
User guide

INTUITIVE SYSTEMS, INC. - SOFTWARE LICENSE AGREEMENT

INTUITIVE SYSTEMS, INC. ("LICENSOR") IS WILLING TO LICENSE THE ACCOMPANYING PROGRAM
TO YOU ("LICENSEE") ONLY IF YOU ACCEPT ALL OF THE
TERMS IN THIS AGREEMENT. PLEASE READ THE TERMS CAREFULLY. BY INSTALLING THE PACK-
AGE FROM THE CD-ROM OR BY CLICKING ON THE BUTTON "YES"
BELOW, YOU ARE AGREEING TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT
AGREE TO ALL OF THE TERMS OF THIS AGREEMENT,
LICENSOR WILL NOT LICENSE THIS PROGRAM TO YOU. IN THIS CASE DO NOT INSTALL THE PACK-
AGE OR CLICK THE BUTTON "NO".

Definitions
1.1 "Agreement" shall mean this Agreement between Licensor and Licensee.
1.2. "Documentation" shall mean the user manual(s) and any other materials supplied by Licensor for use with the
Program .
1.3 "Program" shall mean the machine-readable object code of OptimizeIt together with its Documentation.

Grant of License
2. Licensor hereby grants to Licensee, and Licensee hereby accepts, a permanent non-exclusive license to use the
Program subject to
the terms ad provisions of this Agreement.

3. The license granted by this Agreement authorizes use of the Program by no more that 1 concurrent user, unless
expressly specified
in the materials supplied by Licensor to Licensee together with the Program.

4. Licensee acquires no right to distribute the Program and no right to copy the Program unless as specified in this
Agreement

5. Licensee agrees not to decompile, disassemble or reverse engineer the Program.

6. Licensee shall have the right to make one copy of the machine-readable object code of the Program solely for
archive purposes. On
such archival copy, Licensee shall mark copyright, trademark, patent, and/or trade secret notices identical to those on
the copy of
the Program provided to Licensee. Licensee may not otherwise make copies of the Program.

Acknowledgment of Licensor's ownership rights

7. Licensee acknowledges that it obtains no ownership rights in the Program under the terms of this Agreement. All
rights in the
Program including but not limited to trade secrets, trademarks, service marks, patents, and copyrights are, shall be
and will remain
the property of Licensor or any third party from whom Licensor has licensed software or technology. All copies of
the Program
delivered to Licensee or made by Licensee remain the property of Licensor.

Limited Warranty

8. Licensor warrants that the Program will perform substantially in accordance with accompanying Documentation
for a period of ninety
(90) days from the date of Licensee's receipt of the program ("Warranty period"). Any implied warranties on the Pro-
gram are limited to
ninety (90) days.

9. LICENSOR AND ANY THIRD PARTY FROM WHOM LICENSOR HAS LICENSED SOFTWARE OR TECH-
NOLOGY DISCLAIM(S) ALL OTHER WARRANTIES, EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANT-
ABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NON-INFRINGEMENT, WITH RESPECT TO THE PROGRAM AND THE ACCOMPANYING WRITTEN
MATERIALS.

10. LICENSOR AND ANY THIRD PARTY FROM WHOM LICENSOR HAS LICENSED SOFTWARE OR
TECHNOLOGY WILL NOT BE LIABLE FOR LOST PROFITS, LOST
OPPORTUNITIES, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES UNDER ANY CIRCUMSTANCES.

11. EXCLUSIVE REMEDY: LICENSEE'S EXCLUSIVE REMEDY SHALL BE, AT LICENSOR'S CHOICE,
EITHER (A) RETURN OF THE PRICE PAID OR (B)
REPLACEMENT OF THE PROGRAM THAT DOES NOT MEET LICENSOR'S LIMITED WARRANTY AND
WHICH IS RETURNED TO LICENSOR WITH A COPY OF LICENSEE'S
RECEIPT. Any replacement Program will be warranted for the remainder of the original warranty period or thirty
(30) days, whichever is
longer. These remedies are not available outside the United States of America.

12. If any problem, operational failure or error of the Program has resulted from any alteration of the Program, acci-
dent, abuse, or
misapplication, then this warranty shall be null and void, at Licensor's option.

13. IN NO EVENT WILL LICENSOR BE LIABLE TO LICENSEE FOR DAMAGES, INCLUDING ANY LOSS
OF PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF YOUR USE OR INABILITY TO USE THE PROGRAM.

14. This Agreement is governed by the laws of the State of California.

15. U.S. Government Restricted Rights. This Program and documentation are provided with Restricted Rights. Use,
duplication, or
disclosure by the Government is subject to restrictions set forth in subparagraph (c)(1) of the Rights in Technical Data
and Computer
Software clause at DFARS 252.227-7013 or subparagraphs (c)(1)(ii) and (2) of Commercial Computer Software -
restricted Rights at 48
CFR 52.227-19, as applicable.

1 Introducing OptimizeIt ..1
1.1 What is OptimizeIt? ..1
1.2 Getting started with OptimizeIt...3
1.3 Differences when profiling with Java and Java 2 ...4
1.4 OptimizeIt main features ...5

2 Configuring OptimizeIt ..7
2.1 Selecting a virtual machine ...8
2.2 Setting the source code location..9
2.3 Changing the class path...10
2.4 Configuring servlet support...11

3 Profiling a Java program ...12
3.1 Starting a Java Application ...12
3.2 Starting a Java Applet ...14
3.3 Starting a Java Servlet ...15
3.4 Profiling EJBs or JSPs...16
3.5 Start options...17
3.6 Virtual machine options ..19
3.7 Profiling a program started from the command line ...21
3.8 Profiling a Java program running on a different machine.................................27
3.9 Offline profiling ..28
3.10 Profiling with filters ..35
3.11 Starting OptimizeIt from the test program ..37

4 Using the memory profiler ...39
4.1 Memory profiler modes...40
4.2 Understanding object allocations ..41
4.3 Understanding where objects are allocated ...44
4.4 Tracking temporary object allocations ..46
4.5 Identifying objects not freed by the garbage collector48

5 Using the CPU profiler ..57
5.1 Recording a test session ..58
5.2 Understanding the profiler output ...59

5.3 Advanced CPU profiler options ...62

6 Virtual machine information ...65
6.1 Using the virtual machine information mode..66
6.2 Virtual machine information mode options ..68

7 Other features ...69
7.1 Controlling the test program ...70
7.2 Generating a snapshot for the current profiling session71
7.3 Opening a snapshot ...73
7.4 Exporting data ...74
7.5 Viewing source code ...76
7.6 Creating filters...78
7.7 Displaying OptimizeIt console messages..79
7.8 Find panel ..80

8 Integration with other Java environments81
8.1 Integration with application servers ..82

9 Index...83

1 Introducing OptimizeIt

1.1 What is OptimizeIt?

OptimizeItTM software is a JavaTM profiling tool which enables developers
to test and improve the performance of their Java applications, applets,
servlets, JavabeansTM, Enterprise JavabeansTM and Java Server PagesTM.
OptimizeIt takes you behind the scenes of the Java virtual machine and
reveals how a Java program uses computer resources. Using OptimizeIt
allows developers to identify any Java code allocating too much memory or
using the CPU in an inefficient way.

OptimizeIt is plug and play: there is no need to recompile your program
with a custom compiler or to modify class files before execution. Just run
your program from OptimizeIt to start testing its performance. Because no
code modification is required, any Java code that your program uses is
included in the profile.

OptimizeIt has two main components:

• The OptimizeIt user interface is a window that displays profiles and
controls for refining the profiles and viewing source code.

• The OptimizeIt audit system is a real-time detective that reports the
activity on the Java virtual machine back to the OptimizeIt user inter-
face.

After you invoke your program from OptimizeIt, the OptimizeIt user inter-
face connects to the audit system running in the test application's virtual
machine and displays performance related information. For example, when
an object is allocated by your program, the OptimizeIt window displays the
allocation. You can click a button in the OptimizeIt window to display the
source code responsible for allocating the object and click a button to dis-
play other information such as CPU usage.

At any time you can open the source code viewer to display and study rele-
vant lines of code. For example, if you identify a performance bottleneck
while viewing methods allocating objects, you can click a button to open
the source code viewer displaying the problem code.

When you run OptimizeIt again after fixing source code, you can make sure
that your new optimization is actually improving the performance of your
1Introducing OptimizeIt

application. OptimizeIt removes guesswork from improving Java perfor-
mance.
2Introducing OptimizeIt

1.2 Getting started with OptimizeIt

The basic steps to run OptimizeIt are as follows:

• Create some new settings for the application you want to test
• Launch your test program from OptimizeIt
• Analyze memory use in the test program
• Analyze CPU use in the test program
• Make changes to your source code and repeat these steps until you are

satisfied with your program's performance

These basic steps are detailed in the OptimizeIt Quick Tour, also accessible
from the user interface. This user manual describes a more broad selection
of OptimizeIt tasks. It also includes information about OptimizeIt windows
and options.

We strongly recommend that you spend 10 minutes with the OptimizeIt
Quick Tour tutorial to understand OptimizeIt quickly.
3Introducing OptimizeIt

1.3 Differences when profiling with Java and Java 2

Some OptimizeIt features are different when using Java (JDK 1.1) or Java 2
(JDK 1.2 or JDK 1.3). For example, OptimizeIt provides more features
with Java 2. The following logos are used within the documentation when a
paragraph only applies to Java or Java 2:

Java Java 2
4Introducing OptimizeIt

1.4 OptimizeIt main features

Memory Profiler
• Provides real-time display of all classes used by the test program and of

the number of allocated instances
• Graphically indicates where instances are allocated
• Filters class lists so you can focus on relevant classes
• Automatically highlights lines of code that allocate object instances
• Gives you control over garbage collection
• Displays incoming and outgoing object references in real time
• Displays string representations of allocated instances
• Provides Java API calls so you can invoke the memory profiler from

inside the test program

• Computes reduced reference graph for incoming references
• Displays references from reference graph roots

CPU profiler
• Allows you to start or stop profiling at any time
• Displays data for pure CPU use or for elapsed time (pure CPU and inac-

tive phases)
• Graphically represents thread activities for the sampling period
• Displays profiling information for each thread or thread group
• Finds frequently used methods using Hot spot detectors
• Provides Java API calls so you can invoke the CPU profiler from inside

the test program

• Provides both a sampler based profiler and an instrumentation based
profiler

• Can provide millisecond or microsecond precision
• Displays invocation count
• Provides filter to remove fast methods

Other features
• Provides filters for both memory and CPU profiler
• Displays and exports charts showing high level VM information includ-

ing heap size, heap used, number of threads, number of busy threads,
number of loaded classes

• Starts any Java application, applet or servlet directly from OptimizeIt
user interface

Java 2

Java 2
5Introducing OptimizeIt

• Saves snapshots of a profiling session at any time. Snapshots can be
reloaded later for analysis or comparison of profilings

• Provides an offline profiling mode to automatically save snapshots at
fixed intervals

• Integrates automatically with several IDEs including IBM VisualAge,
WebGain VisualCafe, Borland JBuilder, Oracle JDeveloper

• Integrates automatically with several Application Servers including
JRun 2.3 and 3.0, WebLogic 4.5, 5.0 and 5.1, iPlanet Web Server (NES
4.0 and 4.1), JServ 1.1, Java Web Server 1.13 and 2.0, ServletExec 2.2
and 3.0, Jakarta Tomcat.

• Provides compatibility with IBM WebSphere, Apple WebObjects and
Netscape Application Server (NAS), ATG Dynamo, SilverStream,
GemStone

• Pauses and resumes the execution of the test program
• Provides a find tool that can be used in all screens
• Highlights relevant lines of code with the source code viewer
• Includes a Java setup wizard for fast and simple configuration
• Executes your test program remotely while analyzing performance
• Exports any information in HTML or ASCII
• Provides Java API calls so you can invoke the OptimizeIt audit system

from any Java code

• Supports any virtual machine that is fully JVMPI compliant. This
includes any Sun virtual machine derived from JDK 1.1, 1.2, 1.3 and
also IBM JDK 1.2 and 1.3

• Displays and exports chart showing garbage collector load factor.
• Starts applications directly from JAR files

Java 2
6Introducing OptimizeIt

2 Configuring OptimizeIt

This chapter describes how to configure the OptimizeIt software for opera-
tion with your Java application. It includes the following sections:

• Selecting a virtual machine
• Setting the source code location
• Changing the class path
• Configuring servlet support

These settings are global settings that can be customized for each applet or
application you are profiling.
7Configuring OptimizeIt

2.1 Selecting a virtual machine

OptimizeIt profiles your program's performance while it runs on a Java
virtual machine. By default OptimizeIt profiles using a Java 2 runtime.

OptimizeIt is compatible with most Java version 1.1, 1.2 and 1.3 virtual
machines including the following:

• Sun Microsystems® Java Development Kit (JDK) Version 1.1.6 or
newer, 1.2 and 1.3

• Borland® JBuilderTM Version 1.0 or higher
• Symantec® Cafe Version 2.5 or 3.0
• IBM® Java Development Kit JDK 1.2.2 and 1.3

OptimizeIt includes a Java Runtime Environment (JRE) 1.2. The first time
you run OptimizeIt, a Java setup wizard is started. If you want to use the
default JRE 1.2 included with OptimizeIt, just click Cancel. If you want to
configure OptimizeIt to use a different virtual machine, click Next. Select
the directory where you want the wizard to search for available virtual
machines. The wizard scans the selected directory or drive and lists all
available virtual machines (after you see the message "Found 1 virtual
machine" you can click Stop to end the scan). Select the virtual machine
you want to use in the list of found virtual machines, click Next, then click
Finish.

After changing the default virtual machine, OptimizeIt prompts you to ask
whether the new default virtual machine should be used with the current
settings. Click Yes to start using that virtual machine.

At any time, you can change which virtual machine OptimizeIt uses from
the Virtual machine tab of the Settings editor, See “Adding a virtual
machine” on page 19.
8Configuring OptimizeIt

2.2 Setting the source code location

When OptimizeIt has access to the source code for an application, it high-
lights the relevant lines in the source code. If the source code is not accessi-
ble, OptimizeIt can still provide profiling information for the Java classes.

OptimizeIt maintains a source path which is a list of directories containing
source code. OptimizeIt searches each directory in the source path in the
order specified when it requires a source file. The Preferences panel can be
used to change the default source path in OptimizeIt.

Changing the default source path
1. Select Preferences from the Edit menu.
2. Select Default source path in the top selection box.
3. Click the Edit button.
4. The Source Path Chooser opens.
5. In the top box, select the directory you want to add.
6. Choose the directory that contains the top-level package of your Java

source code. If you aren't sure, select any Java file in your application
and OptimizeIt will add the appropriate directory.

7. Click the down arrow to add your selection to the source path.
8. Repeat these steps for other directories you want to add to the source

path.
9. Click the OK button.
10. Click the OK button to close the Preferences dialog box.

Note:When a Java file is not available, OptimizeIt prompts you to locate the missing Java
file. After you select the missing Java file, a dialog box prompts you to add the file's direc-
tory to the default source path.

To set a different source path for an applet, a servlet or an application that
you are profiling with OptimizeIt, define the changes to the default source
path in the Settings editor.
9Configuring OptimizeIt

2.3 Changing the class path

When OptimizeIt launches your applet or application, the Java virtual
machine needs the location of classes your application uses. By default,
OptimizeIt points to the classes that are defined in your CLASSPATH envi-
ronment variable.

OptimizeIt maintains a class path which is a list of directories containing
class files. OptimizeIt searches each directory in the class path in the order
specified when it requires a class. If you have some classes, zip files or jar
files that you always want available to all test programs, add them to the
default OptimizeIt class path.

Changing the class path
1. Select Preferences from the Edit menu.
2. Select Default class path in the top selection box.
3. Uncheck the Use CLASSPATH environment variable option.
4. Click the Edit button.
5. In the top box, select the directory, zip file or jar file you want to add to

the class path. If you choose a directory, make sure you select the direc-
tory containing the top-level package of the source tree.

6. Click the down arrow to add your selection in the class path.
7. Click the OK button.
8. Click the OK button to close the Preferences dialog box.

Note:To set a different class path for an applet or application you are profiling with
OptimizeIt, define the changes to the default class path in the Settings Editor.
10Configuring OptimizeIt

2.4 Configuring servlet support

In order to be able to start the profiling of a servlet directly from
OptimizeIt, you need to configure OptimizeIt with a servlet runner. You
need one of the following servlet runner jar file: jsdk.jar, server.jar or web-
server.jar. These jar files can be found in several software installations:
JSDK 2.0 or 2.1, JSWDK 1.0, JBuilder 3, JDeveloper 2, VisualCafe 3 or 4,
WebSphere. If you don’t have any of this software installed, we suggest
that you download and install the Java Servlet Development Kit 2.1 (JSDK
2.1) from http://java.sun.com/products/servlet/download.html.

Configuring servlet support
1. Select Preferences from the Edit menu.
2. Select Servlet in the top selection box.
3. Click on Servlet setup. This opens the servlet configuration wizard.
4. Click on next.
5. Select a directory where you want to search for one of the servlet runner

jar file then click on next.
6. When OptimizeIt has finished its search, it displays the available jar files

found in a table. Select one line in the table then click next.
7. Click finish.

Changing the port used by the servlet run-
ner
When you start the profiling of a servlet from OptimizeIt, OptimizeIt runs
your servlet in a servlet runner. The default port used by the servlet runner
is 8080. If you have another application that already uses that port, change
the port number:

1. Select Preferences from the Edit menu.
2. Select Servlet in the top selection box.
3. Change the value of the port in the corresponding section.
11Configuring OptimizeIt

http://java.sun.com/products/servlet/download.html#downloadsarchive

3 Profiling a Java program

3.1 Starting a Java Application

OptimizeIt can profile a Java application that is either packaged in a JAR
file, or is given the location of the class file containing the Main method for
the application.

Note:By default OptimizeIt profiles your application with a Java 2 runtime. You can select
another virtual machine by using the Virtual Machine tab, see “Virtual machine options” in
chapter 3.6.

To start profiling an application
1. Select New from the File menu.
2. In the Program type section of the dialog box, choose Application.
3. Enter the main class of the application.

- If the application is in a JAR file, click Browse to select the JAR file
location.
- If the application is in a ZIP file, enter the fully qualified name of the
class containing the Main method. For example:
com.foo.bar.Main
- If the application is not in a JAR or ZIP file, click Browse to select the
class file that contains the main method.

4. (Optional) Make sure the working directory is correct. If the application
does not require a working directory, ignore this option.

5. (Optional) Add classes to the class path. If the application requires spe-
cial classes not indicated in the default class path, click Change under the
Class path list to select directories, jar file or zip files containing the extra
classes.

6. (Optional) Add source code directories to the source path. This allows
OptimizeIt to show relevant source code. Specific files can be added later
during the profiling session.

7. (Optional) Click the Virtual Machines tab. Select the virtual machine you
want to use in the list. For more information on the different options
available in this tab, see “Virtual machine options” in chapter 3.6.

8. Click the Start Now button. OptimizeIt starts the application and opens
the memory profiler for the application.
12Profiling a Java program

Once you have configured OptimizeIt to start your application, you can
save this configuration and reopen it later. Save and Open commands are
available from the file menu.
13Profiling a Java program

3.2 Starting a Java Applet

OptimizeIt can profile a Java applet given an HTML file or a URL.

Note:Profiling an applet requires a Java Development Kit (JDK). Make sure to select a
virtual machine included in a JDK from the Virtual Machine tab, see “Virtual machine
options” in chapter 3.6.

To start profiling an applet
1. Select New from the File menu.
2. In the Program type section of the dialog box, choose Applet.
3. Enter the file name or URL of the applet.
4. If the applet is on your local disk, click the Browse button and select the

HTML file. If the applet is a web page, enter the URL of that page.
5. (Optional) Make sure the working directory is correct. If the applet does

not require a specific working directory, ignore this option.
6. (Optional) Add classes to the class path. If the applet requires special

classes not indicated in the default class path, click Change under the
Class path list to select directories, jar files or zip files containing the
extra classes.

7. (Optional) Add source code directories to the source path. This allows
OptimizeIt to show relevant source code. Specific files can be added later
during the profiling session.

8. (Optional) Click the Virtual Machines tab. Select the virtual machine you
want to use in the list. For more information on the different options
available in this tab, see “Virtual machine options” in chapter 3.6.

9. Click the Start Now button. OptimizeIt starts the applet and opens the
memory profiler for the applet.

Once you have configured OptimizeIt to start your applet, you can save this
configuration and reopen it later. Save and Open commands are available
from the file menu.

Note:When started from OptimizeIt, an applet is run with AppletViewer. It is also possible to
profile an applet that run inside a web browser when using the Java plug-in. This operation
is described in the tutorial “Profiling an applet running inside a web browser”.
14Profiling a Java program

3.3 Starting a Java Servlet

OptimizeIt can profile a Java servlet given its class.

Note:By default OptimizeIt profiles your application with a Java 2 runtime. You can select
another virtual machine by using the Virtual Machine tab, see “Virtual machine options” in
chapter 3.6.

To start profiling a servlet
1. Select New from the File menu.
2. In the Program type section of the dialog box, choose Servlet.
3. If it is the first time you have profiled a servlet with OptimizeIt, the serv-

let wizard will start. The wizard will guide you through the servlet con-
figuration, see “Configuring servlet support” in chapter 2.4 for more
information.

4. Click Browse to select the class file that contains your servlet.
5. (Optional) Make sure the working directory is correct. If the servlet does

not require a specific working directory, ignore this option.
6. (Optional) Add any parameters required by the servlet.
7. (Optional) Add classes to the class path. If the servlet requires special

classes not indicated in the default class path, click Change under the
Class path list to select directories, jar files and zip files containing the
extra classes.

8. (Optional) Add source code directories to the source path. This allows
OptimizeIt to show relevant source code. Specific files can be added later
during the profiling session.

9. Click the Virtual Machines tab. Select the virtual machine you want to
use in the list. For more information on the different options available in
this tab, see “Virtual machine options” in chapter 3.6.

10. Click the Start Now button. OptimizeIt starts the servlet and opens the
memory profiler for the servlet. The browser is automatically launched to
execute the servlet. If any servlet parameters have been specified, they
are added to the servlet URL.
15Profiling a Java program

3.4 Profiling EJBs or JSPs

Profiling EJBs or JSPs can be done by profiling the application server that
runs your Java code. OptimizeIt can be integrated with most application
servers. For more information, see “Integration with application servers” in
chapter 8.1.
16Profiling a Java program

3.5 Start options

OptimizeIt allows you to control profiling through several options. These
options affect the Java application selected in the Edit settings panel.

Option Description

Pause after launch Pauses the test program just before exe-
cuting the Main method. Use this option
to give yourself some time to configure
OptimizeIt or to start some profilers
before the tested application starts.

VM cannot exit Disables the method System.exit() in the
virtual machine. Use this option to test a
command line program such as a com-
piler that performs a task and then exits
the running virtual machine. Use the
Stop button to exit the program when
your profiling is complete.

Disable memory profiler Disables the OptimizeIt memory pro-
filer. The OptimizeIt memory profiler
adds overhead that can change the CPU
profiler results. Use this option when
you are focusing on CPU-related issues
only.

Open a console Opens a console for the program. Use
this option if your program expects
some input from System.in. When this
option is off, anything printed using
System.out and System.err is printed in
the OptimizeIt console.

Enable audit API Enables the OptimizeIt audit system
API. When the API is enabled,
OptimizeIt memory and CPU profilers
are disabled by default. This allows the
tested program to use OptimizeIt API to
precisely enable both profilers when
needed.
17Profiling a Java program

Auto-start CPU profiler Starts the CPU profiler just before exe-
cuting the main method. The CPU pro-
filer is started with the current option
selected in the CPU profiler inspector.

Extra Java parameters Specifies a string passed directly to the
virtual machine running the test pro-
gram. Use this field to add Java virtual
machine arguments such as -mx or -ver-
bosegc.

Extra program parameters Specifies a string passed directly to the
tested application when launched.

Class path Lists the class path defined in the default
class path. If the test program requires
extra classes, JAR files, or ZIP files,
click the Change button to select addi-
tions to the class path. These additions
apply to this test program only.

Source path Lists the directories in which OptimizeIt
searches for source code. If the test pro-
gram source code is not included in the
default source path, click the Change
button to add a location to the source
path. These additions apply to this test
program only.

Option Description
18Profiling a Java program

3.6 Virtual machine options

The OptimizeIt Virtual Machine Tab allows you to select and configure the
virtual machine you want to use to profile your application.

Adding a virtual machine
In order to add a virtual machine click on the Add virtual machines button.
This starts the virtual machine wizard:

1. Click on Next.
2. Select a directory from which OptimizeIt will look for available virtual

machines.
3. Click on search.
4. Once OptimizeIt has finished its search, it displays the virtual machines

found.
5. Click on finish to add those virtual machines to the list of available

virtual machines.

Setting the virtual machine properties
When you select a virtual machine from the list, OptimizeIt only enables
the available options for that virtual machine.

Java runtime

This property sets the virtual machine runtime used. The following table
shows which flag is added to the virtual machine invocation:

Option Flag
added Description

Default No flag
added

The virtual machine uses its default runtime.

Classic -classic OptimizeIt forces the virtual machine to use its
classic runtime.

Hotspot -hotspot OptimizeIt forces the virtual machine to use its
Hotspot runtime.
19Profiling a Java program

Audit System

This option sets which library OptimizeIt should use. OptimizeIt automati-
cally selects the appropriate library when the selected virtual machine is
recognized. See “OptimizeIt libraries” on page 25 for more information on
the different libraries.

Enabling the JIT

You can enable the JIT (Just In Time compiler) when profiling by selecting
the corresponding option.

Note:The JIT can only be enabled when the Universal JVMPI/JNI audit system is selected.
20Profiling a Java program

3.7 Profiling a program started from the command
line

In addition to running your test program from OptimizeIt, you can run it
from a command prompt.

Invoking your application from outside OptimizeIt allows you to do the fol-
lowing:

• Set custom variables
• Run the application as part of a script
• Run the program on a different machine

To profile your test program invoked from a command prompt:

1. Set up the OptimizeIt audit system
2. Launch the OptimizeIt audit system, specifying your test program
3. Run OptimizeIt
4. Connect the audit system to the OptimizeIt user interface

Setting up the OptimizeIt audit system
To use the OptimizeIt audit system, you need to modify your CLASSPATH
and PATH environment variables to include the following directories:

Launching your program
The OptimizeIt audit system is a set of Java classes and native code.

To show the audit system options

Run the following command:

C:\> java intuitive.audit.Audit

CLASSPATH <InstallDir>\OptimizeIt\lib\optit.jar

PATH <InstallDir>\OptimizeIt\lib
21Profiling a Java program

To run the audit system with JDK 1.1

Invoke the audit system with the following options:

C:\> java -noclassgc -Djava.compiler=NONE intuitive.audit.Audit [-port port-
Number] [-pause] [-wait] [-dmp] [-noexit] [-startCPUprofiler[:<CPUProfilerOp-
tions>]] [-offlineprofiling[:<offlineprofilingOptions>]] [-enableAPI] ClassName
arg1, arg2, ...

Note:With early Java versions the OptimizeIt audit system requires that the class garbage
collection is disabled. Always use the -noclassgc Java virtual machine argument when
starting an application from the command line. You also need to disable the JIT. This can
be done by adding -Djava.compiler=NONE

To run the audit system with JDK 1.2

Invoke the audit system with the following options:

C:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit [-port portNumber] [-pause] [-wait] [-dmp] [-noexit] [-startCPU-
profiler[:<CPUProfilerOptions>]] [-offlineprofiling[:<offlineprofilingOptions>]] [-
enableAPI] ClassName arg1, arg2, ...

Note:With some environments, the -classic option is necessary to force the classic runtime.
-Xrunoii is necessary to load OptimizeIt's JVMPI agent. The OptimizeIt audit system
requires that the class garbage collection is disabled. Always use the -Xnoclassgc Java
virtual machine argument when starting an application from the command line. You also
need to disable the JIT. This can be done by using -Djava.compiler=NONE.

Note:Running an applet with JDK 1.2 requires that you use oldjava.exe instead of java.exe

To run the audit system with JDK 1.3

Invoke the audit system with the following options:

C:\> java -classic -Xrunoii intuitive.audit.Audit [-port portNumber] [-pause] [-
wait] [-dmp] [-noexit] [-startCPUprofiler[:<CPUProfilerOptions>]] [-offlineprofil-
ing[:<offlineprofilingOptions>]] [-enableAPI] ClassName arg1, arg2, ...

Java

Java 2
22Profiling a Java program

Audit system options

The following table describes these parameters. Note that many of these
options provide the same functionality as the Start options.

Option Description

-port Specifies the port you want to use for the commu-
nication link between the audit utility and the
OptimizeIt application.

-pause Causes the launched program to be paused immedi-
ately after launch.

-dmp Disables the memory profiler.

-noexit Disables the method System.exit() in the virtual
machine.

-enableAPI Enables the OptimizeIt audit system API. When the
API is enabled, OptimizeIt memory and CPU pro-
filer are disabled. The audit system waits for the
test program to enable profilers from Java.

-startCPUprofiler Starts the CPU profiler just before executing the
main method, See “Starting the CPU profiler from
the command line” on page 31 for more informa-
tion on the available options.

-offlineprofiling Starts the profiling in offline mode. Snapshots are
generated automatically at a given time, see
“Offline profiling” in chapter 3.9 for more infor-
mation on the available options.

-dllpath Specifies the location of OptimizeIt DLLs if differ-
ent from your PATH environment variable. Note
that this option has been deprecated since
OptimizeIt 3.1. You should not need to use this
option.

ClassName The main class the for the test program. If the test
program is an applet, use sun.applet.AppletViewer
and then add the path of the applet HTML file or
URL.
23Profiling a Java program

OptimizeIt libraries

OptimizeIt comes with several libraries to support the different virtual
machines:

The audit system automatically detects which virtual machine is used and
then selects the matching library. If you want to select a specific library to
load, use the -DAUDIT=<libraryType> property, where libraryType is one
of the following: 11, 12 or jni.

For example, the following line starts the profiling of the SwingSet pro-
gram and specifies OptimizeIt to use the Java 2 Universal library:

c:\> java -classic -Xrunoii -DAUDIT=jni intuitive.audit.Audit SwingSet

Examples with JDK 1.1

Use the following command to launch the applet contained in the file exam-
ple.html:

C:\> java -noclassgc -Djava.compiler=NONE intuitive.audit.Audit
sun.applet.AppletViewer example.html

Use the following command to pause the application com.busy.BusyApp
immediately after launch:

C:\> java -noclassgc -Djava.compiler=NONE intuitive.audit.Audit -pause
com.busy.BusyApp

Name Option Description

Java 2
Universal

-DAUDIT=jni This library provides universal virtual
machine support. It supports any JDK
1.2 or later virtual machine that is fully
JVMPI/JNI compliant. It also supports
Just In Time compilers (JIT). It should
be used with Sun's JDK 1.3 and IBM
JDK 1.2.2 and 1.3

JDK 1.2
Compatible

-DAUDIT=12 This library should be used with Sun's
JDK 1.2.x

JDK 1.1
Compatible

-DAUDIT=11 This library should be used with JDK
1.1

Java
24Profiling a Java program

Examples with JDK 1.2

Use the following command to launch the applet contained in the file exam-
ple.html:

C:\> oldjava -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit sun.applet.AppletViewer example.html

Use the following command to pause the application com.busy.BusyApp
immediately after launch:

C:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit -pause com.busy.BusyApp

Example with JDK 1.3

Use the following command to start the com.busy.BusyApp application
with the CPU profiler automatically started:

C:\> java -classic -Xrunoii intuitive.audit.Audit -startCPUprofiler
com.busy.BusyApp

Connecting the audit system to the
OptimizeIt user interface
After the test program is running, you need to direct the results generated
by the audit system into the OptimizeIt user interface. This procedure is
called “attaching” OptimizeIt to the test program.

To show the audit system results
1. In OptimizeIt, select New from the File menu.
2. In the Edit Settings panel select Remote Application in the Program Type

section.
3. Type localhost in the Host Name field.
4. Enter the port number you want to use for the communication link

between OptimizeIt and the audit system in the Port number field.
Change this value only if you used the -port option when launching the
test program.

5. (Optional) Add source code directories to the source path. This allows
OptimizeIt to show the relevant source code. Specific files can be added
later during the profiling session.

6. Click the Attach Now button.

Java 2
25Profiling a Java program

3.8 Profiling a Java program running on a different
machine

Profiling a Java program running on a different machine is similar to testing
a Java program started from the command line. Follow the instructions
above to start the test program on another machine. Start OptimizeIt, and
create some new settings with Remote Application as Program type. In the
Host name field, type the name of the machine running the test program.
26Profiling a Java program

3.9 Offline profiling

OptimizeIt allows you to start the profiling session from the command line
and automatically generate snapshots at fixed intervals. Snapshots can be
reloaded in OptimizeIt for later analysis. This feature can be used to profile
an application server over a long period or in a production environment (for
example). Offline profiling also limits overhead since you do not attach to
the application.

Note:You cannot attach OptimizeIt to an audit system configured for offline profiling.

Starting offline profiling
In order to start online profiling, you must start your application from the
command line with the option:

-offlineprofiling[:<offlineprofilingOptions>]

Syntax

Each offline profiling option is associated with a value. The option and the
value must be separated with an equal character ‘=’. The different options
are separated by comas ‘,’. No space should be used.

Note:The value of the directory and comments options may contain spaces. in that case,
make sure to include the values between quotes ‘”’.

For the initial delay and delay values, the unit used is specified just after the
value, with the following syntax:

Symbol used Corresponding unit

h hours

m minutes

s seconds

ms milliseconds
27Profiling a Java program

If no unit is specified, seconds are assumed.

Examples:

• delay=1m sets the delay to 1 minute
• initialDelay=2h sets the initial delay to 2 hours
• delay=10 sets the delay to 10 seconds

For values that are boolean the syntax is: true, false.

Options

The following table describes the different options available:

Option Description

initialDelay The delay before the generation of the first snap-
shot.
Must be positive or zero.
If not specified, the value of the option delay is
used

delay The delay between the generation of 2 snapshots.
Must be positive and not zero.

counter The number of snapshots to be generated.
Must be positive.
If not specified, the number of snapshots generated
is not limited.

directory The directory where the snapshots are generated.
Must be a valid directory.
If not specified, snapshots are generated in the cur-
rent directory.

filename The name used for the snapshots.
If no filename is specified, the filename is con-
structed from the main class name.

updateFile Boolean that sets if the same snapshot should be
reused.
If set to yes, only one file is used for all the snap-
shots and the preceding snapshot is overwritten
each time a new snapshot is generated.
28Profiling a Java program

Examples

The following command line starts the offline profiling of the application
AppServer with the JDK 1.2. A snapshot will be generated every minute.
The filenames of the snapshot will be AppServer_snapshot_<dateAnd-
Time>.snp. The snapshots will be generated in the directory c:\TEMP.

c:\>java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE
intuive.audit.Audit -offlineprofiling:delay=1m,directory=c:\TEMP
com.busy.AppServer

The following command line starts the profiling of the SwingSet applica-
tion with the JDK 1.2. The first snapshot will be generated after 5 minutes,

appendTime Boolean that sets if the date and time of the snap-
shot generation should be appended at the end of
the filename.
True by default. If set to false, a counter is used to
differentiate the different snapshot files.

includeCPU Boolean that sets if the CPU profiling information
should be stored in the snapshot.
If true and the CPU profiler is not automatically
started, it starts the CPU profiler with the default
options. See “Starting the CPU profiler from the
command line” on page 31 for more information.

includeMemory Boolean that sets if the memory profiler informa-
tion (heap mode and backtrace mode) should be
stored in the snapshot.
True by default.

includeReferences Boolean that sets if the memory profiler reference
graph (and reference from roots with JDK 1.2 and
later) should be stored in the snapshot.
False by default.

Note:The amount of data to be stored for the reference mode
is important. The snapshots generated with this option are
larger files and take more time to be generated. Only select
this option when you really need the reference mode informa-
tion.

comment String used to add comments to the snapshot. Use
quotes “ if the string contains spaces.

Option Description
29Profiling a Java program

and then a snapshot will be generated every hour to reach a total of 10 snap-
shots. The reference graph will be included. The snapshots will be gener-
ated in the current directory, and will be named
profiling<dateAndTime>.snp.

c:\>java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE
intuive.audit.Audit -offlineprofiling:initialDelay=5m,delay=1h,counter=10,file-
name=profiling,includeReferences=true SwingSet

The following command line starts the profiling of the BusyApp applica-
tion with the JDK 1.3. A snapshot will be regenerated every 5 minutes in
the current directory, using the filename test.snp. The CPU information will
be included. (See “Starting the CPU profiler from the command line” on
page 31 for more information on the -startCPUprofiler command).

c:\>java -classic -Xrunoii intuive.audit.Audit -startCPUprofiler:type=sam-
pler,samplingPeriod=10 -generatesnapshot:delay=5m,filename=test,inclu-
deCPU=true,updateFile=true BusyApp

The following command line starts the profiling of the AppServer applica-
tion with the JDK 1.1. Just one snapshot will be generated, and will be
updated each hour (each new snapshot will overwrite the previous snap-
shot).

c:\>java -noclassgc -Djava.compiler=NONE intuitive.audit.Audit -generate-
snapshot:delay=1h,updateFile=true,comment=”Snapshot of the application
server in a stressfull environment.” AppServer

Starting the CPU profiler from the com-
mand line
By default, the OptimizeIt CPU profiler is only started when triggered from
the OptimizeIt user interface. Use the following option to start the CPU
profiler automatically before the tested program is started.

-startCPUprofiler[:<CPUoptions>]

Syntax

Each option is associated with a value, the different options are separated
by comas ‘,’.
30Profiling a Java program

Options

The following table describes the different options available:

Option Values Description

type [sampler,
instrumenta-
tion]

Type of CPU profiler used.
Default is sampler.

Note:Instrumentation is only available with
JDK 1.2 or newer

displayPrecision [method,line] Sets the precision of the sampler.
This option is only active with
type=sampler.
Default is method.

samplingPeriod [1..1000] Sets the sampling period (in milli-
seconds) of the sampler.
This option is only active with
type=sampler.
Default is 50 ms.

onlyCPU [true,false] If true only the pure CPU usage is
taken into account.
Default is false.

precision [micro,milli] Controls wether the profiler has
microsecond or millisecond preci-
sion.
This option is only active with
type=instrumentation.
Default is milli.

filterEnabled [true,false] If true, methods executed in less than
the delay specified by the filterDelay
property will be excluded.
This option is only active with
type=instrumentation.
Default is false.

filterDelay [0..1000] Sets the delay in milliseconds of the
filter used to exclude short methods.
This option is only active with
type=instrumentation and filterEn-
abled=true.
Default is 100.
31Profiling a Java program

Note:These options are similar to the options of the CPU profiler accessible from
OptimizeIt, see “Using the CPU profiler” in chapter 5 for more information on these options.

Examples

The following command line starts the application BusyApp with JDK 1.2
with the sampler. The sampling rate is 5 ms, the display precision is line
and only the real CPU time is recorded.

c:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit -startCPUprofiler:type=sampler,samplingPeriod=5,only-
CPU=true BusyApp

The following command launches the applet contained in the file exam-
ple.html with JDK 1.2, and starts the instrumentation. The precision is mil-
liseconds, and methods that consumes less than 50 ms are excluded.

C:\> java -classic -Xrunoii -Xnoclassgc -Djava.compiler=NONE intui-
tive.audit.Audit -startCPUprofiler:type=instrumentation,precision=milli,filterEn-
abled=true,filterDelay=50 sun.applet.AppletViewer example.html

Using filters from the command line
OptimizeIt provides filters to filter the profiling information, See “What are
filters” on page 35 for more information on filters.

In order to use filters for offline profiling, OptimizeIt provides an option to
specify filters from the command line. The syntax of this option is:

-filter[:<filterOptions>]

Syntax

Each option is associated with a value, the different options are separated
by comas ‘,’.

The value of the option patternList is a list of patterns (one or more) sepa-
rated by comas ‘,’. The list is in parenthesis ‘(‘ and ‘)’.

A pattern is a string that describe a package, a class or a method. The pat-
terns can use the well know special characters * and !. For example,
java.lang.* means all the packages and classes included under java.lang, and
32Profiling a Java program

!java.swing.* means everything that is not included in the java.swing pack-
age,

Options

The following table describes the different options available:

Examples

The following command line starts the application BusyApp with JDK 1.3
and filter for memory profiler only the resources used by the String class
and the swing package.

c:\> java -classic -Xrunoii intuitive.audit.Audit -filter:CPU=false,mem-
ory=true,operation=or,patternList=(java.lang.String,javax.swing.*) BusyApp

Option Values Description

CPU [true,false] Controls wether or not the filter is
applied to CPU profiler.
Default is true.

memory [true,false] Controls wether or not the filter is
applied to memory profiler.
Default is true.

patternList (pattern1,patte
rn2,...)

The list of patterns describing the fil-
ter.

operation [and,or] The operation applied to the differ-
ent patterns.
Default is or.
33Profiling a Java program

3.10 Profiling with filters

OptimizeIt provides filters that can be used to automatically remove infor-
mation about resources used by particular packages, classes or methods
when profiling.

What are filters
Filters are sets of patterns that define packages, classes or methods that
should be ignored by OptimizeIt when profiling an application, an applet or
a remote application. Filters can be applied to the CPU profiler, memory
profiler or both.

When a filter is applied to the CPU profiler, OptimizeIt ignores CPU or
time usage consumed by Java code matching the filter pattern. When a filter
is applied to memory profiler, OptimizeIt ignores object allocations per-
formed by Java code matching the filter pattern.

OptimizeIt provides several filters ready to use, including filters dedicated
to many application servers. You can also create your own filters, see “Cre-
ating filters” in chapter 7.6.

Filters are very convenient for profiling servlets, EJBs and JSPs. In that
context, they can be used to remove resources used by the application
server, allowing you to focus on your Java code.

Note:Filters only remove information about resources used by code matching the filter pat-
tern. Filters don't remove information about methods invoked from filtered methods. For
example, if a filtered method calls an unfiltered method that allocates an instance, this
instance won't be filtered. Identically, if a filtered method invokes a method that consumes
CPU time, this CPU time won't be filtered.

Using filters
1. Select New from the File menu.
2. Fill the Startup section as described in the previous sections.
3. Switch to the Filters section by clicking the Filters tab.
4. If you want to see the patterns associated with a filter, double click on the

filter in the table.
5. To enable a filter with the memory profiler, click the Ignore memory

usage column.
6. To enable a filter for CPU profiler, click the Ignore CPU usage column.
34Profiling a Java program

7. If you want to disable all filters, click the Disable all filters option.
8. When you are done with your filter selection, click the Start now button

(Attach now if you profile a remote application).

Note:Filters are specified at launch time. You can't change the filters for a profiling already
started.
35Profiling a Java program

3.11 Starting OptimizeIt from the test program

In some environments, the Java virtual machine is started automatically.
The OptimizeIt audit system can be invoked from the test program using
the OptimizeIt application programming interface (API). Invoking
OptimizeIt from your application allows you to invoke profiling at specific
places in your source code.

To invoke OptimizeIt from inside your
test program
1. Set up the OptimizeIt audit system
2. Add OptimizeIt API calls in your program
3. Start your test program
4. Run OptimizeIt
5. Connect the audit system to the OptimizeIt user interface

Setting up the OptimizeIt audit system
To use the OptimizeIt audit system, you need to modify your CLASSPATH
and PATH environment variables to include the following directories:

CLASSPATH: <InstallDir>\OptimizeIt\lib\optit.jar

PATH: <InstallDir>\OptimizeIt\lib

Adding OptimizeIt API calls in your pro-
gram
The following example shows how to start the OptimizeIt audit system
from Java code. For more information about OptimizeIt audit API, read the
API reference documentation.

import intuitive.audit.Audit;
void startAuditSystem() {
/** Start the OptimizeIt audit system with some default options **/
Audit.start(1470, Audit.DEFAULT_OPTIONS);
}

/** Note: after starting the audit system. you need to start the profilers by using
Audit.enableProfiler(). If you want the profilers to be enabled all the time,
36Profiling a Java program

change the option in Audit.start() from Audit.DEFAULT_OPTIONS to
Audit.PROFILERS_ALWAYS_ENABLED **/

Starting your test program
Although the test program starts the audit system, some extra parameters
need to be added to the code or the shell script that starts the virtual
machine.

With JDK 1.1, it is necessary to disable class garbage collection by using
the -noclassgc option. It is also necessary to disable the JIT.

Example: java -noclassgc -Djava.compiler=NONE TestProgram

With JDK 1.2, it is necessary to use the following options:

• disable class garbage collection
• start the oii profiling interface
• disable the JIT
• disable Hotspot

Example: java -classic -Xnoclassgc -Xrunoii -Djava.compiler=NONE TestPro-
gram

With JDK 1.3, it is necessary to use the following options:

• start the oii profiling interface
• select the classic runtime

Example: java -classic -Xrunoii TestProgram

Java

Java 2
37Profiling a Java program

4 Using the memory profiler

The memory profiler provides information about the objects allocated by
your Java program. It displays all allocated instances in real time, and
allows you to see precisely which method is responsible for object alloca-
tions.

In addition, the memory profiler provides a powerful way to browse incom-
ing and outgoing object references.

Using the OptimizeIt memory profiler, you can improve the performance of
your program by:

• Minimizing temporary object allocations. Excessive temporary object
allocations can cause the garbage collector to run every few seconds.
When running, the garbage collector slows down your Java program.

• Minimizing the number of instances required for a given operation, and
therefore decreasing the memory that your program requires.

• Reducing memory waste by making sure every object is garbage col-
lected.
39Using the memory profiler

4.1 Memory profiler modes

The memory profiler provides many views into the profile information.
Switch between these views, called "modes," using the buttons in the tool-
bar:

Heap mode Shows all classes and the number
of instances allocated for each.

Allocation Backtrace mode Shows the methods involved in
object allocation for a class
selected in Heap mode.

Instance Display mode Shows the incoming or outgoing
references of a given instance.

Reference from roots mode Shows outgoing references starting
from the roots.Java 2
40Using the memory profiler

4.2 Understanding object allocations

By default when your program is started, OptimizeIt appears in the Heap
mode, displaying all classes and the number of instances currently allo-
cated. The following picture shows the Heap mode:
41Using the memory profiler

To sort the values in a column of the table, click the column header.

The filter on the bottom of the window allows you to select the classes that
you want to see. For example, to only see all the AWT classes, type:

java.awt.*

and press Return.

Both the asterisk wildcard character (*) and the not (!) are supported. It is
possible to enumerate more than one pattern using a comma (,) separator.

For example, to see all classes matching "image" except java.awt.Image
classes type:

image, !java.awt.Image*

To see all classes, clear the filter completely, or type an asterisk (*).

Click the "Disable garbage collector" option to study object allocations
without having the garbage collector removing instances. OptimizeIt "Dis-
able garbage collector" option disables the garbage collector logically for
the heap mode.

The garbage collector is not really disabled, however the heap mode shows
you what would happen if the garbage collector was not running.

You can also click the Run Garbage Collector button to explicitly run the
garbage collector.

Click the Mark button to mark the current instance count. A mark appears
on each graph of the instance. This mark represents the number of instances
allocated at the time you set the mark. The time difference is then set to
zero for all classes. The mark allows you to see the instances allocated by a
specific action in your program.

For example, click the Mark button, and then open one of the test program
dialog boxes. Click the Diff column header to sort the column so you can
see the instances allocated when the dialog box was created. The Allocation
Backtrace and Instance Display modes also display information relative to
a mark.
42Using the memory profiler

Refining the Heap mode display
The Inspector window provides options to refine the Heap mode display. To
open the Inspector window, click the Inspector button.

The Inspector window contains the following options for Heap mode:

Option Description

Always sorted Sorts the display in real time. Use this option to
keep track of specific object allocations while the
test program is running.

Classes without
instances

Displays all classes in the class list, including
classes that currently have no allocated instances.

Show sizes Adds total memory (Size) and changed memory
(Size Difference) columns to the table. The Size
column displays the memory required by all
instances of each class. The Size Difference col-
umn shows the memory size difference since the
last time a mark was set.

Note:The displayed memory size is the "shallow" size of
the object. This size only includes size of the memory
required for the instance and does not include the size of
objects retained by the instance.

Show freed
instances

Adds freed object count and freed object count
difference columns in the main display. Use this
option to understand performance issues related
to the allocation of too many temporary objects.

Relative difference
sorting

By default differences are sorted by absolute
value. Use the option to sort by relative differ-
ences.
43Using the memory profiler

4.3 Understanding where objects are allocated

After you have identified a class with an excessive number of instances, the
next step is to identify the code or the part of the program that is responsible
for these allocations. In Heap mode, select the line displaying the class you
want to focus on, and click the Show Allocation Backtraces button. Opti-
mizeIt switches to Allocation Backtrace mode. Allocation Backtrace mode
shows which code is responsible for the selected class object allocations.

The following picture shows allocation backtrace mode:
44Using the memory profiler

The top section in Allocation Backtrace mode traces calls from the first
method of the Java program to where allocations occur. The purpose of this
view is to understand which feature of your program is responsible for
object allocations. By opening nodes in this view, you can see precisely
where allocations originate. Any line with an allocation icon () is a line
that is responsible for one or more object allocations.

The bottom section displays the names of methods responsible for object
allocations. The purpose of this view is to quickly understand if a single
method performs excessive allocations.

By pressing the Reverse Display button in the toolbar, you can reverse the
lists to display backtraces from the place where the allocations take place to
the Main method of the Java program. This view can be useful when you
need to focus on methods or lines of code responsible for object allocations
rather than broad features of your program.

To display the code corresponding to a line in the top or bottom sections of
the window, select the line, then click the Show Source Code button. You
can also double click the line to show the source code. For more informa-
tion, see “Viewing source code” in chapter 7.5.

Refining the Allocation Backtrace mode
display
The Inspector window provides options to refine the Heap mode display. To
open the Inspector window, click the Inspector button.

The Inspector window contains the following options for Allocation Back-
trace mode:

Option Description

Show allocations
since last mark

Displays only the backtrace for the methods
responsible for allocating instances since the last
time you pressed the Mark button in Heap mode.

Display precision By default, graphs show profiles by method;
changing the granularity allows you to organize
the graph by line of code.
45Using the memory profiler

4.4 Tracking temporary object allocations

Excessive temporary object allocations are often a source of performance
problems in Java programs. Although allocating an object is a fast opera-
tion on most Java virtual machines, excessive temporary objects keep the
garbage collector busy. Running the garbage collector can block the Java
program for as much as a couple hundred milliseconds. If the garbage col-
lector has to run very often, these interruptions cause the Java program to
appear slow to the user.

Temporary objects are hard to track without OptimizeIt because some Java
APIs allocate many temporary objects.

Tracking down excessive temporary object
allocations
1. Click the Show Heap button.

2. Click the Instance Count column header to sort the display.
3. Exercise your program, noting the classes that show quick changes in

their number of instances.
4. Select one of these classes.
5. Click the Run Garbage Collector button to free current temporary

objects.

6. Click the Mark button to place a mark on the currently allocated instance.

7. Exercise your program again to recreate the problem.This time the gar-
bage collector is disabled and the number of instances does not
decrease.

8. Click the Show Allocation Backtraces button.

9. Click the Show Inspector button.
46Using the memory profiler

10. Select the option "Since last mark" to only display newly allocated
objects.

The Allocation Backtrace mode displays the code responsible for the allo-
cations.

After you have identified which line of code or API is responsible for all
these objects, change your program so it uses different APIs or reuses the
same objects.
47Using the memory profiler

4.5 Identifying objects not freed by the garbage
collector

In a development environment that has no garbage collector, a program that
does not free the allocated memory loses this memory, creating a "memory
leak." With Java's garbage collector, it is no longer necessary for program-
mers to keep track of allocated objects and free them explicitly when they
are no longer required.

However, it is quite common for a Java program to keep some references to
some objects that are not really necessary anymore. For example, take a
Java program that displays a splash screen at startup. The splash screen
image can be quite heavy and is necessary only during startup. If a static
variable somewhere references an object that has a hashtable that references
the splash screen image, the image will never be garbage collected because
it is still accessible from the Java program. Thus, the program requires
more resources than necessary to maintain the splash screen image. This
situation is similar to a memory leak in non garbage collected environ-
ments.

To solve this kind of problems, OptimizeIt Professional provides an
Instance Display mode. This mode displays all instances of a given class
and their incoming and outgoing references. Incoming references are refer-
ences from an object to the selected object. Outgoing references are refer-
ences from the selected object to other objects.
48Using the memory profiler

To switch to Instance Display mode, press the Show Instance button. The
following picture shows the Instance Display mode displaying some
incoming references:

The top view displays the string representations of the selected class
instances. Instances are sorted by allocation date, with the most recently
allocated instances on top. The string representations are obtained by call-
49Using the memory profiler

ing the method toString() on each object. By implementing useful
toString() methods in your classes you can use this view to identify the cur-
rently allocated instances.

The middle view displays the objects that are referenced by the object
selected in the top view. When available, the instance variable that refer-
ences the object is in bold.

If a cycle is found in the graph, the point where the cycle occurs is dis-
played with the icon.

Reduced reference graph
With Java 2, OptimizeIt provides a reduced reference graph. A reduced ref-
erence graph is the transitive closure of the full reference graph. If an object
A is referenced by B and D, and if D also references B, the reference D->A
won't be displayed. This mode is extremely interesting to understand which
reference should be removed in order to allow the selected object to be gar-
bage collected. All displayed references are references preventing the
object from being garbage collected.

Java 2
50Using the memory profiler

 The following picture shows the Instance Display mode displaying the
reduce reference graph:

In the example above, the vector selected in the top view cannot be garbage
collected because it is referenced by the member variable “listeners” of an
event object which itself is referenced by the “changeSupport” member
variable of a JTabbedPane. Clearing any of these reference will allow the
Vector to be garbage collected.

The standard incoming reference graph is also provided. Click on the refer-
ence column header and select Reference graph.
51Using the memory profiler

Outgoing references
OptimizeIt can also display out-going references. To display outgoing ref-
erences, click the Reference Graph column header, and then select Instance
variables retaining objects. The following picture shows the Instance Dis-
play mode with outgoing references:
52Using the memory profiler

The middle view displays objects that are referenced by the object selected
in the top view. Icons indicate the meaning of each line:

Instance variables

Instances

To display the code corresponding to a line in the middle or bottom sections
of the window, select the line, then click the Show Source Code button. You
can also double click the line to show the source code. For more informa-
tion, see “Viewing source code” in chapter 7.5.

Refining Instance Display mode display
The Inspector window provides options to refine the Instance Display mode
display. To open the Inspector window, click the Inspector button.

The Inspector window contains the following options for the Instance Dis-
play mode:

Option Description

Show allocations
since last mark

Displays only the instances that have been allo-
cated since the last time you pressed the Mark
button in Heap mode.

Reference graph
type

Allows the type of the graph displayed to be
selected.

Note:Selecting graph from here is similar to selecting by
clicking the graph type column header on the Instance Dis-
play panel.
53Using the memory profiler

Browsing references from roots
With Java 2, OptimizeIt allows you to browse references from roots. Roots
are the roots of the reference graph and include:

• Busy monitors
• Class static variables
• Class constants
• JNI global and local references
• Threads Java and native stacks

With this mode, you can see the entire content of the heap and understand
exactly the hierarchy between the different objects. The following picture
shows the Browsing references from roots mode:

Java 2
54Using the memory profiler

55Using the memory profiler

In this example, the stack of the thread AWT-EventQueue-0 references an
instance of PaintEvent, which itself references the frame of the application,
which references through its containerListener various graphical objects of
the application.

The icons used in the graph have the following meaning:

Root

Instance variables

Instances

If the selected row in the top view is an object, the bottom view displays
where the object was allocated. As usual, double clicking on the row or

clicking on the button shows the source code corresponding to the

selection.
56Using the memory profiler

5 Using the CPU profiler

The purpose of the CPU profiler is to understand in which methods your
program spends its time in. Using the CPU profiler involves the following
steps:

• Launch a Java program (or attach OptimizeIt to it)
• Start the CPU profiler
• Use the Java program to recreate a situation where the program is slow
• Stop the CPU profiler

OptimizeIt then gives you a per-thread description of the time spent in each
method or CPU used during the test session.

The OptimizeIt CPU profiler helps you understand what to change in your
program to improve its performance.
57Using the CPU profiler

5.1 Recording a test session

The following procedure describes how to create a test session with the
OptimizeIt CPU profiler:

To record a test session
1. Click the Start Java Program button.

2. Click the Show CPU Profiler button.

3. Click the Start/Stop CPU Profiler button.

4. Exercise the Java program to recreate a performance problem.
5. When the test program completes the action, click the Stop button.

The OptimizeIt window shows the CPU usage for each thread during the
test session.
58Using the CPU profiler

5.2 Understanding the profiler output

After you have recorded a test session, OptimizeIt displays information
describing the time spent in each method, or the CPU usage in the Java pro-
gram. The following screen shot shows the OptimizeIt CPU profiler output:

The top section displays how the time was spent or how CPU was used dur-
ing the test session. In the example above, 40.7% of the time was spent
painting dirty regions (RepaintManager.paintDirtyRegions()), while1.73%
of the time was spent retrieving the “RepaintManager:.
59Using the CPU profiler

Icons indicate the meaning of each line:

The method immediately calls another method

The method actually consumes time or CPU

By pressing the Reverse Display button, you can reverse the top view to
look at the backtrace tree from the leaves to the root. This view can be use-
ful when you need to focus on methods or lines of code rather than broad
features in your test program.

 The bottom section displays the methods that were used during the test ses-
sion, sorted by "hot spots." These are methods where the most time was
spent. The time shown is the time the program spent in a method, no matter
where the method was called from. The purpose of this view is to under-
stand if a single method acts as a bottleneck and can be optimized to speed
up all the tested features.

To display the code corresponding to a line in the display, select the line,
then click the Show Source Code button. You can also double click the line
to show the source code. For more information, see “Viewing source code”
on chapter 7.5.

The graph on the top represents the sampling period of the selected thread.
The colors in the graph indicate the state of the thread each time the sample
occurred:

• Green dots mean that the thread was using the CPU
• Red dots mean that the thread was waiting on a condition
• Gray dots mean that the thread did not exist at the sampling time.

To show all threads and thread groups, click the graph (or the drop-down
box arrow on the right side of the graph). The following screen shot shows
the graph:
60Using the CPU profiler

In this graph you can select a thread or thread group. Selecting a thread
group shows how the time was spent for all thread and thread groups
belonging to the thread group.

Refining the CPU Profile display
The Inspector window provides options to refine the CPU profile results.
To open the Inspector window, click the Inspector button.

The Inspector window contains the following options for the CPU profiler:

Option Description

Display precision Controls the granularity of the profiler output. By
default the data is organized by method; changing
the granularity allows you to organize the data by
line of code.

Display CPU usage
only

Displays only the pure CPU usage and excludes
any methods where the profiled thread was wait-
ing for a condition.

Sampling period Controls the granularity of the profiler output.
Use a small value for a short test session and
larger value for a long test session. Usually this
value varies between 1 and 100 ms.
61Using the CPU profiler

5.3 Advanced CPU profiler options

With Java 2 OptimizeIt provides two kinds of CPU profiler:

Both profilers have different domain of application. The following table
shows pro and cons for both profiler types:

Sampler A sampler is a profiler that interrupts all running
threads every p period. Once all threads are inter-
rupted, it records what each thread is currently doing
and whether each thread is currently using CPU. It
then resumes all running threads. p is called a sam-
pling period.

Instrumentation An instrumentation is a profiler that intercepts
method invocations. Each time a method is called
the profiler records the fact that a method was called
and gives the control back to the application. The
profiler also intercepts when a method returns from
executing and records the amount of time/CPU that
was spent in the method.
62Using the CPU profiler

Profiler type Advantage Inconvenient

Sampler • Very low overhead:
the tested application
runs 10% slower with
the profiler running.

• Low memory over-
head and excellent
scalability.

• Since the profiler
pauses all threads
before recording any
information, a sam-
pler does not distord
performance related
data.

• Since a sampler is not
based on method
invocations it can
detect performance
bottlenecks within
methods.

• Lack of precision. A
sampler precision is
not greater than its
sampling period.

• Cannot record num-
ber of method invoca-
tions.

Instrumentation • Very good precision:
each time a method is
invoked, it is
recorded.

• Possibility to mea-
sure precision in
microseconds.

• Possibility to record
the number of times a
method gets invoked.

• Lack of scalability: an
instrumentation needs
to record a lot of
information.

• Information distor-
tion: the instrumenta-
tion profiler is
actually running in
the tested program
threads. All method
invocations are
slower. Even if the
profiler compensates,
this can lead to dis-
torted results.

• Large overhead: the
tested application
runs several times
slower with an instru-
mentation profiler.
63Using the CPU profiler

The sampler is very good at profiling a large amount of code for a long
time. The instrumentation is very good at precisely profiling small amount
of code. The instrumentation is also very useful to understand if a method is
slow or if it is called too often.

The following table shows when to use each profiler:

The Inspector window contains the following new options for the instru-
mentation profiler:

Note:In order to minimize overhead, inspector options for the CPU profiler in Java 2 are no
longer real-time. When an option is changed, you have to start a new recording session for
the change to take effect.

Profiler type Application

Sampler • Profiling an application for a very long time. E.g.: a
server overnight.

• Profiling a feature that requires a lot of different
code. E.g.: the startup of a large GUI based applica-
tion

Instrumentation • Profiling anything that executes in less than a few
hundred milliseconds. E.g.: a menu action

• Profiling a system that has many threads executing
many small requests. E.g.: a servlet

Option Description

Precision Controls whether the profiler has microsecond precision
or millisecond precision. The microsecond precision has
more overhead.

Filters To minimize instrumentation overhead, a filter can be
used to exclude any methods that need less than n ms to
execute.
64Using the CPU profiler

6 Virtual machine information

OptimizeIt can display in real-time high-level performance related data
about the program being tested. Using this feature, you can understand if a
performance problem is related to CPU, memory or both.

In this mode, OptimizeIt displays three graphs:

Heap graph This graph shows in red the current heap size required
by the tested application and in green the current heap
size that is actually used by the application.

Thread graph This graph shows in red the current number of threads
running and in green the number of threads actually
using some CPU.

Class graph This graph shows the number of classes currently
loaded in the virtual machine.

GC graph This graph shows the garbage collector activity, which
is the time spent garbage collecting divided by the total
time.

Java 2
65Virtual machine information

6.1 Using the virtual machine information mode

To switch to the virtual machine mode, click on the button.The fol-
lowing screen shot shows OptimizeIt virtual machine information mode

Java
66Virtual machine information

Click the Mark button to mark the current point in time. A yellow mark
appears on each graph.

Click the Export data button to export the graph.

Java 2
67Virtual machine information

6.2 Virtual machine information mode options

Click on the Inspector button to show the inspector. The virtual machine
information mode has the following options:

Option Description

Sampling period This option defines how often OptimizeIt updates
all charts.

Update when
invisible

Defines whether graphs are updated when the vir-
tual machine information mode is not currently
selected. When this option is selected OptimizeIt
updates the graphs all the time even when you are
using the CPU profiler or the memory profiler.
68Virtual machine information

7 Other features

This chapter includes the following sections:

• Controlling the test program
• Generating a snapshot of the current profiling
• Opening a snapshot
• Exporting data
• Viewing source code
• Creating filters
• Displaying OptimizeIt console messages
• Find panel
69Other features

7.1 Controlling the test program

The OptimizeIt toolbar provides the following buttons to control the test
program. These buttons can be used from any mode:

Starts or resumes the test program. This control is red when the test
program is running.

Pauses or resumes the test program. Use this button when it is neces-
sary to freeze the flow of incoming data in the memory profiler to study
some specific results more closely.

Stops the test program. The test virtual machine exits.

Forces the garbage collector to act immediately.
70Other features

7.2 Generating a snapshot for the current profiling
session

At any time during the profiling, OptimizeIt allows you to save the profil-
ing data into a snapshot. You can then reload the snapshot later for further
analysis or for performance comparisons.

To generate a snapshot choose Generate Snapshot from the File menu.

The following table describes each option:

Option Description

Directory Indicates the directory where the snapshot is
created.
71Other features

Note:The data of the virtual machine information mode is not stored in the snapshot.

Name The filename of the snapshot.

Include CPU profiler
data

Indicates whether or not the CPU profiling
information should be included.

Note:Generating a snapshot with this option stops the
CPU profiler.
If the CPU profiler is not running, this option has no effect

Include memory pro-
filer data

Indicates whether or not the memory profiler
information (heap mode and backtrace mode)
should be stored.

Note:The amount of data to be stored for the reference
mode is important. The snapshots generated with this
option are larger files and take more time to be generated.
Only select this option when you really need the reference
mode information.

Comments Contains other information, such as addition
text to distinguish this snapshot from others.

Option Description
72Other features

7.3 Opening a snapshot

OptimizeIt works the same way with snapshots as when profiling an appli-
cation. Nevertheless, there are several restrictions that you should be aware
of when you open a snapshot:

• the Virtual Machine Information mode is not available
• the console shows information about the opened snapshot (date of gen-

eration, host were it was generated, user that generated it, comments)
• the inspectors are disabled

To open a snapshot, choose Open a snapshot from the File menu. Select a
snapshot and click open. OptimizeIt opens the snapshot and you can browse
the profiling information of the snapshot.
73Other features

7.4 Exporting data

OptimizeIt can export profile data as ASCII, HTML, or easy-to-parse
ASCII. After the data is exported it can be printed, compared and archived.

To export the contents of a screen, choose Export Data from the File menu.
You can also click the Export Data button.

The Export Data dialog box provides options to set the content and format
of the data exported:

The following table describes each option:

Option Description

Export Enumerates all data types that you can export from the
current context. Use it to select the data to export.
74Other features

After exporting data in the specified filename, OptimizeIt opens the file
with the corresponding editor or web browser.

Export as Specifies the output of the file format. Select HTML to
produce an HTML document that presents data in the
same format as the Optimizeit views. Select ASCII for a
more compact file. Select Importable ASCII if you expect
to use the output as input to another tool.

Filename Indicates the full path name of the file created.

Title Contains a description inserted at the top of the exported
document.

Comments Contains other information, such as additional text to dis-
tinguish this profile from others.

Option Description
75Other features

7.5 Viewing source code

When available, OptimizeIt can display the source code corresponding to a
selection in any of the OptimizeIt windows.

To view source code

Double-click the object or instance in the OptimizeIt window.

You can also click the Show Source Code button .

OptimizeIt opens a separate window displaying the source code responsible
for the allocation or definition of the selected object.

The following screen shot shows the source code viewer:
76Other features

The relevant lines of code are highlighted in yellow. If more than one line
of code is highlighted, use the small arrow buttons to automatically scroll to
the next relevant line of code.

If the Java file is not found, the source code viewer provides a button that
allows you to browse the file system to retrieve the file. Once the file is
loaded, OptimizeIt prompts you to store the source file location in the
default source path, so any Java file in the same package is immediately
available.
77Other features

7.6 Creating filters

Although OptimizeIt provides several filters which are ready to use, it is
also possible to create your own filters, see “Profiling with filters” on
chapter 3.10 for some information about using filters.

To create a new filter
1. Select Settings from the File menu.
2. Switch to the filter section by clicking the Filters tab.
3. Click the New button.
4. Enter the name of your filter in the name textfield.
5. Select "any of the following patterns" if you want to perform a logic OR

between the different patterns of your filter, or select "all of the follow-
ing patterns" if you want to perform a logic AND between the different
patterns of your filter.

6. To add a pattern, click the Add button, then enter your pattern in the pat-
tern editor. Note that both the asterisk wildcard character (*) and the not
(!) are supported. Your pattern can define packages, classes or methods.
When you are done with this pattern click OK.

7. To change a pattern, select the pattern in the list and click the Edit button.
8. To delete a pattern, select the pattern in the list then click the Delete but-

ton.
9. When you have finished with your filter, click OK. Notice that your filter

appears at the end of the filter list. User filter names are written with
bold letters, OptimizeIt filter names are written with normal letters.

10. Once you have created a filter, click on the corresponding column to
enable it for the CPU profiler or the memory profiler.

Custom filters are part of OptimizeIt configuration files. They are saved
and loaded when using Save and Open commands from the File menu.
78Other features

7.7 Displaying OptimizeIt console messages

The purpose of the console is to print audit system-specific messages as
well as the test program standard output and standard error. Use the console
to read messages from the test program or to see errors if the Java program
does not start.

Note:If you select the option "Open a console" in the start options, the standard output and
the standard error of the test program won't be redirected to the OptimizeIt console.
79Other features

7.8 Find panel

In any view, you can find the information you are looking for by using the
find panel. The find panel is accessible from the edit menu.

Note:Sometimes the list or graph in which the search occurs does not have all the informa-
tion required for the search. When this happens, the find panel displays "Fetching data..." in
its status field. Once the data is fetched, the search occurs.
80Other features

8 Integration with other Java environments

8.1 Integration with IDE

OptimizeIt can integrate with the following IDEs:

• IBM VisualAge For Java 2.0, 3.0, 3.5
• WebGain VisualCafe 2.0, 3.0 and 4.0
• Borland JBuilder 2.0, 3.0, 3.5 and 4.0
• Oracle JDeveloper 2.0, 3.0 and 3.1

Running the wizard
The following procedure shows how to integrate with an IDE:

1. Make sure the IDE has been installed correctly
2. Start OptimizeIt.
3. From the Tools menu, select the IDE integration submenu and select the

option matching you IDE
4. OptimizeIt starts a wizard that guides you through the integration
5. Once the integration is performed, OptimizeIt gives you the option to

quit OptimizeIt and start your IDE.
81Integration with other Java environments

The OptimizeIt menu
OptimizeIt adds an OptimizeIt menu to your IDE. The location of this menu
is indicated in the table below:

The following menus are available:

IDE Location of the OptimizeIt menu

VisualCafe Tools/OptimizeIt

JBuilder 2.0 and 3.0 From the JBuilder main menu

JBuilder 3.5 Tools/OptimizeIt

JDeveloper From the JDeveloper main menu

VisualeAge From the Visual Age's workbench, when a
project, a package or a class is selected, from the
Selected menu, Tools submenu, OptimizeIt
option

Note:You can also access the OptimizeIt menu from Visual
Age by selecting a project, a package or a class, then right
click, and then select the menu Tools from the popup list-
menu, OptimizeIt submenu.

Menu Description

Start profiling Starts OptimizeIt if it is not already running and then
executes the current project in OptimizeIt.

Stop profiling Stops profiling the current project.

To front Moves OptimizeIt's window in front of the IDE win-
dow. This can be useful when working with the IDE
window maximized.

Close Stops profiling the current project and causes Opti-
mizeIt to exit.

Options This menu shows a dialog box giving you access to
OptimizeIt start options from the IDE.
82Integration with other Java environments

About Gives information about OptimizeIt.

Menu Description
83Integration with other Java environments

8.2 Integration with application servers

OptimizeIt can be integrated with most application servers that use Sun
JDK 1.1, 1.2, 1.3 or IBM JDK 1.2 or 1.3. Once the integration is performed,
the audit system can be started from the application server, and servlets can
be profiled by attaching OptimizeIt to the audit system.

OptimizeIt provides wizards for easy application server integration. The
following procedure shows how to start the integration:

1. Install the application server on your machine.
2. Start OptimizeIt.
3. From the Tools menu, select the Application server integration submenu

and select your application server.
4. OptimizeIt starts a wizard that guides you through the integration.

Tutorials are also available. They describe the different steps carried out by
the wizard to perform the integration. You can access the tutorials from the
Help/Tutorial menu in OptimizeIt.
84Integration with other Java environments

9 Index

A
Allocation Backtrace mode 44

options 45
API

using OptimizeIt API 37
applet

profiling 14
application server

integration 82
audit system

description 21
options 23

Auto-start CPU profiler. See profiling start
options
C
class path

changing 10
command line (profiling from) 21

examples 22
console 79
CPU profiler 57

comparison sampler/instrumentation 62
instrumentation 62
Instrumentation options 64
main features 5
options 61
sampler 62
starting from the command line 31

D
Disable memory profiler. See profiling start
options
E
EJB

profilling 16
Enable audit API. See profiling start options
example

command line using filters 34
command line with JDK 1.1 25
command line with JDK 1.2 22, 26
command line with JDK 1.3 23

offline profiling 30
F
filters 35

creating 78
specifying from the command line 33

Find panel 80
G
garbage collector

disabling 42
forcing 70
graph 65

graphs. See Virtual Machine information.
H
heap

graph 65
heap mode 41

Heap mode 41
filtering 42
options 43

HTML
exporting to 74

I
Instance Display mode 48

options 53
Instrumentation. See CPU profiler instrumen-
tation.
J
JDK supported. See virtual machine support-
ed.
JIT

enabling 20
supporting library 25

JSP
profiling 16

M
Mark

putting a mark 42
memory leak 48
83Index

solving 48
Memory Profiler 39

main features 5
O
offline profiling 28

examples 30
options 29

Open a console. See profiling start options
OptimizeIt

getting started 3
what is OptimizeIt? 1

P
Pause after launch See profiling start options
port

used between the audit system and
OptimizeIt 23

used by the servlet runner 11
profiling

applets 14
applications 12
EJBs 16
from the test program 37
JSPs 16
offline. See offline profiling
remote 27
servlets 15
start options 17
with filters. See filters.

R
remote profiling

See profiling remote.
S
Sampler. See CPU profiler sampler.
servlet

configuring servlet support 11
profiling 15

snapshot
generating 71
generation options 71
opening 73

source code
setting location 9
viewing 76

T
temporary object allocation

minimizing 39
tracking 46

threads
CPU profiler thread graph 60
selecting a thread 61
VM Info thread graph 65

V
virtual machine 8

adding 18, 19
flags added by OptimizeIt 19
runtime used 19
supported 8

Virtual Machine information 65
exporting data 67
options 68

VM cannot exit. See profiling start options.
W
wizard

application server integration 82
Java setup 8
servlet configuration 11
84Index

	1 Introducing OptimizeIt
	1.1 What is OptimizeIt?
	1.2 Getting started with OptimizeIt
	1.3 Differences when profiling with Java and Java 2
	1.4 OptimizeIt main features

	2 Configuring OptimizeIt
	2.1 Selecting a virtual machine
	2.2 Setting the source code location
	2.3 Changing the class path
	2.4 Configuring servlet support

	3 Profiling a Java program
	3.1 Starting a Java Application
	3.2 Starting a Java Applet
	3.3 Starting a Java Servlet
	3.4 Profiling EJBs or JSPs
	3.5 Start options
	3.6 Virtual machine options
	3.7 Profiling a program started from the command line
	3.8 Profiling a Java program running on a different machine
	3.9 Offline profiling
	3.10 Profiling with filters
	3.11 Starting OptimizeIt from the test program

	4 Using the memory profiler
	4.1 Memory profiler modes
	4.2 Understanding object allocations
	4.3 Understanding where objects are allocated
	4.4 Tracking temporary object allocations
	4.5 Identifying objects not freed by the garbage collector

	5 Using the CPU profiler
	5.1 Recording a test session
	5.2 Understanding the profiler output
	5.3 Advanced CPU profiler options

	6 Virtual machine information
	6.1 Using the virtual machine information mode
	6.2 Virtual machine information mode options

	7 Other features
	7.1 Controlling the test program
	7.2 Generating a snapshot for the current profiling session
	7.3 Opening a snapshot
	7.4 Exporting data
	7.5 Viewing source code
	7.6 Creating filters
	7.7 Displaying OptimizeIt console messages
	7.8 Find panel

	8 Integration with other Java environments
	8.1 Integration with IDE
	8.2 Integration with application servers

	9 Index
	A
	C
	D
	E
	F
	G
	H
	I
	J
	M
	O
	P
	R
	S
	T
	V
	W

