
Microsoft Visual J++ (TM) 1.0 Trial Version (Beta 3)
Release Notes
Copyright (c) 1996 by Microsoft Corporation. All Rights Reserved.

This trial version of Microsoft Visual J++ allows you to create, build, and debug Java (TM) programs under Microsoft
Windows (R)95 and Microsoft Windows NT(TM) 4.0. Visual J++ is still in development and there are some known bugs
that will be fixed before the final release. These release notes include important information on installing and using the
trial version of Visual J++.

1.0 Installation
1.1 System Requirements
The trial version of Visual J++ has the following minimum hardware and software requirements:

· Personal computer with a 486 or higher processor running Microsoft Windows 95 or Windows NT(TM)
Workstation version 4.0 or later operating system. (Windows NT versions 3.1, 3.5 and 3.51 are not
supported.)

· 8 MB of memory (12 MB recommended) if running Windows 95; 16 MB (20 MB recommended) if running
Windows NT Workstation

· VGA or higher-resolution monitor (Super VGA recommended)
· Microsoft Mouse or compatible pointing device
· Internet Explorer 3.0 final version (Build 1155)

1.2 Hard Disk Requirements
· VJTrial.exe requires 50 MB of free disk space. (10 MB for VJTrial.exe, 20 MB for the installation image

and 20 MB for the installation.) 30 MB of hard disk space can be reclaimed after installation.
· VJUpdate.exe requires 17 MB of free disk space. (5 MB for VJUpdate.exe, and 12 MB for the installation

image.) This version assumes that Visual J++ Beta 2 has already been installed on your hard drive and you
are installing over it. All 17 MB of hard disk space can be reclaimed after installation.

To reclaim the hard disk space after installation, delete the entire installation image in X:\WindowsDirectory\Java\VJTrial,
including the downloaded executable (VJTrial.exe or VJUpdate.exe).

1.3 Installing Visual J++ with Previous Versions of Developer Studio
The trial version of Visual J++ does not contain all of the files necessary to update previous versions of Developer Studio
(including Microsoft Visual C++, Fortran PowerStation, and even previous beta versions of Visual J++). Please note the
following consequences:
· The default installation directory is \VJTRIAL not \MSDEV.
· If you have installed an earlier beta release of Visual J++, it is recommended that you install Beta3 over previous beta

installations.

· 1.4 Installing Internet Explorer 3.0
You must install the final version of Internet Explorer 3.0 (build 1155) before installing Visual J++. If you have not
already done so, please go to http://www.microsoft.com/ie/iedl.htm and download the final version of IE3.0. During
installation of IE30, if you are asked to replace a newer file with an older one, always keep the newer file.

1.5 Installation Notes for VJTrial.exe and VJUpdate.exe
· During installation, if you are asked to replace a newer file with an older one, always keep the newer file.
· "Typical" is the only installation option supported in this trial version.

1.6 Downloading Visual J++ Samples
To download the Visual J++ samples visit our web site at http:\\www.microsoft.com\visualj

2.0 Configuration

2.1 CLASSPATH
The Visual J++ compiler (JVC) uses the following technique to find .CLASS files:
· The compiler first searches any directories specified in the registry key,

HKEY_LOCAL_MACHINE/Software/Microsoft/JavaVM/Classpath.
· If you are compiling your program from within Developer Studio, the compiler will search any directories specified

in the Tools.Options.Directories dialog box.
· If you are compiling your program from the command line, the compiler will search any directories specified in the

CLASSPATH environment variable.

Note: When you compile programs from within Developer Studio, the value of the CLASSPATH environment
variable is not used. Please use the Tools.Options.Directories dialog box instead.

3.0 Debugging
With this release of Visual J++, Java programmers can debug Java applets in Internet Explorer 3.0, as well as Java
applications in JVIEW.EXE, our standalone interpreter.

4.0 Peer Support Newsgroups
We have created several public newsgroups for users of the trial version of Visual J++. These newsgroups are available
only on the msnews.microsoft.com news server so you must configure your Internet newsreader program to use that
news server in order to access these newsgroups. If you do not have an Internet newsreader program already, check
http://www.microsoft.com/ie/imn for instructions on downloading Microsoft's Internet Mail and News 1.0 (Beta 2).

Please use these newsgroups to communicate with other Visual J++ users, to provide feedback to the Visual J++ team, and
to learn about any beta updates. Note that these newsgroups are not actively monitored by Microsoft product support
engineers.

· microsoft.public.visualj.installation
Post installation and configuration issues here.

· microsoft.public.visualj.compiler
Post compiler syntax or code generation issues here.

· microsoft.public.visualj.debugger
Post debugger issues here.

· microsoft.public.visualj.dev-environment
Post issues with the editor, class view, and wizards here.

· microsoft.public.visualj.com-support
Post issues with COM support here.

· microsoft.public.visualj.discussion
Post product-wide Visual J++ issues here.

· microsoft.public.visualj.misc-tools
Post issues with command line tools here.

5.0 Java/COM Support
This release does not include full support for Java calling COM and COM calling Java scenarios. Please check the
microsoft.public.visualj.com-support newsgroup frequently for the latest information (see section 4.0 for details) .

5.2 What We Know Works
JavaBeep! JavaBeep is a complete Java/COM sample that you can build and run to see Java/COM support in action. The
sample automatically registers a simple "Beeper" automation server. The Java code then uses that server to beep and create
messages. JavaBeep can be found inside the integrated help system under the Samples.Microsoft.JavaBeep section (see
section 1.6 for information on installing the sample files for this trial version).

Listed below are the steps to build and run JavaBeep:
1. Click the icon to copy the JavaBeep project files to your local drive. Select the Copy Al command, and click OK.
2. Click Close.
3. From the File menu, select Open Workspace.

Use this dialog box to navigate to the directory you copied the samples into (typically
\vjtrial\samples\microsoft\javabeep).

4. Double-click the javabeep.mdp file to open the project.
5. From the Build menu, select Execute.
When asked for a classfile, enter "javabeep".
6. Click OK.
After a moment, Internet Explorer appears with an animation of a spinning globe. Click anywhere near the globe to

hear your computer emit a beep noise and display the message "Hello World from Beeper".
To see the relevant Java code, return to InfoViewer in Visual J++, expand the javabeep classes node, then expand the

javabeep node, and double-click on the mouseDown() node.

· We have been able to use Java to interact with OLE automation servers generated by Visual Basic 4.0 (VB4).
· We have been able to call into a Java program from a VB4 program using COM.
· What else? Let us know!

5.3 What We Know Does Not Work
· There is a limitation on the explicit use of the VARIANT type. Currently, a Java program can "put" variants,

however it cannot "get" them. In COM terms, we do not yet support VT_VARIANT | VT_BYREF.
· Variants of type VT_DISPATCH and VT_UNKNOWN are not yet supported..
· Currently, you cannot pass references of existing COM objects into Java programs. A consequence of this is, for this

beta release, a Java applet cannot interact with an ActiveX control on the same HTML page.
· There are problems invoking Microsoft Excel as an automation server.

5.4 Java/COM Documentation
The following is an early draft of our online documentation for Java/COM support.

Using Java and COM Together

Visual J++ is the first compiler that lets you take full advantage of Java Support in Internet Explorer. Internet
Explorer provides the reference implementation of the Java virtual machine (or VM) for Win32 operating
systems. This VM supports integration between Java and the Component Object Model (COM), the
protocol underlying the ActiveX platform, Automation, and Object Linking and Embedding (OLE).
While the Java Support in Internet Explorer by itself provides benefits for any Java applet, you must use a
development tool that supports this integration in order to take full advantage of both Java and COM.
Using Visual J++, you can give your Java program access to any of the software components that support
COM, including thousands of ActiveX controls and Automation objects.
This document describes the following scenarios for using Java and COM together:
· Controlling a Java Applet through Scripting
· Using a COM object from Java
· Exposing a Java Class as a COM Class

For more information on developing for the ActiveX platform, see the ActiveX SDK. You can download it
from http://www.microsoft.com/intdev/sdk.

Controlling a Java Applet through Scripting

Web developers can embed ActiveX controls into their web pages and drive them using VBScript. The
ActiveX run time for Java offers developers another option by making Java applets scriptable too. When a
Java applet is running in a browser such as Internet Explorer, all the public methods and variables of the
applet automatically become available to VBScript, or any other language supporting the ActiveX Scripting
protocol.
As an example, consider a Java applet like the following:
class Buzzer extends Applet
{

public int pitch;

public void buzz()
{

//play a sound at the specified pitch
}
// other methods
// ...

}

To include such an applet in your HTML page, simply use the <APPLET> tag, specifying the ID attribute so
that you can refer to the applet from the scripting language:
<APPLET CODE="Buzzer.class" ID=doorbell>

You can then define buttons that allow the user to control the applet. For example:
<INPUT TYPE=BUTTON VALUE="Higher" NAME="BtnHigher">
<INPUT TYPE=BUTTON VALUE="Lower" NAME="BtnLower">
<INPUT TYPE=BUTTON VALUE="Play" NAME="BtnPlay">

In the VBScript portion of your HTML page, you can define OnClick handlers for each button, connecting
them to the applet:
<SCRIPT LANGUAGE = VBScript>
Sub BtnHigher_OnClick

doorbell.pitch = 880
End Sub

Sub BtnLower_OnClick
doorbell.pitch = 440

End Sub

Sub BtnPlay_OnClick
doorbell.buzz()

End Sub
</SCRIPT>

Now, when a user clicks a button on the Web page, the appropriate VBScript handler is invoked, which in
turn manipulates the Java applet.
In this way, Java applets can be driven just like ActiveX controls. The script can read and write the public
variables of the applet, as well as call its public methods (including passing parameters and reading return
values).
Note that only the Applet-derived class is directly accessible from the scripting language. If your Java
applet includes other classes that you want to be available to the scripting language, you must define public
methods in your Applet-derived class that delegate to those classes.
You can also embed both Java applets and ActiveX controls in the same web page and use VBScript
handlers to connect them. For example, you can read values from an ActiveX control and pass them to a
Java applet, or vice versa.
This automatic scripting capability is provided by the Java Support in Internet Explorer. As a result, your
script code can manipulate Java applets developed with any tool, not just ones developed with Visual J++.
For more information about VBScript, see the VBScript page at http://www.microsoft.com/vbscript.

Using a COM Object from Java

With compiler support for Java/COM integration, you can refer to COM objects directly from your Java
source code. This makes any COM service, including those offered by programmable controls or
Automation objects, available from any Java program.
In order to use a COM class from Java, you must first import it; this means creating a Java class that acts
as a wrapper for the COM class. Visual J++ includes the Java Type Library Wizard for this purpose.
Type libraries are a mechanism defined by COM to store type information; each type library contains
complete type information about one or more COM entities, including classes, interfaces,and dispinterfaces.

For more information about type libraries, see Type Libraries and the Object Description Language,
discussed later in this document or the OLE SDK.
> To import a COM class for use in Java

1 From the Tools menu, choose Java Type Library Wizard.
The check-box list displays all the type libraries registered on your machine. This list reflects the entries
beneath the \HKEY_CLASSES_ROOT\TypeLib key of the system registry.

3 Choose the type library that describes the COM class(es) you want to use.
4 Choose OK.

In the Output window, the Type Library Wizard prints out the import statement(s) appropriate for each
package it has created. You can copy and paste these import statements into your Java source code;
this allows you to refer to classes in those packages by their short names.

To find out what classes are available from a particular programmable control or Automation server, consult
the documentation provided by the vendor. You can also use the OLE Object View tool, available from the
Tools menu, to browse through the classes described by a type library.
As an example, suppose beeper.DLL, which defines a Beeper class and an IBeeper interface, is registered
as having type library information. Running Java Type Library Wizard and selecting beeper.DLL would
create a package containing the Java class Beeper and the Java interface IBeeper.
You can use the import statement in your Java source code to easily refer to classes in the beeper
package. For example:
import beeper.*; // import beeper package

This is identical to Java's syntax for importing an entire package.
You could also import a single class within a type library:
import beeper.Beeper;

Again, this is identical to Java's syntax for importing a single class.
The Java classes that wrap COM classes can be used just like any other Java classes. For example:
IBeeper testBeep = new Beeper();
int myTone = testBeep.getSound();
testBeep.putSound(64);
testBeep.Beep();

The above code declares an instance of the COM class Beeper, gets and sets the value of a property of the
object, and then calls a method on the object. For more information, see Type Mappings Between Java and
COM and COM Programming in Java and C++ Compared, discussed later in this document.
Note that the import statement is not strictly necessary. Recall that in Java, any class can be referenced
using its fully qualified name (for example, java.awt.Canvas), as long as a class fitting that name can be
found when searching the class path. The import statement merely allows you to refer to the class using its
short name (for example, Canvas).
The same is true for COM classes. The import statement is not required in order to use the class, it simply
makes allows the class to be referenced using its short name. Any COM class can always be referenced
using its fully qualified name (beeper.Beeper, in the above example).

What the Java Type Library Wizard Does

The Java Type Library Wizard displays everything that has a registry entry under
HKEY_CLASSES_ROOT\TypeLib. This is not restricted to .TLB files; .OLB, .OCX, .DLL and .EXE files can
all contain type library information. For simplicity, this topic refers to all of these as "type libraries."
For each type library, the Java Type Library Wizard creates a directory below \Windows\Java\lib (or
\Winnt\Java\lib if you're running Windows NT 4.0) having the same name as the type library. The Java Type
Library Wizard fills that directory with .CLASS files, one for each COM class and interface described in the
type library. All the generated classes and interfaces are part of a Java package having the name as the
type library file.
For example, to return to the beeper example, running the Java Type Library Wizard on beeper.DLL would
create the files Beeper.class and IBeeper.class and place them in the directory \Windows\Java\lib\Beeper.
Because \Windows\Java\lib is on the class path, the compiler can find the beeper directory and its contents,
and the statement "import beeper.*;" allows you to refer to the classes by their short names.

Each .CLASS file generated by the Java Type Library Wizard contains a special attribute identifying it as a
wrapper for a COM class. When the Java Support in Internet Explorer sees this attribute on a class, it
translates all Java method invocations on the class into COM function invocations on the COM class. (For a
COM interface that defines properties, the Java wrapper defines two methods for each property, named
get<property> and put<property>. See Type Mappings Between Java and COM, discussed later in this
document.)
Once you have run the Java Type Library Wizard for a given type library, you don't need to re-run the
wizard unless the type library has changed. Once the wizard has generated .CLASS files from a type
library, the type library is no longer needed. Consequently, when distributing an applet that uses COM, you
need to provide only the .OCX, .DLL or .EXE file for the COM objects, plus the .CLASS files that wrap them,
not the .TLB file. (You must, of course, include the .CLASS files for the applet itself. You must also register
the COM object appropriately.)
Note From the command line, you can use the JavaTLB tool to generate Java class wrappers out of type
library information. Simply type "javaTLB filename", where filename is the name of the .TLB file
(or .OCX, .DLL, or .EXE file containing the type library information.) This will create the appropriate
directory and .CLASS files under \Windows\Java\Lib.

When using COM from applets embedded on a Web page, the .OCX or .DLL files that implement the COM
object should be code signed, as well as any applets that make calls to them. For more information on code
signing, see the ActiveX SDK. (For "intranet" applications, where all applets and ActiveX controls originate
inside your company, code signing may not be necessary.)

Type Mappings Between Java and COM

The Java Support in Internet Explorer allows any construct that can be specified in a type library to be
accessed from Java. COM constructs that cannot be described in a type library are inaccessible from Java.
There are five basic types of entities that can be defined in Object Definition Language (ODL), and thus in a
type library. These are mapped to Java as follows:
· COM classes (declared with the coclass keyword) are visible in Java as classes.
· Custom (that is, v-table based) interfaces (declared with the interface keyword) are visible in Java as

interfaces.
· Dispatch interfaces (declared with the dispinterface keyword) are visible in Java as interfaces;

properties in the dispatch interface are accessible through two methods named get<property> and
put<property> in the Java interface.

· Structures (declared with the typedef keyword) are visible in Java as classes.
· Module statements (declared with the module keyword) are ignored.

ODL types map to Java types in the following manner:

ODL Type Java Type

boolean boolean
char char
double double
int int
float float
long int
short short
unsigned char byte
wchar_t short
BSTR class java.lang.String
CURRENCY long
DATE double
SCODE/HRESULT int

 (see also class com.ms.com.ComException)
VARIANT class com.ms.com.Variant
IDispatch * class java.lang.Object
IUnknown * class java.lang.Object
SAFEARRAY(<typename>) array of <typename>

<typename> * one-element array of <typename>
void void
LPSTR class java.lang.String

For information on accessing the contents of a VARIANT structure, see the class com.ms.com.Variant.
For more information about type libraries, see Type Libraries and the Object Description Language,
discussed later in this document, or the OLE SDK.
A parameter marked with the retval attribute in ODL is treated as the return value in the corresponding
Java method. For example, consider the following method declaration in ODL:
HRESULT foo([in] char x, [out, retval] int *y);

The corresponding Java method would look like this:
int foo(char x);

For information on the HRESULT returned by a COM function, see Handling COM Errors in Java,
discussed later in this document.

COM Programming in Java and C++ Compared

For those who are familiar with COM programming in C++, this topic compares it with COM programming in
Java. Java's notion of multiple interfaces on an object, along with Java's garbage collection, map readily to
COM's paradigm for managing objects.

Object Allocation

In C++, you allocate a new COM object using syntax like the following:
IBar pBar;
CoCreateInstance(CLSID_FooBar, NULL, CLSCTX_SERVER,
 IID_IBar, (void**)&pBar);

In Java, the equivalent code would look like this:
IBar bar = new FooBar();

This is identical to Java's syntax for allocating ordinary Java objects. So, even though this line performs a
call to the COM function CoCreateInstance instead of allocating space in the runtime heap, it is
indistinguishable from pure Java.

Changing Interfaces

COM objects must implement the IUnknown::QueryInterface function to allow clients to switch between
the object's supported interface. In Java, the details are handled by the Java Support for Internet Explorer,
so at the source-code level it is simply done with a typecast.
For example, in C++ you might have code like this:
// pBar points to an object that supports IBar and IFoo
IFoo *pFoo;
pBar->QueryInterface(IID_IFoo, (void **)&pFoo);

In Java, the equivalent code would look like this:
// bar refers to an object that supports IBar and IFoo
IFoo foo;
foo = (IFoo)bar;

A ClassCastException is thrown if the object does not implement the requested interface. You can also
use the instanceof operator to check beforehand whether the object implements the requested interface.
Again, this is identical to Java's syntax for casting between ordinary Java object types.

Object Identity

In COM, object identity is defined as having the same IUnknown pointer. For example, in C++, to check
whether two pointers refer to the same object, you need code like this:
// comparing pFoo and pBar
IUnknown pUnk1, pUnk2;
pFoo->QueryInterface(IID_IUnknown, (void **)&pUnk1);
pBar->QueryInterface(IID_IUnknown, (void **)&pUnk2);
if (pUnk1 == pUnk2)
 printf("Foo and Bar point to same object");

In Java, the equivalent code would look like this:
// comparing foo and bar
if (foo == bar)
 System.out.println("Foo and Bar are same object");

As in the previous examples, this is identical to Java's syntax for comparing two object references.

Reference Counting

Reference counting is handled automatically in Java. There is no need to call IUnknown::AddRef when
creating a new reference to an object, nor do you need to call IUnknown::Release when you're finished
using a reference to an object. The Java garbage collector automatically keeps track of how many
references there are to an object.

Reuse

In C++, you can extend the functionality of an existing COM class through aggregation. In Java, you can do
the same simply using the extends clause, just as you would extend an ordinary Java class. However,
because Java uses a single inheritance model, you can extend only a single COM class, even though COM
allows multiple aggregation. (In the rare situation where the original COM class does not support
aggregation, extending the class will not work; an exception is thrown when you try allocating an instance of
the derived class. See Handling COM Errors in Java, discussed later in this document, for more
information.)

Summary

As shown by these examples, COM programming is much simpler in Java than in C++. The Java Support in
Internet Explorer performs all the tedious work for you, making COM classes as easy to use as native Java
classes.

Handling COM Errors in Java

The Java Support for Internet Explorer defines a class called com.ms.com.ComException. This is used to
communicate error information from COM back to Java whenever a COM method fails.
Whenever a COM method is exposed to Java, it is exposed as a Java method with an implicit throws
clause:
char foo(int x) throws com.ms.com.ComException;

COM methods typically return a value known as an HRESULT. The ComException class defines a
getHResult method that returns the error code describing the specific error.
try
{

 // call COM methods
}
catch (com.ms.com.ComFailException e)
{
 System.out.println("COM Exception:");
 System.out.println(e.getHResult());
}

Note that the ComException class is referenced using its fully-qualified name. If you added an "import
com.ms.com.*;" statement to the beginning of the file, you could refer to the class by its short name.
For those familiar with Visual Basic programming, this error handling mechanism is similar to the On Error
Goto statement and the Err variable used in error handlers.

Exposing a Java Class as a COM Class

Besides allowing Java programs to use COM objects, the Java Support in Internet Explorer also allows
Java programs to expose their functionality as COM services. This lets you use Java for developing
component software without requiring that your clients use Java; your clients can use any language that is
compatible with COM, such as Visual Basic or C++.
The first step is to use Object Definition Language (ODL) to define how your Java class will be exposed.
For example, you might define a COM class that implements two interfaces. Define the interfaces in an
ODL file:
// mystuff.odl
[uuid (42E5AFC3-DBAA-11cf-BAFD-00AA0057B223)]
library LMyStuff
{

importlib("stdole32.tlb");

[uuid (42E5AFC4-DBAA-11cf-BAFD-00AA0057B223)]
interface IFoo
{

HRESULT blah1();
HRESULT blah2();

}

[uuid (42E5AFC5-DBAA-11cf-BAFD-00AA0057B223)]
interface IBar
{

HRESULT blah3();
HRESULT blah4();

}
[uuid (42E5AFC6-DBAA-11cf-BAFD-00AA0057B223)]
coclass MyClass
{

interface IFoo;
interface IBar;

}
};

You can expose your Java interfaces through COM as interfaces, dispatch interfaces, or dual interfaces.
Services that cannot be described in a type library cannot be exposed by your Java program.
Use MkTypLib to build mystuff.ODL into mystuff.TLB. Then use the Java Type Library Wizard to
generate .CLASS files based on the type library.
Next, create a .JAVA source file containing the Java implementation of the class. Declare a Java class that
implements all the interfaces supported by the coclass in the .ODL file. The Java class is not required to

have the same name that was used in the coclass statement, but using the same name may make your
code more readable. For example:
import com.ms.com.*;
import mystuff.*;

class MyClass implements IFoo, IBar
{

void blah1() throws ComException {}
void blah2() throws ComException {}
void blah3() throws ComException {}
void blah4() throws ComException {}

}

The compiler will generate an error if the class does not implement all the methods defined by the
interfaces specified in the .ODL file.
Compile the implementation .JAVA file into a .CLASS file. COM clients can read the .TLB file to determine
what services your class exposes.
Finally, run the JavaReg tool from the command line to register your Java class as a COM class. Specify
the name of the Java class and the CLSID that you want to register it under. For example:
javareg /register /class:MyClass /clsid:{42E5AFC6-DBAA-11cf-BAFD-00AA0057B223}

The CLSID you specify on the command line must match the one specified for the coclass in the .ODL file.
It is this CLSID which associates the COM class defined in the .ODL file with the Java class you wrote.
The JavaReg tool creates registry entries that distinguish a COM class written in Java from other COM
classes. The most important entries are as follows:
HKEY_CLASSES_ROOT

CLSID
{42E5AFC6-DBAA-11cf-BAFD-00AA0057B223}

InprocServer32 = msjava.dll
JavaClass = mystuff.MyClass

When an object of that CLSID is requested, the Java Support in Internet Explorer is launched and the
specified class is loaded. The run time exports a DllGetClassObject function and creates a COM class
factory for the Java class. This means that a COM client doesn't need to know that a given class is
implemented in Java. To create an instance of the class, the client simply passes the CLSID to
CoCreateInstance, just as it would with any other COM class.
Note that for all COM classes implemented in Java, the value of the InprocServer32 key is identical:
MSJAVA.DLL, which contains the Java Support for Internet Explorer. What differs for each class is the
value named JavaClass beneath the InprocServer32 key.
If you distribute an COM class written in Java, you must provide an installation program to add the
appropriate entries to the registry. In addition, your installation program should install the .CLASS file on the
class path of the client machine so that the Java Support for Internet Explorer can find it.
Note that while any COM class qualifies as an ActiveX control, a COM object must implement many more
interfaces in order to be a full-fledged control that can appear in tool palettes and be inserted in control
containers.
Java classes exposed as COM classes are automatically aggregatable.

Returning HRESULTs from Java

Throw an instance of com.ms.com.ComFailException to indicate failure. You can specify a particular
HRESULT when constructing the ComFailException object. The HRESULT will be used as the return
value for the COM method.
To indicate successful completion, you don't need to do anything; just return normally. To return S_FALSE
(indicating a successful completion but a return value of Boolean FALSE), throw an instance of
com.ms.com.ComSuccessException.

Using JavaReg

Using JavaReg to generate a CLSID

If you aren't defining new interfaces, but are simply writing a Java class that implements existing interfaces,
you may not need to write an .ODL file. First run the Java Type Library Wizard over the type library that
describes the COM interfaces you want to implement; this generates .CLASS files for those interfaces.
Then write a Java class that implements those COM interfaces.
Finally, run JavaReg with the /register and /class options, but without the /clsid option.This instructs
JavaReg to generate a new CLSID and register the class using that value. You must record the CLSID that
JavaReg generates, since this is the value you must publish when distributing your class. As long that the
interfaces your class implements are properly registered, COM clients can specify your class's CLSID and
use its interfaces as usual.

Remoting with DCOM

The Java Support in Internet Explorer runs as an in-process server, and in-process servers cannot normally
be remoted using NT 4.0's Distributed COM (DCOM). However, it is possible to launch a "surrogate" .EXE
in its own process that then loads the in-process server. This surrogate can then be remoted using DCOM,
in effect allowing the in-process server to be remoted.
You can use JavaReg's /surrogate option to support remote access to a COM class implemented in Java .
When first registering the class, specify the /surrogate option on the command line. For example:
javareg /register /class:MyClass /clsid:{42E5AFC6-DBAA-11cf-
BAFD-00AA0057B223} /surrogate

This adds a LocalServer32 key to the registry in addition to the usual InprocServer32 key. The command
line under the LocalServer32 key specifies JavaReg with the /surrogate but without the /register option.
HKEY_CLASSES_ROOT

CLSID
{42E5AFC6-DBAA-11cf-BAFD-00AA0057B223}

InprocServer32 = msjava.dll
LocalServer32 = javareg /clsid:{42E5AFC6-DBAA-11cf-

BAFD-00AA0057B223} /surrogate

This causes JavaReg to act as the surrogate itself. When a remote client requests services from the COM
class that you've implemented using Java, JavaReg is invoked. JavaReg then loads the Java Support in
Internet Explorer with the specified Java class.
You can remove the LocalServer32 key by rerunning JavaReg with the /class option, specifying the same
class name, but without the /clsid or /surrogate options.

Other JavaReg Options

To remove the registry entries for a particular class, run JavaReg with the /unregister option and the /class
option, specifying the name of the class.
JavaReg will accept a /progid option if you want to specify a ProgID for your class.

Variant
public final class com.ms.com.Variant
{
 // Fields
 public static final short VariantEmpty;
 public static final short VariantNull;
 public static final short VariantShort;
 public static final short VariantInt;

 public static final short VariantFloat;
 public static final short VariantDouble;
 public static final short VariantCurrency;
 public static final short VariantDate;
 public static final short VariantString;
 public static final short VariantDispatch;
 public static final short VariantError;
 public static final short VariantBoolean;
 public static final short VariantVariant;
 public static final short VariantObject;
 public static final short VariantByte;
 public static final short VariantTypeMask;
 public static final short VariantArray;
 public static final short VariantByref;
 // Constructors
 public Variant()
 // Methods
 public void getEmpty();
 public void getNull();
 public short getShort();
 public int getInt();
 public float getFloat();
 public double getDouble();
 public long getCurrency();
 public double getDate();
 public native String getString();
 public native Object getDispatch();
 public int getError();
 public boolean getBoolean();
 public native Object getObject();
 public byte getByte();
 public void putEmpty();
 public void putNull();
 public void putShort(short val);
 public void putInt(int val);
 public void putFloat(float val);
 public void putDouble(double val);
 public void putCurrency(long val);
 public void putDate(double val);
 public native void putString(String val);
 public native void putDispatch(Object val);
 public void putError(int val);
 public void putBoolean(boolean val);
 public native void putObject(Object val);
 public void putByte(byte val);
 public native void putEmptyRef();
 public native void putNullRef();
 public native void putShortRef(short[] val);
 public native void putIntRef(int[] val);
 public native void putFloatRef(float[] val);
 public native void putDoubleRef(double[] val);
 public native void putCurrencyRef(long[] val);
 public native void putDateRef(double[] val);
 public native void putStringRef(String[] val);
 public native void putDispatchRef(Object[] val);
 public native void putErrorRef(int[] val);
 public native void putBooleanRef(boolean[] val);
 public native void putObjectRef(Object[] val);
 public native void putByteRef(byte[] val);

 public native short toShort()
 throws ClassCastException;
 public native int toInt()
 throws ClassCastException;
 public native float toFloat()
 throws ClassCastException;
 public native double toDouble()
 throws ClassCastException;
 public native long toCurrency()
 throws ClassCastException;
 public native double toDate()
 throws ClassCastException;
 public native String toString()
 throws ClassCastException;
 public native Object toDispatch()
 throws ClassCastException;
 public native int toError()
 throws ClassCastException;
 public native boolean toBoolean()
 throws ClassCastException;
 public native Object toObject()
 throws ClassCastException;
 public native byte toByte()
 throws ClassCastException;
 public native void VariantClear();
 public native Variant clone();
 public native Variant cloneIndirect();
 public native void changeType(short vartype);
 public native void changeType(int lcid,
 short flags, short vartype);
 public short getvt();
}

Variant is the wrapper for the VARIANT structure.

ComException

public abstract class com.ms.com.ComException
 extends RuntimeException
{
 // Constructors
 public ComException(int hr);
 public ComException();
 public ComException(String message);
 // Methods
 public int getHResult();
}

ComException is the Java class that wraps an HRESULT, the return type for most methods in the
Component Object Model (COM). When calling COM methods from Java, you catch ComException
objects to handle error conditions.
When implementing COM classes using Java, you throw ComException objects to signal error conditions.
Since ComException is an abstract class, so you cannot construct a ComException object directly.
Instead, you construct either a ComFailException object or a ComSuccessException object.

ComException.ComException
public ComException();
public ComException(int hr);
public ComException(String message);

Parameters
hr The HRESULT to return
message The detail message.
Remarks
Constructs a new ComException object. This constructor is called only by the constructors of the classes
derived from ComException.

ComException.getHResult
public int getHResult();

Remarks
Retrieves the HRESULT returned by the COM method. Call this method when catching a ComException
thrown by a COM method.

ComFailException
public abstract class com.ms.com.ComFailException
 extends com.ms.com.ComException
{
 // Constructors
 public ComFailException(int hr);
 public ComFailException();
 public ComFailException(String message);
}

ComFailException indicates a failure. The default value of the stored HRESULT is E_FAIL.

ComFailException.ComFailException
public ComFailException();
public ComFailException(int hr);
public ComFailException(String message);

Parameters
hr The HRESULT to return
message The detail message.
Remarks
Constructs a new ComFailException object. Throw a ComFailException object in order to signal an error
condition when implementing a COM class using Java.

ComSuccessException
public abstract class com.ms.com.ComSuccessException
 extends com.ms.com.ComException
{
 // Constructors
 public ComSuccessException(int hr);
 public ComSuccessException();
 public ComSuccessException(String message);
}

ComSuccessException indicates a success. The default value of the stored HRESULT is S_FALSE,
which is used to indicate the successful completion of a method returning a Boolean FALSE value.
To return an S_OK value when implementing a COM method in Java, simply have the method return as
usual.

ComSuccessException.ComSuccessException
public ComSuccessException();
public ComSuccessException(int hr);
public ComSuccessException(String message);

Parameters
hr The HRESULT to return
message The detail message.
Remarks
Constructs a new ComSuccessException object. Throw a ComSuccessException object in order to
signal a successful return when implementing a COM class using Java.

