
Contents

Manual Ordering

Instructions for the User

Instructions for the User

Embedding ADABAS Calls in anApplication Program

Introduction

General Rules

The Declare Section

Host Variables

Indicator Variables

Generating Host Variables

Generating Column Names

Messages Returned via the SQLCA Structure

The Whenever Statement

Dynamic SQL Statements

ADABAS SQLDA Structure

Using the Descriptor

Overview of the Sequences of SQL Statements

The Macro Mechanism

Programming Instructions

Processing Sets and Single Rows

General Instructions

Users

Transactions

Locks

Timeouts

Optimizing SQL Statements

Compatibility with Other Database Systems

ANSI

DB2

ORACLE

The ADABAS Precompiler

The ADABAS Precompiler

ADABAS Precompiler Functions

Functions of the ADABAS Runtime System

Precompiler Debugging Aids

ADABAS Precompiler Statements

Include Statements

Declare Statements

Whenever Statements

ADABAS Statement

ADABAS Macro Statement

Dynamic SQL Statements

ADABAS Cursor Statements

Trace Statements

ADABAS Database Statements

Command Statements

QUERY Commands

Appendix 1: Syntax of the Declare Section

Appendix 1: Syntax of the Declare Section

Appendix 2

Internal Return Codes of the Precompiler

Return Codes of an ADABAS Application

Return Codes of the CPC Call

Manual Ordering

Manual Order Number:    ESD611-035WOU

This online help is applicable to ADABAS D Version 6.1.1 PE and to all subsequent releases,
unless otherwise indicated in new editions or technical newsletters.

Specifications contained herein are subject to change and these changes will be reported in
subsequent revisions or editions.

Readers' comments are welcomed. Comments may be addressed to the Documentation
Department at the address on the back cover.

Ó        March 1995, SOFTWARE AG, Germany & SOFTWARE AG of North America, Inc.

All rights reserved
Printed in the Federal Republic of Germany

The SOFTWARE AG documentation often refers to numerous hardware and software products by
their trade names. In most, if not all cases, these designations are claimed as trademarks or
registered trademarks by their respective companies.

Instructions for the User

This user online help describes how to embed ADABAS calls in applications written in the
programming language C. It is also possible to embed ADABAS calls in C++ programs, provided
that the restrictions described in the following sections are taken into consideration for SQL
statements, especially for declare sections.

The online help contains an introduction to the concepts, based on examples. Complete examples
are distributed together with the database installation kit.

Lists of the SQL statements are included for reference purposes. Messages and error codes are
described in the online help ADABAS Messages and Codes, and the operating system
dependencies are detailed in the platform-specific ADABAS User Manuals.

The syntax used for SQL statements is identical to that used in the Reference online help. To
summarize, the following notation applies:

 ::= 'is in the permissible form'
 <...> syntax variable which must be replaced
 ...|... alternative
 [...] optional

Introduction

The database language SQL is the interface between application programs and the ADABAS
database. Database operations are invoked by SQL statements embedded in application
programs. By means of special program variables - the so called host variables - values are
interchanged between the program and the database. A language-specific ADABAS precompiler
checks the syntax and semantics of the embedded SQL statements and transforms them into calls
of procedures of the ADABAS runtime system. The compiler of the programming language used
translates the source program generated by the precompiler into machine code.

This online help requires basic knowledge of the elementary SQL statements. Whenever the usage
of SQL statements in the programs differs from that within the ADABAS tool components, these
differences are explained in detail. The Tutorial offers an introduction to SQL. All the other possible
SQL statements are described in the Reference online help, and the meanings of the return codes
are described in the online help Messages and Codes.

General Rules

The keywords 'exec sql' precede SQL statements in order to distinguish them from statements of
the corresponding programming language. These keywords are not components of the SQL
statement.

In addition to SQL statements, it is possible to perform QUERY commands, REPORT sequences,
and COMMAND system calls from programs. The keywords 'exec query' precede QUERY
commands, 'exec report' precede REPORT sequences, and 'exec command' precede COMMAND
system calls. Otherwise, the rules which apply to SQL statements are valid.

A semicolon terminates each SQL statement.

The keywords 'exec' and 'sql' must be placed on the same line. They may only be separated by
blanks. Each SQL statement, including the 'exec sql' prefix, can extend to several lines.

An SQL statement can be interrupted by comments in C format (designated by '/*' and '*/'). Within
an SQL statement, comments can also be placed at the end of a line. They must be preceded by
the characters '--'.

Identifiers declared in the program must not begin with the characters 'sq'.

By means of the SQL statement 'exec sql include <filename>', any arbitrary source text can be
inserted into the program. The source text is stored in the specified file and must not contain an
include statement of its own.

Return codes of the database system which, for example, inform about error occurrences, are
returned via the global structure SQLCA (SQL Communication Area). The component sqlcode
contains encoded messages regarding the execution of an SQL statement. This code should be
checked whenever ADABAS has been called.

The variables of the programming language which are used for the transfer of values from and to
the database are called host variables. They are declared in a special section called the
declare section.
The parts to be analyzed by the precompiler (declare section, include sqlca, and SQL statements)
must not be components of preprocessor include statements.

Host variables which are used in SQL statements are preceded by a colon. They have the form
':var' and can therefore be distinguished from ADABAS identifiers. When they are used outside of
SQL statements, the colon is omitted.

Example:

To process null values (undefined values) of the ADABAS database system, special host variables, called
indicator variables (indicators), are required. These are specified - also with a preceding colon -
immediately after the corresponding host variable. Their value indicates whether null values have been
encountered or whether character strings have been truncated when they were passed to host variables.

Within SQL statements, host variables can only be used at those positions where the SQL syntax allows
parameters (for more details refer to the Reference online help). In particular, no table names can be
specified via host variables. To substitute table and column names, there is a separate macro mechanism
available.

When the option check is set, the precompiler tests the SQL statements by making one sequential
pass through the program. For a correct check of the SQL statements, it is therefore important to
observe the following conventions about the static position of SQL statements:

- 'create table' precedes 'insert', 'update', 'delete', 'select'. These five precede 'drop table'.

- 'select' precedes 'fetch'. (An unambiguous assignment of select statement and fetch loop must

be possible.)

- 'declare cursor' precedes 'open', 'open' precedes 'fetch', 'fetch' precedes 'close'.

- In the case of dynamic statements, 'prepare' precedes 'execute', 'declare', 'describe', 'open',

'fetch', and 'close'.

- In the case of macros, it is necessary to call set macro before using the macro parameter

specified in an SQL statement.

These conventions do not affect the dynamic order of the SQL statements at execution time.

Deviations from the above conventions result in confusing warnings when precompiling with the
option check, because the context of an SQL statement is not correct. In such a case, the option
check makes no sense.

A program can also operate in multi-db mode. Thus operations on up to eight different ADABAS
databases can be performed simultaneously; i.e., eight concurrent sessions can exist on different

databases. SQL statements of the second database session begin with 'exec sql 2'. The database
session number (sessionno) 2 must be separated with blanks from 'exec sql'. Similarly, the third
database session begins with 'exec sql 3' and the fourth with 'exec sql 4', etc.

Prior to the connect for the second and any other database session, the servernode and the name
of the respective database may be specified with 'exec sql n set
serverdb <serverdb> [on <servernode>]'. If 'set serverdb' is not specified, the values are taken from
the XUSER file. The keywords and the session number 'n' must be placed on the same line and
may only be separated by blanks.

Calling xuser creates the XUSER file. It is possible to make eight different entries with 'userkey',
'username', 'servernode', 'serverdb', 'timeout', 'isolation level', and 'sqlmode'. (For the generation of
the XUSER file, see the platform-specific ADABAS User Manuals.)

The Declare Section

The declare section defines an interface for the interchange of values between the database
system and the program. All the host variables and indicators to be used in SQL statements are
made known to the precompiler in this interface.

The declare section begins with the SQL statement 'exec sql begin declare section' and ends with
'exec sql end declare section'.

This area may be repeated within the program.

The basic data types 'struct' and, if defined in a declare section,    type names, are permitted. As
storage classes, 'typedef', 'static', 'extern', and 'auto' may be specified. Declarations may be made
outside functions as well as within functions. Declarators may contain one pointer declarator and up
to four array declarators. Arrays of pointers are valid, but not pointers to arrays. If character
pointers are used as SQL parameters, the precompiler cannot check the lengths and therefore
returns a warning. At runtime, the character pointer must point to a character string delimited by
zero. The array boundaries in declarators must also be specified for the storage class 'extern'; in
this case, they must lie within the range of the corresponding external definitions.

Besides declarations, a declare section may contain type definitions and #define lines (constant
definitions) without parameters for positive integers. The names defined hereby can be specified as
array boundaries.

The parts that are to be analyzed by the precompiler (declare section, SQL statements) must not
be components of #include files, but must be specified in the source text or in 'exec sql include'
files.

For efficiency reasons, it is advisable to include only data in the declare section that will actually be
used as host variables.

The syntax allowed within the declare section is described in Appendix 1.

Host Variables

See

General Host Variable Conventions

Predefined Data Types

Structures in Host Variables

General Host Variable Conventions

- The identifier of a host variable may have a maximum length of 32 characters.

- A host variable must not begin with 'sq'.

- A host variable can be a structure or an array.

- A structure may contain arrays.

- Arrays of structures are possible.

- Pointer variables of permitted data types and structures are possible. Pointers to pointers or

pointers to arrays are not allowed.

- Host variables of type char [] can be declared one byte longer than the corresponding

ADABAS columns so that they are long enough to receive the delimiting zero byte. When
transferring to ADABAS, the contents of the variable (without the zero byte) are passed and
the ADABAS column is padded with blanks, if necessary. When transferring to host variables,
trailing blanks are deleted and the delimiting zero byte is placed immediately after the last non-
blank character or, if there are no blank characters, right on the last character (in this case, the
last character will be overwritten!).

- According to the C notation, a host variable name in uppercase letters is not identical to the

same host variable name in lowercase letters.

The scalar C host variables can be contrasted with the corresponding ADABAS data types:

If the data types do not correspond to each other but are of the same category (numeric or character
string), then they will be converted. Also numeric values are converted into character strings and vice
versa. At precompilation time, the precompiler tests whether the target variable can receive the maximum
value of the source variable when values are transferred between database and program. If this is not the
case, a warning is issued in the precompiler listing.

ADABAS columns of type 'date' hold date information in the form YYYYMMDD (year, month, day);
ADABAS columns of type 'time' hold time information in the form HHHHMMSS (hour, minute,
second), ADABAS columns of the type 'timestamp' hold information in the form
YYYYMMDDHHMMSSMMMMMM (year, month, day, hour, minute, second, microsecond). The
data type 'timestamp' is only valid in sqlmode ADABAS.

Options set during precompilation allow you to vary the representation of 'date', 'time', and
'timestamp'.

The following table indicates the conversion possibilities (x) and the errors and warnings which may
occur:

1 An overflow can occur in this case (sqlcode < 0).

1a See 1, if host variable -> ADABAS variable.

1b See 1, if ADABAS variable -> host variable.

2 In such a case, any places after the decimal point, as well as any mantissa places, will be

truncated if necessary (indicator value: > 0).

3 In this case, any characters to the right will be truncated, if necessary, whereby sqlwarn1 will

be set and the length of the associated ADABAS output column will appear in the indicator
(indicator value > 0).

4 Not allowed (sqlcode != 0).

5 An overflow can occur when numeric values are converted into character values (sqlcode < 0).

6 An overflow or an invalid number (sqlcode < 0) can occur when character values are

converted into numeric values.

7 The value zero is mapped to 'false', all values not equal to zero are mapped to 'true'.

Predefined Data Types

The following data types are predefined by the precompiler. They may be used in the declare
section for the declaration of host variables:

See also

DECIMAL

VARCHAR

DECIMAL

 <dcmltysp> ::= <dcmldef> | <dcmlref>

 <dcmldef> ::= 'DECIMAL' <dcmltag> '{' <dcmlscale> '}'

 <dcmlref> ::= 'DECIMAL' <identifier>

 <dcmltag> ::= <identifier> | <empty>

 <dcmlscale> ::= <dcmldigits> | <dcmldigits> ',' <dcmlfract> |
 <empty>

 <dcmldigits> ::= <identifier> | <unsigned_integer>

 <dcmlfract> ::= <identifier> | <unsigned_integer>

 <empty> ::=

The data type 'decimal' may be used for the declaration of variables to which fixed point numbers in
packed decimal representation are assigned. The number of decimal digits is defined by
<dcmldigits> (<= 15), the number of fractional digits is defined by <dcmlfract> (<= <dcmldigits>).
The default is 5, 0. These specifications are used during runtime for the conversion of SQL
parameters and database columns of the type 'fixed'. The usage of the data type 'decimal' exactly
correlates the value ranges of parameters to those of database columns, so that rounding and
overflow errors are not possible. The representation in memory is done in a byte array, where the
decimal digits are stored in successive half bytes. The sign is coded in the rightmost (least
significant) half byte ('+' as 0XC and '-' as 0XD). The remaining positions occupy the digits in right-
justified representation.

The precompiler replaces the declaration of 'decimal' variables by a structure declaration:

DECIMAL {n, f} v; is replaced by
struct {char arr[m];} v, where
m = (n + 2)/ 2 (integer division) applies.

Examples of valid 'decimal' declarations are:

DECIMAL {} a, *b, c [20]; /* variable declaration
 with the default values 5, 0 */

DECIMAL {6} d; /* d is a variable with 6
 decimal digits */

DECIMAL LONGDEC {15, 2}; /* LONGDEC is a tag for decimal numbers
 with 15 digits and 2 fractional
 digits */

DECIMAL LONGDEC e, f; /* LONGDEC is used for the declaration of
 the variables e and f */

VARCHAR

 <vchtysp> ::= 'VARCHAR' | 'varchar'

The data type 'VARCHAR' may be used for the declaration of variables to which character strings
of variable length are assigned. A VARCHAR declaration must contain at least either an array
declarator or a pointer declarator. The last array declarator defines the maximum length (<= 32767
) of the variable. For a VARCHAR declaration with pointer declarator, the maximum length is
undefined; the program has to assign storage space during runtime. The current length of a
VARCHAR variable is defined by the length field, zero bytes are ignored in the calculation of the
length. The precompiler replaces the declaration of VARCHAR variables by a structure declaration:

VARCHAR v {n}; is replaced by

struct {
 unsigned short len;
 unsigned char arr [n];
 } v; where

len is assigned the current length
 of the character string and
arr is assigned the characters.

VARCHAR *v; is replaced by

struct {
 unsigned short len;
 unsigned char arr [1];
 } *v;

Examples of valid varchar declarations are:

VARCHAR a [21], b [100] [133]; /* a is a variable of length
 21 and b an array of 100
 elements of length 133 */

typedef VARCHAR LONGSTRING [65534]; /* type definition */

LONGSTRING c, d; /* c and d are variables of
 type LONGSTRING */

typedef VARCHAR *PVC; /* definition of the pointer
 type PVC */

PVC p; /* declaration of the VARCHAR
 pointer p */

For example, the following statements can be used to assign storage space to p:

n = 100; /* maximum length of the VARCHAR variable */

p = (PVC) malloc (sizeof (p->len) + n * sizeof (p->arr));

VARCHAR pointers of a fixed maximum length can be declared in the following way:

typedef VARCHAR VC30 [30]; /* VARCHAR type of length 30 */

VC30 *q; /* q is a pointer to a VARCHAR of the
 maximum length 30 */

The following statement is used to assign storage space to q:

q = (VC30*) malloc (sizeof (VC30));

Structures in Host Variables

A structure specified as parameter ':var' is expanded into its individual components. This is useful,
e.g., in the into clause of the select statement. Data is passed in the order of component
declarations. The mapping to table columns described here may only be applied to arrays if the
precompiler option comp is specified. Compare the section 'Array Statements'. For component
arrays with several dimensions, the last dimension is run through first. Thereby the indicator
variables needed can also be specified as array or structure which must contain at least as many
components as the host variable.

Indicator Variables

If null values (undefined values) are to be processed or truncations are to be recognized when
assigning column values to host variables, it is necessary to specify an indicator variable in addition
to each host variable. These indicator variables must be declared as (long or short) int in the
declare section.

An indicator variable is specified in an SQL statement after the pertinent host variable. It begins,
like the host variable, with a colon.

Possible Indicator Values:

When values are transferred from optional columns (i.e., columns where null values may occur) to host
variables by a select or fetch statement, an indicator variable must be specified, otherwise a negative
sqlcode will be issued and the condition sqlerror will be set when a null value is selected. When
precompiling with the option check, the message will appear as a warning at precompilation time.
The indicator variable shows whether a null value has been selected (indicator value is -1). It is also
possible to enter a null value into a column by means of the indicator variable. The indicator variable must
be set to the value -1 before calling it within an SQL statement. The value in the corresponding host
variable will be ignored.

An indicator value > 0 is only set for result host variables. It defines the original column length in
the database.

Example:

Generating Host Variables

A structure can be generated for a table by means of the include statement. This structure may
then be used as a host variable. To do so, the option check must be set and the file <filename>
must not exist. Then a database session with the predefined user specifications will be opened in
order to be able to fetch the corresponding pieces of information from the database and to generate
the file <filename>.

The file <filename> contains the structure which was generated from the table. The name of the
table (default) or any other name (as clause) may be given to this structure. Another structure may
be generated in addition which can be specified as an indicator (ind clause). Component names
are derived from a table's column names. The names of the indicator structure are also derived
from the table name and column names; they are provided with the prefix 'I'.

If long columns are contained in the table, a character string of 8240 characters is generated as
host variable for each long column. The precompiler returns a warning. The programmer can use
an editor to insert the desired length or another host variable.

Example:

A table may be defined by:

Then a program may contain the following statements:

The include statement generates the declarations:

Generating Column Names

The name of a structure or array variable can also be specified as '!var', e.g., in the <select list> of
the select statement. This has the same effect as the explicit specification of the individual
components in their order of definition. Instead of the exclamation mark, the character tilde ('~var')
may also be used.

The column names are derived from the variable declarations according to the following rules:

1. The name of the variable 'var' itself as well as any specified index references are not taken

into account (but compare rule 6).

2. If 'cmp1' is a component of the first level, then all the assigned column names begin with

'cmp1'.

3. If 'cmpn' is a component of the n-th level with n > 1, then the assigned column names are

continued with '_cmpn'.

4. If 'cmp' is any component array with m dimensions (m <= 4), then the assigned column names

are continued with 'i1_i2_..._im', whereby i1 ... im can assume all values from 1 to the number
of indexes of the particular dimension and the last dimension is run through first. Leading
zeros of the indexes are not taken into account. If the array is single-dimensional, only 'i1'
(without '_') is generated. If the array components are scalar, every component is assigned to
exactly one column name.

5. If 'cmp' is any scalar component, then it is assigned to exactly one column name.

6. If 'var' is an array with scalar elements, then, deviating from rule 1, the assigned column

names begin with 'var' and are continued according to rule 4.

Instead of the specification '!var', any structured component of 'var' can be selected, e.g., '!var.x.y'.
In this case, a corresponding subset of column names is generated according to the rules 1 to 4.
The column names formed according to the rules 1 to 6 may contain up to 18 characters.
Example:

Messages Returned via the SQLCA Structure

The data structure SQLCA is automatically included in each ADABAS application program. The
database stores information about the execution of the last SQL statement in the components of
the SQLCA. This section explains the meanings of the SQLCA components that are important for
application programming; the exact structure of SQLCA is described after this section.

The components of the SQLCA have the following meanings:

sqlcaid is a character string of length 8.

It contains the character string 'SQLCA      ' and serves to find the SQLCA during
analyzis of a dump.

sqlcabc is a 4-byte integer.

It contains the length of the SQLCA in bytes.

sqlcode is a 4-byte integer.

It contains the return code. The value 0 indicates the successful execution of a
statement. Codes greater than 0 indicate normal exceptional situations which
can occur during the execution of an SQL statement and which should be
handled within the program. Codes smaller than 0, on the other hand, indicate
errors which can arise through invalid SQL statements, the violation of
restrictions, or database system errors; these errors should result in aborting the
program. Precompiler errors lie in the ranges from -700 to -899 and from -9801
to -9820. They are described in the online help Messages and Codes.

Exceptional situations can be:

+100 ROW NOT FOUND
+200 DUPLICATE KEY
+250 DUPLICATE SECONDARY KEY
+300 INTEGRITY VIOLATION
+320 VIEW VIOLATION
+350 REFERENTIAL INTEGRITY VIOLATED
+360 FOREIGN KEY INTEGRITY VIOLATION
+400 LOCK COLLISION
+450 LOCK COLLISION CAUSED BY PENDING LOCKS
+500 LOCK REQUEST TIMEOUT
+600 WORK ROLLED BACK
+650 WORK ROLLED BACK
+700 SESSION INACTIVITY TIMEOUT
 (WORK ROLLED BACK)
+750 TOO MANY SQL STATEMENTS (WORK ROLLED BACK)

sqlerrml is a 2-byte integer.

It contains the length of the error message from 'sqlerrmc'.

sqlerrmc is a character string of length 70.

It contains an explanatory text for any sqlcode value not equal to zero. The user
can select the language of this text (e.g., English or German) via the SET menu
of the tool components.

sqlerrd is an array of six 4-byte integers.

Sqlerrd indicates in the third element how many rows have been retrieved,
inserted, updated or deleted by the SQL statement. If it contains the value -1,

the number of rows retrieved is not known. If errors occurred in array
statements, it contains the number of the last row which was processed
correctly.
If syntax errors occurred in an ADABAS statement, the sixth element contains
the position in the command buffer where an error was detected. The indicated
position does not refer to a position within the program text, but to a position
within the command buffer at the point in time of sending to the ADABAS kernel.
For array statements, this value is undefined. In all the other cases, it is zero.
A value not equal to 0 is also written to the trace file.
The other elements in the array are not used.

sqlwarn0 is a character.
It is set to 'W' if at least one of the warnings 'sqlwarn1' to 'sqlwarnf' has the
value 'W'. Otherwise, 'sqlwarn0' has the value ' '. The characters 'W' for warning
set and ' ' for warning not set apply to all warnings.

sqlwarn1 is a character.

It indicates whether character strings (ADABAS data type 'char') have been
truncated during the assignment to host variables. When this character has the
value 'W', an indicator variable may exist which indicates the length of the
original character strings.

sqlwarn2 is a character.

It is set if null values occurred and were ignored during the execution of the SQL
functions count (not countc(*)), min, max, avg, sum, stddev or variance.

sqlwarn3 is a character.

It is set if the number of result columns of a 'select' or 'fetch' is not equal to the
number of host variables in the into clause.

sqlwarn4 is a character.

It is set if an 'update' or 'delete' has been executed without a where clause, i.e.,
on the entire table.

sqlwarn6 is a character.

It is set if, for an operation on date or timestamp in the database, an adaptation
to a correct date was made.

sqlwarn8 is a character.

It is set if, for the generation of a result table, it was necessary to search through
the entire table(s).

sqlwarna is a character.

It is set when it was not possible to check all serverdbs in a distributed database
for the following functions:
- for a select statement on system tables.
- when accessing tables without an <authid> specification.

sqlwarnb is a character.

It is set if a time value is > 99 (or > 23 in USA format). The value will be
corrected to modulo 100 (or 24).

sqlwarnc is a character.

It is set if, in the case of a select statement, more rows have been found than
are allowed by rowno in the where clause.

sqlwarnd is a character.
It is set if, in the case of a select statement, the search was performed via a
simply-indexed column which may contain null values. Null values are not
written to the index list; i.e., the select statement must be formulated differently
if you want to obtain the null values.

sqlwarne is a character.

It is set if the value of the secondary key has changed (transition to the next
index list) during the execution of one of the SQL statements 'select next',
'select prev', 'select first' or 'select last' by means of a secondary key.

sqlwarnf is a character.

It is set if the current serverdb does not belong to the majority and a select
statement was executed on a replicated table. This table could have been
changed in the majority. It is therefore not ensured that on this serverdb, the
select statement produces the same result that would have been determined for
a serverdb belonging to the majority.

sqlresultn is a character string of length 18.

After calling a select statement, it contains the result table name. After other
calls 'sqlresultn' is set to blank.

sqlcursor is a binary number of 2 bytes length.

It designates the last column number of a row on the screen after calling a
QUERY or REPORT command.

sqlpfkey is a binary number of 2 bytes length.

It designates the last-used function key after calling a QUERY or REPORT
command. Only the number of the function key is stored.

sqlrowno is a binary number of 2 bytes length.

After calling a REPORT command, it contains the number of the row (rowno) in
the result list on which the cursor was positioned when leaving the report. If the
cursor is not positioned, 0 is returned.

sqlcolno is a binary number of 2 bytes length.

After calling a REPORT command, it contains the number of the column (colno)
in the result list on which the cursor was positioned when leaving the report. If
the cursor is not positioned, 0 is returned.

sqldatetime is a binary number of 2 bytes length.

It indicates the way in which the data types date, time, and timestamp are
interpreted. Values:
1 = Internal, 2 = ISO, 3 = USA, 4 = EUR, 5 = JIS.

The components of SQLCA that are not described in detail are required for internal purposes.

SQLCA Structure

The following data area is automatically included in order to receive the ADABAS error messages:

typedef struct {

 sqlint4 sqlenv;
 char sqlcaid[8];
 sqlint4 sqlcabc,
 sqlcode;
 sqlint2 sqlerrml;
 char sqlerrmc[70];
 char sqlerrp[8];
 sqlint4 sqlerrd[6];
 char sqlwarn0,
 sqlwarn1,
 sqlwarn2,
 sqlwarn3,
 sqlwarn4,
 sqlwarn5,
 sqlwarn6,
 sqlwarn7,
 sqlwarn8,
 sqlwarn9,
 sqlwarna,
 sqlwarnb,
 sqlwarnc,
 sqlwarnd,
 sqlwarne,
 sqlwarnf;
 char sqlext[12];
 sqlnname sqlresn;
 sqlint2 sqlcursor,
 sqlpfkey,
 sqlrowno,
 sqlcolno,
 sqlmfetch;
 sqlint4 sqltermref;
 sqlint2 sqldiapre,
 sqldbmode,
 sqldatetime;
 char sqlstate [6];
 sqlargline sqlargl;
 sqlgatype *sqlgap;
 sqlratype *sqlrap;
 sqloatype *sqloap;
 sqlmatype *sqlmap;
 sqlmftype *sqlmfp;

 sqldiaenv *sqlplp;
 SQLERROR *sqlemp,
 sqlcxatype sqlcxa;
 }
 sqlcatype;

The Whenever Statement

The function of whenever statements is to perform general error and exception handling routines
for all subsequent SQL statements. Different kinds of errors and exceptions can thereby be
distinguished. In application programming, whenever statements help to handle error situations.
Whenever statements should always be used when 'sqlcode' or 'sqlwarning' is not checked after
every individual SQL statement. Those SQL statements are considered to be subsequent that
textually (statically) follow the whenever statement in the program. A whenever error handling
routine is valid until it is changed by another whenever statement.

The whenever statement checks four classes of ADABAS return codes (values of sqlwarn0 or
sqlcode) and offers four standard actions that can be taken in response.
The general format of the whenever statement is:

whenever <condition> <action>

One of the following cases can be specified for <condition>:

sqlwarning exists when 'sqlwarn0' is set to 'W'. Then, at least one 'sqlwarning' is set.

sqlerror indicates that 'sqlcode' has a negative value, which means that an unexpected

error occurred. The program should be aborted and analyzed. The possible
error codes and adequate user actions in response to them are described in the
online help Messages and Codes.

sqlexception indicates a positive sqlcode value greater than 100.

Messages of this kind generally are exceptional cases which should be handled
within the program.

not found is valid when no (further) table row has been found and 'sqlcode' has the value

+100 (ROW NOT FOUND).

One of the following cases can be specified for <action>:

stop causes the regular resetting of the current transaction and abortion of the

program (COMMIT WORK RELEASE).

continue does not perform an action when the condition occurs and therefore suspends

another whenever condition which has previously been set.

go to <lab> causes a jump to the indicated label (maximum length of the label: 45

characters).

call <proc> has the effect that the specified function will be executed. The function call may

have a maximum length of 50 characters, parameters inclusive.

If no whenever statements are included, 'continue' is the default action for all conditions. User error
handling can be implemented by checking 'sqlcode'. If another whenever statement has previously
been specified, it must be suspended by 'whenever ... continue'.

If SQL statements are issued in the whenever error handling code, then the corresponding
whenever action must be set to 'continue' in order to avoid an endless loop generated by repeated

calls of the whenever error handling routine.

The whenever statements can also be used to call C functions before and after each SQL
statement (see the chapter 'Whenever Statements ').

Example:

In this example, the procedure 'warnproc' is called for all SQL statements when 'sqlwarn0' is set. The
standard error handling for a negative sqlcode, on the other hand, varies. Only the select statement lies
within the scope of the first whenever sqlerror statement. The second whenever sqlerror statement refers
to all subsequent SQL statements. The delete statement is not placed within the scope of a (preceding)
whenever sqlerror statement. Therefore, the default action 'continue' is operative.

Dynamic SQL Statements

Dynamic SQL statements serve to support applications which can only decide at runtime which of
the SQL statements is to be executed. For example, a user might want to enter an SQL statement
from the terminal and to have it executed at once.

Dynamic statements can also be executed in a DB2- or ORACLE-compatible way. In such a case,
the option sqlmode must be enabled for precompilation (see the chapter 'ANSI').

See also

Dynamic SQL Statements without Parameters

Dynamic SQL Statements with Parameters

Dynamic SQL Statements with Descriptor

Dynamic SQL Statements without Parameters

In the simplest case, an SQL statement is dynamically executed which returns no results except for
setting the 'sqlcode' in the SQLCA; i.e.: this statement has no host variables. For such a case,
there is the dynamic SQL statement 'execute immediate'.

The SQL statement which is to be executed dynamically can either be specified in a host variable
or as a character string (literal).

Example:

Dynamic SQL Statements with Parameters

Dynamic SQL statements can be parameterized with host variables; e.g., the values of the insert
statement are to be entered at the terminal.

For dynamic execution of parameterized SQL statements, the ADABAS precompiler offers a
procedure which consists of two steps:

- Preparation of the SQL statement to be executed dynamically by means of the prepare

statement. In this phase, it will be stipulated how many host variables are to be inserted at
which positions within the SQL statement. The positions intended for the host variables are
identified by a '?'.

- Execution of the prepared SQL statement by means of the execute statement. The SQL

statement to be executed is identified by a name which has been given to it during the
preparation. In this phase, the statement receives the actual host variable values. Once
prepared, an SQL statement can be executed with execute as often as desired, whereby the
host variables may vary for every specification.

Example:

The following example shows how a result table can be processed by means of a cursor. The first step is
to prepare the select statement. The second step is to open the result table whereby host variables are
assigned to the position indicators. For this reason, the select statement can only be executed at this
point in time. The fetch statement is also executed dynamically according to the procedure described
above.

Example:

Dynamic SQL Statements with Descriptor

The usage of the descriptor allows different SQL statements and tables to be used for every
execution of the ADABAS application without having to change the source code. A descriptor must
be used when the structure of the result table created by a select statement is not known and has
to be ascertained.

Host variables are not appropriate for the implementation of such an ADABAS application because
neither number nor types of the parameters of the SQL statement are known at precompilation
time. It is therefore impossible to associate the parameters with SQL variables in the using part of
the execute statement. The necessary relations between the parameters of an SQL statement and
the program variables are established instead by means of the SQL Descriptor Area (SQLDA), also
referred to simply as descriptor.

The SQLDA is generated by the precompiler when a describe statement occurs in the ADABAS
application. It may assume any other name and need not be defined in the declare section. The
SQLDA contains all the information which is required for associating a program variable, which
must be compatible with the ADABAS column, with a parameter of    an SQL statement. Such
parameters are designated as input parameters when they transfer values to an SQL statement or
to the ADABAS database, and they are designated as output parameters when they transfer values
from the ADABAS database to the application.

ADABAS SQLDA Structure

sqldaid: Contains the character string 'SQLDA'    and serves to facilitate the finding of the

structure in a dump.

sqlmax: Maximum number of 'SQLVAR' entries. For the precompiler-generated SQLDA,

a value is automatically assigned to 'sqlmax'. In all the other cases, the user
must set 'sqlmax' to a value.

sqln: Number of assigned 'SQLVAR' entries (input and output parameters).

sqld: Number of output parameters (the column contents must be placed in a

program variable). Columns which may be both input and output parameters are
counted here as output parameters.

sqlvar: One 'SQLVAR' entry will be created in the SQLDA for each parameter according

to the sequence in the SQL statement. The default maximum number for
SQLDA entries is 300. The user is allowed to define them in a new variable.

Structure of SQLVAR

ADABAS stores here the following information for each parameter:

colname: For 'fetch using descriptor', the name of the column is entered; for all other SQL

statements 'columnx' is entered, with x as a consecutive number (1 to n) for the
columns.

colio: Indicates whether an input or an output parameter is involved.

sqlinppar (0) ::= input parameter
sqloutpar (1) ::= output parameter
sqlinoutpar (2) ::= input/output parameter

colmode: Indicates whether null values are allowed.

sqlval (0) ::= not allowed
sqlundef (1) ::= allowed

coltype: Supplies the ADABAS type.

sqlfixed (0) ::= fixed number
sqlfloat (1) ::= float number
sqlchar (2) ::= character
sqlbyte (3) ::= byte
sqldate (4) ::= date
sqltime (5) ::= time
sqlexpr (7) ::= float number
sqltimestamp (8) ::= timestamp
sqloldlongchar (11) : Old Long
sqloldlongbyte (12) : Old Long Byte
sqlsmallint (15) ::= short integer
sqlinteger (16) ::= integer

sqlvarchar (17) ::= varchar
sqlescapechar(18) ::= escape char
sqllong (19) ::= long
sqllongbyte (20) ::= long byte
sqlboolean (23) ::= boolean

collength: Number of the total places for numeric columns, otherwise, the number of

characters. Can be set by the user to the length of the program variables. Such
an adaptation is required whenever the number of characters increases by 1
because of the zero byte.

colfrac: Number of places after the decimal point. For coltype = float_number, this array

holds -1. Can be set by the user to the length of the program variables.

hostindicator: Contains the indicator value. For input parameters, it can be set, for output

parameters, it must be checked, since in the case of a null value, the program
variable will not be overwritten!

hostvartype: Contains the data type designation for the program variable and must be

assigned by the user. For the describe statement, ADABAS sets this parameter
to -1. 'collength' and 'colfrac' must be changed according to the data type.

sqlvint2 (0) : integer (2 bytes long)
sqlvint4 (1) : integer (4 bytes long)
sqlvuns2 (16) : unsigned integer
 (2 bytes long)
sqlvuns4 (17) : unsigned integer
 (4 bytes long)
sqlvreal4 (2) : float (4 bytes long)
sqlvreal8 (3) : float (8 bytes long)
 (6) : char-array (1 byte long,
 without 0 byte termination)
sqlvchar (7) : char-array
 (terminated with 0 byte)
sqlvstring2 (15) : variable string
 (2 bytes len, char array)
sqlvstring1 (20) : variable string
 (1 byte len, char array)
sqlvint8 (33) : integer (8 bytes long)
sqlvstring4 (35) : variable string
 (4 bytes len, char array)

hostcolsize: For ARRAY statements, the size of program variables must be specified here in

bytes.

hostvaraddr: Contains the address of the program variable assigned to the parameter. The

describe statement initializes it to zero; the user must assign the address of the
program variable to it. For array statements, this is the address of the first
element.

hostindaddr: For array statements, the address of the indicator array must be specified here.

If indicators are not used, NULL must be specified. For simple SQL statements,
the address of a variable can be specified here. Then the indicator is written into
this variable and 'hostindicator' is undefined.

colinfo: Must not be modified, because internal information is stored here that is needed

for the conversion of program variables.

SQLDA Declaration

typedef struct {
 char sqldaid[8];
 sqlint4 sqlmax;
 sqlint2 sqln,
 sqld,
 sqlint4 sqlloop,
 sqloffset;
 sqlint2 sqlkano,
 sqlprno,
 sqlkamode,
 sqlfiller;
 sqlint4 sqlfiller2;
 sqlvartype sqlvar[sqlnmax];
 }
 sqldatype;
typedef struct {
 sqlnname colname;
 sqlint2 colio,
 colmode,
 coltype;
 sqlint4 collength;
 sqlint2 colfrac,
 colfiller,
 hostvartype,
 hostcolsize;
 sqlint4 hostindicator;
 void *hostvaraddr;
 sqlint4 *hostindaddr;
 struct SQLCOL col;
 }
 sqlvartype;

 Using the Descriptor

As a basic rule, dynamic SQL statements with a descriptor must be prepared with the prepare
statement. A describe statement issued on the same SQL statement must follow immediately to
ensure that during runtime the SQLDA will be provided with the necessary information about the
columns to be processed.

The next step depends on the application programming. The ADABAS application must ensure that
the SQL statement is provided with appropriate program variables (actually their addresses) as
parameters by using the information about the columns stored in the SQLDA. Generally, this will be
a distinction of cases by means of which a program variable is to be selected for the ADABAS
column and its address is to be entered into the SQLDA.

Since parameters can also be included in conditions of SQL statements or serve to provide
columns with values, it is necessary to assign values to the corresponding program variables at this
point in time.

Finally, the dynamic SQL statement can be executed via the execute statement. The additional
specification 'using descriptor' must be included in the execute statement only if the SQL statement
to be executed contains question marks in place of parameter values.

In the following examples, the four steps

1) execution of the prepare statement,

2) execution of the describe statement,

3) association of the SQL parameters with program variables, and

4) execution (execute) of the dynamic SQL statement

which are necessary for the usage of the descriptor are presented in detail. The first example
illustrates the usage of the descriptor only with output parameters and unnamed result tables, the
second example also includes input parameters and named result tables.

Example (with output parameters):

An ADABAS application allows interactive queries to a database. For this purpose, the user has to
enter a select statement such as follows:

select * from reservation

select rno,arrival,departure from reservation where hno = 25

select name from hotel where zip=20005 and price<100.00

etc.

This can be formulated within a program in the following manner:

Executing the select statement which was read from the screen generates a result table of an unknown
structure. This fact must be taken into consideration when processing the result table.

At execution time of the fetch statement, it must be clear into which program variables the column
contents are to be transferred. Therefore the program variables must previously be made known to the
fetch statement, which is done by means of the descriptor.

The result table is processed in the following manner:

Processing the result table:

1) Executing the prepare statement with the parameter 'fetch using descriptor'. For this purpose,

the fetch statement is to be treated like a dynamic SQL statement, i.e., it must be given a
<statement name>.

2) Calling the describe statement with the <statement name> of the fetch statement. The

descriptor SQLDA is provided with information about the columns to be processed.

3) Using this information, the addresses of appropriate program variables can now be assigned

to the SQLDA (set_describe_area ()).

4) Since the program variables are stipulated into which the column contents are to be returned,

the fetch statement can now be executed (execute). Subsequently, the corresponding program
variables contain the results of the fetch statement.

After processing the first table row (data_processing ()), all the following rows are processed within
'fetch-sequence'.

The following example illustrates how appropriate program variables can be assigned to the
SQLDA:

The example shows exactly those program variables into which the column contents will be returned.
Note that the ADABAS column type must be compatible with the corresponding variable definition. For
this reason, variables have been declared in order to receive both character strings of a maximum length
of 40 and 80 characters and numbers of different storage and representation. The fact that each type is
available in the form of 10 program variables signifies that only SQL statements with up to 10 parameters
can be processed. This limitation applies only to the present example. 'i' identifies the i-th column in a
table and the 'SQLVAR' entry in the SQLDA assigned to it.

The information which the describe statement returns to the SQLDA is checked within the function
'set_describe_area'. The SQLDA is then provided with specifications regarding the program
variables. This is illustrated by the following pseudo code section:

Executed within a loop, one program variable is assigned to each column of a table which may consist of
up to 10 columns. The table contents can subsequently be transferred and processed by rows.

Example (with input/output parameters):

This example illustrates how input and output parameters can be processed by means of the
descriptor.

For this purpose, a select statement of the form

select * from hotel
 where zip = ? and price <= ? order by price;

is executed. Interactive entries made at runtime decide which zip code and which price limit are
concerned. The ADABAS application searches the database for hotels of a particular price category
in one particular city.

The selection of the program variables used to provide the where clause with values is considerably
simplified in the present example. If the search condition has to remain variable, the program variables
must be selected and provided with values according to the information about the columns stored in the
SQLDA. When calling the execute statement, 'descriptor' is specified in the using part instead of a list of
host variables.

The result table can be processed again with fetch using descriptor.

Another possibility is to process the result table by means of a cursor:

Using a cursor for processing a result table has the effect that no execute statement needs to be issued
on to the 'select', because calling the open statement actually executes the select statement. If question
marks are included in a select statement in order to identify parameters, the open statement must be
called with 'using descriptor' (instead of the host variable list).

Overview of the Sequences of SQL Statements

General:

exec sql prepare <statement name>    ...;
exec sql describe <statement name>;
providing the SQLDA with information about the program variables;
exec sql execute <statement name> [using descriptor [<variable>]];

The specification 'using descriptor' is optional. Default for <variable> is sqlda.

When processing the result table by means of a cursor, the following sequence of SQL statements
is valid,

for SELECT with parameters:

exec sql prepare <select name>    ...;
exec sql declare <cursor name> cursor for <select name>;
exec sql describe <select name>;
providing the SQLDA with information about the program variables;
exec sql open <cursor name> using descriptor;
                ...
exec sql prepare <fetch name>    ...;
exec sql describe <fetch name>;
providing the SQLDA with information about the program variables;
exec sql execute <fetch name>;
                ...
exec sql close <cursor name>;

for SELECT without parameters:

exec sql prepare <select name>    ...;
exec sql declare <cursor name> cursor for <select name>;
exec sql open <cursor name>;
                ...
exec sql prepare <fetch name>    ...;
exec sql describe <fetch name>;
providing the SQLDA with information about the program variables;
exec sql execute <fetch name>;
                ...
exec sql close <cursor name>;

without cursor:

a select statement;

exec sql prepare <fetch name>;
exec sql describe <fetch name>;
providing the SQLDA with information about the program variables;
exec sql execute <fetch name>;

 The Macro Mechanism

The macro mechanism allows a flexible (dynamic) use of table and column names. Without having
to modify an application statically, i.e., within the program text, it can work on tables which have the
same structure but differ partly in table or column names. Such a name can be equated with a
three-digit number between 1 and 128 (syntax: %number) by means of the SQL statement
'set macro'. The number can be inserted into an SQL statement at those positions where tables or
columns must be specified. The runtime system of the ADABAS precompiler replaces the number
by the name which has previously been specified in the set macro statement. Macro definitions
apply to all program units of an ADABAS application (modules, subprograms translated separately,
etc.); i.e., a macro value can be defined in one program unit and be used in another one. Host
variables can contain table or column names. These names must be declared as strings with a
length of up to 30 characters.

Example:

Processing Sets and Single Rows

According to the standard definition of SQL, the statements 'select' (declare cursor), 'update', and
'delete' always apply to sets of table rows. ADABAS offers additional variants of these statements
as an extension of the SQL language. These so-called single row statements always address one
table row. Therefore single row statements generally make higher concurrency in multi-user mode
possible (see the chapters 'Transactions' and 'Locks'). The present section describes the main
features of set and single row statements. For more details, see the Reference online help.

Single Row Selects:

ADABAS provides the option of performing a single row select by specifying a key qualification. For
a single row select (select ordered statements), the contents of a single table row are transferred to
host variables. This is either the first or last table row (select first/select last), a row with a known
key value (select direct), or, in relation to a known key position, the preceding or following row
(select prev/select next). For single row selects, the column values of the result row must be
transferred directly into host variables using the into part of the statement (see the example with
'Processing Sets and Single Rows ' at the end of this section).

Modifying Single Rows:

ADABAS allows the usage of the key qualification also for update and delete statements. As for
single row selects, for tables with key columns, the key value is specified by values for all key
columns. For tables without key columns, ADABAS provides an internal key column called 'syskey
(char(8) byte)'; its value can be transferred into the program variables by a select statement and
can be used as a key qualification for subsequent single row selects.

Set Requests:

The result of a select request without single row qualification is buffered in the database in a so-
called result table. The third element of sqlerrd    indicates the number of result table rows for some
select statements. It has the value -1 if the number of results is unknown at the select point in time.

Result tables can be named or unnamed. In the sqlmodes ANSI and DB2, result tables must be
deleted before their names can be used for another result table, whereas in the sqlmodes ADABAS
and ORACLE, the result tables are automatically overwritten by the next select statement that
creates a result table with the same name.

In sqlmode ANSI, result tables are deleted at the end of a transaction. In sqlmode DB2, result
tables are deleted unless they were created 'with hold'. In the sqlmodes DB2 and ADABAS, result
tables are deleted which were generated within a transaction that was concluded by a rollback
statement. In sqlmode ORACLE, result tables created via select statements outlast the current
transaction and are implicitly deleted at the end of the database session.

Result tables are normally processed sequentially via repeated fetch statements.When doing so,
each fetch statement transfers the values of a single result table row into the program variables. As
long as there are still result rows available, the return code of the fetch statement has the value 0;
after the last row has been processed, the code is +100.

Furthermore, it is possible in sqlmode ADABAS to fetch the first row of the result table with 'fetch
first' and the last row of the result table with 'fetch last'. 'Fetch next' and 'fetch prev' access the next
or previous result table row. If required, it is also possible to position within the result table and to

process it repeatedly.

According to the standard definition of SQL, a result table is specified for database set requests in
programming languages by the statement 'declare <result table name> cursor for <select
expression>' and it is read with 'open', 'fetch', and 'close'. ADABAS offers this possibility, too.

Examples:

ADABAS SQL Request with an Unnamed Result table:

ADABAS SQL Request with a Named Result table:

Standard SQL Request:

Example with Select Direct:

Example with Update:

Example with Delete:

 General Instructions

ADABAS provides a series of system tables which can be used to request data definitions,
statistics, and database states. These tables are described in the Reference online help.
In particular, requests can be issued onto these system tables to determine the columns, especially
the key columns, of tables.

The columns to be selected should always be specified explicitly in a select statement. The
statement in the format 'select *' should be avoided for two reasons:

1. In this way, modifications of the table definition can enter unnoticed into the select statement,

which may lead to errors if sqlwarn3 is not checked.

2. In most cases, the values of all columns in a table are not needed in the application. The set of

selected columns should be restricted to the necessary size in order to save time and space.

For set requests without an order specification (order by), the sequence in which the table rows are
fetched into the program is not determined. Thus the sequence can differ depending on whether a
secondary index is used or not for access support. The sequence can also change from one
ADABAS version to the other. The logic of the database application must therefore not rely on the
present, but arbitrary output sequence.

If the key value of the row to be accessed is known, a single row statement should be used instead
of multiple processing. It should be noted, however, that these single row statements are
extensions to the SQL standard.

 Users

Every ADABAS application program operates under a particular ADABAS user identification.
Coupling the program to a user identification guarantees data security, because the program can
execute only actions valid for this user identification. If a user identification is not specified explicitly
(create user ... not exclusive), ADABAS gives every user identification exclusively to one user. The
user identification is not bound to a person, but is an authorization profile.

Furthermore, users can be united to form a group. Then every user has the privileges that have
been determined for the group.

Before a user can work with a database, he has to open a database session. This means that he
has to connect to a database. This is usually done via the connect statement, but can also be done
by means of predefined user specifications (XUSER; see the User Manuals).

If a connect statement is specified in the program, the user identification and password can either
be included in the text of the program or specified via host variables. The lock mode for the
database session has to be specified in addition (for more information, see the chapter 0).

'Commit work release' or 'rollback work release' must be executed as the dynamically last SQL
statement of an application program. 'Commit work release' concludes the last transaction, 'rollback
work release' resets the effects of the last transaction. The additional specification release makes
the ADABAS task which was serving the program available again to other database users.

Example:

Transactions

An important aspect of ADABAS application programming is the programming of transactions. The
SQL statements insert, update, and delete do not modify the addressed table contents irreversibly.
All SQL statements are combined to form so-called transactions. Only at the end of a transaction
does ADABAS decide whether all the effects of the modifications made during the transaction are
committed in the database or cancelled. This guarantees that, e.g., after a system failure, the
effects of all SQL statements performed during the last transaction are established completely or
not at all in the database. Consequently, it can be ensured in the application program that the
database is always in a logically consistent state. In contrast to other relational database systems,
data definition SQL statements in ADABAS are also subject to the transaction concept. This means
that also data definition SQL statements, any combinations of them, as well as SQL statements
such as insert, update, and delete can be rolled back.

The transaction structure also influences the lock behavior of the database and thus possibly the
concurrency of user operations.
Finally, there are database states in which the end of all user transactions has to be awaited (e.g.,
database shutdown; for details see the CONTROL online help).

Statements for Transaction Control:

All SQL statements placed between the statements 'commit work' or 'rollback work' form a
transaction. 'Commit work' records the effects of all the statements performed during the last
transaction in the database and opens a new transaction. This statement is normally used to
bracket SQL statements to form a transaction.

'Rollback work' resets the effects of all statements of the last transaction and opens a new
transaction. This statement can be useful in error cases and exceptional situations.

Logging on to ADABAS implicitly opens the first transaction. The dynamic order of 'commit work' or
'rollback work' statements at execution time is decisive for the bracketing of SQL statements to
form a transaction. Their static order within the program text is not significant.

Subtransactions:

In sqlmode ADABAS, there is the option of defining subtransactions e.g., to atomize the effects of
subprograms. The SQL statement 'subtrans begin' opens a subtransaction and 'subtrans end'
closes the subtransaction, removing the position defined by 'subtrans begin' from memory. If,
instead of 'subtrans end', the SQL statement 'subtrans rollback' is used, all modifications to the
database made within the subtransaction are cancelled.

Subtransactions may be nested. The SQL statements 'subtrans end' and 'subtrans rollback' always
refer to the last open subtransaction.

'Subtrans rollback' or rollback cancel any subtransactions within the last (sub)transaction, even if
they were closed with 'subtrans end'.
SQL statements that conclude subtransactions do not influence set locks, i.e., any existing locks
are kept.

In sqlmode ORACLE, savepoints can be used to enable subtransactions. Within a transaction, the
SQL statement savepoint can be used to define and name positions in this transaction. All
modifications made since the savepoint with the specified name can be cancelled by means of the
SQL statement 'rollback to'. Afterwards, any intermediate positions are no longer known.

Restartable Application Programming:

After a system failure and subsequent restart of the database, the effects are restored up to the
end of the last completed transaction. An application program, when started again, often cannot
identify any more the position at which processing was interrupted. Batch programs, however,
should be able to recognize after a breakdown and subsequent restart which transaction was
executed last, and to continue processing from this point. This feature is called restartability of
application programs. For this purpose, ADABAS offers transaction consistency as a help. A
restartable application program must store the internal status of the last transaction (variable
values, etc.) in one or several self-defined and self-managed status tables. Subsequent to a
breakdown, the status table is also put into the status of the last completed transaction, so that
after the program has requested its contents, it can find the re-entry point to continue processing.

The status table is generated before the program starts. At the beginning, a restartable program
writes the initiating values of the program status variables into host variables. A subsequent select
statement checks whether the last program run was aborted. If this is the case, the program status
variables contain the status of the last transaction which was successfully concluded after the last
select. If the last program run was regularly terminated, the status table no longer contains
information for this program and the select statement delivers an sqlcode not equal to zero.
Subsequently, the initiating values will be entered into the status table. During the execution of the
program, the program status values must be updated for each transaction by means of the update
statement. At the end of the program, the entry will be deleted from the status table.

Example of Restartability:

Locks

If a database user wants to update table rows, the rows concerned must be locked for other users
for consistency reasons. Only in exceptional cases, the concerned rows need not be locked for
reading. ADABAS can set read or write locks. Read-locked table rows (select) can be read but not
altered by other users. Write-locked table rows (insert, update, delete), on the other hand, can be
neither read nor updated by other users. Locks are normally released at the end of a transaction
(commit work, rollback work).

Explicit and Implicit Locks:

Write and read locks can be set for tables as well as for table rows. When locks are to be set
implicitly, ADABAS places single row locks in most cases. When the number of single row locks
held by one user on one table exceeds a given value, ADABAS tries to change these locks into a
lock on the entire table. The threshold value from which a table lock is requested is indirectly
determined by means of an installation parameter. (For more details, see the CONTROL online
help.)

ADABAS Lock Modes

In ADABAS, there are three kinds of locks:

SHARE defines a read lock for the specified objects.

EXCLUSIVE defines a write lock for the specified objects.

OPTIMISTIC defines an optimistic lock for the row.

Setting these locks enables controlled and protected execution of evaluations or modifications of
data in an application program.

For example, if a data object is only read-locked by a user, it may be read but not modified by any
other user.

On the other hand, if a data object is write-locked by a user, no other user can read or modify this
data object.

If an optimistic lock is set for a row, any other user can read and even modify this row. But when the
owner of the optimistic lock attempts to modify the row thus locked, a check is made. If the row was
modified by another user between the setting of the lock and the attempt to modify the row, the
modification of the lock holder is rejected with an error code. To change the row, the lock holder has
to read it again and to set a lock, if necessary. If no modifications were made by other users in the
meantime, the modifications of the optimistic lock holder are performed. Thus it can be ensured
that between reading and modifying the row, no modification was made that could be lost by the
new modification. If a read- or write-lock is set for a row that was optimistically locked by the same
user, then this row is not locked optimistically any more. Then no check is made when the user tries
to change the row.

By default, read locks are set implicitly by the system. A non-default lock mode can be determined
via the isolation level when opening a database session.

Insert, update, or delete statements write-lock the data objects concerned in any isolation level.
Therefore the following description of the different isolation levels only concerns the behavior for

select statements.

Isolation Level:

A select statement sets a read lock for a row of a table. With the next read operation in this table,
this lock is released and replaced by the read lock for the newly read row. This means, only one
read lock is held for a table row per table.

This is very helpful in interactive mode, since an interactive user does not need to take care of the
setting of locks. In this case, the isolation level 1 is concerned which in sqlmode ADABAS can also
be denoted as isolation level 10. Except for the sqlmode ANSI, this isolation level is also used when
no isolation level has been specified in the connect statement.

The statement 'commit work' terminates the transaction and releases all the locks implicitly requested.

In OLTP application programs it is better to request locks explicitly. It is therefore recommended to
use the isolation level 0 and optimistic locking for OLTP application programs. For this purpose, the
isolation level must be set to 0 in the connect statement. The lock statement can subsequently be
used to lock any rows (via the key) or tables (via the name). Optimistic locks can only be used for
rows.

The isolation level 0 differs from all the other isolation levels by not implicitly setting the read locks
when reading; these must be requested explicitly.

If the isolation level is set to 15 in a connect statement, one read lock is set to the read table row per table
for a select statement. With the next read operation in the same table, this lock is released and replaced
by the lock on the newly read row. This corresponds to isolation level 1. Moreover, the complete table is
read-locked and only released at the end of the statement when a statement without a key specification is
processed. If the result table is not internally generated for a select statement, the lock is only released
for the implicit or explicit close.

Isolation level 15 is only valid for sqlmode ADABAS.

For isolation level 2, which in sqlmode ADABAS can also be denoted as isolation level 20,

processing a statement without a key specification read-locks the complete table. This lock is only
released at the end of the statement. When table rows are read, they are read-locked row by row
so that various table rows are read-locked during a select. The locks set to individual table rows
remain valid up to the end of the transaction. If the result table is not internally generated for a
select statement, the lock is only released for the implicit or explicit close.

Isolation level 3, which in sqlmode ADABAS can also be denoted as isolation level 30, has the
effect that the complete table is read-locked for a statement without a key specification. This lock is
kept up to the end of the transaction. This means that repeating the same select statement within
the same transaction always yields the same result. This isolation level is used in sqlmode ANSI, if
no isolation level has been specified in the connect.

Changing the Isolation Level:

In sqlmode ADABAS, the isolation level chosen for the connect statement can be changed for
single select statements. This can be done by means of the specification 'with lock isolation level x',
where x stands for one of the isolation levels described above. The specified level x can be used
for the select statement concerned, regardless of the isolation level selected in the connect
statement. The following SQL statements use the isolation level specified for the connect again.

Multi-User Mode:

Although selecting the isolation level and using an appropriate transaction size reduce the critical
fields where collisions might occur, it can happen that a data object is requested by several users.
A user who attempts to lock an object already locked is put in wait state by default, until the object
is available again or the maximum waiting time has been exceeded (wait option). For the
description of the maximum waiting time, see the chapter 'Timeouts'.

If the option nowait is specified in the lock statement or in the option 'with lock' of a select
statement, the release of the locks is not waited for, but a message is returned. If no collision
occurred, the desired lock is set.

Thus, waiting times are avoided if a user can execute other work. The option nowait can, of course, be
used in batch mode if the sequence of work steps is of no importance. The option, however, requires a
somewhat more complicated program logic.

See also

Instructions for the Locking

Instructions for the Locking

For long transactions, a program can hold many locks over a long period of time, which will
probably hinder other users. For this reason, transactions should be as short as possible. On the
other hand, locks must be requested after each 'commit work' or 'rollback work', which can result in
increased database activity for very short transactions. The most effective transaction length should
therefore be determined taking into consideration recovery duration, lock duration, and locking
overhead.

If modifications to one or more tables are to be applied within one transaction, the following
transaction programming is recommended:

1) Reading phase with user dialog. All values which are to be entered into the database are

collected in host variables. For this purpose, read accesses to the database and interactive
entries are necessary. Reading is done without read locks in order not to hinder other users
and to avoid deadlocks. No write accesses to the database are used. More details are
included in the Reference online help for 'select .. with lock optimistic'.

2) Locking phase. By means of the lock statement, write locks are requested for all rows or tables

to be modified, and also read locks are requested for all rows or tables to be kept statically.
This ensures that all rows or tables are accessible before they are write accessed. Rows read
without read lock in phase 1 must be read again in order to ensure that these rows have not
been modified in the meantime. If modifications have been made, phase 1 has to be repeated
after releasing the lock. When optimistic locks (select ... with lock optimistic) are used, it is not
necessary to read the rows again, because modifications to the read object made by other
users result in a corresponding message for the update or delete statement as long as the
corresponding row was not locked explicitly.

3) Writing phase. In this phase the contents of the host variables are entered into the rows or

tables previously locked. User dialog is not allowed in the phases 2 and 3.

Deviations from this 'textbook' schema, e.g., user dialog with set locks, can lead to decreased
concurrency or deadlocks.
A 'commit work' is recommendable after each create or drop statement, because these statements
set write locks on the ADABAS system information. These locks are released by 'commit work'.

If it is not essential to have a consistent database state during a long query (e.g., during statistical
queries), isolation level 0 can be specified as the lock set mode. In this case, write-locked tables
can also be read without read locks, i.e., 'readers' will not be blocked by 'writers'.

When table contents are modified without previously requesting a write lock, this lock will be set
implicitly.

Timeouts

Timeouts enable the database to handle exceptional situations after a certain period of time. The
intervals at which timeouts occur can be configured via the ADABAS CONTROL component and
depend on the type of application. They are stipulated in such a way that timeouts will not normally
occur. Nevertheless, every program must check the timeout sqlcodes and then handle them either
via the whenever sqlexception condition or via an explicit test following every SQL statement.

The following timeouts exist:

request timeout (sqlcode +500)

Cause:

The program has waited for a lock for a longer period of time than is specified in the installation
parameter 'request timeout'. The lock is not available. Control is returned to the program.

Action:

In principle, the lock can be requested again or the statement which implicitly requested the lock
can be repeated. If the program holds its own locks, these should be returned via 'rollback work'
after a 'request timeout'. Then the lock which could not be obtained may be requested again as the
first lock. The risk of deadlocks is reduced by this means. If in multiuser mode the 'request timeout'
occurs frequently in spite of checking the installation parameter, the transaction should be revised
to provide more efficient locking (more single row locks, shorter transactions, another ADABAS lock
mode). For long transactions which successively process several tables, all the required tables or
table rows should be locked explicitly at the beginning of the transaction. This method reduces the
risk of deadlocks in the case of implicit locks (incremental lock request), but other users may be
blocked for a longer time.

lock timeout (sqlcode +600)

Cause:

The program holds a lock for a longer period of time than is specified in the installation parameter
'lock timeout'. ADABAS performs a rollback work on the current transaction. (This timeout is only
activated when other users request the locked objects.) The message does not appear until the first
statement is issued after the period of inactivity.

Action:

The last transaction must be repeated. The cause for the timeout should be checked (e.g., no user
interaction when holding locks; the same applies to long computations).

session timeout (sqlcode +700)

Cause:

The program has not issued an SQL statement for a period longer than is specified in the
installation parameter 'session timeout'. ADABAS performs a 'rollback work release' on the current
transaction, thus disconnecting the program from the database.

Action:

The program must re-issue the connect statement and repeat the last transaction. If result tables
are used, these must be built up again via the select statement.

Waiting for user input can involve a lengthy period of time. User input should therefore be entered
immediately after a 'commit work'. Thus the program holds no locks; therefore it does not hinder
other users and there is no risk of a 'lock timeout'.
If a 'session timeout' occurs subsequent to a 'commit work', it has no effect on the current
transaction.

Optimizing SQL Statements

This section describes the way in which the ADABAS optimizer processes SQL statements. The
instructions given in this section and the return messages of the EXPLAIN statement can help to
optimize an ADABAS application. It is an important task to find out the optimal SQL statements in
an application. This has also decisive influence on the performance of the complete application.

As a tool for optimization, ADABAS provides the EXPLAIN statement. This can be used to easily
test the SQL statements within the interactive component QUERY.

The precompilers, moreover, provide the option trace long which, among other things, records the
runtime of the SQL statements and provides the possibility of performing an application profile at
runtime.

The examples of this section refer to the following declarations:

The way in which an SQL statement may be processed in the shortest possible time with a minimum of
storage space depends on:

- the manner of physically storing table rows,

- the size of the tables (number of rows and B* tree pages),

- the definition of the table (of the key columns),

- the indexes,

- the kind of SQL statement (select, insert, update, delete),

- the elements of a select statement (<order clause>, <update clause>, <distinct spec>, for

reuse),

- the modifications specified in the update statement,

- the search conditions.

These factors influence the processing of an SQL statement especially when large data sets have

to be searched through. This will generally happen with the following SQL statements:

- select; namely as <query statement>, <single select statement>,
or <select ordered statement> (not as <select direct statement>),

- insert ... select,

- update ... where <search condition>,

- delete ... where <search condition>.

To optimally process these SQL statements, strategies have to be applied which guarantee that the
following objects are obtained:

- Only the rows that are actually needed are searched.

- Temporary result tables are kept as small as possible.

- The search is postponed until the fetch time without generating a result table. (The advantages

are: no storage usage for results, fast access to the first results, fast comparison of the
obtained results with the desired results).

Not all SQL statements allow the search to be postponed until the fetch time. The following
overview contains the corresponding SQL statements:

- select on several tables (join)

- select distinct

- select with for reuse specification

- select with order by specification (in most of the cases).

See also

Influence of the Search Condition

Search Strategies

UPDATE

The EXPLAIN Statement

Joins

Ordered Select Statements (single row processing)

Instructions to Increase the Speed

Additional EXPLAIN Information: Columns O, D, T, M

Summary of the Present Chapter

Influence of the Search Condition

The following conditions can be utilized for the selection of a search strategy:

<column spec> = | < | <= | > | >= <value expr>

<column spec> between <value expr> and <value expr>

<column spec> like <value expr>

<column spec> in <value list>

The in condition can only be utilized when the <column spec> refers to the only key column or to a
column for which a single-column index is available (see 'Definition of Terms ').

Conditions like

      not (<value expression> <comp op> <value expression>)

are transformed, if possible, into an expression

      <value expression> negated<comp op> <value expression> ,

and then processed in this format. If conditions cannot be transformed into one of the above
mentioned formats, they cannot be used for the selection of a search strategy.

The order of conditions combined by equivalent Boolean operators has no influence on the
selection of a search strategy.

In principle, every search can be performed sequentially through the entire table. This has to be
done whenever

- no (<search condition>) is specified,

- no condition is specified either for key columns or for indexed columns.

If the possible non-sequential search strategies are more costly than the sequential search, the
table is processed sequentially.

When conditions for key columns exist, the search is limited to the corresponding part of the table.

Search Strategies

See

Definition of Terms

Conditions on Key Columns

Conditions on Single-Column Indexed Columns

Strategies with Conditions on Multiple-Column Indexed Columns

Cost-Finding

Conditions Combined by OR

Postponing the Search to the FETCH Point in Time

Definition of Terms

A single-column index is a named or unnamed index containing one column only. A single-column
indexed column is a column on which a single-column index was created.

A multiple-column index is a named index containing various columns. A multiple-column indexed
column is a column which is an element of one multiple-column index at least.

An index list is a list of keys belonging to an index. The following is true for every index column: all
table rows with keys which are specified in the list contain the same value in this column.

Conditions on Key Columns

If search conditions are specified for key columns, then two cases can be distinguished:

- If an EQUAL or IN condition refers to the only key column, then the corresponding row(s) is

(are) directly accessed.

- For all the other conditions specified on key columns, an upper and a lower limit are

determined for the valid range of keys. All strategies, even those implemented with indexes,
utilize this knowledge of the permitted range of keys.

Conditions on Single-Column Indexed Columns

If conditions are applied to single-column indexed columns, four cases have to be distinguished:

- EQUAL/IN condition:

If an EQUAL condition is specified for a single-column indexed column, only the rows with
keys contained in the pertinent index list are accessed.
If an IN condition is specified, the rows with keys contained in the index lists are accessed.

- Several EQUAL conditions combined by AND:

If several EQUAL conditions are specified for different single-column indexed columns, an
intersection of the corresponding index lists is formed. Only the rows with keys which are
contained in all the indicated index lists are accessed.

- Conditions of ranges of values:

The specification of one condition ('<', '<=', '>', '>=') on one of the two limits of the value range
(lower or upper limit) will suffice for the selection of a search strategy.
If both limits are to be specified, it makes no difference to the search strategy whether this
specification is made by one BETWEEN condition or by two conditions ('<=' or '>=') combined
by AND defined for the same column.

The rows accessed are always the rows with keys that are contained in the index lists and that
are designated by the range of values.

- Conditions of ranges of values combined by AND which are defined on ten columns:

If there is at least one value range restriction for one single-column indexed column and if
there is one EQUAL condition or at least one value range restriction for each of up to 9 other
single-column indexed columns, then the following action is taken:
One logical index list, which need not necessarily be physically available, is created for each of
the available columns. An intersection is formed from all these index lists. Only the rows with
keys contained in all index lists are accessed.

Examples:

Starting with the row with the key '123', the table is sequentially searched.

Starting with the key '123', the complete index list with the value 'Miller' is processed up to the end of the
list.

A logical index list is created which contains all index lists of INVCOLUMN2 and which begins with a
value less than 'C' (' ', 'A', 'B').
The intersection of the logical index list and of the list containing the value 'Miller' is formed and

completely processed.

The intersection of both index lists is formed and completely processed.

The intersection of both index lists is formed and completely processed.

All index lists of invcolumn2 with values greater than 8965 are processed. The lists are, however, only
considered between the key boundaries '34, 12' and '34, 18'.

For the EQUAL/IN condition and the conditions of ranges of values, there are some enquiries for which
accessing the rows is not necessary, because all the required values are contained in the index list(s).

Strategies with Conditions on Multiple-Column In
dexed Columns

If conditions are specified for multiple-column indexed columns, two cases can be distinguished.

- Equality conditions:

Several equality conditions are specified for several multiple-column indexed columns which
form a complete named index. The rows with keys that are contained in the corresponding
index list of the named index are accessed.

- Equality conditions or conditions of ranges of values:

Several equality conditions or conditions of ranges of values combined by AND are specified
for several multiple-column indexed columns.
Let a named index be formed by several columns (number n). If there is an equality or range
condition for the first k (k<=n) columns of the index (a condition containing '<' or '>' may only
be specified for the k-th column), only the rows with keys contained in the index lists of the
specified range of values are accessed.

Examples:

The complete index list of the named index 'ind' with the values 'Düsseldorf', '40223', and 10000 is
processed.

The index lists including the values 'Düsseldorf', '40221', (binary zeros) and 'Düsseldorf', '40238', (binary
ones) are processed.

For both strategies, there are enquiries for which accessing the rows is not necessary, because all the
required values are contained in the index list(s).

Cost-Finding

The costs are calculated for every possible strategy.
This is necessary because

- there may be several strategies, of which the best has to be determined

- there are cases in which the search performed by means of an index is more costly than the

sequential search.

The costs refer to the estimated number of I/O processes which will have to be performed as a
consequence of the selected strategy.
These costs are also output as a result of the EXPLAIN statement (see chapter 0).

Conditions Combined by OR

The search for the best strategy must not yet be concluded when , for example, the following
conditions apply at the same time:

- The sequential search is the best strategy.

- There are search conditions combined by OR.

The conditions combined by OR which have not yet been considered are analyzed in order to find
strategies better than the sequential search.

The procedure is as follows:

- The search condition is transformed into the disjunctive normal form.

Example:

 b1 and b2 and (b3 or b4 and b5)
 =
 (b1 and b2 and b3)
 or
 (b1 and b2 and b4 and b5)

- Analysis of the new expression:
Every subexpression is analyzed separately. If the result of this analysis is the sequential
search through the complete table, then this is the only applicable strategy. If the analysis
gives a better search strategy for every subexpression, there are generally as many strategies
as subexpressions that have been analyzed.

- Cost-finding:

The costs of the different strategies are added up. If the total is less than the cost of the
sequential search, the different strategies are applied.

Postponing the Search to the FETCH Point in Ti
me

One object of optimization is to save storage space, i.e., to avoid the generation of result tables.
Apart from the cases in which the element FOR REUSE or an existing join enforces the creation of
result tables, building a result table is avoided as far as possible.

With an ORDER BY specification, it is only possible to do without a result table under the following
conditions:

- There is no strategy better than the sequential search,

and

- neither <distinct spec> nor FOR REUSE is specified,

and

- there is a single-column indexed column according to which a sort is performed,

or

- there are several columns according to which a sort has to be performed which, in a specified

sequence and order (ascending or descending), form a named index.

The EXPLAIN output indicates whether the result table is generated (RESULT IS COPIED) or not
(RESULT IS NOT COPIED).

UPDATE

The type of statement has an effect especially on the update. If the new value of a column is
calculated in an arithmetic expression, an index of this column cannot always be used for the
search. Thus the SQL statement

 update <table name>
 set columnx = columnx + 3
 where columnx in (100, 103, 106, 109, 112)

could lead to incorrect results if the index lists with the values 100, 103, 106, 109, 112 were
processed little by litte. This must also be taken into consideration when FOR UPDATE is used in
the SELECT statement.

The EXPLAIN Statement

Using this statement, the user can inform himself of the strategy applied for the execution of the
specified select statement.

The following overview shows the strategies which are distinguished:

- TABLE SCAN

Sequential search through the complete table.

- SINGLE INDEX COLUMN USED (INDEX SCAN)

Sequential search through the complete specified single-column index.

- MULTIPLE INDEX COLUMN USED (INDEX SCAN)

Sequential search through the complete named multiple-column index.

- RANGE CONDITION FOR KEY COLUMN

Sequential search through a part of the table.

- EQUAL CONDITION FOR KEY COLUMN

The table has only one key column to which an EQUAL condition is applied. The
corresponding table rows are directly accessed.

- IN CONDITION FOR KEY COLUMN

The table has only one key column to which an IN condition is applied. The corresponding
table rows are directly accessed.

- EQUAL CONDITION FOR INDEXED COLUMN

An EQUAL condition is applied to a single-column indexed column. The related index list is
used to directly access the corresponding table rows.

- IN CONDITION FOR INDEXED COLUMN

An IN condition is applied to a single-column indexed column. The related index lists are used
to directly access the corresponding table rows.

- RANGE CONDITION FOR INDEXED COLUMN

A range condition is applied to a single-column indexed column. The index lists within the
specified range are used to directly access the corresponding table rows.

- 'ORDER BY' VIA INDEXED COLUMN

No strategy better than the sequential search has been found. The index of the column
specified after 'ORDER BY' is utilized.

- EQUAL CONDITION FOR MULTIPLE INDEX

An equality condition is applied to every column of the named multiple-column index. The
related index list is used to directly access the corresponding table rows.

- RANGE CONDITION FOR MULTIPLE INDEX

There are equality or range conditions which are applied to the first k columns of a named
multiple-column index. The index lists within the specified range are used to directly access
the corresponding table rows.

- 'ORDER BY' VIA MULTIPLE INDEX

No strategy better than the sequential search has been found. The multiple-column index is
used; the columns of this index were specified after 'ORDER BY' in correct sequence and

order (ASC/DESC).

- INTERSECTION OF COLUMN INDEXES

There are several equality or range conditions which are applied to several single-column
indexed columns. The intersection of the respective index lists is formed. The intersection
index list is used to directly access the corresponding table rows.

- DIFFERENT STRATEGIES FOR OR TERMS

The analysis of the conditions combined by AND has not produced a strategy better than the
sequential search. Conditions combined by OR have been transformed and analyzed, giving
the result that various strategies have been found for the different elements of the search
condition. Each strategy is displayed according to the above mentioned rules.

- CATALOG SCAN

A sequential search is performed on the catalog.

- CATALOG SCAN USING USER EQUAL CONDITION

A sequential search is performed through the catalog entries describing the objects of the
identified user.

- CATALOG KEY ACCESS

The qualification contains equal conditions. This allows the query to be processed by
accessing the key columns in the catalog (e.g., equal conditions for OWNER and
TABLENAME in queries performed on DOMAIN.TABLES).

- NO STRATEGY NOW (ONLY AT EXECUTION TIME)

The corresponding column values in a correlated subquery are only known at    the subquery's
execution time. The strategy for the most effective access to the corresponding table of the
subquery will not be determined until these values are available.

Certain selects are so complicated that they are divided into several internal select steps. This is
indicated in the EXPLAIN output by several output lines and by the indication 'INTERNAL
TEMPORARY RESULT' displayed as the table name. Only a sequential search is possible on such
internal temporary results.

The EXPLAIN statement is described in the Reference online help.

Joins

A join can be performed across 16 tables at the most. Thereby the tables are joined step by step,
i.e., a join is formed from two tables. Each additional table is then combined with the join result to
form another join result.

The procedure according to which a result table is generated can be described in pseudo code
such as follows:

Time or space can only be saved when the temporary result tables are as small as possible and when the
rows of the tables to be combined to form a new join can be accessed directly.

The ADABAS optimizer therefore tries to put small tables with restrictive conditions at the beginning
of the series of tables to be processed in order to obtain small temporary result tables.

The sequence of the tables' specification in the <from clause> of the select statement has no
influence on the sequence of processing. The sequence of processing is determined by the
ADABAS optimizer.

See also

EXPLAIN Statements for Joins

EXPLAIN Statements for Joins

The EXPLAIN statement can also be applied to joins. It shows:

- the sequence in which the tables will be processed when the select statement is performed,

- whether the rows of a new table can be accessed directly or via an index, starting from the join

column values of the old temporary result table,

- the strategy according to which the corresponding new table is searched through when the

rows of this table cannot be accessed directly or via an index.

The following strategies can be applied to access rows of the new table starting from the join
column values of the old temporary result table:

- JOIN VIA KEY COLUMN

The join column is the only key column. Table rows of the new table are accessed directly.

- JOIN VIA KEY RANGE

The join column whose name is displayed is the first key column. Within the range of keys,
table rows of the new table are accessed sequentially.

- JOIN VIA INDEXED COLUMN

The join column is a single-column indexed column. Access is made via the index of the
column whose name is displayed.

- JOIN VIA MULTIPLE KEY COLUMNS

The specified join columns can be combined to form the key of the new table. This key
consists of several columns. The table rows of the new table are accessed directly.

- JOIN VIA RANGE OF MULTIPLE KEY COLUMNS

The specified join columns can be combined to form the initial part of the key of the new table.
This key consists of several columns. Within the range of keys, the table rows of the new table
are accessed sequentially.

- JOIN VIA MULTIPLE INDEXED COLUMNS
The specified join columns can be combined to form a complete multiple-column index.
Access is made via this index.

- JOIN VIA RANGE OF MULTIPLE INDEXED COL.

The specified join columns can be combined to form the initial part of the index consisting of
several columns. Within the index range, the table rows are accessed.

Comment on the multiple-column key strategies or index strategies:

If the column lengths of the two columns to be compared within a join step are not equal, these
strategies cannot be utilized. To bypass this restriction, it is recommended to use the same domain
for the definition of the colums to be joined.

Examples:

The EXPLAIN statement causes the following output to be made:

Ordered Select Statements (single row processin
g)

Since these statements do not use any storage space, this section only explains the way in which
runtime can be shortened.

Every single row select can be performed by means of the sequential search starting from the
first/last row or from the row identified by a key up to the first row which fulfills the condition. It is
obvious that all available information about key ranges should be specified in order to reduce the
number of rows to be searched through.

The syntax of the single row select permits the specification of the lower limit (select next) of a key
range as well as the specification of an upper limit (search condition). For select first/last, it is
possible to specify both limits in the search condition. For select next/prev, only the limit which is
not specified in the <key spec list> is found from the search condition.

To find the rows which meet a specified condition, it is better to apply an index than to perform a
sequential search.
If the index is directly specified in the program with INDEX or INDEXNAME, it must always be used
for the search. If no index is specified, any index can be used for which the ADABAS optimizer
finds equality conditions so that exactly one index list is designated.

Examples:

In this example, the range between 3,0 and 70,20 is searched through.

The index of invcolumn1 is used and every index list, starting from 'Miller', is processed, if necessary.

The index of invcolumn1 is used. Only the index list with the value 'Miller' is processed, not all the index
lists with values greater than 'Miller'.

Instructions to Increase the Speed

This section contains instructions which help to improve the runtime of applications.

- If a database is built, the definition of the tables should be derived from the structures

previously investigated. When defining the key columns, it should be ensured that the most
selective columns to which conditions are most frequently applied are placed at the beginning
of the key. This guarantees that only a very small part of the table has to be considered during
the processing of the select.

- Only columns of high selectivity should be indexed. No single-column index should be created

on columns such as sex or personal status because of the small number of distinct values.
These columns could be used very seldom for a non-sequential strategy, because this would
normally be more costly than the sequential search.

- For relatively static data sets, many columns can be indexed. If it makes sense, multiple

indexes should be created. As for the key column definition, it should be ensured that the most
selective columns which are frequently used in EQUAL conditions are specified at the
beginning of the multiple index.

- Not all the columns which are used in conditions should be indexed. The space required for

the indexes and the overhead for their maintenance would be considerable.

- If many updates have been made to a table, UPDATE STATISTICS should be performed.

- ADABAS implicitly performs UPDATE STATISTICS when it determines that a table has been

modified to a certain extent. ADABAS, however, is not able to recognize any change relevant
to the correct determination of the currently best strategy and to execute an implicit UPDATE
STATISTICS.

- Only    conditions which are not met by all rows should be formulated. Frequently, applications

are built in which the user defines the values of a condition. If the user does not specify any
values, default values are entered into the condition so that it always yields 'true'. The
database system must then evaluate such an inefficient condition for every row to be checked.
It is better to issue various select statements which depend on user input.

- The most selective conditions should be placed at the beginning of the search condition.

- The specification

columnx between 1 and 5

is better than

columnx in (1,2,3,4,5)

- The specification

columnx in (1,13,24,...)

is better than

columnx=1 or columnx=13 or columnx=24 or ...

Additional EXPLAIN Information: Columns O, D,
T, M

1. Column O (Only Index)

'*' - The strategy only uses the specified single-column or multiple-column index for command

processing. The data of the base table is not accessed. It is required that only columns
contained in the index structure are accessed in the sequence of < select column>s or <where
clause>, if any. Column names must be specified explicitly in the sequence of <select
column>s (no SELECT * FROM ...).

2. Column D (Distinct Optimization)

- Column D only has an entry when column O contains an '*'.

'C' - (Complete Secondary Key)

In the sequence of <select column>s, all columns of a single-column or multiple-column index
(and only those !) have been specified in any order after the keyword DISTINCT. Each time,
the values of the corresponding index columns are accessed only once. A result table is not
built (e.g., SELECT DISTINCT <all columns of the index> FROM ...).

'P' - (Partial Secondary Key)

In the sequence of <select column>s, the first k (k < total number of columns in the index)
columns of a multiple-column index have been specified in any order after the keyword
DISTINCT. Each time, the values of the corresponding index columns are accessed only once.
A result table is not built (e.g., SELECT DISTINCT <first k columns of the multiple-column
index> FROM ...).

'K' - (Primary Key)

In the sequence of <select column>s, all columns of a single-column or multiple-column index
and the first k (k <= total number of columns in the key) columns have been specified in any
order after the keyword DISTINCT. Each time, the values of the corresponding index and key
columns are accessed only once. A result table is not built (e.g., SELECT DISTINCT <all
columns of the index + the first k columns of the key> FROM ...).

3. Column T (Temporary Index)

'*' - An internal temporary index is built. In this index, the keys of the hit rows are sorted in

ascending order. The hit rows have been determined by the corresponding key columns. The
base table is accessed via this temporary index.

4. Column M (More Qualifications)

'*' - On index or key columns, there are conditions which cannot be used to directly restrict the

range for an access via index (e.g., in case of an EQUAL/IN condition on the first and third
column of a multiple-colun index, only the first condition in the strategy will be used for
access). Those conditions affect the corresponding index strategy. They are only used to
restrict access to the base table.

Summary of the Present Chapter

The attempt was made in this chapter to show the importance of optimal SQL statements and the
ways in which these can be created. The descriptions given in this chapter should enable the user
to find useful formulations for the enquiries. Before including these statements into a program, they
can be checked for correctness within the ADABAS component QUERY and for the performance
obtained by them by means of EXPLAIN statements.
If the user consequently follows the instructions given in this chapter from the very beginning, later
tuning overhead, if any, should be minimal.
SQL is a powerful database query language, which can save an application quite a lot of work. But
as shown by the last example in the chapter 'Instructions to Increase the Speed ', there are limits
beyond which the performance of an application can be improved, not by expanding an SQL
command, but by adding some additional lines of code to the application.

ANSI

The ADABAS database system is compatible with ANSI SQL-92 (entry level). Application programs
have to be precompiled by means of the option 'sqlmode ANSI'. The sqlmode is automatically
passed to the object program. Some parts of the statements which are not operative for ADABAS
generate a warning ('sqlwarnf').

The sqlcode is accepted by ADABAS, except for a few cases (see the online help Messages and
Codes).

The following conversions are done:

 ADABAS +250 to ANSI -250
 ADABAS +300 to ANSI -300
 ADABAS +320 to ANSI -320

Isolation level 3 or 30 (internal) is set as default. Valid are the isolation levels 0, 1, 2, 3, 4.

Dynamic statements with descriptors operate on the ADABAS SQLDA. The ADABAS SQLDA
structure must be included for dynamic SQL in ANSI mode. This is done automatically while
precompiling.

If the user wants to issue ADABAS specific statements in the application program, these have to be
preceded by 'exec adabas' instead of 'exec sql'.

For a detailed description, see the Reference online help for the ANSI mode.

DB2

The ADABAS database system is compatible with DB2. Application programs have to be
precompiled using the option 'sqlmode DB2'. The sqlmode is automatically passed to the object
program. Some parts of the statements which are not operative for ADABAS generate a warning
('sqlwarnf').

The sqlcode is accepted by ADABAS (see the online help Messages and Codes).

Isolation level 1 or 10 is set as default. Valid are the isolation levels 0, 1, 2, 3, 4.

The corresponding SQLDA structures must be included for dynamicSQL in DB2 mode. These
structures are compatible with the DB2 SQLDA structures, but they contain internal ADABAS
information in addition. Therefore the corresponding include files should be used which are
automatically included during precompilation.

If the user wants to issue ADABAS specific statements in the application program, these have to be
preceded by 'exec adabas' instead of 'exec sql'.

For a detailed description, see the Reference online help for the DB2 mode.

ORACLE

The ADABAS database system is compatible with ORACLE. Application programs have to be
precompiled using the option 'sqlmode ORACLE'. The sqlmode is automatically passed to the
object program. Some parts of the statements which are not operative for ADABAS generate a
warning ('sqlwarnf').

The sqlcode is accepted by ADABAS, except for a few cases (see the online help Messages and
Codes).

The following conversions are done:

 ADABAS Warnung3 to ORACLE -1046
 ADABAS -813 to ORACLE -1034
 ADABAS -4000 to ORACLE 0
 ADABAS -743 in ORACLE Warning1

Isolation level 1 or 10 is set as default. The valid isolation levels are 0, 1, 2, 3, 4.

The corresponding SQLDA structures must be included for dynamic commands in ORACLE mode.
These structures are fully compatible with the ORACLE SQLDA structures, but they contain internal
ADABAS information in addition. Therefore, the corresponding include files should be used which
are automatically included during precompilation.

If the user wants to issue ADABAS specific statements in the application program, these have to be
preceded by 'exec adabas' instead of 'exec sql'.

For a detailed description, see the Reference online help for the ORACLE mode.

The ADABAS Precompiler

The ADABAS precompiler is a program which is executed before the programming language
compiler. The basic function of the precompiler is to translate all the SQL statements into
statements of the corresponding programming language. In this process, the precompiler only
translates those pieces of information contained in a program which are needed for compiling the
SQL statements. The language compiler will then decide whether the program is correct according
to the programming language description.

The precompiler has additional functions which are described in the following section.

ADABAS Precompiler Functions

- The precompiler opens the database session under a user name which can be specified as a

parameter for the call. This user name does not need to be identical to the ADABAS user
name used during the execution of the program. If the username is not specified as a
parameter, then the connect that is statically placed in the module as the first statement is
taken. If the first statement is not a connect, a database session is opened with predefined
user specifications.

- The precompiler checks the compatibility of the corresponding host variables and ADABAS

column types. In doing so, the rules specified for the conversion possibilities apply.

- The precompiler actually executes administrative statements (create table, etc.) and resets

their effects at the end of the precompiler run.

- The precompiler analyzes the syntax of table statements (insert, select, etc.) and checks them

with regard to the privileges. When accessing existing tables, it is important that they are
already available for the ADABAS user whose name is used by the precompiler.

- The precompiler enters the names of the tables the program processes into system tables.

Afterwards, the relations of the programs and used tables can be shown via select statements
performed on the tables DOMAIN.MOD_USES_TAB or DOMAIN.MOD_USES_COL. These
tables are described in the Reference online help.

- The precompiler generates the compiler input, thereby transforming the embedded SQL

statements into calls of procedures of the ADABAS precompiler runtime system.

See also

Translation of an ADABAS Application Program

Precompiler Options

User Specifications for a Precompiler Run

Precompiler Output Files

Translation of an ADABAS Application Program

(1) Start of the ADABAS precompiler and of the compiler of the chosen programming language.

(2) Generation of a load module

(3) Subsequently, the ADABAS application program can be executed.

Precompiler Options

This chapter contains a survey of all functions of the ADABAS precompiler which may be controlled
by options. The syntax of these options is described separately in the platform-specific ADABAS
User Manuals.

ansi c:

Code is generated which is compatible with ANSI C.

c++:

Code is generated which is compatible with C++.

cachelimit(<cachelimit>):

Cachelimit defines the size of a cache buffer for result tables. If the option check or syntax is set,
this value overrides the value for the database session with the number 1 either specified in a
connect statement or predefined. A description of the cachelimit is included in the Reference online
help.

check/nocheck:

The precompiler checks the syntax of all SQL statements, it checks whether the table and column
names are available and whether their types are compatible with the host variables in use. The
precompiler opens a database session either under the user name specified in the option or in the
connect statement or under the predefined user name, and executes all SQL statements according
to the order of their occurrence in the program. Possible error messages of the database system
are stored as warnings in the precompiler listing. SQL statements which cannot be executed at the
time of precompilation (e.g., dynamic statements) are only checked with regard to syntax errors;
they generate warnings. The system tables DOMAIN.MOD_USES_TAB or
DOMAIN.MOD_USES_COL, which contain the program-data relationships, are maintained. When
starting the precompiler run, all entries relating to the connect user name and program name or
module name are deleted from the corresponding tables. At the regular end of the precompiler run
(no errors), new entries are made in the corresponding tables. The option nocheck does not
establish a connection to the database. It is therefore possible to precompile without a started
database.

check/syntax:

The syntax of all SQL statements is checked and possible ADABAS error messages are written to
the precompiler listing.

comment:

All SQL statements are written as comments into the source file saved for the compiler.

compatible:

With Version 6.1, new language elements are integrated in the embedded SQL (see
'exec sql [<n>] <array statement> '). These elements may change the interpretation of programs

written for former releases. The option compatible enforces the old interpretation and thus
guarantees upward compatibility. This option need only be specified if an error message occurs
during re-precompilation of an existing program. In any case, new programs should be written in
such a way that they may be precompiled without this option.

date-time/eur:

This option can be used to set the date and time representation to 'europe'. It is passed to the
application program.

date-time/iso:

This option can be used to set the date and time representation to 'iso'. It is passed to the
application program.

date-time/jis:

This option can be used to set the date and time representation to 'jis'. It is passed to the
application program.

date-time/usa:

This option can be used to set the date and time representation to 'usa'. It is passed to the
application program.

Representation:

extern:

A module precompiled with the option extern can be linked to modules of other precompilers. The
module itself must not contain a main function. Each function of the module containing SQL
statements must be defined according to the following schema:

The identifier SQLCA for the corresponding formal parameter is prescribed.

A COBPC program could call this function in the following way:

The first SQL statement must be executed in the calling module which is precompiled without the extern
option.

help:

This option displays all the precompiler and precompiler runtime options (application programs) on
the terminal.

isolation level(<level number>):

If the option check or syntax is set, the level number 10 (default value) is always specified for the
connect. Under this number the locks have to be set to a database during precompilation. This
option is only passed to the application program and has only an effect on the session with the
number 1. It overrides the level specification for all connect statements with the session number 1
made in an application program. It may be overridden by the same runtime option when starting the
application program.

list:

A precompiler listing is generated. If this option is not specified, the precompiler listing only consists
of warnings and error messages.

margins (<leftmargin>, <rightmargin>):

This option can be used to determine the range of lines in which the precompiler has to work.

nowarn:

The warnings -733, -735, -853, -884, and -885 are not output.

precom:

The compiler will not be started after precompilation. The source file is saved for the compiler.

profile:

The precompiler generates code for profiling the SQL statements. Profiling is started with a runtime
option.

program (<program name>):

When using the option check, a program name can be specified here related to which the names of
the tables and columns used in the program are stored in system tables. These entries can be
looked up via a select performed on the tables DOMAIN.MOD_USES_TAB or
DOMAIN.MOD_USES_COL. The default value of <program name> is the filename of the source
program.

serverdb (<serverdb>):

If the option check or syntax is set, a serverdb name can be specified here under which the
database will be accessed at precompilation time. This option has an effect on all sessions with the
number 1. When precompiling, this option overrides either the specifications made in the connect
statement or the predefined user specifications. It is not passed to the application program.

servernode (<servernode>):

If the option check or syntax is set, a node name can be specified here under which the database
will be accessed at precompilation time. This option has an effect on all sessions with the number
1. When precompiling, this option overrides either the specifications made in the connect statement
or the predefined user specifications. It is not passed to the application program.

silent:

No output is made to the screen.

sqlmode/ADABAS:

This is the 'native mode' of an ADABAS application and the default value of the sqlmode option.

sqlmode/ANSI:

This mode ensures ANSI compatibility of all SQL commands. Within the program, variables and
statements must be defined according to the ANSI standard. When this option is enabled, some
positive error situations are transformed into negative error messages (see chapter 'ANSI
Compatibility'). They are passed to the application program. The option must be specified with the
main module which contains the first connect statement.

sqlmode/DB2:

This mode ensures DB2 compatibility of all SQL statements. The precompiler generates the 'DB2
struct SQLDA' definition. Within the program, variables and statements must be defined according
to the DB2 standard.

sqlmode/ORACLE:

This mode ensures ORACLE compatibility of all SQL statements. Within the program, variables
and statements must be defined according to the ORACLE standard. When this option is enabled,
some positive error situations are transformed into negative error messages (see chapter 'ORACLE
Compatibility'). They are passed to the application program.

timeout (<timeout>):

This option can be used to specify the session timeout for session 1. When precompiling, this
option overrides either the specifications made in the connect statement or the predefined user
specifications. It is not passed to the application program.

trace file (<trace filename>):

This option can be used to specify a name other than the default name for the trace file. If no other
trace option was specified, the option 'trace short' is simultaneously enabled by default. The
filename is standardized in the platform-specific ADABAS User Manuals according to the operating
system conventions. This option is only passed to the application program. It may be overridden in
the application program by the same runtime option.

trace long:

Each SQL statement is written into a file, together with the values of all host variables, the sqlcode
(if not equal to zero), the warnings (if warnings exist), and the 'sqlerrd (index_3)' value. This option
is only passed to the application program. It may be overridden in the application program by the
same runtime option.

trace short:

Each executed SQL statement is written into a file, together with the sqlcode (if not equal to zero),
the warnings (if warnings exist), and the 'sqlerrd (index_3)' value. This option is only passed to the
application program. It may be overridden in the application program by the same runtime option.

user (<userid> <password>):

If the option check or syntax is set, a user name can be specified here under which the database
will be accessed. This option only has an effect on the session with the number 1. When
precompiling, this option overrides either the specifications made in the connect statement or the
predefined user specifications. It is not passed to the application program.

userkey (<userkey>):

If the option check or syntax is set, a userkey can be specified here. The pertinent user, the
database, timeout, cachelimit, and sqlmode are fetched from the XUSER file. The corresponding
database can then be accessed by means of this user id. This option only has an effect on the
session with the session number 1.

version:

This option can be used to see information about the version used.

User Specifications for a Precompiler Run

User specifications for the precompiler call are only required when the option check (default) or
syntax is set. If the application runs in multi-db mode, user specifications are needed for each of
the up to eight database sessions. If the precompiler option nocheck is set, a database session is
not opened, so that no user specifications are necessary. The concept of how a user can connect
to a database, the possible user specifications, and the syntax according to which the user
specifications have to be made are described in the platform-specific ADABAS User Manuals.

The following precedence rules are applied to the user specifications (user, password, servernode,
serverdb, timeout, cachelimit, sqlmode, and isolation level):

1. If the statically first SQL statement of a database session is not a connect statement, then all

the user specifications are fetched from the XUSER file.

2. If the statically first SQL statement of a database session is a connect statement, then all the

specifications made in this statement are taken and the missing specifications are fetched
from the XUSER file.

3. For the database session with the number 1, the user specifications can be overridden by

means of the corresponding precompiler options.

The precompiler option isolation level is passed to the application program. It overrides the
specifications made in the application program. Isolation level can be overridden by means of
runtime options.

Precompiler Output Files

Source and error listing:

Errors are written to the precompiler listing. If errors occur before this file can be opened (e.g., in
the option specifications), they are written into a special error file (sqlerror) which is described in
more detail in the platform-specific ADABAS User Manuals.

Object module:

Together with other object modules and the runtime system, the file is linked to an executable
module.

Trace file:

This file contains the executed SQL statements.

Functions of the ADABAS Runtime System

- Values are assigned from host variables to database columns and vice versa and values are

converted.

- Null values (undefined column values) are dneoted by indicator variables.

- If database errors occur, the default error handling routines defined in the program are

performed.

See also

Runtime Options

User Specifications for the Application

Runtime Options

This chapter contains a survey of all runtime options. They can be specified when an ADABAS
application is started.

cachelimit(<cachelimit>):

Cachelimit defines the size of a cache buffer for result tables. This option overrides the value in a
connect statement or the predefined value. It only has an effect on the database session with the
number 1. A description of the cachelimit is included in the Reference online help.

isolation level(<level number>):

A level number can be specified here under which the locks will be set to a database. This option
only has an effect on the session with the number 1. It overrides the level number in the specified
connect statement and the level number passed during the precompiler run.

mfetch (<number>):

This option can be used to optimize access for fetch statements. Number indicates the number of
8k byte buffers into which rows of different result tables can be stored simultaneously, thus enabling
faster access to the rows.    <number> is preset to 1. If a trace option is active, the mfetch option
has no effect.

nodate:

This option can be used to suppress the specification of the START and END date as well as the
START and END time in trace output.

no select direct fast:

This option can be used to disable the optimization of the select direct statements. This is
necessary especially if the error -9806 occurs. The optimization only has an effect when repeating
the select direct statement.

profile:

This option can be used to enable a profile which calculates the complete time of processing. If the
system table SYSPROFILE is available for the LOCALSYSDBA, the values will be written to this
table (see chapter 'Profiling').

serverdb (<serverdb>):

This option has an effect on every session with the number 1. The option overrides the
specifications of the connect statement made in the application program or the predefined user
specifications.

servernode (<servernode>):

This option has an effect on every session with the number 1. The option overrides the
specifications of the connect statement made in the application program or the predefined user
specifications.

timeout (<timeout>):

This option can be used to specify the session timeout for the session with the number 1. This
option overrides the timeout specifications made in the indicated connect statement.

trace alt (<statement count>):

Trace output is made alternately to two files. When doing so, as many SQL statements are
recorded in each file as are specified in <statement count>. If there are more SQL statements than
indicated by <statement count>, the files will be overwritten cyclically. The trace files are named
'fn.pct' and 'fn.prot'. The SQL statements are recorded together with the contents of the host
variables (trace long). Date and time specifications cannot be suppressed.

trace file (<trace filename>):

This option can be used to specify a name other than the default name for the trace file. If no other
trace option was specified, the option trace short is simultaneously enabled by default. The
filename is standardized in the platform-specific ADABAS User Manuals according to the operating
system conventions. It may also be specified (optionally) as a character string constant. The option
overrides the option transferred during the precompiler run. Only trace files with default trace
filenames are not buffered on output.

trace long:

Each SQL statement is written into a file, together with the values of all host variables, the sqlcode
(if not equal to zero), the warnings (if warnings exist) and the 'sqlerrd (index_3)' value. This option
overrides the option transferred during the precompiler run and the statements specified in the
application program.

trace no date/time:

This option can be used to suppress the output of the date and time specifications for the start and
end of the execution of an SQL statement made into the trace file.

trace short:

Each executed SQL statement is written into a file, together with the sqlcode (if not equal to zero),
the warnings (if warnings exist) and the 'sqlerrd (index_3)' value. This option overrides the option
transferred during the precompiler run and the statements specified in the application program.

trace time (<seconds>):

SQL statements are only recorded if their execution time is greater than or equal to <seconds>.
The SQL statements are recorded together with the contents of the host variables (trace long).
Date and time specifications cannot be suppressed.

user (<userid> <password>):

If the application program will be performed under a user other than specified in the connect

statement or in the predefined user specifications, this user can be specified here. This option has
only an effect on the session with the number 1.

userkey(<userkey>):

A userkey can be specified here. The pertinent user, the database, timeout, cachelimit, and
isolation level are fetched from the XUSER file. The corresponding database can then be accessed
by means of this user id. This option only has an effect on the session with the number 1. It
overrides either the user specified in the connect statement or the predefined user specifications.

User Specifications for the Application

There can be 1 to 8 concurrent database sessions (multi-db mode), so that user specifications
have to be available for each database session.

The following precedence rules apply to the user specifications:

1. If no connect statement for the database session is specified in the application program, the

user specifications are taken from the XUSER file.

2. If a database session is opened via a connect statement, the user specifications made in the

connect statement are taken. Missing specifications are fetched from the corresponding
XUSER parameter combination.

3. The user specifications can be overridden for the database session with the number 1.

If the isolation level was set by means of the corresponding precompiler option, it can only be
overridden by a runtime option.

Precompiler Debugging Aids

Test functions are available at precompilation time as well as at the application's runtime.

See also

Testing at Precompilation Time

The ADABAS Trace Facility

The Trace File

Profiling

Testing at Precompilation Time

Depending on option settings, the ADABAS database system can either check only the syntax of
an SQL statement (syntax) or also the availability of the specified tables and columns and the
compatibility of their types with host variables (check). For this purpose, a database session is
opened and all SQL statements are executed at precompilation time. After precompilation, the
effects of the SQL statements are cancelled. The option user specified in the program determines
under which identification this database session is to be performed. Any connect statement in a
program will be rejected with the error message '-3005 INVALID COMMAND'. The SQL statements
are executed in the sequence of their static placement within the text, not in the dynamic order of
the program statements. For various statements, e.g., dynamic SQL statements, only a syntax
check can be performed.

Since the control flow of the application is not taken into consideration when testing with the
precompiler, the interrelations of the SQL statements cannot be traced by means of this
mechanism.

The results of the precompiler tests are stored in the precompiler listing.

The ADABAS Trace Facility

The trace of an ADABAS application can be activated at three levels; whereby all results are
recorded in a special trace file.

The lowest level is that of the SQL statement. The precompiler directives 'trace' or 'trace long' and
'trace off' enclose those SQL statements whose execution is to be recorded in the trace file. The
directives are written into the program like SQL statements, e.g.:

exec sql set trace long ;

The trace file contains all SQL statements enclosed by the directives; including those SQL
statements which are executed within called subroutines. The name of the trace file is standardized
according to the operating system conventions.

The next level comprises program units - such as modules, subroutines which can be translated
separately etc. The SQL statements contained there are recorded in the trace file according to their
logical sequence within the program. Any trace statements present are rendered inoperative. The
trace file is enabled with precompiler options. The first <trace filename>    addressed is the name of
the trace file. This name is either formed from the <trace filename> or from the program name and
a suffix.

The highest level is the trace of the entire application. If a trace option is specified when calling an
ADABAS application, a trace file is opened for all executed SQL statements.

A comment line can be inserted into the trace file via the SQL statement 'exec sql set trace line'.

The Trace File

The trace file contains information sent to or received from the interface to the ADABAS kernel. The
SQL statements are only recorded for parse orders to the kernel. The parse identification (parseid)
can be used to find out which SQL statement is currently executed.

The information contained in the trace file depends on the trace statement or trace option.

For a simple trace, only the sequence of SQL statements which was sent to the database system is
recorded: this aids in checking dynamic SQL statements and macros.

A declare cursor statement is only executed with the opening of the result table (open statement).
In the trace file, it can therefore be found exactly at this place. The open statement is only denoted
by a comment.

'sqlerrd(index_3)' contains the number of processed rows.

Example:

If the detailed form of the trace file is required, the input and output values of the host variables involved
are also included.

Example:

If the detailed form of the trace file is only required for the program run, the names of the host
variables are not available. The input and output values of the host variables concerned only get
the numbers of the parameters.

Example:

Profiling

If the option profile is enabled during an application program's run, statistical data on the processed
SQL statements may be obtained. To obtain results, however, the table SYSPROFILE (system
table) of the LOCALSYSDBA must have been created during the initialization of the database. If
this had not been done, the table has to be created first.

Definition of the table:

 create table sysprofile (
 username char (18) key,
 progname char (18) key,
 modname char (18) key,
 language char (12) key,
 lineno fixed (7) key,
 parseid char (12) byte key,
 stmbegin char (40),
 rundate date,
 runcount fixed (10),
 seconds fixed (12,3)) ;

For every SQL statement, the beginning of statement, date of runtime, number of calls and
accumulated realtime is entered into the table. The realtime consists of the time taken by the
processing of a statement within an application program with all the data conversions and of the
time needed by the ADABAS kernel. The time needed to enter this information into the table
SYSPROFILE is not taken into account. The key of a row consists of the following specifications:
user name, program name, module name, language of the application program, line number of the
statement within the application program related to the source and the internal parseid. The parseid
is integrated into the key in order to be able to distinguish dynamic statements. With the enabled
trace option, the time required for writing the trace to a file affects the profiling. Therefore it is not
convenient to activate the two options at the same time.

The entries to the SYSPROFILE table are made within the transactions of the application program.
Therefore they are only stored in the table when the application program issues a COMMIT WORK.
When the option is enabled, old entries made for username, program name, and language are
always deleted at the beginning of the program. After the run, the table
LOCALSYSUSER.SYSPROFILE    may be looked up by means of QUERY and/or the stored data
may be evaluated. The entries remain in the table until they are deleted explicitly or the program is
restarted with this option.

Include Statements

Include statements are generally used to insert text into a source program at precompilation time.
This text will be included in place of the include statement.

Within the source texts of the applications, include statements are allowed at the following
positions:

- SQLCAs can be at any place where data definitions are permitted;

- 'include <filename>' can be at any place where the program text to be inserted is permitted.

The source text is located in the file to be specified. It must not contain any 'exec sql include
<filename>' statement.

See also

exec sql include sqlca

exec sql include <filename>

exec sql include sqlca

This statement identifies the place within the program text where the SQLCA has to be declared. If
any SQL statement is included in the program text, the ADABAS C precompiler generates the
required declarations independently. This statement can therefore be omitted; it only serves to
guarantee the compatibility with other systems.

exec sql include <filename>

 exec sql include <fname> [<declare clause>]

 <declare clause> ::= <table clause> | <dbproc clause>

 <table clause> ::= table <tname> [<as clause>] [<ind clause>]
 <dbproc clause>::= dbproc <dbprocname>
 [<as clause>] [<ind clause>]

 <as clause> ::= as var [<variable declarator>] |
 as type [<type declarator>] |
 as struct [<structure tag>]
 <ind clause> ::= ind [<declarator>] [<structure tag>]
 <fname> ::= "<character seq>" | '<character seq>'
 <tname> ::= <identifier>

If <fname> is available as a file, the text contained in it will be inserted into the calling program text.
A <declare clause>, if any, will be ignored in this case.

If there is no file <fname>, either a <table clause> or a <dbproc clause> must be specified. The
precompiler run must be performed with the option check. The specifications required for the
database session are taken from the XUSER file or from the options.

<table clause>:

A table <tname> must exist in the database. Declarations are derived from the table definition.
These declarations help to assign variables to the columns of the table. The declarations are
entered into the file <fname> and simultaneously into the calling program text. They can then be
recalled from the generated file if they are needed for further precompilation.

<dbproc clause>:

A DB procedure <dbprocname> must exist in the database. Declarations are derived from the DB
procedure. These declarations help to assign variables to the parameters of the DB procedure. The
declarations are entered into the file <fname> and simultaneously into the calling program text.
They can then be recalled from the generated file if they are needed for further precompilation.

<as clause>:

A structure declaration for SQL parameters is generated. The component names correspond to the
column names of the table ('case significance'), the component types are compatible with the
column types. A variable declaration is generated by 'as var', a 'typedef' declaration by 'as type' and
a 'structure tag' declaration by 'as struct'. The default is 'as var'. Several array declarators and at
most one pointer declarator can be specified. Default for declarators or 'structure tag' is the table
name.

<ind clause>:

Only when <ind clause> is specified, a structure declaration for indicators is generated in addition.
The component names are derived from the column names by prefixing an 'I' to them, and all
component types are 'short'. The kind of declaration results from the 'as clause'. The default for

declarator or 'structure tag' is the derivation from the table name by prefixing it with an 'I'.

Declare Statements

The declare sections contain data definitions which may occur in SQL statements. The data
definitions may be distributed over several declare sections.

See also

exec sql begin declare section

exec sql end declare section

exec sql begin declare section

This statement introduces a section where host variables are declared. It may only occur at places
within the program where variable declarations are permitted.

exec sql end declare section

This statement closes a declare section.

Whenever Statements

Error and exception handling routines for SQL statements can be programmed by means of
whenever statements.

The whenever statements must be placed before the SQL statements that they affect. Whenever
actions are valid until they are changed by further whenever statements, or up to the end of the
program. The static position in the source program and not the control flow determines the scope of
a whenever statement.

 <whenever action> ::= <call> |
 <continue> |
 <go to> |
 <stop>

 <call> ::= call <subprogram>

 <continue> ::= continue

 <go to> ::= goto <label>

 <stop> ::= stop

<subprogram> is a function call.

<label> is a C skip label. 50 characters are available for <subprogram call>, 45 characters for
<label>.

See also

exec sql whenever sqlwarning

exec sql whenever sqlerror

exec sql whenever sqlexception

exec sql whenever not found

exec sql whenever sqlbegin

exec sql whenever sqlend

exec sql whenever sqlwarning

 exec sql whenever sqlwarning <whenever action>

The <whenever action> is executed whenever the ADABAS system issues a warning. A warning
exists when sqlwarn0 is set to 'W'. Consequently, other sqlwarnings exist.

exec sql whenever sqlerror

 exec sql whenever sqlerror <whenever action>

The <whenever action> is executed whenever the ADABAS system reports an error. An error
message exists when sqlcode has a negative value.

exec sql whenever sqlexception

 exec sql whenever sqlexception <whenever action>

The <whenever action> is executed each time the ADABAS system reports an exceptional case.
An exceptional case exists when sqlcode has a value greater than 0.

exec sql whenever not found

 exec sql whenever not found <whenever action>

The <whenever action> is executed each time ADABAS issues the message 'not found'. 'Not found'
corresponds to the sqlcode=100.

exec sql whenever sqlbegin

 exec sql whenever sqlbegin <call>

The specified C function is executed before each SQL statement that is placed after this whenever
statement in the source text.

exec sql whenever sqlend

 exec sql whenever sqlend <call>

The specified C function is executed after each SQL statement that is placed after this whenever
statement in the source text.

ADABAS Statement

See

exec sql [<n>] <statement>

exec sql [<n>] <array statement>

exec sql [<n>] <statement>

 exec sql [<n>] <statement>

 <n> ::= number of the database session
 1 .. 8 , 1 = default

This statement precedes all SQL statements described in the Reference online help.

exec sql [<n>] <array statement>

The array statement has the general format:

 exec sql [<n>] <array statement>

 <array statement> ::= [<for clause>] <sql statement>

 <for clause> ::= for <loop parameter>

 <sql statement> ::= <verb> <...> <parameter>,
 ...<...> <parameter>,... <...>

 <loop parameter> ::= <unsigned integer constant>
 | :<integer variable>

 <verb> ::= select
 | select into (* not implemented *)
 | fetch
 | insert
 | update
 | delete

 <parameter> ::= :<array variable>
 <n> ::= number of the database session
 1 .. 8 , 1 = default

An array statement is formed from an SQL statement by replacing all scalar and structured
parameters with arrays of the corresponding type of element. All dimensions must be identical,
otherwise a warning is issued and the statement with the smallest dimension is executed.
Exceptions are parameters in the where clause of a select statement; they must always be of
scalar type. It is possible to specify an indicator array with the same dimension for each parameter
array. The elements of the indicator array must be arrays of the type integer.

The result of an array statement is the same as that of the underlying SQL statement repeated n
times; each array element of the parameters is applied to one data row (except for the where
clause in the select). The repetition factor n results from the minimum of the array dimension and
<loop parameter>, if specified. The number of the rows k successfully processed is returned in
sqlca.sqlerrd [2]. k < n is true if sqlca.sqlcode != 0, i.e., if an error occurs during execution. The
<loop parameter>, on the other hand, is always an input parameter, so no new value will be
assigned to it. The values of the (i -1)th elements of the parameter arrays and indicator arrays are
valid for the i-th processed row.

Arrays as parameters were already allowed in former precompiler versions; but instead of being
interpreted in the context described here, they were mapped columnwise (like structures). For
existing applications using this kind of array as parameters, the option comp has been installed.
Array statements to be inserted into a program which has to be precompiled with comp must
contain the <for clause>.

ADABAS Macro Statement

See

exec sql set macro %nnn = <macroline>

exec sql set macro %nnn = <macroline>

 <macroline> ::= <table name>.<column name> |
 <table name> |
 <column name>|
 <variable name>

 <variable name> ::= :<prog identifier>

 <table name> ::= [<auth id>.]<identifier>

 <auth id> ::= <identifier>

 <column name> ::= <identifier>

<macroline> can have up to 30 characters.

<prog identifier> corresponds to an identifier and is of the type character string.

'%nnn' is the macro identification, whereby 'nnn' is an integer with 1 <= nnn <= 128 .

Macro definitions have global validity for all modules of the database application. With regard to the
control flow, the macro must be defined before its call within the application.

Dynamic SQL Statements

ADABAS statements cannot only be written statically into an application program, but also be
dynamically generated or read in and executed during a program run. The SQL statements to be
performed dynamically may contain host variables as input and output parameters.

Dynamic statements can also be executed in a DB2- or ORACLE-compatible way. To do so, the
corresponding sqlmode must be specified for precompilation. The syntax of the statements has
therefore been extended. The statements described in the Reference online help for the
SQLMODE DB2 and ORACLE must be used for the sqlmode DB2 and ORACLE (see there).

Dynamic statements are processed in two steps or, when a descriptor is used, in three steps.

- The SQL statement specified as a parameter is prepared and named for its execution by

means of the prepare statement. Host variables which possibly exist within the SQL statement
to be prepared must be designated by question marks or are described via the descriptor.

- If the prepare statement stipulates that the host variables are to be described via a descriptor,

the describe statement must be called afterwards. This statement generates an SQLDA (SQL-
Descriptor-Area) and provides it with information that is needed for the parameter
identification. Using this information, the user can associate appropriate program variable
values with parameters.

- Once the prepare or describe statement is successfully executed, the prepared SQL statement

can be performed. This is done by the SQL statement execute which requires

- the name qualified in the prepare statement for the SQL statement to be executed,

- the parameters to be included in place of the question marks. The usage of the descriptor

must be indicated ('...using descriptor').

'execute immediate' offers another possibility of dynamically executing SQL statements. The
statement to be performed does not need to be prepared with prepare, but it must not contain host
variables.

See also

exec sql [<n>] prepare

exec sql [<n>] describe

exec sql [<n>] execute

exec sql [<n>] execute immediate

exec sql [<n>] prepare

 exec sql [<n>] prepare <statement name>
 [into <descriptor name>
 [using <using clause>]]
 from <statement source>

<statement source> ::= <variable name>
 | <string constant>

<using clause> ::= names | labels | any

<variable name> ::= :<prog identifier>

<string constant> ::= '<character seq>'

<statement name> ::= <identifier>

<n> ::= number of the database session

 1 .. 8 , 1 = default

This statement prepares an SQL statement for dynamic execution. Thereby all host variables
needed at execution time are designated by a question mark (?). The prepared SQL statement is
subsequently identified via <statement name>. <prog identifier> corresponds to an identifier and is
of the type character string. The <descriptor name> and the using clause have no effect on the
processing. They only serve to ensure the DB2 and ORACLE compatibility of the statement.

exec sql [<n>] describe

 exec sql [<n>] describe <statement name> [into <descriptor name>
 [using <using clause>]]

 <n> ::= number of the database session
 1 .. 8 , 1 = default

The describe statement ensures that the information required for associating a program variable
with a parameter is stored in the descriptor (descriptor name> for an SQL statement which has to
be executed dynamically. The <descriptor name> may be any variable of the type 'sqldatype' or
'struct SQLDA' (if sqlmode DB2 or ORACLE is set). If 'into' is not specified, the variable SQLDA is
taken by default. Within a program, the descriptor must always be of the same type, i.e., it must
always be either an ADABAS or ORACLE, or DB2 structure. An 'SQLVAR' entry is generated in the
SQLDA for each parameter specified in the SQL statement. These entries are created in the order
of occurrence of the parameters.

A prerequisite is that a prepare was issued for the SQL statement to be executed dynamically. After
a describe statement, the program variables must always be provided as parameters by means of
the column information now available in the SQLDA (see chapter ' Using the Descriptor ').

exec sql [<n>] execute

 exec sql [<n>] [<for clause>]
 execute <statement name> [<using clause>]

 <for clause> ::= for <loop parameter>

 <loop parameter> ::= <unsigned integer constant>
 | :<integer variable>

 <using clause> ::= <using expr>

 <using expr> ::= <parameter list>
 | descriptor <descriptor name>

 <parameter list> ::= <parameter, ...>

 <parameter> ::= :<host variable>
 [:<indicator variable>]
 | <array variable>
 [:<indicator array variable>]

 <n> ::= number of the database session
 1 .. 8 , 1 = default

SQL statements with <array variable> are only allowed for array statements.

The SQL statement identified by <statement name> is executed. During execution, either all
question marks are replaced one to one by the corresponding <parameter list> values or a
descriptor is used. A prerequisite is that a prepare statement or, in the case of a descriptor, a
describe statement is executed with the same <statement name> or with the same <descriptor
name>. For the <descriptor name>, the same definitions apply as described for the describe
statement.

exec sql [<n>] execute immediate

 exec sql [<n>] execute immediate <statement source>

 <n> ::= number of the database session
 1 .. 8 , 1 = default

The SQL statement specified in a host variable or as a character string is executed. It must neither
contain host variables nor be prepared by a prepare statement. If the SQL statement is specified as
a character string, the macro mechanism can be applied.

ADABAS Cursor Statements

The cursor concept is an alternative to the named and unnamed result tables which can be
generated with the select statement. It is supported for compatibility reasons; but its use is more
complicated than that of the result tables.

A result table is specified by the statement declare cursor, and created and opened for processing
by the open statement. A cursor determines a position within the result table from which a table row
can be accessed by means of a fetch statement.

The result table exists until a corresponding close statement is executed or until the program is
terminated..

The statement declare cursor is not written into the trace file, because it is not sent to the ADABAS
kernel. This is only done for the open statement.

 <cursor name> ::= <identifier> |
 <macro identification>

 <macro identification> ::= %nnn with 1 <= nnn <= 128

 <statement> ::= <select statement>
 | <statement name>

 <parameter list> ::= <parameter , ...>

 <parameter> ::= :<host variable> [
 :<indicator variable>]

See also

exec sql [<n>] declare

exec sql [<n>] open

exec sql [<n>] fetch

exec sql [<n>] close

exec sql [<n>] declare

 exec sql [<n>] declare <cursor name> cursor for <statement>

 <n> ::= number of the database session
 1 .. 8 , 1 = default

This statement specifies a result table. The select statement is either qualified as a character string
or prepared with the prepare statement and identified by the <statement name>. Parameters are
subsequently assigned via an open statement in the using part.

exec sql [<n>] open

 exec sql [<n>] open <cursor name> [
 | into <parameter list>
 | using <parameter list>
 | using descriptor <descriptor name>]

 <n> ::= number of the database session
 1 .. 8 , 1 = default

This statement generates the result table specified by the corresponding declare cursor statement
and sets the cursor on the first row. If host variables are required, they must be specified in the
using part.

The select statement identified by <cursor name> is executed. During execution, all question marks
are either replaced one to one by the <parameter list> values or are associated with program
variables via the descriptor. When the descriptor is used, the information needed about the
program variables must have been assigned to the SQLDA (see chapter ' Using the Descriptor ').

exec sql [<n>] fetch

 exec sql [<n>] fetch [<fetchspec>] [<cursor name>]
 | into <parameter list>
 | into descriptor <descriptor name>
 | using descriptor <descriptor name>

 <n> ::= number of the database session
 1 .. 8 , 1 = default

This statement assigns the values of a result table row to the corresponding host variables and sets
the cursor to the next row.

If a descriptor is specified, the values are assigned to the corresponding program variables which
are described in the SQLDA. The indicator values are also assigned to the SQLDA (see chapter '
Using the Descriptor ').

exec sql [<n>] close

 exec sql [<n>] close <cursor name>

 <n> ::= number of the database session
 1 .. 8 , 1 = default

This statement closes the specified result table.

Trace Statements

The following SQL statements provide a mechanism which supports partial testing of database
applications.

Those parts of the application which are to be tested must begin with the SQL statements
'set trace on' or 'set trace long' and end with 'set trace off'. According to the control flow of the
program, the SQL statements included in the part to be tested are stored in a file which may then
be evaluated. All SQL statements in called translation units (external subroutines, modules, etc.)
are also tested. Set trace statements may be specified at any places where, in accordance with the
syntax rules, statements of the programming language are permitted.

Trace options which may be specified will suspend the trace statements for a translation unit.
Under UNIX, the name of the file containing the test results receives the suffix '.pct'. As an
alternative, the filename can be specified after the trace option (<trace filename>).

See also

exec sql set trace on

exec sql set trace long

exec sql set trace off

exec sql set trace line

exec sql set trace on

After this statement, all SQL statements completely generated are written into a trace file, together
with the sqlcode (if not equal to zero) and any warnings returned.

exec sql set trace long

After this statement, all SQL statements completely generated are written into a trace file, together
with the host variable values, the sqlcode (if not equal to zero) and any warnings returned.

exec sql set trace off

After this statement, writing of the SQL statements into a trace file is suppressed.

exec sql set trace line

The <trace line> is written into the trace file as a comment.

 exec sql set trace line <trace line>

 <trace line> ::= <parameter>
 | <string constant>

 <parameter> ::= :<prog identifier>

 <string constant> ::= '<character seq>'

ADABAS Database Statements

These SQL statements help to establish a connection to a database.

See also

exec sql connect

exec sql [<n>] set serverdb

exec sql [<n>] reconnect

exec sql connect

This statement can be used to establish a connection to a database. The user identification and the
password can be specified either directly in the statement (see the Reference online help) or using
the mechanisms described in the User Manuals (XUSER, options). The database is defined using
the statement 'set serverdb' or XUSER or options.

exec sql [<n>] set serverdb

 exec sql [<n>] set serverdb <serverdb> [on <servernode>]

 <serverdb> ::= <string constant> (maximum of 18 bytes)
 | <variable name>
 <servernode> ::= <string constant> (maximum of 64 bytes)
 | <variable name>
 <string constant> ::= '<character seq>'
 <variable name> ::= :<prog identifier>
 <n> ::= number of the database session
 1 .. 8 , 1 = default

This statement can be used to define the name of a new database. It must be issued before a
connect statement. The specified name has global validity for all modules of the DB application.
Servernode can have up to 64 characters. Serverdb can have up to 18 characters. <prog identifier>
is a character string of length 18.

If the specifications of serverdb name and servernode name are missing, they are taken from the
nth entry of the XUSER file.

exec sql [<n>] reconnect

 exec sql [<n>] reconnect

 <n> ::= number of the database session
 1 .. 8 , 1 = default

After a timeout or session end, this statement can be used to have a connect performed for this
database session with the user specifications of the last connected user.
Before this SQL statement is executed, a connect with the above mentioned user specifications is
performed.

Command Statements

These statements can be used to specify operating system commands from programs and to have
these commands executed.

See also

exec command

exec command

 exec command sync <command> result <resultparameter>

 exec command async <command>

 <command> ::= <string const> | <parameter>
 <parameter> ::= :<prog identifier>
 <resultparameter> ::= :<prog identifier>
 must store a binary number of 2 bytes
 length.

This command statement executes an operating system command. The command syntax depends
on the operating system.
In SYNC mode, the program waits until <command> execution has been terminated. In ASYNC
mode, <command> is executed in background.

QUERY Commands

The ADABAS QUERY applications can be invoked from within a program by means of the following
calls. Also, REPORT command sequences can be embedded directly within a program.

See also

exec query

exec report

exec sql proc

exec tool stop

exec query

 exec query [<n>] <query-definition>

 <query-definition> ::= [progname <paramstring>]
 [version <paramstring>]
 [header <paramstring>]
 [options (<optionlist>)]
 cmd (<querystring>)
 [result (<parameter-output>)]

 <n> ::= number of the database session
 1 .. 8 , 1 = default
 <paramstring> ::= <parameter> | <string constant>
 <querystring> ::= <parameter> | <queryline>;
 maximum 132 chars
 <parameter> ::= :<host variable>
 <queryline> ::= run <command name> [<paramlist>]
 <paramlist> ::= '<literal>' , ..
 <optionlist> ::= <option> [, <optionlist>]
 <option> ::= SETOFF | SETLOCAL | AUTOCOMMIT

 <parameter-output> ::= <outputspec> , ...
 <outputspec> ::= :<host variable> [:<indicator>] =
 <res spec>
 <res spec> ::= sum (<columnid>)
 | avg (<columnid>)
 | count (<columnid>)
 | min (<columnid>)
 | max (<columnid>)
 | val1 (<columnid>)
 | val2 (<columnid>)
 | val3 (<columnid>)
 | val4 (<columnid>)
 <columnid> ::= number of the result table column

'exec query' precedes command sequences of QUERY routines.

'progname' determines a program name for the REPORT page. The value can be tranferred as a
character string constant and can have up to 8 characters.

'version' determines the version number for the REPORT page. The value can be transferred as a
character string constant and can have up to 8 characters.

'header' determines the heading for a REPORT page. The heading can be transferred as a
character string constant or host variable and can have up to 40 characters.

In <optionlist>, options can be specified for the QUERY command. The following options are valid:

autocommit: A commit statement is executed after each SQL statement.
setoff: The interactive modification of SET parameters (see the QUERY manual) is

suppressed during REPORT execution.
setlocal: This option allows a temporary modification of the SET parameters (see the

QUERY manual); i.e., after leaving the REPORT display, the SET parameters
are reset to the values valid before calling REPORT. If the option is not specified
each modification of the SET parameters has a global effect; i.e., this
modification is valid up to the next change of the SET parameters.

Commands for QUERY can be specified in <queryline> (see the QUERY Manual).

Results specified in REPORT commands can be transferred to the application program by means
of <parameter-output> (see the QUERY Manual, chapter 'The REPORT Generator').

exec report

 exec report [<n>] <report-definition>

 <report-definition> ::= [<resulttablename>]
 [progname <paramstring>]
 [version <paramstring>]
 [header <paramstring>]
 [options (<optionlist>)]
 [cmd (<report-cmds>)]
 [result (<parameter-output>)]

 <n> ::= number of the database session
 1 .. 8 , 1 = default
 <resulttablename> ::= <name> | :<host variable>
 <paramstring> ::= <parameter> | <string constant>
 <parameter> ::= :<host variable>
 <report-cmds> ::= <reportlines ; > ...
 <reportlines> ::= maximum of 132 chars
 <optionlist> ::= <option> [, <optionlist>]
 <option> ::= SETOFF | SETLOCAL | AUTOCOMMIT
 <parameter-output> ::= <outputspec> , ...
 <outputspec> ::= :<host variable> [:<indicator>] =
 <res spec>
 <res spec> ::= sum (<columnid>)
 | avg (<columnid>)
 | count (<columnid>)
 | min (<columnid>)
 | max (<columnid>)
 | val1 (<columnid>)
 | val2 (<columnid>)
 | val3 (<columnid>)
 | val4 (<columnid>)
 <columnid> ::= number of the result table column

'exec report' precedes command sequences of the REPORT generator.

'progname' determines a program name for the REPORT page. The value can be tranferred as a
character string constant and can have up to 8 characters.

'version' determines the version number for the REPORT page. The value can be transferred as a
character string constant and can have up to 8 characters.
'header' determines the heading for a REPORT page. The heading can be transferred as a
character string constant or a host variable and can have up to 40 characters.

In <optionlist>, options can be specified for the REPORT command. The following options are valid:

autocommit: A commit statement is executed after each SQL statement.
setoff: The interactive modification of SET parameters (see the QUERY manual) is

suppressed during REPORT execution.
setlocal: This option allows a temporary modification of the SET parameters (see the

QUERY manual); i.e., after leaving the REPORT display, the SET parameters
are reset to the values valid before calling REPORT. If the option is not specified
each modification of the SET parameters has a global effect; i.e., this
modification is valid up to the next change of the SET parameters.

Commmands for the report can be specified in <reportlines> (see the QUERY Manual, chapter 'The
REPORT Generator').

Results specified in REPORT commands can be transferred to the application program via
<parameter-output>.

If the master-detail functionality of the REPORT generator is used, it has to be taken into account
that the select statement of the master qualification was executed within the program and
generated a named result table. To display the master table, only the keyword master is required,
without the select statement. The detail functionality is valid without any restrictions.

exec sql proc

 exec sql [<n>] proc <db procedure>

 <db procedure> ::= <db procedure name>
 [(<parameterlist>)]
 <parameterlist> ::= <parameter> , ...
 <parameter> ::= :<host variable>
 [:<indicator variable>]
 <n> ::= number of the database session
 1 .. 8 , 1 = default

This SQL statement can be used to call DB procedures which have been stored in the database by
means of ADABASIC (see the ADABASIC Manual).

exec tool stop

 exec tool stop ;

The STOP statement ensures that resources used by the tool components (QUERY, REPORT) are
released. In particular, it resets the screen modified by the tool components. The TOOL STOP
statement can be executed after each call of a tool component; it should be executed at least at the
end of an ADABAS application.

Appendix 1: Syntax of the Declare Section

 statement ::= prepcomline | declaration

 prepcomline ::= '#define' identifier constant

 constant ::= identifier | unsigned_integer

 declaration ::= decspec declist ';'

 decspec ::= storclspec | typespec | decspec storclspec |
 decspec typespec

 storclspec ::= 'external' | 'static' | 'auto' | 'typedef' | empty

 typespec ::= inttysp | flptysp | chartysp | dcmltysp |
 strutysp | identifier | 'const' | 'volatile'

 inttysp ::= 'short' | 'long' | 'int' | 'unsigned'

 chartysp ::= 'char' | 'VARCHAR' | 'varchar'

 flptysp ::= 'float' | 'long' | 'double'

 dcmltysp ::= dcmldef | dcmlref

 strutysp ::= strudef | struref

 strudef ::= 'struct' structag '{' fieldlist '}'

 struref ::= 'struct' identifier

 dcmldef ::= 'DECIMAL' dcmltag '{' dcmlscale '}'

 dcmlref ::= 'DECIMAL' identifier

 structag ::= identifier | empty

 fieldlist ::= typespec declist ';' |
 fieldlist typespec declist ';'

 dcmltag ::= identifier | empty

 dcmlscale ::= dcmldigits | dcmldigits ',' dcmlfract | empty

 declist ::= possinitdec | declist ',' possinitdec

 dcmldigits ::= identifier | unsigned_integer

 dcmlfract ::= identifier | unsigned_integer

 possinitdec ::= declarator | declarator '=' initializer

 declarator ::= identifier | '*' identifier | declarator
 '[' arrdim ']'

 arrdim ::= identifier | unsigned_integer

 initializer ::= expression | '{' initlist '}'

 initlist ::= initializer | initlist ',' initializer

 expression ::= basexpr | basexpr (expression) basexpr

 empty ::=

Internal Return Codes of the Precompiler

Return Codes of an ADABAS Application

These return codes are generated by an application which was incorrect or which was terminated
with 'whenever stop'.

Return Codes of the CPC Call

