Optimizelt 4.0

User quide 238 Onfimize It

INTUITIVE SYSTEMS, INC. - SOFTWARE LICENSE AGREEMENT

INTUITIVE SYSTEMS, INC. ("LICENSOR") ISWILLING TO LICENSE THE ACCOMPANYING PROGRAM
TO YOU ("LICENSEE") ONLY IF YOU ACCEPT ALL OF THE

TERMSIN THISAGREEMENT. PLEASE READ THE TERMS CAREFULLY. BY INSTALLING THE PACK-
AGE FROM THE CD-ROM OR BY CLICKING ON THEBUTTON "YES'

BELOW, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT
AGREE TO ALL OF THE TERMS OF THIS AGREEMENT,

LICENSOR WILL NOT LICENSE THIS PROGRAM TO YOU. IN THIS CASE DO NOT INSTALL THE PACK-
AGE OR CLICK THEBUTTON "NO".

Definitions

1.1 "Agreement” shall mean this Agreement between Licensor and Licensee.

1.2. "Documentation” shall mean the user manual (s) and any other materials supplied by Licensor for use with the
Program .

1.3 "Program" shall mean the machine-readable object code of Optimizelt together with its Documentation.

Grant of License

2. Licensor hereby grantsto Licensee, and Licensee hereby accepts, a permanent non-exclusive license to use the
Program subject to

the terms ad provisions of this Agreement.

3. Thelicense granted by this Agreement authorizes use of the Program by no more that 1 concurrent user, unless
expressly specified
in the materials supplied by Licensor to Licensee together with the Program.

4. Licensee acquires no right to distribute the Program and no right to copy the Program unless as specified in this
Agreement

5. Licensee agrees not to decompile, disassemble or reverse engineer the Program.

6. Licensee shall have the right to make one copy of the machine-readable object code of the Program solely for
archive purposes. On

such archival copy, Licensee shall mark copyright, trademark, patent, and/or trade secret notices identical to those on
the copy of

the Program provided to Licensee. Licensee may not otherwise make copies of the Program.

Acknowledgment of Licensor's ownership rights

7. Licensee acknowledges that it obtains no ownership rightsin the Program under the terms of this Agreement. All
rightsin the

Program including but not limited to trade secrets, trademarks, service marks, patents, and copyrights are, shall be
and will remain

the property of Licensor or any third party from whom Licensor has licensed software or technology. All copies of
the Program

delivered to Licensee or made by Licensee remain the property of Licensor.

Limited Warranty

8. Licensor warrants that the Program will perform substantially in accordance with accompanying Documentation
for aperiod of ninety

(90) days from the date of Licensee's receipt of the program ("Warranty period"). Any implied warranties on the Pro-
gram are limited to

ninety (90) days.

9. LICENSOR AND ANY THIRD PARTY FROM WHOM LICENSOR HAS LICENSED SOFTWARE OR TECH-
NOLOGY DISCLAIM(S) ALL OTHER WARRANTIES, EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NON-INFRINGEMENT, WITH RESPECT TO THE PROGRAM AND THE ACCOMPANYING WRITTEN
MATERIALS.

10. LICENSOR AND ANY THIRD PARTY FROM WHOM LICENSOR HAS LICENSED SOFTWARE OR
TECHNOLOGY WILL NOT BE LIABLE FOR LOST PROFITS, LOST
OPPORTUNITIES, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES UNDER ANY CIRCUMSTANCES.

11. EXCLUSIVE REMEDY: LICENSEE'S EXCLUSIVE REMEDY SHALL BE, AT LICENSOR'S CHOICE,
EITHER (A) RETURN OF THE PRICE PAID OR (B)

REPLACEMENT OF THE PROGRAM THAT DOES NOT MEET LICENSOR'S LIMITED WARRANTY AND
WHICH ISRETURNED TO LICENSOR WITH A COPY OF LICENSEE'S

RECEIPT. Any replacement Program will be warranted for the remainder of the original warranty period or thirty
(30) days, whichever is

longer. These remedies are not available outside the United States of America.

12. If any problem, operational failure or error of the Program has resulted from any alteration of the Program, acci-
dent, abuse, or
misapplication, then this warranty shall be null and void, at Licensor's option.

13.IN NO EVENT WILL LICENSOR BE LIABLE TO LICENSEE FOR DAMAGES, INCLUDING ANY LOSS
OF PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF YOUR USE OR INABILITY TO USE THE PROGRAM.

14. This Agreement is governed by the laws of the State of California.

15. U.S. Government Restricted Rights. This Program and documentation are provided with Restricted Rights. Use,
duplication, or

disclosure by the Government is subject to restrictions set forth in subparagraph (c)(1) of the Rightsin Technical Data
and Computer

Software clause at DFARS 252.227-7013 or subparagraphs (c)(1)(ii) and (2) of Commercial Computer Software -
restricted Rights at 48

CFR 52.227-19, as applicable.

1 Introducing OptimIZEltcoocveiiiee e, 1

L1 What iISOPUMIZEIT? ..ot eere s 1
1.2 Getting started With OptimiZelt..........ccovevie e 3
1.3 Differences when profiling with Javaand Java 2ccceceevvnieinniieeneeeeenns 4
1.4 Optimizelt MaiN fEALUES.c.ooiieiiieiie e nree s 5
2 Configuring OPtiMIzZElt.........ooeeeiiieeeecee e 7
2.1 Selecting avirtual MAaChINEccoiiiriee e 8
2.2 Setting the Source Code |OCaLION........cccve et 9
2.3 Changing the class path..........ccoooeiiiin s 10
2.4 Configuring SErVIEt SUPPOIT.......ccueiieeieeeie et s 11
3ProfilingaJavaprogramccccceceeeeeiieeeeecreeee e 12
3.1 Starting aJava APPHICALIONooiveeiiieie e 12
3.2Starting aJava APPIELooeeeeeee s 14
3.3 Starting aJava SErVIEL..........ooiie e 15
A Profiling EIBS OF JSPS.......cc.coiieciie ettt sne e 16
3.5 SHAIt OPLIONS. ... e ne e 17
3.6 Virtual Maching OPLIONScccuiiiierie e 19
3.7 Profiling a program started from the command line...........cccoecevienieenin e 21
3.8 Profiling a Java program running on adifferent machine.............c.cccccocvenee. 27
3.9 OFffliNE ProfiliNg ..ecuee et 28
310 Profiling WIth FIIEErS ..o 35
3.11 Starting Optimizelt from the test programcccevevveeneesceesen e 37
4 Usingthememory profiler ... 39
4.1 Memory profiler MOUES.........ccouieiie e 40
4.2 Understanding object alloCatioNScoceeiiiiiiiiie e 41
4.3 Understanding where objects are allocated...........ooceveeiiiiieeninnee e, 44
4.4 Tracking temporary object alloCatioNs.............cccveveriieniie e 46
4.5 ldentifying objects not freed by the garbage collectorccccevviiiiiennnnne 48
5 Usingthe CPU profilerccoeeeeeieee e 57
5.1 RecOrding @teSt SESSIONceiieiiieeiiee sttt siee ettt sre e 58

5.2 Understanding the profiler QULPULcooeeiiriiiie e 59

5.3 Advanced CPU profiler OptioNnS..........cccevieeiiiiieniie s 62

6 Virtual machineinformationccccocveveininiiien e, 65
6.1 Using the virtual machine information mode............ccccooeviiiinneniee e 66
6.2 Virtual machine information Mode OPtioNSccccevverieenieenee e 68
7 Other TEALUIES ..ot 69
7.1 Controlling the teSt Programc.coveeeieeiee e 70
7.2 Generating a snapshot for the current profiling session..........ccccvveceeveviieenee. 71
7.3 0pENiNG @SNAPSNOLc.veeiiiciee et 73
AN = o Lo (] e o = - R 74
7.5 VIeWiNG SOUrCE COUR.......ccueeieeeteeiiecieesteeste et eete e te e e s teesse e sne e sreesnneennes 76
7.6 Creating fllTerS. ...co i 78
7.7 Displaying Optimizelt CONSOle MESSAGES.......cciverreerrerrieesie e 79
T8 FING PANEL ... e 80
8 Integration with other Java environments............cccee.....e. 81
8.1 Integration With appliCation SEIVENScccviiiieieerie et 82

1 Introducing Optimizelt

1.1 What is Optimizelt?

Optimizelt™ software isa Java™ profiling tool which enables developers
to test and improve the performance of their Java applications, applets,
servlets, Javabeans™, Enterprise Javabeans™ and Java Server Pages™.
Optimizelt takes you behind the scenes of the Java virtual machine and
reveals how a Java program uses computer resources. Using Optimizelt
allows devel opersto identify any Java code alocating too much memory or
using the CPU in an inefficient way.

Optimizelt is plug and play: there is no need to recompile your program
with a custom compiler or to modify class files before execution. Just run
your program from Optimizelt to start testing its performance. Because no
code modification is required, any Java code that your program usesis
included in the profile.

Optimizelt has two main components:

* The Optimizelt user interface isawindow that displays profiles and
controls for refining the profiles and viewing source code.

* The Optimizelt audit system is areal-time detective that reports the
activity on the Java virtual machine back to the Optimizelt user inter-
face.

After you invoke your program from Optimizelt, the Optimizelt user inter-
face connects to the audit system running in the test application’s virtual
machine and displays performance related information. For example, when
an object isallocated by your program, the Optimizelt window displaysthe
allocation. Y ou can click a button in the Optimizelt window to display the
source code responsible for allocating the object and click a button to dis-
play other information such as CPU usage.

At any time you can open the source code viewer to display and study rele-
vant lines of code. For example, if you identify a performance bottleneck
while viewing methods allocating objects, you can click a button to open
the source code viewer displaying the problem code.

When you run Optimizelt again after fixing source code, you can make sure
that your new optimization is actually improving the performance of your

Introducing Optimizelt 1

application. Optimizelt removes guesswork from improving Java perfor-
mance.

Introducing Optimizelt

1.2 Getting started with Optimizelt

The basic stepsto run Optimizelt are as follows:

Create some new settings for the application you want to test

Launch your test program from Optimizelt

Analyze memory use in the test program

Analyze CPU usein the test program

Make changes to your source code and repeat these steps until you are
satisfied with your program's performance

These basic steps are detailed in the Optimizelt Quick Tour, also accessible
from the user interface. This user manual describes a more broad selection
of Optimizelt tasks. It aso includesinformation about Optimizelt windows
and options.

We strongly recommend that you spend 10 minutes with the Optimizelt
Quick Tour tutorial to understand Optimizelt quickly.

Introducing Optimizelt 3

1.3 Differences when profiling with Java and Java 2

Some Optimizelt features are different when using Java (JDK 1.1) or Java 2
(JDK 1.2 or IDK 1.3). For example, Optimizelt provides more features
with Java 2. The following logos are used within the documentation when a
paragraph only appliesto Java or Java 2:

Java Java 2

Introducing Optimizelt 4

1.4 Optimizelt main features

Memory Profiler

* Providesreal-time display of al classes used by the test program and of
the number of allocated instances

Graphically indicates where instances are alocated

Filters class lists so you can focus on relevant classes

Automatically highlights lines of code that allocate object instances
Gives you control over garbage collection

Displays incoming and outgoing object referencesin real time
Displays string representations of allocated instances

Provides Java API calls so you can invoke the memory profiler from
inside the test program

Computes reduced reference graph for incoming references
Displays references from reference graph roots

Java2

CPU profiler

* Allowsyou to start or stop profiling at any time

« Displaysdatafor pure CPU use or for elapsed time (pure CPU and inac-
tive phases)

Graphically represents thread activities for the sampling period
Displays profiling information for each thread or thread group

Finds frequently used methods using Hot spot detectors

Provides Java APl calls so you can invoke the CPU profiler frominside
the test program

Provides both a sampler based profiler and an instrumentation based
profiler

* Can provide millisecond or microsecond precision

» Displaysinvocation count

* Providesfilter to remove fast methods

Java 2

Other features

e Providesfilters for both memory and CPU profiler

» Displays and exports charts showing high level VM information includ-
ing heap size, heap used, number of threads, number of busy threads,
number of loaded classes

» Startsany Java application, applet or servlet directly from Optimizelt
user interface

Introducing Optimizelt 5

» Saves snapshots of a profiling session at any time. Snapshots can be
reloaded later for analysis or comparison of profilings

» Provides an offline profiling mode to automatically save snapshots at
fixed intervals

* Integrates automatically with several IDEsincluding IBM VisualAge,
WebGain Visua Cafe, Borland JBuilder, Oracle JDeveloper

* Integrates automatically with several Application Serversincluding
JRun 2.3 and 3.0, WebL ogic 4.5, 5.0 and 5.1, iPlanet Web Server (NES
4.0and 4.1), JServ 1.1, JavaWeb Server 1.13 and 2.0, ServletExec 2.2
and 3.0, Jakarta Tomcat.

* Provides compatibility with IBM WebSphere, Apple WebObjects and

Netscape Application Server (NAS), ATG Dynamo, SilverStream,

GemStone

Pauses and resumes the execution of the test program

Provides afind tool that can be used in all screens

Highlights relevant lines of code with the source code viewer

Includes a Java setup wizard for fast and simple configuration

Executes your test program remotely while analyzing performance

Exports any information in HTML or ASCI|

Provides Java API calls so you can invoke the Optimizelt audit system

from any Java code

Supports any virtual machine that is fully JVMPI compliant. This
includes any Sun virtual machine derived from JDK 1.1, 1.2, 1.3 and
asoIBM DK 1.2and 1.3

» Displays and exports chart showing garbage collector load factor.

e Startsapplications directly from JAR files

Java 2

Introducing Optimizelt 6

2 Configuring Optimizelt

This chapter describes how to configure the Optimizelt software for opera-
tion with your Java application. It includes the following sections:

Selecting a virtual machine
Setting the source code location
Changing the class path
Configuring servlet support

These settings are global settings that can be customized for each applet or
application you are profiling.

Configuring Optimizelt 7

2.1 Selecting a virtual machine

Optimizelt profiles your program's performance while it runs on a Java
virtual machine. By default Optimizelt profiles using a Java 2 runtime.

Optimizelt is compatible with most Javaversion 1.1, 1.2 and 1.3 virtual
machines including the following:

e Sun Microsystems® Java Development Kit (JDK) Version 1.1.6 or
newer, 1.2 and 1.3

e Borland® JBuilder™ Version 1.0 or higher

* Symantec® Cafe Version 2.5 or 3.0

* IBM® Java Development Kit JDK 1.2.2 and 1.3

Optimizelt includes a Java Runtime Environment (JRE) 1.2. Thefirst time
you run Optimizelt, a Java setup wizard is started. If you want to use the
default JRE 1.2 included with Optimizelt, just click Cancel. If you want to
configure Optimizelt to use a different virtual machine, click Next. Select
the directory where you want the wizard to search for available virtual
machines. The wizard scans the selected directory or drive and lists all
available virtual machines (after you see the message "Found 1 virtual
machine" you can click Stop to end the scan). Select the virtual machine
you want to usein the list of found virtual machines, click Next, then click
Finish.

After changing the default virtual machine, Optimizelt prompts you to ask
whether the new default virtual machine should be used with the current
settings. Click Yesto start using that virtual machine.

At any time, you can change which virtual machine Optimizelt uses from
the Virtual machine tab of the Settings editor, See “ Adding a virtual
machine” on page 19.

Configuring Optimizelt 8

2.2 Setting the sour ce code location

When Optimizelt has access to the source code for an application, it high-
lights the relevant linesin the source code. If the source code is not accessi-
ble, Optimizelt can still provide profiling information for the Java classes.

Optimizelt maintains a source path which isalist of directories containing
source code. Optimizelt searches each directory in the source path in the
order specified when it requires a source file. The Preferences panel can be
used to change the default source path in Optimizelt.

Changing the default sour ce path

1. Select Preferences from the Edit menu.

2. Select Default source path in the top selection box.

3. Click the Edit button.

4. The Source Path Chooser opens.

5. In the top box, select the directory you want to add.

6. Choose the directory that contains the top-level package of your Java
source code. If you aren't sure, select any Javafile in your application
and Optimizelt will add the appropriate directory.

7. Click the down arrow to add your selection to the source path.

8. Repeat these steps for other directories you want to add to the source
path.

9. Click the OK button.

10. Click the OK button to close the Preferences dialog box.

Note: When a Java file is not available, Optimizelt prompts you to locate the missing Java
file. After you select the missing Java file, a dialog box prompts you to add the file's direc-
tory to the default source path.

To set adifferent source path for an applet, a servlet or an application that
you are profiling with Optimizelt, define the changes to the default source
path in the Settings editor.

Configuring Optimizelt 9

2.3 Changing the class path

When Optimizelt launches your applet or application, the Java virtual
machine needs the location of classes your application uses. By defaullt,
Optimizelt pointsto the classes that are defined in your CLASSPATH envi-
ronment variable.

Optimizelt maintains a class path which is alist of directories containing
classfiles. Optimizelt searches each directory in the class path in the order
specified when it requires aclass. If you have some classes, zip filesor jar
filesthat you always want available to all test programs, add them to the
default Optimizelt class path.

Changing the class path

1. Select Preferences from the Edit menu.

2. Select Default class path in the top selection box.

3. Uncheck the Use CLASSPATH environment variable option.

4. Click the Edit button.

5. In the top box, select the directory, zip file or jar file you want to add to
the class path. If you choose a directory, make sure you select the direc-
tory containing the top-level package of the source tree.

6. Click the down arrow to add your selection in the class path.

7. Click the OK button.

8. Click the OK button to close the Preferences dialog box.

Note: To set a different class path for an applet or application you are profiling with
Optimizelt, define the changes to the default class path in the Settings Editor.

Configuring Optimizelt 10

2.4 Configuring servlet support

In order to be able to start the profiling of aservlet directly from
Optimizelt, you need to configure Optimizelt with a servlet runner. Y ou
need one of the following servlet runner jar file: jsdk.jar, server.jar or web-
server.jar. These jar files can be found in several software installations:
JSDK 2.0 0r 2.1, JISWDK 1.0, JBuilder 3, JDeveloper 2, Visua Cafe 3 or 4,
WebSphere. If you don’'t have any of this software installed, we suggest
that you download and install the Java Servlet Development Kit 2.1 (JSDK
2.1) from http://java.sun.com/products/servlet/downl oad.html.

Configuring servlet support

1. Select Preferences from the Edit menu.

2. Select Servlet in the top selection box.

3. Click on Servlet setup. This opens the servlet configuration wizard.

4. Click on next.

5. Select a directory where you want to search for one of the servlet runner
jar filethen click on next.

6. When Optimizelt has finished its search, it displaysthe available jar files
found in atable. Select one line in the table then click next.

7. Click finish.

Changing the port used by the servlet run-
ner

When you start the profiling of a servlet from Optimizelt, Optimizelt runs
your servlet in aservlet runner. The default port used by the servlet runner
i1s8080. If you have another application that already uses that port, change
the port number:

1. Select Preferences from the Edit menu.
2. Select Servlet in the top selection box.
3. Change the value of the port in the corresponding section.

Configuring Optimizelt 11

http://java.sun.com/products/servlet/download.html#downloadsarchive

3 Profiling a Java program

3.1 Starting a Java Application

Optimizelt can profile a Java application that is either packaged in a JAR
file, or is given the location of the classfile containing the Main method for
the application.

Note: By default Optimizelt profiles your application with a Java 2 runtime. You can select
another virtual machine by using the Virtual Machine tab, see “Virtual machine options” in
chapter 3.6.

To start profiling an application

1. Select New from the File menu.

2. In the Program type section of the dialog box, choose Application.

3. Enter the main class of the application.

- If the applicationisin aJAR file, click Browse to select the JAR file
location.

- If the application isin aZIP file, enter the fully qualified name of the
class containing the Main method. For example:

com.foo.bar.Main

- If the applicationisnot in aJAR or ZIPfile, click Browse to select the
classfile that contains the main method.

4. (Optional) Make sure the working directory is correct. If the application
does not require aworking directory, ignore this option.

5. (Optional) Add classes to the class path. If the application requires spe-
cia classesnot indicated in the default class path, click Change under the
Class path list to select directories, jar file or zip files containing the extra
classes.

6. (Optional) Add source code directories to the source path. This allows
Optimizelt to show relevant source code. Specific files can be added later
during the profiling session.

7. (Optional) Click the Virtual Machinestab. Select the virtual machine you
want to usein the list. For more information on the different options
availablein thistab, see “Virtual machine options’ in chapter 3.6.

8. Click the Start Now button. Optimizelt starts the application and opens
the memory profiler for the application.

Profiling a Java program 12

Once you have configured Optimizelt to start your application, you can
save this configuration and reopen it later. Save and Open commands are
available from the file menu.

Profiling a Java program 13

3.2 Starting a Java Applet

Optimizelt can profile a Java applet given an HTML fileor aURL.

Note: Profiling an applet requires a Java Development Kit (JDK). Make sure to select a
virtual machine included in a JDK from the Virtual Machine tab, see “Virtual machine
options” in chapter 3.6.

To start profiling an applet

1. Select New from the File menu.

2. In the Program type section of the dialog box, choose Applet.

3. Enter the file name or URL of the applet.

4. If the applet is on your local disk, click the Browse button and select the
HTML file. If the applet is aweb page, enter the URL of that page.

5. (Optional) Make sure the working directory is correct. If the applet does
not require a specific working directory, ignore this option.

6. (Optional) Add classes to the class path. If the applet requires special
classes not indicated in the default class path, click Change under the
Class path list to select directories, jar files or zip files containing the
extra classes.

7. (Optional) Add source code directories to the source path. Thisalows
Optimizelt to show relevant source code. Specific files can be added later
during the profiling session.

8. (Optional) Click the Virtual Machinestab. Select the virtual machine you
want to use in the list. For more information on the different options
available in thistab, see “Virtual machine options’ in chapter 3.6.

9. Click the Start Now button. Optimizelt starts the applet and opens the
memory profiler for the applet.

Once you have configured Optimizelt to start your applet, you can savethis
configuration and reopen it later. Save and Open commands are available
from the file menu.

Note: When started from Optimizelt, an applet is run with AppletViewer. It is also possible to
profile an applet that run inside a web browser when using the Java plug-in. This operation
is described in the tutorial “Profiling an applet running inside a web browser”.

Profiling a Java program 14

3.3 Starting a Java Servlet

Optimizelt can profile a Java servlet given its class.

Note: By default Optimizelt profiles your application with a Java 2 runtime. You can select
another virtual machine by using the Virtual Machine tab, see “Virtual machine options” in
chapter 3.6.

To start profiling a servlet

1. Select New from the File menu.

2. In the Program type section of the dialog box, choose Servlet.

3. If itisthefirst time you have profiled a servlet with Optimizelt, the serv-
let wizard will start. The wizard will guide you through the servlet con-
figuration, see “ Configuring servlet support” in chapter 2.4 for more
information.

. Click Browse to select the classfile that contains your servlet.

. (Optional) Make sure the working directory is correct. If the servlet does
not require a specific working directory, ignore this option.

. (Optional) Add any parameters required by the servlet.

. (Optional) Add classesto the class path. If the servlet requires special
classes not indicated in the default class path, click Change under the
Class path list to select directories, jar filesand zip files containing the
extra classes.

8. (Optional) Add source code directories to the source path. This allows
Optimizelt to show relevant source code. Specific files can be added later
during the profiling session.

9. Click the Virtual Machines tab. Select the virtual machine you want to
use in the list. For more information on the different options availablein
this tab, see “Virtua machine options’ in chapter 3.6.

10. Click the Start Now button. Optimizelt starts the servlet and opens the
memory profiler for the servlet. The browser isautomatically launched to
execute the servlet. If any servlet parameters have been specified, they
are added to the servlet URL.

[S2 ¢ ~5

~N o

Profiling a Java program 15

3.4 Profiling EJBs or JSPs

Profiling EJBs or JSPs can be done by profiling the application server that
runs your Java code. Optimizelt can be integrated with most application
servers. For more information, see “Integration with application servers’ in

chapter 8.1.

Profiling a Java program 16

3.5 Start options

Optimizelt allows you to control profiling through several options. These
options affect the Java application selected in the Edit settings panel.

Option

Description

Pause after launch

Pauses the test program just before exe-
cuting the Main method. Use this option
to give yourself some time to configure
Optimizelt or to start some profilers
before the tested application starts.

VM cannot exit

Disablesthe method System.exit() inthe
virtual machine. Use thisoptiontotest a
command line program such as acom-
piler that performs atask and then exits
the running virtual machine. Use the
Stop button to exit the program when
your profiling is complete.

Disable memory profiler

Disables the Optimizelt memory pro-
filer. The Optimizelt memory profiler
adds overhead that can change the CPU
profiler results. Use this option when
you are focusing on CPU-related issues
only.

Open a console

Opens a console for the program. Use
this option if your program expects
some input from System.in. When this
option is off, anything printed using
System.out and System.err is printed in
the Optimizelt console.

Enable audit API

Enables the Optimizelt audit system
API. When the AP is enabled,
Optimizelt memory and CPU profilers
are disabled by default. This alowsthe
tested program to use Optimizelt API to
precisely enable both profilers when
needed.

Profiling a Java program

17

Option

Description

Auto-start CPU profiler

Starts the CPU profiler just before exe-
cuting the main method. The CPU pro-
filer is started with the current option
selected in the CPU profiler inspector.

Extra Java parameters

Specifies a string passed directly to the
virtual machine running the test pro-
gram. Use thisfield to add Java virtual
machine arguments such as -mx or -ver-

bosegc.

Extra program parameters

Specifies a string passed directly to the
tested application when launched.

Class path

Liststhe class path defined in the default
class path. If the test program requires
extra classes, JAR files, or ZIPfiles,
click the Change button to select addi-
tions to the class path. These additions
apply to thistest program only.

Sour ce path

Liststhe directoriesin which Optimizelt
searches for source code. If the test pro-
gram source code is not included in the
default source path, click the Change
button to add a location to the source
path. These additions apply to this test
program only.

Profiling a Java program

18

3.6 Virtual machine options

The Optimizelt Virtual Machine Tab allows you to select and configure the
virtual machine you want to use to profile your application.

Adding avirtual machine

In order to add a virtual machine click on the Add virtual machines button.
This starts the virtual machine wizard:

1. Click on Next.

2. Select adirectory from which Optimizelt will look for available virtual
machines.

3. Click on search.

4. Once Optimizelt has finished its search, it displays the virtual machines
found.

5. Click on finish to add those virtual machinesto the list of available
virtual machines.

Setting the virtual machine properties

When you select a virtual machine from the list, Optimizelt only enables
the available options for that virtual machine.

Javaruntime

This property sets the virtual machine runtime used. The following table
shows which flag is added to the virtual machine invocation:

. Flag _
Option added Description
Default Noflag | Thevirtua machine usesits default runtime.
added
Classic -classic | Optimizelt forcesthe virtual machine to use its

classic runtime.

Hotspot | -hotspot | Optimizelt forces the virtual machine to useits
Hotspot runtime.

Profiling a Java program 19

Audit System

This option sets which library Optimizelt should use. Optimizelt automati-
cally selects the appropriate library when the selected virtual machineis
recognized. See “ Optimizelt libraries” on page 25 for more information on
the different libraries.

EnablingtheJIT

Y ou can enablethe JIT (Just In Time compiler) when profiling by selecting
the corresponding option.

Note: The JIT can only be enabled when the Universal JVMPI/INI audit system is selected.

Profiling a Java program 20

3.7 Profiling a program started from the command
line
In addition to running your test program from Optimizelt, you can run it
from a command prompt.

Invoking your application from outside Optimizelt allows you to do the fol-
lowing:

* Set custom variables

* Run the application as part of a script

* Run the program on a different machine

To profile your test program invoked from a command prompt:

1. Set up the Optimizelt audit system

2. Launch the Optimizelt audit system, specifying your test program

3. Run Optimizelt
4. Connect the audit system to the Optimizelt user interface

Setting up the Optimizelt audit system

To usethe Optimizelt audit system, you need to modify your CLASSPATH
and PATH environment variables to include the following directories:

CLASSPATH <InstallDir>\Optimizelt\lib\optit.jar
PATH <InstallDir>\Optimizelt\lib

L aunching your program

The Optimizelt audit system is a set of Java classes and native code.
To show the audit system options

Run the following command:

C:\> java intuitive.audit. Audit

Profiling a Java program 21

Java To run the audit system with JDK 1.1

Invoke the audit system with the following options:

C:\> java -noclassgc -Djava.compiler=NONE intuitive.audit. Audit [-port port-
Number] [-pause] [-wait] [-dmp] [-noexit] [-startCPUprofiler[:<CPUProfilerOp-
tions>]] [-offlineprofiling[:<offlineprofilingOptions>]] [-enableAPI] ClassName
argl, arg2, ...

Note: With early Java versions the Optimizelt audit system requires that the class garbage
collection is disabled. Always use the -noclassgc Java virtual machine argument when
starting an application from the command line. You also need to disable the JIT. This can
be done by adding -Djava.compiler=NONE

Java?2 To run the audit system with JDK 1.2

Invoke the audit system with the following options:

C:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit [-port portNumber] [-pause] [-wait] [-dmp] [-noexit] [-startCPU-
profiler[:<CPUProfilerOptions>]] [-offlineprofiling[:<offlineprofilingOptions>]] [-
enableAPI] ClassName argl, arg2, ...

Note: With some environments, the -classic option is necessary to force the classic runtime.
-Xrunoii is necessary to load Optimizelt's JVMPI agent. The Optimizelt audit system
requires that the class garbage collection is disabled. Always use the -Xnoclassgc Java
virtual machine argument when starting an application from the command line. You also
need to disable the JIT. This can be done by using -Djava.compiler=NONE.

Note: Running an applet with JDK 1.2 requires that you use oldjava.exe instead of java.exe

Torun the audit system with JDK 1.3

Invoke the audit system with the following options:

C:\> java -classic -Xrunoii intuitive.audit.Audit [-port portNumber] [-pause] [-
wait] [-dmp] [-noexit] [-startCPUprofiler[:<CPUProfilerOptions>]] [-offlineprofil-
ing[:<offlineprofilingOptions>]] [-enableAPI] ClassName argl, arg2, ...

Profiling a Java program 22

Audit system options

The following table describes these parameters. Note that many of these
options provide the same functionality as the Start options.

Option

Description

-port

Specifies the port you want to use for the commu-
nication link between the audit utility and the
Optimizelt application.

-pause

Causes the launched program to be paused immedi-
ately after launch.

-dmp

Disables the memory profiler.

-noexit

Disables the method System.exit() in the virtual
machine.

-enableAP

Enablesthe Optimizelt audit system API. When the
API is enabled, Optimizelt memory and CPU pro-
filer are disabled. The audit system waits for the
test program to enable profilers from Java.

-startCPUprofiler

Starts the CPU profiler just before executing the
main method, See “ Starting the CPU profiler from
the command line” on page 31 for more informa-
tion on the available options.

-offlineprofiling

Starts the profiling in offline mode. Snapshots are
generated automatically at a given time, see
“Offline profiling” in chapter 3.9 for more infor-
mation on the available options.

-dllpath

Specifies the location of Optimizelt DLLsif differ-
ent from your PATH environment variable. Note
that this option has been deprecated since
Optimizelt 3.1. Y ou should not need to use this
option.

ClassName

The main class the for the test program. If the test
program is an applet, use sun.applet. AppletViewer
and then add the path of the applet HTML file or
URL.

Profiling a Java program

23

Optimizelt libraries

Optimizelt comes with several libraries to support the different virtual

machines:
Name Option Description
Java 2 -DAUDIT=jni | Thislibrary provides universal virtual
Universal machine support. It supports any JDK

1.2 or later virtual machine that isfully
JVMPI/INI compliant. It also supports
Just In Time compilers (JIT). It should
be used with Sun's JDK 1.3 and IBM
JDK 1.2.2and 1.3

JDK 1.2 -DAUDIT=12 | Thislibrary should be used with Sun's

Compatible JDK 1.2.x
JDK 1.1 -DAUDIT=11 | Thislibrary should be used with JDK
Compatible 11

The audit system automatically detects which virtual machine is used and
then selects the matching library. If you want to select a specific library to
load, use the -DAUDIT=<libraryType> property, where libraryTypeis one
of the following: 11, 12 or jni.

For example, the following line starts the profiling of the SwingSet pro-
gram and specifies Optimizelt to use the Java 2 Universal library:

c:\> java -classic -Xrunoii -DAUDIT=jni intuitive.audit.Audit SwingSet
Java Exampleswith JDK 1.1

Use the following command to launch the appl et contained in the file exam-
ple.html:

C:\> java -noclassgc -Djava.compiler=NONE intuitive.audit. Audit
sun.applet.AppletViewer example.html

Use the following command to pause the application com.busy.BusyApp
immediately after launch:

C:\> java -noclassgc -Djava.compiler=NONE intuitive.audit. Audit -pause
com.busy.BusyApp

Profiling a Java program 24

Java 2 Exampleswith JDK 1.2

Use the following command to launch the appl et contained in the file exam-
ple.html:

C:\> oldjava -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit sun.applet.AppletViewer example.html

Use the following command to pause the application com.busy.BusyApp
immediately after launch:

C:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit -pause com.busy.BusyApp

Examplewith JDK 1.3

Use the following command to start the com.busy.BusyA pp application
with the CPU profiler automatically started:

C:\> java -classic -Xrunoii intuitive.audit.Audit -startCPUprofiler
com.busy.BusyApp

Connecting the audit system to the
Optimizelt user interface

After the test program is running, you need to direct the results generated
by the audit system into the Optimizelt user interface. This procedureis
called “attaching” Optimizelt to the test program.

To show the audit system results

1. In Optimizelt, select New from the File menu.

2. Inthe Edit Settings panel select Remote Application in the Program Type
section.

3. Typelocahost in the Host Name field.

4. Enter the port number you want to use for the communication link
between Optimizelt and the audit system in the Port number field.
Change this value only if you used the -port option when launching the
test program.

5. (Optional) Add source code directories to the source path. This allows
Optimizelt to show the relevant source code. Specific files can be added
later during the profiling session.

6. Click the Attach Now button.

Profiling a Java program 25

3.8 Profiling a Java program running on a different
machine

Profiling a Java program running on adifferent machineissimilar to testing
a Java program started from the command line. Follow the instructions
above to start the test program on another machine. Start Optimizelt, and
create some new settings with Remote Application as Program type. In the
Host name field, type the name of the machine running the test program.

Profiling a Java program 26

3.9 Offline profiling

Optimizelt allows you to start the profiling session from the command line
and automatically generate snapshots at fixed intervals. Snapshots can be
reloaded in Optimizelt for later analysis. This feature can be used to profile
an application server over along period or in aproduction environment (for
example). Offline profiling also limits overhead since you do not attach to
the application.

Note: You cannot attach Optimizelt to an audit system configured for offline profiling.

Starting offline profiling

In order to start online profiling, you must start your application from the
command line with the option:

-offlineprofiling[:<offlineprofilingOptions>]

Syntax

Each offline profiling option is associated with a value. The option and the
value must be separated with an equal character ‘=". The different options
are separated by comas‘,’. No space should be used.

Note: The value of the directory and comments options may contain spaces. in that case,
make sure to include the values between quotes .

For theinitial delay and delay values, the unit used is specified just after the
value, with the following syntax:

Symbol used Corresponding unit
h hours
m minutes
S seconds
ms milliseconds

Profiling a Java program 27

If no unit is specified, seconds are assumed.
Examples:

* delay=1m setsthe delay to 1 minute

* initialDelay=2h setsthe initial delay to 2 hours
» delay=10 sets the delay to 10 seconds

For values that are boolean the syntax is: true, false.

Options

The following table describes the different options available:

Option Description

initial Delay The delay before the generation of the first snap-
shot.

Must be positive or zero.

If not specified, the value of the option delay is
used

delay The delay between the generation of 2 snapshots.
Must be positive and not zero.

counter The number of snapshotsto be generated.

Must be positive.

If not specified, the number of snapshots generated
isnot limited.

directory The directory where the snapshots are generated.
Must be avalid directory.

If not specified, snapshots are generated in the cur-
rent directory.

filename The name used for the snapshots.
If no filename is specified, the filename is con-
structed from the main class name.

updateFile Boolean that sets if the same snapshot should be
reused.

If set to yes, only onefileisused for al the snap-
shots and the preceding snapshot is overwritten
each time a new snapshot is generated.

Profiling a Java program 28

Option Description

appendTime Boolean that setsif the date and time of the snap-
shot generation should be appended at the end of
the filename.

True by default. If set to false, a counter isused to
differentiate the different snapshot files.

includeCPU Boolean that setsif the CPU profiling information
should be stored in the snapshot.

If true and the CPU profiler is not automatically
started, it starts the CPU profiler with the default
options. See “ Starting the CPU profiler from the
command line” on page 31 for more information.

includeMemory Boolean that sets if the memory profiler informa-
tion (heap mode and backtrace mode) should be
stored in the snapshot.

True by default.

includeReferences | Boolean that sets if the memory profiler reference
graph (and reference from roots with JDK 1.2 and
later) should be stored in the snapshot.

False by default.

Note: The amount of data to be stored for the reference mode
is important. The snapshots generated with this option are
larger files and take more time to be generated. Only select
this option when you really need the reference mode informa-
tion.

comment String used to add comments to the snapshot. Use
quotes “ if the string contains spaces.

Examples

The following command line starts the offline profiling of the application
AppServer with the JIDK 1.2. A snapshot will be generated every minute.
The filenames of the snapshot will be AppServer_snapshot_<dateAnd-
Time>.snp. The snapshots will be generated in the directory c:\TEMP.

c:\>java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE
intuive.audit.Audit -offlineprofiling:delay=1m,directory=c:\TEMP
com.busy.AppServer

The following command line starts the profiling of the SwingSet applica-
tion with the JDK 1.2. The first snapshot will be generated after 5 minutes,

Profiling a Java program 29

and then a snapshot will be generated every hour to reach atotal of 10 snap-
shots. The reference graph will be included. The snapshots will be gener-
ated in the current directory, and will be named

profiling< dateAndTime>.snp.

c:\>java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE
intuive.audit.Audit -offlineprofiling:initialDelay=5m,delay=1h,counter=10file-
name=profiling,includeReferences=true SwingSet

The following command line starts the profiling of the BusyApp applica-
tion with the JDK 1.3. A snapshot will be regenerated every 5 minutesin
the current directory, using the filename test.snp. The CPU information will
be included. (See “ Starting the CPU profiler from the command line” on
page 31 for more information on the -startCPUprofiler command).

c:\>java -classic -Xrunoii intuive.audit.Audit -startCPUprofiler:type=sam-
pler,samplingPeriod=10 -generatesnapshot:delay=5m,filename=test,inclu-
deCPU=true,updateFile=true BusyApp

The following command line starts the profiling of the AppServer applica-
tion with the JDK 1.1. Just one snapshot will be generated, and will be
updated each hour (each new snapshot will overwrite the previous snap-
shot).

c:\>java -noclassgc -Djava.compiler=NONE intuitive.audit.Audit -generate-
shapshot:delay=1h,updateFile=true,comment="Snapshot of the application
server in a stressfull environment.” AppServer

Starting the CPU profiler from the com-
mand line

By default, the Optimizelt CPU profiler isonly started when triggered from
the Optimizelt user interface. Use the following option to start the CPU
profiler automatically before the tested program is started.

-startCPUprofiler[:<CPUoptions>]

Syntax

Each option is associated with avalue, the different options are separated
by comas‘,’.

Profiling a Java program 30

Options

The following table describes the different options available:

Option Values Description
type [sampler, Type of CPU profiler used.
instrumenta Default is sampler.
tion]

Note: Instrumentation is only available with
JDK 1.2 or newer

displayPrecision | [method,line] | Setsthe precision of the sampler.
Thisoption isonly active with
type=sampler.

Default is method.

samplingPeriod | [1..1000] Sets the sampling period (in milli-
seconds) of the sampler.
Thisoption isonly active with
type=sampler.

Default is 50 ms.

onlyCPU [truefalse] If true only the pure CPU usageis
taken into account.
Default isfalse.

precision [micro,milli] Controls wether the profiler has
microsecond or millisecond preci-
sion.

Thisoption isonly active with
type=instrumentation.

Default ismilli.

filterEnabled [true,false] If true, methods executed in lessthan
the delay specified by thefilterDelay
property will be excluded.
Thisoption isonly active with
type=instrumentation.

Default isfalse.

filterDelay [0..1000] Sets the delay in milliseconds of the
filter used to exclude short methods.
Thisoption isonly active with
type=instrumentation and filterEn-
abled=true.

Default is 100.

Profiling a Java program 31

Note: These options are similar to the options of the CPU profiler accessible from
Optimizelt, see “Using the CPU profiler” in chapter 5 for more information on these options.

Examples

The following command line starts the application BusyApp with JDK 1.2
with the sampler. The sampling rateis 5 ms, the display precisionisline
and only the real CPU time s recorded.

c:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit. Audit -startCPUprofiler:type=sampler,samplingPeriod=5,only-
CPU=true BusyApp

The following command launches the applet contained in the file exam-
ple.html with JDK 1.2, and starts the instrumentation. The precision is mil-
liseconds, and methods that consumes less than 50 ms are excluded.

C:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit -startCPUprofiler:type=instrumentation,precision=millifilterEn-
abled=truefilterDelay=50 sun.applet.AppletViewer example.html

Using filters from the command line

Optimizelt providesfiltersto filter the profiling information, See“What are
filters” on page 35 for more information on filters.

In order to usefiltersfor offline profiling, Optimizelt provides an option to
specify filters from the command line. The syntax of thisoptionis:

-filter[:<filterOptions>]
Syntax

Each option is associated with a value, the different options are separated
by comas‘,’.

The value of the option patternList isalist of patterns (one or more) sepa-
rated by comas‘,’. Thelistisin parenthesis‘(‘ and ‘)’.

A pattern isa string that describe a package, a class or amethod. The pat-
terns can use the well know special characters* and !. For example,
java.lang.* means all the packages and classes included under java.lang, and

Profiling a Java program 32

ljava.swing.* means everything that is not included in the java.swing pack-

age,

Options

The following table describes the different options available:

Option Values Description

CPU [truefalse] Controls wether or not thefilter is
applied to CPU profiler.
Default istrue.

memory [true,false] Controls wether or not thefilter is
applied to memory profiler.
Default istrue.

patternList (patternl,patte | Thelist of patterns describing the fil-

rn2,...) ter.

operation [and,or] The operation applied to the differ-
ent patterns.
Defaultisor.

Examples

The following command line starts the application BusyApp with JDK 1.3
and filter for memory profiler only the resources used by the String class
and the swing package.

c:\> java -classic -Xrunoii intuitive.audit.Audit -filter:CPU=false,mem-
ory=true,operation=or,patternList=(java.lang.String,javax.swing.*) BusyApp

Profiling a Java program

33

3.10 Profiling with filters

Optimizelt providesfilters that can be used to automatically remove infor-
mation about resources used by particular packages, classes or methods
when profiling.

What arefilters

Filters are sets of patterns that define packages, classes or methods that
should be ignored by Optimizelt when profiling an application, an applet or
aremote application. Filters can be applied to the CPU profiler, memory
profiler or both.

When afilter is applied to the CPU profiler, Optimizelt ignores CPU or
time usage consumed by Java code matching the filter pattern. When afilter
is applied to memory profiler, Optimizelt ignores object allocations per-
formed by Java code matching the filter pattern.

Optimizelt provides several filters ready to use, including filters dedicated
to many application servers. Y ou can also create your own filters, see “Cre-
ating filters” in chapter 7.6.

Filters are very convenient for profiling serviets, EJBs and JSPs. In that
context, they can be used to remove resources used by the application
server, allowing you to focus on your Java code.

Note: Filters only remove information about resources used by code matching the filter pat-
tern. Filters don't remove information about methods invoked from filtered methods. For
example, if a filtered method calls an unfiltered method that allocates an instance, this
instance won't be filtered. Identically, if a filtered method invokes a method that consumes
CPU time, this CPU time won't be filtered.

Using filters

1. Select New from the File menu.

2. Fill the Startup section as described in the previous sections.

3. Switch to the Filters section by clicking the Filters tab.

4. If you want to see the patterns associated with afilter, double click on the
filter in the table.

5. To enable afilter with the memory profiler, click the Ignore memory
usage column.

6. To enable afilter for CPU profiler, click the Ignore CPU usage column.

Profiling a Java program 34

7. 1f you want to disable all filters, click the Disable all filters option.
8. When you are done with your filter selection, click the Start now button
(Attach now if you profile a remote application).

Note: Filters are specified at launch time. You can't change the filters for a profiling already
started.

Profiling a Java program 35

3.11 Starting Optimizelt from thetest program

In some environments, the Java virtual machine is started automatically.
The Optimizelt audit system can be invoked from the test program using
the Optimizelt application programming interface (API). Invoking
Optimizelt from your application alows you to invoke profiling at specific
places in your source code.

Toinvoke Optimizelt from inside your
test program

1. Set up the Optimizelt audit system

2. Add Optimizelt API calsin your program

3. Start your test program

4. Run Optimizelt

5. Connect the audit system to the Optimizelt user interface

Setting up the Optimizelt audit system

To use the Optimizelt audit system, you need to modify your CLASSPATH
and PATH environment variables to include the following directories:

CLASSPATH: <InstalDir>\Optimizelt\lib\optit.jar

PATH: <InstallDir>\Optimizelt\lib

Adding Optimizelt API callsin your pro-
gram

The following example shows how to start the Optimizelt audit system
from Java code. For more information about Optimizelt audit API, read the
API reference documentation.

import intuitive.audit.Audit;

void startAuditSystem() {

[** Start the Optimizelt audit system with some default options **/
Audit.start(1470, Audit. DEFAULT_OPTIONS);

}

[** Note: after starting the audit system. you need to start the profilers by using
Audit.enableProfiler(). If you want the profilers to be enabled all the time,

Profiling a Java program 36

change the option in Audit.start() from Audit. DEFAULT_OPTIONS to
Audit.PROFILERS_ALWAYS_ENABLED **/

Starting your test program

Although the test program starts the audit system, some extra parameters
need to be added to the code or the shell script that starts the virtual
machine.

Java With JDK 1.1, it is necessary to disable class garbage collection by using
the -noclassgc option. It is also necessary to disable the JIT.

Example: java -noclassgc -Djava.compiler=NONE TestProgram
Java 2 With JDK 1.2, it is necessary to use the following options:

» disable class garbage collection

e start theoii profiling interface

o disabletheJIT

o disable Hotspot

Example: java -classic -Xnoclassgc -Xrunoii -Djava.compiler=NONE TestPro-
gram

With JDK 1.3, it is necessary to use the following options:

o dtart theaii profiling interface
* select the classic runtime

Example: java -classic -Xrunoii TestProgram

Profiling a Java program 37

4 Using the memory profiler

The memory profiler provides information about the objects allocated by
your Java program. It displays all allocated instancesin real time, and
allows you to see precisely which method is responsible for object alloca-
tions.

In addition, the memory profiler provides a powerful way to browse incom-
ing and outgoing object references.

Using the Optimizelt memory profiler, you can improve the performance of
your program by:

* Minimizing temporary object allocations. Excessive temporary object
allocations can cause the garbage collector to run every few seconds.
When running, the garbage collector slows down your Java program.

* Minimizing the number of instances required for a given operation, and
therefore decreasing the memory that your program requires.

* Reducing memory waste by making sure every object is garbage col-
lected.

Using the memory profiler 39

4.1 Memory profiler modes

The memory profiler provides many views into the profile information.
Switch between these views, called "modes,” using the buttons in the tool
bar:

Heap mode Shows all classes and the number
of instances allocated for each.

Allocation Backtrace mode Shows the methodsinvolved in
object allocation for aclass
selected in Heap mode.

==== Instance Display mode Shows the incoming or outgoing
== references of a given instance.

|

Reference from roots mode Shows outgoing references starting
from the roots.

Java?2

Using the memory profiler

40

4.2 Under standing object allocations

By default when your program is started, Optimizelt appears in the Heap
E? mode, displaying al classes and the number of instances currently allo-
cated. The following picture shows the Heap mode:

Optimizelt 4.0 Professional - E-\jdk1.3\demo\jfcASwing5etZ\Swing5et?. ois

File Edit Program Toaols Info

; ¥ » —
rlilj @ i

Heap

Zlass name Fnstance count i,

s 7622 |

java.lang. String THZ22

Chject] 7a23 + 7623
java.awt Rectangle 56497] + 5RA7
java.util. Hashtable §Entry 5428 I + 5428
int(] 4025] + 40245
javax swing texthtml.parser. ContentModel [2357] + 2387
sun java2d.loops.LockableRaster 1957 [+ 18587
java.util Vectar 1756 [] +1786
sun javazd.loops.lmageData 1731 [] +173
java.awt.geom.AffineTransform 1471 I + 1471
javax swing. event EventListenerList 1434 [+ 1434
java.lang.Class 1380 I + 1340
java.lang.ref Finalizer 1289 [] +1288
java.util HashMap$Entry 1273 [| +1273
java.util WeakHashMap$yeakkey 11593 [| +1188
java.util Hashtahle 1016 [] +1016
sunjavazd.loops. SCRDrawlineRasterContex 964 [| + 464
java.lang.Object 945 [] + 055
java awt AWTEventMulticaster 941 [] + Hd1
sk awd hnctR arantl’'avtdialiia a7 || + 0797 :I
Filters: _JDiSabIe garbage callectar

Using the memory profiler 41

iy

=t

To sort the values in a column of the table, click the column header.

Thefilter on the bottom of the window allows you to select the classes that
you want to see. For example, to only see all the AWT classes, type:

java.awt.*
and press Return.

Both the asterisk wildcard character (*) and the not (!) are supported. Itis
possible to enumerate more than one pattern using a comma (,) separator.

For example, to see all classes matching "image" except java.awt.Image
classes type:

image, ljava.awt.Image*
To seedll classes, clear the filter completely, or type an asterisk (*).

Click the "Disable garbage collector" option to study object allocations
without having the garbage collector removing instances. Optimizelt "Dis-
able garbage collector” option disables the garbage collector logically for
the heap mode.

The garbage collector is not really disabled, however the heap mode shows
you what would happen if the garbage collector was not running.

Y ou can aso click the Run Garbage Collector button to explicitly run the
garbage collector.

Click the Mark button to mark the current instance count. A mark appears
on each graph of the instance. This mark represents the number of instances
allocated at the time you set the mark. The time differenceis then set to
zero for all classes. The mark allows you to see the instances allocated by a
specific action in your program.

For example, click the Mark button, and then open one of the test program
dialog boxes. Click the Diff column header to sort the column so you can
see the instances allocated when the dialog box was created. The Allocation
Backtrace and Instance Display modes also display information relative to
amark.

Using the memory profiler 42

Refining the Heap mode display

The Inspector window provides optionsto refine the Heap mode display. To
open the Inspector window, click the Inspector button.

[T

The Inspector window contains the following options for Heap mode:

Option Description

Always sorted Sorts the display in real time. Use this option to
keep track of specific object allocationswhilethe
test program is running.

Classes without Displays all classesin the class list, including
instances classes that currently have no allocated instances.
Show sizes Adds total memory (Size) and changed memory

(Size Difference) columnsto the table. The Size
column displays the memory required by all
instances of each class. The Size Difference col-
umn shows the memory size difference since the
last time amark was set.

Note: The displayed memory size is the "shallow" size of
the object. This size only includes size of the memory
required for the instance and does not include the size of
objects retained by the instance.

Show freed Adds freed object count and freed object count

instances difference columnsin the main display. Use this
option to understand performance issues related
to the allocation of too many temporary objects.

Relative difference | By default differences are sorted by absolute
sorting value. Use the option to sort by relative differ-
ences.

Using the memory profiler 43

File Edit

Program lJlE n
Ll L L=

Dptimizelt 4.0 Profezzional -

4.3 Understanding wher e objects ar e allocated

After you haveidentified a class with an excessive number of instances, the

next step isto identify the code or the part of the program that is responsible

for these allocations. In Heap mode, select the line displaying the class you
want to focus on, and click the Show Allocation Backtraces button. Opti-
mizelt switches to Allocation Backtrace mode. Allocation Backtrace mode

shows which code is responsible for the selected class object allocations
The following picture shows allocation backtrace mode

E:-\jdk1. 3hdemoljfc\S wingSet2\S wing5 et oiz

Backtraces of methods allocating javas.swing..JPanel

= 4 124 instances of javax swing JPaneal allocated
= % 79.03% SwingSet2§DemoloadThread. ung
% 20 .896% Auditmalng

- 4 20.96% SwingSet2.main

= % 20.96% MainrunProgramWithClass)

= % 19.35% SwingSei2 SwingSet2()

- W 14.51% SwingSet2 preloadFirstDemod)

Allocation locations

=% 1.61% JFrame.frarmelnit()
JRoolPane createGlassPaned

I IRootFane createContentFPaned
Demomaodule Demaomadule))

SliderDemo createSliderDemol)

DemoModule. createHorizontal Pane)

=W 1451% InternalFrameDemo.lnternalFrameDermod
* % 8.06% InternalFrameDemo.createlntenalF rame)
e 2.41% Demohodule DermoModuled
* 3.22% SwingSet2 infialzeDemol)

9 4.03% InternalFramalemo_creatalntemalF ramePalatte)
[4 1.61% SwingSet? createSplashScreend

= % 1.61% SwingSet2.createFrame()

- % 1 61% JFrame JFramel)

Wirtual machine running

Count

Count %

Using the memory profiler

24
19 instances (15.32%) allocated in method |avax swing JRootPane create ContentPaned (starting in JRootPane java 2649)

18.35%
|16 [12.9%
|11 |B.B7%
9

7.25%

[T

The top section in Allocation Backtrace mode traces calls from the first
method of the Java program to where allocations occur. The purpose of this
view isto understand which feature of your program is responsible for
object allocations. By opening nodes in this view, you can see precisely
where allocations originate. Any line with an alocation icon (3) isaline
that is responsible for one or more object allocations.

The bottom section displays the names of methods responsible for object
allocations. The purpose of thisview isto quickly understand if asingle
method performs excessive allocations.

By pressing the Reverse Display button in the toolbar, you can reverse the
liststo display backtraces from the place where the allocations take place to
the Main method of the Java program. This view can be useful when you
need to focus on methods or lines of code responsible for object allocations
rather than broad features of your program.

To display the code corresponding to alinein the top or bottom sections of
the window, select the line, then click the Show Source Code button. Y ou
can aso double click the line to show the source code. For more informa-
tion, see “Viewing source code’ in chapter 7.5.

Refining the Allocation Backtrace mode
display

The Inspector window provides optionsto refine the Heap mode display. To
open the Inspector window, click the Inspector button.

The Inspector window contains the following options for Allocation Back-
trace mode:

Option Description

Show allocations Displays only the backtrace for the methods
sincelast mark responsible for allocating instances since the last
time you pressed the Mark button in Heap mode.

Display precision By default, graphs show profiles by method;
changing the granularity allows you to organize
the graph by line of code.

Using the memory profiler 45

4.4 Tracking temporary object allocations

Excessive temporary object allocations are often a source of performance
problems in Java programs. Although allocating an object is afast opera-
tion on most Java virtual machines, excessive temporary objects keep the
garbage collector busy. Running the garbage collector can block the Java
program for as much as a couple hundred milliseconds. If the garbage col-
lector has to run very often, these interruptions cause the Java program to
appear slow to the user.

Temporary objects are hard to track without Optimizelt because some Java
APIs allocate many temporary objects.

Tracking down excessivetempor ary object

allocations
1. Click the Show Heap button.

2. Click the Instance Count column header to sort the display.
3. Exercise your program, noting the classes that show quick changesin
their number of instances.
4. Select one of these classes.
5. Click the Run Garbage Collector button to free current temporary
objects.
-

6. Click the Mark button to place amark on the currently allocated instance.

=t

7. Exercise your program again to recreate the problem.This time the gar-
bage collector is disabled and the number of instances does not
decrease.

8. Click the Show Allocation Backtraces button.

9. Click the Show Inspector button.

Using the memory profiler 46

10. Select the option "Since last mark™ to only display newly allocated
objects.

The Allocation Backtrace mode displays the code responsible for the alo-
cations.

After you have identified which line of code or APl isresponsible for all
these objects, change your program so it uses different APIs or reuses the
same objects.

Using the memory profiler 47

4.5 | dentifying objects not freed by the garbage

collector

In adevelopment environment that has no garbage collector, a program that
does not free the allocated memory loses this memory, creating a"memory
leak."” With Java's garbage collector, it is no longer necessary for program-
mersto keep track of allocated objects and free them explicitly when they
are no longer required.

However, it isquite common for a Java program to keep some referencesto
some objects that are not really necessary anymore. For example, take a
Java program that displays a splash screen at startup. The splash screen
image can be quite heavy and is necessary only during startup. If astatic
variable somewhere references an object that has a hashtabl e that references
the splash screen image, the image will never be garbage collected because
it is still accessible from the Java program. Thus, the program requires
more resources than necessary to maintain the splash screen image. This
situation is similar to a memory leak in non garbage collected environ-
ments.

To solvethis kind of problems, Optimizelt Professional provides an
Instance Display mode. This mode displays all instances of agiven class
and their incoming and outgoing references. Incoming references are refer-
ences from an object to the selected object. Outgoing references are refer-
ences from the selected object to other objects.

Using the memory profiler 48

To switch to Instance Display mode, press the Show Instance button. The
following picture shows the Instance Display mode displaying some
incoming references:

File Edit Program Tools Info

- =
> Il @] |
Instances of javax.swing.JPanel Yirtual rmachine running

Description]

javax. swing JPanel javax swing JPanel[0,0,0x0,invalid, layout=javax swing. B oxLayout, alignment<=0.0, ali :]
javar swing JPanel javad swing. JPanel[,0,0,0x0 invalid, layout=javax swing BoxLayout, alignment<=0.0,ali

javax. swing JPanel javax swing.JPanel[,0,0,0:0, invalid, layout=javax swing BoxLayaout, alignment==0.0,ali
java}{.swing.JF’aneljava}{.swing.JF'anel[,III,III,III}{III,irwali|:I,Iayuut:java}{.swing.EIU}{Layuut,alignmenﬂ{:D.D,ali_I
javax. swing JPanel javax swing.JPanel],0,0,0:0, invalid layout=javax swing BoxLayaut alignment==0.0,ali
javax. swing JPanel javax swing JPanel]0,0,0x0 invalid layout=java. awt FlowlLayout, alignment<=null aligr
javar swing JPanel javax swing. JPanel],0,0,0x0,invalid, hidden,lavout=javax swing. BoxLavout, alignment-
javax. swing JPanel javax swing.JPanel],0,0,0:0,invalid, hidden,lavout=javax swing. BoxLavout, alignments 1]

Incoming reference graph JI
= java}{.swing.JPaneljava}{.Swing.JPaneI[,D,D,D}{D,invaIid,laynut:java}{.swing.EInxLaynut,alignment‘.%{::I
* parent of java: swing JButton javax swing JButtan[0,0,0:0, invalid, layout=javax swing. OverlaylLa

E-# parent of javax.swing BoxgFiller javax swing Box$Filler],0,0,0x0, invalid)]

E-# element of javaxswing JButton javax swing JButton],0,0,0x0,invalid layout=javax swing Over

Ll component of javax swing JPanel javaxs
parent of javax swing JButton javax swing JButton[0,0,0x0,invalid layout=javax swing. Overlavla
* plement of javax swing.JButton javax swindg.JButton(,0,0,0:0,invalid layvout=javax. swing. Over
* this$0 of javax swing AbstractButton$1 javax swing AbstractButtan$ 1@a28adf
b of javax. swing.plaf basic. BasicButtonListenerfReleasedAction javax swing.plafbasic. Basi
* hof javax.owing.plafbasic.BasicButtonListenerfPressedAction javax.swing.plafbasic.Basic =

PRy SR I S PP PSP TR e THPRPLTSATY o WPRTORPIN B W) PR ., SRR N S PP N . RPN .. T B

£l | L]

Allocated at

i
Ey—

o
L]

Demaobodule createHorizontalPaneld (Demobodule java:208)
ButtonDermo.addButtons g (ButtonDemo.java: 1 39)
ButtonDermao. ButtonDemad (ButtanDema.java:107)
Constructor.newlnstance (Constructor java)

Swing3et? loadDemad) (SwingSet? java:b26)

SwingSet? loadDemos) (SwingSet2 java:g3)
SwingSet2iDemoLoadThread.run (SwingSet2 java: 912

The top view displays the string representations of the selected class
instances. Instances are sorted by allocation date, with the most recently
allocated instances on top. The string representations are obtained by call-

Using the memory profiler 49

Java?2

ing the method toString() on each object. By implementing useful
toString() methods in your classes you can use this view to identify the cur-
rently allocated instances.

The middle view displays the objects that are referenced by the object
selected in the top view. When available, the instance variable that refer-
ences the object isin bold.

If acycleisfound in the graph, the point where the cycle occursisdis-
played with the - icon.

Reduced reference graph

With Java 2, Optimizelt provides a reduced reference graph. A reduced ref-
erence graph isthe transitive closure of the full reference graph. If an object
A isreferenced by B and D, and if D also references B, the reference D->A
won't be displayed. Thismode is extremely interesting to understand which
reference should be removed in order to allow the selected object to be gar-
bage collected. All displayed references are references preventing the
object from being garbage collected.

Using the memory profiler 50

The following picture shows the Instance Display mode displaying the
reduce reference graph:

Optimizelt 4.0 Professional - E:\jdk1.3\demo\jfcA\Swing5 et2A\ S wing5 et?_ois™

File Edit Praogram Toaols Info

al

!
I '.I'II
il

= BN

Instances of java.util.Yector

Description
Java.util Wector]

java.util.Vector [javax.swing. platmetal. MetalLabelU@Efec323099]
java.util Wector)

java.utilvVector [javax.swing.platbasic.BasicTabbedPane JI§PropetyChangeHandler@fec 318
java.utilVectar [javax.swing.JTabbedPanebPagedfecd 422, java}{.swmg.JTabbedF‘ane$Page@rfec38dc
java.util vVector]

java. il vectar [javax swind JRadioButton[,0,0,0x0 invalid |ayvout=javax swing. OwerlavLavout, alignments=
java. utilVector [javax.swing.plafhasic BasicButtonListener@fec3fdda]

iava il Vertar :I

Reduced reference graph JI

E-#* java.util Vector [lavax. swing.plathasic BasicTabbedPaneUI$PropertyChangeHandler@fec3f3ea) :I
SR Wlisteners of javax swing event. SwingPropertyChangeSupport javax swing.event. SwingPropertyr

E-# changeSupport of javax swing JTabbedPane javaxswing JTabhedPane[,0,0,0:0 invalid, layo
* haost of javax.swing.plafbasic BasicHTMLEBasicDocument javax.swing. plathasic. Basich
E-# parent of TabhedPaneDemofHeadSpin TabhedPaneDermofHeadSpinl0,0,0:0,irvalid, b

El-# spin of TabbedPaneDemo TabbedPaneDemo[TabbedPane Dermo,0,0,0x0,invalid, layo
E-#* demo of SwingSet2§SwitchToDemoAction SwingSet2§SwitchToDemoAction@fec?]

£ # action |:|fiava}{.swinq.AhstractEIuttn:un$Elu’rh:nnﬂctiDnPrnpemChanqeListeneriavax.:l

Ll | i

Allocated at

JComponentaddPropetyChandgelistenard (JComponent. jay

BasicTabbedPanellinstallListeners() (BasicTabhedPanelll java: 182}

BasicTabbedPanelUlinstalllId (BasicTabbedPaneldl java: 133

JComponent.setUld (JComponent java:329)

JTabhedPane setlUl) (JTabbedFane.java 149

JTabhedPane update) (JTabbedPane java:146)

ATabhedPane . [TabhbhedPane® (1 TabhbhedFane iava 123 1'

In the example above, the vector selected in the top view cannot be garbage
collected because it is referenced by the member variable “listeners’ of an
event object which itself is referenced by the “changeSupport” member
variable of a JTabbedPane. Clearing any of these reference will allow the
Vector to be garbage collected.

The standard incoming reference graph is also provided. Click on the refer-
ence column header and select Reference graph.

Using the memory profiler 51

Outgoing references

Optimizelt can aso display out-going references. To display outgoing ref-
erences, click the Reference Graph column header, and then select Instance
variables retaining objects. The following picture shows the Instance Dis-
play mode with outgoing references:

Optimizelt 4.0 Profeszional - E:\jdk1_3vdemo\jfc\Swing5et2\Swing5et?. ois™
File Edit Program Tools Info

Instances of java.util.Hashtable

Description

java.util Hashtahle {name=cantent} :|

java.util Hashtahle {htrml=jaw;
java.utilHashtable {3
java.utilHashtahle {clear=null, list-style-pasition=null, border-right=null, font-size=null, text-transfarm=nu
java.utilHashtable {3

java.utilHashtahle {{name=html hrefs=2={name=html nrefs=2}, {name=head nrefs=1l={hame=head, nmn
java.util Hashtable {javax swing text StyleContextiF ontkeyi@d o1 4153=java. awt. Fontffamily=serif name=35
iawa.util. Hashtahle frule=ramedStle:nobr fwhite-snace=nowran. name=nohbr.nrefs=11 specificit=11 ll

Dutgoing reference graph: instance variables retaining ohjects JI
EHE] java.util. Hashtable [himi=javax swing.text himl StyleSheetfResolved Style@iebic] 2a2, html t:u:ndﬁ_.cje_l
El= tahle
EHED [null, java.util Hashtahle$Entry hirml head=javax swing text.html StyleSheetiResalved Style @i
BRENN java. util. Hashtable$Entry html head=javax.swing.text html. StyleSheetf Resolve dStylei@fe
= lpy
= y3lue

F
== next Il

kN | b
Allocated at

Hashtable putd (Hashtahle java: 405)
StleSheet.createResalvedStyled (StyleSheet java:1404)
StyleSheet createResolvedStyled (StyleSheet java:1473)
StleSheet.getResolvedStyle]) (StyleSheet java 1228
StyleSheet.getRuled (StyleSheet java: 207 :|

]

Using the memory profiler 52

The middle view displays objects that are referenced by the object selected
in the top view. Iconsindicate the meaning of each line:

= Instance variables

=) Instances

To display the code corresponding to aline in the middle or bottom sections
of the window, select theline, then click the Show Source Code button. Y ou
can aso double click the line to show the source code. For more informa-
tion, see “Viewing source code’ in chapter 7.5.

Refining I nstance Display mode display

-

The Inspector window provides optionsto refine the Instance Display mode
display. To open the Inspector window, click the Inspector button.

The Inspector window contains the following options for the Instance Dis-

play mode:

Option

Description

Show allocations
sincelast mark

Displays only the instances that have been allo-
cated since the last time you pressed the Mark
button in Heap mode.

Reference graph
type

Allows the type of the graph displayed to be
selected.

Note: Selecting graph from here is similar to selecting by

clicking the graph type column header on the Instance Dis-

play panel.

Using the memory profiler

53

Java 2 Browsing references from roots

With Java 2, Optimizelt alows you to browse references from roots. Roots
are the roots of the reference graph and include:

Busy monitors

Class static variables

Class constants

JINI global and local references
Threads Java and native stacks

With this mode, you can see the entire content of the heap and understand
exactly the hierarchy between the different objects. The following picture
shows the Browsing references from roots mode:

Using the memory profiler 54

Optimizelt 4.0 Professional - E;\jdk1_2_2\demo\jfc\Swing5Setizwingset ois™

File Edit Frogram Tools Info

» Ul @ i |F]=E

Object graph Yirtual maching running

*) Busy monitors
+) Classes
+) Arl global references
+) Threads
ey mAT-Event@uede-0
i) Java stack
E] java.lang.MoSuchMethodException javalang. MoSuchMethodException: processinputMethoc
E| java.awt EventDispatchThread$1 java.awt EventDispatchThread$1@3022101d
EHED java.awt.event. PaintEvent java. swtevent PaintEvert[PAINT updateRect=java.awt. Rectanole s
H= updateRect
= source
EHED javax.swing.JFrame javax swing JFramefframel, 245,237, 790x550 invalid lavout=java.:
= component
H= accessibleContext
== containerListener
EHE] java.awt Component§MativelnLightFizer java awt Component§MativelnLightFixern
= lightParents
SREIN j=va. util Yector [jay wing JSplitPane 00,77 Tx2849 layout=jan
= elementData
EHE] [iavaxswing.JSplitPane javax.swing JSplitFane[,0,0,777x289 |ayout=):
=] SwingSet SwingSetMain SwinaSet Panel 0,0,782x52 3, lavout=java.
Z| javaxswino.JLaveredPane javax.swina.JLaveredPane[null layeredf
E] javax swing JRootPane javax swing JRootPane] 4,23, 782523 layvo
E] javaxswino.JSplitPane javaxswing.JSplitPane[,0,0,777x289, lavout
E| javaxswingJTabbedPane javax swing. TabbedPane[0,23,782x40
E| SplitPanePanel SplitPanePanel 2,84, 77 Tx41 3 hidden layout=java.
E| javax.swing.JPanel javax.swing JPanelnull.contentPane,0,0,782x5
= nativeHost
= this§0
F= componentOrientation
= jnputContext

Ll i

O -

e R e e e e R E

=

Allocated at

TN T LT oy %, TTON T T T o T T = I

Container.addMotife]) (Container.java:1 392)
JComponentaddMaotifed (JComponent.java: 3308
Container.addimpld (Container java: 343
Cantainer.addd (Cantainer java: 249
SwingSet.maind (SwingSet java:1 326)
main.runProgramWithClassd iain.java)

JComponentaddiotifed) (JCamponent java:3308) :I

[A

Using the memory profiler

55

In this example, the stack of the thread AWT-EventQueue-0 references an
instance of PaintEvent, which itself references the frame of the application,
which references through its containerListener various graphical objects of

the application.

The icons used in the graph have the following meaning:

+; Root
= Instance variables

=] Instances

If the selected row in the top view is an object, the bottom view displays
where the object was allocated. As usual, double clicking on the row or

clickingonthe &= button shows the source code corresponding to the

selection.

Using the memory profiler 56

5 Using the CPU profiler

The purpose of the CPU profiler is to understand in which methods your
program spends itstime in. Using the CPU profiler involves the following

steps:

Launch a Java program (or attach Optimizelt to it)

Start the CPU profiler

Use the Java program to recreate a situation where the programis slow
Stop the CPU profiler

Optimizelt then gives you a per-thread description of the time spent in each
method or CPU used during the test session.

The Optimizelt CPU profiler helps you understand what to change in your
program to improve its performance.

Using the CPU profiler 57

5.1 Recording a test session

The following procedure describes how to create a test session with the
Optimizelt CPU profiler:

Torecord atest session
1. Click the Start Java Program button.

»

2. Click the Show CPU Profiler button.

3. Click the Start/Stop CPU Profiler button.
-

L X

4. Exercise the Java program to recreate a performance problem.
5. When the test program compl etes the action, click the Stop button.

L]

ae

The Optimizelt window shows the CPU usage for each thread during the
test session.

Using the CPU profiler

5.2 Under standing the profiler output

After you have recorded atest session, Optimizelt displays information
describing the time spent in each method, or the CPU usage in the Java pro-
gram. The following screen shot shows the Optimizelt CPU profiler output:

Optimizelt 4.0 Profeszional - E:\jdk1.3%demo\jfciSwing5 et24SwingS et?_ois™

File Edit Program Tools Info

> 0l ||z i

Time profiler output - Sampler / Methods Yirtual machine running
I @ ANT-EventCueue-0 hd

=% Description oftime spent in thread AW T-EventGueue-0
=4 100.0%- 5312 ms - java.awt EventDispatchThread.runf)
=4 100.0%- 5312 ms - java.awt EventDispatchThread pumpBvents()
-4 100.0% - 5312 ms - java.awtEventDispatchThread pumpOneEventd
= A7.86% - 3058 ms - java.awt EventQueue.getMextEventy)
- 57.56% - 3058 ms - java.lang.Objectwaitd)
& AT.A6% - 3058 ms - java.lang. Ohjectwait])
- 42 43% - 2254 ms - java.awt Event@ueue.dispatchEventd)
4 42.43% - 2254 mg - java.awtevent InvocationEvent.dizpatchi
=% 42.43% - 2284 ms - javanswing. SystemBventGueneUtilities§ ComponentWorkRe
& 40.7% - 2162 ms - javax.swing Repaintdanager paintDityRegions(
E 8 1.73% - 92 ms - javax.swing.RepaintManager.currentanager)
EF 4 1.73% - 92 ms - javax swing. SwinglUtilities. appContextGetd
© 1.73% - 92 ms - sun.awtAppContext. get)

Kl | i
Hot spots Time % FTime

java.lang.Ohjectwait art.a6 ana8 ms :|

sunjavazd.SunGraphics2D.setClip 26.92 1430 ms J

sun.awtwindows Waraphics.dispaselmpl 474 292 ms

javax. swing. Repainthanager.paintDityRedions 1.93 103 ms

sun.awtAppContext get 1.73 92 ms 1|

The top section displays how the time was spent or how CPU was used dur-
ing the test session. In the example above, 40.7% of the time was spent
painting dirty regions (RepaintManager.paintDirtyRegions()), whilel.73%
of the time was spent retrieving the “ RepaintManager:.

Using the CPU profiler 59

Icons indicate the meaning of each line:

% The method immediately calls another method

=] The method actually consumes time or CPU

By pressing the Reverse Display button, you can reverse the top view to
look at the backtrace tree from the leaves to the root. This view can be use-
ful when you need to focus on methods or lines of code rather than broad
featuresin your test program.

The bottom section displays the methods that were used during the test ses-
sion, sorted by "hot spots.” These are methods where the most time was
spent. The time shown is the time the program spent in a method, no matter
where the method was called from. The purpose of thisview isto under-
stand if a single method acts as a bottleneck and can be optimized to speed
up al the tested features.

To display the code corresponding to aline in the display, select the line,
then click the Show Source Code button. Y ou can also double click the line
to show the source code. For more information, see * Viewing source code”
on chapter 7.5.

The graph on the top represents the sampling period of the selected thread.
The colorsin the graph indicate the state of the thread each time the sample
occurred:

e Green dots mean that the thread was using the CPU
* Red dots mean that the thread was waiting on a condition
* Gray dots mean that the thread did not exist at the sampling time.

To show all threads and thread groups, click the graph (or the drop-down
box arrow on the right side of the graph). The following screen shot shows
the graph:

Using the CPU profiler 60

I @ ANT-Eventueue-0

=

o? system
@ AWT-Finalizer
¥ main

@ A T-Windows
@ Screen Updater
@ TimerCueue

idle thread: m active thread: = 9975 m=s

At T-EventCiuene-0

In this graph you can select athread or thread group. Selecting athread
group shows how the time was spent for al thread and thread groups
belonging to the thread group.

Refining the CPU Profile display

The Inspector window provides options to refine the CPU profile results.
To open the Inspector window, click the Inspector button.

l

The Inspector window contains the following options for the CPU profiler:

Option

Description

Display precision

Controls the granularity of the profiler output. By
default the datais organized by method; changing
the granularity allows you to organize the data by
line of code.

Display CPU usage
only

Displays only the pure CPU usage and excludes
any methods where the profiled thread was wait-
ing for a condition.

Sampling period

Controls the granularity of the profiler output.
Use asmall value for a short test session and
larger value for along test session. Usually this
value varies between 1 and 100 ms.

Using the CPU profiler

61

5.3 Advanced CPU profiler options

With Java 2 Optimizelt provides two kinds of CPU profiler:

Sampler

Instrumentation

A sampler isaprofiler that interrupts all running
threads every p period. Once al threads are inter-
rupted, it recordswhat each thread is currently doing
and whether each thread is currently using CPU. It
then resumes all running threads. p is called a sam-
pling period.

Aninstrumentation is a profiler that intercepts
method invocations. Each time amethod is called
the profiler records the fact that a method was called
and gives the control back to the application. The
profiler also intercepts when a method returns from
executing and records the amount of time/CPU that
was spent in the method.

Both profilers have different domain of application. The following table
shows pro and cons for both profiler types:

Using the CPU profiler

62

Profiler type

Advantage

| nconvenient

Sampler

Very low overhead:
the tested application
runs 10% slower with
the profiler running.
Low memory over-
head and excellent
scalability.

Since the profiler
pauses al threads
before recording any
information, a sam-
pler does not distord
performance related
data.

Since asampler isnot
based on method
invocationsit can
detect performance
bottlenecks within
methods.

Lack of precision. A
sampler precisionis
not greater than its
sampling period.
Cannot record num-
ber of method invoca-
tions.

Instrumentation

Very good precision:
each timeamethod is
invoked, it is
recorded.

Possibility to mea-
sure precisionin
microseconds.
Possibility to record
the number of timesa
method gets invoked.

Lack of scalability: an
instrumentation needs
to record a lot of
information.

I nformation distor-
tion: the instrumenta-
tion profiler is
actually running in
the tested program
threads. All method
invocations are
dower. Even if the
profiler compensates,
this can lead to dis-
torted results.

Large overhead: the
tested application
runs several times
dower with an instru-
mentation profiler.

Using the CPU profiler

63

The sampler isvery good at profiling alarge amount of code for along
time. The instrumentation is very good at precisely profiling small amount
of code. Theinstrumentation isalso very useful to understand if amethod is
slow or if it is called too often.

The following table shows when to use each profiler:

Profiler type

Application

Sampler

» Profiling an application for avery longtime. E.g.: a
server overnight.

» Profiling afeature that requires alot of different
code. E.qg.: the startup of alarge GUI based applica-
tion

| nstrumentation

» Profiling anything that executesin less than afew
hundred milliseconds. E.g.: amenu action

* Profiling a system that has many threads executing
many small requests. E.g.: aservlet

The Inspector window contains the following new options for the instru-
mentation profiler:

Option

Description

Precision

Controls whether the profiler has microsecond precision
or millisecond precision. The microsecond precision has
more overhead.

Filters

To minimize instrumentation overhead, afilter can be
used to exclude any methods that need less than n msto
execute.

Note: In order to minimize overhead, inspector options for the CPU profiler in Java 2 are no
longer real-time. When an option is changed, you have to start a new recording session for
the change to take effect.

Using the CPU profiler

6 Virtual machine information

Optimizelt can display in real-time high-level performance related data
about the program being tested. Using this feature, you can understand if a
performance problem isrelated to CPU, memory or both.

In this mode, Optimizelt displays three graphs:

Heap graph This graph shows in red the current heap size required
by the tested application and in green the current heap
sizethat is actually used by the application.

Thread graph This graph showsin red the current number of threads
running and in green the number of threads actually
using some CPU.

Classgraph This graph shows the number of classes currently
loaded in the virtual machine.

Java 2 GC graph This graph shows the garbage collector activity, which
is the time spent garbage collecting divided by the total
time.

Virtual machineinformation 65

6.1 Using the virtual machine information mode

o
To switch to the virtual machine mode, click on the AN button.The fol-
lowing screen shot shows Optimizelt virtual machine information mode

Java

Optimizelt 4.0 Professional - E;\zwing-1.0.2\examplesiMotepadiM otepadProfiling.oiz
File Edit Program Tools Info

NOETE=E
Yirtual Machine Information Wirtual maching running
Java Heap - Size: 2047k - Used: 1103k

[.(!l
by

1:00 00010 0:00:20 0:00:30 0:00:40 0:.00:50 n:

Threads:& - Active:0 Loaded classes:G62

0003 [\ I:I:DDQE 0:00:20 0:00:30 0:00:40

LAY]

Virtual machineinformation 66

Java 2

Optimizelt 4.0 Professional - E:\jdk1.3%demo\jfciSwing5 et2A S wing5 et ois™

File Edit Program Tools [Info

. ¥ L]
’ lI ‘ . ‘ “-.uﬁ:ﬁ!‘ l

Virtual Machine Information
Java Heap - Size: 38123k - Lsed: 32633k

0:00:10 0:00:20 0:00:30 0010 0:00:20

4] 1] 4] I3
Threads:12 - Active:3 Loaded classes: 1717

I e

0:00:10 0:00:20 0:00:30

i ~ Dl 0

.~ Click the Mark button to mark the current point in time. A yellow mark
/&, appears on each graph.

1 Click the Export data button to export the graph.

Virtual machineinformation 67

6.2 Virtual machine infor mation mode options

* Click on the Inspector button to show the inspector. The virtual machine
lv information mode has the following options:

Option

Description

Sampling period

This option defines how often Optimizelt updates
all charts.

Update when
invisible

Defines whether graphs are updated when the vir-
tual machine information mode is not currently
selected. When this option is selected Optimizelt
updates the graphs al the time even when you are
using the CPU profiler or the memory profiler.

Virtual machineinformation

68

7 Other features

This chapter includes the following sections:

Controlling the test program

Generating a snapshot of the current profiling
Opening a snapshot

Exporting data

Viewing source code

Creating filters

Displaying Optimizelt console messages
Find panel

Other features

69

7.1 Controlling thetest program

The Optimizelt toolbar provides the following buttons to control the test
program. These buttons can be used from any mode:

) Starts or resumes the test program. This control is red when the test
program is running.

i I Pauses or resumes the test program. Use this button when it is neces-
sary to freeze the flow of incoming datain the memory profiler to study
some specific results more closely.

ﬂ Stops the test program. The test virtual machine exits.

—
.. Forcesthe garbage collector to act immediately.

Other features 70

7.2 Generating a snapshot for the current profiling
session
At any time during the profiling, Optimizelt allows you to save the profil-
ing datainto a snapshot. Y ou can then reload the snapshot later for further

analysis or for performance comparisons.

To generate a snapshot choose Generate Snapshot from the File menu.

Generate snapzhot panel |

Generate snapshot

Location

Directur‘:.f:lC:ITEMF' Browse

Name:|au5ygpp

ﬁ]ﬂppend time and date when saving

Options
| Include CPU profiler data
ﬂlnclude memory profiler data

_Jlnclude reference graph

Motes:
Busyapp after & minutes of stressfull test.

Wirite snapshot Cancel

The following table describes each option:

Option Description

Directory Indicates the directory where the snapshot is
created.

Other features 71

Option

Description

Name

The filename of the snapshot.

Include CPU profiler
data

Indicates whether or not the CPU profiling
information should be included.

Note: Generating a snapshot with this option stops the
CPU prdfiler.
If the CPU profiler is not running, this option has no effect

Include memory pro-
filer data

Indicates whether or not the memory profiler
information (heap mode and backtrace mode)
should be stored.

Note: The amount of data to be stored for the reference
mode is important. The snapshots generated with this
option are larger files and take more time to be generated.
Only select this option when you really need the reference
mode information.

Comments

Contains other information, such as addition
text to distinguish this snapshot from others.

Note: The data of the virtual machine information mode is not stored in the snapshot.

Other features

72

7.3 Opening a snapshot

Optimizelt works the same way with snapshots as when profiling an appli-
cation. Nevertheless, there are several restrictions that you should be aware
of when you open a snapshot:

» theVirtua Machine Information mode is not available

» the console shows information about the opened snapshot (date of gen-
eration, host were it was generated, user that generated it, comments)

» theingpectors are disabled

To open a snapshot, choose Open a snapshot from the File menu. Select a
snapshot and click open. Optimizelt opens the snapshot and you can browse
the profiling information of the snapshot.

Other features

73

7.4 Exporting data

il

Optimizelt can export profile dataas ASCII, HTML, or easy-to-parse
ASCII. After the data is exported it can be printed, compared and archived.

To export the contents of a screen, choose Export Data from the File menu.
Y ou can aso click the Export Data button.

The Export Data dialog box provides options to set the content and format
of the data exported:

Export data
Export: Heap size Jl
Export as: HThML -Jll

FiIenamE:Idata_html Browse |

_Jﬂappend data at the end of the file

Title:lvirtual Machine Information

Comments:

]2 ‘ Cancel J
The following table describes each option:
Option Description
Export Enumerates all data types that you can export from the
current context. Use it to select the data to export.

Other features

74

Option

Description

Export as

Specifies the output of thefile format. Select HTML to
produce an HTML document that presents datain the
same format as the Optimizeit views. Select ASCII for a
more compact file. Select Importable ASCII if you expect
to use the output as input to another tool.

Filename

Indicates the full path name of the file created.

Title

Contains a description inserted at the top of the exported
document.

Comments

Contains other information, such as additional text to dis-
tinguish this profile from others.

After exporting data in the specified filename, Optimizelt opensthe file
with the corresponding editor or web browser.

Other features

75

7.5 Viewing sour ce code

Egj Source code viewer M=l E3

Color.java

i

all

i

When available, Optimizelt can display the source code corresponding to a
selection in any of the Optimizelt windows.

oolne Color WIITE. ﬂ

To view source code

Double-click the object or instance in the Optimizelt window.

-
T

Y ou can aso click the Show Source Code button -

Optimizelt opens a separate window displaying the source code responsible
for the allocation or definition of the selected object.

The following screen shot shows the source code viewer:

| public

final

atatic Color white = new Color(255, 255, 2Z55);: hd| |

_I,Hr*
* The
w

color

light gray.

| public

final

atatic Color lightGray = new Color (192, 192, 19Z);: alw]]

_I,n".\".\'
* The
* i

color

gray.

| public

final

gtatic Color gray = new Color(lZ&, 128, 1Z238): Al w] |

J,Hrﬂ'
* The
w7

color

dark gray.

| public

final

gtatic Color darkGray = new Color(6d, 64, Ad): Alw]]

_I,Hr*
* The
i

color

black.

| public

final

atatic Color black = new Color(0, 0, 0); alw]]

Fa

Other features

76

The relevant lines of code are highlighted in yellow. If more than one line
of codeishighlighted, use the small arrow buttonsto automatically scroll to
the next relevant line of code.

If the Javafileis not found, the source code viewer provides a button that
allows you to browse the file system to retrieve the file. Once thefileis
loaded, Optimizelt prompts you to store the source file location in the
default source path, so any Javafile in the same package isimmediately
available.

Other features

77

7.6 Creating filters

Although Optimizelt provides severa filters which are ready to use, it is
also possible to create your own filters, see “Profiling with filters’ on
chapter 3.10 for some information about using filters.

Tocreate anew filter

1. Select Settings from the File menu.

2. Switch to the filter section by clicking the Filters tab.

3. Click the New button.

4. Enter the name of your filter in the name textfield.

5. Select "any of the following patterns” if you want to perform alogic OR
between the different patterns of your filter, or select "all of the follow-
ing patterns” if you want to perform alogic AND between the different
patterns of your filter.

6. To add a pattern, click the Add button, then enter your pattern in the pat-
tern editor. Note that both the asterisk wildcard character (*) and the not
(1) are supported. Y our pattern can define packages, classes or methods.
When you are done with this pattern click OK.

7. To change a pattern, select the patternin the list and click the Edit button.

8. To delete a pattern, select the pattern in the list then click the Delete but-
ton.

9. When you have finished with your filter, click OK. Notice that your filter
appears at the end of the filter list. User filter names are written with
bold letters, Optimizelt filter names are written with normal letters.

10. Once you have created afilter, click on the corresponding column to
enableit for the CPU profiler or the memory profiler.

Custom filters are part of Optimizelt configuration files. They are saved
and loaded when using Save and Open commands from the File menu.

Other features 78

7.7 Displaying Optimizelt console messages

The purpose of the console isto print audit system-specific messages as
well asthetest program standard output and standard error. Use the console
to read messages from the test program or to see errorsif the Java program
does not start.

Note: If you select the option "Open a console" in the start options, the standard output and
the standard error of the test program won't be redirected to the Optimizelt console.

Other features 79

7.8 Find panel

In any view, you can find the information you are looking for by using the
find panel. The find panel is accessible from the edit menu.

Note: Sometimes the list or graph in which the search occurs does not have all the informa-
tion required for the search. When this happens, the find panel displays "Fetching data..." in
its status field. Once the data is fetched, the search occurs.

Other features 80

8 Integration with other Java environments

8.1 Integration with IDE

Optimizelt can integrate with the following IDEs:

IBM VisualAge For Java 2.0, 3.0, 3.5
WebGain Visua Cafe 2.0, 3.0 and 4.0
Borland JBuilder 2.0, 3.0, 3.5and 4.0
Oracle JDeveloper 2.0, 3.0and 3.1

Running thewizard

The following procedure shows how to integrate with an IDE:

1. Make sure the IDE has been installed correctly

2. Start Optimizelt.

3. From the Tools menu, select the IDE integration submenu and select the
option matching you IDE

4. Optimizelt starts awizard that guides you through the integration

5. Once the integration is performed, Optimizelt gives you the option to
quit Optimizelt and start your I1DE.

Integration with other Java environments 81

The Optimizelt menu

Optimizelt adds an Optimizelt menu to your IDE. The location of thismenu
isindicated in the table below:

IDE

L ocation of the Optimizelt menu

VisualCafe

Toolg/Optimizelt

JBuilder 2.0 and 3.0 | From the JBuilder main menu

JBuilder 3.5

Tools/Optimizelt

JDeveloper

From the JDeveloper main menu

VisualeAge

From the Visual Age's workbench, when a
project, a package or aclassis selected, from the
Selected menu, Tools submenu, Optimizelt
option

Note: You can also access the Optimizelt menu from Visual
Age by selecting a project, a package or a class, then right
click, and then select the menu Tools from the popup list-
menu, Optimizelt submenu.

The following menus are available:

M enu

Description

Start profiling

Starts Optimizelt if it is not already running and then
executes the current project in Optimizelt.

Stop profiling

Stops profiling the current project.

To front

Moves Optimizelt's window in front of the IDE win-
dow. This can be useful when working with the IDE
window maximized.

Close

Stops profiling the current project and causes Opti-
mizelt to exit.

Options

This menu shows a dialog box giving you access to
Optimizelt start options from the IDE.

Integration with other Java environments 82

Menu

Description

About

Gives information about Optimizelt.

Integration with other Java environments

83

8.2 Integration with application servers

Optimizelt can be integrated with most application servers that use Sun
JDK 1.1,1.2,1.30or IBM JDK 1.2 or 1.3. Oncetheintegration is performed,
the audit system can be started from the application server, and servlets can
be profiled by attaching Optimizelt to the audit system.

Optimizelt provides wizards for easy application server integration. The
following procedure shows how to start the integration:

1. Install the application server on your machine.

2. Start Optimizelt.

3. From the Tools menu, select the Application server integration submenu
and select your application server.

4. Optimizelt starts awizard that guides you through the integration.

Tutorials are also available. They describe the different steps carried out by
the wizard to perform the integration. Y ou can access the tutorials from the
Help/Tutorial menu in Optimizelt.

Integration with other Java environments 84

O | ndex

A

Allocation Backtrace mode 44
options 45
API
using Optimizelt APl 37
applet
profiling 14
application server
integration 82
audit system
description 21
options 23
Auto-start CPU profiler. See profiling start
options

C

class path
changing 10

command line (profiling from) 21
examples 22

console 79

CPU profiler 57
comparison sampler/instrumentation 62
instrumentation 62
Instrumentation options 64
main features 5
options 61
sampler 62
starting from the command line 31

D

Disable memory profiler. See profiling start
options

E

EJB
profilling 16
Enable audit API. See profiling start options
example
command line using filters 34
command line with JDK 1.1 25
command line with JIDK 1.2 22, 26
command line with JDK 1.3 23

offline profiling 30
F

filters 35

creating 78

specifying from the command line 33
Find panel 80

G

garbage collector
disabling 42
forcing 70
graph 65
graphs. See Virtual Machine information.

H

heap

graph 65

heap mode 41
Heap mode 41

filtering 42

options 43
HTML

exporting to 74
I

Instance Display mode 48

options 53
Instrumentation. See CPU profiler instrumen-
tation.

J

JDK supported. See virtual machine support-
ed.
JT
enabling 20
supporting library 25
JSP
profiling 16
M

Mark
putting a mark 42
memory leak 48

I ndex

83

solving 48
Memory Profiler 39
main features 5

O

offline profiling 28

examples 30

options 29
Open a console. See profiling start options
Optimizelt

getting started 3

what is Optimizelt? 1

P
Pause after launch See profiling start options
port
used between the audit system and
Optimizelt 23
used by the servlet runner 11
profiling
applets 14
applications 12
EJBs 16
from the test program 37
JSPs 16
offline. See offline profiling
remote 27
servlets 15
start options 17
with filters. Seefilters.
R

remote profiling
See profiling remote.
S

Sampler. See CPU profiler sampler.
serviet
configuring servlet support 11
profiling 15
snapshot
generating 71
generation options 71
opening 73
source code
setting location 9
viewing 76

T

temporary object allocation
minimizing 39
tracking 46

threads
CPU profiler thread graph 60
selecting athread 61
VM Info thread graph 65

V

virtual machine 8
adding 18, 19
flags added by Optimizelt 19
runtime used 19
supported 8
Virtual Machine information 65
exporting data 67
options 68
VM cannot exit. See profiling start options.

W

wizard
application server integration 82
Java setup 8
servlet configuration 11

I ndex

	1 Introducing OptimizeIt
	1.1 What is OptimizeIt?
	1.2 Getting started with OptimizeIt
	1.3 Differences when profiling with Java and Java 2
	1.4 OptimizeIt main features

	2 Configuring OptimizeIt
	2.1 Selecting a virtual machine
	2.2 Setting the source code location
	2.3 Changing the class path
	2.4 Configuring servlet support

	3 Profiling a Java program
	3.1 Starting a Java Application
	3.2 Starting a Java Applet
	3.3 Starting a Java Servlet
	3.4 Profiling EJBs or JSPs
	3.5 Start options
	3.6 Virtual machine options
	3.7 Profiling a program started from the command line
	3.8 Profiling a Java program running on a different machine
	3.9 Offline profiling
	3.10 Profiling with filters
	3.11 Starting OptimizeIt from the test program

	4 Using the memory profiler
	4.1 Memory profiler modes
	4.2 Understanding object allocations
	4.3 Understanding where objects are allocated
	4.4 Tracking temporary object allocations
	4.5 Identifying objects not freed by the garbage collector

	5 Using the CPU profiler
	5.1 Recording a test session
	5.2 Understanding the profiler output
	5.3 Advanced CPU profiler options

	6 Virtual machine information
	6.1 Using the virtual machine information mode
	6.2 Virtual machine information mode options

	7 Other features
	7.1 Controlling the test program
	7.2 Generating a snapshot for the current profiling session
	7.3 Opening a snapshot
	7.4 Exporting data
	7.5 Viewing source code
	7.6 Creating filters
	7.7 Displaying OptimizeIt console messages
	7.8 Find panel

	8 Integration with other Java environments
	8.1 Integration with IDE
	8.2 Integration with application servers

	9 Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	M
	O
	P
	R
	S
	T
	V
	W

