
Communication Applications in LabVIEW

Communication VI Descriptions
Click here for Overview Topics.

This section is an overview of the way LabVIEW handles networking and interapplication communications
in the following areas: Dynamic Data Exchange, Transmission Control Protocol, User Datagram Protocol,
Object Linking and Embedding, and Named Pipes. This topic also describes the VIs that link LabVIEW to
HiQ, the National Instruments numerical analysis package as well as the System Exec VI.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

AppleEvents VI Descriptions
DDE VI Descriptions
HiQ Functions for Macintosh
Named Pipe VI Descriptions (UNIX)
OLE Automation VI Descriptions
PPC VI Descriptions
System Exec VI for Windows
System Exec VI for UNIX
TCP VI Descriptions
UDP VI Descriptions

Communication Overview Topics
Communications Overview
Transmission Control Protocol (TCP) VI Overview
User Datagram Protocol (UDP) VI Overview
Dynamic Data Exchange (DDE) for Windows VI Overview
OLE Automation for Windows 95/NT VI Overview
AppleEvents VI Overview (Macintosh)
Program to Program Communication (PPC) for Macintosh VI Overview

Communications Overview
For the purpose of this discussion, networking refers to communication between multiple processes. The
processes can optionally run on separate computers. This communication usually occurs over a hardware
network, such as ethernet or LocalTalk.

One main use for networking in software applications is to allow one or more applications to use the
services of another application. For example, the application providing services (the server) could be
either a data collection application running on a dedicated computer, or a database program providing
information for other applications.

The purpose of this discussion is to introduce you to the terminology used in networking and
communication applications, and to give you an overview of how to program networked applications.

Communication Protocols
File Sharing vs Communication Protocols
Client/Server Model
General Model for a Client
General Model for a Server
Error In and Error Out Clusters

Communication Protocols
For communication between processes to work, the processes must use a common communications
language, referred to as a protocol.

A communication protocol lets you specify the data that you want to send or receive and the location of
the destination or source, without having to worry about how the data gets there. The protocol translates
your commands into data that network drivers can accept. The network drivers then take care of
transferring data across the network as appropriate.

Several networking protocols have emerged as accepted standards for communications. In general, one
protocol is not compatible with a different protocol. Thus, in communication applications, one of the first
things you must do is decide which protocol to use. If you want to communicate with an existing, off the
shelf application, then you have to work within the protocols supported by that application.

When you are writing the application, you have more flexibility in choosing a protocol. Factors that affect
your protocol choice include the type of machines the processes can run on, the kind of hardware
network you have available, and the complexity of the communication that your application needs.

Several protocols are built into LabVIEW, some of which are specific to a type of computer. LabVIEW
uses the following protocols to communicate between computers:

· TCP VI Overview (All Platforms) - available on all computers.

· UDP VI Overview (All Platforms) - available on all computers.

· DDE VI Overview (Windows) - available on the PC, for communication between Windows
applications.

· OLE Automation VI Overview (Windows 95/NT) - available on the PC, for use with Windows 95/NT.

· AppleEvents VI Overview (Macintosh) - available on Macintosh, for sending messages between
Macintosh applications.

· PPC VI Overview (Macintosh) - available on Macintosh, for sending and receiving data between
Macintosh applications.

Each protocol is different, especially in the way they refer to the network location of a remote application.

They are incompatible with each other, so if you want to communicate between a Macintosh and a PC,
you must use a protocol compatible with both, such as TCP.

Other communication options provided by LabVIEW include:

· HiQ Functions for Macintosh -.available on Macintosh only

· System Exec VI Descriptions (Windows and UNIX) - which you can use to execute a system level
command. There are actually two System Exec VIs, one for use with all versions of Windows, the
other for use with UNIX.

· Named Pipe VI Descriptions (UNIX) - available on UNIX only.

Note: The three previous communication options do not contain overview material.

File Sharing vs Communication Protocols
Before you get too deeply involved in communication protocols, consider whether another approach is
more appropriate for your application. For instance, consider an application where a dedicated system
acquires data and you want the data recorded on a different computer.

You could write an application that uses networking protocols to send data from the acquisition computer
to the data repository machine, where a separate application collects the data and stores it on disk.

A simpler method is to use the filesharing capabilities available on most networked computers. With
filesharing, drivers that are part of the operating system let you connect to other machines. The remote
machines disk storage is treated as an extension of your own disk storage. Once you connect two
systems, filesharing usually makes this connection transparent, so that any application can write to the
remote disk as if connected locally.

Filesharing is frequently the simplest method for transferring data between machines.

Client/Server Model
The client/server model is a common model for networked applications. In the client/server model, one set
of processes (clients) request services from another set of processes (servers).

For example, in your application you could set up a dedicated computer for acquiring measurements from
the real world. The computer acts as a server when it provides data to other computers on request. It acts
as a client when it requests another application, such as a database program, to record the data that it
acquires.

In LabVIEW, you can use client and server applications with all protocols except Macintosh AppleEvents.
You can use AppleEvents to send commands to other applications. You cannot set up a command server
in LabVIEW using AppleEvents. If you need server capabilities on the Macintosh, use either TCP, UDP or
PPC.

General Model for a Client
General Model for a Server

General Model for a Client
The following block diagram shows what a simplified model for a client looks like in LabVIEW:

In the preceding diagram, LabVIEW first opens a connection to a server. It then sends a command to the
server, gets a response back, and closes the connection to the server. Finally, it reports any errors that
occurred during the communication process.

For higher performance, you can process multiple commands once the connection is open. After the
commands are executed, you can close the connection.

This basic block diagram structure serves as a model and is used elsewhere in this manual to
demonstrate how to implement a given protocol in LabVIEW.

General Model for a Server
The following block diagram shows a simplified model for a server in LabVIEW:

In the preceding diagram, LabVIEW first initializes the server. If the initialization is successful, LabVIEW
goes into a loop, where it waits for a connection. Once the connection is made, LabVIEW waits to receive
a command. LabVIEW executes the command and returns the results. The connection is then closed.
LabVIEW repeats this entire process until it is shut down locally by pressing a stop button on the front
panel, or remotely by sending a command to shut the VI down.

This VI does not report errors. It may send back a response indicating that a command is invalid, but it
does not display a dialog box when an error occurs. Because a server might be unattended, consider
carefully how the server should handle errors. You probably do not want a dialog box to be displayed,
because that requires user interaction at the server (someone would have to press the OK button).
However, you might want LabVIEW to write a log of transactions and errors to a file or a string.

You can increase performance by allowing the connection to stay open, so that you can receive multiple
commands, but this blocks others clients from connecting until the current client disconnects. If the
protocol supports multiple simultaneous connections, you can restructure LabVIEW to handle multiple

clients simultaneously, as shown in the following diagram.

The preceding diagram uses LabVIEWs multitasking capabilities to run two loops simultaneously. One
loop continuously waits for a connection. When a connection is received, it is added to a queue. The other
loop checks each of the open connections and executes any commands that have been received. If an
error occurs on one of the connections, the connection is disconnected. When the user aborts the server,
all open connections are closed. This basic block diagram structure is a model which is used elsewhere in
this discussion to demonstrate how to implement a given protocol in LabVIEW.

Error In and Error Out Clusters
Many of the Communication VIs report errors in clusters, as the following illustration shows.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. The error in cluster contains the following parameters:

status is TRUE if an error occurs. If status is TRUE, this VI does not perform any operations,
and error out contains the same information as error in.

code is the error code. A value of 0 means no error.

source either gives the name of the TCP VI where the error occurs followed by the error
message, or the name of the last TCP VI to execute followed by the no error message if no error
occurs.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces.
If a VI receives an error cluster with a TRUE status flag, the VI passes the error cluster out without
changing it or attempting any of the VIs commands. If you do not wire error in, it defaults to no error.

Named Pipe VIs
Named Pipe VI Descriptions (UNIX)

Transmission Control Protocol VIs
TCP VI Descriptions

User Datagram Protocol VIs
UDP VI Descriptions

Dynamic Data Exchange VIs
DDE VI Descriptions
DDE Server VI Descriptions

Object Linking and Embedding Automation VIs
OLE Automation VI Descriptions

Apple Event VIs
AppleEvents VI Descriptions
LabVIEW Specific AppleEvent VI Descriptions
Low Level AppleEvent VI Descriptions

Program to Program Communication VIs
PPC VI Descriptions

HiQ VIs
HiQ Functions for Macintosh

AppleEvents VI Overview (Macintosh)
Click here to access the AppleEvents VI Descriptions topic.
Click here to access the LabVIEW Specific AppleEvent VI Descriptions topic.
Click here to access the Low Level AppleEvent VI Descriptions topic.

This topic discusses the LabVIEW VIs for interapplication communication (IAC), a feature of Apple
Macintosh system software version 7 by which Macintosh applications can communicate with each other.
You can use LabVIEW with two forms of IAC, AppleEvents and program to program communication
(PPC).

AppleEvents
Sending AppleEvents
General AppleEvent VI Behavior
AppleEvents Client/Server Model
AppleEvents Client Examples
Advanced AppleEvents Topics
AppleEvent Parameter Creation Using Object Specifiers
Object Support VI Example
Sending AppleEvents to LabVIEW from Other Applications

AppleEvents
AppleEvents are a high-level method of communication in which applications use messages to request
other applications to perform actions or return information. An application can send these messages to
itself, other applications on the same machine, or other applications located anywhere on a network.
Apple has defined a large vocabulary for messages to help standardize this form of interapplication
communication. You can combine words in this vocabulary to form very complex messages. This
vocabulary is described in detail in the AppleEvent Registry, a document available from Apple. Most
applications written for System 7, including LabVIEW, respond to some subset of AppleEvents.

Note: PPC, a low-level form of IAC, provides higher performance than AppleEvents, because the
overhead required to transmit information is lower. However, because PPC does not define
what kinds of information you can transfer, many applications do not support it. PPC is the
best way to send large amounts of information between applications that support
PPC.Program to Program Communication VI Overview , for more information about PPC.

For applications to communicate with IAC, the computer must use system software
version 7.0 or greater with Program Linking enabled.

LabVIEW can send and respond to AppleEvents. You can use AppleEvent VIs to send AppleEvents.
LabVIEW responds to two types of AppleEvents: LabVIEW-defined events and a subset of standard
AppleEvents. See the Sending AppleEvents topic for more information.

Some of the ways you can use AppleEvents in LabVIEW applications are listed below:

· You can command LabVIEW to tell another application (even an application on another computer
connected by a network) to perform an action. For example, LabVIEW can tell a spreadsheet
program to create a graph See the Sending AppleEvents topic for more information.

· You can use a program, such as HyperCard as a front end to instruct LabVIEW to run specific
VIs.

· You can communicate with and control LabVIEW applications on other machines connected by a
network by sending them instructions to perform specific operations. See the Sending
AppleEventstopic for more information.

· You can command LabVIEW to send messages to itself, instructing itself to load, run, and unload
specific VIs. For example, in large applications where memory is tight, you can replace subVI calls with a
utility VI (the AESend Open, Run, Close VI) and dynamically load, run, and unload the VIs.See the
Sending AppleEvents topic for more information.

Sending AppleEvents
You can find VIs for sending AppleEvents in Functions»Communication»AppleEvent. With these VIs,
you can select a target application for an AppleEvent, create AppleEvents, and send the AppleEvents to
the target application.

You can find VIs that send specific AppleEvent messages in Functions»Communication
AppleEvent»LabVIEW Specific Apple Event. These VIs let you send several standard AppleEvents
(Open Document, Print Document, and Close Application) and all the LabVIEW custom AppleEvents.
These high-level VIs require little understanding of AppleEvent programming details. These diagrams also
serve as good examples of how to create and send AppleEvents.

You can use the low-level AESend VI if you want to send an AppleEvent for which LabVIEW provides no
VI. The Functions»Communication»AppleEvent»Low Level Apple Events palette also contains VIs
that can help you create an AppleEvent. However, creating and sending an AppleEvent at this level
requires detailed understanding of AppleEvents as described in Inside Macintosh, Volume VI and the
AppleEvent Registry.

General AppleEvent VI Behavior
When sending an AppleEvent, you must specify the target application for the event. To receive the
AppleEvent, the target application must be open. You can use the AESend Finder Open VI to open an
application.

User Identity Dialog Box
Target ID
Send Options

User Identity Dialog Box
Before you send an AppleEvent to another computer, you must use the Users & Groups control panel
utility on the destination computer to set up a user name and password for yourself. The first time you
send an AppleEvent to an application or Finder on the destination computer, a dialog box prompts you to
enter your name and password. The system compares this information to the configuration of the Users &
Groups control panel utility on the destination computer.

The current design of the AppleEvent Manager does not include a programmatic method for bypassing
this dialog box, so you should take this into account when designing VIs that use IAC. For example, you
cannot command an unattended remote computer to send an AppleEvent to a third computer; someone
must enter user information into the User Identity Dialog Box that appears on the remote computer. The
PPC VIs allow for unauthenticated sessions if guest access is enabled on the computer with which you
wish to communicate, so you may find the PPC VIs more useful for certain kinds of LabVIEW-to-LabVIEW
communication.

Target ID
Most VIs that send AppleEvents need a description of the target application that receives the AppleEvent.
The target ID is a complex cluster of information, defined by Apple Computer Inc., describing the target
application and its location. The following VIs generate the target ID, so you do not need to create this
cluster on the block diagram.

· PPC Browser creates the target ID by displaying a dialog box by which you interactively select
AppleEvent-aware applications on the network.

· Get Target ID creates the target ID programmatically based on the applications name and network
location.

These VIs are discussed in more detail in the AppleEvents VI Descriptions topic.

You need to look at the target ID cluster only if you want to pass target information from one VI to
another. To create a target ID cluster for the front panel of a VI that passes target information to another
VI or to an AppleEvent, you can copy the target ID cluster from the front panel of one of the AppleEvent
VIs.

Send Options
Many of the VIs that send an AppleEvent have a send options input, which specifies whether the target
application can interact with the user and the length of the AppleEvent timeout.

send options is a cluster containing the following parameters in the order listed below.

want reply specifies whether you want to receive a reply. The default is TRUE.
TRUE Asynchronously wait for a response from the application until the VI receives a

response or a timeout occurs.
FALSE Send the AppleEvent and do not wait for a reply.

high priority determines whether the AppleEvent is added to the beginning or end of the target
applications event queue. The default is FALSE.

TRUE Put the event at the front of the target application event queue.
FALSE Add the event to the end of the target application event queue.

interaction mode determines the level of user interaction of the target application. The default is
1.

0: (Never Interact) Do not interact with the user.
1: (Allow Interaction) Can interact with the user if the target application needs

information.
2: (Always Interact) Can interact with the user even if the target application does not

need information.

server may come to foreground specifies whether the application can come to the foreground if
it needs user interaction. The default is TRUE.

TRUE Can automatically switch to the foreground.
FALSE Notifies the user by flashing the application icon in the menu bar.

dont try to reconnect determines whether the system should try to reconnect if it is
disconnected. The default is FALSE.

TRUE Do not attempt to reconnect if disconnected.
FALSE Attempt to reconnect if disconnected.

transaction ID is a number associated with a sequence of AppleEvents. If you will be sending
multiple AppleEvents related to a single transaction, use the same number throughout the transaction.
The default is 0.

timeout ticks determines how long in ticks (1/60 of a second) LabVIEW waits for a reply before
timing out if you entered TRUE for want reply. Use a value of 0 if you do not want a timeout. The default
is 600 ticks, or 10 seconds.

AppleEvents Client/Server Model
You cannot use the AppleEvent VIs to create LabVIEW diagrams that behave as servers. The VIs are
used to send messages to other applications. If you need diagram-based server capabilities, you must
use TCP or PPC.

LabVIEW itself acts as an AppleEvent server, in that it understands and responds to a set of AppleEvents.
Specifically, using AppleEvents, you can instruct LabVIEW to open VIs, print them, run them, and close
them. You can ask LabVIEW whether a given VI is running. You can also tell LabVIEW to quit.

Using these server capabilities, you can instruct other LabVIEW applications to run VIs, and control

LabVIEW remotely. You can also command LabVIEW to send messages to itself, instructing the loading
of specific VIs. For example, in large applications where memory is limited, you can replace subVI calls
with calls to the AESend Open, Run, Close VI to load and run VIs as necessary. Notice that when you run
a VI this way its front panel opens, just as if you had selected File»Open....

AppleEvents Client Examples
Launching Other Applications
Sending Events to Other Applications
Dynamically Loading and Running a VI

Launching Other Applications
To send a message to an application, that application must be running. You can use the AESend Finder
Open VI to launch another application. This VI sends a message to the Finder. The Finder is, in itself, an
application that understands a limited number of AppleEvents. The following simple example shows how
you can use AppleEvents to launch Teach Text with a specific text file:

If the application is on a remote computer, then you must specify the location of that computer. You can
use inputs to the AESend Finder Open VI to specify the network zone and the server name of the
computer with which you want to communicate. If the network zone and server name are not specified, as
in the preceding application, they default to those of the current computer.

Notice that if you try to send messages to another computer, you are automatically prompted to log onto
that computer. There is no method for avoiding this prompt, because it is built into the operating system.
This can cause problems when you want your application to run on an unattended computer system.

Sending Events to Other Applications
Once an application is running, you can send messages to that application using other AppleEvents. Not
all applications support AppleEvents, and those that do may not support every published AppleEvent. To
find out which AppleEvents an application supports, consult the documentation that comes with that
application.

If the application understands AppleEvents, you call an AppleEvent VI with the Target ID for the
application. A Target ID is a cluster that describes a target location on the network (zone, server, and
supporting application). You do not need to worry about the exact structure of this cluster because
LabVIEW provides VIs that you can use to generate a Target ID.

There are two ways to create a Target ID. You can use the Get Target ID VI to programmatically create a
Target ID based upon the application name and network location. Or, you can use the PPC Browser VI,
which displays a dialog box listing applications on the network that are aware of AppleEvents. You
interactively select from this list to create a Target ID.

You can also use the PPC Browser VI to find out if another application uses AppleEvents. If you run the VI
and select the computer that is running the application, the dialog box lists the application if it is
AppleEvent aware.

In the following diagram, LabVIEW interactively selects an AppleEvent aware application on the network
and tells it to open a document. In this case, LabVIEW is telling the application to open a VI.

Dynamically Loading and Running a VI
The AESend Open, Run, Close VI sends messages asking LabVIEW to run a VI. First, it sends the Open
Document Message and LabVIEW opens a VI. Then, the Open Run Close VI sends the LabVIEW Run VI
message and LabVIEW runs the specified VI. Next, Open Run Close sends the VI Active? message, and
LabVIEW returns the status of a specified VI, until the VI is no longer running. Finally, the VI sends the
Close VI message.

Assuming the target LabVIEW is on another computer, you could use the following diagram to load and
run the VI. If you are sending it to the current LabVIEW, you do not need the PPC Browser VI.

Advanced AppleEvents Topics
Constructing and Sending Other AppleEvents
Creating AppleEvent Parameters

Constructing and Sending Other AppleEvents
In addition to VIs that send common AppleEvents, you can use lower-level VIs to send any AppleEvent.
Using these VIs requires more knowledge of AppleEvents than using the VIs described earlier in this
chapter. If you are interested in using these VIs, you should be familiar with the discussion of AppleEvents
in Inside Macintosh, Volume VI, and the AppleEvent Registry.

When sending an AppleEvent, you must include several pieces of information. The event class and event
ID identify the AppleEvent you are sending. The event class is a four-letter code which identifies the
AppleEvent group. For example, an event class of core identifies an AppleEvent as belonging to the set of
core AppleEvents. The event ID is another four-letter code that identifies the specific AppleEvent that you
wish to send. For example, odoc is the four-letter code for the Open Documents AppleEvent, one of the
core AppleEvents. To send an AppleEvent using the AESend VI, concatenate the event class and event
ID together as an eight-character string. For example, to send the Open Documents AppleEvent, pass the
AESend VI the eight-character code coreodoc.

If you are sending the AppleEvent to another application, you have to specify target ID and send options
.

You can also specify an array of parameters if the target application needs additional information to
execute the specified AppleEvent. Because the data structure for AppleEvent parameters is inconvenient
for use in LabVIEW diagrams, the AESend VI accepts these parameters as ASCII strings. These strings
must conform to the grammar described in the Creating AppleEvent Parameters . You can use this
grammar to describe any AppleEvent parameter. The AESend VI interprets this string to create the
appropriate data structure for an AppleEvent, and then sends the event to the specified target.

Creating AppleEvent Parameters

In many cases, an AppleEvent parameter is a single value; however, it can be quite complex, with a
hierarchical structure containing components that in turn can contain other components. In LabVIEW, a
parameter is constructed as a string, which has a simple grammar with which you can describe all kinds
of data that an AppleEvent parameter can be, including complex structures.

An AppleEvent parameter string begins with a keyword, a four-letter code describing the parameters
meaning. For example, if the parameter is a direct parameter (one of the most common types of
parameters) you must specify that the keyword is a keyDirectObject by using the four-letter code ---- (four
dashes). Other examples of keywords include savo, short for save options, which is used when sending
the Close VI AppleEvent to LabVIEW. Documentation detailing an applications supported AppleEvents
should indicate the keywords used for each parameter. See the Sending AppleEvents to LabVIEW from
Other Applications topic for a list of the AppleEvents that you can use with LabVIEW.

Following the keyword, you must specify the parameter data as a string. You can use AppleEvents with
many different data types, including strings and numbers. When you specify the data string, the AESend
VI converts it to a desired data type based upon the way the data is formatted and optional directives that
can be embedded in the string. Each piece of data has a four-letter type code associated with it,
indicating its data type. The target application uses this code to interpret the data. For example, if comma-
separated items are enclosed in brackets, a list of AE Descriptors is created, and the list has a data type
of list; each of the comma-separated items could in turn be other items, including lists.

You can use a number of VIs in the AppleEvents VI palette to create some of the more common
parameter strings, including aliases, which are used when referencing files in parameters, and descriptor
lists, which are used to specify a list of items as a parameter. You can concatenate or cascade these
strings together to create a more complex parameter.

Table 6-1 describes the format of AppleEvent descriptor strings and indicates VIs that can create the
descriptor, where appropriate.

AppleEvent Descriptor String Formats Table

To send
data as

Format the string as Parameter
is of code
type:

Examples VI that can
construct
string:

an integer A series of decimal digits,
optionally preceded by a
minus sign.

long or shor 1234
-5678

n/a

enumerate
d data

A four-letter code.
If it is too long, it is
truncated; if it is too short,
it is padded with spaces.
If you put single quotes ()
around it, it can contain
any characters;
otherwise, it cannot
contain:
@    : - , ([{ }]) and
cannot begin with a digit.

enum whos
@all
long
>=
86it

n/a

a string Enclose the desired
sequence of characters
within open and close
curly quotes (Òentered
with option-[andÓ entered

TEXT Òput x
into card
field 5Ó
ÒHi

n/a

with option-shift-[). Notice
that the string is not null-
terminated.

ThereÓ

an AE
record

Enclose a comma-
separated list of elements
in curly braces, where
each element consists of
a keyword (a typecode)
followed by a colon,
followed by a value,
which can be any of the
types listed in this table.

reco {x:100,
y:-100}
{origin:
{x:100,
y:-100},
extent:
{x:500,
y:500},
cont:
[1,5,25]}

AECreate
Record

an AE
descriptor
list

Enclose a comma-
separated list of
descriptors in square
brackets.

list [123, -58,
ÒtestÓ]

AECreate
Descriptor List

hex data Enclose an even number
of hex digits between
French quotes (Çentered
with option-\ andÈ
entered with option-shift-
\).

?? (must be
coerced Ð
see next
item)

Ç01 57 64
fe AB C1È

(Hex data is a
component of
the string
produced by
Make Alias)

some other
data type

Embed data created in
one of the types of this
table in parentheses and
put the desired type code
before it. If the data is a
numeric, LabVIEW
coerces the data to the
specified type if possible
and returns the
errAECoercionFail error
code if it cannot. If the
data is of a different type,
LabVIEW replaces the
old typecode with the
specified type code.

The
specified
type code

sing(1234
)
alis(Çhex
dump of
an aliasÈ)

type(line)
rang{star:
5, stop: 6}

n/a
Make Alias
creates a hex
dump of a file
description.

n/a
n/a

null data Coerce an empty string to
no type.

null () n/a

AppleEvent Parameter Creation Using Object Specifiers
Apple has created a high-level interface for creating AppleEvents called the Object Support Library. This
interface is actually layered on top of the AppleEvent parameter data structures described in the Creating
AppleEvent Parameters topic. This interface helps create common types of parameters, including range

specifications. LabVIEW object support VIs are located on the Low Level Apple Events palette.

Object Support VI Example
The following example creates an AppleEvent parameter using the object support VIs. This example
creates an AppleEvent parameter to be sent to a word processor, asking the word processor to return the
first line of a specified document whose first word is April and whose second word is is.

The following string that the previous diagram creates is quite complicated; tabs are added to make the
string easier to read. For further information about the Object Support Library consult the AppleEvent
Registry.

obj {

want: type(line),

from: obj {

want: type(line),

from: Doc Name,

form: test,

seld: logi {

term: [

cmpd{

relo:=,

obj1:April,

obj2:obj {

want: type(word),

from: exmn(),

form: indx,

seld: 1

}

},

cmpd{

relo:=,

obj1:is,

obj2:obj {

want: type(word),

from: exmn(),

form: indx,

seld: 2

}

}

],

logc: AND

}

},

form: indx,

seld: 1

}

Sending AppleEvents to LabVIEW from Other Applications
LabVIEW responds to required AppleEvents, which Apple expects all System 7 applications to support,
and to LabVIEW specific AppleEvents, designed specifically for LabVIEW. Both categories are described
in the following topics.

Required AppleEvents
LabVIEW Specific AppleEvents
Replies to AppleEvents

LabVIEW Specific AppleEvents
LabVIEW also responds to the LabVIEW specific AppleEvents Run VI, Abort VI, VI Active?, and Close VI.
With these events and the Open Documents AppleEvent, you can use other applications to
programmatically tell LabVIEW to open a VI, run it, and close it when it is finished. A thorough
understanding of AppleEvents, as described in Inside Macintosh, Volume VI, and the AppleEvent Registry
is a prerequisite for sending these AppleEvents to LabVIEW from other applications. You can send these
events between two or more LabVIEW applications by using the utility VIs described in the Sending
AppleEvents topic.

The LabVIEW specific AppleEvents are described in later topics, in a format similar to that used in the
AppleEvent Registry.

Replies to AppleEvents

If LabVIEW is unable to perform an AppleEvent, the reply contains an error code. If the error is not a
standard AppleEvent error, the reply also contains a string describing the error. The LabVIEW Specific
Error Codes for AppleEvent Messages summarizes the LabVIEW specific errors that can be returned in a
reply to an AppleEvent.

Event: Run VI
Event: Abort VI
Event: VI Active?
Event: Close VI

Event: Run VI

Description
Tells LabVIEW to run the specified VI(s). Before executing this event, the LabVIEW application
must be running, and the VI must be open (you can open the VI using the Open Documents
AppleEvent).

Event Class
LBVW (Custom events use the Applications creator type for the

event class)

Event ID
GoVI ----

Event Parameters
Description Keyword Default Type
VI or List of VIs keyDirectObject(----)typeChar (char)

(required) or list
of typeChar (list)

Reply Parameters
Description Keyword Default Type
none

Possible Errors
Error Value Description
kLVE_InvalidState 1000 The VI is in a state that does

not allow it to run.

kLVE_FPNotOpen 1001 The VI front panel is not open.

kLVE_CtrlErr 1002 The VI has controls on its front
panel that are in an error state.

kLVE_VIBad 1003 The VI is broken.

kLVE_NotInMem 1004 The VI is not in memory.

Event: Abort VI

Description
Tells LabVIEW to abort the specified VI(s). Before executing this event, the LabVIEW application
must be running, and the VI must be open (you can open the VI using the Open Documents

AppleEvent). This message can only be sent to VIs that are executed from the top-level (subVIs
are aborted only if the calling VI is aborted).

Event Class
LBVW (Custom events use the Applications creator type for the

event class)

Event ID
RsVI

Event Parameters
Description Keyword Default Type
VI or List of VIs keyDirectObject (----) typeChar (char)

(required) or list
of typeChar (list)

Reply Parameters
Description Required? Keyword Default Type
none

Possible Errors
Error Value Description
kLVE_InvalidState 1000 The VI is in a state that does

not allow it to run.

kLVE_FPNotOpen 1001 The VI front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.

Event: VI Active?

Description
Requests information on whether a specific VI is currently running. Before executing this event, the
LabVIEW application must be running, and the VI must be open (you can open the VI using the Open
Documents AppleEvent). The reply indicates whether the VI is currently running.

Event Class
LBVW (Custom events use the Applications creator type for the

event class)

Event ID
VIAc

Event Parameters
Description Keyword Default Type
VI Name keyDirectObject (----) typeChar (char)
(required)

Reply Parameters
Description Required? Keyword Default Type
Active? keyDirectObject (----) typeBoolean (required)

(bool)

Possible Errors
Error Value Description
kAEvtErrFPNotOpen 1001 The VIs front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.

Event: Close VI

Description
Tells LabVIEW to close the specified VI(s). Before executing this event, the LabVIEW application must be
running, and the VI must be open (you can open the VI using the Open Documents AppleEvent).

Event Class
LBVW (Custom events use the Applications creator type for the

event class)

Event ID
ClVI

Event Parameters
Description Keyword Default Type
VI or List of VIs keyDirectObject (----) typeChar (char)

(required) or list of
typeChar (list)

Save Options keyAESaveOptions (savo) typeEnum (enum)
(not required) possible values:

yes and no

Reply Parameters
Description Keyword Default Type
none

Possible Errors
Error Value Description
kAEvtErrFPNotOpen 1001 The VIs front panel is not open.

kLVE_NotInMem 1004 The VI is not in memory.

cancelError         43 The user cancelled the close
operation.

AppleEvents VI Descriptions
Click here to access the AppleEvents VI Overview (Macintosh) topic.

The following illustration shows the AppleEvents VI palette, which you access by selecting
Functions»Communication»AppleEvent.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

AESend Do Script
AESend Finder Open
AESend Open
AESend Open Document
AESend Print Document
AESend Quit Application
Get Target ID
PPC Browser

Subpalette Descriptions
LabVIEW Specific AppleEvent VI Descriptions
Low Level AppleEvent VI Descriptions

For examples of how to use the AppleEvent VIs, see the examples located in examples\comm\AE
Examples.llb.

AESend Do Script
Sends the Do Script AppleEvent to a specified target application.

Script is a string containing instructions that the target application understands. It is typically in a
language specific to the target application. An example of an application with a script language is Claris
HyperCard.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Finder Open
Sends the AppleEvent to open specified applications or documents to the System 7 Finder on the

specified machine.

Full path of folder containing files describes the location of the folder that contains the files for
the Finder to open. This string must end in a colon (:).

file names is an array containing the names of the files in the folder described by Full path of
folder containing files. The Finder opens these files.

Zone containing Finder describes the AppleTalk zone where the target Finder resides. If this
string is empty, this VI assumes that the zone is the same as that of the host Macintosh.

Server containing Finder describes the name of the Macintosh where the target Finder resides.
If this string is empty, this VI assumes that the server is the host computer Finder.

send options is a cluster that specifies whether the Finder can interact with the user and the
length of the AppleEvent timeout. See the Send Options topic for a discussion of the send options
parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.
Note: Apple may change the set of AppleEvents to which the Finder responds so that they

more closely conform to the standard set of AppleEvents. As a result, the AppleEvent
that AESend Finder Open sends to the Finder may not be supported in future versions
of the system software.

AESend Open
Sends the Open AppleEvent to a specified target application.

object specifier specifies the object that LabVIEW opens in the target application.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Open Document
Sends the Open Document AppleEvent to the specified target application, telling the application to open
the specified document.

full pathname of document describes the location of the document that the application opens.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

zone containing document describes the location of the document that the application opens.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, AESend Open Document assumes the document is on the
host computer.

server containing document describes the location of the document that the application opens.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, AESend Open Document assumes the document is on the
host computer.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Print Document
Sends the Print Document AppleEvent to the specified target application, telling the application to print
the specified document.

full pathname of document describes the location of the document that the application prints.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

zone containing document describes the location of the document that the application prints.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, the Print Documents AppleEvent assumes the document is
on the host computer.

server containing document describes the location of the document that the application prints.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, the Print Documents AppleEvent assumes the document is
on the host computer.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Quit Application
Sends the Quit Application AppleEvent to a specified target application.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

Get Target ID
Returns a target ID for a specified application based on its name and location. You can either specify the
applications name and location or the VI searches the entire network for the application.

App/port name is the name of the application for which you want the target ID. This parameter
must exactly match the name of the application.

Search entire network determines whether the VI searches the entire network for the specified
application. See the table in this topic for a further discussion of search options.

Zone specifies the target computerÕs zone that the VI searches. See the table in this topic for a
further discussion of search options.

Server specifies the server that the VI searches. See the table in this topic for a further
discussion of search options.

first target ID contains the target ID of the first application found whose name matches App/port
name.

total targets is the total number of applications that the VI finds whose names match App/port
name.

all targets contains an array of the target IDs of all matching applications.

error is non-zero only if something goes wrong during the search. Finding zero targets is not
necessarily an error if there are no applications with the specified name running and available on the
network. See the AppleEvent Error Codes topic for more information.
The following table summarizes the operation of Search entire network, Zone, and Server:

To search the
following locations:

Use the following parameters:

 The current
computer

Zone and Server must be unwired. Search entire network
must be FALSE.

A specific computer
on the network

Zone and Server must specify the target computerÕs zone
and server. (If you do not wire Zone, the VI searches the
current zone.) Search entire network must be FALSE.

A specific zone Zone must specify the zone to be searched. Server must
be unwired. Search entire network must be FALSE.

The entire network Search entire network must be TRUE. The VI ignores
Zone and Server.

PPC Browser
Invokes the PPC Browser dialog box for selecting an application on a network or on the same computer

location NBP type determines which computers on the network LabVIEW displays in the dialog
box. If this string is empty (default), only computers with applications using the PPC Toolbox appear in the
dialog box.

prompt is the message that LabVIEW displays in the dialog box. If this string is empty (default),
Choose a program to link to: appears in the dialog box.
You can use this standard Macintosh dialog box to select a zone from the network, an object in that zone
(in System 7, this is typically the name of a persons computer), and an application. The VI then returns
the target ID cluster.

Application list label is the title that appears for the list of PPC ports. If this string is empty
(default), the title Programs appears.

default specified determines whether LabVIEW uses the default target ID parameter.

default target ID identifies and highlights the target that PPC Browser attempts to find.

target ID is a cluster that the VI returns after you make selections from the dialog box. See the
Target ID topic for a further description of this cluster.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. error 128 signifies that the user cancelled the dialog box. See the AppleEvent Error
Codes topic for more information.

LabVIEW Specific AppleEvent VI Descriptions
LabVIEW specific AppleEvent VIs send messages that only LabVIEW applications (standard and run-time
systems) recognize. You can access the LabVIEW Specific AppleEvents VIs by selecting
Functions»Communication»LabVIEW Specific AppleEvents.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

AESend Abort
AESend Close
AESend Open, Run, Close
AESend Run
AESend VI Active?

You should use these VIs only when communicating with LabVIEW applications. You can send these
messages either to the current LabVIEW application or to a LabVIEW application on a network. See the
AppleEvent Error Codes topic for more information.

AESend Abort
Sends the Abort VI AppleEvent to the specified target LabVIEW application.

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can
open the VI by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal
to the CIN that generated it. If error is 1000 the target VI is not running. See the AppleEvent Error
Codes topic for more information.

AESend Close
Sends the Close VI AppleEvent to the specified target LabVIEW application.

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can

open the VI by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

save options is an integer value that determines what the target LabVIEW should do if the VI
has been modified. If save options has a value of 0, the target LabVIEW prompts for a save. If save
options has a value of 1, the target LabVIEW saves the VI (if modified) without a prompt. If save options
has a value of 2, the target LabVIEW does not save the VI.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Open, Run, Close
Uses the Open Document, Run VI, VI Active?, and Close VI AppleEvent VIs to make a specified
LabVIEW application open, run, and close a VI.

For this VI, you must specify the complete pathname of the VI you want to run. See Path Controls and
Refnums, for a description of path controls and indicators available in the Controls palette.

Full pathname of VI describes the full path of the VI that LabVIEW opens, runs, and closes.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Run
Sends the Run VI AppleEvent to the target LabVIEW application.

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can
open it by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend VI Active?
Sends the VI Active? AppleEvent to the specified target LabVIEW application. VI running? is a Boolean
indicating whether the VI is currently executing.

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can
open the VI by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

VI running? is TRUE if the specified VI is currently running as a top level VI.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

Low Level AppleEvent VI Descriptions
Click here to select the AppleEvents VI Overview (Macintosh) topic.

You can use the VIs in this topic to construct AppleEvent parameters and send the AppleEvent. The high-
level VIs for sending AppleEvents, described earlier in this chapter, are based on the AESend VI, and are
good examples of creating AppleEvents and their parameters.

You can access the Low Level Apple Events palette, by selecting Functions» Communication»Low
Level Apple Events.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

AECreate Comp Descriptor
AECreate Descriptor List
AECreate Logical Descriptor
AECreate Object Specifier
AECreate Range Descriptor
AECreate Record
AESend
Make Alias

AECreate Comp Descriptor
Creates a string describing an AppleEvent comparison record, which specifies how to compare
AppleEvent objects with another AppleEvent object or a descriptor record.

For example, you can use the output comparison descriptor string as an argument to the AESend VI, or
as an argument to AECreate Object Specifier to build a more complex descriptor string. See the Object
Support VI Example topic for an example of its use.

comparison operator is a descriptor type string that describes the comparison operation to
perform on the operands. The standard set of comparisons are:

> kAEGreaterThanThe value of operand1 is greater than the value of operand 2.
>= kAEGreaterThanEqualsThe value of operand1 is greater than or equal to the value of

operand 2.
= kAEEqualsThe value of operand 1 is equal to the value of operand 2.
< kAELessThanÐThe value of operand 1 is less than the value of operand 2.
<= kAELessThanEqualsThe value of operand1 is less than or equal to the value of operand 2.
bgwt kAEBeginsWithThe value of operand 1 begins with the value of operand 2 (for

example, the string operand begins with the string opera).
ends kAEEndsWithThe value of operand1 ends with the value of operand 2. For example, the

string operand ends with the string and.
cont kAEContainsThe value of operand1 contains the value of operand 2. For example, the

string operand contains the string era.

operand 1 is an AppleEvent object specifier descriptor string. It specifies the first object in the
comparison to perform.

operand 2 is an AppleEvent record descriptor string. It can be an object specifier descriptor string
or any other record descriptor string with a value to compare to the value of operand 1.

comparison descriptor is the AppleEvent descriptor string.

AECreate Descriptor List
Creates a string describing a list of AppleEvent descriptors, which you can then use with the AESend VI.
You commonly use Descriptor lists when you create the operands for a logical descriptor.

Array of AE Descriptors should contain AppleEvent descriptor strings, such as those output by
the AECreateÉ series of AppleEvent VIs.

AE Descriptor List is an AppleEvent descriptor string with the correct syntax for a list of all the
descriptors from the Array of AE Descriptors input array.

AECreate Logical Descriptor
Creates a string describing an AppleEvent logical descriptor, which you use with the AESend VI.

AppleEvent logical records describe logical, or Boolean expressions of multiple terms, such as the AND of
two AppleEvent comparison records. For example, you can use the output logical descriptor string as an
argument to the AESend VI, or as an argument to AECreate Object Specifier VI to build a more complex
descriptor string. See the Object Support VI Example topic for an example of its use.

logical operator is a string describing the logical operation. The possible values are AND, OR,
and NOT.

logical terms is an AppleEvent list descriptor string, such as the output by the AECreate
Descriptor List VI. If the value of logical operator is AND or OR, this list can have any number of elements.
If the value of logical operator is NOT, this list has only a single element.

logical descriptor is an AppleEvent descriptor string created from the inputs.

AECreate Object Specifier
Creates a string describing an AppleEvent object, which you use with the AESend VI.

An object specifier is an AppleEvent record whose type is obj and describes a specific object. It has four
elements: the class of the object, the containing object, a code indicating the form of the description, and
the description of the object.

class ID is a string that describes the class of the specified object. Examples of such strings are:
ccel for class Cell, ccol for class Column, and ctbl for class Table (from the Table Suite of
AppleEvents); and cDB for the class DataBase (from the DataBase Suite of AppleEvents).

container is an AppleEvent object specifier descriptor string that describes the containing object

of the specified object. It should be another object specifier that this VI creates. If this string is left empty
(the default value), the NULL object specifier is the container, and signifies the target application, which is
the outermost container of any object specifier

key form ID is a string describing the form of the key data. It tells how to interpret the key data.
The standard key forms are:

prop FormPropertyID means that the key data is the name of a property.
name FormName means that the key data is the name of the object.
ID FormUniqueID means that the key data is a unique identifier for the object.
indx FormAbsolutePosition means that the key data is a descriptor string for either a

positive integer, indicating the offset of the requested element from the beginning of the
container, or a negative integer, indicating its offset from the end of the container. The key
data can also be a descriptor string for an absolute ordinal (type abso) with one of the
following values: firs, last, midd, any, or all.

rele FormRelativePosition means the key data is a descriptor string for a relative
position (type enum) with a value of next or prev.

test FormTest means the key data is a descriptor string for either a comparison record or a
logical record (as created by either the AECreate Comp Descriptor VI or the AECreate Logical
Descriptor VI).

rang FormRange means the key data is a descriptor string for a range descriptor record (as
created by the AECreate Range Descriptor VI.)

key data is a string describing the object. The value of the key form ID parameter determines its
value.

Object specifier is the output descriptor string that the given inputs create. You can use it as the
input for calls to the AECreate Object Specifier VI or anywhere that requires an object specifier.

AECreate Range Descriptor
Creates a string describing an AppleEvent range descriptor record, which you use with the AESend VI.

Range descriptor records are used in object specifiers whose key form is formRange (rang). They
describe a range of objects with two object specifiers: the start and the end of the range

range start is an object specifier descriptor string that describes the beginning of the range.

range stop is a object specifier descriptor string that describes the end of the range.

range descriptor is the output descriptor string that the given inputs create.

AECreate Record
Creates a string describing an AppleEvent descriptor record, which can then be used with the AESend VI.
You can use a record descriptor to bundle descriptors of different types. Each descriptor has its own
keyword, or name, and value

type is a descriptor type string that describes the type of the AppleEvent record descriptor. Only
the first four characters are significant, however it is acceptable to have more or less than four characters.

keywords and values is an array of clusters containing the strings that describe the elements of
the record being created.

keywords is a descriptor type string that is the name of the record element. Only the first four
characters are significant.

values is an AppleEvent descriptor string that is the value of the record element. It can be any
descriptor string, such as those output by the AECreateÉ series of AppleEvent VIs.

AE Record is an AppleEvent record descriptor string created from the inputs. Other VIs requiring
an AppleEvent descriptor string input can use this string.

AESend
Sends an AppleEvent specified in parameters to the specified target application.

requested reply parameters is an array of strings containing a description of the reply
parameters you want. Each element should be an eight character string. The first four characters
constitute the keyword for the reply parameter. For example, ---- as a keyword specifies the direct object,
or default parameter. The second four characters are the type of the parameter. For example, bool means
the parameter is Boolean (TRUE or FALSE).

Event Class and ID is an eight character string containing two four character substrings. The first
four characters specify the event class. For example, you can use aevt for the Required Suite, or core for
the Core Suite. The second four characters specify the event ID. For example, you can use odoc for
Open Document, or quit for Quit.

parameters is an array of AppleEvent descriptor strings for the arguments sent in the
AppleEvent. The first four characters of each string are the keyword for the parameter. For example, the
primary argument is called the direct object and always has the four character keyword ----. The
descriptor string for that parameter follows the first four characters.

target ID describes the application to which the AppleEvent is being sent. See the Target ID topic
for a further description of this cluster.

send options is a cluster describing options available for sending the AppleEvent. The most
important option is the Want reply option. If this Boolean is TRUE, then the AESend VI waits to receive a
reply from the target application. See the Send Options topic for a further description of send options
cluster.

reply parameters is an output array of strings that corresponds to the input requested reply
parameters. Each string in this array is a descriptor string for the reply parameter sent back by the target
application.

error string usually gives a more meaningful description of errors that occur when you send the
AppleEvent.

error is the error number of any error that occurs when you send the AppleEvent. Errors that
occur when a parameter is incorrectly specified, have corresponding error codes in the 12346 to 12364
range. In this case, the error string describes in more detail what was wrong with the parameter. Errors in
the range -1700 to -1732 indicate that something went wrong in the creation, sending or receiving of the
AppleEvent. This can indicate a problem either in LabVIEW or in the target application. Errors in the
range -900 to -932 indicate that something went wrong at the AppleEvent transport layer, the PPC
Toolbox. This means the connection could not be established between LabVIEW and the target
application.

Make Alias
Creates a unique description of a file from its pathname and location on the network. You can use this
description with the AESend VI when sending an AppleEvent that refers to a file.

An alias is a data structure used by the Macintosh toolbox to describe file system objects (files, directories
and volumes). Do not confuse this with a FinderTM alias file. A minimal alias contains a full path name to
the file and possibly the zone and server that the file resides on. A full alias contains more information,
such as creation date, file type, and creator. (The complete description of the structure of an alias is
confidential to Apple Computer.) Aliases are the most common way to specify a file system object as a
parameter to an AppleEvent.

Files full pathname describes the file or folder. It includes any information about where the file or
folder resides on the network.

Zone is the AppleTalk zone where the server machine resides. If Server name is empty this string
is unused.

Server name is the name of the machine where the file or folder resides

alias kind describes the alias. The possible values are:
0: Minimal alias. Uses Zone and Server. You cannot use it in an AppleEvent sent to the FinderTM.

The VI creates the alias from scratch, and does not check to see whether the file actually
exists or is accessible from the desktop. It must have a volume name with a colon following it.

1: Full alias. Ignores Zone and Server. You can use it in AppleEvents sent to any application,
including the FinderTM. The VI creates this alias from scratch. If the file does not exist or is not
accessible from the desktop, it returns an error.

2: From FinderTM alias file. Ignores Zone and Server. You can use it in AppleEvents sent to any
application, including the FinderTM. Files full pathname specifies a FinderTM alias file that points
to the specific file. FinderTM alias files contain full aliases, and does not check to see whether
the file actually exists or is accessible from the desktop. The VI copies the contents of the
alias file to create the output alias.

Alias is the AppleEvent descriptor string.

error describes any errors that occur.

Get Target ID VI
Get Target ID

PPC Browser VI
PPC Browser

AESend Do Script VI
AESend Do Script

AESend    Finder Open VI
AESend Finder Open

AESend Open VI
AESend Open

AESend Open Document VI
AESend Open Document

AESend Print Document VI
AESend Print Document

AESend Quit Application VI
AESend Quit Application

LabVIEW Specific AppleEvent Subpalette
LabVIEW Specific AppleEvent VI Descriptions

Low Level Apple Events Subpalette

Low Level AppleEvent VI Descriptions

AESend Abort VI
AESend Abort

AESend Close VI
AESend Close

AESend Open, Run, Close VI
AESend Open, Run, Close

AESend Run VI
AESend Run

AESend VI Active? VI
AESend VI Active?

Advanced Topics
Constructing and Sending Other AppleEvents
Creating AppleEvent Parameters

AESend VI
AESend

Make Alias VI
Make Alias

AECreate Comp Descriptor VI
AECreate Comp Descriptor

AECreate Logical Descriptor VI
AECreate Logical Descriptor

AECreate Object Specifier VI
AECreate Object Specifier

AECreate Range Descriptor VI
AECreate Range Descriptor

AECreate Descriptor List VI
AECreate Descriptor List

AECreate Record VI
AECreate Record

Low Level AppleEvent Subpalette
Low Level AppleEvent VI Descriptions

Required AppleEvents
LabVIEW responds to the required AppleEvents, which are Open Application, Open Documents, Print
Documents, and Quit Application. These events are described in Inside Macintosh, Volume VI.

Program to Program Communication VI Overview
This topic describes the LabVIEW VIs for Program to Program Communication (PPC), a low-level form of
Apple IAC by which Macintosh applications send and receive blocks of data.

Click here to access the PPC VI Descriptions topic.

Introduction to PPC
General PPC Behavior
Ports, Targets, IDs, and Sessions
PPC Client Example
PPC Server Example

Introduction to PPC
Program to Program Communication (PPC) is a high performance protocol for transferring blocks of data
between applications. You can use it to create VIs that act as clients or servers. Although supported by all
Macintoshes running System 7.x, it is not commonly used by most Macintosh applications. Instead, most
Macintosh applications use AppleEvents, for sending commands between applications, to communicate.

LabVIEW VIs can use PPC to send and receive large amounts of information between applications on the
same computer or different computers on a network. For two applications to communicate with PPC, they
must both be running and prepared to send or receive information. To launch an application remotely, you
can use the AESend Finder Open VI.

Although PPC is not as commonly supported as AppleEvents, it does provide some advantages. PPC is a
higher performance protocol than AppleEvents because PPC requires less overhead to transmit
information. Also, in LabVIEW you can create VIs that use PPC to act as clients or servers. You cannot
create diagrams that act as AppleEvent servers. However, because PPC does not define the form or
meaning of information that it transfers, it is more complicated to use.

PPC is similar in structure to TCP, in terms of both server and client applications. The PPC method for
specifying a remote application is different from the TCP method. Other than that, the two protocols
provide similar performance and features. Both protocols handle queueing and reliable transmission of
data. You can use both protocols with multiple open connections.

In deciding between TCP and PPC, the main point to consider is which platforms you plan to run your VIs
on, and with which platforms you can communicate. If your application is Macintosh only, PPC is a good
choice, because it is built into the operating system. TCP is built into Macintosh operating system version
7.5. To use TCP with an earlier system you must buy a separate TCP/IP driver from Apple. If buying the
separate driver is not an issue, then you may want to use TCP, because the TCP interface is simpler than
PPC. PPC uses some fairly complicated data structures to describe addresses.

If your application must communicate with other platforms or run on other platforms, then you should use
TCP/IP.

General PPC Behavior
To communicate using PPC, each application must open a named port, over which communication
sessions are established, as shown in the following figure. The application that requests communication is
the client; and the application with which the client communicates is the server. The server application
makes its availability known by issuing a PPC Inform Session operation. The client requests a session
with the server application, which can either accept or reject the request. If the server application accepts
the request, then the system establishes a session and the two applications can send and receive blocks
of information between them. When the applications finish communicating, you should end the session.
You may also want to close the port if you do not want to establish more sessions with that port.

You use the PPC Open Port VI to open a port for communication. PPC Open Port returns a port reference
number, which you use in subsequent operations relating to that port. You can have multiple ports open
simultaneously, as long as they each have a different name. Each port can support multiple sessions.

You can initiate a session using the PPC Start Session VI. You pass PPC Start Session a target ID and
the port reference number through which you want to communicate. If the target application accepts the
session, PPC Start Session returns a session reference number, which you use in subsequent
communication for that session. PPC Start Session also incorporates an authentication (password)
mechanism.

To receive session requests, use the PPC Inform Session VI. You can configure this VI to accept all
requests automatically, or you can decide whether to accept or reject the request based on the
information about the requesting application that this VI returns. You should accept or reject the request
using the PPC Accept Session VI immediately, because the other computer waits (hangs) until you accept
or reject its attempt to initiate a session, or until an error occurs.

When a session is established, you can use the PPC Write and PPC Read VIs to communicate with the
other application. When you are finished with a session, you should execute the PPC End Session VI and
close the port using the PPC Close Port VI.

Ports, Target IDs, and Sessions
To communicate using PPC, both clients and servers must open ports that they use for subsequent
communication. The Open Port VI opens the port using a cluster that contains, among other things, the
name that you want to use for the port.

Ports are used to distinguish between different services that an application provides. Each application can
have multiple ports open simultaneously.

Each port can support several simultaneous sessions or conversations. To open a session, a client uses a
Target ID indicating the location of the server. PPC uses the same type of Target ID that the AppleEvent
VIs use. You can use the PPC Browser or the Get Target ID VIs to generate the Target ID for the remote

application.

A server waits for clients to attempt to open a session by using the PPC Inform Session VI. The server
can accept or reject the session by using the PPC Accept Session VI.

A client can attempt to open a session with a server by using the PPC Start Session VI.

After the session is started, you can use the PPC Read and PPC Write VIs to transfer data. You can close
a session using PPC End Session, and you can close a port using the PPC Close Port VI.

PPC Client Example
PPC Server Example

PPC Client Example
The following discussion explains how you can use PPC to fulfill each component of the general Client
model.

Use the PPC Open Connection and PPC Open Session VIs to open a connection to a server.
This requires that you specify the Target ID of the server, which you can get by using either the PPC
Browser VI or the Get Target ID VI. The end result is a port refnum and a session refnum, which are used
to communicate with the server.

To execute a command on the server, use the PPC Write VI to send the command to the server.
Next, use the PPC Read VI to read the results from the server. With the PPC Read VI, you must specify
the number of characters you want to read. As with TCP, this can be awkward, because the length of the
response can vary. The server can have a similar problem, because the length of a command may vary.
Following are several methods for addressing the problem of varying sized commands. These methods
can also be used with TCP.

· Precede the command and the result with a fixed size parameter that specifies the size of the
command or result. In this case, read the size parameter, and then read the number of characters
specified by the size. This option is efficient and flexible.

· Make each command and result a fixed size. When a command is smaller than the size, you can pad
it out to the fixed size.

· Follow each command and result with a specific terminating character. To read the data, you then
need to read data in small chunks until you get the terminating character.

Use the PPC Close Session and PPC Close Connection VIs to close the connection to the server.

PPC Server Example
The following discussion explains how you can use PPC to fulfill each component of the general Server:

Use PPC Open Port in the initialization phase to open a communication port.

Use the PPC Inform Session VI to wait for a connection. With PPC, you can either automatically
accept incoming connections, or you can choose to accept or reject the session by using the PPC Accept
Session VI. This process of waiting for a session and then approving the session allows you to screen
connections.

When a connection is established, you can read from that session to retrieve a command. As was

discussed in the PPC Client Example topic, you must decide the format for commands. If commands are
preceded by a length field, then you need to first read the length field, and then read that amount of data.

Execution of a command should be protocol independent, because it is something done on the
local computer. When finished, you pass the results to the next stage, where they are transmitted to the
client.

Use the PPC Write VI to return the result. As discussed in the PPC Client Example topic, the data
must be formatted in a form that the client can accept.

Use the PPC Close Session VI to close the connection.

Finally, when the server is finished, Use the PPC Close Port VI to close the port that you opened
in the initialization phase.

PPC Server with Multiple Connections
PPC handles multiple sessions and multiple ports easily. The methods for implementing each component
of a server, as described in the preceding topic, also work for a server with multiple connections.

PPC VI Descriptions
Click here to access the Program to Program Communication VI Overview topic.

The following illustration shows the PPC VI palette, which you access by selecting
Functions»Communication»PPC.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Close All PPC Ports
Get Target ID
PPC Accept Session
PPC Browser
PPC Close Port
PPC End Session
PPC Inform Session
PPC Open Port
PPC Read
PPC Start Session
PPC Write

For examples of how to use the PPC VIs, see the examples located in examples\comm\PPC
Examples.llb.

Close All PPC Ports
Closes all the PPC ports that the PPC Open Port VI opened.

Closing a port terminates all outstanding calls associated with the port with a portClosedErr (error -916).

You can use the Close All PPC Ports to handle abnormal conditions that leave ports open. An example of
an abnormal condition is when a VI is aborted before it can terminate normally and close the PPC port.
You can use the Close All PPC Ports VI during VI development, when such mistakes are more likely to be
made, or as a precaution at the beginning of any program that opens ports.

Close All (true) if TRUE closes all the ports that the PPC Open Port VI opened.

Get Target ID
Returns a target ID for a specified application based on its name and location. You can either specify the
application's name and location or the VI searches the entire network for the application.

App/port name is the name of the application for which you want the target ID. This parameter
must exactly match the name of the application.

Search entire network determines whether the VI searches the entire network for the specified
application. See the table in this topic for a further discussion of search options.

Zone specifies the target computerÕs zone that the VI searches. See the table in this topic for a
further discussion of search options.

Server specifies the server that the VI searches. See the table in this topic for a further
discussion of search options.

first target ID contains the target ID of the first application found whose name matches App/port
name.

total targets is the total number of applications that the VI finds whose names match App/port
name.

all targets contains an array of the target IDs of all matching applications.

error is non-zero only if something goes wrong during the search. Finding zero targets is not
necessarily an error if there are no applications with the specified name running and available on the
network. See the AppleEvent Error Codes topic for more information.
The following table summarizes the operation of Search entire network, Zone, and Server:

To search the
following locations:

Use the following parameters:

 The current
computer

Zone and Server must be unwired. Search entire network
must be FALSE.

A specific computer
on the network

Zone and Server must specify the target computerÕs zone
and server. (If you do not wire Zone, the VI searches the
current zone.) Search entire network must be FALSE.

A specific zone Zone must specify the zone to be searched. Server must
be unwired. Search entire network must be FALSE.

The entire network Search entire network must be TRUE. The VI ignores
Zone and Server.

PPC Accept Session
Accepts or rejects a PPC session request based on the Boolean accept?.

You should accept or reject the request using the PPC Accept Session VI immediately, because the other
computer waits (hangs) until the VI accepts or rejects its attempt to initiate a session or an error occurs.

session refnum is a session reference number, which you use in subsequent communication for
this session.

accept? (T) determines whether the VI accepts or rejects a PPC session.

reject info contains an application-defined value you return if you reject a session.

session refnum output is the same value as session refnum if accept? is TRUE. Otherwise,
the value of session refnum output is 0.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Browser
Invokes the PPC Browser dialog box for selecting an application on a network or on the same computer

location NBP type determines which computers on the network LabVIEW displays in the dialog
box. If this string is empty (default), only computers with applications using the PPC Toolbox appear in the
dialog box.

prompt is the message that LabVIEW displays in the dialog box. If this string is empty (default),
Choose a program to link to: appears in the dialog box.
You can use this standard Macintosh dialog box to select a zone from the network, an object in that zone
(in System 7, this is typically the name of a person's computer), and an application. The VI then returns
the target ID cluster.

Application list label is the title that appears for the list of PPC ports. If this string is empty
(default), the title Programs appears.

default specified determines whether LabVIEW uses the default target ID parameter.

default target ID identifies and highlights the target that PPC Browser attempts to find.

target ID is a cluster that the VI returns after you make selections from the dialog box. See the
Target ID topic for a further description of this cluster.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. error 128 signifies that the user cancelled the dialog box. See the AppleEvent Error
Codes topic for more information.

PPC Close Port
Closes the specified PPC port.

Closing a port terminates all outstanding calls associated with the port with a portClosedErr (error -916).

port refnum is a unique port reference number.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC End Session
Ends the specified PPC session.

Ending a session causes all outstanding calls associated with the session (PPC Read and PPC Write
calls) to finish with a sessClosedErr (error-917).

session refnum is a session reference number, which you use in subsequent communication for
this session.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Inform Session
Waits for a PPC session request.

port refnum contains the unique port reference number identifying the port the VI closes if a
timeout occurs or if the VI aborts before completing execution.

automatically accept if TRUE causes the VI to automatically accept any session request.
Otherwise, accept or reject the request using the PPC Accept Session VI immediately, because the other
computer waits (hangs) until the VI accepts or rejects its attempt to initiate a session or an error occurs.

timeout ticks if non-zero specifies the number of ticks PPC Inform Session waits for LabVIEW to
establish a session before returning the errTimedOut error. One tick equals 1/60 of a second.

session refnum is a session reference number, which you use in subsequent communication for
this session.

initiators target ID describes the application attempting to start a session.

request info is a cluster containing information about the user attempting to start a session.
request info contains the following parameters in the order listed.

user name, a string, is the name of the user that is attempting to start a session.

user data is an application-defined value that is the same as the user data value passed to PPC
Start Session.

request origin indicates the origin of the application requesting a session.
1: (Local Origin) The requesting application is on the same computer.
2: (Remote Origin) The requesting application is remote.

service type is a ring indicator. The service type is always 1 (Real Time) for the current version
of Apple PPC protocol.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Open Port
Opens a port for PPC communication and returns a unique port reference number in port refnum. You
can use a single port for multiple sessions.

When opening a port using PPC Open Port, you must specify a portName cluster.

portName is a cluster containing the following parameters in the order listed below.

nameScript is a 32-bit integer used in international localization that specifies the language
system you are using. Use a nameScript value of 0 for Roman language systems (for example, English);
consult Inside Macintosh, Volume VI for a list of available script codes.

selector describes the format of the type string parameter.
1: (creator/type) Signifies that type string is an 8-character string; the first four

characters are the creator (for example, LBVW), and the last four characters
define the port type.

2: (port type string) Signifies that type string is a 32-character (or less) description
of the service provided by the port .

port type string is an 8-character string; the first four characters are the creator (for example,
LBVW), and the last four characters define the port type, when selector has a value of 1. The type string
is a 32-character (or less) description of the service that the port provides when selector has a value of 2.
(In almost all cases, you should specify a value of 2 for selector, and use a description of the service
provided by the port for type string. Consult Inside Macintosh, Volume VI, for more information about
other cases.)

name is the name you give to the port. The value of name, which can be no more than 32
characters, is displayed in the PPC Browser dialog box list of port names. The Get Target ID VI uses
name to identify the port.

alias location name establishes an alias name for the port. The PPC Browser uses this alias to
determine which machines to display in its dialog box. If you leave this string empty the VI uses the
default alias PPCToolBox.

network visible determines whether the port is accessible to other machines on the network.

port refnum is a port reference number, which you use in subsequent operations relating to that
port.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Read
Reads a block of information from a specified session. If a timeout occurs or the VI aborts before
completing execution, the port that port refnum represents closes.

PPC Read executes asynchronously by starting to read the specified data and then polling until the read
is finished.

session refnum is a session reference number, which you use in subsequent communication for
this session.

n bytes to read specifies the number of bytes the VI reads.

timeout ticks value, if non-zero, specifies the number of ticks the PPC Inform Session VI waits
for a session to be established before returning the errTimedOut error. One tick equals 1/60 of a second.

poll wait (10 ms) determines how frequently PPC Read checks to see whether LabVIEW has
read the data successfully.

data bytes is an array of unsigned 8-bit integers that is written by the sender.

data info is a cluster of application-specific information that LabVIEW uses when reading and
writing blocks of data in a PPC session. This cluster contains three 32-bit integers: block creator, block
type, and user data. You can use these values to send information about the block of data to the

receiving application.

more is a Boolean indicating whether more data exists for the given block that the VI reads. The
application that writes the data can send the data in multiple pieces.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Start Session
Attempts to start a session with the application specified by target ID through the specified port. If a
timeout occurs or the VI aborts before completing execution, the port represented by port refnum closes.

timeout ticks (0: no timeout) if non-zero specifies the number of ticks PPC Inform Session waits
for a session to be established before returning the errTimedOut error. One tick equals 1/60 of a second.

port refnum is a unique reference number that specifies the port through which LabVIEW
attempts to start a session with the application.

target ID is a cluster of information describing the target application and its location.

user data is an application-defined value that the VI sends with the request for a session.

Allow Dialog (true) if TRUE displays the User Identity Dialog Box if the target application
requires authorization.

prompt appears in the dialog box.

session refnum is a session reference number, which you use in subsequent communication for
this session.

reject info contains an application-defined number if the target application rejects the request.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Write
Writes a block of information to the specified session. If a timeout occurs or the VI aborts before
completing execution, the port represented by port refnum is closed. PPC Write executes
asynchronously by starting to write the specified data and then polling until the write is finished.

timeout ticks if non-zero specifies the number of ticks the PPC Inform Session VI waits for
LabVIEW to establish a session before returning the errTimedOut error. One tick equals 1/60 of a second.

session refnum is a session reference number, which you use in subsequent communication for
this session.

data bytes is an array of unsigned 8-bit integers to send to the target application.

data info is a cluster of application-specific information you use when reading and writing blocks
of data in a PPC session. data info contains three 32-bit integers: block creator, block type, and user
data. You can use these values to give information about the block of data to the receiving application.

more should be TRUE if you want to write more data for a given block. For example, if you want
to write a block of data in several calls to PPC Write, set more to TRUE on all but the last write of the
sequence.

poll wait (10 ms) determines how frequently PPC Write checks to see whether LabVIEW has

written the data successfully; for higher throughput, a value of zero is best.

length written is the actual number of bytes written. Except when the VI returns an error, length
written should always be the length of the byte array input.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Accept Session VI
PPC Accept Session

PPC Browser VI
PPC Browser VI

Close All PPC Ports VI
Close All PPC Ports

PPC Close Port VI
PPC Close Port

PPC End Session VI
PPC End Session

Get Target ID VI
Get Target ID

PPC Inform Session VI
PPC Inform Session

PPC Open Port VI
PPC Open Port

PPC Read VI
PPC Read

PPC Start Session VI
PPC Start Session

PPC Write VI
PPC Write

UDP VI Overview
This section describes a set of VIs that you can use with User Datagram Protocol (UDP), a protocol in the
TCP/IP suite for communicating across a single network or interconnected set of networks.

Click here to access the UDP VI Descriptions topic.

User Datagram Protocol (UDP)
Using UDP

Note: If you are writing both the client and server, and your system can use TCP/IP, then TCP is
probably the best protocol to use because it is a reliable, connection-based protocol. UDP
is a connectionless protocol with higher performance, but it does not ensure reliable
transmission of data.

User Datagram Protocol (UDP)
The User Datagram Protocol (UDP) transmits data across networks. UDP can communicate to specific
processes on a computer. When a process opens a network connection to a particular port it only
receives datagrams that are addressed to that port on that computer. When a process sends a datagram,
it must specify the computer and port as the destination.

There are several reasons why UDP is rarely used directly. UDP does not guarantee data delivery. Each
datagram is routed separately, so datagrams may arrive out of order, be delivered more than once or not
delivered at all.

Typically, UDP is used in applications where reliability is not critical. For example, an application might
transmit informative data to a destination frequently enough that a few lost segments of data are not
problematic.

Using UDP
UDP is not a connection-based protocol like TCP. This means that a connection does not need to be
established with a destination before sending or receiving data. Instead, the destination for the data is
specified when each datagram is sent. The system does not report transmission errors.

You can use the UDP Open VI to create a connection. A port must be associated with a connection when
it is created so that incoming data can be sent to the appropriate application. The number of
simultaneously open UDP connections depends on the system. UDP Open returns a Network Connection
refnum, an opaque token used in all subsequent operations pertaining to that connection.

You can use the UDP Write VI to send data to a destination and the UDP Read VI to read it. Each write
requires a destination address and port. Each read contains the source address and port. Packet
boundaries are preserved. That is, a read never contains data sent in two separate write operations.

In theory, you should be able to send data packets of any size. If necessary, a packet is disassembled
into smaller pieces and sent on its way. At their destination, the pieces are reassembled and the packet is
presented to the requesting process. In practice, systems only allocate a certain amount of memory to
reassemble packets. A packet that cannot be reassembled is thrown away. The largest size packet that
can be sent without dissassembly depends on the network hardware.

When LabVIEW finishes all communications, calling the UDP Close VI frees system resources.

UDP VI Descriptions
Click here to access the UDP VI Overview topic.

The following illustration shows the UDP VI palette, which you access by selecting
Functions»Communication»UDP:

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

UDP Close
UDP Open
UDP Read
UDP Write

UDP Close
Closes the UDP connection specified by connection ID.

connection ID is a network connection refnum that identifies the UDP connection that you want
to close.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID. If the connection is not aborted, the
connection is still valid, and the remote machine can continue to send data.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

UDP Open
Attempts to open a UDP connection on the given port. Connection ID is an opaque token used in all
subsequent operations relating to the connection.

port is the local port with which you want to establish a UDP connection.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID is a network connection refnum that uniquely identifies the UDP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

UDP Read

Returns a datagram in the string data out that has been received on the UDP connection specified by
connection ID.

connection ID is a network connection refnum that identifies the UDP connection. You use this
connection ID value to refer to this connection in subsequent VI calls.

max size (548) is the maximum number of bytes to read.

timeout is in milliseconds. If the operation does not complete in the specified time, the VI
completes and returns an error. The default value is 25,000. A timeout value of -1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID. If the connection is not aborted, the
connection is still valid, and the remote machine can continue to send data.

data out is a string that contains the data read from the UDP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

port is the port of the UDP connection that sent the datagram.

address refers to the computer where a datagram originates.
address and port indicate the source of the datagram. If no data is received in the specified
timeout period, a timeout error is reported in error out. Due to limitations of the MacTCP driver,
the Macintosh has a time out resolution of 1 second and a minimum timeout of 2 seconds. max
size is the maximum size to expect for the incoming datagram. If the incoming datagram is larger
than max size, the datagram is truncated.

UDP Write
Writes the string data in to the remote UDP connection specified by address and port.

port is the port of the specified address where you want to send a datagram.

address refers to the computer where you want to send a packet.

connection ID is a refnum identifying the UDP connection.

data in is a string that contains the data to write to the UDP connection.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

In an Ethernet environment, restrict data to 8192 bytes. In a LocalTalk environment, restrict data
to 1458 bytes because of gateway performance considerations.

UDP Close VI
UDP Close

UDP Open VI
UDP Open

UDP Read VI
UDP Read

UDP Write VI
UDP Write

DDE VI Overview (Windows)

This topic describes the LabVIEW VIs for Dynamic Data Exchange (DDE) for Windows 3.1, Windows 95,
and Windows NT. These VIs execute DDE functions for sharing data with other applications that accept
DDE connections.

Click here to access the DDE VI Descriptions topic.
Click here to access the DDE Server VI Descriptions topic.

Dynamic Data Exchange
Using DDE as a Client
Services, Topics, and Data Items
Using DDE as a Server
Using NetDDE
Examples of Client Communication with Excel
LabVIEW VIs as DDE Servers
Requesting Data versus Advising Data
Synchronization of Data

Dynamic Data Exchange
Dynamic Data Exchange is a client-controlled data passing protocol. One application, the client, passes
data to another application, the server.

Both applications must be running, and both must give Windows their callback function address before
DDE communication can begin. The callback function accepts any DDE messages that Windows sends
to the application.

A DDE client initiates a conversation with another application (a DDE server) by sending a connect
message. After establishing a connection, the client can send commands or data to the server, or request
data from the server.

A client can request data from a server by a request or an advise. A request is a single transfer of data. If
the client wants to montor a value over a period of time, the client must use an advise. An advise
establishes an active link between the two applications. The server then informs the client every time the
advise value changes. When the client no longer needs the changed values, it sends an advise stop
message to the server.

When all the DDE communication for the conversation is complete, the client sends a close conversation
message to the server.

DDE is most appropriate for communication with standard, off-the-shelf applications, such as Microsoft
Excel.

With LabVIEW, you can create VIs that act as clients to other applications (meaning they request or send
data to other applications). You can also create VIs that act as servers that provide named information for
access by other applications. As a server, LabVIEW does not use connection-based communication.
Instead, you provide named information to other applications, which can then read or set the values of
that information by name.

Using DDE as a Client
The Dynamic Data Exchange VIs give LabVIEW full DDE client capability.

To use DDE, you must first establish a conversation using the DDE Open Conversation VI. The VI must
specify the service and the topic. The service usually corresponds to the name of the server application

and the topic to the active file. DDE messages then carry data to or from specific locations in the active
file. For more information on how a specific application handles topic names and data item locations,
consult the documentation for that application.

When you have established a conversation, you can send data using the DDE Poke VI, send commands
using the DDE Execute VI, obtain data with the DDE Request VI, or initiate an advise protocol with the
DDE Advise Start VI.

The DDE Request VI sends a DDE message to the server every time you call it. The server must then
check the data requested and return it in another DDE message. If your VI checks the value frequently,
an advise protocol might be more efficient than a request.

The DDE Advise Start VI creates a local copy of the data value you are interested in. When you call the
DDE Advise Check VI, the VI returns this value without sending any DDE messages. At the same time,
the server application sends DDE messages every time the value changes, so that the local value is
always current. If the value seldom changes but is often needed, an advise can significantly reduce the
required number of DDE messages.

Caution: During a conversation, you must pass the conversation refnum to all other DDE VIs
involved in that conversation. Windows uses these refnums to identify the
conversation. If you alter the conversation refnum, or do not specify or wire the
conversation refnum, the VI fails. The same is true for the advise refnum. If you alter
advise refnum, or do not specify or wire advise refnum for the DDE Advise Check VI or
the DDE Advise Stop VI, the VIs fail and may cause a system failure.

The DDE protocol used by LabVIEW is ASCII based, and the transmission is terminated when a null byte
is reached. If the binary data has a null byte (00) in it, the transmission ends.

To send a number to another application, you must convert that number to a string. In the same way, you
must convert numbers received through a request or advise from the string format. Use the conversion
VIs from Functions»String. See String Functions for further information on how to use string conversion
VIs.

Stop all advises and closes all conversations using DDE Advise Stop and DDE Close Conversation after
all DDE commands have executed. This releases the system resources associated with these VIs.

Services, Topics, and Data Items
With TCP/IP, you identify the process you want to talk to by its computer address and a port number. With
DDE, you identify the application you want to talk to by referencing the name of a service and a topic. The
server decides on arbitrary service and topic names. A given server generally uses its application name
for the service, but not necessarily. That server can offer several topics that it is willing to communicate.
With Excel, for example, the topic might be the name of a spreadsheet.

To communicate with a server, first find the names of the service and topic that you want to discuss. Then
open a conversation using these two names to identify the server.

Unless you are going to send a command to the server, you usually work with data items that the server
is willing to talk about. You can treat these as a list of variables that the server lets you manipulate. You
can change variables by name, supplying a new value for the variable. Or, you can request the values of
variables by name.

Using DDE as a Server
The first step to becoming a DDE server is to use the DDE Srv Register Service VI to tell Windows what
your service name and topic are going to be. At this point other applications can open DDE conversations
with your service.

You can call the DDE Srv Register Service VI multiple times with different service names to establish
multiple services or multiple times with the same service name but different topic names to establish
multiple topics for one service.

After specifying your service and topic names, you can define items for that service using the DDE Srv
Register Item VI. After this call, other applications can request or poke the item, as well as initiate advises
on that item. LabVIEW fully manages all these transactions.

To change the value of an item, call the DDE Srv Set Item VI. This VI changes the value and informs all
clients that have advises on them.

To monitor whether a client has changed an item with a poke, call the DDE Srv Check Item VI. This VI
either returns the current value immediately or waits until a client changes the value. If a client pokes the
value before DDE Srv Check Item is called with wait for poke true, DDE Srv Check Item returns
immediately and reports that the value was poked.

You call the DDE Srv Unregister Item VI and the DDE Srv Unregister Service VI to close down your DDE
server when you are finished. LabVIEW automatically disconnects any client conversations connected to
your server when DDE Srv Unregister Service is called.

Using NetDDE
NetDDE is built into Windows for WorkGroups 3.11, Windows 95 and Windows NT. It is also available for
Windows 3.1 with an add-on package from WonderWare. If you are using Windows 3.1 with the
WonderWare package, consult the WonderWare documentation on how to use netDDE.

When you communicate over the network, the meaning of the service and topic strings change. The
service name changes to indicate that you want to use networked DDE, and includes the name of the
computer you want to communicate with. The service name is of the following form.

\\computer-name\ndde$

You can supply any arbitrary name for the topic. You then edit the SYSTEM.INI file to associate this topic
name with the actual service and topic that you can use on the remote computer. This configuration also
includes parameters that configure the network connection.

If you are using Windows for WorkGroups, Windows 95, or Windows NT, use the following instructions:

SERVER MACHINE
CLIENT MACHINE

SERVER MACHINE
Windows for Workgroups
Windows 95
Windows NT

Windows for Workgroups
Add the following line to the [DDE Shares] section of the file system.ini on the server (application
receiving DDE commands):

lvdemo = service_name,topic_name,,31,,0,,0,0,0

where:

lvdemo can be any name
service_name is typically the name of the application, such as excel
topic_name is typically the specific file name, such as sheet1

enter other commas and numbers as shown.

Windows 95

Note: NetDDE is not automatically started by Windows 95. You need to run the program
\WINDOWS\NETDDE.EXE. (This can be added to the startup folder so that it is always
started.)

To set up a netDDE server on Windows 95:

1. Run\WINDOWS\REGEDIT.EXE

2. In the tree display, open the folder My Computer\HKEY_LOCAL_MACHINE\
SOFTWARE\Microsoft\NetDDE\DD Shares

3. Create a new DDE Share by selecting Edit»New»Key and give it the name lvdemo.

4. With the lvdemo key selected, add the required values to the share as follows. (For future reference,
these keys are just being copied from the CHAT$ share but you cannot cut, copy, or paste keys or
values with REDEGIT.) Use Edit»New to add new values. When you create the key, the default value,
named (Default) and a value of (value not set) appears. Leave these values alone and add the
following:

Value Type Name Value

Binary Additional item count 00 00 00 00

String Application service_name

String Item service_name

String Password1 service_name

String Password2 service_name

Binary Permissions1 1f 00 00 00

Binary Permissions2 00 00 00 00

String Topic topic_name

5. Close REGEDIT.

6. Restart the machine. (NetDDE must be restarted for changes to take affect.)

CLIENT MACHINE
On the client machine (application initiating DDE conversation) no configuration changes are necessary.

Use the following inputs to DDE Open Conversation.vi:

Service: \\machine_name\ndde$

Topic: lvdemo

where:

machine_name specifies the name of the server machine

lvdemo matches the name specified in the [DDE Shares] section on the server.

Consider the examples Chart Client.vi and Chart Server.vi found in
examples\network\ddeexamp.llb. To use those VIs to pass information between two computers
using netDDE, you should do the following:

Server Machine:

1. Do not modify any front panel values.

2. In the system.ini file of the Server machine, add the following line in the [DDEShares] section:
lvdemo = TestServer,Chart,,31,,0,,0,0,0

Client Machine:

On the front panel, set the controls to the following:
Service = \\machine_name\ndde$
Topic = lvdemo
Item = Random

SERVER MACHINE

Examples of Client Communication with Excel
Each application that supports DDE has a different set of services, topics, and data items that it can talk
about. Select Services, Topics, and Data Items for more information on this topic. For example, two
different spreadsheet programs can take very different approaches to how they specify spreadsheet cells.
To find out what a given application supports, consult the documentation that came with that application.

Microsoft Excel, a popular spreadsheet program for Windows, has DDE support. You can use DDE to
send commands to Excel. You can also manipulate and read spreadsheet data by name. For more
information on how to use DDE with Excel, refer to the Microsoft Excel Users Guide 2.

With Excel, the service name is Excel. For the topic, you use the name of an open document, such as
spreadsheet document, or the word System.

If you use the name System, you can request information about the status of Excel, or send general
commands to Excel (commands that are not directed to a specific spreadsheet). For instance, for the
topic System, Excel talks about items such as Status, which has a value of Busy if Excel is busy, or
Ready if Excel is ready to execute commands). Another, more useful data item you can use when the
topic is Status is Topics, which returns a list of topics Excel can talk about, including all open spreadsheet
documents and the System topic.

The following VI shows how you can use the Topics command in LabVIEW. The value returned is a string
containing the names of the open spreadsheets and the work Excel.

Another way you can use the System topic with Excel is to instruct Excel to open a specific document. To
do this, you use the DDE Execute.vi to send an Excel Macro to Excel that instructs Excel to open the
document, as shown in the following LabVIEW diagram:

After you open a spreadsheet file, you can send commands to the spreadsheet to read cell values. In this
case, your topic is the spreadsheet document name. The item is the name of a cell, a range of cells, or a
named section of a spreadsheet. For example, in the following diagram LabVIEW can retrieve the value
in the cell at row one column one. It then acquires a sample from the specified channel, and sends the
resulting sample back to Excel.

LabVIEW VIs as DDE Servers
You can create LabVIEW VIs that act as servers for data items. The general concept is that a LabVIEW
VI indicates that it is willing to provide information regarding a specific service in topic. LabVIEW can use
any name for the service and topic name. It might specify the service name to be the name of the
application (LabVIEW), and the topic name to be either the name of the Server VI, or a general
classification for the data it provides, such as Lab Data.

The Server VI then registers data items for a given service that it talks about. LabVIEW remembers the
data names and their values, and handles communication with other applications regarding the data.
When the server VI changes the value of data that is registered for DDE communication, LabVIEW
notifies any client applications that have requested notification concerning that data. In the same way, if
another application sends a Poke message to change the value of a data item, LabVIEW changes this
value.

You cannot use the DDE Execute Command with a LabVIEW VI acting as a server. If you want to send a
command to a VI, you must send the command using data items.

Also, notice that LabVIEW does not currently have anything like the System topic that Excel provides. The
LabVIEW application is not itself a server to which you can send commands or request status information.

It is important to understand that LabVIEW VIs act as servers and that at this time LabVIEW does not
itself provide any services to other applications.

The following example shows how to create a DDE Server VI that provides data to other client
applications. In this case, the data is a random number. You can easily replace the random number with
real world data from data acquisition boards or devices connected to the computer by GPIB, VXI, or serial
connections.

The VI in the preceding diagram registers a server with LabVIEW. The VI registers an item that it is willing
to provide to clients. In the loop, the VI periodically sets the value of the item. As mentioned earlier,
LabVIEW notifies other applications that data is available. When the loop is complete, the VI finishes by
unregistering the item and unregistering the server.

The clients for this VI can be any applications that understand DDE, including other LabVIEW VIs. The
following diagram illustrates a client to the VI shown in the previous diagram. It is important that the
service, topic, and item names are the same as the ones used by the server.

Requesting Data versus Advising Data
The previous client example used the DDE Request VI in a loop to retrieve data. With DDE Request, the
data is retrieved immediately, regardless of whether you have seen the data before. If the server and the
client do not loop at exactly the same rate, you can duplicate or miss data.

One way to avoid duplicating data is to use the DDE Advise VIs to request notification of changes in the
value of a data item. The following diagram shows how you can implement this scheme:

In the preceding diagram, LabVIEW opens a conversation. It then uses the DDE Advise Start VI to
request notification of changes in the value of a data item. Every time through the loop, LabVIEW calls
the DDE Advise Check VI, which waits for a data item to change its value. When the loop is finished,
LabVIEW ends the advise loop by calling the DDE Advise Stop VI, and closing the conversation.

Synchronization of Data
The client server examples in the preceding section work well for monitoring data. However, in these
examples there is no assurance that the client receives all the data that the server sends. Even with the
DDE Advise loop, if the client does not check for a data change frequently enough, the client can miss a
data value that the server provided.

In some applications, missed data is not a problem. For example, if you are monitoring a data acquisition
system, missed data may not cause problems when you are observing general trends. In other
applications, you may want to ensure that no data is missed.

One major difference between TCP and DDE is that TCP queues data so that you do not miss it and you
get it in the correct order. DDE does not provide this service.

In DDE, you can set up a separate item, which the client uses to acknowledge that it has received the
latest data. You then update the acquired data item to contain a new point only when the client
acknowledges receipt of the previous data.

For example, you can modify the server example shown in the Requesting Data versus Advising Data
topic to set a state item to a specific value after it has updated the acquired data item. The server then
monitors the state item until the client acknowledges receipt of data. This modification is shown in the
following block diagram:

A client for this server, as shown in the following diagram, monitors the state item until it changes to data
available. At that point, the client reads the data from the acquired data item provided by the server, and
then updates the state item to data read value.

This technique makes it possible to synchronize data transfer between a server and a single client.
However, it has some shortcomings. First, you can have only one client. Multiple clients can conflict with
one another. For example, one client might receive the data and acknowledge it before the other client
notices that new data is available.You can build more complicated DDE diagrams to deal with this
problem, but they quickly become awkward. For applications that involve only a single client, this is not a
problem.

 Another problem with this technique of synchronizing communication is that the speed of your acquisition
becomes controlled by the rate at which you transfer data. You can address this issue by breaking the
acquisition and the transmission into separate loops. The acquisition can queue data which the
transmission loop would send. This is similar to the TCP Server example in which the server handles
multiple connections.

If your application needs reliable synchronization of data transfer, you may want to use TCP/IP instead,
because it provides queueing, acknowledgment of data transfer, and support for multiple connections at
the driver level.

DDE VI Descriptions
Click here to access the DDE VI Overview (Windows) topic.

The top-level DDE VIs are used as clients. The DDE Server VI subpalette contains the DDE Server VI
Descriptions. The following illustration shows the DDE palette, which you access by selecting Function»
Communication»DDE.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

VI Descriptions

DDE Advise Check
DDE Advise Start
DDE Advise Stop
DDE Close Conversation
DDE Execute
DDE Open Conversation
DDE Poke
DDE Request

Subpalette Descriptions

DDE Server VI Descriptions

For examples of how to use the DDE VIs, see the examples in the examples\comm\DDEexamp.llb
library.

DDE Advise Check
Checks an advise value previously established by DDE Advise Start.

advise refnum is the unique number that identifies this DDE advise link.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

unused was previously the old data input. The DDE VIs now can track changes to the data
internally so this input is no longer needed. It remains so that VIs that used it do not break.

wait for change? specifies whether the VI should get the current value and return immediately or
wait until the value changes before returning.

error out contains error information. If error in indicates an error, then error out contains the

same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

advise refnum is the unique number that identifies this DDE advise link. It passes through this VI
to assist in execution timing.

current data always returns the most recently received value for the advise item.

changed? specifies whether the old data is the same as current data.

DDE Advise Start
Initiates an advise link.

conversation refnum is the unique number that identifies this DDE conversation.

item is the location of the data from the server application that the VI communicates to the client
application.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

advise refnum is the unique number that identifies this DDE advise link.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Advise Stop
Cancels an advise link, previously established by DDE Advise Start.

advise refnum is the unique number that identifies this DDE advise link.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

conversation refnum is the unique number that identifies this DDE conversation. Pass it through
this VI to assist in execution timing.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Close Conversation
Closes a DDE conversation.

conversation refnum is the unique number that identifies this DDE conversation.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

mode controls when the conversation closes. If mode is TRUE, the DDE conversation is always

closed. If mode is FALSE, the conversation closes only when an error passes in. Thus, if you wire the
error out of another DDE VI to the error in of the Close Conversation VI with a FALSE mode, the
conversation terminates only if an error occurs in the first VI.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Execute
Tells the DDE server to execute command.

conversation refnum is the unique number that identifies this DDE conversation.

command contains the command to be sent.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

conversation refnum is the unique number that identifies this DDE conversation. It passes
through this VI to assist in execution timing.

DDE Open Conversation
Establishes a connection between LabVIEW and another application. You must call this VI before you use
any other DDE VIs (except Server VIs).

service is the name of the DDE server.

topic is the name of the DDE topic.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

conversation refnum is the unique number that identifies this DDE conversation. Returns 0 if an
error occurs.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Poke
Tells the DDE server to put the value data at item.

conversation refnum is the unique number that identifies this DDE conversation.

item is the location where the VI pokes the data.

data contains the data the VI sends.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

conversation refnum is the unique number that identifies this DDE conversation. It passes
through this VI to assist in execution timing.

DDE Request
Initiates a DDE message exchange to obtain the current value of item.

conversation refnum is the unique number that identifies this DDE conversation.

item is the location of the requested data.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

conversation refnum is the unique number that identifies this DDE conversation. It passes
through this VI to assist in execution timing.

data contains the data that the DDE Request returns.

DDE Server VI Descriptions

This topic discusses the DDE Server VIs. To access these VIs, pop up on the DDE Server icon located on
the DDE palette.

DDE Srv Check Item
DDE Srv Register Item
DDE Srv Register Service
DDE Srv Set Item
DDE Srv Unregister Item
DDE Srv Unregister Service

DDE Srv Check Item
Sets the value of a previously defined DDE Item.

item refnum is the unique number that identifies this DDE item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

wait for poke specifies whether the VI should get the current value and return immediately or
wait until a client pokes the value before returning.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

item refnum is the unique number that identifies this DDE item.

value is the new value for the item.

poked? specifies whether the item has been poked by a DDE client since the last DDE Srv
Check Item.

DDE Srv Register Item
Establishes a DDE item for the service specified by service refnum.

service refnum is the unique number that identifies this DDE service.

item is the name of the DDE item

value is the initial value for the item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

item refnum is the unique number that identifies this DDE item. Returns 0 if an error occurs.

DDE Srv Register Service
Establishes a DDE service to which clients can connect.

service is the name of the DDE server.

topic is the name of the DDE topic.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

service refnum is the unique number that identifies this DDE service. Returns 0 if an error
occurs.

DDE Srv Set Item
Sets the value of a previously defined DDE Item.

item refnum is the unique number that identifies this DDE item.

value is the new value for the item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

item refnum is the unique number that identifies this DDE item.

DDE Srv Unregister Item
Removes the specified item from its service. DDE clients can no longer access the item after this VI
completes.

item refnum is the unique number that identifies this DDE item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the

same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

service refnum is the unique number that identifies this DDE service.

DDE Srv Unregister Service
Removes the specified service. DDE clients can no longer connect to this service and all current
conversations are closed.

service refnum is the unique number that identifies this DDE service.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Server Subpalette
DDE Server VI Descriptions

DDE Advise Check VI
DDE Advise Check

DDE Advise Start VI
DDE Advise Start

DDE Advise Stop VI
DDE Advise Stop

DDE Close Conversation VI
DDE Close Conversation

DDE Execute VI
DDE Execute

DDE Open Conversation VI
DDE Open Conversation

DDE Poke VI
DDE Poke

DDE Request VI
DDE Request

DDE Srv Check Item VI
DDE Srv Check Item

DDE Srv Register Item VI
DDE Srv Register Item

DDE Srv Register Service VI
DDE Srv Register Service

DDE Srv Set Item VI
DDE Srv Set Item

DDE Srv Unregister Item VI
DDE Srv Unregister Item

DDE Srv Unregister Service VI
DDE Srv Unregister Service

Windows NT
Launch DDEShare.exe, found in the winnt/system32 directory. Select from the Shares»DDE
Shares»Add a Share... to register the service name and topic name on the server.

OLE Automation VI Overview (Windows 95/NT)
This topic discusses the LabVIEW VIs for OLE (Object Linking and Embedding) Automation, a feature
that you can use with LabVIEW to access objects exposed by automation servers in the system.

Click here to access the OLE Automation VI Descriptions topic.

OLE Automation Concepts
Using LabVIEW to Implement OLE Automation

The OLE Automation VI Library contains two levels of VIs. VIs that are available on the Communication
palette represent the higher-level of functionality. These VIs use lower-level subVIs which are hidden from
the user, providing for a higher-level of encapsulation. Helper VIs are provided.

OLE Automation Concepts
In the context of Object Linking and Embedding, objects are defined as data abstractions exported by an
application. You manipulate these objects by using another Windows application. Linking and Embedding
are two of the methods used to access OLE objects.

You use OLE Automation to make the functions and methods of one application available for use by other
applications. You then access these functions or methods, which are usually grouped into objects.

An application supports automation as either a server or a client. Applications that expose objects and
provide methods for operating on those objects are called OLE automation servers. Applications that use
the methods exposed by another application are called OLE automation clients/controllers. The OLE VIs
enable LabVIEW to become an automation client.

Using LabVIEW to Implement OLE Automation
An OLE object exposes both methods and properties. Methods have the ability to modify a wide range of
values, whereas properties can set or get the value of a specific characteristic of the object. Some
servers provide a type library listing all exposed objects and the methods and properties of each object.

The typical steps in creating a client application using C are as follows:

· Get the IDispatch interface of the Object whose methods you want to access.

· Get the DispatchID of the method of that object.
· Invoke the method using the Invoke functions of the IDispatch interface, packing all parameters
into the parameter list.
In LabVIEW, do as follows:

· Use the Create Automation VI to get an Automation refnum, which uniquely defines the IDispatch
interface.

· Use the Execute Method VI to execute a method belonging to that object. If there is just one
parameter, it can be flattened. The type descriptors and the flattened string are then passed in as input
parameters. If there are multiple outputs, they are bundled in a cluster. The resultant cluster is then
flattened and wired to the correct input of the VI.
The implementation uses DLLs to perform the actual OLE calls. Parameters are passed to these DLLs as
flattened data.

OLE Automation VI Descriptions
Click here to access the OLE Automation VI Overview (Windows 95/NT) topic.

The following illustration shows the OLE Automation VI palette, which you access by selecting
Function»Communication»OLE.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Create Automation Refnum
Execute Method
Get Property
List Methods or Properties
List Objects in Type Library
Release Refnum
Set Property

For examples of how to use the OLE Automation VIs, see the examples in examples\comm\OLE-
xxx.llb.

Create Automation Refnum
Given the object name (registered class name) of an OLE object, returns an Automation Refnum uniquely
identifying the instantiation.

Object Name. The class name of an OLE object.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Execute Method
Executes a method.

Automation Refnum. Value uniquely defining an instantiation of an OLE class.

Method Name. Name of the method in that class to be invoked.

Input Type Descriptor. See Type Descriptors for more information.

Input Data String. The flattened string, passed as an input parameter. For more information, see
the Using LabVIEW to Implement OLE Automation section.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI. The dup is provided to simplify
dataflow programming in a manner similar to the dup file refnums in file I/O functions.

Return Value Type Descriptor. See Type Descriptors for more information.

Return Value Data String. The flattened string, passed as an output parameter. For more
information, see the Using LabVIEW to Implement OLE Automation topic.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Get Property
Gets the value of a property.

Automation Refnum Value uniquely defining an instantiation of an OLE class.

Property Name. Name of property in that class.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI. The dup is provided to simplify
dataflow programming in a manner similar to the dup file refnums in file I/O functions.

Property Type Descriptor. See Type Descriptors for more information.

Property Data String. The flattened string, passed as an output parameter. For more
information, see the Using LabVIEW to Implement OLE Automation topic.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

List Methods or Properties
Lists all the methods or properties of an object.

Object Library File. Full path name of the object library
file (*.olb, *.tlb).

Object Name. String containing the name of the object.

Method/Property Flag. If set, lists all methods. Otherwise, lists all properties.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Methods/Properties. An array of strings containing all the methods and/or properties in that

object.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

List Objects in Type Library
Lists all the objects in a type library.

Object Library File. Full path name of the object library
file (*.olb, *.tlb).

error in describes error conditions prior to the execution of this VI. The default input is no error.
See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Objects. An array of strings containing all objects defined in the object library file.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Release Refnum
Releases the refnum passed in as input.

Automation Refnum. Value uniquely defining an instantiation of an OLE class.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Set Property
Sets the value of a property.

Automation Refnum. Value uniquely defining an instantiation of an OLE class.

Property Name. Name of the property in that class.

Input Type Descriptor. See Type Descriptors for more information.

Input Data String.The flattened string, passed as an input parameter. For more information, see
the Using LabVIEW to Implement OLE Automation section.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI. The dup is provided to simplify
dataflow programming in a manner similar to the dup file refnums in file I/O functions.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Create Automation Refnum VI
Create Automation Refnum

Execute Method VI
Execute Method

Get Property VI
Get Property

List Methods or Properties VI
List Methods or Properties

List Objects in Type Library VI
List Objects in Type Library

Release Refnum VI
Release Refnum

Set Property VI
Set Property

Glossary

Prefix Meaning Value

n- nano- 10-9

m- micro- 10-6

m- milli- 10-3

k- kilo- 103

M- mega- 106

Numbers/Symbols

A
abort The procedure that terminates a program when a mistake, malfunction, or error

occurs.

ANSI American National Standards Institute.

APDA Apple Programmer Developer Association.

array Ordered, indexed set of data elements of the same type.

ASCII American Standard Code for Information Interchange.

asynchronous Mode in which multiple processes share processor time. For example, execution
one executes while the others wait for interrupts, as while performing device

I/O or waiting for a clock tick.

C
CIN Code Interface Node. Special block diagram node through which you can link

conventional, text-based code to a VI.

client The application that sends or calls messages from the server application in a
dynamic data exchange.

cluster A set of ordered, unindexed data elements of any data type including numeric,
Boolean, string, array, or cluster. The elements must be all controls or all
indicators.

connection ID A unique identification of a connection that you use for reference in subsequent
VI calls.

control Front panel object for entering data into a VI interactively or into a subVI
programmatically.

D
DARPA Defense Advanced Research Projects Agency.

datagram IP-packaged data components that contain, among other things, the data and a
header that indicates the source and destination addresses.

DDE Dynamic Data Exchange. A client-controlled Windows protocol for communication
between applications.

dialog box An interactive screen with prompts in which the user specifies additional
information needed to complete a command.

dotted decimal A method of describing a 32-bit internet address in which the address is notation
divided into four 8-bit binary numbers and written as four integers
separated by decimal points.

driver Software used to manipulate a device or interface board.

E
ethernet A network system that carries audio and video information as well as computer

data.

H
handler A device driver installed as part of the operating system of the computer.

I
IAC Interapplication Communication. A feature of Apple Macintosh system software

version 7 by which applications can communicate with each other.

icon Graphical representation of a node on a block diagram.

IEEE Institute of Electrical and Electronic Engineers.

indicator Front panel object that displays output.

internet See internetwork.

internetwork Single or interconnected networks.

IP Internet Protocol. Protocol that performs the low-level service of packaging data
into components (datagrams). See TCP/IP.

L
LabVIEW Laboratory Virtual Instrument Engineering Workbench.

LF Line feed.

M
MB Megabytes of memory.

N
NaN Digital display value for a floating-point representation of not a number, typically

the result of an undefined operation, such as log(-1).

O
OLE Object Linking and Embedding.

OLE Automation A feature which allows LabVIEW to access objects by automation servers in the
system.

P
palette A collection of function or control icons from which you can select the control or

function you need.

PC Personal Computer. Used to refer to IBM-compatible computers.

poke An instruction that places a value into a specific location in memory.

PPC Program-to-Program Communication. A low-level form of IAC by which
applications send and receive blocks of data.

protocol Set of rules or conventions that cover the exchange of information between
computer systems.

R
refnum An identifier of a DDE conversation or open files that can be referenced by

related VIs.

remote address Address of the remote machine associated with a connection.

S
SCSI Small Computer System Interface (bus).

sec Seconds.

server The application that receives messages from the client application in a dynamic
data exchange.

spreadsheet Any of a number of programs that arrange data and formulas in a matrix of cells.

string A connected sequence of characters or bits treated as a single data item.

T
TCP Transmission Control Protocol. See TCP/IP.

TCP/IP Transmission Control Protocol/Internet Protocol. A suite of communications
protocols that you use to transfer blocks of data between applications.

timeout The time (in milliseconds) that a VI waits for an operation to complete. Generally,
a timeout of -1 causes a VI to wait indefinitely.

U
UDP User Datagram Protocol. See TCP/IP.

utility A program that helps the user run, enhance, create, or analyze other programs
and systems.

V
VI Virtual instrument. LabVIEW program; so called because it models the

appearance and function of a physical instrument.

W
wire Data path between nodes.

HiQ Functions for Macintosh
You can use these functions to share between LabVIEW and HIQ as well as to control HiQ from
LabVIEW. See the HiQ documentation on LabSuite for more detailed information on how to use the
functions.

The following illustration shows the HiQ palette, which you can access by selecting
Functions»Communication»HiQ.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

HiQ Apple Event Command VI Descriptions
HiQ PPC Data Transfer VI Descriptions
HiQ File Transfer VI Descriptions

HiQ Apple Event Command VI Descriptions
HiQ supports seven Apple Event commands: the four required events--Run, Open, Print, and Quit; a
DoScript event for executing a script in a specified HiQ Worksheet; and an event for finding open HiQ VIs.

The following illustration shows the HiQ Apple Event Commands palette, which you can access by
selecting Functions»Communication»HiQ»HiQ Apple Event Commands.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Enter HiQ Script
Execute Script
Find an Open HiQ
Open HiQ
Open Worksheet
Print Worksheet
Quit HiQ

Enter HiQ Script
Prompts you to enter a HiQ-Script name.

Execute Script
Communicates to the selected HiQ to execute a specific HiQ-Script. If Script Name In is empty, this VI
prompts for a HiQ-Script name using the Enter HiQ Script VI.

Script Name In is the name of the HiQ-Script to execute.

selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Script Name Out is the name of the HiQ-Script that executed.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Find an Open HiQ
Displays the PPC dialog box you can use to choose an open HiQ. HiQ must already be executing.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Open HiQ
Displays the file dialog box you can use to choose the HiQ executable you want to open. If you want to
open a HiQ on the network, you must first mount the network drive using Chooser under the Apple menu.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Open Worksheet
Opens a worksheet from the selected HiQ. If Worksheet Name In is empty, this VI prompts you for a
Worksheet name using a File dialog box.

Worksheet Name In is the name of the HiQ Worksheet to print. You can specify the full
pathname, if required.

selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Worksheet Name Out is the name of the HiQ Worksheet that was printed.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Print Worksheet
Communicates with the selected HiQ to print a specific Worksheet. If Worksheet Name In is empty, this VI
prompts you for a Worksheet name using a File dialog box.

Worksheet Name In is the name of the HiQ Worksheet to open. You can specify the full
pathname, if required.

selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Worksheet Name Out is the name of the HiQ Worksheet that was printed.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Quit HiQ
Closes the selected HiQ.

selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Data Transfer VI Descriptions
The following illustration shows the HiQ PPC Data Transfer palette, which you can access by selecting
Functions»Communication»HiQ»HiQ PPC Data Transfer.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Find an Open HiQ PPC Port
HiQ PPC Connect
HiQ PPC Disconnect
HiQ PPC Read
HiQ PPC Read Real+
HiQ PPC Write
HiQ PPC Write Integer+
HiQ PPC Write Real+
HiQ PPC Write Complex+

Find an Open HiQ PPC Port
Displays the PPC Browser dialog box for selecting an open HiQ PPC port on a network or on the same
computer.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

selected target ID out is a cluster of information describing the location of the HiQ PPC server.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Connect
Establishes a connection with a HiQ PPC server.

target ID is a cluster of information describing the location of the HiQ PPC server and contains a
complex cluster of information defined by Apple Computer, Inc. The Open HiQ and the Find an Open HiQ
VIs create this cluster.

portName is a cluster containing the following parameters in the order listed below. Wiring for this
input is optional.

nameScript is a 32-bit integer used in international localization that specifies the language
system you are using. Use a nameScript value of 0 for Roman language systems (for example, English);
consult Inside Macintosh, Volume VI for a list of available script codes.

selector describes the format of the type string parameter.
1: (creator/type) Signifies that type string is an 8-character string; the first four

characters are the creator (for example, LBVW), and the last four characters define
the port type.

2: (port type string) Signifies that type string is a 32-character (or less) description of the
service provided by the port

name is the name you give to the port. The value of name, which can be no more than 32
characters, is displayed in the PPC Browser dialog box list of port names. The Get Target ID VI uses
name to identify the port.

port type string is an 8-character string; the first four characters are the creator (for example,
LBVW), and the last four characters define the port type, when selector has a value of 1. The type string
is a 32-character (or less) description of the service that the port provides when selector has a value of 2.
(In almost all cases, you should specify a value of 2 for selector, and use a description of the service
provided by the port for type string. Consult Inside Macintosh, Volume VI, for more information about
other cases.)

timeout ticks (0: no timeout). If non-zero, timeout ticks specifies the number of ticks PPC
Inform Session waits for LabVIEW to establish a session before returning an error. One tick equals 1/60
of a second.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Connection out is a cluster of information describing the active PPC session. You use
this cluster as an input to other HiQ PPC VIs to identify the active PPC session. The HiQ PPC Connection
out cluster contains the following parameters.

port refnum is a port reference number describing the local port associated with the current PPC
session.

session refnum is a session reference number describing the current HiQ PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Disconnect
Closes the active PPC port and ends the active PPC session.

HiQ PPC Connection is a cluster of information describing the active PPC session.

port refnum is a port reference number describing the local port associated with the current PPC
session.

session refnum is a session reference number describing the current HiQ PPC session.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In

and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Read
Reads the specified number of bytes from the server HiQ. A HiQ-Script must be executing on the server
that writes the specified number bytes.

HiQ PPC Connection in is a cluster of information describing the active PPC session.

Number of bytes to read specifies how many bytes to read from HiQ.

timeout ticks (0: no timeout) If non-zero, timeout ticks specifies the number of ticks PPC
Inform Session waits for LabVIEW to establish a session before returning an error. One tick equals 1/60
of a second.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Connection out is a cluster of information describing the active PPC session.

data bytes is a 1D array containing the data bytes received from HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Read Real+
Reads real data from the HiQ server. This VI works with the HiQ PPC_HiQ_LV_WriteData function.

HiQ PPC Connection in is a cluster of information describing the active PPC session.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Connection out is a cluster of information describing the active PPC session.

Real matrix is a 2D array containing the data received from HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write
Writes a one-dimensional array of 1-byte data to the HiQ server. A HiQ-Script must be executing on the
server that reads the data.

HiQ PPC Connection in is a cluster of information describing the active PPC session.

data bytes is a 1D array containing the data bytes to write to HiQ.

timeout ticks (0: no timeout) If non-zero, timeout ticks specifies the number of ticks PPC
Inform Session waits for LabVIEW to establish a session before returning an error. One tick equals 1/60
of a second.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Connection out is a cluster of information describing the active PPC session.

length written contains the actual number of bytes written to HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write Integer+
Writes either scalar, vector, or matrix integer data to the HiQ server. This VI works with the
PPC_HiQ_LV_ReadData function.

HiQ PPC Connection in is a cluster of information describing the active PPC session.

Integer vector is a 1D array containing the data to be written to HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Integer scalar contains the scalar data to be written to HiQ.

Integer matrix is a 2D array containing the data to be written to HiQ.

HiQ PPC Connection out is a cluster of information describing the active PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write Real+
Writes either scalar, vector, or matrix real data to the HiQ server. This VI works with the
PPC_HiQ_LV_ReadData function.

HiQ PPC Connection in is a cluster of information describing the active PPC session.

Real vector is a 1D array containing the real data to be written to HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Real scalar contains the scalar real data to be written to HiQ.

Real matrix is a 2D array containing the real data to be written to HiQ.

HiQ PPC Connection out is a cluster of information describing the active PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write Complex+
Writes either scalar, vector, or matrix complex data to the HiQ server. This VI works with the
PPC_HiQ_LV_ReadData function.

HiQ PPC Connection in is a cluster of information describing the active PPC session.

Complex vector is a 1D array containing the complex data to be written to HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Complex scalar contains the scalar, complex data to be written to HiQ.

Complex Matrix is a 2D array containing the complex data to be written to HiQ.

HiQ PPC Connection out is a cluster of information describing the active PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ File Transfer VI Descriptions
The following illustration shows the HiQ File Transfer palette, which you can access by selecting
Functions»Communication»HiQ»HiQ File Transfer.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Read from HiQ Text File
Write to HiQ Text File

Read from HiQ Text File
Reads a specified number of rows from a HiQ, numeric text file beginning at a specified character offset
and converts the data to a two-dimensional, double-precision array of numbers. You can optionally
transpose the array. This VI opens the HiQ file before reading from it and closes the HiQ file after reading
from it.

file path (dialog if empty) consists of the path name of the file. If file path is empty (default
value) or is Not A Path, the VI displays a file dialog box from which you can select a file. Error 43 occurs if
you select Cancel in the dialog box.

number of rows (2147483647) is the maximum number of rows or lines the VI reads. For this VI,
a row consists of a character string ending with a carriage return, line feed, or a carriage return followed
by a line feed; a string ending with end of file; or a string that has the maximum line length specified by
the max characters per row input. If number of rows <0, the VI reads the entire file. The default value
is -1.

start of read offset (0) is the position in the file, measured in characters, at which the VI begins
reading.

max chars/row (0=no limit) is the maximum number of characters the VI reads before ending
the search for the end of a row or line. The default is 0, which means that there is no limit to the number
of characters the VI reads.

transpose? (false) Set to TRUE to transpose the data after converting it from a string. The
default value is FALSE.

format (%.15g) specifies how to convert the characters to numbers; the default is %.15g. Refer
to the discussion of format strings and the Spreadsheet String To Array function.

new file path (Not A Path) is the path of the file from which the VI reads data. Not A Path is
returned if you select Cancel from the dialog box.

all rows is the data read from the file in the form of a 2D array of
double-precision numbers.

first row is the first row of the all rows array in the form of a 1D array of double-precision
numbers. You can use this output when you want to read one row into a 1D array.

file position after read is the location of the file mark after the read; it points to the character in
the file following the last character read.

EOF? is TRUE if you attempt to read past the end of the file.

Write to HiQ Text File
Converts a 1D or 2D array of double-precision numbers to a text string and writes the string to a new file
or appends the string to an existing file. You can optionally transpose the data. This VI opens or creates
the file beforehand and closes it afterwards. You can use this VI to create a text file that HiQ can read.

file path (dialog if empty) consists of the path name of the file. If file path is empty (default
value) or is Not A Path, the VI displays a file dialog box from which you can select a file. Error 43 occurs if
you select Cancel in the dialog box.

2D data contains the double-precision numbers the VI writes to the file if 1D data is not wired or
is empty.

1D data contains the double-precision numbers the VI writes to the file if this input is not empty.
The VI converts the 1D array into a 2D array before optionally transposing it, converting it to a string and
writing it to the file. If transpose? is FALSE, each call to this VI creates a new line or row in the file.

append to file? (new file:F) Set to TRUE if you want to append the data to an existing file. Set to
FALSE (default value) if you want to write the data to a new file or to replace an existing file.

transpose? (false) Set to TRUE to transpose the data before converting it to a string. The default
value is FALSE.

format (%.15g) specifies how to convert the numbers to characters. If the format string is %.15g
(default), the VI creates a string long enough to contain the number, with fifteen digits to the right of the
decimal point. If the format is %d, the VI converts the data to integer form using as many characters as
necessary to contain the entire number. Refer to the discussion of format strings and the Array To
Spreadsheet Stringfunction.

new file path (Not A Path if...) is the path of the file to which the VI wrote data. Not A Path is
returned if you select Cancel from the dialog box.

HiQ Apple Event Command VIs
HiQ Apple Event Command VI Descriptions

HiQ PPC Data Transfer VIs
HiQ PPC Data Transfer VI Descriptions

HiQ File Transfer VIs
HiQ File Transfer VI Descriptions

Enter HiQ Script VI
Enter HiQ Script

Execute Script VI
Execute Script

Find an Open HiQ VI
Find an Open HiQ

Open HiQ VI
Open HiQ

Open Worksheet VI
Open Worksheet

Print Worksheet VI
Print Worksheet

Quit HiQ VI
Quit HiQ

Find an Open HiQ PPC Port VI
Find an Open HiQ PPC Port

HiQ PPC Connect VI
HiQ PPC Connect

HiQ PPC Disconnect VI
HiQ PPC Disconnect

HiQ PPC Read VI
HiQ PPC Read

HiQ PPC Read Real+ VI
HiQ PPC Read Real+

HiQ PPC Write VI
HiQ PPC Write

HiQ PPC Write Integer+ VI
HiQ PPC Write Integer+

HiQ PPC Write Real+ VI
HiQ PPC Write Real+

HiQ PPC Write Complex+ VI
HiQ PPC Write Complex+

Read from HiQ Text File VI
Read from HiQ Text File

Write to HiQ Text File VI
Write to HiQ Text File

Named Pipe VI Descriptions (UNIX)
You can use these VIs to pass data between applications. Named Pipes make process synchronization
simpler. The following illustration displays the Named Pipe VIs, which you access by selecting
Functions»Communication»PIPES.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Close Pipe
Open Pipe
Read From Pipe
Write to Pipe

Close Pipe
Closes the named pipe specified by a file descriptor.

file descriptor is the file descriptor that you want to use when closing the pipe.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

file descriptor is the file descriptor that you want to use when closing the pipe.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Open Pipe
Returns a file descriptor, which you pass to subsequent named pipe VIs. You can choose a path for the
named pipe and whether you want to use the named pipe for writing or reading data.

path to named pipe is the path to the named pipe.

mode is either read or write.

error in describes error conditions occurring before this VI executes. If an error has already
occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error Out
Clusters topic for a further description of the error in and error out clusters.

file descriptor is the file descriptor that you want to use when reading and writing to the opened
pipe.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Read From Pipe
Reads up to bytes to read data from the named pipe specified by file descriptor, returning the results in

the data string output. For this VI to function, you must have opened the pipe as a read pipe. ReadPipe
VI does not wait for data, so if the specified amount of data is not available, the VI returns whatever data
is available. EOF? is TRUE if the other end of the pipe has been closed.

file descriptor is the file descriptor that you want to use when reading from the opened pipe.

bytes to read is the number of bytes to be read.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

file descriptor is the file descriptor that you want to use when reading from the opened pipe.

bytes read is the number of bytes read, which may be less than the number of bytes in bytes to
read.

data is the data read from the pipe.

EOF? is the end of file.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Write to Pipe
Writes a data string to the named pipe specified by a file descriptor. For this VI to function, you must
have opened the pipe as a write pipe.

file descriptor is the file descriptor that you want to use when writing to the opened pipe.

data is the data to write to the pipe.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

file descriptor is the file descriptor that you want to use when writing to the opened pipe.

bytes written is the number of bytes written, which may be less than the number of bytes in
data.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Close Pipe VI
Close Pipe

Open Pipe VI
Open Pipe

Read from Pipe VI
Read From Pipe

Write to Pipe VI
Write to Pipe

System Exec VI Descriptions (Windows and UNIX)
The following illustration displays the System Exec VIs, which you access by selecting Functions
»Communication.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

System Exec VI for Windows
System Exec VI for UNIX

System Exec (Windows)
Runs an executable program by name.

command to execute. Tells LabVIEW what command to call to execute your program.

run minimized ? (F). If set to TRUE, minimizes the run of your executable program. The default
is set to FALSE.

error. Returns an error.

System Exec (UNIX)
Runs an executable program by name. The System Exec VI also provides access to the standard input,
output, and error I/O streams for the application you execute. With this VI, you can also choose whether
you want the System Exec VI to wait for the application you execute to complete.

System Command Line.

Run Minimized ? If set to TRUE, minimizes the run of your executable program. The default is
set to FALSE. In UNIX, LabVIEW does not use the Run Minimized ? parameter.

Wait until Completion? If TRUE, the string wired to Standard Input is available as input to the
command, and the System Exec VI returns the Standard Output and Standard Error when the
command completes. If FALSE, the System Exec VI runs the command in the background, and disables
the input and output streams.

Standard Input is the input to the command.

Expected Output Size (4096) is used for efficiency reasons and should be a number slightly
larger than the output size expected. By default, it has a value
of 4,096 characters. The command still runs correctly if you exceed the output size, but the System Exec

VI is less efficient in LabVIEW memory usage.

Standard Output is the output from the command.

Standard Error is the error output from the command.

Exit Status is the integer status returned by the command.

System Exec for Windows
System Exec (Windows)

System Exec for Unix
System Exec (Unix)

TCP VI Overview
This topic discusses Internet Protocol (IP), Transmission Control Protocol (TCP), and internet addresses,
and describes the LabVIEW TCP VIs.

Click here to access the TCP VI Descriptions topic.

TCP/IP (all Platforms)
LabVIEW and TCP/IP
Internet Protocol
Using TCP
Internet Addresses
TCP Client Example
TCP Server Example
TCP Server with Multiple Connections
Setup

TCP/IP (all platforms)
TCP/IP is a suite of communication protocols, originally developed for the Defense Advanced Research
Projects Agency (DARPA). Since its development, it has become widely accepted, and is available on a
number of computer systems.

The name TCP/IP comes from two of the best known protocols of the suite, the Transmission Control
Protocol (TCP) and the Internet Protocol (IP). TCP, IP, and the User Datagram Protocol (UDP) are the
basic tools for network communication.

TCP/IP enables communication over single networks or multiple, interconnected networks, which are
known as an internetwork or internet. The individual networks can be separated by great geographical
distances. TCP/IP routes data from one network or internet computer to another. Because TCP/IP is
available on most computers, it can transfer information between diverse systems.

Transmission Control Protocol (TCP) ensures reliable transmission across networks, delivering data in
sequence without errors, loss, or duplication. When you pass data to TCP, it attaches additional
information and gives the data to IP, which puts the data into datagrams and transmits it. This process
reverses at the receiving end, with TCP checking the data for errors, ordering the data correctly, and
acknowledging successful transmissions. If the sending TCP does not receive an acknowledgment, it
retransmits the data segment. For these reasons, TCP is usually the best choice for network applications.

Internet Protocol
Internet Protocol (IP) transmits data across the network. This low-level protocol takes data of a limited
size and sends it as a datagram across the network. A datagram contains, among other things, the data
and a header indicating the source and destination addresses. IP determines the correct path for the
datagram to take across the network or internet, and sends the data to the specified destination. IP
makes a best-effort attempt to deliver data, but cannot guarantee delivery. Also, because IP routes each
datagram separately, it may arrive out of sequence. In fact, IP may deliver a single packet more than once
if it is duplicated in transmission. IP does not determine the order of packets. Instead, higher-level
protocols layered above IP order the packets and ensure reliable delivery. For this reason, IP is rarely
used directly; instead, TCP and UDP, which are built on top of IP, are most often used to transfer
information.

Using TCP
TCP is a connection-based protocol, which means that sites must establish a connection before
transferring data. TCP permits multiple simultaneous connections.

You initiate a connection either by waiting for an incoming connection or by actively seeking a connection
with a specified address. In establishing TCP connections, you have to specify both the address and a
port at that address. A port is represented by a number between 0 and 65535. With UNIX, port numbers
less than 1024 are reserved for privileged applications. Different ports at a given address identify different
services at that address, and make it easier to manage multiple simultaneous connections.

You can actively establish a connection with a specific address and port using the TCP Open Connection
VI. Using this VI, you specify the address and port with which you want to communicate. If the connection
is successful, the VI returns a connection ID that uniquely identifies that connection. Use this connection
ID to refer to the connection in subsequent VI calls.

You can use two methods to wait for an incoming connection:

· With the first method, you use the TCP Listen VI to create a listener and wait for an accepted
TCP connection at a specified port. If the connection is successful, the VI returns a connection ID
and the address and port of the remote TCP.

· With the second method, you use the TCP Create Listener VI to create a listener, and then use
the Wait on Listener VI to listen for and accept new connections. Wait on Listener returns the same
listener ID that was passed to the VI, as well as the connection ID for a connection. When you are
finished waiting for new connections, you can use TCP Close to close a listener. You cannot read from or
write to a listener.

The advantage of using the second method is that you can cancel a listen operation by calling TCP
Close. This is useful in the case where you want to listen for a connection without using a timeout, but you
want to cancel the listen when some other condition becomes true (for example, when the user presses a
button).

When a connection is established, you can read and write data to the remote application using the TCP
Read and TCP Write VIs.

Finally, use the TCP Close Connection VI to close the connection to the remote application. Notice that if
there is unread data and the connection closes, that data may be lost. This behavior is dependent upon
your operating system. For example, the Sun operating system implementation keeps unread data even
after the remote application closes the connection, while Windows NT immediately deletes any unread
data when a close connection is received. Connected parties should use a higher-level protocol to
determine when to close the connection. Once a connection is closed, you may not read or write from it
again.

Internet Addresses
Each host on an IP network has a unique, 32-bit internet address. This address identifies the network on
the internet to which the host is attached, and the specific computer on that network. You use this address
to identify the sender or receiver of data. IP places the address in the datagram headers, so that each
datagram is routed correctly.

One way of describing this 32-bit address is the IP dotted decimal notation. This divides the 32-bit
address into four 8-bit numbers. The address is written as the four integers, separated by decimal points.
For example, the 32-bit address

10000100          00001101          00000010        00011110

is written in dotted decimal notation as

132.13.2.30

Another way of using the 32-bit address is by names that are mapped to the IP address. Network drivers
usually perform this mapping by consulting a local hosts file that contains name to address mappings, or

consulting a larger database using the Domain Name System to query other computer systems for the
address for a given name. Your network configuration dictates the exact mechanism for this process,
which is known as hostname.

TCP Client Example
The following discussion is a generalized description of how to use the components of the Client block
diagram model with the TCP protocol.

Use the TCP Open Connection VI to open a connection to a server. You must specify the internet
address of the server, as well as the port for the server. The address identifies a computer on the network.
The port is an additional number that identifies a communication channel on the computer that the server
uses to listen for communication requests. When you create a TCP server, you specify the port that you
want the server to use for communication.

To execute a command on the server, use the TCP Write VI to send the command to the server.
You then use the TCP Read VI to read back results from the server. With the TCP Read VI, you must
specify the number of characters you want to read. This can be awkward, because the length of the
response may vary. The server can have the same problem with the command, because the length of a
command can vary.
Click here to access the Timeouts and Errors topic.

The following are several methods you can use to address varying sized commands:

· Precede the command and the result with a fixed size parameter that specifies the size of the
command or result. In this case, read the size parameter, and then read the number of characters
specified by the size. This option is efficient and flexible.

· Make each command and result a fixed size. When a command is smaller than the size, you can
pad it out to the fixed size.

· Follow each command and result with a specific terminating character. To read the data, you then
need to read data in small chunks until you get the terminating character.

Use the TCP Close Connection VI to close the connection to the server.

Timeouts and Errors
The TCP Client Example topic discussed communication protocol for the server. When you design a
network application consider carefully what should happen if something fails. For example, if the server
crashes, how would each of the client VIs handle it?

One solution is to make sure that each VI has a timeout. This way, if something fails to produce results,
after a certain amount of time, the client continues to execute. In continuing, the client can try to
reestablish execution, or it can report the error, and if necessary, shut the client application down. Select
Error In and Error Out Clusters for more information about errors.

TCP Server Example
The following discussion explains how you can use TCP to fulfill each component of the general server
model.

No initialization is necessary with TCP, so this step can be left out.

Use the TCP Listen VI to wait for a connection. You must specify the port that is used for
communication. This port must be the same port that the client attempts to connect. The TCP Client
Example topic provides more information about this VI..

If a connection is established, read from that port to retrieve a command. As discussed in the
TCP Client example, you must decide the format for commands. If commands are preceded by a length
field, first read the length field, and then read the amount of data indicated by the length field.

Execution of a command should be protocol independent, because it is performed on the local
computer. When finished, pass the results to the next stage, where they are transmitted to the client.

Use the TCP Write VI to return results. As discussed in the TCP Client example, the data must be
in a form that the client can accept.

Use the TCP Close Connection VI to close the connection.

This step can be left out with TCP, because everything is finished after you close the connection.

TCP Server with Multiple Connections
TCP handles multiple connections easily. You can use the methods described in the TCP Server Example
to implement the components of a server with multiple connections.

TCP VI Descriptions
Click here to access the TCP VI Overview topic.

The following illustration shows the TCP VI palette, which you access by selecting
Functions»Communication»TCP.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

IP To String
String To IP
TCP Close Connection
TCP Create Listener
TCP Listen
TCP Open Connection
TCP Read
TCP Wait on Listener
TCP Write

For examples of how to use the TCP VIs, see the examples in the examples\comm\tcpex.llb library.

IP To String
Converts an IP network address to a string.

net address contains the network address.

dot notation determines whether name is in dot notation format.

name is the string equivalent of net address.

String To IP
Converts a string to an IP network address.

name contains the string you want to convert. If you do not specify a string as an input, the output
is the current machines IP address.

net address is the IP network address equivalent to name.

TCP Close Connection
Closes the connection associated with connection ID.

connection ID is a network connection refnum that identifies the connection that you want to
close.

abort determines whether LabVIEW closes the connection normally (the default value) or aborts
the connection. Currently, this parameter is ignored.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Create Listener
Creates a listener for a TCP connection.

port is the port that the VI uses to listen for a connection.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

listener ID is a network connection refnum that uniquely identifies the Listener.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Listen
Creates a listener and waits for an accepted TCP connection at the specified port.

When a listen on a given port begins, you may not use another TCP Listen VI to listen on the same port.
For example, suppose a VI has two TCP Listen VIs on its block diagram. If you start a listen on port 2222
with the first TCP Listen VI, any attempts to listen on port 2222 with the second TCP Listen VI fails.

port is the port that the VI uses to listen for a connection.

timeout is in milliseconds. If the connection is not established in the specified time, the VI
completes and returns an error. The default value for timeout is -1, which means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID is a network connection refnum that uniquely identifies the TCP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

remote address is the address of the remote machine associated with the TCP connection. This
address is in IP dot notation format. See the Internet Protocol (IP) topic for a description of IP dot
notation.

remote port is the port the remote system uses for the TCP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Open Connection
Attempts to open a TCP connection with the specified address and port.

address is the address with which you want to establish a TCP connection. This address can be
in IP dot notation or it can be a hostname. See the Internet Addresses topic for a description of valid
specifications for address.

remote port is the port of the specified address with which you want to establish a TCP
connection.

timeout is in milliseconds. If the connection is not established in the specified time, the VI
completes and returns an error. The default value for timeout is 60,000 ms (1 minute). A timeout value of
-1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

local port is the port where you specify the local TCP connection port. Some servers only allow
connections to clients that use port numbers within a specified range that is dependent on the server. If
the value is 0, TCP chooses an unused port.

connection ID is a network connection refnum that uniquely identifies the TCP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Read
Receives up to bytes to read bytes from the specified TCP connection, returning the results in data out.

connection ID is a refnum identifying the TCP connection.

bytes to read is the number of bytes to read from the specified connection.

timeout is in milliseconds. If the operation does not complete in the specified time, the VI
completes and returns an error. The default value
is 25,000. A timeout value of -1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID.

data out is a string that contains the data read from the TCP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Wait on Listener
Waits for an accepted TCP connection at the specified port.

listener ID in is a network connection refnum identifying the Listener.

timeout is in milliseconds. If the connection is not established in the specified time, the VI
completes and returns an error. The default value
is 25,000. A timeout value of -1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

listener ID out has the same value as listener ID in.

remote address is the address of the remote machine associated with the TCP connection. This
address is in IP dot notation format. See the Internet Addresses topic for a description of IP dot notation.

remote port is the port the remote system uses for the TCP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

connection ID is a network connection refnum that uniquely identifies the TCP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

TCP Write
Writes the string data in to the specified TCP connection.

connection ID is a refnum identifying the TCP connection.

data in is a string that contains the data to write to the TCP connection.

timeout is in milliseconds. If the operation does not complete in the specified time, the VI
completes and returns an error. The default value is 25,000. A timeout value of -1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID.

bytes written is the number of bytes the VI writes to the specified connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

LabVIEW and TCP/IP
You can use the TCP/IP suite of protocols with LabVIEW on all platforms. LabVIEW has a set of TCP and
UDP VIs that you can use to create client or server VIs.

Setup
Before you can use TCP/IP, you need to make sure that you have the right setup. This setup varies,
depending on the computer you use.

Windows 3.x
Windows 95/NT
Macintosh
UNIX

Windows 3.x
To use TCP/IP, you must install an ethernet board along with its low-level driver. In addition, you must
purchase and install TCP/IP software that includes a Windows Sockets (WinSock) DLL conforming to
standard 1.1. WinSock is a standard interface that enables application communication with a variety of
network drivers. Several vendors provide network software that includes the WinSock DLL. Install the
ethernet board, the board drivers, and the WinSock DLL according to the software vendor instructions.

Several vendors supply WinSock drivers that work with a number of boards. You can contact the vendor
of your board to inquire if they offer a WinSock DLL you can use with the board. Install the WinSock DLL
according to vendor instructions.

National Instruments has tested a number of WinSock DLLs to verify which work correctly. These tests
showed that many DLLs do not fully comply with the standard, so you may want to try a demo version of
a DLL before you buy the real version. You can usually obtain a demo version from the manufacturer.
Most demo versions are fully functional, but they expire after a certain amount of time.

If you have access to the internet, several of these demos are available by anonymous ftp from
sunsite.unc.edu. in the directory/pub/micro/pc-stuff/ms-windows/ winsock/packages.
Refer to your LabVIEW Release Notes for a detailed list of WinSock DLLs tested by National Instruments.

Windows 95/NT
TCP support is built into Windows NT. You do not need to use a third-party DLL to communicate using
TCP.

Macintosh
TCP/IP is built in to Macintosh operating system version 7.5. To use TCP/IP with an earlier system, you
need to install the MacTCP driver software, available from the Apple Programmer Developer Association
(APDA). You can contact APDA at (800) 282-2732 for information on licensing the MacTCP driver.

UNIX
TCP/IP support is built-in. Assuming your network is configured properly, no additional setup for LabVIEW
is necessary.

TCP Close Connection VI
TCP Close Connection

TCP Create Listener VI
TCP Create Listener

TCP Listen VI
TCP Listen

TCP Open Connection VI
TCP Open Connection

TCP Read VI
TCP Read

TCP Wait on Listener VI
TCP Wait On Listener

TCP Write VI
TCP Write

IP To String VI
IP To String

String To IP VI
String To IP

Communications Common Questions

This section answers common questions about LabVIEW and networking communications. Questions are
divided into sections according to the relevant platform: Questions for All Platforms, Windows Only, and
Macintosh Only. Please contact National Instruments if you have further questions or suggestions
regarding LabVIEW.

Questions for All Users
Questions for Windows Users
Questions for Macintosh Users

Questions for All Users

How do I use LabVIEW to communicate with other applications?
Communicating with other applications, often called interprocess or interapplication communication, can
be done with the standard networking protocols on each platform. LabVIEW has support for TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol) on all platforms.

Windows
In addition, LabVIEW for Windows supports DDE (Dynamic Data Exchange).

Macintosh
In addition, LabVIEW for Macintosh supports IAC (Interapplication Communication). IAC includes Apple
Events and PPC (Program to Program Communication).

UNIX
LabVIEW for UNIX only supports TCP and UDP.

In addition, for many instrumentation applications, file I/O provides a simple, adequate method of sending
information between applications.

How do I launch another application with LabVIEW?
On Windows and UNIX, use the System Exec VI (Functions»Communication). On Macintosh, use
AESend Finder Open (Functions »Communication»AppleEvent).

When would I want to use UDP instead of TCP?
Typically, UDP is used in applications where reliability is not critical. For example, an application might
transmit informative data to a destination frequently enough that a few lost segments of data are not
problematic. Also, UDP can be used to broadcast to any machine(s) wanting to listen to the server.

What port numbers can I use with TCP and UDP?
A port is represented by a number between 0 and 65535. With UNIX, port numbers less
than 1024 are reserved for privileged applications (e.g. ftp). When you specify a local port, you can use
the value of 0 which would cause TCP and UDP to choose an unused port.

Why cant I broadcast using UDP?
Because the broadcast address varies among domains, you need to find out from your system
administrator what broadcast address to use. For example, the broadcast address 0xFFFFFFFF is not
correct for your domain. Additionally, your machine may default to not allow broadcasting unless the
process is run by the root user.

Questions for Windows Users

What winsock.dll can I use with LabVIEW?
This question pertains to Windows 3.x only, as Windows 95 and Windows NT include this file in their
operating systems.

Any WinSock driver that conforms to standard 1.1 should work with LabVIEW. You can find Information
regarding National InstrumentsÕ in-house testing of the winsock.dll in your online Release Notes.

Recommended:

· TCPOpen version 1.2.2 from Lanera Corporation
(408) 956-8344.

· Trumpet (version 1.0 tested). Available via anonymous ftp to ftp.utas.edu.au in the directory
/pc/trumpet/winsock/*. For information send electronic mail to trumpet-
info@petros.psychol.utas.eduau.

· Super-TCP version 3.0 R1 from Frontier Technologies Corporation (414) 241-4555.

· NEWT/Chameleon version 3.11 from NetManage, Inc.
(408) 973-7171.

· Windows for Workgroups winsock.dll from Microsoft.

Not Recommended:
National InstrumentsÕ limited testing of these products yielded various problems and crashes while
attempting TCP/IP communication. At this time, National Instruments can neither recommend these
products nor support customers attempting TCP/IP communication with these winsock.dlls.

· Distinct TCP/IP version 3.1 from Distinct Corporation
(408) 741-0781.

· PCTCP version 2.x from FTP Software, Inc. (508) 685-4000.

How do I call an Excel macro using DDE?
Use the DDE Execute VI. This VI tells the DDE server to execute a command string in which you specify
the action for Excel to perform and the name of the macro. Make sure to include the correct parentheses
and brackets around the command. Refer to the Excel UserÕs Guide for more information. Some
common examples are shown below:

Command String Action

[RUN("MACRO1")] Runs MACRO1

[RUN("MACRO1!R1C1")] Runs MACRO1 starting at
Row 1, Column 1

[OPEN("C:\EXCEL\SURVEY.XLS")] Opens SURVEY.XLS

Why doesn't DDE Poke work with Microsoft Access?
Microsoft Access cannot accept data directly from DDE clients. To get data into an Access database you
must create a macro in that database to import the data from a file. In the simple case these macros need
only be two actions long. First do a SetWarnings to suppress Access dialogs, then do a
TransferSpreadsheet or TransferText to get the data. After this macro is defined, you can call the macro
by sending an execute to that database with the macro name as the data. Refer to the example VI
Sending Data to Access.vi located in examples\network\access.llb to see how this is done.

What commands do I use to communicate with a non-LabVIEW
application using DDE?
The DDE commands are specific to the application with which you are interfacing. Consult the LabVIEW
User Manual or online reference for the specific application to see which commands are available.

How do I install LabVIEW as a shared application on a file server?
Provided the user has a license for each client, the process is as follows:

· Install the LabVIEW Full Development System on the server. (Unless there is NI hardware on the
server, it is not necessary to install NI-DAQ or GPIB.DLL).

· Each local machine should use its own labview.ini file for LabVIEW preferences. If a
labview.ini file does not already exist on the local machine, you can create this (empty) text
document using a text editor, such as Microsoft Notepad. The first line of labview.ini    must be
[labview]. To have a local setting for labview.ini, LabVIEW requires a command line argument
containing the path to the preferences. For example, if the labview.exe file is on drive W:
\LABVIEW and the labview.ini file is on C:\LVWORK (the hard drive on the local machine), modify
the command line option of the LabVIEW icon in Program Manager to be:

W:\LABVIEW\LABVIEW.EXE-pref

Note: pref must be lower case. Additionally, each local machine must have its own LabVIEW
temporary directory. This is done in LabVIEW by choosing EditÈPreferences....

· You do not need GPIB.DLL on the server machine, unless you are using a GPIB board on this
machine. You then need the gpibdrv file in the LabVIEW directory. Then, on each machine that has
a GPIB board, you need to install the driver for that board. You can do this by either using the drivers
that came with the board, or by doing a custom LabVIEW installation, in which only the desired GPIB
driver is installed on the local machine.

· The same procedure for GPIB.DLL applies to NI-DAQ.

Why does the Synch DDE Client / Server hang on NT after many
transfers?
There are some problems with DDE in LabVIEW for NT that result in VIs hanging during DDE Poke and
DDE Request operations. This limitation is specific to Windows NT.

Are there plans for LabVIEW to support OLE?
OLE (Object Linking and Embedding) is a way of embedding objects from one application into another
application. For example, a spreadsheet might be included on a word processing document. When the
text document is loaded, the current values that are found in the spreadsheet are automatically included
into the document. National Instruments is currently investigating support for OLE for a future version of
LabVIEW; however, no dates have been set on when a version including OLE support will be available.

OLE Automation is a technique by which Automation servers can expose methods and properties to other
applications and Automation controllers can access the methods and properties of other applications.
LabVIEW 4.x is an OLE Automation controller. There is a library of VIs, which you can use to execute
properties and methods exposed by Automation servers.

Questions for Macintosh Users

What is a target ID?
Target ID is used in the Apple Events and PPC VIs on the Macintosh; it serves as a reference to the
application that you are trying to launch, run, or abort. The target ID to an application can be accessed by
one of the following commands:

Get Target ID - takes the name and location of the application as input, searches the network for it, and
returns the target ID;

PPC Browser - pops up a dialog box that you can use to select an application, which may be across the
network or on your computer.

The target ID you generated at the beginning of your VI should be used as an input to all subsequent
Apple Event functions to open, print, close, or run the application.

Why can't I see my application in the dialog box generated by PPC
Browser?
If the application you want to connect cannot be used with Apple Events, it does not show up in the PPC
Browser dialog box. If you are certain that the desired application supports Apple Events, make sure that
you have turned on File Sharing on your Macintosh. Select Control » Sharing Setup to turn File Sharing
on.

How can I close the Finder using Apple Events?
Use the VI AESend Quit Application to quit the Finder or any other application.

PPC Error Codes

AppleEvent Error Codes
LabVIEW Specific PPC Error Codes
TCP and UDP Error Codes
LabVIEW Specific Error Codes for AppleEvent Messages
DDE Error Codes

PPC Error Codes

Code Name Description

-900 notInitErr PPC Toolbox has not been initialized.

-902 nameTypeErr Invalid or inappropriate locationKindSelector in
locationName.

-903 noPortErr Invalid port name. Unable to open port or bad
portRefNum.

-904 noGlobalsErr The system is unable to allocate memory. This is a
critical error, and you should restart.

-905 localOnlyErr Network activity is currently disabled.

-906 destPortErr Port does not exist at destination.

-907 sessTableErr PPC Toolbox is unable to create a session.

-908 noSessionErr Invalid session reference number.

-909 badReqErr Bad parameter or invalid state for this operation.

-910 portNameExistsErr Another port is already open with this name (perhaps in
another application).

-911 noUserNameErr User name unknown on destination machine.

-912 userRejectErr Destination rejected the session request.

-913 noMachineNameErr User has not named his Macintosh in the Network
Setup Control Panel.

-914 noToolboxNameErr A system resource is missing.

-915 noResponseErr Unable to contact destination application.

-916 portClosedErr The port was closed.

-917 sessClosedErr The session has closed.

-919 badPortNameErr PPCPortRec is invalid.

-922 noDefaultUserErr User has not specified owner name in Sharing Setup
Control Panel.

-923 notLoggedInErr The default userRefNum does not yet exist.

-924 noUserRefErr Unable to create a new userRefNum.

-925 networkErr An error has occurred in the network.

-926 noInformErr PPCStart failed because destination did not have an
inform pending.

-927 authFailErr UserÕs password is wrong.

-928 noUserRecErr Invalid user reference number.

-930 badServiceMethodE
rr

Service method is other than ppcServiceRealTime.

-931 badLocNameErr Location name is invalid.

-932 guestNotAllowedErr Destination port requires authentication.

AppleEvent Error Codes

Code Name Description

-1700 errAECoercionFail Data could not be coerced to the requested
descriptor type.

-1701 errAEDescNotFound Descriptor record was not found.

-1702 errAECorruptData Data in an Apple event could not be read.

-1703 errAEWrongDataType Wrong descriptor type.

-1704 errAENotAEDesc Not a valid descriptor record.

-1705 errAEBadListItem Operation involving a list item failed.

-1706 errAENewerVersion Need a newer version of Apple Event Manager.

-1707 errAENotAppleEvent The event is not an Apple event.

-1708 errAEReplyNotValid AEResetTimer was passed an invalid reply
parameter.

-1709 errAEERReplyNotValid AEResetTimer was passed an invalid reply
parameter.

-1710 errAEUnknownSendMode Invalid sending mode was passed.

-1711 errAEWaitcanceled User canceled out of wait loop for reply or
receipt.

-1712 errAETimeout Apple event timed out.

-1713 errAENoUserInteraction No user interaction allowed.

-1714 errAENotASpecialFunction Wrong keyword for a special function.

-1715 errAEParamMissed Handler did not get all required parameters.

-1716 errAEUnknownAddressType Unknown Apple event address type.

-1717 errAEHandlerNotFound No handler in the dispatch tables fits the
parameters to AEGetEventHandler or
AEGetCoercionHandler.

-1718 errAEReplyNotArrived The contents of the reply you are accessing
have not arrived yet.

-1719 errAEIllegalIndex Index is out of range in a put operation.

LabVIEW Specific PPC Error Codes

Code Name Description

1 errNoPPCToolBox The PPC ToolBox either does not exist (it requires
System 7.0 or later) or it could not be initialized.

2 errNoGlobals The CIN in the PPC VI could not get its globals.

3 errTimedOut The PPC operation exceeded its timeout limit.

4 errAuthRequired The target specified in the PPC Start Session VI required
authentication, but the authentication dialog was not
allowed.

5 errbadState The PPC Start Session VI found itself in an unexpected
state.

TCP and UDP Error Codes

Code Name Description

53 mgNotSupported LabVIEW: Manager call not
supported

54 ncBadAddressErr The net address was ill
formed

55 ncInProgressErr Operation is in progress.

56 ncTimeOutErr Operation exceeded the
user-specified time limit.

57 ncBusyErr The connection was busy.

58 ncNotSupportedErr Function not supported.

59 ncNetErr The network is down,
unreachable, or has been
reset.

60 ncAddrInUseErr The specified address is
currently in use.

61 ncSysOutOfMemErr System could not allocate
necessary memory.

62 ncSysConnAbortedErr System caused connection
to be aborted.

63 ncConnRefusedErr Connection is not
established.

65 ncAlreadyConnectedErr Connection is already
established.

66 ncConnClosedErr Connection was closed by
peer.

LabVIEW Specific Error Codes for AppleEvent Messages

Code Name Description

1000 kLVE_InvalidState The VI is in a state that does not allow it
to run.

1001 kLVE_FPNotOpen The VI front panel is not open.

1002 kLVE_CtrlErr The VI has controls on its front panel that
are in an error state.

1003 kLVE_VIBad The VI is broken.

1004 kLVE_NotInMem The VI is not in memory.

DDE Error Codes

Code Name Description

00000 No error.

14001 DDE_INVALID_REFNUM Invalid refnum.

14002 DDE_INVALID_STRING Invalid string.

14003 DDEML_ADVACKTIMEOUT Request for a synchronous advise
transaction has timed out.

14004 DDEML_BUSY Response set the DDE_FBUSY bit.

14005 DDEML_DATAACKTIMEOUT Request for a synchronous data
transaction has timed out.

14006 DDEML_DDL_NOT_INITIALIZED DDEML called without first calling
DdeInitialize, or was passed an
invalid instance identifier.

14007 DDEML_DLL_USAGE A monitor or client-only application has
attempted a DDE transaction.

14008 DDEML_EXECACKTIMEOUT Request for a synchronous execute
transaction has timed out.

14009 DDEML_INVALIDPARAMETER Parameter not validated by the DDML.

14010 DDEML_LOW_MEMORY Server application has outrun client,
consuming large amounts of memory.

14011 DDEML_MEMORY_ERROR A memory allocation failed.

14012 DDEML_NOTPROCESSED Request or poke is for an invalid item

14013 DDEML_NO_CONV_ESTABLISHED Client conversation attempt failed.

14014 DDEML_POKEACTIMEOUT Transaction failed.

14015 DDEML_POSTMSG_FAILED Request for a synchronous poke
transaction has timed out.

14016 DDEML_REENTRANCY An application with a synchronous
transaction in progress attempted to
initiate another transaction, or a DDEML
callback function called
DdeEnableCallback.

14017 DDEML_SERVER_DIED Server-side transaction attempted on
conversation terminated by client, or
service terminated before completing a
transaction.

14018 DDEML_SYS_ERROR Internal error in the DDMEML.

14019 DDEML_UNADVACKTIMEOUT Request to end advise has timed out.

14020 DDEML_UNFOUND_QUEUE_ID Invalid transaction identifier passed to
DDEML function.

