The following illustration shows the options that are available on the Analysis palette. For general
information about analysis VIs, see Analysis VIs Overview. Click on one of the icons below for function
description information. You can also click on the text jumps below the icons to access function
descriptions.
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This topic contains general information about the LabVIEW Analysis VIs. For descriptions of specific
Analysis functions, see Analysis VI Descriptions. See the topic, Analysis Examples, for a discussion of the
theoretical and practical aspects of using analysis Vls in actual applications.

Both the LabVIEW base system (Windows Only) and the full development system contain the following VI
groups:

Probability and Statistics VI Descriptions contains VIs that perform descriptive statistics functions,
such as identifying the mean or the standard deviation of a set of data as well as inferential statistics
functions for probability and analysis of variance (ANOVA).

Linear Algebra Overview contains general information about Vls that perform algebraic functions for
real and complex vectors and matrices.

Array Operation VI Descriptions contains Vls that perform common, one- and two-dimensional
numerical array operations, such as linear evaluation and scaling.

The full development system also includes:

Signal Generation VI Descriptions contains Vls that generate digital patterns and waveforms.

Digital Signal Processing VI Descriptions contains Vls that perform frequency domain
transformations, frequency domain analysis, time domain analysis, and other transforms such as the
Hartley and Hilbert transforms.

Filters Overview contains general information about Vls that perform IIR, FIR, and nonlinear digital
filtering functions.

Window VIs Overview contains general information about Vs that perform data windowing.

Curve Fitting Overview contains general information about Vls that perform curve fitting functions and
interpolations.

Measurement Overview contains general information about Vs that perform measurement-oriented
functions such as single-sided spectrums, scaled windowing, and peak power and frequency
estimation.

Additional Numerical Method VIs Descriptions contains Vls that perform root-finding, numerical
integration, and peak detection.

For additional information, see the following topics:

Getting Information about a VI

Analysis Error Reporting
Notation and Naming Conventions

Sampling Signals




Probability and Statistics Subpalette

Probability and Statistics contains Vs that perform descriptive statistics functions, such as identifying the
mean or the standard deviation of a set of data, as well as inferential statistics functions for probability

and analysis of variance (ANOVA).




Linear Algebra Subpalette

Linear Algebra contains Vls that perform algebraic functions for real and complex vectors and matrices.



Array Operations Subpalette

Array Operations contains VlIs that perform common, one- and two-dimensional numerical array
operations, such as linear evaluation and scaling.




Signal Generation Subpalette

Signal Generation contains Vls that generate digital patterns and waveforms.




Digital Signal Processing Subpalette

Digital Signal Processing contains Vls that perform frequency domain transformations, frequency domain
analysis, time domain analysis, and other transforms such as the Hartley and Hilbert transforms.




Filters Subpalette

Filters contains Vls that perform IIR, FIR, and nonlinear digital filtering functions.




Windows Subpalette

Windows contains Vls that perform data windowing.



Curve Fitting Subpalette
Curve Fitting contains Vls that perform curve fitting functions and interpolations.



Measurement Subpalette

Measurement contains Vls that perform measurement-oriented functions such as single-sided spectrums,
scaled windowing, and peak power and frequency estimation.



Additional Numerical Methods Subpalette

Additional Numerical Methods contains Vs that perform root-finding, numerical integration, and peak
detection.
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NoErr
OutOfMemErr

EqSamplesErr
SamplesGTZeroErr

SamplesGEZeroErr
SamplesGEOneErr
SamplesGETwoErr
SamplesGEThreeErr
ArraySizeErr
PowerOfTwoErr

MaxXformSizeErr
DutyCycleErr

CyclesErr
WidthLTSamplesErr
DelayWidthErr

DtGEZeroErr
DtGTZeroErr
IndexLTSamplesErr

IndexLengthErr
UpperGELowerErr

NyquistErr

OrderGTZeroErr
DecFactErr

No error; the call was successful.

There is not enough memory left to perform the
specified routine.

The input sequences must be the same size.

The number of samples must be greater than
zero.

The number of samples must be greater than or
equal to zero.

The number of samples must be greater than or
equal to one.

The number of samples must be greater than or
equal to two.

The number of samples must be greater than or
equal to three.

The input arrays do not contain the correct
number of data values for this VI.

The size of the input array must be a power of
two: size = 2"m, 0<m<23.

The maximum transform size has been exceeded.
The duty cycle must meet the condition:
0£duty cycle £100.

The number of cycles must be greater than zero
and less than or equal to the number of samples.

The width must meet the condition:
O<width<samples.

The following condition must be met:
0_(delay+width)<samples.

dt must be greater than or equal to zero.
dt must be greater than zero.

The index must meet the condition:
0_index<samples.

The following condition must be met: 0 £
(index+length)<samples.

The upper value must be greater than or equal to
the lower value.

The cutoff frequency, fc, must meet the condition:

0<F, s%ﬂ

The order must be greater than zero.
The decimating factor must meet the condition:
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BandSpecErr

RippleGTZeroErr
AttenGTZeroErr
WidthGTZeroErr
FinalGTZeroErr
AttenGTRippleErr

StepSizeErr

LeakErr

EqRplDesignErr

RankErr

EvenSizeErr
OddSizeErr
StdDevErr
MixedSignErr
SizeGTOrderErr
IntervalsErr
MatrixMulErr
SquareMatrixErr
SingularMatrixErr

LevelsErr
FactorErr
ObservationsErr

DataErr

OverflowErr

O<decimating = samples.
The following condition must be met:

f
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The ripple amplitude must be greater than zero.
The attenuation must be greater than zero.

The width must be greater than zero.

The final value must be greater than zero.

The attenuation must be greater than the ripple
amplitude.

The step-size, y, must meet the condition: 0 & H
£0.1.

The leakage coefficient must meet the condition:
0 “leaks H,

The filter cannot be designed with the specified
input values.

The rank of the filter must meet the condition:
1%(2 rank + 1) £ size.

The number of coefficients must be odd for this
filter.

The number of coefficients must be even for this
filter.

The standard deviation must be greater than zero
for normalization.

The elements of the Y Values array must be
nonzero and either all positive or all negative.

The number of data points in the Y Values array
must be greater than two.

The number of intervals must be greater than
zero.

The number of columns in the first matrix is not
equal to the number of rows in the second matrix
or vector.

The input matrix must be a square matrix.

The system of equations cannot be solved
because the input matrix is singular.

The number of levels is out of range.
The level of factors is out of range for some data.

Zero observations were made at some level of a
factor.

The total number of data points must be equal to
the product of the levels for each factor and the
observations per cell.

There is an overflow in the calculated F-value.
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BalanceErr
ModelErr

DistinctErr
PoleErr

ColumnErr

FreedomErr
ProbabilityErr
InvProbErr

CategoryErr
TableErr

InvSelectionErr
MaxlterErr
PolyErr
InitStateErr
ZeroVectorErr

The data is unbalanced. All cells must contain the
same number of observations.

The Random Effect model was requested when
the Fixed Effect model was required.

The x values must be distinct.

The interpolating function has a pole at the
requested value.

All values in the first column in the X matrix must
be one.

The degrees of freedom must be one or more.
The probability must be between zero and one.

The probability must be greater than or equal to
zero and less than one.

The number of categories or samples must be
greater than one.

The contingency table must not contain a negative
number.

One of the input selections is invalid.

The maximum iterations have been exceeded.
The polynomial coefficents are invalid.

This VI has not been initialized correctly.

The vector cannot be zero.



This section lists the reference material used to produce Analysis Vs . These references contain more
information on the theories and algorithms implemented in the analysis library.
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There are two quick ways to obtain information about a VI while in LabVIEW. To see the name of a VI and
its parameters, go to the block diagram window and choose. Then place the cursor over the Vl icon, as
shown in the following illustration. The information in the Help window changes when you move the cursor
to another VI or function.
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You can resize the Help window by using the Positioning tool. Labview automatically adjusts the Help
window size if the information does not fit on your resized screen. Once you resize the window, LabVIEW
defaults to that size any time you access the Help window. The following illustration shows an example
Help window.
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Generates an array containing an impulse pattern. If the
Irnpulse Pattern is represented by the sequence #, the VI
generates the pattern according to the following
forrmula:

x[il=a ifi=d; =x[i]1=0 elzsewhere.

where a iz the amplitude,
d iz the delay. ]

Flo[?] | |
You can also access information about a VI through the Project menu. You use options from this menu to
display a Vls hierarchy, callers, subVIs, unopened subVls, and unopened typedefs. In addition, you can
use the Find options on this menu to perform searches for objects or text in a particular VI, VI library, or all
VIs in memory. If you choose the Show Profile Window option from this menu you can learn information
about memory usage, the number of runs for a VI or subVI, average time spent on a particular VI or
subVI, and so on.

If you need more information, choose Windows»Show VI Info... to obtain a brief description of the
operation performed by the VI.

You can open the front panel of a VI through the pop-up menu of the VIs icon or by double-clicking on the
icon with the Operating or Positioning tools. The front panel shows the controls and indicators that the VI
uses. When you display the VI connector pane and click on a control or indicator, the corresponding
connector terminal turns black.



Each analysis VI has an error output parameter, which returns a signed, 32-bit integer when invalid input
conditions occur. Refer to Analysis Error Codes for the error condition that corresponds to the code.

In general, if the VI cannot resolve the error conflicts, or if it cannot complete the operation, the VI sets
output arrays to empty arrays and floating-point, output scalars to undefined, which it displays as. The
following figure shows the front panel of the Dot Product VI, which returns NaN and an error code of
-20003, meaning the input arrays must not be empty, when you try to calculate the dot product of X'Y.

Dot Product

# Mectar wnEY
Y Mectar error




To help you identify the type of parameters and operations, this manual uses the following notation and
naming conventions unless otherwise specified in a VI description. Although there are a few scalar
functions and operations, most of the analysis VIs process large blocks of data in the form of one-
dimensional arrays (or vectors) and two-dimensional arrays (or matrices).

Normal lower case letters represent scalars or constants. For example,

a’ b

P,
b =1.234.

Capital letters represent arrays. For example,
X,
A,
Y=aX+h.
In general, X and Y denote 1D arrays, and A, B, and C represent matrices.

Array indexes in LabVIEW are zero-based. The index of the first element in the array, regardless of its
dimension, is zero. The following sequence of numbers represents a 1D array X containing n elements.

X = {XD=X1=X2=“'=XH—1}
The following scalar quantity represents the ith element of the sequence X.
Z;=0%1%n

The first element in the sequence is #i1 and the last element in the sequence is

Ey-1 for a total of n elements.
The following sequence of numbers represents a 2D array containing n rows and m columns.

agn Agr A2 Al

aig Ay Al vt A

A= ayp ay  ap v Agm
Ap-10  FAn-11  An-12 7 Fp-lm-l

The total number of elements in the 2D array is the product of n and m. The first index corresponds to the
row number, and the second index corresponds to the column number. The following scalar quantity

represents the element located on the im row and the

-th
1 column.
ag0i1inand 0L 18m

The first element in A is 200 and the last element is

qp-lm-1.
Unless otherwise specified, this manual uses the following simplified array operation notations.

Setting the elements of an array to a scalar constant is represented by



X=a,

which corresponds to the sequence
X=1{a,aa,...,a}

and is used instead of

=z, fori1 =012, ..0n-1

]

Multiplying the elements of an array bya a scalar constant is represented by
Y=aX,
which corresponds to the sequence

T = {E’IKD,EXI,EXE,...,EXH_I}

and is used instead of

¥y = ax, fori1 =012 n-1.
Similarly, multiplying a 2D array by a scalar constant is represented by

B=kA,

which corresponds to the sequence

kagy  kapy  kapy - kappq

kayg  kapy  kajp -0 kapgyg

..":".. = kazn 1{5121 1{51.22 kazm_l
kayqn kayqp kapqz - kagqpq

and iz used instead of

bij =kaij,fori =0,1,2, .,n-1and =012, . ,m-1

Empty arrays are possible in LabVIEW. An array with no elements is an empty array and is represented
by

Empty = NULL = &= {} .

In general, operations on empty arrays result in empty, output arrays or undefined results.



To use digital signal processing techniques, you must convert an analog signal into its digital
representation. This section includes only a brief discussion of the notation that represents a digital signal.
This section does not discuss the mathematical background or problems associated with sampling
techniques.

Consider an analog signal x(t) and the sampling interval #t. The signal x(t) can be represented by the
discrete sequence of samples

[l wlAD), =240, =(3A0D, ., zlkaAt), 1
Because {it establishes only the sampling rate and has no bearing on the actual sampled (digitized)
value, the sample at

t=1At, fori=0,1, 2, ...

corresponds to the % element in the sequence.
Thus,

x; = x(14t)

and x(t) can be represented by the sequence X whose values are

H= {XD=X1=X2=X3 "'=Xk="'}
If n samples are obtained from the signal x(t), en the sequence

X = {XD=X1=X2=K3 ...,Kn_l}

is the digital representation or the sampled version of x(t).



This topic describes the Vls that perform common, one- and two-dimensional numerical analysis. The
following illustration shows the options that are available on the Array Operation subpalette. Click on one
of the icons below for function description information. You can also click on the text jumps below the
icons to access function descriptions.
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1D Linear Evaluation

1D Polar To Rectangular
1D Polynomial Evaluation
1D Rectangular To Polar
2D Linear Evaluation

2D Polynomial Evaluation
Normalize Matrix
Normalize Vector

Quick Scale 1D

Quick Scale 2D

Scale 1D

Scale 2D

Unit Vector

1D Linear Evaluation

Performs a linear evaluation of the input array X.

A— v ][I 2+ by
I
;;g}; - f i o

X consists of the input array.
scale is the multiplicative constant.
offset is the additive constant.
e8| y[i] = X[i] * a + b is the output array.
error. See Analysis Error Codes for a description of the error.
The output array Y[i] = X[i]*a + b is given by

Y=aX+b

where a is the multiplicative scale constant, and b is the additive constant offset.

1D Polar To Rectangular (Advanced Only)



Converts two arrays of polar coordinates into two arrays of rectangular coordinates, according to the
following formulas:

X = magnitude cos(phase)

y = magnitude sin(phase).

b agritude E M:” #
Phaze F Ny
I— errar

Magnitude is a one-dimensional array of polar coordinates.
Phase is a one-dimensional array of polar coordinates. You must express Phase in radians.

X is a one-dimensional array of rectangular coordinates.

[DBL]] Y js a one-dimensional array of rectangular coordinates.
error. See Analysis Error Codes for a description of the error.

1D Polynomial Evaluation

Performs a polynomial evaluation of X using Coefficients: a.

" 30,45 v

Coefficients a " Errar
i X is the input data to be used in the polynomial evaluation.
i Coefficients: a. The total number of elements in Coefficients: a is the polynomial order plus
one.
i Y is the output data.
X error. See Analysis Error Codes for a description of the error.
The output array Y is given by

m
T=7 aan

n=0

where m denotes the polynomial order.

1D Rectangular To Polar (Advanced Only)

Converts two arrays of rectangular coordinates into two arrays of polar coordinates, according to the
following formulas:

magnitude. = % +F2
phase = tan 1T
X

X is a one-dimensional array of rectangular coordinates.

Y is a one-dimensional array of rectangular coordinates.

Magnitude is a one-dimensional array of polar coordinates.

Phase is a one-dimensional array of polar coordinates. Phase is expressed in radians.
error. See Analysis Error Codes for a description of the error.

2D Linear Evaluation

Performs a linear evaluation of the two-dimensional input array X.

R L R R R

# T Y=rrarh
............. a-t
E .’ ......... b—il'l error




X is the two-dimensional input array.

a is the multiplicative constant.

b is the additive constant.

Y = X *a+ b is the two-dimensional output array.

error. See Analysis Error Codes for a description of the error.
The two-dimensional output array Y = X*a + b is given by

I L L L

Y=aX+b,

where a denotes the multiplicative constant, and b denotes the additive constant.

2D Polynomial Evaluation

Performs a polynomial evaluation of the two-dimensional input array X using Coefficients a.

X is the two-dimensional input array.

Coefficients a. The total number of elements in Coefficients a is the polynomial order plus one:
+1.

Y is the two-dimensional output array.

error. See Analysis Error Codes for a description of the error.
The two-dimensional output array Y is given by

e Lo T e Lo

Im
T = E aan
n=0
where m denotes the polynomial order.

Normalize Matrix (Advanced Only)

Normalizes the 2D input Matrix using its statistical profile (u, s), where p is the mean and s is the
standard deviation, to obtain a Normalized Matrix whose statistical profile is (0,1).

= M ormalized b atriz
- gtandard desiation

—l_ mean

Ermor
% Matrix. If Matrix is an empty array, Normalized Matrix is also an empty array, and mean and
standard deviation are NaN.
i Normalized Matrix is the output normalized matrix.
% standard deviation is the standard deviation of Matrix.
i
T

o= [
Matri:,: JROTSOTSe L L“:rﬁ N
Hal

mean is the mean of Matrix.
error. See Analysis Error Codes for a description of the error.
he VI obtains Normalized Matrix using




B= T
o)
n-1 m-1
2 %ig
i=0 j=0
.|I"‘I:’ = 1
n*m
n-1 m-1 7
(all _“)
i=0 j=0
g =

where B represents the 2D output sequence Normalized Matrix, A represents the 2D input sequence
Matrix with n rows and m columns, and 1 is the element of A on the

% row and
% column.

Normalize Vector (Advanced Only)

Normalizes the input Vector using its statistical profile (£,s), where

% is the mean and s is the standard deviation, to obtain a Normalized Vector whose statistical profile is
(0,1).

Mormalized Wectaor
- gtandard dewiation

—l_ mean

Errar
X Vector. If Vector is an empty array, Normalized Vector is also an empty array, and mean and
standard deviation are NaN.

H

Wechor

A Normalized Vector is the output normalized vector.

4 standard deviation is the standard deviation of Vector.

4 mean is the mean of Vector.

i error. See Analysis Error Codes for a description of the error.
The VI obtains Normalized Vector using

K_
y=="8
o
n-1
2o ¥
P =
1l
o=

where Y represents the output sequence Normalized Vector, and X represents the input sequence



Vector of length n, and i is the

% element of X.

Quick Scale 1D (Advanced Only)

Determines the maximum absolute value of the input array X and then scales X using this value.

=

rsesssnssnans i [] =24 1]l o]
o
T — epror

i X is the input array.

i Y[i] = X[il/Max|X| is the output array.

i max{X} is the maximum absolute value in the input array.
i

-

n

¥

error. See Analysis Error Codes for a description of the error.
he output array Y[i] = X[iJ/Max|X] is given by

3
A =arey,
3
where s is the maximum absolute value in X.

You can use this VI to normalize sequences within the range [-1:1]. This VI is particularly useful if the
sequence is a zero mean sequence.

Quick Scale 2D (Advanced Only)

Determines the maximum absolute value of the input array X and then scales X using this value.

[

X is the two-dimensional input array.

Yij = Xij/Max{X} is the two-dimensional output array.

max|X| is the maximum absolute value in X.

error. See Analysis Error Codes for a description of the error.
he output array Yij = Xij/Max{X} is given by
y-X

g
where s denotes the maximum absolute value in X.

Tl
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You can use this VI to normalize sequences within the range [-1:1]. This VI is particularly useful if the
sequence is a zero mean sequence.

Scale 1D (Advanced Only)
Determines scale and offset and then scales the input array X using these values.

ppeeee = -offset)Asnale

H
= mo scale

X is the input array.

Y = (X-offset)/scale is the output array.

scale is the scaling factor.

offset is the offset factor.

error. See Analysis Error Codes for a description of the error.

L L L | [




The output array Y is given by

¥ —offzet
scale

scale = 0.5(max - min), and

offset = min + scale,

where max denotes the maximum value in X, and min denotes the minimum value in X.

You can use this VI to normalize any numerical sequence with the assurance that the range of the output
sequence is [-1:1].

Scale 2D (Advanced Only)

Determines scale and offset and then scales X using these values.

Y:

== -offset)sale
scale

—l_ offeet

Errar
i X is the two-dimensional input array.
i Y = (X - offset)/scale is the two-dimensional output array.
X scale is the scaling factor.
% offset is the offset factor.
X
T

error. See Analysis Error Codes for a description of the error.
he two-dimensional output array Y = (X - offset)/scale is given by

H —offset
scale

scale = 0.5(max - min), and

Y:

offset = min + 0.5 scale,
where max denotes the maximum value in X, and min denotes the minimum value in X.

You can use this VI to normalize any numerical sequence with the assurance that the range of the output
sequence is [-1:1].

Unit Vector (Advanced Only)

Finds the norm of the Input Vector and obtains its corresponding Unit Vector by normalizing the original
Input Vector with its norm.

[drut Wectar

[»1
=]

| nput Wechar |

H

Input Vector. If Input Vector is an empty array, Unit Vector is also an empty array, and norm is

Unit Vector is the output, normalized vector.

norm.

error. See Analysis Error Codes for a description of the error.
Let X represent the input Input Vector; norm is given by/

X
NaN.
X
X
i

2 ] 2
= xd +xf+ 42y

where 1] is norm, and the VI calculates Unit Vector, U, using



U=
2]
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This topic describes the Vls that use numerical methods to perform root-finding, numerical integration,
and peak detection. The following illustration shows the options that are available on the Additional
Numerical Method subpalette. Click on one of the icons below for function description information. You
can also click on the text jumps below the icons to access function descriptions.
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Complex Polynomial Roots
Numeric Integration

Peak Detector

Threshold Peak Detector

Complex Polynomial Roots (Advanced Only)

Finds the complex roots of a complex polynomial.
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Polynomial is the array of complex coefficients from the lowest to the highest order. For
example, the second order polynomial as described by the 3-element array

A= {aﬂ,al,ag} would-be:

A =ap +alx+azxz,
This VI finds the two complex roots of the above polynomial.

i Polynomial Roots is the array of complex roots of the complex Polynomial. The array always
contains the same number of roots as the polynomial order, which is one less than the number of
coefficients in the input Polynomial. For example, for the second order polynomial:

ag tajx tasx
Polynomial Roots would contain two complex roots {r0,r1}, such that
ap tapxtaze’ = (x-rg)ix -1

i error. See Analysis Error Codes for a description of the error.
This VI uses a modified, complex Newton method to determine the n complex roots (some of which may
be real, with a zero imaginary part), of the general complex polynomial:

n-1 I

4
ag tagxtaE™ + A, +ta,E

Numeric Integration (Advanced Only)

Performs a numeric integration on the input array of data using one of four, popular numeric integration
methods.
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i Input Array contains the data to be integrated, which is obtained from sampling some function
f(t) at multiples of dt, that is, f(0), f(dt), f(2dt),.....
i dt is the interval size, which represents the sampling step size used in obtaining data in Input

Array from the function. If you supply a negative dt, the VI uses its absolute value.

integration method specifies the method used in performing the numeric integration.
0: Trapezoidal Rule

1: Simpsons' Rule

2: Simpsons' 3/8 Rule

3: Bode Rule

i result contains the result of the numeric integration.

i error reports any error encountered during execution.

Note: If the number of points provided for a certain chosen method does not contain an integral
number of partial sums, then the method is applied for all possible points. For the
remaining points, the next possible lower order method is used. For example, if the Bode
method is selected, the following table shows what this VI evaluates for different numbers
of points:

Number of Points Partial Evaluations Performed

224 56 Bode

225 56 Bode, 1 Trapezoidal
226 56 Bode, 1 Simpsons'
227 56 Bode, 1 Simpsons' 3/8
228 57 Bode

So, if 227 points were provided and the Bode Method was chosen, the VI would arrive at the result by
performing 56 Bode Method partial evaluations and one Simpsons' 3/8 Method evaluation.

Each of the methods depend on the sampling interval (dt) and compute the integral using successive
applications of a basic formula in order to perform partial evaluations, which depend on some number of
adjacent points. The number of points used in each partial evaluation represents the order of the method.
The result is the summation of these successive partial evaluations.

t1
result = Ifl[tj dt =3 partial sums
t0 ]
where j is a range dependent on the number of points and the method of integration.

The basic formulas for the computation of the partial sum of each rule in ascending method order are:
Trapezoidal: (x[i] + x[i+1])*dt, k = 1

Simpsons": (x[2i] + 4x[2i+1] + x[2i+2])*dt/3, k = 2

Simpsons' 3/8: (3x[3i] + 9x[3i+1] + 9x[3i+2] + 3x[3i+3]) * dt/8, k = 3

Bode: (14x[4i] + 64x[4i+1] + 24x[4i+2] + 64x[4i+3] + 14x[4i+4])*dt/45, k = 4



fori=0, k, 2k, 3k, 4k..., Integral Part of [(N-1)/k]

where N is the number of data points, k is an integer dependent on the method, and x is the input array.

Peak Detector (Advanced Only)

Finds the location, amplitude, and second derivative of peaks or valleys in the input array.

—— # faund
i e Lacations
thre=hald I peak L Arrplitudes
width — —dotes %an Derivatives
peaksfvalleys errar
initialize |:"|':| [
end of data [T -
i X is the input that holds the data to be processed. The data can be a single array or consecutive

blocks of data. Consecutive blocks of data are useful for large, data arrays or for real time processing.
Notice that in real time processing, peaks/valleys are not detected until approximately width/2 data
points past the peak or valley.

i threshold is the input that rejects peaks/valleys that are too small. For peaks, any peak found
with a fitted amplitude that is less than threshold is ignored. Valleys are ignored if the fitted trough is
greater than threshold.

i width is the input that specifies the number of consecutive data points to use in the quadratic
least squares fit. The value should be no more than about 1/2 of the half-width of the peaks/valleys and
can be much smaller for noise-free data. Large widths can reduce the apparent amplitude of peaks and
shift the apparent location.

i peaks/valleys. You use this control to choose between looking for peaks (positive-going bumps)
and valleys (negative-going bumps). The settings for this control are 0 (peaks) and 1 (valleys).

initialize. Set this control to TRUE to process the first block of data. The VI requires some
internal setup at the beginning for proper operation. If you only want to process one block of data, leave
initialize unwired, or set its default state to TRUE.If you want to process consecutive blocks of data, set
initialize to TRUE for the first block and FALSE for all other blocks of data.

i end of data. Set this control to TRUE to process the last block of data. After processing the last
block of data, the VI manages internal data. If you only want to process one block of data, leave end of
data unwired, or set its default state to TRUE. If you want to process consecutive blocks of data, set end
of data to FALSE for all but the last block of data.

4 Locations is an array containing the locations of peaks/valleys found in the current block of
data. Locations are reported in indices from the beginning of processing.

i Amplitudes is an array containing the amplitudes of peaks/valleys found in the current block of
data.

i 2nd Derivatives is an array containing the second derivatives of peaks/valleys found in the
current block of data.

i # found is the number of peaks/valleys found in the current block of data. # found is the size of
the arrays Locations, Amplitudes, and 2nd Derivatives.

A error. See Analysis Error Codes for a description of the error.

The data set can be passed to the VI as a single array or as consecutive blocks of data.

This VI is based on an algorithm that fits a quadratic polynomial to sequential groups of data points. The
number of data points used in the fit is specified by width.

For each peak or valley, the quadratic fit is tested against the threshold level: peaks with heights lower
than the threshold or valleys with troughs higher than the threshold are ignored. peaks/valleys are
detected only after approximately width/2 data points have been processed beyond peaks/valleys
locations. This delay has implications only for real time processing.

The VI must be notified when the first and last blocks are passed into the VI, so that the VI can initialize
and then release data internal to the peak detection algorithm.



Threshold Peak Detector (Advanced Only)

Analyzes the input sequence X for valid peaks and keeps a count of the number of peaks encountered
and a record of Indices, which locates the points that exceed the threshold in a valid peak. A peak is
valid where the elements of X exceed the threshold and then return to a value less than or equal to the
threshold, and the number of elements that exceed the threshold is at least equal to width.

b = Indices
threszhald - FIF  count

. i
width — & T — eqror

£ X. The number of samples in X must be greater than the specified width. If X is less than or
equal to width, the VI sets count to zero and returns an error.

£ threshold defaults to 0.0.

i width must be greater than zero. If width is less than or equal to zero, the VI sets count to zero

and returns an error. width defaults to 1.

32| |ndices.

A count.

Y error. See Analysis Error Codes for a description of the error.
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This topic discusses the theoretical and practical aspects of using the analysis VIs in actual applications
and provides examples of common uses for the Vis. These examples illustrate how easy it is to use the
analysis VIs and can help you develop more sophisticated applications.

Several of these examples address common user questions. With these examples, novice users can
quickly understand the principles of digital data processing and apply them to their applications, while
advanced users can learn more about high-level analysis functions.

Following is a list of Analysis VI examples by category:

Curve Fitting Examples

Echo Detection

Filtering Examples

Frequency Information Displayed
Parseval's Theorem

Pulse Demo

Statistical Examples

Windowing Example

These examples require no special code, files, techniques, applications, or dedicated Vls. These
examples are included in the examples directory in the LabVIEW distribution disks.

Curve Fitting Examples

In some applications, parameters such as humidity, temperature, and pressure can affect data you
collect. You can model the statistical data by performing regression analysis and gain insight into the
parameters that affect the data.

Two examples in this section illustrate how to use curve fitting Vls. The first example demonstrates how to
use the Linear Fit, Exponential Fit, General Polynomial Fit, and related VIs. The second example
illustrates how to use the General LS Linear Fit VI.

Fitting a Line to Data

The following block diagram shows how to fit a line to a set of data points using the Linear Fit VI.

i)
Original Data
[mBL]
Eest Linear Fit
A
[DEL]

You can modify the example to fit exponential and polynomial curves by replacing the Linear Fit VI with
the Exponential Fit VI or the General Polynomial Fit VI.

The following multiplot graph shows the result of fitting a line to the noisy data set.
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General LS Linear Fit

The following example demonstrates not only how to use the General LS Linear Fit VI to obtain the set of
least square coefficients a and the fitted values, but also how to set up the input parameters.

The purpose is to find the set of least square coefficients a that best represent the set of data points (x,y).
The relationship between x and y is of the form

n-1

y =fla,x)= 2 a;fi(x) =agfp(z) +ayfy =)+ +a,4f, (=)
i=0

where

a=1{apg,ay.a3,.... 8,1}
and n is the total number of functions.

Assume the data is generated using the relationship

v = 2hp(x) + 3hy (x) + 4h4 (x) +noisze
where

hq(x) = sin(z?),

hy (x) = cos(x),

1
hz(X)=m, and

noise is a random value.

Also, assume that you think the relationship between x and y is of the form

y = aplp(x) + arfy (x) + agfy(x) + asfalx) + agfyx)
where



fo(x) =10,

£y () = sinfx?),

f5 (=) = 3cos(x),

1
£y () = ,
3 (=) —
£q(z) =",

To obtain the coefficients a, you must supply the set of (x,y) points in the arrays X and Y and you must
also supply the basis function H(X,i), which is a 2D array, to the General LS Linear Fit VI.

The arrays X and Y are the values observed in your experiment. A simple way to provide the basis
function H(X,i) is shown in the following diagram.

M
% b d uo =t
serve = e -
yl = sin(x"2); 1 _ :
[oBL] _] Y2 = S¥eosx); — =2 HEz i)
T ys =1/ 0=+10; '_:I
yd =g J_

You can easily edit the formula node to change, add, or delete functions. At this point, we have all the
necessary inputs to use the General LS Linear Fit VI to solve for a. The expected set of coefficients are

2a={0.0, 2.0, 1.0, 4.0, 0.0}

Executing the General LS Linear Fit VI with the values of X, Y, and H(X,i) returns the following set of
coefficients.

The block diagram below demonstrates how to set up the General LS Linear Fit application to obtain the
coefficients and a new set of y values.

E:Datat = [k d [ata and Fitted Curve|
res m setved Data and Fitted Curwe
=10

noize amplitude

TR o s e R ]
s —I-m
The icon labelled Data Create generates the X and Y arrays. You can replace this icon with one that

actually collects the data in your experiments. The icon labelled H(X,i) generates the 2D H(X,i) basis
function.



The last portion of the diagram overlays the original and the estimated data points and produces a visual
record of the General LS Linear Fit. The results are shown in the following graph.
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General LS Linear Fit VI has six different algorithms to obtain the set of coefficients and the fitted values.

In this example, there is no significant difference among different algorithms. You can select different

algorithms from the front panel to see the results. In some cases, different algorithms may have
significant differences, depending on your observed data set.

Echo Detection

Hilbert transforms are used extensively in the analysis of modulation systems, such as echo detection.

Consider the time signal of the form

x(t) = Ae” VT cos{ 2mfyt)
and its Hilbert transform

xylt) = —Ae V" sinf 2nfyt)
where A is the amplitude, fIII is the natural resonant frequency, and

T is the time decay onstant.
The natural logarithm of the magnitude of the analytic signal * & 'Itj is given by

1n|xﬂlit:|| = 1n|x(tj +ij|:tj| - +ln A,
T
which has the form of a line with slope
1

in = ——
-
Thus, you can extract the time constant of the system by graphing

In |X A (tjl|

Consider the echo signal shown in the following graph. The echo signal is difficult to locate because the
time delay between the source and the echo signal is short relative to the time decay constant of the
system and because the echo amplitude is small compared to the source.
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You can make the echo signal visible by plotting the magnitude of xA(t) on a logarithmic scale. The
discontinuity that now appears in the following graph indicates the location of the time delay of the echo.
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The following block diagram shows a simple echo detector. All the necessary nodes are either LabVIEW
functions or analysis VIs.

Echo Amplitude
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This example generates the analytic signal using the Fast Hilbert Transform VI, finds its magnitude with
the 1D Rectangular To Polar VI, and computes the natural log to detect the presence of an echo.

Filtering Examples

FIR Filter Design
Noisy Pulse Analyzed with a Median Filter

lIR Filter Design

When using a digital filter to process data, you should know its spectral characteristics. You can use the
following example to examine the spectral properties of the IR filter Vls.

LabVIEW has five types of recursive filter VIsButterworth, Chebyshev, Chebyshev ll, Elliptic, and Bessel.



Filter Design
Butterworth
Chebyshev
Chebyshev Il

Bessel

Each type of filter has four basic, often-used configurations: lowpass, highpass, bandpass, and bandstop
(or notch).

Filter Type

Lowpass
Highpass

YBandpass
Bandstop

The filter parameters you can control are the lower and higher cut-off frequencies, the filter order, the
passband ripple in decibels, and the stopband attenuation ripple. This example displays the spectral
function linearly or in decibels.

Ripple
Attenuation
Order

Cri=play
E Lagarithrnic
Linear

Cut-Off Freqs

The following block diagram determines the spectral response of the filters. The diagram passes an
impulse signal through a filter to obtain the magnitude and phase response of that filter. The case
structures immediately to the right of the Impulse Pattern VI select the filter design (Butterworth,
Chebyshev, Chebysheuv I, Elliptic, or Bessel) and type (lowpass, highpass, bandpass, or bandstop). The
signal obtained from the case structure is the impulse response of the system.

The transfer function of the system corresponds to the impulse response via the Fourier transform such
that the impulse response and the transfer function are Fourier transform pairs

h(t) =H(f),

where h(t) is the impulse response, and H(f) is the transfer function (frequency response).

Because the case structure output signal is the impulse response, you can derive the transfer function
with a Fourier transform. Half of the information is redundant, so you need to process only half of the
information after the FFT VI. Magnitude and phase information are much easier to interpret than the real
and imaginary component of the FFT, and you can therefore use the 1D Rectangular to Polar VI to obtain
the magnitude and phase. Finally, unwrap the phase and convert it to degrees and convert the magnitude



to decibels.
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The following graph shows the magnitude of an elliptic bandpass filter.
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The following graph shows the phase response of an elliptic bandpass filter.
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Notice that the phase information is clearly nonlinear and should be considered when selecting IIR or FIR
filters to process data.

FIR Filter Design

You should use FIR filters to produce linear phase responses. Linear phase response implies that all
frequencies in the system have the same propagation delay.

The following block diagram displays the frequency response of Equi-Ripple FIR filters. The diagram is
similar to that used in the IR Filter Design example because the same mathematical theory applies to this
type of filter.
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The following graphs show the magnitude and phase response of a bandpass FIR filter.
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The discontinuities in the phase are a result of using the absolute value of the magnitude. Still, it is linear
response as described in the Finite Impulse Response Filters section.

Noisy Pulse Analyzed with a Median Filter

One of the conditions the Pulse Parameters VI imposes is that the expected peak amplitude of the noise
portion of the signal be less than or equal to 50% of the expected pulse amplitude. This condition is
necessary because after the VI completes the modal analysis to determine the baseline and the top, it is
difficult to discriminate between noise and signal without more information. In some practical applications,
this kind of pulse-to-noise ratio is difficult to achieve, and you must do some preprocessing to extract
pulse information.

If the pulse is buried in noise whose expected peak amplitude exceeds 50% of the expected pulse
amplitude, using a lowpass filter removes some of the unwanted noise. However, the filter also shifts the
signal in time and smears the edges of the pulse because these transition edges contain high frequency
information.

A median filter can extract the pulse more effectively. A median filter is a nonlinear filter that removes high
frequency noise while preserving edge information.



The following block diagram demonstrates how to use the Median Filter VI to successfully analyze a noisy
pulse whose expected peak noise amplitude is greater than 100% of the expected pulse amplitude.
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The following multiplot graph shows how you can easily track the pulse signal with the aid of a median
filter in spite of the fact that the pulse is deeply buried in noise.
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By removing the high frequency noise with the Median Filter VI, you can attain the condition for the Pulse
Parameter VI and complete the analysis correctly. The results shown in the following figure correspond to
the analyzed pulse in the previous multiplot graph.

Estimated Pulse Parameters

Amplitude “Width Delay
|Lszs | (HET T
v zamples zamples

The ideal pulse values when the signal was generated were as follows.

Amplitude: 5.0V
Delay: 64 samples
Width: 32 samples

Frequency Information Displayed

Two of the principal challenges in scientific analysis are mathematically describing the Fourier transfer
and understanding its properties. The most common applications of the Fourier transform are the analysis
of linear time-invariant systems and spectral analysis, but this transform is most important because it
gives the scientist a way to examine a relationship from the frequency domain point of view.

Two Sided DC Centered Fast Fourier Transforms
Frequency Information Obtained from Transforms




Most introductory textbooks in linear systems, digital signal processing, image processing, and other
related applications discuss the two-sided mathematical description of the Fourier transform

X(F) = Fla(t)) = [x(0e ™,

and its inverse

[ru)
X() =F () = [ ar

=0
Two-sided information means that all the negative and positive frequencies and time are considered in
the mathematical implementation of the forward and inverse Fourier transform. Single-sided or one-sided
information considers only the positive frequencies and time history of the signal.

A Fourier transform pair consists of the signal represented in both the time and frequency domain. The
notation

x(t) <X(f)

is commonly used to represent a Fourier transform pairfor example, tri(t) = sinc”2

Recent advances in the computation of FFTs, Discrete Fourier Transforms (DFTs), and their inverse
operations led to the adoption of the frequency information presentation format used in the FFT VI
description in the Digital Processing Signal Vis section of this manual. This format is used principally for
speed and processing convenience.

When dealing with test and measurement applications, frequency information in the format used in the
above topic often appears awkward to scientists. There are two other common ways to present this
informationdisplaying the DC component in the center and displaying one-sided spectrums.

To convert to a DC-centered Fourier transform, the quick and obvious solution is to copy buffers from one
place to another. In the case of converting single-side band information, the solution involves extracting
the frequency information and multiplying each value by 2 (excluding DC and Nyquist components). A
special case occurs when the length of the sequence is even, which is also a requirement for the
computation of the FFT because its length has to be a power of 2.

The three examples that follow illustrate how to preprocess time sequences to obtain the desired
frequency display format. The first two examples briefly discuss alternate and simpler methods for
obtaining DC-centered and single-sideband Fourier transforms without manipulating buffers. The third
example discusses how to obtain and display correct frequency information of the FFT for a given
sampling interval. You can extend this example to incorporate it into the DC-centered and single-sideband
FFT cases.

Two-Sided (DC-Centered) Fast Fourier Transforms

Most introductory textbooks that discuss the Fourier transform and its properties present a table of two-
sided Fourier transform pairs. You can use the frequency shifting property of the Fourier transform to
obtain a two-sided (the DC component in the middle of the buffer) representation. If x(t) & X(f) is a Fourier
transform pair, then



x(t)e 2ol o 3 £,
Let)

1
M= 3 = 1.(t; is-the-sampling frequency)
=
in the discrete representation of the time signal, and set % to the index corresponding to the Nyquist

component fNyq

f 1
t, =¢ =5=_
0 THm o

because that is how much frequency shifting is required for the DC component to appear in the location of
the Nyquist component.

The discrete representation is

e X
k=3

where n is the number of elements in the discrete sequence.
Expanding the exponential term in the time sequence

1 ifiiseven
-1 ifi1z0dd

which means that to obtain an FFT whose DC component appears in the center of the sequence, you
need only negate the odd elements of the original sequence. Thus, if

e = cosiim) + jsinfim) ={

o= [XD’XI sE7 ’XE""’Xn_lsan]
is the original input sequence, then the sequence

T = [Xﬂrxl=X2=K3=---=Xn—1,xn_1 ]
generates a two-sided FFT.

The following is a simple VI implementation. Notice that you can implement this calculation in place
without extra buffers.

The following block diagram is one of many possible implementations. In this particular implementation,
the For Loop includes a shift register with two left terminals. The constants wired to the shift register
terminals initialize them with the values -1.0 and 1.0. When the For Loop executes, the first element of the
array does not change because the element is multiplied by 1.0. The next iteration swaps the contents of
the left terminals of the shift register and multiplies the second element of the array by -1.0, negating the
original value. The For Loop repeats until it processes the whole array, at which time the contents of the
output array are ready to generate a two-sided FFT.
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Finally, the following figure shows the input and output terminals of the Nyquist Shift VI. You can use this
VI in an application that requires two-sided information.

b3 ‘H‘ Nuquist Shift{s}

The following block diagram shows a simple way to use the Nyquist Shift VI.
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The upper branch of this block diagram graphs the raw data. The data is shown in the following graph.
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In the previous block diagram, the Nyquist Shift VI preprocesses the raw data by negating every other
element in it. The Power Spectrum VI then analyzes the data. To display the processed data correctly,
you must supply the index corresponding to the harmonic in question. In this case, the initial value for this

graph % must be

n
g = ——.
o3
The following graph displays the result of processing the data in this manner to obtain two-sided FFTs.

Notice that the DC component appears in the center of the display indicated by the zero index and that
the overall format is just like that commonly found in tables of Fourier transform pairs.
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You can apply this technique to sequences that generate real and complex FFTs, even-sized real and
complex DFTs, power and cross power spectra, fast Hartley transforms (FHTs), and all functions related
to these functions. You cannot apply this technique directly to odd-sized arrays because leakage will
occur. However, you can derive a similar technique for odd-sized arrays.

Frequency Information Obtained from Transforms

The discrete implementation of the Fourier transform maps a digital signal into its Fourier series
coefficients or harmonics. Unfortunately, neither a time nor a frequency stamp is directly associated with
the FFT operation. Modern acquisition systems, whether they use add-on boards or instruments to
capture data, allow you to control or specify the sampling interval <.

Because an acquired array of samples represents a progression of equally-spaced samples in time, you
can determine the corresponding frequency in Hertz. The sampling frequency fs for £ is

and the frequency interval is

oo b
n nht
where n is the number of samples in the sequence.

Given the sampling interval 1.000E-3, the following block diagram displays a graph with the correct
frequency information.
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Thus, for the signal x(t), the resulting power spectrum graph with the correct frequency axis and the
resulting frequency interval appear as in the following illustration.
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Frequency Interval: df
The sampling interval is the smallest frequency that the system can resolve via FFT or related routines. A

simple way to increase the resolution is to increase the number of samples or increase the sampling
interval.




Parseval's Theorem

Parseval's Theorem states that the total energy computed in the time domain must equal the total energy
computed in the frequency domain. It is a simple statement of conservation of energy. Parseval's
relationship in its continuous form is given by

[ =(=(tyde = [PUE of.

You can express the discrete version of Parseval's relationship as

n—-1 n-1
2 1 2
Tl == T X
i=0 D y=n
where i = Xy is a discrete FFT pair, and n is the number of elements in the sequence.
You can implement Parseval's relationship using the Real FFT VI to compute the FFT of a real input

sequence. The following block diagram demonstrates Parsevals theorem.
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The upper branch in the block diagram evaluates the left side of Parsevals relationship, and the lower
branch evaluates the right side.

Applying Parseval's relationship to the time signal and the corresponding FFT, the total computed energy
in the time domain signal is the same total computed energy in the frequency domain, as shown in the
following figure.
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Pulse Demo

The Pulse Demo VI was one of the first examples created using LabVIEW, and it still provides a good
example of the high-level capabilities of block diagram programming. The VI simulates the transmission of
a pulse in a noisy environment based upon basic communication theory. Consider the following block
diagram and a signal x(t), which represents the pulse in question.
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The Transmitter VI generates the signal X(t) and modulates it to create a signal of the form

%, 0t) = =(t) cos(Eﬂfct:l
where £ is the carrier frequency.

The Noise VI, whose icon is a lightning bolt hitting the wire, then corrupts the transmitted signal with a
noise signal. You can control the amount of noise through the front panel of the Noise VI. The signal
produced by this VI is

wylt) ==, (t) +nlt) = =(t) cos(Enfctjl +n(t),

where n(t) is an uncorrelated noise signal.

The Receiver VI, whose icon is a parabolic antenna, receives and demodulates the noisy pulse. Because
the carrier frequency is known, you can demodulate the signal through a heterodyning procedure.
Expanding the following terms,

yit) = 2x,(t] cos(E :-rf,:t) +nt)
= E[X[t] coslizﬂfc t]l + n[tj]cos(Eﬂfc tjl
= 2xft) cos? (2w t) + nft) cos(2af, t)

= x(t) +x(t) cos(-’-’lﬂfct) + 2nlt) cos[Enfc t:}

The signal y(t) contains the original signal x(t), which contains the pulse information plus two modulated
signals in the upper portion of the spectrum, one at fc and the other one at 2fc. To extract x(t) from y(t),
you can use a low pass filter with a cutoff frequency less than the carrier frequency:

x(t) Lowpass[y(t)].

The following graph displays the results.
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The block diagram describing this process is much like the block diagram a researcher, scientist, or
engineer would use to explain and document the process. It is simple, elegant, and self-documenting.

Statistical Examples

Probability Density and Distribution Functions

Statistical Analysis of Simulated Noise Signals

When developing analysis algorithms, you may need to generate and simulate noise signals with specific
statistical properties to observe the behavior of the algorithm under deviant conditions. The robustness of
the analysis algorithm and its successful implementation depends upon the development of a good model
for noise signals.

LabVIEW contains an efficient random number generator you can use to model simple probabilistic
events. In addition, a subset of the analysis VIs can generate random patterns with specific statistical
characteristics. The Uniform White Noise and the Gaussian White Noise VIs, for example, generate two
common random patterns for modeling noisy environments.

The VI whose front panel and block diagram appear below generates a noisy signal whose expected
statistical properties are known beforehand. The VI then uses descriptive statistical analysis Vs to verify
the model and the properties of the noise signal.
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The desired statistical properties in this example are the mean, standard deviation, skewness, kurtosis,
histogram, and mode. The mean and standard deviation are well-known statistics. Skewness is a
measure of symmetry, and kurtosis is a measure of peakedness, and they correspond to the third and
fourth order moments about the mean, respectively. The histogram is an indication of the distribution, and
the mode is the value that occurs most often.
The expected values for a (0:1) Gaussian-distributed, white-noise signal are as follows.
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The histogram should resemble a bell-shaped curve.

The following graphs show the result of generating a (0:1) Gaussian-distributed noise signal, as well as its
histogram, which resembles a bell-shaped curve corresponding to a Gaussian distribution.
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The following controls show the computed values for the mean, standard deviation, skewness, kurtosis,

and mode to be compared to the actual expected values.
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Generating random numbers using a digital computer is impossible because you cannot create a true
random sequence with a deterministic machine. However, the analysis VlIs generate finite length
sequences (at least 290 samples) that closely mimic noise signals.

Probability Density and Distribution Functions

The previous example extracted some statistical properties of random patterns using descriptive statistics
VIs. The example also mentioned that the histogram is an indication of the probability density function.

The probability distribution function F(x) is defined as

X
F(x)= [f(tydt,

=0
where f(x) is the probability density function, and the following conditions on the probability density
function have been imposed:
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and

(]
[f(x)dz =1,
-G
It follows from calculus theorems that

dF (x)

= £(x)

To obtain the probability density and distribution functions of the white noise pattern generator Vs, you
can use the Histogram VI because it is a denormalized discrete representation of the probability density
function. The discrete representation is

n-1
TEjdw =1,
1=0
and the sum of the elements of the histogram is of the form

n-1
2hp=n,
1=0

where m is the number of samples in the histogram, and n is the number of samples in the input
sequence representing the function.

Thus, to obtain an estimate of the probability distribution function, it is only necessary to normalize the
histogram by

I

1

factor and letting hj =%j.
Consider the following set of front panel controls and the block diagram below them, which uses 25,000
samples (2,500 in each of 10 loop iterations) to generate the probability distribution function. The output
array of the Integral x(t) VI is the probability distribution function, and the differentiation of the distribution
is the probability density function.
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The following graph shows the last block of Gaussian-distributed noise samples.
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The following graphs show the results of executing the previous block diagram. Notice that the curve
corresponding to the probability distribution function is monotonically increasing and is limited to the
maximum value of 1.00 as the value of the X axis increases.
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Also notice that the probability density function shows a Gaussian distribution that conforms to the
specific pattern selected when the VI generated the noise signal.
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Windowing Example

Minimizing Leakage Using Smoothing Windows

The Sampling Theorem states that you can completely reconstruct a continuous-time signal from discrete
equally spaced samples if the highest frequency in the time signal is less than half the sampling
frequency. Half the sampling frequency equals the Nyquist frequency. This theorem bridges the gap
between continuous time signals and digital time signals. When you digitize a time signal in practical
applications, side effects occur even when the data meets the Nyquist criterion. One of the most common
side effects is energy leakage caused by the finite observation window.

When you use the FFT or DFT to measure the frequency content of your data, these transforms assume
that the finite window of data is one period of a periodic signal. The observation window, then, can cause
sharp transition changes to be introduced into your measured data.

You can minimize the effects of these transition edges by applying smoothing windows. You can think of
these windows, which modify the spectral contents of the digitized waveform, as simple filtering
operations. The type of window you should use depends upon your application requirements. The
following example demonstrates the windowed and non-windowed spectrums of a signal composed of the
sum of two sinusoids. The two sinusoids have amplitudes and frequencies (measured in cycles) as
shown.

Sine Wave 1 Sine Wave 2

Frequency 1 - [ERE Frequency 27 : =924
The block diagram for this example demonstrates how to use smoothing windows to reduce spectral
leakage:
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The following graph displays the results. The dashed line represents the spectrum of the digitized signal




with no window applied, and the solid line represents the windowed spectrum. Notice how the
nonwindowed spectrum shows leakage that is more than 20 dB greater than the smaller sinusoid.
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You can apply more sophisticated techniques to get a more accurate description of the original time-
continuous signal in the frequency domain. However, in most applications, applying a smoothing window
is sufficient to obtain a better frequency representation of the signal.




This topic describes the Vls that generate one-dimensional arrays with specific waveform patterns. For
information about Signal Generation Vls that use normalized input frequencies, see Normalized

Frequency.

The following illustration shows the options that are available on the Signal Generation subpalette. Click
on one of the icons below for function description information. You can also click on the text jumps below
the icons to access function descriptions.

=| Signal Generation

Arbitrary Wave

Chirp Pattern
Gaussian White Noise
Impulse Pattern
Periodic Random Noise
Pulse Pattern

Ramp Pattern
Sawtooth Wave

Sinc Pattern

Sine Pattern

Sine Wave VI

Square Wave

Triangle Wave
Uniform White Noise

For examples of how to use the signal generation Vls, see the examples located in
examples\analysis\sigxmpl.llb.

Arbitrary Wave (Advanced Only)

Generates an array containing an arbitrary wave.

W ave Table —_

samples — i Arhitrary Wave

amplitude

f

phaze in

rezet phase ......................
interpalation

Wave Table is one cycle of the waveform used in creating the output Arbitrary Wave.

A samples is the number of samples of the Arbitrary Wave. samples must be greater than or equal
to 0. If samples is less than zero, the VI sets Arbitrary Wave to an empty array and returns an error.
samples defaults to 128.

i amplitude is the amplitude of Arbitrary Wave. amplitude defaults to 1.0.

A f is the frequency of Arbitrary Wave in normalized units of cycles/sample. f defaults to 1
cycle/128 samples, or 7.8125E-3 cycles/sample.

errar

|



A phase in is the initial phase, in degrees, of Arbitrary Wave when reset phase is true.

4 reset phase determines the initial phase of Arbitrary Wave. If reset phase is true, the initial
phase is set to phase in. If reset phase is false, the initial phase is set to the value of phase out when
the VI last executed. reset phase defaults to true.

i interpolation determines the type of interpolation the VI uses to generate Arbitrary Wave from
the Wave Table array. If interpolation is O, the VI does not use interpolation. If interpolation is 1, the VI
uses linear interpolation. interpolation defaults to 0 (no interpolation).

Arbitrary Wave is the output arbitrary wave.

phase out is the phase, in degrees, of the next sample of Arbitrary Wave.

error. See Analysis Error Codes for a description of the error.

If the sequence Y represents Arbitrary Wave, the VI generates the pattern according to the following
formula:

| P PN P

y[i] = a * arb(phase[i]), fori=0,1,2,..,n-1,
where a is the amplitude, n is the number of samples,
arb(phase[i]) = WT(phase[i] modulo 360)*m/360)

where m is the size of the Wave Table array

If interpolation = 0 (no interpolation), then WT(x) = Wave Table[int(x)].

If interpolation = 1 (linear interpolation), then WT(x) is equal to the linearly interpolated value of Wave
Table[int(x)] and Wave Table[(int(x)+1) modulo m)].

phase[i] = initial phase + ¥360.0*, where f is the frequency in normalized units of cycles/sample,
initial_phase is phase in if reset phase is true, or initial_phase is the phase out from the previous
execution of this instance of the VI if reset phase is false.

The Vl is reentrant, so you can use it to simulate a continuous acquisition from an arbitrary wave function
generator. If the input control reset phase is false, subsequent calls to a specific instance of this VI
produce the output Arbitrary Wave array containing the next samples of the arbitrary wave.

phase out is set to phase[n], and this reentrant VI uses this value as its new phase in if reset phase is
false the next time the VI executes.

Chirp Pattern (Advanced Only)

Generates an array containing a chirp pattern.

zamples
amplitude

samples is the number of samples of the Chirp Pattern. samples defaults to 128.

amplitude is the amplitude of Chirp Pattern. amplitude defaults to 1.0.

f1 is the beginning frequency of Chirp Pattern in normalized units of cycles/sample.

f2 is the ending frequency of Chirp Pattern in normalized units of cycles/sample.

Chirp Pattern.

error. See Analysis Error Codes for a description of the error.
If the sequence Y represents Chirp Pattern, the VI generates the pattern according to the following
formula:

e Chirp Patben
errar
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fori=0,1,2,..,n-1,
where a is the amplitude, a = 27 (f2-f1)/n, b =2

Tif1, 1 is the beginning frequency in normalized units of cycles/sample, f2 is the ending frequency in
normalized units of cycles/sample, and n is the number of samples.

Gaussian White Noise (Advanced Only)

Generates a Gaussian-distributed, pseudorandom pattern whose statistical profile
is (4.7 1=(0. &) where s is the absolute value of the specified standard deviation.

andard dsa"_“li'_les NN Gauszian Moize Pattern
slanadar evlation - o @
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i samples is the number of samples of the Gaussian Noise Pattern. samples must be greater

than or equal to 0. If samples is less than zero, the VI sets Gaussian Noise Pattern to an empty array
but does not return an error. samples defaults to 128.

standacrd deviation defaults to 1.0.

seed. If seed is a prime number, the VI generates a much longer random sequence.
Gaussian Noise Pattern. The largest Gaussian Noise Pattern that the VI can generate
depends upon the amount of memory in your system and is theoretically limited to

2,147 423 647 (231 - 11 elements.

i error. See Analysis Error Codes for a description of the error.
The VI generates the Gaussian-distributed pseudorandom sequence using a modified version of the
Very-Long-Cycle random number generator algorithm based upon the Central Limit Theorem. Given that

the probability density function, f(x), of the Gaussian-distributed Gaussian Noise Pattern is:
1y xy?
[RCY.
flz) = ——e¢

where s is the absolute value of the specified standard deviation and that you can compute the
Ele

| P P

expected values, }- , using the formula:

[rn)
Efx) = [x(f(x]))dx
=0
then the expected mean value, %, and the expected standard deviation value,

7, of the pseudorandom sequence are:
p=E{z] =0

a =

E[sz—p::lz”u2 =3

The pseudorandom sequence produces approximately EQD samples before the pattern repeats itself.

Impulse Pattern (Advanced Only)

Generates an array containing an impulse pattern.
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4 samples is the number of samples of the Impulse Pattern. samples must be greater than delay.

If samples is negative or zero, the VI sets Impulse Pattern to an empty array and returns an error.
samples defaults to 128.

i amplitude is the amplitude of Impulse Pattern. amplitude defaults to 1.0.

i delay must be greater than or equal to 0. If delay is less than zero, or greater than or equal to the
number of samples, the VI sets Impulse Pattern to zero and returns an error.

i Impulse Pattern. The largest Impulse Pattern the VI can generate depends on the amount of
memory in your system and is theoretically limited to

% elements.

X error. See Analysis Error Codes for a description of the error.

If the Impulse Pattern is represented by the sequence X, the VI generates the pattern according to the
following formula:

ampifi1 =4

Ki =
0 elzewhere

fori=0,1,2,..,n-1
where a is the amplitude, d is the delay, and n is the number of samples.

Periodic Random Noise (Advanced Only)

Generates an array containing periodic random noise (PRN).

i

zamples L Perindic B andom Moize

zpectral amplgzgs I_LT_T_T_LE -

samples is the number of samples of the Periodic Random Noise. samples defaults to 128.
spectral amplitude is the magnitude of the frequency domain components of the periodic
ndom noise.
seed is the seed value used in generating the random phase of the periodic random noise. If
eed < 0, the random phase generator is not reseeded. The default value for seed is -1.
Periodic Random Noise is the output array containing periodic random noise.
error. See Analysis Error Codes for a description of the error.
The output array contains all frequencies which can be represented with an integral number of cycles in
the requested number of samples. Each frequency-domain component has a magnitude of spectral
amplitude and random phase.

D b b

r

D |

| P

Another way of thinking of the output array of PRN, is that it is a summation of sinusoidal signals with the
same amplitudes but with random phases. The unit of spectral amplitude is the same as the output
Periodic Random Noise, and is a linear measure of amplitude, similar to other signal generation Vis.

The VI generates the same periodic random sequence for a given positive seed value. The VI does not
reseed the random phase generator if seed is negative.

. samples
The output sequence is bounded by an amplitude of spectral amplitude 2

You can use PRN to compute the frequency response of a linear system in one time record instead of
averaging the frequency response over several time records, as you must for nonperiodic random noise
sources.

You do not need to window PRN before performing spectral analysis because PRN is self-windowing and



therefore has no spectral leakage. This is because PRN contains only integral-cycle sinusoids.

Pulse Pattern (Advanced Only)

Generates an array containing a pulse pattern.

Sa'i'f'tplss ] Pulze Pattern
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i samples is the number of samples of the Pulse Pattern. samples must be greater than or equal

to delay + width. If samples is less than zero, the VI sets Pulse Pattern to an empty array and returns
an error. samples defaults to 128.

amplitude is the amplitude of Pulse Pattern. amplitude defaults to 1.0.

delay must be greater than or equal to 0. delay defaults to 0.

width must be greater than or equal to 0. width defaults to 1.

Pulse Pattern. The largest Pulse Pattern the VI can generate depends on the amount of
emory in your system and it is theoretically limited to
% elements.
Y error. See Analysis Error Codes for a description of the error.
If the sequence X represents Pulse Pattern, the VI generates the pattern according to the following
formula:

N I N L N

a ifdﬁi{[d+wj
! 0.0 elsewhere

fori=0,1, 2, ..., n-1.

where a is the amplitude, d is the delay, w is the delay, and n is the number of samples.

Ramp Pattern (Advanced Only)

Generates an array containing a ramp pattern.

samples —— e Ramp Pattem

B eror

samples is the number of samples of the Ramp Pattern. If samples is less than two, the VI sets
amp Pattern to an empty array and returns an error. samples defaults to 128.

end is the ending value, or final value of Ramp Pattern.

start is the starting value, or first value of Ramp Pattern.

Ramp Pattern. The largest Ramp Pattern the VI can generate depends on the amount of
emory in your system and it is theoretically limited to
% elements.
Y error. See Analysis Error Codes for a description of the error.
If the sequence X represents Ramp Pattern, the VI generates the pattern according to the formula:

. P

E I N PO N

hill

; =xp +1Dx, fori=0,1,2, ..., n-l

Hy_1 — X
e = n-1 D,X_

1
where n -1 "is the end,

% is the start, and n is the number of samples.
The Ramp Pattern VI does not impose conditions on the relationship between start and end. The VI can
therefore generate ramp-up and ramp-down patterns.



Sawtooth Wave (Advanced Only)

Generates an array containing a sawtooth wave.

rESEt I:IhaSE ......................
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i reset phase determines the initial phase of Sawtooth Wave. If reset phase is true, the initial

phase is set to phase in. If reset phase is false, the initial phase is set to the value of phase out when
the VI last executed. reset phase defaults to true.

samples is the number of samples of the Sawtooth Wave. samples defaults to 128.

amplitude is the amplitude of Sawtooth Wave. amplitude defaults to 1.0.

f is the frequency of Sawtooth Wave in normalized units of cycles/sample. f defaults to 1
cle/128 samples, or 7.8125E-3 cycles/sample.

phase in is the initial phase, in degrees, of Sawtooth Wave when reset phase is true.

Sawtooth Wave is the output sawtooth wave.

phase out is the phase, in degrees, of the next sample of Sawtooth Wave.

error. See Analysis Error Codes for a description of the error.
If the sequence Y represents Sawtooth Wave, the VI generates the pattern according to the following
formula:

Q
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y[i] = a * sawtooth(phase[i]), fori=0, 1, 2, ..., n-1,

where a is the amplitude, n is the number of samples,

13% 180 < p < 180
sawtooth (phase[i]) = '

P g<p <36
180.0

p = phase [i] modulo 360.0, phase[i] = initial_phase + f*360.0" i, f is the frequency in normalized units of
cycles/sample, initial_phase is phase in if reset phase is true, or initial_phase is the phase out from the
previous execution of this instance of the VI if reset phase is false.

The VI is reentrant, so you can use it to simulate a continuous acquisition from a sawtooth wave function
generator. If the input control reset phase is false, subsequent calls to a specific instance of the VI
produce the output Sawtooth Wave array containing the next samples of a sawtooth wave.

phase out is set to phase[n], and this reentrant VI uses this value as its new phase in if reset phase is
false the next time the VI executes.

Sinc Pattern (Advanced Only)

Generates an array containing a sinc pattern.

LT

samples R Sinc Pattem
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delta | H
i samples is the number of samples of the Sinc Pattern. samples must be greater than or equal

to 0. If samples is less than zero, the VI sets Sinc Pattern to an empty array and returns an error.
samples defaults to 128.
i amplitude is the amplitude of Sinc Pattern. amplitude defaults to 1.0.



A delay shifts the peak value within the Sinc Pattern as the VI generates the pattern. LabVIEW
determines this condition from the preceding formula and shifts the peak value when

1t = d. delay defaults to 0.0.

i delta t is the sampling interval. It is a floating-point number inversely proportional to the width of
the main sinc lobe. That is, the smaller the sampling interval, the wider the main lobe; the larger the
sampling interval, the smaller the main lobe. Notice that when delta t is 1, and d is an integer value, the
VI sets Sinc Pattern to zero except at the point where i = d. At this point, the value is equal to amplitude.
The recommended range of values for the sampling interval is O < delta t # 1. delta t must be greater
than 0.0. If delta t is less than or equal to zero, the VI sets Sinc Pattern to an empty array and returns an
error. delta t defaults to 1.0.

4 Sinc Pattern. The largest Sinc Pattern the VI can generate depends on the amount of memory
in your system and is theoretically limited to

% elements.

i error. See Analysis Error Codes for a description of the error.

If the sequence Y represents Sinc Pattern, the VI generates the pattern according to the following
formula:

Vi = asinc{i&t —d), fori1=0,1, 2, ..., n-1,

sinf wx)

sinclx) =
where wx , ais the amplitude,

% is the sampling interval delta t, d is
the delay, and n is the number of samples.

The main lobe of the sinc function, sinc(X), is the part of the sinc curve bounded by the region -1 # x # 1.

When |X| =1 , the sinc(x) = 0.0, and the peak value of the sinc function occurs when x = 0. Using
I'Hopital's Rule, you can show that sinc(0) = 1 and that it is also its peak value. Thus, the main lobe is the
region of the sinc curve encompassed by the first set of zeros to the left and the right of the sinc value.

Sine Pattern (Advanced Only)

Generates an array containing a sinusoidal pattern.

samples Sinugoidal Pattern
arnplitude -,
phaze[degrees] erar
cycles -t
< samples is the number of samples of the Sinusoidal Pattern. samples must be greater than or

equal to 0. If samples is less than zero, the VI sets Sinusoidal Pattern to an empty array and returns an

error. samples defaults to 128.

i amplitude is the amplitude of Sinusoidal Pattern. amplitude defaults to 1.0.

i phase defaults to 0.0.

Note: phase must be in degrees rather than radians. If phase is in radians, make sure you
convert it to degrees, as shown in the following figure, before using the Sinusoidal Pattern
VI.

radians
m b degrees

|

cycles defaults to 1.0.



Note: Because cycles is a floating-point number, fractional cycles are possible for the Sinusoidal
Pattern. Furthermore, setting cycles to a negative number does not generate an error
condition because it is mathematically correct and useful to consider negative frequencies
in Fourier and spectral analysis.

£ Sinusoidal Pattern. The largest Sinusoidal Pattern the VI can generate depends on the amount
of memory in your system and is theoretically limited to

% elements.

i error. See Analysis Error Codes for a description of the error.

If the sequence Y represents Sinusoidal Pattern, the VI generates the pattern according to the following
formula:

Vi =asin(xi) for1=0,1, %2, ..., n-1,
where
2k,
' n 180 | a is the amplitude, k is the number of cycles in the pattern,

Tais the initial phase (in degrees), and n is the number of samples.

Sine Wave (Advanced Only)

Generates an array containing a sine wave.

reset I:IhEISE ......................
samples — Sine "Wave
amplitude - - phagze out
|i ...... . I — errar
phaze in -
i reset phase determines the initial phase of Sine Wave. If reset phase is true, the initial phase is

set to phase in. If reset phase is false, the initial phase is set to the value of phase out when the VI last
executed. reset phase defaults to true.

samples is the number of samples of the Sine Wave. samples defaults to 128.

amplitude is the amplitude of Sine Wave. amplitude defaults to 1.0.

f is the frequency of Sine Wave in normalized units of cycles/sample. f defaults to 1 cycle/128
amples, or 7.8125E-3 cycles/sample.

phase in is the initial phase, in degrees, of Sine Wave when reset phase is true.

Sine Wave is the output sine wave.

phase out is the phase, in degrees, of the next sample of Sine Wave.

error. See Analysis Error Codes for a description of the error.

If the sequence Y represents Sine Wave, the VI generates the pattern according to the following formula:

Do o |

| I PR P L

¥; = a * asin(phaszef1]), fori=0,1,2,. .. .n-1,

where a is the amplitude and phase[i] = initial_phase + f*360.0*1, f is the frequency in normalized units of
cycles/sample, initial_phase is phase in if reset phase is true, or initial_phase is the phase out from the
previous execution of this instance of the VI if reset phase is false.

The Vl is reentrant, so you can use it to simulate a continuous acquisition from a sine wave function

generator. If the input control reset phase is false, subsequent calls to a specific instance of the VI
produce the output Sine Wave array containing the next samples of a sine wave.

phase out is set to phase[n], and this reentrant VI uses this value as the new phase in if reset phase is
false the next time the VI executes.

Square Wave (Advanced Only)



Generates an array containing a square wave.

rezet phaze -
zamples — Square Wave
amplitude -~ - phaze out
f - efrar
phaze in -
duty cycle [E] e :
i reset phase determines the initial phase of Square Wave. If reset phase is true, the initial phase

is set to phase in. If reset phase is false, the initial phase is set to the value of phase out when the VI
last executed. reset phase defaults to true.

samples is the number of samples of the Square Wave. samples defaults to 128.

amplitude is the amplitude of Square Wave. amplitude defaults to 1.0.

f is the frequency of Square Wave in normalized units of cycles/sample. f defaults to 1 cycle/128
amples, or 7.8125E-3 cycles/sample.

phase in is the initial phase, in degrees, of Square Wave when reset phase is true.

duty cycle is the duty cycle, in percent, of the Square Wave.

Square Wave is the output square wave.

phase out is the phase, in degrees, of the next sample of Square Wave.

error. See Analysis Error Codes for a description of the error.

If the sequence Y represents Square Wave, the VI generates the pattern according to the following
formula:

D | |

[ B By B R

¥i = a * square(phase[1]), for:1=10,1,2, .., n0-1
where a is the amplitude, n is the number of samples,

10 0¢p< [ch‘—“’%o]
. 100
square[phase[1]} =

10 [d““’ 360] <p < 360
100

where p = phase[i] modulo 360.0, duty = duty cycle,

phasel[i] = initial_phase + £*360.0%1, f is the frequency in normalized units of cycles/sample, initial_phase
is phase in if reset phase is true, or initial_phase is the phase out from the previous execution of this
instance of the VI if reset phase is false.

The Vl is reentrant, so you can use it to simulate a continuous acquisition from a square wave function
generator. If the input control reset phase is false, subsequent calls to a specific instance of this VI
produce the output Square Wave array containing the next samples of a square wave.

phase out is set to phase[n], and this reentrant VI uses this value as its new phase in if reset phase is

false the next time the VI executes.

Triangle Wave (Advanced Only)

Generates an array containing a triangle wave.

samples R Sinc Patt
amplitude - Hw&m e e
delay - o error
delta b = i
4 reset phase determines the initial phase of Triangle Wave. If reset phase is true, the initial

phase is set to phase in. If reset phase is false, the initial phase is set to the value of phase out when
the VI last executed. reset phase defaults to true.
i samples is the number of samples of the Triangle Wave. samples defaults to 128.



amplitude is the amplitude of Triangle Wave. amplitude defaults to 1.0.

f is the frequency of Triangle Wave in normalized units of cycles/sample. f defaults to 1 cycle/128
amples, or 7.8125E-3 cycles/sample.

phase in is the initial phase, in degrees, of Triangle Wave when reset phase is true.

Triangle Wave is the output triangle wave.

phase out is the phase, in degrees, of the next sample of Triangle Wave.

error. See Analysis Error Codes for a description of the error.

If the sequence Y represents Triangle Wave, the VI generates the pattern according to the following
formula:

.= a * (phaze[i]) for1 =0, 1, 2, ..., n-1,
Vi (phase[1]}

where a is the amplitude, n is the number of samples,

D, |

| PR RN

r

P
P pipcso
a0 P

tri(phase[i]) = 42 —;LD 90 <p < 270
P iy 270 £ p < 360
90

where p = (phase[i] modulo 360.0), phase[i] = initial_phase + *360.0*1, f is the frequency in normalized
units of cycles/sample, initial_phase is phase in if reset phase is true, or initial_phase is the phase out
from the previous execution of this instance of the VI if reset phase is false.

The Vl is reentrant, so you can use it to simulate a continuous acquisition from a triangle wave function
generator. If the input control reset phase is false, subsequent calls to a specific instance of the VI
produce the output Triangle Wave array containing the next samples of a triangle wave.

phase out is set to phase[n], and this reentrant VI uses this value as its new phase in if reset phase is
false the next time the VI executes.

Uniform White Noise (Advanced Only)

Generates a uniformly distributed, pseudorandom pattern whose values are in the range [-a:a], where a is
the absolute value of amplitude.

zamples [FRra U rifarm *white MNoise
amplitude - -
zeed
i samples is the number of the samples of the Uniform White Noise. samples must be greater

than or equal to 0. If samples is less than zero, the VI sets Uniform White Noise to an empty array but
does not return an error. samples defaults to 128.

% amplitude is the amplitude of Uniform White Noise. amplitude defaults to 1.0.

i seed. If seed is a prime number, the VI generates a much longer random sequence.

A Uniform White Noise. The largest Uniform White Noise that the VI can generate depends upon
the amount of memory in your system and is theoretically limited to

% elements.

i error. See Analysis Error Codes for a description of the error.

The VI generates the pseudorandom sequence using a modified version of the Very-Long-Cycle random
number generator algorithm. Given that the probability density function, f(x), of the uniformly distributed
Uniform White Noise is



1 .
— f-afxia
flz) =4 2a ,
a elsewhere
where a is the absolute value of the specified amplitude, and that you can compute the expected values,
%, using the formula:

[em]
E(z) = Ix[f(xj)dx
-0
then the expected mean value, %, and the expected standard deviation value,

%, of the pseudorandom sequence are:
# =E{z] =0,

aJ =

E{(z —p:)z”” i % ~ 0.5773%

The pseudorandom sequence produces approximately * samples before the pattern repeats itself.
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Some of the Signal Generation VIs use an input frequency control that is assumed to use normalized
frequency units of cycles per sample. This frequency ranges from 0 to 1.0, which corresponds to a real
frequency range of 0 to the sampling rate. This frequency also wraps around 1.0, so that a normalized
frequency of 1.1 is equivalent to 0.1.

If you use some of these Vs, you must convert your frequency units to the normalized units of
cycles/sample. You must use these normalized units with the following Vls.

Sine Wave

Square Wave
Sawtooth Wave
Triangle Wave
Arbitrary Wave
Chirp Pattern

If you are used to working in frequency units of cycles, you can convert cycles to cycles/sample by
dividing cycles by the number of samples generated. The following example illustration shows the Sine
Wave VI, which is being used to generate two cycles of a sine wave.

zamples Sine Wawve
20-

frequency ftype 1.0- #
oo ] Hewcts 7 ok

zampling rate (Hz) -10-

—20- T 1
u] 10 20 30 40 49

The following illustration shows the block diagram for converting cycles to cycles/sample.

zamples

frequency

cycles

Sine Wave i Sine ‘Wave
et —{ el |

f
L)

zamples

f = cycles/sample

sarmpling rate [Hz)

However, you may need to use frequency units of Hz. If you need to convert to Hz or cycles/sec to
cycles/sample, divide your frequency in cycles/sec by the sampling rate given in samples/sec. The
following example illustration shows the Sine Wave VI, which is being used to generate a 60 Hz sine
signal.




zarnples Sine Wawve

2.0-

frequency f type 1.0-

zampling Fate (Hz)

_1 .|:|_

-2.0-
u] 10 20 Io 40 49

The following illustration shows the block diagram for generating a Hz sine signal.

zamples

Sine Wave.ri Sine Wawe
T — B

samples /zec
T = cycleszample

zampling Fate (Hz)
DEBL




This topic describes the Vls that process and analyze an acquired or simulated signal. The digital signal
processing Vls perform frequency domain transformations, frequency domain analysis, time domain
analysis, and other transforms, such as the Fourier, Hartley, and Hilbert transforms. For more information
about the Fast Fourier Transform, see the topic Fast Fourier Transform (FFT).

The following illustration shows the options that are available on the Digital Processing Signal
subpalette. Click on one of the icons below for function description information. You can also click on the
text jumps below the icons to access function descriptions.

=-| Digital Signal Processing

FOE |[F 6 [ Fon |[F i

[Porwer | [ el

HARH [H G| [0 P e

H -
il

Py et
i ¥
di. (=L

H

AutoCorrelation
Complex FFT
Convolution

Cross Power
CrossCorrelation
Decimate
Deconvolution
Derivative x(t

Fast Hilbert Transform
EHT

Integral x(t

Inverse Complex FFT
Inverse Fast Hilbert Transform
Inverse FHT

Inverse Real FFT
Power Spectrum

Real FFT

Unwrap Phase

Y[i] = Clip {X[i

Y[i] = X[i-n

Zero Padder

For examples of how to use the digital signal processing Vls, see the examples located in
examples\analysis\dspxmpl.llb.

AutoCorrelation (Advanced Only)



Computes the autocorrelation of the input sequence x.

W g e S
st soonnssssawonnnd ~ EEXLY

errar

X.
Rxx.
error. See Analysis Error Codes for a description of the error.

The autocorrelation Rxx(t) of a function x(t) is defined as

| L

By lt) = =z(t) @=(t) = Tx[TjX[t +7)dt,

where the symbol & denotes correlation.

For the discrete implementation of this VI, let Y represent a sequence whose indexing can be negative,
let n be the number of elements in the input sequence x, and assume that the indexed elements of x that
lie outside its range are equal to zero,

xj=0, j<0 or j n
Then the VI obtains the elements of Y using

n-1
¥i= Exkxj_,_k for 1= —[n -1, jllzn —2,:],...,—2,—1,0,1,2,...,11 -1
k=0

The elements of the output sequence Rxx are related to the elements in the sequence Y by
EE{ = Vi _(n-1) for1=0,1, 2, ..., 2n-2.

Notice that the number of elements in the output sequence Rxx is 2n - 1. Because you cannot use
negative numbers to index LabVIEW arrays, the corresponding correlation value at t = 0 is the nth
element of the output sequence Rxx. Therefore, Rxx represents the correlation values that the VI shifted
n times in indexing. The following block diagram shows one way to display the correct indexing for the
autocorrelation function.

Samplkes

LT
i g

Cxicda

The following graph is the result of the preceding block diagram.
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Complex FFT (Advanced Only)

Computes the Fourier transform of the input sequence X.

g FFT §1

error
You can use this VI to perform an FFT on an array of complex numeric representations.

wakuvwvvm

i X.

FFT {X}.

4 error. See Analysis Error Codes for a description of the error.
If Y represents the complex output sequence, then

Y =F{X}.

You can use the Complex FFT VI to perform the following operations when X has one of the complex
LabVIEW data types.

e The FFT of a complex-valued sequence X
o The DFT of a complex-valued sequence X

The Complex FFT VI first analyzes the input data, and based on this analysis, the VI calculates the
Fourier transform of the data by executing one of the preceding options. All these routines take advantage
of the concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequence X is a valid power of 2,

n=2zs" form=1,2, 3,...,23,

where n is the number of samples, the VI computes the fast Fourier transform by applying the split-radix
23

algorithm. The largest complex FFT the VI can compute is 4 = 8,388,608 (5M)

When the number of samples in the input sequence X is not a valid power of 2,

S
where n is the number of samples, the VI computes the discrete Fourier transform by applying the Chirp-

Z algorithm. The largest complex DFT that can be computed is

222 1 = 4194303 (M - 1)

Note: The advantages of the FFT include its speed and memory efficiency because the VI
performs the transform in place. The size of the input sequence, however, must be a power
of 2. The DFT can efficiently process any size sequence, but the DFT is slower than the
FFT and uses more memory, because it must store intermediate results during processing.

Let Y be the complex output sequence and n be the number of samples in it. Using equation (3-7), you



can show that
Yn-i = T -1

_nth
which means you can interpret the (n 1) element of Y as the

—ith element of the sequence, if it could be physically realized, which represents the negative
“ harmonic.

If nis even, let k = n/2. The following table shows the format of the complex output sequence.

Array Element Interpretation
T
0 DC component
T
1 1st harmonic or fundamental
T
2 2nd harmonic
T
3 3rd harmonic
T, th
Yk 4 'Ik - Ej harmonic
k1 'Ik lj harmonic
Ty

Nyquist harmonic
T = Tagxy = Y —[k—ljth harmonic®
T = Yo = Yo —(k-Ejth harmonic®

Tos -3rd harmonic*
Tha - 2nd harmonic*
1;—rrn-l

-1st harmonic*®

*These entries represent negative harmonics

The following illustration represents this complex sequence.



| FFT {X} |

Fasitive "Megative”
Harrmonics Harrmonics

el My quist
Cornponent Cornponent

If nis odd, let . The following table shows the format of the complex output sequence Y.

Array Element Interpretation

4

- DC component

i

- 1st harmonic or fundamental

&

B 2nd harmonic

4

- 3rd harmonic

LS et 1 harmonic

L i harmonic

s %% harmonic

A A

iy .
-3rd harmonic

4

- - 2nd harmonic*

<

-1st harmonic*

*These entries represent negative harmonics

The following illustration represents the preceding table.



| FFT {X} |

Fasitive "Megative”
Harrmonics Harrmonics

b
Cornponent

This format is an accepted standard in digital signal processing applications. It is convenient because it
simplifies performing the inverse transform to obtain the final, processed result.

Convolution (Advanced Only)

Computes the convolution of the input sequences X and Y.

S

ki v | ermor

i X.

i Y.

Y X *Y. The convolution of X and Y.

i error. See Analysis Error Codes for a description of the error.

The convolution h(t), of the signals x(t) and y(t) is defined as

[rn)

hit) = =z(t) *y(t) = J-X(Tjjr(t - 7)dr
-0

where the symbol * denotes convolution.

For the discrete implementation of the convolution, let h represent the output sequence X * Y, let n be the

number of elements in the input sequence X, and let m be the number of elements in the input sequence
Y. Assuming that indexed elements of X and Y that lie outside their range are zero,

;=0,140 or 1210
and

¥i=0, 140 or 12m
then you obtain the elements of h using

n-1

hj = 2 2p¥ix
k=0

fori=0,1,2, ..., size-1,

size=n+m-1,



where size denotes the total number of elements in the output sequence X * Y.
Note: This is not a circular convolution. Because x(t) * Y(t) X(f) Y(f) is a Fourier transform pair,

you can create a circular version of the convolution using a diagram similar to the
following diagram.

ﬂu}j ,
Fix} [pEL]

Fin

Cross Power (Advanced Only)

Computes the cross power spectrum of the input sequences X and Y.

H_EE Suy
il o

- X
-
I

Sxy.
error. See Analysis Error Codes for a description of the error.

The cross power,S?‘fl‘flifj of the signals x(t) and y(t) is defined as

Seylf) = Jx(£) T(E)
where X*(f) is the complex conjugate of X(f), X(f) = F{x(t)}, and Y(f) = F{y(t)}.

L L Lo L
e

This VI uses the FFT or DFT routine to compute the cross power spectrum, which is given by

Sy =;1TF*{:=<:}P{Y}

where “x¥ represents the complex output sequence Sxy, and n is the number of samples that can
accommodate both input sequences X and Y.

23
The largest cross power that the VI can compute via the FFTis 2~ (5,358,608 or M),

Note: Some textbooks define the cross power spectrum as S'xy(f) = X(f) Y«(f). If you prefer this
definition of cross power to the one specified in this VI, take the complex conjugate of the
output sequence Sxy. Because the VI operates on the real and imaginary portions
separately, you can use the following diagram to obtain the results for S'xy(f).

[DBL] j%-. g’ ool
[0BL] vl

When the number of samples in X and Y are equal and are a valid power of 2,

n=m =2k fork=1,2,3, .23,
where n is the number of samples in X, and m is the number of samples in Y, the VI makes direct calls to

the FFT routine to compute the complex, cross power sequence. This method is extremely efficient in
both execution time and memory management because the VI performs the operations inplace.



When the number of samples in X and Y are not equal,
n#m,

where n is the number of samples in X, and m is the number of samples in Y, the VI first resizes the
smaller sequence by padding it with zeros to match the size of the larger sequence. If this size is a valid
power of 2,

max(n,m) = 2k fork=1,2,3, ..., 23,

the VI computes the cross power spectrum using the FFT; otherwise the VI uses the slower DFT to
compute the cross power spectrum. Thus, the size of the complex output sequence is

size = max(n,m).

CrossCorrelation (Advanced Only)

Computes the cross correlation of the input sequences X and Y.

" P
o
X.

Y.

Rxy.

error. See Analysis Error Codes for a description of the error.
The cross correlation Rxy(t) of the signals x(t) and y(t) is defined as

= M

| P L P

[em]

nyitj = x(t) @y(t) = J'X(ij(t +7)dr,
—i0

where the symbol £ denotes correlation.

The discrete implementation of this VI is as follows. Let h represent a sequence whose indexing can be

negative, let n be the number of elements in the input sequence X, let m be the number of elements in
the sequence Y, and assume that the indexed elements of X and Y that lie outside their range are equal
to zero,

Xj=0,j<|:| of 12 n
and

jfj=[:],j<[:] of 12 m

Then the VI obtains the elements of h using

n-1

hj = 2 2p¥itk
E=0
for j = -(n-1), -(n-2), ..., <2, 1,0, 1,2, ..., m-1.

The elements of the output sequence Rxy are related to the elements in the sequence % by

Xy = hi—(n—l} for1=10,1, 2, ..., size-1,

size=n+m-1



where size is the number of elements in the output sequence Rxy.

Because you cannot index LabVIEW arrays with negative numbers, the corresponding cross correlation
value att = 0 is the nth element of the output sequence Rxy. Therefore, Rxy represents the correlation
values that the VI shifted n times in indexing.

The following block diagram shows one way to index the CrossCorrelation VI.

Samples

The following graph is the result of the preceding block diagram.
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Decimate (Advanced Only)

Decimates the input sequence X by the decimating factor and the averaging binary control.

Lt Decimated &rray
decimating factor ——ffdf

d R e b Error
aweraging -

X. The number of elements in X must be greater than or equal to the decimating factor.
decimating factor must be greater than zero:
0 < decimating factor % n.

| |

If decimating factor is greater than the number of samples in X or less than or equal to zero, the
VI sets Decimated Array to an empty array and returns an error. decimating factor defaults to
2.

averaging defaults to false.

Decimated Array.

error. See Analysis Error Codes for a description of the error.

If Y represents the output sequence Decimated Array, the VI obtains the elements of the sequence Y
using

| P P P




Zim if aveisfalse

yi=| 1%

itn+k) 1if aveistrue
m 1= (ira+k]

for1=0,1, 2,..., size-1

) n
sire = trunc| —| .
m

where 1 is the number of elements in X,

m is the decimating factor,
ave is the averaging option, and

size is the number of elements in the output sequence Decimated Array.

Deconvolution (Advanced Only)

Computes the deconvolution of the input sequences X*Y and Y.

Ry e %
v 3 o et
i X *Y. The number of elements in X * Y must be greater than or equal to the number of elements

inY:n m. If the number of elements in X * Y is less than the number of elements in Y, the VI sets X to
an empty array and returns an error.
i Y.
4 X. The number of elements in X is
size=n-m+1,

where n is the number of elements in X * Y, and m is the number of elements in Y.

i error. See Analysis Error Codes for a description of the error.

The VI can use Fourier identities to realize the convolution operation because

x(t) y(®) <X Y(®

is a Fourier transform pair, where the symbol denotes convolution, and the deconvolution is the inverse
of the convolution operation. If /(t) is the signal resulting from the deconvolution of the signals X(t) and

(t), the VI obtains /(t) using the equation

1| X(f)
-5 5

where X(f) is the Fourier transform of x(t), and

Y (f) is the Fourier transform of y(t).
The VI performs the discrete implementation of the deconvolution using the following steps.

1. Compute the Fourier transform of the input sequence X'Y.
2. Compute the Fourier transform of the input sequence Y.



3. Divide the Fourier transform of X Y by the Fourier transform of Y. Call the new sequence h.
4. Compute the inverse Fourier transform of H to obtain the deconvoluted sequence X.

Note: The deconvolution operation is a numerically unstable operation, and it is not always
possible to solve the system numerically. Computing the deconvolution via FFTs is
perhaps the most stable generic algorithm that does not require sophisticated DSP
techniques. However, it is not free of errors (for example, when there are zeros in the
Fourier transform of the input sequence Y).

Derivative x(t) (Advanced Only)

Performs a discrete differentiation of the sampled signal X.

® s { Qe 2 L. (5 At

initial conditian - i

final condition -
dt ........

X is the sampled signal.

initial condition defaults to 0.0.

final condition defaults to 0.0.

dt is the sampling interval and must be greater than zero. If dt is less than or equal to zero, the VI
ets d/dt X to an empty array and returns an error. dt defaults to 1.0.

dX/dt.

error. See Analysis Error Codes for a description of the error.

The differentiation f(t) of a function F(t) is defined as

d

errar

[ R A N

fit) =—FIt).

(1) = F(t)

Let Y represent the sampled output sequence d/dt X. The discrete implementation is given by
1

¥i Edtli i+ 1 1)

fori=0,1,2,..,n-1,
where n is the number of samples in x(t),
% -1 is specified by initial condition when i1 =0, and

Enis specified by final condition when i = n-1.
The initial condition and final condition minimize the error at the boundaries.

Fast Hilbert Transform (Advanced Only)

Computes the fast Hilbert transform of the input sequence X.

¢ e AR Hilberti}
|Hilbart | &frar

£ X.

< Hilbert {X}.

Y

error. See Analysis Error Codes for a description of the error.
The Hilbert transform of a function x(t) is defined as

b(t) = Hiz()) = — [ 2 g

T toT



Using Fourier identities, you can show the Fourier transform of the Hilbert transform of Xx(t) is
h(t)  H(f) = - j sgn(f) X(f)

where x(t) £X(f) is a Fourier transform pair and

1 f>0
sen(f] =20 f£=0
-1 £<0

The VI performs the discrete implementation of the Hilbert transform with the aid of the FFT routines
based upon the h(t) £ H(f) Fourier transform pair by taking the following steps. Refer the output format

of the FFT VI for more information.
Fourier transform the input sequence X: Y = F{X}.

Set the DC component to zero: £=0.

1
2
3. If the sequence Y is an even size, set the Nyquist component to zero: YNEH=O.
4. Multiply the positive harmonics by -j.

5

Multiply the negative harmonics by j. Call the new sequence H, which is of the form
Hy = —jsen(k) Ty
6. Inverse Fourier transform H to obtain the Hilbert transform of X.
You use the Hilbert transform to extract instantaneous phase information, obtain the envelope of an
oscillating signal, obtain single-sideband spectra, detect echoes, and reduce sampling rates.

Note: Because the VI sets the DC and Nyquist components to zero when the number of elements
in the input sequence is even, you cannot always recover the original signal with an
inverse Hilbert transform. The Hilbert transform works well with bandpass limited signals,
which exclude the DC and the Nyquist components.

FHT (Advanced Only)
Computes the fast Hartley transform (FHT) of the input sequence X.

W i) Hartlepi=t

Hartley errar
i X. To properly compute the FHT of X, the number of elements, n, in the sequence must be a valid
power of 2:

m =2, form=1,2 3, .., 23

If the number of elements in X is not a valid power of 2, the VI sets Hartley{X} to an empty array
and returns an error.

i Hartley {X}.
i error. See Analysis Error Codes for a description of the error.
The Hartley transform of a function x(t) is defined as

X5y = Tx[tjcas(E it} dt

where cas(X) = cos(x) + sin(x).



If Y represents the output sequence Hartley{X} obtained via the FHT, then Y is obtained through the
discrete implementation of the Hartley integral:

n-1 :
Yk=EXicas[2mk], fork=0,1,2, ., n-l.
i=0 =

where n is the number of elements in X.

The Hartley transform maps real-valued sequences into real-valued frequency domain sequences. You
can use it instead of the Fourier transform to convolve signals, deconvolve signals, correlate signals, and
find the power spectrum. You can also derive the Fourier transform from the Hartley transform.

When the sequences to be processed are real-valued sequences, the Fourier transform produces
complex-valued sequences in which half of the information is redundant. The advantage of using the
Hartley transform instead of the Fourier transform is that the Hartley transform uses half the memory to
produce the same information the FFT produces. Further, the FHT is calculated in place and is as efficient
as the Fourier transform. The disadvantage of the FHT is that the size of the input sequence must be a
valid power of 2.

Integral x(t) (Advanced Only)

Performs the discrete integration of the sampled signal X.

o - # P i_’fm‘“ Integral &
initial condition - M errar
firnal condition - A

X is the sampled signal.

initial condition defaults to 0.0.

final condition defaults to 0.0.

dt is the sampling interval, and must be greater than zero. If dt is less than or equal to zero, the
| sets Integral X to an empty array and returns an error. dt defaults to 1.0.

Integral X is the sampled output sequence.

error. See Analysis Error Codes for a description of the error.

The integral F(t) of a function f(t) is defined as

[E Nl P N P PN

Flt) = [£{t)dt
Let Y represent the sampled output sequence Integral X. The VI obtains the elements of Y using

1

1 .
yi=g%(xj_1+4xj+xj+l)dt fori=0,1, 2, .., n-1,
J:
where 1 is the number of elements in X,

%1 is specified by initial condition when i =0, and

Zis specified by final condition when i =n-1.

The initial condition and final condition minimize the overall error by increasing the accuracy at the
boundaries, especially when the number of samples is small. Determining boundary conditions before the
fact enhances accuracy.

Inverse Complex FFT (Advanced Only)

Computes the inverse Fourier transform of the complex input sequence FFT X.



e FET {33

errar

3, ] FAH

You can use this VI to perform an inverse FFT on an array of one of the LabVIEW complex numeric
representations.

i FFT {X}.

i X.

i error. See Analysis Error Codes for a description of the error.
If Y represents the output sequence, then

¥ =F4{X
You can use this VI to perform the following operations when FFT X has one of the complex LabVIEW
data types.

e The inverse FFT of a complex-valued sequence X

e The inverse DFT of a complex-valued sequence X

The Inverse Complex FFT VI first analyzes the input data and, based on this analysis, inverse Fourier
transforms the data by executing one of the preceding options. All these routines take advantage of the
concurrent processing capabilities of the CPU and FPU.

When the number of samples in the input sequence X is a valid power of 2,

n=2m" form=1, 23, . .23,

where n is the number of samples, the VI computes the inverse FFT by applying the split-radix algorithm.
The longest sequence with an inverse complex FFT that the VI can compute is %.

When the number of samples in the input sequence X is not a valid power of 2,

n = 20 form=1,2 3,..23,

where n is the number of samples, the VI computes the inverse DFT by applying the Chirp-Z algorithm.

The longest sequence with an inverse complex DFT that the VI can compute is

222 104,104,303 or 4 - 1),

Note: The advantages of the inverse FFT include its speed and memory efficiency because the
transform is performed in place. The size of the input sequence, however, must be a power
of 2. The inverse DFT can efficiently process any size sequence, but the inverse DFT is
slower than the inverse FFT and uses more memory because it must store intermediate
results during processing.

Inverse Fast Hilbert Transform (Advanced Only)

Computes the inverse fast Hilbert transform of the input sequence X.

o MG [rev Hilbert {4}
Hilkart errar

L X.

L Inv Hilbert {X}.

i

error. See Analysis Error Codes for a description of the error.
The inverse Hilbert transform of a function h(t) is defined as




_ 1T hir
hit) = H! =—
L T
Using the definition of the Hilbert transform

(-]

hit) = H{h(t

-

you can obtain the inverse Hilbert transform by negating the forward Hilbert transform

171 —
x(t) = B {1(2)) = B{n(g).
Therefore, the VI performs the discrete implementation of the inverse Hilbert transform with the aid of the
Hilbert transform by taking the following steps.

1. Hilbert transform the input sequence X: Y = H{X}.

-1 _
2. Negate Y to obtain the inverse Hilbert transform:I_I {X} B Y.

For more information on the algorithm this VI uses, refer to the description of the Fast Hilbert Transform
VI in this chapter.

Inverse FHT (Advanced Only)

Computes the inverse fast Hartley transform of the input sequence X.

w i {x by FHT £}

Hartley error
4 X. To properly compute the inverse FHT of X, the number of elements, n, in the sequence must
be a valid power of 2:

n=2m form=1,2,3,.. 23

If the number of elements in X is not a valid power of 2, the VI sets Inv FHT{X} to an empty array
and returns an error.

Inv FHT {X}.
error. See Analysis Error Codes for a description of the error.

The inverse Hartley transform of a function X(f) is defined as

| P

= TX[fjcas[Eﬂﬂjdf

where cas(X) = cos(x) + sin(x).

If Y represents the output sequence Inv FHT{X}, the VI calculates Y through the discrete implementation
of the inverse Hartley integral:

n-1
123«: casiE fork=0,1,2, .., 01
0i-n n

where n is the number of elements in X.

The inverse Hartley transform maps real-valued frequency sequences into real-valued sequences. You
can use it instead of the inverse Fourier transform to convolve, deconvolve, and correlate signals. You



can also derive the Fourier transform from the Hartley transform.

See the description of the FHT VI for a comparison of the Fourier and Hartley transforms.

Inverse Real FFT (Advanced Only)

Computes the Inverse Real Fast Fourier Transform (FFT) or the Inverse Real Discrete Fourier Transform
(DFT) of the input sequence FFT{X}.

FFT {} sl F{H} %
errar
i FFT{X} is the complex input sequence.
i X is the Inverse Real FFT of FFT{X}.
X error. See Analysis Error Codes for a description of the error.

The input sequence is complex-valued. The Inverse Real FFT VI automatically determines the options
which are

1. Inverse Real FFT of a complex-valued sequence if the size is a power of 2.
2. Inverse Real DFT of a complex-valued sequence if the size is not a power of 2.

The Inverse Real FFT VI executes Inverse FFT routines if the size of the input sequence is a valid power
of 2:

size = 2™ m=1,2,.. 23
If the size of the input sequence is not a power of 2, the Inverse Real FFT VI calls an efficient Inverse
DFT routine.

The output sequence X = Inverse Real FFT[FFT{X}] is real and it returns in one real array.

Power Spectrum (Advanced Only)

Computes the Power Spectrum of the input sequence X.

E Power Spectrum

# errar
X X.
X Power Spectrum computes the harmonic power content of periodic signals. If X represents

actual measurements in volts, the VI expresses the normalized units of the output sequence Power
Spectrum in watts on a 1-

L2 basis.

i error. See Analysis Error Codes for a description of the error.

The Power Spectrum Sy (f) of a function x(t) is defined as
S (£) = 30H(E) X(£) = [X(F)[2
where X(f) = F{x(t)}, and X* (f) is the complex conjugate of X(f).
This VI uses the FFT and DFT routines to compute the power spectrum, which is given by
_ 1
ol () [

where % xx represents the output sequence Power Spectrum, and n is the number of samples in the
input sequence X.

XX



When the number of samples, n, in the input sequence X is a valid power of 2,

n=2m form=1, 2 3, ..., 23,

the Power Spectrum VI computes the fast Fourier transform of a real-valued sequence using the split-
radix algorithm and efficiently scales the magnitude square. The largest Power Spectrum the VI can
compute using the FFT is 223 (8,388,608 or 8M).

When the number of samples in the input sequence X is not a valid power of 2,

n= 20 form=1,2 3, ..., 23,

where n is the number of samples, the Power Spectrum VI computes the discrete Fourier transform of a

real-valued sequence using the Chirp-Z algorithm and scales the magnitude square. The largest Power
Spectrum the VI can compute using the fast DFT is =.

The FFT computation of the Power Spectrum is extremely fast and memory efficient because the
transform is real and done in the same space. However, the size of the input sequence must be exactly a
power of 2. The DFT version efficiently computes the Power Spectrum of any size sequence. The DFT
version is slower than the FFT version, uses more memory, and is not as efficient in scaling.

Let Y be the Fourier transform of the input sequence X and n be the number of samples in it. Using
equation (3-7), you can show that

|Yn—i |2 = |Y—i2 | .

th
You can interpret the power in the 'Iﬂ B 1:' element of Y as the power in the

Zelement of the sequence, which represents the power in the negative
“harmonic. You can find the total power for the
“harmonic (DC and Nyquist component not included) using

Powerini™ harmonic = 2[T;[* = [T;|* +[Tu [, 0 <i < %

2 2
T, d |¥
The total power in the DC and Nyquist components are | D| an | e | ' respectively.

If n is even, let . The following table shows the format of the output sequence £ corresponding to the
Power Spectrum.

Array Element Interpretation
SEEQ

Power in DC component

SKKI = Sxx (n-1} Power in 1st harmonic or fundamental

SxHy = SHE (g Power in 2nd harmonic

SEE3 = SEX (n-3) Power in 3rd harmonic

S (k2) ~ S t—(k-2) Power in £harmonic



Sxx (k1) = Sz n—{k-1} Power in “harmonic

SEEy Power in Nyquist harmonic

The following illustration represents the preceding table information.

Power Spectrum

Faszitive "Megative”
Harrnonics Harrnonies

LC My quist
Carnponent Cornponent
_n-—1
If nis odd, let 2 The following table shows the format of the output sequence Sxx

corresponding to the Power Spectrum.

Array Element Interpretation
< Power in DC component
< Power in 1st harmonic or fundamental
< Power in 2nd harmonic
< Power in 3rd harmonic
i.
Power in “harmonic
i

Power in “harmonic

SER) = SRRy g Power in £ harmonic

The following illustration represents the preceding table information.



Power Spectrum

Fasitive "Megative”
Harrmonics Harrmonics

oC

Cornponent
The format described in the preceding tables is an accepted standard in digital signal processing
applications. The topic, Analysis Examples , shows several simple methods you can use to manipulate
the data and display the results in a more familiar way.

Real FFT (Advanced Only)

Computes the Real Fast Fourier Transform (FFT) or the Real Discrete Fourier Transform (DFT) of the
input sequence X.

Ty FFT i)

errar

i weeeeeveceseeese]

i X is the real input sequence.

X FFT{X} is the FFT of X.

A error. See Analysis Error Codes for a description of the error.

The input sequence is real-valued. The Real FFT VI automatically determines the options, which are

1. FFT of a real-valued sequence
2. DFT of a real-valued sequence

The Real FFT VI executes FFT routines if the size of the input sequence is a valid power of 2:
size=2m,m=1, 2,..., 23.

If the size of the input sequence is not a power of 2, the Real FFT VI calls an efficient Real DFT routine.
The output sequence Y = Real FFT[X] is complex and returns in one complex array:

Y =YRe +jYIm

Unwrap Phase (Advanced Only)

Unwraps the Phase array by eliminating discontinuities whose absolute values exceed .

e~
Phase = rwrapped Phase
Lirat-ap errar
A Phase is expressed in radians.
4 Unwrapped Phase is expressed in radians.
s

error. See Analysis Error Codes for a description of the error.




Y[i] = Clip {X[i]} (Advanced Only)

Clips the elements of Input Array to within the bounds specified by upper limit and lower limit.

Input Array L1l Clioned &
o
lowwer lirnit -
4 Input Array.
4 upper limit must be greater than or equal to lower limit. If upper limit is less than lower limit,
the VI sets the sequence Clipped Array to an empty array and returns an error. upper limit defaults to
1.0.
i lower limit must be less than or equal to upper limit. lower limit defaults to 0.0.
i Clipped Array.
i error. See Analysis Error Codes for a description of the error.

Let the sequence Y represent the output sequence Clipped Array; then the elements of Y are related to
the elements of Input Array by

a X -a
¥ =% bix;fa

b oz <b
fori=0,1,2,..,n-1,

where n is the number of elements in Input Array, a is the upper limit, and b is the lower limit.

Y[i] = X[i-n] (Advanced Only)

Shifts the elements in the Input Array by the specified number of shifts.

[nput Auray Shifted Array
ghifts: n eror
i Input Array.
4 shifts: n. The VI shifts Input Array to the right if shifts: n is positive and to the left if shifts: n is

negative. To properly shift Input Array without setting the output sequence Shifted Array to zero, the

absolute value of shifts: n must be less than the number of elements in Input Array:
| shifte: n | <10

If the absolute value of shifts: n is greater than or equal to the number of samples in Input
Array, the VI sets Shifted Array to zero and returns an error. shifts: n defaults to 0.

Shifted Array.
error. See Analysis Error Codes for a description of the error.

Let the sequence Y represent the output sequence Shifted Array; then the elements of Y are related to
the elements of X by

L
i

g M 0 &1-shifts <n
EIiI' . =
' 0 elsewhere
fori=0,1,2, ..., n-1
where n is the number of elements in Input Array.

Note: This VI does not rotate the elements in the array. The VI disposes of the elements of the



input sequence shifted outside the range, and you cannot recover them by shifting the
array in the opposite direction.

Zero Padder (Advanced Only)

Resizes the input sequence Input Array to the next higher valid power of 2, sets the new trailing

elements of the sequence to zero, and leaves the first n elements unchanged, where n is the number of
samples in the input sequence.

Input Array ‘IH'“ 'Pﬂd Zero Padded Amray
i Input Array. If Input Array is not a power of 2, the VI resizes the sequence to the next size that

is a valid power of 2. If Input Array is already a power of 2, the VI resizes the sequence to the next valid
power of 2. For instance, if Input Array contains 500 elements, the size of the zero padded output
sequence is 512(219). If Input Array contains 1,024(2*10) elements, the size of the zero padded output
sequence is 2,048(2*11).

Special Case: If Input Array is empty, Zero Padded Array is also empty.

i Zero Padded Array.

This VI is useful when the size of the acquired data buffers is not a power of 2, and you want to take
advantage of fast processing algorithms in the analysis Vls. These algorithms include Fourier transforms,
Power Spectrum, and fast Hartley transforms, which are extremely efficient for buffer sizes that are a
power of 2.
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Y[i] = Clip {X[i]}.vi
YI[i] = Clip {X[il}
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The Fourier transform establishes the relationship between a signal and its representation in the
frequency domain. The Fourier transform is a powerful analysis tool for spectral analysis, applied
mechanics, acoustics, medical imaging, numerical analysis, instrumentation, and telecommunications.

The definition of the Fourier transform of a signal x(t) is

X(E) =Flxlt)) = [aft)e ™ dr
- (3-1)
and the inverse Fourier transform of a signal X(f) is

[ru)
x(t) = FH(X{E) ) = [X(E)el* ™ ar.
= (3-2)
A notation often used to indicate that the signals x(t) and X(f) are a Fourier transform pair and are
related via the Fourier transform is

x(t) <X(f) (3-3)

You can derive the discrete representation of the Fourier transform equations, equations (3-1) and (3-2),
by sampling the Fourier transform pair in equation (3-3) using the following sampling relationships:

me Lot
t. n

where % is the sampling interval,

Af is the frequency resolution,

£ is the sampling frequency, and n is the number of samples in both the time and frequency domain.
Thus, the discrete transform pair

H; & Kk (3-4)
is obtained and the discrete Fourier transform is given by

n-1 -
Wy = T xpe PRy
i=( (3-5)

and the inverse by

n-1 -
% = DX et MAR
i=0 (3-6)
Xxin equation (3-5) represents an amplitude spectral density. By multiplying the right-hand side of
equation (3-5) by the frequency resolution
%, we arrive at the amplitude spectrum. This amplitude spectrum is the final form of the DFT and inverse

DFT, given by equations (3-7) and (3-8), respectively. Notice that the DFT is independent of the sampling
rate.

n-1 — .
My = 3 xye 2k fork=012..,n-1
i=0 (3-7)



1 n—-1 . .
b8 =—Exkelhﬂ{’m .

nj_n fori1 =012, .01 (3-8)
Direct implementation of the DFT requires approximately I12 complex operations, and until recently, it was
a time-consuming process. However, when the size of the sequence is

n=2"m form=1,2,3, ..

you can implement the computation of the DFT with approximately n log2(n) operations. DSP literature
refers to these algorithms as fast Fourier transforms (FFTs). Furthermore, with the aid of the FFT, you can
find the DFT of any size sequence in approximately 3nlog2(n) operations where n is the next power of 2
that accommodates intermediate results. You can find a more detailed explanation of FFT theory in most
introductory texts on DSP.

The algorithm implemented in the LabVIEW analysis Vls is known as the Split-Radix algorithm. This
algorithm has a form similar to the Radix-4 algorithms with the efficiency of Radix-8 algorithms. The Spilit-
Radix algorithm requires the least number of multiplications among the Radix-2, Radix-4, and Mixed-
Radix algorithms.

This manual uses the following notation to denote the discrete Fourier transform of a sequence x

X =F{x},
and
x =FA-1{X}

to denote the discrete inverse Fourier transform. The Fourier transform always results in a complex output
sequence, and the input sequence can be either real or complex. Unless otherwise specified, two real

sequences represent the complex sequences. If X is a complex sequence, then

#p, = Ee{X}
represents the real part of the complex sequence X,

XIm = Im{X}

represents the imaginary part of the complex sequence X, and

X = Xp, + X = Re(X} + iIm {3



This topic describes the measurement Vls, which are streamlined to perform DFT-based and FFT-based
analysis with signal acquisition for frequency measurement applications as seen in typical frequency
measurement instruments, such as dynamic signal analyzers. For general information about
Measurement Vls, see the Measurement VIs Overview.

The following illustration shows the options that are available on the Measurement subpalette. Click on
one of the icons below for function description information. You can also click on the text jumps below the
icons to access function descriptions.

=-| Measurement

chozs | [ o el [ERERET
- Fower | I i s
FRETENY il 53,2 &

P o ek

‘ i:\e.ak.
| Ldetect
AC & DC Estimator

Amplitude and Phase Spectrum
Auto Power Spectrum

Cross Power Spectrum
Harmonic Analyzer

Impulse Response Function
Network Functions (avg)

Peak Detector

Power & Frequency Estimate
Pulse Parameters

Scaled Time Domain Window
Spectrum Unit Conversion
Threshold Peak Detector
Transfer Function

For examples of how to use the measurement Vls, see the examples located in
examples\analysis\measure\dagmeas.1llb andin
examples\analysis\measure\measxmpl.llb.

AC & DC Estimator (Advanced Only)

Computes an estimation of the AC and DC levels of the input signal.

. i AL estimate [Vrms)
=ignal V] i ] E— DC estimate [+]
i Signal is the input, time-domain signal, usually in volts. At least three cycles of the signal must be
contained in the time-domain record for a valid estimate.
i AC estimate is the estimate of the input signal AC level, usually in volts rms if the input signal is
in volts.
X DC estimate is the estimate of the input signal DC level, usually in volts if the input signal is in

volts.



Amplitude and Phase Spectrum (Advanced Only)

Computes the single-sided, scaled amplitude spectrum magnitude and phase of a real time-domain
signal.

Signal [v] Tl Amp Spectum kag [Wims)
urmrap phase [T] - it Amp Spectrum Phaze [radianz)
dt df
A Signal is the input, time-domain signal, usually in volts. At least three cycles of the signal must be
contained in the time-domain record for a valid estimate.
i unwrap phase. Set to TRUE to enable phase unwrapping on the output phase Amp Spectrum

Phase (radians). If you set unwrap phase to FALSE, the VI does not perform unwrapping. The default
setting is TRUE.

i dt is the sample period of the time-domain signal, usually in seconds. dt is also

1

£ where

£ is the sampling frequency of the time-domain signal.

i Amp Spectrum Mag is the single-sided, amplitude spectrum magnitude in volts rms if the input
signal is in volts. If the input signal is not in volts, the results are in input signal units rms.
i Amp Spectrum Phase is the single-sided, amplitude spectrum phase in radians.
i df is the line frequency interval of the power spectrum, in Hertz, if dt is in seconds.
The VI computes the amplitude spectrum as

FFT(Signal)

T

where N is the number of points in the signal array. The VI then converts the amplitude spectrum to
single-sided rms magnitude and phase spectra.

Auto Power Spectrum (Advanced Only)

Computes the single-sided, scaled, auto power spectrum of a time-domain signal.

Sigral [+ Poweer Spectium 2 ms)
b e '-'E':Ft"-':u“ ................ df

Signal is the input, time-domain signal, usually in volts. At least three cycles of the signal must be
contalned in the time-domain record for a valid estimate.

il dt is the sample period of the time-domain signal, usually in seconds. dt is also

fs where

% is the sampled frequency of the time-domain signal.

4 Power Spectrum is the single-sided, power spectrum in volts rms squared if the input signal is in
volts. If the input signal is not in volts, the results are in input signal units rms squared.

i df is the line frequency interval of the power spectrum, in Hertz, if dt is in seconds.

This VI computes the power spectrum as

FFT*{Signal )= FFT(Signal )

NQ
where N is the number of points in the signal array and * denotes complex conjugate. The VI then
converts the power spectrum into a single-sided power spectrum result.

Cross Power Spectrum (Advanced Only)

Computes the single-sided, scaled, cross power spectrum of two real-time signals. The cross power



spectrum gives the product of the amplitude of the signals X and Y and the difference between their
phases (phase of Y minus phase of X).

Signal ¥ W] T Crozz Power ¥ Spectum Mag...

FOWER

Sigral 7 [W] EFECTR Crozs Power =7 Spectrum Pha...

dt . Fuy I df

% Signal X is the input, time-domain signal X, usually in volts. At least three cycles of the signal
must be contained in the time-domain record for a valid estimate.
£ Signal Y is the input, time-domain signal Y, usually in volts. At least three cycles of the signal
must be contained in the time-domain record for a valid estimate.

dt is the sample period of the time-domain signal, usually in seconds. dt is also

where

is the sampled frequency of the time-domain signal.

Cross Power XY Spectrum Mag is the single-sided, cross power spectrum between signals X
and Y in volts rms squared if the input signals are in volts. If the input signals are not in volts, the results
are in input signal units rms squared.

| PR RN

i Cross Power XY Spectrum Phase is the phase spectrum in radians showing the difference
between the phases of signal Y and signal X.
X df is the line frequency interval of the power spectrum, in Hertz, if dt is in seconds.

This VI computes the cross power spectrum as

FFT*[Signal K)X FFT[Signal Y)

Nz
where N is the number of points in array Signal X or Signal Y. The VI then converts the cross power
spectrum to single-sided magnitude and phase spectra.

Harmonic Analyzer (Advanced Only)

Finds the fundamental and harmonic components (amplitude and frequency) present in the input Auto
Power Spectrum, and computes the percent of total harmonic distortion (%THD) and the total harmonic
distortion plus noise (% THD + Noise).

frame size ————
Auta Power Spectrum

B harmonicsz -

Harmonic Amplitudes
Harmonic Frequencies

window — ¢ % THD
garmpling rate - e B THD + Moige
fundarnental frequency -
i Auto Power Spectrum is the single-sided, auto power spectrum of the windowed signal. This
array can be the output of a frequency-domain averaging process for improved harmonic estimation.
i frame size is the number of samples in the time-domain, signal array before it was passed to the

Auto Power Spectrum VI. The frame size is typically the number of samples in one block of data from a
data acquisition operation. If this control is unwired, the frame size used in this VI is set to twice the size
of the Auto Power Spectrum input array.

X # harmonics is the number of harmonic components that you want this VI to approximate and
use in the THD measurement. This number includes the fundamental component. For example, if you
want to compute the second harmonic distortion in your signal, this number should be two: find the
fundamental frequency component (say at

£y Hz) and its second harmonic (at

fa=2

£1 Hz).

£ window is the window selection that you used for the Scaled Time Domain Window VI. If you did
not use a window function (not recommended for an accurate THD estimation), this selector defaults to

zero (no window).
i sampling rate is the input sampling rate in Hz.



i fundamental frequency is an estimate of the fundamental frequency that you want this VI to use
in the harmonic search and in the THD computation. If this control is set to zero (default), then the
frequency of the largest non-DC component found in Auto Power Spectrum is used as the fundamental
frequency.

i Harmonic Amplitudes is the array of amplitudes of the fundamental component and its
harmonics. These values are always positive and are in units of Vrms if the input Auto Power Spectrum
values are given in VA2rms.

i Harmonic Frequencies is the array of frequencies of the fundamental component and its
harmonics. These value are in units of Hz if the input sampling rate is given in Hz.
Y % THD is the percent total harmonic distortion present in the input Auto Power Spectrum. The

THD computation is made using the following equation:

1004 (6" + A(Es)" +. +A(fy )’

% THD =
Affy)

where
‘&‘[fl ;' is the amplitude of the fundamental component
‘é'“(fn:' is the amplitude of the
™ harmonic

N is the # harmonics

X % THD + Noise is the percent total harmonic distortion plus noise present in the input Auto

Power Spectrum.% THD + Noise is computed using the following equation:
100./sum( APS)

Alfy)

where sum(APS) is the sum of the Auto Power Spectrum elements minus the elements near
DC and near the fundamental frequency index.

% THD + Moise =

You must pass the windowed, auto power spectrum of your signal to this VI for it to function correctly. You
should pass your time-domain signal through the Scaled Time Domain Window and then through the Auto
Power Spectrum, connecting the Auto Power Spectrum output to this VI.

The following illustration shows an example using the Harmonic Analyzer VI.

frame size

@ DEL]
)

DEL
132 E3

" futo Power Spectrun

fundarnental frequency

[DBL] | Harrnomic Amplitudes

P Tour EHQ‘-‘:?
it
_IS'!.rStem ijf;.wf [eBL] | Harrnonic Frequencies

#* harmonics [DBL]| % THD
window |LI32 )
zampling rate % THD: + Moize

DEL

Impulse Response Function (Advanced Only)

Computes the impulse response of a network based on real signals X (Signal X Stimulus) and Y (Signal



Y Response).

Signal & Stimulus ::|T
Signal v Responze %
Signal X Stimulus is a time-domain signal, usually the network stimulus.

Signal Y Response is a time-domain signal, usually the network response.
Impulse Response is the impulse response function computed from the averaged transfer
function. This parameter is unitless.

The impulse response is in the time domain, so you do not need to convert time units to frequency units.
The impulse response is the inverse transform of the transfer function.

Impulze Response

| L

This VI computes Impulse Response as

Cross Power [Stimulus,Responsej

Inverse FFT ,
[ Power Spectrum [Stimulus)

Network Functions (avg) (Advanced Only)

Computes several network response functions of two, real time-domain signals X (Stimulus Signal) and
Y
(Response Signal).

Crozz Power Spectrum [avg)
_ Frequency Response [avg)
Coherence Function [0..1]

Stirluz Signal
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4 Stimulus Signal is an array of time-domain signals, usually the network stimulus.
i Response Signal is an array of time-domain signals, usually the network response.
i dt is the sample period of the time-domain signal, usually in seconds. dt is also
1
fs where

% is the sampled frequency of the time-domain signal.

Cross Power Spectrum contains the rms averaged, cross power spectrum.

£ Maghnitude is the single-sided, cross power spectrum between signals X and Y in volts rms
squared if the input signals are in volts. If the input signals are not in volts, the results are in input signal
units rms squared.

i Phase is the phase spectrum in radians showing the difference between the phases of signal X
and signal Y.

i Frequency Response contains the transfer function computed from the rms averaged, cross
power spectrum and auto power spectrums.

i Magnitude is the single-sided, frequency response specimen of the network. This is the
averaged amplitude gain of the network.

X Phase is the phase spectrum in radians showing the difference between the phases of signal X
and signal Y.

i Impulse Response is the impulse response function computed from the averaged transfer
function. This parameter is unitless.

“ Coherence Function is the single-sided, coherence function spectrum. This is unitless and
ranges from 0 (no coherence) to 1 (complete coherence). The VI computes this value as

|averaged xi) S‘z
[averaged Sy 1) ][averaged S}H(fj]




A df is the line frequency interval of the coherence function spectrum, in Hertz, if dt is in seconds.
The signals X (Stimulus Signal) and Y (Response Signal) include coherence, averaged cross power
spectrum magnitude and phase, averaged transfer function (frequency response), and averaged impulse
response.

You usually compute these functions on the stimulus and response signals from a network under test.
The coherence function shows the frequency content of the Response Signal Y due to Stimulus Signal
X and measures the validity of the network frequency response measurement.

You can use this VI to measure the coherence between any two signals. The VI averages multiple
stimulus and response signals to get valid coherence measurements. Cross Power Spectrum and
Impulse Response are the rms averaged versions of the similarly named Vls. Frequency Response is
the rms averaged version of the frequency response outputs of the Transfer Function VI.

Peak Detector (Advanced Only)

Finds the location, amplitude, and second derivative of peaks or valleys in the input array.

£

i X is the input that holds the data to be processed. The data can be a single array or consecutive
blocks of data. Consecutive blocks of data are useful for large, data arrays or for real time processing.
Notice that in real time processing, peaks/valleys are not detected until approximately width/2 data
points past the peak or valley.

i threshold is the input that rejects peaks/valleys that are too small. For peaks, any peak found
with a fitted amplitude that is less than threshold is ignored. Valleys are ignored if the fitted trough is
greater than threshold.

i width is the input that specifies the number of consecutive data points to use in the quadratic
least squares fit. The value should be no more than about 1/2 of the half-width of the peaks/valleys and
can be much smaller for noise-free data. Large widths can reduce the apparent amplitude of peaks and
shift the apparent location.

X peaks/valleys. You use this control to choose between looking for peaks (positive-going bumps)
and valleys (negative-going bumps). The settings for this control are 0 (peaks) and 1 (valleys).
4 initialize. Set this control to TRUE to process the first block of data. The VI requires some

internal setup at the beginning for proper operation. If you only want to process one block of data, leave
initialize unwired, or set its default state to TRUE.If you want to process consecutive blocks of data, set
initialize to TRUE for the first block and FALSE for all other blocks of data.

i end of data. Set this control to TRUE to process the last block of data. After processing the last
block of data, the VI manages internal data. If you only want to process one block of data, leave end of
data unwired, or set its default state to TRUE. If you want to process consecutive blocks of data, set end
of data to FALSE for all but the last block of data.

i Locations is an array containing the locations of peaks/valleys found in the current block of
data. Locations are reported in indices from the beginning of processing.

X Amplitudes is an array containing the amplitudes of peaks/valleys found in the current block of
data.

£ 2nd Derivatives is an array containing the second derivatives of peaks/valleys found in the
current block of data.

4 # found is the number of peaks/valleys found in the current block of data. # found is the size of
the arrays Locations, Amplitudes, and 2nd Derivatives.

i error. See Analysis Error Codes for a description of the error.

The data set can be passed to the VI as a single array or as consecutive blocks of data.

This VI is based on an algorithm that fits a quadratic polynomial to sequential groups of data points. The
number of data points used in the fit is specified by width.

For each peak or valley, the quadratic fit is tested against the threshold level: peaks with heights lower
than the threshold or valleys with troughs higher than the threshold are ignored. peaks/valleys are
detected only after approximately width/2 data points have been processed beyond peaks/valleys



locations. This delay has implications only for real time processing.
The VI must be notified when the first and last blocks are passed into the VI, so that the VI can initialize
and then release data internal to the peak detection algorithm.

Power & Frequency Estimate (Advanced Only)

Computes the estimated power and frequency around a peak in the power spectrum of a time-domain
signal.

Power Spectrum [¥"2 mz) R T T— est frequency peak
peak hequency (man] - 8] t i
windiow constants et Span B51 power pea
=pan
i Power Spectrum is the power spectrum of a time domain signal (the output of the Auto Power
Spectrum VI).
i peak frequency is the frequency (usually in Hertz) of the frequency peak around which you want

to estimate the frequency and power. The default is -1. If you do not wire this parameter, the VI
automatically searches for the maximum peak in the power spectrum array and estimates the frequency
and power around it.

window constants contains the window constants of the window that was used to compute the
power spectrum. This is usually the output of the Scaled Time Domain Window VI. The default values are
set to those of the uniform window (no window).

i eq noise BW is the equivalent noise bandwidth (ENBW) of the selected window. You can use this
value to divide a sum of individual power spectra of the power spectrum or to compute the power in a
given frequency span. The eq noise BW defaults to 1.0.

i coherent gain is the inverse of the scaling factor that was applied to the window. The coherent
gain defaults to 1.0.

X df is the line frequency interval of the input spectrum. You need this input only when you use the
spectral density output formats (the last four display unit selections). df defaults to 1.0.

i span is the number of frequency lines around the peak to be included in the peak frequency and
power estimation. The default is 7, which means that the power in three frequency lines before the peak
frequency line, the peak frequency line itself, and three frequency lines after the peak are included in the
estimation. This is adequate for most windows.

i est frequency peak is computed as
Est Freq = E(Power Spectrum [J}k[J*df))
E(Power Spectrum[ _1))

for j =1 - span/2,...i + span/2

where 1 = peak index, Power Spectrum (j) = power in bin j, and df = frequency bin width.

4 est power peak is computed as
ZIPower Spectrum(j
EstFreq = ( I: ))
EMEW

for j =1 - span/2,...i + span/2

where 1 = peak index, Power Spectrum (j) = power in bin j, and ENBW = equivalent noise
bandwidth of the window.

With this VI, you can achieve good frequency estimates for measured frequencies that lie between



frequency lines on the spectrum. The VI makes corrections for the window function you use.

Pulse Parameters (Advanced Only)

Analyzes the input sequence X for a pulse pattern and determines the best set of pulse parameters that
describes the pulse.
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The waveform-related parameters are slew rate, overshoot, topline (top), amplitude, baseline (base),
and undershoot. The time-related parameters are risetime, falltime, width (or duration), and delay.

i X must meet the following conditions.
e The number of samples in X must be greater than or equal to 3.
¢ X should have a rising edge, a plateau, and a falling edge.
e The expected peak noise amplitude must be less than 50% of the expected amplitude.
If the number of samples in X is less than 3, the VI sets all the pulse parameters to NaN and
returns an error.
If X does not contain a rising edge, plateau, and falling edge, the VI analyzes the data, assigns
values to as many pulse parameters as it can identify, and sets parameters it cannot identify to
NaN. The VI does not report this condition as an error.
If the data in X is noisy beyond the expected 50% amplitude, the VI does not have enough
information to differentiate between glitches and pulse data and may assign incorrect values to
the pulse parameters. Because it cannot be detected, the VI does not report this condition as an
error.

Note: If the data is noisy, you can apply a median filter to the data before passing it to the Pulse
Parameters VI. See the Noisy Pulse Analyzed with a Median Filter section.
Special Case: When the X data is a constant value, c, the VI sets the pulse parameters to the

following values.

amplitude = overshoot = undershoot = delay = width = 0.
top = base =c.
risetime = falltime = slew rate = NaN.

4 slew rate is the ratio between (90% amplitude - 10% amplitude) and the risetime.

4 overshoot is the difference between the maximum value in the pulse and the topline.

i risetime is the time required to rise from 10% amplitude to 90% amplitude on the rising edge of

the pulse.

i top is the line that best represents the values when the pulse is active, high, or on.

i amplitude is the difference between the topline and the baseline.

i base is the line that best represents the values when the pulse is inactive, low, or off.

X

undershoot is the difference between the baseline and the minimum value in the pulse.



i error. See Analysis Error Codes for a description of the error.
4 falltime is the time required to fall from 90% amplitude to 10% amplitude on the falling edge of
the pulse.

4 width is the difference between the falling edge time and the rising edge time at which 50%
amplitude occurs.
i delay is the difference between the time origin and the time at which 50% amplitude occurs on

the rising edge of the pulse.
The VI uses the following steps to calculate the output parameters.
Find the maximum and minimum values in the input sequence X.
Generate the histogram of the pulse with 1% range resolution.
Determine the upper and lower modes to establish the top and base values.

o n -

Find the overshoot, amplitude, and undershoot from top, base, maximum, and minimum
values.

5. Scan X and determine the slew rate, risetime, falltime, width, and delay.

The Vl interpolates width and delay to obtain a more accurate result not only of width and delay, but
also of slew rate, risetime, and falltime.

If X contains a train of pulses, the VI uses the train to determine overshoot, top, amplitude, base, and
undershoot, but uses only the first pulse in the train to establish slew rate, risetime, falltime, width,
and delay.

Note: Because pulses commonly occur in the negative direction, this VI can discriminate
between positive and negative pulses and can analyze the X sequence correctly. You do
not need to preprocess the sequence before analyzing it.

Scaled Time Domain Window (Advanced Only)

Applies the selected window to the time-domain signal.
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i Waveform is the time-domain signal.
4 window is the time-domain window to be used.
0: Uniform
1: Hanning
2: Hamming
3: Blackman-Harris
4: Exact Blackman
5: Blackman
6: Flat Top
7: Four Term Blackman-Harris
8: Seven Term Blackman-Harris
i Windowed Waveform is the time-domain signal, multiplied by the scaled window.
4 window constants contains the window constants for the selected window. The default values
are set to those of the uniform window (no window).
i eq noise BW is the equivalent noise bandwidth of the selected window. You can use this value to

divide a sum of individual power spectra of the power spectrum or to compute the power in a given
frequency span.

i coherent gain is the inverse of the scaling factor that was applied to the window.

The VI scales the result so that when the power or amplitude spectrum of the windowed waveform is
computed, all windows provide the same level within the accuracy constraints of the window. This VI also
returns important window constants for the selected window. These constants are useful when you use



Vs that perform computations on the power spectrum, such as the Power & Frequency Estimate VI and
Spectrum Unit Conversion VI.

Spectrum Unit Conversion (Advanced Only)

Converts either the power, amplitude, or gain (amplitude ratio) spectrum to alternate formats including
Log (decibel and dbm) and spectral density.

gignial unit [
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4 Spectrum is the spectrum of a time domain signal, and can be a power spectrum (Vrms”2),
amplitude spectrum (Vrms), or gain (amplitude ratio).
i spectrum type specifies the type of spectrum wired to Spectrum.

0: power spectrum (Vrms”2)
1: amplitude spectrum (Vrms)
2: gain (amplitude ratio)

The default setting is 0: power spectrum.

4 log/linear specifies linear or log spectrum output.
0: linear
1. dB
2: dBm
When you specify dB for power or amplitude spectrum input, the reference is 1 Vrms (dBV). For
amplitude ratio input, the VI does not apply a reference. When you specify dBm for power or
amplitude spectrum input, the reference is 0.78 Vrms. The default setting is 1.
i display unit is the output unit for the spectrum. You can choose one of the following output units.
0: Vrms volts rms
1: Vpk volts peak
2: Vrms”2 volts squared rms
3: Vpk"2 volts squared peak
4: Vrms/AHz volts rms per root Hz
5.  Vpk/AHz volts peak per root Hz
6: Vrms"2/Hz volts squared rms per Hz
7: Vpk"2/Hz volts squared peak per Hz
The last four selections are amplitude spectral density (4,5) and power spectral density (6,7).
i window constants contains the window constants for the selected window (from the Scaled

Time Domain Window VI). You need this input only when you use the spectral density output formats (the
last four display unit selections). The default values are set to those of the uniform window (no window).
% eq noise BW is the equivalent noise bandwidth (ENBW) of the selected window. You can use this
value to divide a sum of individual power spectra of the power spectrum or to compute the power in a
given frequency span. The eq noise BW defaults to 1.0.

£ coherent gain is the inverse of the scaling factor that was applied to the window. The coherent
gain defaults to 1.0.
4 df is the line frequency interval of the input spectrum. You DBLC this input only when you use the

spectral density output formats (the last four display unit selections). df defaults to 1.0.

signal unit is a string containing the unit of the input time domain signal. If the original signal unit
was in volts, then this input should contain the letter V for volts. The default setting is in volts.



A Spectrum is the output spectrum in the form specified by the log /linear and display unit inputs.
4 spectrum unit is a string containing the unit of the output spectrum. If the output spectrum is in
decibels form, the unit is prepended by dB.

Threshold Peak Detector (Advanced Only)

Analyzes the input sequence X for valid peaks and keeps a count of the number of peaks encountered
and a record of Indices, which locates the points that exceed the threshold in a valid peak. A peak is
valid where the elements of X exceed the threshold and then return to a value less than or equal to the
threshold, and the number of elements that exceed the threshold is at least equal to width.

<

i X. The number of samples in X must be greater than the specified width. If X is less than or
equal to width, the VI sets count to zero and returns an error.

i threshold defaults to 0.0.

i width must be greater than zero. If width is less than or equal to zero, the VI sets count to zero
and returns an error. width defaults to 1.

X Indices.

X count.

2 error. See Analysis Error Codes for a description of the error.

Transfer Function (Advanced Only)

Computes the transfer function (also known as the frequency response) from the time-domain Stimulus
Signal and Response Signal from a network under test.

Stimuluz Signal
Rezponze Signal
dt
Stimulus Signal is an array of time-domain signals, usually the network stimulus.
Response Signal is an array of time-domain signals, usually the network response.
dt is the sample period of the time-domain signal, usually in seconds. It is also
where
is the sampling frequency of the time-domain signal.
Frequency Response Mag is the single-sided frequency response spectrum of the network. This
the amplitude gain of the network.
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i Frequency Response Phase is the single-sided phase response spectrum of the network. This
is the network phase in radians.
i df is the line frequency interval of the frequency response spectra, in Hertz, if dt is in seconds.

This VI computes the transfer function of a system based on the real signals X (Stimulus Signal) and
Y (Response Signal). The output is the amplitude gain of the network, which is unitless.

The VI computer frequency response is:

Cross Power (Stimnulus Eesponse)

Power Spectrum (Stimulusg)



AC & DC Estimator.VI
AC & DC Estimator




Amplitude and Phase Spectrum.vi

Amplitude and Phase Spectrum




Auto Power Spectrum.vi

Auto Power Spectrum




Cross Power Spectrum.vi

Cross Power Spectrum




Harmonic Analyzer.vi

Harmonic Analyzer




Impulse Response Function.vi

Impulse Response Function




Network Functions (avg) .vi

Network Functions (avq)




Peak Detector.vi

Peak Detector



Power & Frequency Estimate.vi

Power & Frequency Estimate




Pulse Parameters.vi

Pulse Parameters




Scaled Time Domain Window.vi

Scaled Time Domain Window




Spectrum Unit Conversion.vi

Spectrum Unit Conversion




Threshold Peak Detector.vi

Threshold Peak Detector.vi




Transfer Function.vi

Transfer Function




For detailed VI descriptions, see Measurement VIs.

Several measurement VlIs perform commonly used time domain to frequency domain transformations
such as amplitude and phase spectrum, signal power spectrum, network transfer function, and so on.
Other measurement Vls interact with Vls that perform such functions as scaled time domain windowing
and power and frequency estimation.

You can use the measurement VIs for the following applications.

e Spectrum analysis applications

- Amplitude and phase spectrum

- Power spectrum

- Scaled time domain window

- Power and frequency estimate

- Harmonic Analysis and Total Harmonic Distortion measurements
¢ Network (frequency response) and dual channel analysis applications
Transfer function
Impulse response function
Network functions (including coherence)

Cross power spectrum

The DFT, FFT, and power spectrum are useful for measuring the frequency content of stationary or
transient signals. The FFT provides the average frequency content of the signal over the entire time that
the signal was acquired. For this reason, you use the FFT mostly for stationary signal analysis (when the
signal is not significantly changing in frequency content over the time that the signal is acquired), or when
you want only the average energy at each frequency line. A large class of measurement problems fall in
this category. For measuring frequency information that changes during the acquisition, you should use
joint time-frequency analysis Vls, such as the Gabor Spectrogram.

The measurement Vls are built on top of the signal processing VlIs and have the following characteristics,
which model the behavior of traditional, benchtop frequency analysis instruments.

¢ Real-world, time-domain signal input is assumed.
e Qutputs are in magnitude and phase, scaled, and in units where appropriate, ready for immediate
graphing.
Sampling Fregquency

¢ Single-sided spectrums from DC to 2
e Sampling period to frequency interval conversion for graphing with appropriate X-axis units (in Hertz).
e Corrections for the windows being used are applied where appropriate.

e Windows are scaled so that each window gives the same peak spectrum amplitude result within its
amplitude accuracy constraints.

Views power or amplitude spectrums in various unit formats, including decibels and spectral density units
Ve He, V) WHz
z W) ~fHZ and so on.

In general, you can directly connect the measurement Vls to the output of data acquisition Vs and to
graphs through the axis cluster, as the following spectrum analyzer diagram shows.
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The following examples are included with the library.

e Amplitude Spectrum Example
e Simulated Dynamic Signed Analysis Example
e Total Harmonic Distortion (THD) Example

(Windows and Macintosh) You can use the following examples with National Instruments hardware.

Simple Spectrum Analyzer and Spectrum Analyzer - both work with any analog input hardware (use
dynamic signal acquisition hardware for good quality measurements).

o Dynamic Signal Analyzer and Network Analyzer - both work with dynamic signal acquisition
hardware. The Network Analyzer requires the AT-DSP2200 board.



This topic describes the Vls that implement IIR, FIR, and nonlinear filters. For general information about
Filter Vs, see Digital Filtering VIs Overview .

The following illustration shows the options that are available on the Filter subpalette. Click on one of the
icons below for function description information. You can also click on the text jumps below the icons to

access function descriptions.

= Filters
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Bessel Filter
Butterworth Filter
Chebyshev Filter
Elliptic Filter
Equi-Ripple BandPass
Equi-Ripple BandStop
Equi-Ripple HighPass
Equi-Ripple LowPass
FIR Windowed Filter
Inverse Chebyshev Filter
Median Filter

Subpalettes

Advanced IIR Filtering
Advanced FIR Filtering

For examples of how to use the filter Vls, see the examples located in
examples\analysis\fltrxmpl.1llb.

Bessel Filter (Advanced Only)

Generates a digital, Bessel filter using the filter type, sampling frequency, high cutoff frequency, low cutoff
frequency, and order by calling the Bessel Coefficients VI. The VI then calls the IR filter to filter the X
sequence using this model to obtain a Bessel Filtered X sequence.
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i filter type specifies the passband of the filter according to the following values.

0: Lowpass
1: Highpass
2: Bandpass



3: Bandstop

£ X is the input signal to be filtered.

4 sampling freq: fs is the sampling frequency and must be greater than zero. If it is less than or
equal to zero, the VI sets Filtered X to an empty array and returns an error. sampling freq: fs defaults to
1.0.

i high cutoff freq: fl is the high cutoff frequency. The VI ignores this parameter when filter type is
0 (lowpass) or 1 (highpass).

i low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

0<f <05

where %is the cutoff frequency, and

% is the sampling frequency. If low cutoff freq : fl is less than zero or greater than half the sampling
frequency, the VI sets Filtered X to an empty array and returns an error. low cutoff freq: fl defaults to
0.125.

i order must be greater than zero. If order is less than or equal to zero, the VI sets Filtered X to
an empty array and returns an error. order defaults to 2.
X init/cont controls the initialization of the internal states. When init/cont is FALSE (default), the

internal states are initialized to zero. When init/cont is TRUE, the internal filter states are initialized to the
final filter states from the previous call to this instance of this VI. To filter a large data sequence that has
been split into smaller blocks, set this control to FALSE for the first block, and to TRUE for continuous
filtering of all remaining blocks.

i Filtered X is the output array of filtered samples.

i error. See Analysis Error Codes for a description of the error.

Butterworth Filter (Advanced Only)

Generates a digital Butterworth filter using the sampling frequency, low cutoff frequency, high cutoff
frequency, order, and filter type by calling the Butterworth Coefficients VI. The Butterworth Filter VI then
calls the IIR Filter VI to filter the X sequence using this model to get a Butterworth Filtered X sequence.

filter type ————
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4 filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop

i X is the input signal to be filtered.

i sampling freq: fs is the sampling frequency and must be greater than zero. If it is less than or
equal to zero, the VI sets Filtered X to an empty array and returns an error. sampling freq: fs defaults to
1.0.

X high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
0 (lowpass) or 1 (highpass).

4 I<ow cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

where Zis the cutoff frequency and
% is the sampling frequency. If low cutoff freq: fl is less than zero or greater than half the sampling
frequency, the VI sets Filtered X to an empty array and returns an error. low cutoff freq: fl defaults to
0.125.



A order must be greater than zero. If order is less than or equal to zero, the VI sets Filtered X to
an empty array and returns an error. order defaults to 2.

4 init/cont controls the initialization of the internal states. When init/cont is FALSE (default), the
internal states are initialized to zero. When init/cont is TRUE, the internal filter states are initialized to the
final filter states from the previous call to this instance of this VI. To filter a large data sequence that has
been split into smaller blocks, set this control to FALSE for the first block, and to TRUE for continuous
filtering of all remaining blocks.

i Filtered X is the output array of filtered samples.

i error. See Analysis Error Codes for a description of the error.

Chebyshev Filter (Advanced Only)

Generates a digital, Chebyshev filter using the sampling frequency, lower cutoff frequency, upper cutoff
frequency, ripple, order, and filter type by calling the Chebyshev Coefficients VI. The Chebyshev Filter VI
filters the X sequence using this model to obtain a Chebyshev Filtered X sequence by calling the IIR
Filter VI.
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% filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop
i X is the input signal to be filtered.
i sampling freq: fs is the sampling frequency and must be greater than zero. If it is less than or
equal to zero, the VI sets Filtered X to an empty array and returns an error. sampling freq: fs defaults to
1.0.
i high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
0 (lowpass) or 1 (highpass).
4

low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion
4

where £ is the cutoff frequency, and
£ is the sampling frequency. If low cutoff freq : fl is less than zero or greater than half the sampling
frequency, the VI sets Filtered X to an empty array and returns an error. low cutoff freq: fl defaults to
0.125.
i ripple is the ripple in the passband. ripple must be greater than zero, and you must express it in
decibels. If ripple is less than or equal to zero, the VI sets Filtered X to an empty array and returns an
error. ripple defaults to 0.1.

i order must be greater than zero. If order is less than or equal to zero, the VI sets Filtered X to
an empty array and returns an error. order defaults to 2.
i init/cont controls the initialization of the internal states. When init/cont is FALSE (default), the

internal states are initialized to zero. When init/cont is TRUE, the internal filter states are initialized to the
final filter states from the previous call to this instance of this VI. To filter a large data sequence that has
been split into smaller blocks, set this control to FALSE for the first block, and to TRUE for continuous
filtering of all remaining blocks.

£ Filtered X is the output array of filtered samples.

4 error. See Analysis Error Codes for a description of the error.

Elliptic Filter (Advanced Only)




Generates a digital, elliptic filter using the sampling frequency, lower cutoff frequency, upper cutoff
frequency, filter type, passband ripple, stopband attenuation, and order by calling the Elliptic
Coefficients VI. The Elliptic Filter VI then calls the IIR Filter VI to filter the X sequence using this model to
obtain an elliptic Filtered X sequence.
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i filter type specifies the passband of the filter according to the following values.

0: Lowpass

1: Highpass

2: Bandpass

3: Bandstop

4 passband ripple is the ripple in the passband. ripple must be greater than zero, and you must
express it in decibels. If passband ripple is less than or equal to zero, the VI sets Filtered X to an empty
array and returns an error. passband ripple defaults to 1.0.
i X is the input signal to be filtered.
i sampling freq: fs is the sampling frequency and must be greater than zero. If it is less than or
equal to zero, the VI sets Filtered X to an empty array and returns an error. sampling freq: fs defaults to
1.0.
i high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
0 (lowpass) or 1 (highpass).
X low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

X

where % is the cutoff frequency, and
£ is the sampling frequency. If low cutoff freq : fl is less than zero or greater than half the sampling
frequency, the VI sets Filtered X to an empty array and returns an error. low cutoff freq: fl defaults to
0.125.
i stopband attenuation is the attenuation in the stopband. stopband attenuation must be greater

than zero and you must express it in decibels. If stopband attenuation is less than or equal to zero, the
VI sets Filtered X to an empty array and returns an error. stopband attenuation defaults to 60.0.

i order is the order of the IIR filter and must be greater than zero. If order is less than or equal to
zero, the VI sets Filtered X to an empty array and returns an error. order defaults to 2.0.
i init/cont controls the initialization of the internal states. When init/cont is FALSE (default), the

internal states are initialized to zero. When init/cont is TRUE, the internal filter states are initialized to the
final filter states from the previous call to this instance of this VI. To filter a large data sequence that has
been split into smaller blocks, set this control to FALSE for the first block, and to TRUE for continuous
filtering of all remaining blocks.

£ Filtered X is the output array of filtered samples.

4 error. See Analysis Error Codes for a description of the error.

Equi-Ripple BandPass (Advanced Only)

Generates a bandpass FIR filter with equi-ripple characteristics using the Parks-McClellan algorithm and
the higher pass frequency, lower pass frequency, # of taps, lower stop frequency, higher stop
frequency, and sampling frequency. The VI then filters the input sequence X to obtain the bandpass,
filtered, linear-phase sequence Filtered Data.
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i higher pass freq must be greater than lower pass freq frequency. If higher pass freq is less
than or equal to lower pass freq, the VI sets Filtered Data to an empty array and returns an error via the
Parks-McClellan VI. higher pass freq defaults to 0.35.
i lower pass freq must be greater than the lower stop freq. If lower pass freq is less than or
equal to lower stop freq, the VI sets Filtered Data to an empty array and returns an error via the Parks-
McClellan VI. lower pass freq defaults to 0.25.

% Xis the input signal to be filtered.

i # of taps must be greater than zero. If # of taps is less than or equal to zero, the VI sets Filtered
Data to an empty array and returns an error via the Parks-McClellan VI. # of taps defaults to 32.

i lower stop freq must be greater than zero. If lower stop freq is less than or equal to zero, the VI

sets Filtered Data to an empty array and returns an error via the Parks-McClellan VI. lower stop freq

defaults to 0.20.

i higher stop freq must be greater than higher pass freq and must observe the Nyquist criterion:
02ty £f) £f 25 S 05,

where Zis lower stop freq,
“is lower pass freq,
£ is higher pass freq,
£ is the higher stop freq, and
“is the sampling frequency. If any of these conditions are violated, the VI sets Filtered Data to an empty
array and returns an error via the Parks-McClellan VI. higher stop freq defaults to 0.4.

X sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
defaults to 1.0.
2 Filtered Data. Because the VI filters via convolution, the number of elements, k, in Filtered Data
is

k=n+m-1,

where n is the number of elements in X, and m is the number of taps.

_omri

A delay is also associated with the output sequence delay i

A error. See Analysis Error Codes for a description of the error.

The first stopband of the filter region goes from zero (DC) to the lower stop frequency. The passband
region goes from the lower pass frequency to the higher pass frequency, and the second stopband region
goes from the higher stop frequency to the Nyquist frequency.

Equi-Ripple BandStop (Advanced Only)

Generates a bandstop FIR digital filter with equi-ripple characteristics using the Parks-McClellan algorithm
and higher pass frequency, lower pass frequency, # of taps, lower stop frequency, higher stop
frequency, and sampling frequency.The VI then filters the input sequence X to obtain the bandstop,
filtered, linear-phase sequence Filtered Data.

higher DESS freq ..........................
|mmer pass freq - v

Filtered D ata

E T ermar

# of tapz

[comer ztop freq
higher stop freq - :
gampling fraq; fg e




i higher pass freq must be greater than higher stop freq and observe the Nyquist criterion

where % is the lower pass frequency,
£ is the lower stop frequency,
Zis the higher stop frequency,
£ is the higher pass frequency, and
% is the sampling frequency. If any of these conditions are violated, the VI sets Filtered Data to an empty
array and returns an error via the Parks-McClellan VI. higher pass freq defaults to 0.4.
i lower pass freq must be greater than zero. If lower pass freq is less than or equal to zero, the
VI sets Filtered X to an empty array and returns an error via the Parks-McClellan VI. lower pass freq
defaults to 0.2.
% X is the input signal to be filtered.
A # of taps must be greater than zero. If the number of taps is less than or equal to zero, the VI
sets Filtered Data to an empty array and returns an error via the Parks-McClellan VI. The VI does not
place restrictions on # of taps, but # of taps should be odd. # of taps defaults to 31.
Note: The Parks-McClellan algorithm introduces a large error when you design a bandstop filter
for an even number of taps. To avoid this error, the Equi-Ripple BandStop VI adjusts the
number of taps to the next higher odd value if # of taps is even.

X lower stop freq must be greater than lower pass freq. If lower stop freq is less than or equal to
lower pass freq, the VI sets Filtered Data to an empty array and returns an error via the Parks-
McClellan V1. lower stop freq defaults to 0.25.

i higher stop freq must be greater than lower stop freq. If higher stop freq is less than or equal
to lower stop freq, the VI sets Filtered Data to an empty array and returns an error via the Parks-
McClellan VI. higher stop freq defaults to 0.35.

i sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
defaults to 1.0.
i Filtered Data. Because the VI filters via convolution, the number of elements, k, in Filtered Data
is

k=n+m-1,

where n is the number of elements in X, and m is the number of taps.
A delay is also associated with the output sequence,

m =1

delay = ——

Y error. See Analysis Error Codes for a description of the error.

The first passband region of the filter goes from zero (DC) to the lower pass frequency. The stopband
region goes from the lower stop frequency to the higher stop frequency, and the second passband region
goes from the higher pass frequency to the Nyquist frequency.

Equi-Ripple HighPass (Advanced Only)

Generates a highpass FIR filter with equi-ripple characteristics using the Parks-McClellan algorithm and
the # of taps, stop frequency, high frequency, and sampling frequency. The VI then filters the input
sequence X to obtain the highpass, filtered, linear-phase sequence Filtered Data.

= Filtered D ata
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£ X is the input signal to be filtered.
4 # of taps must be greater than zero. If the number of taps is less than or equal to zero, the VI

sets Filtered Data to an empty array and returns an error via the Parks-McClellan VI. The VI does not
place restrictions on the # of taps, but # of taps should be odd. # of taps defaults to 31.



Note: The Parks-McClellan algorithm introduces a large error when designing a highpass filter
for an even number of taps. To avoid this error, the Equi-Ripple HighPass VI adjusts the
number of taps to the next higher odd value if # of taps is even.

i stop freq must be greater than zero. If stop freq is less than or equal to zero, the VI sets
Filtered Data to an empty array and returns an error via the Parks-McClellan VI. stop freq defaults to
0.2.

X high freq must be greater than stop freq and observe the Nyquist criterion

—

where % is the stop freq,
£ is the high freq, and
£ is the sampling frequency. If any of these conditions are violated, the VI sets Filtered Data to an empty
array and returns an error via the Parks-McClellan VI. high freq defaults to 0.3.

i sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
defaults to 1.0.
i Filtered Data. Because the VI filters via convolution, the number of elements, k, in Filtered Data
is

k=n+m-1,

where n is the number of elements in X, and m is the adjusted number of taps.

A delay equal to is also associated with the output sequence.
i error. See Analysis Error Codes for a description of the error.
The stopband of the filter goes from zero (DC) to the stop frequency. The transition band goes from the
stop frequency to the high frequency, and the passband goes from the high frequency to the Nyquist
frequency.

Equi-Ripple LowPass (Advanced Only)

Generates a lowpass FIR filter with equi-ripple characteristics using the Parks-McClellan algorithm and
the # of taps, pass frequency, stop frequency, and sampling frequency. The VI then filters the input
sequence X to obtain the lowpass filtered, linear-phase sequence Filtered Data.
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i X is the input signal to be filtered.
i # of taps must be greater than zero. If the number of taps is less than or equal to zero, the VI

sets Filtered Data to an empty array and returns an error via the Parks-McClellan VI. # of taps defaults
to 32.

i pass freq must be greater than zero. If pass freq is less than or equal to zero, the VI sets
Filtered Data to an empty array and returns an error via the Parks-McClellan VI. pass freq defaults to
0.2.

X stop freq must be greater than the pass freq and observe the Nyquist criterion

-

where % is the pass freq,
% is the stop freq, and
£ is the sampling frequency.

If any of these conditions are not met, the VI sets Filtered Data to an empty array and returns an
error via the Parks-McClellan VI. stop freq defaults to 0.3.

i sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
defaults to 1.0.

Z Filtered Data. Because the VI filters via convolution, the number of elements, k, in Filtered Data
is

k=n+m-1,



where n is the number of elements in X, and m is the number of taps.

m -
delay = ——
A delay is also associated with the output sequence 2 .

A error. See Analysis Error Codes for a description of the error.
The passband of the filter goes from zero (DC) to pass freq. The transition band goes from pass freq to
stop freq, and the stopband goes from stop freq to the Nyquist frequency.

FIR Windowed Filter (Advanced Only)

Filters the input data sequence, X, using the set of windowed FIR filter coefficients specified by the
sampling frequency, cutoff frequency, and number of taps.

filker type
S
zampling freq: fz
[ cutaff freq: f
high cutaff freg; flh
taps
window
X is the input signal to be filtered.
filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop

Filtered D ata
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i sampling frequency: fs is the sampling frequency and must be greater than zero. If it is less
than or equal to zero, the VI sets Filtered Data to an empty array and returns an error. sampling
frequency : fs defaults to 1.0.
i low cutoff frequency: fl is the low cutoff frequency and must observe the Nyquist criterion

£

where % is the cutoff frequency, and
% is the sampling frequency. If low cutoff frequency: fl is less than zero or greater than half the
sampling frequency, the VI sets Filtered Data to an empty array and returns an error. low cutoff
frequency: fl defaults to 0.125.

4 high cutoff frequency: th is the high cutoff frequency. The VI ignores this parameter when filter
type is O (lowpass) or 1 (highpass).
i taps determines the total number of FIR coefficients and must be greater than zero. If taps is

less than or equal to O, the VI sets FIR Windowed Filter to an empty array and returns an error. taps
must be odd for highpass and bandstop filters. taps defaults to 25.
i window. With the window control you can select the following smoothing window options.
v 0) None
1) Hann
2) Hamming
3) Triangular
4) Blackman
5) Exact Blackman
6) Blackman-Harris
7) Kaiser-Bessel
81 Flat Top

i Filtered Data.
Note: Filtered Data has an associated index delay caused by the convolution operation. The



_ taps—1

del ay
delay is given by 2

i error. See Analysis Error Codes for a description of the error.

Inverse Chebyshev Filter (Advanced Only)

Generates a digital, Chebysheuv |l filter using the specified sampling frequency, cutoff frequencies,
attenuation in decibels, filter type, and filter order by calling the Inv Chebyshev Coefficients VI. The
Inverse Chebyshev Filter VI filters the X sequence using this model to obtain a Chebyshev Il Filtered X
sequence by calling the IIR Filter VI.

filter type ———
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i filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop

A X is the input signal to be filtered.
4 sampling freq: fs is the sampling frequency and must be greater than zero. If it is less than or
equal to zero, the VI sets Filtered X to an empty array and returns an error. sampling freq: fs defaults to
1.0.
i high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
0 (lowpass) or 1 (highpass).
i low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

i

where £ is the cutoff frequency and
% is the sampling frequency. If low cutoff freq : fl is less than zero or greater than half the sampling
frequency, the VI sets Filtered X to an empty array and returns an error. low cutoff freq: fl defaults to
0.125.
i attenuation is the attenuation in the stopband. attenuation must be greater than zero, and you
must express it in decibels. If attenuation is less than or equal to zero, the VI sets Filtered X to an empty
array and returns an error. attenuation defaults to 60.0.

Y order must be greater than zero. If order is less than or equal to zero, the VI sets Filtered Data
to an empty array and returns an error. order defaults to 2.0.
i init/cont controls the initialization of the internal states. When init/cont is FALSE (default), the

internal states are initialized to zero. When init/cont is TRUE, the internal filter states are initialized to the
final filter states from the previous call to this instance of this VI. To filter a large data sequence that has
been split into smaller blocks, set this control to FALSE for the first block, and to TRUE for continuous
filtering of all remaining blocks.

i Filtered X is the output array of filtered samples.

A error. See Analysis Error Codes for a description of the error.

Median Filter (Advanced Only)

Applies a median filter of rank to the input sequence X.

et R Filtered Drata
rank r EE error




If Y represents the output sequence Filtered Data, and if I represents a subset of the input sequence X
centered about the

“Zelement of x
Ji = l{Ki—r=Ki—r+1 B LELE Y ---=Xi+r—1=Ki+r} '

and if the indexed elements outside the range of X equal zero, the VI obtains the elements of Y using

v = Median(J; ) for1=0,1,2,..., n-1,
where n is the number of elements in the input sequence X, and r is the filter rank.

X X is the input signal to be filtered. The number of elements in X must be greater than the rank,
n=r=1

If the number of elements in X is less than or equal to rank, the VI sets the output Filtered Data
to an empty array and returns an error.

i rank must be greater than or equal to zero. If rank is less than zero, the VI sets the output
Filtered Data to an empty array and returns an error. rank defaults to 2.
i Filtered Data.

X error. See Analysis Error Codes for a description of the error




For general information about Advanced FIR Filtering Vls, Digital Filtering VIs Overview. Click on one of
the icons below for function description information. You can also click on the text jumps below the icons
to access function descriptions.
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Bessel Coefficients

Butterworth Coefficients
Cascade>Direct Coefficients
Chebyshev Coefficients

Elliptic Coefficients

IR Cascade Filter

IIR Cascade Filter with |.C.

IIR Filter

IIR Filter with I.C.

Inverse Chebyshev Coefficients

Bessel Coefficients (Advanced Only)

Generates the set of filter coefficients to implement an IIR filter as specified by the Bessel filter model.
You can then pass these coefficients to the IIR Filter VI.

_ filter type ————
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The Bessel Coefficients VI is a subVI of the Bessel Filter VI.

i filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop

sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
efaults to 1.0.

high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
(lowpass) or 1 (highpass).

low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

£

where % is the cutoff frequency, and
is the sampling frequency.

order is the order of the IIR filter and must be greater than zero.

lIR Filter Cluster contains three elements.

filter structure indicates either IIR second-order or IIR fourth-order filter stages.
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Reverse Coefficients of the IIR cascade filter.
Forward Coefficients of the |IR cascade filter.
error. See Analysis Error Codes for a description of the error

Butterworth Coefficients (Advanced Only)

Generates the set of filter coefficients to implement an IIR filter as specified by the Butterworth filter
model. You can pass these filter coefficients (lIR Filter Cluster) to the IIR Cascade Filter VI to filter a
sequence of data.

| | |
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The Butterworth Coefficients VI is a subVI of the Butterworth Filter VI.

peceeeeen ||[F Filker Cluster

4 filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop

sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
efaults to 1.0.

high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
(lowpass) or 1 (highpass).

Ié)w cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

where % is the cutoff frequency, and
is the sampling frequency.

order is the order of the IIR filter and must be greater than zero.

IR Filter Cluster contains three elements.

filter structure indicates either IIR second-order or IIR fourth-order filter stages.

Reverse Coefficients for the IIR cascade filter.

Forward Coefficients for the IIR cascade filter.

error. See Analysis Error Codes for a description of the error.

Cascade >Direct Coefficients (Advanced Only)

Converts IIR filter coefficients from the cascade form to the direct form.

o O L Qo

| IS PN P PPN P PN

! HHHHH
IR Fiter Chaster ﬁ Fonward Coefficients

Reverse Cosfficients

IIR Filter Cluster contains the cascade form of IR filter coefficients. It contains three elements.

filter structure selects IIR second-order or IIR fourth-order filter stages

Reverse Coefficients of the IIR cascade filter.

Forward Coefficients of the IIR cascade filter.

This cluster is the output from one of the IR coefficient design VIs: Butterworth Coefficients,
Bessel Coefficients, Chebyshev Coefficients, Elliptic Coefficients, or Inv Chebyshev Coefficients.

Forward Coefficients contain the direct form, forward coefficients.

Reverse Coefficients contain the direct form, reverse coefficients.

As an example, you can convert a cascade filter, composed of two second-order stages, to a direct form
filter as follows.

| |

Reverse Coefficients:



{a“,agl,alg,agg} — {1.[:',3.1,8.2,3.3,3.4}
Forward Coefficients:
4

See the IIR Cascade Filter VI for information on cascade form filtering, the IIR Filter VI for information on
direct form filtering, and the Digital Filtering VIs Overview section for a discussion of both filter forms.

Chebyshev Coefficients (Advanced Only)

Generates the set of filter coefficients to implement an IIR filter as specified by the Chebyshev filter
model. You can pass these coefficients to the IIR Filter VI to filter a sequence of data.

filker type ————
zampling freq: fz i

high cutaff freq: fh = 1 9
low cutoff freq: fl f
ripple(dB]
order
The Chebyshev Coefficients VI is a subVI of the Chebyshev Filter VI.

IR Filker Cluster
error

i filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop

sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
efaults to 1.0.
high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
(lowpass) or 1 (highpass).
low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion
<
where £ is the cutoff frequency and
is the sampling frequency.
ripple is the ripple in the passband. ripple must be greater than zero, and you must express it in
ecibels. ripple defaults to 0.1.
order is the order of the IIR filter and must be greater than zero.
lIR Filter Cluster contains three elements.
filter structure indicates either IIR second-order or IIR fourth-order filter stages.
Reverse Coefficients for the IIR cascade filter.
Forward Coefficients for the IIR cascade filter.
error. See Analysis Error Codes for a description of the error

Elliptic Coefficients (Advanced Only)

Generates the set of filter coefficients to implement a digital elliptic IIR filter. You can pass these
coefficients to the IIR Filter VI.
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The Elliptic Coefficients VI is a subVI of the Elliptic Filter VI.

CoC o

i filter type specifies the passband of the filter according to the following values.



0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop
i sampling freq: fs is the sampling frequency and must be greater than zero. If sampling freq: fs

is less than or equal to zero, the VI sets IIR Filter Cluster to an empty array and returns an error.
sampling freq: fs defaults to 1.0.
i high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
0 (lowpass) or 1 (highpass).
X low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

<

where % is the cutoff frequency, and

% is the sampling frequency. If low cutoff freq: fl is less than zero or greater than half the sampling
frequency, the VI sets IIR Filter Cluster to an empty array and returns an error. low cutoff freq: fl defaults
to 0.125.

X passband ripple is the ripple in the passband. ripple must be greater than zero, and you must
express it in decibels. If passband ripple is less than or equal to zero, the VI sets IIR Filter Cluster to an
empty array and returns an error. passband ripple defaults to 1.0.

4 order is the order of the IIR filter and must be greater than zero. If order is less than or equal to
zero, the VI sets IIR Filter Cluster to an empty array and returns an error. order defaults to 2.0.
i stopband attenuation is the attenuation in the stopband. stopband attenuation must be greater

than zero and you must express it in decibels. If stopband attenuation is less than or equal to zero, the
VI sets IIR Filter Cluster to an empty array and returns an error. stopband attenuation defaults to 60.0.
IR Filter Cluster contains three elements.

filter structure indicates either IIR second-order or IIR fourth-order filter stages.

Reverse Coefficients for the IIR cascade filter.

Forward Coefficients for the IIR cascade filter.

error. See Analysis Error Codes for a description of the error.

lIR Cascade Filter (Advanced Only)

Filters the input sequence X using the cascade form of the IIR filter specified by the IIR Filter Cluster.
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Second-Order Filtering
Fourth-Order Filtering

X is the input array of samples to be filtered.
IR Filter Cluster contains three elements.
IR Filter Cluster

i
i

filter structure

[
HIIF 2nd Order
[l

Rewverse Coefficients

i filter structure selects IIR second-order or IIR fourth-order filter stages.
4 Reverse Coefficients of the IIR cascade filter.



A Forward Coefficients of the IIR cascade filter.

£ init/cont controls the initialization of the internal filter states. When init/cont is FALSE (default),
the internal states are initialized to zero. When init/cont is TRUE, the internal filter states are initialized to
the final filter states from the previous call to this instance of this VI. To filter a large data sequence that
has been split into smaller blocks, set this control to FALSE for the first block, and to TRUE for continuous
filtering of all remaining blocks.

i Filtered X is the output array of filtered samples.

i error. See Analysis Error Codes for a description of the error.

This IIR implementation is called cascade because it is a cascade of second or fourth-order filter stages.
The output of one filter stage is the input to the next filter stage for all Ns filter stages:

#li] o— stage1 stage 2 stage Ng oyl

Cazcaded Filter Stages

Second-Order Filtering

Each second-order stage (stage number k=12, -=Ns) has two reverse coefficients

(alk’ azk) and three forward coefficients

(bﬂk’blk’bzk) . The total number of reverse coefficients is 2Ns and the total number of forward

coefficients is 3Ns. The Reverse Coefficients and the Forward Coefficients array contain the coefficients
for one stage followed by the coefficients for the next stage, and so on. For example, an IIR filter
composed of two second-order stages must have a total of four reverse coefficients and six forward
coefficients, as follows:

Reverse Coeffisients = {a“ .41, 3.22}

Forward Coefficients = {bm =b11 =b21 ,bng, blg ,bgg}

Fourth-Order Filtering

For fourth order cascade stages, the filtering is implemented in the same manner as in the second-order
stages, but each stage must have four reverse coefficients (a1k...adk) and five forward coefficients

(box-bax ),

lIR Cascade Filter with I.C. (Advanced Only)

Filters the input sequence X using the cascade form of the IIR filter specified by the IIR Filter Cluster.

= :cl:f:l I: T Filtered #
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X is the input array of samples to be filtered.
lIR Filter Cluster contains three elements.

filter structure selects IIR second-order or IIR fourth-order filter stages.

Reverse Coefficients of the IIR cascade filter.

Forward Coefficients of the IIR cascade filter.

Initial Filter State. This array should be the same size as the Reverse Coefficients array in the
IIR Filter Cluster. If this array is not the correct size (empty, for example), the array is resized internally
and is initialized to zero before the IIR filtering operation.

The filtering occurs internally and the filter state is maintained until all samples in array X have

[ L L N A L



been passed through the filter. The final filter state array is then passed to the array indicator, Final Filter
State.

i Filtered X is the output array of filtered samples.

Y Final Filter State contains the final, internal filter states, which can be passed as the Initial Filter
State to the next call to the IIR Cascade Filter with I.C. to filter samples continuously.

i error. See Analysis Error Codes for a description of the error.

lIR Filter (Advanced Only)

Filters the input sequence X using the direct form IIR filter specified by Reverse Coefficients and
Forward Coefficients.

init/zont [init:F]
Filtered #

Reverse Coefficients -

Fanward Coefficients

4 init/cont controls the initialization of the internal filter states. When init/cont is FALSE (default),

the internal states are initialized to zero. When init/cont is TRUE, the internal filter states are initialized to

the final filter states from the previous call to this instance of this VI. To filter a large data sequence that

has been split into smaller blocks, set this control to FALSE for the first block, and to TRUE for continuous

filtering of all remaining blocks.

i X is the input array of samples to be filtered.

i Reverse Coefficients. This VI does not place any restrictions on the coefficient arrays. If both

coefficient arrays are empty, the VI performs no filtering and sets Filtered X to the value of X.

Note: You can use the IIR Filter VI to perform FIR filtering by passing an empty array into
Reverse Coefficients.

Forward Coefficients.

Filtered X is the output array of filtered samples.

error. See Analysis Error Codes for a description of the error.

If Y represents the output sequence Filtered X, the VI obtains the elements of Y using
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where n is the number of Forward Coefficients (represented by bJ ), and m is the number of Reverse
Coefficients (represented by
k).

lIR Filter with I.C. (Advanced Only)

Filters the input sequence X using the direct form IIR filter specified by Reverse Coefficients and
Forward Coefficients.

= e Filtered =
Fieverse Coefficients = ] -2, —— errar
Fanward Coefficients ZELE. Final = Conditions
Initial ¥ Conditions Final' Conditions

Initial " Conditions

X is the input array of samples to be filtered.

Reverse Coefficients. This VI does not place any restrictions on the coefficient arrays. If both
coefficient arrays are empty, the VI performs no filtering and sets Y to the value of X.

Note: You can use the IIR Filter VI to perform FIR filtering by passing an empty array into
Reverse Coefficients or by leaving Reverse Coefficients unwired.

£
2

i Forward Coefficients.
i Initial X Conditions contains the initial conditions for the input array X. The most recent prior



input should be the last element in the array. The number of elements in this array should be one less
than the number of elements in the Forward Coefficients array.

i Initial Y Conditions contains the initial conditions for the output array Y. The most recent output
should be the last element in the array. The number of elements in this array should be one less than the
number of elements in the Reverse Coefficients array.

i Filtered X is the output array of filtered samples.

i error. See Analysis Error Codes for a description of the error.

i Final X Conditions contains the most recent inputs that may be used as Initial X Conditions on
the next call to this VI.

i Final Y Conditions contains the most recent outputs that may be used as Initial Y Conditions

on the next call to this VI.
If Y represents the output sequence Filtered X, the VI obtains the elements of Y using

1 r-1 -1
¥i=—| 2b5%i-j ~ 2 2kVi-k
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where n is the number of Forward Coefficients (represented by %), and m is the number of Reverse

Coefficients (represented by
).

Inverse Chebyshev Coefficients (Advanced Only)

Generates the set of filter coefficients to implement an IIR filter as specified by the Chebyshev Il Filter
model. You can pass these coefficients to the IIR Filter VI to filter a sequence of data.

filker type
gampling freq: f=
high cutaff freq; flh =

[ov cutoff freq; fl —l_jﬂL
attenuation[dB] —l_

arder

F. T

peeereeem || Filber Cluster
error

The Inv Chebyshev Coefficients VI is a subVI of the Inverse Chebyshev Filter VI.

i filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop

sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
efaults to 1.0.

high cutoff freq: fh is the high cutoff frequency. The VI ignores this parameter when filter type is
(lowpass) or 1 (highpass).

low cutoff freq: fl is the low cutoff frequency and must observe the Nyquist criterion

4

where % is the cutoff frequency and
is the sampling frequency.

attenuation is the attenuation in the stopband. attenuation must be greater than zero, and you
ust express it in decibels. attenuation defaults to 60.0.

order is the order of the IIR filter and must be greater than zero.

lIR Filter Cluster contains three elements.

filter structure indicates either IIR second-order or IIR fourth-order filter stages.

Reverse Coefficients for the IIR cascade filter.

Forward Coefficients for the IIR cascade filter.

error. See Analysis Error Codes for a description of the error.
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For general information about Advanced FIR Filtering Vls, Digital Filtering VIs Overview. Click on one of
the icons below for function description information. You can also click on the text jumps below the icons
to access function descriptions.
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Convolution

FIR Narrowband Coefficients
FIR Narrowband Filter

FIR Windowed Coefficients
Parks-McClellan

Convolution (Advanced Only)

Computes the convolution of the input sequences X and Y.

X.

Y.
X *Y. The convolution of X and Y.
error. See Analysis Error Codes for a description of the error.

The convolution h(t), of the signals x(t) and y(t) is defined as

[ E E L E P
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hit) = =z(t) *y(t) = J-XIITijIIt - 7)dr
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where the symbol * denotes convolution.

For the discrete implementation of the convolution, let h represent the output sequence X * Y, let n be the

number of elements in the input sequence X, and let m be the number of elements in the input sequence
Y. Assuming that indexed elements of X and Y that lie outside their range are zero,

;=0,1<0 o 12n
and

y1=0, 140 or j12m
then you obtain the elements of h using

n-1

hj = 20 Bk¥i-k
k=0

fori=0,1,2, ..., size-1,

size=n+m-1,



where size denotes the total number of elements in the output sequence X * Y.

Note: This is not a circular convolution. Because x(t) * Y(t) £X(f) Y(f) is a Fourier transform pair,
you can create a circular version of the convolution using a diagram similar to the
following diagram.

<
FIR Narrowband Coefficients (Advanced Only)

Generates a set of filter coefficients to implement a digital interpolated FIR filter. You can pass these
coefficients to the FIR Narrowband Filter VI to filter the data.

ripple: ip
zampling freq: fz s ¥ I Joeeeeeees |F|F Coefficients
passhand: fpaszs Fsa_o —— emnar

stopband: fzto e
u:epnter freq: fE —l_
attenuation [db]; Ar
filker type
% sampling freq: fs is the sampling frequency and must be greater than zero. If it is less than or
equal to zero, the VI sets the coefficients to an empty cluster and returns an error. sampling freq: fs
defaults to 1.0.

i passband: fpass is the passband bandwidth. See figures 4-1 through 4-4 for the definition of
different filters. passband: fpass defaults to 0.01.

4 stopband: fstop is the stopband bandwidth. See figures 4-1 through 4-4 for the definition of
different filters. stopband: fstop defaults to 0.02.

i center freq: fc is the center frequency of the filter. See figures 4-1 through 4-4 for the definition of
different filters. center freq: fc defaults to 0.1.

i attenuation: Ar is the attenuation in the stopband of the filter. See figures 4-1 through 4-4 for the
definition. attenuation: Ar defaults to 60 decibels.

i ripple: rp is the ripple in the passband of the filter. See figures 4-1 through 4-4 for the definition.

rlpple rp defaults to 0.01.
filter type specifies the passband of the filter according to the following values.

0: Lowpass

1: Highpass
2: Bandpass
3: Bandstop

filter type defaults to lowpass.

4 IFIR Coefficients is a cluster that contains IFIR coefficients. It has four elements, as shown in the
following figure.

filter type

=
HLowpas=s
Il

interpolation

i filter type is the filter type that you use to determine how to filter the data.
0: Lowpass
1: Highpass



Bandpass
Bandstop

Wideband-Lowpass *
Wideband-Highpass **

* cutoff frequencies near Nyquist
** cutoff frequencies near zero

interpolation is the interpolation factor M. The model filter is stretched by interpolation times.
Model Filter contains the coefficients of the model filter.

Image Suppressor contains the coefficients of the filter image suppressor.

error. See Analysis Error Codes for a description of the error.

The following figures show how the narrowband filter parameters define the lowpass, highpass,
bandpass, and bandstop filters. The filter response on the y axis is shown on a linear scale. For this
reason, the stopband attenuation Ar was mapped to a linear attenuation using the following equations:
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Figure 5-1. Lowpass Filter
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Figure 5-2. Highpass Filter



Figure 5-3. Bandpass Filter
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Figure 5-4. Bandstop Filter

FIR Narrowband Filter (Advanced Only)

Filters the input sequence X using the IFIR filter specified by IFIR Coefficients as designed by the FIR
Narrowband Filter Coefficients VI.

= Moy = Filtered ¥
IFIR Coefficients IFIE error
i X is the input signal to be filtered.
i IFIR Coefficients is a cluster that contains IFIR coefficients. It has four elements, as the following
f

filter type

=
HLowpas=s
o]

interpolation

i filter type is the filter type that you use to determine how to filter the data.
. Lowpass

Highpass

Bandpass

Bandstop

Wideband-Lowpass *

Wideband-Highpass **

g RO



* cutoff frequencies near Nyquist
** cutoff frequencies near zero

interpolation is the interpolation factor M. The model filter is stretched by interpolation times.
Model Filter contains the coefficients of the model filter.
Image Suppressor contains the coefficients of the filter image suppressor.
Filtered X is the output array of filtered samples.
error. See Analysis Error Codes for a description of the error.
ote: The overall filter is a linear-phase FIR filter. The delay for this filter is

— Z 1 | L L e

(Mg — 1) 2 + 1Yy
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where

Nais the number of elements in the array Model Filter.
M1is the number of elements in the array Image Suppressor.
M is the value of interpolation in the cluster IFIR Coefficients.

FIR Windowed Coefficients (Advanced Only)

Generates the set of filter coefficients you need to implement a FIR windowed filter.

filter type —————
zgampling freq: fz

high cutoff freq: th -

lowe cutoff freg; fl — " Lt fe Bfror
laps
winid o

FIR “indowed Coefficients

i filter type specifies the passband of the filter according to the following values.
0: Lowpass
1: Highpass
2: Bandpass
3: Bandstop
i sampling frequency: fs is the sampling frequency and must be greater than zero. If it is less

than or equal to zero, the VI sets FIR Windowed Coefficients to an empty array and returns an error.
sampling frequency: fs defaults to 1.0.

i high cutoff frequency: fh is the high cutoff frequency. The VI ignores this parameter when filter
type is O (lowpass) or 1 (highpass).
X low cutoff frequency: fl is the low cutoff frequency and must observe the Nyquist criterion

<

where iis the cutoff frequency, and

'“is the sampling frequency. If low cutoff frequency: fl is less than zero or greater than half the sampling
frequency, the VI sets FIR Windowed Coefficients to an empty array and returns an error. low cutoff
frequency: fl defaults to 0.125.

A taps determines the total number of FIR coefficients and must be greater than zero. If taps is
less than or equal to 0, the VI sets FIR Windowed Coefficients to an empty array and returns an error.
taps must be odd for highpass and bandstop filters. taps defaults to 25.

4 window. With the window control you can select the following smoothing window options.



+ 0) None
1) Hann
2) Hamming
3) Triangular
4) Blackman
5) Exact Blackman
6) Blackman-Harris
?) Kaiser-Bessel
8] Flat Top
FIR Windowed Coefficients.
error. See Analysis Error Codes for a description of the error.

S
i

Parks-McClellan (Advanced Only)

Generates a set of linear-phase FIR multiband digital filter coefficients using the number of taps, sampling
frequency, Band Parameters, and filter type.

FI

==l
=

# of taps ——
sampling freq: fz -
Band Parametersm

filker type —I_

i3 # of taps contains the total number of coefficients in h. A tap corresponds to a multiplication and

B finple

v

e

an addition. If there are n taps, every filtered sample requires n multiplications and n additions. # of taps
must be greater than zero. If # of taps is less than or equal to zero, the VI sets h to an empty array, sets
ripple to NaN, and returns an error. # of taps defaults to 32.

4 sampling freq: fs is the sampling frequency and must be greater than zero. sampling freq: fs
defaults to 1.0.
i Band Parameters is an array of clusters. Each cluster element contains the necessary

information associated with each band for the FIR design. Each cluster contains four elements, as shown
in the following figure.

Eand Farameters
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Fipple

The Band Parameters cluster array must contain at least one element, that is, one band.

i Amplitude is the amplitude you want for the band. A value of 1.0 corresponds to a passband, and
a value of 0.0 corresponds to a stopband. This VI does not place restrictions on the value of the
amplitude.

i Lower Freq is the frequency at which the band begins.

X Higher Freq is the frequency at which the band ends.

A Weighted Ripple is the weighted ripple error that this VI minimizes. The higher the weight, the

smaller the error in the band.
For each band, Higher Freq must be greater than Lower Freq, and for adjacent bands, Lower

Freq in the higher band must be greater than Higher Freq in the lower band,
Wl fori=0, 1,2, ..., m-1,

L > f
e s
b

fori=1,2,.. m-1,

where ' represents the Lower Freq in the
i" band, and



b, represents the Higher Freq in the

b

i band. The Higher Freq in the last band must observe the Nyquist criterion

f,  &05f

where tis the sampling frequency.

If Band Parameters does not contain any elements, or if any of the preceding frequency
conditions is violated, the VI sets h to an empty array, sets Weighted Ripple to NaN, and returns an
error. Band Parameters defaults to an empty array.

4 filter type. You can select three distinct filter types.
0: Multiband
1: Differentiator
2: Hilbert

filter type defaults to multiband.

A h is an array of FIR coefficients, which the VI computes using the Parks-McClellan algorithm with

the Remes exchange technique.

4 ripple is the optimal ripple the VI computes and is a measure of deviation from the ideal filter

specifications.

i error. See Analysis Error Codes for a description of the error.

Note: The Parks-McClellan VI finds the coefficients using iterative techniques based upon an
error criterion. Although you specify valid filter parameters, the algorithm may fail to
converge.

The Parks-McClellan VI generates only the filter coefficients. It does not perform the filtering function. To
filter a sequence X using the set of FIR filter coefficients h, use the Convolution VI with X and h as the
input sequences.
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Band Parameters

The equi-ripple filters use a similar technique to filter the data.
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For detailed Measurement VI reference information, see Filter VIs.
Following is a list of Digital Filtering Overview topics:

Infinite Impulse Response Filters
Finite Impulse Response Filters
Nonlinear Filters

Overview

Analog filter design is one of the most important areas of electronic design. Although analog filter design
books featuring simple, well- tested filter designs exist, filter design is often reserved for specialists
because it requires advanced mathematical knowledge and understanding of the processes involved in
the system affecting the filter.

Modern sampling and digital signal processing tools have made it possible to replace analog filters with
digital filters in applications that require flexibility and programmability. These applications include audio,
telecommunications, geophysics, and medical monitoring.

Digital filters have the following advantages over their analog counterparts.

e They are software programmabile.

e They are stable and predictable.

e They do not drift with temperature or humidity or require precision components.
e They have a superior performance-to-cost ratio.

You can use digital filters in LabVIEW to control parameters such as filter order, cutoff frequencies,
amount of ripple, and stopband attenuation.

The digital filter VIs described in this section follow the virtual instrument philosophy. The Vis handle all
the design issues, computations, memory management, and actual data filtering internally, and are
transparent to the user. You do not have to be an expert in digital filters or digital filter theory to process
the data.

The following discussion of sampling theory is intended to give you a better understanding of the filter
parameters and how they relate to the input parameters.

The sampling theorem states that you can reconstruct a continuous-time signal from discrete, equally
spaced samples if the sampling frequency is at least twice that of the highest frequency in the time signal.
Assume you can sample the time signal of interest at = equally spaced intervals without losing
information. The

4 parameter is the sampling interval.
You can obtain the sampling rate or sampling frequency fs from the sampling interval

which means that, according to the sampling theorem, the highest frequency that the digital system can
process is



The highest frequency the system can process is known as the Nyquist frequency. This also applies to
digital filters. For example, if your sampling interval is

2=10.001 sec,
then the sampling frequency is

% =1000 Hz,
and the highest frequency that the system can process is

iy = 500 Hz.

The following types of filtering operations are based upon filter design techniques.

e Smoothing windows

¢ Infinite impulse response (IIR) or recursive digital filters

e Finite impulse response (FIR) or nonrecursive digital filters

¢ Nonlinear filters

The rest of this chapter presents a brief theoretical background on the IIR, FIR, and nonlinear techniques

and discusses the digital filter VIs corresponding to each technique. Refer to the Window Vls topic for
information about the Vls that implement smoothing windows.

Infinite Impulse Response Filters

Cascade Form IIR Filtering

Chebyshev Filters

Butterworth Filters

Chebyshev 1l or Inverse Chebyshev Filters
Elliptic or Cauer Filters

Bessel Filters

Infinite impulse response filters (IIR) are digital filters with impulse responses that can theoretically be
infinite in length (duration). The general difference equation characterizing IIR filters is

Y
where Mu is the number of forward coefficients (

Ii\l) and

a is the number of reverse coefficients (
2).
In most IIR filter designs (and in all of the LabVIEW IIR filters), coefficient 0 is 1. The output sample at
the present sample index i is the sum of scaled present and past inputs (
% and
%i-j when j
£0) and scaled past outputs {bmc filov-4.bmp}.

= S— | =

The response of the general IIR filter to an impulse (zp=1and Ei-] Oforalls=0) is called the
impulse response of the filter. The impulse response of the filter is indeed of infinite length for nonzero
coefficients. In practical filter applications, however, the impulse response of stable IIR filters decays to
near zero in a finite number of samples.
IIR filters in LabVIEW contain the following properties.

¢ Negative indices the above equation are assumed to be zero the first time you call the VI.
e Because the initial filter state is assumed to be zero (negative indices), a transient proportional to the



filter order occurs before the filter reaches a steady state. The duration of the transient response, or
delay, for lowpass and highpass filters is equal to the filter order

e delay = order.
e The duration of the transient response for bandpass and bandstop filters is twice the filter order
e delay =2 * order.

You can eliminate this transient response on successive calls by enabling state memory. To enable state
memory, set the init/cont control of the VI to TRUE (continuous filtering).

Transient steady State

Original Signal [~
Filtered Signal | -

The number of elements in the filtered sequence equals the number of elements in the input sequence.
The filter retains the internal filter state values when the filtering completes.

The advantage of digital IIR filters over finite impulse response (FIR) filters is that IR filters usually require
fewer coefficients to perform similar filtering operations. Thus, IIR filters execute much faster and do not
require extra memory, because they execute in place.

The disadvantage of IIR filters is that the phase response is nonlinear. If the application does not require
phase information, such as simple signal monitoring, IR filters may be appropriate. You should use FIR
filters for those applications requiring linear phase responses.

IIR filters are also known as recursive filters or autoregressive moving-average (ARMA) filters. See
References for Analysis VIs for more information on this topic.

Cascade Form IIR Filtering

Filters implemented using the structure defined by equation (4-1) directly are known as direct form IIR
filters. Direct form implementations are often sensitive to errors introduced by coefficient quantization and
by computational, precision limits. Additionally, a filter designed to be stable can become unstable with
increasing coefficient length, which is proportional to filter order.

A less sensitive structure can be obtained by breaking up the direct form transfer function into lower order
sections, or filter stages. The direct form transfer function of the filter given by equation (4-1) (with £=1)

can be written as a ratio of z transforms, as follows:



Hiz) =

1+ alz_l +..+a z_[Na_lj

H -1
By factoring equation (4-2) into second-order sections, the transfer function of the filter becomes a
product of second-order filter functions

Ns g + bygz | +bogz

H(z) =

=1 1+ alz_1+...+agkz_2
where NS = |NB.J"II2|
LM, {2 and

IMa 2 Mb. This new filter structure can be described as a cascade of second-order filters.

is the largest integer

#[i] o—— =mge 1 sege 2 segehad 5 i)

Cazoaded Fler Swges

Each individual stage is implemented using the direct form Il filter structure because it requires a
minimum number of arithmetic operations and a minimum number of delay elements (internal filter

states). Each stage has one input, one output, and two past internal states (Sk[i B 1]and

If n is the number of samples in the input sequence, the filtering operation proceeds as in the following
equations:

vo[i] ==[i].1

seli] =vya[i — 1 -apesp[i -1 —aggsy[i -2) k=12, 1,
yi[i] = boka[i] + byxsk[i — 1]+ bygsy[i - 2]k =12, N,
for each sample1=0, 1, 2,...,n-1.

For filters with a single cutoff frequency (lowpass and highpass), second-order filter stages can be
designed directly. The overall IR lowpass or highpass filter contains cascaded second-order filters.

For filters with two cutoff frequencies (bandpass and bandstop), fourth-order filter stages are a more
natural form. The overall [IR bandpass or bandstop filter is cascaded fourth-order filters. The filtering
operation for fourth-order stages proceeds as in the following equations:

yoli] = =[i].

sg[i] = yuali — 1] - aggey[i 1] —aggsy[i - 2] - agysy[i - 3]
—a4ksk[i _4],1{ = 1,2,...,NS

vi[i] = bokek[i] + byxsy[i — 1]+ boysg[i — 2] ~baysy[i - 3]
_bdksk[i _4],1{ = 1,2,...,NS

F[i] = ¥Ns [1]
Notice that in the case of fourth-order filter stages N, = [(Nﬂ * l)f'/ﬂ'].



Butterworth Filters

A smooth response at all frequencies and a monotonic decrease from the specified cutoff frequencies
characterize the frequency response of Butterworth filters. Butterworth filters are maximally flat--the ideal
response of unity in the passband and zero in the stopband. The half power frequency or the 3-dB down
frequency corresponds to the specified cutoff frequencies.

The following illustration shows the response of a lowpass Butterworth filter. The advantage of
Butterworth filters is a smooth, monotonically decreasing frequency response. Once you set the cutoff
frequency, LabVIEW sets the steepness of the transition proportional to the filter order. Higher order
Butterworth filters approach the ideal lowpass filter response.
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Chebyshev Filters

Butterworth filters do not always provide a good approximation of the ideal filter response because of the
slow rolloff between the passband (the portion of interest in the spectrum) and the stopband (the
unwanted portion of the spectrum).

Chebyshev filters minimize peak error in the passband by accounting for the maximum absolute value of
the difference between the ideal filter and the filter response you want (the maximum tolerable error in the
passband). The frequency response characteristics of Chebyshev filters have an equi-ripple magnitude
response in the passband, monotonically decreasing magnitude response in the stopband, and a sharper
rolloff than Butterworth filters.

The following graph shows the response of a lowpass Chebyshev filter. Notice that the equi-ripple
response in the passband is constrained by the maximum tolerable ripple error and that the sharp rolloff
appears in the stopband. The advantage of Chebyshev filters over Butterworth filters is that Chebyshev
filters have a sharper transition between the passband and the stopband with a lower order filter. This
produces smaller absolute errors and higher execution speeds.
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Chebyshev Il or Inverse Chebyshev Filters

Chebyshev I, also known as inverse Chebyshev or Type Il Chebysheyv filters, are similar to Chebyshev
filters, except that Chebyshev Il filters distribute the error over the stopband (as opposed to the
passband), and Chebyshev Il filters are maximally flat in the passband (as opposed to the stopband).

Chebyshev Il filters minimize peak error in the stopband by accounting for the maximum absolute value of
the difference between the ideal filter and the filter response you want. The frequency response
characteristics of Chebyshev |l filters are equi-ripple magnitude response in the stopband, monotonically
decreasing magnitude response in the passband, and a rolloff sharper than Butterworth filters.

The following graph plots the response of a lowpass Chebyshev Il filter. Notice that the equi-ripple
response in the stopband is constrained by the maximum tolerable error and that the smooth monotonic
rolloff appears in the stopband. The advantage of Chebysheuv Il filters over Butterworth filters is that
Chebyshev Il filters give a sharper transition between the passband and the stopband with a lower order
filter This difference corresponds to a smaller, absolute error and higher execution speed. One advantage
of Chebyshev Il filters over regular Chebyshev filters is that Chebyshev Il filters distribute the error in the
stopband instead of the passband.
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Elliptic or Cauer Filters

Elliptic filters minimize the peak error by distributing it over the passband and the stopband. Equi-ripples
in the passband and the stopband characterize the magnitude response of elliptic filters. Compared with
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the same order Butterworth or Chebyshev filters, the elliptic design provides the sharpest transition
between the passband and the stopband. For this reason, elliptic filters are quite popular.

The following graph plots the response of a lowpass elliptic filter. Notice that the ripple in both the
passband and stopband is constrained by the same maximum tolerable error (as specified by ripple
amount in dB). Also, notice the sharp transition edge for even low-order elliptic filters.
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Bessel Filters

You can use Bessel filters to reduce nonlinear phase distortion inherent in all lIR filters. In higher order
filters and those with a steeper rolloff, this condition is more pronounced, especially in the transition
regions of the filters. Bessel filters have maximally flat response in both magnitude and phase.
Furthermore, the phase response in the passband of Bessel filters, which is the region of interest, is

nearly linear. Like Butterworth filters, Bessel filters require high-order filters to minimize the error and, for
this reason, are not widely used. You can also obtain linear phase response using FIR filter designs.The

following graphs plot the response of a lowpass Bessel filter. Notice that the response is smooth at all
frequencies, as well as monotonically decreasing in both magnitude and phase. Also, notice that the
phase in the passband is nearly linear.
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Finite Impulse Response Filters

Design of FIR Filters by Windowing

Design of Optimum FIR Filters using the Parks-McClellan Algorithm
Design of Narrowband FIR Filters

Windowed FIR Filters

Optimum FIR Filters

FIR Narrowband Filters

Finite impulse response (FIR) filters are digital filters, which have a finite impulse response. FIR filters are
also known as nonrecursive filters, convolution filters, or moving-average (MA) filters because you can
express the output of an FIR filter as a finite convolution

n-1
¥i = 2 hrRik

k=0
where X represents the input sequence to be filtered, y represents the output filtered sequence, and h
represents the FIR filter coefficients.

The following list gives the most important characteristics of FIR filters.

e They can achieve linear phase due to filter coefficient symmetry in the realization.
e They are always stable.

¢ You can perform the filtering function using the convolution and, as such, generally associate a delay
with the output sequence

n-1
delay = ——
T

e where n is the number of FIR filter coefficients

The following graphs plot a typical magnitude and phase response of FIR filters versus normalized
frequency. These graphs were generated using the FIR Filter Design example in the topic, Analysis
Examples.
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The discontinuities in the phase response arise from the discontinuities introduced when you compute the
magnitude response using the absolute value. Notice that the discontinuities in phase are on the order of
7. The phase, however, is clearly linear. See References for Analysis VIs for material that can give you
more information on this topic.

You design FIR filters by approximating a specified, desired frequency response of a discrete-time
system. The most common techniques approximate the desired magnitude response while maintaining a
linear phase response.

FIR Filter Design by Windowing

The simplest method for designing linear-phase FIR filters is the window design method. To design a FIR
filter by windowing, you start with an ideal frequency response, calculate its impulse response, and then
truncate the impulse response to produce a finite number of coefficients. You meet the linear phase
constraint by maintaining symmetry about the center point of the coefficients. The truncation of the ideal
impulse response results in the effect known as the Gibbs phenomenonboscillatory behavior near abrupt
transitions (cutoff frequencies) in the FIR filter frequency response.

You can reduce the effects of the Gibbs phenomenon by smoothing the truncation of the ideal impulse
response using a smoothing window function. By tapering the FIR coefficients at each end, you can
diminish the height of the side lobes in the frequency response. The disadvantage to this method,
however, is that the main lobe widens, resulting in a wider transition region at the cutoff frequencies. The
selection of a window function, then, is similar to the choice between Chebyshev and Butterworth |IR
filters in that it is a trade-off between side lobe levels near the cutoff frequencies and width of the
transition region.

The design of FIR filters by windowing is simple and computationally inexpensive. It is therefore the
fastest way to design FIR filters. It is not necessarily, however, the best FIR filter design method.

Optimum FIR Filter Design of using the Parks-McClellan Algorithm

The Parks-McClellan algorithm offers an optimum FIR filter design technique that attempts to design the



best filter possible for a given number of coefficients. Such a design reduces the adverse effects at the
cutoff frequencies. It also offers more control over the approximation errors in different frequency
bands—control that is not possible with the window method.

Using the Parks-McClellan algorithm to design FIR filters is computationally expensive. This method,
however, produces optimum FIR filters by applying time-consuming iterative techniques.

Narrowband FIR Filter Design

When you use conventional techniques to design FIR filters with especially narrow bandwidths, the
resulting filter lengths may be very long. FIR filters with long filter lengths often require lengthy design and
implementation times, and are more susceptible to numerical inaccuracy. In some cases, conventional
filter design techniques, such as the Parks-McClellan algorithm, may fail the design altogether.

You can use a very efficient algorithm, called the Interpolated Finite Impulse Response (IFIR) filter design
technique, to design narrowband FIR filters. Using this technique produces narrowband filters that require
far fewer coefficients (and therefore fewer computations) than those filters designed by the direct
application of the Parks-McClellan algorithm. LabVIEW also uses this technique to produce wideband,
lowpass (cutoff frequency near Nyquist) and highpass filters (cutoff frequency near zero). For more
information on IFIR filter design, see Multirate Systems and Filter Banks by P.P. Vaidyanathan, or the
paper on interpolated finite impulse response filters by Neuvo, et al., listed in References for Analysis

Vis .

Windowed FIR Filters

You use the filter type parameter of the FIR Vls to select the type of windowed FIR filter you
wantblowpass, highpass, bandpass, or bandstop. The following list gives the two related FIR Vls.

¢ FIR Windowed CoefficientsDgenerates the windowed (or unwindowed) coefficients.
¢ FIR Windowed Filtersbfilters the input using windowed (or unwindowed) coefficients.

Optimum FIR Filters

You can use the Parks-McClellan algorithm to design optimum, linear-phase, FIR filter coefficients in the
sense that the resulting filter optimally matches the filter specifications for a given number of coefficients.
The Parks-McClellan VI takes as input an array of band descriptions, each containing information
describing the response you want for the given band. The VI outputs the FIR coefficients along with
computed ripple, which is a measure of the deviation of the resulting filter from the ideal filter
specifications.

Four VIs use the Parks-McClellan VI to implement filters whose stopband and passband ripple level are
equal. These VIs are Equi-Ripple LowPass, Equi-Ripple HighPass, Equi-Ripple BandPass, and Equi-
Ripple BandStop.

FIR Narrowband Filters

You can design narrowband FIR filters using the FIR Narrowband Coefficients VI, and then implement the
filtering using the FIR Narrowband Filter VI. The design and implementation are separate operations
because many narrowband filters require lengthy design times, while the actual filtering process is very
fast and efficient. Keep this in mind when creating your narrowband filtering diagrams.

The parameters required for narrowband filter specification are filter type, sampling rate, passband and
stopband frequencies, passband ripple (linear scale), and stopband attenuation (decibels). For bandpass
and bandstop filters, passband and stopband frequencies refer to bandwidths, and you must specify an
additional center frequency parameter. You can also design wideband lowpass filters (cutoff frequency
near Nyquist) and wideband highpass filters (cutoff frequency near zero) using the narrowband filter Vis.



The following illustration shows how to use the FIR Narrowband Coefficients VI and the FIR Narrowband
Filter VI to estimate the response of a narrowband filter to an impulse.
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Nonlinear Filters

Smoothing windows, IIR filters, and FIR filters are linear because they satisfy the superposition and
proportionality principles

L {ax(t) + by(t)} = aL {x()} + bL{y(t)},

where a and b are constants, x(t) and y(t) are signals, L{ '} is a linear filtering operation, and their inputs
and outputs are related via the convolution operation.

A nonlinear filter does not meet the preceding conditions and you cannot obtain its output signals via the
convolution operation, because a set of coefficients cannot characterize the impulse response of the filter.
Nonlinear filters provide specific filtering characteristics that are difficult to obtain using linear techniques.
The median filter is a nonlinear filter that combines lowpass filter characteristics (to remove high-
frequency noise) and high-frequency characteristics (to detect edges).



This topic describes the VIs that implement smoothing windows. For general information about Linear
Algebra Vls, see Window VIs Overview .

The following illustration shows the options that are available on the Windows subpalette. Click on one of
the icons below for function description information. You can also click on the text jumps below the icons
to access function descriptions.

=| Windows
Bndmin A
Y oy
Gl "B,
A rvh'm.;.
woaf final.

Blackman Window
Blackman-Harris Window
Cosine Tapered Window
Exact Blackman Window
Exponential Window

Flat Top Window

Force Window

General Cosine Window
Hamming Window
Hanning Window
Kaiser-Bessel Window
Triangle Window

For examples of how to use the window Vls, see the examples located in
examples\analysis\windxmpl.1l1lb.

Blackman Window (Advanced Only)

Applies a Blackman window to the input sequence X.

e Blackman:)
il efrar
X

Blackman{X}.
error. See Analysis Error Codes for a description of the error.
If Y represents the output sequence Blackman{X}, the VI obtains the elements of Y from

[EaS BN E

¥1 TEi[0.42 - 0.50 cos(w) +0.08 cos(2w)] fori=0,1, 2, ..., n-1

2

W [ J—
11

where 1 is the number of elements in X.

B

Blackman-Harris Window (Advanced Only)



Applies a three-term, Blackman-Harris window to the input sequence X.

" s Blackman-Harris i}
Ll | ermar
Y X.
i Blackman-Harris{X}.
4

error. See Analysis Error Codes for a description of the error.
If Y represents the output sequence Blackman-Harris{X}, the VI obtains the elements of Y from

% [0.422323 - 0.49755 cos(w) + 0.07922 cos(2w)]
fori=0,1,2,..,n-1,

£

where 1 is the number of elements in X.

Cosine Tapered Window (Advanced Only)

Applies a cosine tapered window to the input sequence X.

v :&u?éﬁ: Cosing Taperedf}
A errar
X

Cosine Tapered{X}.
error. See Analysis Error Codes for a description of the error.
If Y represents the output sequence Cosine Tapered{X}, the VI obtains the elements of Y from

| P P

[Uﬁxil[l —COS W) for1 =012, . . m-1 andfori=n-mn-m+1,.. . n-1
¥i~T

b elsewhers

where £

and

tm = round[i] .
10

where n is the number of elements in the input sequence X.

Using this window is the equivalent of applying the Hanning window to the first and last 10% of the input
sequence X.

Exact Blackman Window (Advanced Only)

Applies an Exact Blackman window to the input sequence X.

" lnigmn Exact Blackmanis<}
Ll Errar
X X.
i Exact Blackman{X}.
£

error. See Analysis Error Codes for a description of the error.
If Y represents the output sequence Exact Blackman{X}, the VI obtains the elements of Y from




¥i= xi[an — aj cos(w) +aq cos(?wj] .

fori1=0,1, 2, ..., n1

2
W= —,
f1
where 1 is the number of elements in X,

£=7938/18608
41=9240/18608, and

2= 1430/18608.
Exponential Window (Advanced Only)

Applies an exponential window to the input sequence X.

® "B E xponentialfz}
firal wvalue E&‘“‘ el
4 X.
4 final value.
4 Exponential{X}.
4

error. See Analysis Error Codes for a description of the error.

If Y represents the output sequence Exponential{X}, the VI obtains the elements of Y from
¥i = Ej exp(aij for1=0,1,2, ... n1
In(f)
n-1"

where fis the final value, and n is the number of samples in X.

You can use the Exponential Window VI to analyze transients.

Flat Top Window (Advanced Only)

Applies a flat top window to the input sequence X.

v R Flattapd<}
F ermar
i X.
A Flattop{X}.
i error. See Analysis Error Codes for a description of the error.

If Y represents the output sequence Flattop{X}, the VI obtains the elements of Y from

v =% 0.2810639 - 0.5208972 cosfw) + 0.1980399 cos(2w)]

fori=0,1,2,....n-1,



where 1 is the number of elements in X.

Force Window (Advanced Only)

Applies a force window to the input sequence X.

" RN Force §:}
duty cycle[%) - error
% X.
X duty cycle.
Note: duty cycle must be a percentage. If your duty cycle is expressed as a fraction of a

completed record, you must convert the duty cycle to a percentage, as shown in the
following figure, before using the Force Window VI.

¥ Fovoe
% Force{X}.
A error. See Analysis Error Codes for a description of the error.

If Y represents the output sequence Force{X}, the VI obtains the elements of Y from

X, [if D14 d)
W=
0 elzewhere

d = (0.01)(n)(duty cycle), where n is the number of elements in X.

You can use the Force Window VI to analyze transients.

General Cosine Window (Advanced Only)

Applies a general, cosine window to the input sequence X.

= H Bl GenCos{}
Cozine Coefficients logat + | ol
£ X.
£ Cosine Coefficients.
Special Case: If Cosine Coefficients is an empty array, the VI sets GenCos{x(t)} to an empty
array, even if X is not empty.

GenCos{X}.

error. See Analysis Error Codes for a description of the error.

If A represents the Cosine Coefficients input sequence and Y represents the output sequence
GenCos{X}, the VI obtains the elements of Y from

Y
A

m-1

Vi = 2, (—ljk ay c:c::uslikwj
k-0

fori1=0,1,2,....n1

2m
W= —
f

where 1 is the number of elements in X, and m is the number of Cosine Coefficients.

]



Hamming Window (Advanced Only)

Applies a Hamming window to the input sequence X.

Hafie Harnmirig 44}
“ il erman
i X.
i Hamming{X}.
<

error. See Analysis Error Codes for a description of the error.
If Y represents the output sequence Hamming{X}, the VI obtains the elements of Y from

v, =% [0.54-046 cos(w)]fori=0,1,2, ., n-1,

where n is the number of elements in the input sequence X.

Hanning Window (Advanced Only)

Applies a Hanning window to the input sequence X.

Horeina Hanning {4}
% e errar
% X.
% Hanning {X}.
i

error. See Analysis Error Codes for a description of the error.
If Y represents the output sequence Hanning {X}, the VI obtains the elements of Y using

v; = 0.5x; [1-cos(w)] fori=0,1,2,  ..n-1,
2

W= —,
f

where n is the number of elements in X.

Kaiser-Bessel Window (Advanced Only)

Applies a Kaiser-Bessel window to the input sequence X(t).

5[] oz k.aizer-Bessel{[t}
beta E*"’ error
Y X(t).
% beta is proportional to the side lobe attenuationDthat is, the larger the beta is, the greater the
side lobe attenuation. beta defaults to 0.0.
A Kaiser-Bessel{X(t)}.
Y error. See Analysis Error Codes for a description of the error.

If Y represents the output sequence Kaiser-Bessel{X(t)}, the VI obtains the elements of Y from



for1=0,1,2, ..n-1
_i-k

a - 2

k

1{=n—1
2

where n is the number of elements in X(t), and /o() is the zero-order modified Bessel function.

Triangle Window (Advanced Only)

Applies a triangular window to the input sequence X.

T

X.

Triangle{X}.

error. See Analysis Error Codes for a description of the error.

Note: The triangle smoothing window is also known as the Bartlett smoothing window.

Tranglefs}
eITar

|

| | |

If Y represents the output sequence Triangle{X}, the VI obtains the elements of Y from
¥ =% frilw) for1=0,1, 2, ..., n-1,

21—1n
W= .
n

where trifw) =1 - |w|, and n iz the number of elements in X.
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Cosine Tapered Window.vi
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For detailed VI descriptions, see Window Vls .

Smoothing Windows
Windows for Spectral Analysis versus Windows for Coefficient Design

Smoothing Windows

In practical, signal-sampling applications, you can obtain only a finite record of the signal, even when you
carefully observe the sampling theorem and sampling conditions. Unfortunately for the discrete-time
system, the finite sampling record results in a truncated waveform that has different spectral
characteristics from the original continuous-time signal. These discontinuities produce leakage of spectral
information, resulting in a discrete-time spectrum that is a smeared version of the original continuous-time
spectrum.

A simple way to improve the spectral characteristics of a sampled signal is to apply smoothing windows.
When performing Fourier or spectral analysis on finite-length data, you can use windows to minimize the
transition edges of your truncated waveforms, thus reducing spectral leakage. When used in this manner,
smoothing windows act like predefined, narrowband, lowpass filters.

Windows for Spectral Analysis versus Windows for Coefficient Design

The window Vls implemented in the Analysis library in LabVIEW are designed for spectral analysis
applications. In these applications, the input signal is windowed by passing it through one of the window
VIs. The windowed signal is then passed to a DFT-based VI for frequency-domain display and analysis.

The window functions designed for spectral analysis must be DFT-even, a term defined by Fredric J.
Harris in his paper On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform
(Proceedings of the IEEE, Volume 66, No.1, January 1978). A window function is DFT-even if its dot
product (inner product) with integral cycles of sine sequences is identically zero. Another way to think of a
DFT-even sequence is that its DFT has no imaginary component.

The following figures illustrate the Hanning window and one cycle of a sine pattern for a sample size of 8.
It is clear from the figures that the DFT-even Hanning window is not symmetric about its midpoint and its
last point is not equal to its first point, much like one complete cycle of a sine pattern.

Hanning “Window
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Finally, the DFT considers input sequences to be periodic--that the signal being analyzed is actually a
concatenation of the input signal. The following illustration shows three such cycles of the above
sequences, demonstrating the smooth periodic extension of the DFT-even window and the single-cycle
sine pattern.

Periodic Extension
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Another type of window application is that of FIR filter design (see the descriptions of FIR Windowed
Coefficients and FIR Windowed Filter). This application requires windows that are symmetric about their
midpoint.

The difference between the DFT-even window function (spectral analysis) and the symmetrical window
function (coefficient design) can be clearly seen in the following equations of the Hanning window
function.

Hanning window function for spectral analysis:

wli]= 0.5[1 - cos[g—m]]
i)
for i=0,1,2,...,N-1

Hanning window function for symmetrical coefficient design:

oi] - 0_5[1— .:os[}?fl]]

for i=0,1,2,...,N-1

It is clear from the above equations that you can implement the symmetrical window functions by slightly
modifying the use of the DFT-even window functions. The following illustration shows a block diagram that
uses the Hanning Window VI to implement symmetrical windowing of filter coefficients.



input coefficients

windowed coefficients
[pBL]

farrn syrmrmetric window

An example in the section Analysis Examples , demonstrates how to use smoothing windows, and the
LabVIEW distribution disks contain an example that shows the spectral characteristics of the smoothing
windows. See References for Analysis VIs for material that can give you more information on this topic.




This topic describes the Vls that perform curve fitting analysis or regression. For general information
about Filter Vls, see Curve Fitting VIs Overview .

The following illustration shows the options that are available on the Curve Fitting subpalette. Click on
one of the icons below for function description information. You can also click on the text jumps below the
icons to access function descriptions.

= Curve Filting

Spline
Irterp

Exponential Fit
Exponential Fit Coefficients

General LS Linear Fit
General Polynomial Fit
Linear Fit

Linear Fit Coefficients
Nonlinear Lev-Mar Fit
Polynomial Interpolation
Rational Interpolation
Spline Interpolant
Spline Interpolation

For examples of how to use the regression Vis, see the examples located in examples\
analysis\regressn.llb.

Exponential Fit (Advanced Only)

Finds the exponential curve values and the set of exponential coefficients amplitude and damping,
which describe the exponential curve that best represents the input data set.

Best Exponential Fit

Y Y alues . i
* Values 32}%;;
mze
Errar
i Y Values must have the same sign and must contain at least two points: that is,

¥i>0 for 1=0, 1,..n-1 or

¥i<0 for 1=0, 1,..n-1, n

= 2, where Y represents the input sequence Y Values, and n is the number of data points. If the signs
are inconsistent or there are less than two sample points, the VI sets Best Exponential Fit to an empty

array, sets amplitude, damping, and mse to NaN, and returns an error via the Exponential Fit
Coefficients VI.

Note: This VI performs an exponential fit even when the elements of Y Values are negative. It



performs the fit under the assumption that the amplitude coefficient is also negative and

returns a negative amplitude. Y Values cannot contain both positive and negative
elements.

A X Values must contain at least two points.

i Best Exponential Fit.

i amplitude.

4 damping.

i mse is the mean squared error.

i error. See Analysis Error Codes for a description of the error.
The general form of the exponential fit is given by

F=a™
where F is the output sequence Best Exponential Fit, X is the input sequence X Values, a is the
amplitude, and t is the damping constant.

The VI obtains mse using the formula

n-1

mse = —E(fi —yi)j
I i=p

where f'is the output sequence Best Exponential Fit, y is the input sequence Y Values, and n is the
number of data points.

Exponential Fit Coefficients (Advanced Only)

Finds the set of exponential coefficients amplitude and damping, which describe the exponential curve
that best represents the input data set.

"\r l"."lEllLIES ................ amplltudﬂ
""""""" = dampirg
W alues oy

This VI is a subVI of the Exponential Fit VI.

Y Y Values must have the same sign and must contain at least two points: that is,

“>0 for i=0, 1,...n-1 or

4<0fori=0, 1,..n-1, n

% 2, where Y represents the input sequence Y Values, and n is the number of data points. If the signs

are inconsistent or there are less than two sample points, the VI sets Best Exponential Fit to an empty

array, sets amplitude, damping, and mse to NaN, and returns an error via the Exponential Fit

Coefficients VI.

Note: This VI performs an exponential fit even when the elements of YEValues are negative. The
VI performs the fit under the assumption that the amplitude coefficient is also negative
and returns a negative amplitude. YEValues cannot be a mixture of positive and negative
elements.

X Values must contain at least two points.

amplitude.

damping.

error. See Analysis Error Codes for a description of the error.
The general form of the exponential fit is given by

| P P PN P

s
where F is the sequence representing the best fitted values, X represents the input sequence X Values,



a is the amplitude, and t is the damping constant.

General LS Linear Fit (Advanced Only)

For examples of General LS Linear Fit see:

Example 1: Predicting Cost
Example 2: Linear Combinations

General LS Linear Fit finds the Best Fit k-dimensional plane and the set of linear coefficients using the
least chi-square method for observation data sets

{Xi':' Eils-- - E k-] ’Fi} wherei=0, 1, ..., n- 1. nis the number of your observation data sets.

Standard Dewiation
H R

MWl g
algorithm — ¢

I:l:neffic_ients

A H is an n-by-k matrix, which contains the observation data i=0,1,...,n-1, where n is the number of
rows in H, k is the number of columns in H.
i Y Values. The number of elements in Y Values should be equal to the number of rows in H.
A algorithm has six selections:
0: SVD
Givens
Givens2
Householder
LU decomposition
Cholesky

aRwn=

algorithm defaults to SVD.

Standard Deviation is the standard deviation
ifor data point

Xi-‘fi). If they are equal or you do not know, leave this array empty. Internally, LabVIEW sets all to 1.0.
Coefficients is the set of coefficients that minimize

, which is defined in equation (7-5).
Best Fit is the fitted data computed by using the Coefficients.
mse is the mean squared error.
error. See Analysis Error Codes for a description of the error.
Covariance is the matrix of covariances C with k-by-k elements.

© ik is the covariance between
4j and

% and

“ii is the variance of

.

You can use the General LS Linear Fit VI to solve multiple linear regression problems. You can also use it
to solve for the linear coefficients in a multiple-function equation. Before beginning the formal description
of this VI, consider both of the following, simple examples. The first example uses the General LS Linear
Fit VI to perform multiple regression analysis based entirely on tabulated observation data. The second
solves for the linear coefficients in a multiple-function equation.

L L L Lo 2 L = O |
)



Example 1: Predicting Cost

Suppose you want to estimate the total cost (in dollars) of a production of baked scones; using the
quantity produced, X1, and the price of one pound of flour, X2. To keep things simple, the following five
data points form this sample data table.

Cost (dollars) Quantity Flour Price
Y X1 X2

$150 295 3.00

$75 100 3.20

$120 200 3.10

$300 700 2.80

$50 60 2.50

You want to estimate the coefficients to the equation:

y=bgtb ¥ +by¥y

The only parameters that you need to build are H (observation matrix) and Y Values. Each column of H is
the observed data for each independent variable: the first column is one because the coefficient b0 is not
associated with any independent variable. H should be filled in as:

1
I

1

295
100
200
700
&0

3.00
320
310
2.80
2.50

In LabVIEW, the observed data would normally appear in three arrays (Y, X1, and X2). The following
block diagram demonstrates how to build H using the General LS Linear Fit VI.

G

--[>

[DBL]
H2
[DBL]
k)
[DEL]
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- |E
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i Malues | i ..

Coefficients
[DEL]

After running the General LS Linear Fit VI, the following Coefficients are obtained.

Coefficients

and the resulting equation for the total cost of scone production is therefore:

Y=-20.34 + 0.38X1 + 19.05X2.



Example 2: Linear Combinations

Suppose that you have collected samples from a transducer (Y Values) and you want to solve for the
coefficients of the model:

v =bp + bysinfwx) + by cos{wz) + b3x3
To build H, you set each column to the independent functions evaluated at each x value. Assuming there
are 100 x values, H would be:

1 sin(mxnjl cc:-s(mxnjl KDE
1 sin(mxl) cos(mxl) Klz

H=]1 sin(mxzjl cos(mxz) xzz

1 Sinl:D.JKgg) cosl[mxgg} 3992

Given that you have the independent X Values and observed Y Values, the following block diagram
demonstrates how to build H and use the General LS Linear Fit VI.

Coefficients
[oBL]

fl=zin(w ¥ ;

w f2=coslw 1), f -]
fE=u%u; okd =

W f2

E

# Malues
[DEL]

ks

W Malues
[DBL]

The General LS Linear Fit Problem can be described as follows.

Given a set of observation data, find a set of coefficients that fit the linear OmodelO.

k-1
¥i =b|:|Ki|:| +"'+bk—1Xﬂ:{—1 = Eb_'lxl_] 1= D,l,...,ﬂ_l
1= (7-4)

where

B is the set of Coefficients.
n is the number of elements in Y Values and the number of rows of H.
k is the number of Coefficients.

%1 js your observation data, which is contained in H.
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Equations (7-4) can also be written as Y=HB.

This is a multiple linear regression model, which uses several variables #i0-%il:----Zik—1. to predict one
variable

% . In contrast, the Linear Fit, Exponential Fit, and Polynomial Fit Vs are all based on a single predictor
variable, which uses one variable to predict another variable.
In most cases, we have more observation data than coefficients. The equations in (7-4) may not have the
solution. The fit problem becomes to find the coefficients B that minimizes the difference between the
observed data, £ and the predicted value

k-1
zi = 25b Ky

=0
This VI uses the least chi-square plane method to obtain the coefficients in (7-4), that is, finding the
solution, B, which minimizes the quantity:

k-1 2
2 "y -z S Fl_%bjxu y
¥ = [ 1 1] — ] =|HEIB_YEI|
=00 7i i=0 i
(7-5)
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where hog = “Lyg =22, =0, 1., 0-1,§=0, L., k-1,
oy i
In this equation, is the Standard Deviation. If the measurement errors are independent and normally

distributed with constant standard deviation, 7i = 7 the preceding equation is also the least square
estimation.

There are different ways to minimize £.
One way to minimize % is to set the partial derivatives of
% to zero with respect to

b.by,.. by
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The preceding equations can be derived to: HoHpB=Hp Y (7-6)

H{ |

0 is the transpose of
Hy,
Equations (7-6) are also called normal equations of the least-square problems. You can solve them using
LU or Cholesky factorization algorithms, but the solution from the normal equations is susceptible to
roundoff error.
An alternative, and preferred way to minimize £ is to find the least square solution of equations
HDB = Yl:l
You can use QR or SVD factorization to find the solution, B. For QR factorization, you can choose
Householder, Givens, and Givens2 (also called fast Givens) .

Different algorithms can give you different precision, and in some cases, if one algorithm cannot solve the
equation, perhaps another algorithm can. You can try different algorithms to find the best one based on
your observation data.

The Covariance matrix C is computed as
T -1
C=[HpHg)
The Best Fit Z is given by
k-1
Zi = E b_]Xl_]
1=0

The mse is obtained using the following formula.

2
123y — g,
mse=—E[—F1 1]
nigh o

1
The polynomial fit that has a single predictor variable can be thought of as a special case of multiple

regression. If the observation data sets are {Xi=3ri} where 1 =0, 1, ..., n-1, the model for polynomial fit
is:



k-1
yi= 2, bl =bg +byx +byxf +. 4y yxf]

0 (7-7)
1i=0,1,2,..,n-1.

Comparing equations (7-4) and (7-7) shows that . In other words,

= -1 = -2 |
XD TEL.EQOTEEDTE.EERTE

In this case, you can build H as follows:

1 =z X% Xlni_l
1 x Xij‘ X%i_l
H=: .
2 k-1
l_l En-1 #n-1 77t Ep-f)

-
Instead of using T , you can also choose another function formula to fit the data sets

%. In general, you can select
5 =1 I:Xl) Here,

fj (Xl) is the function model that you choose to fit your observation data. In polynomial fit,

fi(x) =5
In general, you can build H as follows:
fofxo) filxo) flzq) - fxoalxo) ]
falx1)  filz)  Balxg) - Froglzy)
H=/{ \
fo (Bpot) fi(2aog) folzgog) o fpog(zao )

Your fit model is:
i = bofy (=) + byfy (=) +. +by_4fi (=)

General Polynomial Fit (Advanced Only)

Finds the polynomial curve values and the set of Polynomial Fit Coefficients, which describe the
polynomial curve that best represents the input data set.
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polynomial order _l_ —I_ Mmee

algorithm error
i Y Values. The number of sample points in Y Values must be greater than polynomial order. If
the number of sample points is less than or equal to polynomial order, the VI sets Polynomial Fit
Coefficients to an empty array and returns an error.
A X Values. The number of sample points in X Values must be greater than polynomial order. If
the number of sample points is less than or equal to polynomial order, the VI sets Polynomial Fit
Coefficients to an empty array and returns an error.
4 polynomial order must be greater than or equal to zero: 0
“ m < n-1, where n is the number of sample points, and m is the polynomial order. If polynomial order
is less than zero, the VI sets Polynomial Fit Coefficients to an empty array and returns an error.
ponnomlaI order defaults to 2.
A algorithm has six selections:

0: SVD

Givens
Givens2
Householder
LU decomposition
Cholesky

aRwn=

It defaults to SVD.

Best Polynomial Fit.

Polynomial Fit Coefficients. The total number of elements in Polynomial Fit Coefficients is m
1. where m is the polynomial order.

mse is the mean squared error.

error. See Analysis Error Codes for a description of the error.
he general form of the polynomial fit is given by

o SR LN N RN PN

mo
= Eajxi]
j=0

where

F represents the output sequence Best Polynomial Fit,

X represents the input sequence X Values,

A represents the Polynomial Fit Coefficients, and m is the polynomial order.

The VI obtains mse using the formula

n-1

mse =~ 3 (5 - i)’

i-p

where Y represents the input sequence Y Values, and n is the number of data points.

General Polynomial Fit is a special case of the General LS Linear Fit. The General Polynomial Fit VI uses
the General LS Linear Fit VI as a subVI. This VI builds the H matrix internally using input X Values for the
General LS Linear Fit VI.

The formula used to build H is as follows:



-1 XD XD ]
_ — o] 1 = Lt
hy =£j(x;) = =] : !
1=01,....n-1 For example, H =
1=01, . ..m
1
Xn—l ...X;n_l-

For more information about the General LS Linear Fit VI and the difference among different algorithms,
please refer to the description of JUMP General LS Linear Fit VI

Linear Fit

Finds the line values and the set of linear coefficients slope and intercept, which describe the line that
best represents the input data set.

Best Lingar Fit

W alues .
 glope
A W alues intercept
mEe
efror
i Y Values must contain at least two points. If there are fewer than two sample points, the VI sets

Best Linear Fit to an empty array, sets slope, intercept, and mse to NaN, and returns an error via the
Linear Fit Coefficients VI.

i X Values must contain at least two points. If there are fewer than two sample points, the VI sets
Best Linear Fit to an empty array, sets slope, intercept, and mse to NaN, and returns an error via the
Linear Fit Coefficients VI.

Best Linear Fit.

slope.

intercept.

mse is the mean squared error.

i error. See Analysis Error Codes for a description of the error.

The general form of the linear fit is given by

L L L L P

F=mX+b,

where F represents the output sequence Best Linear Fit, X represents the input sequence X Values, m
is the slope, and b is the intercept.

The VI obtains mse using the formula

1
where F represents the output sequence Best Linear Fit, Y represents the input sequence Y Values,
and n is the number of data points.

ln_l
mse = —Z(fi _Fi)2
1 =0

Linear Fit Coefficients (Advanced Only)

Finds the set of linear coefficients slope and intercept, which describe the line that best represents the
input data set.
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This VI is a subVI of the Linear Fit VI.
i Y Values must contain at least two points. If there are less than two sample points, the VI sets
slope and intercept to NaN and returns an error.
i X Values must contain at least two points. If there are less than two sample points, the VI sets
slope and intercept to NaN and returns an error.
Y slope.
% intercept.

error. See Analysis Error Codes for a description of the error.
The general form of the linear fit is given by

F=mX+b,
where F is the sequence representing the best fitted values. X represents the input sequence X Values,

m is the slope, and b is the intercept.

Nonlinear Lev-Mar Fit (Advanced Only)

Uses the Levenberg-Marquardt method to determine a nonlinear set of coefficients that minimize a chi-
square quantity.

Standard Deviation i Coveariance
" Fonlinf: Best Fit Coefficients
o "'I”E: v, o Bzt Fit

b o

Iritial Guess Coefficients e ISR
rnax teratian —I_ —l— errar

derivative
i X is the input array. The number of valid input points must be greater than zero and greater than
the number of specified coefficients.
i Y is the input array. The number of valid input points must be greater than zero and greater than
the number of specified coefficients.
Z Standard Deviation is the standard deviation

@i for data point

[Xi?i). If they are equal or you do not know, leave this array empty. Internally, LabVIEW sets all to 1.0.
< Initial Guess Coefficients denotes your initial guessed solution.

max iteration is the maximum executing iteration. If the VI reaches maximum iteration without
finding a solution, the function returns an error. You have to increase the max iteration or adjust the
Initial Guess Coefficients to get a solution.
i derivative specifies the method used to calculate the Jacobian. You can choose from the
following two methods.

0: numerical calculation. Use numerical approximation to compute the Jacobian.

1: formula calculation. Use the formula you specified in the Formula Node on the block diagram

of the Target Fnc & Deriv NonLin VI to compute the Jacobian.

4 Best Fit Coefficients is the set of coefficients that minimize

%, which is defined in equation (7-8).

i Best Fit is the fitted data

21 T ﬂixi)‘a‘, computed by using Best Fit Coefficients for A. For a definition of
i 7 f(xi)‘&*, see the information below the error parameter.

A Covariance is the matrix of covariances C.
“is the covariance between
Zand



<,and
Zis the variance of

s

X mse is the value of

% in equation (7-8), computed by using the Best Fit Coefficients.

i error. See Analysis Error Codes for a description of the error.

This VI determines the set of coefficients that minimize the chi-square quantity:

2
N'Tyi‘f@ﬁar~%mq

-3

i=0 o

1

(7-8)

In this equation, (Xiyi:‘are the input data points, and is the nonlinear function

f(xi;al... aM) = {30 A) where
a1... 8 are coefficients. If the measurement errors are independent and normally distributed with
constant, standard deviation
i = T this is also the least-square estimation.
You must specify the nonlinear function f = f(X, A) in the Formula Node on the block diagram of the
Target Fnc & Deriv NonLin VI, which is a subVI of the Nonlinear Lev-Mar Fit VI. You can access the
Target Fnc & Deriv NonLin VI by selecting it from the menu that appears when you select Windows»This
VI's SubVis.
This VI provides two ways to calculate the Jacobian (partial derivatives with respect to the coefficients)
needed in the algorithm. These two methods are:
e numerical calculation--Uses a numerical approximation to compute the Jacobian.
e formula calculation--Uses a formula to compute the Jacobian. You need to specify the
Jacobian function 3f / d& in the Formula Node on the block diagram of the Target Fnc &
Deriv NonLin VI, as well as the nonlinear function f = f(X, A) This is a more efficient
computation than the numerical calculation, because it does not require a numerical
approximation to the Jacobian.

The input arrays X and Y define the set of input data points. The VI assumes that you have prior
knowledge of the nonlinear relationship between the x and y coordinates. That is, f = f(X, A), where the
set of coefficients, A, is determined by the Levenberg-Marquardt algorithm.

Using this function successfully sometimes depends on how close your initial guess coefficients are to the
solution. Therefore, it is always worth taking effort and time to obtain good initial guess coefficients to the
solution from any available resources before using the function.

Polynomial Interpolation (Advanced Only)

Interpolates or extrapolates the function f at x, given a set of n points £, where

fl[xi) Vi fis any function, and given a number, X. The VI calculates output interpolation value
Pri(x) , Where

Py-1is the unique polynomial of degree n-1 that passes through the n points

by Paly interpolation value

= Iriterp “ interpolation error
g —




Y is the input array.

X. If the number of elements in X is different from the number of elements in Y, the VI sets the
output interpolation value and interpolation error to NaN and returns an error.

i x. If the value of x is in the range of X, the VI performs interpolation. Otherwise, the VI performs
extrapolation.

Note: If the x value is too far from the range of X, the interpolation error may be large. It is not a
satisfactory extrapolation.

i
£

interpolation value.
interpolation error is an estimate of the error in the interpolation.
error. See Analysis Error Codes for a description of the error.

Rational Interpolation (Advanced Only)

Interpolates or extrapolates f at x using a rational function.

| R PN P

v Array Rt interpolation value
4 gy Irterp - irterpalation mmar
% valug T o

Y Array is the input array.

X Array. If the number of elements in the X Array is different from the number of elements in the
Y Array, the VI sets the output interpolation value and interpolation error to NaN and returns an error.
i x. If the value of x is in the range of X, the VI performs interpolation. Otherwise, the VI performs
extrapolation.

Note: If the x value is too far from the range of X, the interpolation error may be large. It is not a
satisfactory extrapolation.

4 interpolation value.

i interpolation error is an estimate of the error in the interpolation.
i error. See Analysis Error Codes for a description of the error.
The rational function

Pi) _pp *pi%it. PrXi

Qxi)  dp ozt qpxl
passes through all the points formed by Y Array and X Array. P and Q are polynomials, and the rational
function is unique, given a set of n points £, where,

%, fis any function, and given a number x in the range of the
< values. This VI calculates the output interpolation value y using

Pz

Q(Ki) . If the number of points is odd, the degrees of freedom of P and Q are using
n—1

2 . If the number of points is even, the degrees of freedom of P are

, and the degrees of freedom of Q are

1

Spline Interpolant (Advanced Only)

n —
2

n —
2 where 1 is the total number of points formed by Y Array and X Array.

Returns an array Interpolant of length n, which contains the second derivatives of the spline interpolating
function g(x) at the tabulated points 4, where1=0,1,..,, n-1. Input arrays X Array and Y Array are of



length n and contain a tabulated function,

X, with
i < 1 {---Xn—l initial boundary and final boundary are the first derivative of the interpolating

function g(x) at points 0 and n-1, respectively.

T Array Interpolant

L i '&'”a'lrl Efrar

iritial bovndary -

final boundary -
£ Y Array is the input array.
£ X Array. If the number of elements in the X Array is different from the number of elements in the
Y Array, the VI sets the output Interpolant to an empty array and returns an error.
L initial boundary is the first derivative of interpolating function g(x) at

X, It defaults to 10”30, which causes this VI to set the initial boundary condition for a natural spline. For a
definition of g(x), see the discussion below.
kS final boundary is the first derivative of interpolating function g(x) at

Ep-1.8 (X n—1:'. It defaults to 1030 which causes this VI to set the final boundary condition for a
natural spline.

i Interpolant is the second derivative of interpolating function g(x) at points
£,1=0,1,..., n-1.
i error. See Analysis Error Codes for a description of the error.

If initial boundary and final boundary are equal to or greater than 10*30, the VI sets the corresponding
boundary condition for a natural spline, with zero second derivative on that boundary.

The interpolating function g(x) passes through all the points

{271} 8(x;) = v
where1=0, 1,..., n-1.

The VI obtains the interpolating function g(x) by interpolating every interval [Xi’xi * 1] with a cubic
polynomial function

F’i(X:' that meets the following conditions:
1. Pil®{] =¥+l

2. pilz; +1) =y; +1
3. g(x) has continuous first and second derivatives everywhere in the range [XD ’Xn-l] "
a. Pi(xi) = pia(xi]
o Pixy =Piulxi)
For the preceding conditions, 1 =0, 1,..., n-2.

From condition 3(b), we derive the following equations:

b s S Y fEH TESL e B TE
A e A T ORI €
_¥if TFi _¥i TFi4 =12 n2
g TE X TE (7-9)

.

These are n -2 linear equations with n unknowns gixi)



i=0, 1,E, n- 1. This VI computes

o "

g(xu:" g(xH} from initial boundary and final boundary using the formula
2
oo _¥id T¥i L A ‘1(

Eix) Xiyl — X £iH _Xi:'.%(xi:,
+3E2 _].IZ ) _ ) "
T EiH "Xy gixiﬂ:l'
Here
ﬁ=xi+1_xi B=1-4A = I7HE
el TE] EiHl TE

You can derive this formula from the preceding conditions numbered 1D3. This VI then uses % in
equation (6-1) to solve all the

£, fori=1, En-2.

% is the output Interpolant. You can use Interpolant as an input to the Spline Interpolation VI to
interpolate y at any value of

Hp SESHy g

Spline Interpolation (Advanced Only)

Performs a cubic spline interpolation of f at X, given a tabulated function.

P T interpolation value
7 g Irterp erar

Y is the array of tabulated values of the dependent variable.

X is the array of tabulated values of the independent variable.

Interpolant is the second derivative of the cubic spline interpolating function. You can obtain
Interpolant from the Spline Interpolant VI.

Note: The number of elements in the three input arrays X, Y, and Interpolant should be the same.
Otherwise, the VI sets the output interpolation value to NaN and returns an error.

| LN N

i x should be in the range of X values.

4 interpolation value.

4 error. See Analysis Error Codes for a description of the error.

This VI performs cubic spline interpolation using a tabulated function in the form of

¥i T f':Xi:' fori=0,1,..,, n-1, and given the second derivatives Interpolant that the VI obtains from the
Spline Interpolant VI. The value of x must be in the range of X values. The points are formed by the input
arrays X and Y, and n is the total number of points.

On the interval [Xi’xiﬂ ] the output interpolation value y is defined by
y =Ay; +By; +1+Cy '+ Dy{'+1
and
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For detailed VI descriptions, see Curve Fitting VIs.

Curve fitting analysis is a technique for extracting a set of curve parameters or coefficients from the data
set to obtain a functional description of the data set. The algorithm that fits a curve to a particular data set
is known as the Least Squares method and is discussed in most introductory textbooks in probability and
statistics. The error is defined as

2
el[aj = [f[x,a)—y(xj] ’ (7-1)
where e(a) is the error, y(X) is the observed data set, f(x,a) is the functional description of the data set,
and a is the set of curve coefficients which best describes the curve.

For example, let {a':' : al}. Then the functional description of a line is

f[x,a] = {an + alx}
The least squares algorithm finds a by solving the system

9 efa) = 0

da (7-2)
To solve this system, you set up and solve the Jacobian system generated by expanding equation (7-2).
After you solve the system for a, you can obtain an estimate of the observed data set for any value of x

using the functional description f(x,a).

In LabVIEW, the curve fitting VIs automatically set up and solve the Jacobian system and return the set of
coefficients that best describes your data set. You can concentrate on the functional description of your
data and not worry about solving the system in equation (7-2).

Two input sequences, Y Values and X Values, represent the data set y(x). A sample or point in the data
set is

A
where % is the

% element of the sequence X Values, and
% isthe
% element of the sequence Y Values.
In general, for each predefined type of curve fit, there are two types of Vs, unless otherwise specified.
One type returns only the coefficients, so that you can further manipulate the data. The other type returns
the coefficients, the corresponding expected or fitted curve, and the mean squared error (MSE). Because
it is a discrete system, the VI calculates the MSE, which is a relative measure of the residuals between
the expected curve values and the actual observed values, using the formula

1 n-1
MBE = EZ(fi -y3)°

i=0 (7-3)

where f'is the sequence representing the fitted values, Y is the sequence representing the observed
values, and n is the number of sample points observed.



This topic describes the Vls that perform probability, descriptive statistics, analysis of variance, and
interpolation functions. The following illustration shows the options that are available on the Probability
and Statistics subpalette. Click on one of the icons below for function description information. You can
also click on the text jumps below the icons to access function descriptions.

=| Probability and Statistics

Hx :chj b‘
Mean 2 =
¥
¥ AN
RHS
iy
Licdat

General Histogram
Histogram

Mean

Median

Mode

Moment About Mean
MSE

RMS

Sample Variance
Standard Deviation
Variance

Subpalettes

Probabiliity
Analysis of Variance

For examples of how to use the statistics Vls, see the examples located in
examples\analysis\statxmpl.1l1lb.

General Histogram (Advanced Only)

Finds the discrete histogram of the input sequence X based on the given bin specifications.

Hiztogram
mmlmﬂMS
# outzide

errar

4 X represents the input data.

[==]]  Bins specifies the boundaries of each bin of the histogram.
The input Bins is an array of clusters where each cluster defines the range of values for a bin.
The cluster includes the following elements.

lower specifies the lower boundaries of the bin.

upper specifies the upper boundaries of the bin.

i bin inclusion specifies how to treat the boundaries of each bin. The acceptable values for
inclusion are listed below:

o N N



0: lower
1: upper
2: both

3: neither

Choosing 0 causes the lower boundary to be part of the bin but not the upper boundary.
Choosing 1 is exactly opposite. Both boundaries can be included by choosing 2. Both
boundaries can be excluded by choosing 3.

If no bin specifications are provided in the input Bins, the inputs max, min, # bins, and
inclusion are used to specify a set of uniformly spaced bins.

i max specifies the maximum value to include in the histogram. This parameter is optional as
explained below.
i min specifies the minimum value to include in the histogram. This parameter is optional as

explained below.
If you leave the inputs max and min unwired, the maximum and minimum values in the input
sequence X are used.

i # bins specifies the number of bins in the histogram. This parameter is optional as explained
below.
If you leave # bins unwired, the number of bins is determined according to Sturges' Rule (number
of bins = 1 + 3.3log(sizeof(X))).

4 inclusion specifies how to handle the boundaries of each bin. The valid values for inclusion are:
0: lower includes the lower boundary
1: upper includes the upper boundary

Note: If array Bins is not empty, the max, min, # bins, and inclusion parameters are ignored.

A Histogram specifies the resulting histogram.
4 Axis specifies the center values for each bin of Histogram.
The centers of each bin are set according to the following equation and returned in the output
array Axis:
center(i] = (lower + upper)/2.
lower is the lower boundary of bin 1.
upper is the upper boundary of bin 1.
i # outside is the output cluster. # outside contains three elements.
i total. Upon successful execution, the element total contains the total number of points in X not

falling in any bin.
The elements above and below have meaning only if Bins are specified such that
Bins[0].upper =< Bins[1].lower < Bins[1].upper,...-<Bins[k-1].lower, and
<Bins[k-1].upper

where Kk is the number of elements in Bins.

above represents the number of values in X above Bins[sizeof(Bins)-1].upper.

below represents the number of values in X below Bins[0].lower.

error. See Analysis Error Codes for a description of the error.

The VI obtains the Histogram as follows. The VI establishes all the intervals (also called bins) based on
the information in the input array Bins first. The intervals (bins) are:

| PN P




AR (Bins[i].lower: BinsJ[i].upper) 1=0,1,2,.., k-1
where

Bins[i].lower is the value lower in the % cluster of array Bins, Bins[i].upper is the value upper in the

% cluster of array Bins, k is the number of elements in Bins, which consists of the number of total
intervals (bins).

Whether the two ending points Bins[i].lower and Bins[i].upper of each interval (bin) are included in the
interval (bin) = depends on the value of bin inclusion in the corresponding cluster 1 of the Bins.

If the array Bins is empty, the VI uses inputs max, min, and # bins to establish the intervals (bins). Each
interval (bin) width Ly is the same. Use

Ay = b Tmm

#hins
to calculate each interval (bin) width %. The intervals (bins) are as follows:
if bin inclusion = lower (including lower boundary).
By = [minimum + fur), Ay = [min+ Ammint 2hu),. A =
[min+ids min+ (i +1)dx),. ., L&y = [min+(k - 1) Asx max |

if bin inclusion = upper (including upper boundary).
fy o= [min:min+ &x],&l = {min+ M min + E&X],...,&i =

(min+ife mint (i +1)dx],..., Ay = (min+ (k - 1)fs max |
Note: The first start point min and last end point max are always included in the first and last
intervals (Bins).

After establishing the intervals (Bins), the VI obtains the Histogram using the following formula.
Define the function to be

1 if = .
g4l { =24

0 elsewhere

For example, if X falls into the interval (bin) %, then

viE =1
Finally, the VI evaluates the histogram sequence H using

n—1
hi = 3 vi(xj)
=0
where H represents the elements of the output sequence Histogram, and n is the number of elements in

the input sequence X. hj is the total number of points in the input array X that fall into the interval (bin)

%, where 1=0,1,...k-1. k is the number of bins.

Histogram

Finds the discrete histogram of the input sequence X. The histogram is a frequency count of the number
of times that a specified interval occurs in the input sequence.



— Histogram: hix]
intervals X Values
errar
4 X must contain at least one sample. If X is empty, the histogram is undefined, and the VI sets
Histogram: h(x) and X Values to empty arrays and returns an error.
i intervals must be greater than zero. If intervals is less than or equal to zero, the histogram is

undefined, and the VI sets Histogram: h(X) and X Values to empty arrays and returns an error. intervals
defaults to 1.

Histogram: h(x).

X Values.

error. See Analysis Error Codes for a description of the error.

If the input sequence is

| P P P

X={0,1,3,3,4,4,4,5,5, 8},

then the Histogram: h(x) of X for eight intervals is

B(X) = {hg,hy,ha,ha, hg,hs,hg he) =§11,0,2,3,2,0,1

Notice that the histogram of the input sequence X is a function of X.

The VI obtains Histogram: h(x) as follows. The VI scans the input sequence X to determine the range of
values in it. Then the VI establishes the interval width, x, according to the specified number of intervals,

fnas — min
fog = ———
m ’
where max is the maximum value found in the input sequence X, min is the minimum value found in the

input sequence X, and m is the specified number of intervals.

Let X represent the output sequence X Values, because the histogram is a function of X. The VI
evaluates elements of ¢ using

¥ = min+ 054 + 14 for1 =012, .. ,m-1
The VI defines the % interval to be the range of values from up to but not including,

Ay =[x — 054 5; +0.50) fori=012,. ,m-1
and defines the function to be

L.
The function has unity value if the value of X falls within the specified interval. Otherwise it is zero. Notice
that the interval % is centered about

Xi, and its width is

The last interval, ‘ﬁrn—l, is defined .In other words, if a value is equal to max, it is counted as belonging to
the last interval.

Finally, the VI evaluates the histogram sequence H using

n-1
i = Zyilx) fori=0,1,2, ,m -1
j=0

where % represents the elements of the output sequence Histogram: h(x), and n is the number of
elements in the input sequence X.



Mean

Computes the mean (average) of the values in the input sequence X.

X
% X. If the input sequence X is empty, mean is NaN.
i mean.
A error. See Analysis Error Codes for a description of the error.
The VI computes mean (u) using the following formula:
1 n-1
IS
o=

where 1 is the number of elements in X.

Median

Finds the median value of the input sequence X by sorting the values of X and selecting the middle
element(s) of the sorted array.

i

X. If the input sequence X is empty, median is NaN.

median.

error. See Analysis Error Codes for a description of the error.

Let n be the number of elements in the input sequence X, and let S be the sorted sequence of X. The VI
finds median using the following identity:

| LN N

g5 ifnizodd
median =

D.5(sk_1 + skjl if niz even

.on-1
where 1 = ——

and k=£.
2

Mode

Finds the mode of the input sequence X.

= J@Eia mode
intervals D error
i X must contain at least one sample. If the X is empty, the histogram is undefined, the error
returns via the Histogram VI, and the Mode VI sets mode to NaN.

Special Case: If the input sequence has a constant value, the Mode VI ignores the number of
intervals and sets mode to the constant value in the inputsequence:

if X =a= mode = a.

X intervals. The number of intervals must be greater than zero. If the number of intervals is less
than or equal to zero, the histogram is undefined, the error returns via the Histogram VI, and the Mode VI
sets mode to NaN. intervals defaults to 1.



;equence is
X={0,1,3,3,4,4,4,5,5,7},

i3 mode is the value that occurs most often in a sequence of values. For example, if the input

then the mode of X is 4 because that is the value that most often occurs in X.

Because the VI finds mode with the aid of a histogram, you should read the Histogram VI
description. The VI obtains mode as follows. The VI generates a discrete histogram h(x) with the

specified number of intervals of the input sequence X and then scans h(x) for the interval £ that
has the maximum count. Once the VI identifies the interval, the VI selects the center value of the
interval as the mode of the input sequence X

h(mode) = max[h(x)].
i error. See Analysis Error Codes for a description of the error.

Moment About Mean (Advanced Only)

Computes the moment about the mean of the input sequence X using the specified order.

" Hogm momert
order ™ errar
i X. If the input sequence X is empty, moment is NaN.
i order must be greater than zero. If order is less than or equal to zero, the VI sets moment to
NaN and returns an error. order defaults to 2.
Y moment.
A error. See Analysis Error Codes for a description of the error.

Let m be the desired order. The VI computes the m th-order moment using the formula:

In
where Yz is the

% -order moment, and n is the number of elements in the input sequence X.

MSE (Advanced Only)

Computes the mean squared error (mse) of the input sequences X Values and Y Values.

Y Walues TZF mse

- TE

=W alues MEE errar
X Y Values.
4 X Values. If the number of elements in X Values is different from the number of elements in Y

Values, the VI computes mse based on the sequence that contains the fewest elements.

i mse is the mean squared error. If one of the input sequences is an empty array, the value of mse
is NaN.
A error. See Analysis Error Codes for a description of the error.

The VI uses the following formula to find mse:

n-1

mse = —E(Xi - yijlg .

I i=n
where n is the number of data points.



RMS (Advanced Only)

Computes the root mean square (rms) of the input sequence X.

-T- ................. ms ValuE
x
RHS Errar

% X. If the input sequence X is empty, rms value is NaN.
i rms value.
A error. See Analysis Error Codes for a description of the error.The VI computes the rms value

(v ) using the following formula:
1 n-1 5
Wy =L = 20E
Ui-p
where 1 is the number of elements in X.

Sample Variance (Advanced Only)

Computes the mean and sample variance of the values in the input sequence X.

= FhEan
" “52 sample variance
T “—error

X contains the input array of samples.
mean the mean of the input array of samples in X. If n is the number of samples in X, then the
sample mean is computed as

4
kS

n-1
L%
mean = =0
n
i sample variance is the sample variance of the input array of samples in X. If n is the number of
samples in X, then the sample variance is computed as
n-1
2
3 () —mean)
samplevariance = 1=0
n-1
X error. See Analysis Error Codes for a description of the error.

Note: If you need to compute the sample standard deviation of X, simply take the square root of
sample variance.

Standard Deviation

Computes the mean value and the standard deviation of the values in the input sequence X.

2 - standard deviation
T o
X. If the input sequence X is empty, standard deviation and mean are NaN.
standard deviation.

mean.
error. See Analysis Error Codes for a description of the error.
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The VI computes standard deviation (‘J x) and mean

iy using the following formula:

1 -1
where g = — |2 %; , and nisthe number of elements in X.
n .
=0

Variance (Advanced Only)

Computes the variance and the mean value of the input sequence X.

z .
Ty - yanance
T — error

X. If the input sequence X is empty, variance and mean are NaN.
mean.

variance.

error. See Analysis Error Codes for a description of the error.

=

| PR [

. 2
The VI computes variance ¥ %~ and mean

% using the following formula:

1 n-l 5
T T ﬁf—Z(Xi _F') ,
=0
1 -l
where = — |2 %; , andnisthe number of elements in X
o i=0



The following illustration shows the options that are available on the Probability subpalette. Click on one
of the icons below for function description information. You can also click on the text jumps below the
icons to access function descriptions.

= Probability
roemas| | %E F ?
Dizt || Dist || Dist || Dist
Irrversa
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Dist Dist Fhist||2 Dist

erflx]| |erfelx)

Toble

Chi Square Distribution
Contingency Table
erf(x)

erfc(x)
F Distribution

Inverse Chi Square Distribution
Inverse F Distribution

Inverse Normal Distribution
Inverse T Distribution

Normal Distribution

T Distribution

Chi Square Distribution (Advanced Only)

Computes the one-sided probability, p, of the distributed random variable, x, with the specified degrees
of freedom.

X ¥ probability
degrees of freedom Dist Errar

p=Prob{¥ <{x]

where X is % distributed with n degrees of freedom, p is the probability, n is degrees of freedom, and
x is the value.

i X.
i degrees of freedom must be greater than zero: n > 0. If degrees of freedom is less than or
equal to zero, the VI sets x to NaN and returns an error.
i probability must be greater than or equal to zero and less than or equal to one:
D0<p 210
If probability is out of range, the VI sets x to NaN and returns an error.
i error. See Analysis Error Codes for a description of the error.

Contingency Table (Advanced Only)



Classifies and tallies objects of experimentation according to two schemes of categorization.

(e W
Table 'm “ probability
errar
A Table.
i x specifies the value at which you wish to interpolate a corresponding y value.
£ probability must be greater than or equal to zero and less than or equal to one:

4

If probability is out of range, the VI sets x to NaN and returns an error.

X error. See Analysis Error Codes for a description of the error.

With the % test of homogeneity, the VI takes a random sample of some fixed size from each of the
categories in one categorization scheme. For each of the samples, the VI categorizes the objects of
experimentation according to the second scheme, and tallies them. The VI tests the hypothesis to
determine whether the populations from which each sample is taken are identically distributed with
respect to the second categorization scheme.

With the £ test of independence, the VI takes only one sample from the total population. The VI then
categorizes each object and tallies it in two categorization schemes. The VI tests the hypothesis that the
categorization schemes are independent.

You must choose a level of significance for each test. This is how likely you want it to be that the VI
rejects the hypothesis when it is true. Ordinarily, you do not want it to be very likely. So you should use a
small number (0.05 or 5 percent is a common choice) to determine the level of significance. The output
parameter probability is the level of significance at which the hypothesis is rejected. Thus, if probability
is less than the level of significance, you must reject the hypothesis.

Formulas

Let ¥ B9 be the number of occurrences in the

th
[pq) cell of the contingency table for
p=0,1,.,(s-1)and q =0, 1,..., (k-1),

where s is the number of rows in the Contingency Table, and k is the number of columns in the
Contingency Table.

Let
k-1
¥p = 2 Vpg
=0
-1
¥q = 2 ¥pg
p=0
a-1 k-1
v=2 Z¥pq
p=o g=0
. _TpYq
2| y
1k 1[ 2
53— - 3;" B ]
= Bd “ng
p=0 g=0 F oo



The VI uses x to calculate the probability P = Frob {£ 2x} where X is a random variable from the

£ distribution. If the hypothesis is true, x came from a
% distribution with (s-1) and (k-1) degrees of freedom.

erf(x) (Advanced Only)

Evaluates the error function at the input value.

% erflz) erf{x]
4 X.
4 erf(x) is accurate to 15 decimal places.

erf [x) = %f EKp(—t2 :Idt
1]

erfc(x) (Advanced Only)

Evaluates the complementary error function at the input value.

% erfi) erfclx]

X

i .
i erfc (x) is accurate to 15 decimal places.
[ru)

erfc (=) = % I Exp(—tz )dt

erfc (x) =1 - erf (x).

F Distribution (Advanced Only)

Computes the one-sided probability, p, of the F-distributed random variable, F, with the specified n and
m degrees of freedom

p="Fr ob{Fn,m kY x}

where F is F-distributed, p is the probability, n specifies the first degree of freedom, m specifies the
second degree of freedom, and x is the value.

i ey _F ................ probability

I_r:I_,— Lizt Error
i X.
i n. The degrees of freedom n must be greater than zero: n > 0. If n is less than or equal to zero,
the VI sets x to NaN and returns an error.
i m. The degrees of freedom m must be greater than zero: m > 0. If m is less than or equal to zero,
the VI sets x to NaN and returns an error.
X probability must be greater than or equal to zero and less than or equal to one:

<

If probability is out of range, the VI sets x to NaN and returns an error.
i error. See Analysis Error Codes for a description of the error.

Inverse Chi Square Distribution (Advanced Only)




Computes the value of x such that the condition

4

ig satisfied, given the probability value, p, of a %-distributed random variable, X, with n degrees of
freedom.

probability I"“’g;" ®
deqrees of freedom Dist erar
i probability must be greater than or equal to zero and less than or equal to one:
£

If probability is out of range, the VI sets x to NaN and returns an error.

degrees of freedom must be greater than zero: n > 0. If degrees of freedom is less than or

equal to zero, the VI sets x to NaN and returns an error.
it X

X error. See Analysis Error Codes for a description of the error.

Inverse F Distribution (Advanced Only)

Computes the value of x such that the condition

p=Froby, <X

is satisfied, given the probability value p of an F-distributed random variable, F, with n and m degrees of
freedom.

probability - R S— "
r-l —_— -
o Fhist afrar
£

probability must be greater than or equal to zero and less than or equal to one:
k4

If probability is out of range, the VI sets x to NaN and returns an error.

£ n. The degrees of freedom n must be greater than zero: n > 0. If n is less than or equal to zero,
the VI sets x to NaN and returns an error.

4 m. The degrees of freedom m must be greater than zero: m > 0. If m is less than or equal to zero,
the VI sets x to NaN and returns an error.

i X.

i error. See Analysis Error Codes for a description of the error.

Inverse Normal Distribution (Advanced Only)
Computes the value of x such that the condition

i
is satisfied, given the probability value, p, of a Normally distributed random variable, X.

. L= =t) I "
HorTiRal
probability K

eror

i probability must be greater than or equal to zero and less than or equal to one:
£

If probability is out of range, the VI sets x to NaN and returns an error.

X.
error. See Analysis Error Codes for a description of the error.
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Inverse T Distribution (Advanced Only)
Computes the value of x such that the condition
p= Prob{Tn i x}

is satisfied, given the probability value, p, of a T-distributed random variable, T, with n degrees of
freedom.

priobability Triverss "
dearees of freedam £ Dist 2rrar
X probability must be greater than or equal to zero and less than or equal to one:

£

If probability is out of range, the VI sets x to NaN and returns an error.

i degrees of freedom must be greater than zero: n > 0. If degrees of freedom is less than or
equal to zero, the VI sets x to NaN and returns an error.

Y X.

i error. See Analysis Error Codes for a description of the error.

Normal Distribution (Advanced Only)

Computes the one-sided probability, p, of the normally distributed random variable, x,

“
where X is standard Normally distributed, p is the probability, and x is the value.
b Dist prabahility
Y X.
i probability must be greater than or equal to zero and less than or equal to one:
4

If probability is out of range, the VI sets x to NaN and returns an error.
This function computes only the one-sided probability. You can obtain the two-sided probability

[p = Prob{-x £ < x}) P4, using the following formula:

pp=1-2(1-p)=2p-1=2Prob{X <x} -1

T Distribution (Advanced Only)

Computes the one-sided probability, p, of the t-distributed random variable, Tn, with the specified
degrees of freedom

<
where T is t-distributed, p is the probability, n is degrees of freedom, and x is the value.
b ¢ probability
deqrees of freedom Dist Ef1ar
A X.
£ degrees of freedom must be greater than zero: n > 0. If degrees of freedom is less than or
equal to zero, the VI sets x to NaN.
i probability must be greater than or equal to zero and less than or equal to one:

£



If probability is out of range, the VI sets x to NaN and returns an error.

error. See Analysis Error Codes for a description of the error.




The following illustration shows the options that are available on the Probability and Statistics
subpalette. Click on one of the icons below for function description information. You can also click on the
text jumps below the icons to access function descriptions.

=|Analysis of Yariance

in Zn an
AMOYA | [AMOYA| |AMDY A

1D ANOVA
2D ANOVA
3D ANOVA

1D ANOVA (Advanced Only)

The Statistical Model

Assumptions

The Hypothesis
The General Method

Testing the Hypothesis
Formulas

2D ANOVA takes an array, X, of experimental observations made at various levels of a factor, with at
least one observation per level, and performs a one-way analysis of variance in the fixed effect model. In
the one-way analysis of variance, the VI tests whether the level of the factor has an effect on the
experimental outcome.

=
Index =

# af levelz I

X contains all the observational data.

Index contains the level to which the corresponding observation belongs.

# of levels is the total number of levels.

f, ssa, sse, mse, msa, tss, sigA. See the following discussion of this VI for more information
about these return values.

i error. See Analysis Error Codes for a description of the error.

A factor is a basis for categorizing data. For example, if you count the number of sit-ups individuals can
do, one basis of categorization is age. For age, you might have the following levels.

| P PR PN P

level O: 6 years old to 10 years old
level 1: 11 years old to 15 years old
level 2: 16 years old to 20 years old

Now, suppose that you make a series of observations to see how many sit-ups people can do. If you take
a random sampling of five people, you might find the following results.

Person 1 8 years old (level 0) 10 sit-ups



Person 2 12 years old (level 1) 15 sit-ups
Person 3 16 years old (level 2) 20 sit-ups
Person 4 20 years old (level 2) 25 sit-ups
Person 5 13 years old (level 1) 17 sit-ups

Notice that you have made at least one observation per level. To perform an analysis of variance, you
must make at least one observation per level.

To perform the analysis of variance, you specify an array X of observations, with values 10, 15, 20, 25,
and 17. The array Index specifies the level (or category) to which each observation applies. In this case,
Index has the values 0, 1, 2, 2, and 1. Finally, there are three possible levels, so you pass in a value of 3
for the # of levels parameter.

The Statistical Model

Performing the analysis of variance, you express each experimental outcome as the sum of three parts.
Let £ir be the

% observation from the
% level. Then each observation is written

Higg = BT+ iy

where * is a standard effect, called the overall mean.

2] is the effect of the

% level of the factor, which is the difference between the mean of the

% level
2 and the overall mean

g =i+ o) ang
£im is a random fluctuation.

Assumptions

Assume that the populations of measurements at each level are Normally distributed with mean #i and
variance

2
@4, and assume that
“sum to zero. Finally, assume that for each 1 and m,
Zis Normally distributed with mean 0 and variance

oy
The Hypothesis

This VI tests the hypothesis that £=0fori=0, 1,..., k-1 (where k is # of levels). In other words, this
hypothesis, referred to as the null hypothesis, states that no level affects the experimental outcome, and
then looks for evidence to the contrary.

The General Method

This VI computes the total sum of squares, tss, which is a measure of the total variation of the data from
the overall population mean.

tss consists of two parts: ssa, a measure of variation attributed to the factor, and sse, a measure of
variation attributed to random fluctuation. In other words, tss = ssa + sse,

The VI computes the two mean square quantities msa and mse from ssa and sse by dividing ssa and sse



by their own degrees of freedom. The larger msa is relative to mse, the more significant effect the factor
has on the experimental outcome.

In particular, if the null hypothesis is true, then the ratio f, f = msa/mse, is taken from an F distribution with

k-1 and n-k degrees of freedom, from which you can calculate probabilities. Given a particular f, sigA is
the probability that you get a value larger than f when sampling from this distribution.

Testing the Hypothesis

How do you know when to reject the null hypothesis? You decide how likely you want it to be that you
mistakenly reject the null hypothesis. This is the level of significance (a common choice is 0.05.). The
output sigA is compared to the chosen level of significance to determine whether to accept or reject the
null hypothesis. If sigA is less than the chosen level of significance, you should reject the null hypothesis.
If you reject the null hypothesis, you must acknowledge that at least one level has some effect on the
experimental outcome.

Formulas
Let “=the

% observation made at the
Zlevelform=0, 1, ...,

ny -1 andi=0, 1, ..., k-1, where
fijs the number of observations at the
“level and k = # of levels.

Ili—].
e = 2o %im
m=I
k-1 n;-1
Xee =20 i
i=0 m=0
k-1
n=32n;
i=0
then
k-1 2 2
_ Kp _ X"
gga = Z
=0l o n
254
tnesa =
k-1
k-1n;-1 E {2
356 = 3, 3 Hpy — oo | ——
1=0m=0 i=0k Ly
ggE
tnse =
n-k ,
k—lni—l X
tss =% 7 xiﬂ -
i=01m=0 1
msa

111 56
Sigh = Prob{Fy_y;x >f]

Fi-L,nk is the F distribution with k-1 and n-k degrees of freedom.



2D ANOVA (Advanced Only)

Factors, Levels, and Cells
Random and Fixed Effects
The General Method

The Statistical Model
Assumptions

The Hypotheses

The Testing of Hypotheses
Formulas

2D ANOVA takes an array of experimental observations made at various levels of two factors and
performs a two-way analysis of variance.

A levels ———

=
[ndex & = 2n

AHOYA
Index B —|_|_
obzervations per cel

B levels

A levels contains the number of levels in factor A. The sign of A levels is set to positive if Ais
ixed, and negative if A is random.
X contains all the observation data.
Index A contains the level of factor A to which the corresponding observation belongs.
Index B contains the level of factor B to which the corresponding observation belongs.
observations per cell is the number of observations in each cell. It is the same for all cells.
B levels contains the number of levels in factor B. The sign of B levels is set to positive if B is
ixed, and negative if B is random.
Info is a 4-by-4 matrix organized as follows:

szsa dofa  msa fa

gsh dofb msbk b
Info =
gzab  dofab msab fab

2se dofe  ms=e 00

:hI/\

R R B B

lo

where

e The first column corresponds to the sum of squares associated with factor A, factor B, AB interaction,
and residual error.

e The second column corresponds to the respective degrees of freedom.
e The third column corresponds to the respective mean squares.

The fourth column corresponds to the respective F values.

sig A is the computed level of significance associated with factor A.

sig B is the computed level of significance associated with factor B.

sig AB is the computed level of significance associated with the interaction of factors A and B.
error. See Analysis Error Codes for a description of the error.

Factors, Levels, and Cells

A factor is a basis for categorizing data. For example, if you count the number of sit-ups individuals can
do, one basis of categorization is age. For age, you might have the following levels.

| P PR P P

level O: 6 years old to 10 years old
level 1: 11 years old to 15 years old



Another possible factor is weight, with the following levels.

level O: less than 50 kg
level 1: between 50 and 75 kg
level 2: more than 75 kg

Now, suppose that you made a series of observations to see how many sit-ups people could do. If you
took a random sampling of n people, you might find the following results:

Person 1 8 years old (level 0) 30 kg (level 0) 10 sit-ups
Person 2 12 years old (level 1) 40 kg (level 0) 15 sit-ups
Person 3 15 years old (level 1)7 6 kg (level 2) 20 sit-ups
Person 4 14 years old (level 1) 60 kg (level 1) 25 sit-ups
Person 5 9 years old (level 0) 51 kg (level 1) 17 sit-ups
Person 6 10 years old (level 0) 80 kg (level 2) 4 sit ups
and so on.

If you plot observations as a function of factor A and factor B, they fall into cells of a matrix with factor A as
rows and factor B as columns. Each cell must contain at least one observation, and each cell must
contain the same number of observations.

To perform the analysis of variance, you specify an array X of observations, with values 10, 15, 20, 25,
17, and 4. The array Index A specifies the level (or category) of factor A to which each observation
applies. In this case, the array would have the values 0, 1, 1, 1, 0, and 0.

The array Index B specifies the level (or category) of factor B to which each observation applies. In this
case, the array would have the values

0,0, 2,1, 1, and 2. Finally, there are two possible levels for factor A and three possible levels for factor B,
S0 you pass in a value of 2 for the A levels parameter, and a value of 3 for the B levels parameter.

You can apply any one of the following models, where L is the specified observations per cell.

* Model 1: Fixed-effects with no interaction and one observation per cell (per specified levels X and y of
the factors A and B, respectively).

¢ Model 2: Fixed-effects with interaction and L>1 observations per cell.
¢ Model 3: Either of the mixed-effects models with interaction and L>1 observations per cell.
¢ Model 4: Random-effects with interaction and L>1 observations per cell.

Random and Fixed Effects

A factor is a random effect if it has a large population of levels about which you want to draw conclusions,
but such that you cannot sample from all levels. You thus pick levels at random and hope to generalize
about all levels. A factor is a fixed effect if you can sample from all levels about which you want to draw
conclusions.

The input parameters A levels and B levels represent the number of levels in factors A and B,
respectively as well as whether the factors are random or fixed. If, for instance, factor A is random, you
set A levels to be negative the number of levels in factor A. Notice that if there is only one observation
per cell, both A levels and B levels must be positive. That is, you use model 1.

The General Method

In each of the models, the VI breaks up the total sum of squares, tss, a measure of the total variation of
the data from the overall population mean, into some number of component sums of squares. In model 1



tss = ssa + ssb + sse,
whereas in models 2 through 4

tss = ssa + ssb + ssab + sse.

Each component sum in tss is a measure of variation attributed to a certain factor or interaction among
the factors. Here ssa is a measure of the variation due to factor A, ssb is a measure of the variation due
to factor B, ssab is a measure of the variation due to the interaction between factors A and B, and sse is a
measure of the variation due to random fluctuation. Notice that with model 1 you have no ssab term. This

is what no interaction means.

The VI divides each of the values ssa, ssb, ssab, and sse by their own degrees of freedom to compute
the mean square quantities msa, msb, msab, and mse. If one factor, such as factor A, has a strong effect
on the experimental observations, the respective mean square quantity msa will be relatively large.

The Statistical Model
Let  por be the

rt;observation at the

P‘m and

4 levels of A and B respectively, where r = 0,1,...,L-1.

Model 1 expresses each observation as the sum of four components.

Epy ~# Fop T 0+ epy

Hpg = o +0, + [0:'8)}3'31 t Fpp

Models 2, 3, and 4 express each observation as the sum of five components.

4

where ,Bq g T B

¢ % is the overall mean response (the average of the mean response for all the populations).
o “pis the effect of the

% level of factor A (equal to

Hp TH where

Fpis the average of the

% level of factor A over all levels of factor B).

o 'Bfl is the effect of the

% level of factor B (equal to

Fg T where

Fis the average of the

% level of factor B over all levels of factor A).
Izl:}'I'Sjllf'?l is the interaction between the

% level of factor A and the
% level of factor B (equal to

— |+ +
Hpey (P: “p '8‘1) where
H 1 is the population mean of the

Pa - cell).
o Fpyr is the deviation of



Zfrom the population mean response for the
£ population.

Assumptions

e Assume that foreach p, q, and r, £ is Normally distributed with mean 0 and variance

o

e [f afactor such as Ais fixed, assume that the populations of measurements at each level of A are
Normally distributed with mean ®p Ty and variance

%, and that all the populations at each of the levels have the same variance. In addition, assume that

% sum to zero. Analogous assumptions are made for B.

e If a factor such as A is random, assume that the effect of the level of A itself, %, is a random variable
Normally distributed with mean 0 and variance

% . Analogous assumptions are made for B.
e If all of the factors such as A and B associated with the effect of an interaction % are fixed, assume
that the populations of measurements at each level are Normally distributed with mean

% and variance

C’iB. For any fixed p,

< sum to zero, when summing over all q. Similarly, for any fixed g, the means

£ sum to zero, when summing over all p-

e If any of the factors such as A and B associated with the effect of an interaction £ are random,
assume the effect is a random variable Normally distributed with mean 0 and variance

<. If Ais fixed but B is random, then also assume that for any fixed q the means

< sum to zero, when summing over all p. Similarly, if B is fixed but A is random, assume that for any fixed

p the means

% sum to zero, when summing over all q.
¢ Assume that all effects taken to be random variables are mutually independent.

The Hypotheses

Each of the following hypotheses is a different way of saying that a factor or an interaction among factors
has no effect on experimental outcomes. This VI assumes that there are no effects and then seeks
evidence to contradict this assumption. The three hypotheses are:

e (A)that®p =0

for all levels p if factor Ais fixed, and that
2 _
7% = Uif factor A is random.

e (B)that '8'31 =0 for all levels q if factor B is fixed, and that

2 _
o8 =0 iffactor B is random.

e (AB)that (245 )y =

X if either factor A or factor B is random. (This does not apply to model 1. In model 1 there is no
interaction, and the associated output parameters are superfluous.)

The Testing of Hypotheses

0
for all levels p and q if both factors A and B are fixed, and that

For each hypothesis, the VI computes a number f that is used to calculate the associated sig probability.
For example, for the hypothesis (A), that = for all the levels p, (fixed A), the VI computes



msa
fa=—n0o
mse

then sigh =Pr Ob{Fa—l,[a—ljl:b—lj e fa]

F
where ~ 2 L2111} js an F distribution with degrees of freedom a-1 and (a-1)(b-1). You can then use
the probabilities sigA, sigB, and sigAB to determine when you should reject the associated hypotheses
(A), (B), and (AB).

How do you know when to reject the null hypothesis? For each hypothesis, you choose a level of
significance. This level of significance is how likely you want it to be that you mistakenly reject the
hypothesis (a common choice is 0.05). Compare your chosen level of significance with the associated sig
probability output. If the sig probability is less than your chosen level of significance, you should reject the
null hypothesis.

For example, if A is a random effect, your chosen level of significance is 0.05, and the output sigA is 0.03,

then you must reject the hypothesis 011'1'12 = {1 and conclude that factor A has an effect on the
experimental observations.

Formulas
Let % be the

% observation at the

Zand

“levels of A and B respectively, where = 0,1,...,L-1.
Let

a= |.:’-'Llevels|
b= |B levels|

Top = 22 Xpr

[total sutn of all obsewations):!
abl




then

f5a

sza =2 —CF msa= dofa =a—1

a—
zsh

ssb =B -CF msbh = dofb =b -1

szab

[a—T[b-1)

ssab =3-A-B - CFmsab=
dofab = (a-1)(b-1) if IL>1
dofab=0if L=1

SSE

(ab(L — 1}

dofe = ab(L-1) if L>1

gge =1 —3z mse =

dofe = (a-1)(b-1)  ifL=1

mszab

fab =

mse
msa

fa=—0J if Bizfized

if Bizrandom

= —b if Aisfized

= if Adsrandom
tmzab

sigh = Prob[F,_; 41y > fa) if Bisfixed
sigh = Prob(F, i 1)ty >fa]  if Bisrandom
sigh =ProbiF, ah (L1} e fb] if Aisfized

sigh = Prob{F,i -y > ]  if Adsrandom
sighB = Prob F_pa, 1 aip) ” Fab)

3D ANOVA (Advanced Only)

Random and Fixed Effects
The General Method

The Statistical Model
Assumptions

The Hypotheses

The Testing of Hypotheses
Formulas

3D ANOVA takes an array of experimental observations made at various levels of three factors and
performs a three-way analysis of variance. In any ANOVA, you look for evidence that the factors or
interactions among factors have a significant effect on experimental outcomes. What varies with each
model is the method used to do this. The three-way ANOVA models are as follows, where L is the
number of observations.



Levels memmmm—

s 30 Info
:nge:-: g. "_I— aHove = Significance
hidex — errar
Index C

obzervations per cell
e Fixed-effects with interaction and L>1 observations per cell
¢ Any of the six mixed-effects models with interaction and L>1 observations per cell, and
e Random-effects with interaction and L>1 observations per cell

A factor is a basis for categorizing data. A cell of data consists of all those experimental observations that
fall in particular levels of the three factors. The number of observations that fall in a cell must be some
constant number L, which does not vary between cells. See the description of factors, levels, and cells in
the 2D ANOVA VI description. Remember that a cell in this 3D ANOVA VIl is the intersection of three
factors instead of two as described in the 2D ANOVA VI description.

X Levels is a cluster of three numeric values corresponding to number of levels in the A, B, and C
factors, as well as the effects of the A, B, and C factors (fixed or random).
£ Level A is the number of levels in Aif A is fixed, or the negative number of levels in Aif Ais
random.
Y Level B is the number of levels in B if B is fixed, or the negative number of levels in B if B is
random.
i Level C is the number of levels in C if C is fixed, or the negative number of levels in C if C is
random.
Z X contains all the observation data.
i Index A contains the level of factor A to which the corresponding observation belongs.
i Index B contains the level of factor B to which the corresponding observation belongs.
X Index C contains the level of factor C to which the corresponding observation belongs.
% observations per cell is the number of observations in every cell. It is the same for all the cells.
A Info. The output 2D array Info is an 8 by 4 matrix organized as follows:
B dofa msa fa |
ssh doth msh th
sac doft msc  fhe

ssab  dofab  msab  fab
ssac  dofac  msac  fac
ssbc dotbc  msbc  fhe
ssabc  dofabc msabc  fabc

sse dofe mse 0.0 ]

Info =

where the first column corresponds to the sums of squares associated with the respective factors
(A, B, C), the respective interactions (AB, AC, BC, ABC), and residual error,

the second column corresponds to the respective degrees of freedom,
the third column corresponds to the respective mean squares, and
the fourth column corresponds to the respective F values.

Significance is a cluster of seven numerical values corresponding to the significance levels.
sigA is the computed level of significance associated with factor A.
sigB is the computed level of significance associated with factor B.
sigC is the computed level of significance associated with factor C.

| PR PR PELN P



sigAB is the computed level of significance associated with the interaction of factors A and B.
sigAC is the computed level of significance associated with the interaction of factors A and C.
sigBC is the computed level of significance associated with the interaction of factors B and C.
sigABC is the computed level of significance associates the interaction of factors A, B and C.
error. See Analysis Error Codes for a description of the error.

Random and Fixed Effects

A factor is a random effect if it has a large population of levels about which you want to draw conclusions,
but such that you cannot sample from all levels. You thus pick levels at random and hope to generalize
about all levels. A factor is a fixed effect if you can sample from all levels about which you want to draw
conclusions.

N N N

The General Method

In each of the models, the VI breaks up the total sum of squares, tss, a measure of the total variation of
the data from the overall population mean, into a number of component sums of squares.

tss = ssa + ssb + ssc + ssab + ssac + ssbc + ssabc + sse

Each component in the sum tss is a measure of variation attributed to a certain factor or interaction
among the factors. Here ssa is a measure of the variation due to factor A; ssb is a measure of the
variation due to factor B; ssc is a measure of the variation due to factor c; ssab is a measure of the
variation due to the interaction between factors A and B; and so on for ssac, ssbc, and ssabc. Also, sse is
a measure of the variation due to random fluctuation. The VI divides each by its own degrees of freedom
to obtain the corresponding averages msa, msb, msc, msab, msac, msbc, msabc, and mse. If, for
instance, factor A has a strong effect on the experimental observations, then msa will be relatively large.

The Statistical Model

Let * pors equation be the

sth observation at the
i ’
4, and

% levels of A, B, and C respectively, where s =0, 1,..., L-1.  Express each observation as the sum of
eight components. Thus,

XIIE[IS B I:'"':F' * 'SEE[ Tt (&'I'B)p:l + (QT)W + ('ST)qr + (CE.S’}’:Iqu * Ep:lrs

where

% is the overall mean.
< is the average effect of the

level of factor A.
% is the average effect of the

level of factor B.
Y1 is the average effect of the

[ N

level of factor C.

. Izl:E'B)F'qis the two-factor interaction of the

“level of factor A with the
% level of factor B.

o
[ T)PI is the two-factor interaction of the

% level of factor A with the rthlevel of factor C.



Iz'ijjlflris the two-factor interaction of the
% level of factor B with the rth level of factor C.

(O'I'ST)F'?F is the three-factor interaction of the

% level of factor A, the
% level of factor B, and the
“level of factor C.

o “psis random fluctuation.

Assumptions

e Assume that for each p, q, and 1, £ is Normally distributed with mean 0 and variance
L.
e [f a factor, for instance, A, is fixed, aisume the populations of measurements at each level of A are
Normally distributed with mean ®p ™ ¥ and variance

% and that all the populations at each of the levels 7have the same variance. In addition, assume that
% sum to zero. Analogous assumptions are made for B and C.

e If a factor, for instance, A, is random, assume the effect of the level of A itself, =, is a random variable
Normally distributed with mean 0 and variance

2

D4 ”. Analogous assumptions are made for B and C.

s If some of the factors, for instance, A and B, associated with the effect of an interaction are = fixed,
then assume that the populations of measurements at each level of A and B are Normally distributed
with mean

+ + +
ptap i [aﬁjm and variance
2
U 4B". For any fixed p, the means
£ sum to zero when summing over all q. Similarly, for any fixed q,

< sum to zero when summing over all p.
e If any of the factors, for instance, A and B, associated with the effect of an interaction £ are random,
assume the effect is a random variable Normally distributed with mean 0 and variance

4. If Ais fixed but B is random, assume that for any fixed q, the means

< sum to zero when summing over all p. Similarly, if B is fixed but A is random, assume that for any fixed
p the means

< sum to zero when summing over all q.

e Assume all effects taken to be random variables are mutually independent.
The Hypotheses

Each of the following hypotheses is a different way of saying that a factor or an interaction among factors
has no effect on experimental outcomes. This VI assumes that there are no effects and then seeks
evidence to contradict these assumptions. The seven hypotheses are as follows.

e (A)that = for all levels p if factor A is fixed, and that

542 = 0 iffactor A is random.
e (B)that = for all levels q if factor B is fixed, and that

':TB2 = U'if factor B is random.
e (C)that ¥r = 0 for all levels 1 if factor C is fixed, and that

ot =0 factor B is random.



e (AB)that I:)5"313'31 B Ijfor all levels p and q if factors A and B are fixed, and that

'31;132 = Uif either factor A or B is random.
e (AC) that Yo ~ 0 for all levels p and q if factors A and C are fixed, and that

Tac® = Uif either factor A or C is random.
e (BC)that "S‘Tqr =0 for all levels p and q if factors B and C are fixed, and that

Ugr =1 if either factor B or C is random.
o (ABC) that = U for all levels p, q, and r if factors A, B, and C are fixed, and that

GABCE =0 any of factors A, B, or C is random.

The Testing of Hypotheses

For each hypothesis, the VI computes number f that is used to calculate the associated sig probability.
mza
fa =—
For example, for the hypothesis (A), that ap= 0 for all the levels p, (fixed A), the VI computes mae,
then

sigh = Prob(F, | 4oy > fa

Fﬂ—lsﬂhC(L—ﬂ 2 fa is an F distribution with degrees of freedom a-1 and abc(L-1). You can then use the
probabilities sigA, sigB, sigC, sigAB,..., sig ABC to determine when you should reject the associated
hypotheses (A), (B), (C), (AB),..., (ABC).

How do you know when to reject the null hypothesis? For each hypothesis, you choose a level of
significance. This level of significance is how likely you want it to be that you mistakenly reject the
hypothesis (a common choice is 0.05). Compare your chosen level of significance with the associated sig
probability output. If the sig probability is less than your chosen level of significance, you should reject the
null hypothesis.

where

If, for instance, A is a random effect, your level of significance is 0.05, and sigA = 0.03, you must reject
the hypothesis that % and conclude that factor A has an effect on the experimental observations.

With some models there are no appropriate tests for certain hypotheses. If such is the case, the output
parameters directly involved with the testing of these hypotheses are -1.0.

Formulas
Let % be the

% observation at the
<

E and
% levels of A, B, and C respectively, where s =0, 1,..., L-1.
Let

a= L&levels|
b= [B lewel s|

C = |Clevels|
then



z=0
c-1
Togee = 22X pqe
r=0
h-1
T = 22X ppe
=0
a—]
T.qr. = EDXW_
-1
TPI.. = EXN..
=0
a-1
T‘q.. = ZXH"
p=0
a—1
Tilirll EXP"I"‘
a1 Pt o111
T=2 2202 Fups
p=0 q=2|] r=0s=0
a-1T .
A= B
P=|:| bel
B — h_lT.q.l.
4=0 acl
[
C = E Tllllr\ll
- abL
a-1 b-1T2
AB=3 3 H
p=0 g=0 cL.
a-1 c—sz 1o
ac=y 3w F
=0 =0 bL
bl e-1T2
BC=F ¥
=0 r=0 E’LE
o a-l b-1c-1 Tp:11"

F - [total sutn of all obsewations:lz

Z
abcls'sa
ssa=5A—CF msa=
a—1
sh =B - CF msh= 0
h-1
gac

ssc = C-CF msc=

—

Ly}



ssab = AR~ A — B +CF meah = — 20

(a—T1){b -1
ssac = AC-A-C+CF msab=$
[a—lj(c—l]
ssbe =BC - A - C+ CF msbe = — 520
(b =1j{c-1)

gzzbe

ssabc =S - AB-AC-BC+A+B+C-CF msshe =
[a—lj[b—lj[c—lj
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This topic describes the Vls that perform matrix related computation and analysis. It includes both real
and complex matrices. For general information about Linear Algebra Vs, see Linear Algebra Vis
Overview.

The following illustration shows the options that are available on the Linear Algebra subpalette. Click on
one of the icons below for function description information. You can also click on the text jumps below the
icons to access function descriptions.

=.| Linear Algebra

L | R | T | gy
[YM] = Bl | =] x [
A=H |[A=B | [Pn-d [ [i:: 4
] el &E‘ [][]] .

AxB

A x Vector

Determinant

Dot Product
EigenValues & Vectors
Inverse Matrix

Outer Product

Solve Linear Equations

Subpalettes

Advanced Linear Algebra
Complex Linear Algebra
Advanced Complex Linear Algebra

Linear Algebra VI Descriptions

AxB

Performs the matrix multiplication of two input matrices.

A=B LuB

errar
A. The number of columns in A must match the number of rows in B and must be greater than

zero. If the number of columns in A does not match the number of rows in B, the VI sets A x B to an
empty array and returns an error.

&
B
“

X B is the second matrix. If the number of rows in B does not match the number of columns in A,
the VI sets A x B to an empty array and returns an error.

A A x B is the matrix containing the result of the matrix multiplication A x B.

Y error. See Analysis Error Codes for a description of the error.

If A is an n-by-k matrix and B is a k-by-m matrix, the matrix multiplication of A and B, C = AB, results in a
matrix, C, whose dimensions are n-by-m. Let A represent the 2D input array A matrix, B represent the 2D
input array B matrix, and C represent the 2D output array A x B. The VI obtains the elements of C using
the formula



=012, .m-1

where n is the number of rows in A matrix, k is the number of columns in A matrix and the number of
rows in B matrix, and m is the number of columns in B matrix.

k-1 1=012 . .n-1
':ij =Eaﬂb1j fOI’
1=0

Note: The A x B VI performs a strict matrix multiplication and not an element-by-element 2D
multiplication. To perform an element-by-element multiplication, you must use the
LabVIEW Multiply function. In general, ABBA.

A x Vector

Performs the multiplication of an input matrix and an input vector.

& AxH A, wWectar
Yector : ermor
X A. The number of columns in A must match the number of elements in X and must be greater

than zero. If the number of columns in A does not match the number of elements in X, the VI sets A x
Vector to an empty array and returns an error.

Vector is the input vector.

A x Vector is the output vector containing the result of A multiplied by Vector.

error. See Analysis Error Codes for a description of the error.

If A is an n-by-k matrix, and X is a vector with k elements, the multiplication of A and X, Y = AX, results in

a vector Y with n elements. Let Y represent the output A x Vector. The VI obtains the elements of Y using
the formula

| L

k-1
¥ = Zaijxj for1=0,1,2, ...n—-1
i=
where n is the number of rows in A, and k is the number of columns in A and the number of elements in

X.
Determinant

Computes the determinant of a real, square matrix Input Matrix.

Input b atrix :_l[___]'i"' determinant
rratris bpe 2Iror
4 Input Matrix must be a square, real matrix.
“

matrix type is the type of Input Matrix. Knowing the type of Input Matrix can speed up the
computation of the determinant and can help you to avoid unnecessary computation, which could
introduce numerical inaccuracy. matrix type has four possible options.

0: general

1: positive definite

2: lower triangular

3: upper triangular

matrix type defaults to general.

i determinant.
Special Case: The determinant of a singular matrix is zero. This is a valid result and is not an
error. /= 0.0 4 Ajs singular.
i

error. See Analysis Error Codes for a description of the error.




Let A be a square matrix that represents the Input Matrix, and let L and U represent the lower and upper
triangular matrices, respectively, of A such that

A=LU,

where the main diagonal elements of the lower triangular matrix L are arbitrarily set to one. The VI finds
the determinant of A by the product of the main diagonal elements of the upper triangular matrix U

n-1
|4 = TTvi
1=
where |*":"*| is the determinant of X, and n is the dimension of X.

Dot Product
Computes the dot product of X Vector and Y Vector.

W ector |_ fi- HEY
Y Wector error
i X Vector is the first input vector. If the number of elements in X Vector is different from the

number of elements in Y Vector, the VI computes the dot product based on the sequence that contains
the fewest elements. If X Vector is an empty array, the dot product is NaN.

X Y Vector is the second input vector. If Y Vector is an empty array, the dot product is NaN.
A X*Y is the dot product.
i error. See Analysis Error Codes for a description of the error.

Let X represent the input sequence X Vector and Y represent the input sequence Y Vector. The VI
obtains the dot product X*Y using the formula:

n-1
XFY =2 %ivi.
i=0
where n is the number of data points. Notice that the output value X*Y is a scalar value.

EigenValues & Vectors (Advanced Only)

Finds the eigenvalues and eigenvectors right of a square, real Input Matrix.

Input FMatrix ® Eigenrvalues
rnatris type -ﬁ.><=/1/1 Eigenvectors
output option —— | T '—errar
i Input Matrix is an n-by-n square, real matrix, where n is the number of rows and columns of
Input Matrix.
i matrix type is the type of Input Matrix. A symmetric matrix needs less computation than an
unsymmetrical matrix. A symmetric matrix always has real eigenvectors and eigenvalues. matrix type
has two possible options.
0: general
1: symmetric

matrix type defaults to general.

X output option determines what needs to be computed. The output option has two possible
options.

0: eigenvalues--computes eigenvalues

1:  both eigenvalues and eigenvectors--computes eigenvalues and eigenvectors



output option defaults to eigenvalues and eigenvectors.

i Eigenvalues is a complex vector of n elements, which contains all of the computed Eigenvalues
of the Input Matrix. The Input Matrix could have complex Eigenvalues if it is not symmetric.
4 Eigenvectors is a n-by-n complex matrix containing all of the computed Eigenvectors of the

Input Matrix. The ith column of Eigenvectors is the eigenvector corresponding to the ith component of
the vector, Eigenvalues. Each eigenvector is normalized so that its largest component is always unified.
The Input Matrix could have complex Eigenvectors if it is not symmetric.

If the output option sets to Eigenvalues, Eigenvectors sets to empty.
i error. See Analysis Error Codes for a description of the error.
The eigenvalue problem is to determine the nontrivial solutions to the equation:

AN =R

where A is a n-by-n Input Matrix, X is a vector with n elements, and & is a scalar. The n values of
A that satisfy the equation are the Eigenvalues of A and the corresponding values of X are the right
Eigenvectors of A. A symmetric, real matrix always has real eigenvalues and eigenvectors.

Inverse Matrix

Finds the Inverse Matrix of the Input Matrix.

Inverse kM atrix

. [ =
Input.Matrm |[Ss]¢[:|s]
matrix bype errar

i Input Matrix must be a nonsingular, square matrix. If the Input Matrix is singular or is not
square, the VI sets the Inverse Matrix to an empty array and returns an error.
i matrix type is the type of Input Matrix. Knowing the type of Input Matrix can speed up the
computation of the Inverse Matrix and can help you to avoid unnecessary computation, which could
introduce numerical inaccuracy.

matrix type has four possible options.

0: general

1: positive definite

2: lower triangular

3: upper triangular

matrix type defaults to general.

Inverse Matrix is the inverse matrix of the Input Matrix.

error. See Analysis Error Codes for a description of the error.

LetA be the Input Matrix and | be the identity matrix. You obtain the Inverse Matrix value by solving the
system AB = | for B.

| L P

If A is a nonsingular matrix, you can show that the solution to the preceding system is unique and that it
corresponds to the Inverse Matrix of A:

B=A"-1,

and B is therefore an Inverse Matrix. A nonsingular matrix is a matrix in which no row or column contains
a linear combination of any other row or column, respectively.

Note: The numerical implementation of the matrix inversion is not only numerically intensive
but, because of its recursive nature, is also highly sensitive to round-off errors introduced
by the floating-point numeric coprocessor. Although the computations use the maximum
possible accuracy, the VI cannot always solve for the system.



You cannot always determine beforehand whether the matrix is singular, especially with
large systems. The Inverse Matrix VI detects singular matrices and returns an error, so you
do not need to verify whether you have a valid system before using this VI.

Outer Product

Computes the outer product of X Vector and Y Vector.

= Wectar ] [] Outer Product

' W echor [-=-] Error

i X Vector is the first input vector.

i Y Vector is the second input vector.

i Outer Product. If one of the input sequences is an empty array, Outer Product is an empty
array.

i error. See Analysis Error Codes for a description of the error.

Let X represent the input sequence X Vector and Y represent the input sequence Y Vector. The VI
obtains Outer Product using the formula:

B o fi=012 0
WUEA o012 m-1

where A represents the 2D output sequence Outer Product, n is the number of elements in the input
sequence X Vector, and m is the number of elements in the input sequence Y Vector.

Solve Linear Equations (Advanced Only)

Solves a real linear system AX=Y.

Input Fatri=
Enown Yector

matrix type

Solution Yector

errar

Input Matrix is a square or rectangular, real matrix.

matrix type is the type of Input Matrix. Knowing the type of Input Matrix can speed up the
computation of the Solution Vector and can help you to avoid unnecessary computation, which could
introduce numerical inaccuracy. matrix type has four possible options.

0: general

1: positive definite

2: lower triangular

3: upper triangular

Y
Y

matrix type defaults to general.

i Known Vector. The number of elements in the Known Vector must be equal to the rows of the
Input Matrix. If the number of elements in the Known Vector does not match the rows of the Input
Matrix, the VI sets the Solution Vector to an empty array and returns an error.

i Solution Vector is the solution X to AX=Y.

i error. See Analysis Error Codes for a description of the error.

Let A be an m-by-n matrix that represents the Input Matrix, Y be the set of m coefficients in Known
Vector and X be the set of n elements in Solution Vector that solves the system

AX =Y.

When m>n, the system has more equations than unknowns, so it is an overdetermined system. The

||solution thwat satisfies AX=Y may not exist, so the VI finds the least square solution X, which minimizes
A -1



When m<n, the system has more unknowns than equations, so it is an underdetermined systems. It may
have infinite solutions that satisfy AX=Y. The VI finds one of these solutions.

In the case of m=n, if A is a nonsingular matrix--no row or column is a linear combination of any other row
or column, respectively--then you can solve the system for X by decomposing the input matrix A into its
lower and upper triangular matrices, L and U, such that

AX=LZ=Y,
and
Z=UX

can be an alternate representation of the original system. Notice that Z is also an n element vector.

Triangular systems are easy to solve using recursive techniques. Consequently, when you obtain the L
and U matrices from A, you can find Z from the LZ =Y system and X from the UX = Z system.

In the case of m“n can be decomposed to an orthogonal matrix Q and an upper triangular matrix R, so
that A=QR. The linear system can then be represented by QRX=Y. You can then solve RX=QTY.

You can easily solve this triangular system to get x using recursive techniques.

Note: You cannot always determine beforehand whether the matrix is singular, especially with
large systems. The Inverse Matrix VI detects singular matrices and returns an error, so you
do not need to verify whether you have a valid system before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and, because of its
recursive nature, is also highly sensitive to round-off error introduced by the floating-point numeric
coprocessor. Although the computations use the maximum possible accuracy, the VI cannot always solve
the system.



For general information about Advanced Linear Algebra Vls, see Linear Algebra VIs Overview.

The following illustration shows the options that are available on the Advanced Linear Algebra
subpalette. Click on one of the icons below for function description information. You can also click on the
text jumps below the icons to access function descriptions.
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Cholesky Factorization
Create Special Matrix
LU Factorization
Matrix Condition Number
Matrix Norm

Matrix Rank
Pseudolnverse Matrix
QR Factorization

SVD Factorization
Test Positive Definite
Trace

Cholesky Factorization (Advanced Only)

Performs Cholesky factorization for a real, positive definite matrix A.

' F=——=="Chulesky

T

errar

A must be a positive definite matrix. If A is not positive definite, the VI returns an error code.
Cholesky contains the factored, upper triangular matrix R.

error. See Analysis Error Codes for a description of the error.

If the real, square matrix A is positive definite, you can factor it as AZRTR, where R is an upper
triangular matrix, and

| LN LN

R Tis the transpose of R.
Create Special Matrix (Advanced Only)

Generates a real, special matrix based on the matrix type.

Input Vector?
matrix type
matrix size T |
Input Vectori

=HE Special Matrix

errar

Let n represent matrix size, X represent Input Vector1, nx represent the size of X, and Y represent Input
Vector2, ny represent the size of Y, and B represent the output Special Matrix.



A matrix type specifies the type of special matrix that is generated output Special Matrix. matrix
type has five possible options.
0: Identity Matrix--generate a n-by-n identity matrix.
1: Diagonal Matrix--generate a nx-by-nx diagonal matrix whose diagonal elements are the
elements of X.
2: Toeplitz Matrix--generate a nx-by-ny Toeplitz matrix, which has X as its first column and Y as
its first row. If the first element of X and Y are different, the first element of X is used.
3: Vandermonde Matrix--generate a nx-by-nx Vandermonde matrix whose columns are powers
of the elements of X. The elements of a Vandermonde matrix are:
e .
L] , where 1,]=0...nx-1.
4: Companion Matrix--generate a nx-1-by-nx-1 companion matrix. If vector X is a vector of a
polynomial coefficient, the first element of X is the coefficient of the highest order, the last element of X is
the constant term in the polynomial, the corresponding companion matrix is constructed as follows:

= H;

i
bl:l i1 = —-—— 1=1,2.. . nx-1i
the first row is %0 the rest of B from the second row is an identity matrix.

The eigenvalues of a companion matrix contain the roots of the corresponding polynomial.

matrix size determines the dimension size of the output Special Matrix in some options.
Input Vector2 used as the input to construct a special matrix in some options.

Input Vector1 used as the input to construct a special matrix in some options.

Special Matrix is the generated matrix.

error. See Analysis Error Codes for a description of the error.

LU Factorization (Advanced Only)

Performs the LU factorization of a real, square matrix A.

[ R

A must be a square, real matrix.
L is a lower triangular matrix.
U is an upper triangular matrix.
P is a permutation matrix.
error. See Analysis Error Codes for a description of the error.
LU factorization factors the square matrix A into two triangular matrices; one is a lower triangular matrix L
with ones on the diagonal, and the other is an upper triangular matrix U, so that PA=LU, where P is a
permutation matrix, which serves as the identity matrix with some rows exchanged.

L
L
L
<
i

Factorization serves as a key step for inverting a matrix, computing the determinant of a matrix, and
solving a linear equation.

Matrix Condition Number (Advanced Only)

Computes the condition number of a real matrix Input Matrix.

Input Fateiz =Rl condition numbet
norm type A ertar
A Input Matrix can be a rectangular matrix when norm type is 2-norm. If norm type is not 2-norm,
Input Matrix must be a square matrix.
4 norm type indicates what type of norm is used to compute the condition number. norm type

has four possible options.
0: 2-norm



1: 1-norm
2: F-norm
3: inf-norm

norm type defaults to 2-norm. See the description for Matrix Norm for a definition of a matrix
norm.
i condition number defines c as

o = Al |4 where fal,

I3 is the norm of Input Matrix A.
Different values of p define the different types of norms, therefore p defines different types of
computations of condition numbers.

For the 2-norm condition number, c is the ratio of the largest, singular value of A to the smallest, singular
value of A.

X error. See Analysis Error Codes for a description of the error.
The condition number of a matrix measures the sensitivity of a system solution of linear equations to
errors in the data. It gives an indication of the accuracy of the results from a matrix inversion and a linear

equation solution.

Matrix Norm (Advanced Only)

Computes the norm of a real matrix Input Matrix.

Input FMatriz narm nakm
norm type [::Hl[::]”l errar
I
i Input Matrix can be a square or rectangular, real matrix.
i norm type indicates what type of norm is used to compute the norm. norm type has four possible
options.
0: 2-norm--||‘a‘||2 is the largest singular value of the Input Matrix.
1: 1-norm--||*"3'*||1 is the largest column sum of the Input Matrix.
2: F-norm-- "*":"*"f is equal to
2, diag (PL T4 .
where diag
.;":'LTA means the diagonal elements of matrix
ATA,
AT isthe transpose of A.
3: inf—norm——"-“':"*"m is the largest row sum of the Input Matrix.
i norm.
A error. See Analysis Error Codes for a description of the error.

The norm of a matrix is a scalar that gives some measure of the magnitude of the elements in the matrix.
Let A represent the Input Matrix, the norm of A is represented by "*"j'*"P where p can be 1,2,F,

w, Different values of p mean different types of norms that are computed.

Matrix Rank (Advanced Only)

Computes the rank of a rectangular, real matrix Input Matrix.

Input Fatrix rank rank
[H]=

tolerance Brrar




Input Matrix must be a real matrix.
tolerance defaults to -1. All of the negative tolerance causes an internal tol=max (m,n)*

<* eps to be used, where A represents the Input Matrix, m represents the number of rows in A, n
represents the number of columns in A,

4 is the 2-norm of A, eps is the smallest, floating point number that can be represented by type double,
eps = 2/(-52)=2.22e-16.

4 rank.

i error. See Analysis Error Codes for a description of the error.

Matrix rank is the number of singular values in the Input Matrix that are larger than the tolerance. rank is
the maximum number of independent rows or columns in the Input Matrix.

i
£

Pseudolnverse Matrix (Advanced Only)

Finds the Pseudolnverse Matrix of a rectangular, real matrix Input Matrix.

Input Fatrix |[ 1 ]' Fseudolnverse Matrix
toler ance p=eud error
Y Input Matrix is a rectangular, real matrix.
L tolerance defaults to -1. All of the negative tolerance causes an internal tol=max (m,n)*

% eps to be used, where A represents the Input Matrix, m represents the number of rows in A, n
represents the number of columns in A, EMBED is the 2-norm of A, eps is the smallest, floating point
number that can be represented by type double,

eps = 2/(-52)=2.22e-16.

Y Pseudolnverse Matrix.

i error. See Analysis Error Codes for a description of the error.

You compute Pseudolnverse Matrix At by using the SVD algorithm and any singular value less than the
tolerance, which are set to zero. For a definition of the Pseudolnverse of a matrix, see the Solving Linear
Equations and Matrix Inverses section

If Input matrix A is square and not singular, £ is the same as
4-'-‘1_1, but using the Inverse Matrix VI to compute
4 7Lis more efficient than using this VI.

QR Factorization (Advanced Only)

Performs the QR factorization of a real matrix A.

algarithrn

i A is an m-by-n real matrix, where m is the number of rows in A and n is the number of columns
in A. It can be either a square or rectangular matrix.
i algorithm has three possible options:

0: householder

1: givens

2: fast givens

algorithm defaults to the householder

Q is an m-by-m, orthogonal matrix.

R is an m-by-n, upper triangular matrix.

error. See Analysis Error Codes for a description of the error.

QR factorization is also called orthogonal-triangular factorization. It factors a real matrix A into two
matrices. One is an orthogonal matrix Q, and the other is an upper triangular matrix R, so that A=QR. This

| P P N




VI provides three methods for the factorization: householder, givens, and fast givens.

You can use QR factorization to solve linear systems with more equations than unknowns.

SVD Factorization (Advanced Only)

Performs the singular value decomposition (SVD) of a given m-by-n real matrix A, with m>n.

X A is an m-by-n matrix with m>n, where represents the number of rows in A, and represents
the number of columns in A. If A has m<n, transpose A before you call this VI. Or, you can create rows of
zeros underneath the nonzero rows in A, until A becomes square, and then call this VI.

U is an m-by-n matrix, which contains n orthogonal columns.

S is an array, which contains the number of n singular values of A in decreasing order.

V is an n-by-n orthogonal matrix.

error. See Analysis Error Codes for a description of the error.

SVD produces three matrices U, Su:u, and V so that

| P P P

_ T
A= USDTJ , where U and

VT are orthogonal matrices,
Sais an n-by-n diagonal matrix with the elements of array S on the diagonal in decreasing order.

Test Positive Definite (Advanced Only)

Tests whether the Input Matrix is a Positive Definite matrix.

[y pe=3

I b S positive definite?
Input Matrix =——[4]

errar

i Input Matrix is a square, real matrix.

positive definite? contains the test result. If the Input Matrix is Positive Definite, positive
definite?=TRUE, otherwise, it equals FALSE.
i error. See Analysis Error Codes for a description of the error.

Trace (Advanced Only)

Finds the trace of Input Matrix.

. trace
Input FMatr iz =—

errar

4 Input Matrix must have as many rows as columns, and its dimensions must be greater than zero.
If Input Matrix is an empty array or is not square, the VI sets trace to NaN and returns an error.

i trace.

i error. See Analysis Error Codes for a description of the error.

Let A be a square matrix that represents Input Matrix and tr(A) be trace. The trace of A is the sum of the
main diagonal elements of A

n-1
trid) = %au

where n is the dimension of Input Matrix.



For general information about Complex Linear Algebra Vls, see Linear Algebra VIs Overview.

The following illustration shows the options that are available on the Complex Linear Algebra
subpalette. Click on one of the icons below for function description information. You can also click on the
text jumps below the icons to access function descriptions.
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Complex A x B (Advanced Only)
Performs the matrix multiplication of two input complex matrices.

A=B |

e kS
B ][GL[! errar
i A. The number of columns in A must match the number of rows in B and must be greater than

zero. If the number of columns in A does not match the number of rows in B, the VI sets A x B to an
empty array and returns an error.

X B is the second matrix. If the number of rows in B does not match the number of columns in A,
the VI sets A x B to an empty array and returns an error.

£ A x B is the matrix containing the result of the matrix multiplication A x B.

Y error. See Analysis Error Codes for a description of the error.

If Ais an n-by-k matrix and B is a k-by--m matrix, the matrix multiplication of Aand B, C = AB, results in a

matrix, C, whose dimensions are n-by-m. Let A represent the 2D input array A matrix, B represent the 2D
input array B matrix, and C represent the 2D output array A x B. The VI obtains the elements of C using
the formula

o fim0120 0
oy =, apby for
i Eﬁ, 17y j=012..m-1

where n is the number of rows in A matrix, k is the number of columns in A matrix and the number of

rows in B matrix, and m is the number of columns in B matrix.

Note: The Complex A x B VI performs a strict matrix multiplication and not an element-by-
element 2D multiplication. To perform an element-by-element multiplication, you must use



the LabVIEW Multiply function. In general, ABBA.

Complex A x Vector (Advanced Only)

Performs the multiplication of a complex input matrix and a complex input vector.

i |HxH| & Yector
Vector [Jﬂ[] error
i A. The number of columns in A must match the number of elements in vector and must be

greater than zero. If the number of columns in A does not match the number of elements in vector, the VI
sets A x Vector to an empty array and returns an error.

Vector is the input vector.

A x Vector is the output vector containing the result of A multiplied by Vector.

error. See Analysis Error Codes for a description of the error.

If A is an n-by-k matrix, and X is a vector with k elements, the multiplication of A and X, Y = AX, results in
a vector Y with n elements. Let Y represent the output A x Vector, X represents the input vector. The VI
obtains the elements of Y using the formula

| P P

k-1
¥ = Eaijsj for1=0,1,2, ...,n-1
1=0 ,
where n is the number of rows in A, and Kk is the number of columns in A and the number of elements in

X.
Complex Determinant (Advanced Only)

Finds the determinant of a complex, square matrix Input Matrix.

Input Matriz A el deterrninant
=*|[]]
[

rnatrizx type errar

i Input Matrix must be a square matrix.
X matrix type is the type of Input Matrix. Knowing the type of Input Matrix can speed up the
computation of the determinant and can help you to avoid unnecessary computation, which could
introduce numerical inaccuracy. matrix type has four possible options.

0: general

1: positive definite

2: lower triangular

3: upper triangular

matrix type defaults to general.

i determinant.
Special Case: The determinant of a singular matrix is zero. This is a valid result and is not an error.

|&] =00 Ajs singular.

i error. See Analysis Error Codes for a description of the error.
Let A denote a square matrix that represents the Input Matrix, and let L and U be the lower and upper
triangular matrices, respective, of A such that

A=LU,

where the main diagonal elements of the lower triangular matrix L are arbitrarily set to one. The VI finds
the determinant of A by the product of the main diagonal elements of the upper triangular matrix U:



n-1
|4 = TTvs
1=
where |*":"*| is the determinant of A, and n is the dimension of A.

Complex Dot Product (Advanced Only)

Computes the dot product of complex X Vector and Y Vector.

# Wectar | A= wEY
L ]
¥ Yactor o errar
Y X Vector. If the number of elements in X Vector is different from the number of elements in Y

Vector, the VI computes the dot product based on the sequence that contains the fewest elements. If X
Vector is an empty array, the dot product is NaN.

L Y Vector. If Y Vector is an empty array, the dot product is NaN.

X*Y is the dot product.

error. See Analysis Error Codes for a description of the error.

Let X represent the input sequence X Vector and Y represent the input sequence Y Vector. The VI
obtains the dot product X*Y using the formula:

n-1
X * Y = E Xij,?i
i=0 ,
where n is the number of data points. Notice that the output value X*Y is a complex scalar value.

Complex EigenValues & Vectors (Advanced Only)

Finds the Eigenvalues and right Eigenvectors of a square complex Input Matrix A.

Input Matriz _® Eigenrvalues
rmatrix type 'b‘x_’ii Eigenwectors
output option —— LE2 I t—error

i Input Matrix must be an n-by-n square matrix, where n is the number of rows or columns of
Input Matrix.
% matrix type is the type of Input Matrix. A Hermitian matrix needs less computation than a
general matrix. A Hermitian matrix always has real eigenvalues. matrix type has two possible options.
0: general
1:  Hermitian matrix

matrix type defaults to general.

4 output option determines what needs to be computed. The output option has two possible
options.

0: eigenvalues--computes eigenvalues

1: eigenvalues and eigenvectors--computes eigenvalues and eigenvectors

output option defaults to eigenvalues and eigenvectors.

4 Eigenvalues is a complex vector of n elements, which contains all of the computed eigenvalues
of the Input Matrix. The Input Matrix could have complex Eigenvalues if it is not a Hermitian matrix.
i Eigenvectors is an n-by-n complex matrix containing all the computed eigenvectors of the Input
Matrix. The
% column of Eigenvectors is the eigenvector corresponding to the ith component of the vector,
Eigenvalues. Each eigenvector is normalized so that its largest component is always unity.

If you set the output option to Eigenvalues, the VI sets Eigenvectors to empty.



The eigenvalue problem is to determine the nontrivial solutions for the equation:

i error. See Analysis Error Codes for a description of the error.

AX=%X

where A represents an n-by-n Input Matrix, X represents a vector with n elements, and is a scalar. The

n values of £ that satisfy the equation are the Eigenvalues of A and the corresponding values of X are
the right Eigenvectors of A. A Hermitian matrix always has real eigenvalues.

Complex Inverse Matrix (Advanced Only)

Finds the Inverse Matrix of a complex matrix Input Matrix.

A A
) |[sss]¢[sss]
Matrix Type o errar

i Input Matrix must be a nonsingular, square matrix. If the Input Matrix is singular or is not
square, the VI sets the Inverse Matrix to an empty array and returns an error.
i matrix type is the type of Input Matrix. Knowing the type of Input Matrix can speed up the
computation of the Inverse Matrix and can help you to avoid unnecessary computation, which could
introduce numerical inaccuracy. matrix type has four possible options.

0: general

1: positive definite

2: lower triangular

3: upper triangular

Inverze Matrix

Input Fatrix

matrix type defaults to general.

Inverse Matrix is the inverse matrix of the Input Matrix.

error. See Analysis Error Codes for a description of the error.

LetA be the Input Matrix and | be the identity matrix. You obtain the Inverse Matrix by solving the
system AB = | for B.

|

If Ais a nonsingular matrix, you can show that the solution to the preceding system is unique and that it
corresponds to the inverse matrix of A

B=<

and B is therefore the Inverse Matrix. A nonsingular matrix is a matrix in which no row or column
contains a linear combination of any other row or column, respectively.

Note: You cannot always determine beforehand whether the matrix is singular, especially with
large systems. The Complex Inverse Matrix VI detects singular matrices and returns an
error, so you do not need to verify whether you have a valid system before using this VI.T

The numerical implementation of the matrix inversion is not only numerically intensive
but, because of its recursive nature, it is also highly sensitive to round-off error introduced
by the floating point, numeric coprocessor. Although the computations use the maximum
possible accuracy, the VI cannot always solve for the system.

Complex Outer Product (Advanced Only)

Computes the outer product of a complex X Vector and Y Vector.

¥ Vector ” [] Outer Product

Y Wector el Brrar




X Vector is the first input vector.
Y Vector is the second input vector.
Outer Product. If one of the input sequences is an empty array, the Outer Product is an empty

| | |

array.
i error. See Analysis Error Codes for a description of the error.

Let X represent the input sequence X Vector and Y represent the input sequence Y Vector. The VI
obtains Outer Product using the formula:

o [0z 0
oY or
7] i=012.  m-1

where A represents the 2D output sequence Outer Product, n is the number of elements in the input
sequence X Vector, and m is the number of elements in the input sequence Y Vector.

Solve Complex Linear Equations (Advanced Only)

Solves a complex, linear system AX=Y.

<
i Input Matrix must be a nonsingular, square or rectangular matrix.
i Known Vector. The number of elements in the Known Vector, must match the row size of the
Input Matrix. If the number of elements in the Known Vector does not match the row size of matrix, the
VI sets the Known Vector to an empty array and returns an error.
i matrix type is the type of Input Matrix. Knowing the type of Input Matrix can speed up the
computation of the Solution Vector and can help you to avoid unnecessary computation, which could
introduce numerical inaccuracy. matrix type has four possible options.

0: general

1: positive definite

2: lower triangular

3: upper triangular

matrix type defaults to general.

i Solution Vector is the solution X to AX =Y.
i error. See Analysis Error Codes for a description of the error.

Let A represent the m-by-n Input Matrix, Y represent the set of m elements in the Known Vector, and X
represent the set of n elements in the Solution Vector that solves for the system

AX =Y.

When m>n, the system has more equations than unknowns, so it is an overdetermined system. Since the
solution that satisfies AX=Y may not exist, the VI finds the least square solution X, which minimizes %.

When m<n, the system has more unknowns than equations, so it is an underdetermined system. It might
have infinite solutions that satisfy AX=Y. The VI then selects one of these solutions.

When m=n, if A is a nonsingular matrix--no row or column is a linear combination of any other row or
column, respectively--then you can solve the system for X by decomposing the Input Matrix A into its
lower and upper triangular matrices, L and U, such that

AX=LZ =Y,
and
Z=UX

can be an alternate representation of the original system. Notice that Z is also an n element vector.



Triangular systems are easy to solve using recursive techniques. Consequently, when you obtain the L
and U matrices from A, you can find Z from the LZ =Y system and X from the UX = Z system.

When m2n, A can be decomposed to an orthogonal matrix Q, and an upper triangular matrix R, so that
A=QR, and the linear system can be represented by QRX=Y. You can then solve

rx=0Qiy

You can easily solve this triangular system to get X using recursive techniques.

Note: You cannot always determine beforehand whether the matrix is singular, especially with
large systems. The Inverse Matrix VI detects singular matrices and returns an error, so you
do not need to verify whether you have a valid system before using this VI.

The numerical implementation of the matrix inversion is numerically intensive and, because of its
recursive nature, is also highly sensitive to round-off error introduced by the floating-point numeric
coprocessor. Although the computations use the maximum possible accuracy, the VI cannot always solve
for the system.



For general information about Advanced Complex Linear Algebra Vls, see Linear Algebra VIs Overview.

The following illustration shows the options that are available on the Advanced Complex Linear Algebra
subpalette. Click on one of the icons below for function description information. You can also click on the
text jumps below the icons to access function descriptions.
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Complex Cholesky Factorization
Complex LU Factorization
Complex Matrix Condition Number
Complex Matrix Norm

Complex Matrix Rank

Complex Matrix Trace

Complex Pseudolnverse Matrix
Complex QR Factorization
Complex SVD Factorization
Create Special Complex Matrix
Test Complex Positive Definite

Complex Cholesky Factorization (Advanced Only)

Performs Cholesky factorization of a complex, positive definite matrix A.

= F=——="Chalezky F

A
errar
i A must be a positive definite, complex matrix. If A is not positive definite, the VI returns an error
code.
i Cholesky R contains the factored upper triangular matrix R.
i error. See Analysis Error Codes for a description of the error.

If the complex square matrix A is positive definite, it can be factored as& = RHR, where R is an upper
triangular matrix and

RH is the complex conjugate transpose of R.

Complex LU Factorization (Advanced Only)

Performs the LU factorization of a complex, square matrix A.

A is a square, complex matrix.
L is a complex, lower triangular matrix.

| |



U is a complex, upper triangular matrix.

P is a permutation matrix.

error. See Analysis Error Codes for a description of the error.

LU factorization factors the square matrix A into two triangular matrices; one is a lower triangular matrix L
with ones on the diagonal, and the other is an upper triangular matrix U, so that

| | |

PA=LU
where P is a permutation matrix, which consists of the identity matrix with some rows exchanged.
Factorization is the key step for inverting a matrix, computing the determinant of a matrix, and solving a

linear equation.

Complex Matrix Condition Number (Advanced Only)

Computes the condition number of a complex matrix Input Matrix.

Input Matri= ELY condition nurnber
natm type *1[==]c||[“]| errar
A Input Matrix can be a rectangular matrix when norm type is 2-norm. If norm type is not 2-norm,
Input Matrix must be a square matrix.
4 norm type indicates what type of norm is used to compute the condition number. norm type
has four possible options.
0: 2-norm
1: 1-norm
2: F-norm
3: inf-norm

norm type defaults to 2-norm. See the description of the Complex Matrix Norm VI for a definition
of a matrix norm.

X condition number defines c as
-1
= aly |2~
P P, where

% is the norm of the Input Matrix A.

Different values of p define different types of norms as well as defining different types of
computations of a condition number.

For the 2-norm condition number, c is the ratio of the largest, singular value of A to the smallest,
singular value of A.
i error. See Analysis Error Codes for a description of the error.
The condition number of a matrix measures the sensitivity of the solution of a system of linear equations
to errors in the data. It gives an indication of the accuracy of the results from the matrix inversion and
linear equation solutions.

Complex Matrix Norm (Advanced Only)

Computes the norm of a complex matrix Input Matrix.

Input Matrix =———=— mrm narm
=] |||
natm type L aald
A Input Matrix can be a square or rectangular, complex matrix.
4 norm type indicates what type of norm is used to compute the norm. norm type has four

possible options.
0: 2-norm--% is the largest singular value of the Input Matrix.




1: 1-norm--= is the largest column sum of the Input Matrix.
2: F-norm--% is equal to

T diag( 47 4)

(484) . .
means the diagonal elements of matrix

Ay

A s the transpose of A.
3: inf-norm--% is the largest row sum of the Input Matrix.

, Where diag

norm.
error. See Analysis Error Codes for a description of the error.

The norm of a matrix is a scalar that gives some measure of the magnitude of the elements of the matrix.
Let A represent the Input Matrix, represent the norm of A, where p can be 1,2,f,. Different values of p
mean different types of norms that are computed.

| L P

Complex Matrix Rank (Advanced Only)

Computes the rank of a rectangular, complex matrix Input Matrix.

Input Matrix rank rank
[H=
G

tolerance errar

i Input Matrix is a rectangular matrix.

4 tolerance defaults to -1. All of the negative tolerance causes an internal tol=max (m,n)*

<* eps to be used, where A represents the Input Matrix, m represents the number of rows in A, n
represents the number of columns in A,

% is the 2-norm of A, eps is the smallest, floating point number that can be represented by type double,
eps = 2”(-52)=2.22e-16.

i rank.

Y error. See Analysis Error Codes for a description of the error.

rank is the number of singular values of the Input Matrix that are larger than the tolerance. rank is the
maximum number of independent rows or columns of the Input Matrix.

Complex Matrix Trace (Advanced Only)

Finds the trace of Input Matrix.

trace

Input FMatr iz =—
error

i Input Matrix must have as many rows as columns, and its dimensions must be greater than zero.
If Input Matrix is an empty array or is not square, the VI sets trace to NaN and returns an error.

i trace.

i error. See Analysis Error Codes for a description of the error.

Let A be a square matrix that represents Input Matrix and tr(A) be trace. The trace of A is the sum of the
main diagonal elements of A

n-1

tr &) =§]E’-ji

where n is the dimension of Input Matrix.

Complex Pseudolnverse Matrix (Advanced Only)



Finds the Pseudolnverse Matrix of a rectangular, complex matrix Input Matrix.

Input Matrix |[n5]$"[d] Fzeudolnwverse Matrix
tolerance '3'.;;;;&' BFFar
i Input Matrix is a rectangular matrix.
kS tolerance defaults to -1. All of the tolerance causes an internal tol=max (m,n)*

<* eps to be used, where A represents the Input Matrix, m represents the number of rows in A, n
represents the number of columns in A,

% is the 2-norm of A, eps is the smallest, floating point number that can be represented by type double,
eps = 2/(-52)=2.22e-16.

Z Pseudolnverse Matrix.

i error. See Analysis Error Codes for a description of the error.

An SVD algorithm computes Pseudolnverse Matrix %, and treats any singular values less than the
tolerance as zeros. For a definition of the Pseudolnverse of a matrix, see the Solving Linear Equations
and Matrix Inverses section at the beginning of this chapter.

If Input matrix A is square and not singular, % is the same as
%, but using the Complex Inverse Matrix VI to compute
% is more efficient than using this VI.

Complex QR Factorization (Advanced Only)

Performs QR factorization for a complex matrix A.

#

algarithm

Y A is an m-by-n complex matrix, where m is the number of rows in A and n is the number of
columns in A. It can be either a square or rectangular matrix.
i algorithm has three possible options.

0: Householder

1: Givens

2. fast Givens

algorithm defaults to Householder.

Q is an m-by-m, orthogonal matrix.

R is an m-by-n, upper triangular matrix.

error. See Analysis Error Codes for a description of the error.

QR factorization is also called orthogonal-triangular factorization. It factors a complex matrix A into two
matrices; one is an orthogonal matrix Q, the other is an upper triangular matrix R, so that A = QR. This VI
provides three methods for the factorization: Householder, Givens, and Fast Givens.

| PN

You can use QR factorization to solve linear systems that contain less or more equations than unknowns.

Complex SVD Factorization (Advanced Only)

Performs the singular value decomposition (SVD) of a given m-by-n, complex matrix A with m>n.

i A is a complex matrix of m-by-n with m>n, where m represents the number of rows in A and n
represents the number of columns in A. If A has m<n, transpose A before you call this VI. Or, you can



create rows of zeros underneath the nonzero rows in A, until A becomes square, and then call this VI.
U is an m-by-n matrix, which contains n orthogonal columns.
S is an array, which contains the number of n singular values of A in decreasing order.

V is an n-by-n orthogonal matrix.
error. See Analysis Error Codes for a description of the error.

| L PN P

i A =13, vH -
SVD produces three matrices U, S, and V, so that a , where U and V are orthogonal matrices,

£ is an n-by-n diagonal matrix with the elements of array S on the diagonal in decreasing order. The
diagonal elements are the singular values of A.

Create Special Complex Matrix (Advanced Only)
Generates a special, complex matrix based on the matrix type.

Input Vector?
matrix type
matrix size T |
Input Vectori

=HE Special Matrix

errar

Let n represent matrix size, X represent Input Vector1, nx represent the size of X, and Y represent
Input Vector2, ny represent the size of Y, and B represent the output Special Matrix.

i matrix type specifies the type of special matrix that is generated output Special Matrix. matrix
type has five possible options.

0: Identity Matrix--generate a n-by-n identity matrix.

1: Diagonal Matrix--generate a nx-by-nx diagonal matrix whose diagonal elements are the
elements of X.

2: Toeplitz Matrix--generate a nx-by-ny Toeplitz matrix, which has X as its first column and Y as
its first row. If the first element of X and Y are different, the first element of X is used.

3: Vandermonde Matrix--generate a nx-by-nx Vandermonde matrix whose columns are powers
of the elements of X. The elements of a Vandermonde matrix are:

_ _nx—j-1 o
ij =% whered =0, nx-.

4: Companion Matrix--generate a nx-1-by-nx-1 companion matrix. If vector X is a vector of a
polynomial coefficient, the first element of X is the coefficient of the highest order, the last
element of X is the constant term in the polynomial, the corresponding companion matrix is
constructed as follows:

b

bn i-1 =—J,-j=1,2...n:-:—1
the first row is, kS| , the rest of B from the second row is an identity
matrix.

The eigenvalues of a companion matrix contain the roots of the corresponding polynomial.

matrix size determines the dimension size of the output Special Matrix in some options.
Input Vector2 used as the input to construct a special matrix in some options.

Input Vector1 used as the input to construct a special matrix in some options.

Special Matrix is the generated matrix.

error. See Analysis Error Codes for a description of the error.

Test Complex Positive Definite (Advanced Only)

Tests whether the Input Matrix is a Positive Definite matrix.

L L L [ s

(T M— positive definite?

Input Matrix =—7

[
G error

i Input Matrix is a complex, real matrix.



i positive definite? contains the test result. If the Input Matrix is Positive Definite, positive
definite?=TRUE, otherwise, it equals FALSE.

i error. See Analysis Error Codes for a description of the error.
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For detailed VI descriptions, see Linear Algebra Vls.

The Vls in this topic can be divided into the following groups:

Basic Matrix Manipulations

Common Matrices

Matrix Factorization

Solving Linear Equations and Matrix Inverses
Eigenvalues and EigenVectors

Matrix Analysis

A matrix is represented by a 2D array:

200 200 Tt Agp-n]
a0 e
10 Zw-11 " Zm-1n-l

A is an m-by-n matrix that contains m rows and n columns.

A matrix is called a rectangular matrix in general. When m=n, it is called square matrix.

Basic Matrix Manipulations

Addition
C=A+E—= Ei_'i = aij +bij
A, B, and C have the same dimension size.

Matrix-Matrix Multiplication

-1

O =AR—= ':ij = Zaﬂ{bkj
k=0

If A is a n-by-r matrix, B is a r-by-m matrix, then C is a n-by-m matrix.

Scalar-Matrix Multiplication
= ph = ':ij = Cr.'aij
C and A have the same dimension size.

Transposition

for a real matrix:

_ 4T _
C = .L"l".. —_ Eij = aji
for a complex matrix, it is the complex conjugate transposition:



c=aH =

complex conjugate: if a = x + 1y, then conjugate a* = x - 1y. If A is a m-by-n matrix, then C is an n-by-m
matrix and is called the transpose of A.

ij=&*ji

Common Matrices

Identity Matrix

1 0 .0
A =10 1 ...El,aij=0

oo .1 when
1 ?fj,aij =1lwhent =
A is a square matrix.
Diagonal Matrix

W | 0
A= 0 11 0

0 0 ... oa,-ln-1

when {bmc DIAM-1.BMP}.

Hermitian Matrix

If a complex matrix A satisfiesd = ﬁH, A is called a Hermitian matrix.

Symmetric Matrix

Matrix A is called a symmetric matrix if i ~ i, that is

A =aT

Upper Triangular Matrix

A 801 s A0n-l
A= 0 411 A1p-1 . aij D,
0 ] a ..
m-In-1 when 1>].

Lower Triangular Matrix

den A0 A0p-1
A= 0 411 Ap-1 . aij =|:|,
0 0 Ap-1n-1

when i<j.



Orthogonal Matrix
Matrix A is said to be orthogonal if AT8 =11isan identity matrix.

Permutation Matrix

A permutation matrix is an identity matrix with some rows or columns exchanged. A permutation matrix is
an orthogonal matrix.

Positive Definite Matrix

A real matrix is positive definite if and only if it is symmetric; that is, %, and the quadratic form

T A > 0 for all nonzero vectors X.
A complex matrix is positive definite if and only if it is Hermitian; that is, & = AH and
A 30 forall nonzero, complex vectors X.

Matrix Factorization

A Matrix can be factored into the multiplication of several, simpler matrices. You can use these factored,
simple matrices to solve some matrix problems, such as solving a linear equation, inverting a matrix, and
finding the determinant of a matrix.

The common factorization methods include LU, Cholesky, QR, and Singular Value Decomposition (SVD).

e LU Factorization--factors a square matrix into two matrices. One is an upper triangular matrix U, and
the other is a lower triangular matrix L that has ones on the diagonal, so that PA=LU. P is a
permutation matrix.

o When a square matrix is positive definite, you can factor it into & = RTR , if Ais a real matrix,
and

A = RHR, if Ais a complex matrix, where R is an upper triangular matrix. This is called Cholesky
factorization. Cholesky factorization only needs half of the operations of LU factorization.

° QR Factorization--factors a matrix as the product of an orthogonal matrix Q and an upper
triangular matrix R: A=QR. QR factorization is useful for both square and rectangular matrices.
o SVD--decomposes a matrix into the product of three matrices:

& =TSVT where Uand V are orthogonal matrices and S is a diagonal matrix whose diagonal values
are called the singular values of A. SVD is useful for solving analysis problems involving matrices. In
addition to its common uses, you can use SVD for operations such as pseudoinverse, rank, norm, and
condition number.

Solving Linear Equations and Matrix Inverses

To Solve the linear equation AX=Y, you must find solution X when you know the given values of Aand Y. A
is a m-by-n matrix, X is a vector with n elements, and Y is a vector with m elements.

Using LU factorization, if m=n and A is a square matrix, A can be factored into triangular matrices L and
U, so that A=LU. AX=Y becomes LUX=Y and you can solve Z for LZ=Y where Z=UX. You can then solve
for Xin UX=Z.

In the Cholesky case, L. = ETandU=R



Triangular systems are easy to solve using recursive techniques.
If m£n, the number of equations are different from the number of unknowns and A is not a square matrix,

A can be factored into an orthogonal matrix Q and an upper triangular matrix R, so that A=QR. AX=Y
becomes QRX=Y and you can solve for X by using

RX=0QTY

When m>n, and the system has more equations than unknowns, it is called an overdetermined system.
The solution that satisfies AX=Y may notzexist. The solution above finds the least square solution that
|43 - Y = Z[(4%); ~ 4]

minimizes

When m<n, and the system has more unknowns than equations, it is called an underdetermined system.
It may have infinite solutions that satisfy AX=Y. The solution above finds one of these solutions.
Inverting a square matrix A means that you find % that satisfies

anl= I, where | is an identity matrix.

% is called the inverse of matrix A. You can solve for

£ by solving n linear equations

AnT =T,

When A is not a square matrix, or when A is singular, £does not exist. You can compute the
pseudoinverse of A instead. If the m-by-n matrix

£ satisfies the following four Moore-Penrose conditions:

ALTA =4

ATapT = a7

A4 T is a Hermitian matrix if Ais a complex matrix.

Asbatisa symmetric matrix if A is real matrix.

% is a Hermitian matrix if A is a complex matrix.
£ is a symmetric matrix if A is real matrix.

Then,
% is called the pseudoinverse of matrix A. You can compute for
4 using SVD.

Eigenvalues and EigenVectors

This eigenvalue problem is to determine the nontrivial solutions to the equation 43 = »3, where Ais an
n-by-n matrix, X is a vector with elements, and

% is a scalar. The n values of

£ that satisfy the equation are called eigenvalues of A, and the corresponding values of X are called the
right eigenvectors of A.

Matrix Analysis

Matrix Analysis VIs can compute the matrix determinant, condition number, norm, and rank. Typically,
you use these parameters to analyze a matrix property.






