FCI/FDI Library Interface Description

Table of Contents

INTRODUCTION

FCI

FCOICREATE. ...ttt ettt et e et e e e et e e e te e e e tee e eeaaeeeeaaeeeeateaeetseeeeaseeeenteseensseeeesseeeenseseeseesenees
O] 12N 5)5) 25 1 6 ST SRR SRR
O3 13 M) & (07N 231 o USROS
FCIFLUSHEOLDER.uviiiiiiiitiiee ettt e ettt e e et e e e e e e taae e e e eeeaaaeeeeeeetstaeeeeeeesasseeeeeeessseeeeeesnsseeeeeanees
FOIDESTROYtiiieiiieeiiteeetee ettt e ettt e ettt e eebeeestbteeastbeeesebaeeebeeaassseessssaeessseeassaseanssaessssaaasssasensssessnsseeansseeensses

FDI

FDICREATE.eeiotttee ittt ettt ettt e et eetv e e e ate e e e taeeeatseeeabeeeaasaeeastseeansseeeesaeeasseseansseeessaeanseeenasseesnsseaans
FDIISCABINET.cceittiiietiie e ettt e eette e e ettt e e e etteeeetaeeeeaateeeetseeeetseeeaassseesaseseeasseeeeasseaeassseeeessseeessaseenssesenssseeensreeean
FDICOPY ... ettt e e e et e e et e e e te e e ett e e e etaeeeeate s e etaeeeeteeeeetteeeeaaeeeteeeeaareeeaaaeas
FDIDESTROYveiteeiuteetee et eeteeeeeeeteeetaeeeteeetaeeeseeeaseeeaeeeaeseeseeeneseesesanseeeseeesseeeseeenseeeseeanssensesenseeesesenseeaseeenneenes

Introduction

The FCI (File Compression Interface) and FDI (File Decompression Interface) libraries provide the ability
to create and extract files from cabinets (also known as “CAB files”). In addition, the libraries provide
compression and decompression capability to reduce the size of file data stored in cabinets.

The FCI and FDI libraries, FCI.LIB and FDI.LIB, are available in both 32-bit and 16-bit forms. However,
the 16-bit version will run more slowly than the 32-bit version.

At this time, only one instance of FCI and FDI may be active at any one time; it is not permissible to
attempt to create two FCI contexts at once, or two FDI contexts at once, for example. However, it is
permissible to have one FCI instance and one FDI instance active at the same time.

FCI and FDI operate using the technique of function callbacks; many of the FCI and FDI APIs require
parameters which are pointers to functions defined in the application. The parameters and purpose of
these functions are explained fully in this document. The fci./ and fdi.h header files provide declaration
macros which should be used to declare these callback functions. These macros use keywords such
HUGE, FAR, and DIAMONDAPI, which ensure that the functions are properly defined for both 32-bit
and 16-bit operation. For example, in the case of the memory allocation and memory free functions, the
following definitions exist in the fci.h and fdi.h header files:

#define FNALLOC (fn) void HUGE * FAR DIAMONDAPI fn (ULONG cb)
#define FNFREE (fn) void FAR DIAMONDAPI fn (void HUGE *pv)

These declarations can be used as follows:

FNALLOC (mem_alloc)
{
return malloc (cb);

}

FNFREE (mem free)
{
return free (pv);

}

some_function ()
{
hfci = FCICreate (

&erf,
filedest,
memalloc,
memfree,
gettempfile,
&ccab

}

Two example applications are provided; testfci and festfdi. These applications demonstrate how all of the
FCI and FDI APIs, respectively, may be used.

FCI

The five FCI (File Compression Interface) APIs are:

FCICreate Create an FCI context

FCIAddFile Add a file to the cabinet under construction
FCIFlushCabinet Complete the current cabinet

FCIFlushFolder Complete the current folder and start a new folder

FCIDestroy Destroy an FCI context

FCICreate

Usage

HFCI DIAMONDAPI FCICreate (

PERF

perf,

PENFCIFILEPLACED pfnfcifp,
PFNALLOC pfnalloc,
PFNFREE pfnfree,
PENOPEN pfnopen,
PFNREAD pfnread,
PFNWRITE pfnwrite,
PENCLOSE pfnclose,
PENSEEK pfnseek,
PFNFCIGETTEMPFILE pfnfcigtf,

PCCAB
) ;

Parameters

perf
pfinfiledest
pfnalloc
pfifree
pfiopen
pfnread
pfiwrite
pficlose
pfnseck

pfitemp
pccab

Description

The FCICreate API creates an FCI context that is passed to other FCI APIs.

The perfparameter should point to a global or allocated ERF structure. Any errors returned by
FCICreate or subsequent FCI APIs using the same context will cause the ERF structure to be filled out.

The pfnalloc and pfnfree parameters should point to memory allocation and memory free functions which
will be called by FCI to allocate and free memory. These two functions take parameters identical to the

pccab

Pointer to an error structure

Function to call when a file is placed
Memory allocation function

Memory free function

Function to open a file

Function to read data from a file
Function to write data to a file

Function to close a file

Function to seek to a new position in a file
Function to obtain a temporary file name
Parameters for creating cabinet

standard C malloc and free functions.

The pfnopen, pfuread, pfawrite, pfuclose, and pfnseek parameters should point to functions which perform
file open, file read, file write, file close, and file seek operations respectively. These functions should
accept parameters identical to those for the standard open, read, write, close, and _Iseek functions,

and should likewise have identical return codes.

The pfntemp parameter should point to a function which returns the name of a suitable temporary file.
Two parameters will be passed to this function; pszTempName, an area of memory to store the filename,
and cbTempName, the size of the memory area. The filename returned by this function should not
occupy more than this number of bytes. FCI may open several temporary files at once, so it is important
to ensure that a different filename is returned each time, and that the file does not already exist. The
function should return TRUE for success, or FALSE for failure.

The pfnfiledest parameter should point to a function which will be called whenever the location of a file or
file segment on a particular cabinet has been finalised. This information is useful only when files are
being stored across multiple cabinets. The parameters passed to this function are pccab, a pointer to the
CCAB structure of the cabinet on which the file has been stored, pszFile, the filename of the file which
has been placed, cbFile, the file size, and fContinuation, a boolean which signifies whether the file is a
later segment of a file which has been split across cabinets. In addition a client context value, pv, is also
passed as a parameter; this will be the same value that was passed in to the FCIAddFile API, and can be
used for any purpose. Typically it is used by the application to store internal context information.

The pccab parameter should point to an initialised CCAB structure, which will provide FCI with details on
how to build the cabinet. The CCAB fields are explained below:

The cb field, the media size, specifies the maximum size of a cabinet which will be created by FCI. If
necessary, multiple cabinets will be created. To ensure that only one cabinet is created, a sufficiently large
number should be used for this parameter.

The cbFolderThresh field specifies the maximum number of compressed bytes which may reside in a
folder before a new folder is created. A higher folder threshold improves compression performance (since
creating a new folder resets the compression history), but increases random access time to the folder.

The iCab field is used by FCI to count the number of cabinets that have been created so far. This value

can also be read by the application to determine the name of a cabinet. See the GetNextCab parameter of
the FCIAddFile API for details.

The 1iDisk field is used in a similar manner to iCab. See the GetNextCab parameter of the FCIAddFile
API for details.

The setID field is for the use of the application, and can be initialised with any number. The set ID is
stored in the cabinet.

The szDisk field should contain a disk-specific string (such as “Disk1”, “Disk2”, etc.) corresponding to
the disk on which the cabinet is placed. Alternatively, if cabinets are not spanning multiple disks, the
string can simply be a null string. This field is stored in the cabinet and is used upon extraction to prompt
the user to insert the correct disk. See the FCIAddFile API for details.

The szCab field should contain a string which contains the name of the first cabinet to be created (e.g.
“APP1.CAB”). In the event of multiple cabinets being created, the GetNextCab function called by the
FCIAddFile API allows subsequent cabinet names to be specified.

The szCabPath field should contain the complete path of where to create the cabinet (e.g. “C:
\MYFILES\”).

Returns

If successful, a non-NULL HFCI context pointer is returned. If unsuccessful, NULL is returned, and the
error structure pointed to by perfis filled out.

FCIAddFile

Usage

BOOL DIAMONDAPI FCIAddFile (
HFCI hfci,
char *pszSourceFile,
char *pszFileName,
BOOL fExecute,
PFNFCIGETNEXTCABINET GetNextCab,
PEFNFCISTATUS pfnProgress,
PENFCIGETOPENINFO pfnOpeninfo,
TCOMP typeCompress,
void *pv

)

Parameters

hfci FCI Context pointer originally returned by FCICreate

pszSourceFile Name of file to add (should include path information)
pszFileName Name under which to store the file in the cabinet

[fExecute Boolean indicating whether the file should be executed when it is extracted
GetNextCab Function called to obtain specifications on the next cabinet to create
pfnProgress Progress function called to update the user

pfnOpenlnfo Function called to open a file and return file date, time and attributes
typeCompress ~ Compression type to use

pv Application-specific context data

Description

The FCIAddFile API adds a file to the cabinet under construction.
The hfci parameter must be the context pointer returned by a previous call to FCICreate.

The pszSourceFile parameter specifies the location of the file to be added to the cabinet, and should
therefore include as much path information as possible (e.g. “C:\MYFILES\TEST.EXE”).

The pszFileName parameter specifies the name of the file inside the cabinet, and should not include any
path information (e.g. “TEST.EXE”).

The fExecute parameter specifies whether the file should be executed automatically when the cabinet is
extracted. The Microsoft EXTRACT.EXE utility will do this, but in any custom extract application it is
up to the application to run the file if it detects this flag.

The GetNextCab parameter should point to a function which is called whenever FCI wishes to create a
new cabinet, which will happen whenever the size of the cabinet is about to exceed the media size as
specified in the cb field of the CCAB structure passed to FCICreate. The GetNextCab function is called
with three parameters which are explained below:

The first parameter, pccab, is a pointer to a copy of the CCAB structure of the cabinet which has just been
completed. However, the iCab field will have been incremented by one. When this function returns, the
next cabinet will be created using the fields in this structure, so these fields should be modified as is
necessary. In particular, the szCab field (the cabinet name) should be changed. If creating multiple
cabinets, typically the 1Cab field is used to create the name; for example, the GetNextCab function might
include a line which does:

sprintf (pccab->szCab, “FOO%d.CAB”, pccab->iCab);
Similarly, the disk name, media size, folder threshold, etc. parameters may also be modified.

The second parameter, cbPrevCab, is an estimate of the size of the cabinet which has just been
completed.

The last parameter, pv, is the application-specific context data originally passed to FCIAddFile.
The GetNextCab function should return TRUE for success, or FALSE to abort cabinet creation.

The pfnProgress parameter should point to a function which is called periodically by FCI so that the
application may send a progress report to the user. The progress function has four parameters;
typeStatus, which specifies the type of status message, cb1 and cb2, which are numbers, the meaning of
which is dependent upon typeStatus, and pv, the application-specific context pointer.

The typeStatus parameter may take on values of statusFile, statusFolder, or statusCabinet. 1f
typeStatus equals statusFile then it means that FCI is compressing data blocks into a folder, cb1 is the
compressed size of the most recently compressed block, and ¢b2 is the uncompressed size of the most
recent block (which is generally 32K, except for the last block which may be smaller). If typeStatus
equals statusFolder then it means that FCI is copying a folder to a cabinet, and cb1 is the amount
copied so far, and cb2 is the total size of the folder. Finally, if typeStatus equals statusCabinet, then it
means that FCI is writing out a completed cabinet, and cb1 is the estimated cabinet size that was
previously passed to GetNextCab, and cb2 is the actual resulting cabinet size.

The progress function should return 0 for success, or -1 for failure, with an exception in the case of
statusCabinet messages, where the function should return the desired cabinet size (cb2), or possibly a
value rounded up to slightly higher than that.

The pfnOpenlinfo parameter should point to a function which opens a file and returns its datestamp,
timestamp, and attributes. The function will receive five parameters; pszName, the complete pathname
of the file to open; pdate, a memory location to return a FAT-style date code; ptime, a memory location
to return a FAT-style time code; pattribs, a memory location to return FAT-style attributes; and pv, the
application-specific context pointer originally passed to FCIAddFile. The function should open the file
using a file open function compatible with those passed in to FCICreate, and return the resulting file
handle, or -1 if unsuccessful.

The typeCompress parameter specifies the type of compression to use, which may be either
tcompTYPE_NONE for no compression, or tcompTYPE_MSZIP for Microsoft ZIP compression.
Other compression formats may be supported in the future.

The pv parameter is an application-specific context handle that may be set to anything desired by the
application, such as a pointer to an internal state structure. The pv parameter is passed as a parameter to
the various callback functions described above. The pv parameter may be safely set to NULL if it is not
required.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned, and the error structure pointed to by
perf (from FCICreate) is filled out.

FCIFlushCabinet

Usage

BOOL DIAMONDAPI FCIFlushCabinet (
HFCI hfci,
BOOL fGetNextCab,
PEFNFCIGETNEXTCABINET GetNextCab,
PENFCISTATUS pfnProgress,
void *pv

Parameters

hfci FCI Context pointer originally returned by FCICreate
fGetNextCab Name of file to add (should include path information)

GetNextCab Function called to obtain specifications on the next cabinet to create
pfnProgress Progress function called to update the user

pv Application-specific context data

Description

The FCIFlushCabinet API forces the current cabinet under construction to be completed immediately
and written to disk. Further calls to FCIAddFile will cause files to be added to another cabinet. It is also
possible that there exists pending data in FCI’s internal buffers that will may require spillover into another
cabinet, if the current cabinet has reached the application-specified media size limit.

The Afci parameter must be the context pointer returned by a previous call to FCICreate.

The fGetNextCab flag determines whether the function pointed to by the supplied GetNextCab parameter,
will be called. If fGetNextCab is TRUE, then GetNextCab will be called to obtain continuation
information. Otherwise, if fGetNextCab is FALSE, then GetNextCab will be called only if the cabinet
overflows.

The pfnProgress parameter should point to a function which is called periodically by FCI so that the
application may send a progress report to the user. This function works in an identical manner to the
progress function passed to FCIAddFile.

The pv parameter is an application-specific context handle that may be set to anything desired by the
application, such as a pointer to an internal state structure. The pv parameter will be passed as a parameter
to the pfnProgress and GetNextCab functions. The pv parameter may be safely set to NULL if it is not
required.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned, and the error structure pointed to by
perf (from FCICreate) is filled out.

FCIFlushFolder

Usage

BOOL DIAMONDAPI FCIFlushFolder (
HFCI hfci,
PFNFCIGETNEXTCABINET GetNextCab,
PENFCISTATUS pfnProgress,
void *pv

Parameters

hfci FCI Context pointer originally returned by FCICreate

GetNextCab Function called to obtain specifications on the next cabinet to create
pfmProgress Progress function called to update the user

pv Application-specific context data

Description

The FCIFlushFolder API forces the current folder under construction to be completed immediately,
effectively resetting the compression history at this point (if compression is being used).

The hfci parameter must be the context pointer returned by a previous call to FCICreate.

The supplied GetNextCab function will be called if the cabinet overflows, which is a possibility if the
pending data buffered inside FCI causes the application-specified cabinet media size to be exceeded.

The pfnProgress parameter should point to a function which is called periodically by FCI so that the
application may send a progress report to the user. This function works in an identical manner to the
progress function passed to FCIAddFile.

The pv parameter is an application-specific context handle that may be set to anything desired by the
application, such as a pointer to an internal state structure. The pv parameter will be passed as a parameter
to the pfnProgress and GetNextCab functions. The pv parameter may be safely set to NULL if it is not
required.

FCIDestroy

Usage

BOOL DIAMONDAPI FCIDestroy (
HFCI hfci

)

Parameters

hfci FCI context handle returned by FCICreate

Description

The FCIDestroy API destroys an Afci context, freeing any memory and temporary files associated with
the context.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned. The only reason for failure is that
the hfci passed in was not a proper context handle.

FDI

The four FDI (File Decompression Interface) APIs are:

FDICreate Create an FDI context
FDIIsCabinet Determines whether a file is a cabinet, and returns information if so
FDICopy Extracts files from cabinets

FDIDestroy Destroy an FDI context

FDICreate

Usage

HFCI DIAMONDAPI FDICreate (
PEFNALLOC pfnalloc,
PFNFREE pfnfree,
PFNOPEN pfnopen,
PENREAD pfnread,
PENWRITE pfnwrite,
PENCLOSE pfnclose,
PFNSEEK pfnseek,
int cpuType,
PERF perf

Parameters

pfnalloc Memory allocation function
pfinfree Memory free function
pfiopen File open function

pfnread File read function

pfnwrite File write function

pficlose File close function

pfnseck File seek function

cpulype Type of CPU

perf Pointer to an error structure

Description

The FDICreate API creates an FDI context that is passed to other FDI APIs.

The pfnalloc and pfnfree parameters should point to memory allocation and memory free functions which
will be called by FDI to allocate and free memory. These two functions take parameters identical to the
standard C malloc and free functions.

The pfnopen, pfuread, pfnwrite, pfuclose, and pfnseek parameters should point to functions which perform
file open, file read, file write, file close, and file seek operations respectively. These functions should
accept parameters identical to those for the standard open, read, write, close, and _Iseek functions,
and should likewise have identical return codes.

It is not necessary for these functions to actually call _open etc.; these functions could instead call fopen,
fread, fwrite, fclose, and fseek, or CreateFile, ReadFile, WriteFile, CloseHandle, and SetFilePointer, etc.
However, the parameters will have to be translated appropriately (e.g. the file open mode passed in to

pfiopen).

The cpuType parameter should equal one of cpu80386 (indicating that 80386 instructions may be used),
cpu80286 (indicating that only 80286 instructions may be used), or couUNKNOWN (indicating that

FDI should determine the CPU type). The cpuType parameter is looked at only by the 16-bit version of
FDI; it is ignored by the 32-bit version of FDI.

The perfparameter should point to a global or allocated ERF structure. Any errors returned by
FDICreate or subsequent FDI APIs using the same context will cause the ERF structure to be filled out.

Returns

If successful, a non-NULL HFDI context pointer is returned. If unsuccessful, NULL is returned, and the
error structure pointed to by perfis filled out.

FDlIsCabinet

Usage

BOOL DIAMONDAPI FDIIsCabinet (
HFDI hfdi,
int hf,

PFDICABINETINFO pfdici

Parameters

hfdi FDI Context pointer originally returned by FDICreate
hf File handle returned by a call to the application’s file open function
pfdici Pointer to a cabinet info structure

Description

The FDIlIsCabinet API determines whether a given file is a cabinet, and if so, returns information about
the cabinet in the provided FDICABINETINFO structure.

The hfdi parameter is the context pointer returned by a previous call to FDICreate.

The hf parameter must be a file handle on the file being examined. The file handle must be of the same
type as those used by the file i/o functions passed to FDICreate.

The pfdici parameter should point to an FDICABINETINFO structure, which will receive the cabinet
details if the file is indeed a cabinet. The fields of this structure are as follows:

The cbCabinet field contains the length of the cabinet file, in bytes. The cFolders field contains the
number of folders in the cabinet. The cFiles field contains the total number of files in the cabinet. The
setID field contains the set ID (an application-defined magic number) of the cabinet. The iCabinet field
contains the number of this cabinet in the set (0 for the first cabinet, 1 for the second, and so forth). The
fReserve field is a boolean indicating whether there is a reserved area present in the cabinet. The
hasprev field is a boolean indicating whether this cabinet is chained to the previous cabinet, by way of
having a file continued from the previous cabinet into the current one. The hasnext field is a boolean
indicating whether this cabinet is chained to the next cabinet, by way of having a file continued from this
cabinet into the next one.

Returns

If the file is a cabinet, then TRUE is returned and the FDICABINETINFO structure is filled out. If the file
is not a cabinet, or some other error occurred, then FALSE is returned. In either case, it is the
responsibility of the application to close the file handle passed to this function.

FDICopy

Usage

BOOL FAR DIAMONDAPI FDICopy (
HFDI hfdi,
char FAR *pszCabinet,
char FAR *pszCabPath,
int flags,

PENFDINOTIFY pfnfdin,
PENFDIDECRYPT pfnfdid,

void FAR *pvUser
)
Parameters
hfdi FDI Context pointer originally returned by FDICreate
pszCabinet Name of cabinet file, excluding path information
pszCabPath File path to cabinet file
flags Flags to control the extract operation
pfnfdin Pointer to a notification (status update) function
pfinfdid Pointer to a decryption function
pvUser Application-specified value to pass to notification function
Description

The FDICopy API extracts one or more files from a cabinet. Information on each file in the cabinet is
passed back to the supplied pfnfdin function, at which point the application may decide to extract or not
extract the file.

The hfdi parameter is the context pointer returned by a previous call to FDICreate.

The pszCabinet parameter should be the name of the cabinet file, excluding any path information, from
which to extract files. If a file is split over multiple cabinets, FDICopy does allow subsequent cabinets to
be opened.

The pszCabPath parameter should be the file path of the cabinet file (e.g. “C:\MYCABS\”). The contents
of pszCabPath and pszCabinet will be strung together to create the full pathname of the cabinet.

The flags parameter is used to set flags for the decoder. At this time there are no flags defined, and the
flags parameter should be set to zero.

The pfnfdin parameter should point to a file notification function, which will be called periodically to
update the application on the status of the decoder. The pfifdin function takes two parameters; fdint, an
integral value indicating the type of notification message, and pfdin, a pointer to an FDINOTIFICATION
structure.

The fdint parameter may equal one of the following values; fdintCABINET_INFO (general information
about the cabinet), fdintPARTIAL_FILE (the first file in the cabinet is a continuation from a previous
cabinet), fdintCOPY_FILE (asks the application if this file should be copied),
fdintCLOSE_FILE_INFO (close the file and set file attributes, date, etc.), or fdintNEXT_CABINET
(file continued on next cabinet).

The pfdin parameter will point to an FDINOTIFICATION structure with some or all of the fields filled
out, depending on the value of the fdint parameter. Four of the fields are used for general data; cb (a long
integer), and psz1, psz2, and psz3 (pointers to strings), the meaning of which are highly dependent on
the fdint value. The pv field will be the value the application originally passed in as the pvUser parameter
to FDICopy.

The pfnfdin function must return a value to FDI, which tells FDI whether to continue, abort, skip a file, or
perform some other operation. The values which can be returned depend on fdint, and are explained
below.

Note that it is possible that future versions of FDI will have additional notification messages. Therefore,
the application should ignore values of fdint it does not understand, and return zero to continue
(preferably), or -1 (negative one) to abort.

If fdint equals fdintCABINET_INFO then the following fields will be filled out; psz1 will point to the
name of the next cabinet (excluding path information); psz2 will point to the name of the next disk;
psz3 will point to the cabinet path name; set ID will equal the set ID of the current cabinet; and
iCabinet will equal the cabinet number within the cabinet set (0 for the first cabinet, 1 for the second

cabinet, etc.) The application should return 0 to indicate success, or -1 to indicate failure, which will abort
FDICopy. An fdintCABINET_INFO notification will be provided exactly once for each cabinet opened
by FDICopy, including continuation cabinets opened due to files spanning cabinet boundaries.

If fdint equals fdintCOPY_FILE then the following fields will be filled out; psz1 will point to the name
of a file in the cabinet; cb will equal the uncompressed size of the file; date will equal the file’s 16-bit
FAT date; t ime will equal the file’s 16-bit FAT time; and attribs will equal the file’s 16-bit FAT
attributes. The application may return one of three values; 0 (zero) to skip (i.e. not copy) the file; -1
(negative one) to abort FDICopy; or a non-zero (and non-negative-one) file handle for the destination to
which to write the file. The file handle returned must be compatible with the PFNCLOSE function
supplied to FDICreate. The fdintCOPY _FILE notification is called for each file that starts in the
current cabinet, providing the opportunity for the application to request that the file be copied or skipped.

If fdint equals fdintCLOSE_FILE_INFO then the following fields will be filled out; psz1 will point to
the name of a file in the cabinet; hf will be a file handle (which originated from fdintCOPY_FILE);
date will equal the file’s 16-bit FAT date; t ime will equal the file’s 16-bit FAT time; attributes
will equal the file’s 16-bit FAT attributes; and cb will equal either zero (0) or one (1), indicating whether
the file should be executed after extract (one), or not (zero). It is the responsibility of the application to
execute the file if cb equals one. The fdintCLOSE_FILE_INFO notification is called after all of the
data has been written to a target file. The application must close the file (using the provided hf handle),
and set the file date, time, and attributes. The application should return TRUE for success, or FALSE or -1
(negative one) to abort FDICopy. FDI assumes that the target file was closed, even if this callback
returns failure; FDI will not attempt to use PENCLOSE to close the file.

If fdint equals fdintPARTIAL_FILE then the following fields will be filled out; psz1 will point to the
name of the file continued from a previous cabinet; psz2 will point to the name of the cabinet on which
the first segment of the file exists; psz3 will point to the name of the disk on which the first segment of
the file exists. The fdintPARTIAL_FILE notification is called for files at the beginning of a cabinet
which are continued from a previous cabinet. This notification will occur only when FDICopy is started

on the second or subsequent cabinet in a series, which has files continued from a previous cabinet. The
application should return zero (0) for success, or -1 (negative one) for failure, which will abort FDICopy.

If fdint equals fdintNEXT_CABINET then the following fields will be filled out; psz1 will point to the
name of the next cabinet on which the current file is continued; psz2 will point to the name of the next
disk on which the current file is continued; psz3 will point to the cabinet path information; and fdie
will equal a success or error value. The fdintNEXT_CABINET notification is called only when
fdintCOPY_FILE was instructed to copy a file in the current cabinet that is continued in a subsequent
cabinet. It is important that the cabinet path name, psz3, be validated before returning (psz3, which
points to a 256 byte array, may be modified by the application; however, it is not permissible to modify
pszl or psz2). The application should ensure that the cabinet exists and is readable before returning; if
necessary, the application should issue a disk change prompt and ensure that the cabinet file exists. When
this function returns to FDI, FDI will verify that the setID and iCabinet fields of the supplied cabinet
match the expected values for that cabinet. If not, FDI will continue to send fdintNEXT_CABINET
notification messages with the £die field set to FDIERROR_WRONG_CABINET, until the correct
cabinet file is specified, or until this function returns -1 (negative one) to abort the FDICopy call. If after
returning from this function, the cabinet file is not present and readable, or has been damaged, then the
fdie field will equal one of the following values; FDIERROR_CABINET_NOT_FOUND,
FDIERROR_NOT_A_CABINET, FDIERROR_UNKNOWN_CABINET_VERSION,
FDIERROR_CORRUPT_CABINET, FDIERROR_BAD_COMPR_TYPE,
FDIERROR_RESERVE_MISMATCH, FDIERROR_WRONG_CABINET. If there was no error,
fdie will equal FDIERROR_NONE. The application should return 0 (zero) to indicate success, or -1
(negative one) to indicate failure, which will abort FDICopy.

The pfndid parameter is reserved for encryption, and is currently not used by FDI. This parameter should
be set to NULL.

The pvUser parameter should contain an application-defined value which will be passed back as a field in

the FDINOTIFICATION structure of the notification function. It not required, this field may be safely set
to NULL.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned, and the error structure pointed to by
perf (from FDICreate) is filled out.

FDIDestroy

Usage

BOOL DIAMONDAPI FDIDestroy (
HFDI hfdi

)

Parameters

hfdi FDI context handle returned by FDICreate

Description

The FDIDestroy API destroys an Afdi context, freeing any memory and temporary files associated with
the context.

Returns

If successful, TRUE is returned. If unsuccessful, FALSE is returned. The only reason for failure is that
the hfdi passed in was not a proper context handle.

	Introduction
	FCI
	FCICreate
	Usage
	Parameters
	Description
	Returns

	FCIAddFile
	Usage
	Parameters
	Description
	Returns

	FCIFlushCabinet
	Usage
	Parameters
	Description
	Returns

	FCIFlushFolder
	Usage
	Parameters
	Description

	FCIDestroy
	Usage
	Parameters
	Description
	Returns

	FDI
	FDICreate
	Usage
	Parameters
	Description
	Returns

	FDIIsCabinet
	Usage
	Parameters
	Description
	Returns

	FDICopy
	Usage
	Parameters
	Description
	Returns

	FDIDestroy
	Usage
	Parameters
	Description
	Returns

