
ODBC API Help Contents
Function Summary Appendix D, Data Types

SQLAllocConnect SQLGetData
SQLAllocEnv SQLGetFunctions
SQLAllocStmt SQLGetInfo
SQLBindCol SQLGetStmtOption
SQLBindParameter SQLGetTypeInfo
SQLBrowseConnect SQLMoreResults
SQLCancel SQLNativeSql
SQLColAttributes SQLNumParams
SQLColumnPrivileges SQLNumResultCols
SQLColumns SQLParamData
SQLConnect SQLParamOptions
SQLDataSources SQLPrepare
SQLDescribeCol SQLPrimaryKeys
SQLDescribeParam SQLProcedureColumns
SQLDisconnect SQLProcedures
SQLDriverConnect SQLPutData
SQLDrivers SQLRowCount
SQLError SQLSetConnectOption
SQLExecDirect SQLSetCursorName
SQLExecute SQLSetParam
SQLExtendedFetch SQLSetPos
SQLFetch SQLSetScrollOptions
SQLForeignKeys SQLSetStmtOption
SQLFreeConnect SQLSpecialColumns
SQLFreeEnv SQLStatistics
SQLFreeStmt SQLTablePrivileges
SQLGetConnectOption SQLTables
SQLGetCursorName SQLTransact

Function Summary
The following table lists ODBC functions, grouped by type of task, and includes the conformance
designation and a brief description of the purpose of each function.
An application can call the SQLGetInfo function to obtain conformance information about a driver. To
obtain information about support for a specific function in a driver, an application can call
SQLGetFunctions.

Connecting to a Data Source

Function Name Purpose
SQLAllocEnv Obtains an environment handle. One

environment handle is used for one or more
connections.

SQLAllocConnect Obtains a connection handle.
SQLConnect Connects to a specific driver by data source

name, user ID, and password.
SQLDriverConnect Connects to a specific driver by connection

string or requests that the Driver Manager and
driver display connection dialog boxes for the
user.

SQLBrowseConnect Returns successive levels of connection
attributes and valid attribute values. When a
value has been specified for each connection
attribute, connects to the data source.

Obtaining Information about a Driver and Data Source

Function Name Purpose
SQLDataSources Returns the list of available data sources.
SQLDrivers Returns the list of installed drivers and their

attributes.
SQLGetInfo Returns information about a specific driver and

data source.
SQLGetFunctions Returns supported driver functions.
SQLGetTypeInfo Returns information about supported data types.

Setting and Retrieving Driver Options

Function Name Purpose
SQLSetConnectOption Sets a connection option.
SQLGetConnectOption Returns the value of a connection option.
SQLSetStmtOption Sets a statement option.
SQLGetStmtOption Returns the value of a statement option.

Preparing SQL Requests

Function Name Purpose
SQLAllocStmt Allocates a statement handle.
SQLPrepare Prepares an SQL statement for later execution.
SQLBindParameter Assigns storage for a parameter in an SQL

statement.
SQLParamOptions Specifies the use of multiple values for

parameters.
SQLGetCursorName Returns the cursor name associated with a

statement handle.
SQLSetCursorName Specifies a cursor name.

SQLSetScrollOptions Sets options that control cursor behavior.

Submitting Requests

Function Name Purpose
SQLExecute Executes a prepared statement.
SQLExecDirect Executes a statement.
SQLNativeSql Returns the text of an SQL statement as

translated by the driver.
SQLDescribeParam Returns the description for a specific parameter

in a statement.
SQLNumParams Returns the number of parameters in a

statement.
SQLParamData Used in conjunction with SQLPutData to supply

parameter data at execution time. (Useful for
long data values.)

SQLPutData Send part or all of a data value for a parameter.
(Useful for long data values.)

Retrieving Results and Information about Results

Function Name Purpose
SQLRowCount Returns the number of rows affected by an

insert, update, or delete request.
SQLNumResultCols Returns the number of columns in the result set.
SQLDescribeCol Describes a column in the result set.
SQLColAttributes Describes attributes of a column in the result

set.
SQLBindCol Assigns storage for a result column and

specifies the data type.
SQLFetch Returns a result row.
SQLExtendedFetch Returns multiple result rows.
SQLGetData Returns part or all of one column of one row of a

result set. (Useful for long data values.)
SQLSetPos Positions a cursor within a fetched block of data.
SQLMoreResults Determines whether there are more result sets

available and, if so, initializes processing for the
next result set.

SQLError Returns additional error or status information.

Obtaining Information about the Data Source's System Tables (Catalog Functions)

Function Name Purpose
SQLColumnPrivileges Returns a list of columns and associated

privileges for one or more tables.
SQLColumns Returns the list of column names in specified

tables.
SQLForeignKeys Returns a list of column names that comprise

foreign keys, if they exist for a specified table.
SQLPrimaryKeys Returns the list of column name(s) that comprise

the primary key for a table.
SQLProcedureColumns Returns the list of input and output parameters,

as well as the columns that make up the result
set for the specified procedures.

SQLProcedures Returns the list of procedure names stored in a

specific data source.
SQLSpecialColumns Returns information about the optimal set of

columns that uniquely identifies a row in a
specified table, or the columns that are
automatically updated when any value in the row
is updated by a transaction.

SQLStatistics Returns statistics about a single table and the
list of indexes associated with the table.

SQLTablePrivileges Returns a list of tables and the privileges
associated with each table.

SQLTables Returns the list of table names stored in a
specific data source.

Terminating a Statement

Function Name Purpose
SQLFreeStmt Ends statement processing and closes the

associated cursor, discards pending results,
and, optionally, frees all resources associated
with the statement handle.

SQLCancel Cancels an SQL statement.
SQLTransact Commits or rolls back a transaction.

Terminating a Connection

Function Name Purpose
SQLDisconnect Closes the connection.
SQLFreeConnect Releases the connection handle.
SQLFreeEnv Releases the environment handle.

SQLAllocConnect (Core, ODBC 1.0)
Code Example Related Functions

SQLAllocConnect allocates memory for a connection handle within the environment identified by henv.

Syntax
RETCODE SQLAllocConnect(henv, phdbc)
The SQLAllocConnect function accepts the following arguments.

Type Argument Use Description
HENV henv Input Environment handle.
HDBC FAR * phdbc Output Pointer to storage for the

connection handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.
If SQLAllocConnect returns SQL_ERROR, it will set the hdbc referenced by phdbc to
SQL_NULL_HDBC. To obtain additional information, the application can call SQLError with the
specified henv and with hdbc and hstmt set to SQL_NULL_HDBC and SQL_NULL_HSTMT,
respectively.

Diagnostics
When SQLAllocConnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLAllocConnect and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to
allocate memory for the connection
handle.
The driver was unable to allocate
memory for the connection handle.

S1009 Invalid argument
value

(DM) The argument phdbc was a null
pointer.

Comments
A connection handle references information such as the valid statement handles on the connection and
whether a transaction is currently open. To request a connection handle, an application passes the
address of an hdbc to SQLAllocConnect. The driver allocates memory for the connection information
and stores the value of the associated handle in the hdbc. On operating systems that support multiple
threads, applications can use the same hdbc on different threads and drivers must therefore support
safe, multithreaded access to this information. The application passes the hdbc value in all subsequent
calls that require an hdbc.
The Driver Manager processes the SQLAllocConnect function and calls the driver's SQLAllocConnect
function when the application calls SQLConnect, SQLBrowseConnect, or SQLDriverConnect. (For
more information, see the description of the SQLConnect function.)
If the application calls SQLAllocConnect with a pointer to a valid hdbc, the driver overwrites the hdbc
without regard to its previous contents.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions
SQLConnect
SQLFreeConnect

SQLAllocEnv (Core, ODBC 1.0)
Code Example Related Functions

SQLAllocEnv allocates memory for an environment handle and initializes the ODBC call level interface
for use by an application. An application must call SQLAllocEnv prior to calling any other ODBC
function.

Syntax
RETCODE SQLAllocEnv(phenv)
The SQLAllocEnv function accepts the following argument.

Type Argument Use Description
HENV FAR * phenv Output Pointer to storage for the

environment handle.

Returns
SQL_SUCCESS or SQL_ERROR.
If SQLAllocEnv returns SQL_ERROR, it will set the henv referenced by phenv to SQL_NULL_HENV. In
this case, the application can assume that the error was a memory allocation error.

Diagnostics
A driver cannot return SQLSTATE values directly after the call to SQLAllocEnv, since no valid handle
will exist with which to call SQLError.
There are two levels of SQLAllocEnv functions, one within the Driver Manager and one within each
driver. The Driver Manager does not call the driver-level function until the application calls SQLConnect,
SQLBrowseConnect, or SQLDriverConnect. If an error occurs in the driver-level SQLAllocEnv
function, then the Driver Manager - level SQLConnect, SQLBrowseConnect, or SQLDriverConnect
function returns SQL_ERROR. A subsequent call to SQLError with henv, SQL_NULL_HDBC, and
SQL_NULL_HSTMT returns SQLSTATE IM004 (Driver's SQLAllocEnv failed), followed by one of the
following errors from the driver:

SQLSTATE S1000 (General error).
A driver-specific SQLSTATE value, ranging from S1000 to S19ZZ. For example, SQLSTATE

S1001 (Memory allocation failure) indicates that the Driver Manager's call to the driver-level
SQLAllocEnv returned SQL_ERROR, and the Driver Manager's henv was set to SQL_NULL_HENV.

For additional information about the flow of function calls between the Driver Manager and a driver, see
the SQLConnect function description.

Comments
An environment handle references global information such as valid connection handles and active
connection handles. To request an environment handle, an application passes the address of an henv to
SQLAllocEnv. The driver allocates memory for the environment information and stores the value of the
associated handle in the henv. On operating systems that support multiple threads, applications can use
the same henv on different threads and drivers must therefore support safe, multithreaded access to this
information. The application passes the henv value in all subsequent calls that require an henv.
There should never be more than one henv allocated at one time and the application should not call
SQLAllocEnv when there is a current valid henv. If the application calls SQLAllocEnv with a pointer to
a valid henv, the driver overwrites the henv without regard to its previous contents.
When the Driver Manager processes the SQLAllocEnv function, it checks the Trace keyword in the
[ODBC] section of the ODBC.INI file or the ODBC subkey in the registry. If it is set to 1, the Driver
Manager enables tracing for all applications on Windows 3.1 or for the current application on Windows
NT.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions
SQLAllocConnect
SQLConnect
SQLFreeEnv

SQLAllocStmt (Core, ODBC 1.0)
Code Example Related Functions

SQLAllocStmt allocates memory for a statement handle and associates the statement handle with the
connection specified by hdbc.
An application must call SQLAllocStmt prior to submitting SQL statements.

Syntax
RETCODE SQLAllocStmt(hdbc, phstmt)
The SQLAllocStmt function accepts the following arguments.

Type Argument Use Description
HDBC hdbc Input Connection handle.
HSTMT FAR * phstmt Output Pointer to storage for the

statement handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_INVALID_HANDLE, or SQL_ERROR.
If SQLAllocStmt returns SQL_ERROR, it will set the hstmt referenced by phstmt to
SQL_NULL_HSTMT. The application can then obtain additional information by calling SQLError with the
hdbc and SQL_NULL_HSTMT.

Diagnostics
When SQLAllocStmt returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLAllocStmt and explains each one in the context of this function; the notation
"(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code
associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The connection specified by the
hdbc argument was not open. The
connection process must be completed
successfully (and the connection must
be open) for the driver to allocate an
hstmt.

IM001 Driver does not
support this function

(DM) The driver associated with the
hdbc does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to
allocate memory for the statement
handle.
The driver was unable to allocate
memory for the statement handle.

S1009 Invalid argument
value

(DM) The argument phstmt was a null
pointer.

Comments
A statement handle references statement information, such as network information, SQLSTATE values
and error messages, cursor name, number of result set columns, and status information for SQL

statement processing.
To request a statement handle, an application connects to a data source and then passes the address of
an hstmt to SQLAllocStmt. The driver allocates memory for the statement information and stores the
value of the associated handle in the hstmt. On operating systems that support multiple threads,
applications can use the same hstmt on different threads and drivers must therefore support safe,
multithreaded access to this information. The application passes the hstmt value in all subsequent calls
that require an hstmt.
If the application calls SQLAllocStmt with a pointer to a valid hstmt, the driver overwrites the hstmt
without regard to its previous contents.

Code Example
See SQLBrowseConnect, SQLConnect, and SQLSetCursorName.

Related Functions
SQLExecDirect
SQLExecute
SQLFreeStmt
SQLPrepare

SQLBindCol (Core, ODBC 1.0)
Code Example Related Functions

SQLBindCol assigns the storage and data type for a column in a result set, including:

A storage buffer that will receive the contents of a column of data
The length of the storage buffer
A storage location that will receive the actual length of the column of data returned by the fetch

operation
Data type conversion

Syntax
RETCODE SQLBindCol(hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)
The SQLBindCol function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD icol Input Column number of result data,

ordered sequentially left to
right, starting at 1. A column
number of 0 is used to
retrieve a bookmark for the
row; bookmarks are not
supported by ODBC 1.0
drivers or by SQLFetch.

SWORD fCType Input The C data type of the result
data. This must be one of the
following values:
SQL_C_BINARY
SQL_C_BIT
SQL_C_BOOKMARK
SQL_C_CHAR
SQL_C_DATE
SQL_C_DEFAULT
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TIME
SQL_C_TIMESTAMP
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT
SQL_C_DEFAULT specifies
that data be transferred to its
default C data type.

Note      Drivers must also
support the following values
of fCType from ODBC 1.0.
Applications must use these
values, rather than the
ODBC 2.0 values, when
calling an ODBC 1.0 driver:
SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT
For more information, see

ODBC 1.0 C Data Types.

For information about how
data is converted, see
Converting Data from SQL to
C Data Types.

PTR rgbValue Input Pointer to storage for the
data. If rgbValue is a null
pointer, the driver unbinds the
column. (To unbind all
columns, an application calls
SQLFreeStmt with the
SQL_UNBIND option.)

Note      If a null pointer was
passed for rgbValue in
ODBC 1.0, the driver
returned SQLSTATE S1009
(Invalid argument value);
individual columns could not
be unbound.

SDWORD cbValueMax Input Maximum length of the
rgbValue buffer. For character
data, rgbValue must also
include space for the null-
termination byte. For more
information about length, see
Precision, Scale, Length, and
Display Size.

SDWORD FAR
*

pcbValue Input SQL_NULL_DATA or the
number of bytes (excluding
the null termination byte for
character data) available to
return in rgbValue prior to
calling SQLExtendedFetch
or SQLFetch, or
SQL_NO_TOTAL if the
number of available bytes
cannot be determined.
For character data, if the
number of bytes available to
return is SQL_NO_TOTAL or
is greater than or equal to
cbValueMax, the data in
rgbValue is truncated to
cbValueMax - 1 bytes and is
null-terminated by the driver.
For binary data, if the number
of bytes available to return is
SQL_NO_TOTAL or is greater
than cbValueMax, the data in
rgbValue is truncated to
cbValueMax bytes.
For all other data types, the
value of cbValueMax is
ignored and the driver
assumes the size of rgbValue
is the size of the C data type

specified with fCType.
For more information about
the value returned in
pcbValue for each fCType,
see Converting Data from
SQL to C Data Types.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLBindCol returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLBindCol and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1002 Invalid column
number

The value specified for the argument
icol was 0 and the driver was an ODBC
1.0 driver.
The value specified for the argument
icol exceeded the maximum number of
columns supported by the data source.

S1003 Program type out of
range

(DM) The argument fCType was not a
valid data type or SQL_C_DEFAULT.
The argument icol was 0 and the
argument fCType was not
SQL_C_BOOKMARK.

S1009 Invalid argument
value

The driver supported ODBC 1.0 and the
argument rgbValue was a null pointer.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the
argument cbValueMax was less than 0.

S1C00 Driver not capable The driver does not support the data
type specified in the argument fCType.
The argument icol was 0 and the driver
does not support bookmarks.
The driver only supports ODBC 1.0 and
the argument fCType was one of the
following:
SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SLONG
SQL_C_ULONG

Comments
The ODBC interface provides two ways to retrieve a column of data:

SQLBindCol assigns the storage location for a column of data before the data is retrieved. When
SQLFetch or SQLExtendedFetch is called, the driver places the data for all bound columns in the
assigned locations.

SQLGetData (an extended function) assigns a storage location for a column of data after
SQLFetch or SQLExtendedFetch has been called. It also places the data for the requested column in
the assigned location. Because it can retrieve data from a column in parts, SQLGetData can be used to
retrieve long data values.

An application may choose to bind every column with SQLBindCol, to do no binding and retrieve data
only with SQLGetData, or to use a combination of the two. However, unless the driver provides
extended functionality, SQLGetData can only be used to retrieve data from columns that occur after the
last bound column.
An application calls SQLBindCol to pass the pointer to the storage buffer for a column of data to the
driver and to specify how or if the data will be converted. It is the application's responsibility to allocate
enough storage for the data. If the buffer will contain variable length data, the application must allocate
as much storage as the maximum length of the bound column or the data may be truncated. For a list of
valid data conversion types, see Converting Data from SQL to C Data Types.
At fetch time, the driver processes the data for each bound column according to the arguments specified
in SQLBindCol. First, it converts the data according to the argument fCType. Next, it fills the buffer
pointed to by rgbValue. Finally, it stores the available number of bytes in pcbValue; this is the number of
bytes available prior to calling SQLFetch or SQLExtendedFetch.

If SQL_MAX_LENGTH has been specified with SQLSetStmtOption and the available number of
bytes is greater than SQL_MAX_LENGTH, the driver stores SQL_MAX_LENGTH in pcbValue.

If the data is truncated because of SQL_MAX_LENGTH, but the user's buffer was large enough
for SQL_MAX_LENGTH bytes of data, SQL_SUCCESS is returned.

Note      The SQL_MAX_LENGTH statement option is intended to reduce network traffic and may not
be supported by all drivers. To guarantee that data is truncated, an application should allocate a
buffer of the desired size and specify this size in the cbValueMax argument.

If the user's buffer causes the truncation, the driver returns SQL_SUCCESS_WITH_INFO and
SQLSTATE 01004 (Data truncated) for the fetch function.

If the data value for a column is NULL, the driver sets pcbValue to SQL_NULL_DATA.
If the number of bytes available to return cannot be determined in advance, the driver sets

pcbValue to SQL_NO_TOTAL.

When an application uses SQLExtendedFetch to retrieve more than one row of    data, it only needs to
call SQLBindCol once for each column of the result set (just as when it binds a column in order to
retrieve a single row of data with SQLFetch). The SQLExtendedFetch function coordinates the
placement of each row of data into subsequent locations in the rowset buffers. For additional information
about binding rowset buffers, see the "Comments" topic for SQLExtendedFetch.
An application can call SQLBindCol to bind a column to a new storage location, regardless of whether

data has already been fetched. The new binding replaces the old binding. Note that the new binding
does not apply to data already fetched; the next time data is fetched, the data will be placed in the new
storage location.
To unbind a single bound column, an application calls SQLBindCol and specifies a null pointer for
rgbValue; if rgbValue is a null pointer and the column is not bound, SQLBindCol returns
SQL_SUCCESS. To unbind all bound columns, an application calls SQLFreeStmt with the
SQL_UNBIND option.

Code Example
In the following example, an application executes a SELECT statement to return a result set of the
employee names, ages, and birthdays, which is sorted by birthday. It then calls SQLBindCol to bind the
columns of data to local storage locations. Finally, the application fetches each row of data with
SQLFetch and prints each employee's name, age, and birthday.
For more code examples, see SQLColumns, SQLExtendedFetch, and SQLSetPos.
#define NAME_LEN 30

#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];

SWORD sAge;

SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt, "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE
ORDER BY 3, 2, 1", SQL_NTS);

if (retcode == SQL_SUCCESS) {

/* Bind columns 1, 2, and 3 */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);

SQLBindCol(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);

SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN, &cbBirthday);

/* Fetch and print each row of data. On */

/* an error, display a message and exit. */

while (TRUE) {

retcode = SQLFetch(hstmt);

if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();

}

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName, sAge, BDAY_LEN-1,
szBirthday);

} else {

break;

}

}

}

Related Functions
SQLDescribeCol
SQLExtendedFetch (extension)
SQLFetch
SQLFreeStmt
SQLGetData (extension)
SQLNumResultCols

SQLBindParameter (Level 1, ODBC 2.0)
Code Example Related Functions

SQLBindParameter binds a buffer to a parameter marker in an SQL statement.

Note      This function replaces the ODBC 1.0 function SQLSetParam. For more information, see
"Comments."

Syntax
RETCODE SQLBindParameter(hstmt, ipar, fParamType, fCType, fSqlType, cbColDef, ibScale,
rgbValue, cbValueMax, pcbValue)
The SQLBindParameter function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD ipar Input Parameter number, ordered

sequentially left to right,
starting at 1.

SWORD fParamType Input The type of the parameter.
For more information, see
fParamType Argument in
"Comments."

SWORD fCType Input The C data type of the
parameter. For more
information, see fCType
Argument in "Comments."

SWORD fSqlType Input The SQL data type of the
parameter. For more
information, see fSqlType
Argument in "Comments."

UDWORD cbColDef Input The precision of the column or
expression of the
corresponding parameter
marker. For more information,
see cbColDef Argument in
"Comments."

SWORD ibScale Input The scale of the column or
expression of the
corresponding parameter
marker. For further information
concerning scale, see
Precision, Scale, Length, and
Display Size.

PTR rgbValue Input/
Output

A pointer to a buffer for the
parameter's data. For more
information, see rgbValue
Argument in "Comments."

SDWORD cbValueMax Input Maximum length of the
rgbValue buffer. For more
information, see cbValueMax
Argument in "Comments."

SDWORD FAR
*

pcbValue Input/
Output

A pointer to a buffer for the
parameter's length. For more
information, see pcbValue
Argument in "Comments."

Returns

SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLBindParameter returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLBindParameter and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value identified by the fCType
argument cannot be converted to the
data type identified by the fSqlType
argument.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1003 Program type out of
range

(DM) The value specified by the
argument fCType was not a valid data
type or SQL_C_DEFAULT.

S1004 SQL data type out
of range

(DM) The value specified for the
argument fSqlType was in the block of
numbers reserved for ODBC SQL data
type indicators but was not a valid
ODBC SQL data type indicator.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null
pointer, the argument pcbValue was a
null pointer, and the argument
fParamType was not
SQL_PARAM_OUTPUT.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the
argument cbValueMax was less than 0.

S1093 Invalid parameter
number

(DM) The value specified for the
argument ipar was less than 1.
The value specified for the argument
ipar was greater than the maximum

number of parameters supported by the
data source.

S1094 Invalid scale value The value specified for the argument
ibScale was outside the range of values
supported by the data source for a
column of the SQL data type specified
by the fSqlType argument.

S1104 Invalid precision
value

The value specified for the argument
cbColDef was outside the range of
values supported by the data source for
a column of the SQL data type specified
by the fSqlType argument.

S1105 Invalid parameter
type

(DM) The value specified for the
argument fParamType was invalid (see
"Comments").
The value specified for the argument
fParamType was
SQL_PARAM_OUTPUT and the
parameter did not mark a return value
from a procedure or a procedure
parameter.
The value specified for the argument
fParamType was SQL_PARAM_INPUT
and the parameter marked the return
value from a procedure.

S1C00 Driver not capable The driver or data source does not
support the conversion specified by the
combination of the value specified for
the argument fCType and the driver-
specific value specified for the argument
fSqlType.
The value specified for the argument
fSqlType was a valid ODBC SQL data
type indicator for the version of ODBC
supported by the driver, but was not
supported by the driver or data source.
The value specified for the argument
fSqlType was in the range of numbers
reserved for driver-specific SQL data
type indicators, but was not supported
by the driver or data source.
The driver only supports ODBC 1.0 and
the argument fCType was one of the
following:
SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SLONG
SQL_C_ULONG

Comments
An application calls SQLBindParameter to bind each parameter marker in an SQL statement. Bindings
remain in effect until the application calls SQLBindParameter again or until the application calls
SQLFreeStmt with the SQL_DROP or SQL_RESET_PARAMS option.

fParamType Argument

The fParamType argument specifies the type of the parameter. All parameters in SQL statements that do
not call procedures, such as INSERT statements, are input parameters. Parameters in procedure calls
can be input, input/output, or output parameters. (An application calls SQLProcedureColumns to
determine the type of a parameter in a procedure call; parameters in procedure calls whose type cannot
be determined are assumed to be input parameters.)
The fParamType argument is one of the following values:

SQL_PARAM_INPUT. The parameter marks a parameter in an SQL statement that does not call
a procedure, such as an INSERT statement, or it marks an input parameter in a procedure; these are
collectively known as input parameters. For example, the parameters in INSERT INTO Employee
VALUES (?, ?, ?) and {call AddEmp(?, ?, ?)} are input parameters.

When the statement is executed, the driver sends data for the parameter to the data source; the
rgbValue buffer must contain a valid input value or the pcbValue buffer must contain
SQL_NULL_DATA, SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC macro.
If an application cannot determine the type of a parameter in a procedure call, it sets fParamType to
SQL_PARAM_INPUT; if the data source returns a value for the parameter, the driver discards it.

SQL_PARAM_INPUT_OUTPUT. The parameter marks an input/output parameter in a procedure.
For example, the parameter in {call GetEmpDept(?)} is an input/output parameter that accepts an
employee's name and returns the name of the employee's department.

When the statement is executed, the driver sends data for the parameter to the data source; the
rgbValue buffer must contain a valid input value or the pcbValue buffer must contain
SQL_NULL_DATA, SQL_DATA_AT_EXEC, or the result of the SQL_LEN_DATA_AT_EXEC macro.
After the statement is executed, the driver returns data for the parameter to the application; if the data
source does not return a value for an input/output parameter, the driver sets the pcbValue buffer to
SQL_NULL_DATA.

Note      When an ODBC 1.0 application calls SQLSetParam in an ODBC 2.0 driver, the Driver
Manager converts this to a call to SQLBindParameter in which the fParamType argument is set to
SQL_PARAM_INPUT_OUTPUT.

SQL_PARAM_OUTPUT. The parameter marks the return value of a procedure or an output
parameter in a procedure; these are collectively known as output parameters. For example, the
parameter in {?=call GetNextEmpID} is an output parameter that returns the next employee ID.

After the statement is executed, the driver returns data for the parameter to the application, unless the
rgbValue and pcbValue arguments are both null pointers, in which case the driver discards the output
value. If the data source does not return a value for an output parameter, the driver sets the pcbValue
buffer to SQL_NULL_DATA.

fCType Argument
The C data type of the parameter. This must be one of the following values:
SQL_C_BINARY
SQL_C_BIT
SQL_C_CHAR
SQL_C_DATE
SQL_C_DEFAULT
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TIME
SQL_C_TIMESTAMP
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT

SQL_C_DEFAULT specifies that the parameter value be transferred from the default C data type for the
SQL data type specified with fSqlType.
For more information, see Default C Data Types and Converting Data from C to SQL Data Types and
Converting Data from SQL to C Data Types.

Note      Drivers must also support the following values of fCType from ODBC 1.0. Applications must use
these values, instead of the ODBC 2.0 values, when calling an ODBC 1.0 driver:

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT

For more information, see ODBC 1.0 C Data Types.

fSqlType Argument
This must be one of the following values:
SQL_BIGINT
SQL_BINARY
SQL_BIT
SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIME
SQL_TIMESTAMP
SQL_TINYINT
SQL_VARBINARY
SQL_VARCHAR

or a driver-specific value. Values greater than SQL_TYPE_DRIVER_START are reserved by ODBC;
values less than or equal to SQL_TYPE_DRIVER_START are driver-specific.
For information about how data is converted, see Converting Data from C to SQL Data Types and
Converting Data from SQL to C Data Types.

cbColDef Argument
The cbColDef argument specifies the precision of the column or expression corresponding to the
parameter marker, unless all of the following are true:

An ODBC 2.0 application calls SQLBindParameter in an ODBC 1.0 driver or an ODBC 1.0
application calls SQLSetParam in an ODBC 2.0 driver. (Note that the Driver Manager converts these
calls.)

The fSqlType argument is SQL_LONGVARBINARY or SQL_LONGVARCHAR.
The data for the parameter will be sent with SQLPutData.

In this case, the cbColDef argument contains the total number of bytes that will be sent for the
parameter. For more information, see Passing Parameter Values and SQL_DATA_AT_EXEC in
pcbValue Argument.

rgbValue Argument

The rgbValue argument points to a buffer that, when SQLExecute or SQLExecDirect is called, contains
the actual data for the parameter. The data must be in the form specified by the fCType argument.
If rgbValue points to a character string that contains a literal quote character ('), the driver ensures that
each literal quote is translated into the form required by the data source. For example, if the data source
required that embedded literal quotes be doubled, the driver would replace each quote character (')
with two quote characters (' ').
If pcbValue is the result of the SQL_LEN_DATA_AT_EXEC(length) macro or SQL_DATA_AT_EXEC,
then rgbValue is an application-defined 32-bit value that is associated with the parameter. It is returned
to the application through SQLParamData. For example, rgbValue might be a token such as a
parameter number, a pointer to data, or a pointer to a structure that the application used to bind input
parameters. Note, however, that if the parameter is an input/output parameter, rgbValue must be a
pointer to a buffer where the output value will be stored. If SQLParamOptions was called to specify
multiple values for the parameter, the application can use the value of the pirow argument in
SQLParamOptions in conjunction with the rgbValue. For example, rgbValue might point to an array of
values    and the application might use pirow to retrieve the correct value from the array. For more
information, see Passing Parameter Values.
If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or SQL_PARAM_OUTPUT, rgbValue
points to a buffer in which the driver returns the output value. If the procedure returns one or more result
sets, the rgbValue buffer is not guaranteed to be set until all results have been fetched. (If fParamType is
SQL_PARAM_OUTPUT and rgbValue and pcbValue are both null pointers, the driver discards the
output value.)
If the application calls SQLParamOptions to specify multiple values for each parameter, rgbValue
points to an array. A single SQL statement processes the entire array of input values for an input or
input/output parameter and returns an array of output values for an input/output or output parameter.

cbValueMax Argument
For character and binary C data, the cbValueMax argument specifies the length of the rgbValue buffer (if
it is a single element) or the length of an element in the rgbValue array (if the application calls
SQLParamOptions to specify multiple values for each parameter). If the application specifies multiple
values, cbValueMax is used to determine the location of values in the rgbValue array, both on input and
on output. For input/output and output parameters, it is used to determine whether to truncate character
and binary C data on output:

For character C data, if the number of bytes available to return is greater than or equal to
cbValueMax, the data in rgbValue is truncated to cbValueMax - 1 bytes and is null-terminated by the
driver.

For binary C data, if the number of bytes available to return is greater than cbValueMax, the data
in rgbValue is truncated to cbValueMax bytes.

For all other types of C data, the cbValueMax argument is ignored. The length of the rgbValue buffer (if it
is a single element) or the length of an element in the rgbValue array (if the application calls
SQLParamOptions to specify multiple values for each parameter) is assumed to be the length of the C
data type.

Note      When an ODBC 1.0 application calls SQLSetParam in an ODBC 2.0 driver, the Driver Manager
converts this to a call to SQLBindParameter in which the cbValueMax argument is always
SQL_SETPARAM_VALUE_MAX. Because the Driver Manager returns an error if an ODBC 2.0
application sets cbValueMax to SQL_SETPARAM_VALUE_MAX, an ODBC 2.0 driver can use this to
determine when it is called by an ODBC 1.0 application.
When an ODBC 2.0 application calls SQLBindParameter in an ODBC 1.0 driver, the Driver Manager
converts this to a call to SQLSetParam and discards the cbValueMax argument.
In SQLSetParam, the way in which an application specifies the length of the rgbValue buffer so that the
driver can return character or binary data and the way in which an application sends an array of
character or binary parameter values to the driver are driver-defined. If an ODBC 2.0 application uses
this functionality in an ODBC 1.0 driver, it must use the semantics defined by that driver. If an ODBC 2.0
driver supported this functionality as an ODBC 1.0 driver, it must continue to support this functionality for
ODBC 1.0 applications.

pcbValue Argument

The pcbValue argument points to a buffer that, when SQLExecute or SQLExecDirect is called,
contains one of the following:

The length of the parameter value stored in rgbValue. This is ignored except for character or
binary C data.

SQL_NTS. The parameter value is a null-terminated string.
SQL_NULL_DATA. The parameter value is NULL.
SQL_DEFAULT_PARAM. A procedure is to use the default value of a parameter, rather than a

value retrieved from the application. This value is valid only in a procedure call, and then only if the
fParamType argument is SQL_PARAM_INPUT or SQL_PARAM_INPUT_OUTPUT. When pcbValue is
SQL_DEFAULT_PARAM, the fCType, fSqlType, cbColDef, ibScale, cbValueMax and rgbValue arguments
are ignored for input parameters and are used only to define the output parameter value for input/output
parameters.

Note      This value was introduced in ODBC 2.0.

The result of the SQL_LEN_DATA_AT_EXEC(length) macro. The data for the parameter will be
sent with SQLPutData. If the fSqlType argument is SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a
long, data source-specific data type and the driver returns "Y" for the SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo, length is the number of bytes of data to be sent for the parameter;
otherwise, length must be a nonnegative value and is ignored. For more information, see "Passing
Parameter Values."

For example, to specify that 10,000 bytes of data will be sent with SQLPutData for an
SQL_LONGVARCHAR parameter, an application sets pcbValue to
SQL_LEN_DATA_AT_EXEC(10000).

Note      This macro was introduced in ODBC 2.0.

SQL_DATA_AT_EXEC. The data for the parameter will be sent with SQLPutData. This value is
used by ODBC 2.0 applications when calling ODBC 1.0 drivers and by ODBC 1.0 applications when
calling ODBC 2.0 drivers. For more information, see Passing Parameter Values.

If pcbValue is a null pointer, the driver assumes that all input parameter values are non-NULL and that
character and binary data are null-terminated. If fParamType is SQL_PARAM_OUTPUT and rgbValue
and pcbValue are both null pointers, the driver discards the output value.

Note      Application developers are strongly discouraged from specifying a null pointer for pcbValue
when the data type of the parameter is SQL_C_BINARY. For SQL_C_BINARY data, a driver sends only
the data preceding an occurrence of the null-termination character, 0x00. To ensure that a driver does
not unexpectedly truncate SQL_C_BINARY data, pcbValue should contain a pointer to a valid length
value.

If the fParamType argument is SQL_PARAM_INPUT_OUTPUT or SQL_PARAM_OUTPUT, pcbValue
points to a buffer in which the driver returns SQL_NULL_DATA, the number of bytes available to return
in rgbValue (excluding the null termination byte of character data), or SQL_NO_TOTAL if the number of
bytes available to return cannot be determined. If the procedure returns one or more result sets, the
pcbValue buffer is not guaranteed to be set until all results have been fetched.
If the application calls SQLParamOptions to specify multiple values for each parameter, pcbValue
points to an array of SDWORD values. These can be any of the values listed earlier in this section and
are processed with a single SQL statement.

Passing Parameter Values
An application can pass the value for a parameter either in the rgbValue buffer or with one or more calls
to SQLPutData. Parameters whose data is passed with SQLPutData are known as data-at-execution
parameters. These are commonly used to send data for SQL_LONGVARBINARY and
SQL_LONGVARCHAR parameters and can be mixed with other parameters.
To pass parameter values, an application:
1. Calls SQLBindParameter for each parameter to bind buffers for the parameter's value (rgbValue

argument) and length (pcbValue argument). For data-at-execution parameters, rgbValue is an
application-defined 32-bit value such as a parameter number or a pointer to data. The value will be

returned later and can be used to identify the parameter.
2. Places values for input and input/output parameters in the rgbValue and pcbValue buffers:

For normal parameters, the application places the parameter value in the rgbValue buffer and the
length of that value in the pcbValue buffer.

For data-at-execution parameters, the application places the result of the
SQL_LEN_DATA_AT_EXEC(length) macro (when calling an ODBC 2.0 driver) or SQL_DATA_AT_EXEC
(when calling an ODBC 1.0 driver) in the pcbValue buffer.
3. Calls SQLExecute or SQLExecDirect to execute the SQL statement.

If there are no data-at-execution parameters, the process is complete.
If there are any data-at-execution parameters, the function returns SQL_NEED_DATA.

4. Calls SQLParamData to retrieve the application-defined value specified in the rgbValue argument for
the first data-at-execution parameter to be processed.

Note      Although data-at-execution parameters are similar to data-at-execution columns, the value
returned by SQLParamData is different for each.
Data-at-execution parameters are parameters in an SQL statement for which data will be sent with
SQLPutData when the statement is executed with SQLExecDirect or SQLExecute. They are bound
with SQLBindParameter. The value returned by SQLParamData is a 32-bit value passed to
SQLBindParameter in the rgbValue argument.
Data-at-execution columns are columns in a rowset for which data will be sent with SQLPutData
when a row is updated or added with SQLSetPos. They are bound with SQLBindCol. The value
returned by SQLParamData is the address of the row in the rgbValue buffer that is being processed.

5. Calls SQLPutData one or more times to send data for the parameter. More than one call is needed if
the data value is larger than the rgbValue buffer specified in SQLPutData; note that multiple calls to
SQLPutData for the same parameter are allowed only when sending character C data to a column
with a character, binary, or data source-specific data type or when sending binary C data to a column
with a character, binary, or data source-specific data type.

6. Calls SQLParamData again to signal that all data has been sent for the parameter.

If there are more data-at-execution parameters, SQLParamData returns SQL_NEED_DATA and
the application-defined value for the next data-at-execution parameter to be processed. The application
repeats steps 5 and 6.

If there are no more data-at-execution parameters, the process is complete. If the statement was
successfully executed, SQLParamData returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO; if the
execution failed, it returns SQL_ERROR. at this point, SQLParamData can return any SQLSTATE that
can be returned by the function used to execute the statement (SQLExecDirect or SQLExecute).

Output values for any input/output or output parameters will be available in the rgbValue and
pcbValue buffers after the application retrieves any result sets generated by the statement.

After SQLExecute or SQLExecDirect returns SQL_NEED_DATA, and before data is sent for all data-at-
execution parameters, the statement is canceled, or an error occurs in SQLParamData or SQLPutData,
the application can only call SQLCancel, SQLGetFunctions, SQLParamData, or SQLPutData with the
hstmt or the hdbc associated with the hstmt. If it calls any other function with the hstmt or the hdbc
associated with the hstmt, the function returns SQL_ERROR and SQLSTATE S1010 (Function
sequence error).
If the application calls SQLCancel while the driver still needs data for data-at-execution parameters, the
driver cancels statement execution; the application can then call SQLExecute or SQLExecDirect again.
If the application calls SQLParamData or SQLPutData after canceling the statement, the function
returns SQL_ERROR and SQLSTATE S1008 (Operation canceled).

Conversion of Calls to and from SQLSetParam
When an ODBC 1.0 application calls SQLSetParam in an ODBC 2.0 driver, the ODBC 2.0 Driver
Manager maps the call as follows:

Call by ODBC 1.0 Application Call to ODBC 2.0 Driver
SQLSetParam(
 hstmt, ipar,

SQLBindParameter(
 hstmt, ipar,

 fCType, fSqlType,
cbColDef, ibScale,
 rgbValue,
 pcbValue);

SQL_PARAM_INPUT_OUTPUT,
 fCType, fSqlType,
cbColDef, ibScale,
 rgbValue,
SQL_SETPARAM_VALUE_MAX,
 pcbValue);

When an ODBC 2.0 application calls SQLBindParameter in an ODBC 1.0 driver, the ODBC 2.0 Driver
Manager maps the calls as follows:

Call by ODBC 2.0 Application Call to ODBC 1.0 Driver
SQLBindParameter(
 hstmt, ipar, fParamType,
 fCType, fSqlType,
cbColDef,
ibScale,
 rgbValue, cbValueMax,
pcbValue);

SQLSetParam(
 hstmt, ipar,
 fCType, fSqlType,
cbColDef,
ibScale,
 rgbValue, pcbValue);

Code Example
In the following example, an application prepares an SQL statement to insert data into the EMPLOYEE
table. The SQL statement contains parameters for the NAME, AGE, and BIRTHDAY columns. For each
parameter in the statement, the application calls SQLBindParameter to specify the ODBC C data type
and the SQL data type of the parameter and to bind a buffer to each parameter. For each row of data,
the application assigns data values to each parameter and calls SQLExecute to execute the statement.
For more code examples, see SQLParamOptions, SQLProcedures, SQLPutData, and SQLSetPos.

#define NAME_LEN 30

UCHAR szName[NAME_LEN];

SWORD sAge;

SDWORD cbName = SQL_NTS, cbAge = 0, cbBirthday = 0;

DATE_STRUCT dsBirthday;

retcode = SQLPrepare(hstmt, "INSERT INTO EMPLOYEE (NAME, AGE, BIRTHDAY)
VALUES (?, ?, ?)", SQL_NTS);

if (retcode == SQL_SUCCESS) {

/* Specify data types and buffers. */

/* for Name, Age, Birthday parameter data. */

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, NAME_LEN,
0, szName, 0, &cbName);

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT, SQL_SMALLINT, 0,
0, &sAge, 0, &cbAge);

SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_DATE, SQL_DATE, 0, 0,
&dsBirthday, 0, &cbBirthday);

strcpy(szName, "Smith, John D."); /* Specify first row of */

sAge = 40; /* parameter data */

dsBirthday.year = 1952;

dsBirthday.month = 2;

dsBirthday.day = 29;

retcode = SQLExecute(hstmt); /* Execute statement with */

 /* first row */

strcpy(szName, "Jones, Bob K."); /* Specify second row of */

sAge = 52; /* parameter data */

dsBirthday.year = 1940;

dsBirthday.month = 3;

dsBirthday.day = 31;

SQLExecute(hstmt); /* Execute statement with */

 /* second row */

}

Related Functions
SQLDescribeParam (extension)
SQLExecDirect
SQLExecute
SQLNumParams (extension)
SQLParamData (extension)
SQLParamOptions (extension)
SQLPutData (extension)

SQLBrowseConnect (Level 2, ODBC 1.0)
Code Example Related Functions

SQLBrowseConnect supports an iterative method of discovering and enumerating the attributes and
attribute values required to connect to a data source. Each call to SQLBrowseConnect returns
successive levels of attributes and attribute values. When all levels have been enumerated, a
connection to the data source is completed and a complete connection string is returned by
SQLBrowseConnect. A return code of SQL_SUCCESS or SQL_SUCCESS_WITH_INFO indicates that
all connection information has been specified and the application is now connected to the data source.

Syntax
RETCODE SQLBrowseConnect(hdbc, szConnStrIn, cbConnStrIn, szConnStrOut, cbConnStrOutMax,
pcbConnStrOut)
The SQLBrowseConnect function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
UCHAR FAR * szConnStrIn Input Browse request connection

string (see szConnStrIn
Argument in "Comments").

SWORD cbConnStrIn Input Length of szConnStrIn.
UCHAR FAR * szConnStrOut Output Pointer to storage for the

browse result connection
string (see szConnStrOut
Argument in "Comments").

SWORD cbConnStrOutMax Input Maximum length of the
szConnStrOut buffer.

SWORD FAR * pcbConnStrOut Output The total number of bytes
(excluding the null termination
byte) available to return in
szConnStrOut. If the number
of bytes available to return is
greater than or equal to
cbConnStrOutMax, the
connection string in
szConnStrOut is truncated to
cbConnStrOutMax - 1 bytes.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLBrowseConnect returns SQL_ERROR, SQL_SUCCESS_WITH_INFO, or
SQL_NEED_DATA, an associated SQLSTATE value may be obtained by calling SQLError. The
following table lists the SQLSTATE values commonly returned by SQLBrowseConnect and explains
each one in the context of this function; the notation "(DM)" precedes the descriptions of SQLSTATEs
returned by the Driver Manager. The return code associated with each SQLSTATE value is
SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szConnStrOut was not large
enough to return entire browse result
connection string, so the string was
truncated. The argument
pcbConnStrOut contains the length of

the untruncated browse result
connection string. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S00 Invalid connection
string attribute

An invalid attribute keyword was
specified in the browse request
connection string (szConnStrIn).
(Function returns SQL_NEED_DATA.)
An attribute keyword was specified in
the browse request connection string
(szConnStrIn) that does not apply to the
current connection level. (Function
returns SQL_NEED_DATA.)

08001 Unable to connect
to data source

The driver was unable to establish a
connection with the data source.

08002 Connection in use (DM) The specified hdbc had already
been used to establish a connection
with a data source and the connection
was open.

08004 Data source
rejected
establishment of
connection

The data source rejected the
establishment of the connection for
implementation defined reasons.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was attempting to connect failed
before the function completed
processing.

28000 Invalid authorization
specification

Either the user identifier or the
authorization string or both as specified
in the browse request connection string
(szConnStrIn) violated restrictions
defined by the data source.

IM001 Driver does not
support this function

(DM) The driver corresponding to the
specified data source name does not
support the function.

IM002 Data source not
found and no
default driver
specified

(DM) The data source name specified in
the browse request connection string
(szConnStrIn) was not found in the
ODBC.INI file or registry nor was there a
default driver specification.
(DM) The ODBC.INI file could not be
found.

IM003 Specified driver
could not be loaded

(DM) The driver listed in the data source
specification in the ODBC.INI file or
registry, or specified by the DRIVER
keyword was not found or could not be
loaded for some other reason.

IM004 Driver's
SQLAllocEnv failed

(DM) During SQLBrowseConnect, the
Driver Manager called the driver's
SQLAllocEnv function and the driver
returned an error.

IM005 Driver's
SQLAllocConnect
failed

(DM) During SQLBrowseConnect, the
Driver Manager called the driver's
SQLAllocConnect function and the
driver returned an error.

IM006 Driver's (DM) During SQLBrowseConnect, the

SQLSetConnect-
Option failed

Driver Manager called the driver's
SQLSetConnectOption function and
the driver returned an error.

IM009 Unable to load
translation DLL

The driver was unable to load the
translation DLL that was specified for
the data source or for the connection.

IM010 Data source name
too long

(DM) The attribute value for the DSN
keyword was longer than
SQL_MAX_DSN_LENGTH characters.

IM011 Driver name too
long

(DM) The attribute value for the DRIVER
keyword was longer than 255
characters.

IM012 DRIVER keyword
syntax error

(DM) The keyword-value pair for the
DRIVER keyword contained a syntax
error.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to
allocate memory required to support
execution or completion of the function.
The driver was unable to allocate
memory required to support execution
or completion of the function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbConnStrIn was less than 0 and was
not equal to SQL_NTS.
(DM) The value specified for argument
cbConnStrOutMax was less than 0.

S1T00 Timeout expired The timeout period expired before the
connection to the data source
completed. The timeout period is set
through SQLSetConnectOption,
SQL_LOGIN_TIMEOUT.

Comments
szConnStrIn Argument
A browse request connection string has the following syntax:
connection-string ::= attribute[;] | attribute; connection-string
attribute ::= attribute-keyword=attribute-value | DRIVER={attribute-value}
(The braces are literal; the application must specify them.)
attribute-keyword ::= DSN | UID | PWD
  | driver-defined-attribute-keyword
attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier
where character-string has zero or more characters; identifier has one or more characters; attribute-
keyword is case insensitive; attribute-value may be case sensitive; and the value of the DSN keyword
does not consist solely of blanks. Because of connection string and initialization file grammar, keywords
and attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because of the registry
grammar, keywords and data source names cannot contain the backslash (\) character.

Note      The DRIVER keyword was introduced in ODBC 2.0 and is not supported by ODBC 1.0 drivers.

If any keywords are repeated in the browse request connection string, the driver uses the value
associated with the first occurrence of the keyword. If the DSN and DRIVER keywords are included in
the same browse request connection string, the Driver Manager and driver use whichever keyword
appears first.

szConnStrOut Argument
The browse result connection string is a list of connection attributes. A connection attribute consists of
an attribute keyword and a corresponding attribute value. The browse result connection string has the
following syntax:
connection-string ::= attribute[;] | attribute; connection-string
attribute ::= [*]attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
  | driver-defined-attribute-keyword
ODBC-attribute-keyword = {UID | PWD}[:localized-identifier]
driver-defined-attribute-keyword ::= identifer[:localized-identifier]
attribute-value ::= {attribute-value-list} | ?
(The braces are literal; they are returned by the driver.)
attribute-value-list ::= character-string | character-string, attribute-value-list
where character-string has zero or more characters; identifier and localized-identifier have one or more
characters;attribute-keyword is case insensitive; and attribute-value may be case sensitive. Because of
connection string and initialization file grammar, keywords, localized identifiers, and attribute values that
contain the characters []{}(),;?*=!@ should be avoided. Because of the registry grammar, keywords and
data source names cannot contain the backslash (\) character.
The browse result connection string syntax is used according to the following semantic rules:

If an asterisk (*) precedes an attribute-keyword, the attribute is optional, and may be omitted in
the next call to SQLBrowseConnect.

The attribute keywords UID and PWD have the same meaning as defined in SQLDriverConnect.
A driver-defined-attribute-keyword names the kind of attribute for which an attribute value may be

supplied. For example, it might be SERVER, DATABASE, HOST, or DBMS.
ODBC-attribute-keywords and driver-defined-attribute-keywords include a localized or user-

friendly version of the keyword. This might be used by applications as a label in a dialog box. However,
UID, PWD, or the identifier alone must be used when passing a browse request string to the driver.

The {attribute-value-list} is an enumeration of actual values valid for the corresponding attribute-
keyword. Note that the braces ({}) do not indicate a list of choices; they are returned by the driver. For
example, it might be a list of server names or a list of database names.

If the attribute-value is a single question mark (?), a single value corresponds to the attribute-
keyword. For example, UID=JohnS; PWD=Sesame.

Each call to SQLBrowseConnect returns only the information required to satisfy the next level of
the connection process. The driver associates state information with the connection handle so that the
context can always be determined on each call.

Using SQLBrowseConnect
SQLBrowseConnect requires an allocated hdbc. The Driver Manager loads the driver that was
specified in or that corresponds to the data source name specified in the initial browse request
connection string; for information on when this occurs, see the "Comments" section in SQLConnect. It
may establish a connection with the data source during the browsing process. If SQLBrowseConnect
returns SQL_ERROR, outstanding connections are terminated and the hdbc is returned to an
unconnected state.
When SQLBrowseConnect is called for the first time on an hdbc, the browse request connection string
must contain the DSN keyword or the DRIVER keyword. If the browse request connection string
contains the DSN keyword, the Driver Manager locates a corresponding data source specification in the
ODBC.INI file or registry:

If the Driver Manager finds the corresponding data source specification, it loads the associated
driver DLL; the driver can retrieve information about the data source from the ODBC.INI file or registry.

If the Driver Manager cannot find the corresponding data source specification, it locates the
default data source specification and loads the associated driver DLL; the driver can retrieve information

about the default data source from the ODBC.INI file or registry.
If the Driver Manager cannot find the corresponding data source specification and there is no

default data source specification, it returns SQL_ERROR with SQLSTATE IM002 (Data source not found
and no default driver specified).

If the browse request connection string contains the DRIVER keyword, the Driver Manager loads the
specified driver; it does not attempt to locate a data source in the ODBC.INI file or registry. Because the
DRIVER keyword does not use information from the ODBC.INI file or registry, the driver must define
enough keywords so that a driver can connect to a data source using only the information in the browse
request connection strings.
On each call to SQLBrowseConnect, the application specifies the connection attribute values in the
browse request connection string. The driver returns successive levels of attributes and attribute values
in the browse result connection string; it returns SQL_NEED_DATA as long as there are connection
attributes that have not yet been enumerated in the browse request connection string. The application
uses the contents of the browse result connection string to build the browse request connection string
for the next call to SQLBrowseConnect. Note that the application cannot use the contents of previous
browse result connection strings when building the current browse request connection string; that is, it
cannot specify different values for attributes set in previous levels.
When all levels of connection and their associated attributes have been enumerated, the driver returns
SQL_SUCCESS, the connection to the data source is complete, and a complete connection string is
returned to the application. The connection string is suitable to use in conjunction with
SQLDriverConnect with the SQL_DRIVER_NOPROMPT option to establish another connection.
SQLBrowseConnect also returns SQL_NEED_DATA if there are recoverable, nonfatal errors during the
browse process, for example, an invalid password supplied by the application or an invalid attribute
keyword supplied by the application. When SQL_NEED_DATA is returned and the browse result
connection string is unchanged, an error has occurred and the application must call SQLError to return
the SQLSTATE for browse-time errors. This permits the application to correct the attribute and continue
the browse.
An application may terminate the browse process at any time by calling SQLDisconnect. The driver will
terminate any outstanding connections and return the hdbc to an unconnected state.
If a driver supports SQLBrowseConnect, the driver keyword section of the ODBC.INF file for the driver
must contain the ConnectFunctions keyword with the third character set to "Y".

Code Example
In the following example, an application calls SQLBrowseConnect repeatedly. Each time
SQLBrowseConnect returns SQL_NEED_DATA, it passes back information about the data it needs in
szConnStrOut. The application passes szConnStrOut to its routine GetUserInput (not shown).
GetUserInput parses the information, builds and displays a dialog box, and returns the information
entered by the user in szConnStrIn. The application passes the user's information to the driver in the
next call to SQLBrowseConnect. After the application has provided all necessary information for the
driver to connect to the data source, SQLBrowseConnect returns SQL_SUCCESS and the application
proceeds.
For example, to connect to the data source My Source, the following actions might occur. First, the
application passes the following string to SQLBrowseConnect:

"DSN=My Source"

The Driver Manager loads the driver associated with the data source My Source. It then calls the driver's
SQLBrowseConnect function with the same arguments it received from the application. The driver
returns the following string in szConnStrOut.

"HOST:Server={red,blue,green};UID:ID=?;PWD:Password=?"

The application passes this string to its GetUserInput routine, which builds a dialog box that asks the
user to select the red, blue, or green server, and to enter a user ID and password. The routine passes
the following user-specified information back in szConnStrIn, which the application passes to
SQLBrowseConnect:

"HOST=red;UID=Smith;PWD=Sesame"

SQLBrowseConnect uses this information to connect to the red server as Smith with the password
Sesame, then returns the following string in szConnStrOut:

"*DATABASE:Database={master,model,empdata}"

The application passes this string to its GetUserInput routine, which builds a dialog box that asks the
user to select a database. The user selects empdata and the application calls SQLBrowseConnect a
final time with the string:

"DATABASE=empdata"

This is the final piece of information the driver needs to connect to the data source;
SQLBrowseConnect returns SQL_SUCCESS and szConnStrOut contains the completed connection
string:

"DSN=My Source;HOST=red;UID=Smith;PWD=Sesame;DATABASE=empdata"

#define BRWS_LEN 100

HENV henv;

HDBC hdbc;

HSTMT hstmt;

RETCODE retcode;

UCHAR szConnStrIn[BRWS_LEN], szConnStrOut[BRWS_LEN];

SWORD cbConnStrOut;

retcode = SQLAllocEnv(&henv); /* Environment handle */

if (retcode == SQL_SUCCESS) {

retcode = SQLAllocConnect(henv, &hdbc); /* Connection handle */

if (retcode == SQL_SUCCESS) {

/* Call SQLBrowseConnect until it returns a value other than */

/* SQL_NEED_DATA (pass the data source name the first time). */

/* If SQL_NEED_DATA is returned, call GetUserInput (not */

/* shown) to build a dialog from the values in szConnStrOut. */

/* The user-supplied values are returned in szConnStrIn, */

/* which is passed in the next call to SQLBrowseConnect. */

lstrcpy(szConnStrIn, "DSN=MyServer");

do {

retcode = SQLBrowseConnect(hstmt, szConnStrIn, SQL_NTS, szConnStrOut,
BRWS_LEN, &cbConnStrOut)

if (retcode == SQL_NEED_DATA)

GetUserInput(szConnStrOut, szConnStrIn);

} while (retcode == SQL_NEED_DATA);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

/* Process data after successful connection */

retcode = SQLAllocStmt(hdbc, &hstmt);

if (retcode == SQL_SUCCESS) {

...;

...;

...;

SQLFreeStmt(hstmt, SQL_DROP);

}

SQLDisconnect(hdbc);

}

}

SQLFreeConnect(hdbc);

}

SQLFreeEnv(henv);

Related Functions
SQLAllocConnect
SQLConnect
SQLDisconnect
SQLDriverConnect (extension)
SQLDrivers (extension)
SQLFreeConnect

SQLCancel (Core, ODBC 1.0)
Related Functions

SQLCancel cancels the processing on an hstmt.

Syntax
RETCODE SQLCancel(hstmt)
The SQLCancel function accepts the following argument.

Type Argument Use Description
HSTMT hstmt Input Statement handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLCancel returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLCancel and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

70100 Operation aborted The data source was unable to process
the cancel request.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

Comments
SQLCancel can cancel the following types of processing on an hstmt:

A function running asynchronously on the hstmt.
A function on an hstmt that needs data.
A function running on the hstmt on another thread.

If an application calls SQLCancel when no processing is being done on the hstmt, SQLCancel has the
same effect as SQLFreeStmt with the SQL_CLOSE option; this behavior is defined only for
completeness and applications should call SQLFreeStmt to close cursors.

Canceling Asynchronous Processing
After an application calls a function asynchronously, it calls the function repeatedly to determine whether
it has finished processing. If the function is still processing, it returns SQL_STILL_EXECUTING. If the
function has finished processing, it returns a different code.
After any call to the function that returns SQL_STILL_EXECUTING, an application can call SQLCancel
to cancel the function. If the cancel request is successful, the driver returns SQL_SUCCESS. This
message does not indicate that the function was actually canceled; it indicates that the cancel request
was processed. When or if the function is actually canceled is driver- and data source-dependent. The
application must continue to call the original function until the return code is not

SQL_STILL_EXECUTING. If the function was successfully canceled, the return code is SQL_ERROR
and SQLSTATE S1008 (Operation canceled). If the function completed its normal processing, the return
code is SQL_SUCCESS or SQL_SUCCESS_WITH_INFO if the function succeeded or SQL_ERROR
and a SQLSTATE other than S1008 (Operation canceled) if the function failed.

Canceling Functions that Need Data
After SQLExecute or SQLExecDirect returns SQL_NEED_DATA and before data has been sent for all
data-at-execution parameters, an application can call SQLCancel to cancel the statement execution.
After the statement has been canceled, the application can call SQLExecute or SQLExecDirect again.
For more information, see SQLBindParameter.
After SQLSetPos returns SQL_NEED_DATA and before data has been sent for all data-at-execution
columns, an application can call SQLCancel to cancel the operation. After the operation has been
canceled, the application can call SQLSetPos again; canceling does not affect the cursor state or the
current cursor position. For more information, see SQLSetPos.

Canceling Functions in Multithreaded Applications
In a multithreaded application, the application can cancel a function that is running synchronously on an
hstmt. To cancel the function, the application calls SQLCancel with the same hstmt as that used by the
target function, but on a different thread. As in canceling a function running asynchronously, the return
code of the SQLCancel only indicates whether the driver processed the request successfully. The return
code of the original function indicates whether it completed normally or was canceled.

Related Functions
SQLBindParameter
SQLExecDirect
SQLExecute
SQLFreeStmt
SQLSetPos (extension)
SQLParamData (extension)
SQLPutData (extension)

SQLColAttributes (Core, ODBC 1.0)
Related Functions

SQLColAttributes returns descriptor information for a column in a result set; it cannot be used to return
information about the bookmark column (column 0). Descriptor information is returned as a character
string, a 32-bit descriptor-dependent value, or an integer value.

Syntax
RETCODE SQLColAttributes(hstmt, icol, fDescType, rgbDesc, cbDescMax, pcbDesc, pfDesc)
The SQLColAttributes function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD icol Input Column number of result data,

ordered sequentially from left to right,
starting
at 1. Columns may be described in
any order.

UWORD fDescType Input A valid descriptor type (see
"Comments").

PTR rgbDesc Output Pointer to storage for the descriptor
information. The format of the
descriptor information returned
depends on the fDescType.

SWORD cbDescMax Input Maximum length of the rgbDesc
buffer.

SWORD FAR * pcbDesc Output Total number of bytes (excluding the
null termination byte for character
data) available to return in rgbDesc.
For character data, if the number of
bytes available to return is greater
than or equal to cbDescMax, the
descriptor information in rgbDesc is
truncated to cbDescMax - 1 bytes and
is null-terminated by the driver.
For all other types of data, the value
of cbValueMax is ignored and the
driver assumes the size of rgbValue is
32 bits.

SDWORD FAR
*

pfDesc Output Pointer to an integer value to contain
descriptor information for numeric
descriptor types, such as
SQL_COLUMN_LENGTH.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLColAttributes returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLColAttributes and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbDesc was not large
enough to return the entire string value,
so the string value was truncated. The
argument pcbDesc contains the length
of the untruncated string value.
(Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement associated with the hstmt
did not return a result set. There were
no columns to describe.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1002 Invalid column
number

(DM) The value specified for the
argument icol was 0 and the argument
fDescType was not
SQL_COLUMN_COUNT.
The value specified for the argument
icol was greater than the number of
columns in the result set and the
argument fDescType was not
SQL_COLUMN_COUNT.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) The function was called prior to
calling SQLPrepare or SQLExecDirect
for the hstmt.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for the
argument cbDescMax was less than 0.

S1091 Descriptor type out (DM) The value specified for the

of range argument fDescType was in the block of
numbers reserved for ODBC descriptor
types but was not valid for the version of
ODBC supported by the driver (see
"Comments").

S1C00 Driver not capable The value specified for the argument
fDescType was in the range of numbers
reserved for driver-specific descriptor
types but was not supported by the
driver.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
information. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLColAttributes can return any SQLSTATE that can be returned by SQLPrepare or SQLExecute
when called after SQLPrepare and before SQLExecute depending on when the data source evaluates
the SQL statement associated with the hstmt.

Comments
SQLColAttributes returns information either in pfDesc or in rgbDesc. Integer information is returned in
pfDesc as a 32-bit, signed value; all other formats of information are returned in rgbDesc. When
information is returned in pfDesc, the driver ignores rgbDesc, cbDescMax, and pcbDesc. When
information is returned in rgbDesc, the driver ignores pfDesc.
The currently defined descriptor types, the version of ODBC in which they were introduced, and the
arguments in which information is returned for them are shown below; it is expected that more descriptor
types will be defined to take advantage of different data sources. Descriptor types from 0 to 999 are
reserved by ODBC; driver developers must reserve values greater than or equal to
SQL_COLUMN_DRIVER_START for driver-specific use.
A driver must return a value for each of the descriptor types defined in the following table. If a descriptor
type does not apply to a driver or data source, then, unless otherwise stated, the driver returns 0 in
pcbDesc or an empty string in rgbDesc.

fDescType

Informa-
tion
returned
in Description

SQL_COLUMN_AUTO_INCREMEN
T
(ODBC 1.0)

pfDesc TRUE if the column is
autoincrement.
FALSE if the column is not
autoincrement or is not
numeric.
Auto increment is valid for
numeric data type columns
only. An application can insert
values into an autoincrement
column, but cannot update
values in the column.

SQL_COLUMN_CASE_SENSITIVE
(ODBC 1.0)

pfDesc TRUE if the column is treated
as case sensitive for
collations and comparisons.
FALSE if the column is not
treated as case sensitive for
collations and comparisons or
is noncharacter.

SQL_COLUMN_COUNT
(ODBC 1.0)

pfDesc Number of columns available
in the result set. The icol

argument is ignored.
SQL_COLUMN_DISPLAY_SIZE
(ODBC 1.0)

pfDesc Maximum number of
characters required to display
data from the column. For
more information on display
size, see Precision, Scale,
Length, and Display Size.

SQL_COLUMN_LABEL
(ODBC 2.0)

rgbDesc The column label or title. For
example, a column named
EmpName might be labeled
Employee Name.
If a column does not have a
label, the column name is
returned. If the column is
unlabeled and unnamed, an
empty string is returned.

SQL_COLUMN_LENGTH
(ODBC 1.0)

pfDesc The length in bytes of data
transferred on an
SQLGetData or SQLFetch
operation if SQL_C_DEFAULT
is specified. For numeric data,
this size may be different than
the size of the data stored on
the data source. For more
length information, see
Precision, Scale, Length, and
Display Size.

SQL_COLUMN_MONEY
(ODBC 1.0)

pfDesc TRUE if the column is money
data type.
FALSE if the column is not
money data type.

SQL_COLUMN_NAME
(ODBC 1.0)

rgbDesc The column name.
If the column is unnamed, an
empty string is returned.

SQL_COLUMN_NULLABLE
(ODBC 1.0)

pfDesc SQL_NO_NULLS if the
column does not accept NULL
values.
SQL_NULLABLE if the
column accepts NULL values.
SQL_NULLABLE_UNKNOWN
if it is not known if the column
accepts NULL values.

SQL_COLUMN_OWNER_NAME
(ODBC 2.0)

rgbDesc The owner of the table that
contains the column. The
returned value is
implementation-defined if the
column is an expression or if
the column is part of a view. If
the data source does not
support owners or the owner
name cannot be determined,
an empty string is returned.

SQL_COLUMN_PRECISION
(ODBC 1.0)

pfDesc The precision of the column
on the data source. For more
information on precision, see
Precision, Scale, Length, and

Display Size.
SQL_COLUMN_QUALIFIER_NAME
(ODBC 2.0)

rgbDesc The qualifier of the table that
contains the column. The
returned value is
implementation-defined if the
column is an expression or if
the column is part of a view. If
the data source does not
support qualifiers or the
qualifier name cannot be
determined, an empty string is
returned.

SQL_COLUMN_SCALE
(ODBC 1.0)

pfDesc The scale of the column on
the data source. For more
information on scale, see
Precision, Scale, Length, and
Display Size.

SQL_COLUMN_SEARCHABLE
(ODBC 1.0)

pfDesc SQL_UNSEARCHABLE if the
column cannot be used in a
WHERE clause.
SQL_LIKE_ONLY if the
column can be used in a
WHERE clause only with the
LIKE predicate.
SQL_ALL_EXCEPT_LIKE if
the column can be used in a
WHERE clause with all
comparison operators except
LIKE.
SQL_SEARCHABLE if the
column can be used in a
WHERE clause with any
comparison operator.
Columns of type
SQL_LONGVARCHAR and
SQL_LONGVARBINARY
usually return
SQL_LIKE_ONLY.

SQL_COLUMN_TABLE_NAME
(ODBC 2.0)

rgbDesc The name of the table that
contains the column. The
returned value is
implementation-defined if the
column is an expression or if
the column is part of a view.
If the table name cannot be
determined, an empty string is
returned.

SQL_COLUMN_TYPE
(ODBC 1.0)

pfDesc SQL data type. This can be an
ODBC SQL data type or a
driver-specific SQL data type.
For a list of valid ODBC SQL
data types, see SQL Data
Types. For information about
driver-specific SQL data
types, see the driver's
documentation.

SQL_COLUMN_TYPE_NAME rgbDesc Data source-dependent data

(ODBC 1.0) type name; for example,
"CHAR", "VARCHAR",
"MONEY", "LONG
VARBINARY", or "CHAR ()
FOR BIT DATA".
If the type is unknown, an
empty string is returned.

SQL_COLUMN_UNSIGNED
(ODBC 1.0)

pfDesc TRUE if the column is
unsigned (or not numeric).
FALSE if the column is
signed.

SQL_COLUMN_UPDATABLE
(ODBC 1.0)

pfDesc Column is described by the
values for the defined
constants:
SQL_ATTR_READONLY
SQL_ATTR_WRITE
SQL_ATTR_READWRITE_U
NKNOWN
SQL_COLUMN_UPDATABLE
describes the updatability of
the column in the result set.
Whether a column is
updatable can be based on
the data type, user privileges,
and the definition of the result
set itself. If it is unclear
whether a column is
updatable,
SQL_ATTR_READWRITE_U
NKNOWN should be returned.

This function is an extensible alternative to SQLDescribeCol. SQLDescribeCol returns a fixed set of
descriptor information based on ANSI-89 SQL. SQLColAttributes allows access to the more extensive
set of descriptor information available in ANSI SQL-92 and DBMS vendor extensions.

Related Functions
SQLBindCol
SQLCancel
SQLDescribeCol
SQLExtendedFetch (extension)
SQLFetch

SQLColumnPrivileges (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLColumnPrivileges returns a list of columns and associated privileges for the specified table. The
driver returns the information as a result set on the specified hstmt.

Syntax
RETCODE SQLColumnPrivileges(hstmt, szTableQualifier, cbTableQualifier, szTableOwner,
cbTableOwner, szTableName, cbTableName, szColumnName, cbColumnName)
The SQLColumnPrivileges function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szTableQualifier Input Table qualifier. If a driver

supports qualifiers for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
UCHAR FAR * szTableOwner Input Owner name. If a driver

supports owners for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.
UCHAR FAR * szTableName Input Table name.
SWORD cbTableName Input Length of szTableName.
UCHAR FAR * szColumnName Input String search pattern for

column names.
SWORD cbColumnName Input Length of szColumnName.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLColumnPrivileges returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLColumnPrivileges and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch

had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name (see "Comments").

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
A string search pattern was specified for
the column name and the data source
does not support search patterns for
that argument.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver

or data source.
S1T00 Timeout expired The timeout period expired before the

data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLColumnPrivileges returns the results as a standard result set, ordered by TABLE_QUALIFIER,
TABLE_OWNER, TABLE_NAME, COLUMN_NAME, and PRIVILEGE. The following table lists the
columns in the result set.

Note      SQLColumnPrivileges might not return privileges for all columns. For example, a driver might
not return information about privileges for pseudo-columns, such as Oracle ROWID. Applications can
use any valid column, regardless of whether it is returned by SQLColumnPrivileges.

The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the TABLE_QUALIFIER, TABLE_OWNER,
TABLE_NAME, and COLUMN_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

Column Name Data Type Comments
TABLE_QUALIFIER Varchar(128) Table qualifier identifier; NULL if not

applicable to the data source. If a
driver supports qualifiers for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have qualifiers.

TABLE_OWNER Varchar(128) Table owner identifier; NULL if not
applicable to the data source. If a
driver supports owners for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

TABLE_NAME Varchar(128)
not NULL

Table identifier.

COLUMN_NAME Varchar(128)
not NULL

Column identifier.

GRANTOR Varchar(128) Identifier of the user who granted the
privilege; NULL if not applicable to the
data source.

GRANTEE Varchar(128)
not NULL

Identifier of the user to whom the
privilege was granted.

PRIVILEGE Varchar(128)
not NULL

Identifies the column privilege. May
be one of the following or others
supported by the data source when
implementation-defined:
SELECT: The grantee is permitted to
retrieve data for the column.
INSERT: The grantee is permitted to
provide data for the column in new
rows that are inserted into the
associated table.

UPDATE: The grantee is permitted to
update data in the column.
REFERENCES: The grantee is
permitted to refer to the column within
a constraint (for example, a unique,
referential, or table check constraint).

IS_GRANTABLE Varchar(3) Indicates whether the grantee is
permitted to grant the privilege to
other users; "YES", "NO", or NULL if
unknown or not applicable to the data
source.

The szColumnName argument accepts a search pattern.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions
SQLBindCol
SQLCancel
SQLColumns (extension)
SQLExtendedFetch (extension)
SQLFetch
SQLTablePrivileges (extension)
SQLTables (extension)

SQLColumns (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLColumns returns the list of column names in specified tables. The driver returns this information as
a result set on the specified hstmt.

Syntax
RETCODE SQLColumns(hstmt, szTableQualifier, cbTableQualifier, szTableOwner, cbTableOwner,
szTableName, cbTableName, szColumnName, cbColumnName)
The SQLColumns function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szTableQualifier Input Qualifier name. If a driver

supports qualifiers for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
UCHAR FAR * szTableOwner Input String search pattern for

owner names. If a driver
supports owners for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.
UCHAR FAR * szTableName Input String search pattern for table

names.
SWORD cbTableName Input Length of szTableName.
UCHAR FAR * szColumnName Input String search pattern for

column names.
SWORD cbColumnName Input Length of szColumnName.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLColumns returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLColumns and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name. The maximum length
of each qualifier or name may be
obtained by calling SQLGetInfo with the
fInfoType values (see "Comments").

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
A string search pattern was specified for
the table owner, table name, or column
name and the data source does not

support search patterns for one or more
of those arguments.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
This function is typically used before statement execution to retrieve information about columns for a
table or tables from the data source's catalog. Note by contrast, that the functions SQLColAttributes
and SQLDescribeCol describe the columns in a result set and that the function SQLNumResultCols
returns the number of columns in a result set.

Note    SQLColumns might not return all columns. For example, a driver might not return information
about pseudo-columns, such as Oracle ROWID. Applications can use any valid column, regardless of
whether it is returned by SQLColumns.

SQLColumns returns the results as a standard result set, ordered by TABLE_QUALIFIER,
TABLE_OWNER, and TABLE_NAME. The following table lists the columns in the result set. Additional
columns beyond column 12 (REMARKS) can be defined by the driver.
The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the TABLE_QUALIFIER, TABLE_OWNER,
TABLE_NAME, and COLUMN_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

Column Name Data Type Comments
TABLE_QUALIFIER Varchar(128) Table qualifier identifier; NULL if not

applicable to the data source. If a
driver supports qualifiers for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have qualifiers.

TABLE_OWNER Varchar(128) Table owner identifier; NULL if not
applicable to the data source. If a
driver supports owners for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

TABLE_NAME Varchar(128)
not NULL

Table identifier.

COLUMN_NAME Varchar(128)
not NULL

Column identifier.

DATA_TYPE Smallint not
NULL

SQL data type. This can be an ODBC
SQL data type or a driver-specific
SQL data type. For a list of valid
ODBC SQL data types, see SQL Data
Types. For information about driver-

specific SQL data types, see the
driver's documentation.

TYPE_NAME Varchar(128)
not NULL

Data source-dependent data type
name; for example, "CHAR",
"VARCHAR", "MONEY", "LONG
VARBINARY", or "CHAR () FOR BIT
DATA".

PRECISION Integer The precision of the column on the
data source. For precision
information, see Precision, Scale,
Length, and Display Size.

LENGTH Integer The length in bytes of data transferred
on an SQLGetData or SQLFetch
operation if SQL_C_DEFAULT is
specified. For numeric data, this size
may be different than the size of the
data stored on the data source. This
value is the same as the PRECISION
column for character or binary data.
For more information about length,
see Precision, Scale, Length, and
Display Size.

SCALE Smallint The scale of the column on the data
source. For more scale information,
see Precision, Scale, Length, and
Display Size. NULL is returned for
data types where scale is not
applicable.

RADIX Smallint For numeric data types, either 10 or 2.
If it is 10, the values in PRECISION
and SCALE give the number of
decimal digits allowed for the column.
For example, a DECIMAL(12,5)
column would return a RADIX of 10, a
PRECISION of 12, and a SCALE of 5;
A FLOAT column could return a
RADIX of 10, a PRECISION of 15 and
a SCALE of NULL.
If it is 2, the values in PRECISION
and SCALE give the number of bits
allowed in the column. For example, a
FLOAT column could return a RADIX
of 2, a PRECISION of 53, and a
SCALE of NULL.
NULL is returned for data types where
radix is not applicable.

NULLABLE Smallint not
NULL

SQL_NO_NULLS if the column does
not accept NULL values.
SQL_NULLABLE if the column
accepts NULL values.
SQL_NULLABLE_UNKNOWN if it is
not known if the column accepts
NULL values.

REMARKS Varchar(254) A description of the column.

The szTableOwner, szTableName, and szColumnName arguments accept search patterns.

Code Example
In the following example, an application declares storage locations for the result set returned by
SQLColumns. It calls SQLColumns to return a result set that describes each column in the
EMPLOYEE table. It then calls SQLBindCol to bind the columns in the result set to the storage
locations. Finally, the application fetches each row of data with SQLFetch and processes it.

#define STR_LEN 128+1

#define REM_LEN 254+1

/* Declare storage locations for result set data */

UCHAR szQualifier[STR_LEN], szOwner[STR_LEN];

UCHAR szTableName[STR_LEN], szColName[STR_LEN];

UCHAR szTypeName[STR_LEN], szRemarks[REM_LEN];

SDWORD Precision, Length;

SWORD DataType, Scale, Radix, Nullable;

/* Declare storage locations for bytes available to return */

SDWORD cbQualifier, cbOwner, cbTableName, cbColName;

SDWORD cbTypeName, cbRemarks, cbDataType, cbPrecision;

SDWORD cbLength, cbScale, cbRadix, cbNullable;

/* All qualifiers, all owners, EMPLOYEE table, all columns */

retcode = SQLColumns(hstmt, NULL, 0, NULL, 0, "EMPLOYEE", SQL_NTS, NULL, 0);

if (retcode == SQL_SUCCESS) {

/* Bind columns in result set to storage locations */

SQLBindCol(hstmt, 1, SQL_C_CHAR, szQualifier, STR_LEN,&cbQualifier);

SQLBindCol(hstmt, 2, SQL_C_CHAR, szOwner, STR_LEN, &cbOwner);

SQLBindCol(hstmt, 3, SQL_C_CHAR, szTableName, STR_LEN,&cbTableName);

SQLBindCol(hstmt, 4, SQL_C_CHAR, szColName, STR_LEN, &cbColName);

SQLBindCol(hstmt, 5, SQL_C_SSHORT, &DataType, 0, &cbDataType);

SQLBindCol(hstmt, 6, SQL_C_CHAR, szTypeName, STR_LEN, &cbTypeName);

SQLBindCol(hstmt, 7, SQL_C_SLONG, &Precision, 0, &cbPrecision);

SQLBindCol(hstmt, 8, SQL_C_SLONG, &Length, 0, &cbLength);

SQLBindCol(hstmt, 9, SQL_C_SSHORT, &Scale, 0, &cbScale);

SQLBindCol(hstmt, 10, SQL_C_SSHORT, &Radix, 0, &cbRadix);

SQLBindCol(hstmt, 11, SQL_C_SSHORT, &Nullable, 0, &cbNullable);

SQLBindCol(hstmt, 12, SQL_C_CHAR, szRemarks, REM_LEN, &cbRemarks);

while(TRUE) {

retcode = SQLFetch(hstmt);

if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();

}

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

...; /* Process fetched data */

} else {

break;

}

}

}

Related Functions
SQLBindCol
SQLCancel
SQLColumnPrivileges (extension)
SQLExtendedFetch (extension)
SQLFetch
SQLStatistics (extension)
SQLTables (extension)
SQLTablePrivileges (extension)

SQLConnect (Core, ODBC 1.0)
Code Example Related Functions

SQLConnect loads a driver and establishes a connection to a data source. The connection handle
references storage of all information about the connection, including status, transaction state, and error
information.

Syntax
RETCODE SQLConnect(hdbc, szDSN, cbDSN, szUID, cbUID, szAuthStr, cbAuthStr)
The SQLConnect function accepts the following arguments.

Type Argument Use Description
HDBC hdbc Input Connection handle.
UCHAR FAR * szDSN Input Data source name.
SWORD cbDSN Input Length of szDSN.
UCHAR FAR * szUID Input User identifier.
SWORD cbUID Input Length of szUID.
UCHAR FAR * szAuthStr Input Authentication string (typically

the password).
SWORD cbAuthStr Input Length of szAuthStr.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLConnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLConnect and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect
to data source

The driver was unable to establish a
connection with the data source.

08002 Connection in use (DM) The specified hdbc had already
been used to establish a connection
with a data source and the connection
was still open.

08004 Data source
rejected
establishment of
connection

The data source rejected the
establishment of the connection for
implementation-defined reasons.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was attempting to connect failed
before the function completed
processing.

28000 Invalid authorization
specification

The value specified for the argument
szUID or the value specified for the
argument szAuthStr violated restrictions
defined by the data source.

IM001 Driver does not
support this function

(DM) The driver specified by the data
source name does not support the
function.

IM002 Data source not (DM) The data source name specified in

found and no
default driver
specified

the argument szDSN was not found in
the ODBC.INI file or registry, nor was
there a default driver specification.
(DM) The ODBC.INI file could not be
found.

IM003 Specified driver
could not be loaded

(DM) The driver listed in the data source
specification in the ODBC.INI file or
registry was not found or could not be
loaded for some other reason.

IM004 Driver's
SQLAllocEnv failed

(DM) During SQLConnect, the Driver
Manager called the driver's
SQLAllocEnv function and the driver
returned an error.

IM005 Driver's
SQLAllocConnect
failed

(DM) During SQLConnect, the Driver
Manager called the driver's
SQLAllocConnect function and the
driver returned an error.

IM006 Driver's
SQLSetConnect-
Option failed

(DM) During SQLConnect, the Driver
Manager called the driver's
SQLSetConnectOption function and
the driver returned an error. (Function
returns SQL_SUCCESS_WITH_INFO).

IM009 Unable to load
translation DLL

The driver was unable to load the
translation DLL that was specified for
the data source.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to
allocate memory required to support
execution or completion of the function.
The driver was unable to allocate
memory required to support execution
or completion of the function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbDSN was less than 0, but not equal to
SQL_NTS.
(DM) The value specified for argument
cbDSN exceeded the maximum length
for a data source name.
(DM) The value specified for argument
cbUID was less than 0, but not equal to
SQL_NTS.
(DM) The value specified for argument
cbAuthStr was less than 0, but not equal
to SQL_NTS.

S1T00 Timeout expired The timeout period expired before the
connection to the data source
completed. The timeout period is set
through SQLSetConnectOption,
SQL_LOGIN_TIMEOUT.

Comments

The Driver Manager does not load a driver until the application calls a function (SQLConnect,
SQLDriverConnect, or SQLBrowseConnect) to connect to the driver. Until that point, the Driver
Manager works with its own handles and manages connection information. When the application calls a
connection function, the Driver Manager checks if a driver is currently loaded for the specified hdbc:

If a driver is not loaded, the Driver Manager loads the driver and calls SQLAllocEnv,
SQLAllocConnect, SQLSetConnectOption (if the application specified any connection options), and the
connection function in the driver. The Driver Manager returns SQLSTATE IM006 (Driver's
SQLSetConnectOption failed) and SQL_SUCCESS_WITH_INFO for the connection function if the driver
returned an error for SQLSetConnectOption.

If the specified driver is already loaded on the hdbc, the Driver Manager only calls the connection
function in the driver. In this case, the driver must ensure that all connection options for the hdbc maintain
their current settings.

If a different driver is loaded, the Driver Manager calls SQLFreeConnect and SQLFreeEnv in the
loaded driver and then unloads that driver. It then performs the same operations as when a driver is not
loaded.

The driver then allocates handles and initializes itself.

Note    To resolve the addresses of the ODBC functions exported by the driver, the Driver Manager
checks if the driver exports a dummy function with the ordinal 199. If it does not, the Driver Manager
resolves the addresses by name. If it does, the Driver Manager resolves the addresses of the ODBC
functions by ordinal, which is faster. The ordinal values of the ODBC functions must match the values of
the fFunction argument in SQLGetFunctions; all other exported functions (such as WEP) must have
ordinal values outside the range 1-199.

When the application calls SQLDisconnect, the Driver Manager calls SQLDisconnect in the driver.
However, it does not unload the driver. This keeps the driver in memory for applications that repeatedly
connect to and disconnect from a data source. When the application calls SQLFreeConnect, the Driver
Manager calls SQLFreeConnect and SQLFreeEnv in the driver and then unloads the driver.
An ODBC application can establish more than one connection.

Driver Manager Guidelines
The contents of szDSN affect how the Driver Manager and a driver work together to establish a
connection to a data source.

If szDSN contains a valid data source name, the Driver Manager locates the corresponding data
source specification in the ODBC.INI file or registry and loads the associated driver DLL. The Driver
Manager passes each SQLConnect argument to the driver.

If the data source name cannot be found or szDSN is a null pointer, the Driver Manager locates
the default data source specification and loads the associated driver DLL. The Driver Manager passes
each SQLConnect argument to the driver.

If the data source name cannot be found or szDSN is a null pointer, and the default data source
specification does not exist, the Driver Manager returns SQL_ERROR with SQLSTATE IM002 (Data
source name not found and no default driver specified).

After being loaded by the Driver Manager, a driver can locate its corresponding data source specification
in the ODBC.INI file or registry and use driver-specific information from the specification to complete its
set of required connection information.
If a default translation DLL is specified in the ODBC.INI file or registry for the data source, the driver
loads it. A different translation DLL can be loaded by calling SQLSetConnectOption with the
SQL_TRANSLATE_DLL option. A translation option can be specified by calling SQLSetConnectOption
with the SQL_TRANSLATE_OPTION option.
If a driver supports SQLConnect, the driver keyword section of the ODBC.INF file for the driver must
contain the ConnectFunctions keyword with the first character set to "Y".

Code Example
In the following example, an application allocates environment and connection handles. It then connects
to the EmpData data source with the user ID JohnS and the password Sesame and processes data.
When it has finished processing data, it disconnects from the data source and frees the handles.

HENV henv;

HDBC hdbc;

HSTMT hstmt;

RETCODE retcode;

retcode = SQLAllocEnv(&henv); /* Environment handle */

if (retcode == SQL_SUCCESS) {

retcode = SQLAllocConnect(henv, &hdbc); /* Connection handle */

if (retcode == SQL_SUCCESS) {

/* Set login timeout to 5 seconds. */

SQLSetConnectOption(hdbc, SQL_LOGIN_TIMEOUT, 5);

/* Connect to data source */

retcode = SQLConnect(hdbc, "EmpData", SQL_NTS, "JohnS", SQL_NTS,
"Sesame", SQL_NTS);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

/* Process data after successful connection */

retcode = SQLAllocStmt(hdbc, &hstmt); /* Statement handle */

if (retcode == SQL_SUCCESS) {

...;

...;

...;

SQLFreeStmt(hstmt, SQL_DROP);

}

SQLDisconnect(hdbc);

}

SQLFreeConnect(hdbc);

}

SQLFreeEnv(henv);

}

Related Functions
SQLAllocConnect
SQLAllocStmt
SQLBrowseConnect (extension)
SQLDisconnect
SQLDriverConnect (extension)
SQLGetConnectOption (extension)
SQLSetConnectOption (extension)

SQLDataSources (Extension Level 2, ODBC 1.0)
Related Functions

SQLDataSources lists data source names. This function is implemented solely by the Driver Manager.

Syntax
RETCODE SQLDataSources(henv, fDirection, szDSN, cbDSNMax, pcbDSN, szDescription,
cbDescriptionMax, pcbDescription)
The SQLDataSources function accepts the following arguments:

Type Argument Use Description
HENV henv Input Environment handle.
UWORD fDirection Input Determines whether the

Driver Manager fetches the
next data source name in the
list (SQL_FETCH_NEXT) or
whether the search starts
from the beginning of the list
(SQL_FETCH_FIRST).

UCHAR FAR * szDSN Output Pointer to storage for the data
source name.

SWORD cbDSNMax Input Maximum length of the szDSN
buffer; this does not need to
be longer than
SQL_MAX_DSN_LENGTH +
1.

SWORD FAR * pcbDSN Output Total number of bytes
(excluding the null termination
byte) available to return in
szDSN. If the number of bytes
available to return is greater
than or equal to cbDSNMax,
the data source name in
szDSN is truncated to
cbDSNMax - 1 bytes.

UCHAR FAR * szDescription Output Pointer to storage for the
description of the driver
associated with the data
source. For example, dBASE
or SQL Server.

SWORD cbDescriptionMax Input Maximum length of the
szDescription buffer; this
should be at least 255 bytes.

SWORD FAR * pcbDescription Output Total number of bytes
(excluding the null termination
byte) available to return in
szDescription. If the number
of bytes available to return is
greater than or equal to
cbDescriptionMax, the driver
description in szDescription is
truncated to
cbDescriptionMax - 1 bytes.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics

When SQLDataSources returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLDataSources and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning (DM) Driver Manager-specific

informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDSN was not large
enough to return the entire data source
name, so the name was truncated. The
argument pcbDSN contains the length
of the entire data source name.
(Function returns
SQL_SUCCESS_WITH_INFO.)
(DM) The buffer szDescription was not
large enough to return the entire driver
description, so the description was
truncated. The argument pcbDescription
contains the length of the untruncated
data source description. (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error (DM) An error occurred for which there
was no specific SQLSTATE and for
which no implementation-specific
SQLSTATE was defined. The error
message returned by SQLError in the
argument szErrorMsg describes the
error and its cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to
allocate memory required to support
execution or completion of the function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbDSNMax was less than 0.
(DM) The value specified for argument
cbDescriptionMax was less than 0.

S1103 Direction option out
of range

(DM) The value specified for the
argument fDirection was not equal to
SQL_FETCH_FIRST or
SQL_FETCH_NEXT.

Comments
Because SQLDataSources is implemented in the Driver Manager, it is supported for all drivers
regardless of a particular driver's conformance level.
An application can call SQLDataSources multiple times to retrieve all data source names. The Driver
Manager retrieves this information from the ODBC.INI file or the registry. When there are no more data
source names, the Driver Manager returns SQL_NO_DATA_FOUND. If SQLDataSources is called with
SQL_FETCH_NEXT immediately after it returns SQL_NO_DATA_FOUND, it will return the first data
source name.
If SQL_FETCH_NEXT is passed to SQLDataSources the very first time it is called, it will return the first
data source name.
The driver determines how data source names are mapped to actual data sources.

Related Functions
SQLBrowseConnect (extension)
SQLConnect
SQLDriverConnect (extension)
SQLDrivers (extension)

SQLDescribeCol (Core, ODBC 1.0)
Related Functions

SQLDescribeCol returns the result descriptor ¾ column name, type, precision, scale, and nullability ¾
for one column in the result set; it cannot be used to return information about the bookmark column
(column 0).

Syntax
RETCODE SQLDescribeCol(hstmt, icol, szColName, cbColNameMax, pcbColName, pfSqlType,
pcbColDef, pibScale, pfNullable)
The SQLDescribeCol function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD icol Input Column number of result data,

ordered sequentially left to right,
starting at 1.

UCHAR FAR * szColName Output Pointer to storage for the column
name. If the column is unnamed
or the column name cannot be
determined, the driver returns an
empty string.

SWORD cbColNameMax Input Maximum length of the
szColName buffer.

SWORD FAR * pcbColName Output Total number of bytes (excluding
the null termination byte)
available to return in
szColName. If the number of
bytes available to return is
greater than or equal to
cbColNameMax, the column
name in szColName is truncated
to cbColNameMax - 1 bytes.

SWORD FAR * pfSqlType Output The SQL data type of the
column. This must be one of the
following values:
SQL_BIGINT
SQL_BINARY
SQL_BIT
SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIME
SQL_TIMESTAMP
SQL_TINYINT
SQL_VARBINARY
SQL_VARCHAR
or a driver-specific SQL data
type. If the data type cannot be
determined, the driver returns 0.

For more information, see SQL
Data Types. For information
about driver-specific SQL data
types, see the driver's
documentation.

UDWORD FAR
*

pcbColDef Output The precision of the column on
the data source. If the precision
cannot be determined, the driver
returns 0. For more information
on precision, see Precision,
Scale, Length, and Display Size.

SWORD FAR * pibScale Output The scale of the column on the
data source. If the scale cannot
be determined or is not
applicable, the driver returns 0.
For more information on scale,
see Precision, Scale, Length,
and Display Size.

SWORD FAR * pfNullable Output Indicates whether the column
allows NULL values. One of the
following values:
SQL_NO_NULLS: The column
does not allow NULL values.
SQL_NULLABLE: The column
allows NULL values.
SQL_NULLABLE_UNKNOWN:
The driver cannot determine if
the column allows NULL values.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLDescribeCol returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLDescribeCol and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szColName was not large
enough to return the entire column
name, so the column name was
truncated. The argument pcbColName
contains the length of the untruncated
column name. (Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement associated with the hstmt
did not return a result set. There were
no columns to describe.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no

implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1002 Invalid column
number

(DM) The value specified for the
argument icol was 0.
The value specified for the argument
icol was greater than the number of
columns in the result set.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) The function was called prior to
calling SQLPrepare or SQLExecDirect
for the hstmt.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbColNameMax was less than 0.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLDescribeCol can return any SQLSTATE that can be returned by SQLPrepare or SQLExecute
when called after SQLPrepare and before SQLExecute depending on when the data source evaluates
the SQL statement associated with the hstmt.

Comments
An application typically calls SQLDescribeCol after a call to SQLPrepare and before or after the
associated call to SQLExecute. An application can also call SQLDescribeCol after a call to
SQLExecDirect.
SQLDescribeCol retrieves the column name, type, and length generated by a SELECT statement. If
the column is an expression, szColName is either an empty string or a driver-defined name.

Note    ODBC supports SQL_NULLABLE_UNKNOWN as an extension, even though the X/Open and
SQL Access Group Call Level Interface specification does not specify the option for SQLDescribeCol.

Related Functions
SQLBindCol
SQLCancel
SQLColAttributes
SQLFetch
SQLNumResultCols
SQLPrepare

SQLDescribeParam (Extension Level 2, ODBC 1.0)
Related Functions

SQLDescribeParam returns the description of a parameter marker associated with a prepared SQL
statement.

Syntax
RETCODE SQLDescribeParam(hstmt, ipar, pfSqlType, pcbColDef, pibScale, pfNullable)
The SQLDescribeParam function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD ipar Input Parameter marker number

ordered sequentially left to right,
starting at 1.

SWORD FAR * pfSqlType Output The SQL data type of the
parameter. This must be one of
the following values:
SQL_BIGINT
SQL_BINARY
SQL_BIT
SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIME
SQL_TIMESTAMP
SQL_TINYINT
SQL_VARBINARY
SQL_VARCHAR
or a driver-specific SQL data
type.
For more information, see SQL
Data Types. For information
about driver-specific SQL data
types, see the driver's
documentation.

UDWORD FAR
*

pcbColDef Output The precision of the column or
expression of the corresponding
parameter marker as defined by
the data source. For further
information concerning precision,
see Precision, Scale, Length,
and Display Size.

SWORD FAR * pibScale Output The scale of the column or
expression of the corresponding
parameter as defined by the data
source. For more information on
scale, see Precision, Scale,
Length, and Display Size.

SWORD FAR * pfNullable Output Indicates whether the parameter
allows NULL values. One of the

following:
SQL_NO_NULLS: The
parameter does not allow NULL
values (this is the default value).
SQL_NULLABLE: The
parameter allows NULL values.
SQL_NULLABLE_UNKNOWN:
The driver cannot determine if
the parameter allows NULL
values.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLDescribeParam returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLDescribeParam and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
error

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) The function was called prior to
calling SQLPrepare or SQLExecDirect
for the hstmt.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This

function was called before data was
sent for all data-at-execution parameters
or columns.

S1093 Invalid parameter
number

(DM) The value specified for the
argument ipar was 0.
The value specified for the argument
ipar was greater than the number of
parameters in the associated SQL
statement.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
Parameter markers are numbered from left to right in the order they appear in the SQL statement.
SQLDescribeParam does not return the type (input, input/output, or output) of a parameter in an SQL
statement. Except in calls to procedures, all parameters in SQL statements are input parameters. To
determine the type of each parameter in a call to a procedure, an application calls
SQLProcedureColumns.

Related Functions
SQLCancel
SQLExecute
SQLPrepare
SQLBindParameter

SQLDisconnect (Core, ODBC 1.0)
Code Example Related Functions

SQLDisconnect closes the connection associated with a specific connection handle.

Syntax
RETCODE SQLDisconnect(hdbc)
The SQLDisconnect function accepts the following argument.

Type Argument Use Description
HDBC hdbc Input Connection handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLDisconnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLDisconnect and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01002 Disconnect error An error occurred during the disconnect.
However, the disconnect succeeded.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The connection specified in the
argument hdbc was not open.

25000 Invalid transaction
state

There was a transaction in process on
the connection specified by the
argument hdbc. The transaction remains
active.

IM001 Driver does not
support this function

(DM) The driver associated with the
hdbc does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for an hstmt
associated with the hdbc and was still
executing when SQLDisconnect was
called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for an hstmt
associated with the hdbc and returned
SQL_NEED_DATA. This function was
called before data was sent for all data-
at-execution parameters or columns.

Comments
If an application calls SQLDisconnect after SQLBrowseConnect returns SQL_NEED_DATA and
before it returns a different return code, the driver cancels the connection browsing process and returns
the hdbc to an unconnected state.
If an application calls SQLDisconnect while there is an incomplete transaction associated with the
connection handle, the driver returns SQLSTATE 25000 (Invalid transaction state), indicating that the
transaction is unchanged and the connection is open. An incomplete transaction is one that has not
been committed or rolled back with SQLTransact.
If an application calls SQLDisconnect before it has freed all hstmts associated with the connection, the
driver frees those hstmts after it successfully disconnects from the data source. However, if one or more
of the hstmts associated with the connection are still executing asynchronously, SQLDisconnect will
return SQL_ERROR with a SQLSTATE value of S1010 (Function sequence error).

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions
SQLAllocConnect
SQLConnect
SQLDriverConnect (extension)
SQLFreeConnect
SQLTransact

SQLDriverConnect (Extension Level 1, ODBC 1.0)
Related Functions

SQLDriverConnect is an alternative to SQLConnect. It supports data sources that require more
connection information than the three arguments in SQLConnect; dialog boxes to prompt the user for all
connection information; and data sources that are not defined in the ODBC.INI file or registry.
SQLDriverConnect provides the following connection options:

Establish a connection using a connection string that contains the data source name, one or more
user IDs, one or more passwords, and other information required by the data source.

Establish a connection using a partial connection string or no additional information; in this case,
the Driver Manager and the driver can each prompt the user for connection information.

Establish a connection to a data source that is not defined in the ODBC.INI file or registry. If the
application supplies a partial connection string, the driver can prompt the user for connection information.

Once a connection is established, SQLDriverConnect returns the completed connection string. The
application can use this string for subsequent connection requests.

Syntax
RETCODE SQLDriverConnect(hdbc, hwnd, szConnStrIn, cbConnStrIn, szConnStrOut,
cbConnStrOutMax, pcbConnStrOut, fDriverCompletion)
The SQLDriverConnect function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
HWND hwnd Input Window handle. The

application can pass the
handle of the parent window,
if applicable, or a null pointer
if either the window handle is
not applicable or if
SQLDriverConnect will not
present any dialog boxes.

UCHAR FAR * szConnStrIn Input A full connection string (see
the syntax in "Comments"), a
partial connection string, or an
empty string.

SWORD cbConnStrIn Input Length of szConnStrIn.
UCHAR FAR * szConnStrOut Output Pointer to storage for the

completed connection string.
Upon successful connection
to the target data source, this
buffer contains the completed
connection string. Applications
should allocate at least 255
bytes for this buffer.

SWORD cbConnStrOutMax Input Maximum length of the
szConnStrOut buffer.

SWORD FAR * pcbConnStrOut Output Pointer to the total number of
bytes (excluding the null
termination byte) available to
return in szConnStrOut. If the
number of bytes available to
return is greater than or equal
to cbConnStrOutMax, the
completed connection string
in szConnStrOut is truncated
to cbConnStrOutMax - 1
bytes.

UWORD fDriverCompletion Input Flag which indicates whether

Driver Manager or driver must
prompt for more connection
information:
SQL_DRIVER_PROMPT,
SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_
REQUIRED, or
SQL_DRIVER_NOPROMPT.
(See "Comments," for
additional information.)

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLDriverConnect returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLDriverConnect and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szConnStrOut was not large
enough to return the entire connection
string, so the connection string was
truncated. The argument
pcbConnStrOut contains the length of
the untruncated connection string.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01S00 Invalid connection
string attribute

An invalid attribute keyword was
specified in the connection string
(szConnStrIn) but the driver was able to
connect to the data source anyway.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect
to data source

The driver was unable to establish a
connection with the data source.

08002 Connection in use (DM) The specified hdbc had already
been used to establish a connection with
a data source and the connection was
still open.

08004 Data source
rejected
establishment of
connection

The data source rejected the
establishment of the connection for
implementation-defined reasons.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was attempting to connect failed
before the function completed
processing.

28000 Invalid authorization
specification

Either the user identifier or the
authorization string or both as specified
in the connection string (szConnStrIn)

violated restrictions defined by the data
source.

IM001 Driver does not
support this function

(DM) The driver corresponding to the
specified data source name does not
support the function.

IM002 Data source not
found and no
default driver
specified

(DM) The data source name specified in
the connection string (szConnStrIn) was
not found in the ODBC.INI file or registry
and there was no default driver
specification.
(DM) The ODBC.INI file could not be
found.

IM003 Specified driver
could not be loaded

(DM) The driver listed in the data source
specification in the ODBC.INI file or
registry, or specified by the DRIVER
keyword, was not found or could not be
loaded for some other reason.

IM004 Driver's
SQLAllocEnv failed

(DM) During SQLDriverConnect, the
Driver Manager called the driver's
SQLAllocEnv function and the driver
returned an error.

IM005 Driver's
SQLAllocConnect
failed

(DM) During SQLDriverConnect, the
Driver Manager called the driver's
SQLAllocConnect function and the
driver returned an error.

IM006 Driver's
SQLSetConnect-
Option failed

(DM) During SQLDriverConnect, the
Driver Manager called the driver's
SQLSetConnectOption function and
the driver returned an error.

IM007 No data source or
driver specified;
dialog prohibited

No data source name or driver was
specified in the connection string and
fDriverCompletion was
SQL_DRIVER_NOPROMPT.

IM008 Dialog failed (DM) The Driver Manager attempted to
display the SQL Data Sources dialog
box and failed.
The driver attempted to display its login
dialog box and failed.

IM009 Unable to load
translation DLL

The driver was unable to load the
translation DLL that was specified for the
data source or for the connection.

IM010 Data source name
too long

(DM) The attribute value for the DSN
keyword was longer than
SQL_MAX_DSN_LENGTH characters.

IM011 Driver name too
long

(DM) The attribute value for the DRIVER
keyword was longer than 255
characters.

IM012 DRIVER keyword
syntax error

(DM) The keyword-value pair for the
DRIVER keyword contained a syntax
error.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The Driver Manager was unable to
allocate memory required to support
execution or completion of the function.
The driver was unable to allocate
memory required to support execution or
completion of the function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbConnStrIn was less than 0 and was
not equal to SQL_NTS.
(DM) The value specified for argument
cbConnStrOutMax was less than 0.

S1110 Invalid driver
completion

(DM) The value specified for the
argument fDriverCompletion was not
equal to SQL_DRIVER_PROMPT,
SQL_DRIVER_COMPLETE,
SQL_DRIVER_COMPLETE_REQUIRE
D or SQL_DRIVER_NOPROMPT.

S1T00 Timeout expired The timeout period expired before the
connection to the data source
completed. The timeout period is set
through SQLSetConnectOption,
SQL_LOGIN_TIMEOUT.

Comments

Connection Strings
A connection string has the following syntax:
connection-string ::= empty-string[;] | attribute[;] | attribute; connection-string
empty-string ::=
attribute ::= attribute-keyword=attribute-value | DRIVER={attribute-value}
(The braces ({}) are literal; the application must specify them.)
attribute-keyword ::= DSN | UID | PWD
  | driver-defined-attribute-keyword
attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier
where character-string has zero or more characters; identifier has one or more characters; attribute-
keyword is case insensitive; attribute-value may be case sensitive; and the value of the DSN keyword
does not consist solely of blanks. Because of connection string and initialization file grammar, keywords
and attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because of the registry
grammar, keywords and data source names cannot contain the backslash (\) character.

Note    The DRIVER keyword was introduced in ODBC 2.0 and is not supported by ODBC 1.0 drivers.

The connection string may include any number of driver-defined keywords. Because the DRIVER
keyword does not use information from the ODBC.INI file or registry, the driver must define enough
keywords so that a driver can connect to a data source using only the information in the connection
string. (For more information, see "Driver Guidelines," later in this section.) The driver defines which
keywords are required in order to connect to the data source.
If any keywords are repeated in the connection string, the driver uses the value associated with the first
occurrence of the keyword. If the DSN and DRIVER keywords are included in the same connection
string, the Driver Manager and the driver use whichever keyword appears first. The following table
describes the attribute values of the DSN, DRIVER, UID, and PWD keywords.

Keyword Attribute value description
DSN Name of a data source as returned by

SQLDataSources or the data sources dialog box
of SQLDriverConnect.

DRIVER Description of the driver as returned by the

SQLDrivers function. For example, Rdb or SQL
Server.

UID A user ID.
PWD The password corresponding to the user ID, or an

empty string if there is no password for the user ID
(PWD=;).

Driver Manager Guidelines
The Driver Manager constructs a connection string to pass to the driver in the szConnStrIn argument of
the driver's SQLDriverConnect function. Note that the Driver Manager does not modify the szConnStrIn
argument passed to it by the application.
If the connection string specified by the application contains the DSN keyword or does not contain either
the DSN or DRIVER keywords, the action of the Driver Manager is based on the value of the
fDriverCompletion argument:

SQL_DRIVER_PROMPT: The Driver Manager displays the Data Sources dialog box. It constructs
a connection string from the data source name returned by the dialog box and any other keywords
passed to it by the application. If the data source name returned by the dialog box is empty, the Driver
Manager specifies the keyword-value pair DSN=Default.

SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED: If the connection string
specified by the application includes the DSN keyword, the Driver Manager copies the connection string
specified by the application. Otherwise, it takes the same actions as it does when fDriverCompletion is
SQL_DRIVER_PROMPT.

SQL_DRIVER_NOPROMPT: The Driver Manager copies the connection string specified by the
application.

If the connection string specified by the application contains the DRIVER keyword, the Driver Manager
copies the connection string specified by the application.
Using the connection string it has constructed, the Driver Manager determines which driver to use, loads
that driver, and passes the connection string it has constructed to the driver; for more information about
the interaction of the Driver Manager and the driver, see the "Comments" section in SQLConnect. If the
connection string contains the DSN keyword or does not contain either the DSN or the DRIVER
keyword, the Driver Manager determines which driver to use as follows:
1. If the connection string contains the DSN keyword, the Driver Manager retrieves the driver associated

with the data source from the ODBC.INI file or registry.
2. If the connection string does not contain the DSN keyword or the data source is not found, the Driver

Manager retrieves the driver associated with the Default data source from the ODBC.INI file or
registry. However, the Driver Manager does not change the value of the DSN keyword in the
connection string.

3. If the data source is not found and the Default data source is not found, the Driver Manager returns
SQL_ERROR with SQLSTATE IM002 (Data source not found and no default driver specified).

Driver Guidelines
The driver checks if the connection string passed to it by the Driver Manager contains the DSN or
DRIVER keyword. If the connection string contains the DRIVER keyword, the driver cannot retrieve
information about the data source from the ODBC.INI file or registry. If the connection string contains the
DSN keyword or does not contain either the DSN or the DRIVER keyword, the driver can retrieve
information about the data source from the ODBC.INI file or registry as follows:
1. If the connection string contains the DSN keyword, the driver retrieves the information for the

specified data source.
2. If the connection string does not contain the DSN keyword or the specified data source is not found,

the driver retrieves the information for the Default data source.

The driver uses any information it retrieves from the ODBC.INI file or registry to augment the information
passed to it in the connection string. If the information in the ODBC.INI file or registry duplicates
information in the connection string, the driver uses the information in the connection string.
Based on the value of fDriverCompletion, the driver prompts the user for connection information, such

as the user ID and password, and connects to the data source:

SQL_DRIVER_PROMPT: The driver displays a dialog box, using the values from the connection
string and ODBC.INI file or registry (if any) as initial values. When the user exits the dialog box, the driver
connects to the data source. It also constructs a connection string from the value of the DSN or DRIVER
keyword in szConnStrIn and the information returned from the dialog box. It places this connection string
in the buffer referenced by szConnStrOut.

SQL_DRIVER_COMPLETE or SQL_DRIVER_COMPLETE_REQUIRED: If the connection string
contains enough information, and that information is correct, the driver connects to the data source and
copies szConnStrIn to szConnStrOut. If any information is missing or incorrect, the driver takes the same
actions as it does when fDriverCompletion is SQL_DRIVER_PROMPT, except that if fDriverCompletion is
SQL_DRIVER_COMPLETE_REQUIRED, the driver disables the controls for any information not required
to connect to the data source.

SQL_DRIVER_NOPROMPT: If the connection string contains enough information, the driver
connects to the data source and copies szConnStrIn to szConnStrOut. Otherwise, the driver returns
SQL_ERROR for SQLDriverConnect.

On successful connection to the data source, the driver also sets pcbConnStrOut to the length of
szConnStrOut.
If the user cancels a dialog box presented by the Driver Manager or the driver, SQLDriverConnect
returns SQL_NO_DATA_FOUND.
For information about how the Driver Manager and the driver interact during the connection process, see
SQLConnect.
If a driver supports SQLDriverConnect, the driver keyword section of the ODBC.INF file for the driver
must contain the ConnectFunctions keyword with the second character set to "Y".

Connection Options
The SQL_LOGIN_TIMEOUT connection option, set using SQLSetConnectOption, defines the number
of seconds to wait for a login request to complete before returning to the application. If the user is
prompted to complete the connection string, a waiting period for each login request begins after the user
has dismissed each dialog box.
The driver opens the connection in SQL_MODE_READ_WRITE access mode by default. To set the
access mode to SQL_MODE_READ_ONLY, the application must call SQLSetConnectOption with the
SQL_ACCESS_MODE option prior to calling SQLDriverConnect.
If a default translation DLL is specified in the ODBC.INI file or registry for the data source, the driver
loads it. A different translation DLL can be loaded by calling SQLSetConnectOption with the
SQL_TRANSLATE_DLL option. A translation option can be specified by calling SQLSetConnectOption
with the SQL_TRANSLATE_OPTION option.

Related Functions
SQLAllocConnect
SQLBrowseConnect (extension)
SQLConnect
SQLDisconnect
SQLDrivers (extension)
SQLFreeConnect
SQLSetConnectOption (extension)

SQLDrivers (Extension Level 2, ODBC 2.0)
Related Functions

SQLDrivers lists driver descriptions and driver attribute keywords. This function is implemented solely
by the Driver Manager.

Syntax
RETCODE SQLDrivers(henv, fDirection, szDriverDesc, cbDriverDescMax, pcbDriverDesc,
szDriverAttributes, cbDrvrAttrMax, pcbDrvrAttr)
The SQLDrivers function accepts the following arguments:

Type Argument Use Description
HENV henv Input Environment handle.
UWORD fDirection Input Determines whether the

Driver Manager fetches the
next driver description in the
list (SQL_FETCH_NEXT) or
whether the search starts
from the beginning of the list
(SQL_FETCH_FIRST).

UCHAR FAR * szDriverDesc Output Pointer to storage for the
driver description.

SWORD cbDriverDescMax Input Maximum length of the
szDriverDesc buffer.

SWORD FAR * pcbDriverDesc Output Total number of bytes
(excluding the null termination
byte) available to return in
szDriverDesc. If the number of
bytes available to return is
greater than or equal to
cbDriverDescMax, the driver
description in szDriverDesc is
truncated to cbDriverDescMax
- 1 bytes.

UCHAR FAR * szDriverAttributes Output Pointer to storage for the list
of driver attribute value pairs
(see "Comments").

SWORD cbDrvrAttrMax Input Maximum length of the
szDriverAttributes buffer.

SWORD FAR * pcbDrvrAttr Output Total number of bytes
(excluding the null termination
byte) available to return in
szDriverAttributes. If the
number of bytes available to
return is greater than or equal
to cbDrvrAttrMax, the list of
attribute value pairs in
szDriverAttributes is truncated
to cbDrvrAttrMax - 1 bytes.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLDrivers returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLDrivers and explains each one in the context of this function; the notation
"(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code

associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning (DM) Driver Manager-specific

informational message. (Function
returns SQL_SUCCESS_WITH_INFO.)

01004 Data truncated (DM) The buffer szDriverDesc was not
large enough to return the entire driver
description, so the description was
truncated. The argument pcbDriverDesc
contains the length of the entire driver
description. (Function returns
SQL_SUCCESS_WITH_INFO.)
(DM) The buffer szDriverAttributes was
not large enough to return the entire list
of attribute value pairs, so the list was
truncated. The argument pcbDrvrAttr
contains the length of the untruncated
list of attribute value pairs. (Function
returns SQL_SUCCESS_WITH_INFO.)

S1000 General error (DM) An error occurred for which there
was no specific SQLSTATE and for
which no implementation-specific
SQLSTATE was defined. The error
message returned by SQLError in the
argument szErrorMsg describes the
error and its cause.

S1001 Memory allocation
failure

(DM) The Driver Manager was unable to
allocate memory required to support
execution or completion of the function.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbDriverDescMax was less than 0.
(DM) The value specified for argument
cbDrvrAttrMax was less than 0 or equal
to 1.

S1103 Direction option out
of range

(DM) The value specified for the
argument fDirection was not equal to
SQL_FETCH_FIRST or
SQL_FETCH_NEXT.

Comments
SQLDrivers returns the driver description in the szDriverDesc argument. It returns additional information
about the driver in the szDriverAttributes argument as a list of keyword-value pairs. Each pair is
terminated with a null byte, and the entire list is terminated with a null byte (that is, two null bytes mark
the end of the list). For example, a dBASE driver might return the following list of attributes ("\0"
represents a null byte):

FileUsage=1\0FileExtns=*.dbf\0\0

If szDriverAttributes is not large enough to hold the entire list, the list is truncated, SQLDrivers returns
SQLSTATE 01004 (Data truncated), and the length of the list (excluding the final null termination byte) is
returned in pcbDrvrAttr.
Driver attribute keywords are added from the ODBC.INF file when the driver is installed.
An application can call SQLDrivers multiple times to retrieve all driver descriptions. The Driver Manager
retrieves this information from the ODBCINST.INI file or the registry. When there are no more driver
descriptions, SQLDrivers returns SQL_NO_DATA_FOUND. If SQLDrivers is called with
SQL_FETCH_NEXT immediately after it returns SQL_NO_DATA_FOUND, it returns the first driver
description.

If SQL_FETCH_NEXT is passed to SQLDrivers the very first time it is called, SQLDrivers returns the
first data source name.
Because SQLDrivers is implemented in the Driver Manager, it is supported for all drivers regardless of a
particular driver's conformance level.

Related Functions
SQLBrowseConnect (extension)
SQLConnect
SQLDataSources (extension)
SQLDriverConnect (extension)

SQLError (Core, ODBC 1.0)
SQLError returns error or status information.

Syntax
RETCODE SQLError(henv, hdbc, hstmt, szSqlState, pfNativeError, szErrorMsg, cbErrorMsgMax,
pcbErrorMsg)
The SQLError function accepts the following arguments.

Type Argument Use Description
HENV henv Input Environment handle or

SQL_NULL_HENV.
HDBC hdbc Input Connection handle or

SQL_NULL_HDBC.
HSTMT hstmt Input Statement handle or

SQL_NULL_HSTMT.
UCHAR FAR * szSqlState Output SQLSTATE as null-terminated

string.
SDWORD FAR
*

pfNativeError Output Native error code (specific to
the data source).

UCHAR FAR * szErrorMsg Output Pointer to storage for the error
message text.

SWORD cbErrorMsgMax Input Maximum length of the
szErrorMsg buffer. This must
be less than or equal to
SQL_MAX_MESSAGE_
LENGTH - 1.

SWORD FAR * pcbErrorMsg Output Pointer to the total number of
bytes (excluding the null
termination byte) available to
return in szErrorMsg. If the
number of bytes available to
return is greater than or equal
to cbErrorMsgMax, the error
message text in szErrorMsg is
truncated to cbErrorMsgMax
- 1 bytes.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
SQLError does not post error values for itself. SQLError returns SQL_NO_DATA_FOUND when it is
unable to retrieve any error information, (in which case szSqlState equals 00000). If SQLError cannot
access error values for any reason that would normally return SQL_ERROR, SQLError returns
SQL_ERROR but does not post any error values. If the buffer for the error message is too short,
SQLError returns SQL_SUCCESS_WITH_INFO but, again, does not return a SQLSTATE value for
SQLError.
To determine that a truncation occurred in the error message, an application can compare
cbErrorMsgMax to the actual length of the message text written to pcbErrorMsg.

Comments
An application typically calls SQLError when a previous call to an ODBC function returns SQL_ERROR
or SQL_SUCCESS_WITH_INFO. However, any ODBC function can post zero or more errors each time
it is called, so an application can call SQLError after any ODBC function call.
SQLError retrieves an error from the data structure associated with the rightmost non-null handle
argument. An application requests error information as follows:

To retrieve errors associated with an environment, the application passes the corresponding henv
and includes SQL_NULL_HDBC and SQL_NULL_HSTMT in hdbc and hstmt, respectively. The driver
returns the error status of the ODBC function most recently called with the same henv.

To retrieve errors associated with a connection, the application passes the corresponding hdbc
plus an hstmt equal to SQL_NULL_HSTMT. In such a case, the driver ignores the henv argument. The
driver returns the error status of the ODBC function most recently called with the hdbc.

To retrieve errors associated with a statement, an application passes the corresponding hstmt. If
the call to SQLError contains a valid hstmt, the driver ignores the hdbc and henv arguments. The driver
returns the error status of the ODBC function most recently called with the hstmt.

To retrieve multiple errors for a function call, an application calls SQLError multiple times. For
each error, the driver returns SQL_SUCCESS and removes that error from the list of available errors.

When there is no additional information for the rightmost non-null handle, SQLError returns
SQL_NO_DATA_FOUND. In this case, szSqlState equals 00000 (Success), pfNativeError is undefined,
pcbErrorMsg equals 0, and szErrorMsg contains a single null termination byte (unless cbErrorMsgMax
equals 0).
The Driver Manager stores error information in its henv, hdbc, and hstmt structures. Similarly, the driver
stores error information in its henv, hdbc, and hstmt structures. When the application calls SQLError,
the Driver Manager checks if there are any errors in its structure for the specified handle. If there are
errors for the specified handle, it returns the first error; if there are no errors, it calls SQLError in the
driver.
The Driver Manager can store up to 64 errors with an henv and its associated hdbcs and hstmts. When
this limit is reached, the Driver Manager discards any subsequent errors posted on the Driver Manager's
henv, hdbcs, or hstmts. The number of errors that a driver can store is driver-dependent.
An error is removed from the structure associated with a handle when SQLError is called for that handle
and returns that error. All errors stored for a given handle are removed when that handle is used in a
subsequent function call. For example, errors on an hstmt that were returned by SQLExecDirect are
removed when SQLExecDirect or SQLTables is called with that hstmt. The errors stored on a given
handle are not removed as the result of a call to a function using an associated handle of a different
type. For example, errors on an hdbc that were returned by SQLNativeSql are not removed when
SQLError or SQLExecDirect is called with an hstmt associated with that hdbc.

SQLExecDirect (Core, ODBC 1.0)
Code Example Related Functions

SQLExecDirect executes a preparable statement, using the current values of the parameter marker
variables if any parameters exist in the statement. SQLExecDirect is the fastest way to submit an SQL
statement for one-time execution.

Syntax
RETCODE SQLExecDirect(hstmt, szSqlStr, cbSqlStr)
The SQLExecDirect function uses the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szSqlStr Input SQL statement to be

executed.
SDWORD cbSqlStr Input Length of szSqlStr.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLExecDirect returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLExecDirect and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The argument szSqlStr contained an
SQL statement that contained a
character or binary parameter or literal
and the value exceeded the maximum
length of the associated table column.
The argument szSqlStr contained an
SQL statement that contained a numeric
parameter or literal and the fractional
part of the value was truncated.
The argument szSqlStr contained an
SQL statement that contained a date or
time parameter or literal and a
timestamp value was truncated.

01006 Privilege not
revoked

The argument szSqlStr contained a
REVOKE statement and the user did
not have the specified privilege.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01S03 No rows updated or
deleted

The argument szSqlStr contained a
positioned update or delete statement
and no rows were updated or deleted.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01S04 More than one row
updated or deleted

The argument szSqlStr contained a
positioned update or delete statement
and more than one row was updated or
deleted. (Function returns

SQL_SUCCESS_WITH_INFO.)
07001 Wrong number of

parameters
The number of parameters specified in
SQLBindParameter was less than the
number of parameters in the SQL
statement contained in the argument
szSqlStr.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

21S01 Insert value list
does not match
column list

The argument szSqlStr contained an
INSERT statement and the number of
values to be inserted did not match the
degree of the derived table.

21S02 Degree of derived
table does not
match column list

The argument szSqlStr contained a
CREATE VIEW statement and the
number of names specified is not the
same degree as the derived table
defined by the query specification.

22003 Numeric value out
of range

The argument szSqlStr contained an
SQL statement which contained a
numeric parameter or literal and the
value caused the whole (as opposed to
fractional) part of the number to be
truncated when assigned to the
associated table column.

22005 Error in assignment The argument szSqlStr contained an
SQL statement that contained a
parameter or literal and the value was
incompatible with the data type of the
associated table column.

22008 Datetime field
overflow

The argument szSqlStr contained an
SQL statement that contained a date,
time, or timestamp parameter or literal
and the value was, respectively, an
invalid date, time, or timestamp.

22012 Division by zero The argument szSqlStr contained an
SQL statement which contained an
arithmetic expression which caused
division by zero.

23000 Integrity constraint
violation

The argument szSqlStr contained an
SQL statement which contained a
parameter or literal. The parameter
value was NULL for a column defined as
NOT NULL in the associated table
column, a duplicate value was supplied
for a column constrained to contain only
unique values, or some other integrity
constraint was violated.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.
The argument szSqlStr contained a
positioned update or delete statement

and the cursor was positioned before
the start of the result set or after the end
of the result set.

34000 Invalid cursor name The argument szSqlStr contained a
positioned update or delete statement
and the cursor referenced by the
statement being executed was not open.

37000 Syntax error or
access violation

The argument szSqlStr contained an
SQL statement that was not preparable
or contained a syntax error.

40001 Serialization failure The transaction to which the SQL
statement contained in the argument
szSqlStr belonged was terminated to
prevent deadlock.

42000 Syntax error or
access violation

The user did not have permission to
execute the SQL statement contained in
the argument szSqlStr.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S0001 Base table or view
already exists

The argument szSqlStr contained a
CREATE TABLE or CREATE VIEW
statement and the table name or view
name specified already exists.

S0002 Table or view not
found

The argument szSqlStr contained a
DROP TABLE or a DROP VIEW
statement and the specified table name
or view name did not exist.
The argument szSqlStr contained an
ALTER TABLE statement and the
specified table name did not exist.
The argument szSqlStr contained a
CREATE VIEW statement and a table
name or view name defined by the
query specification did not exist.
The argument szSqlStr contained a
CREATE INDEX statement and the
specified table name did not exist.
The argument szSqlStr contained a
GRANT or REVOKE statement and the
specified table name or view name did
not exist.
The argument szSqlStr contained a
SELECT statement and a specified
table name or view name did not exist.
The argument szSqlStr contained a
DELETE, INSERT, or UPDATE
statement and the specified table name
did not exist.
The argument szSqlStr contained a
CREATE TABLE statement and a table
specified in a constraint (referencing a
table other than the one being created)
did not exist.

S0011 Index already exists The argument szSqlStr contained a
CREATE INDEX statement and the
specified index name already existed.

S0012 Index not found The argument szSqlStr contained a
DROP INDEX statement and the
specified index name did not exist.

S0021 Column already
exists

The argument szSqlStr contained an
ALTER TABLE statement and the
column specified in the ADD clause is
not unique or identifies an existing
column in the base table.

S0022 Column not found The argument szSqlStr contained a
CREATE INDEX statement and one or
more of the column names specified in
the column list did not exist.
The argument szSqlStr contained a
GRANT or REVOKE statement and a
specified column name did not exist.
The argument szSqlStr contained a
SELECT, DELETE, INSERT, or
UPDATE statement and a specified
column name did not exist.
The argument szSqlStr contained a
CREATE TABLE statement and a
column specified in a constraint
(referencing a table other than the one
being created) did not exist.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1009 Invalid argument
value

(DM) The argument szSqlStr was a null
pointer.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or (DM) The argument cbSqlStr was less

buffer length than or equal to 0, but not equal to
SQL_NTS.
A parameter value, set with
SQLBindParameter, was a null pointer
and the parameter length value was not
0, SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or
equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.
A parameter value, set with
SQLBindParameter, was not a null
pointer and the parameter length value
was less than 0, but was not SQL_NTS,
SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or
equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1109 Invalid cursor
position

The argument szSqlStr contained a
positioned update or delete statement
and the cursor was positioned (by
SQLSetPos or SQLExtendedFetch) on
a row for which the value in the
rgfRowStatus array in
SQLExtendedFetch was
SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
The application calls SQLExecDirect to send an SQL statement to the data source. The driver modifies
the statement to use the form of SQL used by the data source, then submits it to the data source. In
particular, the driver modifies the escape clauses used to define ODBC-specific SQL.
The application can include one or more parameter markers in the SQL statement. To include a
parameter marker, the application embeds a question mark (?) into the SQL statement at the appropriate
position.
If the SQL statement is a SELECT statement, and if the application called SQLSetCursorName to
associate a cursor with an hstmt, then the driver uses the specified cursor. Otherwise, the driver
generates a cursor name.
If the data source is in manual-commit mode (requiring explicit transaction initiation), and a transaction
has not already been initiated, the driver initiates a transaction before it sends the SQL statement.
If an application uses SQLExecDirect to submit a COMMIT or ROLLBACK statement, it will not be
interoperable between DBMS products. To commit or roll back a transaction, call SQLTransact.
If SQLExecDirect encounters a data-at-execution parameter, it returns SQL_NEED_DATA. The
application sends the data using SQLParamData and SQLPutData. See SQLBindParameter,
SQLParamOptions, SQLParamData, and SQLPutData for more information.

Code Example
See SQLBindCol, SQLExtendedFetch, SQLGetData, and SQLProcedures.

Related Functions
SQLBindCol
SQLCancel
SQLExecute
SQLExtendedFetch (extension)
SQLFetch
SQLGetCursorName
SQLGetData (extension)
SQLParamData (extension)
SQLPrepare
SQLPutData (extension)
SQLSetCursorName
SQLSetStmtOption (extension)
SQLTransact

SQLExecute (Core, ODBC 1.0)
Code Example Related Functions

SQLExecute executes a prepared statement, using the current values of the parameter marker
variables if any parameter markers exist in the statement.

Syntax
RETCODE SQLExecute(hstmt)
The SQLExecute statement accepts the following argument.

Type Argument Use Description
HSTMT hstmt Input Statement handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLExecute returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLExecute and explains each one in the context of this function; the notation
"(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code
associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The prepared statement associated with
the hstmt contained a character or
binary parameter or literal and the value
exceeded the maximum length of the
associated table column.
The prepared statement associated with
the hstmt contained a numeric
parameter or literal and the fractional
part of the value was truncated.
The prepared statement associated with
the hstmt contained a date or time
parameter or literal and a timestamp
value was truncated.

01006 Privilege not
revoked

The prepared statement associated with
the hstmt was REVOKE and the user
did not have the specified privilege.
(Function returns
SQL_SUCCESS_WITH_INFO.)

01S03 No rows updated or
deleted

The prepared statement associated with
the hstmt was a positioned update or
delete statement and no rows were
updated or deleted. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S04 More than one row
updated or deleted

The prepared statement associated with
the hstmt was a positioned update or
delete statement and more than one row
was updated or deleted. (Function
returns SQL_SUCCESS_WITH_INFO.)

07001 Wrong number of
parameters

The number of parameters specified in
SQLBindParameter was less than the
number of parameters in the prepared

statement associated with the hstmt.
08S01 Communication link

failure
The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

22003 Numeric value out
of range

The prepared statement associated with
the hstmt contained a numeric
parameter and the parameter value
caused the whole (as opposed to
fractional) part of the number to be
truncated when assigned to the
associated table column.

22005 Error in assignment The prepared statement associated with
the hstmt contained a parameter and
the value was incompatible with the data
type of the associated table column.

22008 Datetime field
overflow

The prepared statement associated with
the hstmt contained a date, time, or
timestamp parameter or literal and the
value was, respectively, an invalid date,
time, or timestamp.

22012 Division by zero The prepared statement associated with
the hstmt contained an arithmetic
expression which caused division by
zero.

23000 Integrity constraint
violation

The prepared statement associated with
the hstmt contained a parameter. The
parameter value was NULL for a column
defined as NOT NULL in the associated
table column, a duplicate value was
supplied for a column constrained to
contain only unique values, or some
other integrity constraint was violated.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.
The prepared statement associated with
the hstmt contained a positioned update
or delete statement and the cursor was
positioned before the start of the result
set or after the end of the result set.

40001 Serialization failure The transaction to which the prepared
statement associated with the hstmt
belonged was terminated to prevent
deadlock.

42000 Syntax error or
access violation

The user did not have permission to
execute the prepared statement
associated with the hstmt.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was

defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.
(DM) The hstmt was not prepared.
Either the hstmt was not in an executed
state, or a cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
The hstmt was not prepared. It was in
an executed state and either no result
set was associated with the hstmt or
SQLFetch or SQLExtendedFetch had
not been called.

S1090 Invalid string or
buffer length

A parameter value, set with
SQLBindParameter, was a null pointer
and the parameter length value was not
0, SQL_NULL_DATA,
SQL_DATA_AT_EXEC, or less than or
equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.
A parameter value, set with
SQLBindParameter, was not a null
pointer and the parameter length value
was less than 0, but was not SQL_NTS,
SQL_NULL_DATA, or
SQL_DATA_AT_EXEC, or less than or
equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1109 Invalid cursor
position

The prepared statement was a
positioned update or delete statement
and the cursor was positioned (by
SQLSetPos or SQLExtendedFetch) on
a row for which the value in the
rgfRowStatus array in

SQLExtendedFetch was
SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLExecute can return any SQLSTATE that can be returned by SQLPrepare based on when the data
source evaluates the SQL statement associated with the hstmt.

Comments
SQLExecute executes a statement prepared by SQLPrepare. Once the application processes or
discards the results from a call to SQLExecute, the application can call SQLExecute again with new
parameter values.
To execute a SELECT statement more than once, the application must call SQLFreeStmt with the
SQL_CLOSE parameter before reissuing the SELECT statement.
If the data source is in manual-commit mode (requiring explicit transaction initiation), and a transaction
has not already been initiated, the driver initiates a transaction before it sends the SQL statement.
If an application uses SQLPrepare to prepare and SQLExecute to submit a COMMIT or ROLLBACK
statement, it will not be interoperable between DBMS products. To commit or roll back a transaction, call
SQLTransact.
If SQLExecute encounters a data-at-execution parameter, it returns SQL_NEED_DATA. The application
sends the data using SQLParamData and SQLPutData. See SQLBindParameter,
SQLParamOptions, SQLParamData, and SQLPutData for more information.

Code Example
See SQLBindParameter, SQLParamOptions, SQLPutData, and SQLSetPos.

Related Functions
SQLBindCol
SQLCancel
SQLExecDirect
SQLExtendedFetch (extension)
SQLFetch
SQLFreeStmt
SQLGetCursorName
SQLGetData (extension)
SQLParamData (extension)
SQLPrepare
SQLPutData (extension)
SQLSetCursorName
SQLSetStmtOption (extension)
SQLTransact

SQLExtendedFetch (Extension Level 2, ODBC 1.0)
Code Examples Related Functions

SQLExtendedFetch extends the functionality of SQLFetch in the following ways:

It returns rowset data (one or more rows), in the form of an array, for each bound column.
It scrolls through the result set according to the setting of a scroll-type argument.

SQLExtendedFetch works in conjunction with SQLSetStmtOption.
To fetch one row of data at a time in a forward direction, an application should call SQLFetch.

Syntax
RETCODE SQLExtendedFetch(hstmt, fFetchType, irow, pcrow, rgfRowStatus)
The SQLExtendedFetch function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD fFetchType Input Type of fetch. For more

information, see the
"Comments" section.

SDWORD irow Input Number of the row to fetch.
For more information, see the
"Comments" section.

UDWORD FAR
*

pcrow Output Number of rows actually
fetched.

UWORD FAR * rgfRowStatus Output An array of status values. For
more information, see the
"Comments" section.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLExtendedFetch returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError. The following table lists the
SQLSTATE values commonly returned by SQLExtendedFetch and explains each one in the context of
this function; the notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver
Manager. The return code associated with each SQLSTATE value is SQL_ERROR, unless noted
otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more
columns was truncated. String values
are right truncated. For numeric values,
the fractional part of number was
truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S01 Error in row An error occurred while fetching one or
more rows. (Function returns
SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

A data value could not be converted to
the C data type specified by fCType in
SQLBindCol.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the

function completed processing.
22003 Numeric value out

of range
Returning the numeric value (as
numeric or string) for one or more
columns would have caused the whole
(as opposed to fractional) part of the
number to be truncated.
Returning the binary value for one or
more columns would have caused a
loss of binary significance.
For more information, see Appendix D,
Data Types.

22012 Division by zero A value from an arithmetic expression
was returned which resulted in division
by zero.

24000 Invalid cursor state The hstmt was in an executed state but
no result set was associated with the
hstmt.

40001 Serialization failure The transaction in which the fetch was
executed was terminated to prevent
deadlock.

IM001 Driver does not
support this function

(DM) The driver associated with the
hdbc does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1002 Invalid column
number

A column number specified in the
binding for one or more columns was
greater than the number of columns in
the result set.
Column 0 was bound with SQLBindCol
and the SQL_USE_BOOKMARKS
statement option was set to
SQL_UB_OFF.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) The specified hstmt was not in an
executed state. The function was called
without first calling SQLExecDirect,
SQLExecute, or a catalog function..
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this

function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.
(DM) SQLExtendedFetch was called
for an hstmt after SQLFetch was called
and before SQLFreeStmt was called
with the SQL_CLOSE option.

S1106 Fetch type out of
range

(DM) The value specified for the
argument fFetchType was invalid (see
"Comments").
The value of the SQL_CURSOR_TYPE
statement option was
SQL_CURSOR_FORWARD_ONLY and
the value of argument fFetchType was
not SQL_FETCH_NEXT.

S1107 Row value out of
range

The value specified with the
SQL_CURSOR_TYPE statement option
was
SQL_CURSOR_KEYSET_DRIVEN, but
the value specified with the
SQL_KEYSET_SIZE statement option
was greater than 0 and less than the
value specified with the
SQL_ROWSET_SIZE statement option.

S1111 Invalid bookmark
value

The argument fFetchType was
SQL_FETCH_BOOKMARK and the
bookmark specified in the irow argument
was not valid.

S1C00 Driver not capable Driver or data source does not support
the specified fetch type.
The driver or data source does not
support the conversion specified by the
combination of the fCType in
SQLBindCol and the SQL data type of
the corresponding column. This error
only applies when the SQL data type of
the column was mapped to a driver-
specific SQL data type.
The argument fFetchType was
SQL_FETCH_RESUME and the driver
supports ODBC 2.0.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLExtendedFetch returns one rowset of data to the application. An application cannot mix calls to
SQLExtendedFetch and SQLFetch for the same cursor.
An application specifies the number of rows in the rowset by calling SQLSetStmtOption with the
SQL_ROWSET_SIZE statement option.

Binding
If any columns in the result set have been bound with SQLBindCol, the driver converts the data for the
bound columns as necessary and stores it in the locations bound to those columns. The result set can
be bound in a column-wise (the default) or row-wise fashion.

Column-Wise Binding
To bind a result set in column-wise fashion, an application specifies SQL_BIND_BY_COLUMN for the
SQL_BIND_TYPE statement option. (This is the default value.) For each column to be bound, the
application:
1. Allocates an array of data storage buffers. The array has as many elements as there are rows in the

rowset, plus an additional element if the application will search for key values or append new rows of
data. Each buffer's size is the maximum size of the C data that can be returned for the column. For
example, when the C data type is SQL_C_DEFAULT, each buffer's size is the column length. When
the C data type is SQL_C_CHAR, each buffer's size is the display size of the data. For more
information, see Converting Data from SQL to C Data Types and Precision, Scale, Length, and
Display Size.

2. Allocates an array of SDWORDs to hold the number of bytes available to return for each row in the
column. The array has as many elements as there are rows in the rowset.

3. Calls SQLBindCol:

The rgbValue argument specifies the address of the data storage array.
The cbValueMax argument specifies the size of each buffer in the data storage array.
The pcbValue argument specifies the address of the number-of-bytes array.

When the application calls SQLExtendedFetch, the driver retrieves the data and the number of bytes
available to return and stores them in the buffers allocated by the application:

For each bound column, the driver stores the data in the rgbValue buffer bound to the column. It
stores the first row of data at the start of the buffer and each subsequent row of data at an offset of
cbValueMax bytes from the data for the previous row.

For each bound column, the driver stores the number of bytes available to return in the pcbValue
buffer bound to the column. This is the number of bytes available prior to calling SQLExtendedFetch. (If
the number of bytes available to return cannot be determined in advance, the driver sets pcbValue to
SQL_NO_TOTAL. If the data for the column is NULL, the driver sets pcbValue to SQL_NULL_DATA.) It
stores the number of bytes available to return for the first row at the start of the buffer and the number of
bytes available to return for each subsequent row at an offset of sizeof(SDWORD) from the value for the
previous row.

Row-Wise Binding
To bind a result set in row-wise fashion, an application:
1. Declares a structure that can hold a single row of retrieved data and the associated data lengths. For

each bound column, the structure contains one field for the data and one SDWORD field for the
number of bytes available to return. The data field's size is the maximum size of the C data that can
be returned for the column.

2. Calls SQLSetStmtOption with fOption set to SQL_BIND_TYPE and vParam set to the size of the
structure.

3. Allocates an array of these structures. The array has as many elements as there are rows in the
rowset, plus an additional element if the application will search for key values or append new rows of
data.

4. Calls SQLBindCol for each column to be bound:

The rgbValue argument specifies the address of the column's data field in the first array element.
The cbValueMax argument specifies the size of the column's data field.
The pcbValue argument specifies the address of the column's number-of-bytes field in the first

array element.

When the application calls SQLExtendedFetch, the driver retrieves the data and the number of bytes
available to return and stores them in the buffers allocated by the application:

For each bound column, the driver stores the first row of data at the address specified by
rgbValue for the column and each subsequent row of data at an offset of vParam bytes from the data for

the previous row.
For each bound column, the driver stores the number of bytes available to return for the first row

at the address specified by pcbValue and the number of bytes available to return for each subsequent
row at an offset of vParam bytes from the value for the previous row. This is the number of bytes available
prior to calling SQLExtendedFetch. (If the number of bytes available to return cannot be determined in
advance, the driver sets pcbValue to SQL_NO_TOTAL. If the data for the column is NULL, the driver sets
pcbValue to SQL_NULL_DATA.)

Positioning the Cursor
The following operations require a cursor position:

Positioned update and delete statements.
Calls to SQLGetData.
Calls to SQLSetPos with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATE options.

An application can specify a cursor position when it calls SQLSetPos. Before it executes a positioned
update or delete statement or calls SQLGetData, the application must position the cursor by calling
SQLExtendedFetch to retrieve a rowset; the cursor points to the first row in the rowset. To position the
cursor to a different row in the rowset, the application calls SQLSetPos.
The following table shows the rowset and return code returned when the application requests different
rowsets.

Requested
Rowset Return Code

Cursor
Position Returned Rowset

Before start
of result set

SQL_NO_DATA_
FOUND

Before start
of result set

None. The contents of the rowset buffers are
undefined.

Overlaps
start of
result set

SQL_SUCCESS Row 1 of
rowset

First rowset in result set.

Within
result set

SQL_SUCCESS Row 1 of
rowset

Requested rowset.

Overlaps
end of
result set

SQL_SUCCESS Row 1 of
rowset

For rows in the rowset that overlap the result set,
data is returned.
For rows in the rowset outside the result set, the
contents of the rgbValue and pcbValue buffers are
undefined and the rgfRowStatus array contains
SQL_ROW_NOROW.

After end of
result set

SQL_NO_DATA_
FOUND

After end of
result set

None. The contents of the rowset buffers are
undefined.

For example, suppose a result set has 100 rows and the rowset size is 5. The following table shows the
rowset and return code returned by SQLExtendedFetch for different values of irow when the fetch type
is SQL_FETCH_RELATIVE:

Current
Rowset

irow Return Code New Rowset

1 to 5 -5 SQL_NO_DATA_FOUND None.
1 to 5 -3 SQL_SUCCESS 1 to 5
96 to 100     5 SQL_NO_DATA_FOUND None.
96 to 100     3 SQL_SUCCESS 99 and 100. For rows 3, 4,

and 5 in the rowset, the
rgfRowStatusArray is set
to SQL_ROW_NOROW.

Before SQLExtendedFetch is called the first time, the cursor is positioned before the start of the result
set.
For the purpose of moving the cursor, deleted rows (that is, rows with an entry in the rgfRowStatus array
of SQL_ROW_DELETED) are treated no differently than other rows. For example, calling
SQLExtendedFetch with fFetchType set to SQL_FETCH_ABSOLUTE and irow set to 15 returns the

rowset starting at row 15, even if the rgfRowStatus array for row 15 is SQL_ROW_DELETED.

Processing Errors
If an error occurs that pertains to the entire rowset, such as SQLSTATE S1T00 (Timeout expired), the
driver returns SQL_ERROR and the appropriate SQLSTATE. The contents of the rowset buffers are
undefined and the cursor position is unchanged.
If an error occurs that pertains to a single row, the driver:

Sets the element in the rgfRowStatus array for the row to SQL_ROW_ERROR.
Posts SQLSTATE 01S01 (Error in row) in the error queue.
Posts zero or more additional SQLSTATEs for the error after SQLSTATE 01S01 (Error in row) in

the error queue.

After it has processed the error or warning, the driver continues the operation for the remaining rows in
the rowset and returns SQL_SUCCESS_WITH_INFO. Thus, for each error that pertains to a single row,
the error queue contains SQLSTATE 01S01 (Error in row) followed by zero or more additional
SQLSTATEs.
After it has processed the error, the driver fetches the remaining rows in the rowset and returns
SQL_SUCCESS_WITH_INFO. Thus, for each row that returned an error, the error queue contains
SQLSTATE 01S01 (Error in row) followed by zero or more additional SQLSTATEs.
If the rowset contains rows that have already been fetched, the driver is not required to return
SQLSTATEs for errors that occurred when the rows were first fetched. It is, however, required to return
SQLSTATE 01S01 (Error in row) for each row in which an error originally occurred and to return
SQL_SUCCESS_WITH_INFO. For example, a static cursor that maintains a cache might cache row
status information (so it can determine which rows contain errors) but might not cache the SQLSTATE
associated with those errors.
Error rows do not affect relative cursor movements. For example, suppose the result set size is 100 and
the rowset size is 10. If the current rowset is rows 11 through 20 and the element in the rgfRowStatus
array for row 11 is SQL_ROW_ERROR, calling SQLExtendedFetch with the SQL_FETCH_NEXT fetch
type still returns rows 21 through 30.
If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated), it returns warnings that
apply to the entire rowset or to unknown rows in the rowset before it returns error information applying to
specific rows. It returns warnings for specific rows along with any other error information about those
rows.

fFetchType Argument
The fFetchType argument specifies how to move through the result set. It is one of the following values:

SQL_FETCH_NEXT

SQL_FETCH_FIRST

SQL_FETCH_LAST

SQL_FETCH_PRIOR

SQL_FETCH_ABSOLUTE

SQL_FETCH_RELATIVE

SQL_FETCH_BOOKMARK

If the value of the SQL_CURSOR_TYPE statement option is SQL_CURSOR_FORWARD_ONLY, the
fFetchType argument must be SQL_FETCH_NEXT.

Note    In ODBC 1.0, SQLExtendedFetch supported the SQL_FETCH_RESUME fetch type. In ODBC
2.0, SQL_FETCH_RESUME is obsolete and the Driver Manager returns SQLSTATE S1C00 (Driver not
capable) if an application specifies it for an ODBC 2.0 driver.
The SQL_FETCH_BOOKMARK fetch type was introduced in ODBC 2.0; the Driver Manager returns
SQLSTATE S1106 (Fetch type out of range) if it is specified for an ODBC 1.0 driver.

Moving by Row Position
SQLExtendedFetch supports the following values of the fFetchType argument to move relative to the

current rowset:

fFetchType Argument Action
SQL_FETCH_NEXT The driver returns the next rowset. If the cursor is

positioned before the start of the result set, this is
equivalent to SQL_FETCH_FIRST.

SQL_FETCH_PRIOR The driver returns the prior rowset. If the cursor is
positioned after the end of the result set, this is
equivalent to SQL_FETCH_LAST.

SQL_FETCH_RELATIVE The driver returns the rowset irow rows from the start
of the current rowset. If irow equals 0, the driver
refreshes the current rowset. If the cursor is
positioned before the start of the result set and irow is
greater than 0 or if the cursor is positioned after the
end of the result set and irow is less than 0, this is
equivalent to SQL_FETCH_ABSOLUTE.

It supports the following values of the fFetchType argument to move to an absolute position in the result
set:

fFetchType Argument Action
SQL_FETCH_FIRST The driver returns the first rowset in the result set.
SQL_FETCH_LAST The driver returns the last complete rowset in the

result set.
SQL_FETCH_ABSOLUTE If irow is greater than 0, the driver returns the rowset

starting at row irow.
If irow equals 0, the driver returns
SQL_NO_DATA_FOUND and the cursor is positioned
before the start of the result set.
If irow is less than 0, the driver returns the rowset
starting at row n+irow+1, where n is the number of
rows in the result set. For example, if irow is -1, the
driver returns the rowset starting at the last row in the
result set. If the result set size is 10 and irow is -10,
the driver returns the rowset starting at the first row in
the result set.

Positioning to a Bookmark
When an application calls SQLExtendedFetch with the SQL_FETCH_BOOKMARK fetch type, the
driver retrieves the rowset starting with the row specified by the bookmark in the irow argument.
To inform the driver that it will use bookmarks, the application calls SQLSetStmtOption with the
SQL_USE_BOOKMARKS option before opening the cursor. To retrieve the bookmark for a row, the
application either positions the cursor on the row and calls SQLGetStmtOption with the
SQL_GET_BOOKMARK option, or retrieves the bookmark from column 0 of the result set. If the
application retrieves a bookmark from column 0 of the result set, it must set fCType in SQLBindCol or
SQLGetData to SQL_C_BOOKMARK. The application stores the bookmarks for those rows in each
rowset to which it will return later.
Bookmarks are 32-bit binary values; if a bookmark requires more than 32 bits, such as when it is a key
value, the driver maps the bookmarks requested by the application to 32-bit binary values. The 32-bit
binary values are then returned to the application. Because this mapping may require considerable
memory, applications should only bind column 0 of the result set if they will actually use bookmarks for
most rows. Otherwise, applications should call SQLGetStmtOption with the SQL_GET_BOOKMARK
statement option or call SQLGetData for column 0.

irow Argument
For the SQL_FETCH_ABSOLUTE fetch type, SQLExtendedFetch returns the rowset starting at the row
number specified by the irow argument.
For the SQL_FETCH_RELATIVE fetch type, SQLExtendedFetch returns the rowset starting irow rows

from the first row in the current rowset.
For the SQL_FETCH_BOOKMARK fetch type, the irow argument specifies the bookmark that marks the
first row in the requested rowset.
The irow argument is ignored for the SQL_FETCH_NEXT, SQL_FETCH_PRIOR, SQL_FETCH_FIRST,
and SQL_FETCH_LAST, fetch types.

rgfRowStatus Argument
In the rgfRowStatus array, SQLExtendedFetch returns any changes in status to each row since it was
last retrieved from the data source. Rows may be unchanged (SQL_ROW_SUCCESS), updated
(SQL_ROW_UPDATED), deleted (SQL_ROW_DELETED), added (SQL_ROW_ADDED), or were
unretrievable due to an error (SQL_ROW_ERROR). For static cursors, this information is available for
all rows. For keyset, mixed, and dynamic cursors, this information is only available for rows in the
keyset; the driver does not save data outside the keyset and therefore cannot compare the newly
retrieved data to anything.

Note      Some drivers cannot detect changes to data. To determine whether a driver can detect changes
to refetched rows, an application calls SQLGetInfo with the SQL_ROW_UPDATES option.

The number of elements must equal the number of rows in the rowset (as defined by the
SQL_ROWSET_SIZE statement option). If the number of rows fetched is less than the number of
elements in the status array, the driver sets remaining status elements to SQL_ROW_NOROW.
When an application calls SQLSetPos with fOption set to SQL_DELETE or SQL_UPDATE, SQLSetPos
changes the rgfRowStatus array for the changed row to SQL_ROW_DELETED or
SQL_ROW_UPDATED.

Note      For keyset, mixed, and dynamic cursors, if a key value is updated, the row of data is considered
to have been deleted and a new row added.

Code Example
The following two examples show how an application could use column-wise or row-wise binding to bind
storage locations to the same result set.
For more code examples, see SQLSetPos.

Column-Wise Binding
In the following example, an application declares storage locations for column-wise bound data and the
returned numbers of bytes. Because column-wise binding is the default, there is no need, as in the row-
wise binding example, to request column-wise binding with SQLSetStmtOption. However, the
application does call SQLSetStmtOption to specify the number of rows in the rowset.
The application then executes a SELECT statement to return a result set of the employee names and
birthdays, which is sorted by birthday. It calls SQLBindCol to bind the columns of data, passing the
addresses of storage locations for both the data and the returned numbers of bytes. Finally, the
application fetches the rowset data with SQLExtendedFetch and prints each employee's name and
birthday.

#define ROWS 100

#define NAME_LEN 30

#define BDAY_LEN 11

UCHAR szName[ROWS][NAME_LEN], szBirthday[ROWS][BDAY_LEN];

SWORD sAge[ROWS];

SDWORD cbName[ROWS], cbAge[ROWS], cbBirthday[ROWS];

UDWORD crow, irow;

UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);

SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);

SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);

retcode = SQLExecDirect(hstmt, "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE
ORDER BY 3, 2, 1", SQL_NTS);

if (retcode == SQL_SUCCESS) {

SQLBindCol(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, cbName);

SQLBindCol(hstmt, 2, SQL_C_SSHORT, sAge, 0, cbAge);

SQLBindCol(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN, cbBirthday);

/* Fetch the rowset data and print each row. */

/* On an error, display a message and exit. */

while (TRUE) {

retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,
rgfRowStatus);

if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();

}

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {

if (rgfRowStatus[irow] != SQL_ROW_DELETED && rgfRowStatus[irow] !=
SQL_ROW_ERROR)

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName[irow],
sAge[irow], BDAY_LEN-1, szBirthday[irow]);

}

} else {

break;

}

}

}

Row-Wise Binding
In the following example, an application declares an array of structures to hold row-wise bound data and
the returned numbers of bytes. Using SQLSetStmtOption, it requests row-wise binding and passes the
size of the structure to the driver. The driver will use this size to find successive storage locations in the
array of structures. Using SQLSetStmtOption, it specifies the size of the rowset.
The application then executes a SELECT statement to return a result set of the employee names and
birthdays, which is sorted by birthday. It calls SQLBindCol to bind the columns of data, passing the
addresses of storage locations for both the data and the returned numbers of bytes. Finally, the
application fetches the rowset data with SQLExtendedFetch and prints each employee's name and
birthday.

#define ROWS 100

#define NAME_LEN 30

#define BDAY_LEN 11

typedef struct {
UCHAR szName[NAME_LEN];
SDWORD cbName;
SWORD sAge;
SDWORD cbAge;
UCHAR szBirthday[BDAY_LEN];
SDWORD cbBirthday;
} EmpTable;

EmpTable rget[ROWS];

UDWORD crow, irow;

UWORD rgfRowStatus[ROWS];

SQLSetStmtOption(hstmt, SQL_BIND_TYPE, sizeof(EmpTable));

SQLSetStmtOption(hstmt, SQL_CONCURRENCY, SQL_CONCUR_READ_ONLY);

SQLSetStmtOption(hstmt, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);

SQLSetStmtOption(hstmt, SQL_ROWSET_SIZE, ROWS);

retcode = SQLExecDirect(hstmt, "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE
ORDER BY 3, 2, 1", SQL_NTS);

if (retcode == SQL_SUCCESS) {

SQLBindCol(hstmt, 1, SQL_C_CHAR, rget[0].szName, NAME_LEN,
&rget[0].cbName);

SQLBindCol(hstmt, 2, SQL_C_SSHORT, &rget[0].sAge, 0, &rget[0].cbAge);

SQLBindCol(hstmt, 3, SQL_C_CHAR, rget[0].szBirthday, BDAY_LEN,
&rget[0].cbBirthday);

/* Fetch the rowset data and print each row. */

/* On an error, display a message and exit. */

while (TRUE) {

retcode = SQLExtendedFetch(hstmt, SQL_FETCH_NEXT, 1, &crow,
rgfRowStatus);

if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();

}

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

for (irow = 0; irow < crow; irow++) {

if (rgfRowStatus[irow] != SQL_ROW_DELETED && rgfRowStatus[irow] !=
SQL_ROW_ERROR)

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, rget[irow].szName,
rget[irow].sAge, BDAY_LEN-1, rget[irow].szBirthday);

}

} else {

break;

}

}

}

Related Functions
SQLBindCol
SQLCancel
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLNumResultCols
SQLSetPos (extension)
SQLSetStmtOption (extension)

SQLFetch (Core, ODBC 1.0)
Code Example Related Functions

SQLFetch fetches a row of data from a result set. The driver returns data for all columns that were
bound to storage locations with SQLBindCol.

Syntax
RETCODE SQLFetch(hstmt)
The SQLFetch function accepts the following argument.

Type Argument Use Description
HSTMT hstmt Input Statement handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLFetch returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLFetch and explains each one in the context of this function; the notation
"(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code
associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data returned for one or more
columns was truncated. String values
are right truncated. For numeric values,
the fractional part of number was
truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

07006 Restricted data type
attribute violation

The data value could not be converted
to the data type specified by fCType in
SQLBindCol.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

22003 Numeric value out
of range

Returning the numeric value (as
numeric or string) for one or more
columns would have caused the whole
(as opposed to fractional) part of the
number to be truncated.
Returning the binary value for one or
more columns would have caused a
loss of binary significance.
For more information, see Converting
Data from SQL to C Data Types.

22012 Division by zero A value from an arithmetic expression
was returned which resulted in division
by zero.

24000 Invalid cursor state The hstmt was in an executed state but
no result set was associated with the
hstmt.

40001 Serialization failure The transaction in which the fetch was
executed was terminated to prevent

deadlock.
IM001 Driver does not

support this function
(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1002 Invalid column
number

A column number specified in the
binding for one or more columns was
greater than the number of columns in
the result set.
A column number specified in the
binding for a column was 0; SQLFetch
cannot be used to retrieve bookmarks.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) The specified hstmt was not in an
executed state. The function was called
without first calling SQLExecDirect,
SQLExecute, or a catalog function..
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.
(DM) SQLExtendedFetch was called
for an hstmt after SQLFetch was called
and before SQLFreeStmt was called
with the SQL_CLOSE option.

S1C00 Driver not capable The driver or data source does not
support the conversion specified by the
combination of the fCType in
SQLBindCol and the SQL data type of
the corresponding column. This error
only applies when the SQL data type of
the column was mapped to a driver-
specific SQL data type.

S1T00 Timeout expired The timeout period expired before the

data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLFetch positions the cursor on the next row of the result set. Before SQLFetch is called the first
time, the cursor is positioned before the start of the result set. When the cursor is positioned on the last
row of the result set, SQLFetch returns SQL_NO_DATA_FOUND and the cursor is positioned after the
end of the result set. An application cannot mix calls to SQLExtendedFetch and SQLFetch for the
same cursor.
If the application called SQLBindCol to bind columns, SQLFetch stores data into the locations specified
by the calls to SQLBindCol. If the application does not call SQLBindCol to bind any columns,
SQLFetch doesn't return any data; it just moves the cursor to the next row. An application can call
SQLGetData to retrieve data that is not bound to a storage location.
The driver manages cursors during the fetch operation and places each value of a bound column into
the associated storage. The driver follows these guidelines when performing a fetch operation:

SQLFetch accesses column data in left-to-right order.
After each fetch, pcbValue (specified in SQLBindCol) contains the number of bytes available to

return for the column. This is the number of bytes available prior to calling SQLFetch. If the number of
bytes available to return cannot be determined in advance, the driver sets pcbValue to SQL_NO_TOTAL.
(If SQL_MAX_LENGTH has been specified with SQLSetStmtOption and the number of bytes available
to return is greater than SQL_MAX_LENGTH, pcbValue contains SQL_MAX_LENGTH.)

Note      The SQL_MAX_LENGTH statement option is intended to reduce network traffic and may not
be supported by all drivers. To guarantee that data is truncated, an application should allocate a
buffer of the desired size and specify this size in the cbValueMax argument.

If rgbValue is not large enough to hold the entire result, the driver stores part of the value and
returns SQL_SUCCESS_WITH_INFO. A subsequent call to SQLError indicates that a truncation
occurred. The application can compare pcbValue to cbValueMax (specified in SQLBindCol) to determine
which column or columns were truncated. If pcbValue is greater than or equal to cbValueMax, then
truncation occurred.

If the data value for the column is NULL, the driver stores SQL_NULL_DATA in pcbValue.

SQLFetch is valid only after a call that returns a result set.
For information about conversions allowed by SQLBindCol and SQLGetData, see Converting Data
from SQL to C Data Types.

Code Example
See SQLBindCol, SQLColumns, SQLGetData, and SQLProcedures.

Related Functions
SQLBindCol
SQLCancel
SQLDescribeCol
SQLExecDirect
SQLExecute
SQLExtendedFetch (extension)
SQLFreeStmt
SQLGetData (extension)
SQLNumResultCols
SQLPrepare

SQLForeignKeys (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLForeignKeys can return:

A list of foreign keys in the specified table (columns in the specified table that refer to primary
keys in other tables).

A list of foreign keys in other tables that refer to the primary key in the specified table.

The driver returns each list as a result set on the specified hstmt.

Syntax
RETCODE SQLForeignKeys(hstmt, szPkTableQualifier, cbPkTableQualifier, szPkTableOwner,
cbPkTableOwner, szPkTableName, cbPkTableName, szFkTableQualifier, cbFkTableQualifier,
szFkTableOwner, cbFkTableOwner, szFkTableName, cbFkTableName)
The SQLForeignKeys function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szPkTableQualifier Input Primary key table qualifier. If a

driver supports qualifiers for
some tables but not for
others, such as when the
driver retrieves data from
different DBMSs, an empty
string ("") denotes those
tables that do not have
qualifiers.

SWORD cbPkTableQualifier Input Length of szPkTableQualifier.
UCHAR FAR * szPkTableOwner Input Primary key owner name. If a

driver supports owners for
some tables but not for
others, such as when the
driver retrieves data from
different DBMSs, an empty
string ("") denotes those
tables that do not have
owners.

SWORD cbPkTableOwner Input Length of szPkTableOwner.
UCHAR FAR * szPkTableName Input Primary key table name.
SWORD cbPkTableName Input Length of szPkTableName.
UCHAR FAR * szFkTableQualifier Input Foreign key table qualifier. If a

driver supports qualifiers for
some tables but not for
others, such as when the
driver retrieves data from
different DBMSs, an empty
string ("") denotes those
tables that do not have
qualifiers.

SWORD cbFkTableQualifier Input Length of szFkTableQualifier.
UCHAR FAR * szFkTableOwner Input Foreign key owner name. If a

driver supports owners for
some tables but not for
others, such as when the
driver retrieves data from
different DBMSs, an empty
string ("") denotes those
tables that do not have

owners.
SWORD cbFkTableOwner Input Length of szFkTableOwner.
UCHAR FAR * szFkTableName Input Foreign key table name.
SWORD cbFkTableName Input Length of szFkTableName.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLForeignKeys returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLForeignKeys and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1009 Invalid argument
value

(DM) The arguments szPkTableName
and szFkTableName were both null
pointers.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this

function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name (see "Comments").

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
If szPkTableName contains a table name, SQLForeignKeys returns a result set containing the primary
key of the specified table and all of the foreign keys that refer to it.
If szFkTableName contains a table name, SQLForeignKeys returns a result set containing all of the
foreign keys in the specified table and the primary keys (in other tables) to which they refer.
If both szPkTableName and szFkTableName contain table names, SQLForeignKeys returns the foreign
keys in the table specified in szFkTableName that refer to the primary key of the table specified in
szPkTableName. This should be one key at most.
SQLForeignKeys returns results as a standard result set. If the foreign keys associated with a primary
key are requested, the result set is ordered by FKTABLE_QUALIFIER, FKTABLE_OWNER,
FKTABLE_NAME, and KEY_SEQ. If the primary keys associated with a foreign key are requested, the
result set is ordered by PKTABLE_QUALIFIER, PKTABLE_OWNER, PKTABLE_NAME, and KEY_SEQ.
The following table lists the columns in the result set.
The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the TABLE_QUALIFIER, TABLE_OWNER,
TABLE_NAME, and COLUMN_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

Column Name Data Type Comments
PKTABLE_QUALIFIER Varchar(128) Primary key table qualifier identifier;

NULL if not applicable to the data
source. If a driver supports qualifiers
for some tables but not for others,
such as when the driver retrieves data
from different DBMSs, it returns an

empty string ("") for those tables that
do not have qualifiers.

PKTABLE_OWNER Varchar(128) Primary key table owner identifier;
NULL if not applicable to the data
source. If a driver supports owners for
some tables but not for others, such
as when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

PKTABLE_NAME Varchar(128)
not NULL

Primary key table identifier.

PKCOLUMN_NAME Varchar(128)
not NULL

Primary key column identifier.

FKTABLE_QUALIFIER Varchar(128) Foreign key table qualifier identifier;
NULL if not applicable to the data
source. If a driver supports qualifiers
for some tables but not for others,
such as when the driver retrieves data
from different DBMSs, it returns an
empty string ("") for those tables that
do not have qualifiers.

FKTABLE_OWNER Varchar(128) Foreign key table owner identifier;
NULL if not applicable to the data
source. If a driver supports owners for
some tables but not for others, such
as when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

FKTABLE_NAME Varchar(128)
not NULL

Foreign key table identifier.

FKCOLUMN_NAME Varchar(128)
not NULL

Foreign key column identifier.

KEY_SEQ Smallint
not NULL

Column sequence number in key
(starting with 1).

UPDATE_RULE Smallint Action to be applied to the foreign key
when the SQL operation is UPDATE:

SQL_CASCADE
SQL_RESTRICT
SQL_SET_NULL

NULL if not applicable to the data
source.

DELETE_RULE Smallint Action to be applied to the foreign key
when the SQL operation is DELETE:

SQL_CASCADE
SQL_RESTRICT
SQL_SET_NULL

NULL if not applicable to the data
source.

FK_NAME Varchar(128) Foreign key identifier. NULL if not
applicable to the data source.

PK_NAME Varchar(128) Primary key identifier. NULL if not
applicable to the data source.

Note      The FK_NAME and PK_NAME columns were added in ODBC 2.0. ODBC 1.0 drivers may return
different, driver-specific columns with the same column numbers.

Code Example
This example uses four tables:

SALES_ORDER SALES_LINE CUSTOMER EMPLOYEE
SALES_ID SALES_ID CUSTOMER_ID EMPLOYEE_ID
CUSTOMER_ID LINE_NUMBER CUST_NAME NAME
EMPLOYEE_ID PART_ID ADDRESS AGE
TOTAL_PRICE QUANTITY PHONE BIRTHDAY

PRICE

In the SALES_ORDER table, CUSTOMER_ID identifies the customer to whom the sale has been made.
It is a foreign key that refers to CUSTOMER_ID in the CUSTOMER table. EMPLOYEE_ID identifies the
employee who made the sale. It is a foreign key that refers to EMPLOYEE_ID in the EMPLOYEE table.
In the SALES_LINE table, SALES_ID identifies the sales order with which the line item is associated. It
is a foreign key that refers to SALES_ID in the SALES_ORDER table.
This example calls SQLPrimaryKeys to get the primary key of the SALES_ORDER table. The result set
will have one row and the significant columns are:

TABLE_NAME COLUMN_NAME KEY_SEQ
SALES_ORDER SALES_ID 1

Next, the example calls SQLForeignKeys to get the foreign keys in other tables that reference the
primary key of the SALES_ORDER table. The result set will have one row and the significant columns
are:

PKTABLE_
NAME

PKCOLUMN_
NAME

FKTABLE_
NAME

FKCOLUMN_
NAME KEY_SEQ

SALES_ORDER SALES_ID SALES_LINE SALES_ID 1

Finally, the example calls SQLForeignKeys to get the foreign keys in the SALES_ORDER table the
refer to the primary keys of other tables. The result set will have two rows and the significant columns
are:

PKTABLE_
NAME

PKCOLUMN_
NAME

FKTABLE_
NAME

FKCOLUMN_
NAME KEY_SEQ

CUSTOMER CUSTOMER_ID SALES_ORDER CUSTOMER_ID 1
EMPLOYEE EMPLOYEE_ID SALES_ORDER EMPLOYEE_ID 1

#define TAB_LEN SQL_MAX_TABLE_NAME_LEN + 1

#define COL_LEN SQL_MAX_COLUMN_NAME_LEN + 1

LPSTR szTable; /* Table to display */

UCHAR szPkTable[TAB_LEN]; /* Primary key table name */

UCHAR szFkTable[TAB_LEN]; /* Foreign key table name */

UCHAR szPkCol[COL_LEN]; /* Primary key column */

UCHAR szFkCol[COL_LEN]; /* Foreign key column */

HSTMT hstmt;

SDWORD cbPkTable, cbPkCol, cbFkTable, cbFkCol, cbKeySeq;

SWORD iKeySeq;

RETCODE retcode;

/* Bind the columns that describe the primary and foreign keys. */

/* Ignore the table owner, name, and qualifier for this example. */

SQLBindCol(hstmt, 3, SQL_C_CHAR, szPkTable, TAB_LEN, &cbPkTable);

SQLBindCol(hstmt, 4, SQL_C_CHAR, szPkCol, COL_LEN, &cbPkCol);

SQLBindCol(hstmt, 5, SQL_C_SSHORT, &iKeySeq, TAB_LEN, &cbKeySeq);

SQLBindCol(hstmt, 7, SQL_C_CHAR, szFkTable, TAB_LEN, &cbFkTable);

SQLBindCol(hstmt, 8, SQL_C_CHAR, szFkCol, COL_LEN, &cbFkCol);

strcpy(szTable, "SALES_ORDER");

/* Get the names of the columns in the primary key. */

retcode = SQLPrimaryKeys(hstmt, NULL, 0, NULL, 0, szTable, SQL_NTS);

while ((retcode == SQL_SUCCESS) || (retcode == SQL SUCCESS_WITH_INFO)) {

/* Fetch and display the result set. This will be a list of the */

/* columns in the primary key of the SALES_ORDER table. */

retcode = SQLFetch(hstmt);

if (retcode == SQL_SUCCESS || retcode != SQL_SUCCESS_WITH_INFO)

fprintf(out, "Column: %s Key Seq: %hd \n", szPkCol, iKeySeq);

}

/* Close the cursor (the hstmt is still allocated). */

SQLFreeStmt(hstmt, SQL_CLOSE);

/* Get all the foreign keys that refer to SALES_ORDER primary key. */

retcode = SQLForeignKeys(hstmt, NULL, 0, NULL, 0, szTable, SQL_NTS, NULL, 0,
NULL, 0, NULL, 0);

while ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO)) {

/* Fetch and display the result set. This will be all of the */

/* foreign keys in other tables that refer to the SALES_ORDER */

/* primary key. */

retcode = SQLFetch(hstmt);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)

fprintf(out, "%-s (%-s) <-- %-s (%-s)\n", szPkTable, szPkCol,
szFkTable, szFkCol);

}

/* Close the cursor (the hstmt is still allocated). */

SQLFreeStmt(hstmt, SQL_CLOSE);

/* Get all the foreign keys in the SALES_ORDER table. */

retcode = SQLForeignKeys(hstmt, NULL, 0, NULL, 0, NULL, 0, NULL, 0, NULL, 0,
szTable, SQL_NTS);

while ((retcode == SQL_SUCCESS) || (retcode == SQL_SUCCESS_WITH_INFO)) {

/* Fetch and display the result set. This will be all of the */

/* primary keys in other tables that are referred to by foreign */

/* keys in the SALES_ORDER table. */

retcode = SQLFetch(hstmt);

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO)

fprintf(out, "%-s (%-s)--> %-s (%-s)\n", szFkTable, szFkCol,

 szPkTable, szPkCol);

}

/* Free the hstmt. */

SQLFreeStmt(hstmt, SQL_DROP);

Related Functions
SQLBindCol
SQLCancel
SQLExtendedFetch (extension)
SQLFetch
SQLPrimaryKeys (extension)
SQLStatistics (extension)

SQLFreeConnect (Core, ODBC 1.0)
Code Example Related Functions

SQLFreeConnect releases a connection handle and frees all memory associated with the handle.

Syntax
RETCODE SQLFreeConnect(hdbc)
The SQLFreeConnect function accepts the following argument.

Type Argument Use Description
HDBC hdbc Input Connection handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLFreeConnect returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLFreeConnect and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1010 Function sequence
error

(DM) The function was called prior to
calling SQLDisconnect for the hdbc.

Comments
Prior to calling SQLFreeConnect, an application must call SQLDisconnect for the hdbc. Otherwise,
SQLFreeConnect returns SQL_ERROR and the hdbc remains valid. Note that SQLDisconnect
automatically drops any hstmts open on the hdbc.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions
SQLAllocConnect
SQLConnect
SQLDisconnect
SQLDriverConnect (extension)
SQLFreeEnv
SQLFreeStmt

SQLFreeEnv (Core, ODBC 1.0)
Code Example Related Functions

SQLFreeEnv frees the environment handle and releases all memory associated with the environment
handle.

Syntax
RETCODE SQLFreeEnv(henv)
The SQLFreeEnv function accepts the following argument.

Type Argument Use Description
HENV henv Input Environment handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLFreeEnv returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLFreeEnv and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1010 Function sequence
error

(DM) There was at least one hdbc in an
allocated or connected state. Call
SQLDisconnect and SQLFreeConnect
for each hdbc before calling
SQLFreeEnv.

Comments
Prior to calling SQLFreeEnv, an application must call SQLFreeConnect for any hdbc allocated under
the henv. Otherwise, SQLFreeEnv returns SQL_ERROR and the henv and any active hdbc remains
valid.
When the Driver Manager processes the SQLFreeEnv function, it checks the TraceAutoStop keyword
in the [ODBC] section of the ODBC.INI file or the ODBC subkey of the registry. If it is set to 1, the Driver
Manager disables tracing for all applications and sets the Trace keyword in the [ODBC] section of the
ODBC.INI file or the ODBC subkey of the registry to 0.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions
SQLAllocEnv
SQLFreeConnect

SQLFreeStmt (Core, ODBC 1.0)
Code Example Related Functions

SQLFreeStmt stops processing associated with a specific hstmt, closes any open cursors associated
with the hstmt, discards pending results, and, optionally, frees all resources associated with the
statement handle.

Syntax
RETCODE SQLFreeStmt(hstmt, fOption)
The SQLFreeStmt function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle
UWORD fOption Input One of the following options:

SQL_ CLOSE: Close the
cursor associated with hstmt
(if one was defined) and
discard all pending results.
The application can reopen
this cursor later by executing
a SELECT statement again
with the same or different
parameter values. If no cursor
is open, this option has no
effect for the application.
SQL_DROP: Release the
hstmt, free all resources
associated with it, close the
cursor (if one is open), and
discard all pending rows. This
option terminates all access to
the hstmt. The hstmt must be
reallocated to be reused.
SQL_UNBIND: Release all
column buffers bound by
SQLBindCol for the given
hstmt.
SQL_RESET_PARAMS:
Release all parameter buffers
set by SQLBindParameter
for the given hstmt.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLFreeStmt returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLFreeStmt and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was

no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1092 Option type out of
range

(DM) The value specified for the
argument fOption was not:
SQL_CLOSE
SQL_DROP
SQL_UNBIND
SQL_RESET_PARAMS

Comments
An application can call SQLFreeStmt to terminate processing of a SELECT statement with or without
canceling the statement handle.
The SQL_DROP option frees all resources that were allocated by the SQLAllocStmt function.

Code Example
See SQLBrowseConnect and SQLConnect.

Related Functions
SQLAllocStmt
SQLCancel
SQLSetCursorName

SQLGetConnectOption (Extension Level 1, ODBC 1.0)
Related Functions

SQLGetConnectOption returns the current setting of a connection option.

Syntax
RETCODE SQLGetConnectOption(hdbc, fOption, pvParam)
The SQLGetConnectOption function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
UWORD fOption Input Option to retrieve.
PTR pvParam Output Value associated with fOption.

Depending on the value of
fOption, a 32-bit integer value
or a pointer to a null-
terminated character string
will be returned in pvParam.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLGetConnectOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLGetConnectOption and explains each one in the context of this function;
the notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The
return code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not open (DM) An fOption value was specified
that required an open connection.

IM001 Driver does not
support this function

(DM) The driver corresponding to the
hdbc does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) SQLBrowseConnect was called
for the hdbc and returned
SQL_NEED_DATA. This function was
called before SQLBrowseConnect
returned SQL_SUCCESS_WITH_INFO
or SQL_SUCCESS.

S1092 Option type out of
range

(DM) The value specified for the
argument fOption was in the block of
numbers reserved for ODBC connection
and statement options, but was not valid
for the version of ODBC supported by
the driver.

S1C00 Driver not capable The value specified for the argument
fOption was a valid ODBC connection
option for the version of ODBC
supported by the driver, but was not
supported by the driver.
The value specified for the argument
fOption was in the block of numbers
reserved for driver-specific connection
and statement options, but was not
supported by the driver.

Comments
For a list of options, see SQLSetConnectOption. Note that if fOption specifies an option that returns a
string, pvParam must be a pointer to storage for the string. The maximum length of the string will be
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null termination byte).
Depending on the option, an application does not need to establish a connection prior to calling
SQLGetConnectOption. However, if SQLGetConnectOption is called and the specified option does
not have a default and has not been set by a prior call to SQLSetConnectOption,
SQLGetConnnectOption will return SQL_NO_DATA_FOUND.
While an application can set statement options using SQLSetConnectOption, an application cannot
use SQLGetConnectOption to retrieve statement option values; it must call SQLGetStmtOption to
retrieve the setting of statement options.

Related Functions
SQLGetStmtOption (extension)
SQLSetConnectOption (extension)
SQLSetStmtOption (extension)

SQLGetCursorName (Core, ODBC 1.0)
Related Functions

SQLGetCursorName returns the cursor name associated with a specified hstmt.

Syntax
RETCODE SQLGetCursorName(hstmt, szCursor, cbCursorMax, pcbCursor)
The SQLGetCursorName function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szCursor Output Pointer to storage for the

cursor name.
SWORD cbCursorMax Input Length of szCursor.
SWORD FAR * pcbCursor Output Total number of bytes

(excluding the null termination
byte) available to return in
szCursor. If the number of
bytes available to return is
greater than or equal to
cbCursorMax, the cursor
name in szCursor is truncated
to cbCursorMax - 1 bytes.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLGetCursorName returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLError. The following table lists the
SQLSTATE values commonly returned by SQLGetCursorName and explains each one in the context of
this function; the notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver
Manager. The return code associated with each SQLSTATE value is SQL_ERROR, unless noted
otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szCursor was not large
enough to return the entire cursor name,
so the cursor name was truncated. The
argument pcbCursor contains the length
of the untruncated cursor name.
(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the hstmt
does not support the function.

S1000 General error An error occurred for which there was no
specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate memory
required to support execution or
completion of the function.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and was

still executing when this function was
called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt and
returned SQL_NEED_DATA. This
function was called before data was sent
for all data-at-execution parameters or
columns.

S1015 No cursor name
available

(DM) There was no open cursor on the
hstmt and no cursor name had been set
with SQLSetCursorName.

S1090 Invalid string or buffer
length

(DM) The value specified in the argument
cbCursorMax was less than 0.

Comments
The only ODBC SQL statements that use a cursor name are positioned update and delete (for example,
UPDATE table-name ...WHERE CURRENT OF cursor-name). If the application does not call
SQLSetCursorName to define a cursor name, on execution of a SELECT statement the driver
generates a name that begins with the letters SQL_CUR and does not exceed 18 characters in length.
SQLGetCursorName returns the name of a cursor regardless of whether the name was created
explicitly or implicitly.
A cursor name that is set either explicitly or implicitly remains set until the hstmt with which it is
associated is dropped, using SQLFreeStmt with the SQL_DROP option.

Related Functions
SQLExecDirect
SQLExecute
SQLPrepare
SQLSetCursorName
SQLSetScrollOptions (extension)

SQLGetData (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLGetData returns result data for a single unbound column in the current row. The application must
call SQLFetch, or SQLExtendedFetch and (optionally) SQLSetPos to position the cursor on a row of
data before it calls SQLGetData. It is possible to use SQLBindCol for some columns and use
SQLGetData for others within the same row. This function can be used to retrieve character or binary
data values in parts from a column with a character, binary, or data source-specific data type (for
example, data from SQL_LONGVARBINARY or SQL_LONGVARCHAR columns).

Syntax
RETCODE SQLGetData(hstmt, icol, fCType, rgbValue, cbValueMax, pcbValue)
The SQLGetData function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD icol Input Column number of result data,

ordered sequentially left to
right, starting at 1. A column
number of 0 is used to
retrieve a bookmark for the
row; bookmarks are not
supported by ODBC 1.0
drivers or SQLFetch.

SWORD fCType Input The C data type of the result
data. This must be one of the
following values:
SQL_C_BINARY
SQL_C_BIT
SQL_C_BOOKMARK
SQL_C_CHAR
SQL_C_DATE
SQL_C_DEFAULT
SQL_C_DOUBLE
SQL_C_FLOAT
SQL_C_SLONG
SQL_C_SSHORT
SQL_C_STINYINT
SQL_C_TIME
SQL_C_TIMESTAMP
SQL_C_ULONG
SQL_C_USHORT
SQL_C_UTINYINT
SQL_C_DEFAULT specifies
that data be converted to its
default C data type.

Note      Drivers must also
support the following values
of fCType from ODBC 1.0.
Applications must use these
values, rather than the
ODBC 2.0 values, when
calling an ODBC 1.0 driver:

SQL_C_LONG
SQL_C_SHORT
SQL_C_TINYINT

For information about how

data is converted, see
Converting Data from SQL to
C Data Types.

PTR rgbValue Output Pointer to storage for the
data.

SDWORD cbValueMax Input Maximum length of the
rgbValue buffer. For character
data, rgbValue must also
include space for the null-
termination byte.
For character and binary C
data, cbValueMax determines
the amount of data that can
be received in a single call to
SQLGetData. For all other
types of C data, cbValueMax
is ignored; the driver assumes
that the size of rgbValue is the
size of the C data type
specified with fCType and
returns the entire data value.
For more information about
length, see Precision, Scale,
Length, and Display Size.

SDWORD FAR
*

pcbValue Output SQL_NULL_DATA, the total
number of bytes (excluding
the null termination byte for
character data) available to
return in rgbValue prior to the
current call to SQLGetData,
or SQL_NO_TOTAL if the
number of available bytes
cannot be determined.
For character data, if
pcbValue is SQL_NO_TOTAL
or is greater than or equal to
cbValueMax, the data in
rgbValue is truncated to
cbValueMax - 1 bytes and is
null-terminated by the driver.
For binary data, if pcbValue is
SQL_NO_TOTAL or is greater
than cbValueMax, the data in
rgbValue is truncated to
cbValueMax bytes.
For all other data types, the
value of cbValueMax is
ignored and the driver
assumes the size of rgbValue
is the size of the C data type
specified with fCType.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NO_DATA_FOUND, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLGetData returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated

SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLGetData and explains each one in the context of this function; the notation
"(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code
associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated All of the data for the specified column,
icol, could not be retrieved in a single
call to the function. The argument
pcbValue contains the length of the data
remaining in the specified column prior
to the current call to SQLGetData.
(Function returns
SQL_SUCCESS_WITH_INFO.) For
more information on using multiple calls
to SQLGetData for a single column, see
"Comments."

07006 Restricted data type
attribute violation

The data value cannot be converted to
the C data type specified by the
argument fCType.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

22003 Numeric value out
of range

Returning the numeric value (as
numeric or string) for the column would
have caused the whole (as opposed to
fractional) part of the number to be
truncated.
Returning the binary value for the
column would have caused a loss of
binary significance.
For more information, see Appendix D,
Data Types.

22005 Error in assignment The data for the column was
incompatible with the data type into
which it was to be converted. For more
information, see Appendix D, Data
Types.

22008 Datetime field
overflow

The data for the column was not a valid
date, time, or timestamp value. For
more information, see Appendix D, Data
Types.

24000 Invalid cursor state (DM) The hstmt was in an executed
state but no result set was associated
with the hstmt.
(DM) A cursor was open on the hstmt
but SQLFetch or SQLExtendedFetch
had not been called.
A cursor was open on the hstmt and
SQLFetch or SQLExtendedFetch had
been called, but the cursor was
positioned before the start of the result
set or after the end of the result set.

IM001 Driver does not
support this function

(DM) The driver corresponding to the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1002 Invalid column
number

The value specified for the argument
icol was 0 and the driver was an ODBC
1.0 driver.
The value specified for the argument
icol was 0 and SQLFetch was used to
fetch the data.
The value specified for the argument
icol was 0 and the
SQL_USE_BOOKMARKS statement
option was set to SQL_UB_OFF.
The specified column was greater than
the number of result columns.
The specified column was bound
through a call to SQLBindCol. This
description does not apply to drivers that
return the SQL_GD_BOUND bitmask for
the SQL_GETDATA_EXTENSIONS
option in SQLGetInfo.
The specified column was at or before
the last bound column specified through
SQLBindCol. This description does not
apply to drivers that return the
SQL_GD_ANY_COLUMN bitmask for
the SQL_GETDATA_EXTENSIONS
option in SQLGetInfo.
The application has already called
SQLGetData for the current row. The
column specified in the current call was
before the column specified in the
preceding call. This description does not
apply to drivers that return the
SQL_GD_ANY_ORDER bitmask for the
SQL_GETDATA_EXTENSIONS option
in SQLGetInfo.

S1003 Program type out of
range

(DM) The argument fCType was not a
valid data type or SQL_C_DEFAULT.
The argument icol was 0 and the
argument fCType was not
SQL_C_BOOKMARK.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.

The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null
pointer.

S1010 Function sequence
error

(DM) The specified hstmt was not in an
executed state. The function was called
without first calling SQLExecDirect,
SQLExecute, or a catalog function.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbValueMax was less than 0.

S1109 Invalid cursor
position

The cursor was positioned (by
SQLSetPos or SQLExtendedFetch) on
a row for which the value in the
rgfRowStatus array in
SQLExtendedFetch was
SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The driver or data source does not
support use of SQLGetData with
multiple rows in SQLExtendedFetch.
This description does not apply to
drivers that return the SQL_GD_BLOCK
bitmask for the
SQL_GETDATA_EXTENSIONS option
in SQLGetInfo.
The driver or data source does not
support the conversion specified by the
combination of the fCType argument
and the SQL data type of the
corresponding column. This error only
applies when the SQL data type of the
column was mapped to a driver-specific
SQL data type.
The argument icol was 0 and the driver
does not support bookmarks.
The driver only supports ODBC 1.0 and
the argument fCType was one of the
following:
SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SLONG
SQL_C_ULONG

S1T00 Timeout expired The timeout period expired before the

data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
With each call, the driver sets pcbValue to the number of bytes that were available in the result column
prior to the current call to SQLGetData. (If SQL_MAX_LENGTH has been set with SQLSetStmtOption,
and the total number of bytes available on the first call is greater than SQL_MAX_LENGTH, the
available number of bytes is set to SQL_MAX_LENGTH. Note that the SQL_MAX_LENGTH statement
option is intended to reduce network traffic and may not be supported by all drivers. To guarantee that
data is truncated, an application should allocate a buffer of the desired size and specify this size in the
cbValueMax argument.) If the total number of bytes in the result column cannot be determined in
advance, the driver sets pcbValue to SQL_NO_TOTAL. If the data value for the column is NULL, the
driver stores SQL_NULL_DATA in pcbValue.
SQLGetData can convert data to a different data type. The result and success of the conversion is
determined by the rules for assignment specified in Converting Data from SQL to C Data Types.
If more than one call to SQLGetData is required to retrieve data from a single column with a character,
binary, or data source-specific data type, the driver returns SQL_SUCCESS_WITH_INFO. A subsequent
call to SQLError returns SQLSTATE 01004 (Data truncated). The application can then use the same
column number to retrieve subsequent parts of the data until SQLGetData returns SQL_SUCCESS,
indicating that all data for the column has been retrieved. SQLGetData will return
SQL_NO_DATA_FOUND when it is called for a column after all of the data has been retrieved and
before data is retrieved for a subsequent column. The application can ignore excess data by proceeding
to the next result column.

Note      An application can use SQLGetData to retrieve data from a column in parts only when retrieving
character C data from a column with a character,binary, or data source-specific data type or when
retrieving binary C data from a column with a character, binary, or data source-specific data type. If
SQLGetData is called more than one time in a row for a column under any other conditions, it returns
SQL_NO_DATA_FOUND for all calls after the first.

For maximum interoperability, applications should call SQLGetData only for unbound columns with
numbers greater than the number of the last bound column. Within a single row of data, the column
number in each call to SQLGetData should be greater than or equal to the column number in the
previous call (that is, data should be retrieved in increasing order of column number). As extended
functionality, drivers can return data through SQLGetData from bound columns, from columns before
the last bound column, or from columns in any order. To determine whether a driver supports these
extensions, an application calls SQLGetInfo with the SQL_GETDATA_EXTENSIONS option.
Furthermore, applications that use SQLExtendedFetch to retrieve data should call SQLGetData only
when the rowset size is 1. As extended functionality, drivers can return data through SQLGetData when
the rowset size is greater than 1. The application calls SQLSetPos to position the cursor on a row and
calls SQLGetData to retrieve data from an unbound column. To determine whether a driver supports this
extension, an application calls SQLGetInfo with the SQL_GETDATA_EXTENSIONS option.

Code Example
In the following example, an application executes a SELECT statement to return a result set of the
employee names, ages, and birthdays sorted by birthday, age, and name. For each row of data, it calls
SQLFetch to position the cursor to the next row. It calls SQLGetData to retrieve the fetched data; the
storage locations for the data and the returned number of bytes are specified in the call to SQLGetData.
Finally, it prints each employee's name, age, and birthday.

#define NAME_LEN 30

#define BDAY_LEN 11

UCHAR szName[NAME_LEN], szBirthday[BDAY_LEN];

SWORD sAge;

SDWORD cbName, cbAge, cbBirthday;

retcode = SQLExecDirect(hstmt, "SELECT NAME, AGE, BIRTHDAY FROM EMPLOYEE
ORDER BY 3, 2, 1", SQL_NTS);

if (retcode == SQL_SUCCESS) {

while (TRUE) {

retcode = SQLFetch(hstmt);

if (retcode == SQL_ERROR || retcode == SQL_SUCCESS_WITH_INFO) {

show_error();

}

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO){

/* Get data for columns 1, 2, and 3 */

/* Print the row of data */

SQLGetData(hstmt, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);

SQLGetData(hstmt, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);

SQLGetData(hstmt, 3, SQL_C_CHAR, szBirthday, BDAY_LEN, &cbBirthday);

fprintf(out, "%-*s %-2d %*s", NAME_LEN-1, szName, sAge, BDAY_LEN-1,
szBirthday);

} else {

break;

}

}

}

Related Functions
SQLBindCol
SQLCancel
SQLExecDirect
SQLExecute
SQLExtendedFetch (extension)
SQLFetch
SQLPutData (extension)

SQLGetFunctions (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLGetFunctions returns information about whether a driver supports a specific ODBC function. This
function is implemented in the Driver Manager; it can also be implemented in drivers. If a driver
implements SQLGetFunctions, the Driver Manager calls the function in the driver. Otherwise, it
executes the function itself.

Syntax
RETCODE SQLGetFunctions(hdbc, fFunction, pfExists)
The SQLGetFunctions function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
UWORD fFunction Input SQL_API_ALL_FUNCTIONS

or a #define value that
identifies the ODBC function
of interest. For a list of
#define values that identify
ODBC functions, see the
tables in "Comments."

UWORD FAR * pfExists Output If fFunction is
SQL_API_ALL_FUNCTIONS,
pfExists points to a UWORD
array with 100 elements. The
array is indexed by #define
values used by fFunction to
identify each ODBC function;
some elements of the array
are unused and reserved for
future use. An element is
TRUE if it identifies an ODBC
function supported by the
driver. It is FALSE if it
identifies an ODBC function
not supported by the driver or
does not identify an ODBC
function.

Note      The fFunction value
SQL_API_ALL_FUNCTIONS
was added in ODBC 2.0.

If fFunction identifies a single
ODBC function, pfExists
points to single UWORD.
pfExists is TRUE if the
specified function is supported
by the driver; otherwise, it is
FALSE.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLGetFunctions returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLGetFunctions and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) SQLGetFunctions was called
before SQLConnect,
SQLBrowseConnect, or
SQLDriverConnect.
(DM) SQLBrowseConnect was called
for the hdbc and returned
SQL_NEED_DATA. This function was
called before SQLBrowseConnect
returned SQL_SUCCESS_WITH_INFO
or SQL_SUCCESS.

S1095 Function type out of
range

(DM) An invalid fFunction value was
specified.

Comments
SQLGetFunctions always returns that SQLGetFunctions, SQLDataSources, and SQLDrivers are
supported. It does this because these functions are implemented in the Driver Manager.
The following table lists valid values for fFunction for ODBC core functions.
SQL_API_SQLALLOCCONNECT SQL_API_SQLFETCH
SQL_API_SQLALLOCENV SQL_API_SQLFREECONNECT
SQL_API_SQLALLOCSTMT SQL_API_SQLFREEENV
SQL_API_SQLBINDCOL SQL_API_SQLFREESTMT
SQL_API_SQLCANCEL SQL_API_SQLGETCURSORNAME
SQL_API_SQLCOLATTRIBUTES SQL_API_SQLNUMRESULTCOLS
SQL_API_SQLCONNECT SQL_API_SQLPREPARE
SQL_API_SQLDESCRIBECOL SQL_API_SQLROWCOUNT
SQL_API_SQLDISCONNECT SQL_API_SQLSETCURSORNAME
SQL_API_SQLERROR SQL_API_SQLSETPARAM
SQL_API_SQLEXECDIRECT SQL_API_SQLTRANSACT
SQL_API_SQLEXECUTE

Note      For ODBC 1.0 drivers, SQLGetFunctions returns TRUE in pfExists if fFunction is
SQL_API_SQLBINDPARAMETER or SQL_API_SQLSETPARAM and the driver supports
SQLSetParam. For ODBC 2.0 drivers, SQLGetFunctions returns TRUE in pfExists if fFunction is
SQL_API_SQLSETPARAM or SQL_API_SQLBINDPARAMETER and the driver supports
SQLBindParameter.

The following table lists valid values for fFunction for ODBC extension level 1 functions.
SQL_API_SQLBINDPARAMETER SQL_API_SQLGETTYPEINFO
SQL_API_SQLCOLUMNS SQL_API_SQLPARAMDATA
SQL_API_SQLDRIVERCONNECT SQL_API_SQLPUTDATA

SQL_API_SQLGETCONNECT-
OPTION

SQL_API_SQLSETCONNECTOPTION

SQL_API_SQLGETDATA SQL_API_SQLSETSTMTOPTION
SQL_API_SQLGETFUNCTIONS SQL_API_SQLSPECIALCOLUMNS
SQL_API_SQLGETINFO SQL_API_SQLSTATISTICS
SQL_API_SQLGETSTMTOPTION SQL_API_SQLTABLES

The following table lists valid values for fFunction for ODBC extension level 2 functions.
SQL_API_SQLBROWSECONNECTSQL_API_SQLNUMPARAMS
SQL_API_SQLCOLUMN-
PRIVILEGES

SQL_API_SQLPARAMOPTIONS

SQL_API_SQLDATASOURCES SQL_API_SQLPRIMARYKEYS
SQL_API_SQLDESCRIBEPARAM SQL_API_SQLPROCEDURECOLUMN

S
SQL_API_SQLDRIVERS SQL_API_SQLPROCEDURES
SQL_API_SQLEXTENDEDFETCH SQL_API_SQLSETPOS
SQL_API_SQLFOREIGNKEYS SQL_API_SQLSETSCROLLOPTIONS
SQL_API_SQLMORERESULTS SQL_API_SQLTABLEPRIVILEGES
SQL_API_SQLNATIVESQL

Code Example
The following two examples show how an application uses SQLGetFunctions to determine if a driver
supports SQLTables, SQLColumns, and SQLStatistics. If the driver does not support these functions,
the application disconnects from the driver. The first example calls SQLGetFunctions once for each
function.

UWORD TablesExists, ColumnsExists, StatisticsExists;

SQLGetFunctions(hdbc, SQL_API_SQLTABLES, &TablesExists);

SQLGetFunctions(hdbc, SQL_API_SQLCOLUMNS, &ColumnsExists);

SQLGetFunctions(hdbc, SQL_API_SQLSTATISTICS, &StatisticsExists);

if (TablesExists && ColumnsExists && StatisticsExists) {

/* Continue with application */

}

SQLDisconnect(hdbc);

The second example calls SQLGetFunctions a single time and passes it an array in which
SQLGetFunctions returns information about all ODBC functions.

UWORD fExists[100];

SQLGetFunctions(hdbc, SQL_API_ALL_FUNCTIONS, fExists);

if (fExists[SQL_API_SQLTABLES] && fExists[SQL_API_SQLCOLUMNS] &&
fExists[SQL_API_SQLSTATISTICS]) {

/* Continue with application */

}

SQLDisconnect(hdbc);

Related Functions
SQLGetConnectOption (extension)
SQLGetInfo (extension)
SQLGetStmtOption (extension)

SQLGetInfo (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLGetInfo returns general information about the driver and data source associated with an hdbc.

Syntax
RETCODE SQLGetInfo(hdbc, fInfoType, rgbInfoValue, cbInfoValueMax, pcbInfoValue)
The SQLGetInfo function accepts the following arguments.

Type Argument Use Description
HDBC hdbc Input Connection handle.
UWORD fInfoType Input Type of information. fInfoType

must be a value representing
the type of interest (see
"Comments").

PTR rgbInfoValue Output Pointer to storage for the
information. Depending on the
fInfoType requested, the
information returned will be
one of the following: a null-
terminated character string, a
16-bit integer value, a 32-bit
flag, or a 32-bit binary value.

SWORD cbInfoValueMax Input Maximum length of the
rgbInfoValue buffer.

SWORD FAR * pcbInfoValue Output The total number of bytes
(excluding the null termination
byte for character data)
available to return in
rgbInfoValue.
For character data, if the
number of bytes available to
return is greater than or equal
to cbInfoValueMax, the
information in rgbInfoValue is
truncated to cbInfoValueMax -
1 bytes and is null-terminated
by the driver.
For all other types of data, the
value of cbValueMax is
ignored and the driver
assumes the size of rgbValue
is 32 bits.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLGetInfo returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLGetInfo and explains each one in the context of this function; the notation
"(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code
associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer rgbInfoValue was not large

enough to return all of the requested
information, so the information was
truncated. The argument pcbInfoValue
contains the length of the requested
information in its untruncated form.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The type of information requested
in fInfoType requires an open
connection. Of the information types
reserved by ODBC, only
SQL_ODBC_VER can be returned
without an open connection.

22003 Numeric value out
of range

Returning the requested information
would have caused a loss of numeric or
binary significance.

IM001 Driver does not
support this function

(DM) The driver corresponding to the
hdbc does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1009 Invalid argument
value

(DM) The fInfoType was
SQL_DRIVER_HSTMT, and the value
pointed to by rgbInfoValue was not a
valid statement handle.

S1090 Invalid string or
buffer length

(DM) The value specified for argument
cbInfoValueMax was less than 0.

S1096 Information type out
of range

(DM) The value specified for the
argument fOption was in the block of
numbers reserved for ODBC information
types, but was not valid for the version
of ODBC supported by the driver.

S1C00 Driver not capable The value specified for the argument
fOption was in the range of numbers
reserved for driver-specific information
types, but was not supported by the
driver.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
information. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
The currently defined information types are shown below; it is expected that more will be defined to take
advantage of different data sources. Information types from 0 to 999 are reserved by ODBC; driver
developers must reserve values greater than or equal to SQL_INFO_DRIVER_START for driver-specific
use.
The format of the information returned in rgbInfoValue depends on the fInfoType requested. SQLGetInfo
will return information in one of five different formats:

A null-terminated character string,
A 16-bit integer value,
A 32-bit bitmask,
A 32-bit integer value,
Or a 32-bit binary value.

The format of each of the following information types is noted in the type's description. The application
must cast the value returned in rgbInfoValue accordingly. For an example of how an application could
retrieve data from a 32-bit bitmask, see "Code Example."
A driver must return a value for each of the information types defined in the following tables. If an
information type does not apply to the driver or data source, then the driver returns one of the following
values:

Format of rgbInfoValue Returned value
Character string ("Y" or "N") "N"
Character string (not "Y" or "N") Empty string
16-bit integer 0
32-bit bitmask or 32-bit binary value 0L

For example, if a data source does not support procedures, SQLGetInfo returns the following values for
the values of fInfoType that are related to procedures:

fInfoType Returned value
SQL_PROCEDURES "N"
SQL_ACCESSIBLE_PROCEDURES "N"
SQL_MAX_PROCEDURE_NAME_LEN0
SQL_PROCEDURE_TERM Empty string

SQLGetInfo returns SQLSTATE S1096 (Invalid argument value) for values of fInfoType that are in the
range of information types reserved for use by ODBC but are not defined by the version of ODBC
supported by the driver. To determine what version of ODBC a driver conforms to, an application calls
SQLGetInfo with the SQL_DRIVER_ODBC_VER information type. SQLGetInfo returns SQLSTATE
S1C00 (Driver not capable) for values of fInfoType that are in the range of information types reserved for
driver-specific use but are not supported by the driver.

Note      Application developers should be aware that ODBC 1.0 drivers might return SQL_ERROR and
SQLSTATE S1C00 (Driver not capable) for values of fInfoType that were defined in ODBC 1.0 but do not
apply to the driver or the data source.

Information Types
This section lists the information types supported by SQLGetInfo. Information types are grouped
categorically and listed alphabetically.

Driver Information
The following values of fInfoType return information about the ODBC driver, such as the number of
active statements, the data source name, and the API conformance levels.

SQL_ACTIVE_CONNECTIONS

SQL_ACTIVE_STATEMENTS

SQL_DATA_SOURCE_NAME

SQL_DRIVER_HDBC

SQL_DRIVER_HENV

SQL_DRIVER_HLIB

SQL_DRIVER_HSTMT

SQL_DRIVER_NAME

SQL_DRIVER_ODBC_VER

SQL_DRIVER_VER

SQL_FETCH_DIRECTION

SQL_FILE_USAGE

SQL_GETDATA_EXTENSIONS

SQL_LOCK_TYPES

SQL_ODBC_API_CONFORMANCE

SQL_ODBC_SAG_CLI_CONFORMANCE

SQL_ODBC_VER

SQL_POS_OPERATIONS

SQL_ROW_UPDATES

SQL_SEARCH_PATTERN_ESCAPE

SQL_SERVER_NAME

DBMS Product Information
The following values of fInfoType return information about the DBMS product, such as the DBMS name
and version.

SQL_DATABASE_NAME

SQL_DBMS_NAME

SQL_DBMS_VER

Data Source Information
The following values of fInfoType return information about the data source, such as cursor
characteristics and transaction capabilities.

SQL_ACCESSIBLE_PROCEDURES

SQL_ACCESSIBLE_TABLES

SQL_BOOKMARK_PERSISTENCE

SQL_CONCAT_NULL_BEHAVIOR

SQL_CURSOR_COMMIT_BEHAVIOR

SQL_CURSOR_ROLLBACK_BEHAVIOR

SQL_DATA_SOURCE_READ_ONLY

SQL_DEFAULT_TXN_ISOLATION

SQL_MULT_RESULT_SETS

SQL_MULTIPLE_ACTIVE_TXN

SQL_NEED_LONG_DATA_LEN

SQL_NULL_COLLATION

SQL_OWNER_TERM

SQL_PROCEDURE_TERM

SQL_QUALIFIER_TERM

SQL_SCROLL_CONCURRENCY

SQL_SCROLL_OPTIONS

SQL_STATIC_SENSITIVITY

SQL_TABLE_TERM

SQL_TXN_CAPABLE

SQL_TXN_ISOLATION_OPTION

SQL_USER_NAME

Supported SQL
The following values of fInfoType return information about the SQL statements supported by the data
source. These information types do not exhaustively describe the entire ODBC SQL grammar. Instead,
they describe those parts of the grammar for which data sources commonly offer different levels of
support.
Applications should determine the general level of supported grammar from the
SQL_ODBC_SQL_CONFORMANCE information type and use the other information types to determine
variations from the stated conformance level.

SQL_ALTER_TABLE

SQL_COLUMN_ALIAS

SQL_CORRELATION_NAME

SQL_EXPRESSIONS_IN_ORDERBY

SQL_GROUP_BY

SQL_IDENTIFIER_CASE

SQL_IDENTIFIER_QUOTE_CHAR

SQL_KEYWORDS

SQL_LIKE_ESCAPE_CLAUSE

SQL_NON_NULLABLE_COLUMNS

SQL_ODBC_SQL_CONFORMANCE

SQL_ODBC_SQL_OPT_IEF

SQL_ORDER_BY_COLUMNS_IN_SELECT

SQL_OUTER_JOINS

SQL_OWNER_USAGE

SQL_POSITIONED_STATEMENTS

SQL_PROCEDURES

SQL_QUALIFIER_LOCATION

SQL_QUALIFIER_NAME_SEPARATOR

SQL_QUALIFIER_USAGE

SQL_QUOTED_IDENTIFIER_CASE

SQL_SPECIAL_CHARACTERS

SQL_SUBQUERIES

SQL_UNION

SQL Limits
The following values of fInfoType return information about the limits applied to identifiers and clauses in
SQL statements, such as the maximum lengths of identifiers and the maximum number of columns in a
select list. Limitations may be imposed by either the driver or the data source.

SQL_MAX_BINARY_LITERAL_LEN

SQL_MAX_CHAR_LITERAL_LEN

SQL_MAX_COLUMN_NAME_LEN

SQL_MAX_COLUMNS_IN_GROUP_BY

SQL_MAX_COLUMNS_IN_ORDER_BY

SQL_MAX_COLUMNS_IN_INDEX

SQL_MAX_COLUMNS_IN_SELECT

SQL_MAX_COLUMNS_IN_TABLE

SQL_MAX_CURSOR_NAME_LEN

SQL_MAX_INDEX_SIZE

SQL_MAX_OWNER_NAME_LEN

SQL_MAX_PROCEDURE_NAME_LEN

SQL_MAX_QUALIFIER_NAME_LEN

SQL_MAX_ROW_SIZE

SQL_MAX_ROW_SIZE_INCLUDES_LONG

SQL_MAX_STATEMENT_LEN

SQL_MAX_TABLE_NAME_LEN

SQL_MAX_TABLES_IN_SELECT

SQL_MAX_USER_NAME_LEN

Scalar Function Information
The following values of fInfoType return information about the scalar functions supported by the data
source and the driver.

SQL_CONVERT_FUNCTIONS

SQL_NUMERIC_FUNCTIONS

SQL_STRING_FUNCTIONS

SQL_SYSTEM_FUNCTIONS

SQL_TIMEDATE_ADD_INTERVALS

SQL_TIMEDATE_DIFF_INTERVALS

SQL_TIMEDATE_FUNCTIONS

Conversion Information
The following values of fInfoType return a list of the SQL data types to which the data source can
convert the specified SQL data type with the CONVERT scalar function.

SQL_CONVERT_BIGINT

SQL_CONVERT_BINARY

SQL_CONVERT_BIT

SQL_CONVERT_CHAR

SQL_CONVERT_DATE

SQL_CONVERT_DECIMAL

SQL_CONVERT_DOUBLE

SQL_CONVERT_FLOAT

SQL_CONVERT_INTEGER

SQL_CONVERT_LONGVARBINARY

SQL_CONVERT_LONGVARCHAR

SQL_CONVERT_NUMERIC

SQL_CONVERT_REAL

SQL_CONVERT_SMALLINT

SQL_CONVERT_TIME

SQL_CONVERT_TIMESTAMP

SQL_CONVERT_TINYINT

SQL_CONVERT_VARBINARY

SQL_CONVERT_VARCHAR

Information Type Descriptions
The following table alphabetically lists each information type, the version of ODBC in which it was
introduced, and its description.

InfoType Returns
SQL_ACCESSIBLE_PROCEDURE
S
(ODBC 1.0)

A character string: "Y" if the user can execute all procedures
returned by SQLProcedures, "N" if there may be
procedures returned that the user cannot execute.

SQL_ACCESSIBLE_TABLES
(ODBC 1.0)

A character string: "Y" if the user is guaranteed SELECT
privileges to all tables returned by SQLTables, "N" if there
may be tables returned that the user cannot access.

SQL_ACTIVE_CONNECTIONS
(ODBC 1.0)

A 16-bit integer value specifying the maximum number of
active hdbcs that the driver can support. This value can
reflect a limitation imposed by either the driver or the data
source. If there is no specified limit or the limit is unknown,
this value is set to zero.

SQL_ACTIVE_STATEMENTS
(ODBC 1.0)

A 16-bit integer value specifying the maximum number of
active hstmts that the driver can support for an hdbc. This
value can reflect a limitation imposed by either the driver or
the data source. If there is no specified limit or the limit is
unknown, this value is set to zero.

SQL_ALTER_TABLE
(ODBC 2.0)

A 32-bit bitmask enumerating the clauses in the ALTER
TABLE statement supported by the data source.
The following bitmask is used to determine which clauses
are supported:
SQL_AT_ADD_COLUMN
SQL_AT_DROP_COLUMN

SQL_BOOKMARK_PERSISTENCE
(ODBC 2.0)

A 32-bit bitmask enumerating the operations through which
bookmarks persist.
The following bitmasks are used in conjunction with the flag
to determine through which options bookmarks persist:
SQL_BP_CLOSE = Bookmarks are valid after an application
calls SQLFreeStmt with the SQL_CLOSE option to close
the cursor associated with an hstmt.
SQL_BP_DELETE = The bookmark for a row is valid after
that row has been deleted.
SQL_BP_DROP = Bookmarks are valid after an hstmt an
application calls SQLFreeStmt with the SQL_DROP option
to drop an hstmt.
SQL_BP_SCROLL = Bookmarks are valid after any scrolling
operation (call to SQLExtendedFetch). Because all
bookmarks must remain valid after SQLExtendedFetch is
called, this value can be used by applications to determine
whether bookmarks are supported.
SQL_BP_TRANSACTION = Bookmarks are valid after an
application commits or rolls back a transaction.
SQL_BP_UPDATE = The bookmark for a row is valid after
any column in that row has been updated, including key
columns.
SQL_BP_OTHER_HSTMT = A bookmark associated with
one hstmt can be used with another hstmt.

SQL_COLUMN_ALIAS
(ODBC 2.0)

A character string: "Y" if the data source supports column
aliases; otherwise, "N".

SQL_CONCAT_NULL_BEHAVIOR
(ODBC 1.0)

A 16-bit integer value indicating how the data source handles
the concatenation of NULL valued character data type
columns with non-NULL valued character data type columns:
SQL_CB_NULL = Result is NULL valued.
SQL_CB_NON_NULL = Result is concatenation of non-
NULL valued column or columns.

SQL_CONVERT_BIGINT
SQL_CONVERT_BINARY
SQL_CONVERT_BIT
SQL_CONVERT_CHAR
SQL_CONVERT_DATE
SQL_CONVERT_DECIMAL
SQL_CONVERT_DOUBLE
SQL_CONVERT_FLOAT
SQL_CONVERT_INTEGER
SQL_CONVERT_LONGVARBINAR
Y
SQL_CONVERT_LONGVARCHAR
SQL_CONVERT_NUMERIC
SQL_CONVERT_REAL
SQL_CONVERT_SMALLINT
SQL_CONVERT_TIME
SQL_CONVERT_TIMESTAMP
SQL_CONVERT_TINYINT
SQL_CONVERT_VARBINARY
SQL_CONVERT_VARCHAR
(ODBC 1.0)

A 32-bit bitmask. The bitmask indicates the conversions
supported by the data source with the CONVERT scalar
function for data of the type named in the fInfoType. If the
bitmask equals zero, the data source does not support any
conversions for data of the named type, including conversion
to the same data type.
For example, to find out if a data source supports the
conversion of SQL_INTEGER data to the SQL_BIGINT data
type, an application calls SQLGetInfo with the fInfoType of
SQL_CONVERT_INTEGER. The application ANDs the
returned bitmask with SQL_CVT_BIGINT. If the resulting
value is nonzero, the conversion is supported.
The following bitmasks are used to determine which
conversions are supported:
SQL_CVT_BIGINT
SQL_CVT_BINARY
SQL_CVT_BIT
SQL_CVT_CHAR
SQL_CVT_DATE
SQL_CVT_DECIMAL
SQL_CVT_DOUBLE
SQL_CVT_FLOAT
SQL_CVT_INTEGER
SQL_CVT_LONGVARBINARY
SQL_CVT_LONGVARCHAR
SQL_CVT_NUMERIC
SQL_CVT_REAL
SQL_CVT_SMALLINT
SQL_CVT_TIME
SQL_CVT_TIMESTAMP
SQL_CVT_TINYINT
SQL_CVT_VARBINARY
SQL_CVT_VARCHAR

SQL_CONVERT_FUNCTIONS
(ODBC 1.0)

A 32-bit bitmask enumerating the scalar conversion functions
supported by the driver and associated data source.
The following bitmask is used to determine which conversion
functions are supported:
SQL_FN_CVT_CONVERT

SQL_CORRELATION_NAME
(ODBC 1.0)

A 16-bit integer indicating if table correlation names are
supported:
SQL_CN_NONE = Correlation names are not supported.
SQL_CN_DIFFERENT = Correlation names are supported,
but must differ from the names of the tables they represent.
SQL_CN_ANY = Correlation names are supported and can
be any valid user-defined name.

SQL_CURSOR_COMMIT
_BEHAVIOR
(ODBC 1.0)

A 16-bit integer value indicating how a COMMIT operation
affects cursors and prepared statements in the data source:
SQL_CB_DELETE = Close cursors and delete prepared

statements. To use the cursor again, the application must
reprepare and reexecute the hstmt.
SQL_CB_CLOSE = Close cursors. For prepared statements,
the application can call SQLExecute on the hstmt without
calling SQLPrepare again.
SQL_CB_PRESERVE = Preserve cursors in the same
position as before the COMMIT operation. The application
can continue to fetch data or it can close the cursor and
reexecute the hstmt without repreparing it.

SQL_CURSOR_ROLLBACK_
BEHAVIOR
(ODBC 1.0)

A 16-bit integer value indicating how a ROLLBACK
operation affects cursors and prepared statements in the
data source:
SQL_CB_DELETE = Close cursors and delete prepared
statements. To use the cursor again, the application must
reprepare and reexecute the hstmt.
SQL_CB_CLOSE = Close cursors. For prepared statements,
the application can call SQLExecute on the hstmt without
calling SQLPrepare again.
SQL_CB_PRESERVE = Preserve cursors in the same
position as before the ROLLBACK operation. The
application can continue to fetch data or it can close the
cursor and reexecute the hstmt without repreparing it.

SQL_DATA_SOURCE_NAME
(ODBC 1.0)

A character string with the data source name used during
connection. If the application called SQLConnect, this is the
value of the szDSN argument. If the application called
SQLDriverConnect or SQLBrowseConnect, this is the
value of the DSN keyword in the connection string passed to
the driver. If the connection string did not contain the DSN
keyword (such as when it contains the DRIVER keyword),
this is an empty string.

SQL_DATA_SOURCE_READ_ONL
Y
(ODBC 1.0)

A character string. "Y" if the data source is set to READ
ONLY mode, "N" if it is otherwise.
This characteristic pertains only to the data source itself, it is
not a characteristic of the driver that enables access to the
data source.

SQL_DATABASE_NAME
(ODBC 1.0)

A character string with the name of the current database in
use, if the data source defines a named object called
"database."

Note      In ODBC 2.0, this value of fInfoType has been
replaced by the SQL_CURRENT_QUALIFIER connection
option. ODBC 2.0 drivers should continue to support the
SQL_DATABASE_NAME information type, and ODBC 2.0
applications should only use it with ODBC 1.0 drivers.

SQL_DBMS_NAME
(ODBC 1.0)

A character string with the name of the DBMS product
accessed by the driver.

SQL_DBMS_VER
(ODBC 1.0)

A character string indicating the version of the DBMS
product accessed by the driver. The version is of the form
##.##.####, where the first two digits are the major version,
the next two digits are the minor version, and the last four
digits are the release version. The driver must render the
DBMS product version in this form, but can also append the
DBMS product-specific version as well. For example,
"04.01.0000 Rdb 4.1".

SQL_DEFAULT_TXN_ISOLATION
(ODBC 1.0)

A 32-bit integer that indicates the default transaction isolation
level supported by the driver or data source, or zero if the

data source does not support transactions. The following
terms are used to define transaction isolation levels:
Dirty Read        Transaction 1 changes a row. Transaction 2
reads the changed row before transaction 1 commits the
change. If transaction 1 rolls back the change, transaction 2
will have read a row that is considered to have never
existed.
Nonrepeatable Read        Transaction 1 reads a row.
Transaction 2 updates or deletes that row and commits this
change. If transaction 1 attempts to reread the row, it will
receive different row values or discover that the row has
been deleted.
Phantom        Transaction 1 reads a set of rows that satisfy
some search criteria. Transaction 2 inserts a row that
matches the search criteria. If transaction 1 reexecutes the
statement that read the rows, it receives a different set of
rows.
If the data source supports transactions, the driver returns
one of the following bitmasks:
SQL_TXN_READ_UNCOMMITTED = Dirty reads,
nonrepeatable reads, and phantoms are possible.
SQL_TXN_READ_COMMITTED = Dirty reads are not
possible. Nonrepeatable reads and phantoms are possible.
SQL_TXN_REPEATABLE_READ = Dirty reads and
nonrepeatable reads are not possible. Phantoms are
possible.
SQL_TXN_SERIALIZABLE = Transactions are serializable.
Dirty reads, nonrepeatable reads, and phantoms are not
possible.
SQL_TXN_VERSIONING = Transactions are serializable,
but higher concurrency is possible than with
SQL_TXN_SERIALIZABLE. Dirty reads are not possible.
Typically, SQL_TXN_SERIALIZABLE is implemented by
using locking protocols that reduce concurrency and
SQL_TXN_VERSIONING is implemented by using a non-
locking protocol such as record versioning. Oracle's Read
Consistency isolation level is an example of
SQL_TXN_VERSIONING.

SQL_DRIVER_HDBC
SQL_DRIVER_HENV
(ODBC 1.0)

A 32-bit value, the driver's environment handle or connection
handle, determined by the argument hdbc.
These information types are implemented by the Driver
Manager alone.

SQL_DRIVER_HLIB
(ODBC 2.0)

A 32-bit value, the library handle returned to the Driver
Manager when it loaded the driver DLL. The handle is only
valid for the hdbc specified in the call to SQLGetInfo.
This information type is implemented by the Driver Manager
alone.

SQL_DRIVER_HSTMT
(ODBC 1.0)

A 32-bit value, the driver's statement handle determined by
the Driver Manager statement handle, which must be passed
on input in rgbInfoValue from the application. Note that in
this case, rgbInfoValue is both an input and an output
argument. The input hstmt passed in rgbInfoValue must
have been an hstmt allocated on the argument hdbc.
This information type is implemented by the Driver Manager
alone.

SQL_DRIVER_NAME A character string with the filename of the driver used to

(ODBC 1.0) access the data source.
SQL_DRIVER_ODBC_VER
(ODBC 2.0)

A character string with the version of ODBC that the driver
supports. The version is of the form ##.##, where the first
two digits are the major version and the next two digits are
the minor version. SQL_SPEC_MAJOR and
SQL_SPEC_MINOR define the major and minor version
numbers. For the version of ODBC described in this manual,
these are 2 and 0, and the driver should return "02.00".
If a driver supports SQLGetInfo but does not support this
value of the fInfoType argument, the Driver Manager returns
"01.00".

SQL_DRIVER_VER
(ODBC 1.0)

A character string with the version of the driver and,
optionally a description of the driver. At a minimum, the
version is of the form ##.##.####, where the first two digits
are the major version, the next two digits are the minor
version, and the last four digits are the release version.

SQL_EXPRESSIONS_IN_ORDERB
Y
(ODBC 1.0)

A character string: "Y" if the data source supports
expressions in the ORDER BY list; "N" if it does not.

SQL_FETCH_DIRECTION
(ODBC 1.0)
The information type was introduced
in ODBC 1.0; each bitmask is
labeled with the version in which it
was introduced.

A 32-bit bitmask enumerating the supported fetch direction
options.
The following bitmasks are used in conjunction with the flag
to determine which options are supported:
SQL_FD_FETCH_NEXT        (ODBC 1.0)
SQL_FD_FETCH_FIRST        (ODBC 1.0)
SQL_FD_FETCH_LAST        (ODBC 1.0)
SQL_FD_FETCH_PRIOR (ODBC 1.0)
SQL_FD_FETCH_ABSOLUTE        (ODBC 1.0)
SQL_FD_FETCH_RELATIVE (ODBC 1.0)
SQL_FD_FETCH_RESUME (ODBC 1.0)
SQL_FD_FETCH_BOOKMARK (ODBC 2.0)

SQL_FILE_USAGE
(ODBC 2.0)

A 16-bit integer value indicating how a single-tier driver
directly treats files in a data source:
SQL_FILE_NOT_SUPPORTED = The driver is not a single-
tier driver. For example, an ORACLE driver is a two-tier
driver.
SQL_FILE_TABLE = A single-tier driver treats files in a data
source as tables. For example, an Xbase driver treats each
Xbase file as a table.
SQL_FILE_QUALIFIER = A single-tier driver treats files in a
data source as a qualifier. For example, a Microsoft Access
driver treats each Microsoft Access file as a complete
database.
An application might use this to determine how users will
select data. For example, Xbase users often think of data as
stored in files, while ORACLE and Microsoft Access users
generally think of data as stored in tables.
When a user selects an Xbase data source, the application
could display the Windows File Open common dialog box;
when the user selects a Microsoft Access or ORACLE data
source, the application could display a custom Select Table
dialog box.

SQL_GETDATA_EXTENSIONS
(ODBC 2.0)

A 32-bit bitmask enumerating extensions to SQLGetData.
The following bitmasks are used in conjunction with the flag
to determine what common extensions the driver supports
for SQLGetData:

SQL_GD_ANY_COLUMN = SQLGetData can be called for
any unbound column, including those before the last bound
column. Note that the columns must be called in order of
ascending column number unless SQL_GD_ANY_ORDER
is also returned.
SQL_GD_ANY_ORDER = SQLGetData can be called for
unbound columns in any order. Note that SQLGetData can
only be called for columns after the last bound column
unless SQL_GD_ANY_COLUMN is also returned.
SQL_GD_BLOCK = SQLGetData can be called for an
unbound column in any row in a block (more than one row)
of data after positioning to that row with SQLSetPos.
SQL_GD_BOUND = SQLGetData can be called for bound
columns as well as unbound columns. A driver cannot return
this value unless it also returns SQL_GD_ANY_COLUMN.
SQLGetData is only required to return data from unbound
columns that occur after the last bound column, are called in
order of increasing column number, and are not in a row in a
block of rows.

SQL_GROUP_BY
(ODBC 2.0)

A 16-bit integer value specifying the relationship between the
columns in the GROUP BY clause and the non-aggregated
columns in the select list:
SQL_GB_NOT_SUPPORTED = GROUP BY clauses are not
supported.
SQL_GB_GROUP_BY_EQUALS_SELECT = The GROUP
BY clause must contain all non-aggregated columns in the
select list. It cannot contain any other columns. For example,
SELECT DEPT, MAX(SALARY) FROM EMPLOYEE
GROUP BY DEPT.
SQL_GB_GROUP_BY_CONTAINS_SELECT = The GROUP
BY clause must contain all non-aggregated columns in the
select list. It can contain columns that are not in the select
list. For example, SELECT DEPT, MAX(SALARY) FROM
EMPLOYEE GROUP BY DEPT, AGE.
SQL_GB_NO_RELATION = The columns in the GROUP BY
clause and the select list are not related. The meaning of
non-grouped, non-aggregated columns in the select list is
data source-dependent. For example, SELECT DEPT,
SALARY FROM EMPLOYEE GROUP BY DEPT, AGE.

SQL_IDENTIFIER_CASE
(ODBC 1.0)

A 16-bit integer value as follows:
SQL_IC_UPPER = Identifiers in SQL are case insensitive
and are stored in upper case in system catalog.
SQL_IC_LOWER = Identifiers in SQL are case insensitive
and are stored in lower case in system catalog.
SQL_IC_SENSITIVE = Identifiers in SQL are case sensitive
and are stored in mixed case in system catalog.
SQL_IC_MIXED = Identifiers in SQL are case insensitive
and are stored in mixed case in system catalog.

SQL_IDENTIFIER_QUOTE_CHAR
(ODBC 1.0)

The character string used as the starting and ending
delimiter of a quoted (delimited) identifiers in SQL
statements. (Identifiers passed as arguments to ODBC
functions do not need to be quoted.) If the data source does
not support quoted identifiers, a blank is returned.

SQL_KEYWORDS
(ODBC 2.0)

A character string containing a comma-separated list of all
data source-specific keywords. This list does not contain
keywords specific to ODBC or keywords used by both the

data source and ODBC.
The #define value SQL_ODBC_KEYWORDS contains a
comma-separated list of ODBC keywords.

SQL_LIKE_ESCAPE_CLAUSE
(ODBC 2.0)

A character string: "Y" if the data source supports an escape
character for the percent character (%) and underscore
character (_) in a LIKE predicate and the driver supports the
ODBC syntax for defining a LIKE predicate escape
character; "N" otherwise.

SQL_LOCK_TYPES
(ODBC 2.0)

A 32-bit bitmask enumerating the supported lock types for
the fLock argument in SQLSetPos.
The following bitmasks are used in conjunction with the flag
to determine which lock types are supported:
SQL_LCK_NO_CHANGE
SQL_LCK_EXCLUSIVE
SQL_LCK_UNLOCK

SQL_MAX_BINARY_LITERAL_LEN
(ODBC 2.0)

A 32-bit integer value specifying the maximum length
(number of hexadecimal characters, excluding the literal
prefix and suffix returned by SQLGetTypeInfo) of a binary
literal in an SQL statement. For example, the binary literal
0xFFAA has a length of 4. If there is no maximum length or
the length is unknown, this value is set to zero.

SQL_MAX_CHAR_LITERAL_LEN
(ODBC 2.0)

A 32-bit integer value specifying the maximum length
(number of characters, excluding the literal prefix and suffix
returned by SQLGetTypeInfo) of a character literal in an
SQL statement. If there is no maximum length or the length
is unknown, this value is set to zero.

SQL_MAX_COLUMN_NAME_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length of a
column name in the data source. If there is no maximum
length or the length is unknown, this value is set to zero.

SQL_MAX_COLUMNS_IN_GROUP
_BY
(ODBC 2.0)

A 16-bit integer value specifying the maximum number of
columns allowed in a GROUP BY clause. If there is no
specified limit or the limit is unknown, this value is set to
zero.

SQL_MAX_COLUMNS_IN_INDEX
(ODBC 2.0)

A 16-bit integer value specifying the maximum number of
columns allowed in an index. If there is no specified limit or
the limit is unknown, this value is set to zero.

SQL_MAX_COLUMNS_IN_ORDER
_BY
(ODBC 2.0)

A 16-bit integer value specifying the maximum number of
columns allowed in an ORDER BY clause. If there is no
specified limit or the limit is unknown, this value is set to
zero.

SQL_MAX_COLUMNS_IN_SELEC
T
(ODBC 2.0)

A 16-bit integer value specifying the maximum number of
columns allowed in a select list. If there is no specified limit
or the limit is unknown, this value is set to zero.

SQL_MAX_COLUMNS_IN_TABLE
(ODBC 2.0)

A 16-bit integer value specifying the maximum number of
columns allowed in a table. If there is no specified limit or the
limit is unknown, this value is set to zero.

SQL_MAX_CURSOR_NAME_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length of a
cursor name in the data source. If there is no maximum
length or the length is unknown, this value is set to zero.

SQL_MAX_INDEX_SIZE
(ODBC 2.0)

A 32-bit integer value specifying the maximum number of
bytes allowed in the combined fields of an index. If there is
no specified limit or the limit is unknown, this value is set to
zero.

SQL_MAX_OWNER_NAME_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length of an
owner name in the data source. If there is no maximum

length or the length is unknown, this value is set to zero.
SQL_MAX_PROCEDURE_NAME
_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length of a
procedure name in the data source. If there is no maximum
length or the length is unknown, this value is set to zero.

SQL_MAX_QUALIFIER_NAME_LE
N
(ODBC 1.0)

A 16-bit integer value specifying the maximum length of a
qualifier name in the data source. If there is no maximum
length or the length is unknown, this value is set to zero.

SQL_MAX_ROW_SIZE
(ODBC 2.0)

A 32-bit integer value specifying the maximum length of a
single row in a table. If there is no specified limit or the limit
is unknown, this value is set to zero.

SQL_MAX_ROW_SIZE_INCLUDES
_
LONG
(ODBC 2.0)

A character string: "Y" if the maximum row size returned for
the SQL_MAX_ROW_SIZE information type includes the
length of all SQL_LONGVARCHAR and
SQL_LONGVARBINARY columns in the row; "N" otherwise.

SQL_MAX_STATEMENT_LEN
(ODBC 2.0)

A 32-bit integer value specifying the maximum length
(number of characters, including white space) of an SQL
statement. If there is no maximum length or the length is
unknown, this value is set to zero.

SQL_MAX_TABLE_NAME_LEN
(ODBC 1.0)

A 16-bit integer value specifying the maximum length of a
table name in the data source. If there is no maximum length
or the length is unknown, this value is set to zero.

SQL_MAX_TABLES_IN_SELECT
(ODBC 2.0)

A 16-bit integer value specifying the maximum number of
tables allowed in the FROM clause of a SELECT statement.
If there is no specified limit or the limit is unknown, this value
is set to zero.

SQL_MAX_USER_NAME_LEN
(ODBC 2.0)

A 16-bit integer value specifying the maximum length of a
user name in the data source. If there is no maximum length
or the length is unknown, this value is set to zero.

SQL_MULT_RESULT_SETS
(ODBC 1.0)

A character string: "Y" if the data source supports multiple
result sets, "N" if it does not.

SQL_MULTIPLE_ACTIVE_TXN
(ODBC 1.0)

A character string: "Y" if active transactions on multiple
connections are allowed, "N" if only one connection at a time
can have an active transaction.

SQL_NEED_LONG_DATA_LEN
(ODBC 2.0)

A character string: "Y" if the data source needs the length of
a long data value (the data type is SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data source-specific
data type) before that value is sent to the data source, "N" if
it does not. For more information, see SQLBindParameter
and SQLSetPos.

SQL_NON_NULLABLE_COLUMNS
(ODBC 1.0)

A 16-bit integer specifying whether the data source supports
non-nullable columns:
SQL_NNC_NULL = All columns must be nullable.
SQL_NNC_NON_NULL = Columns may be non-nullable (the
data source supports the NOT NULL column constraint in
CREATE TABLE statements).

SQL_NULL_COLLATION
(ODBC 2.0)

A 16-bit integer value specifying where NULLs are sorted in
a list:
SQL_NC_END = NULLs are sorted at the end of the list,
regardless of the sort order.
SQL_NC_HIGH = NULLs are sorted at the high end of the
list.
SQL_NC_LOW = NULLs are sorted at the low end of the list.
SQL_NC_START = NULLs are sorted at the start of the list,
regardless of the sort order.

SQL_NUMERIC_FUNCTIONS A 32-bit bitmask enumerating the scalar numeric functions

(ODBC 1.0)
The information type was introduced
in ODBC 1.0; each bitmask is
labeled with the version in which it
was introduced.

supported by the driver and associated data source.
The following bitmasks are used to determine which numeric
functions are supported:
SQL_FN_NUM_ABS        (ODBC 1.0)
SQL_FN_NUM_ACOS (ODBC 1.0)
SQL_FN_NUM_ASIN        (ODBC 1.0)
SQL_FN_NUM_ATAN (ODBC 1.0)
SQL_FN_NUM_ATAN2        (ODBC 1.0)
SQL_FN_NUM_CEILING (ODBC 1.0)
SQL_FN_NUM_COS        (ODBC 1.0)
SQL_FN_NUM_COT        (ODBC 1.0)
SQL_FN_NUM_DEGREES        (ODBC 2.0)
SQL_FN_NUM_EXP        (ODBC 1.0)
SQL_FN_NUM_FLOOR        (ODBC 1.0)
SQL_FN_NUM_LOG        (ODBC 1.0)
SQL_FN_NUM_LOG10 (ODBC 2.0)
SQL_FN_NUM_MOD        (ODBC 1.0)
SQL_FN_NUM_PI        (ODBC 1.0)
SQL_FN_NUM_POWER (ODBC 2.0)
SQL_FN_NUM_RADIANS (ODBC 2.0)
SQL_FN_NUM_RAND (ODBC 1.0)
SQL_FN_NUM_ROUND        (ODBC 2.0)
SQL_FN_NUM_SIGN        (ODBC 1.0)
SQL_FN_NUM_SIN (ODBC 1.0)
SQL_FN_NUM_SQRT (ODBC 1.0)
SQL_FN_NUM_TAN        (ODBC 1.0)
SQL_FN_NUM_TRUNCATE (ODBC 2.0)

SQL_ODBC_API_CONFORMANCE
(ODBC 1.0)

A 16-bit integer value indicating the level of ODBC
conformance:
SQL_OAC_NONE = None
SQL_OAC_LEVEL1 = Level 1 supported
SQL_OAC_LEVEL2 = Level 2 supported

SQL_ODBC_SAG_CLI_
CONFORMANCE
(ODBC 1.0)

A 16-bit integer value indicating compliance to the functions
of the SAG specification:
SQL_OSCC_NOT_COMPLIANT = Not SAG-compliant; one
or more core functions are not supported
SQL_OSCC_COMPLIANT = SAG-compliant

SQL_ODBC_SQL_CONFORMANC
E
(ODBC 1.0)

A 16-bit integer value indicating SQL grammar supported by
the driver:
SQL_OSC_MINIMUM = Minimum grammar supported
SQL_OSC_CORE = Core grammar supported
SQL_OSC_EXTENDED = Extended grammar supported

SQL_ODBC_SQL_OPT_IEF
(ODBC 1.0)

A character string: "Y" if the data source supports the
optional Integrity Enhancement Facility; "N" if it does not.

SQL_ODBC_VER
(ODBC 1.0)

A character string with the version of ODBC to which the
Driver Manager conforms. The version is of the form ##.##,
where the first two digits are the major version and the next
two digits are the minor version. This is implemented solely
in the Driver Manager.

SQL_ORDER_BY_COLUMNS_IN_
SELECT
(ODBC 2.0)

A character string: "Y" if the columns in the ORDER BY
clause must be in the select list; otherwise, "N".

SQL_OUTER_JOINS
(ODBC 1.0)
The information type was introduced

A character string:
"N" = No. The data source does not support outer joins.
(ODBC 1.0)

in ODBC 1.0; each return value is
labeled with the version in which it
was introduced.

"Y" = Yes. The data source supports two-table outer joins,
and the driver supports the ODBC outer join syntax except
for nested outer joins. However, columns on the left side of
the comparison operator in the ON clause must come from
the left-hand table in the outer join, and columns on the right
side of the comparison operator must come from the right-
hand table. (ODBC 1.0)
"P" = Partial. The data source partially supports nested outer
joins, and the driver supports the ODBC outer join syntax.
However, columns on the left side of the comparison
operator in the ON clause must come from the left-hand
table in the outer join and columns on the right side of the
comparison operator must come from the right-hand table.
Also, the right-hand table of an outer join cannot be included
in an inner join. (ODBC 2.0)
"F" = Full. The data source fully supports nested outer joins,
and the driver supports the ODBC outer join syntax. (ODBC
2.0)

SQL_OWNER_TERM
(ODBC 1.0)

A character string with the data source vendor's name for an
owner; for example, "owner", "Authorization ID", or
"Schema".

SQL_OWNER_USAGE
(ODBC 2.0)

A 32-bit bitmask enumerating the statements in which
owners can be used:
SQL_OU_DML_STATEMENTS = Owners are supported in
all Data Manipulation Language statements: SELECT,
INSERT, UPDATE, DELETE, and, if supported, SELECT
FOR UPDATE and positioned update and delete statements.
SQL_OU_PROCEDURE_INVOCATION = Owners are
supported in the ODBC procedure invocation statement.
SQL_OU_TABLE_DEFINITION = Owners are supported in
all table definition statements: CREATE TABLE, CREATE
VIEW, ALTER TABLE, DROP TABLE, and DROP VIEW.
SQL_OU_INDEX_DEFINITION = Owners are supported in
all index definition statements: CREATE INDEX and DROP
INDEX.
SQL_OU_PRIVILEGE_DEFINITION = Owners are
supported in all privilege definition statements: GRANT and
REVOKE.

SQL_POS_OPERATIONS
(ODBC 2.0)

A 32-bit bitmask enumerating the supported operations in
SQLSetPos.
The following bitmasks are used to in conjunction with the
flag to determine which options are supported:
SQL_POS_POSITION
SQL_POS_REFRESH
SQL_POS_UPDATE
SQL_POS_DELETE
SQL_POS_ADD

SQL_POSITIONED_STATEMENTS
(ODBC 2.0)

A 32-bit bitmask enumerating the supported positioned SQL
statements.
The following bitmasks are used to determine which
statements are supported:
SQL_PS_POSITIONED_DELETE
SQL_PS_POSITIONED_UPDATE
SQL_PS_SELECT_FOR_UPDATE

SQL_PROCEDURE_TERM A character string with the data source vendor's name for a
procedure; for example, "database procedure", "stored

(ODBC 1.0) procedure", or "procedure".
SQL_PROCEDURES
(ODBC 1.0)

A character string: "Y" if the data source supports
procedures and the driver supports the ODBC procedure
invocation syntax; "N" otherwise.

SQL_QUALIFIER_LOCATION
(ODBC 2.0)

A 16-bit integer value indicating the position of the qualifier in
a qualified table name:
SQL_QL_START
SQL_QL_END
For example, an Xbase driver returns SQL_QL_START
because the directory (qualifier) name is at the start of the
table name, as in \EMPDATA\EMP.DBF. An ORACLE Server
driver returns SQL_QL_END, because the qualifier is at the
end of the table name, as in ADMIN.EMP@EMPDATA.

SQL_QUALIFIER_NAME
_SEPARATOR
(ODBC 1.0)

A character string: the character or characters that the data
source defines as the separator between a qualifier name
and the qualified name element that follows it.

SQL_QUALIFIER_TERM
(ODBC 1.0)

A character string with the data source vendor's name for a
qualifier; for example, "database" or "directory".

SQL_QUALIFIER_USAGE
(ODBC 2.0)

A 32-bit bitmask enumerating the statements in which
qualifiers can be used.
The following bitmasks are used to determine where
qualifiers can be used:
SQL_QU_DML_STATEMENTS = Qualifiers are supported in
all Data Manipulation Language statements: SELECT,
INSERT, UPDATE, DELETE, and, if supported, SELECT
FOR UPDATE and positioned update and delete statements.
SQL_QU_PROCEDURE_INVOCATION = Qualifiers are
supported in the ODBC procedure invocation statement.
SQL_QU_TABLE_DEFINITION = Qualifiers are supported in
all table definition statements: CREATE TABLE, CREATE
VIEW, ALTER TABLE, DROP TABLE, and DROP VIEW.
SQL_QU_INDEX_DEFINITION = Qualifiers are supported in
all index definition statements: CREATE INDEX and DROP
INDEX.
SQL_QU_PRIVILEGE_DEFINITION = Qualifiers are
supported in all privilege definition statements: GRANT and
REVOKE.

SQL_QUOTED_IDENTIFIER_CASE
(ODBC 2.0)

A 16-bit integer value as follows:
SQL_IC_UPPER = Quoted identifiers in SQL are case
insensitive and are stored in upper case in system catalog.
SQL_IC_LOWER = Quoted identifiers in SQL are case
insensitive and are stored in lower case in system catalog.
SQL_IC_SENSITIVE = Quoted identifiers in SQL are case
sensitive and are stored in mixed case in system catalog.
SQL_IC_MIXED = Quoted identifiers in SQL are case
insensitive and are stored in mixed case in system catalog.

SQL_ROW_UPDATES
(ODBC 1.0)

A character string: "Y" if a keyset-driven or mixed cursor
maintains row versions or values for all fetched rows and
therefore can detect any changes made to a row by any user
since the row was last fetched; otherwise, "N".

SQL_SCROLL_CONCURRENCY
(ODBC 1.0)

A 32-bit bitmask enumerating the concurrency control
options supported for scrollable cursors.
The following bitmasks are used to determine which options
are supported:

SQL_SCCO_READ_ONLY = Cursor is read only. No
updates are allowed.
SQL_SCCO_LOCK = Cursor uses the lowest level of locking
sufficient to ensure that the row can be updated.
SQL_SCCO_OPT_ROWVER = Cursor uses optimistic
concurrency control, comparing row versions, such as
SQLBase® ROWID or Sybase TIMESTAMP.
SQL_SCCO_OPT_VALUES = Cursor uses optimistic
concurrency control, comparing values.

SQL_SCROLL_OPTIONS
(ODBC 1.0)
The information type was introduced
in ODBC 1.0; each bitmask is
labeled with the version in which it
was introduced.

A 32-bit bitmask enumerating the scroll options supported for
scrollable cursors.
The following bitmasks are used to determine which options
are supported:
SQL_SO_FORWARD_ONLY = The cursor only scrolls
forward. (ODBC 1.0)
SQL_SO_STATIC = The data in the result set is static.
(ODBC 2.0)
SQL_SO_KEYSET_DRIVEN = The driver saves and uses
the keys for every row in the result set. (ODBC 1.0)
SQL_SO_DYNAMIC = The driver keeps the keys for every
row in the rowset (the keyset size is the same as the rowset
size). (ODBC 1.0)
SQL_SO_MIXED = The driver keeps the keys for every row
in the keyset, and the keyset size is greater than the rowset
size. The cursor is keyset-driven inside the keyset and
dynamic outside the keyset. (ODBC 1.0)

SQL_SEARCH_PATTERN_ESCAP
E
(ODBC 1.0)

A character string specifying what the driver supports as an
escape character that permits the use of the pattern match
metacharacters underscore (_) and percent (%) as valid
characters in search patterns. This escape character applies
only for those catalog function arguments that support
search strings. If this string is empty, the driver does not
support a search-pattern escape character.
This fInfoType is limited to catalog functions.

SQL_SERVER_NAME
(ODBC 1.0)

A character string with the actual data source-specific server
name; useful when a data source name is used during
SQLConnect, SQLDriverConnect, and
SQLBrowseConnect.

SQL_SPECIAL_CHARACTERS
(ODBC 2.0)

A character string containing all special characters (that is,
all characters except a through z, A through Z, 0 through 9,
and underscore) that can be used in an object name, such
as a table, column, or index name, on the data source. For
example, "#$^".

SQL_STATIC_SENSITIVITY
(ODBC 2.0)

A 32-bit bitmask enumerating whether changes made by an
application to a static or keyset-driven cursor through
SQLSetPos or positioned update or delete statements can
be detected by that application:
SQL_SS_ADDITIONS = Added rows are visible to the
cursor; the cursor can scroll to these rows. Where these
rows are added to the cursor is driver-dependent.
SQL_SS_DELETIONS = Deleted rows are no longer
available to the cursor and do not leave a "hole" in the result
set; after the cursor scrolls from a deleted row, it cannot
return to that row.
SQL_SS_UPDATES = Updates to rows are visible to the

cursor; if the cursor scrolls from and returns to an updated
row, the data returned by the cursor is the updated data, not
the original data. Because updating key values in a keyset-
driven cursor is considered to be deleting the existing row
and adding a new row, this value is always returned for
keyset-driven cursors.
Whether an application can detect changes made to the
result set by other users, including other cursors in the same
application, depends on the cursor type.

SQL_STRING_FUNCTIONS
(ODBC 1.0)
The information type was introduced
in ODBC 1.0; each bitmask is
labeled with the version in which it
was introduced.

A 32-bit bitmask enumerating the scalar string functions
supported by the driver and associated data source.
The following bitmasks are used to determine which string
functions are supported:
SQL_FN_STR_ASCII        (ODBC 1.0)
SQL_FN_STR_CHAR (ODBC 1.0)
SQL_FN_STR_CONCAT        (ODBC 1.0)
SQL_FN_STR_DIFFERENCE (ODBC 2.0)
SQL_FN_STR_INSERT (ODBC 1.0)
SQL_FN_STR_LCASE (ODBC 1.0)
SQL_FN_STR_LEFT        (ODBC 1.0)
SQL_FN_STR_LENGTH        (ODBC 1.0)
SQL_FN_STR_LOCATE        (ODBC 1.0)
SQL_FN_STR_LOCATE_2 (ODBC 2.0)
SQL_FN_STR_LTRIM (ODBC 1.0)
SQL_FN_STR_REPEAT        (ODBC 1.0)
SQL_FN_STR_REPLACE (ODBC 1.0)
SQL_FN_STR_RIGHT (ODBC 1.0)
SQL_FN_STR_RTRIM (ODBC 1.0)
SQL_FN_STR_SOUNDEX (ODBC 2.0)
SQL_FN_STR_SPACE (ODBC 2.0)
SQL_FN_STR_SUBSTRING (ODBC 1.0)
SQL_FN_STR_UCASE (ODBC 1.0)
If an application can call the LOCATE scalar function with the
string_exp1, string_exp2, and start arguments, the driver
returns the SQL_FN_STR_LOCATE bitmask. If an
application can call the LOCATE scalar function with only the
string_exp1 and string_exp2 arguments, the driver returns
the SQL_FN_STR_LOCATE_2 bitmask. Drivers that fully
support the LOCATE scalar function return both bitmasks.

SQL_SUBQUERIES
(ODBC 2.0)

A 32-bit bitmask enumerating the predicates that support
subqueries:
SQL_SQ_CORRELATED_SUBQUERIES
SQL_SQ_COMPARISON
SQL_SQ_EXISTS
SQL_SQ_IN
SQL_SQ_QUANTIFIED
The SQL_SQ_CORRELATED_SUBQUERIES bitmask
indicates that all predicates that support subqueries support
correlated subqueries.

SQL_SYSTEM_FUNCTIONS
(ODBC 1.0)

A 32-bit bitmask enumerating the scalar system functions
supported by the driver and associated data source.
The following bitmasks are used to determine which system
functions are supported:
SQL_FN_SYS_DBNAME
SQL_FN_SYS_IFNULL
SQL_FN_SYS_USERNAME

SQL_TABLE_TERM A character string with the data source vendor's name for a

(ODBC 1.0) table; for example, "table" or "file".
SQL_TIMEDATE_ADD_INTERVAL
S
(ODBC 2.0)

A 32-bit bitmask enumerating the timestamp intervals
supported by the driver and associated data source for the
TIMESTAMPADD scalar function.
The following bitmasks are used to determine which intervals
are supported:
SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_WEEK
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVAL
S
(ODBC 2.0)

A 32-bit bitmask enumerating the timestamp intervals
supported by the driver and associated data source for the
TIMESTAMPDIFF scalar function.
The following bitmasks are used to determine which intervals
are supported:
SQL_FN_TSI_FRAC_SECOND
SQL_FN_TSI_SECOND
SQL_FN_TSI_MINUTE
SQL_FN_TSI_HOUR
SQL_FN_TSI_DAY
SQL_FN_TSI_WEEK
SQL_FN_TSI_MONTH
SQL_FN_TSI_QUARTER
SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS
(ODBC 1.0)
The information type was introduced
in ODBC 1.0; each bitmask is
labeled with the version in which it
was introduced.

A 32-bit bitmask enumerating the scalar date and time
functions supported by the driver and associated data
source.
The following bitmasks are used to determine which date
and time functions are supported:
SQL_FN_TD_CURDATE       

(ODBC 1.0)
SQL_FN_TD_CURTIME       

(ODBC 1.0)
SQL_FN_TD_DAYNAME

(ODBC 2.0)
SQL_FN_TD_DAYOFMONTH        (ODBC 1.0)
SQL_FN_TD_DAYOFWEEK (ODBC 1.0)
SQL_FN_TD_DAYOFYEAR (ODBC 1.0)
SQL_FN_TD_HOUR       

(ODBC 1.0)
SQL_FN_TD_MINUTE

(ODBC 1.0)
SQL_FN_TD_MONTH

(ODBC 1.0)
SQL_FN_TD_MONTHNAME (ODBC 2.0)
SQL_FN_TD_NOW

(ODBC 1.0)
SQL_FN_TD_QUARTER       

(ODBC 1.0)
SQL_FN_TD_SECOND

(ODBC 1.0)
SQL_FN_TD_TIMESTAMPADD (ODBC 2.0)

SQL_FN_TD_TIMESTAMPDIFF (ODBC 2.0)
SQL_FN_TD_WEEK       

(ODBC 1.0)
SQL_FN_TD_YEAR       

(ODBC 1.0)
SQL_TXN_CAPABLE
(ODBC 1.0)
The information type was introduced
in ODBC 1.0; each return value is
labeled with the version in which it
was introduced

A 16-bit integer value describing the transaction support in
the driver or data source:
SQL_TC_NONE = Transactions not supported. (ODBC 1.0)
SQL_TC_DML = Transactions can only contain Data
Manipulation Language (DML) statements (SELECT,
INSERT, UPDATE, DELETE). Data Definition Language
(DDL) statements encountered in a transaction cause an
error. (ODBC 1.0)
SQL_TC_DDL_COMMIT = Transactions can only contain
DML statements. DDL statements (CREATE TABLE, DROP
INDEX, an so on) encountered in a transaction cause the
transaction to be committed. (ODBC 2.0)
SQL_TC_DDL_IGNORE = Transactions can only contain
DML statements. DDL statements encountered in a
transaction are ignored. (ODBC 2.0)
SQL_TC_ALL = Transactions can contain DDL statements
and DML statements in any order. (ODBC 1.0)

SQL_TXN_ISOLATION_OPTION
(ODBC 1.0)

A 32-bit bitmask enumerating the transaction isolation levels
available from the driver or data source. The following
bitmasks are used in conjunction with the flag to determine
which options are supported:
SQL_TXN_READ_UNCOMMITTED
SQL_TXN_READ_COMMITTED
SQL_TXN_REPEATABLE_READ
SQL_TXN_SERIALIZABLE
SQL_TXN_VERSIONING
For descriptions of these isolation levels, see the description
of SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION
(ODBC 2.0)

A 32-bit bitmask enumerating the support for the UNION
clause:
SQL_U_UNION = The data source supports the UNION
clause.
SQL_U_UNION_ALL = The data source supports the ALL
keyword in the UNION clause. (SQLGetInfo returns both
SQL_U_UNION and SQL_U_UNION_ALL in this case.)

SQL_USER_NAME
(ODBC 1.0)

A character string with the name used in a particular
database, which can be different than login name.

Code Example
SQLGetInfo returns lists of supported options as a 32-bit bitmask in rgbInfoValue. The bitmask for each
option is used in conjunction with the flag to determine whether the option is supported.
For example, an application could use the following code to determine whether the SUBSTRING scalar
function is supported by the driver associated with the hdbc:

UDWORD fFuncs;

SQLGetInfo(hdbc, SQL_STRING_FUNCTIONS, (PTR)&fFuncs, sizeof(fFuncs), NULL);

if (fFuncs & SQL_FN_STR_SUBSTRING) /* SUBSTRING supported */
...;

else /* SUBSTRING not supported */
...;

Related Functions
SQLGetConnectOption (extension)
SQLGetFunctions (extension)
SQLGetStmtOption (extension)
SQLGetTypeInfo (extension)

SQLGetStmtOption (Extension Level 1, ODBC 1.0)
Related Functions

SQLGetStmtOption returns the current setting of a statement option.

Syntax
RETCODE SQLGetStmtOption(hstmt, fOption, pvParam)
The SQLGetStmtOption function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD fOption Input Option to retrieve.
PTR pvParam Output Value associated with fOption.

Depending on the value of
fOption, a 32-bit integer value
or a pointer to a null-
terminated character string
will be returned in pvParam.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLGetStmtOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLGetStmtOption and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The argument fOption was
SQL_ROW_NUMBER or
SQL_GET_BOOKMARK and the cursor
was not open, or the cursor was
positioned before the start of the result
set or after the end of the result set.

IM001 Driver does not
support this function

(DM) The driver corresponding to the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters

or columns.
S1011 Operation invalid at

this time
The fOption argument was
SQL_GET_BOOKMARK and the value
of the SQL_USE_BOOKMARKS
statement option was SQL_UB_OFF.

S1092 Option type out of
range

(DM) The value specified for the
argument fOption was in the block of
numbers reserved for ODBC connection
and statement options, but was not valid
for the version of ODBC supported by
the driver.

S1109 Invalid cursor
position

The fOption argument was
SQL_GET_BOOKMARK or
SQL_ROW_NUMBER and the value in
the rgfRowStatus array in
SQLExtendedFetch for the current row
was SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The value specified for the argument
fOption was a valid ODBC statement
option for the version of ODBC
supported by the driver, but was not
supported by the driver.
The value specified for the argument
fOption was in the block of numbers
reserved for driver-specific connection
and statement options, but was not
supported by the driver.

Comments
The following table lists statement options for which corresponding values can be returned, but not set.
The table also lists the version of ODBC in which they were introduced. For a list of options that can be
set and retrieved, see SQLSetStmtOption. If fOption specifies an option that returns a string, pvParam
must be a pointer to storage for the string. The maximum length of the string will be
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null termination byte).

fOption pvParam contents
SQL_GET_BOOKMARK
(ODBC 2.0)

A 32-bit integer value that is the bookmark for the current
row. Before using this option, an application must set the
SQL_USE_BOOKMARKS statement option to SQL_UB_ON,
create a result set, and call SQLExtendedFetch.
To return to the rowset starting with the row marked by this
bookmark, an application calls SQLExtendedFetch with the
SQL_FETCH_BOOKMARK fetch type and irow set to this
value.
Bookmarks are also returned as column 0 of the result set.

SQL_ROW_NUMBER
(ODBC 2.0)

A 32-bit integer value that specifies the number of the
current row in the entire result set. If the number of the
current row cannot be determined or there is no current row,
the driver returns 0.

Related Functions
SQLGetConnectOption (extension)
SQLSetConnectOption (extension)
SQLSetStmtOption (extension)

SQLGetTypeInfo (Extension Level 1, ODBC 1.0)
Related Functions

SQLGetTypeInfo returns information about data types supported by the data source. The driver returns
the information in the form of an SQL result set.

Important      Applications must use the type names returned in the TYPE_NAME column in ALTER
TABLE and CREATE TABLE statements. SQLGetTypeInfo may return more than one row with the
same value in the DATA_TYPE column.

Syntax
RETCODE SQLGetTypeInfo(hstmt, fSqlType)
The SQLGetTypeInfo function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle for the result set.
SWORD fSqlType Input The SQL data type. This must be one of

the following values:
SQL_BIGINT
SQL_BINARY
SQL_BIT
SQL_CHAR
SQL_DATE
SQL_DECIMAL
SQL_DOUBLE
SQL_FLOAT
SQL_INTEGER
SQL_LONGVARBINARY
SQL_LONGVARCHAR
SQL_NUMERIC
SQL_REAL
SQL_SMALLINT
SQL_TIME
SQL_TIMESTAMP
SQL_TINYINT
SQL_VARBINARY
SQL_VARCHAR
or a driver-specific SQL data type.
SQL_ALL_TYPES specifies that
information about all data types should
be returned.
For information about ODBC SQL data
types, see SQL Data Types. For
information about driver-specific SQL
data types, see the driver's
documentation.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLGetTypeInfo returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLGetTypeInfo and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description

01000 General warning Driver specific informational message.
(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had not been called.
A result set was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver corresponding to the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1004 SQL data type out
of range

(DM) The value specified for the
argument fSqlType was in the block of
numbers reserved for ODBC SQL data
type indicators but was not a valid
ODBC SQL data type indicator.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt, then the function was
called and before it completed
execution, SQLCancel was called on
the hstmt. Then the function was called
again on the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1C00 Driver not capable The value specified for the argument
fSqlType was in the range of numbers
reserved for driver-specific SQL data
type indicators, but was not supported
by the driver or data source.
The combination of the current settings
of the SQL_CONCURRENCY and

SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLGetTypeInfo returns the results as a standard result set, ordered by DATA_TYPE and
TYPE_NAME. The following table lists the columns in the result set.

Note      SQLGetTypeInfo might not return all data types. For example, a driver might not return user-
defined data types. Applications can use any valid data type, regardless of whether it is returned by
SQLGetTypeInfo.

The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source.

Column Name Data Type Comments
TYPE_NAME Varchar(128)

not NULL
Data source-dependent data type
name; for example, "CHAR",
"VARCHAR", "MONEY", "LONG
VARBINARY", or "CHAR () FOR BIT
DATA". Applications must use this
name in CREATE TABLE and ALTER
TABLE statements.

DATA_TYPE Smallint
not NULL

SQL data type. This can be an ODBC
SQL data type or a driver-specific
SQL data type. For a list of valid
ODBC SQL data types, see SQL Data
Types. For information about driver-
specific SQL data types, see the
driver's documentation.

PRECISION Integer The maximum precision of the data
type on the data source. NULL is
returned for data types where
precision is not applicable. For more
information on precision, see
Precision, Scale, Length, and Display
Size.

LITERAL_PREFIX Varchar(128) Character or characters used to prefix
a literal; for example, a single quote ('
) for character data types or 0x for
binary data types; NULL is returned
for data types where a literal prefix is
not applicable.

LITERAL_SUFFIX Varchar(128) Character or characters used to
terminate a literal; for example, a
single quote (') for character data
types; NULL is returned for data types
where a literal suffix is not applicable.

CREATE_PARAMS Varchar(128) Parameters for a data type definition.
For example, CREATE_PARAMS for
DECIMAL would be "precision,scale";
CREATE_PARAMS for VARCHAR
would equal "max length"; NULL is
returned if there are no parameters for

the data type definition, for example
INTEGER.
The driver supplies the
CREATE_PARAMS text in the
language of the country where it is
used.

NULLABLE Smallint
not NULL

Whether the data type accepts a
NULL value:
SQL_NO_NULLS if the data type
does not accept NULL values.
SQL_NULLABLE if the data type
accepts NULL values.
SQL_NULLABLE_UNKNOWN if it is
not known if the column accepts
NULL values.

CASE_SENSITIVE Smallint
not NULL

Whether a character data type is case
sensitive in collations and
comparisons:
TRUE if the data type is a character
data type and is case sensitive.
FALSE if the data type is not a
character data type or is not case
sensitive.

SEARCHABLE Smallint
not NULL

How the data type is used in a
WHERE clause:
SQL_UNSEARCHABLE if the data
type cannot be used in a WHERE
clause.
SQL_LIKE_ONLY if the data type can
be used in a WHERE clause only with
the LIKE predicate.
SQL_ALL_EXCEPT_LIKE if the data
type can be used in a WHERE clause
with all comparison operators except
LIKE.
SQL_SEARCHABLE if the data type
can be used in a WHERE clause with
any comparison operator.

UNSIGNED_ATTRIBU
TE

Smallint Whether the data type is unsigned:
TRUE if the data type is unsigned.
FALSE if the data type is signed.
NULL is returned if the attribute is not
applicable to the data type or the data
type is not numeric.

MONEY Smallint
not NULL

Whether the data type is a money
data type:
TRUE if it is a money data type.
FALSE if it is not.

AUTO_INCREMENT Smallint Whether the data type is
autoincrementing:
TRUE if the data type is
autoincrementing.
FALSE if the data type is not
autoincrementing.

NULL is returned if the attribute is not
applicable to the data type or the data
type is not numeric.
An application can insert values into a
column having this attribute, but
cannot update the values in the
column.

LOCAL_TYPE_NAME Varchar(128) Localized version of the data source-
dependent name of the data type.
NULL is returned if a localized name
is not supported by the data source.
This name is intended for display only,
such as in dialog boxes.

MINIMUM_SCALE Smallint The minimum scale of the data type
on the data source. If a data type has
a fixed scale, the MINIMUM_SCALE
and MAXIMUM_SCALE columns both
contain this value. For example, an
SQL_TIMESTAMP column might have
a fixed scale for fractional seconds.
NULL is returned where scale is not
applicable. For more information, see
Precision, Scale, Length, and Display
Size.

MAXIMUM_SCALE Smallint The maximum scale of the data type
on the data source. NULL is returned
where scale is not applicable. If the
maximum scale is not defined
separately on the data source, but is
instead defined to be the same as the
maximum precision, this column
contains the same value as the
PRECISION column. For more
information, see Precision, Scale,
Length, and Display Size.

Note      The MINIMUM_SCALE and MAXIMUM_SCALE columns were added in ODBC 2.0. ODBC 1.0
drivers may return different, driver-specific columns with the same column numbers.

Attribute information can apply to data types or to specific columns in a result set. SQLGetTypeInfo
returns information about attributes associated with data types; SQLColAttributes returns information
about attributes associated with columns in a result set.

Related Functions
SQLBindCol
SQLCancel
SQLColAttributes
SQLExtendedFetch (extension)
SQLFetch
SQLGetInfo (extension)

SQLMoreResults (Extension Level 2, ODBC 1.0)
Related Functions

SQLMoreResults determines whether there are more results available on an hstmt containing
SELECT, UPDATE, INSERT, or DELETE statements and, if so, initializes processing for those results.

Syntax
RETCODE SQLMoreResults(hstmt)
The SQLMoreResults function accepts the following argument:

Type Argument Use Description
HSTMT hstmt Input Statement handle.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_NO_DATA_FOUND,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLMoreResults returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLMoreResults and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SELECT statements return result sets. UPDATE, INSERT, and DELETE statements return a count of
affected rows. If any of these statements are batched, submitted with arrays of parameters, or in
procedures, they can return multiple result sets or counts.
If another result set or count is available, SQLMoreResults returns SQL_SUCCESS and initializes the
result set or count for additional processing. After calling SQLMoreResults for SELECT statements, an
application can call functions to determine the characteristics of the result set and to retrieve data from
the result set. After calling SQLMoreResults for UPDATE, INSERT, or DELETE statements, an
application can call SQLRowCount.
If all results have been processed, SQLMoreResults returns SQL_NO_DATA_FOUND.
Note that if there is a current result set with unfetched rows, SQLMoreResults discards that result set
and makes the next result set or count available.
If a batch of statements or a procedure mixes other SQL statements with SELECT, UPDATE, INSERT,
and DELETE statements, these other statements do not affect SQLMoreResults.

Related Functions
SQLCancel
SQLExtendedFetch (extension)
SQLFetch
SQLGetData (extension)

SQLNativeSql (Extension Level 2, ODBC 1.0)
SQLNativeSql returns the SQL string as translated by the driver.

Syntax
RETCODE SQLNativeSql(hdbc, szSqlStrIn, cbSqlStrIn, szSqlStr, cbSqlStrMax, pcbSqlStr)
The SQLNativeSql function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
UCHAR FAR * szSqlStrIn Input SQL text string to be

translated.
SDWORD cbSqlStrIn Input Length of szSqlStrIn text

string.
UCHAR FAR * szSqlStr Output Pointer to storage for the

translated SQL string.
SDWORD cbSqlStrMax Input Maximum length of the

szSqlStr buffer.
SDWORD FAR
*

pcbSqlStr Output The total number of bytes
(excluding the null termination
byte) available to return in
szSqlStr. If the number of
bytes available to return is
greater than or equal to
cbSqlStrMax, the translated
SQL string in szSqlStr is
truncated to cbSqlStrMax - 1
bytes.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLNativeSql returns either SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLNativeSql and explains each one in the context of this function; the notation
"(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code
associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The buffer szSqlStr was not large
enough to return the entire SQL string,
so the SQL string was truncated. The
argument pcbSqlStr contains the length
of the untruncated SQL string. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

The hdbc was not in a connected state.

37000 Syntax error or
access violation

The argument szSqlStrIn contained an
SQL statement that was not preparable
or contained a syntax error.

IM001 Driver does not
support this function

(DM) The driver associated with the
hdbc does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was

defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1009 Invalid argument
value

(DM) The argument szSqlStrIn was a
null pointer.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStrIn was less
than 0, but not equal to SQL_NTS.
(DM) The argument cbSqlStrMax was
less than 0 and the argument szSqlStr
was not a null pointer.

Comments
The following are examples of what SQLNativeSql might return for the following input SQL string
containing the scalar function CONVERT. Assume that the column empid is of type INTEGER in the data
source:

SELECT { fn CONVERT (empid, SQL_SMALLINT) } FROM employee

A driver for SQL Server might return the following translated SQL string:

SELECT convert (smallint, empid) FROM employee

A driver for ORACLE Server might return the following translated SQL string:

SELECT to_number (empid) FROM employee

A driver for Ingres might return the following translated SQL string:

SELECT int2 (empid) FROM employee

SQLNumParams (Extension Level 2, ODBC 1.0)
Related Functions

SQLNumParams returns the number of parameters in an SQL statement.

Syntax
RETCODE SQLNumParams(hstmt, pcpar)
The SQLNumParams function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
SWORD FAR * pcpar Output Number of parameters in the

statement.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLNumParams returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLNumParams and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) The function was called prior to
calling SQLPrepare or SQLExecDirect
for the hstmt.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt

and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLNumParams can only be called after SQLPrepare has been called.
If the statement associated with hstmt does not contain parameters, SQLNumParams sets pcpar to 0.

Related Functions
SQLDescribeParam (extension)
SQLBindParameter

SQLNumResultCols (Core, ODBC 1.0)
Related Functions

SQLNumResultCols returns the number of columns in a result set.

Syntax
RETCODE SQLNumResultCols(hstmt, pccol)
The SQLNumResultCols function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
SWORD FAR * pccol Output Number of columns in the

result set.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLNumResultCols returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLNumResultCols and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) The function was called prior to
calling SQLPrepare or SQLExecDirect
for the hstmt.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt

and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

SQLNumResultCols can return any SQLSTATE that can be returned by SQLPrepare or SQLExecute
when called after SQLPrepare and before SQLExecute depending on when the data source evaluates
the SQL statement associated with the hstmt.

Comments
SQLNumResultCols can be called successfully only when the hstmt is in the prepared, executed, or
positioned state.
If the statement associated with hstmt does not return columns, SQLNumResultCols sets pccol to 0.

Related Functions
SQLBindCol
SQLCancel
SQLColAttributes
SQLDescribeCol
SQLExtendedFetch (extension)
SQLFetch
SQLGetData (extension)
SQLSetScrollOptions (extension)

SQLParamData (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLParamData is used in conjunction with SQLPutData to supply parameter data at statement
execution time.

Syntax
RETCODE SQLParamData(hstmt, prgbValue)
The SQLParamData function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
PTR FAR * prgbValue Output Pointer to storage for the

value specified for the
rgbValue argument in
SQLBindParameter (for
parameter data) or the
address of the rgbValue buffer
specified in SQLBindCol (for
column data).

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLParamData returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLParamData and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

22026 String data, length
mismatch

The SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo was "Y"
and less data was sent for a long
parameter (the data type was
SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data
source-specific data type) than was
specified with the pcbValue argument in
SQLBindParameter.
The SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo was "Y"
and less data was sent for a long
column (the data type was
SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data
source-specific data type) than was
specified in the length buffer
corresponding to a column in a row of
data that was added or updated with
SQLSetPos.

IM001 Driver does not
support this function

(DM) The driver that corresponds the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.
SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA.
SQLCancel was called before data was
sent for all data-at-execution parameters
or columns.

S1010 Function sequence
error

(DM) The previous function call was not
a call to SQLExecDirect, SQLExecute,
or SQLSetPos where the return code
was SQL_NEED_DATA.
The previous function call was a call to
SQLParamData.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.

S1T00 Timeout expired The timeout period expired before the
data source completed processing the
parameter value. The timeout period is
set through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

If SQLParamData is called while sending data for a parameter in an SQL statement, it can return any
SQLSTATE that can be returned by the function called to execute the statement (SQLExecute or
SQLExecDirect). If it is called while sending data for a column being updated or added with
SQLSetPos, it can return any SQLSTATE that can be returned by SQLSetPos.

Comments
For an explanation of how data-at-execution parameter data is passed at statement execution time, see
"Passing Parameter Values" in SQLBindParameter. For an explanation of how data-at-execution
column data is updated or added, see "Using SQLSetPos" in SQLSetPos.

Code Example
See SQLPutData.

Related Functions
SQLCancel
SQLDescribeParam (extension)
SQLExecDirect
SQLExecute
SQLPutData (extension)
SQLBindParameter

SQLParamOptions (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLParamOptions allows an application to specify multiple values for the set of parameters assigned
by SQLBindParameter. The ability to specify multiple values for a set of parameters is useful for bulk
inserts and other work that requires the data source to process the same SQL statement multiple times
with various parameter values. An application can, for example, specify three sets of values for the set of
parameters associated with an INSERT statement, and then execute the INSERT statement once to
perform the three insert operations.

Syntax
RETCODE SQLParamOptions(hstmt, crow, pirow)
The SQLParamOptions function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UDWORD crow Input Number of values for each

parameter. If crow is greater
than 1, the rgbValue argument
in SQLBindParameter points
to an array of parameter
values and pcbValue points to
an array of lengths.

UDWORD FAR
*

pirow Input Pointer to storage for the
current row number. As each
row of parameter values is
processed, pirow is set to the
number of that row. No row
number will be returned if
pirow is set to a null pointer.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLParamOptions returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLParamOptions and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function

was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1107 Row value out of
range

(DM) The value specified for the
argument crow was equal to 0.

Comments
As a statement executes, the driver sets pirow to the number of the current row of parameter values; the
first row is row number 1. The contents of pirow can be used as follows:

When SQLParamData returns SQL_NEED_DATA for data-at-execution parameters, the
application can access the value in pirow to determine which row of parameters is being executed.

When SQLExecute or SQLExecDirect returns an error, the application can access the value in
pirow to find out which row of parameters failed.

When SQLExecute, SQLExecDirect, SQLParamData, or SQLPutData succeed, the value in
pirow is set to crow ¾ the total number of rows of parameters processed.

Code Example
In the following example, an application specifies an array of parameter values with SQLBindParameter
and SQLParamOptions. It then inserts those values into a table with a single INSERT statement and
checks for any errors. If the first row fails, the application rolls back all changes. If any other row fails,
the application commits the transaction, skips the failed row, rebinds the remaining parameters, and
continues processing. (Note that irow is 1-based and szData[] is 0-based, so the irow entry of szData[]
is skipped by rebinding at szData[irow].)

#define CITY_LEN 256

SDWORD cbValue[] = {SQL_NTS, SQL_NTS, SQL_NTS, SQL_NTS, SQL_NTS};

UCHAR szData[][CITY_LEN] = {"Boston","New York","Keokuk","Seattle",
"Eugene"};

UDWORD irow;

SQLSetConnectOption(hdbc, SQL_AUTOCOMMIT, 0);

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_DEFAULT, SQL_CHAR,
CITY_LEN, 0, szData, 0, cbValue);

SQLPrepare(hstmt, "INSERT INTO CITIES VALUES (?)", SQL_NTS);

SQLParamOptions(hstmt, 5, &irow);

while (TRUE) {

retcode = SQLExecute(hstmt);

/* Done if execution was successful */

if (retcode != SQL_ERROR) {

break;

}

/* On an error, print the error. If the error is in row 1, roll */

/* back the transaction and quit. If the error is in another */

/* row, commit the transaction and, unless the error is in the */

/* last row, rebind to the next row and continue processing. */

show_error();

if (irow == 1) {

SQLTransact(henv, hstmt, SQL_ROLLBACK);

break;

} else {

SQLTransact(henv, hstmt, SQL_COMMIT);

if (irow == 5) {

break;

} else {

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_DEFAULT, SQL_CHAR,
CITY_LEN, 0, szData[irow], 0, cbValue[irow]);

SQLParamOptions(hstmt, 5-irow, &irow);

}

}

}

Related Functions
SQLDescribeParam (extension)
SQLBindParameter

SQLPrepare (Core, ODBC 1.0)
Code Example Related Functions

SQLPrepare prepares an SQL string for execution.

Syntax
RETCODE SQLPrepare(hstmt, szSqlStr, cbSqlStr)
The SQLPrepare function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szSqlStr Input SQL text string.
SDWORD cbSqlStr Input Length of szSqlStr.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLPrepare returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLPrepare and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

21S01 Insert value list
does not match
column list

The argument szSqlStr contained an
INSERT statement and the number of
values to be inserted did not match the
degree of the derived table.

21S02 Degree of derived
table does not
match column list

The argument szSqlStr contained a
CREATE VIEW statement and the
number of names specified is not the
same degree as the derived table
defined by the query specification.

22005 Error in assignment The argument szSqlStr contained an
SQL statement that contained a literal or
parameter and the value was
incompatible with the data type of the
associated table column.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

34000 Invalid cursor name The argument szSqlStr contained a
positioned DELETE or a positioned
UPDATE and the cursor referenced by
the statement being prepared was not
open.

37000 Syntax error or
access violation

The argument szSqlStr contained an
SQL statement that was not preparable
or contained a syntax error.

42000 Syntax error or
access violation

The argument szSqlStr contained a
statement for which the user did not
have the required privileges.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S0001 Base table or view
already exists

The argument szSqlStr contained a
CREATE TABLE or CREATE VIEW
statement and the table name or view
name specified already exists.

S0002 Base table not
found

The argument szSqlStr contained a
DROP TABLE or a DROP VIEW
statement and the specified table name
or view name did not exist.
The argument szSqlStr contained an
ALTER TABLE statement and the
specified table name did not exist.
The argument szSqlStr contained a
CREATE VIEW statement and a table
name or view name defined by the
query specification did not exist.
The argument szSqlStr contained a
CREATE INDEX statement and the
specified table name did not exist.
The argument szSqlStr contained a
GRANT or REVOKE statement and the
specified table name or view name did
not exist.
The argument szSqlStr contained a
SELECT statement and a specified
table name or view name did not exist.
The argument szSqlStr contained a
DELETE, INSERT, or UPDATE
statement and the specified table name
did not exist.
The argument szSqlStr contained a
CREATE TABLE statement and a table
specified in a constraint (referencing a
table other than the one being created)
did not exist.

S0011 Index already exists The argument szSqlStr contained a
CREATE INDEX statement and the
specified index name already existed.

S0012 Index not found The argument szSqlStr contained a
DROP INDEX statement and the
specified index name did not exist.

S0021 Column already
exists

The argument szSqlStr contained an
ALTER TABLE statement and the
column specified in the ADD clause is
not unique or identifies an existing
column in the base table.

S0022 Column not found The argument szSqlStr contained a
CREATE INDEX statement and one or
more of the column names specified in

the column list did not exist.
The argument szSqlStr contained a
GRANT or REVOKE statement and a
specified column name did not exist.
The argument szSqlStr contained a
SELECT, DELETE, INSERT, or
UPDATE statement and a specified
column name did not exist.
The argument szSqlStr contained a
CREATE TABLE statement and a
column specified in a constraint
(referencing a table other than the one
being created) did not exist.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1009 Invalid argument
value

(DM) The argument szSqlStr was a null
pointer.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The argument cbSqlStr was less
than or equal to 0, but not equal to
SQL_NTS.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
The application calls SQLPrepare to send an SQL statement to the data source for preparation. The
application can include one or more parameter markers in the SQL statement. To include a parameter

marker, the application embeds a question mark (?) into the SQL string at the appropriate position.

Note      If an application uses SQLPrepare to prepare and SQLExecute to submit a COMMIT or
ROLLBACK statement, it will not be interoperable between DBMS products. To commit or roll back a
transaction, call SQLTransact.

The driver modifies the statement to use the form of SQL used by the data source, then submits it to the
data source for preparation. In particular, the driver modifies the escape clauses used to define ODBC-
specific SQL. For the driver, an hstmt is similar to a statement identifier in embedded SQL code. If the
data source supports statement identifiers, the driver can send a statement identifier and parameter
values to the data source.
Once a statement is prepared, the application uses hstmt to refer to the statement in later function calls.
The prepared statement associated with the hstmt may be reexecuted by calling SQLExecute until the
application frees the hstmt with a call to SQLFreeStmt with the SQL_DROP option or until the hstmt is
used in a call to SQLPrepare, SQLExecDirect, or one of the catalog functions (SQLColumns,
SQLTables, and so on). Once the application prepares a statement, it can request information about the
format of the result set.
Some drivers cannot return syntax errors or access violations when the application calls SQLPrepare. A
driver may handle syntax errors and access violations, only syntax errors, or neither syntax errors nor
access violations. Therefore, an application must be able to handle these conditions when calling
subsequent related functions such as SQLNumResultCols, SQLDescribeCol, SQLColAttributes, and
SQLExecute.
Depending on the capabilities of the driver and data source and on whether the application has called
SQLBindParameter, parameter information (such as data types) might be checked when the statement
is prepared or when it is executed. For maximum interoperability, an application should unbind all
parameters that applied to an old SQL statement before preparing a new SQL statement on the same
hstmt. This prevents errors that are due to old parameter information being applied to the new
statement.

Important      Committing or rolling back a transaction, either by calling SQLTransact or by using the
SQL_AUTOCOMMIT connection option, can cause the data source to delete the access plans for all
hstmts on an hdbc. For more information, see the SQL_CURSOR_COMMIT_BEHAVIOR and
SQL_CURSOR_ROLLBACK_BEHAVIOR information types in SQLGetInfo.

Code Example
See SQLBindParameter, SQLParamOptions, SQLPutData, and SQLSetPos.

Related Functions
SQLAllocStmt
SQLBindCol
SQLCancel
SQLExecDirect
SQLExecute
SQLRowCount
SQLSetCursorName
SQLBindParameter
SQLTransact

SQLPrimaryKeys (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLPrimaryKeys returns the column names that comprise the primary key for a table. The driver
returns the information as a result set. This function does not support returning primary keys from
multiple tables in a single call.

Syntax
RETCODE SQLPrimaryKeys(hstmt, szTableQualifier, cbTableQualifier, szTableOwner, cbTableOwner,
szTableName, cbTableName)
The SQLPrimaryKeys function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szTableQualifier Input Qualifier name. If a driver

supports qualifiers for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
UCHAR FAR * szTableOwner Input Table owner. If a driver

supports owners for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.
UCHAR FAR * szTableName Input Table name.
SWORD cbTableName Input Length of szTableName.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLPrimaryKeys returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLPrimaryKeys and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had

not been called.
IM001 Driver does not

support this function
(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name.

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLPrimaryKeys returns the results as a standard result set, ordered by TABLE_QUALIFIER,
TABLE_OWNER, TABLE_NAME, and KEY_SEQ. The following table lists the columns in the result set.

Note      SQLPrimaryKeys might not return all primary keys. For example, a Paradox driver might only
return primary keys for files (tables) in the current directory.

The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the TABLE_QUALIFIER, TABLE_OWNER,
TABLE_NAME, and COLUMN_NAME columns, call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

Column Name Data Type Comments
TABLE_QUALIFIER Varchar(128) Primary key table qualifier identifier;

NULL if not applicable to the data
source. If a driver supports qualifiers
for some tables but not for others,
such as when the driver retrieves data
from different DBMSs, it returns an
empty string ("") for those tables that
do not have qualifiers.

TABLE_OWNER Varchar(128) Primary key table owner identifier;
NULL if not applicable to the data
source. If a driver supports owners for
some tables but not for others, such
as when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

TABLE_NAME Varchar(128)
not NULL

Primary key table identifier.

COLUMN_NAME Varchar(128)
not NULL

Primary key column identifier.

KEY_SEQ Smallint
not NULL

Column sequence number in key
(starting with 1).

PK_NAME Varchar(128) Primary key identifier. NULL if not
applicable to the data source.

Note      The PK_NAME column was added in ODBC 2.0. ODBC 1.0 drivers may return a different,
driver-specific column with the same column number.

Code Example
See SQLForeignKeys.

Related Functions
SQLBindCol
SQLCancel
SQLExtendedFetch (extension)
SQLFetch
SQLForeignKeys (extension)
SQLStatistics (extension)

SQLProcedureColumns (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLProcedureColumns returns the list of input and output parameters, as well as the columns that
make up the result set for the specified procedures. The driver returns the information as a result set on
the specified hstmt.

Syntax
RETCODE SQLProcedureColumns(hstmt, szProcQualifier, cbProcQualifier, szProcOwner,
cbProcOwner, szProcName, cbProcName, szColumnName, cbColumnName)
The SQLProcedureColumns function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szProcQualifier Input Procedure qualifier name.    If

a driver supports qualifiers for
some procedures but not for
others, such as when the
driver retrieves data from
different DBMSs, an empty
string ("") denotes those
procedures that do not have
qualifiers.

SWORD cbProcQualifier Input Length of szProcQualifier.
UCHAR FAR * szProcOwner Input String search pattern for

procedure owner names. If a
driver supports owners for
some procedures but not for
others, such as when the
driver retrieves data from
different DBMSs, an empty
string ("") denotes those
procedures that do not have
owners.

SWORD cbProcOwner Input Length of szProcOwner.
UCHAR FAR * szProcName Input String search pattern for

procedure names.
SWORD cbProcName Input Length of szProcName.
UCHAR FAR * szColumnName Input String search pattern for

column names.
SWORD cbColumnName Input Length of szColumnName.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLProcedureColumns returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLProcedureColumns and explains each one in the context of this function;
the notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The
return code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link The communication link between the
driver and the data source to which the

failure driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name.

S1C00 Driver not capable A procedure qualifier was specified and
the driver or data source does not
support qualifiers.
A procedure owner was specified and
the driver or data source does not
support owners.
A string search pattern was specified for
the procedure owner, procedure name,
or column name and the data source
does not support search patterns for

one or more of those arguments.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
This function is typically used before statement execution to retrieve information about procedure
parameters and columns from the data source's catalog

Note      SQLProcedureColumns might not return all columns used by a procedure. For example, a
driver might only return information about the parameters used by a procedure and not the columns in a
result set it generates.

The szProcOwner, szProcName, and szColumnName arguments accept search patterns.
SQLProcedureColumns returns the results as a standard result set, ordered by
PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME, and COLUMN_TYPE. The
following table lists the columns in the result set. Additional columns beyond column 13 (REMARKS) can
be defined by the driver.
The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the PROCEDURE_QUALIFIER,
PROCEDURE_OWNER, PROCEDURE_NAME, and COLUMN_NAME columns, an application can call
SQLGetInfo with the SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_PROCEDURE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

Column Name Data Type Comments
PROCEDURE_QUALI-
FIER

Varchar(128) Procedure qualifier identifier; NULL if
not applicable to the data source. If a
driver supports qualifiers for some
procedures but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those procedures that do
not have qualifiers.

PROCEDURE_OWNE
R

Varchar(128) Procedure owner identifier; NULL if
not applicable to the data source. If a
driver supports owners for some
procedures but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those procedures that do
not have owners.

PROCEDURE_NAME Varchar(128)
not NULL

Procedure identifier.

COLUMN_NAME Varchar(128)
not NULL

Procedure column identifier.

COLUMN_TYPE Smallint
not NULL

Defines the procedure column as
parameter or a result set column:
SQL_PARAM_TYPE_UNKNOWN:
The procedure column is a parameter
whose type is unknown. (ODBC 1.0)
SQL_PARAM_INPUT: The procedure

column is an input parameter. (ODBC
1.0)
SQL_PARAM_INPUT_OUTPUT: the
procedure column is an input/output
parameter. (ODBC 1.0)
SQL_PARAM_OUTPUT: The
procedure column is an output
parameter. (ODBC 1.0)
SQL_RETURN_VALUE: The
procedure column is the return value
of the procedure. (ODBC 2.0)
SQL_RESULT_COL: The procedure
column is a result set column. (ODBC
1.0)

DATA_TYPE Smallint
not NULL

SQL data type. This can be an ODBC
SQL data type or a driver-specific
SQL data type. For a list of valid
ODBC SQL data types, see SQL Data
Types. For information about driver-
specific SQL data types, see the
driver's documentation.

TYPE_NAME Varchar(128)
not NULL

Data source-dependent data type
name; for example, "CHAR",
"VARCHAR", "MONEY", "LONG
VARBINARY", or "CHAR () FOR BIT
DATA".

PRECISION Integer The precision of the procedure
column on the data source. NULL is
returned for data types where
precision is not applicable. For more
information concerning precision, see
Precision, Scale, Length, and Display
Size.

LENGTH Integer The length in bytes of data transferred
on an SQLGetData or SQLFetch
operation if SQL_C_DEFAULT is
specified. For numeric data, this size
may be different than the size of the
data stored on the data source. For
more information, see Precision,
Scale, Length, and Display Size.

SCALE Smallint The scale of the procedure column on
the data source. NULL is returned for
data types where scale is not
applicable. For more information
concerning scale, see Precision,
Scale, Length, and Display Size.

RADIX Smallint For numeric data types, either 10 or 2.
If it is 10, the values in PRECISION
and SCALE give the number of
decimal digits allowed for the column.
For example, a DECIMAL(12,5)
column would return a RADIX of 10, a
PRECISION of 12, and a SCALE of 5;
a FLOAT column could return a
RADIX of 10, a PRECISION of 15 and
a SCALE of NULL.

If it is 2, the values in PRECISION
and SCALE give the number of bits
allowed in the column. For example, a
FLOAT column could return a RADIX
of 2, a PRECISION of 53, and a
SCALE of NULL.
NULL is returned for data types where
radix is not applicable.

NULLABLE Smallint
not NULL

Whether the procedure column
accepts a NULL value:
SQL_NO_NULLS: The procedure
column does not accept NULL values.
SQL_NULLABLE: The procedure
column accepts NULL values.
SQL_NULLABLE_UNKNOWN: It is
not known if the procedure column
accepts NULL values.

REMARKS Varchar(254) A description of the procedure
column.

Code Example
See SQLProcedures.

Related Functions
SQLBindCol
SQLCancel
SQLExtendedFetch (extension)
SQLFetch
SQLProcedures (extension)

SQLProcedures (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLProcedures returns the list of procedure names stored in a specific data source. Procedure is a
generic term used to describe an executable object, or a named entity that can be invoked using input
and output parameters, and which can return result sets similar to the results returned by SQL SELECT
expressions.

Syntax
RETCODE SQLProcedures(hstmt, szProcQualifier, cbProcQualifier, szProcOwner, cbProcOwner,
szProcName, cbProcName)
The SQLProcedures function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szProcQualifier Input Procedure qualifier. If a driver

supports qualifiers for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
qualifiers.

SWORD cbProcQualifier Input Length of szProcQualifier.
UCHAR FAR * szProcOwner Input String search pattern for

procedure owner names. If a
driver supports owners for
some procedures but not for
others, such as when the
driver retrieves data from
different DBMSs, an empty
string ("") denotes those
procedures that do not have
owners.

SWORD cbProcOwner Input Length of szProcOwner.
UCHAR FAR * szProcName Input String search pattern for

procedure names.
SWORD cbProcName Input Length of szProcName.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLProcedures returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLProcedures and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt

and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support this function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
argu-ments exceeded the maximum
length value for the corresponding
qualifier or name.

S1C00 Driver not capable A procedure qualifier was specified and
the driver or data source does not
support qualifiers.
A procedure owner was specified and
the driver or data source does not
support owners.
A string search pattern was specified for
the procedure owner or procedure name
and the data source does not support
search patterns for one or more of those
arguments.
The combination of the current settings
of the SQL_CONCURRENCY and

SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLProcedures lists all procedures in the requested range. A user may or may not have permission to
execute any of these procedures. To check accessibility, an application can call SQLGetInfo and check
the SQL_ACCESSIBLE_PROCEDURES information value. Otherwise, the application must be able to
handle a situation where the user selects a procedure which it cannot execute.

Note      SQLProcedures might not return all procedures. Applications can use any valid procedure,
regardless of whether it is returned by SQLProcedures.

SQLProcedures returns the results as a standard result set, ordered by PROCEDURE_QUALIFIER,
PROCEDURE_OWNER, and PROCEDURE_NAME. The following table lists the columns in the result
set.
The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the PROCEDURE_QUALIFIER,
PROCEDURE_OWNER, and PROCEDURE_NAME columns, an application can call SQLGetInfo with
the SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_PROCEDURE_NAME_LEN options.

Column Name Data Type Comments
PROCEDURE_QUAL-
IFIER

Varchar(128) Procedure qualifier identifier; NULL if
not applicable to the data source. If a
driver supports qualifiers for some
procedures but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those procedures that do
not have qualifiers.

PROCEDURE_OWNE
R

Varchar(128) Procedure owner identifier; NULL if
not applicable to the data source. If a
driver supports owners for some
procedures but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those procedures that do
not have owners.

PROCEDURE_NAME Varchar(128)
not NULL

Procedure identifier.

NUM_INPUT_PARAMS N/A Reserved for future use. Applications
should not rely on the data returned in
these result columns.

NUM_OUTPUT
_PARAMS

N/A Reserved for future use. Applications
should not rely on the data returned in
these result columns.

NUM_RESULT_SETS N/A Reserved for future use. Applications
should not rely on the data returned in
these result columns.

REMARKS Varchar(254) A description of the procedure.
PROCEDURE_TYPE Smallint Defines the procedure type:

SQL_PT_UNKNOWN: It cannot be

determined whether the procedure
returns a value.
SQL_PT_PROCEDURE: The
returned object is a procedure; that is,
it does not have a return value.
SQL_PT_FUNCTION: The returned
object is a function; that is, it has a
return value.

Note      The PROCEDURE_TYPE column was added in ODBC 2.0. ODBC 1.0 drivers might return a
different, driver-specific column with the same column number.

The szProcOwner and szProcName arguments accept search patterns.

Code Example
In this example, an application uses the procedure AddEmployee to insert data into the EMPLOYEE
table. The procedure contains input parameters for NAME, AGE, and BIRTHDAY columns. It also
contains one output parameter that returns a remark about the new employee. The example also shows
the use of a return value from a stored procedure. For the return value and each parameter in the
procedure, the application calls SQLBindParameter to specify the ODBC C data type and the SQL data
type of the parameter and to specify the storage location and length of the parameter. The application
assigns data values to the storage locations for each parameter and calls SQLExecDirect to execute
the procedure. If SQLExecDirect returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the return
value and the value of each output or input/output parameter is automatically put into the storage
location defined for the parameter in SQLBindParameter.

#define NAME_LEN 30

#define REM_LEN 128

UCHAR szName[NAME_LEN], szRemark[REM_LEN];

SWORD sAge, sEmpId;

SDWORD cbEmpId, cbName, cbAge = 0, cbBirthday = 0, cbRemark;

DATE_STRUCT dsBirthday;

/* Define parameter for return value (Employee ID) from procedure. */

SQLBindParameter(hstmt, 1, SQL_PARAM_OUTPUT, SQL_C_SLONG, SQL_INTEGER, 0, 0,
&sEmpId, 0, &cbEmpId);

/* Define data types and storage locations for Name, Age, Birthday */

/* input parameter data. */

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, NAME_LEN,
0, szName, 0, &cbName);

SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_SSHORT, SQL_SMALLINT, 0, 0,
&sAge, 0, &cbAge);

SQLBindParameter(hstmt, 4, SQL_PARAM_INPUT, SQL_C_DATE, SQL_DATE, 0, 0,
&dsBirthday, 0, &cbBirthday);

/* Define data types and storage location for Remark output parameter */

SQLBindParameter(hstmt, 5, SQL_PARAM_OUTPUT, SQL_C_CHAR, SQL_CHAR, REM_LEN,
0, szRemark, REM_LEN, &cbRemark);

strcpy(szName, "Smith, John D."); /* Specify first row of */

sAge = 40; /* parameter data. */

dsBirthday.year = 1952;

dsBirthday.month = 2;

dsBirthday.day = 29;

cbName = SQL_NTS;

/* Execute procedure with first row of data. After the procedure */

/* is executed, sEmpId and szRemark will have the values */

/* returned by AddEmployee. */

retcode = SQLExecDirect(hstmt, "{?=call AddEmployee(?,?,?,?)}",SQL_NTS);

strcpy(szName, "Jones, Bob K."); /* Specify second row of */

sAge = 52; /* parameter data */

dsBirthday.year = 1940;

dsBirthday.month = 3;

dsBirthday.day = 31;

/* Execute procedure with second row of data. After the procedure */

/* is executed, sEmpId and szRemark will have the new values */

/* returned by AddEmployee. */

retcode = SQLExecDirect(hstmt, "{?=call AddEmployee(?,?,?,?)}", SQL_NTS);

Related Functions
SQLBindCol
SQLCancel
SQLExtendedFetch (extension)
SQLFetch
SQLGetInfo (extension)
SQLProcedureColumns (extension)

SQLPutData (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLPutData allows an application to send data for a parameter or column to the driver at statement
execution time. This function can be used to send character or binary data values in parts to a column
with a character, binary, or data source-specific data type (for example, parameters of the
SQL_LONGVARBINARY or SQL_LONGVARCHAR types).

Syntax
RETCODE SQLPutData(hstmt, rgbValue, cbValue)
The SQLPutData function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
PTR rgbValue Input Pointer to storage for the

actual data for the parameter
or column. The data must use
the C data type specified in
the fCType argument of
SQLBindParameter (for
parameter data) or
SQLBindCol (for column
data).

SDWORD cbValue Input Length of rgbValue. Specifies
the amount of data sent in a
call to SQLPutData. The
amount of data can vary with
each call for a given
parameter or column. cbValue
is ignored unless it is
SQL_NTS,
SQL_NULL_DATA, or
SQL_DEFAULT_PARAM; the
C data type specified in
SQLBindParameter or
SQLBindCol is
SQL_C_CHAR or
SQL_C_BINARY; or the C
data type is
SQL_C_DEFAULT and the
default C data type for the
specified SQL data type is
SQL_C_CHAR or
SQL_C_BINARY. For all other
types of C data, if cbValue is
not SQL_NULL_DATA or
SQL_DEFAULT_PARAM, the
driver assumes that the size
of rgbValue is the size of the
C data type specified with
fCType and sends the entire
data value. For more
information, see Converting
Data from C to SQL Data
Types.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLPutData returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLPutData and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The data sent for a character or binary
parameter or column in one or more
calls to SQLPutData exceeded the
maximum length of the associated
character or binary column.
The fractional part of the data sent for a
numeric or bit parameter or column was
truncated.
Timestamp data sent for a date or time
parameter or column was truncated.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

22001 String data right
truncation

The SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo was "Y"
and more data was sent for a long
parameter (the data type was
SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data
source-specific data type) than was
specified with the pcbValue argument in
SQLBindParameter.
The SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo was "Y"
and more data was sent for a long
column (the data type was
SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long, data
source-specific data type) than was
specified in the length buffer
corresponding to a column in a row of
data that was added or updated with
SQLSetPos.

22003 Numeric value out
of range

SQLPutData was called more than
once for a parameter or column and it
was not being used to send character C
data to a column with a character,
binary, or data source-specific data type
or to send binary C data to a column
with a character, binary, or data source-
specific data type.
The data sent for a numeric parameter
or column caused the whole (as
opposed to fractional) part of the
number to be truncated when assigned
to the associated table column.

22005 Error in assignment The data sent for a parameter or column
was incompatible with the data type of
the associated table column.

22008 Datetime field
overflow

The data sent for a date, time, or
timestamp parameter or column was,
respectively, an invalid date, time, or
timestamp.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.
SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA.
SQLCancel was called before data was
sent for all data-at-execution parameters
or columns.

S1009 Invalid argument
value

(DM) The argument rgbValue was a null
pointer and the argument cbValue was
not 0, SQL_DEFAULT_PARAM, or
SQL_NULL_DATA.

S1010 Function sequence
error

(DM) The previous function call was not
a call to SQLPutData.
The previous function call was a call to
SQLExecDirect, SQLExecute, or
SQLSetPos where the return code was
SQL_NEED_DATA.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.

S1090 Invalid string or
buffer length

The argument rgbValue was not a null
pointer and the argument cbValue was
less than 0, but not equal to SQL_NTS
or SQL_NULL_DATA.

S1T00 Timeout expired The timeout period expired before the
data source completed processing the
parameter value. The timeout period is
set through SQLSetStmtOption,

SQL_QUERY_TIMEOUT.

Comments
For an explanation of how data-at-execution parameter data is passed at statement execution time, see
"Passing Parameter Values" in SQLBindParameter. For an explanation of how data-at-execution
column data is updated or added, see "Using SQLSetPos" in SQLSetPos.

Note      An application can use SQLPutData to send data in parts only when sending character C data
to a column with a character, binary, or data source-specific data type or when sending binary C data to
a column with a character, binary, or data source-specific data type. If SQLPutData is called more than
once under any other conditions, it returns SQL_ERROR and SQLSTATE 22003 (Numeric value out of
range).

Code Example
In the following example, an application prepares an SQL statement to insert data into the EMPLOYEE
table. The statement contains parameters for the NAME, ID, and PHOTO columns. For each parameter,
the application calls SQLBindParameter to specify the C and SQL data types of the parameter. It also
specifies that the data for the first and third parameters will be passed at execution time, and passes the
values 1 and 3 for later retrieval by SQLParamData. These values will identify which parameter is being
processed.
The application calls GetNextID to get the next available employee ID number. It then calls
SQLExecute to execute the statement. SQLExecute returns SQL_NEED_DATA when it needs data for
the first and third parameters. The application calls SQLParamData to retrieve the value it stored with
SQLBindParameter; it uses this value to determine which parameter to send data for. For each
parameter, the application calls InitUserData to initialize the data routine. It repeatedly calls
GetUserData and SQLPutData to get and send the parameter data. Finally, it calls SQLParamData to
indicate it has sent all the data for the parameter and to retrieve the value for the next parameter. After
data has been sent for both parameters, SQLParamData returns SQL_SUCCESS.
For the first parameter, InitUserData does not do anything and GetUserData calls a routine to prompt
the user for the employee name. For the third parameter, InitUserData calls a routine to prompt the user
for the name of a file containing a bitmap photo of the employee and opens the file. GetUserData
retrieves the next MAX_DATA_LEN bytes of photo data from the file. After it has retrieved all the photo
data, it closes the photo file.
Note that some application routines are omitted for clarity.

#define NAME_LEN 30

#define MAX_DATA_LEN 1024

SDWORD cbNameParam, cbID = 0; cbPhotoParam, cbData;

SWORD sID;

PTR pToken, InitValue;

UCHAR Data[MAX_DATA_LEN];

retcode = SQLPrepare(hstmt, "INSERT INTO EMPLOYEE (NAME, ID, PHOTO) VALUES
(?, ?, ?)", SQL_NTS);

if (retcode == SQL_SUCCESS) {

/* Bind the parameters. For parameters 1 and 3, pass the */

/* parameter number in rgbValue instead of a buffer address. */

SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_CHAR, NAME_LEN,
0, 1, 0, &cbNameParam);

SQLBindParameter(hstmt, 2, SQL_PARAM_INPUT, SQL_C_SSHORT, SQL_SMALLINT, 0,
0, &sID, 0, &cbID);

SQLBindParameter(hstmt, 3, SQL_PARAM_INPUT, SQL_C_BINARY,
SQL_LONGVARBINARY, 0, 0, 3, 0, &cbPhotoParam);

/* Set values so data for parameters 1 and 3 will be passed */

/* at execution. Note that the length parameter in the macro */

/* SQL_LEN_DATA_AT_EXEC is 0. This assumes that the driver */

/* returns "N" for the SQL_NEED_LONG_DATA_LEN information */

/* type in SQLGetInfo. */

cbNameParam = cbPhotoParam = SQL_LEN_DATA_AT_EXEC(0);

sID = GetNextID(); /* Get next available employee ID number. */

retcode = SQLExecute(hstmt);

/* For data-at-execution parameters, call SQLParamData to get the */

/* parameter number set by SQLBindParameter. Call InitUserData. */

/* Call GetUserData and SQLPutData repeatedly to get and put all */

/* data for the parameter. Call SQLParamData to finish processing */

/* this parameter and start processing the next parameter. */

while (retcode == SQL_NEED_DATA) {

retcode = SQLParamData(hstmt, &pToken);

if (retcode == SQL_NEED_DATA) {

InitUserData((SWORD)pToken, InitValue);

while (GetUserData(InitValue, (SWORD)pToken, Data, &cbData))

SQLPutData(hstmt, Data, cbData);

}

}

}

VOID InitUserData(sParam, InitValue)

SWORD sParam;

PTR InitValue;

{

UCHAR szPhotoFile[MAX_FILE_NAME_LEN];

switch sParam {

case 3:

/* Prompt user for bitmap file containing employee photo. */

/* OpenPhotoFile opens the file and returns the file handle. */

PromptPhotoFileName(szPhotoFile);

OpenPhotoFile(szPhotoFile, (FILE *)InitValue);

break;

}

}

BOOL GetUserData(InitValue, sParam, Data, cbData)

PTR InitValue;

SWORD sParam;

UCHAR *Data;

SDWORD *cbData;

{

switch sParam {

case 1:

/* Prompt user for employee name. */

PromptEmployeeName(Data);

*cbData = SQL_NTS;

return (TRUE);

case 3:

/* GetNextPhotoData returns the next piece of photo data and */

/* the number of bytes of data returned (up to MAX_DATA_LEN). */

Done = GetNextPhotoData((FILE *)InitValue, Data, MAX_DATA_LEN, &cbData);

if (Done) {

ClosePhotoFile((FILE *)InitValue);

return (TRUE);

}

return (FALSE);

}

return (FALSE);

}

Related Functions
SQLCancel
SQLExecDirect
SQLExecute
SQLParamData (extension)
SQLBindParameter

SQLRowCount (Core, ODBC 1.0)
Related Functions

SQLRowCount returns the number of rows affected by an UPDATE, INSERT, or DELETE statement or
by a SQL_UPDATE, SQL_ADD, or SQL_DELETE operation in SQLSetPos.

Syntax
RETCODE SQLRowCount(hstmt, pcrow)
The SQLRowCount function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
SDWORD FAR
*

pcrow Output For UPDATE, INSERT, and
DELETE statements and for
the SQL_UPDATE,
SQL_ADD, and
SQL_DELETE operations in
SQLSetPos, pcrow is the
number of rows affected by
the request or -1 if the number
of affected rows is not
available.
For other statements and
functions, the driver may
define the value of pcrow. For
example, some data sources
may be able to return the
number of rows returned by a
SELECT statement or a
catalog function before
fetching the rows.

Note      Many data sources
cannot return the number of
rows in a result set before
fetching them; for maximum
interoperability, applications
should not rely on this
behavior.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLRowCount returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLRowCount and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was

defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) The function was called prior to
calling SQLExecute, SQLExecDirect,
SQLSetPos for the hstmt.
(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

Comments
If the last executed statement associated with hstmt was not an UPDATE, INSERT, or DELETE
statement, or if the fOption argument in the previous call to SQLSetPos was not SQL_UPDATE,
SQL_ADD, or SQL_DELETE, the value of pcrow is driver-defined.

Related Functions
SQLExecDirect
SQLExecute

SQLSetConnectOption (Extension Level 1, ODBC 1.0)
Code Example Related Function

SQLSetConnectOption sets options that govern aspects of connections.

Syntax
RETCODE SQLSetConnectOption(hdbc, fOption, vParam)
The SQLSetConnectOption function accepts the following arguments:

Type Argument Use Description
HDBC hdbc Input Connection handle.
UWORD fOption Input Option to set, listed in

"Comments."
UDWORD vParam Input Value associated with fOption.

Depending on the value of
fOption, vParam will be a 32-
bit integer value or point to a
null-terminated character
string.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLSetConnectOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLSetConnectOption and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.
The driver can return SQL_SUCCESS_WITH_INFO to provide information about the result of setting an
option. For example, setting SQL_ACCESS_MODE to read-only during a transaction might cause the
transaction to be committed. The driver could use SQL_SUCCESS_WITH_INFO ¾ and information
returned with SQLError ¾ to inform the application of the commit action.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value
changed

The driver did not support the specified
value of the vParam argument and
substituted a similar value. (Function
returns SQL_SUCCESS_WITH_INFO.)

08002 Connection in use The argument fOption was
SQL_ODBC_CURSORS and the driver
was already connected to the data
source.

08003 Connection not
open

An fOption value was specified that
required an open connection, but the
hdbc was not in a connected state.

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

IM001 Driver does not
support this function

(DM) The driver associated with the
hdbc does not support the function.

IM009 Unable to load
translation DLL

The driver was unable to load the
translation DLL that was specified for
the connection. This error can only be
returned when fOption is

SQL_TRANSLATE_DLL.
S1000 General error An error occurred for which there was

no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1009 Invalid argument
value

Given the specified fOption value, an
invalid value was specified for the
argument vParam. (The Driver Manager
returns this SQLSTATE only for
connection and statement options that
accept a discrete set of values, such as
SQL_ACCESS_MODE or
SQL_ASYNC_ENABLE. For all other
connection and statement options, the
driver must verify the value of the
argument vParam.)

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for an hstmt
associated with the hdbc and was still
executing when
SQLSetConnectOption was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for an hstmt
associated with the hdbc and returned
SQL_NEED_DATA. This function was
called before data was sent for all data-
at-execution parameters or columns.
(DM) SQLBrowseConnect was called
for the hdbc and returned
SQL_NEED_DATA. This function was
called before SQLBrowseConnect
returned SQL_SUCCESS_WITH_INFO
or SQL_SUCCESS.

S1011 Operation invalid at
this time

The argument fOption was
SQL_TXN_ISOLATION and a
transaction was open.

S1092 Option type out of
range

(DM) The value specified for the
argument fOption was in the block of
numbers reserved for ODBC connection
and statement options, but was not valid
for the version of ODBC supported by
the driver.

S1C00 Driver not capable The value specified for the argument
fOption was a valid ODBC connection or
statement option for the version of
ODBC supported by the driver, but was
not supported by the driver.
The value specified for the argument
fOption was in the block of numbers
reserved for driver-specific connection
and statement options, but was not
supported by the driver.

When fOption is a statement option, SQLSetConnectOption can return any SQLSTATEs returned by
SQLSetStmtOption.

Comments
The currently defined options and the version of ODBC in which they were introduced are shown below;
it is expected that more will be defined to take advantage of different data sources. Options from 0 to
999 are reserved by ODBC; driver developers must reserve values greater than or equal to
SQL_CONNECT_OPT_DRVR_START for driver-specific use.
An application can call SQLSetConnectOption and include a statement option. The driver sets the
statement option for any hstmts associated with the specified hdbc and establishes the statement option
as a default for any hstmts later allocated for that hdbc. For a list of statement options, see
SQLSetStmtOption.
All connection and statement options successfully set by the application for the hdbc persist until
SQLFreeConnect is called on the hdbc. For example, if an application calls SQLSetConnectOption
before connecting to a data source, the option persists even if SQLSetConnectOption fails in the driver
when the application connects to the data source; if an application sets a driver-specific option, the
option persists even if the application connects to a different driver on the hdbc.
Some connection and statement options support substitution of a similar value if the data source does
not support the specified value of vParam. In such cases, the driver returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). For example, if fOption
is SQL_PACKET_SIZE and vParam exceeds the maximum packet size, the driver substitutes the
maximum size. To determine the substituted value, an application calls SQLGetConnectOption (for
connection options) or SQLGetStmtOption (for statement options).
The format of information set through vParam depends on the specified fOption.
SQLSetConnectOption will accept option information in one of two different formats: a null-terminated
character string or a 32-bit integer value. The format of each is noted in the option's description.
Character strings pointed to by the vParam argument of SQLSetConnectOption have a maximum
length of SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null termination byte).

fOption vParam Contents
SQL_ACCESS_MODE
(ODBC 1.0)

A 32-bit integer value. SQL_MODE_READ_ONLY is used by
the driver or data source as an indicator that the connection
is not required to support SQL statements that cause
updates to occur. This mode can be used to optimize locking
strategies, transaction management, or other areas as
appropriate to the driver or data source. The driver is not
required to prevent such statements from being submitted to
the data source. The behavior of the driver and data source
when asked to process SQL statements that are not read-
only during a read-only connection is implementation
defined. SQL_MODE_READ_WRITE is the default.

SQL_AUTOCOMMIT
(ODBC 1.0)

A 32-bit integer value that specifies whether to use auto-
commit or manual-commit mode:
SQL_AUTOCOMMIT_OFF = The driver uses manual-
commit mode, and the application must explicitly commit or
roll back transactions with SQLTransact.
SQL_AUTOCOMMIT_ON = The driver uses auto-commit
mode. Each statement is committed immediately after it is
executed. This is the default. Note that changing from
manual-commit mode to auto-commit mode commits any
open transactions on the connection.

Important      Some data sources delete the access plans
and close the cursors for all hstmts on an hdbc each time a
statement is committed; autocommit mode can cause this
to happen after each statement is executed. For more
information, see the SQL_CURSOR_COMMIT_BEHAVIOR
and SQL_CURSOR_ROLLBACK_BEHAVIOR information

types in SQLGetInfo.

SQL_CURRENT_QUALIFIER
(ODBC 2.0)

A null-terminated character string containing the name of the
qualifier to be used by the data source. For example, in SQL
Server, the qualifier is a database, so the driver sends a
USE database statement to the data source, where
database is the database specified in vParam. For a single-
tier driver, the qualifier might be a directory, so the driver
changes its current directory to the directory specified in
vParam.

SQL_LOGIN_TIMEOUT
(ODBC 1.0)

A 32-bit integer value corresponding to the number of
seconds to wait for a login request to complete before
returning to the application. The default is driver-dependent
and must be nonzero. If vParam is 0, the timeout is disabled
and a connection attempt will wait indefinitely.
If the specified timeout exceeds the maximum login timeout
in the data source, the driver substitutes that value and
returns SQLSTATE 01S02 (Option value changed).

SQL_ODBC_CURSORS
(ODBC 2.0)

A 32-bit option specifying how the Driver Manager uses the
ODBC cursor library:
SQL_CUR_USE_IF_NEEDED = The Driver Manager uses
the ODBC cursor library only if it is needed. If the driver
supports the SQL_FETCH_PRIOR option in
SQLExtendedFetch, the Driver Manager uses the scrolling
capabilities of the driver. Otherwise, it uses the ODBC cursor
library.
SQL_CUR_USE_ODBC = The Driver Manager uses the
ODBC cursor library.
SQL_CUR_USE_DRIVER = The Driver Manager uses the
scrolling capabilities of the driver. This is the default setting.

SQL_OPT_TRACE
(ODBC 1.0)

A 32-bit integer value telling the Driver Manager whether to
perform tracing:
SQL_OPT_TRACE_OFF = Tracing off (the default)
SQL_OPT_TRACE_ON = Tracing on
When tracing is on, the Driver Manager writes each ODBC
function call to the trace file. On Windows and WOW, the
Driver Manager writes to the trace file each time any
application calls a function. On Windows NT, the Driver
Manager writes to the trace file only for the application that
turned tracing on.

Note      When tracing is on, the Driver Manager can return
SQLSTATE IM013 (Trace file error) from any function.

An application specifies a trace file with the
SQL_OPT_TRACEFILE option. If the file already exists, the
Driver Manager appends to the file. Otherwise, it creates the
file. If tracing is on and no trace file has been specified, the
Driver Manager writes to the file \SQL.LOG. On Windows
NT, tracing should only be used for a single application or
each application should specify a different trace file.
Otherwise, two or more applications will attempt to open the
same trace file at the same time, causing an error.
If the Trace keyword in the [ODBC] section of the ODBC.INI
file (or registry) is set to 1 when an application calls
SQLAllocEnv, tracing is enabled. On Windows and WOW, it
is enabled for all applications; on Windows NT it is enabled

only for the application that called SQLAllocEnv.
SQL_OPT_TRACEFILE
(ODBC 1.0)

A null-terminated character string containing the name of the
trace file.
The default value of the SQL_OPT_TRACEFILE option is
specified with the TraceFile keyname in the [ODBC] section
of the ODBC.INI file (or registry).

SQL_PACKET_SIZE
(ODBC 2.0)

A 32-bit integer value specifying the network packet size in
bytes.

Note      Many data sources either do not support this option
or can only return the network packet size.

If the specified size exceeds the maximum packet size or is
smaller than the minimum packet size, the driver substitutes
that value and returns SQLSTATE 01S02 (Option value
changed).

SQL_QUIET_MODE
(ODBC 2.0)

A 32-bit window handle (hwnd).
If the window handle is a null pointer, the driver does not
display any dialog boxes.
If the window handle is not a null pointer, it should be the
parent window handle of the application. The driver uses this
handle to display dialog boxes. This is the default.
If the application has not specified a parent window handle
for this option, the driver uses a null parent window handle to
display dialog boxes or return in SQLGetConnectOption.

Note      The SQL_QUIET_MODE connection option does
not apply to dialog boxes displayed by SQLDriverConnect.

SQL_TRANSLATE_DLL
(ODBC 1.0)

A null-terminated character string containing the name of a
DLL containing the functions SQLDriverToDataSource and
SQLDataSourceToDriver that the driver loads and uses to
perform tasks such as character set translation. This option
may only be specified if the driver has connected to the data
source.

SQL_TRANSLATE_OPTION
(ODBC 1.0)

A 32-bit flag value that is passed to the translatation DLL.
This option may only be specified if the driver has connected
to the data source.

SQL_TXN_ISOLATION
(ODBC 1.0)

A 32-bit bitmask that sets the transaction isolation level for
the current hdbc. An application must call SQLTransact to
commit or roll back all open transactions on an hdbc, before
calling SQLSetConnectOption with this option.
The valid values for vParam can be determined by calling
SQLGetInfo with fInfoType equal to
SQL_TXN_ISOLATION_OPTIONS. The following terms are
used to define transaction isolation levels:
Dirty Read        Transaction 1 changes a row. Transaction 2
reads the changed row before transaction 1 commits the
change. If transaction 1 rolls back the change, transaction 2
will have read a row that is considered to have never
existed.
Nonrepeatable Read        Transaction 1 reads a row.
Transaction 2 updates or deletes that row and commits this
change. If transaction 1 attempts to reread the row, it will
receive different row values or discover that the row has
been deleted.
Phantom        Transaction 1 reads a set of rows that satisfy

some search criteria. Transaction 2 inserts a row that
matches the search criteria. If transaction 1 reexecutes the
statement that read the rows, it receives a different set of
rows.
vParam must be one of the following values:
SQL_TXN_READ_UNCOMMITTED = Dirty reads,
nonrepeatable reads, and phantoms are possible.
SQL_TXN_READ_COMMITTED = Dirty reads are not
possible. Nonrepeatable reads and phantoms are possible.
SQL_TXN_REPEATABLE_READ = Dirty reads and
nonrepeatable reads are not possible. Phantoms are
possible.
SQL_TXN_SERIALIZABLE = Transactions are serializable.
Dirty reads, nonrepeatable reads, and phantoms are not
possible.
SQL_TXN_VERSIONING = Transactions are serializable,
but higher concurrency is possible than with
SQL_TXN_SERIALIZABLE. Dirty reads are not possible.
Typically, SQL_TXN_SERIALIZABLE is implemented by
using locking protocols that reduce concurrency and
SQL_TXN_VERSIONING is implemented by using a non-
locking protocol such as record versioning. Oracle's Read
Consistency isolation level is an example of
SQL_TXN_VERSIONING.

Data Translation
Data translation will be performed for all data flowing between the driver and the data source.
The translation option (set with the SQL_TRANSLATE_OPTION option) can be any 32-bit value. Its
meaning depends on the translation DLL being used. A new option can be set at any time. The new
option will be applied to the next exchange of data following the call to SQLSetConnectOption. A
default translation DLL may be specified for the data source in its data source specification in the
ODBC.INI file or registry. The default translation DLL is loaded by the driver at connection time. A
translation option (SQL_TRANSLATE_OPTION) may be specified in the data source specification as
well.
To change the translation DLL for a connection, an application calls SQLSetConnectOption with the
SQL_TRANSLATE_DLL option after it has connected to the data source. The driver will attempt to load
the specified DLL and, if the attempt fails, return SQL_ERROR with the SQLSTATE IM009 (Unable to
load translation DLL).
If no translation DLL has been specified in the ODBC initialization file or by calling
SQLSetConnectOption, the driver will not attempt to translate data. Any value set for the translation
option will be ignored.

Code Example
See SQLConnect and SQLParamOptions.

Related Functions
SQLGetConnectOption (extension)
SQLGetStmtOption (extension)
SQLSetStmtOption (extension)

SQLSetCursorName (Core, ODBC 1.0)
Code Example Related Functions

SQLSetCursorName associates a cursor name with an active hstmt. If an application does not call
SQLSetCursorName, the driver generates cursor names as needed for SQL statement processing.

Syntax
RETCODE SQLSetCursorName(hstmt, szCursor, cbCursor)
The SQLSetCursorName function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szCursor Input Cursor name.
SWORD cbCursor Input Length of szCursor.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLSetCursorName returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLSetCursorName and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state The statement corresponding to hstmt
was already in an executed or cursor-
positioned state.

34000 Invalid cursor name The cursor name specified by the
argument szCursor was invalid. For
example, the cursor name exceeded the
maximum length as defined by the
driver.

3C000 Duplicate cursor
name

The cursor name specified by the
argument szCursor already exists.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1009 Invalid argument
value

(DM) The argument szCursor was a null
pointer.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt

and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The argument cbCursor was less
than 0, but not equal to SQL_NTS.

Comments
The only ODBC SQL statements that use a cursor name are a positioned update and delete (for
example, UPDATE table-name ...WHERE CURRENT OF cursor-name). If the application does not call
SQLSetCursorName to define a cursor name, on execution of a SELECT statement the driver
generates a name that begins with the letters SQL_CUR and does not exceed 18 characters in length.
All cursor names within the hdbc must be unique. The maximum length of a cursor name is defined by
the driver. For maximum interoperability, it is recommended that applications limit cursor names to no
more than 18 characters.
A cursor name that is set either explicitly or implicitly remains set until the hstmt with which it is
associated is dropped, using SQLFreeStmt with the SQL_DROP option.

Code Example
In the following example, an application uses SQLSetCursorName to set a cursor name for an hstmt. It
then uses that hstmt to retrieve results from the EMPLOYEE table. Finally, it performs a positioned
update to change the name of 25-year-old John Smith to John D. Smith. Note that the application uses
different hstmts for the SELECT and UPDATE statements.
For more code examples, see SQLSetPos.
#define NAME_LEN 30

HSTMT hstmtSelect,

HSTMT hstmtUpdate;

UCHAR szName[NAME_LEN];

SWORD sAge;

SDWORD cbName;

SDWORD cbAge;

/* Allocate the statements and set the cursor name */

SQLAllocStmt(hdbc, &hstmtSelect);

SQLAllocStmt(hdbc, &hstmtUpdate);

SQLSetCursorName(hstmtSelect, "C1", SQL_NTS);

/* SELECT the result set and bind its columns to local storage */

SQLExecDirect(hstmtSelect, "SELECT NAME, AGE FROM EMPLOYEE FOR UPDATE",
SQL_NTS);

SQLBindCol(hstmtSelect, 1, SQL_C_CHAR, szName, NAME_LEN, &cbName);

SQLBindCol(hstmtSelect, 2, SQL_C_SSHORT, &sAge, 0, &cbAge);

/* Read through the result set until the cursor is */

/* positioned on the row for the 25-year-old John Smith */

do

 retcode = SQLFetch(hstmtSelect);

while ((retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) &&
(strcmp(szName, "Smith, John") != 0 || sAge != 25));

/* Perform a positioned update of John Smith's name */

if (retcode == SQL_SUCCESS || retcode == SQL_SUCCESS_WITH_INFO) {

SQLExecDirect(hstmtUpdate, "UPDATE EMPLOYEE SET NAME=\"Smith, John D.\"
WHERE CURRENT OF C1", SQL_NTS);

}

Related Functions
SQLExecDirect
SQLExecute
SQLGetCursorName
SQLSetScrollOptions (extension)

SQLSetParam (Deprecated, ODBC 1.0)
In ODBC 2.0, the ODBC 1.0 function SQLSetParam has been replaced by SQLBindParameter. For
more information, see SQLBindParameter.

SQLSetPos (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLSetPos sets the cursor position in a rowset and allows an application to refresh, update, delete, or
add data to the rowset.

Syntax
RETCODE SQLSetPos(hstmt, irow, fOption, fLock)
The SQLSetPos function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD irow Input Position of the row in the

rowset on which to perform
the operation specified with
the fOption argument. If irow
is 0, the operation applies to
every row in the rowset.
For additional information, see
"Comments."

UWORD fOption Input Operation to perform:
SQL_POSITION
SQL_REFRESH
SQL_UPDATE
SQL_DELETE
SQL_ADD
For more information, see
"Comments."

UWORD fLock Input Specifies how to lock the row
after performing the operation
specified in the fOption
argument.
SQL_LOCK_NO_CHANGE
SQL_LOCK_EXCLUSIVE
SQL_LOCK_UNLOCK
For more information, see
"Comments."

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_NEED_DATA, SQL_STILL_EXECUTING,
SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLSetPos returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLSetPos and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated The argument fOption was SQL_ADD or
SQL_UPDATE and the value specified
for a character or binary column
exceeded the maximum length of the
associated table column. (Function

returns SQL_SUCCESS_WITH_INFO.)
The argument fOption was SQL_ADD or
SQL_UPDATE and the fractional part of
the value specified for a numeric column
was truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)
The argument fOption was SQL_ADD or
SQL_UPDATE and a timestamp value
specified for a date or time column was
truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S01 Error in row The irow argument was 0 and an error
occurred in one or more rows while
performing the operation specified with
the fOption argument. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S03 No rows updated or
deleted

The argument fOption was
SQL_UPDATE or SQL_DELETE and no
rows were updated or deleted. (Function
returns SQL_SUCCESS_WITH_INFO.)

01S04 More than one row
updated or deleted

The argument fOption was
SQL_UPDATE or SQL_DELETE and
more than one row was updated or
deleted. (Function returns
SQL_SUCCESS_WITH_INFO.)

21S02 Degree of derived
table does not
match column list

The argument fOption was SQL_ADD or
SQL_UPDATE and no columns were
bound with SQLBindCol.

22003 Numeric value out
of range

The argument fOption was SQL_ADD or
SQL_UPDATE and the whole part of a
numeric value was truncated.

22005 Error in assignment The argument fOption was SQL_ADD or
SQL_UPDATE and a value was
incompatible with the data type of the
associated column.

22008 Datetime field
overflow

The argument fOption was SQL_ADD or
SQL_UPDATE and a date, time, or
timestamp value was, respectively, an
invalid date, time, or timestamp.

23000 Integrity constraint
violation

The argument fOption was SQL_ADD or
SQL_UPDATE and a value was NULL
for a column defined as NOT NULL in
the associated column or some other
integrity constraint was violated.
The argument fOption was SQL_ADD
and a column that was not bound with
SQLBindCol is defined as NOT NULL
or has no default.

24000 Invalid cursor state (DM) The hstmt was in an executed
state but no result set was associated
with the hstmt.
(DM) A cursor was open on the hstmt
but SQLFetch or SQLExtendedFetch
had not been called.
A cursor was open on the hstmt and
SQLExtendedFetch had been called,

but the cursor was positioned before the
start of the result set or after the end of
the result set.
The argument fOption was
SQL_DELETE, SQL_REFRESH, or
SQL_UPDATE and the cursor was
positioned before the start of the result
set or after the end of the result set.

42000 Syntax error or
access violation

The driver was unable to lock the row as
needed to perform the operation
requested in the argument fOption.
The driver was unable to lock the row as
requested in the argument fLock.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S0023 No default for
column

The fOption argument was SQL_ADD
and a column that was not bound did
not have a default value and could not
be set to NULL.
The fOption argument was SQL_ADD,
the length specified in the pcbValue
buffer bound by SQLBindCol was
SQL_IGNORE, and the column did not
have a default value.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1009 Invalid argument
value

(DM) The value specified for the
argument fOption was invalid.
(DM) The value specified for the
argument fLock was invalid.
The argument irow was greater than the
number of rows in the rowset and the
fOption argument was not SQL_ADD.
The value specified for the argument
fOption was SQL_ADD, SQL_UPDATE,
or SQL_DELETE, the value specified for
the argument fLock was
SQL_LOCK_NO_CHANGE, and the
SQL_CONCURRENCY statement

option was
SQL_CONCUR_READ_ONLY.

S1010 Function sequence
error

(DM) The specified hstmt was not in an
executed state. The function was called
without first calling SQLExecDirect,
SQLExecute, or a catalog function.
(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

The fOption argument was SQL_ADD or
SQL_UPDATE, a data value was a null
pointer, and the column length value
was not 0, SQL_DATA_AT_EXEC,
SQL_IGNORE, SQL_NULL_DATA, or
less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.
The fOption argument was SQL_ADD or
SQL_UPDATE, a data value was not a
null pointer, and the column length value
was less than 0, but not equal to
SQL_DATA_AT_EXEC, SQL_IGNORE,
SQL_NTS, or SQL_NULL_DATA, or less
than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

S1107 Row value out of
range

The value specified for the argument
irow was greater than the number of
rows in the rowset and the fOption
argument was not SQL_ADD.

S1109 Invalid cursor
position

The cursor associated with the hstmt
was defined as forward only, so the
cursor could not be positioned within the
rowset. See the description for the
SQL_CURSOR_TYPE option in
SQLSetStmtOption.
The fOption argument was
SQL_REFRESH, SQL_UPDATE, or
SQL_DELETE and the value in the
rgfRowStatus array for the row specified
by the irow argument was
SQL_ROW_DELETED or
SQL_ROW_ERROR.

S1C00 Driver not capable The driver or data source does not
support the operation requested in the
fOption argument or the fLock
argument.

S1T00 Timeout expired The timeout period expired before the
data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments

irow Argument
The irow argument specifies the number of the row in the rowset on which to perform the operation
specified by the fOption argument. If irow is 0, the operation applies to every row in the rowset. Except
for the SQL_ADD operation, irow must be a value from 0 to the number of rows in the rowset. For the
SQL_ADD operation, irow can be any value; generally it is either 0 (to add as many rows as there are in
the rowset) or the number of rows in the rowset plus 1 (to add the data from an extra row of buffers
allocated for this purpose).

Note      In the C language, arrays are 0-based, while the irow argument is 1-based. For example, to
update the fifth row of the rowset, an application modifies the rowset buffers at array index 4, but
specifies an irow of 5.

All operations except for SQL_ADD position the cursor on the row specified by irow; the SQL_ADD
operation does not change the cursor position. The following operations require a cursor position:

Positioned update and delete statements.
Calls to SQLGetData.
Calls to SQLSetPos with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATE options.

For example, if the cursor is positioned on the second row of the rowset, a positioned delete statement
deletes that row; if it is positioned on the entire rowset (irow is 0), a positioned delete statement deletes
every row in the rowset.
An application can specify a cursor position when it calls SQLSetPos. Generally, it calls SQLSetPos
with the SQL_POSITION or SQL_REFRESH operation to position the cursor before executing a
positioned update or delete statement or calling SQLGetData.

fOption Argument
The fOption argument supports the following operations. To determine which options are supported by a
data source, an application calls SQLGetInfo with the SQL_POS_OPERATIONS information type.

fOption
Argument

Operation

SQL_POSITION The driver positions the cursor on the row specified by
irow.
This is the same as the FALSE value of this argument in
ODBC 1.0.

SQL_REFRESH The driver positions the cursor on the row specified by
irow and refreshes data in the rowset buffers for that row.
For more information about how the driver returns data in
the rowset buffers, see the descriptions of row-wise and
column-wise binding in SQLExtendedFetch.
This is the same as the TRUE value of this argument in
ODBC 1.0.

SQL_UPDATE The driver positions the cursor on the row specified by
irow and updates the underlying row of data with the
values in the rowset buffers (the rgbValue argument in
SQLBindCol). It retrieves the lengths of the data from the
number-of-bytes buffers (the pcbValue argument in
SQLBindCol). If the length of any column is
SQL_IGNORE, the column is not updated. After updating
the row, the driver changes the rgfRowStatus array
specified in SQLExtendedFetch to
SQL_ROW_UPDATED.

SQL_DELETE The driver positions the cursor on the row specified by
irow and deletes the underlying row of data. It changes
the rgfRowStatus array specified in SQLExtendedFetch
to SQL_ROW_DELETED. After the row has been deleted,
positioned update and delete statements, calls to

SQLGetData and calls to SQLSetPos with fOption set to
anything except SQL_POSITION are not valid for the row.
Whether the row remains visible depends on the cursor
type. For example, deleted rows are visible to static and
keyset-driven cursors but invisible to dynamic cursors.

SQL_ADD The driver adds a new row of data to the data source.
Where the row is added to the data source and whether it
is visible in the result set is driver-defined.
The driver retrieves the data from the rowset buffers (the
rgbValue argument in SQLBindCol) according to the
value of the irow argument. It retrieves the lengths of the
data from the number-of-bytes buffers (the pcbValue
argument in SQLBindCol). Generally, the application
allocates an extra row of buffers for this purpose.
For columns not bound to the rowset buffers, the driver
uses default values (if they are available) or NULL values
(if default values are not available). For columns with a
length of SQL_IGNORE, the driver uses default values.
If irow is less than or equal to the rowset size, the driver
changes the rgfRowStatus array specified in
SQLExtendedFetch to SQL_ROW_ADDED after adding
the row. At this point, the rowset buffers do not match the
cursor for the row. To restore the rowset buffers to match
the data in the cursor, an application calls SQLSetPos
with the SQL_REFRESH option.
This operation does not affect the cursor position.

fLock Argument
The fLock argument provides a way for applications to control concurrency and simulate transactions on
data sources that do not support them. Generally, data sources that support concurrency levels and
transactions will only support the SQL_LOCK_NO_CHANGE value of the fLock argument.
The fLock argument specifies the lock state of the row after SQLSetPos has been executed. To simulate
a transaction, an application uses the SQL_LOCK_RECORD macro to lock each of the rows in the
transaction. It then uses the SQL_UPDATE_RECORD or SQL_DELETE_RECORD macro to update or
delete each row; the driver may temporarily change the lock state of the row while performing the
operation specified by the fOption argument. Finally, it uses the SQL_LOCK_RECORD macro to unlock
each row. For an example of how an application might do this, see the second code example. Note that
if the driver is unable to lock the row either to perform the requested operation or to satisfy the fLock
argument, it returns SQL_ERROR and SQLSTATE 42000 (Syntax error or access violation).
Although the fLock argument is specified for an hstmt, the lock accords the same privileges to all hstmts
on the connection. In particular, a lock that is acquired by one hstmt on a connection can be unlocked by
a different hstmt on the same connection.
A row locked through SQLSetPos remains locked until the application calls SQLSetPos for the row with
fLock set to SQL_LOCK_UNLOCK or the application calls SQLFreeStmt with the SQL_CLOSE or
SQL_DROP option.
The fLock argument supports the following types of locks. To determine which locks are supported by a
data source, an application calls SQLGetInfo with the SQL_LOCK_TYPES information type.

fLock Argument Lock Type
SQL_LOCK_NO
_CHANGE

The driver or data source ensures that the row is in the
same locked or unlocked state as it was before
SQLSetPos was called. This value of fLock allows data
sources that do not support explicit row-level locking to
use whatever locking is required by the current
concurrency and transaction isolation levels.
This is the same as the FALSE value of the fLock

argument in ODBC 1.0.
SQL_LOCK_EXCLUSIV
E

The driver or data source locks the row exclusively. An
hstmt on a different hdbc or in a different application
cannot be used to acquire any locks on the row.
This is the same as the TRUE value of the fLock
argument in ODBC 1.0.

SQL_LOCK_UNLOCK The driver or data source unlocks the row.

For the add, update, and delete operations in SQLSetPos, the application uses the fLock argument as
follows:

To guarantee that a row does not change after it is retrieved, an application calls SQLSetPos with
fOption set to SQL_REFRESH and fLock set to SQL_LOCK_EXCLUSIVE.

If the application sets fLock to SQL_LOCK_NO_CHANGE, the driver guarantees an update, or
delete operation will succeed only if the application specified SQL_CONCUR_LOCK for the
SQL_CONCURRENCY statement option.

If the application specifies SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES for the
SQL_CONCURRENCY statement option, the driver compares row versions or values and rejects the
operation if the row has changed since the application fetched the row.

If the application specifies SQL_CONCUR_READ_ONLY for the SQL_CONCURRENCY
statement option, the driver rejects any update or delete operation.

For more information about the SQL_CONCURRENCY statement option, see SQLSetStmtOption.

Using SQLSetPos
Before an application calls SQLSetPos, it must:
1. If the application will call SQLSetPos with fOption set to SQL_ADD or SQL_UPDATE, call

SQLBindCol for each column to specify its data type and associate storage for the column's data and
length.

2. Call SQLExecDirect, SQLExecute, or a catalog function to create a result set.
3. Call SQLExtendedFetch to retrieve the data.

To delete data with SQLSetPos, an application:

Calls SQLSetPos with irow set to the number of the row to delete.

An application can pass the value for a column either in the rgbValue buffer or with one or more calls to
SQLPutData. Columns whose data is passed with SQLPutData are known as data-at-execution
columns. These are commonly used to send data for SQL_LONGVARBINARY and
SQL_LONGVARCHAR columns and can be mixed with other columns.
To update or add data with SQLSetPos, an application:
1. Places values in the rgbValue and pcbValue buffers bound with SQLBindCol:

For normal columns, the application places the new column value in the rgbValue buffer and the
length of that value in the pcbValue buffer. If the row is being updated and the column is not to be
changed, the application places SQL_IGNORE in the pcbValue buffer.

For data-at-execution columns, the application places an application-defined value, such as the
column number, in the rgbValue buffer. The value can be used later to identify the column.

It places the result of the SQL_LEN_DATA_AT_EXEC(length) macro in the pcbValue buffer. If the
SQL data type of the column is SQL_LONGVARBINARY, SQL_LONGVARCHAR, or a long, data
source-specific data type and the driver returns "Y" for the SQL_NEED_LONG_DATA_LEN
information type in SQLGetInfo, length is the number of bytes of data to be sent for the parameter;
otherwise, it must be a nonnegative value and is ignored.

2. Calls SQLSetPos or uses an SQLSetPos macro to update or add the row of data.

If there are no data-at-execution columns, the process is complete.
If there are any data-at-execution columns, the function returns SQL_NEED_DATA.

3. Calls SQLParamData to retrieve the address of the rgbValue buffer for the first data-at-execution
column to be processed. The application retrieves the application-defined value from the rgbValue
buffer.

Note      Although data-at-execution parameters are similar to data-at-execution columns, the value
returned by SQLParamData is different for each.
Data-at-execution parameters are parameters in an SQL statement for which data will be sent with
SQLPutData when the statement is executed with SQLExecDirect or SQLExecute. They are bound
with SQLBindParameter. The value returned by SQLParamData is a 32-bit value passed to
SQLBindParameter in the rgbValue argument.
Data-at-execution columns are columns in a rowset for which data will be sent with SQLPutData
when a row is updated or added with SQLSetPos. They are bound with SQLBindCol. The value
returned by SQLParamData is the address of the row in the rgbValue buffer that is being processed.

4. Calls SQLPutData one or more times to send data for the column. More than one call is needed if the
data value is larger than the rgbValue buffer specified in SQLPutData; note that multiple calls to
SQLPutData for the same column are allowed only when sending character C data to a column with
a character, binary, or data source-specific data type or when sending binary C data to a column with
a character, binary, or data source-specific data type.

5. Calls SQLParamData again to signal that all data has been sent for the column.

If there are more data-at-execution columns, SQLParamData returns SQL_NEED_DATA and the
address of the rgbValue buffer for the next data-at-execution column to be processed. The application
repeats steps 4 and 5.

If there are no more data-at-execution columns, the process is complete. If the statement was
executed successfully, SQLParamData returns SQL_SUCCESS or SQL_SUCCESS_WITH_INFO; if the
execution failed, it returns SQL_ERROR. at this point, SQLParamData can return any SQLSTATE that
can be returned by SQLSetPos.

After SQLSetPos returns SQL_NEED_DATA, and before data is sent for all data-at-execution columns,
the operation is canceled, or an error occurs in SQLParamData or SQLPutData, the application can
only call SQLCancel, SQLGetFunctions, SQLParamData, or SQLPutData with the hstmt or the hdbc
associated with the hstmt. If it calls any other function with the hstmt or the hdbc associated with the
hstmt, the function returns SQL_ERROR and SQLSTATE S1010 (Function sequence error).
If the application calls SQLCancel while the driver still needs data for data-at-execution columns, the
driver cancels the operation; the application can then call SQLSetPos again; canceling does not affect
the cursor state or the current cursor position. If the application calls SQLParamData or SQLPutData
after canceling the operation, the function returns SQL_ERROR and SQLSTATE S1008 (Operation
canceled).

Performing Bulk Operations
If the irow argument is 0, the driver performs the operation specified in the fOption argument for every
row in the rowset. If an error occurs that pertains to the entire rowset, such as SQLSTATE S1T00
(Timeout expired), the driver returns SQL_ERROR and the appropriate SQLSTATE. The contents of the
rowset buffers are undefined and the cursor position is unchanged.
If an error occurs that pertains to a single row, the driver:

Sets the element in the rgfRowStatus array for the row to SQL_ROW_ERROR.
Posts SQLSTATE 01S01 (Error in row) in the error queue.
Posts one or more additional SQLSTATEs for the error after SQLSTATE 01S01 (Error in row) in

the error queue.

After it has processed the error or warning, the driver continues the operation for the remaining rows in
the rowset and returns SQL_SUCCESS_WITH_INFO. Thus, for each row that returned an error, the
error queue contains SQLSTATE 01S01 (Error in row) followed by zero or more additional SQLSTATEs.
If the driver returns any warnings, such as SQLSTATE 01004 (Data truncated), it returns warnings that
apply to the entire rowset or to unknown rows in the rowset before it returns the error information that
applies to specific rows. It returns warnings for specific rows along with any other error information about
those rows.

SQLSetPos Macros
As an aid to programming, the following macros for calling SQLSetPos are defined in the SQLEXT.H
file.

Macro name Function call

SQL_POSITION_TO(hstmt, irow) SQLSetPos(hstmt, irow, SQL_POSITION,
SQL_LOCK_NO_CHANGE)

SQL_LOCK_RECORD(hstmt, irow, fLock) SQLSetPos(hstmt, irow, SQL_POSITION, fLock)
SQL_REFRESH_RECORD(hstmt, irow,
fLock)

SQLSetPos(hstmt, irow, SQL_REFRESH, fLock)

SQL_UPDATE_RECORD(hstmt, irow) SQLSetPos(hstmt, irow, SQL_UPDATE,
SQL_LOCK_NO_CHANGE)

SQL_DELETE_RECORD(hstmt, irow) SQLSetPos(hstmt, irow, SQL_DELETE,
SQL_LOCK_NO_CHANGE)

SQL_ADD_RECORD(hstmt, irow) SQLSetPos(hstmt, irow, SQL_ADD,
SQL_LOCK_NO_CHANGE)

Code Example
In the following example, an application allows a user to browse the EMPLOYEE table and update
employee birthdays. The cursor is keyset-driven with a rowset size of 20 and uses optimistic
concurrency control comparing row versions. After each rowset is fetched, the application prints them
and allows the user to select and update an employee's birthday. The application uses SQLSetPos to
position the cursor on the selected row and performs a positioned update of the row. (Error handling is
omitted for clarity.)

#define ROWS 20

#define NAME_LEN 30

#define BDAY_LEN 11

UCHAR szName[ROWS][NAME_LEN], szBirthday[ROWS][BDAY_LEN], szReply[3];

SDWORD cbName[ROWS], cbBirthday[ROWS];

UWORD rgfRowStatus[ROWS];

UDWORD crow, irow;

HSTMT hstmtS, hstmtU;

SQLSetStmtOption(hstmtS, SQL_CONCURRENCY, SQL_CONCUR_ROWVER);
SQLSetStmtOption(hstmtS, SQL_CURSOR_TYPE, SQL_CURSOR_KEYSET_DRIVEN);

SQLSetStmtOption(hstmtS, SQL_ROWSET_SIZE, ROWS);

SQLSetCursorName(hstmtS, "C1", SQL_NTS);

SQLExecDirect(hstmtS, "SELECT NAME, BIRTHDAY FROM EMPLOYEE FOR UPDATE OF
BIRTHDAY", SQL_NTS);

SQLBindCol(hstmtS, 1, SQL_C_CHAR, szName, NAME_LEN, cbName);

SQLBindCol(hstmtS, 1, SQL_C_CHAR, szBirthday, BDAY_LEN, cbBirthday);

while (SQLExtendedFetch(hstmtS, FETCH_NEXT, 0, &crow, rgfRowStatus) !=
SQL_ERROR) {

for (irow = 0; irow < crow; irow++) {

if (rgfRowStatus[irow] != SQL_ROW_DELETED)

printf("%d %-*s %*s\n", irow, NAME_LEN-1, szName[irow], BDAY_LEN-1,
szBirthday[irow]);

}

while (TRUE) {

printf("\nRow number to update?");

gets(szReply);

irow = atoi(szReply);

if (irow > 0 && irow <= crow) {

printf("\nNew birthday?");

gets(szBirthday[irow-1]);

SQLSetPos(hstmtS, irow, SQL_POSITION, SQL_LOCK_NO_CHANGE);

SQLPrepare(hstmtU, "UPDATE EMPLOYEE SET BIRTHDAY=? WHERE CURRENT OF
C1", SQL_NTS);

SQLBindParameter(hstmtU, 1, SQL_PARAM_INPUT, SQL_C_CHAR, SQL_DATE,
BDAY_LEN, 0, szBirthday, 0, NULL);

SQLExecute(hstmtU);

} else if (irow == 0) {

break;

}

}

}

In the following code fragment, an application simulates a transaction for rows 1 and 2. It locks the rows,
updates them, then unlocks them. The code uses the SQLSetPos macros.

/* Lock rows 1 and 2 */

SQL_LOCK_RECORD(hstmt, 1, SQL_LOCK_EXCLUSIVE);

SQL_LOCK_RECORD(hstmt, 2, SQL_LOCK_EXCLUSIVE);

/* Modify the rowset buffers for rows 1 and 2 (not shown).*/

/* Update rows 1 and 2. */

SQL_UPDATE_RECORD(hstmt, 1);

SQL_UPDATE_RECORD(hstmt, 2);

/* Unlock rows 1 and 2 */

SQL_LOCK_RECORD(hstmt, 1, SQL_LOCK_UNLOCK);

SQL_LOCK_RECORD(hstmt, 2, SQL_LOCK_UNLOCK);

Related Functions
SQLBindCol
SQLCancel
SQLExtendedFetch (extension)
SQLSetStmtOption (extension)

SQLSetScrollOptions (Extension Level 2, ODBC 1.0)
Related Functions

SQLSetScrollOptions sets options that control the behavior of cursors associated with an hstmt.
SQLSetScrollOptions allows the application to specify the type of cursor behavior desired in three
areas: concurrency control, sensitivity to changes made by other transactions, and rowset size.

Note      In ODBC 2.0, SQLSetScrollOptions has been superceded by the SQL_CURSOR_TYPE,
SQL_CONCURRENCY, SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE statement options. ODBC 2.0
drivers must support this function for backwards compatibility; ODBC 2.0 applications should only call
this function in ODBC 1.0 drivers.
If an application calls SQLSetScrollOptions, a driver must be able to return the values of the
aforementioned statement options with SQLGetStmtOption. For more information, see
SQLSetStmtOption.

Syntax
RETCODE SQLSetScrollOptions(hstmt, fConcurrency, crowKeyset, crowRowset)
The SQLSetScrollOptions function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD fConcurrency Input Specifies concurrency control for

the cursor and must be one of the
following values:
SQL_CONCUR_READ_ONLY:
Cursor is read-only. No updates are
allowed.
SQL_CONCUR_LOCK: Cursor
uses the lowest level of locking
sufficient to ensure that the row can
be updated.
SQL_CONCUR_ROWVER: Cursor
uses optimistic concurrency control,
comparing row versions, such as
SQLBase ROWID or Sybase
TIMESTAMP.
SQL_CONCUR_VALUES: Cursor
uses optimistic concurrency control,
comparing values.

SDWORD crowKeyset Input Number of rows for which to buffer
keys. This value must be greater
than or equal to crowRowset or one
of the following values:
SQL_SCROLL_FORWARD_ONLY:
The cursor only scrolls forward.
SQL_SCROLL_STATIC: The data
in the result set is static.
SQL_SCROLL_KEYSET_DRIVEN:
The driver saves and uses the keys
for every row in the result set.
SQL_SCROLL_DYNAMIC: The
driver sets crowKeyset to the value
of crowRowset.
If crowKeyset is a value greater
than crowRowset, the value defines
the number of rows in the keyset
that are to be buffered by the driver.

This reflects a mixed scrollable
cursor; the cursor is keyset driven
within the keyset and dynamic
outside of the keyset.

UWORD crowRowset Input Number of rows in a rowset.
crowRowset defines the number of
rows fetched by each call to
SQLExtendedFetch; the number of
rows that the application buffers.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLSetScrollOptions returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLSetScrollOptions and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) The specified hstmt was in a
prepared or executed state. The function
must be called before calling
SQLPrepare or SQLExecDirect.
(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1107 Row value out of
range

(DM) The value specified for the
argument crowKeyset was less than 1,
but was not equal to
SQL_SCROLL_FORWARD_ONLY,
SQL_SCROLL_STATIC,
SQL_SCROLL_KEYSET_DRIVEN, or
SQL_SCROLL_DYNAMIC.
(DM) The value specified for the
argument crowKeyset is greater than 0,

but less than crowRowset.
(DM) The value specified for the
argument crowRowset was 0.

S1108 Concurrency option
out of range

(DM) The value specified for the
argument fConcurrency was not equal
to SQL_CONCUR_READ_ONLY,
SQL_CONCUR_LOCK,
SQL_CONCUR_ROWVER, or
SQL_CONCUR_VALUES.

S1C00 Driver not capable The driver or data source does not
support the concurrency control option
specified in the argument fConcurrency.
The driver does not support the cursor
model specified in the argument
crowKeyset.

Comments
If an application calls SQLSetScrollOptions for an hstmt, it must do so before it calls SQLPrepare or
SQLExecDirect or creating a result set with a catalog function.
The application must specify a buffer in a call to SQLBindCol that is large enough to hold the number of
rows specified in crowRowset.
If the application does not call SQLSetScrollOptions, crowRowset has a default value of 1, crowKeyset
has a default value of SQL_SCROLL_FORWARD_ONLY, and fConcurrency equals
SQL_CONCUR_READ_ONLY.

Related Functions
SQLBindCol
SQLExtendedFetch (extension)
SQLSetPos (extension)
SQLSetStmtOption

SQLSetStmtOption (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLSetStmtOption sets options related to an hstmt. To set an option for all statements associated with
a specific hdbc, an application can call SQLSetConnectOption.

Syntax
RETCODE SQLSetStmtOption(hstmt, fOption, vParam)
The SQLSetStmtOption function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD fOption Input Option to set, listed in

"Comments."
UDWORD vParam Input Value associated with fOption.

Depending on the value of
fOption, vParam will be a 32-
bit integer value or point to a
null-terminated character
string.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLSetStmtOption returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLSetStmtOption and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value
changed

The driver did not support the specified
value of the vParam argument and
substituted a similar value. (Function
returns SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state The fOption was
SQL_CONCURRENCY,
SQL_CURSOR_TYPE,
SQL_SIMULATE_CURSOR, or
SQL_USE_BOOKMARKS and the
cursor was open.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution

or completion of the function.
S1009 Invalid argument

value
Given the specified fOption value, an
invalid value was specified for the
argument vParam. (The Driver Manager
returns this SQLSTATE only for
statement options that accept a discrete
set of values, such as
SQL_ASYNC_ENABLE. For all other
statement options, the driver must verify
the value of the argument vParam.)

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for the hstmt and
was still executing when this function
was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1011 Operation invalid at
this time

The fOption was
SQL_CONCURRENCY,
SQL_CURSOR_TYPE,
SQL_SIMULATE_CURSOR, or
SQL_USE_BOOKMARKS and the
statement was prepared.

S1092 Option type out of
range

(DM) The value specified for the
argument fOption was in the block of
numbers reserved for ODBC connection
and statement options, but was not valid
for the version of ODBC supported by
the driver.

S1C00 Driver not capable The value specified for the argument
fOption was a valid ODBC statement
option for the version of ODBC
supported by the driver, but was not
supported by the driver.
The value specified for the argument
fOption was in the block of numbers
reserved for driver-specific connection
and statement options, but was not
supported by the driver.

Comments
Statement options for an hstmt remain in effect until they are changed by another call to
SQLSetStmtOption or the hstmt is dropped by calling SQLFreeStmt with the SQL_DROP option.
Calling SQLFreeStmt with the SQL_CLOSE, SQL_UNBIND, or SQL_RESET_PARAMS options does
not reset statement options.
Some statement options support substitution of a similar value if the data source does not support the
specified value of vParam. In such cases, the driver returns SQL_SUCCESS_WITH_INFO and
SQLSTATE 01S02 (Option value changed). For example, if fOption is SQL_CONCURRENCY, vParam is
SQL_CONCUR_ROWVER, and the data source does not support this, the driver substitutes
SQL_CONCUR_VALUES. To determine the substituted value, an application calls SQLGetStmtOption.
The currently defined options and the version of ODBC in which they were introduced are shown below;
it is expected that more will be defined to take advantage of different data sources. Options from 0 to
999 are reserved by ODBC; driver developers must reserve values greater than or equal to
SQL_CONNECT_OPT_DRVR_START for driver-specific use.

The format of information set with vParam depends on the specified fOption. SQLSetStmtOption
accepts option information in one of two different formats: a null-terminated character string or a 32-bit
integer value. The format of each is noted in the option's description. This format applies to the
information returned for each option in SQLGetStmtOption. Character strings pointed to    by the
vParam argument of SQLSetStmtOption have a maximum length of
SQL_MAX_OPTION_STRING_LENGTH bytes (excluding the null termination byte).

fOption vParam Contents
SQL_ASYNC_ENABLE
(ODBC 1.0)

A 32-bit integer value that specifies whether a function called
with the specified hstmt is executed asynchronously:
SQL_ASYNC_ENABLE_OFF = Off (the default)
SQL_ASYNC_ENABLE_ON = On
Once a function has been called asynchronously, no other
functions can be called on the hstmt or the hdbc associated
with the hstmt except for the original function,
SQLAllocStmt, SQLCancel, or SQLGetFunctions, until the
original function returns a code other than
SQL_STILL_EXECUTING. Any other function called on the
hstmt returns SQL_ERROR with an SQLSTATE of S1010
(Function sequence error). Functions can be called on other
hstmts.
The following functions can be executed asynchronously:
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLDescribeCol
SQLDescribeParam
SQLExecDirect
SQLExecute
SQLExtendedFetch
SQLFetch
SQLForeignKeys
SQLGetData
SQLGetTypeInfo
SQLMoreResults

SQLNumParams
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLPutData
SQLSetPos
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

SQL_BIND_TYPE
(ODBC 1.0)

A 32-bit integer value that sets the binding orientation to be
used when SQLExtendedFetch is called on the associated
hstmt. Column-wise binding is selected by supplying the
defined constant SQL_BIND_BY_COLUMN for the argument
vParam. Row-wise binding is selected by supplying a value
for vParam specifying the length of a structure or an instance
of a buffer into which result columns will be bound.
The length specified in vParam must include space for all of
the bound columns and any padding of the structure or
buffer to ensure that when the address of a bound column is
incremented with the specified length, the result will point to
the beginning of the same column in the next row. When
using the sizeof operator with structures or unions in ANSI
C, this behavior is guaranteed.
Column-wise binding is the default binding orientation for
SQLExtendedFetch.

SQL_CONCURRENCY
(ODBC 2.0)

A 32-bit integer value that specifies the cursor concurrency:
SQL_CONCUR_READ_ONLY = Cursor is read-only. No
updates are allowed.
SQL_CONCUR_LOCK = Cursor uses the lowest level of
locking sufficient to ensure that the row can be updated.
SQL_CONCUR_ROWVER =    Cursor uses optimistic

concurrency control, comparing row versions, such as
SQLBase ROWID or Sybase TIMESTAMP.
SQL_CONCUR_VALUES = Cursor uses optimistic
concurrency control, comparing values.
The default value is SQL_CONCUR_READ_ONLY. This
option cannot be specified for an open cursor and can also
be set through the fConcurrency argument in
SQLSetScrollOptions.
If the specified concurrency is not supported by the data
source, the driver substitutes a different concurrency and
returns SQLSTATE 01S02 (Option value changed). For
SQL_CONCUR_VALUES, the driver substitutes
SQL_CONCUR_ROWVER, and vice versa. For
SQL_CONCUR_LOCK, the driver substitutes, in order,
SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES.

SQL_CURSOR_TYPE
(ODBC 2.0)

A 32-bit integer value that specifies the cursor type:
SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls
forward.
SQL_CURSOR_STATIC = The data in the result set is static.
SQL_CURSOR_KEYSET_DRIVEN = The driver saves and
uses the keys for the number of rows specified in the
SQL_KEYSET_SIZE statement option.
SQL_CURSOR_DYNAMIC = The driver only saves and
uses the keys for the rows in the rowset.
The default value is SQL_CURSOR_FORWARD_ONLY.
This option cannot be specified for an open cursor and can
also be set through the crowKeyset argument in
SQLSetScrollOptions.
If the specified cursor type is not supported by the data
source, the driver substitutes a different cursor type and
returns SQLSTATE 01S02 (Option value changed). For a
mixed or dynamic cursor, the driver substitutes, in order, a
keyset-driven or static cursor. For a keyset-driven cursor, the
driver substitutes a static cursor.

SQL_KEYSET_SIZE
(ODBC 2.0)

A 32-bit integer value that specifies the number of rows in
the keyset for a keyset-driven cursor. If the keyset size is 0
(the default), the cursor is fully keyset-driven. If the keyset
size is greater than 0, the cursor is mixed (keyset-driven
within the keyset and dynamic outside of the keyset). The
default keyset size is 0.
If the specified size exceeds the maximum keyset size, the
driver substitutes that size and returns SQLSTATE 01S02
(Option value changed).
SQLExtendedFetch returns an error if the keyset size is
greater than 0 and less than the rowset size.

SQL_MAX_LENGTH
(ODBC 1.0)

A 32-bit integer value that specifies the maximum amount of
data that the driver returns from a character or binary
column. If vParam is less than the length of the available
data, SQLFetch or SQLGetData truncates the data and
returns SQL_SUCCESS. If vParam is 0 (the default), the
driver attempts to return all available data.
If the specified length is less than the minimum amount of
data that the data source can return (the minimum is 254
bytes on many data sources), or greater than the maximum
amount of data that the data source can return, the driver
substitutes that value and returns SQLSTATE 01S02 (Option

value changed).
This option is intended to reduce network traffic and should
only be supported when the data source (as opposed to the
driver) in a multiple-tier driver can implement it. To truncate
data, an application should specify the maximum buffer
length in the cbValueMax argument in SQLBindCol or
SQLGetData.

Note      In ODBC 1.0, this statement option only applied to
SQL_LONGVARCHAR and SQL_LONGVARBINARY
columns.

SQL_MAX_ROWS
(ODBC 1.0)

A 32-bit integer value corresponding to the maximum
number of rows to return to the application for a SELECT
statement. If vParam equals 0 (the default), then the driver
returns all rows.
This option is intended to reduce network traffic.
Conceptually, it is applied when the result set is created and
limits the result set to the first vParam rows.
If the specified number of rows exceeds the number of rows
that can be returned by the data source, the driver
substitutes that value and returns SQLSTATE 01S02 (Option
value changed).

SQL_NOSCAN
(ODBC 1.0)

A 32-bit integer value that specifies whether the driver does
not scan SQL strings for escape clauses:
SQL_NOSCAN_OFF = The driver scans SQL strings for
escape clauses (the default).
SQL_NOSCAN_ON = The driver does not scan SQL strings
for escape clauses. Instead, the driver sends the statement
directly to the data source.

SQL_QUERY_TIMEOUT
(ODBC 1.0)

A 32-bit integer value corresponding to the number of
seconds to wait for an SQL statement to execute before
returning to the application. If vParam equals 0 (the default),
then there is no time out.
If the specified timeout exceeds the maximum timeout in the
data source or is smaller than the minimum timeout, the
driver substitutes that value and returns SQLSTATE 01S02
(Option value changed).
Note that the application need not call SQLFreeStmt with
the SQL_CLOSE option to reuse the hstmt if a SELECT
statement timed out.

SQL_RETRIEVE_DATA
(ODBC 2.0)

A 32-bit integer value:
SQL_RD_ON = SQLExtendedFetch retrieves data after it
positions the cursor to the specified location. This is the
default.
SQL_RD_OFF = SQLExtendedFetch does not retrieve data
after it positions the cursor.
By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an
application can verify if a row exists or retrieve a bookmark
for the row without incurring the overhead of retrieving rows.

SQL_ROWSET_SIZE
(ODBC 2.0)

A 32-bit integer value that specifies the number of rows in
the rowset. This is the number of rows returned by each call
to SQLExtendedFetch. The default value is 1.
If the specified rowset size exceeds the maximum rowset
size supported by the data source, the driver substitutes that
value and returns SQLSTATE 01S02 (Option value

changed).
This option can be specified for an open cursor and can also
be set through the crowRowset argument in
SQLSetScrollOptions.

SQL_SIMULATE_CURSOR
(ODBC 2.0)

A 32-bit integer value that specifies whether drivers that
simulate positioned update and delete statements guarantee
that such statements affect only one single row.
To simulate positioned update and delete statements, most
drivers construct a searched UPDATE or DELETE statement
containing a WHERE clause that specifies the value of each
column in the current row. Unless these columns comprise a
unique key, such a statement may affect more than one row.
To guarantee that such statements affect only one row, the
driver determines the columns in a unique key and adds
these columns to the result set. If an application guarantees
that the columns in the result set comprise a unique key, the
driver is not required to do so. This may reduce execution
time.
SQL_SC_NON_UNIQUE = The driver does not guarantee
that simulated positioned update or delete statements will
affect only one row; it is the application's responsibility to do
so. If a statement affects more than one row, SQLExecute
or SQLExecDirect returns SQLSTATE 01000 (General
warning).
SQL_SC_TRY_UNIQUE = The driver attempts to guarantee
that simulated positioned update or delete statements affect
only one row. The driver always executes such statements,
even if they might affect more than one row, such as when
there is no unique key. If a statement affects more than one
row, SQLExecute or SQLExecDirect returns SQLSTATE
01000 (General warning).
SQL_SC_UNIQUE = The driver guarantees that simulated
positioned update or delete statements affect only one row. If
the driver cannot guarantee this for a given statement,
SQLExecDirect or SQLPrepare returns an error.
If the specified cursor simulation type is not supported by the
data source, the driver substitutes a different simulation type
and returns SQLSTATE 01S02 (Option value changed). For
SQL_SC_UNIQUE, the driver substitutes, in order,
SQL_SC_TRY_UNIQUE or SQL_SC_NON_UNIQUE. For
SQL_SC_TRY_UNIQUE, the driver substitutes
SQL_SC_NON_UNIQUE.
If a driver does not simulate positioned update and delete
statements, it returns SQLSTATE S1C00 (Driver not
capable).

SQL_USE_BOOKMARKS
(ODBC 2.0)

A 32-bit integer value that specifies whether an application
will use bookmarks with a cursor:
SQL_UB_OFF = Off (the default)
SQL_UB_ON = On
To use bookmarks with a cursor, the application must specify
this option with the SQL_UB_ON value before opening the
cursor.

Code Example
See SQLExtendedFetch.

Related Functions
SQLCancel
SQLGetConnectOption (extension)
SQLGetStmtOption (extension)
SQLSetConnectOption (extension)

SQLSpecialColumns (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLSpecialColumns retrieves the following information about columns within a specified table:

The optimal set of columns that uniquely identifies a row in the table.
Columns that are automatically updated when any value in the row is updated by a transaction.

Syntax
RETCODE SQLSpecialColumns(hstmt, fColType, szTableQualifier, cbTableQualifier, szTableOwner,
cbTableOwner, szTableName, cbTableName, fScope, fNullable)
The SQLSpecialColumns function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UWORD fColType Input Type of column to return. Must

be one of the following values:
SQL_BEST_ROWID: Returns
the optimal column or set of
columns that, by retrieving
values from the column or
columns, allows any row in the
specified table to be uniquely
identified. A column can be
either a pseudocolumn
specifically designed for this
purpose (as in Oracle ROWID or
Ingres TID) or the column or
columns of any unique index for
the table.
SQL_ROWVER: Returns the
column or columns in the
specified table, if any, that are
automatically updated by the
data source when any value in
the row is updated by any
transaction (as in SQLBase
ROWID or Sybase
TIMESTAMP).

UCHAR FAR * szTableQualifier Input Qualifier name for the table. If a
driver supports qualifiers for
some tables but not for others,
such as when the driver
retrieves data from different
DBMSs, an empty string ("")
denotes those tables that do not
have qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
UCHAR FAR * szTableOwner Input Owner name for the table. If a

driver supports owners for some
tables but not for others, such as
when the driver retrieves data
from different DBMSs, an empty
string ("") denotes those tables
that do not have owners.

SWORD cbTableOwner Input Length of szTableOwner.
UCHAR FAR * szTableName Input Table name.
SWORD cbTableName Input Length of szTableName.
UWORD fScope Input Minimum required scope of the

rowid. The returned rowid may
be of greater scope. Must be
one of the following:
SQL_SCOPE_CURROW: The
rowid is guaranteed to be valid
only while positioned on that
row. A later reselect using rowid
may not return a row if the row
was updated or deleted by
another transaction.
SQL_SCOPE_TRANSACTION:
The rowid is guaranteed to be
valid for the duration of the
current transaction.
SQL_SCOPE_SESSION: The
rowid is guaranteed to be valid
for the duration of the session
(across transaction boundaries).

UWORD fNullable Input Determines whether to return
special columns that can have a
NULL value. Must be one of the
following:
SQL_NO_NULLS: Exclude
special columns that can have
NULL values.
SQL_NULLABLE: Return
special columns even if they can
have NULL values.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLSpecialColumns returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLSpecialColumns and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was

no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the length
arguments was less than 0, but not
equal to SQL_NTS.
The value of one of the length
arguments exceeded the maximum
length value for the corresponding
qualifier or name. The maximum length
of each qualifier or name may be
obtained by calling SQLGetInfo with the
fInfoType values:
SQL_MAX_QUALIFIER_NAME_LEN,
SQL_MAX_OWNER_NAME_LEN, or
SQL_MAX_TABLE_NAME_LEN.

S1097 Column type out of
range

(DM) An invalid fColType value was
specified.

S1098 Scope type out of
range

(DM) An invalid fScope value was
specified.

S1099 Nullable type out of
range

(DM) An invalid fNullable value was
specified.

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement

options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLSpecialColumns is provided so that applications can provide their own custom scrollable-cursor
functionality, similar to that provided by SQLExtendedFetch and SQLSetStmtOption.
When the fColType argument is SQL_BEST_ROWID, SQLSpecialColumns returns the column or
columns that uniquely identify each row in the table. These columns can always be used in a select-list
or WHERE clause. However, SQLColumns does not necessarily return these columns. For example,
SQLColumns might not return the Oracle ROWID pseudo-column ROWID. If there are no columns that
uniquely identify each row in the table, SQLSpecialColumns returns a rowset with no rows; a
subsequent call to SQLFetch or SQLExtendedFetch on the hstmt returns SQL_NO_DATA_FOUND.
If the fColType, fScope, or fNullable arguments specify characteristics that are not supported by the data
source, SQLSpecialColumns returns a result set with no rows (as opposed to the function returning
SQL_ERROR with SQLSTATE S1C00 (Driver not capable)). A subsequent call to SQLFetch or
SQLExtendedFetch on the hstmt will return SQL_NO_DATA_FOUND.
SQLSpecialColumns returns the results as a standard result set, ordered by SCOPE. The following
table lists the columns in the result set.
The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual length of the COLUMN_NAME column, an application can call
SQLGetInfo with the SQL_MAX_COLUMN_NAME_LEN option.

Column Name Data Type Comments
SCOPE Smallint Actual scope of the rowid. Contains

one of the following values:
SQL_SCOPE_CURROW
SQL_SCOPE_TRANSACTION
SQL_SCOPE_SESSION
NULL is returned when fColType is
SQL_ROWVER. For a description of
each value, see the description of
fScope in the "Syntax" section above.

COLUMN_NAME Varchar(128)
not NULL

Column identifier.

DATA_TYPE Smallint
not NULL

SQL data type. This can be an ODBC
SQL data type or a driver-specific
SQL data type. For a list of valid
ODBC SQL data types, see SQL Data
Types. For information about driver-
specific SQL data types, see the
driver's documentation.

TYPE_NAME Varchar(128)
not NULL

Data source-dependent data type
name; for example, "CHAR",
"VARCHAR", "MONEY", "LONG
VARBINARY", or "CHAR () FOR BIT
DATA".

PRECISION Integer The precision of the column on the
data source. NULL is returned for data
types where precision is not
applicable. For more information
concerning precision, see Precision,
Scale, Length, and Display Size.

LENGTH Integer The length in bytes of data transferred
on an SQLGetData or SQLFetch
operation if SQL_C_DEFAULT is
specified. For numeric data, this size
may be different than the size of the
data stored on the data source. This
value is the same as the PRECISION
column for character or binary data.
For more information, see Precision,
Scale, Length, and Display Size.

SCALE Smallint The scale of the column on the data
source. NULL is returned for data
types where scale is not applicable.
For more information concerning
scale, see Precision, Scale, Length,
and Display Size.

PSEUDO_COLUMN Smallint Indicates whether the column is a
pseudo-column, such as Oracle
ROWID:
SQL_PC_UNKNOWN
SQL_PC_PSEUDO
SQL_PC_NOT_PSEUDO

Note      For maximum
interoperability, pseudo-columns
should not be quoted with the
identifier quote character returned by
SQLGetInfo.

Note      The PSEUDO_COLUMN column was added in ODBC 2.0. ODBC 1.0 drivers might return a
different, driver-specific column with the same column number.

Once the application retrieves values for SQL_BEST_ROWID, the application can use these values to
reselect that row within the defined scope. The SELECT statement is guaranteed to return either no
rows or one row.
If an application reselects a row based on the rowid column or columns and the row is not found, then
the application can assume that the row was deleted or the rowid columns were modified. The opposite
is not true: even if the rowid has not changed, the other columns in the row may have changed.
Columns returned for column type SQL_BEST_ROWID are useful for applications that need to scroll
forwards and backwards within a result set to retrieve the most recent data from a set of rows. The
column or columns of the rowid are guaranteed not to change while positioned on that row.
The column or columns of the rowid may remain valid even when the cursor is not positioned on the
row; the application can determine this by checking the SCOPE column in the result set.
Columns returned for column type SQL_ROWVER are useful for applications that need the ability to
check if any columns in a given row have been updated while the row was reselected using the rowid.
For example, after reselecting a row using rowid, the application can compare the previous values in the
SQL_ROWVER columns to the ones just fetched. If the value in a SQL_ROWVER column differs from
the previous value, the application can alert the user that data on the display has changed.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions
SQLBindCol
SQLCancel
SQLColumns (extension)
SQLExtendedFetch (extension)
SQLFetch
SQLPrimaryKeys (extension)

SQLStatistics (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLStatistics retrieves a list of statistics about a single table and the indexes associated with the table.
The driver returns the information as a result set.

Syntax
RETCODE SQLStatistics(hstmt, szTableQualifier, cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName, fUnique, fAccuracy)
The SQLStatistics function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szTableQualifier Input Qualifier name. If a driver

supports qualifiers for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
UCHAR FAR * szTableOwner Input Owner name. If a driver

supports owners for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.
UCHAR FAR * szTableName Input Table name.
SWORD cbTableName Input Length of szTableName.
UWORD fUnique Input Type of index:

SQL_INDEX_UNIQUE or
SQL_INDEX_ALL.

UWORD fAccuracy Input The importance of the
CARDINALITY and PAGES
columns in the result set:
SQL_ENSURE requests that
the driver unconditionally
retrieve the statistics.
SQL_QUICK requests that the
driver retrieve results only if
they are readily available from
the server. In this case, the
driver does not ensure that
the values are current.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLStatistics returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLStatistics and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated

with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name.

S1100 Uniqueness option
type out of range

(DM) An invalid fUnique value was
specified.

S1101 Accuracy option (DM) An invalid fAccuracy value was

type out of range specified.
S1C00 Driver not capable A table qualifier was specified and the

driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLStatistics returns information about a single table as a standard result set, ordered by
NON_UNIQUE, TYPE, INDEX_QUALIFIER, INDEX_NAME, and SEQ_IN_INDEX. The result set
combines statistics information for the table with information about each index. The following table lists
the columns in the result set.

Note      SQLStatistics might not return all indexes. For example, an Xbase driver might only return
indexes in files in the current directory. Applications can use any valid index, regardless of whether it is
returned by SQLStatistics.

The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the TABLE_QUALIFIER, TABLE_OWNER,
TABLE_NAME, and COLUMN_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN,
SQL_MAX_TABLE_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN options.

Column Name Data Type Comments
TABLE_QUALIFIER Varchar(128) Table qualifier identifier of the table to

which the statistic or index applies;
NULL if not applicable to the data
source. If a driver supports qualifiers
for some tables but not for others,
such as when the driver retrieves data
from different DBMSs, it returns an
empty string ("") for those tables that
do not have qualifiers.

TABLE_OWNER Varchar(128) Table owner identifier of the table to
which the statistic or index applies;
NULL if not applicable to the data
source. If a driver supports owners for
some tables but not for others, such
as when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

TABLE_NAME Varchar(128)
not NULL

Table identifier of the table to which
the statistic or index applies.

NON_UNIQUE Smallint Indicates whether the index prohibits
duplicate values:
TRUE if the index values can be

nonunique.
FALSE if the index values must be
unique.
NULL is returned if TYPE is
SQL_TABLE_STAT.

INDEX_QUALIFIER Varchar(128) The identifier that is used to qualify
the index name doing a DROP
INDEX; NULL is returned if an index
qualifier is not supported by the data
source or if TYPE is
SQL_TABLE_STAT. If a non-null value
is returned in this column, it must be
used to qualify the index name on a
DROP INDEX statement; otherwise
the TABLE_OWNER name should be
used to qualify the index name.

INDEX_NAME Varchar(128) Index identifier; NULL is returned if
TYPE is SQL_TABLE_STAT.

TYPE Smallint
not NULL

Type of information being returned:
SQL_TABLE_STAT indicates a
statistic for the table.
SQL_INDEX_CLUSTERED indicates
a clustered index.
SQL_INDEX_HASHED indicates a
hashed index.
SQL_INDEX_OTHER indicates
another type of index.

SEQ_IN_INDEX Smallint Column sequence number in index
(starting with 1); NULL is returned if
TYPE is SQL_TABLE_STAT.

COLUMN_NAME Varchar(128) Column identifier. If the column is
based on an expression, such as
SALARY + BENEFITS, the expression
is returned; if the expression cannot
be determined, an empty string is
returned. If the index is a filtered
index, each column in the filter
condition is returned; this may require
more than one row. NULL is returned
if TYPE is SQL_TABLE_STAT.

COLLATION Char(1) Sort sequence for the column; "A" for
ascending; "D" for descending; NULL
is returned if column sort sequence is
not supported by the data source or if
TYPE is SQL_TABLE_STAT.

CARDINALITY Integer Cardinality of table or index; number
of rows in table if TYPE is
SQL_TABLE_STAT; number of unique
values in the index if TYPE is not
SQL_TABLE_STAT; NULL is returned
if the value is not available from the
data source.

PAGES Integer Number of pages used to store the
index or table; number of pages for
the table if TYPE is
SQL_TABLE_STAT; number of pages

for the index if TYPE is not
SQL_TABLE_STAT; NULL is returned
if the value is not available from the
data source, or if not applicable to the
data source.

FILTER_CONDITION Varchar(128) If the index is a filtered index, this is
the filter condition, such as SALARY >
30000; if the filter condition cannot be
determined, this is an empty string.
NULL if the index is not a filtered
index, it cannot be determined
whether the index is a filtered index,
or TYPE is SQL_TABLE_STAT.

Note      The FILTER_CONDITION column was added in ODBC 2.0. ODBC 1.0 drivers might return a
different, driver-specific column with the same column number.

If the row in the result set corresponds to a table, the driver sets TYPE to SQL_TABLE_STAT and sets
NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME, SEQ_IN_INDEX, COLUMN_NAME, and
COLLATION to NULL. If CARDINALITY or PAGES are not available from the data source, the driver
sets them to NULL.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions
SQLBindCol
SQLCancel
SQLExtendedFetch (extension)
SQLFetch
SQLForeignKeys (extension)
SQLPrimaryKeys (extension)

SQLTablePrivileges (Extension Level 2, ODBC 1.0)
Code Example Related Functions

SQLTablePrivileges returns a list of tables and the privileges associated with each table. The driver
returns the information as a result set on the specified hstmt.

Syntax
RETCODE SQLTablePrivileges(hstmt, szTableQualifier, cbTableQualifier,
szTableOwner, cbTableOwner, szTableName, cbTableName)
The SQLTablePrivileges function accepts the following arguments.

Type Argument Use Description
HSTMT hstmt Input Statement handle.
UCHAR FAR * szTableQualifier Input Table qualifier. If a driver

supports qualifiers for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
UCHAR FAR * szTableOwner Input String search pattern for

owner names. If a driver
supports owners for some
tables but not for others, such
as when the driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
owners.

SWORD cbTableOwner Input Length of szTableOwner.
UCHAR FAR * szTableName Input String search pattern for table

names.
SWORD cbTableName Input Length of szTableName.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR, or
SQL_INVALID_HANDLE.

Diagnostics
When SQLTablePrivileges returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated
SQLSTATE value may be obtained by calling SQLError. The following table lists the SQLSTATE values
commonly returned by SQLTablePrivileges and explains each one in the context of this function; the
notation "(DM)" precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return
code associated with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.

A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name.

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
A string search pattern was specified for
the table owner, table name, or column
name and the data source does not
support search patterns for one or more
of those arguments.
The combination of the current settings
of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver

or data source.
S1T00 Timeout expired The timeout period expired before the

data source returned the result set. The
timeout period is set through
SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
The szTableOwner and szTableName arguments accept search patterns.
SQLTablePrivileges returns the results as a standard result set, ordered by TABLE_QUALIFIER,
TABLE_OWNER, TABLE_NAME, and PRIVILEGE. The following table lists the columns in the result set.

Note      SQLTablePrivileges might not return privileges for all tables. For example, an Xbase driver
might only return privileges for files (tables) in the current directory. Applications can use any valid table,
regardless of whether it is returned by SQLTablePrivileges.

The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the TABLE_QUALIFIER, TABLE_OWNER, and
TABLE_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_TABLE_NAME_LEN options.

Column Name Data Type Comments
TABLE_QUALIFIER Varchar(128) Table qualifier identifier; NULL if not

applicable to the data source. If a
driver supports qualifiers for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have qualifiers.

TABLE_OWNER Varchar(128) Table owner identifier; NULL if not
applicable to the data source. If a
driver supports owners for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

TABLE_NAME Varchar(128)
not NULL

Table identifier.

GRANTOR Varchar(128) Identifier of the user who granted the
privilege; NULL if not applicable to the
data source.

GRANTEE Varchar(128)
not NULL

Identifier of the user to whom the
privilege was granted.

PRIVILEGE Varchar(128)
not NULL

Identifies the table privilege. May be
one of the following or a data source-
specific privilege.
SELECT: The grantee is permitted to
retrieve data for one or more columns
of the table.
INSERT: The grantee is permitted to
insert new rows containing data for
one or more columns into to the table.
UPDATE: The grantee is permitted to
update the data in one or more

columns of the table.
DELETE: The grantee is permitted to
delete rows of data from the table.
REFERENCES: The grantee is
permitted to refer to one or more
columns of the table within a
constraint (for example, a unique,
referential, or table check constraint).
The scope of action permitted the
grantee by a given table privilege is
data source-dependent. For example,
the UPDATE privilege might permit
the grantee to update all columns in a
table on one data source and only
those columns for which the grantor
has the UPDATE privilege on another
data source.

IS_GRANTABLE Varchar(3) Indicates whether the grantee is
permitted to grant the privilege to
other users; "YES", "NO", or NULL if
unknown or not applicable to the data
source.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions
SQLBindCol
SQLCancel
SQLColumnPrivileges (extension)
SQLColumns (extension)
SQLExtendedFetch (extension)
SQLFetch
SQLStatistics (extension)
SQLTables (extension)

SQLTables (Extension Level 1, ODBC 1.0)
Code Example Related Functions

SQLTables returns the list of table names stored in a specific data source. The driver returns the
information as a result set.

Syntax
RETCODE SQLTables(hstmt, szTableQualifier, cbTableQualifier, szTableOwner, cbTableOwner,
szTableName, cbTableName, szTableType, cbTableType)
The SQLTables function accepts the following arguments:

Type Argument Use Description
HSTMT hstmt Input Statement handle for retrieved

results.
UCHAR FAR * szTableQualifier Input Qualifier name. If a driver

supports qualifiers for some
tables but not for others, such
as when a driver retrieves
data from different DBMSs, an
empty string ("") denotes
those tables that do not have
qualifiers.

SWORD cbTableQualifier Input Length of szTableQualifier.
UCHAR FAR * szTableOwner Input String search pattern for

owner names.
SWORD cbTableOwner Input Length of szTableOwner.
UCHAR FAR * szTableName Input String search pattern for table

names. If a driver supports
owners for some tables but
not for others, such as when
the driver retrieves data from
different DBMSs, an empty
string ("") denotes those
tables that do not have
owners.

SWORD cbTableName Input Length of szTableName.
UCHAR FAR * szTableType Input List of table types to match.
SWORD cbTableType Input Length of szTableType.

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_STILL_EXECUTING, SQL_ERROR or
SQL_INVALID_HANDLE.

Diagnostics
When SQLTables returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLTables and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link
failure

The communication link between the
driver and the data source to which the
driver was connected failed before the
function completed processing.

24000 Invalid cursor state (DM) A cursor was open on the hstmt
and SQLFetch or SQLExtendedFetch
had been called.
A cursor was open on the hstmt but
SQLFetch or SQLExtendedFetch had
not been called.

IM001 Driver does not
support this function

(DM) The driver associated with the
hstmt does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1008 Operation canceled Asynchronous processing was enabled
for the hstmt. The function was called
and before it completed execution,
SQLCancel was called on the hstmt.
Then the function was called again on
the hstmt.
The function was called and, before it
completed execution, SQLCancel was
called on the hstmt from a different
thread in a multithreaded application.

S1010 Function sequence
error

(DM) An asynchronously executing
function (not this one) was called for the
hstmt and was still executing when this
function was called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for the hstmt
and returned SQL_NEED_DATA. This
function was called before data was
sent for all data-at-execution parameters
or columns.

S1090 Invalid string or
buffer length

(DM) The value of one of the name
length arguments was less than 0, but
not equal to SQL_NTS.
The value of one of the name length
arguments exceeded the maximum
length value for the corresponding
qualifier or name.

S1C00 Driver not capable A table qualifier was specified and the
driver or data source does not support
qualifiers.
A table owner was specified and the
driver or data source does not support
owners.
A string search pattern was specified for
the table owner or table name and the
data source does not support search
patterns for one or more of those
arguments.
The combination of the current settings

of the SQL_CONCURRENCY and
SQL_CURSOR_TYPE statement
options was not supported by the driver
or data source.

S1T00 Timeout expired The timeout period expired before the
data source returned the requested
result set. The timeout period is set
through SQLSetStmtOption,
SQL_QUERY_TIMEOUT.

Comments
SQLTables lists all tables in the requested range. A user may or may not have SELECT privileges to any
of these tables. To check accessibility, an application can:

Call SQLGetInfo and check the SQL_ACCESSIBLE_TABLES info value.
Call SQLTablePrivileges to check the privileges for each table.

Otherwise, the application must be able to handle a situation where the user selects a table for which
SELECT privileges are not granted.
The szTableOwner and szTableName arguments accept search patterns.
To support enumeration of qualifiers, owners, and table types, SQLTables defines the following special
semantics for the szTableQualifier, szTableOwner, szTableName, and szTableType arguments:

If szTableQualifier is a single percent character (%) and szTableOwner and szTableName are
empty strings, then the result set contains a list of valid qualifiers for the data source. (All columns except
the TABLE_QUALIFIER column contain NULLs.)

If szTableOwner is a single percent character (%) and szTableQualifier and szTableName are
empty strings, then the result set contains a list of valid owners for the data source. (All columns except
the TABLE_OWNER column contain NULLs.)

If szTableType is a single percent character (%) and szTableQualifier, szTableOwner, and
szTableName are empty strings, then the result set contains a list of valid table types for the data source.
(All columns except the TABLE_TYPE column contain NULLs.)

If szTableType is not an empty string, it must contain a list of comma-separated, values for the types of
interest; each value may be enclosed in single quotes (') or unquoted. For example, "'TABLE','VIEW'" or
"TABLE, VIEW". If the data source does not support a specified table type, SQLTables does not return
any results for that type.
SQLTables returns the results as a standard result set, ordered by TABLE_TYPE, TABLE_QUALIFIER,
TABLE_OWNER, and TABLE_NAME. The following table lists the columns in the result set.

Note      SQLTables might not return all qualifiers, owners, or tables. For example, an Xbase driver, for
which a qualifier is a directory, might only return the current directory instead of all directories on the
system. It might also only return files (tables) in the current directory. Applications can use any valid
qualifier, owner, or table, regardless of whether it is returned by SQLTables.

The lengths of VARCHAR columns shown in the table are maximums; the actual lengths depend on the
data source. To determine the actual lengths of the TABLE_QUALIFIER, TABLE_OWNER, and
TABLE_NAME columns, an application can call SQLGetInfo with the
SQL_MAX_QUALIFIER_NAME_LEN, SQL_MAX_OWNER_NAME_LEN, and
SQL_MAX_TABLE_NAME_LEN options.
Column Name Data Type Comments
TABLE_QUALIFIER Varchar(128) Table qualifier identifier; NULL if not

applicable to the data source. If a
driver supports qualifiers for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have qualifiers.

TABLE_OWNER Varchar(128) Table owner identifier; NULL if not

applicable to the data source. If a
driver supports owners for some
tables but not for others, such as
when the driver retrieves data from
different DBMSs, it returns an empty
string ("") for those tables that do not
have owners.

TABLE_NAME Varchar(128) Table identifier.
TABLE_TYPE Varchar(128) Table type identifier; one of the

following: "TABLE", "VIEW",
"SYSTEM TABLE", "GLOBAL
TEMPORARY", "LOCAL
TEMPORARY", "ALIAS",
"SYNONYM" or a data source -
specific type identifier.

REMARKS Varchar(254) A description of the table.

Code Example
For a code example of a similar function, see SQLColumns.

Related Functions
SQLBindCol
SQLCancel
SQLColumnPrivileges (extension)
SQLColumns (extension)
SQLExtendedFetch (extension)
SQLFetch
SQLStatistics (extension)
SQLTablePrivileges (extension)

SQLTransact (Core, ODBC 1.0)
Code Example Related Functions

SQLTransact requests a commit or rollback operation for all active operations on all hstmts associated
with a connection. SQLTransact can also request that a commit or rollback operation be performed for
all connections associated with the henv.

Syntax
RETCODE SQLTransact(henv, hdbc, fType)
The SQLTransact function accepts the following arguments.

Type Argument Use Description
HENV henv Input Environment handle.
HDBC hdbc Input Connection handle.
UWORD fType Input One of the following two

values:
SQL_COMMIT
SQL_ROLLBACK

Returns
SQL_SUCCESS, SQL_SUCCESS_WITH_INFO, SQL_ERROR, or SQL_INVALID_HANDLE.

Diagnostics
When SQLTransact returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an associated SQLSTATE
value may be obtained by calling SQLError. The following table lists the SQLSTATE values commonly
returned by SQLTransact and explains each one in the context of this function; the notation "(DM)"
precedes the descriptions of SQLSTATEs returned by the Driver Manager. The return code associated
with each SQLSTATE value is SQL_ERROR, unless noted otherwise.

SQLSTATE Error Description
01000 General warning Driver-specific informational message.

(Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection not
open

(DM) The hdbc was not in a connected
state.

08007 Connection failure
during transaction

The connection associated with the
hdbc failed during the execution of the
function and it cannot be determined
whether the requested COMMIT or
ROLLBACK occurred before the failure.

IM001 Driver does not
support this function

(DM) The driver associated with the
hdbc does not support the function.

S1000 General error An error occurred for which there was
no specific SQLSTATE and for which no
implementation-specific SQLSTATE was
defined. The error message returned by
SQLError in the argument szErrorMsg
describes the error and its cause.

S1001 Memory allocation
failure

The driver was unable to allocate
memory required to support execution
or completion of the function.

S1010 Function sequence
error

(DM) An asynchronously executing
function was called for an hstmt
associated with the hdbc and was still
executing when SQLTransact was
called.
(DM) SQLExecute, SQLExecDirect, or
SQLSetPos was called for an hstmt

associated with the hdbc and returned
SQL_NEED_DATA. This function was
called before data was sent for all data-
at-execution parameters or columns.

S1012 Invalid transaction
operation code

(DM) The value specified for the
argument fType was neither
SQL_COMMIT nor SQL_ROLLBACK.

S1C00 Driver not capable The driver or data source does not
support the ROLLBACK operation.

Comments
If hdbc is SQL_NULL_HDBC and henv is a valid environment handle, then the Driver Manager will
attempt to commit or roll back transactions on all hdbcs that are in a connected state. The Driver
Manager calls SQLTransact in the driver associated with each hdbc. The Driver Manager will return
SQL_SUCCESS only if it receives SQL_SUCCESS for each hdbc. If the Driver Manager receives
SQL_ERROR on one or more hdbcs, it will return SQL_ERROR to the application. To determine which
connection(s) failed during the commit or rollback operation, the application can call SQLError for each
hdbc.

Note      The Driver Manager does not simulate a global transaction across all hdbcs and therefore does
not use two-phase commit protocols.

If hdbc is a valid connection handle, henv is ignored and the Driver Manager calls SQLTransact in the
driver for the hdbc.
If hdbc is SQL_NULL_HDBC and henv is SQL_NULL_HENV, SQLTransact returns
SQL_INVALID_HANDLE.
If fType is SQL_COMMIT, SQLTransact issues a commit request for all active operations on any hstmt
associated with an affected hdbc. If fType is SQL_ROLLBACK, SQLTransact issues a rollback request
for all active operations on any hstmt associated with an affected hdbc. If no transactions are active,
SQLTransact returns SQL_SUCCESS with no effect on any data sources.
If the driver is in manual-commit mode (by calling SQLSetConnectOption with the SQL_AUTOCOMMIT
option set to zero), a new transaction is implicitly started when an SQL statement that can be contained
within a transaction is executed against the current data source.
To determine how transaction operations affect cursors, an application calls SQLGetInfo with the
SQL_CURSOR_ROLLBACK_BEHAVIOR and SQL_CURSOR_COMMIT_BEHAVIOR options.
If the SQL_CURSOR_ROLLBACK_BEHAVIOR or SQL_CURSOR_COMMIT_BEHAVIOR value equals
SQL_CB_DELETE, SQLTransact closes and deletes all open cursors on all hstmts associated with the
hdbc and discards all pending results. SQLTransact leaves any hstmt present in an allocated
(unprepared) state; the application can reuse them for subsequent SQL requests or can call
SQLFreeStmt to deallocate them.
If the SQL_CURSOR_ROLLBACK_BEHAVIOR or SQL_CURSOR_COMMIT_BEHAVIOR value equals
SQL_CB_CLOSE, SQLTransact closes all open cursors on all hstmts associated with the hdbc.
SQLTransact leaves any hstmt present in a prepared state; the application can call SQLExecute for an
hstmt associated with the hdbc without first calling SQLPrepare.
If the SQL_CURSOR_ROLLBACK_BEHAVIOR or SQL_CURSOR_COMMIT_BEHAVIOR value equals
SQL_CB_PRESERVE, SQLTransact does not affect open cursors associated with the hdbc. Cursors
remain at the row they pointed to prior to the call to SQLTransact.
For drivers and data sources that support transactions, calling SQLTransact with either SQL_COMMIT
or SQL_ROLLBACK when no transaction is active will return SQL_SUCCESS (indicating that there is no
work to be committed or rolled back) and have no effect on the data source.
Drivers or data sources that do not support transactions (SQLGetInfo fOption SQL_TXN_CAPABLE is
0) are effectively always in autocommit mode. Therefore, calling SQLTransact with SQL_COMMIT will
return SQL_SUCCESS. However, calling SQLTransact with SQL_ROLLBACK will result in SQLSTATE
S1C00 (Driver not capable), indicating that a rollback can never be performed.

Code Example
See SQLParamOptions.

Related Functions
SQLGetInfo (extension)
SQLFreeStmt

Data Types
Overview
SQL Data Types
C Data Types
ODBC 1.0 C Data Types
Default C Data Types
Transferring Data in its Binary Form
Precision, Scale, Length, and Display Size
Converting Data from SQL to C Data Types
Converting Data from C to SQL Data Types

Overview
Data stored on a data source has an SQL data type, which may be specific to that data source. A driver
maps data source-specific SQL data types to ODBC SQL data types and driver-specific SQL data types.
(A driver returns these mappings through SQLGetTypeInfo. It also returns the SQL data types when
describing the data types of columns and parameters in SQLColAttributes, SQLColumns,
SQLDescribeCol, SQLDescribeParam, SQLProcedureColumns, and SQLSpecialColumns.)
Each SQL data type corresponds to an ODBC C data type. By default, the driver assumes that the C
data type of a storage location corresponds to the SQL data type of the column or parameter to which
the location is bound. If the C data type of a storage location is not the default C data type, the
application can specify the correct C data type with the fCType argument in SQLBindCol, SQLGetData,
or SQLBindParameter. Before returning data from the data source, the driver converts it to the
specified C data type. Before sending data to the data source, the driver converts it from the specified C
data type.
For information about driver-specific SQL data types, see the driver's documentation.

SQL Data Types
The ODBC SQL grammar defines three sets of SQL data types, each of which is a superset of the
previous set.

Minimum        SQL data types provide a basic level of ODBC conformance.
Core        SQL data types are the data types in the X/Open and SQL Access Group SQL CAE

specification (1992) and are supported by most SQL data sources.
Extended        SQL data types are additional data types supported by some SQL data sources.

A given driver and data source do not necessarily support all of the SQL data types defined in the ODBC
grammar. Furthermore, they may support additional, driver-specific SQL data types. To determine which
data types a driver supports, an application calls SQLGetTypeInfo. For information about driver-specific
SQL data types, see the driver's documentation.

Minimum SQL Data Types

The following table lists valid values of fSqlType for the minimum SQL data types. These values are
defined in SQL.H. The table also lists the name and description of the corresponding data type from the
X/Open and SQL Access Group SQL CAE specification (1992).

Note      The minimum SQL grammar requires that a data source support at least one character SQL
data type. This table is only a guideline and shows commonly used names and limits of these data
types. For a given data source, the characteristics of these data types may differ from those listed below.
For information about the data types in a specific data source, see the documentation for that data
source.
To determine which data types are supported by a data source and the characteristics of those data
types, an application calls SQLGetTypeInfo.

fSqlType SQL Data Type Description
SQL_CHAR CHAR(n) Character string of fixed string length n (1 £ n £

254).
SQL_VARCHAR VARCHAR(n) Variable-length character string with a maximum

string length n (1 £ n £ 254).
SQL_LONGVARCHARLONG VARCHAR Variable length character data. Maximum length is

data source-dependent.

Core SQL Data Types

The following table lists valid values of fSqlType for the core SQL data types. These values are defined
in SQL.H. The table also lists the name and description of the corresponding data type from the X/Open
and SQL Access Group SQL CAE specification (1992). In the table, precision refers to the total number
of digits and scale refers to the number of digits to the right of the decimal point.

Note      This table is only a guideline and shows commonly used names, ranges, and limits of core SQL
data types. A given data source may support only some of the listed data types and the characteristics of
the supported data types may differ from those listed below. For example, some data sources support
unsigned numeric data types. For information about the data types in a specific data source, see the
documentation for that data source.
To determine which data types are supported by a data source and the characteristics of those data
types, an application calls SQLGetTypeInfo.

fSqlType SQL Data Type Description
SQL_DECIMAL DECIMAL(p,s) Signed, exact, numeric value with a precision p

and scale s (1 £ p £ 15; 0 £ s £ p).
SQL_NUMERIC NUMERIC(p,s) Signed, exact, numeric value with a precision p

and scale s (1 £ p £ 15; 0 £ s £ p).
SQL_SMALLINT SMALLINT Exact numeric value with precision 5 and scale 0

(signed: -32,768 £ n £ 32,767, unsigned:
0£ n £ 65,535) a.

SQL_INTEGER INTEGER Exact numeric value with precision 10 and scale 0
(signed: -231 £ n £ 231 - 1, unsigned: 0 £ n £ 232
- 1) a.

SQL_REAL REAL Signed, approximate, numeric value with a
mantissa precision 7 (zero or absolute value 10-38
to 1038).

SQL_FLOAT FLOAT Signed, approximate, numeric value with a
mantissa precision 15 (zero or absolute value 10-
308 to 10308).

SQL_DOUBLE DOUBLE
PRECISION

Signed, approximate, numeric value with a
mantissa precision 15 (zero or absolute value 10-
308 to 10308).

a An application uses SQLGetTypeInfo or SQLColAttributes to determine if a particular data type or a particular column in a
result set is unsigned.

Extended SQL Data Types

The following table lists valid values of fSqlType for the extended SQL data types. These values are
defined in SQLEXT.H. The table also lists the name and description of the corresponding data type. In
the table, precision refers to the total number of digits and scale refers to the number of digits to the right
of the decimal point.

Note      This table is only a guideline and shows commonly used names, ranges, and limits of extended
SQL data types. A given data source may support only some of the listed data types and the
characteristics of the supported data types may differ from those listed below. For example, some data
sources support unsigned numeric data types. For information about the data types in a specific data
source, see the documentation for that data source.
To determine which data types are supported by a data source and the characteristics of those data
types, an application calls SQLGetTypeInfo.

fSqlType Typical SQL Data Type Description
SQL_BIT BIT Single bit binary data.
SQL_TINYINT TINYINT Exact numeric value with precision 3 and scale 0

(signed: -128 £ n £ 127, unsigned: 0£ n £ 255) a.
SQL_BIGINT BIGINT Exact numeric value with precision 19 (if signed)

or 20 (if unsigned) and scale 0 (signed: -263 £ n £
263 - 1, unsigned: 0 £ n £ 264 - 1) a.

SQL_BINARY BINARY(n) Binary data of fixed length n (1 £ n £ 255).
SQL_VARBINARY VARBINARY(n) Variable length binary data of maximum length n

(1 £ n £ 255).
SQL_LONGVARBINARY LONG VARBINARY Variable length binary data. Maximum length is

data source-dependent.
SQL_DATE DATE Date data.
SQL_TIME TIME Time data.
SQL_TIMESTAMP TIMESTAMP Date/time data.

a An application uses SQLGetTypeInfo or SQLColAttributes to determine if a particular data type or a particular column in a result
set is unsigned.

C Data Types
Data is stored in the application in ODBC C data types. The Core C Data Types are those that support
the minimum and core SQL data types. They also support some extended SQL data types. The
extended C data types are those that only support extended SQL data types. The bookmark C data type
is used only to retrieve bookmark values and should not be converted to other data types.

Note      Unsigned C data types for integers were added to ODBC 2.0. Drivers must support the integer C
data types specified in both ODBC 1.0 and ODBC 2.0; ODBC 2.0 or later applications must use the
ODBC 1.0 integer C data types with ODBC 1.0 drivers and the ODBC 2.0 integer C data types with
ODBC 2.0 drivers.

The C data type is specified in the SQLBindCol, SQLGetData, and SQLBindParameter functions with
the fCType argument.

Core C Data Types

The following table lists valid values of fCType for the core C data types. These values are defined in
SQL.H. The table also lists the ODBC C data type that implements each value of fCType and the
definition of this data type from SQL.H.

fCType ODBC C Typedef C Type
SQL_C_CHAR UCHAR FAR * unsigned char FAR *
SQL_C_SSHORT SWORD short int
SQL_C_USHORT UWORD unsigned short int
SQL_C_SLONG SDWORD long int
SQL_C_ULONG UDWORD unsigned long int
SQL_C_FLOAT SFLOAT float
SQL_C_DOUBLE SDOUBLE double

Note      Because objects of the CString class in Microsoft C++ are signed and string arguments in
ODBC functions are unsigned, applications that pass CString objects to ODBC functions without casting
them will receive compiler warnings.

Extended C Data Types

The following table lists valid values of fCType for the extended C data types. These values are defined
in SQLEXT.H. The table also lists the ODBC C data type that implements each value of fCType and the
definition of this data type from SQLEXT.H or SQL.H.

fCType ODBC C Typedef C Type
SQL_C_BIT UCHAR unsigned char
SQL_C_STINYINT SCHAR signed char
SQL_C_UTINYINT UCHAR unsigned char
SQL_C_BINARY UCHAR FAR * unsigned char FAR *
SQL_C_DATE DATE_STRUCT struct tagDATE_STRUCT {

          SWORD year; a
          UWORD month; b
          UWORD day; c
}

SQL_C_TIME TIME_STRUCT struct tagTIME_STRUCT {
          UWORD hour; d
          UWORD minute; e
          UWORD second; f
}

SQL_C_TIMESTAMP TIMESTAMP_STRUCT struct tagTIMESTAMP_STRUCT {
          SWORD year; a
          UWORD month; b
          UWORD day; c
          UWORD hour; d
          UWORD minute; e
          UWORD second; f
          UDWORD fraction; g
}

a The value of the year field must be in the range from 0 to 9,999. Years are measured from 0 A.D. Some
data sources do not support the entire range of years.

b The value of the month field must be in the range from 1 to 12.

c The value of day field must be in the range from 1 to the number of days in the month. The number of
days in the month is determined from the values of the year and month fields and is 28, 29, 30, or 31.

d The value of the hour field must be in the range from 0 to 23.

e The value of the minute field must be in the range from 0 to 59.

f The value of the second field must be in the range from 0 to 59.

g The value of the fraction field is the number of billionths of a second and ranges from 0 to 999,999,999 (1
less than 1 billion). For example, the value of the fraction field for a half-second is 500,000,000, for a
thousandth of a second (one millisecond) is 1,000,000, for a millionth of a second (one microsecond) is
1,000, and for a billionth of a second (one nanosecond) is 1.

Bookmark C Data Type

Bookmarks are 32-bit values used by an application to return to a specific row; an application retrieves a
bookmark either from column 0 of the result set with SQLExtendedFetch or SQLGetData or by calling
SQLGetStmtOption.
The following table lists the value of fCType for the bookmark C data type, the ODBC C data type that
implements the bookmark C data type, and the definition of this data type from SQL.H.

fCType ODBC C Typedef C Type
SQL_C_BOOKMARK BOOKMARK unsigned long int

ODBC 1.0 C Data Types
In ODBC 1.0, all integer C data types were signed. The following table lists values of fCType for the
integer C data types that were valid in ODBC 1.0. To remain compatible with applications that use
ODBC 1.0, all drivers must support these values of fCType. To remain compatible with drivers that use
ODBC 1.0, ODBC 2.0 or later applications must pass these values of fCType to ODBC 1.0 drivers.
However, ODBC 2.0 or later applications must not pass these values to ODBC 2.0 or later drivers.

fCType ODBC C Typedef C Type
SQL_C_TINYINT SCHAR signed char
SQL_C_SHORT SWORD short int
SQL_C_LONG SDWORD long int

Because the ODBC 1.0 integer C data types (SQL_C_TINYINT, SQL_C_SHORT, and SQL_C_LONG)
are signed, and because the ODBC integer SQL data types can be signed or unsigned, ODBC 1.0
applications and drivers had to interpret signed integer C data as signed or unsigned.
ODBC 2.0 applications and drivers treat the ODBC 1.0 integer C data types as unsigned only when:

The column from which data will be retrieved is unsigned, and
The C data type of the storage location in which the data will be placed is the default C data type

for that column. (For a list of default C data types, see Default C Data Types.
In all other cases, these applications and drivers treat the ODBC 1.0 integer C data types as signed.
In other words, for any conversion except the default conversion, ODBC 2.0 drivers check the validity of
the conversion based on the numeric data value. For the default conversion, the drivers simply pass the
data value without attempting to validate it numerically and applications interpret the data value
according to whether the column is signed. (Applications call SQLGetTypeInfo to determine whether a
column is signed or unsigned.)
For example, the following table shows how an ODBC 2.0 driver interprets ODBC 1.0 integer C data
sent to both signed and unsigned SQL_SMALLINT columns.

From C Data
Type

To SQL Data Type C Data Values SQL Data Values

SQL_C_TINYINT SQL_SMALLINT
(signed)

-128 to 127 -128 to 127

SQL_SMALLINT
(unsigned)

< 0
0 to 127

--- a
0 to 127

SQL_C_SHORT
(default
conversion)

SQL_SMALLINT
(signed)

-32,768 to 32,767 -32,768 to 32,767

SQL_SMALLINT
(unsigned)

-32,768 to -1
0 to 32,767

32,768 to 65,535
0 to 32,767

SQL_C_LONG SQL_SMALLINT
(signed)

< -32,768
-32,768 to 32,767
> 32,767

--- a
-32,768 to 32,767
--- a

SQL_SMALLINT
(unsigned)

< 0
0 to 32,767
> 32,767

--- a
0 to 32,767
--- a

 (a) The driver returns SQLSTATE 22003 (Numeric value out of range).

Default C Data Types
If an application specifies SQL_C_DEFAULT for the fCType argument in SQLBindCol, SQLGetData, or
SQLBindParameter, the driver assumes that the C data type of the output or input buffer corresponds
to the SQL data type of the column or parameter to which the buffer is bound. For each ODBC SQL data
type, the following table shows the corresponding, or default, C data type. For information about driver-
specific SQL data types, see the driver's documentation.

Note      For maximum interoperability, applications should specify a C data type other than
SQL_C_DEFAULT. This allows drivers that promote SQL data types (and therefore cannot always
determine default C data types) to return data. It also allows drivers that cannot determine whether an
integer column is signed or unsigned to correctly return data.

Note      ODBC 2.0 drivers use the ODBC 2.0 default C data types for both ODBC 1.0 and ODBC 2.0
integer C data.

SQL Data Type Default C Data Type
SQL_CHAR SQL_C_CHAR
SQL_VARCHAR SQL_C_CHAR
SQL_LONGVARCHAR SQL_C_CHAR
SQL_DECIMAL SQL_C_CHAR
SQL_NUMERIC SQL_C_CHAR
SQL_BIT SQL_C_BIT
SQL_TINYINT SQL_C_STINYINT or

SQL_C_UTINYINT a
SQL_SMALLINT SQL_C_SSHORT or SQL_C_USHORT

a

SQL_INTEGER SQL_C_SLONG or SQL_C_ULONG a
SQL_BIGINT SQL_C_CHAR
SQL_REAL SQL_C_FLOAT
SQL_FLOAT SQL_C_DOUBLE
SQL_DOUBLE SQL_C_DOUBLE
SQL_BINARY SQL_C_BINARY
SQL_VARBINARY SQL_C_BINARY
SQL_LONGVARBINARY SQL_C_BINARY
SQL_DATE SQL_C_DATE
SQL_TIME SQL_C_TIME
SQL_TIMESTAMP SQL_C_TIMESTAMP

a If the driver can determine whether the column is signed or unsigned, such as when the driver is
fetching data from the data source or when the data source supports only a signed type or only an
unsigned type, but not both, the driver uses the corresponding signed or unsigned C data type. If the
driver cannot determine whether the column is signed or unsigned, it passes the data value without
attempting to validate it numerically.

Transferring Data in its Binary Form
Among data sources that use the same DBMS, an application can safely transfer data in the internal
form used by that DBMS. For a given piece of data, the SQL data types must be the same in the source
and target data sources. The C data type is SQL_C_BINARY.
When the application calls SQLFetch, SQLExtendedFetch, or SQLGetData to retrieve the data from
the source data source, the driver retrieves the data from the data source and transfers it, without
conversion, to a storage location of type SQL_C_BINARY. When the application calls SQLExecute,
SQLExecDirect, or SQLPutData to send the data to the target data source, the driver retrieves the data
from the storage location and transfers it, without conversion, to the target data source.

Note      Applications that transfer any data (except binary data) in this manner are not interoperable
among DBMS's.

Precision, Scale, Length, and Display Size
SQLColAttributes, SQLColumns, and SQLDescribeCol return the precision, scale, length, and
display size of a column in a table. SQLProcedureColumns returns the precision, scale, and length of a
column in a procedure. SQLDescribeParam returns the precision or scale of a parameter in an SQL
statement; SQLBindParameter sets the precision or scale of a parameter in an SQL statement.
SQLGetTypeInfo returns the maximum precision and the minimum and maximum scales of an SQL
data type on a data source.
Due to limitations in the size of the arguments these functions use, precision, length, and display size
are limited to the size of an SDWORD, or 2,147,483,647.

Precision

The precision of a numeric column or parameter refers to the maximum number of digits used by the
data type of the column or parameter. The precision of a nonnumeric column or parameter generally
refers to either the maximum length or the defined length of the column or parameter. To determine the
maximum precision allowed for a data type, an application calls SQLGetTypeInfo. The following table
defines the precision for each ODBC SQL data type.

fSqlType Precision
SQL_CHAR
SQL_VARCHAR

The defined length of the column or parameter.
For example, the precision of a column defined as
CHAR(10) is 10.

SQL_LONGVARCHAR a, bThe maximum length of the column or parameter.
SQL_DECIMAL
SQL_NUMERIC

The defined number of digits. For example, the
precision of a column defined as NUMERIC(10,3)
is 10.

SQL_BIT c 1
SQL_TINYINT c 3
SQL_SMALLINT c 5
SQL_INTEGER c 10
SQL_BIGINT c 19 (if signed) or 20 (if unsigned)
SQL_REAL c 7
SQL_FLOAT c 15
SQL_DOUBLE c 15
SQL_BINARY
SQL_VARBINARY

The defined length of the column or parameter.
For example, the precision of a column defined as
BINARY(10) is 10.

SQL_LONGVARBINARY
a, b

The maximum length of the column or parameter.

SQL_DATE c 10 (the number of characters in the yyyy-mm-dd
format).

SQL_TIME c 8 (the number of characters in the hh:mm:ss
format).

SQL_TIMESTAMP The number of characters in the "yyyy-mm-dd
hh:mm:ss[.f...]" format used by the TIMESTAMP
data type. For example, if a timestamp does not
use seconds or fractional seconds, the precision is
16 (the number of characters in the "yyyy-mm-dd
hh:mm" format). If a timestamp uses thousandths
of a second, the precision is 23 (the number of
characters in the "yyyy-mm-dd hh:mm:ss.fff"
format).

 (a) For an ODBC 1.0 application calling SQLSetParam in an ODBC 2.0 driver, and for an ODBC
2.0 application calling SQLBindParameter in an ODBC 1.0 driver, when pcbValue is
SQL_DATA_AT_EXEC, cbColDef must be set to the total length of the data to be sent, not the
precision as defined in this table.

 (b) If the driver cannot determine the column or parameter length, it returns SQL_NO_TOTAL.

 (c) The cbColDef argument of SQLBindParameter is ignored for this data type.

Scale

The scale of a numeric column or parameter refers to the maximum number of digits to the right of the
decimal point. For approximate floating point number columns or parameters, the scale is undefined,
since the number of digits to the right of the decimal point is not fixed. (For the SQL_DECIMAL and
SQL_NUMERIC data types, the maximum scale is generally the same as the maximum precision.
However, some data sources impose a separate limit on the maximum scale. To determine the minimum
and maximum scales allowed for a data type, an application calls SQLGetTypeInfo.) The following table
defines the scale for each ODBC SQL data type.

fSqlType Scale
SQL_CHAR a
SQL_VARCHAR a
SQL_LONGVARCHAR a

Not applicable.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the
decimal point. For example, the scale of a column
defined as NUMERIC(10,3) is 3.

SQL_BIT a
SQL_TINYINT a
SQL_SMALLINT a
SQL_INTEGER a
SQL_BIGINT a

0

SQL_REAL a
SQL_FLOAT a
SQL_DOUBLE a

Not applicable.

SQL_BINARY a
SQL_VARBINARY a
SQL_LONGVARBINARY a

Not applicable.

SQL_DATE a
SQL_TIME a

Not applicable.

SQL_TIMESTAMP The number of digits to the right of the decimal
point in the "yyyy-mm-dd hh:mm:ss[.f...]" format.
For example, if the TIMESTAMP data type uses
the "yyyy-mm-dd hh:mm:ss.fff" format, the scale is
3.

a The ibScale argument of SQLBindParameter is ignored for this data type.

Length

The length of a column is the maximum number of bytes returned to the application when data is
transferred to its default C data type. For character data, the length does not include the null termination
byte. Note that the length of a column may be different than the number of bytes required to store the
data on the data source. For a list of default C data types, see the Default C Data Types.
The following table defines the length for each ODBC SQL data type.

fSqlType Length
SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example,
the length of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR a The maximum length of the column.
SQL_DECIMAL
SQL_NUMERIC

The maximum number of digits plus 2. Since these
data types are returned as character strings,
characters are needed for the digits, a sign, and a
decimal point. For example, the length of a column
defined as NUMERIC(10,3) is 12.

SQL_BIT
SQL_TINYINT

1 (one byte).

SQL_SMALLINT 2 (two bytes).
SQL_INTEGER 4 (four bytes).
SQL_BIGINT 20 (since this data type is returned as a character

string, characters are needed for 19 digits and a
sign, if signed, or 20 digits, if unsigned).

SQL_REAL 4 (four bytes).
SQL_FLOAT 8 (eight bytes).
SQL_DOUBLE 8 (eight bytes).
SQL_BINARY
SQL_VARBINARY

The defined length of the column. For example,
the length of a column defined as BINARY(10) is
10.

SQL_LONGVARBINARY
a

The maximum length of the column.

SQL_DATE
SQL_TIME

6 (the size of the DATE_STRUCT or
TIME_STRUCT structure).

SQL_TIMESTAMP 16 (the size of the TIMESTAMP_STRUCT
structure).

a If the driver cannot determine the column or parameter length, it returns SQL_NO_TOTAL.

Display Size

The display size of a column is the maximum number of bytes needed to display data in character form.
The following table defines the display size for each ODBC SQL data type.

fSqlType Display Size
SQL_CHAR
SQL_VARCHAR

The defined length of the column. For example,
the display size of a column defined as CHAR(10)
is 10.

SQL_LONGVARCHAR a The maximum length of the column.
SQL_DECIMAL
SQL_NUMERIC

The precision of the column plus 2 (a sign,
precision digits, and a decimal point). For
example, the display size of a column defined as
NUMERIC(10,3) is 12.

SQL_BIT 1 (1 digit).
SQL_TINYINT 4 if signed (a sign and 3 digits) or 3 if unsigned (3

digits).
SQL_SMALLINT 6 if signed (a sign and 5 digits) or 5 if unsigned (5

digits).
SQL_INTEGER 11 if signed (a sign and 10 digits) or 10 if unsigned

(10 digits).
SQL_BIGINT 20 (a sign and 19 digits if signed or 20 digits if

unsigned).
SQL_REAL 13 (a sign, 7 digits, a decimal point, the letter E, a

sign, and 2 digits).
SQL_FLOAT
SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a
sign, and 3 digits).

SQL_BINARY
SQL_VARBINARY

The defined length of the column times 2 (each
binary byte is represented by a 2 digit
hexadecimal number). For example, the display
size of a column defined as BINARY(10) is 20.

SQL_LONGVARBINARY
a

The maximum length of the column times 2.

SQL_DATE 10 (a date in the format yyyy-mm-dd).
SQL_TIME 8 (a time in the format hh:mm:ss).
SQL_TIMESTAMP 19 (if the scale of the timestamp is 0) or 20 plus

the scale of the timestamp (if the scale is greater
than 0). This is the number of characters in the
"yyyy-mm-dd hh:mm:ss[.f...]" format. For example,
the display size of a column storing thousandths of
a second is 23 (the number of characters in "yyyy-
mm-dd hh:mm:ss.fff").

a If the driver cannot determine the column or parameter length, it returns SQL_NO_TOTAL.

Converting Data from SQL to C Data Types
Overview
SQL to C: Character
SQL to C: Numeric
SQL to C: Binary
SQL to C: Date
SQL to C: Time
SQL to C: Timestamp
SQL to C Data Conversion Examples

Overview: Converting Data from SQL to C Data Types

When an application calls SQLExtendedFetch, SQLFetch, or SQLGetData, the driver retrieves the
data from the data source. If necessary, it converts the data from the data type in which the driver
retrieved it to the data type specified by the fCType argument in SQLBindCol or SQLGetData. Finally, it
stores the data in the location pointed to by the rgbValue argument in SQLBindCol or SQLGetData.

Note      The word convert is used in this section in a broad sense, and includes the transfer of data,
without a conversion in data type, from one storage location to another.

The tables in the following sections describe how the driver or data source converts data retrieved from
the data source; drivers are required to support conversions to all ODBC C data types from the ODBC
SQL data types that they support. For a given ODBC SQL data type, the first column of the table lists the
legal input values of the fCType argument in SQLBindCol and SQLGetData. The second column lists
the outcomes of a test, often using the cbValueMax argument specified in SQLBindCol or
SQLGetData, which the driver performs to determine if it can convert the data. For each outcome, the
third and fourth columns list the values of the rgbValue and pcbValue arguments specified in
SQLBindCol or SQLGetData after the driver has attempted to convert the data. The last column lists
the SQLSTATE returned for each outcome by SQLExtendedFetch, SQLFetch, or SQLGetData.
If the fCType argument in SQLBindCol or SQLGetData contains a value for an ODBC C data type not
shown in the table for a given ODBC SQL data type, SQLExtendedFetch, SQLFetch, or SQLGetData
returns SQLSTATE 07006 (Restricted data type attribute violation). If the fCType argument contains a
value that specifies a conversion from a driver-specific SQL data type to an ODBC C data type and this
conversion is not supported by the driver, SQLExtendedFetch, SQLFetch, or SQLGetData returns
SQLSTATE S1C00 (Driver not capable).
Though it is not shown in the tables, the pcbValue argument contains SQL_NULL_DATA when the SQL
data value is NULL. For an explanation of the use of pcbValue when multiple calls are made to retrieve
data, see SQLGetData. When SQL data is converted to character C data, the character count returned
in pcbValue does not include the null termination byte. If rgbValue is a null pointer, SQLBindCol or
SQLGetData returns SQLSTATE S1009 (Invalid argument value).
The following terms and conventions are used in the tables:

Length of data is the number of bytes of C data available to return in rgbValue, regardless of
whether the data will be truncated before it is returned to the application. For string data, this does not
include the null termination byte.

Display size is the total number of bytes needed to display the data in character format.
Words in italics represent function arguments or elements of the ODBC SQL grammar.

SQL to C: Character

The character ODBC SQL data types are:

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

The following table shows the ODBC C data types to which character SQL data may be converted.

fCType Test rgbValue pcbValue
SQL-
STATE

SQL_C_CHAR Length of data < cbValueMax

Length of data ³ cbValueMax

Data

Truncated
data

Length of
data
Length of
data

N/A

01004

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a
SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG a

Data converted without truncation b

Data converted with truncation of
fractionaldigits b
Conversion of data would result in loss
of whole (as opposed to fractional)digits
b

Data is not a numeric-literal b

Data

Truncated
data
Untouched

Untouched

Size of the
C data type
Size of the
C data type
Untouched

Untouched

N/A

01004

22003

22005

SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the range of the data type
to which the number is being converted
b

Data is outside the range of the data
type to which the number is being
converted b
Data is not a numeric-literal b

Data

Untouched

Untouched

Size of the
C data type
Untouched

Untouched

N/A

22003

22005

SQL_C_BIT Data is 0 or 1 a
Data is greater than 0, less than 2, and
not equal to 1 a
Data is less than 0 or greater than or
equal to 2 a
Data is not a numeric-literal a

Data
Truncated
data
Untouched

Untouched

1 c
1 c

Untouched

Untouched

N/A
01004

22003

22005
SQL_C_BINARY Length of data £ cbValueMax

Length of data > cbValueMax

Data

Truncated
data

Length of
data
Length of
data

N/A

01004

SQL_C_DATE Data value is a valid date-value b
Data value is a valid timestamp-value;
time portion is zero b
Data value is a valid timestamp-value;
time portion is non-zero b, d

Data value is not a valid date-value or
timestamp-value b

Data
Data

Truncated
data
Untouched

6 c
6 c

6 c

Untouched

N/A
N/A

01004

22008

SQL_C_TIME Data value is a valid time-value b
Data value is a valid timestamp-value;
fractional seconds portion is zero b, e

Data value is a valid timestamp-value;
fractional seconds portion is non-zero b,

e, f

Data value is not a valid time-value or

Data
Data

Truncated
data
Untouched

6 c
6 c

6 c

Untouched

N/A
N/A

01004

22008

timestamp-value b
SQL_C_TIMESTAMPData value is a valid timestamp-value;

fractional seconds portion not truncated
b

Data value is a valid timestamp-value;
fractional seconds portion truncated b
Data value is a valid date-value b
Data value is a valid time-value b
Data value is not a valid date-value,
time-value, or timestamp-value b

Data

Truncated
data
Data g
Data h
Untouched

16 c

16 c

16 c
16 c
Untouched

N/A

N/A

N/A
N/A
22008

a For more information, see ODBC 1.0 C Data Types, earlier in this appendix.

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

c This is the size of the corresponding C data type.
d The time portion of the timestamp-value is truncated.

e The date portion of the timestamp-value is ignored.

f The fractional seconds portion of the timestamp is truncated.
g The time fields of the timestamp structure are set to zero.

h The date fields of the timestamp structure are set to the current date.

When character SQL data is converted to numeric, date, time, or timestamp C data, leading and trailing
spaces are ignored.
All drivers that support date, time, and timestamp data can convert character SQL data to date, time, or
timestamp C data as specified in the previous table. Drivers may be able to convert character SQL data
from other, driver-specific formats to date, time, or timestamp C data. Such conversions are not
interoperable among data sources.

SQL to C: Numeric

The numeric ODBC SQL data types are:
SQL_DECIMAL SQL_BIGINT
SQL_NUMERIC SQL_REAL
SQL_TINYINT SQL_FLOAT
SQL_SMALLINT SQL_DOUBLE
SQL_INTEGER
The following table shows the ODBC C data types to which numeric SQL data may be converted.

fCType Test rgbValue pcbValue
SQL-
STATE

SQL_C_CHAR Display size < cbValueMax

Number of whole (as opposed to
fractional) digits < cbValueMax
Number of whole (as opposed to
fractional) digits ³ cbValueMax

Data

Truncated
data
Untouched

Length of
data
Length of
data
Untouched

N/A

01004

22003

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a
SQL_C_SLONG
SQL_C_ULONG
SQL_C_LONG a

Data converted without truncation b

Data converted with truncation of
fractional digits b
Conversion of data would result in loss
of whole (as opposed to fractional) digits
b

Data

Truncated
data
Untouched

Size of the
C data type
Size of the
C data type
Untouched

N/A

01004

22003

SQL_C_FLOAT
SQL_C_DOUBLE

Data is within the range of the data type
to which the number is being converted
b

Data is outside the range of the data
type to which the number is being
converted b

Data

Untouched

Size of the
C data type
Untouched

N/A

22003

SQL_C_BIT Data is 0 or 1 b
Data is greater than 0, less than 2, and
not equal to 1 b
Data is less than 0 or greater than or
equal to 2 b

Data
Truncated
data
Untouched

1 c
1 c

Untouched

N/A
01004

22003

SQL_C_BINARY Length of data £ cbValueMax

Length of data > cbValueMax

Data

Untouched

Length of
data
Untouched

N/A

22003

The bit ODBC SQL data type is:
SQL_BIT
The following table shows the ODBC C data types to which bit SQL data may be converted.

fCType Test rgbValue pcbValue
SQL-
STATE

SQL_C_CHAR cbValueMax > 1
cbValueMax £ 1

Data
Untouched

1
Untouched

N/A
22003

SQL_C_STINYINT
SQL_C_UTINYINT
SQL_C_TINYINT a
SQL_C_SSHORT
SQL_C_USHORT
SQL_C_SHORT a
SQL_C_SLONG

None b Data Size of the
C data type

N/A

SQL_C_ULONG
SQL_C_LONG a
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_BIT None b Data 1 c N/A
SQL_C_BINARY cbValueMax ³ 1

cbValueMax < 1
Data
Untouched

1
Untouched

N/A
22003

a For more information, see ODBC 1.0 C Data Types, earlier in this appendix.

b The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

c This is the size of the corresponding C data type.

When bit SQL data is converted to character C data, the possible values are "0" and "1".

SQL to C: Binary

The binary ODBC SQL data types are:
SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
The following table shows the ODBC C data types to which binary SQL data may be converted.

fCType Test rgbValue pcbValue
SQL-
STATE

SQL_C_CHAR (Length of data) * 2 < cbValueMax

(Length of data) * 2 ³ cbValueMax

Data

Truncated
data

Length of
data
Length of
data

N/A

01004

SQL_C_BINARY Length of data £ cbValueMax

Length of data > cbValueMax

Data

Truncated
data

Length of
data
Length of
data

N/A

01004

When binary SQL data is converted to character C data, each byte (8 bits) of source data is represented
as two ASCII characters. These characters are the ASCII character representation of the number in its
hexadecimal form. For example, a binary 00000001 is converted to "01" and a binary 11111111 is
converted to "FF".
The driver always converts individual bytes to pairs of hexadecimal digits and terminates the character
string with a null byte. Because of this, if cbValueMax is even and is less than the length of the
converted data, the last byte of the rgbValue buffer is not used. (The converted data requires an even
number of bytes, the next-to-last byte is a null byte, and the last byte cannot be used.)

SQL to C: Date

The date ODBC SQL data type is:
SQL_DATE
The following table shows the ODBC C data types to which date SQL data may be converted.

fCType Test rgbValue pcbValue
SQL-
STATE

SQL_C_CHAR cbValueMax ³ 11
cbValueMax < 11

Data
Untouched

10
Untouched

N/A
22003

SQL_C_BINARY Length of data £ cbValueMax

Length of data > cbValueMax

Data

Untouched

Length of
data
Untouched

N/A

22003
SQL_C_DATE None a Data 6 c N/A
SQL_C_TIMESTAMPNone a Data b 16 c N/A

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of the C data
type.

b The time fields of the timestamp structure are set to zero.

c This is the size of the corresponding C data type.

When date SQL data is converted to character C data, the resulting string is in the "yyyy-mm-dd" format.

SQL to C: Time

The time ODBC SQL data type is:
SQL_TIME
The following table shows the ODBC C data types to which time SQL data may be converted.

fCType Test rgbValue pcbValue
SQL-
STATE

SQL_C_CHAR cbValueMax ³ 9
cbValueMax < 9

Data
Untouched

8
Untouched

N/A
22003

SQL_C_BINARY Length of data £ cbValueMax

Length of data > cbValueMax

Data

Untouched

Length of
data
Untouched

N/A

22003
SQL_C_TIME None a Data 6 c N/A
SQL_C_TIMESTAMPNone a Data b 16 c N/A

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of the C data
type.

b The date fields of the timestamp structure are set to the current date and the fractional seconds field of the timestamp structure
is set to zero.

c This is the size of the corresponding C data type.

When time SQL data is converted to character C data, the resulting string is in the "hh:mm:ss" format.

SQL to C: Timestamp

The timestamp ODBC SQL data type is:
SQL_TIMESTAMP
The following table shows the ODBC C data types to which timestamp SQL data may be converted.

fCType Test rgbValue pcbValue
SQL-
STATE

SQL_C_CHAR cbValueMax > Display size

20 £ cbValueMax £ Display size

cbValueMax < 20

Data

Truncated
data b
Untouched

Length of
data
Length of
data
Untouched

N/A

01004

22003
SQL_C_BINARY Length of data £ cbValueMax

Length of data > cbValueMax

Data

Untouched

Length of
data
Untouched

N/A

22003
SQL_C_DATE Time portion of timestamp is zero a

Time portion of timestamp is non-zero a
Data
Truncated
data c

6 f
6 f

N/A
01004

SQL_C_TIME Fractional seconds portion of timestamp
is zero a
Fractional seconds portion of timestamp
is non-zero a

Data d

Truncated
data d, e

6 f

6 f

N/A

01004

SQL_C_TIMESTAMPFractional seconds portion of timestamp
is not truncated a
Fractional seconds portion of timestamp
is truncated a

Data e

Truncated
data e

16 f N/A

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of rgbValue is the size of the C data
type.

b The fractional seconds of the timestamp are truncated.

c The time portion of the timestamp is truncated.

d The date portion of the timestamp is ignored.

e The fractional seconds portion of the timestamp is truncated.

f This is the size of the corresponding C data type.

When timestamp SQL data is converted to character C data, the resulting string is in the "yyyy-mm-dd
hh:mm:ss[.f...]" format, where up to nine digits may be used for fractional seconds. (Except for the
decimal point and fractional seconds, the entire format must be used, regardless of the precision of the
timestamp SQL data type.)

SQL to C Data Conversion Examples

The following examples illustrate how the driver converts SQL data to C data:

SQL Data Type
SQL Data
Value C Data Type cbValueMax rgbValue

SQL-
STATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a N/A
SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a N/A
SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004
SQL_DECIMAL 1234.56 SQL_C_CHAR 4 ---- 22003
SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 N/A
SQL_DECIMAL 1234.56 SQL_C_SSHORT ignored 1234 01004
SQL_DECIMAL 1234.56 SQL_C_STINYINT ignored ---- 22003
SQL_DOUBLE 1.2345678 SQL_C_DOUBLE ignored 1.2345678 N/A
SQL_DOUBLE 1.2345678 SQL_C_FLOAT ignored 1.234567 N/A
SQL_DOUBLE 1.2345678 SQL_C_STINYINT ignored 1 N/A
SQL_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 a N/A
SQL_DATE 1992-12-31 SQL_C_CHAR 10 ----- 22003
SQL_DATE 1992-12-31 SQL_C_TIMESTAMP ignored 1992,12,31,

0,0,0,0 b
N/A

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0 a

N/A

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_TIMESTAMP 1992-12-31
23:45:55.12

SQL_C_CHAR 18 ---- 22003

a "\0" represents a null-termination byte. The driver always null-terminates SQL_C_CHAR data.

b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.

Converting Data from C to SQL Data Types
Overview: Converting Data from C to SQL Data Types
C to SQL: Character
C to SQL: Numeric
C to SQL: Bit
C to SQL: Binary
C to SQL: Date
C to SQL: Time
C to SQL: Timestamp
C to SQL Data Conversion Examples

Overview: Converting Data from C to SQL Data Types

When an application calls SQLExecute or SQLExecDirect, the driver retrieves the data for any
parameters bound with SQLBindParameter from storage locations in the application. For data-at-
execution parameters, the application sends the parameter data with SQLPutData. If necessary, the
driver converts the data from the data type specified by the fCType argument in SQLBindParameter to
the data type specified by the fSqlType argument in SQLBindParameter. Finally, the driver sends the
data to the data source.

Note      The word convert is used in this section in a broad sense, and includes the transfer of data,
without a conversion in data type, from one storage location to another.

The tables in the following sections describe how the driver or data source converts data sent to the
data source; drivers are required to support conversions from all ODBC C data types to the ODBC SQL
data types that they support. For a given ODBC C data type, the first column of the table lists the legal
input values of the fSqlType argument in SQLBindParameter. The second column lists the outcomes of
a test that the driver performs to determine if it can convert the data. The third column lists the
SQLSTATE returned for each outcome by SQLExecDirect, SQLExecute, or SQLPutData. Data is sent
to the data source only if SQL_SUCCESS is returned.
If the fSqlType argument in SQLBindParameter contains a value for an ODBC SQL data type that is not
shown in the table for a given C data type, SQLBindParameter returns SQLSTATE 07006 (Restricted
data type attribute violation). If the fSqlType argument contains a driver-specific value    and the driver
does not support the conversion from the specific ODBC C data type to that driver-specific SQL data
type, SQLBindParameter returns SQLSTATE S1C00 (Driver not capable).
If the rgbValue and pcbValue arguments specified in SQLBindParameter are both null pointers, that
function returns SQLSTATE S1009 (Invalid argument value). Though it is not shown in the tables, an
application sets the value pointed to by the pcbValue argument of SQLBindParameter or the value of
the cbValue argument to SQL_NULL_DATA to specify a NULL SQL data value. The application sets
these values to SQL_NTS to specify that the value in rgbValue is a null-terminated string.
The following terms are used in the tables:

Length of data is the number of bytes of SQL data available to send to the data source,
regardless of whether the data will be truncated before it is sent to the data source. For string data, this
does not include the null termination byte.

Column length and display size are defined for each SQL data type in the section Precision,
Scale, Length, and Display Size.

Number of digits is the number of characters used to represent a number, including the minus
sign, decimal point, and exponent (if needed).

Words in italics represent elements of the ODBC SQL grammar.

C to SQL: Character

The character ODBC C data type is:
SQL_C_CHAR
The following table shows the ODBC SQL data types to which C character data may be converted.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data £ Column length
Length of data > Column length

N/A
01004

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT

Data converted without truncation
Data converted with truncation of
fractional digits
Conversion of data would result in loss
of whole (as opposed to fractional) digits
Data value is not a numeric-literal

N/A
01004

22003

22005
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data is within the range of the data type
to which the number is being converted
Data is outside the range of the data
type to which the number is being
converted
Data value is not a numeric-literal

N/A

22003

22005

SQL_BIT Data is 0 or 1
Data is greater than 0, less than 2, and
not equal to 1
Data is less than 0 or greater than or
equal to 2
Data is not a numeric-literal

N/A
01004

22003

22005
SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

(Length of data) / 2 £ Column length
(Length of data) / 2 > Column length
Data value is not a hexadecimal value

N/A
01004
22005

SQL_DATE Data value is a valid ODBC-date-literal
Data value is a valid ODBC-timestamp-
literal; time portion is zero
Data value is a valid ODBC-timestamp-
literal; time portion is non-zero a
Data value is not a valid ODBC-date-
literal or ODBC-timestamp-literal

N/A
N/A

01004

22008

SQL_TIME Data value is a valid ODBC-time-literal
Data value is a valid ODBC-timestamp-
literal; fractional seconds portion is zero
b

Data value is a valid ODBC-timestamp-
literal; fractional seconds portion is non-
zero b, c

Data value is not a valid ODBC-time-
literal or ODBC-timestamp-literal

N/A
N/A

01004

22008

SQL_TIMESTAMP Data value is a valid ODBC-timestamp-
literal; fractional seconds portion not
truncated
Data value is a valid ODBC-timestamp-
literal; fractional seconds portion

N/A

01004

truncated
Data value is a valid ODBC-date-literal d
Data value is a valid ODBC-time-literal e
Data value is not a valid ODBC-date-
literal, ODBC-time-literal,or ODBC-
timestamp-literal

N/A
N/A
22008

a The time portion of the timestamp is truncated.
b The date portion of the timestamp is ignored.
c The fractional seconds portion of the timestamp is truncated.
d The time portion of the timestamp is set to zero.
e The date portion of the timestamp is set to the current date.

When character C data is converted to numeric, date, time, or timestamp SQL data, leading and trailing
blanks are ignored.
When character C data is converted to binary SQL data, each two bytes of character data are converted
to a single byte (8 bits) of binary data. Each two bytes of character data represent a number in
hexadecimal form. For example, "01" is converted to a binary 00000001 and "FF" is converted to a
binary 11111111.
The driver always converts pairs of hexadecimal digits to individual bytes and ignores the null
termination byte. Because of this, if the length of the character string is odd, the last byte of the string
(excluding the null termination byte, if any) is not converted.
All drivers that support date, time, and timestamp data can convert character C data to date, time, or
timestamp SQL data as specified in the previous table. Drivers may be able to convert character C data
from other, driver-specific formats to date, time, or timestamp SQL data. Such conversions are not
interoperable among data sources.

C to SQL: Numeric

The numeric ODBC C data types are:
SQL_C_STINYINT SQL_C_SLONG
SQL_C_UTINYINT SQL_C_ULONG
SQL_C_TINYINT SQL_C_LONG
SQL_C_SSHORT SQL_C_FLOAT
SQL_C_USHORT SQL_C_DOUBLE
SQL_C_SHORT
For more information about the SQL_C_TINYINT, SQL_C_SHORT, and SQL_C_LONG data types, see
ODBC 1.0 C Data Types, earlier in this appendix. The following table shows the ODBC SQL data types
to which numeric C data may be converted.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Number of digits £ Column length
Number of whole (as opposed to
fractional) digits £ Column length
Number of whole (as opposed to
fractional) digits > Column length

N/A
01004

22003

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT

Data converted without truncation
Data converted with truncation of
fractional digits
Conversion of data would result in loss
of whole (as opposed to fractional) digits

N/A
01004

22003

SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data is within the range of the data type
to which the number is being converted
Data is outside the range of the data
type to which the number is being
converted

N/A

22003

SQL_BIT Data is 0 or 1
Data is greater than 0, less than 2, and
not equal to 1
Data is less than 0 or greater than or
equal to 2

N/A
01004

22003

The value pointed to by the pcbValue argument of SQLBindParameter and the value of the cbValue
argument of SQLPutData are ignored when data is converted from the numeric C data types. The driver
assumes that the size of rgbValue is the size of the numeric C data type.

C to SQL: Bit

The bit ODBC C data type is:
SQL_C_BIT
The following table shows the ODBC SQL data types to which bit C data may be converted.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

None N/A

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

None N/A

SQL_BIT None N/A

The value pointed to by the pcbValue argument of SQLBindParameter and the value of the cbValue
argument of SQLPutData are ignored when data is converted from the bit C data type. The driver
assumes that the size of rgbValue is the size of the bit C data type.

C to SQL: Binary

The binary ODBC C data type is:
SQL_C_BINARY
The following table shows the ODBC SQL data types to which binary C data may be converted.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Length of data £ Column length
Length of data > Column length

N/A
01004

SQL_DECIMAL
SQL_NUMERIC
SQL_TINYINT
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Length of data = SQL data length a
Length of data ¹ SQL data length a

N/A
22003

SQL_BIT Length of data = SQL data length a
Length of data ¹ SQL data length a

N/A
22003

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY

Length of data £ Column length
Length of data > Column length

N/A
01004

SQL_DATE
SQL_TIME
SQL_TIMESTAMP

Length of data = SQL data length a
Length of data ¹ SQL data length a

N/A
22003

a The SQL data length is the number of bytes needed to store the data on the data source. (This may
be different than the column length, as defined earlier in this appendix.)

C to SQL: Date

The date ODBC C data type is:
SQL_C_DATE
The following table shows the ODBC SQL data types to which date C data may be converted.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ³ 10
Column length < 10
Data value is not a valid date

N/A
22003
22008

SQL_DATE Data value is a valid date
Data value is not a valid date

N/A
22008

SQL_TIMESTAMP Data value is a valid date a
Data value is not a valid date

N/A
22008

a The time portion of the timestamp is set to zero.

For information about what values are valid in a SQL_C_DATE structure, see Extended C Data Types,
earlier in this appendix.
When date C data is converted to character SQL data, the resulting character data is in the "yyyy-mm-
dd" format.
The value pointed to by the pcbValue argument of SQLBindParameter and the value of the cbValue
argument of SQLPutData are ignored when data is converted from the date C data type. The driver
assumes that the size of rgbValue is the size of the date C data type.

C to SQL: Time

The time ODBC C data type is:
SQL_C_TIME
The following table shows the ODBC SQL data types to which time C data may be converted.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ³ 8
Column length < 8
Data value is not a valid time

N/A
22003
22008

SQL_TIME Data value is a valid time
Data value is not a valid time

N/A
22008

SQL_TIMESTAMP Data value is a valid time a
Data value is not a valid time

N/A
22008

a The date portion of the timestamp is set to the current date and the fractional seconds portion of the
timestamp is set to zero.

For information about what values are valid in a SQL_C_TIME structure, see Extended C Data Types,
earlier in this appendix.
When time C data is converted to character SQL data, the resulting character data is in the "hh:mm:ss"
format.
The value pointed to by the pcbValue argument of SQLBindParameter and the value of the cbValue
argument of SQLPutData are ignored when data is converted from the time C data type. The driver
assumes that the size of rgbValue is the size of the time C data type.

C to SQL: Timestamp

The timestamp ODBC C data type is:
SQL_C_TIMESTAMP
The following table shows the ODBC SQL data types to which timestamp C data may be converted.

fSqlType Test
SQL-
STATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR

Column length ³ Display size
19 £ Column length < Display size a
Column length < 19
Data value is not a valid date

N/A
01004
22003
22008

SQL_DATE Time fields are zero
Time fields are non-zero b
Data value does not contain a valid date

N/A
01004
22008

SQL_TIME Fractional seconds fields are zero c
Fractional seconds fields are non-zero c,

d

Data value does not contain a valid time

N/A
01004
22008

SQL_TIMESTAMP Fractional seconds fields are not
truncated
Fractional seconds fields are truncated d
Data value is not a valid timestamp

N/A
01004
22008

a The fractional seconds of the timestamp are truncated.

b The time fields of the timestamp structure are truncated.

c The date fields of the timestamp structure are ignored.

d The fractional seconds fields of the timestamp structure are truncated.

For information about what values are valid in a SQL_C_TIMESTAMP structure, see Extended C Data
Types, earlier in this appendix.
When timestamp C data is converted to character SQL data, the resulting character data is in the "yyyy-
mm-dd hh:mm:ss[.f...]" format.
The value pointed to by the pcbValue argument of SQLBindParameter and the value of the cbValue
argument of SQLPutData are ignored when data is converted from the timestamp C data type. The
driver assumes that the size of rgbValue is the size of the timestamp C data type.

C to SQL Data Conversion Examples

The following examples illustrate how the driver converts C data to SQL data:

C DataType C Data Value SQL Data Type
Column
length

SQL Data
Value

SQL-
STATE

SQL_C_CHAR abcdef\0 a SQL_CHAR 6 abcdef N/A
SQL_C_CHAR abcdef\0 a SQL_CHAR 5 abcde 01004
SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 8 b 1234.56 N/A
SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 7 b 1234.5 01004
SQL_C_CHAR 1234.56\0 a SQL_DECIMAL 4 ---- 22003
SQL_C_FLOAT 1234.56 SQL_FLOAT not applicable 1234.56 N/A
SQL_C_FLOAT 1234.56 SQL_INTEGER not applicable 1234 01004
SQL_C_FLOAT 1234.56 SQL_TINYINT not applicable ---- 22003
SQL_C_DATE 1992,12,31 c SQL_CHAR 10 1992-12-31 N/A
SQL_C_DATE 1992,12,31 c SQL_CHAR 9 ---- 22003
SQL_C_DATE 1992,12,31 c SQL_TIMESTAMP not applicable 1992-12-31

00:00:00.0
N/A

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 22 1992-12-31
23:45:55.12

N/A

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 21 1992-12-31
23:45:55.1

01004

SQL_C_TIMESTAMP 1992,12,31,
23,45,55,
120000000 d

SQL_CHAR 18 ---- 22003

a "\0" represents a null-termination byte. The null-termination byte is required only if the length of the data is SQL_NTS.

b In addition to bytes for numbers, one byte is required for a sign and another byte is required for the decimal point.

c The numbers in this list are the numbers stored in the fields of the DATE_STRUCT structure.

d The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT structure.

