
GraphZ 1.1 Programmer's
Reference
Copyright © 1995, C. van Zwynsvoorde. All rights reserved.
Author's E-Mail: cvzwynsv@estec.esa.nl

GraphZ is a dynamic link library (DLL) that curently implements one type of dynamically updated graph.
This is a 2d-plot graph.

GraphZ is particularly suitable for displaying continuously incomming technical data in a simple way and
at nearly real-time.

GraphZ is highly configurable, either from the program to which it is linked, or at run time, by the user.
User's help can be found in the User's Guide help file. It is recommended that you read it before you start
with programming matters.

Principle
Functions, Structures and Constants
Product Information.

GraphZ is a Dynamic Link Library (DLL).
It is not a Visual Basic Control (VBX), a static library (LIB), an object library (OBJ) or even a Pascal Unit
(TPU).

GraphZ implements a global window class called "GraphZ". This class remains valid as long as the
library is loaded and as soon as you have called the GZRegister    function.

In Microsoft Windows, each window has a given class. The class is identified by a name (ie. a string).
The class is declared by the API RegistereClass function, and the class name is used for example as the
first parameter of the API CreateWindow function.

A class can be either private (to an application) or global. In that case it is available to all the applications
running at that time.
GraphZ implements one global class named "GraphZ".

Real-time applications
GraphZ has been designed with real-time applications in mind.

Therefore it offers features like:
· It is a library so you can easily integrate it in your application. It is not a complete environment for off-

line data analysis.
· It has been strongly optimized for speed matters.
· It displays incomming data provided by your application. Your application has the complete control on

the data flow.
· It displays data in a continuous way, with a sliding window.
· It has full support for data & time scaling.
· It is small and implements only what you need with no overkill.

Still, there is no real-time guarantee. That is, GraphZ does not guarantees that a given transaction will
be performed within a given time. Hence I advise the following if you have real-time requirements:
· Try to get a fast computer. In particular a math-coprocessor is very strongly recommended.
· Try not to be too short in memory. I believe 4M is a little bit short. But this depends a lot on the rest of

your application. It also depends on how much concurrent graphs and curves you have and what is
the curves buffer length.

· Another rather important speed factor seems to be the display card and/or driver. In that respect,
making graph windows smaller may help significantly.

· To a smaller extent, the number of curves also has some influence.
· Make some tests about the execution speed with your application and your computer. For instance, if

you have data comming in only every 30 seconds, then you probably won't have to worry about real-
time aspects.

· In order to be able to guarantee the response time of your application's data handling routine, I
recommend that you implement a first-in-first-out (FIFO) buffer mechanism between your data
handling routine and the calls to GraphZ.
Note: This is only if you:

1 do have real-time requirements and have to guarantee the response time of your data
handling routine; and

2 have a high data flow rate which makes you work at the limit of your computer's capability
so from time to time (not in average) GraphZ takes more time than is allowed by your
requirements.

Buffer Length

Each curve has a buffer for storing historical data. The buffer length is a general setting of a graph. The
default buffer length is 500 data elements. In the current version, one data element is 10 bytes long. The
maximum length of the buffer is 64k.

See further details in the User's Guide help file.

Display card and/or driver.

I developped GraphZ on a 386, 25 Mhz, without coprocessor ! First I thought the bottleneck was the CPU-
speed so I did a lot of work in optimizing the processings and in particular the floating point calculations.
This of course helped a lot. Finally I observed that the bottleneck had become the speed of the low-level
GDI graphics routines like ScrollWindow or FillRect.

Programming principle

In the following, I assume you are programming in C. If you actually program in C++, Pascal or
whatever, then you will have to adapt this a little bit. Still, there should be no big effort involved.

The principle of using GraphZ in your application is quite simple. You have to proceed as follows:

· Register GraphZ. You will then receive a name and password.

· GraphZ needs the ControlZ run-time libraries (CZxxxxx.dll). THey must be located either in the
same directory as GraphZ, or in the Windows (or Windows\system) directory. GraphZ also needs the
BWCC.DLL library (Borland Windows Custom Controls).

· In either of the following cases:
1 the GraphZ User's Guide help file ("GraphZ.hlp") is located neither in your application's

directory, nor in the windows (or windows\system) directory; or
2 you have renamed this file; or
3 you want to provide another kind of help file to your users;

you will have to add the following lines to your WIN.INI file:

[GraphZ]
HelpFile=<the path and name of the GraphZ User's Guide help file>

· Include the following in your project's DEF file:

IMPORTS
GZRegister=GraphZ.1
GZAddPoints=GraphZ.2
GZGetSettings=GraphZ.3
GZSetSettings=GraphZ.4
GZWriteIni=GraphZ.5
GZLoadIni=GraphZ.6
GZSetIni=GraphZ.7
GZMakeDate=GraphZ.8
GZExtractTime=GraphZ.9
GZExtractDate=GraphZ.10

Note: Of course there are other ways to import these functions, but I find this rather convenient and
portable. A popular alternative is to make an import linrary. There is probably a tool (IMPLIB,
etc.) for that purpose comming along with your compiler

· Add the following line to your source files.:

#include "GraphZ.h"

· At the beginning of your application (a good idea is to do this is the WinMain function), make the
following call:

GZRegister (your name, your password);

· Create one or more GraphZ window(s).

· One way for that is make a call to the API CreateWindow function with the string "GraphZ" as
the first parameter (i.e. the window class name).

· Another way is to do this in your resource definition file (*.rc). For instance, in a dialog box
definition, you can add a line like this:

CONTROL "", ID_GRAPH, "GraphZ", WS_CHILD | WS_VISIBLE, 10, 10, 300, 200

Possibly, your resource editor will complain about the fact that "GraphZ" is not a defined control
calss at that time, but that's okay.

Note that the window's name (first parameter of the CONTROL statement, and second parameter of
the CreateWindow API function) has no effect.

· GraphZ initializes a graph with default values. Then you may:
1 Directly provide the settings:

GZSetSettings (hGraphWindow, GRAPH structure);

2 Load the settings from a given settings file:

GZSetIni (hGraphWindow, lpszSettingsFilename);
GZLoadIni (hGraphWindow);

Note that you can do this at any time and repeat it any number of times.

Note that there is a GRAPH structure associated with each GraphZ window. You will find this structure
as parameter of a number of functions.

· Pass your data to GraphZ each time new data comes in. You'll probably want to do this in an interupt
handling routine (a simple example being the WM_TIMER message).

GZAddPoints (hGraphWindow, values, nNumValues);

· Make a case-insensitive link (and imports) of your application.

See also:

Functions, Structures and Constants.
A note about sizing.
The source code of the demo program included in the GraphZ.zip package.

Resizing the graph window

GraphZ provides no (re)sizing functionality (unless you create the window with the WS_OVERLAPPED
style, but you probably won't want to do that). Two common cases are:
· The graphs are on a dialog box and their size is fixed.
· You make a MDI (Multiple Document Interface) application where each MDIClient window has one

child: the GraphZ window. Your application takes care of always keeping the GraphZ window exactly
the size of the MDIClient window client's area.

When resizing its window, GraphZ tries to make the best possible use of the available place. Still there
are a couple considerations to do on that subject:
· Nothing is guaranteed when the size is really too small to contain all the items.
· The title will remain centered but will be truncated if needed.
· GraphZ will try to reserve horizontal place to display the legend completely, so don't make it (ie. the

curves names) too long.
· The legend may be vertically trunctated if needed.

Functions, structures and constants

The "GraphZ.h" header file defines the following:

Functions:
GZRegister
GZSetIni
GZLoadIni
GZWriteIni
GZGetSettings
GZSetSettings
GZAddPoints
GZMakeDate
GZExtractDate
GZExtractTime

Structtures:
GRAPH
CURVE
TITLE

Constants:
Symbols
Date & Time display formats

See also:

Settings file format.
Settings constraints.

GZRegister
BOOL FAR PASCAL GZRegister (LPSTR szName, LPSTR szCode)

szName is the name that you registered your copy of GraphZ with.
szCode is the password you received when you registered your copy of GraphZ.

return value:
Non-zero if the registration is okay, zero otherwise. In that case the graph title will be forced to be the
string "GraphZ: Unregistered Copy".

GZLoadIni
void FAR PASCAL GZLoadIni (HWND hWnd)

hWnd is the window handle of the GraphZ window for which you want to load the settings from a settings
file.

The name of the settings file is contained in the GRAPH structure associated with the window. This is the
szIniFile item. You may set or modify this file name by making use of either the GZSetSettings or,
preferably the GZSetIni function.

If the settings file cannot be read or does not provide certain settings, default values will be provided.

If hWnd is not a GraphZ window, this function has no effect.

GZWriteIni
void FAR PASCAL GZWriteIni (HWND hWnd)

Dumps the current settings of a GraphZ window to its associated settings file. The settings file name must
be set in the GRAPH structure.

hWnd is the GraphZ window for which to save the settings.

This function has no effect if:
· hWnd is not a GraphZ window, or
· the settings file name is empty or incorrect, or
· the file cannot be written (write protection, etc.)

GZSetIni
BOOL FAR PASCAL GZSetIni (HWND hWnd, LPSTR lpszIniFile)

This function sets the given settings file name in the GRAPH structure associated with the given GraphZ
window. It does not modify the other member of the structure (use GZSetSettings). It does not load the
settings from the file (use GZLoadIni).

hWnd is the GraphZ window for wich you want to set the settings file name.
lpszIniFile is the name of the settings file.

return value:
Zero if hWnd is not a GraphZ window. Non-zero otherwise.

GZGetSettings
BOOL FAR PASCAL GZGetSettings (HWND hWnd, LPGRAPH lpGraph)

Gets the current settings for the given GraphZ window

hWnd is the GraphZ window for which to retrieve the settings.
lpGraph is a far pointer to the GRAPH structure that is to receive the settings.

return value:
Zero if hWnd is not a GraphZ window. Non-zero otherwise.

GZSetSettings
BOOL FAR PASCAL GZSetSettings (HWND hWnd, LPGRAPH lpGraph)

This function replaces the current settings for the given GraphZ window, by the given settings. This is
equivalent to user pressing the "Ok" button from the settings dialog box.

hWnd is the GraphZ window for which to replace the current settings.
lpGraph is a far pointer to a GRAPH structure specifying the new settings.

return value:
Zero if hWnd is not a GraphZ window. Non-zero otherwise.

Note: If some of the provided settings do not comply to the constaints, they will be automatically
corrected.

Note: If you change the buffer length, the buffer will be cleaned up, which means you will loose all the
historical data stored so far.

GZAddPoints
BOOL FAR PASCAL GZAddPoints (HWND hWnd, double FAR *lpValues, WORD nNumValues)

Adds new incomming data to a graph.

hWnd is the GraphZ window to add new data to.
lpValues is a long pointer on an array of values to add to the graph. You should supply one value for
each curve. The number of curves can be found in the GRAPH structure.
· If you supply data for more curves than defined in the settings, GraphZ will try to allocate curves on

the fly, based on default values. Note that the buffer for the allocated curves will be zero-initialized.
· If you supply data for less curves than defined in the settings, GraphZ will automatically generate the

missing data (see the curves settings and alarms description in the User's Guide).
nNumValues is the number of values in the lpValues array. That is, for how many curves you are
supplying data.

return value:
Zero if GraphZ failed to allocate some curves on the fly. Non-zero otherwise.

Note: In logarithmic scale mode, you should take care of providing strictly possitive values. However
GraphZ actually does some error prevention on that subject.

GZMakeDate
double FAR PASCAL GZMakeDate(BYTE nDay, BYTE nMonth, WORD nYear, BYTE nHour, BYTE
nMinute, BYTE nSecond, BYTE nHundredth)

Builds a date & time variable out of its components.

nDay is the day component of the date & time variable to build.
nMonth is the month component of the date & time variable to build.
nYear is the year component of the date & time variable to build.
nHour is the hour component of the date & time variable to build.
nMinute is the minute component of the date & time variable to build.
nSecond is the second component of the date & time variable to build.
nHundredth is the hundredth-of-a-second component of the date & time variable to build.

return value:
The resulting date & time value.

See also:

Date & Time constraints.

GZExtractDate
void FAR PASCAL GZExtractDate (double datetime, LPINT lpnDay, LPINT lpnMonth, LPINT lpnYear)

Extracts the date components out of a date & time variable.

datetime is the variable to extract the date components from.
lpnDay is a far pointer to an integer that is to receive the day component.
lpnMonth is a far pointer to an integer that is to receive the month component.
lpnYear is a far pointer to an integer that is to receive the year component.

See also:

Date & Time constraints

Date & Time variables

GraphZ uses the double C variable type to represent date & time values. This has the advantage that
calculations such as adding time can be performed rapidly. Another advantage is that there is virtually no
difference between normal numbered x-axis and a date & time x-axis.

The integral part of the floating point value represents the number of days since 1/1/1900.
The fractionnal part represents the fraction of a day. For instance 1h is 1/24, 1m is 1/1440, etc.

For your convenience GraphZ provides 3 functions for dealing with date & time values:
· GZMakeDate
· GZExtractDate
· GZExtractTime

Date & Time constraints

The date and time variables and components have the following boundaries:

variable minimum value maximum value
datetime 0.0 (1/1/1900) 73050.0 (1/1/2100)
day 1 28, 29, 30 or 31
month 1 12
year 0 (prefered) or 1990 200 (prefered) or 2100
hour 0 23
minute 0 59
second 0 59
hundredth 0 99

GZExtractTime
void FAR PASCAL GZExtractTime (double datetime, LPINT lpnHour, LPINT lpnMinute, LPINT lpnSecond,
LPINT lpnHundredth)

Extracts the time components out of a date & time variable.

datetime is the variable to extract the time components from.
lpnHour is a far pointer to an integer that is to receive the hour component.
lpnMinute is a far pointer to an integer that is to receive the minute component.
lpnSecond is a far pointer to an integer that is to receive the second component.
lpnHundredth is a far pointer to an integer that is to receive the hundredth-of-a-second component.

See also:

Date & Time constraints

Curve
A GraphZ graph displays a number of curves simultaneously. This is fixed by the settings and is
represented by the numCurves item of the GRAPH structure associated with the GraphZ window.

In order to define the settings for each curve, and array of CURVE srtuctures is present in the GRAPH
structure. A curve is a series od points provided by your application (GZAddPoints). All the curves are
plotted inside the curves box. The curves box is subject to a sliding window mechanism (that is, it is scroll
forth whever your application adds new data, and the usr may scroll it back and forth as desired).
Depending on the curve settings, each curve is plotted with a given pen. Each point is linked to the
previous and next one with a line, and a symbol is plotted to represent the point. A curve also has a name
(legend).

A detailled description of all the settings can be found in the User's Guide.

The CURVE structure is defined as follows in the "GraphZ.h" header file:

typedef struct
{
LOGPEN pen; /* logical color pen */
BYTE nSymbol; /* symbol for use in the normal case */
BOOL bNoLine; /* plot no line, only symbols */
BOOL bAlarms; /* use alarm effects ? */
double alarmLow; /* low alarm limit */
BYTE nSymbolLow; /* if bAlarms, symbol to plot if value < alarmLow */
double alarmHigh; /* high alarm limit */
BYTE nSymbolHigh; /* if bAlarms, symbol to plot if value > alarmHigh */
char szLegend[31]; /* name for this curve (ie. legend) */
BYTE reserved[10]; /* for internal and future use. Do not modify ! */
} CURVE, NEAR *PCURVE, FAR *LPCURVE;

See also:

Settings constraints.

More details can de found about alarms in the Curves Settings section of the User's Guide.

Graph

A GraphZ window stores all the settings related the its graph in a GRAPH structure. This structure is also
used as parameter of a number of functions.

A detailled description of all the settings can be found in the User's Guide.

The GRAPH structure is defined as follows in the "GraphZ.h" header file:

#define NUM_CURVES 16
#define MAXFONTNAME 41

typedef struct
{
char szIniFile[81]; /* the path and filename of the settings file */
TITLE title; /* the graph's title */
char szXLabel[41]; /* label for the X axis (horizontal) */
char szYLabel[41]; /* label for the Y axis (vertical) */
double xRate; /* real interval between two successive entries */

 double xStart; /* real x-value of the first entry */
double xRange; /* real x-value range that has to be displayed */
double yMin, yMax; /* y-scale boundaries when not in autoscale mode */

 double logBase; /* base for logarithm scaling (eg. 10 for decimal log)
*/

 BOOL bAutoscale; /* autoscale the Y axis */
BOOL bLogarithmic; /* logarithmic Y-scale */
BOOL bGrid; /* display a grid ? */
BOOL bTics; /* display tics and tic labels */
BOOL bMouseTrack; /* display the real under mouse point coordinates */
WORD wTimeFormat; /* date/time display format code for the x axis */
WORD bufferLen; /* number of buffered values for each curve */
WORD numCurves; /* number of curves to be displayed */
char szFontName[MAXFONTNAME]; /* font family name for all but the title */
int nFontSize; /* font size in pts */
COLORREF background; /* curves-box background color */
LOGPEN penGrid; /* the pen to use for the grid */
LOGPEN penTics; /* the pen to use for the tics */
CURVE curves[NUM_CURVES]; /* the curves definition */
BYTE reserved[500]; /* for indernal and future use. Do not modify ! */
} GRAPH, NEAR *PGRAPH, FAR *LPGRAPH;

See also:

Settings constraints.

See for further details the description of the horizontal scale in the User's Guide.

Number of displayed curves

The number of displayed curves in a given GraphZ graph is fixed by the numCurves item of the
associated GRAPH structure. There is a maximum of NUM_CURVES (16) curves per graph.

Your application supplies data (GZAddPoints) for a certain number of curves. When this differs from
numCurves, then GraphZ either:
· tries to allocate the missing curves on the fly (which implies that the curve settings and buffer will be

reset), or
· generates data for the curves that your application does not feed. This feature is realated to alarm

(see further details in the User's Guide).

Title

A GraphZ graph has a title which is displayed and printed above the graph itself. The title will always be
centered on the curves box. Possibly it will have to be truncated. There the User's Guide for a more
detailed description.

The title can have a number of formatting attributes that make the graph more attractive. Hence a TITLE
structure has been defined to store those attributes.

The TITLE structure is defined as foollows in the "GraphZ.h" header file:

typedef struct
{
char szTitle[81]; /* the graph's tile */ char
szFontName[MAXFONTNAME]; /* title font family name */
int nFontSize; /* title font size in pts */
BOOL bBold; /* bold or regular */
BOOL bItalic; /* italic or regular */
BOOL bUnderline; /* underline or not */
BOOL bGraved; /* graved or not (display only) */
BOOL bEmbossed; /* embossed or not (display only) */
BOOL bBorder; /* border or not (display only) */
COLORREF color; /* RGB text color (ignored for sculpted styles) */

 } TITLE, NEAR *PTITLE, FAR *LPTITLE;

Notes:
· When your GraphZ copy is unregistered (call the GZRegister function), the text "GraphZ:

Unregistered Copy" will appear instead.
· The bGraved and bEmbossed attributes are mutually exclusive. When boths are set, bGraved has

precedence.
· When bBorder is non-zero, a graved border is drawn. The exception is when bGraved is also non-

zero, in which case an embossed border is drawn.
· When either bGraved or bEmbossed is non-zero, the color has no effect.
· bBorder, bGraved and bEmbossed are ignored for printing. The color is used instead.
· The title text is given by the szTitle attribute of the TITLE structure. The window name (ie, second

parameter of the API CreateWindow function) has no effect.

Settings file format
The settings file has a Windows "*.ini" file compatible format. It is devided in sections, each of them
having a number of items and values. Below is a list of those sections, items and default value.

When one or more setting cannot be loaded from a settings file, default values are provided as follows.
This also happens when a graph is created (ie. initialized).

Section Item Default Value Description
[GraphZ] xLabel (none) the horizontal scale name

yLabel (none) the vertical scale name
Logarithmic 0 10.0 (0 / 1) = (true / false), base
yScale 0 1 min max
xRate 1 the "Rate" attribute
xStart 0 the "First" attribute
xRange 100 the "Range" attribute
MouseTrack 1 (0 / 1) = (true / false)
TimeFormat 0 a number indicating the display format for

the date & time scale, 0 means normal
numbered scale.

Autoscale 1 (0 / 1) = (true / false)
Grid 1 (0 / 1) = (true / false)
Tics 1 (0 / 1) = (true / false)
Font Arial,8 general font name, point size
Curves 0 number of curves (0 to 16).
BufferLen 500 length of the history buffer
Background 0 0 0 curves box background color (red green blue)
GridPen 255 255 255 2 1 red green blue dotted=2/solid=0 size
TicsPen 0 0 0 0 1 red green blue dotted=2/solid=0 size

[Title] Title (none)
FontName Times New Roman
FontSize 16 title font size in points
Bold 0 (0 / 1) = (true / false)
Italic 0 (0 / 1) = (true / false)
Underline 0 (0 / 1) = (true / false)
Graved 0 (0 / 1) = (true / false)
Embossed 1 (0 / 1) = (true / false)
Border 0 (0 / 1) = (true / false)
Color 0 0 0 red green blue

[CurveN] Legend "Curve N" the legend for this curve
Symbol 0 0 SymbolCode DrawLine=0/DrawOnlySymbol=1
Color r g b 0 1 red green blue dotted=2/solid=0 size. (r,g,b

default values depend on the curve number N).
AlarmEffects 0 (0 / 1) = (true / false)
AlarmLow 0 0 LowAlarmLimit LowAlarmSymbol
AlarmHigh 100 0 HighAlarmLimit HighAlarmSymbol

See also:

Settings constraints.

Symbols

Each curve has symbols atributes. There are three symbols for each curve: One for the normal case, one
in case the value is beneath the low alarm limit, and one in case the value is above the high alarm limit.
For that purpose the GraphZ.h include file defines the following codes.

#define value meaning
SYM_NONE 0 No symbol. Just the line.
SYM_CIRCLE 1 A circle (o) filled with the curves box background brush
SYM_SQUARE 2 A square (ÿ) filled with the curves box background brush
SYM_PLUS 3 A plus sign (+)
SYM_CROSS 4 A cross (x)
SYM_DIAMOND 5 A diamond (à) filled with the curves box background brush
SYM_DOT 6 A dot (.)
SYM_START 7 A start (*)
SYM_TRIANGLE 8 A triangle (Ñ) filled with the curves box background brush

Date & Time display formats

As described in the User's Guid, GraphZ extensively supports time scaling, on the horizontal scale (x-
axis).
GraphZ can display dates and times in a number of formats. The wTimeFormat item of the GRAPH
structure tells GraphZ which display format to use.
wTimeFormat is composed of two parts: the data and the time parts, which you must combine with the
bitwise OR operator (|).

Date formats:
#define value meaning
DATE_NO 0x0000 no date is displayed
DATE_DMY 0x0001 "DD/MM/YY"
DATE_YMD 0x0002 "YY/MM/DD"
DATE_MDY 0x0003 "MM/DD/YY"
DATE_DmY 0x0004 "DD mon YY"
DATE_YmD 0x0005 "YY mon DD"
DATE_mDY 0x0006 "mon DD, YY"

Time Formats:
#define value meaning
TIME_NO 0x0000 no time is displayed
TIME_HM 0x0100 "HH:MM"
TIME_MS 0x0200 "MM:SS"
TIME_HMS 0x0300 "HH:MM:SS"
TIME_S99 0x0400 "SS.99"
TIME_MS99 0x0500 "MM:SS.99"
TIME_HMS99 0x0600 "HH:MM:SS.99"

Note: When both date and time are specified, the date is displayed first and then the time on the
following line.

Note: When (DATE_NO | TIME_NO) is specified, then no date & time scale is used. A normal
numbered scale is used instead.

Note: In these tables,    DD, MM, YY, mon, HH, MM, SS and 99 stand respectively for the day, month,
year, month name, hour, minute, second and hundredth of a second. They are all formatted on 2
charecters excet the month name which occupy three.

Note: The slash (/) and colon (:) characters used in these tables are only (very common) examples. The
actual charecters used by GraphZ are those configured in the WIN.INI file. One can set those by
the Control Panel.

Settings constraints

There are some constraints related to the settings, that is, the elements of the GRAPH , CURVE and TITLE
structures. In addition, there are also constraints for date & time variables.

Here are the restrictions:

structure item restriction
GRAPH xRate > 0.0.

Date & time constraints when relevant
xStart Date & time constraints when relevant
xRange > 0.0.

Date & time constraints when relevant
yMin, yMax yMax > yMin.

log error prevention in log scale.
if (yMin == yMax) then yMax += 1.0

logBase log error prevention.
!= 1.0

 wTimeFormat Date & time display format
 bufferLen > 0

< 6553
Look at your available memory.

numCurves > 0
< NUM_CURVES (16)

szFontName Specify an existing (on your system) scalable font.
nFontSize > 0

In points. Making this > 10 quickly becomes ugly.
background color constraints.
penGrid, penTics pen constraints.

CURVE szLegend GraphZ will try to reserve enough place on the right of the graph
to display the legend entirely. Thus, making this too long migh go
at costs of the graph readability.

pen pen constraints.
nSymbol, nSymbolLow, A valid symbol code. Otherwise SYM_NONE is substituted.
nSymbolHigh
alarmLow, alarmHigh alarmLow < alarmHigh

When alarmLow is used to generate data that is not provided by
the application (see the User's Guide), and when a logarithmic
scale is used, alarmLow is subject to the logarithmic error
prevention mechanism.

TITLE szTitle If you have not registered your GraphZ copy, the text "GraphZ:
Unregistered Copy" will be displayed and printed instead.

bGraved, bEmbossed Mutually exclusive.
bBorder Normally a graved border is displayed, except in combination

with bGraved where an embossed border is substituted.
The bBorder, bEmbossed and bGraved attributes will have no
effect for printing.

color color constraints.

See also:

Default settings.

Pen Constraints

You specify pens by means of the LOGPEN structure. This structure is defined in "windows.h" as
follows:

typedef struct tagLOGPEN {
 UINT lopnStyle;
 POINT lopnWidth;
 COLORREF lopnColor;
} LOGPEN;

with the following restrinctions:
· a number of styles (like PS_SOLID, PS_DOT, etc.) are defined for lopnStyle.
· lopnWidth.y is not used. lopnWidth.x must be > 0. Only with the PS_SOLID style, lopnWidth.x can

be > 1.

GraphZ adds the following restrinctions:
· lopnStyle may be only PS_DOT (2) or PS_SOLID (0). Any other style will be replaced by PS_SOLID.
· lopnColor must comply to the colors constraints.

Colors constraints

When you must specify a COLORREF variable, GraphZ puts the restriction that it must be either an RGB
or a PALETTERGB value, but not a PALETTEINDEX.

Log(.) error prevention

In logarithmic scale, any value for which the log(.) function has to be calculated undergoes the following
tests:
· value = abs(value)
· if (value == 0.0) then value = 1.0

Settings file name

The settings file name is stored in the szIniFile item of the GRAPH structure associated with a GraphZ
window. You may set or modify this name by the GZSetSettings or preferably the GZSetIni function.

Note: The settings file name shoud either:
· include a complete path.
· be preceeded by ".\" in order to specify the current directory.
· not include any path, in which case the window directory will be searched.

See also:

Settings file format
GZLoadIni
GZWriteIni

Product Information

This is GraphZ version 1.1.
GraphZ is copyright © 1995, C. van Zwynsvoorde. All rights reserved.

All the fancy objects are from the ControlZ library.
ControlZ is also copyright © 1995, C. van Zwynsvoorde. All rights reserved.
ControlZ is already registered for GraphZ.

Note: If you would like to get both ControlZ and GraphZ, I can make some nice arrangements. Please
e-mail me at: cvzwynsv@estec.esa.nl

GraphZ has to be registered for your application. When you register you will get a name and password
that you'll have to pass to the GZRegister function at the begining of your program. Please do not tell
anybody about these strings. It is even recommended that you do some encryption of them inside your
application.
· Registering GraphZ will prevent you from having the text "GraphZ: Unregistered Copy"

substituted to the graph title.
· It will also give you the right to distribute GraphZ along with your application, without any

limitation.

Questions:
If you have any question, desire, remark or bug report, please e-mail me at:
cvzwynsv@estec.esa.nl

See also:

How to register.
Registration form.

How to register
The GraphZ registration fee is US$ 195.

You register GraphZ only once and hereby get the right to distribute it along with your application without
limitation.

To register, proceed as follows:
· Fill in the registration form.

· Send it to:
C. van Zwynsvoorde.
Zeestraat 21,
2201 KH Noordwijk.
The Netherlands.

or fax it to:
(+31) 1719-85659

· Transfer the registration fee to the following account:
Bank account number: 56.79.21.395
Bank: ABN-AMRO bank in The Netherlands.
Bank account owner: C.S van Zwijnsvoorde.

I'm sorry I can't take credit cards.
Possibly e-mail me when you have done so, so that I can check it more quickly.

· As soon as I have notice of your payment from the bank, I will send you back your name and
password. You will get nothing more (argh!) since the distributed library is already fully featured and
the completed documentation consists of this heelp faile, together with the User's Guide help file.

GraphZ 1.1 Registration Form
To register GraphZ 1.1, please first deposit US$ 195
on the bank account number 56.79.21.395 of the
ABN-AMRO bank in The Netherlands under the name "C.S. van
Zwijnsvoorde". Then fax or mail me a printed copy of this
page. As soon as I have notification of your payment from
the bank you will be retruned a registration name and a
password.

Terms/Conditions:

I agree that GraphZ is distributed as shareware. No warranty
exists, either express or implied. No liability is assumed for
any damage or loss resulting from the use of this program. No
claims are made regarding the accuracy of this program. The
author reserves the right to change pricing in future versions.
Your signature below indicates your acceptance of these terms
and conditions.

Registration Name: __
(Name you will supply to the GZRegister function.
This is recommended to be your application's name)

Your Complete Name:

Postal Address:

City: ________________________________ Country: _______________

Phone No: ______________________ Fax No: ______________________

Internet E-mail address: ______________________________________

How do you prefer to receive your user name and password ?
 O. E-Mail O. Post O. Fax

Signature: ______________________________ Date: _______________

* Mail address: C.v.Zwynsvoorde. Zeestraat 21. *
* 2201 KH Noordwijk zh. The Netherlands *
* Fax number: (+31) 1719-85659 *
