object as some information about the package is cached by the object.
Always invoke the new() constructor through the right package!

Here‘s how the above class will be used:

use Win32::OLE::Strict;
my $Excel = Win32::OLE::Strict−>new(’Excel.Application’, ’Quit’);
my $Books = $Excel−>Workbooks;
$Books−>UnknownMethod(42);

In the sample above the call to UnknownMethod() will be caught with

UnknownMethod returned OLE error 0x80020009 at test.pl line 5

because the Workbooks object inherits the class Win32::OLE::Strict from the $Excel object.

NOTES

Hints for Microsoft Office automation

Documentation
The object model for the Office applications is defined in the Visual Basic reference guides for
74 Win32, 5.6.1 24−Apr−2001

OLE Perl Programmers Reference Guide OLE
the various applications. These are typically not installed by default during the standard
installation. They can be added later by rerunning the setup program with the custom install
option.

Class, Method and Property names
The names have been changed between different versions of Office. For example
Application was a method in Office 95 and is a property in Office97. Therefore it will not
show up in the list of property names keys %$object when querying an Office 95 object.

The class names are not always identical to the method/property names producing the object.
E.g. the Workbook method returns an object of type Workbook in Office 95 and _Workbook
in Office 97.

Moniker (GetObject support)
Office applications seem to implement file monikers only. For example it seems to be
impossible to retrieve a specific worksheet object through
GetObject("File.XLS!Sheet"). Furthermore, in Excel 95 the moniker starts a
Worksheet object and in Excel 97 it returns a Workbook object. You can use either the
Win32::OLE::QueryObjectType class method or the $object−{Version} property to write
portable code.

Enumeration of collection objects
Enumerations seem to be incompletely implemented. Office 95 application don‘t seem to
support neither the Reset() nor the Clone() methods. The Clone() method is still
unimplemented in Office 97. A single walk through the collection similar to Visual Basics for
each construct does work however.

Localization
Starting with Office 97 Microsoft has changed the localized class, method and property names
back into English. Note that string, date and currency arguments are still subject to locale
specific interpretation. Perl uses the system default locale for all OLE transaction whereas
Visual Basic uses a type library specific locale. A Visual Basic script would use "R1C1" in
string arguments to specify relative references. A Perl script running on a German language
Windows would have to use "Z1S1". Set the LCID module option to an English locale to write
portable scripts. This variable should not be changed after creating the OLE objects; some
methods seem to randomly fail if the locale is changed on the fly.

SaveAs method in Word 97 doesn‘t work
This is an known bug in Word 97. Search the MS knowledge base for Word / Foxpro
incompatibility. That problem applies to the Perl OLE interface as well. A workaround is to use
the WordBasic compatibility object. It doesn‘t support all the options of the native method
though.

 $Word−>WordBasic−>FileSaveAs($file);

The problem seems to be fixed by applying the Office 97 Service Release 1.

Randomly failing method calls
It seems like modifying objects that are not selected/activated is sometimes fragile. Most of
these problems go away if the chart/sheet/document is selected or activated before being
manipulated (just like an interactive user would automatically do it).

Incompatibilities
There are some incompatibilities with the version distributed by Activeware (as of build 306).

1 The package name has changed from "OLE" to "Win32::OLE".
24−Apr−2001 Win32, 5.6.1 75

OLE Perl Programmers Reference Guide OLE
2 All functions of the form "Win32::OLEFoo" are now "Win32::OLE::Foo", though the old names
are temporarily accomodated. Win32::OLECreateObject() was changed to
Win32::OLE::CreateObject(), and is now called Win32::OLE::new() bowing to
established convention for naming constructors. The old names should be considered deprecated,
and will be removed in the next version.

3 Package "OLE::Variant" is now "Win32::OLE::Variant".

4 The Variant function is new, and is exported by default. So are all the VT_XXX type constants.

5 The support for collection objects has been moved into the package Win32::OLE::Enum. The
keys %$object method is now used to enumerate the properties of the object.

Bugs and Limitations

 To invoke a native OLE method with the same name as one of the Win32::OLE methods
(Dispatch, Invoke, SetProperty, DESTROY, etc.), you have to use the Invoke method:

$Object−>Invoke(’Dispatch’, @AdditionalArgs);

The same is true for names exported by the Exporter or the Dynaloader modules, e.g.: export,
export_to_level, import, _push_tags, export_tags, export_ok_tags,
export_fail, require_version, dl_load_flags, croak, bootstrap,
dl_findfile, dl_expandspec, dl_find_symbol_anywhere, dl_load_file,
dl_find_symbol, dl_undef_symbols, dl_install_xsub and dl_error.

SEE ALSO
The documentation for Win32::OLE::Const, Win32::OLE::Enum, Win32::OLE::NLS and
Win32::OLE::Variant contains additional information about OLE support for Perl on Win32.

AUTHORS
Originally put together by the kind people at Hip and Activeware.

Gurusamy Sarathy <gsar@activestate.com subsequently fixed several major bugs, memory leaks, and
reliability problems, along with some redesign of the code.

Jan Dubois <jand@activestate.com pitched in with yet more massive redesign, added support for named
parameters, and other significant enhancements. He‘s been hacking on it ever since.

Please send questions about problems with this module to the Perl−Win32−Users mailinglist at
ActiveState.com. The mailinglist charter requests that you put an [OLE] tag somewhere on the subject line
(for OLE related questions only, of course).

COPYRIGHT
 (c) 1995 Microsoft Corporation. All rights reserved.
 Developed by ActiveWare Internet Corp., now known as
 ActiveState Tool Corp., http://www.ActiveState.com

 Other modifications Copyright (c) 1997−2000 by Gurusamy Sarathy
 <gsar@activestate.com> and Jan Dubois <jand@activestate.com>

 You may distribute under the terms of either the GNU General Public
 License or the Artistic License, as specified in the README file.

VERSION
Version 0.1403 21 November 2000
76 Win32, 5.6.1 24−Apr−2001

Win32::OLE::Const
Win32::OLE::Enum
Win32::OLE::NLS
Win32::OLE::Variant

PerfLib Perl Programmers Reference Guide PerfLib
NAME
Win32::PerfLib − accessing the Windows NT Performance Counter

SYNOPSIS
 use Win32::PerfLib;
 my $server = "";
 Win32::PerfLib::GetCounterNames($server, \%counter);
 %r_counter = map { $counter{$_} => $_ } keys %counter;
 # retrieve the id for process object
 $process_obj = $r_counter{Process};
 # retrieve the id for the process ID counter
 $process_id = $r_counter{’ID Process’};

 # create connection to $server
 $perflib = new Win32::PerfLib($server);
 $proc_ref = {};
 # get the performance data for the process object
 $perflib−>GetObjectList($process_obj, $proc_ref);
 $perflib−>Close();
 $instance_ref = $proc_ref−>{Objects}−>{$process_obj}−>{Instances};
 foreach $p (sort keys %{$instance_ref})
 {
 $counter_ref = $instance_ref−>{$p}−>{Counters};
 foreach $i (keys %{$counter_ref})
 {

 if($counter_ref−>{$i}−>{CounterNameTitleIndex} == $process_id)
 {
 printf("% 6d %s\n", $counter_ref−>{$i}−>{Counter},

 $instance_ref−>{$p}−>{Name}
);

 }
 }
 }

DESCRIPTION
This module allows to retrieve the performance counter of any computer (running Windows NT) in the
network.

FUNCTIONS

NOTE
All of the functions return FALSE (0) if they fail, unless otherwise noted. If the $server argument is undef
the local machine is assumed.

Win32::PerfLib::GetCounterNames($server,$hashref)
Retrieves the counter names and their indices from the registry and stores them in the hash
reference

Win32::PerfLib::GetCounterHelp($server,$hashref)
Retrieves the counter help strings and their indices from the registry and stores them in the
hash reference

$perflib = Win32::PerfLib−new ($server)
Creates a connection to the performance counters of the given server
24−Apr−2001 Win32, 5.6.1 77

PerfLib Perl Programmers Reference Guide PerfLib
$perflib−GetObjectList($objectid,$hashref)
retrieves the object and counter list of the given performance object.

$perflib−Close($hashref)
closes the connection to the performance counters

Win32::PerfLib::GetCounterType(countertype)
converts the counter type to readable string as referenced in calc.html so that it is easier to
find the appropriate formula to calculate the raw counter data.

Datastructures
The performance data is returned in the following data structure:

Level 1
 $hashref = {
 ’NumObjectTypes’ => VALUE
 ’Objects’ => HASHREF
 ’PerfFreq’ => VALUE
 ’PerfTime’ => VALUE
 ’PerfTime100nSec’ => VALUE
 ’SystemName’ => STRING
 ’SystemTime’ => VALUE
 }

Level 2 The hash reference $hashref−{Objects} has the returned object ID(s) as keys and a hash
reference to the object counter data as value. Even there is only one object requested in the
call to GetObjectList there may be more than one object in the result.

 $hashref−>{Objects} = {
 <object1> => HASHREF
 <object2> => HASHREF
 ...
 }

Level 3 Each returned object ID has object−specific performance information. If an object has
instances like the process object there is also a reference to the instance information.

 $hashref−>{Objects}−>{<object1>} = {
 ’DetailLevel’ => VALUE
 ’Instances’ => HASHREF
 ’Counters’ => HASHREF
 ’NumCounters’ => VALUE
 ’NumInstances’ => VALUE
 ’ObjectHelpTitleIndex’ => VALUE
 ’ObjectNameTitleIndex’ => VALUE
 ’PerfFreq’ => VALUE
 ’PerfTime’ => VALUE
 }

Level 4 If there are instance information for the object available they are stored in the ‘Instances’
hashref. If the object has no instances there is an ‘Counters’ key instead. The instances or
counters are numbered.

 $hashref−>{Objects}−>{<object1>}−>{Instances} = {
 <1> => HASHREF
 <2> => HASHREF
 ...
 <n> => HASHREF
78 Win32, 5.6.1 24−Apr−2001

PerfLib Perl Programmers Reference Guide PerfLib

} = {

}−>{<1>} =
 }
 or
 $hashref−>{Objects}−>{<object1>}−>{Counters} = {
 <1> => HASHREF
 <2> => HASHREF
 ...
 <n> => HASHREF
 }

Level 5
 $hashref−>{Objects}−>{<object1>}−>{Instances}−>{<1>} = {
 Counters => HASHREF
 Name => STRING
 ParentObjectInstance => VALUE
 ParentObjectTitleIndex => VALUE
 }
 or
 $hashref−>{Objects}−>{<object1>}−>{Counters}−>{<1>} = {
 Counter => VALUE
 CounterHelpTitleIndex => VALUE
 CounterNameTitleIndex => VALUE
 CounterSize => VALUE
 CounterType => VALUE
 DefaultScale => VALUE
 DetailLevel => VALUE
 Display => STRING
 }

Level 6
 $hashref−>{Objects}−>{<object1>}−>{Instances}−>{<1>}−>{Counters
 <1> => HASHREF
 <2> => HASHREF
 ...
 <n> => HASHREF
 }

Level 7
 $hashref−>{Objects}−>{<object1>}−>{Instances}−>{<1>}−>{Counters
 Counter => VALUE
 CounterHelpTitleIndex => VALUE
 CounterNameTitleIndex => VALUE
 CounterSize => VALUE
 CounterType => VALUE
 DefaultScale => VALUE
 DetailLevel => VALUE
 Display => STRING
 }

Depending on the CounterType there are calculations to do (see calc.html).

AUTHOR
Jutta M. Klebe, jmk@bybyte.de

SEE ALSO
perl(1).
24−Apr−2001 Win32, 5.6.1 79

Pipe Perl Programmers Reference Guide Pipe
NAME
Win32::Pipe − Win32 Named Pipe

SYNOPSIS
To use this extension, follow these basic steps. First, you need to ‘use’ the pipe extension:

 use Win32::Pipe;

Then you need to create a server side of a named pipe:

 $Pipe = new Win32::Pipe("My Pipe Name");

or if you are going to connect to pipe that has already been created:

 $Pipe = new Win32::Pipe("\\\\server\\pipe\\My Pipe Name");

 NOTE: The "\\\\server\\pipe\\" is necessary when connecting
 to an existing pipe! If you are accessing the same
 machine you could use "\\\\.\\pipe\\" but either way
 works fine.

You should check to see if $Pipe is indeed defined otherwise there has been an error.

Whichever end is the server, it must now wait for a connection...

 $Result = $Pipe−>Connect();

 NOTE: The client end does not do this! When the client creates
 the pipe it has already connected!

Now you can read and write data from either end of the pipe:

 $Data = $Pipe−>Read();

 $Result = $Pipe−>Write("Howdy! This is cool!");

When the server is finished it must disconnect:

 $Pipe−>Disconnect();

Now the server could Connect again (and wait for another client) or it could destroy the named pipe...

 $Data−>Close();

The client should Close in order to properly end the session.

DESCRIPTION

General Use
This extension gives Win32 Perl the ability to use Named Pipes. Why? Well considering that Win32 Perl
does not (yet) have the ability to fork I could not see what good the pipe(X,Y) was. Besides, where I am
as an admin I must have several perl daemons running on several NT Servers. It dawned on me one day that
if I could pipe all these daemons’ output to my workstation (across the net) then it would be much easier to
monitor. This was the impetus for an extension using Named Pipes. I think that it is kinda cool. :)

Benefits
And what are the benefits of this module?

 You may create as many named pipes as you want (uh, well, as many as your resources will allow).

 Currently there is a limit of 256 instances of a named pipe (once a pipe is created you can have 256
client/server connections to that name).

 The default buffer size is 512 bytes; this can be altered by the ResizeBuffer method.
80 Win32, 5.6.1 24−Apr−2001

Pipe Perl Programmers Reference Guide Pipe
 All named pipes are byte streams. There is currently no way to alter a pipe to be message based.

 Other things that I cannot think of right now... :)

CONSTRUCTOR

new (NAME)
Creates a named pipe if used in server context or a connection to the specified named pipe if used in
client context. Client context is determined by prepending $Name with "\\\\".

Returns true on success, false on failure.

METHODS

BufferSize ()
Returns the size of the instance of the buffer of the named pipe.

Connect ()
Tells the named pipe to create an instance of the named pipe and wait until a client connects. Returns
true on success, false on failure.

Close ()
Closes the named pipe.

Disconnect ()
Disconnects (and destroys) the instance of the named pipe from the client. Returns true on success,
false on failure.

Error ()
Returns the last error messages pertaining to the named pipe. If used in context to the package. Returns
a list containing ERROR_NUMBER and ERROR_TEXT.

Read ()
Reads from the named pipe. Returns data read from the pipe on success, undef on failure.

ResizeBuffer (SIZE)
Sets the size of the buffer of the instance of the named pipe to SIZE. Returns the size of the buffer on
success, false on failure.

Write (DATA)
Writes DATA to the named pipe. Returns true on success, false on failure.

LIMITATIONS
What known problems does this thing have?

 If someone is waiting on a Read and the other end terminates then you will wait for one REALLY
long time! (If anyone has an idea on how I can detect the termination of the other end let me know!)

 All pipes are blocking. I am considering using threads and callbacks into Perl to perform async IO but
this may be too much for my time stress. ;)

 There is no security placed on these pipes.

 This module has neither been optimized for speed nor optimized for memory consumption. This may
run into memory bloat.

INSTALLATION NOTES
If you wish to use this module with a build of Perl other than ActivePerl, you may wish to fetch the source
distribution for this module. The source is included as part of the libwin32 bundle, which you can find in
any CPAN mirror here:
24−Apr−2001 Win32, 5.6.1 81

Pipe Perl Programmers Reference Guide Pipe
 modules/by−authors/Gurusamy_Sarathy/libwin32−0.151.tar.gz

The source distribution also contains a pair of sample client/server test scripts. For the latest information on
this module, consult the following web site:

 http://www.roth.net/perl

AUTHOR
Dave Roth <rothd@roth.net

DISCLAIMER
I do not guarantee ANYTHING with this package. If you use it you are doing so AT YOUR OWN RISK! I
may or may not support this depending on my time schedule.

COPYRIGHT
Copyright (c) 1996 Dave Roth. All rights reserved. This program is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.
82 Win32, 5.6.1 24−Apr−2001

Process Perl Programmers Reference Guide Process

not
)
NAME
Win32::Process − Create and manipulate processes.

SYNOPSIS
use Win32::Process;
use Win32;

sub ErrorReport{
print Win32::FormatMessage(Win32::GetLastError());

}

Win32::Process::Create($ProcessObj,
"D:\\winnt35\\system32\\notepad.exe",
"notepad temp.txt",
0,
NORMAL_PRIORITY_CLASS,
".")|| die ErrorReport();

$ProcessObj−>Suspend();
$ProcessObj−>Resume();
$ProcessObj−>Wait(INFINITE);

DESCRIPTION
This module allows for control of processes in Perl.

METHODS

Win32::Process::Create($obj,$appname,$cmdline,$iflags,$cflags,$curdir)
Creates a new process.

 Args:

$obj container for process object
$appname full path name of executable module
$cmdline command line args
$iflags flag: inherit calling processes handles or
$cflags flags for creation (see exported vars below
$curdir working dir of new process

Win32::Process::KillProcess($pid, $exitcode)
Terminates any process identified by $pid. The process will exit with $exitcode.

$ProcessObj−Suspend()
Suspend the process associated with the $ProcessObj.

$ProcessObj−Resume()
Resume a suspended process.

$ProcessObj−Kill($ExitCode)
Kill the associated process, have it die with exit code $ExitCode.

$ProcessObj−GetPriorityClass($class)
Get the priority class of the process.

$ProcessObj−SetPriorityClass($class)
Set the priority class of the process (see exported values below for options).

$ProcessObj−GetProcessAffinitymask($processAffinityMask, $systemAffinitymask)
Get the process affinity mask. This is a bitvector in which each bit represents the processors that
a process is allowed to run on.
24−Apr−2001 Win32, 5.6.1 83

Process Perl Programmers Reference Guide Process
$ProcessObj−SetProcessAffinitymask($processAffinityMask)
Set the process affinity mask. Only available on Windows NT.

$ProcessObj−GetExitCode($ExitCode)
Retrieve the exitcode of the process.

$ProcessObj−Wait($Timeout)
Wait for the process to die. forever = INFINITE

$ProcessObj−GetProcessID()
Returns the Process ID.
84 Win32, 5.6.1 24−Apr−2001

Registry Perl Programmers Reference Guide Registry
NAME
Win32::Registry − accessing the Windows registry [obsolete, use Win32::TieRegistry]

SYNOPSIS
 use Win32::Registry;
 my $tips;
 $::HKEY_LOCAL_MACHINE−>Open("SOFTWARE\\Microsoft\\Windows"
 ."\\CurrentVersion\\Explorer\\Tips", $tips)
 or die "Can’t open tips: $^E";
 my ($type, $value);
 $tips−>QueryValueEx("18", $type, $value) or die "No tip #18: $^E";
 print "Here’s a tip: $value\n";

DESCRIPTION
 NOTE: This module provides a very klunky interface to access the
 Windows registry, and is not currently being developed actively. It
 only exists for backward compatibility with old code that uses it.
 For more powerful and flexible ways to access the registry, use
 Win32::TieRegistry.

Win32::Registry provides an object oriented interface to the Windows Registry.

The following "root" registry objects are exported to the main:: name space. Additional keys must be
opened by calling the provided methods on one of these.

 $HKEY_CLASSES_ROOT
 $HKEY_CURRENT_USER
 $HKEY_LOCAL_MACHINE
 $HKEY_USERS
 $HKEY_PERFORMANCE_DATA
 $HKEY_CURRENT_CONFIG
 $HKEY_DYN_DATA

Methods
The following methods are supported. Note that subkeys can be specified as a path name, separated by
backslashes (which may need to be doubled if you put them in double quotes).

Open
 $reg_obj−>Open($sub_key_name, $sub_reg_obj);

Opens a subkey of a registry object, returning the new registry object in $sub_reg_obj.

Close
 $reg_obj−>Close();

Closes an open registry key.

Connect
 $reg_obj−>Connect($node_name, $new_reg_obj);

Connects to a remote Registry on the node specified by $node_name, returning it in
$new_reg_obj. Returns false if it fails.

Create
 $reg_obj−>Create($sub_key_name, $new_reg_obj);

Opens the subkey specified by $sub_key_name, returning the new registry object in
$new_reg_obj. If the specified subkey doesn‘t exist, it is created.
24−Apr−2001 Win32, 5.6.1 85

Registry Perl Programmers Reference Guide Registry

lues);
SetValue
 $reg_obj−>SetValue($sub_key_name, $type, $value);

Sets the default value for a subkey specified by $sub_key_name.

SetValueEx
 $reg_obj−>SetValueEx($value_name, $reserved, $type, $value);

Sets the value for the value name identified by $value_name in the key specified by
$reg_obj.

QueryValue
 $reg_obj−>QueryValue($sub_key_name, $value);

Gets the default value of the subkey specified by $sub_key_name.

QueryKey
 $reg_obj−>QueryKey($classref, $number_of_subkeys, $number_of_va

Gets information on a key specified by $reg_obj.

QueryValueEx
 $reg_obj−>QueryValueEx($value_name, $type, $value);

Gets the value for the value name identified by $value_name in the key specified by
$reg_obj.

GetKeys
 my @keys;
 $reg_obj−>GetKeys(\@keys);

Populates the supplied array reference with the names of all the keys within the registry object
$reg_obj.

GetValues
 my %values;
 $reg_obj−>GetValues(\%values);

Populates the supplied hash reference with entries of the form

 $value_name => [$value_name, $type, $data]

for each value in the registry object $reg_obj.

DeleteKey
 $reg_obj−>DeleteKey($sub_key_name);

Deletes a subkey specified by $sub_key_name from the registry.

DeleteValue
 $reg_obj−>DeleteValue($value_name);

Deletes a value identified by $value_name from the registry.

Save
 $reg_obj−>Save($filename);

Saves the hive specified by $reg_obj to a file.

Load
 $reg_obj−>Load($sub_key_name, $file_name);

Loads a key specified by $sub_key_name from a file.
86 Win32, 5.6.1 24−Apr−2001

Registry Perl Programmers Reference Guide Registry
UnLoad
 $reg_obj−>Unload($sub_key_name);

Unloads a registry hive.
24−Apr−2001 Win32, 5.6.1 87

Semaphore Perl Programmers Reference Guide Semaphore
NAME
Win32::Semaphore − Use Win32 semaphore objects from Perl

SYNOPSIS
require Win32::Semaphore;

$sem = Win32::Semaphore−>new($initial,$maximum,$name);
$sem−>wait;

DESCRIPTION
This module allows access to Win32 semaphore objects. The wait method and wait_all & wait_any
functions are inherited from the "Win32::IPC" module.

Methods

$semaphore = Win32::Semaphore−new($initial, $maximum, [$name])
Constructor for a new semaphore object. $initial is the initial count, and $maximum is the
maximum count for the semaphore. If $name is omitted, creates an unnamed semaphore object.

If $name signifies an existing semaphore object, then $initial and $maximum are ignored and the
object is opened.

$semaphore = Win32::Semaphore−open($name)
Constructor for opening an existing semaphore object.

$semaphore−release([$increment, [$previous]])
Increment the count of $semaphore by $increment (default 1). If $increment plus the
semaphore‘s current count is more than its maximum count, the count is not changed. Returns true if
the increment is successful.

The semaphore‘s count (before incrementing) is stored in the second argument (if any).

It is not necessary to wait on a semaphore before calling release, but you‘d better know what you‘re
doing.

$semaphore−wait([$timeout])
Wait for $semaphore‘s count to be nonzero, then decrement it by 1. See "Win32::IPC".

Deprecated Functions and Methods
Win32::Semaphore still supports the ActiveWare syntax, but its use is deprecated.

Win32::Semaphore::Create($SemObject,$Initial,$Max,$Name)
Use $SemObject = Win32::Semaphore−>new($Initial,$Max,$Name) instead.

Win32::Semaphore::Open($SemObject, $Name)
Use $SemObject = Win32::Semaphore−>open($Name) instead.

$SemObj−Release($Count,$LastVal)
Use $SemObj−>release($Count,$LastVal) instead.

AUTHOR
Christopher J. Madsen <chris_madsen@geocities.com>

Loosely based on the original module by ActiveWare Internet Corp., http://www.ActiveWare.com
88 Win32, 5.6.1 24−Apr−2001

Service Perl Programmers Reference Guide Service
NAME
Win32::Service − manage system services in perl

SYNOPSIS
use Win32::Service;

DESCRIPTION
This module offers control over the administration of system services.

FUNCTIONS

NOTE:
All of the functions return FALSE (0) if they fail, unless otherwise noted. If hostName is an empty string, the
local machine is assumed.

StartService(hostName, serviceName)
Start the service serviceName on machine hostName.

StopService(hostName, serviceName)
Stop the service serviceName on the machine hostName.

GetStatus(hostName, serviceName, status)
Get the status of a service. The third argument must be a hash reference that will be
populated with entries corresponding to the SERVICE_STATUS structure of the Win32 API.
See the Win32 Platform SDK documentation for details of this structure.

PauseService(hostName, serviceName)
ResumeService(hostName, serviceName)
GetServices(hostName, hashref)

Enumerates both active and inactive Win32 services at the specified host. The hashref is
populated with the descriptive service names as keys and the short names as the values.
24−Apr−2001 Win32, 5.6.1 89

Sound Perl Programmers Reference Guide Sound
NAME
Win32::Sound − An extension to play with Windows sounds

SYNOPSIS
 use Win32::Sound;
 Win32::Sound::Volume(’100%’);
 Win32::Sound::Play("file.wav");
 Win32::Sound::Stop();

 # ...and read on for more fun ;−)

FUNCTIONS

Win32::Sound::Play(SOUND, [FLAGS])
Plays the specified sound: SOUND can the be name of a WAV file or one of the following predefined
sound names:

 SystemDefault
 SystemAsterisk
 SystemExclamation
 SystemExit
 SystemHand
 SystemQuestion
 SystemStart

Additionally, if the named sound could not be found, the function plays the system default sound
(unless you specify the SND_NODEFAULT flag). If no parameters are given, this function stops the
sound actually playing (see also Win32::Sound::Stop).

FLAGS can be a combination of the following constants:

SND_ASYNC
The sound is played asynchronously and the function returns immediately after beginning the
sound (if this flag is not specified, the sound is played synchronously and the function returns
when the sound ends).

SND_LOOP
The sound plays repeatedly until it is stopped. You must also specify SND_ASYNC flag.

SND_NODEFAULT
No default sound is used. If the specified sound cannot be found, the function returns without
playing anything.

SND_NOSTOP
If a sound is already playing, the function fails. By default, any new call to the function will stop
previously playing sounds.

Win32::Sound::Stop()
Stops the sound currently playing.

Win32::Sound::Volume()
Returns the wave device volume; if called in an array context, returns left and right values. Otherwise,
returns a single 32 bit value (left in the low word, right in the high word). In case of error, returns
undef and sets $!.

Examples:

 ($L, $R) = Win32::Sound::Volume();
 if(not defined Win32::Sound::Volume()) {
 die "Can’t get volume: $!";
90 Win32, 5.6.1 24−Apr−2001

Sound Perl Programmers Reference Guide Sound
 }

Win32::Sound::Volume(LEFT, [RIGHT])
Sets the wave device volume; if two arguments are given, sets left and right channels independently,
otherwise sets them both to LEFT (eg. RIGHT=LEFT). Values range from 0 to 65535 (0xFFFF), but
they can also be given as percentage (use a string containing a number followed by a percent sign).

Returns undef and sets $! in case of error, a true value if successful.

Examples:

 Win32::Sound::Volume(’50%’);
 Win32::Sound::Volume(0xFFFF, 0x7FFF);
 Win32::Sound::Volume(’100%’, ’50%’);
 Win32::Sound::Volume(0);

Win32::Sound::Format(filename)
Returns information about the specified WAV file format; the array contains:

 sample rate (in Hz)
 bits per sample (8 or 16)
 channels (1 for mono, 2 for stereo)

Example:

 ($hz, $bits, $channels)
 = Win32::Sound::Format("file.wav");

Win32::Sound::Devices()
Returns all the available sound devices; their names contain the type of the device (WAVEOUT,
WAVEIN, MIDIOUT, MIDIIN, AUX or MIXER) and a zero−based ID number: valid devices names
are for example:

 WAVEOUT0
 WAVEOUT1
 WAVEIN0
 MIDIOUT0
 MIDIIN0
 AUX0
 AUX1
 AUX2

There are also two special device names, WAVE_MAPPER and MIDI_MAPPER (the default devices for
wave output and midi output).

Example:

 @devices = Win32::Sound::Devices();

Win32::Sound::DeviceInfo(DEVICE)
Returns an associative array of information about the sound device named DEVICE (the same format
of Win32::Sound::Devices).

The content of the array depends on the device type queried. Each device type returns at least the
following information:

 manufacturer_id
 product_id
 name
 driver_version

For additional data refer to the following table:
24−Apr−2001 Win32, 5.6.1 91

Sound Perl Programmers Reference Guide Sound
 WAVEIN..... formats
 channels

 WAVEOUT.... formats
 channels
 support

 MIDIOUT.... technology
 voices
 notes
 channels
 support

 AUX........ technology
 support

 MIXER...... destinations
 support

The meaning of the fields, where not obvious, can be evinced from the Microsoft SDK documentation
(too long to report here, maybe one day... :−).

Example:

 %info = Win32::Sound::DeviceInfo(’WAVE_MAPPER’);
 print "$info{name} version $info{driver_version}\n";

THE WaveOut PACKAGE
Win32::Sound also provides a different, more powerful approach to wave audio data with its WaveOut
package. It has methods to load and then play WAV files, with the additional feature of specifying the start
and end range, so you can play only a portion of an audio file.

Furthermore, it is possible to load arbitrary binary data to the soundcard to let it play and save them back into
WAV files; in a few words, you can do some sound synthesis work.

FUNCTIONS

new Win32::Sound::WaveOut(FILENAME)
new Win32::Sound::WaveOut(SAMPLERATE, BITS, CHANNELS)
new Win32::Sound::WaveOut()

This function creates a WaveOut object; the first form opens the specified wave file (see also
Open()), so you can directly Play() it.

The second (and third) form opens the wave output device with the format given (or if none given,
defaults to 44.1kHz, 16 bits, stereo); to produce something audible you can either Open() a wave file
or Load() binary data to the soundcard and then Write() it.

Close()
Closes the wave file currently opened.

CloseDevice()
Closes the wave output device; you can change format and reopen it with OpenDevice().

GetErrorText(ERROR)
Returns the error text associated with the specified ERROR number; note it only works for
wave−output−specific errors.

Load(DATA)
Loads the DATA buffer in the soundcard. The format of the data buffer depends on the format used;
for example, with 8 bit mono each sample is one character, while with 16 bit stereo each sample is four
characters long (two 16 bit values for left and right channels). The sample rate defines how much
92 Win32, 5.6.1 24−Apr−2001

Sound Perl Programmers Reference Guide Sound
samples are in one second of sound. For example, to fit one second at 44.1kHz 16 bit stereo your
buffer must contain 176400 bytes (44100 * 4).

Open(FILE)
Opens the specified wave FILE.

OpenDevice()
Opens the wave output device with the current sound format (not needed unless you used
CloseDevice()).

Pause()
Pauses the sound currently playing; use Restart() to continue playing.

Play([FROM, TO])
Plays the opened wave file. You can optionally specify a FROM − TO range, where FROM and TO
are expressed in samples (or use FROM=0 for the first sample and TO=−1 for the last sample).
Playback happens always asynchronously, eg. in the background.

Position()
Returns the sample number currently playing; note that the play position is not zeroed when the sound
ends, so you have to call a Reset() between plays to receive the correct position in the current
sound.

Reset()
Stops playing and resets the play position (see Position()).

Restart()
Continues playing the sound paused by Pause().

Save(FILE, [DATA])
Writes the DATA buffer (if not given, uses the buffer currently loaded in the soundcard) to the
specified wave FILE.

Status()
Returns 0 if the soundcard is currently playing, 1 if it‘s free, or undef on errors.

Unload()
Frees the soundcard from the loaded data.

Volume([LEFT, RIGHT])
Gets or sets the volume for the wave output device. It works the same way as Win32::Sound::Volume.

Write()
Plays the data currently loaded in the soundcard; playback happens always asynchronously, eg. in the
background.

THE SOUND FORMAT
The sound format is stored in three properties of the WaveOut object: samplerate, bits and
channels. If you need to change them without creating a new object, you should close before and reopen
afterwards the device.

 $WAV−>CloseDevice();
 $WAV−>{samplerate} = 44100; # 44.1kHz
 $WAV−>{bits} = 8; # 8 bit
 $WAV−>{channels} = 1; # mono
 $WAV−>OpenDevice();

You can also use the properties to query the sound format currently used.
24−Apr−2001 Win32, 5.6.1 93

Sound Perl Programmers Reference Guide Sound
EXAMPLE
This small example produces a 1 second sinusoidal wave at 440Hz and saves it in sinus.wav:

 use Win32::Sound;

 # Create the object
 $WAV = new Win32::Sound::WaveOut(44100, 8, 2);

 $data = "";
 $counter = 0;
 $increment = 440/44100;

 # Generate 44100 samples (= 1 second)
 for $i (1..44100) {

 # Calculate the pitch
 # (range 0..255 for 8 bits)
 $v = sin($counter/2*3.14) * 128 + 128;

 # "pack" it twice for left and right
 $data .= pack("cc", $v, $v);

 $counter += $increment;
 }

 $WAV−>Load($data); # get it
 $WAV−>Write(); # hear it
 1 until $WAV−>Status(); # wait for completion
 $WAV−>Save("sinus.wav"); # write to disk
 $WAV−>Unload(); # drop it

VERSION
Win32::Sound version 0.46, 25 Sep 1999.

AUTHOR
Aldo Calpini, dada@divinf.it

Parts of the code provided and/or suggested by Dave Roth.
94 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry
NAME
Win32::TieRegistry − Powerful and easy ways to manipulate a registry [on Win32 for now].

SYNOPSIS
 use Win32::TieRegistry 0.20 (UseOptionName=>UseOptionValue[,...]);

 $Registry−>SomeMethodCall(arg1,...);

 $subKey= $Registry−>{"Key\\SubKey\\"};
 $valueData= $Registry−>{"Key\\SubKey\\\\ValueName"};
 $Registry−>{"Key\\SubKey\\"}= { "NewSubKey" => {...} };
 $Registry−>{"Key\\SubKey\\\\ValueName"}= "NewValueData";
 $Registry−>{"\\ValueName"}= [pack("fmt",$data), REG_DATATYPE];

EXAMPLES
 use Win32::TieRegistry(Delimiter=>"#", ArrayValues=>0);
 $pound= $Registry−>Delimiter("/");
 $diskKey= $Registry−>{"LMachine/System/Disk/"}
 or die "Can’t read LMachine/System/Disk key: $^E\n";
 $data= $key−>{"/Information"}
 or die "Can’t read LMachine/System/Disk//Information value: $^E\n";
 $remoteKey= $Registry−>{"//ServerA/LMachine/System/"}
 or die "Can’t read //ServerA/LMachine/System/ key: $^E\n";
 $remoteData= $remoteKey−>{"Disk//Information"}
 or die "Can’t read ServerA’s System/Disk//Information value: $^E\n";
 foreach $entry (keys(%$diskKey)) {
 ...
 }
 foreach $subKey ($diskKey−>SubKeyNames) {
 ...
 }
 $diskKey−>AllowSave(1);
 $diskKey−>RegSaveKey("C:/TEMP/DiskReg", []);

DESCRIPTION
The Win32::TieRegistry module lets you manipulate the Registry via objects [as in "object oriented"] or via
tied hashes. But you will probably mostly use a combination reference, that is, a reference to a tied hash that
has also been made an object so that you can mix both access methods [as shown above].

If you did not get this module as part of libwin32, you might want to get a recent version of libwin32 from
CPAN which should include this module and the Win32API::Registry module that it uses.

Skip to the SUMMARY section if you just want to dive in and start using the Registry from Perl.

Accessing and manipulating the registry is extremely simple using Win32::TieRegistry. A single, simple
expression can return you almost any bit of information stored in the Registry. Win32::TieRegistry also gives
you full access to the "raw" underlying API calls so that you can do anything with the Registry in Perl that
you could do in C. But the "simple" interface has been carefully designed to handle almost all operations
itself without imposing arbitrary limits while providing sensible defaults so you can list only the parameters
you care about.

But first, an overview of the Registry itself.

The Registry
The Registry is a forest: a collection of several tree structures. The root of each tree is a key. These root
keys are identified by predefined constants whose names start with "HKEY_". Although all keys have a few
attributes associated with each [a class, a time stamp, and security information], the most important aspect of
keys is that each can contain subkeys and can contain values.
24−Apr−2001 Win32, 5.6.1 95

TieRegistry Perl Programmers Reference Guide TieRegistry
Each subkey has a name: a string which cannot be blank and cannot contain the delimiter character
[backslash: ‘\\’] nor nul [‘\0’]. Each subkey is also a key and so can contain subkeys and values [and
has a class, time stamp, and security information].

Each value has a name: a string which be blank and contain the delimiter character [backslash: ‘\\’] and
any character except for null, ‘\0’. Each value also has data associated with it. Each value‘s data is a
contiguous chunk of bytes, which is exactly what a Perl string value is so Perl strings will usually be used to
represent value data.

Each value also has a data type which says how to interpret the value data. The primary data types are:

REG_SZ
A null−terminated string.

REG_EXPAND_SZ
A null−terminated string which contains substrings consisting of a percent sign [‘%’], an environment
variable name, then a percent sign, that should be replaced with the value associate with that
environment variable. The system does not automatically do this substitution.

REG_BINARY
Some arbitrary binary value. You can think of these as being "packed" into a string.

If your system has the SetDualVar module installed, the DualBinVals() option wasn‘t turned off,
and you fetch a REG_BINARY value of 4 bytes or fewer, then you can use the returned value in a
numeric context to get at the "unpacked" numeric value. See GetValue() for more information.

REG_MULTI_SZ
Several null−terminated strings concatenated together with an extra trailing ‘\0’ at the end of the list.
 Note that the list can include empty strings so use the value‘s length to determine the end of the list,
not the first occurrence of ‘\0\0’. It is best to set the SplitMultis() option so
Win32::TieRegistry will split these values into an array of strings for you.

REG_DWORD
A long [4−byte] integer value. These values are expected either packed into a 4−character string or as
a hex string of 4 characters [but not as a numeric value, unfortunately, as there is no sure way to tell a
numeric value from a packed 4−byte string that just happens to be a string containing a valid numeric
value].

How such values are returned depends on the DualBinVals() and DWordsToHex() options. See
GetValue() for details.

In the underlying Registry calls, most places which take a subkey name also allow you to pass in a subkey
"path" — a string of several subkey names separated by the delimiter character, backslash [‘\\’]. For
example, doing RegOpenKeyEx(HKEY_LOCAL_MACHINE,"SYSTEM\\DISK",...) is much like
opening the "SYSTEM" subkey of HKEY_LOCAL_MACHINE, then opening its "DISK" subkey, then
closing the "SYSTEM" subkey.

All of the Win32::TieRegistry features allow you to use your own delimiter in place of the system‘s
delimiter, [‘\\’]. In most of our examples we will use a forward slash [‘/’] as our delimiter as it is easier
to read and less error prone to use when writing Perl code since you have to type two backslashes for each
backslash you want in a string. Note that this is true even when using single quotes —
‘\\HostName\LMachine\’ is an invalid string and must be written as
‘\\\\HostName\\LMachine\\’.

You can also connect to the registry of other computers on your network. This will be discussed more later.

Although the Registry does not have a single root key, the Win32::TieRegistry module creates a virtual root
key for you which has all of the HKEY_* keys as subkeys.
96 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry
Tied Hashes Documentation
Before you can use a tied hash, you must create one. One way to do that is via:

 use Win32::TieRegistry (TiedHash => ’%RegHash’);

which exports a %RegHash variable into your package and ties it to the virtual root key of the Registry. An
alternate method is:

 my %RegHash;
 use Win32::TieRegistry (TiedHash => \%RegHash);

There are also several ways you can tie a hash variable to any other key of the Registry, which are discussed
later.

Note that you will most likely use $Registry instead of using a tied hash. $Registry is a reference to a
hash that has been tied to the virtual root of your computer‘s Registry [as if, $Registry= \%RegHash].
So you would use $Registry−>{Key} rather than $RegHash{Key} and use keys %{$Registry}
rather than keys %RegHash, for example.

For each hash which has been tied to a Registry key, the Perl keys function will return a list containing the
name of each of the key‘s subkeys with a delimiter character appended to it and containing the name of each
of the key‘s values with a delimiter prepended to it. For example:

 keys(%{ $Registry−>{"HKEY_CLASSES_ROOT\\batfile\\"} })

might yield the following list value:

 ("DefaultIcon\\", # The subkey named "DefaultIcon"
 "shell\\", # The subkey named "shell"
 "shellex\\", # The subkey named "shellex"
 "\\", # The default value [named ""]
 "\\EditFlags") # The value named "EditFlags"

For the virtual root key, short−hand subkey names are used as shown below. You can use the short−hand
name, the regular HKEY_* name, or any numeric value to access these keys, but the short−hand names are
all that will be returned by the keys function.

"Classes" for HKEY_CLASSES_ROOT
Contains mappings between file name extensions and the uses for such files along with configuration
information for COM [MicroSoft‘s Common Object Model] objects. Usually a link to the
"SOFTWARE\\Classes" subkey of the HKEY_LOCAL_MACHINE key.

"CUser" for HKEY_CURRENT_USER
Contains information specific to the currently logged−in user. Mostly software configuration
information. Usually a link to a subkey of the HKEY_USERS key.

"LMachine" for HKEY_LOCAL_MACHINE
Contains all manner of information about the computer.

"Users" for HKEY_USERS
Contains one subkey, ".DEFAULT", which gets copied to a new subkey whenever a new user is
added. Also contains a subkey for each user of the system, though only those for active users [usually
only one] are loaded at any given time.

"PerfData" for HKEY_PERFORMANCE_DATA
Used to access data about system performance. Access via this key is "special" and all but the most
carefully constructed calls will fail, usually with ERROR_INSUFFICIENT_BUFFER. For example,
you can‘t enumerate key names without also enumerating values which require huge buffers but the
exact buffer size required cannot be determined beforehand because RegQueryInfoKey() fails
with ERROR_INSUFFICIENT_BUFFER for HKEY_PERFORMANCE_DATA no matter how it is
24−Apr−2001 Win32, 5.6.1 97

TieRegistry Perl Programmers Reference Guide TieRegistry
called. So it is currently not very useful to tie a hash to this key. You can use it to create an object to
use for making carefully constructed calls to the underlying Reg*() routines.

"CConfig" for HKEY_CURRENT_CONFIG
Contains minimal information about the computer‘s current configuration that is required very early in
the boot process. For example, setting for the display adapter such as screen resolution and refresh rate
are found in here.

"DynData" for HKEY_DYN_DATA
Dynamic data. We have found no documentation for this key.

A tied hash is much like a regular hash variable in Perl — you give it a key string inside braces, [{ and }],
and it gives you back a value [or lets you set a value]. For Win32::TieRegistry hashes, there are two types of
values that will be returned.

SubKeys
If you give it a string which represents a subkey, then it will give you back a reference to a hash which
has been tied to that subkey. It can‘t return the hash itself, so it returns a reference to it. It also blesses
that reference so that it is also an object so you can use it to call method functions.

Values
If you give it a string which is a value name, then it will give you back a string which is the data for
that value. Alternately, you can request that it give you both the data value string and the data value
type [we discuss how to request this later]. In this case, it would return a reference to an array where
the value data string is element [0] and the value data type is element [1].

The key string which you use in the tied hash must be interpreted to determine whether it is a value name or
a key name or a path that combines several of these or even other things. There are two simple rules that
make this interpretation easy and unambiguous:

 Put a delimiter after each key name.
 Put a delimiter in front of each value name.

Exactly how the key string will be intepreted is governed by the following cases, in the order listed. These
cases are designed to "do what you mean". Most of the time you won‘t have to think about them, especially
if you follow the two simple rules above. After the list of cases we give several examples which should be
clear enough so feel free to skip to them unless you are worried about the details.

Remote machines
If the hash is tied to the virtual root of the registry [or the virtual root of a remote machine‘s registry],
then we treat hash key strings which start with the delimiter character specially.

If the hash key string starts with two delimiters in a row, then those should be immediately followed by
the name of a remote machine whose registry we wish to connect to. That can be followed by a
delimiter and more subkey names, etc. If the machine name is not following by anything, then a
virtual root for the remote machine‘s registry is created, a hash is tied to it, and a reference to that hash
it is returned.

Hash key string starts with the delimiter
If the hash is tied to a virtual root key, then the leading delimiter is ignored. It should be followed by a
valid Registry root key name [either a short−hand name like "LMachine", an HKEY_* value, or a
numeric value]. This alternate notation is allowed in order to be more consistant with the Open()
method function.

For all other Registry keys, the leading delimiter indicates that the rest of the string is a value name.
The leading delimiter is stripped and the rest of the string [which can be empty and can contain more
delimiters] is used as a value name with no further parsing.
98 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry
Exact match with direct subkey name followed by delimiter
If you have already called the Perl keys function on the tied hash [or have already called
MemberNames on the object] and the hash key string exactly matches one of the strings returned,
then no further parsing is done. In other words, if the key string exactly matches the name of a direct
subkey with a delimiter appended, then a reference to a hash tied to that subkey is returned [but only if
keys or MemberNames has already been called for that tied hash].

This is only important if you have selected a delimiter other than the system default delimiter and one
of the subkey names contains the delimiter you have chosen. This rule allows you to deal with
subkeys which contain your chosen delimiter in their name as long as you only traverse subkeys one
level at a time and always enumerate the list of members before doing so.

The main advantage of this is that Perl code which recursively traverses a hash will work on hashes
tied to Registry keys even if a non−default delimiter has been selected.

Hash key string contains two delimiters in a row
If the hash key string contains two [or more] delimiters in a row, then the string is split between the
first pair of delimiters. The first part is interpreted as a subkey name or a path of subkey names
separated by delimiters and with a trailing delimiter. The second part is interpreted as a value name
with one leading delimiter [any extra delimiters are considered part of the value name].

Hash key string ends with a delimiter
If the key string ends with a delimiter, then it is treated as a subkey name or path of subkey names
separated by delimiters.

Hash key string contains a delimiter
If the key string contains a delimiter, then it is split after the last delimiter. The first part is treated as a
subkey name or path of subkey names separated by delimiters. The second part is ambiguous and is
treated as outlined in the next item.

Hash key string contains no delimiters
If the hash key string contains no delimiters, then it is ambiguous.

If you are reading from the hash [fetching], then we first use the key string as a value name. If there is
a value with a matching name in the Registry key which the hash is tied to, then the value data string
[and possibly the value data type] is returned. Otherwise, we retry by using the hash key string as a
subkey name. If there is a subkey with a matching name, then we return a reference to a hash tied to
that subkey. Otherwise we return undef.

If you are writing to the hash [storing], then we use the key string as a subkey name only if the value
you are storing is a reference to a hash value. Otherwise we use the key string as a value name.

=head3 Examples

Here are some examples showing different ways of accessing Registry information using references to tied
hashes:

Canonical value fetch
 $tip18= $Registry−>{"HKEY_LOCAL_MACHINE\\Software\\Microsoft\\"
 . ’Windows\\CurrentVersion\\Explorer\\Tips\\\\18’};

Should return the text of important tip number 18. Note that two backslashes, "\\", are required to
get a single backslash into a Perl double−quoted or single−qouted string. Note that "\\" is appended
to each key name ["HKEY_LOCAL_MACHINE" through "Tips"] and "\\" is prepended to the
value name, "18".

Changing your delimiter
 $Registry−>Delimiter("/");
 $tip18= $Registry−>{"HKEY_LOCAL_MACHINE/Software/Microsoft/"
24−Apr−2001 Win32, 5.6.1 99

TieRegistry Perl Programmers Reference Guide TieRegistry
 . ’Windows/CurrentVersion/Explorer/Tips//18’};

This usually makes things easier to read when working in Perl. All remaining examples will assume
the delimiter has been changed as above.

Using intermediate keys
 $ms= $Registry−>{"LMachine/Software/Microsoft/"};
 $tips= $ms−>{"Windows/CurrentVersion/Explorer/Tips/"};
 $tip18= $winlogon−>{"/18"};

Same as above but opens more keys into the Registry which lets you efficiently re−access those
intermediate keys. This is slightly less efficient if you never reuse those intermediate keys.

Chaining in a single statement
 $tip18= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}−>{"/18"};

Like above, this creates intermediate key objects then uses them to access other data. Once this
statement finishes, the intermediate key objects are destroyed. Several handles into the Registry are
opened and closed by this statement so it is less efficient but there are times when this will be useful.

Even less efficient example of chaining
 $tip18= $Registry−>{"LMachine/Software/Microsoft"}−>
 {"Windows/CurrentVersion/Explorer/Tips"}−>{"/18"};

Because we left off the trailing delimiters, Win32::TieRegistry doesn‘t know whether final names,
"Microsoft" and "Tips", are subkey names or value names. So this statement ends up executing
the same code as the next one.

What the above really does
 $tip18= $Registry−>{"LMachine/Software/"}−>{"Microsoft"}−>
 {"Windows/CurrentVersion/Explorer/"}−>{"Tips"}−>{"/18"};

With more chains to go through, more temporary objects are created and later destroyed than in our
first chaining example. Also, when "Microsoft" is looked up, Win32::TieRegistry first tries to
open it as a value and fails then tries it as a subkey. The same is true for when it looks up "Tips".

Getting all of the tips
 $tips= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}
 or die "Can’t find the Windows tips: $^E\n";
 foreach(keys %$tips) {
 print "$_: ", $tips−>{$_}, "\n";
 }

First notice that we actually check for failure for the first time. We are assuming that the "Tips" key
contains no subkeys. Otherwise the print statement would show something like
"Win32::TieRegistry=HASH(0xc03ebc)" for each subkey.

The output from the above code will start something like:

 /0: If you don’t know how to do something,[...]

=head3 Deleting items

You can use the Perl delete function to delete a value from a Registry key or to delete a subkey as long
that subkey contains no subkeys of its own. See More Examples, below, for more information.

=head3 Storing items

You can use the Perl assignment operator [=] to create new keys, create new values, or replace values. The
values you store should be in the same format as the values you would fetch from a tied hash. For example,
100 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry

!";

.
you can use a single assignment statement to copy an entire Registry tree. The following statement:

 $Registry−>{"LMachine/Software/Classes/Tie_Registry/"}=
 $Registry−>{"LMachine/Software/Classes/batfile/"};

creates a "Tie_Registry" subkey under the "Software\\Classes" subkey of the
HKEY_LOCAL_MACHINE key. Then it populates it with copies of all of the subkeys and values in the
"batfile" subkey and all of its subkeys. Note that you need to have called
$Registry−>ArrayValues(1) for the proper value data type information to be copied. Note also that
this release of Win32::TieRegistry does not copy key attributes such as class name and security information
[this is planned for a future release].

The following statement creates a whole subtree in the Registry:

 $Registry−>{"LMachine/Software/FooCorp/"}= {
 "FooWriter/" => {
 "/Version" => "4.032",
 "Startup/" => {
 "/Title" => "Foo Writer Deluxe][",
 "/WindowSize" => [pack("LL",$wid,$ht), "REG_BINARY"],
 "/TaskBarIcon" => ["0x0001", "REG_DWORD"],
 },
 "Compatibility/" => {
 "/AutoConvert" => "Always",
 "/Default Palette" => "Windows Colors",
 },
 },
 "/License", => "0123−9C8EF1−09−FC",
 };

Note that all but the last Registry key used on the left−hand side of the assignment [that is,
"LMachine/Software/" but not "FooCorp/"] must already exist for this statement to succeed.

By using the leading a trailing delimiters on each subkey name and value name, Win32::TieRegistry will tell
you if you try to assign subkey information to a value or visa−versa.

=head3 More examples

Adding a new tip
 $tips= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}
 or die "Can’t find the Windows tips: $^E\n";
 $tips{’/186’}= "Be very careful when making changes to the Registry

Deleting our new tip
 $tips= $Registry−>{"LMachine/Software/Microsoft/"}−>
 {"Windows/CurrentVersion/Explorer/Tips/"}
 or die "Can’t find the Windows tips: $^E\n";
 $tip186= delete $tips{’/186’};

Note that Perl‘s delete function returns the value that was deleted.

Adding a new tip differently
 $Registry−>{"LMachine/Software/Microsoft/" .
 "Windows/CurrentVersion/Explorer/Tips//186"}=
 "Be very careful when making changes to the Registry!";

Deleting differently
 $tip186= delete $Registry−>{"LMachine/Software/Microsoft/Windows/"
 "CurrentVersion/Explorer/Tips//186"};
24−Apr−2001 Win32, 5.6.1 101

TieRegistry Perl Programmers Reference Guide TieRegistry
Note that this only deletes the tail of what we looked up, the "186" value, not any of the keys listed.

Deleting a key
WARNING: The following code will delete all information about the current user‘s tip preferences.
Actually executing this command would probably cause the user to see the Welcome screen the next
time they log in and may cause more serious problems. This statement is shown as an example only
and should not be used when experimenting.

 $tips= delete $Registry−>{"CUser/Software/Microsoft/Windows/" .
 "CurrentVersion/Explorer/Tips/"};

This deletes the "Tips" key and the values it contains. The delete function will return a reference
to a hash [not a tied hash] containing the value names and value data that were deleted.

The information to be returned is copied from the Registry into a regular Perl hash before the key is
deleted. If the key has many subkeys, this copying could take a significant amount of memory and/or
processor time. So you can disable this process by calling the FastDelete member function:

 $prevSetting= $regKey−>FastDelete(1);

which will cause all subsequent delete operations via $regKey to simply return a true value if they
succeed. This optimization is automatically done if you use delete in a void context.

Technical notes on deleting
If you use delete to delete a Registry key or value and use the return value, then Win32::TieRegistry
usually looks up the current contents of that key or value so they can be returned if the deletion is
successful. If the deletion succeeds but the attempt to lookup the old contents failed, then the return
value of delete will be $^E from the failed part of the operation.

Undeleting a key
 $Registry−>{"LMachine/Software/Microsoft/Windows/" .
 "CurrentVersion/Explorer/Tips/"}= $tips;

This adds back what we just deleted. Note that this version of Win32::TieRegistry will use defaults for
the key attributes [such as class name and security] and will not restore the previous attributes.

Not deleting a key
WARNING: Actually executing the following code could cause serious problems. This statement is
shown as an example only and should not be used when experimenting.

 $res= delete $Registry−>{"CUser/Software/Microsoft/Windows/"}
 defined($res) || die "Can’t delete URL key: $^E\n";

Since the "Windows" key should contain subkeys, that delete statement should make no changes to
the Registry, return undef, and set $^E to "Access is denied".

Not deleting again
 $tips= $Registry−>{"CUser/Software/Microsoft/Windows/" .
 "CurrentVersion/Explorer/Tips/"};
 delete $tips;

The Perl delete function requires that its argument be an expression that ends in a hash element
lookup [or hash slice], which is not the case here. The delete function doesn‘t know which hash
$tips came from and so can‘t delete it.

Objects Documentation
The following member functions are defined for use on Win32::TieRegistry objects:

new The new method creates a new Win32::TieRegistry object. new is mostly a synonym for Open() so
see Open() below for information on what arguments to pass in. Examples:
102 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry

r=>"/"})

gon/");
"]);

=>"/"})
 $machKey= new Win32::TieRegistry "LMachine"
 or die "Can’t access HKEY_LOCAL_MACHINE key: $^E\n";
 $userKey= Win32::TieRegistry−>new("CUser")
 or die "Can’t access HKEY_CURRENT_USER key: $^E\n";

Note that calling new via a reference to a tied hash returns a simple object, not a reference to a tied
hash.

Open
$subKey= $key−Open($sSubKey, $rhOptions)

The Open method opens a Registry key and returns a new Win32::TieRegistry object associated with
that Registry key. If Open is called via a reference to a tied hash, then Open returns another reference
to a tied hash. Otherwise Open returns a simple object and you should then use TiedRef to get a
reference to a tied hash.

$sSubKey is a string specifying a subkey to be opened. Alternately $sSubKey can be a reference to
an array value containing the list of increasingly deep subkeys specifying the path to the subkey to be
opened.

$rhOptions is an optional reference to a hash containing extra options. The Open method supports
two options, "Delimiter" and "Access", and $rhOptions should have only have zero or more
of these strings as keys. See the "Examples" section below for more information.

The "Delimiter" option specifies what string [usually a single character] will be used as the
delimiter to be appended to subkey names and prepended to value names. If this option is not
specified, the new key [$subKey] inherits the delimiter of the old key [$key].

The "Access" option specifies what level of access to the Registry key you wish to have once it has
been opened. If this option is not specified, the new key [$subKey] is opened with the same access
level used when the old key [$key] was opened. The virtual root of the Registry pretends it was
opened with access KEY_READ()|KEY_WRITE() so this is the default access when opening keys
directory via $Registry. If you don‘t plan on modifying a key, you should open it with
KEY_READ access as you may not have KEY_WRITE access to it or some of its subkeys.

If the "Access" option value is a string that starts with "KEY_", then it should match of the
predefined access levels [probably "KEY_READ", "KEY_WRITE", or "KEY_ALL_ACCESS"]
exported by the Win32API::Registry module. Otherwise, a numeric value is expected. For maximum
flexibility, include use Win32::TieRegistry qw(:KEY_);, for example, near the top of your
script so you can specify more complicated access levels such as KEY_READ()|KEY_WRITE().

If $sSubKey does not begin with the delimiter [or $sSubKey is an array reference], then the path to
the subkey to be opened will be relative to the path of the original key [$key]. If $sSubKey begins
with a single delimiter, then the path to the subkey to be opened will be relative to the virtual root of
the Registry on whichever machine the original key resides. If $sSubKey begins with two
consectutive delimiters, then those must be followed by a machine name which causes the
Connect() method function to be called.

Examples:

 $machKey= $Registry−>Open("LMachine", {Access=>KEY_READ(),Delimite
 or die "Can’t open HKEY_LOCAL_MACHINE key: $^E\n";
 $swKey= $machKey−>Open("Software");
 $logonKey= $swKey−>Open("Microsoft/Windows NT/CurrentVersion/Winlo
 $NTversKey= $swKey−>Open(["Microsoft","Windows NT","CurrentVersion
 $versKey= $swKey−>Open(qw(Microsoft Windows CurrentVersion));

 $remoteKey= $Registry−>Open("//HostA/LMachine/System/", {Delimiter
 or die "Can’t connect to HostA or can’t open subkey: $^E\n";
24−Apr−2001 Win32, 5.6.1 103

TieRegistry Perl Programmers Reference Guide TieRegistry

/"})

",

E\n";

n))
Clone
$copy= $key−Clone

Creates a new object that is associated with the same Registry key as the invoking object.

Connect
$remoteKey= $Registry−Connect($sMachineName, $sKeyPath, $rhOptions)

The Connect method connects to the Registry of a remote machine, and opens a key within it, then
returns a new Win32::TieRegistry object associated with that remote Registry key. If Connect was
called using a reference to a tied hash, then the return value will also be a reference to a tied hash [or
undef]. Otherwise, if you wish to use the returned object as a tied hash [not just as an object], then
use the TiedRef method function after Connect.

$sMachineName is the name of the remote machine. You don‘t have to preceed the machine name
with two delimiter characters.

$sKeyPath is a string specifying the remote key to be opened. Alternately $sKeyPath can be a
reference to an array value containing the list of increasingly deep keys specifying the path to the key
to be opened.

$rhOptions is an optional reference to a hash containing extra options. The Connect method
supports two options, "Delimiter" and "Access". See the Open method documentation for
more information on these options.

$sKeyPath is already relative to the virtual root of the Registry of the remote machine. A single
leading delimiter on sKeyPath will be ignored and is not required.

$sKeyPath can be empty in which case Connect will return an object representing the virtual root
key of the remote Registry. Each subsequent use of Open on this virtual root key will call the system
RegConnectRegistry function.

The Connect method can be called via any Win32::TieRegistry object, not just $Registry.
Attributes such as the desired level of access and the delimiter will be inherited from the object used
but the $sKeyPath will always be relative to the virtual root of the remote machine‘s registry.

Examples:

 $remMachKey= $Registry−>Connect("HostA", "LMachine", {Delimiter−>"
 or die "Can’t connect to HostA’s HKEY_LOCAL_MACHINE key: $^E\n";

 $remVersKey= $remMachKey−>Connect("www.microsoft.com",
 "LMachine/Software/Microsoft/Inetsrv/CurrentVersion/
 { Access=>KEY_READ, Delimiter=>"/" })
 or die "Can’t check what version of IIS Microsoft is running: $^

 $remVersKey= $remMachKey−>Connect("www",
 qw(LMachine Software Microsoft Inetsrv CurrentVersio
 or die "Can’t check what version of IIS we are running: $^E\n";

ObjectRef
$object_ref= $obj_or_hash_ref−ObjectRef

For a simple object, just returns itself [$obj == $obj−ObjectRef].

For a reference to a tied hash [if it is also an object], ObjectRef returns the simple object that the
hash is tied to.

This is primarilly useful when debugging since typing x $Registry will try to display your entire
registry contents to your screen. But the debugger command x $Registry−ObjectRef will just
dump the implementation details of the underlying object to your screen.
104 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry
Flush($bFlush)
Flushes all cached information about the Registry key so that future uses will get fresh data from the
Registry.

If the optional $bFlush is specified and a true value, then RegFlushKey() will be called, which is
almost never necessary.

GetValue
$ValueData= $key−GetValue($sValueName)
($ValueData,$ValueType)= $key−GetValue($sValueName)

Gets a Registry value‘s data and data type.

$ValueData is usually just a Perl string that contains the value data [packed into it]. For certain
types of data, however, $ValueData may be processed as described below.

$ValueType is the REG_* constant describing the type of value data stored in $ValueData. If
the DualTypes() option is on, then $ValueType will be a dual value. That is, when used in a
numeric context, $ValueType will give the numeric value of a REG_* constant. However, when
used in a non−numeric context, $ValueType will return the name of the REG_* constant, for
example "REG_SZ" [note the quotes]. So both of the following can be true at the same time:

 $ValueType == REG_SZ()
 $ValueType eq "REG_SZ"

REG_SZ and REG_EXPAND_SZ
If the FixSzNulls() option is on, then the trailing ‘\0’ will be stripped [unless there isn‘t
one] before values of type REG_SZ and REG_EXPAND_SZ are returned. Note that
SetValue() will add a trailing ‘\0’ under similar circumstances.

REG_MULTI_SZ
If the SplitMultis() option is on, then values of this type are returned as a reference to an
array containing the strings. For example, a value that, with SplitMultis() off, would be
returned as:

 "Value1\000Value2\000\000"

would be returned, with SplitMultis() on, as:

 ["Value1", "Value2"]

REG_DWORD
If the DualBinVals() option is on, then the value is returned as a scalar containing both a
string and a number [much like the $! variable — see the SetDualVar module for more
information] where the number part is the "unpacked" value. Use the returned value in a numeric
context to access this part of the value. For example:

 $num= 0 + $Registry−>{"CUser/Console//ColorTable01"};

If the DWordsToHex() option is off, the string part of the returned value is a packed, 4−byte
string [use unpack("L",$value) to get the numeric value.

If DWordsToHex() is on, the string part of the returned value is a 10−character hex strings
[with leading "0x"]. You can use hex($value) to get the numeric value.

Note that SetValue() will properly understand each of these returned value formats no matter
how DualBinVals() is set.

ValueNames
@names= $key−ValueNames

Returns the list of value names stored directly in a Registry key. Note that the names returned do not
have a delimiter prepended to them like with MemberNames() and tied hashes.
24−Apr−2001 Win32, 5.6.1 105

TieRegistry Perl Programmers Reference Guide TieRegistry
Once you request this information, it is cached in the object and future requests will always return the
same list unless Flush() has been called.

SubKeyNames
@key_names= $key−SubKeyNames

Returns the list of subkey names stored directly in a Registry key. Note that the names returned do not
have a delimiter appended to them like with MemberNames() and tied hashes.

Once you request this information, it is cached in the object and future requests will always return the
same list unless Flush() has been called.

SubKeyClasses
@classes= $key−SubKeyClasses

Returns the list of classes for subkeys stored directly in a Registry key. The classes are returned in the
same order as the subkey names returned by SubKeyNames().

SubKeyTimes
@times= $key−SubKeyTimes

Returns the list of last−modified times for subkeys stored directly in a Registry key. The times are
returned in the same order as the subkey names returned by SubKeyNames(). Each time is a
FILETIME structure packed into a Perl string.

Once you request this information, it is cached in the object and future requests will always return the
same list unless Flush() has been called.

MemberNames
@members= $key−MemberNames

Returns the list of subkey names and value names stored directly in a Registry key. Subkey names
have a delimiter appended to the end and value names have a delimiter prepended to the front.

Note that a value name could end in a delimiter [or could be "" so that the member name returned is
just a delimiter] so the presence or absence of the leading delimiter is what should be used to determine
whether a particular name is for a subkey or a value, not the presence or absence of a trailing delimiter.

Once you request this information, it is cached in the object and future requests will always return the
same list unless Flush() has been called.

Information
%info= $key−Information
@items= $key−Information(@itemNames);

Returns the following information about a Registry key:

LastWrite
A FILETIME structure indicating when the key was last modified and packed into a Perl string.

CntSubKeys
The number of subkeys stored directly in this key.

CntValues
The number of values stored directly in this key.

SecurityLen
The length [in bytes] of the largest[?] SECURITY_DESCRIPTOR associated with the Registry
key.

MaxValDataLen
The length [in bytes] of the longest value data associated with a value stored in this key.
106 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry

me.
lue.

me.
 of "".
2 bytes.

MT
MaxSubKeyLen
The length [in chars] of the longest subkey name associated with a subkey stored in this key.

MaxSubClassLen
The length [in chars] of the longest class name associated with a subkey stored directly in this
key.

MaxValNameLen
The length [in chars] of the longest value name associated with a value stored in this key.

With no arguments, returns a hash [not a reference to a hash] where the keys are the names for the
items given above and the values are the information describe above. For example:

 %info= ("CntValues" => 25, # Key contains 25 values.
 "MaxValNameLen" => 20, # One of which has a 20−char na
 "MaxValDataLen" => 42, # One of which has a 42−byte va
 "CntSubKeys" => 1, # Key has 1 immediate subkey.
 "MaxSubKeyLen" => 13, # One of which has a 12−char na
 "MaxSubClassLen" => 0, # All of which have class names
 "SecurityLen" => 232, # One SECURITY_DESCRIPTOR is 23
 "LastWrite" => "\x90mZ\cX{\xA3\xBD\cA\c@\cA"
 # Key was last modifed 1998/06/01 16:29:32 G
);

With arguments, each one must be the name of a item given above. The return value is the information
associated with the listed names. In other words:

 return $key−>Information(@names);

returns the same list as:

 %info= $key−>Information;
 return @info{@names};

Delimiter
$oldDelim= $key−Delimiter
$oldDelim= $key−Delimiter($newDelim)

Gets and possibly changes the delimiter used for this object. The delimiter is appended to subkey
names and prepended to value names in many return values. It is also used when parsing keys passed
to tied hashes.

The delimiter defaults to backslash (‘\\’) but is inherited from the object used to create a new object
and can be specified by an option when a new object is created.

Handle
$handle= $key−Handle

Returns the raw HKEY handle for the associated Registry key as an integer value. This value can then
be used to Reg*() calls from Win32API::Registry. However, it is usually easier to just call the
Win32API::Registry calls directly via:

 $key−>RegNotifyChangeKeyValue(...);

For the virtual root of the local or a remote Registry, Handle() return "NONE".

Path
$path= $key−Path

Returns a string describing the path of key names to this Registry key. The string is built so that if it
were passed to $Registry−Open(), it would reopen the same Registry key [except in the rare case
where one of the key names contains $key−Delimiter].
24−Apr−2001 Win32, 5.6.1 107

TieRegistry Perl Programmers Reference Guide TieRegistry
Machine
$computerName= $key−Machine

Returns the name of the computer [or "machine"] on which this Registry key resides. Returns "" for
local Registry keys.

Access
Returns the numeric value of the bit mask used to specify the types of access requested when this
Registry key was opened. Can be compared to KEY_* values.

OS_Delimiter
Returns the delimiter used by the operating system‘s RegOpenKeyEx() call. For Win32, this is
always backslash ("\\").

Roots
Returns the mapping from root key names like "LMachine" to their associated HKEY_* constants.
Primarily for internal use and subject to change.

Tie
$key−Tie(\%hash);

Ties the referenced hash to that Registry key. Pretty much the same as

 tie %hash, ref($key), $key;

Since ref($key) is the class [package] to tie the hash to and TIEHASH() just returns its argument,
$key, [without calling new()] when it sees that it is already a blessed object.

TiedRef
$TiedHashRef= $hash_or_obj_ref−TiedRef

For a simple object, returns a reference to a hash tied to the object. Used to promote a simple object
into a combined object and hash ref.

If already a reference to a tied hash [that is also an object], it just returns itself [$ref ==
$ref−TiedRef].

Mostly used internally.

ArrayValues
$oldBool= $key−ArrayValues
$oldBool= $key−ArrayValues($newBool)

Gets the current setting of the ArrayValues option and possibly turns it on or off.

When off, Registry values fetched via a tied hash are returned as just a value scalar [the same as
GetValue() in a scalar context]. When on, they are returned as a reference to an array containing
the value data as the [0] element and the data type as the [1] element.

TieValues
$oldBool= TieValues
$oldBool= TieValues($newBool)

Gets the current setting of the TieValues option and possibly turns it on or off.

Turning this option on is not yet supported in this release of Win32::TieRegistry. In a future release,
turning this option on will cause Registry values returned from a tied hash to be a tied array that you
can use to modify the value in the Registry.

FastDelete
$oldBool= $key−FastDelete
$oldBool= $key−FastDelete($newBool)

Gets the current setting of the FastDelete option and possibly turns it on or off.
108 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry
When on, successfully deleting a Registry key [via a tied hash] simply returns 1.

When off, successfully deleting a Registry key [via a tied hash and not in a void context] returns a
reference to a hash that contains the values present in the key when it was deleted. This hash is just
like that returned when referencing the key before it was deleted except that it is an ordinary hash, not
one tied to the Win32::TieRegistry package.

Note that deleting either a Registry key or value via a tied hash in a void context prevents any overhead
in trying to build an appropriate return value.

Note that deleting a Registry value via a tied hash [not in a void context] returns the value data even if
<FastDelete is on.

SplitMultis
$oldBool= $key−SplitMultis
$oldBool= $key−SplitMultis($newBool)

Gets the current setting of the SplitMultis option and possibly turns it on or off.

If on, Registry values of type REG_MULTI_SZ are returned as a reference to an array of strings. See
GetValue() for more information.

DWordsToHex
$oldBool= $key−DWordsToHex
$oldBool= $key−DWordsToHex($newBool)

Gets the current setting of the DWordsToHex option and possibly turns it on or off.

If on, Registry values of type REG_DWORD are returned as a hex string with leading "0x" and longer
than 4 characters. See GetValue() for more information.

FixSzNulls
$oldBool= $key−FixSzNulls
$oldBool= $key−FixSzNulls($newBool)

Gets the current setting of the FixSzNulls option and possibly turns it on or off.

If on, Registry values of type REG_SZ and REG_EXPAND_SZ have trailing ‘\0’s added before they
are set and stripped before they are returned. See GetValue() and SetValue() for more
information.

DualTypes
$oldBool= $key−DualTypes
$oldBool= $key−DualTypes($newBool)

Gets the current setting of the DualTypes option and possibly turns it on or off.

If on, data types are returned as a combined numeric/string value holding both the numeric value of a
REG_* constant and the string value of the constant‘s name. See GetValue() for more information.

DualBinVals
$oldBool= $key−DualBinVals
$oldBool= $key−DualBinVals($newBool)

Gets the current setting of the DualBinVals option and possibly turns it on or off.

If on, Registry value data of type REG_BINARY and no more than 4 bytes long and Registry values of
type REG_DWORD are returned as a combined numeric/string value where the numeric value is the
"unpacked" binary value as returned by:

 hex reverse unpack("h*", $valData)

on a "little−endian" computer. [Would be hex unpack("H*",$valData) on a "big−endian"
computer if this module is ever ported to one.]
24−Apr−2001 Win32, 5.6.1 109

TieRegistry Perl Programmers Reference Guide TieRegistry
See GetValue() for more information.

GetOptions
@oldOptValues= $key−GetOptions(@optionNames)
$refHashOfOldOpts= $key−GetOptions()
$key−GetOptions(\%hashForOldOpts)

Returns the current setting of any of the following options:

 Delimiter FixSzNulls DWordsToHex
 ArrayValues SplitMultis DualBinVals
 TieValues FastDelete DualTypes

Pass in one or more of the above names (as strings) to get back an array of the corresponding current
settings in the same order:

 my($fastDel, $delim)= $key−>GetOptions("FastDelete","Delimiter");

Pass in no arguments to get back a reference to a hash where the above option names are the keys and
the values are the corresponding current settings for each option:

 my $href= $key−>GetOptions();
 my $delim= $href−>{Delimiter};

Pass in a single reference to a hash to have the above key/value pairs added to the referenced hash.
For this case, the return value is the original object so further methods can be chained after the call to
GetOptions:

 my %oldOpts;
 $key−>GetOptions(\%oldOpts)−>SetOptions(Delimiter => "/");

SetOptions
@oldOpts= $key−SetOptions(optNames=$optValue,...)

Changes the current setting of any of the following options, returning the previous setting(s):

 Delimiter FixSzNulls DWordsToHex AllowLoad
 ArrayValues SplitMultis DualBinVals AllowSave
 TieValues FastDelete DualTypes

For AllowLoad and AllowSave, instead of the previous setting, SetOptions returns whether or
not the change was successful.

In a scalar context, returns only the last item. The last option can also be specified as "ref" or "r"
[which doesn‘t need to be followed by a value] to allow chaining:

 $key−>SetOptions(AllowSave=>1,"ref")−>RegSaveKey(...)

SetValue
$okay= $key−SetValue($ValueName, $ValueData);
$okay= $key−SetValue($ValueName, $ValueData, $ValueType);

Adds or replaces a Registry value. Returns a true value if successfully, false otherwise.

$ValueName is the name of the value to add or replace and should not have a delimiter prepended to
it. Case is ignored.

$ValueType is assumed to be REG_SZ if it is omitted. Otherwise, it should be one the REG_*
constants.

$ValueData is the data to be stored in the value, probably packed into a Perl string. Other supported
formats for value data are listed below for each posible $ValueType.

REG_SZ or REG_EXPAND_SZ
The only special processing for these values is the addition of the required trailing ‘\0’ if it is
missing. This can be turned off by disabling the FixSzNulls option.
110 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry

_SZ");
REG_MULTI_SZ
These values can also be specified as a reference to a list of strings. For example, the following
two lines are equivalent:

 $key−>SetValue("Val1\000Value2\000LastVal\000\000", "REG_MULTI
 $key−>SetValue(["Val1","Value2","LastVal"], "REG_MULTI_SZ");

Note that if the required two trailing nulls ("\000\000") are missing, then this release of
SetValue() will not add them.

REG_DWORD
These values can also be specified as a hex value with the leading "0x" included and totaling
more than 4 bytes. These will be packed into a 4−byte string via:

 $data= pack("L", hex($data));

REG_BINARY
This value type is listed just to emphasize that no alternate format is supported for it. In
particular, you should not pass in a numeric value for this type of data. SetValue() cannot
distinguish such from a packed string that just happens to match a numeric value and so will treat
it as a packed string.

An alternate calling format:

 $okay= $key−>SetValue($ValueName, [$ValueData, $ValueType]);

[two arguments, the second of which is a reference to an array containing the value data and value
type] is supported to ease using tied hashes with SetValue().

CreateKey
$newKey= $key−CreateKey($subKey);
$newKey= $key−CreateKey($subKey, { Option=OptVal,... });

Creates a Registry key or just updates attributes of one. Calls RegCreateKeyEx() then, if it
succeeded, creates an object associated with the [possibly new] subkey.

$subKey is the name of a subkey [or a path to one] to be created or updated. It can also be a
reference to an array containing a list of subkey names.

The second argument, if it exists, should be a reference to a hash specifying options either to be passed
to RegCreateKeyEx() or to be used when creating the associated object. The following items are
the supported keys for this options hash:

Delimiter
Specifies the delimiter to be used to parse $subKey and to be used in the new object. Defaults
to $key−Delimiter.

Access
Specifies the types of access requested when the subkey is opened. Should be a numeric bit mask
that combines one or more KEY_* constant values.

Class
The name to assign as the class of the new or updated subkey. Defaults to "" as we have never
seen a use for this information.

Disposition
Lets you specify a reference to a scalar where, upon success, will be stored either
REG_CREATED_NEW_KEY() or REG_OPENED_EXISTING_KEY() depending on whether a
new key was created or an existing key was opened.

If you, for example, did use Win32::TieRegistry qw(REG_CREATED_NEW_KEY)
24−Apr−2001 Win32, 5.6.1 111

TieRegistry Perl Programmers Reference Guide TieRegistry
then you can use REG_CREATED_NEW_KEY() to compare against the numeric value stored in
the referenced scalar.

If the DualTypes option is enabled, then in addition to the numeric value described above, the
referenced scalar will also have a string value equal to either "REG_CREATED_NEW_KEY" or
"REG_OPENED_EXISTING_KEY", as appropriate.

Security
Lets you specify a SECURITY_ATTRIBUTES structure packed into a Perl string. See
Win32API::Registry::RegCreateKeyEx() for more information.

Volatile
If true, specifies that the new key should be volatile, that is, stored only in memory and not
backed by a hive file [and not saved if the computer is rebooted]. This option is ignored under
Windows 95. Specifying Volatile=1 is the same as specifying
Options=REG_OPTION_VOLATILE.

Backup
If true, specifies that the new key should be opened for backup/restore access. The Access
option is ignored. If the calling process has enabled "SeBackupPrivilege", then the
subkey is opened with KEY_READ access as the "LocalSystem" user which should have
access to all subkeys. If the calling process has enabled "SeRestorePrivilege", then the
subkey is opened with KEY_WRITE access as the "LocalSystem" user which should have
access to all subkeys.

This option is ignored under Windows 95. Specifying Backup=1 is the same as specifying
Options=REG_OPTION_BACKUP_RESTORE.

Options
Lets you specify options to the RegOpenKeyEx() call. The value for this option should be a
numeric value combining zero or more of the REG_OPTION_* bit masks. You may with to
used the Volatile and/or Backup options instead of this one.

StoreKey
$newKey= $key−StoreKey($subKey, \%Contents);

Primarily for internal use.

Used to create or update a Registry key and any number of subkeys or values under it or its subkeys.

$subKey is the name of a subkey to be created [or a path of subkey names separated by delimiters].
If that subkey already exists, then it is updated.

\%Contents is a reference to a hash containing pairs of value names with value data and/or subkey
names with hash references similar to \%Contents. Each of these cause a value or subkey of
$subKey to be created or updated.

If $Contents{""} exists and is a reference to a hash, then it used as the options argument when
CreateKey() is called for $subKey. This allows you to specify ...

 if(defined($$data{""}) && "HASH" eq ref($$data{""})) {
 $self= $this−>CreateKey($subKey, delete $$data{""});

Load
$newKey= $key−Load($file)
$newKey= $key−Load($file, $newSubKey)
$newKey= $key−Load($file, $newSubKey, { Option=OptVal... })
$newKey= $key−Load($file, { Option=OptVal... })

Loads a hive file into a Registry. That is, creates a new subkey and associates a hive file with it.

$file is a hive file, that is a file created by calling RegSaveKey(). The $file path is interpreted
112 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry
relative to %SystemRoot%/System32/config on the machine where $key resides.

$newSubKey is the name to be given to the new subkey. If $newSubKey is specified, then $key
must be HKEY_LOCAL_MACHINE or HKEY_USERS of the local computer or a remote computer and
$newSubKey should not contain any occurrences of either the delimiter or the OS delimiter.

If $newSubKey is not specified, then it is as if $key was $Registry−{LMachine} and
$newSubKey is "PerlTie:999" where "999" is actually a sequence number incremented each
time this process calls Load().

You can specify as the last argument a reference to a hash containing options. You can specify the
same options that you can specify to Open(). See Open() for more information on those. In
addition, you can specify the option "NewSubKey". The value of this option is interpretted exactly as
if it was specified as the $newSubKey parameter and overrides the $newSubKey if one was
specified.

The hive is automatically unloaded when the returned object [$newKey] is destroyed. Registry key
objects opened within the hive will keep a reference to the $newKey object so that it will not be
destroyed before these keys are closed.

UnLoad
$okay= $key−UnLoad

Unloads a hive that was loaded via Load(). Cannot unload other hives. $key must be the return
from a previous call to Load(). $key is closed and then the hive is unloaded.

AllowSave
$okay= AllowSave($bool)

Enables or disables the "ReBackupPrivilege" privilege for the current process. You will
probably have to enable this privilege before you can use RegSaveKey().

The return value indicates whether the operation succeeded, not whether the privilege was previously
enabled.

AllowLoad
$okay= AllowLoad($bool)

Enables or disables the "ReRestorePrivilege" privilege for the current process. You will
probably have to enable this privilege before you can use RegLoadKey(), RegUnLoadKey(),
RegReplaceKey(), or RegRestoreKey and thus Load() and UnLoad().

The return value indicates whether the operation succeeded, not whether the privilege was previously
enabled.

Exports [use and import()]
To have nothing imported into your package, use something like:

 use Win32::TieRegistry 0.20 ();

which would verify that you have at least version 0.20 but wouldn‘t call import(). The Changes file can
be useful in figuring out which, if any, prior versions of Win32::TieRegistry you want to support in your
script.

The code

 use Win32::TieRegistry;

imports the variable $Registry into your package and sets it to be a reference to a hash tied to a copy of
the master Registry virtual root object with the default options. One disadvantage to this "default" usage is
that Perl does not support checking the module version when you use it.

Alternately, you can specify a list of arguments on the use line that will be passed to the
Win32::TieRegistry−import() method to control what items to import into your package. These
arguments fall into the following broad categories:
24−Apr−2001 Win32, 5.6.1 113

TieRegistry Perl Programmers Reference Guide TieRegistry
Import a reference to a hash tied to a Registry virtual root
You can request that a scalar variable be imported (possibly) and set to be a reference to a hash tied to
a Registry virtual root using any of the following types of arguments or argument pairs:

"TiedRef", ‘$scalar’
"TiedRef", ‘$pack::scalar’
"TiedRef", ‘scalar’
"TiedRef", ‘pack::scalar’

All of the above import a scalar named $scalar into your package (or the package named
"pack") and then sets it.

‘$scalar’
‘$pack::scalar’

These are equivalent to the previous items to support a more traditional appearance to the list of
exports. Note that the scalar name cannot be "RegObj" here.

"TiedRef", \$scalar
\$scalar

These versions don‘t import anything but set the referenced $scalar.

Import a hash tied to the Registry virtual root
You can request that a hash variable be imported (possibly) and tied to a Registry virtual root using
any of the following types of arguments or argument pairs:

"TiedHash", ‘%hash’
"TiedHash", ‘%pack::hash’
"TiedHash", ‘hash’
"TiedHash", ‘pack::hash’

All of the above import a hash named %hash into your package (or the package named "pack")
and then sets it.

‘%hash’
‘%pack::hash’

These are equivalent to the previous items to support a more traditional appearance to the list of
exports.

"TiedHash", \%hash
\%hash

These versions don‘t import anything but set the referenced %hash.

Import a Registry virtual root object
You can request that a scalar variable be imported (possibly) and set to be a Registry virtual root object
using any of the following types of arguments or argument pairs:

"ObjectRef", ‘$scalar’
"ObjectRef", ‘$pack::scalar’
"ObjectRef", ‘scalar’
"ObjectRef", ‘pack::scalar’

All of the above import a scalar named $scalar into your package (or the package named
"pack") and then sets it.

‘$RegObj’
This is equivalent to the previous items for backward compatibility.

"ObjectRef", \$scalar
This version doesn‘t import anything but sets the referenced $scalar.
114 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry
Import constant(s) exported by Win32API::Registry
You can list any constants that are exported by Win32API::Registry to have them imported into your
package. These constants have names starting with "KEY_" or "REG_" (or even "HKEY_").

You can also specify ":KEY_", ":REG_", and even ":HKEY_" to import a whole set of constants.

See Win32API::Registry documentation for more information.

Options
You can list any option names that can be listed in the SetOptions() method call, each folowed by
the value to use for that option. A Registry virtual root object is created, all of these options are set for
it, then each variable to be imported/set is associated with this object.

In addition, the following special options are supported:

ExportLevel
Whether to import variables into your package or some package that uses your package.
Defaults to the value of $Exporter::ExportLevel and has the same meaning. See the
Exporter module for more information.

ExportTo
The name of the package to import variables and constants into. Overrides ExportLevel.

=head3 Specifying constants in your Perl code

This module was written with a strong emphasis on the convenience of the module user. Therefore, most
places where you can specify a constant like REG_SZ() also allow you to specify a string containing the
name of the constant, "REG_SZ". This is convenient because you may not have imported that symbolic
constant.

Perl also emphasizes programmer convenience so the code REG_SZ can be used to mean REG_SZ() or
"REG_SZ" or be illegal. Note that using ®_SZ (as we‘ve seen in much Win32 Perl code) is not a good
idea since it passes the current @_ to the constant() routine of the module which, at the least, can give
you a warning under −w.

Although greatly a matter of style, the "safest" practice is probably to specifically list all constants in the
use Win32::TieRegistry statement, specify use strict [or at least use strict qw(subs)],
and use bare constant names when you want the numeric value. This will detect mispelled constant names at
compile time.

 use strict;
 my $Registry;
 use Win32::TieRegistry 0.20 (
 TiedRef => \$Registry, Delimiter => "/", ArrayValues => 1,

SplitMultis => 1, AllowLoad => 1,
 qw(REG_SZ REG_EXPAND_SZ REG_DWORD REG_BINARY REG_MULTI_SZ

 KEY_READ KEY_WRITE KEY_ALL_ACCESS),
);
 $Registry−>{"LMachine/Software/FooCorp/"}= {
 "FooWriter/" => {
 "/Fonts" => [["Times","Courier","Lucinda"], REG_MULTI_SZ],

 "/WindowSize" => [pack("LL",24,80), REG_BINARY],
 "/TaskBarIcon" => ["0x0001", REG_DWORD],
},

 } or die "Can’t create Software/FooCorp/: $^E\n";

If you don‘t want to use strict qw(subs), the second safest practice is similar to the above but use
the REG_SZ() form for constants when possible and quoted constant names when required. Note that
qw() is a form of quoting.
24−Apr−2001 Win32, 5.6.1 115

TieRegistry Perl Programmers Reference Guide TieRegistry
 use Win32::TieRegistry 0.20 qw(
 TiedRef $Registry
 Delimiter / ArrayValues 1 SplitMultis 1 AllowLoad 1
 REG_SZ REG_EXPAND_SZ REG_DWORD REG_BINARY REG_MULTI_SZ
 KEY_READ KEY_WRITE KEY_ALL_ACCESS
);
 $Registry−>{"LMachine/Software/FooCorp/"}= {
 "FooWriter/" => {
 "/Fonts" => [["Times","Courier","Lucinda"], REG_MULTI_SZ()],

 "/WindowSize" => [pack("LL",24,80), REG_BINARY()],
 "/TaskBarIcon" => ["0x0001", REG_DWORD()],
},

 } or die "Can’t create Software/FooCorp/: $^E\n";

The examples in this document mostly use quoted constant names ("REG_SZ") since that works regardless
of which constants you imported and whether or not you have use strict in your script. It is not the best
choice for you to use for real scripts (vs. examples) because it is less efficient and is not supported by most
other similar modules.

SUMMARY
Most things can be done most easily via tied hashes. Skip down to the the Tied Hashes Summary to get
started quickly.

Objects Summary
Here are quick examples that document the most common functionality of all of the method functions
[except for a few almost useless ones].

 # Just another way of saying Open():
 $key= new Win32::TieRegistry "LMachine\\Software\\",
 { Access=>KEY_READ()|KEY_WRITE(), Delimiter=>"\\" };

 # Open a Registry key:
 $subKey= $key−>Open("SubKey/SubSubKey/",
 { Access=>KEY_ALL_ACCESS, Delimiter=>"/" });

 # Connect to a remote Registry key:
 $remKey= $Registry−>Connect("MachineName", "LMachine/",
 { Access=>KEY_READ, Delimiter=>"/" });

 # Get value data:
 $valueString= $key−>GetValue("ValueName");
 ($valueString, $valueType)= $key−>GetValue("ValueName");

 # Get list of value names:
 @valueNames= $key−>ValueNames;

 # Get list of subkey names:
 @subKeyNames= $key−>SubKeyNames;

 # Get combined list of value names (with leading delimiters)
 # and subkey names (with trailing delimiters):
 @memberNames= $key−>MemberNames;

 # Get all information about a key:
 %keyInfo= $key−>Information;
 # keys(%keyInfo)= qw(Class LastWrite SecurityLen
 # CntSubKeys MaxSubKeyLen MaxSubClassLen
 # CntValues MaxValNameLen MaxValDataLen);

 # Get selected information about a key:
116 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry

>0,
 ($class, $cntSubKeys)= $key−>Information("Class", "CntSubKeys");

 # Get and/or set delimiter:
 $delim= $key−>Delimiter;
 $oldDelim= $key−>Delimiter($newDelim);

 # Get "path" for an open key:
 $path= $key−>Path;
 # For example, "/CUser/Control Panel/Mouse/"
 # or "//HostName/LMachine/System/DISK/".

 # Get name of machine where key is from:
 $mach= $key−>Machine;
 # Will usually be "" indicating key is on local machine.

 # Control different options (see main documentation for descriptions):
 $oldBool= $key−>ArrayValues($newBool);
 $oldBool= $key−>FastDelete($newBool);
 $oldBool= $key−>FixSzNulls($newBool);
 $oldBool= $key−>SplitMultis($newBool);
 $oldBool= $key−>DWordsToHex($newBool);
 $oldBool= $key−>DualBinVals($newBool);
 $oldBool= $key−>DualTypes($newBool);
 @oldBools= $key−>SetOptions(ArrayValues=>1, FastDelete=>1, FixSzNulls=
 Delimiter=>"/", AllowLoad=>1, AllowSave=>1);
 @oldBools= $key−>GetOptions(ArrayValues, FastDelete, FixSzNulls);

 # Add or set a value:
 $key−>SetValue("ValueName", $valueDataString);
 $key−>SetValue("ValueName", pack($format,$valueData), "REG_BINARY");

 # Add or set a key:
 $key−>CreateKey("SubKeyName");
 $key−>CreateKey("SubKeyName",
 { Access=>"KEY_ALL_ACCESS", Class=>"ClassName",
 Delimiter=>"/", Volatile=>1, Backup=>1 });

 # Load an off−line Registry hive file into the on−line Registry:
 $newKey= $Registry−>Load("C:/Path/To/Hive/FileName");
 $newKey= $key−>Load("C:/Path/To/Hive/FileName", "NewSubKeyName",
 { Access=>"KEY_READ" });
 # Unload a Registry hive file loaded via the Load() method:
 $newKey−>UnLoad;

 # (Dis)Allow yourself to load Registry hive files:
 $success= $Registry−>AllowLoad($bool);

 # (Dis)Allow yourself to save a Registry key to a hive file:
 $success= $Registry−>AllowSave($bool);

 # Save a Registry key to a new hive file:
 $key−>RegSaveKey("C:/Path/To/Hive/FileName", []);

=head3 Other Useful Methods

See Win32API::Registry for more information on these methods. These methods are provided for coding
convenience and are identical to the Win32API::Registry functions except that these don‘t take a handle to a
Registry key, instead getting the handle from the invoking object [$key].

 $key−>RegGetKeySecurity($iSecInfo, $sSecDesc, $lenSecDesc);
 $key−>RegLoadKey($sSubKeyName, $sPathToFile);
24−Apr−2001 Win32, 5.6.1 117

TieRegistry Perl Programmers Reference Guide TieRegistry

);

]
 $key−>RegNotifyChangeKeyValue(
 $bWatchSubtree, $iNotifyFilter, $hEvent, $bAsync);
 $key−>RegQueryMultipleValues(
 $structValueEnts, $cntValueEnts, $Buffer, $lenBuffer);
 $key−>RegReplaceKey($sSubKeyName, $sPathToNewFile, $sPathToBackupFile
 $key−>RegRestoreKey($sPathToFile, $iFlags);
 $key−>RegSetKeySecurity($iSecInfo, $sSecDesc);
 $key−>RegUnLoadKey($sSubKeyName);

Tied Hashes Summary
For fast learners, this may be the only section you need to read. Always append one delimiter to the end of
each Registry key name and prepend one delimiter to the front of each Registry value name.

=head3 Opening keys

 use Win32::TieRegistry (Delimiter=>"/", ArrayValues=>1);
 $Registry−>Delimiter("/"); # Set delimiter to "/".
 $swKey= $Registry−>{"LMachine/Software/"};
 $winKey= $swKey−>{"Microsoft/Windows/CurrentVersion/"};
 $userKey= $Registry−>
 {"CUser/Software/Microsoft/Windows/CurrentVersion/"};
 $remoteKey= $Registry−>{"//HostName/LMachine/"};

=head3 Reading values

 $progDir= $winKey−>{"/ProgramFilesDir"}; # "C:\\Program Files"
 $tip21= $winKey−>{"Explorer/Tips//21"}; # Text of tip #21.

 $winKey−>ArrayValues(1);
 ($devPath, $type)= $winKey−>{"/DevicePath"};
 # $devPath eq "%SystemRoot%\\inf"
 # $type eq "REG_EXPAND_SZ" [if you have SetDualVar.pm installed]
 # $type == REG_EXPAND_SZ() [if did C<use Win32::TieRegistry qw(:REG_)>

=head3 Setting values

 $winKey−>{"Setup//SourcePath"}= "\\\\SwServer\\SwShare\\Windows";
 # Simple. Assumes data type of REG_SZ.

 $winKey−>{"Setup//Installation Sources"}=
 ["D:\x00\\\\SwServer\\SwShare\\Windows\0\0", "REG_MULTI_SZ"];
 # "\x00" and "\0" used to mark ends of each string and end of list.

 $winKey−>{"Setup//Installation Sources"}=
 [["D:","\\\\SwServer\\SwShare\\Windows"], "REG_MULTI_SZ"];
 # Alternate method that is easier to read.

 $userKey−>{"Explorer/Tips//DisplayInitialTipWindow"}=
 [pack("L",0), "REG_DWORD"];
 $userKey−>{"Explorer/Tips//Next"}= [pack("S",3), "REG_BINARY"];
 $userKey−>{"Explorer/Tips//Show"}= [pack("L",0), "REG_BINARY"];

=head3 Adding keys

 $swKey−>{"FooCorp/"}= {
 "FooWriter/" => {
 "/Version" => "4.032",
 "Startup/" => {
 "/Title" => "Foo Writer Deluxe][",
 "/WindowSize" => [pack("LL",$wid,$ht), "REG_BINARY"],
 "/TaskBarIcon" => ["0x0001", "REG_DWORD"],
118 Win32, 5.6.1 24−Apr−2001

TieRegistry Perl Programmers Reference Guide TieRegistry

);
 },
 "Compatibility/" => {
 "/AutoConvert" => "Always",
 "/Default Palette" => "Windows Colors",
 },
 },
 "/License", => "0123−9C8EF1−09−FC",
 };

=head3 Listing all subkeys and values

 @members= keys(%{$swKey});
 @subKeys= grep(m#^/#, keys(%{$swKey−>{"Classes/batfile/"}}));
 # @subKeys= ("/", "/EditFlags");
 @valueNames= grep(! m#^/#, keys(%{$swKey−>{"Classes/batfile/"}})
 # @valueNames= ("DefaultIcon/", "shell/", "shellex/");

=head3 Deleting values or keys with no subkeys

 $oldValue= delete $userKey−>{"Explorer/Tips//Next"};

 $oldValues= delete $userKey−>{"Explorer/Tips/"};
 # $oldValues will be reference to hash containing deleted keys values.

=head3 Closing keys

 undef $swKey; # Explicit way to close a key.
 $winKey= "Anything else"; # Implicitly closes a key.
 exit 0; # Implicitly closes all keys.

Tie::Registry
This module was originally called Tie::Registry. Changing code that used Tie::Registry over to
Win32::TieRegistry is trivial as the module name should only be mentioned once, in the use line. However,
finding all of the places that used Tie::Registry may not be completely trivial so we have included
Tie/Registry.pm which you can install to provide backward compatibility.

AUTHOR
Tye McQueen. See http://www.metronet.com/~tye/ or e−mail tye@metronet.com with bug reports.

SEE ALSO
Win32API::Registry − Provides access to Reg*(), HKEY_*, KEY_*, REG_* [required].

Win32::WinError − Defines ERROR_* values [optional].

SetDualVar − For returning REG_* values as combined string/integer values [optional].

BUGS
Perl5.004_02 has bugs that make Win32::TieRegistry fail in strange and subtle ways.

Using Win32::TieRegistry with versions of Perl prior to 5.005 can be tricky or impossible. Most notes about
this have been removed from the documentation (they get rather complicated and confusing). This includes
references to $^E perhaps not being meaningful.

Because Perl hashes are case sensitive, certain lookups are also case sensistive. In particular, the root keys
("Classes", "CUser", "LMachine", "Users", "PerfData", "CConfig", "DynData", and HKEY_*) must always
be entered without changing between upper and lower case letters. Also, the special rule for matching
subkey names that contain the user−selected delimiter only works if case is matched. All other key name
and value name lookups should be case insensitive because the underlying Reg*() calls ignore case.

Information about each key is cached when using a tied hash. This cache is not flushed nor updated when
changes are made, even when the same tied hash is used to make the changes.
24−Apr−2001 Win32, 5.6.1 119

TieRegistry Perl Programmers Reference Guide TieRegistry
Current implementations of Perl‘s "global destruction" phase can cause objects returned by Load() to be
destroyed while keys within the hive are still open, if the objects still exist when the script starts to exit.
When this happens, the automatic UnLoad() will report a failure and the hive will remain loaded in the
Registry.

Trying to Load() a hive file that is located on a remote network share may silently delete all data from the
hive. This is a bug in the Win32 APIs, not any Perl code or modules. This module does not try to protect
you from this bug.

There is no test suite.

FUTURE DIRECTIONS
The following items are desired by the author and may appear in a future release of this module.

TieValues option
Currently described in main documentation but no yet implemented.

AutoRefresh option
Trigger use of RegNotifyChangeKeyValue() to keep tied hash caches up−to−date even when
other programs make changes.

Error options
Allow the user to have unchecked calls (calls in a "void context") to automatically report errors via
warn or die.

For complex operations, such a copying an entire subtree, provide access to detailed information about
errors (and perhaps some warnings) that were encountered. Let the user control whether the complex
operation continues in spite of errors.
120 Win32, 5.6.1 24−Apr−2001

Const Perl Programmers Reference Guide Const

;
NAME
Win32::OLE::Const − Extract constant definitions from TypeLib

SYNOPSIS
 use Win32::OLE::Const ’Microsoft Excel’;
 printf "xlMarkerStyleDot = %d\n", xlMarkerStyleDot;

 my $wd = Win32::OLE::Const−>Load("Microsoft Word 8\\.0 Object Library")
 foreach my $key (keys %$wd) {
 printf "$key = %s\n", $wd−>{$key};
 }

DESCRIPTION
This modules makes all constants from a registered OLE type library available to the Perl program. The
constant definitions can be imported as functions, providing compile time name checking. Alternatively the
constants can be returned in a hash reference which avoids defining lots of functions of unknown names.

Functions/Methods

use Win32::OLE::Const
The use statement can be used to directly import the constant names and values into the users
namespace.

 use Win32::OLE::Const (TYPELIB,MAJOR,MINOR,LANGUAGE);

The TYPELIB argument specifies a regular expression for searching through the registry for the type
library. Note that this argument is implicitly prefixed with ^ to speed up matches in the most common
cases. Use a typelib name like ".*Excel" to match anywhere within the description. TYPELIB is the
only required argument.

The MAJOR and MINOR arguments specify the requested version of the type specification. If the
MAJOR argument is used then only typelibs with exactly this major version number will be matched.
The MINOR argument however specifies the minimum acceptable minor version. MINOR is ignored
if MAJOR is undefined.

If the LANGUAGE argument is used then only typelibs with exactly this language id will be matched.

The module will select the typelib with the highest version number satisfying the request. If no
language id is specified then a the default language (0) will be preferred over the others.

Note that only constants with valid Perl variable names will be exported, i.e. names matching this
regexp: /^[a−zA−Z_][a−zA−Z0−9_]*$/.

Win32::OLE::Const−Load
The Win32::OLE::Const−Load method returns a reference to a hash of constant definitions.

 my $const = Win32::OLE::Const−>Load(TYPELIB,MAJOR,MINOR,LANGUAGE);

The parameters are the same as for the use case.

This method is generally preferrable when the typelib uses a non−english language and the constant
names contain locale specific characters not allowed in Perl variable names.

Another advantage is that all available constants can now be enumerated.

The load method also accepts an OLE object as a parameter. In this case the OLE object is queried
about its containing type library and no registry search is done at all. Interestingly this seems to be
slower.
24−Apr−2001 Win32, 5.6.1 121

Const Perl Programmers Reference Guide Const
EXAMPLES
The first example imports all Excel constants names into the main namespace and prints the value of
xlMarkerStyleDot (−4118).

 use Win32::OLE::Const (’Microsoft Excel 8.0 Object Library’);
 print "xlMarkerStyleDot = %d\n", xlMarkerStyleDot;

The second example returns all Word constants in a hash ref.

 use Win32::OLE::Const;
 my $wd = Win32::OLE::Const−>Load("Microsoft Word 8.0 Object Library");
 foreach my $key (keys %$wd) {
 printf "$key = %s\n", $wd−>{$key};
 }
 printf "wdGreen = %s\n", $wd−>{wdGreen};

The last example uses an OLE object to specify the type library:

 use Win32::OLE;
 use Win32::OLE::Const;
 my $Excel = Win32::OLE−>new(’Excel.Application’, ’Quit’);
 my $xl = Win32::OLE::Const−>Load($Excel);

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
122 Win32, 5.6.1 24−Apr−2001

Enum Perl Programmers Reference Guide Enum
NAME
Win32::OLE::Enum − OLE Automation Collection Objects

SYNOPSIS
 my $Sheets = $Excel−>Workbooks(1)−>Worksheets;
 my $Enum = Win32::OLE::Enum−>new($Sheets);
 my @Sheets = $Enum−>All;

 while (defined(my $Sheet = $Enum−>Next)) { ... }

DESCRIPTION
This module provides an interface to OLE collection objects from Perl. It defines an enumerator object
closely mirroring the functionality of the IEnumVARIANT interface.

Please note that the Reset() method is not available in all implementations of OLE collections (like Excel
7). In that case the Enum object is good only for a single walk through of the collection.

Functions/Methods

Win32::OLE::Enum−new($object)
Creates an enumerator for $object, which must be a valid OLE collection object. Note that
correctly implemented collection objects must support the Count and Item methods, so
creating an enumerator is not always necessary.

$Enum−All()
Returns a list of all objects in the collection. You have to call $Enum−Reset() before the
enumerator can be used again. The previous position in the collection is lost.

This method can also be called as a class method:

my @list = Win32::OLE::Enum−>All($Collection);

$Enum−Clone()
Returns a clone of the enumerator maintaining the current position within the collection (if
possible). Note that the Clone method is often not implemented. Use $Enum−Clone() in an
eval block to avoid dying if you are not sure that Clone is supported.

$Enum−Next([$count])
Returns the next element of the collection. In a list context the optional $count argument
specifies the number of objects to be returned. In a scalar context only the last of at most
$count retrieved objects is returned. The default for $count is 1.

$Enum−Reset()
Resets the enumeration sequence to the beginning. There is no guarantee that the exact same set
of objects will be enumerated again (e.g. when enumerating files in a directory). The methods
return value indicates the success of the operation. (Note that the Reset() method seems to be
unimplemented in some applications like Excel 7. Use it in an eval block to avoid dying.)

$Enum−Skip([$count])
Skip the next $count elements of the enumeration. The default for $count is 1. The
functions returns TRUE if at least $count elements could be skipped. It returns FALSE if not
enough elements were left.

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
24−Apr−2001 Win32, 5.6.1 123

NEWS Perl Programmers Reference Guide NEWS
NAME
Win32::OLE::NEWS − What‘s new in Win32::OLE

This file contains a history of user visible changes to the Win32::OLE::* modules. Only new features and
major bug fixes that might affect backwards compatibility are included.

Version 0.13

nothing() method in Win32::OLE::Variant
The nothing() function returns an empty VT_DISPATCH variant. It can be used to clear an object
reference stored in a property

use Win32::OLE::Variant qw(:DEFAULT nothing);
...
$object−>{Property} = nothing;

This has the same effect as the Visual Basic statement

Set object.Property = Nothing

new _NewEnum and _Unique options
There are two new options available for the Win32::OLE−Option class method: _NewEnum provides the
elements of a collection object directly as the value of a _NewEnum property. The _Unique option
guarantees that Win32::OLE will not create multiple proxy objects for the same underlying COM/OLE
object.

Both options are only really useful to tree traversal programs or during debugging.

Version 0.12

Additional error handling functionality
The Warn option can now be set to a CODE reference too. For example,

 Win32::OLE−>Option(Warn => 3);

could now be written as

 Win32::OLE−>Option(Warn => \&Carp::croak);

This can even be used to emulate the VisualBasic On Error Goto Label construct:

 Win32::OLE−>Option(Warn => sub {goto CheckError});
 # ... your normal OLE code here ...

 CheckError:
 # ... your error handling code here ...

Builtin event loop
Processing OLE events required a polling loop before, e.g.

 my $Quit;
 #...
 until ($Quit) {
 Win32::OLE−>SpinMessageLoop;
 Win32::Sleep(100);
 }
 package BrowserEvents;
 sub OnQuit { $Quit = 1 }

This is inefficient and a bit odd. This version of Win32::OLE now supports a standard messageloop:

 Win32::OLE−>MessageLoop();
124 Win32, 5.6.1 24−Apr−2001

NEWS Perl Programmers Reference Guide NEWS
 package BrowserEvents;
 sub OnQuit { Win32::OLE−>QuitMessageLoop }

Free unused OLE libraries
Previous versions of Win32::OLE would call the CoFreeUnusedLibraries() API whenever an OLE
object was destroyed. This made sure that OLE libraries would be unloaded as soon as they were no longer
needed. Unfortunately, objects implemented in Visual Basic tend to crash during this call, as they pretend to
be ready for unloading, when in fact, they aren‘t.

The unloading of object libraries is really only important for long running processes that might instantiate a
huge number of different objects over time. Therefore this API is no longer called automatically. The
functionality is now available explicitly to those who want or need it by calling a Win32::OLE class method:

 Win32::OLE−>FreeUnusedLibraries();

The "Win32::OLE" article from "The Perl Journal #10"
The article is Copyright 1998 by The Perl Journal. http://www.tpj.com

It originally appeared in The Perl Journal # 10 and appears here courtesy of Jon Orwant and The Perl
Journal. The sample code from the article is in the eg/tpj.pl file.

VARIANT−Put() bug fixes
The Put() method didn‘t work correctly for arrays of type VT_BSTR, VT_DISPATH or VT_UNKNOWN.
 This has been fixed.

Error message fixes
Previous versions of Win32::OLE gave a wrong argument index for some OLE error messages (the number
was too large by 1). This should be fixed now.

VT_DATE and VT_ERROR return values handled differently
Method calls and property accesses returning a VT_DATE or VT_ERROR value would previously translate
the value to string or integer format. This has been changed to return a Win32::OLE::Variant object. The
return values will behave as before if the Win32::OLE::Variant module is being used. This module
overloads the conversion of the objects to strings and numbers.

Version 0.11 (changes since 0.1008)

new DHTML typelib browser
The Win32::OLE distribution now contains a type library browser. It is written in PerlScript, generating
dynamic HTML. It requires Internet Explorer 4.0 or later. You‘ll find it in browser/Browser.html. It
should be available in the ActivePerl HTML help under Win32::OLE::Browser.

After selecting a library, type or member you can press F1 to call up the corresponding help file at the
appropriate location.

VT_DECIMAL support
The Win32::OLE::Variant module now supports VT_DECIMAL variants too. They are not "officially"
allowed in OLE Automation calls, but even Microsoft‘s "ActiveX Data Objects" sometimes returns
VT_DECIMAL values.

VT_DECIMAL variables are stored as 96−bit integers scaled by a variable power of 10. The power of 10
scaling factor specifies the number of digits to the right of the decimal point, and ranges from 0 to 28. With
a scale of 0 (no decimal places), the largest possible value is +/−79,228,162,514,264,337,593,543,950,335.
With a 28 decimal places, the largest value is +/−7.9228162514264337593543950335 and the smallest,
non−zero value is +/−0.0000000000000000000000000001.
24−Apr−2001 Win32, 5.6.1 125

NEWS Perl Programmers Reference Guide NEWS
Version 0.1008

new LetProperty() object method
In Win32::OLE property assignment using the hash syntax is equivalent to the Visual Basic Set syntax (by
reference assignment):

 $Object−>{Property} = $OtherObject;

corresponds to this Visual Basic statement:

 Set Object.Property = OtherObject

To get the by value treatment of the Visual Basic Let statement

 Object.Property = OtherObject

you have to use the LetProperty() object method in Perl:

 $Object−>LetProperty($Property, $OtherObject);

new HRESULT() function
The HRESULT() function converts an unsigned number into a signed HRESULT error value as used by
OLE internally. This is necessary because Perl treats all hexadecimal constants as unsigned. To check if the
last OLE function returned "Member not found" (0x80020003) you can write:

 if (Win32::OLE−>LastError == HRESULT(0x80020003)) {
 # your error recovery here
 }

Version 0.1007 (changes since 0.1005)

OLE Event support
This version of Win32::OLE contains ALPHA level support for OLE events. The userinterface is still
subject to change. There are ActiveX objects / controls that don‘t fire events under the current
implementation.

Events are enabled for a specific object with the Win32::OLE−WithEvents() class method:

 Win32::OLE−>WithEvents(OBJECT, HANDLER, INTERFACE)

Please read further documentation in Win32::OLE.

GetObject() and GetActiveObject() now support optional DESTRUCTOR argument
It is now possible to specify a DESTRUCTOR argument to the GetObject() and
GetActiveObject() class methods. They work identical to the new() DESTRUCTOR argument.

Remote object instantiation via DCOM
This has actually been in Win32::OLE since 0.0608, but somehow never got documented. You can provide
an array reference in place of the usual PROGID parameter to Win32::OLE−new():

 OBJ = Win32::OLE−>new([MACHINE, PRODID]);

The array must contain two elements: the name of the MACHINE and the PROGID. This will try to create
the object on the remote MACHINE.

Enumerate all Win32::OLE objects
This class method returns the number Win32::OLE objects currently in existance. It will call the optional
CALLBACK function for each of these objects:

 $Count = Win32::OLE−>EnumAllObjects(sub {
 my $Object = shift;
 my $Class = Win32::OLE−>QueryObjectType($Object);
 printf "# Object=%s Class=%s\n", $Object, $Class;
126 Win32, 5.6.1 24−Apr−2001

NEWS Perl Programmers Reference Guide NEWS
 });

The EnumAllObjects() method is primarily a debugging tool. It can be used e.g. in an END block to
check if all external connections have been properly destroyed.

The VARIANT−Put() method now returns the VARIANT object itself
This allows chaining of Put() method calls to set multiple values in an array variant:

 $Array−>Put(0,0,$First_value)−>Put(0,1,$Another_value);

The VARIANT−Put(ARRAYREF) form allows assignment to a complete SAFEARRAY
This allows automatic conversion from a list of lists to a SAFEARRAY. You can now write:

 my $Array = Variant(VT_ARRAY|VT_R8, [1,2], 2);
 $Array−>Put([[1,2], [3,4]]);

instead of the tedious:

 $Array−>Put(1,0,1);
 $Array−>Put(1,1,2);
 $Array−>Put(2,0,3);
 $Array−>Put(2,1,4);

New Variant formatting methods
There are four new methods for formatting variant values: Currency(), Date(), Number() and
Time(). For example:

 my $v = Variant(VT_DATE, "April 1 99");
 print $v−>Date(DATE_LONGDATE), "\n";
 print $v−>Date("ddd’,’ MMM dd yy"), "\n";

will print:

 Thursday, April 01, 1999
 Thu, Apr 01 99

new Win32::OLE::NLS methods: SendSettingChange() and SetLocaleInfo()
SendSettingChange() sends a WM_SETTINGCHANGE message to all top level windows.

SetLocaleInfo() allows changing elements in the user override section of the locale database.
Unfortunately these changes are not automatically available to further Variant formatting; you have to call
SendSettingChange() first.

Win32::OLE::Const now correctly treats version numbers as hex
The minor and major version numbers of type libraries have been treated as decimal. This was wrong. They
are now correctly decoded as hex.

more robust global destruction of Win32::OLE objects
The final destruction of Win32::OLE objects has always been somewhat fragile. The reason for this is that
Perl doesn‘t honour reference counts during global destruction but destroys objects in seemingly random
order. This can lead to leaked database connections or unterminated external objects. The only solution was
to make all objects lexical and hope that no object would be trapped in a closure. Alternatively all objects
could be explicitly set to undef, which doesn‘t work very well with exception handling.

With version 0.1007 of Win32::OLE this problem should be gone: The module keeps a list of active
Win32::OLE objects. It uses an END block to destroy all objects at program termination before the Perl‘s
global destruction starts. Objects still existing at program termination are now destroyed in reverse order of
creation. The effect is similar to explicitly calling Win32::OLE−Uninitialize() just prior to termination.
24−Apr−2001 Win32, 5.6.1 127

NEWS Perl Programmers Reference Guide NEWS
Version 0.1005 (changes since 0.1003)
Win32::OLE 0.1005 has been release with ActivePerl build 509. It is also included in the Perl Resource Kit
for Win32 Update.

optional DESTRUCTOR for GetActiveObject() GetObject() class methods
The GetActiveObject() and GetObject() class method now also support an optional
DESTRUCTOR parameter just like Win32::OLE−new(). The DESTRUCTOR is executed when the last
reference to this object goes away. It is generally considered impolite to stop applications that you did not
start yourself.

new Variant object method: $object−Copy()
See Win32::OLE::Variant/Copy([DIM]).

new Win32::OLE−Option() class method
The Option() class method can be used to inspect and modify Win32::OLE/Module Options. The single
argument form retrieves the value of an option:

 my $CP = Win32::OLE−>Option(’CP’);

A single call can be used to set multiple options simultaneously:

 Win32::OLE−>Option(CP => CP_ACP, Warn => 3);

Currently the following options exist: CP, LCID and Warn.
128 Win32, 5.6.1 24−Apr−2001

Win32::OLE::Variant/Copy([DIM])
Win32::OLE/Module�Options

NLS Perl Programmers Reference Guide NLS

difference
el marks

difference
el marks
NAME
Win32::OLE::NLS − OLE National Language Support

SYNOPSIS
missing

DESCRIPTION
This module provides access to the national language support features in the OLENLS.DLL.

Functions

CompareString(LCID,FLAGS,STR1,STR2)
Compare STR1 and STR2 in the LCID locale. FLAGS indicate the character traits to be used or
ignored when comparing the two strings.

NORM_IGNORECASE Ignore case
NORM_IGNOREKANATYPE Ignore hiragana/katakana character
NORM_IGNORENONSPACE Ignore accents, diacritics, and vow
NORM_IGNORESYMBOLS Ignore symbols
NORM_IGNOREWIDTH Ignore character width

Possible return values are:

Function failed
1 STR1 is less than STR2
2 STR1 is equal to STR2
3 STR1 is greater than STR2

Note that you can subtract 2 from the return code to get values comparable to the cmp operator.

LCMapString(LCID,FLAGS,STR)
LCMapString translates STR using LCID dependent translation. Flags contains a combination of
the following options:

LCMAP_LOWERCASE Lowercase
LCMAP_UPPERCASE Uppercase
LCMAP_HALFWIDTH Narrow characters
LCMAP_FULLWIDTH Wide characters
LCMAP_HIRAGANA Hiragana
LCMAP_KATAKANA Katakana
LCMAP_SORTKEY Character sort key

The following normalization options can be combined with LCMAP_SORTKEY:

NORM_IGNORECASE Ignore case
NORM_IGNOREKANATYPE Ignore hiragana/katakana character
NORM_IGNORENONSPACE Ignore accents, diacritics, and vow
NORM_IGNORESYMBOLS Ignore symbols
NORM_IGNOREWIDTH Ignore character width

The return value is the translated string.

GetLocaleInfo(LCID,LCTYPE)
Retrieve locale setting LCTYPE from the locale specified by LCID. Use
LOCALE_NOUSEROVERRIDE | LCTYPE to always query the locale database. Otherwise user
changes to win.ini through the windows control panel take precedence when retrieving values
for the system default locale. See the documentation below for a list of valid LCTYPE values.

The return value is the contents of the requested locale setting.
24−Apr−2001 Win32, 5.6.1 129

NLS Perl Programmers Reference Guide NLS

ng");

des)
GetStringType(LCID,TYPE,STR)
Retrieve type information from locale LCID about each character in STR. The requested TYPE
can be one of the following 3 levels:

CT_CTYPE1 ANSI C and POSIX type information
CT_CTYPE2 Text layout type information
CT_CTYPE3 Text processing type information

The return value is a list of values, each of wich is a bitwise OR of the applicable type bits from
the corresponding table below:

@ct = GetStringType(LOCALE_SYSTEM_DEFAULT, CT_CTYPE1, "Stri

ANSI C and POSIX character type information:

C1_UPPER Uppercase
C1_LOWER Lowercase
C1_DIGIT Decimal digits
C1_SPACE Space characters
C1_PUNCT Punctuation
C1_CNTRL Control characters
C1_BLANK Blank characters
C1_XDIGIT Hexadecimal digits
C1_ALPHA Any letter

Text layout type information:

C2_LEFTTORIGHT Left to right
C2_RIGHTTOLEFT Right to left
C2_EUROPENUMBER European number, European digit
C2_EUROPESEPARATOR European numeric separator
C2_EUROPETERMINATOR European numeric terminator
C2_ARABICNUMBER Arabic number
C2_COMMONSEPARATOR Common numeric separator
C2_BLOCKSEPARATOR Block separator
C2_SEGMENTSEPARATOR Segment separator
C2_WHITESPACE White space
C2_OTHERNEUTRAL Other neutrals
C2_NOTAPPLICABLE No implicit direction (e.g. ctrl co

Text precessing type information:

C3_NONSPACING Nonspacing mark
C3_DIACRITIC Diacritic nonspacing mark
C3_VOWELMARK Vowel nonspacing mark
C3_SYMBOL Symbol
C3_KATAKANA Katakana character
C3_HIRAGANA Hiragana character
C3_HALFWIDTH Narrow character
C3_FULLWIDTH Wide character
C3_IDEOGRAPH Ideograph
C3_ALPHA Any letter
C3_NOTAPPLICABLE Not applicable

GetSystemDefaultLangID()
Returns the system default language identifier.
130 Win32, 5.6.1 24−Apr−2001

NLS Perl Programmers Reference Guide NLS
GetSystemDefaultLCID()
Returns the system default locale identifier.

GetUserDefaultLangID()
Returns the user default language identifier.

GetUserDefaultLCID()
Returns the user default locale identifier.

SendSettingChange()
Sends a WM_SETTINGCHANGE message to all top level windows.

SetLocaleInfo(LCID, LCTYPE, LCDATA)
Changes an item in the user override part of the locale setting LCID. It doesn‘t change the
system default database. The following LCTYPEs are changeable:

LOCALE_ICALENDARTYPE LOCALE_SDATE
LOCALE_ICURRDIGITS LOCALE_SDECIMAL
LOCALE_ICURRENCY LOCALE_SGROUPING
LOCALE_IDIGITS LOCALE_SLIST
LOCALE_IFIRSTDAYOFWEEK LOCALE_SLONGDATE
LOCALE_IFIRSTWEEKOFYEAR LOCALE_SMONDECIMALSEP
LOCALE_ILZERO LOCALE_SMONGROUPING
LOCALE_IMEASURE LOCALE_SMONTHOUSANDSEP
LOCALE_INEGCURR LOCALE_SNEGATIVESIGN
LOCALE_INEGNUMBER LOCALE_SPOSITIVESIGN
LOCALE_IPAPERSIZE LOCALE_SSHORTDATE
LOCALE_ITIME LOCALE_STHOUSAND
LOCALE_S1159 LOCALE_STIME
LOCALE_S2359 LOCALE_STIMEFORMAT
LOCALE_SCURRENCY LOCALE_SYEARMONTH

You have to call SendSettingChange() to activate these changes for subsequent
Win32::OLE::Variant object formatting because the OLE subsystem seems to cache locale
information.

MAKELANGID(LANG,SUBLANG)
Creates a lnguage identifier from a primary language and a sublanguage.

PRIMARYLANGID(LANGID)
Retrieves the primary language from a language identifier.

SUBLANGID(LANGID)
Retrieves the sublanguage from a language identifier.

MAKELCID(LANGID)
Creates a locale identifies from a language identifier.

LANGIDFROMLCID(LCID)
Retrieves a language identifier from a locale identifier.

Locale Types

LOCALE_ILANGUAGE
The language identifier (in hex).

LOCALE_SLANGUAGE
The localized name of the language.
24−Apr−2001 Win32, 5.6.1 131

NLS Perl Programmers Reference Guide NLS
LOCALE_SENGLANGUAGE
The ISO Standard 639 English name of the language.

LOCALE_SABBREVLANGNAME
The three−letter abbreviated name of the language. The first two letters are from the ISO
Standard 639 language name abbreviation. The third letter indicates the sublanguage type.

LOCALE_SNATIVELANGNAME
The native name of the language.

LOCALE_ICOUNTRY
The country code, which is based on international phone codes.

LOCALE_SCOUNTRY
The localized name of the country.

LOCALE_SENGCOUNTRY
The English name of the country.

LOCALE_SABBREVCTRYNAME
The ISO Standard 3166 abbreviated name of the country.

LOCALE_SNATIVECTRYNAME
The native name of the country.

LOCALE_IDEFAULTLANGUAGE
Language identifier for the principal language spoken in this locale.

LOCALE_IDEFAULTCOUNTRY
Country code for the principal country in this locale.

LOCALE_IDEFAULTANSICODEPAGE
The ANSI code page associated with this locale. Format: 4 Unicode decimal digits plus a
Unicode null terminator.

XXX This should be translated by GetLocaleInfo. XXX

LOCALE_IDEFAULTCODEPAGE
The OEM code page associated with the country.

LOCALE_SLIST
Characters used to separate list items (often a comma).

LOCALE_IMEASURE
Default measurement system:

metric system (S.I.)
1 U.S. system

LOCALE_SDECIMAL
Characters used for the decimal separator (often a dot).

LOCALE_STHOUSAND
Characters used as the separator between groups of digits left of the decimal.

LOCALE_SGROUPING
Sizes for each group of digits to the left of the decimal. An explicit size is required for each
group. Sizes are separated by semicolons. If the last value is 0, the preceding value is repeated.
To group thousands, specify 3;0.
132 Win32, 5.6.1 24−Apr−2001

NLS Perl Programmers Reference Guide NLS
LOCALE_IDIGITS
The number of fractional digits.

LOCALE_ILZERO
Whether to use leading zeros in decimal fields. A setting of 0 means use no leading zeros; 1
means use leading zeros.

LOCALE_SNATIVEDIGITS
The ten characters that are the native equivalent of the ASCII 0−9.

LOCALE_INEGNUMBER
Negative number mode.

0 (1.1)
1 −1.1
2 −1.1
3 1.1
4 1.1

LOCALE_SCURRENCY
The string used as the local monetary symbol.

LOCALE_SINTLSYMBOL
Three characters of the International monetary symbol specified in ISO 4217, Codes for the
Representation of Currencies and Funds, followed by the character separating this string from the
amount.

LOCALE_SMONDECIMALSEP
Characters used for the monetary decimal separators.

LOCALE_SMONTHOUSANDSEP
Characters used as monetary separator between groups of digits left of the decimal.

LOCALE_SMONGROUPING
Sizes for each group of monetary digits to the left of the decimal. An explicit size is needed for
each group. Sizes are separated by semicolons. If the last value is 0, the preceding value is
repeated. To group thousands, specify 3;0.

LOCALE_ICURRDIGITS
Number of fractional digits for the local monetary format.

LOCALE_IINTLCURRDIGITS
Number of fractional digits for the international monetary format.

LOCALE_ICURRENCY
Positive currency mode.

Prefix, no separation.
1 Suffix, no separation.
2 Prefix, 1−character separation.
3 Suffix, 1−character separation.

LOCALE_INEGCURR
Negative currency mode.

($1.1)
1 −$1.1
2 $−1.1
3 $1.1−
24−Apr−2001 Win32, 5.6.1 133

NLS Perl Programmers Reference Guide NLS
4 $(1.1$)
5 −1.1$
6 1.1−$
7 1.1$−
8 −1.1 $ (space before $)
9 −$ 1.1 (space after $)
10 1.1 $− (space before $)

LOCALE_ICALENDARTYPE
The type of calendar currently in use.

1 Gregorian (as in U.S.)
2 Gregorian (always English strings)
3 Era: Year of the Emperor (Japan)
4 Era: Year of the Republic of China
5 Tangun Era (Korea)

LOCALE_IOPTIONALCALENDAR
The additional calendar types available for this LCID. Can be a null−separated list of all valid
optional calendars. Value is 0 for "None available" or any of the LOCALE_ICALENDARTYPE
settings.

XXX null separated list should be translated by GetLocaleInfo XXX

LOCALE_SDATE
Characters used for the date separator.

LOCALE_STIME
Characters used for the time separator.

LOCALE_STIMEFORMAT
Time−formatting string.

LOCALE_SSHORTDATE
Short Date_Time formatting strings for this locale.

LOCALE_SLONGDATE
Long Date_Time formatting strings for this locale.

LOCALE_IDATE
Short Date format−ordering specifier.

Month − Day − Year
1 Day − Month − Year
2 Year − Month − Day

LOCALE_ILDATE
Long Date format ordering specifier. Value can be any of the valid LOCALE_IDATE settings.

LOCALE_ITIME
Time format specifier.

AM/PM 12−hour format.
1 24−hour format.

LOCALE_ITIMEMARKPOSN
Whether the time marker string (AM|PM) precedes or follows the time string.

0 Suffix (9:15 AM).
1 Prefix (AM 9:15).
134 Win32, 5.6.1 24−Apr−2001

NLS Perl Programmers Reference Guide NLS

he year.
f the year
LOCALE_ICENTURY
Whether to use full 4−digit century.

Two digit.
1 Full century.

LOCALE_ITLZERO
Whether to use leading zeros in time fields.

No leading zeros.
1 Leading zeros for hours.

LOCALE_IDAYLZERO
Whether to use leading zeros in day fields. Values as for LOCALE_ITLZERO.

LOCALE_IMONLZERO
Whether to use leading zeros in month fields. Values as for LOCALE_ITLZERO.

LOCALE_S1159
String for the AM designator.

LOCALE_S2359
String for the PM designator.

LOCALE_IFIRSTWEEKOFYEAR
Specifies which week of the year is considered first.

Week containing 1/1 is the first week of the year.
1 First full week following 1/1is the first week of t
2 First week with at least 4 days is the first week o

LOCALE_IFIRSTDAYOFWEEK
Specifies the day considered first in the week. Value "0" means SDAYNAME1 and value "6"
means SDAYNAME7.

LOCALE_SDAYNAME1 .. LOCALE_SDAYNAME7
Long name for Monday .. Sunday.

LOCALE_SABBREVDAYNAME1 .. LOCALE_SABBREVDAYNAME7
Abbreviated name for Monday .. Sunday.

LOCALE_SMONTHNAME1 .. LOCALE_SMONTHNAME12
Long name for January .. December.

LOCALE_SMONTHNAME13
Native name for 13th month, if it exists.

LOCALE_SABBREVMONTHNAME1 .. LOCALE_SABBREVMONTHNAME12
Abbreviated name for January .. December.

LOCALE_SABBREVMONTHNAME13
Native abbreviated name for 13th month, if it exists.

LOCALE_SPOSITIVESIGN
String value for the positive sign.

LOCALE_SNEGATIVESIGN
String value for the negative sign.
24−Apr−2001 Win32, 5.6.1 135

NLS Perl Programmers Reference Guide NLS

ol.
ol.
ol.
ol.
LOCALE_IPOSSIGNPOSN
Formatting index for positive values.

0 Parentheses surround the amount and the monetary symbol.
1 The sign string precedes the amount and the monetary symb
2 The sign string precedes the amount and the monetary symb
3 The sign string precedes the amount and the monetary symb
4 The sign string precedes the amount and the monetary symb

LOCALE_INEGSIGNPOSN
Formatting index for negative values. Values as for LOCALE_IPOSSIGNPOSN.

LOCALE_IPOSSYMPRECEDES
If the monetary symbol precedes, 1. If it succeeds a positive amount, 0.

LOCALE_IPOSSEPBYSPACE
If the monetary symbol is separated by a space from a positive amount, 1. Otherwise, 0.

LOCALE_INEGSYMPRECEDES
If the monetary symbol precedes, 1. If it succeeds a negative amount, 0.

LOCALE_INEGSEPBYSPACE
If the monetary symbol is separated by a space from a negative amount, 1. Otherwise, 0.

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
136 Win32, 5.6.1 24−Apr−2001

TPJ Perl Programmers Reference Guide TPJ
Win32::OLE
Suppose you‘re composing a document with Microsoft Word. You want to include an Excel spreadsheet.
You could save the spreadsheet in some image format that Word can understand, and import it into your
document. But if the spreadsheet changes, your document will be out of date.

Microsoft‘s OLE (Object Linking and Embedding, pronounced "olay") lets one program use objects from
another. In the above scenario, the spreadsheet is the object. As long as Excel makes that spreadsheet
available as an OLE object, and Word knows to treat it like one, your document will always be current.

You can control OLE objects from Perl with the Win32::OLE module, and that‘s what this article is about.
First, I‘ll show you how to "think OLE," which mostly involves a lot of jargon. Next, I‘ll show you the
mechanics involved in using Win32::OLE. Then we‘ll go through a Perl program that uses OLE to
manipulate Microsoft Excel, Microsoft Access, and Lotus Notes. Finally, I‘ll talk about Variants, an internal
OLE data type.

THE OLE MINDSET
When an application makes an OLE object available for other applications to use, that‘s called OLE
automation. The program using the object is called the controller, and the application providing the object is
called the server. OLE automation is guided by the OLE Component Object Model (COM) which specifies
how those objects must behave if they are to be used by other processes and machines.

There are two different types of OLE automation servers. In−process servers are implemented as dynamic
link libraries (DLLs) and run in the same process space as the controller. Out−of−process servers are more
interesting; they are standalone executables that exist as separate processes − possibly on a different
computer.

The Win32::OLE module lets your Perl program act as an OLE controller. It allows Perl to be used in place
of other languages like Visual Basic or Java to control OLE objects. This makes all OLE automation servers
immediately available as Perl modules.

Don‘t confuse ActiveState OLE with Win32::OLE. ActiveState OLE is completely different, although future
builds of ActiveState Perl (500 and up) will work with Win32::OLE.

Objects can expose OLE methods, properties, and events to the outside world. Methods are functions that the
controller can call to make the object do something; properties describe the state of the object; and events let
the controller know about external events affecting the object, such as the user clicking on a button. Since
events involve asynchronous communication with their objects, they require either threads or an event loop.
They are not yet supported by the Win32::OLE module, and for the same reason ActiveX controls (OCXs)
are currently unsupported as well.

WORKING WITH WIN32::OLE
The Win32::OLE module doesn‘t let your Perl program create OLE objects. What it does do is let your Perl
program act like a remote control for other applications−it lets your program be an OLE controller. You can
take an OLE object from another application (Access, Notes, Excel, or anything else that speaks OLE) and
invoke its methods or manipulate its properties.

THE FIRST STEP: CREATING AN OLE SERVER OBJECT
First, we need to create a Perl object to represent the OLE server. This is a weird idea; what it amounts to is
that if we want to control OLE objects produced by, say, Excel, we have to create a Perl object that
represents Excel. So even though our program is an OLE controller, it‘ll contain objects that represent OLE
servers.

You can create a new OLE server object with < Win32::OLE−new . This takes a program ID (a human
readable string like ‘Speech.VoiceText’) and returns a server object:

 my $server = Win32::OLE−>new(’Excel.Application’, ’Quit’);

Some server objects (particularly those for Microsoft Office applications) don‘t automatically terminate
when your program no longer needs them. They need some kind of Quit method, and that‘s just what our
24−Apr−2001 Win32, 5.6.1 137

TPJ Perl Programmers Reference Guide TPJ
second argument is. It can be either a code reference or a method name to be invoked when the object is
destroyed. This lets you ensure that objects will be properly cleaned up even when the Perl program dies
abnormally.

To access a server object on a different computer, replace the first argument with a reference to a list of the
server name and program ID:

 my $server = Win32::OLE−>new([’foo.bar.com’,
 ’Excel.Application’]);

(To get the requisite permissions, you‘ll need to configure your security settings with DCOMCNFG.EXE.)

You can also directly attach your program to an already running OLE server:

 my $server = Win32::OLE−>GetActiveObject(’Excel.Application’);

This fails (returning undef) if no server exists, or if the server refuses the connection for some reason. It is
also possible to use a persistent object moniker (usually a filename) to start the associated server and load the
object into memory:

 my $doc = Win32::OLE−>GetObject("MyDocument.Doc");

METHOD CALLS
Once you‘ve created one of these server objects, you need to call its methods to make the OLE objects sing
and dance. OLE methods are invoked just like normal Perl object methods:

 $server−>Foo(@Arguments);

This is a Perl method call − but it also triggers an OLE method call in the object. After your program
executes this statement, the $server object will execute its Foo() method. The available methods are
typically documented in the application‘s object model.

Parameters. By default, all parameters are positional (e.g. foo($first, $second, $third)) rather
than named (e.g. < foo(−name = "Yogi", −title = "Coach")). The required parameters come first,
followed by the optional parameters; if you need to provide a dummy value for an optional parameter, use
undef.

Positional parameters get cumbersome if a method takes a lot of them. You can use named arguments instead
if you go to a little extra trouble − when the last argument is a reference to a hash, the key/value pairs of the
hash are treated as named parameters:

 $server−>Foo($Pos1, $Pos2, {Name1 => $Value1,
 Name2 => $Value2});

Foreign Languages and Default Methods. Sometimes OLE servers use method and property names that
are specific to a non−English locale. That means they might have non−ASCII characters, which aren‘t
allowed in Perl variable names. In German, you might see Öffnen used instead of Open. In these cases,
you can use the Invoke() method:

 $server−>Invoke(’Öffnen’, @Arguments);

This is necessary because < $Server−Öffnen(@Arguments) is a syntax error in current versions of
Perl.

PROPERTIES
As I said earlier, objects can expose three things to the outside world: methods, properties, and events.
We‘ve covered methods, and Win32::OLE can‘t handle events. That leaves properties. But as it turns out,
properties and events are largely interchangeable. Most methods have corresponding properties, and vice
versa.

An object‘s properties can be accessed with a hash reference:

 $server−>{Bar} = $value;
 $value = $server−>{Bar};
138 Win32, 5.6.1 24−Apr−2001

TPJ Perl Programmers Reference Guide TPJ
This example sets and queries the value of the property named Bar. You could also have called the object‘s
Bar() method to achieve the same effect:

 $value = $server−>Bar;

However, you can‘t write the first line as < $server−Bar = $value , because you can‘t assign to the
return value of a method call. In Visual Basic, OLE automation distinguishes between assigning the name of
an object and assigning its value:

 Set Object = OtherObject

 Let Value = Object

The Set statement shown here makes Object refer to the same object as OtherObject. The Let
statement copies the value instead. (The value of an OLE object is what you get when you call the object‘s
default method.

In Perl, saying < $server1 = $server2 always creates another reference, just like the Set in Visual
Basic. If you want to assign the value instead, use the valof() function:

 my $value = valof $server;

This is equivalent to

 my $value = $server−>Invoke(’’);

SAMPLE APPLICATION
Let‘s look at how all of this might be used. In Listing: 1 you‘ll see T−Bond.pl, a program that uses
Win32::OLE for an almost−real world application.

The developer of this application, Mary Lynch, is a financial futures broker. Every afternoon, she connects to
the Chicago Board of Trade (CBoT) web site at http://www.cbot.com and collects the time and sales
information for U.S. T−bond futures. She wants her program to create a chart that depicts the data in
15−minute intervals, and then she wants to record the data in a database for later analysis. Then she wants
her program to send mail to her clients.

Mary‘s program will use Microsoft Access as a database, Microsoft Excel to produce the chart, and Lotus
Notes to send the mail. It will all be controlled from a single Perl program using OLE automation. In this
section, we‘ll go through T−Bond. pl step by step so you can see how Win32::OLE lets you control these
applications.

DOWNLOADING A WEB PAGE WITH LWP
However, Mary first needs to amass the raw T−bond data by having her Perl program automatically
download and parse a web page. That‘s the perfect job for LWP, the libwww−perl bundle available on the
CPAN. LWP has nothing to do with OLE. But this is a real−world application, and it‘s just what Mary needs
to download her data from the Chicago Board of Trade.

 use LWP::Simple;
 my $URL = ’http://www.cbot.com/mplex/quotes/tsfut’;
 my $text = get("$URL/tsf$Contract.htm");

She could also have used the Win32::Internet module:

 use Win32::Internet;
 my $URL = ’http://www.cbot.com/mplex/quotes/tsfut’;
 my $text = $Win32::Internet−>new−>FetchURL("URL/tsfContract.htm");

Mary wants to condense the ticker data into 15 minute bars. She‘s interested only in lines that look like this:

 03/12/1998 US 98Mar 12116 15:28:34 Open

A regular expression can be used to determine whether a line looks like this. If it does, the regex can split it
up into individual fields. The price quoted above, 12116, really means 121 16/32, and needs to be converted
to 121.5. The data is then condensed into 15 minute intervals and only the first, last, highest, and lowest price
24−Apr−2001 Win32, 5.6.1 139

TPJ Perl Programmers Reference Guide TPJ
during each interval are kept. The time series is stored in the array @Bars. Each entry in @Bars is a
reference to a list of 5 elements: Time, Open, High, Low, and Close.

 foreach (split "\n", $text) {
 # 03/12/1998 US 98Mar 12116 15:28:34 Open
 my ($Date,$Price,$Hour,$Min,$Sec,$Ind) =
 m|^\s*(\d+/\d+/\d+) # " 03/12/1998"
 \s+US\s+\S+\s+(\d+) # " US 98Mar 12116"
 \s+(\d+):(\d+):(\d+) # " 12:42:40"
 \s*(.*)$|x; # " Ask"
 next unless defined $Date;
 $Day = $Date;

 # Convert from fractional to decimal format
 $Price = int($Price/100) + ($Price%100)/32;

 # Round up time to next multiple of 15 minutes
 my $NewTime = int(($Sec+$Min*60+$Hour*3600)/900+1)*900;
 unless (defined $Time && $NewTime == $Time) {
 push @Bars, [$hhmm, $Open, $High, $Low, $Close]
 if defined $Time;
 $Open = $High = $Low = $Close = undef;
 $Time = $NewTime;
 my $Hour = int($Time/3600);
 $hhmm = sprintf "%02d:%02d", $Hour, $Time/60−$Hour*60;
 }

 # Update 15 minute bar values
 $Close = $Price;
 $Open = $Price unless defined $Open;
 $High = $Price unless defined $High && $High > $Price;
 $Low = $Price unless defined $Low && $Low > $Price;
 }

 die "No data found" unless defined $Time;
 push @Bars, [$hhmm, $Open, $High, $Low, $Close];

MICROSOFT ACCESS
Now that Mary has her T−bond quotes, she‘s ready to use Win32::OLE to store them into a Microsoft
Access database. This has the advantage that she can copy the database to her lap−top and work with it on
her long New York commute. She‘s able to create an Access database as follows:

 use Win32::ODBC;
 use Win32::OLE;

 # Include the constants for the Microsoft Access
 # "Data Access Object".

 use Win32::OLE::Const ’Microsoft DAO’;

 my $DSN = ’T−Bonds’;
 my $Driver = ’Microsoft Access Driver (*.mdb)’;
 my $Desc = ’US T−Bond Quotes’;
 my $Dir = ’i:\tmp\tpj’;
 my $File = ’T−Bonds.mdb’;
 my $Fullname = "$Dir\\$File";

 # Remove old database and dataset name
 unlink $Fullname if −f $Fullname;
 Win32::ODBC::ConfigDSN(ODBC_REMOVE_DSN, $Driver, "DSN=$DSN")
140 Win32, 5.6.1 24−Apr−2001

TPJ Perl Programmers Reference Guide TPJ
 if Win32::ODBC::DataSources($DSN);

 # Create new database
 my $Access = Win32::OLE−>new(’Access.Application’, ’Quit’);
 my $Workspace = $Access−>DBEngine−>CreateWorkspace(’’, ’Admin’, ’’);
 my $Database = $Workspace−>CreateDatabase($Fullname, dbLangGeneral);

 # Add new database name
 Win32::ODBC::ConfigDSN(ODBC_ADD_DSN, $Driver,
 "DSN=$DSN", "Description=$Desc", "DBQ=$Fullname",
 "DEFAULTDIR=$Dir", "UID=", "PWD=");

This uses Win32::ODBC (described in TPJ #9) to remove and create T−Bonds.mdb. This lets Mary use the
same script on her workstation and on her laptop even when the database is stored in different locations on
each. The program also uses Win32::OLE to make Microsoft Access create an empty database.

Every OLE server has some constants that your Perl program will need to use, made accessible by the
Win32::OLE::Const module. For instance, to grab the Excel constants, say use Win32::OLE::Const
‘Microsoft Excel’.

In the above example, we imported the Data Access Object con−stants just so we could use
dbLangGeneral.

MICROSOFT EXCEL
Now Mary uses Win32::OLE a second time, to have Microsoft Excel create the chart shown below.

 Figure 1: T−Bond data generated by MicroSoft Excel via Win32::OLE

 # Start Excel and create new workbook with a single sheet
 use Win32::OLE qw(in valof with);
 use Win32::OLE::Const ’Microsoft Excel’;
 use Win32::OLE::NLS qw(:DEFAULT :LANG :SUBLANG);

 my $lgid = MAKELANGID(LANG_ENGLISH, SUBLANG_DEFAULT);
 $Win32::OLE::LCID = MAKELCID($lgid);

 $Win32::OLE::Warn = 3;

Here, Mary sets the locale to American English, which lets her do things like use American date formats
(e.g. "12−30−98" rather than "30−12−98") in her program. It will continue to work even when she‘s
visiting one of her international customers and has to run this program on their computers.

The value of $Win32::OLE::Warn determines what happens when an OLE error occurs. If it‘s 0, the
error is ignored. If it‘s 2, or if it‘s 1 and the script is running under −w, the Win32::OLE module invokes
Carp::carp(). If $Win32::OLE::Warn is set to 3, Carp::croak() is invoked and the program
dies immediately.

Now the data can be put into an Excel spreadsheet to produce the chart. The following section of the
program launches Excel and creates a new workbook with a single worksheet. It puts the column titles
(‘Time‘, ‘Open‘, ‘High‘, ‘Low‘, and ‘Close’) in a bold font on the first row of the sheet. The first column
displays the timestamp in hh:mm format; the next four display prices.

 my $Excel = Win32::OLE−>new(’Excel.Application’, ’Quit’);
 $Excel−>{SheetsInNewWorkbook} = 1;
 my $Book = $Excel−>Workbooks−>Add;
 my $Sheet = $Book−>Worksheets(1);
 $Sheet−>{Name} = ’Candle’;

 # Insert column titles
 my $Range = $Sheet−>Range("A1:E1");
 $Range−>{Value} = [qw(Time Open High Low Close)];
 $Range−>Font−>{Bold} = 1;
24−Apr−2001 Win32, 5.6.1 141

TPJ Perl Programmers Reference Guide TPJ
 $Sheet−>Columns("A:A")−>{NumberFormat} = "h:mm";
 # Open/High/Low/Close to be displayed in 32nds
 $Sheet−>Columns("B:E")−>{NumberFormat} = "# ?/32";

 # Add 15 minute data to spreadsheet
 print "Add data\n";
 $Range = $Sheet−>Range(sprintf "A2:E%d", 2+$#Bars);
 $Range−>{Value} = \@Bars;

The last statement shows how to pass arrays to OLE objects. The Win32::OLE module automatically
translates each array reference to a SAFEARRAY, the internal OLE array data type. This translation first
determines the maximum nesting level used by the Perl array, and then creates a SAFEARRAY of the same
dimension. The @Bars array already contains the data in the correct form for the spreadsheet:

 ([Time1, Open1, High1, Low1, Close1],
 ...
 [TimeN, OpenN, HighN, LowN, CloseN])

Now the table in the spreadsheet can be used to create a candle stick chart from our bars. Excel automatically
chooses the time axis labels if they are selected before the chart is created:

 # Create candle stick chart as new object on worksheet
 $Sheet−>Range("A:E")−>Select;

 my $Chart = $Book−>Charts−>Add;
 $Chart−>{ChartType} = xlStockOHLC;
 $Chart−>Location(xlLocationAsObject, $Sheet−>{Name});
 # Excel bug: the old $Chart is now invalid!
 $Chart = $Excel−>ActiveChart;

We can change the type of the chart from a separate sheet to a chart object on the spreadsheet page with the
< $Chart−Location method. (This invalidates the chart object handle, which might be considered a
bug in Excel.) Fortunately, this new chart is still the ‘active’ chart, so an object handle to it can be reclaimed
simply by asking Excel.

At this point, our chart still needs a title, the legend is meaningless, and the axis has decimals instead of
fractions. We can fix those with the following code:

 # Add title, remove legend
 with($Chart, HasLegend => 0, HasTitle => 1);
 $Chart−>ChartTitle−>Characters−>{Text} = "US T−Bond";

 # Set up daily statistics
 $Open = $Bars[0][1];
 $High = $Sheet−>Evaluate("MAX(C:C)");
 $Low = $Sheet−>Evaluate("MIN(D:D)");
 $Close = $Bars[$#Bars][4];

The with() function partially mimics the Visual Basic With statement, but allows only property
assignments. It‘s a convenient shortcut for this:

 { # open new scope
 my $Axis = $Chart−>Axes(xlValue);
 $Axis−>{HasMajorGridlines} = 1;
 $Axis−>{HasMinorGridlines} = 1;
 # etc ...
 }

The $High and $Low for the day are needed to determine the minimum and maximum scaling levels. MIN
and MAX are spreadsheet functions, and aren‘t automatically available as methods. However, Excel
provides an Evaluate() method to calculate arbitrary spreadsheet functions, so we can use that.
142 Win32, 5.6.1 24−Apr−2001

TPJ Perl Programmers Reference Guide TPJ
We want the chart to show major gridlines at every fourth tick and minor gridlines at every second tick. The
minimum and maximum are chosen to be whatever multiples of 1/16 we need to do that.

 # Change tickmark spacing from decimal to fractional
 with($Chart−>Axes(xlValue),
 HasMajorGridlines => 1,
 HasMinorGridlines => 1,
 MajorUnit => 1/8,
 MinorUnit => 1/16,
 MinimumScale => int($Low*16)/16,
 MaximumScale => int($High*16+1)/16
);

 # Fat candles with only 5% gaps
 $Chart−>ChartGroups(1)−>{GapWidth} = 5;

 sub RGB { $_[0] | ($_[1] >> 8) | ($_[2] >> 16) }

 # White background with a solid border

 $Chart−>PlotArea−>Border−>{LineStyle} = xlContinuous;
 $Chart−>PlotArea−>Border−>{Color} = RGB(0,0,0);
 $Chart−>PlotArea−>Interior−>{Color} = RGB(255,255,255);

 # Add 1 hour moving average of the Close series
 my $MovAvg = $Chart−>SeriesCollection(4)−>Trendlines
 −>Add({Type => xlMovingAvg, Period => 4});
 $MovAvg−>Border−>{Color} = RGB(255,0,0);

Now the finished workbook can be saved to disk as i:\tmp\tpj\data.xls. That file most likely still exists from
when the program ran yesterday, so we‘ll remove it. (Otherwise, Excel would pop up a dialog with a
warning, because the SaveAs() method doesn‘t like to overwrite files.)

 # Save workbook to file my $Filename = ’i:\tmp\tpj\data.xls’;
 unlink $Filename if −f $Filename;
 $Book−>SaveAs($Filename);
 $Book−>Close;

ACTIVEX DATA OBJECTS
Mary stores the daily prices in her T−bonds database, keeping the data for the different contracts in separate
tables. After creating an ADO (ActiveX Data Object) connection to the database, she tries to connect a
record set to the table for the current contract. If this fails, she assumes that the table doesn‘t exists yet and
tries to create it:

 use Win32::OLE::Const ’Microsoft ActiveX Data Objects’;

 my $Connection = Win32::OLE−>new(’ADODB.Connection’);
 my $Recordset = Win32::OLE−>new(’ADODB.Recordset’);
 $Connection−>Open(’T−Bonds’);

 # Open a record set for the table of this contract
 {
 local $Win32::OLE::Warn = 0;
 $Recordset−>Open($Contract, $Connection, adOpenKeyset,
 adLockOptimistic, adCmdTable);
 }

 # Create table and index if it doesn’t exist yet
 if (Win32::OLE−>LastError) {
 $Connection−>Execute(>>"SQL");
 CREATE TABLE $Contract
24−Apr−2001 Win32, 5.6.1 143

TPJ Perl Programmers Reference Guide TPJ
 (
 Day DATETIME,
 Open DOUBLE, High DOUBLE, Low DOUBLE, Close DOUBLE
)
 SQL
 $Connection−>Execute(>>"SQL");
 CREATE INDEX $Contract
 ON $Contract (Day) WITH PRIMARY
 SQL
 $Recordset−>Open($Contract, $Connection, adOpenKeyset,
 adLockOptimistic, adCmdTable);
 }

$Win32::OLE::Warn is temporarily set to zero, so that if $Recordset−Open fails, the failure will be
recorded silently without terminating the program. Win32::OLE−LastError shows whether the Open failed
or not. LastError returns the OLE error code in a numeric context and the OLE error message in a string
context, just like Perl‘s $! variable.

Now Mary can add today‘s data:

 # Add new record to table
 use Win32::OLE::Variant;
 $Win32::OLE::Variant::LCID = $Win32::OLE::LCID;

 my $Fields = [qw(Day Open High Low Close)];
 my $Values = [Variant(VT_DATE, $Day),
 $Open, $High, $Low, $Close];

Mary uses the Win32::OLE::Variant module to store $Day as a date instead of a mere string. She wants to
make sure that it‘s stored as an American−style date, so in the third line shown here she sets the locale ID of
the Win32::OLE::Variant module to match the Win32::OLE module. ($Win32::OLE::LCID had been set
earlier to English, since that‘s what the Chicago Board of Trade uses.)

 {
 local $Win32::OLE::Warn = 0;
 $Recordset−>AddNew($Fields, $Values);
 }

 # Replace existing record
 if (Win32::OLE−>LastError) {
 $Recordset−>CancelUpdate;
 $Recordset−>Close;
 $Recordset−>Open(>>"SQL",
 $Connection, adOpenDynamic);
 SELECT * FROM $Contract
 WHERE Day = #$Day#
 SQL
 $Recordset−>Update($Fields, $Values);
 }

 $Recordset−>Close;
 $Connection−>Close;

The program expects to be able to add a new record to the table. It fails if a record for this date already
exists, because the Day field is the primary index and therefore must be unique. If an error occurs, the update
operation started by AddNew() must first be cancelled with < $Recordset−CancelUpdate ;
otherwise the record set won‘t close.
144 Win32, 5.6.1 24−Apr−2001

TPJ Perl Programmers Reference Guide TPJ
LOTUS NOTES
Now Mary can use Lotus Notes to mail updates to all her customers interested in the T−bond data. (Lotus
Notes doesn‘t provide its constants in the OLE type library, so Mary had to determine them by playing
around with LotusScript.) The actual task is quite simple: A Notes session must be started, the mail database
must be opened and the mail message must be created. The body of the message is created as a rich text
field, which lets her mix formatted text with object attachments.

In her program, Mary extracts the email addresses from her customer database and sends separate message to
each. Here, we‘ve simplified it somewhat.

 sub EMBED_ATTACHMENT {1454;} # from LotusScript

 my $Notes = Win32::OLE−>new(’Notes.NotesSession’);
 my $Database = $Notes−>GetDatabase(’’, ’’);
 $Database−>OpenMail;
 my $Document = $Database−>CreateDocument;

 $Document−>{Form} = ’Memo’;
 $Document−>{SendTo} = [’Jon Orwant >orwant@tpj.com>’,
 ’Jan Dubois >jan.dubois@ibm.net>’];
 $Document−>{Subject} = "US T−Bonds Chart for $Day";

 my $Body = $Document−>CreateRichtextItem(’Body’);
 $Body−>AppendText(>>"EOT");
 I\’ve attached the latest US T−Bond data and chart for $Day.
 The daily statistics were:

 \tOpen\t$Open
 \tHigh\t$High
 \tLow\t$Low
 \tClose\t$Close

 Kind regards,

 Mary
 EOT

 $Body−>EmbedObject(EMBED_ATTACHMENT, ’’, $Filename);

 $Document−>Send(0);

VARIANTS
In this final section, I‘ll talk about Variants, which are the data types that you use to talk to OLE objects. We
talked about this line earlier:

 my $Values = [Variant(VT_DATE, $Day),
 $Open, $High, $Low, $Close];

Here, the Variant() function creates a Variant object, of type VT_DATE and with the value $Day.
Variants are similar in many ways to Perl scalars. Arguments to OLE methods are transparently converted
from their internal Perl representation to Variants and back again by the Win32::OLE module.

OLE automation uses a generic VARIANT data type to pass parameters. This data type contains type
information in addition to the actual data value. Only the following data types are valid for OLE automation:

 B<Data Type Meaning>
 VT_EMPTY Not specified
 VT_NULL Null
 VT_I2 2 byte signed integer
 VT_I4 4 byte signed integer
 VT_R4 4 byte real
24−Apr−2001 Win32, 5.6.1 145

TPJ Perl Programmers Reference Guide TPJ
 VT_R8 8 byte real
 VT_CY Currency
 VT_DATE Date
 VT_BSTR Unicode string
 VT_DISPATCH OLE automation interface
 VT_ERROR Error
 VT_BOOL Boolean
 VT_VARIANT (only valid with VT_BYREF)
 VT_UNKNOWN Generic COM interface
 VT_UI1 Unsigned character

The following two flags can also be used:

 VT_ARRAY Array of values
 VT_BYREF Pass by reference (instead of by value)

The Perl to Variant transformation. The following conversions are performed automatically whenever a
Perl value must be translated into a Variant:

 Perl value Variant
 Integer values VT_I4
 Real values VT_R8
 Strings VT_BSTR
 undef VT_ERROR (DISP_E_PARAMNOTFOUND)
 Array reference VT_VARIANT | VT_ARRAY
 Win32::OLE object VT_DISPATCH
 Win32::OLE::Variant object Type of the Variant object

What if your Perl value is a list of lists? Those can be irregularly shaped in Perl; that is, the subsidiary lists
needn‘t have the same number of elements. In this case, the structure will be converted to a "rectangular"
SAFEARRAY of Variants, with unused slots set to VT_EMPTY. Consider this Perl 2−D array:

 [["Perl"], # one element
 [1, 3.1215, undef] # three elements
]

This will be translated to a 2 by 3 SAFEARRAY that looks like this:

 VT_BSTR("Perl") VT_EMPTY VT_EMPTY
 VT_I4(1) VT_R8(3.1415) VT_ERROR(DISP_E_PARAMNOTFOUND)

The Variant To Perl Transformation. Automatic conversion from Variants to Perl values happens as
follows:

 Variant Perl value
 VT_BOOL, VT_ERROR Integer
 VT_UI1, VT_I2, VT_I4 Integer
 VT_R4, VT_R8 Float value
 VT_BSTR String
 VT_DISPATCH Win32::OLE object

The Win32::OLE::Variant module. This module provides access to the Variant data type, which gives you
more control over how these arguments to OLE methods are encoded. (This is rarely necessary if you have a
good grasp of the default conversion rules.) A Variant object can be created with the <
Win32::OLE::Variant−new method or the equivalent Variant() function:

 use Win32::OLE::Variant;
 my $var1 = Win32::OLE::Variant−>new(VT_DATE, ’Jan 1,1970’);
 my $var2 = Variant(VT_BSTR, ’This is an Unicode string’);
146 Win32, 5.6.1 24−Apr−2001

TPJ Perl Programmers Reference Guide TPJ
Several methods let you inspect and manipulate Variant objects: The Type() and Value() methods return
the variant type and value; the As() method returns the value after converting it to a different variant type;
ChangeType() coerces the Variant into a different type; and Unicode() returns the value of a Variant
object as an object of the Unicode::String class.

These conversions are more interesting if they can be applied directly to the return value of an OLE method
call without first mutilating the value with default conversions. This is possible with the following trick:

 my $RetVal = Variant(VT_EMPTY, undef);
 $Object−>Dispatch($Method, $RetVal, @Arguments);

Normally, you wouldn‘t call Dispatch() directly; it‘s executed implicitly by either AUTOLOAD() or
Invoke(). If Dispatch() realizes that the return value is already a Win32::OLE::Variant object, the
return value is not translated into a Perl representation but rather copied verbatim into the Variant object.

Whenever a Win32::OLE::Variant object is used in a numeric or string context it is automatically converted
into the corresponding format.

 printf "Number: %f and String: %s\n",
 $Var, $Var;

This is equivalent to:

 printf "Number: %f and String: %s\n",
 $Var−>As(VT_R8), $Var−>As(VT_BSTR);

For methods that modify their arguments, you need to use the VT_BYREF flag. This lets you create number
and string Variants that can be modified by OLE methods. Here, Corel‘s GetSize() method takes two
integers and stores the x and y dimensions in them:

 my $x = Variant(VT_I4 | VT_BYREF, 0);
 my $y = Variant(VT_I4 | VT_BYREF, 0);
 $Corel−>GetSize($x, $y);

VT_BYREF support for other Variant types might appear in future releases of Win32::OLE.

FURTHER INFORMATION

DOCUMENTATION AND EXAMPLE CODE
More information about the OLE modules can be found in the documentation bundled with Win32::OLE.
The distribution also contains other code samples.

The object model for Microsoft Office applications can be found in the Visual Basic Reference for Microsoft
Access, Excel, Word, or PowerPoint. These help files are not installed by default, but they can be added later
by rerunning setup.exe and choosing custom setup. The object model for Microsoft Outlook can be found on
the Microsoft Office Developer Forum at: http://www.microsoft.com/OutlookDev/.

Information about the LotusScript object model can be found at:
http://www.lotus.com/products/lotusscript.nsf.

OLE AUTOMATION ON OTHER PLATFORMS
Microsoft also makes OLE technology available for the Mac. DCOM is already included in Windows NT 4.0
and can be downloaded for Windows 95. MVS and some Unix systems can use EntireX to get OLE
functionality; see http://www.softwareag.com/corporat/solutions/entirex/entirex.htm.

COPYRIGHT
Copyright 1998 The Perl Journal. http://www.tpj.com

This article originally appeared in The Perl Journal #10. It appears courtesy of Jon Orwant and The Perl
Journal. This document may be distributed under the same terms as Perl itself.
24−Apr−2001 Win32, 5.6.1 147

Variant Perl Programmers Reference Guide Variant

 2);
NAME
Win32::OLE::Variant − Create and modify OLE VARIANT variables

SYNOPSIS
use Win32::OLE::Variant;
my $var = Variant(VT_DATE, ’Jan 1,1970’);
$OleObject−>{value} = $var;
$OleObject−>Method($var);

DESCRIPTION
The IDispatch interface used by the Perl OLE module uses a universal argument type called VARIANT.
This is basically an object containing a data type and the actual data value. The data type is specified by the
VT_xxx constants.

Functions

nothing()
The nothing() function returns an empty VT_DISPATCH variant. It can be used to clear an
object reference stored in a property

use Win32::OLE::Variant qw(:DEFAULT nothing);
...
$object−>{Property} = nothing;

This has the same effect as the Visual Basic statement

Set object.Property = Nothing

The nothing() function is not exported by default.

Variant(TYPE, DATA)
This is just a function alias of the Win32::OLE::Variant−new() method (see below).
This function is exported by default.

Methods

new(TYPE, DATA)
This method returns a Win32::OLE::Variant object of the specified TYPE that contains the given
DATA. The Win32::OLE::Variant object can be used to specify data types other than IV, NV or
PV (which are supported transparently). See Variants below for details.

For VT_EMPTY and VT_NULL variants, the DATA argument may be omitted. For all
non−VT_ARRAY variants DATA specifies the initial value.

To create a SAFEARRAY variant, you have to specify the VT_ARRAY flag in addition to the
variant base type of the array elemnts. In this cases DATA must be a list specifying the
dimensions of the array. Each element can be either an element count (indices 0 to count−1) or
an array reference pointing to the lower and upper array bounds of this dimension:

my $Array = Win32::OLE::Variant−>new(VT_ARRAY|VT_R8, [1,2],

This creates a 2−dimensional SAFEARRAY of doubles with 4 elements: (1,0), (1,1), (2,0) and
(2,1).

A special case is the the creation of one−dimensional VT_UI1 arrays with a string DATA
argument:

my $String = Variant(VT_ARRAY|VT_UI1, "String");

This creates a 6 element character array initialized to "String". For backward compatibility
VT_UI1 with a string initializer automatically implies VT_ARRAY. The next line is equivalent
to the previous example:
148 Win32, 5.6.1 24−Apr−2001

Variant Perl Programmers Reference Guide Variant

elds
 the decim

;
my $String = Variant(VT_UI1, "String");

If you really need a single character VT_UI1 variant, you have to create it using a numeric
intializer:

my $Char = Variant(VT_UI1, ord(’A’));

As(TYPE)
As converts the VARIANT to the new type before converting to a Perl value. This take the
current LCID setting into account. For example a string might contain a ‘,’ as the decimal point
character. Using $variant−As(VT_R8) will correctly return the floating point value.

The underlying variant object is NOT changed by this method.

ChangeType(TYPE)
This method changes the type of the contained VARIANT in place. It returns the object itself,
not the converted value.

Copy([DIM])
This method creates a copy of the object. If the original variant had the VT_BYREF bit set then
the new object will contain a copy of the referenced data and not a reference to the same old
data. The new object will not have the VT_BYREF bit set.

my $Var = Variant(VT_I4|VT_ARRAY|VT_BYREF, [1,5], 3);
my $Copy = $Var−>Copy;

The type of $Copy is now VT_I4|VT_ARRAY and the value is a copy of the other
SAFEARRAY. Changes to elements of $Var will not be reflected in $Copy and vice versa.

The Copy method can also be used to extract a single element of a VT_ARRAY |
VT_VARIANT object. In this case the array indices must be specified as a list DIM:

my $Int = $Var−>Copy(1, 2);

$Int is now a VT_I4 Variant object containing the value of element (1,2).

Currency([FORMAT[, LCID]])
This method converts the VARIANT value into a formatted curency string. The FORMAT can
be either an integer constant or a hash reference. Valid constants are 0 and
LOCALE_NOUSEROVERRIDE. You get the value of LOCALE_NOUSEROVERRIDE from
the Win32::OLE::NLS module:

use Win32::OLE::NLS qw(:LOCALE);

LOCALE_NOUSEROVERRIDE tells the method to use the system default currency format for
the specified locale, disregarding any changes that might have been made through the control
panel application.

The hash reference could contain the following keys:

NumDigits number of fractional digits
LeadingZero whether to use leading zeroes in decimal fi
Grouping size of each group of digits to the left of
DecimalSep decimal separator string
ThousandSep thousand separator string
NegativeOrder see L<Win32::OLE::NLS/LOCALE_ICURRENCY>
PositiveOrder see L<Win32::OLE::NLS/LOCALE_INEGCURR>
CurrencySymbol currency symbol string

For example:

use Win32::OLE::Variant;
use Win32::OLE::NLS qw(:DEFAULT :LANG :SUBLANG :DATE :TIME)
24−Apr−2001 Win32, 5.6.1 149

Variant Perl Programmers Reference Guide Variant

EUTRAL));

), "\n";

 locale

exists

s
REVDAYNAME

THNAME)

 less than
my $lcidGerman = MAKELCID(MAKELANGID(LANG_GERMAN, SUBLANG_N
my $v = Variant(VT_CY, "−922337203685477.5808");
print $v−>Currency({CurrencySymbol => "Tuits"}, $lcidGerman

will print:

−922.337.203.685.477,58 Tuits

Date([FORMAT[, LCID]])
Converts the VARIANT into a formatted date string. FORMAT can be either one of the
following integer constants or a format string:

LOCALE_NOUSEROVERRIDE system default date format for this
DATE_SHORTDATE use the short date format (default)
DATE_LONGDATE use the long date format
DATE_YEARMONTH use the year/month format
DATE_USE_ALT_CALENDAR use the alternate calendar, if one
DATE_LTRREADING left−to−right reading order layout
DATE_RTLREADING right−to left reading order layout

The constants are available from the Win32::OLE::NLS module:

use Win32::OLE::NLS qw(:LOCALE :DATE);

The following elements can be used to construct a date format string. Characters must be
specified exactly as given below (e.g. "dd" not "DD"). Spaces can be inserted anywhere between
formating codes, other verbatim text should be included in single quotes.

d day of month
dd day of month with leading zero for single−digit day
ddd day of week: three−letter abbreviation (LOCALE_SABB
dddd day of week: full name (LOCALE_SDAYNAME)
M month
MM month with leading zero for single−digit months
MMM month: three−letter abbreviation (LOCALE_SABBREVMON
MMMM month: full name (LOCALE_SMONTHNAME)
y year as last two digits
yy year as last two digits with leading zero for years
yyyy year represented by full four digits
gg period/era string

For example:

my $v = Variant(VT_DATE, "April 1 99");
print $v−>Date(DATE_LONGDATE), "\n";
print $v−>Date("ddd’,’ MMM dd yy"), "\n";

will print:

Thursday, April 01, 1999
Thu, Apr 01 99

Dim() Returns a list of array bounds for a VT_ARRAY variant. The list contains an array reference for
each dimension of the variant‘s SAFEARRAY. This reference points to an array containing the
lower and upper bounds for this dimension. For example:

my @Dim = $Var−>Dim;

Now @Dim contains the following list: ([1,5], [0,2]).
150 Win32, 5.6.1 24−Apr−2001

Variant Perl Programmers Reference Guide Variant

elds
 the decim
Get(DIM) For normal variants Get returns the value of the variant, just like the Value method. For
VT_ARRAY variants Get retrieves the value of a single array element. In this case DIM must
be a list of array indices. E.g.

my $Val = $Var−>Get(2,0);

As a special case for one dimensional VT_UI1|VT_ARRAY variants the Get method without
arguments returns the character array as a Perl string.

print $String−>Get, "\n";

LastError()
The use of the Win32::OLE::Variant−LastError() method is deprecated. Please use
the Win32::OLE−LastError() class method instead.

Number([FORMAT[, LCID]])
This method converts the VARIANT value into a formatted number string. The FORMAT can
be either an integer constant or a hash reference. Valid constants are 0 and
LOCALE_NOUSEROVERRIDE. You get the value of LOCALE_NOUSEROVERRIDE from
the Win32::OLE::NLS module:

use Win32::OLE::NLS qw(:LOCALE);

LOCALE_NOUSEROVERRIDE tells the method to use the system default number format for
the specified locale, disregarding any changes that might have been made through the control
panel application.

The hash reference could contain the following keys:

NumDigits number of fractional digits
LeadingZero whether to use leading zeroes in decimal fi
Grouping size of each group of digits to the left of
DecimalSep decimal separator string
ThousandSep thousand separator string
NegativeOrder see L<Win32::OLE::NLS/LOCALE_INEGNUMBER>

Put(DIM, VALUE)
The Put method is used to assign a new value to a variant. The value will be coerced into the
current type of the variant. E.g.:

my $Var = Variant(VT_I4, 42);
$Var−>Put(3.1415);

This changes the value of the variant to 3 because the type is VT_I4.

For VT_ARRAY type variants the indices for each dimension of the contained SAFEARRAY
must be specified in front of the new value:

$Array−>Put(1, 1, 2.7);

It is also possible to assign values to *every* element of the SAFEARRAY at once using a
single Put() method call:

$Array−>Put([[1,2], [3,4]]);

In this case the argument to Put() must be an array reference and the dimensions of the Perl
list−of−lists must match the dimensions of the SAFEARRAY exactly.

The are a few special cases for one−dimensional VT_UI1 arrays: The VALUE can be specified
as a string instead of a number. This will set the selected character to the first character of the
string or to ‘\0’ if the string was empty:
24−Apr−2001 Win32, 5.6.1 151

Variant Perl Programmers Reference Guide Variant

 locale

hour clock

hour clock

\n";
my $String = Variant(VT_UI1|VT_ARRAY, "ABCDE");
$String−>Put(1, "123");
$String−>Put(3, ord(’Z’));
$String−>Put(4, ’’);

This will set the value of $String to "A1CZ\0". If the index is omitted then the string is
copied to the value completely. The string is truncated if it is longer than the size of the VT_UI1
array. The result will be padded with ‘\0‘s if the string is shorter:

$String−>Put("String");

Now $String contains the value "Strin".

Put returns the Variant object itself so that multiple Put calls can be chained together:

$Array−>Put(0,0,$First_value)−>Put(0,1,$Another_value);

Time([FORMAT[, LCID]])
Converts the VARIANT into a formatted time string. FORMAT can be either one of the
following integer constants or a format string:

LOCALE_NOUSEROVERRIDE system default time format for this
TIME_NOMINUTESORSECONDS don’t use minutes or seconds
TIME_NOSECONDS don’t use seconds
TIME_NOTIMEMARKER don’t use a time marker
TIME_FORCE24HOURFORMAT always use a 24−hour time format

The constants are available from the Win32::OLE::NLS module:

use Win32::OLE::NLS qw(:LOCALE :TIME);

The following elements can be used to construct a time format string. Characters must be
specified exactly as given below (e.g. "dd" not "DD"). Spaces can be inserted anywhere between
formating codes, other verbatim text should be included in single quotes.

h hours; 12−hour clock
hh hours with leading zero for single−digit hours; 12−
H hours; 24−hour clock
HH hours with leading zero for single−digit hours; 24−
m minutes
mm minutes with leading zero for single−digit minutes
s seconds
ss seconds with leading zero for single−digit seconds
t one character time marker string, such as A or P
tt multicharacter time marker string, such as AM or PM

For example:

my $v = Variant(VT_DATE, "April 1 99 2:23 pm");
print $v−>Time, "\n";
print $v−>Time(TIME_FORCE24HOURFORMAT|TIME_NOTIMEMARKER), "
print $v−>Time("hh.mm.ss tt"), "\n";

will print:

2:23:00 PM
14:23:00
02.23.00 PM

Type() The Type method returns the variant type of the contained VARIANT.
152 Win32, 5.6.1 24−Apr−2001

Variant Perl Programmers Reference Guide Variant
Unicode()
The Unicode method returns a Unicode::String object. This contains the BSTR value of
the variant in network byte order. If the variant is not currently in VT_BSTR format then a
VT_BSTR copy will be produced first.

Value() The Value method returns the value of the VARIANT as a Perl value. The conversion is
performed in the same manner as all return values of Win32::OLE method calls are converted.

Overloading
The Win32::OLE::Variant package has overloaded the conversion to string and number formats. Therefore
variant objects can be used in arithmetic and string operations without applying the Value method first.

Class Variables
The Win32::OLE::Variant class used to have its own set of class variables like $CP, $LCID and $Warn.
In version 0.1003 and later of the Win32::OLE module these variables have been eleminated. Now the
settings of Win32::OLE are used by the Win32::OLE::Variant module too. Please read the documentation of
the Win32::OLE−>Option class method.

Constants
These constants are exported by default:

VT_EMPTY
VT_NULL
VT_I2
VT_I4
VT_R4
VT_R8
VT_CY
VT_DATE
VT_BSTR
VT_DISPATCH
VT_ERROR
VT_BOOL
VT_VARIANT
VT_UNKNOWN
VT_DECIMAL
VT_UI1

VT_ARRAY
VT_BYREF

VT_DECIMAL is not on the official list of allowable OLE Automation datatypes. But even Microsoft ADO
seems to sometimes return values of Recordset fields in VT_DECIMAL format.

Variants
A Variant is a data type that is used to pass data between OLE connections.

The default behavior is to convert each perl scalar variable into an OLE Variant according to the internal perl
representation. The following type correspondence holds:

 C type Perl type OLE type
 −−−−−− −−−−−−−−− −−−−−−−−
 int IV VT_I4
 double NV VT_R8
 char * PV VT_BSTR
 void * ref to AV VT_ARRAY
 ? undef VT_ERROR
 ? Win32::OLE object VT_DISPATCH
24−Apr−2001 Win32, 5.6.1 153

Variant Perl Programmers Reference Guide Variant
Note that VT_BSTR is a wide character or Unicode string. This presents a problem if you want to pass in
binary data as a parameter as 0x00 is inserted between all the bytes in your data. The Variant() method
provides a solution to this. With Variants the script writer can specify the OLE variant type that the
parameter should be converted to. Currently supported types are:

 VT_UI1 unsigned char
 VT_I2 signed int (2 bytes)
 VT_I4 signed int (4 bytes)
 VT_R4 float (4 bytes)
 VT_R8 float (8 bytes)
 VT_DATE OLE Date
 VT_BSTR OLE String
 VT_CY OLE Currency
 VT_BOOL OLE Boolean

When VT_DATE and VT_CY objects are created, the input parameter is treated as a Perl string type, which
is then converted to VT_BSTR, and finally to VT_DATE of VT_CY using the VariantChangeType()
OLE API function. See Win32::OLE/EXAMPLES for how these types can be used.

Variant arrays
A variant can not only contain a single value but also a multi−dimensional array of values (called a
SAFEARRAY). In this case the VT_ARRAY flag must be added to the base variant type, e.g. VT_I4 |
VT_ARRAY for an array of integers. The VT_EMPTY and VT_NULL types are invalid for SAFEARRAYs.
It is possible to create an array of variants: VT_VARIANT | VT_ARRAY. In this case each element of the
array can have a different type (including VT_EMPTY and VT_NULL). The elements of a VT_VARIANT
SAFEARRAY cannot have either of the VT_ARRAY or VT_BYREF flags set.

The lower and upper bounds for each dimension can be specified separately. They do not have to have all the
same lower bound (unlike Perl‘s arrays).

Variants by reference
Some OLE servers expect parameters passed by reference so that they can be changed in the method call.
This allows methods to easily return multiple values. There is preliminary support for this in the
Win32::OLE::Variant module:

my $x = Variant(VT_I4|VT_BYREF, 0);
my $y = Variant(VT_I4|VT_BYREF, 0);
$Corel−>GetSize($x, $y);
print "Size is $x by $y\n";

After the GetSize method call $x and $y will be set to the respective sizes. They will still be variants. In
the print statement the overloading converts them to string representation automatically.

VT_BYREF is now supported for all variant types (including SAFEARRAYs). It can also be used to pass an
OLE object by reference:

my $Results = $App−>CreateResultsObject;
$Object−>Method(Variant(VT_DISPATCH|VT_BYREF, $Results));

AUTHORS/COPYRIGHT
This module is part of the Win32::OLE distribution.
154 Win32, 5.6.1 24−Apr−2001

Win32::OLE/EXAMPLES

Table of Contents Perl Programmers Reference Guide Table of Contents
TABLE OF CONTENTS

ChangeNotify 3
Clipboard 5
Console 9
Event 19
EventLog 20
File 23
FileSecurity 24
Internet 27
IPC 47
Mutex 49
NetAdmin 50
NetResource 54
ODBC 57
OLE 65
PerfLib 77
Pipe 80
Process 83
Registry 85
Semaphore 88
Service 89
Sound 90
TieRegistry 95
Const 121
Enum 123
NEWS 124
NLS 129
TPJ 137
Variant 148
Table of Contents 155
24−Apr−2001 Win32, 5.6.1 155

	ChangeNotify
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$notify = Win32::ChangeNotify-new($path, $subtree, $filter)
	$notify-close
	$notify-reset
	$notify-wait

	Deprecated Functions and Methods
	FindFirst($Obj,$PathName,$WatchSubTree,$Filter)
	$obj-FindNext()
	$obj-Close()

	AUTHOR

	Clipboard
	NAME
	SYNOPSIS
	DESCRIPTION
	REFERENCE
	Empty()
	EnumFormats()
	Get()
	GetAs(FORMAT)
	GetBitmap()
	GetFiles()
	GetFormatName(FORMAT)
	GetText()
	IsBitmap()
	IsFiles()
	IsFormatAvailable(FORMAT)
	IsText()
	Set(VALUE)
	WaitForChange([TIMEOUT])

	CONSTANTS

	AUTHOR

	Console
	NAME
	DESCRIPTION
	REFERENCE
	Methods
	Alloc
	Attr [attr]
	Close
	Cls [attr]
	Cursor [x, y, size, visible]
	Display
	FillAttr [attribute, number, col, row]
	FillChar char, number, col, row
	Flush
	Free
	GenerateCtrlEvent [type, processgroup]
	GetEvents
	Info
	Input
	keyboard event
	mouse event
	InputChar number
	InputCP [codepage]
	MaxWindow
	Mode [flags]
	MouseButtons
	new Win32::Console standard_handle
	new Win32::Console [accessmode, sharemode]
	OutputCP [codepage]
	PeekInput
	ReadAttr [number, col, row]
	ReadChar [number, col, row]
	ReadRect left, top, right, bottom
	Scroll left, top, right, bottom, col, row, char, attr,
	Select standard_handle
	Size [col, row]
	Title [title]
	Window [flag, left, top, right, bottom]
	Write string
	WriteAttr attrs, col, row
	WriteChar chars, col, row
	WriteInput (event)
	WriteRect rect, left, top, right, bottom

	Constants
	Microsoft`s Documentation

	VERSION HISTORY
	0.031 (24 Sep 1999)
	0.03 (07 Apr 1997)
	0.01 (09 Feb 1997)

	AUTHOR
	CREDITS
	DISCLAIMER

	Event
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$event = Win32::Event-new([$manual, [$initial, [$name]]])
	$event = Win32::Event-open($name)
	$event-pulse
	$event-reset
	$event-set
	$event-wait([$timeout])

	AUTHOR

	EventLog
	NAME
	SYNOPSIS
	DESCRIPTION
	The EventLog Object and its Methods
	Win32::EventLog-new(SOURCENAME [,SERVERNAME]);
	$handle-Backup(FILENAME);
	$handle-Read(FLAGS, OFFSET, HASHREF);
	$handle-Close();
	$handle-GetOldest(SCALARREF);
	$handle-GetNumber(SCALARREF);
	$handle-Clear(FILENAME);
	$handle-Report(HASHREF);
	Computer
	Source
	EventType
	EVENTLOG_ERROR_TYPE
	EVENTLOG_WARNING_TYPE
	EVENTLOG_INFORMATION_TYPE
	EVENTLOG_AUDIT_SUCCESS
	EVENTLOG_AUDIT_FAILURE
	Category
	EventID
	Data
	Strings

	Other Win32::EventLog functions.
	GetMessageText(HASHREF);

	Example 1
	Example 2
	BUGS
	AUTHOR

	File
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions
	NOTE
	GetAttributes(filename, returnedAttributes)
	SetAttributes(filename, newAttributes)

	Constants
	ARCHIVE
	COMPRESSED
	DIRECTORY
	HIDDEN
	NORMAL
	OFFLINE
	READONLY
	SYSTEM
	TEMPORARY

	FileSecurity
	NAME
	SYNOPSIS
	DESCRIPTION
	CONSTANTS
	FUNCTIONS
	NOTE:
	constant($name, $set)
	Get($filename, \%permisshash)
	Set($filename, \%permisshash)
	EnumerateRights($mask, \@rightslist)
	MakeMask(qw(DELETE READ_CONTROL))

	%permisshash

	EXAMPLE1
	EXAMPLE2
	COMMON MASKS FROM CACLS AND WINFILE
	READ
	CHANGE
	ADD �&� READ
	FULL

	RESOURCES
	VERSION
	REVISION NOTES
	1.03 ALPHA 1998.01.11
	1.02 ALPHA 1997.12.14
	1.01 ALPHA 1997.04.25
	0.67 ALPHA 1997.07.07
	0.66 ALPHA 1997.03.13
	0.65 ALPHA 1997.02.25
	0.60 ALPHA 1996.07.31
	0.51 ALPHA 1996.07.20
	0.50 ALPHA 1996.07.29

	KNOWN ISSUES / BUGS
	1
	2

	Internet
	NAME
	INTRODUCTION
	REFERENCE
	General Internet Functions
	CanonicalizeURL URL, [flags]
	Close
	Close object
	CombineURL baseURL, relativeURL, [flags]
	ConnectBackoff [value]
	ConnectRetries [value]
	ConnectTimeout [value]
	ControlReceiveTimeout [value]
	ControlSendTimeout [value]
	CrackURL URL, [flags]
	CreateURL scheme, hostname, port, username, password, path, extrainfo, [flags]
	CreateURL hashref, [flags]
	DataReceiveTimeout [value]
	DataSendTimeout [value]
	Error
	-1
	1 .. 11999
	12000 and higher
	FetchURL URL
	FTP ftpobject, server, username, password, [port, pasv, context]
	FTP ftpobject, hashref
	server
	username
	password
	port
	pasv
	context
	GetResponse
	GetStatusCallback context
	HTTP httpobject, server, username, password, [port, flags, context]
	HTTP httpobject, hashref
	server
	username
	password
	port
	flags
	context
	new Win32::Internet [useragent, opentype, proxy, proxybypass, flags]
	new Win32::Internet [hashref]
	useragent
	opentype
	proxy
	proxybypass
	flags
	OpenURL urlobject, URL
	Password [password]
	QueryDataAvailable
	QueryOption option
	ReadEntireFile
	ReadFile bytes
	SetOption option, value
	SetStatusCallback
	TimeConvert time
	TimeConvert seconds, minute, hours, day, month, year,
	UserAgent [name]
	Username [name]
	Version

	FTP Functions
	Ascii
	Asc
	Binary
	Bin
	Cd path
	Cwd path
	Chdir path
	Delete file
	Del file
	Get remote, [local, overwrite, flags, context]
	remote
	local
	overwrite
	flags
	context
	List [pattern, listmode]
	Ls [pattern, listmode]
	Dir [pattern, listmode]
	listmode=1 (or omitted)
	listmode=2
	the file name
	the DOS short file name, aka 8.3
	the size
	the attributes
	the creation time
	the last access time
	the last modified time
	listmode=3
	name = the file name
	altname = the DOS short file name, aka 8.3
	size = the size
	attr = the attributes
	ctime = the creation time
	atime = the last access time
	mtime = the last modified time
	Mkdir name
	Md name
	Mode [mode]
	Pasv [mode]
	Put local, [remote, context]
	Pwd
	Rename oldfile, newfile
	Ren oldfile, newfile
	Rmdir name
	Rd name

	HTTP Functions
	AddHeader header, [flags]
	OpenRequest requestobject, [path, method, version, referer, accept, flags, context]
	OpenRequest requestobject, hashref
	path
	method
	version
	referer
	accept
	flags
	context
	QueryInfo header, [flags]
	Request [path, method, version, referer, accept, flags]
	Request hashref
	SendRequest [postdata]

	APPENDIX
	Microsoft Win32 Internet Functions
	Functions Table
	Constants

	VERSION HISTORY
	0.081 (25 Sep 1999)
	0.08 (14 Feb 1997)
	0.07 (10 Feb 1997)
	0.06 (26 Jan 1997)
	0.05f (29 Nov 1996)
	0.05 (29 Nov 1996)
	0.04 (25 Nov 1996)
	0.02 (18 Nov 1996)
	0.01 (11 Nov 1996)

	AUTHOR
	CREDITS
	DISCLAIMER

	IPC
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$obj-wait([$timeout])

	Functions
	wait_any(@objects, [$timeout])
	wait_all(@objects, [$timeout])

	Deprecated Functions and Methods
	INFINITE
	WaitForMultipleObjects(\@objects, $wait_all, $timeout)
	$obj-Wait($timeout)

	AUTHOR

	Mutex
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$mutex = Win32::Mutex-new([$initial, [$name]])
	$mutex = Win32::Mutex-open($name)
	$mutex-release
	$mutex-wait([$timeout])

	Deprecated Functions and Methods
	Create($MutObj,$Initial,$Name)
	Open($MutObj,$Name)
	$MutObj-Release()

	AUTHOR

	NetAdmin
	NAME
	SYNOPSIS
	DESCRIPTION
	FUNCTIONS
	NOTE
	GetDomainController(server, domain, returnedName)
	GetAnyDomainController(server, domain, returnedName)
	UserCreate(server, userName, password, passwordAge, privilege, homeDir, comment, flags, scriptPath)
	UserDelete(server, user)
	UserGetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment, flags, scriptPath)
	UserSetAttributes(server, userName, password, passwordAge, privilege, homeDir, comment, flags, scriptPath)
	UserChangePassword(domainname, username, oldpassword, newpassword)
	UsersExist(server, userName)
	GetUsers(server, filter, userRef)
	GroupCreate(server, group, comment)
	GroupDelete(server, group)
	GroupGetAttributes(server, groupName, comment)
	GroupSetAttributes(server, groupName, comment)
	GroupAddUsers(server, groupName, users)
	GroupDeleteUsers(server, groupName, users)
	GroupIsMember(server, groupName, user)
	GroupGetMembers(server, groupName, userArrayRef)
	LocalGroupCreate(server, group, comment)
	LocalGroupDelete(server, group)
	LocalGroupGetAttributes(server, groupName, comment)
	LocalGroupSetAttributes(server, groupName, comment)
	LocalGroupIsMember(server, groupName, user)
	LocalGroupGetMembers(server, groupName, userArrayRef)
	LocalGroupGetMembersWithDomain(server, groupName, userRef)
	LocalGroupAddUsers(server, groupName, users)
	LocalGroupDeleteUsers(server, groupName, users)
	GetServers(server, domain, flags, serverRef)
	GetTransports(server, transportRef)
	LoggedOnUsers(server, userRef)
	GetAliasFromRID(server, RID, returnedName)
	GetUserGroupFromRID(server, RID, returnedName)
	GetServerDisks(server, arrayRef)

	EXAMPLE

	NetResource
	NAME
	SYNOPSIS
	DESCRIPTION
	DATA TYPES
	%NETRESOURCE
	%SHARE_INFO

	FUNCTIONS
	NOTE
	GetSharedResources(\@Resources,dwType)
	AddConnection(\%NETRESOURCE,$Password,$UserName,$Connection)
	CancelConnection($Name,$Connection,$Force)
	WNetGetLastError($ErrorCode,$Description,$Name)
	GetError($ErrorCode)
	GetUNCName($UNCName, $LocalPath);

	NOTE
	NetShareAdd(\%SHARE,$parm_err,$servername = NULL)
	NetShareCheck($device,$type,$servername = NULL)
	NetShareDel($netname, $servername = NULL)
	NetShareGetInfo($netname, \%SHARE,$servername=NULL)
	NetShareSetInfo($netname,\%SHARE,$parm_err,$servername=NULL)

	EXAMPLE
	AUTHOR

	ODBC
	NAME
	SYNOPSIS
	DESCRIPTION
	Background
	Benefits

	CONSTANTS
	SPECIAL NOTATION
	CONSTRUCTOR
	new (ODBC_OBJECT | DSN [, (OPTION1, VALUE1), (OPTION2, VALUE2) ...])

	METHODS
	Catalog (QUALIFIER, OWNER, NAME, TYPE)
	ColAttributes (ATTRIBUTE [, FIELD_NAMES])
	ConfigDSN (OPTION, DRIVER, ATTRIBUTE1 [, ATTRIBUTE2, ATTRIBUTE3, ...
	Connection ()
	Close ()
	Data ([FIELD_NAME])
	DataHash ([FIELD1, FIELD2, ...])
	DataSources ()
	Debug ([1 | 0])
	Drivers ()
	DropCursor ([CLOSE_TYPE])
	DumpData ()
	Error ()
	FetchRow ([ROW [, TYPE]])
	FieldNames ()
	GetConnections ()
	GetConnectOption (OPTION)
	GetCursorName ()
	GetData ()
	getDSN ([DSN])
	GetFunctions ([FUNCTION1, FUNCTION2, ...])
	GetInfo (OPTION)
	GetMaxBufSize ()
	GetSQLState () *
	GetStmtCloseType ([CONNECTION])
	GetStmtOption (OPTION)
	MoreResults ()
	RowCount (CONNECTION)
	Run (SQL)
	SetConnectOption (OPTION) *
	SetCursorName (NAME) *
	SetPos (ROW [, OPTION, LOCK]) *
	SetMaxBufSize (SIZE)
	SetStmtCloseType (TYPE [, CONNECTION])
	SetStmtOption (OPTION) *
	ShutDown ()
	Sql (SQL_STRING)
	TableList (QUALIFIER, OWNER, NAME, TYPE)
	Transact (TYPE) *
	Version (PACKAGES)

	LIMITATIONS
	INSTALLATION NOTES
	OTHER DOCUMENTATION
	AUTHOR
	CREDITS
	DISCLAIMER
	HISTORY
	COPYRIGHT

	OLE
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	Win32::OLE-new(PROGID[, DESTRUCTOR])
	Win32::OLE-EnumAllObjects([CALLBACK])
	Win32::OLE-FreeUnusedLibraries()
	Win32::OLE-GetActiveObject(CLASS[, DESTRUCTOR])
	Win32::OLE-GetObject(MONIKER[, DESTRUCTOR])
	Win32::OLE-Initialize([COINIT])
	OBJECT-Invoke(METHOD[, ARGS])
	Win32::OLE-LastError()
	OBJECT-LetProperty(NAME,ARGS,VALUE)
	Win32::OLE-MessageLoop()
	Win32::OLE-Option(OPTION)
	Win32::OLE-QueryObjectType(OBJECT)
	Win32::OLE-QuitMessageLoop()
	OBJECT-SetProperty(NAME,ARGS,VALUE)
	Win32::OLE-SpinMessageLoop
	Win32::OLE-Uninitialize
	Win32::OLE-WithEvents(OBJECT[, HANDLER[, INTERFACE]])

	Object methods and properties
	Functions
	HRESULT(ERROR)
	in(COLLECTION)
	valof(OBJECT)
	with(OBJECT, PROPERTYNAME = VALUE, ...)

	Overloading
	Events
	Module Options
	CP
	LCID
	Warn
	_NewEnum
	_Unique

	EXAMPLES
	NOTES
	Hints for Microsoft Office automation
	Documentation
	Class, Method and Property names
	Moniker (GetObject support)
	Enumeration of collection objects
	Localization
	SaveAs method in Word 97 doesn`t work
	Randomly failing method calls

	Incompatibilities
	1
	2
	3
	4
	5

	Bugs and Limitations

	SEE ALSO
	AUTHORS
	COPYRIGHT
	VERSION

	PerfLib
	NAME
	SYNOPSIS
	DESCRIPTION
	FUNCTIONS
	NOTE
	Win32::PerfLib::GetCounterNames($server,$hashref)
	Win32::PerfLib::GetCounterHelp($server,$hashref)
	$perflib = Win32::PerfLib-new ($server)
	$perflib-GetObjectList($objectid,$hashref)
	$perflib-Close($hashref)
	Win32::PerfLib::GetCounterType(countertype)

	Datastructures
	Level 1
	Level 2
	Level 3
	Level 4
	Level 5
	Level 6
	Level 7

	AUTHOR
	SEE ALSO

	Pipe
	NAME
	SYNOPSIS
	DESCRIPTION
	General Use
	Benefits

	CONSTRUCTOR
	new (NAME)

	METHODS
	BufferSize ()
	Connect ()
	Close ()
	Disconnect ()
	Error ()
	Read ()
	ResizeBuffer (SIZE)
	Write (DATA)

	LIMITATIONS
	INSTALLATION NOTES
	AUTHOR
	DISCLAIMER
	COPYRIGHT

	Process
	NAME
	SYNOPSIS
	DESCRIPTION
	METHODS
	Win32::Process::Create($obj,$appname,$cmdline,$iflags,$cflags,$curdir)
	Win32::Process::KillProcess($pid, $exitcode)
	$ProcessObj-Suspend()
	$ProcessObj-Resume()
	$ProcessObj-Kill($ExitCode)
	$ProcessObj-GetPriorityClass($class)
	$ProcessObj-SetPriorityClass($class)
	$ProcessObj-GetProcessAffinitymask($processAffinityMask, $systemAffinitymask)
	$ProcessObj-SetProcessAffinitymask($processAffinityMask)
	$ProcessObj-GetExitCode($ExitCode)
	$ProcessObj-Wait($Timeout)
	$ProcessObj-GetProcessID()

	Registry
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	Open
	Close
	Connect
	Create
	SetValue
	SetValueEx
	QueryValue
	QueryKey
	QueryValueEx
	GetKeys
	GetValues
	DeleteKey
	DeleteValue
	Save
	Load
	UnLoad

	Semaphore
	NAME
	SYNOPSIS
	DESCRIPTION
	Methods
	$semaphore = Win32::Semaphore-new($initial, $maximum, [$name])
	$semaphore = Win32::Semaphore-open($name)
	$semaphore-release([$increment, [$previous]])
	$semaphore-wait([$timeout])

	Deprecated Functions and Methods
	Win32::Semaphore::Create($SemObject,$Initial,$Max,$Name)
	Win32::Semaphore::Open($SemObject, $Name)
	$SemObj-Release($Count,$LastVal)

	AUTHOR

	Service
	NAME
	SYNOPSIS
	DESCRIPTION
	FUNCTIONS
	NOTE:
	StartService(hostName, serviceName)
	StopService(hostName, serviceName)
	GetStatus(hostName, serviceName, status)
	PauseService(hostName, serviceName)
	ResumeService(hostName, serviceName)
	GetServices(hostName, hashref)

	Sound
	NAME
	SYNOPSIS
	FUNCTIONS
	Win32::Sound::Play(SOUND, [FLAGS])
	SND_ASYNC
	SND_LOOP
	SND_NODEFAULT
	SND_NOSTOP
	Win32::Sound::Stop()
	Win32::Sound::Volume()
	Win32::Sound::Volume(LEFT, [RIGHT])
	Win32::Sound::Format(filename)
	sample rate (in Hz)
	bits per sample (8 or 16)
	channels (1 for mono, 2 for stereo)
	Win32::Sound::Devices()
	Win32::Sound::DeviceInfo(DEVICE)

	THE WaveOut PACKAGE
	FUNCTIONS
	new Win32::Sound::WaveOut(FILENAME)
	new Win32::Sound::WaveOut(SAMPLERATE, BITS, CHANNELS)
	new Win32::Sound::WaveOut()
	Close()
	CloseDevice()
	GetErrorText(ERROR)
	Load(DATA)
	Open(FILE)
	OpenDevice()
	Pause()
	Play([FROM, TO])
	Position()
	Reset()
	Restart()
	Save(FILE, [DATA])
	Status()
	Unload()
	Volume([LEFT, RIGHT])
	Write()

	THE SOUND FORMAT
	EXAMPLE

	VERSION
	AUTHOR

	TieRegistry
	NAME
	SYNOPSIS
	EXAMPLES
	DESCRIPTION
	The Registry
	REG_SZ
	REG_EXPAND_SZ
	REG_BINARY
	REG_MULTI_SZ
	REG_DWORD

	Tied Hashes Documentation
	"Classes" for HKEY_CLASSES_ROOT
	"CUser" for HKEY_CURRENT_USER
	"LMachine" for HKEY_LOCAL_MACHINE
	"Users" for HKEY_USERS
	"PerfData" for HKEY_PERFORMANCE_DATA
	"CConfig" for HKEY_CURRENT_CONFIG
	"DynData" for HKEY_DYN_DATA
	SubKeys
	Values
	Remote machines
	Hash key string starts with the delimiter
	Exact match with direct subkey name followed by delimiter
	Hash key string contains two delimiters in a row
	Hash key string ends with a delimiter
	Hash key string contains a delimiter
	Hash key string contains no delimiters
	Canonical value fetch
	Changing your delimiter
	Using intermediate keys
	Chaining in a single statement
	Even less efficient example of chaining
	What the above really does
	Getting all of the tips
	Adding a new tip
	Deleting our new tip
	Adding a new tip differently
	Deleting differently
	Deleting a key
	Technical notes on deleting
	Undeleting a key
	Not deleting a key
	Not deleting again

	Objects Documentation
	new
	Open
	$subKey= $key-Open($sSubKey, $rhOptions)
	Clone
	$copy= $key-Clone
	Connect
	$remoteKey= $Registry-Connect($sMachineName, $sKeyPath, $rhOptions)
	ObjectRef
	$object_ref= $obj_or_hash_ref-ObjectRef
	Flush($bFlush)
	GetValue
	$ValueData= $key-GetValue($sValueName)
	($ValueData,$ValueType)= $key-GetValue($sValueName)
	REG_SZ and REG_EXPAND_SZ
	REG_MULTI_SZ
	REG_DWORD
	ValueNames
	@names= $key-ValueNames
	SubKeyNames
	@key_names= $key-SubKeyNames
	SubKeyClasses
	@classes= $key-SubKeyClasses
	SubKeyTimes
	@times= $key-SubKeyTimes
	MemberNames
	@members= $key-MemberNames
	Information
	%info= $key-Information
	@items= $key-Information(@itemNames);
	LastWrite
	CntSubKeys
	CntValues
	SecurityLen
	MaxValDataLen
	MaxSubKeyLen
	MaxSubClassLen
	MaxValNameLen
	Delimiter
	$oldDelim= $key-Delimiter
	$oldDelim= $key-Delimiter($newDelim)
	Handle
	$handle= $key-Handle
	Path
	$path= $key-Path
	Machine
	$computerName= $key-Machine
	Access
	OS_Delimiter
	Roots
	Tie
	$key-Tie(\%hash);
	TiedRef
	$TiedHashRef= $hash_or_obj_ref-TiedRef
	ArrayValues
	$oldBool= $key-ArrayValues
	$oldBool= $key-ArrayValues($newBool)
	TieValues
	$oldBool= TieValues
	$oldBool= TieValues($newBool)
	FastDelete
	$oldBool= $key-FastDelete
	$oldBool= $key-FastDelete($newBool)
	SplitMultis
	$oldBool= $key-SplitMultis
	$oldBool= $key-SplitMultis($newBool)
	DWordsToHex
	$oldBool= $key-DWordsToHex
	$oldBool= $key-DWordsToHex($newBool)
	FixSzNulls
	$oldBool= $key-FixSzNulls
	$oldBool= $key-FixSzNulls($newBool)
	DualTypes
	$oldBool= $key-DualTypes
	$oldBool= $key-DualTypes($newBool)
	DualBinVals
	$oldBool= $key-DualBinVals
	$oldBool= $key-DualBinVals($newBool)
	GetOptions
	@oldOptValues= $key-GetOptions(@optionNames)
	$refHashOfOldOpts= $key-GetOptions()
	$key-GetOptions(\%hashForOldOpts)
	SetOptions
	@oldOpts= $key-SetOptions(optNames=$optValue,...)
	SetValue
	$okay= $key-SetValue($ValueName, $ValueData);
	$okay= $key-SetValue($ValueName, $ValueData, $ValueType);
	REG_SZ or REG_EXPAND_SZ
	REG_MULTI_SZ
	REG_DWORD
	REG_BINARY
	CreateKey
	$newKey= $key-CreateKey($subKey);
	$newKey= $key-CreateKey($subKey, { Option=OptVal,... });
	Delimiter
	Access
	Class
	Disposition
	Security
	Volatile
	Backup
	Options
	StoreKey
	$newKey= $key-StoreKey($subKey, \%Contents);
	Load
	$newKey= $key-Load($file)
	$newKey= $key-Load($file, $newSubKey)
	$newKey= $key-Load($file, $newSubKey, { Option=OptVal... })
	$newKey= $key-Load($file, { Option=OptVal... })
	UnLoad
	$okay= $key-UnLoad
	AllowSave
	$okay= AllowSave($bool)
	AllowLoad
	$okay= AllowLoad($bool)

	Exports [�use� and ��import()��]
	Import a reference to a hash tied to a Registry virtual root
	"TiedRef", `$scalar'
	"TiedRef", `$pack::scalar'
	"TiedRef", `scalar'
	"TiedRef", `pack::scalar'
	`$scalar'
	`$pack::scalar'
	"TiedRef", \$scalar
	\$scalar
	Import a hash tied to the Registry virtual root
	"TiedHash", `%hash'
	"TiedHash", `%pack::hash'
	"TiedHash", `hash'
	"TiedHash", `pack::hash'
	`%hash'
	`%pack::hash'
	"TiedHash", \%hash
	\%hash
	Import a Registry virtual root object
	"ObjectRef", `$scalar'
	"ObjectRef", `$pack::scalar'
	"ObjectRef", `scalar'
	"ObjectRef", `pack::scalar'
	`$RegObj'
	"ObjectRef", \$scalar
	Import constant(s) exported by Win32API::Registry
	Options
	ExportLevel
	ExportTo

	SUMMARY
	Objects Summary
	Tied Hashes Summary
	Tie::Registry

	AUTHOR
	SEE ALSO
	BUGS
	FUTURE DIRECTIONS
	TieValues option
	AutoRefresh option
	Error options

	Const
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions/Methods
	use Win32::OLE::Const
	Win32::OLE::Const-Load

	EXAMPLES
	AUTHORS/COPYRIGHT

	Enum
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions/Methods
	Win32::OLE::Enum-new($object)
	$Enum-All()
	$Enum-Clone()
	$Enum-Next([$count])
	$Enum-Reset()
	$Enum-Skip([$count])

	AUTHORS/COPYRIGHT

	NEWS
	NAME
	Version 0.13
	�nothing()� method in Win32::OLE::Variant
	new _NewEnum and _Unique options

	Version 0.12
	Additional error handling functionality
	Builtin event loop
	Free unused OLE libraries
	The "Win32::OLE" article from "The Perl Journal #10"
	�VARIANT-�Put()� bug fixes
	Error message fixes
	VT_DATE and VT_ERROR return values handled differently

	Version 0.11 (changes since 0.1008)
	new DHTML typelib browser
	VT_DECIMAL support

	Version 0.1008
	new �LetProperty()� object method
	new �HRESULT()� function

	Version 0.1007 (changes since 0.1005)
	OLE Event support
	�GetObject()� and �GetActiveObject()� now support optional DESTRUCTOR argument
	Remote object instantiation via DCOM
	Enumerate all Win32::OLE objects
	The �VARIANT-�Put()� method now returns the VARIANT object itself
	The VARIANT-�Put(ARRAYREF) form allows assignment to a complete SAFEARRAY
	New Variant formatting methods
	new Win32::OLE::NLS methods: �SendSettingChange()� and �SetLocaleInfo()�
	Win32::OLE::Const now correctly treats version numbers as hex
	more robust global destruction of Win32::OLE objects

	Version 0.1005 (changes since 0.1003)
	optional DESTRUCTOR for �GetActiveObject()� �GetObject()� class methods
	new Variant object method: �$object-�Copy()�
	new �Win32::OLE-�Option()� class method

	NLS
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions
	CompareString(LCID,FLAGS,STR1,STR2)
	LCMapString(LCID,FLAGS,STR)
	GetLocaleInfo(LCID,LCTYPE)
	GetStringType(LCID,TYPE,STR)
	GetSystemDefaultLangID()
	GetSystemDefaultLCID()
	GetUserDefaultLangID()
	GetUserDefaultLCID()
	SendSettingChange()
	SetLocaleInfo(LCID, LCTYPE, LCDATA)
	MAKELANGID(LANG,SUBLANG)
	PRIMARYLANGID(LANGID)
	SUBLANGID(LANGID)
	MAKELCID(LANGID)
	LANGIDFROMLCID(LCID)

	Locale Types
	LOCALE_ILANGUAGE
	LOCALE_SLANGUAGE
	LOCALE_SENGLANGUAGE
	LOCALE_SABBREVLANGNAME
	LOCALE_SNATIVELANGNAME
	LOCALE_ICOUNTRY
	LOCALE_SCOUNTRY
	LOCALE_SENGCOUNTRY
	LOCALE_SABBREVCTRYNAME
	LOCALE_SNATIVECTRYNAME
	LOCALE_IDEFAULTLANGUAGE
	LOCALE_IDEFAULTCOUNTRY
	LOCALE_IDEFAULTANSICODEPAGE
	LOCALE_IDEFAULTCODEPAGE
	LOCALE_SLIST
	LOCALE_IMEASURE
	LOCALE_SDECIMAL
	LOCALE_STHOUSAND
	LOCALE_SGROUPING
	LOCALE_IDIGITS
	LOCALE_ILZERO
	LOCALE_SNATIVEDIGITS
	LOCALE_INEGNUMBER
	LOCALE_SCURRENCY
	LOCALE_SINTLSYMBOL
	LOCALE_SMONDECIMALSEP
	LOCALE_SMONTHOUSANDSEP
	LOCALE_SMONGROUPING
	LOCALE_ICURRDIGITS
	LOCALE_IINTLCURRDIGITS
	LOCALE_ICURRENCY
	LOCALE_INEGCURR
	LOCALE_ICALENDARTYPE
	LOCALE_IOPTIONALCALENDAR
	LOCALE_SDATE
	LOCALE_STIME
	LOCALE_STIMEFORMAT
	LOCALE_SSHORTDATE
	LOCALE_SLONGDATE
	LOCALE_IDATE
	LOCALE_ILDATE
	LOCALE_ITIME
	LOCALE_ITIMEMARKPOSN
	LOCALE_ICENTURY
	LOCALE_ITLZERO
	LOCALE_IDAYLZERO
	LOCALE_IMONLZERO
	LOCALE_S1159
	LOCALE_S2359
	LOCALE_IFIRSTWEEKOFYEAR
	LOCALE_IFIRSTDAYOFWEEK
	LOCALE_SDAYNAME1 .. LOCALE_SDAYNAME7
	LOCALE_SABBREVDAYNAME1 .. LOCALE_SABBREVDAYNAME7
	LOCALE_SMONTHNAME1 .. LOCALE_SMONTHNAME12
	LOCALE_SMONTHNAME13
	LOCALE_SABBREVMONTHNAME1 .. LOCALE_SABBREVMONTHNAME12
	LOCALE_SABBREVMONTHNAME13
	LOCALE_SPOSITIVESIGN
	LOCALE_SNEGATIVESIGN
	LOCALE_IPOSSIGNPOSN
	LOCALE_INEGSIGNPOSN
	LOCALE_IPOSSYMPRECEDES
	LOCALE_IPOSSEPBYSPACE
	LOCALE_INEGSYMPRECEDES
	LOCALE_INEGSEPBYSPACE

	AUTHORS/COPYRIGHT

	TPJ
	Win32::OLE
	THE OLE MINDSET
	WORKING WITH WIN32::OLE
	THE FIRST STEP: CREATING AN OLE SERVER OBJECT
	METHOD CALLS
	PROPERTIES
	SAMPLE APPLICATION
	DOWNLOADING A WEB PAGE WITH LWP
	MICROSOFT ACCESS
	MICROSOFT EXCEL
	ACTIVEX DATA OBJECTS
	LOTUS NOTES

	VARIANTS
	FURTHER INFORMATION
	DOCUMENTATION AND EXAMPLE CODE
	OLE AUTOMATION ON OTHER PLATFORMS

	COPYRIGHT

	Variant
	NAME
	SYNOPSIS
	DESCRIPTION
	Functions
	nothing()
	Variant(TYPE, DATA)

	Methods
	new(TYPE, DATA)
	As(TYPE)
	ChangeType(TYPE)
	Copy([DIM])
	Currency([FORMAT[, LCID]])
	Date([FORMAT[, LCID]])
	Dim()
	Get(DIM)
	LastError()
	Number([FORMAT[, LCID]])
	Put(DIM, VALUE)
	Time([FORMAT[, LCID]])
	Type()
	Unicode()
	Value()

	Overloading
	Class Variables
	Constants
	Variants
	Variant arrays
	Variants by reference

	AUTHORS/COPYRIGHT

	Table of Contents

