Communication VI Descriptions

Click here for Overview Topics.

This section is an overview of the way LabVIEW handles networking and interapplication communications
in the following areas: Dynamic Data Exchange, Transmission Control Protocol, User Datagram Protocol,
Object Linking and Embedding, and Named Pipes. This topic also describes the Vls that link LabVIEW to
HiQ, the National Instruments numerical analysis package as well as the System Exec VI.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

2.2 =2 Al Platomns
[one]
2
O+0 Exec Wird o Cnly
. Windowsa5and
8 Windows KT Only

. ﬁé ﬁé Macintcesh Only

[za]

w LM Cnly

AppleEvents VI Descriptions

DDE VI Descriptions

HiQ Functions for Macintosh
Named Pipe VI Descriptions (UNIX)
OLE Automation VI Descriptions
PPC VI Descriptions

System Exec VI for Windows
System Exec VI for UNIX

TCP VI Descriptions

UDP VI Descriptions

7 k.
]

Communication Overview Topics

Communications Overview
Transmission Control Protocol (TCP) VI Overview
User Datagram Protocol (UDP) VI Overview

Dynamic Data Exchange (DDE) for Windows VI Overview
OLE Automation for Windows 95/NT VI Overview

AppleEvents VI Overview (Macintosh)
Program to Program Communication (PPC) for Macintosh VI Overview

For the purpose of this discussion, networking refers to communication between multiple processes. The
processes can optionally run on separate computers. This communication usually occurs over a hardware
network, such as ethernet or LocalTalk.

One main use for networking in software applications is to allow one or more applications to use the
services of another application. For example, the application providing services (the server) could be
either a data collection application running on a dedicated computer, or a database program providing
information for other applications.

The purpose of this discussion is to introduce you to the terminology used in networking and
communication applications, and to give you an overview of how to program networked applications.

Communication Protocols

File Sharing vs Communication Protocols
Client/Server Model

General Model for a Client

General Model for a Server

Error In and Error Out Clusters

Communication Protocols

For communication between processes to work, the processes must use a common communications
language, referred to as a protocol.

A communication protocol lets you specify the data that you want to send or receive and the location of
the destination or source, without having to worry about how the data gets there. The protocol translates
your commands into data that network drivers can accept. The network drivers then take care of
transferring data across the network as appropriate.

Several networking protocols have emerged as accepted standards for communications. In general, one
protocol is not compatible with a different protocol. Thus, in communication applications, one of the first
things you must do is decide which protocol to use. If you want to communicate with an existing, off the
shelf application, then you have to work within the protocols supported by that application.

When you are writing the application, you have more flexibility in choosing a protocol. Factors that affect
your protocol choice include the type of machines the processes can run on, the kind of hardware
network you have available, and the complexity of the communication that your application needs.

Several protocols are built into LabVIEW, some of which are specific to a type of computer. LabVIEW
uses the following protocols to communicate between computers:

e TCP VI Overview (All Platforms) - available on all computers.

e UDP VI Overview (All Platforms) - available on all computers.

e DDE VI Overview (Windows) - available on the PC, for communication between Windows
applications.

e OLE Automation VI Overview (Windows 95/NT) - available on the PC, for use with Windows 95/NT.

e AppleEvents VI Overview (Macintosh) - available on Macintosh, for sending messages between
Macintosh applications.

e PPC VI Overview (Macintosh) - available on Macintosh, for sending and receiving data between
Macintosh applications.

Each protocol is different, especially in the way they refer to the network location of a remote application.

They are incompatible with each other, so if you want to communicate between a Macintosh and a PC,
you must use a protocol compatible with both, such as TCP.

Other communication options provided by LabVIEW include:

¢ HiQ Functions for Macintosh -.available on Macintosh only

e System Exec VI Descriptions (Windows and UNIX) - which you can use to execute a system level
command. There are actually two System Exec Vls, one for use with all versions of Windows, the
other for use with UNIX.

¢ Named Pipe VI Descriptions (UNIX) - available on UNIX only.

Note: The three previous communication options do not contain overview material.

File Sharing vs Communication Protocols

Before you get too deeply involved in communication protocols, consider whether another approach is
more appropriate for your application. For instance, consider an application where a dedicated system
acquires data and you want the data recorded on a different computer.

You could write an application that uses networking protocols to send data from the acquisition computer
to the data repository machine, where a separate application collects the data and stores it on disk.

A simpler method is to use the filesharing capabilities available on most networked computers. With
filesharing, drivers that are part of the operating system let you connect to other machines. The remote
machines disk storage is treated as an extension of your own disk storage. Once you connect two
systems, filesharing usually makes this connection transparent, so that any application can write to the
remote disk as if connected locally.

Filesharing is frequently the simplest method for transferring data between machines.

Client/Server Model

The client/server model is a common model for networked applications. In the client/server model, one set
of processes (clients) request services from another set of processes (servers).

For example, in your application you could set up a dedicated computer for acquiring measurements from
the real world. The computer acts as a server when it provides data to other computers on request. It acts
as a client when it requests another application, such as a database program, to record the data that it
acquires.

In LabVIEW, you can use client and server applications with all protocols except Macintosh AppleEvents.
You can use AppleEvents to send commands to other applications. You cannot set up a command server
in LabVIEW using AppleEvents. If you need server capabilities on the Macintosh, use either TCP, UDP or
PPC.

General Model for a Client
General Model for a Server

General Model for a Client

The following block diagram shows what a simplified model for a client looks like in LabVIEW:

Open Enec Clasze
Cann E""" Cmd [~ Cann @
to Srur on Srur to Srure]

C d
annan

In the preceding diagram, LabVIEW first opens a connection to a server. It then sends a command to the
server, gets a response back, and closes the connection to the server. Finally, it reports any errors that
occurred during the communication process.

For higher performance, you can process multiple commands once the connection is open. After the
commands are executed, you can close the connection.

This basic block diagram structure serves as a model and is used elsewhere in this manual to
demonstrate how to implement a given protocol in LabVIEW.

General Model for a Server

The following block diagram shows a simplified model for a server in LabVIEW:

™ Fa]seb[

I |
L Return[| Shut

Initialize
Server o [otatus H

|1'f error, don't cu:-ntinuel

Results EI.:l:rLE:r

In the preceding diagram, LabVIEW first initializes the server. If the initialization is successful, LabVIEW
goes into a loop, where it waits for a connection. Once the connection is made, LabVIEW waits to receive
a command. LabVIEW executes the command and returns the results. The connection is then closed.
LabVIEW repeats this entire process until it is shut down locally by pressing a stop button on the front
panel, or remotely by sending a command to shut the VI down.

This VI does not report errors. It may send back a response indicating that a command is invalid, but it
does not display a dialog box when an error occurs. Because a server might be unattended, consider
carefully how the server should handle errors. You probably do not want a dialog box to be displayed,
because that requires user interaction at the server (someone would have to press the OK button).
However, you might want LabVIEW to write a log of transactions and errors to a file or a string.

You can increase performance by allowing the connection to stay open, so that you can receive multiple
commands, but this blocks others clients from connecting until the current client disconnects. If the
protocol supports multiple simultaneous connections, you can restructure LabVIEW to handle multiple

clients simultaneously, as shown in the following diagram.

False]
if error, -] i [zE]
don't continue, " i e
L error out
Inikialize
—
St Totatus |f “
...............

Get new connections iy
one at a time from

the queue. This could
be changed to get all

Mo error -

; =tay
queued connections Close all
empty when quetied. connected connections
[B] - when finished

True
~ @ 1+ T l | l
{7 [m+ wWatt |H poee [EReturn
S fl;n:j Crnd | [Results =

The preceding diagram uses LabVIEWs multitasking capabilities to run two loops simultaneously. One
loop continuously waits for a connection. When a connection is received, it is added to a queue. The other
loop checks each of the open connections and executes any commands that have been received. If an
error occurs on one of the connections, the connection is disconnected. When the user aborts the server,
all open connections are closed. This basic block diagram structure is a model which is used elsewhere in
this discussion to demonstrate how to implement a given protocol in LabVIEW.

Error In and Error Out Clusters
Many of the Communication VIs report errors in clusters, as the following illustration shows.

error in [no error)

SoUrce

L

error out

code

no errl:-r'g ll:l—l

Zource

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. The error in cluster contains the following parameters:

status is TRUE if an error occurs. If status is TRUE, this VI does not perform any operations,
and error out contains the same information as error in.

code is the error code. A value of 0 means no error.

source either gives the name of the TCP VI where the error occurs followed by the error
message, or the name of the last TCP VI to execute followed by the no error message if no error
occurs.

E error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces.

If a VI receives an error cluster with a TRUE status flag, the VI passes the error cluster out without
changing it or attempting any of the VIs commands. If you do not wire error in, it defaults to no error.

Named Pipe Vis
Named Pipe VI Descriptions (UNIX)

Transmission Control Protocol Vis
TCP VI Descriptions

User Datagram Protocol Vis
UDP VI Descriptions

Dynamic Data Exchange Vis

DDE VI Descriptions
DDE Server VI Descriptions

Object Linking and Embedding Automation Vis

OLE Automation VI Descriptions

Apple Event Vis

AppleEvents VI Descriptions
LabVIEW Specific AppleEvent VI Descriptions
Low Level AppleEvent VI Descriptions

Program to Program Communication Vis
PPC VI Descriptions

HiQ Vis

HiQ Functions for Macintosh

Click here to access the AppleEvents VI Descriptions topic.
Click here to access the LabVIEW Specific AppleEvent VI Descriptions topic.
Click here to access the Low Level AppleEvent VI Descriptions topic.

This topic discusses the LabVIEW VIs for interapplication communication (IAC), a feature of Apple
Macintosh system software version 7 by which Macintosh applications can communicate with each other.
You can use LabVIEW with two forms of IAC, AppleEvents and program to program communication
(PPC).

AppleEvents
Sending AppleEvents

General AppleEvent VI Behavior

AppleEvents Client/Server Model

AppleEvents Client Examples

Advanced AppleEvents Topics

AppleEvent Parameter Creation Using Object Specifiers
Object Support VI Example

Sending AppleEvents to LabVIEW from Other Applications

AppleEvents

AppleEvents are a high-level method of communication in which applications use messages to request
other applications to perform actions or return information. An application can send these messages to
itself, other applications on the same machine, or other applications located anywhere on a network.
Apple has defined a large vocabulary for messages to help standardize this form of interapplication
communication. You can combine words in this vocabulary to form very complex messages. This
vocabulary is described in detail in the AppleEvent Registry, a document available from Apple. Most
applications written for System 7, including LabVIEW, respond to some subset of AppleEvents.

Note: PPC, a low-level form of IAC, provides higher performance than AppleEvents, because the
overhead required to transmit information is lower. However, because PPC does not define
what kinds of information you can transfer, many applications do not support it. PPC is the
best way to send large amounts of information between applications that support
PPC.Program to Program Communication VI Overview , for more information about PPC.

For applications to communicate with IAC, the computer must use system software
version 7.0 or greater with Program Linking enabled.

LabVIEW can send and respond to AppleEvents. You can use AppleEvent Vs to send AppleEvents.
LabVIEW responds to two types of AppleEvents: LabVIEW-defined events and a subset of standard
AppleEvents. See the Sending AppleEvents topic for more information.

Some of the ways you can use AppleEvents in LabVIEW applications are listed below:

o You can command LabVIEW to tell another application (even an application on another computer
connected by a network) to perform an action. For example, LabVIEW can tell a spreadsheet
program to create a graph See the Sending AppleEvents topic for more information.

o You can use a program, such as HyperCard as a front end to instruct LabVIEW to run specific
Vis.
o You can communicate with and control LabVIEW applications on other machines connected by a

network by sending them instructions to perform specific operations. See the Sending
AppleEventstopic for more information.

o You can command LabVIEW to send messages to itself, instructing itself to load, run, and unload
specific VlIs. For example, in large applications where memory is tight, you can replace subVI calls with a
utility VI (the AESend Open, Run, Close VI) and dynamically load, run, and unload the VlIs.See the
Sending AppleEvents topic for more information.

Sending AppleEvents

You can find VIs for sending AppleEvents in Functions»Communication»AppleEvent. With these Vs,
you can select a target application for an AppleEvent, create AppleEvents, and send the AppleEvents to
the target application.

You can find VIs that send specific AppleEvent messages in Functions»Communication
AppleEvent»LabVIEW Specific Apple Event. These VIs let you send several standard AppleEvents
(Open Document, Print Document, and Close Application) and all the LabVIEW custom AppleEvents.
These high-level Vis require little understanding of AppleEvent programming details. These diagrams also
serve as good examples of how to create and send AppleEvents.

You can use the low-level AESend VI if you want to send an AppleEvent for which LabVIEW provides no
VI. The Functions»Communication»AppleEvent»Low Level Apple Events palette also contains Vs
that can help you create an AppleEvent. However, creating and sending an AppleEvent at this level
requires detailed understanding of AppleEvents as described in Inside Macintosh, Volume VI and the
AppleEvent Registry.

General AppleEvent VI Behavior

When sending an AppleEvent, you must specify the target application for the event. To receive the
AppleEvent, the target application must be open. You can use the AESend Finder Open VI to open an
application.

User ldentity Dialog Box
Target ID

Send Options

User Identity Dialog Box

Before you send an AppleEvent to another computer, you must use the Users & Groups control panel
utility on the destination computer to set up a user name and password for yourself. The first time you
send an AppleEvent to an application or Finder on the destination computer, a dialog box prompts you to
enter your name and password. The system compares this information to the configuration of the Users &
Groups control panel utility on the destination computer.

&

Connect to the file server "Macintosh HD" as:

i Guest
@ Registered User

Name: || |

Password: I:I (Two-way Scrambled)
[Cancel] [Set Passwurd]

wT.a0

The current design of the AppleEvent Manager does not include a programmatic method for bypassing
this dialog box, so you should take this into account when designing VIs that use IAC. For example, you
cannot command an unattended remote computer to send an AppleEvent to a third computer; someone
must enter user information into the User Identity Dialog Box that appears on the remote computer. The
PPC ViIs allow for unauthenticated sessions if guest access is enabled on the computer with which you
wish to communicate, so you may find the PPC VIs more useful for certain kinds of LabVIEW-to-LabVIEW
communication.

Target ID

Most Vls that send AppleEvents need a description of the target application that receives the AppleEvent.
The target ID is a complex cluster of information, defined by Apple Computer Inc., describing the target
application and its location. The following VIs generate the target ID, so you do not need to create this
cluster on the block diagram.

e PPC Browser creates the target ID by displaying a dialog box by which you interactively select
AppleEvent-aware applications on the network.

e Get Target ID creates the target ID programmatically based on the applications name and network
location.

These Vls are discussed in more detail in the AppleEvents VI Descriptions topic.

You need to look at the target ID cluster only if you want to pass target information from one VI to
another. To create a target ID cluster for the front panel of a VI that passes target information to another
VI or to an AppleEvent, you can copy the target ID cluster from the front panel of one of the AppleEvent
Vis.

Send Options

Many of the Vls that send an AppleEvent have a send options input, which specifies whether the target
application can interact with the user and the length of the AppleEvent timeout.

=end options)

@ @Eerver rmay corme to fl:-r'egrl:-und|
@ @l[ﬁlnn't try to r'ec-:-nne-ctl

transaction ID E'D
Bl interaction | et ticks] Fllenn I

=mo

send options is a cluster containing the following parameters in the order listed below.

want reply specifies whether you want to receive a reply. The default is TRUE.
TRUE Asynchronously wait for a response from the application until the VI receives a
response or a timeout occurs.
FALSE Send the AppleEvent and do not wait for a reply.

high priority determines whether the AppleEvent is added to the beginning or end of the target
applications event queue. The default is FALSE.

TRUE Put the event at the front of the target application event queue.

FALSE Add the event to the end of the target application event queue.

interaction mode determines the level of user interaction of the target application. The default is
1.
. (Never Interact) Do not interact with the user.
1: (Allow Interaction) Can interact with the user if the target application needs
information.
2: (Always Interact) Can interact with the user even if the target application does not
need information.

server may come to foreground specifies whether the application can come to the foreground if
it needs user interaction. The default is TRUE.

TRUE Can automatically switch to the foreground.

FALSE Notifies the user by flashing the application icon in the menu bar.

dont try to reconnect determines whether the system should try to reconnect if it is
disconnected. The default is FALSE.

TRUE Do not attempt to reconnect if disconnected.

FALSE Attempt to reconnect if disconnected.

transaction ID is a number associated with a sequence of AppleEvents. If you will be sending
multiple AppleEvents related to a single transaction, use the same number throughout the transaction.
The default is 0.

timeout ticks determines how long in ticks (1/60 of a second) LabVIEW waits for a reply before
timing out if you entered TRUE for want reply. Use a value of 0 if you do not want a timeout. The default
is 600 ticks, or 10 seconds.

AppleEvents Client/Server Model

You cannot use the AppleEvent Vls to create LabVIEW diagrams that behave as servers. The Vis are
used to send messages to other applications. If you need diagram-based server capabilities, you must
use TCP or PPC.

LabVIEW itself acts as an AppleEvent server, in that it understands and responds to a set of AppleEvents.
Specifically, using AppleEvents, you can instruct LabVIEW to open VIs, print them, run them, and close
them. You can ask LabVIEW whether a given VI is running. You can also tell LabVIEW to quit.

Using these server capabilities, you can instruct other LabVIEW applications to run VIs, and control

LabVIEW remotely. You can also command LabVIEW to send messages to itself, instructing the loading
of specific VIs. For example, in large applications where memory is limited, you can replace subVI calls
with calls to the AESend Open, Run, Close VI to load and run Vls as necessary. Notice that when you run
a VI this way its front panel opens, just as if you had selected File»Open....

AppleEvents Client Examples

Launching Other Applications
Sending Events to Other Applications
Dynamically Loading and Running a VI

Launching Other Applications

To send a message to an application, that application must be running. You can use the AESend Finder
Open VI to launch another application. This VI sends a message to the Finder. The Finder is, in itself, an
application that understands a limited number of AppleEvents. The following simple example shows how
you can use AppleEvents to launch Teach Text with a specific text file:

IHIZ:I text files :I =

0
If the application is on a remote computer, then you must specify the location of that computer. You can
use inputs to the AESend Finder Open VI to specify the network zone and the server name of the

computer with which you want to communicate. If the network zone and server name are not specified, as
in the preceding application, they default to those of the current computer.

Notice that if you try to send messages to another computer, you are automatically prompted to log onto
that computer. There is no method for avoiding this prompt, because it is built into the operating system.
This can cause problems when you want your application to run on an unattended computer system.

Sending Events to Other Applications

Once an application is running, you can send messages to that application using other AppleEvents. Not
all applications support AppleEvents, and those that do may not support every published AppleEvent. To
find out which AppleEvents an application supports, consult the documentation that comes with that
application.

If the application understands AppleEvents, you call an AppleEvent VI with the Target ID for the
application. A Target ID is a cluster that describes a target location on the network (zone, server, and
supporting application). You do not need to worry about the exact structure of this cluster because
LabVIEW provides Vls that you can use to generate a Target ID.

There are two ways to create a Target ID. You can use the Get Target ID VI to programmatically create a
Target ID based upon the application name and network location. Or, you can use the PPC Browser VI,
which displays a dialog box listing applications on the network that are aware of AppleEvents. You
interactively select from this list to create a Target ID.

You can also use the PPC Browser VI to find out if another application uses AppleEvents. If you run the VI
and select the computer that is running the application, the dialog box lists the application if it is
AppleEvent aware.

In the following diagram, LabVIEW interactively selects an AppleEvent aware application on the network
and tells it to open a document. In this case, LabVIEW is telling the application to open a VI.

BHD L abv B csinple o]

CIpen

Dynamically Loading and Running a VI

The AESend Open, Run, Close VI sends messages asking LabVIEW to run a VI. First, it sends the Open
Document Message and LabVIEW opens a VI. Then, the Open Run Close VI sends the LabVIEW Run VI
message and LabVIEW runs the specified VI. Next, Open Run Close sends the VI Active? message, and
LabVIEW returns the status of a specified VI, until the VI is no longer running. Finally, the VI sends the
Close VI message.

Assuming the target LabVIEW is on another computer, you could use the following diagram to load and
run the VI. If you are sending it to the current LabVIEW, you do not need the PPC Browser VI.

JHE Labv B simple o]

e EE
|
=\ Clo=se U

Advanced AppleEvents Topics

Constructing and Sending Other AppleEvents
Creating AppleEvent Parameters

Constructing and Sending Other AppleEvents

In addition to Vs that send common AppleEvents, you can use lower-level Vlis to send any AppleEvent.
Using these Vls requires more knowledge of AppleEvents than using the VIs described earlier in this
chapter. If you are interested in using these Vls, you should be familiar with the discussion of AppleEvents
in Inside Macintosh, Volume VI, and the AppleEvent Registry.

When sending an AppleEvent, you must include several pieces of information. The event class and event
ID identify the AppleEvent you are sending. The event class is a four-letter code which identifies the
AppleEvent group. For example, an event class of core identifies an AppleEvent as belonging to the set of
core AppleEvents. The event ID is another four-letter code that identifies the specific AppleEvent that you
wish to send. For example, odoc is the four-letter code for the Open Documents AppleEvent, one of the
core AppleEvents. To send an AppleEvent using the AESend VI, concatenate the event class and event
ID together as an eight-character string. For example, to send the Open Documents AppleEvent, pass the
AESend VI the eight-character code coreodoc.

If you are sending the AppleEvent to another application, you have to specify target ID and send options

You can also specify an array of parameters if the target application needs additional information to
execute the specified AppleEvent. Because the data structure for AppleEvent parameters is inconvenient
for use in LabVIEW diagrams, the AESend VI accepts these parameters as ASCII strings. These strings
must conform to the grammar described in the Creating AppleEvent Parameters . You can use this
grammar to describe any AppleEvent parameter. The AESend VI interprets this string to create the
appropriate data structure for an AppleEvent, and then sends the event to the specified target.

Creating AppleEvent Parameters

In many cases, an AppleEvent parameter is a single value; however, it can be quite complex, with a
hierarchical structure containing components that in turn can contain other components. In LabVIEW, a
parameter is constructed as a string, which has a simple grammar with which you can describe all kinds
of data that an AppleEvent parameter can be, including complex structures.

An AppleEvent parameter string begins with a keyword, a four-letter code describing the parameters
meaning. For example, if the parameter is a direct parameter (one of the most common types of
parameters) you must specify that the keyword is a keyDirectObject by using the four-letter code ---- (four
dashes). Other examples of keywords include savo, short for save options, which is used when sending
the Close VI AppleEvent to LabVIEW. Documentation detailing an applications supported AppleEvents
should indicate the keywords used for each parameter. See the Sending AppleEvents to LabVIEW from
Other Applications topic for a list of the AppleEvents that you can use with LabVIEW.

Following the keyword, you must specify the parameter data as a string. You can use AppleEvents with
many different data types, including strings and numbers. When you specify the data string, the AESend
VI converts it to a desired data type based upon the way the data is formatted and optional directives that
can be embedded in the string. Each piece of data has a four-letter type code associated with it,
indicating its data type. The target application uses this code to interpret the data. For example, if comma-
separated items are enclosed in brackets, a list of AE Descriptors is created, and the list has a data type
of list; each of the comma-separated items could in turn be other items, including lists.

You can use a number of Vls in the AppleEvents VI palette to create some of the more common
parameter strings, including aliases, which are used when referencing files in parameters, and descriptor
lists, which are used to specify a list of items as a parameter. You can concatenate or cascade these
strings together to create a more complex parameter.

Table 6-1 describes the format of AppleEvent descriptor strings and indicates Vls that can create the
descriptor, where appropriate.

AppleEvent Descriptor String Formats Table

To send Format the string as Parameter Examples VI that can
data as is of code construct
type: string:
aninteger A series of decimal digits, long or shor 1234 n/a
optionally preceded by a -5678
minus sign.
enumerate A four-letter code. enum whos n/a
d data If it is too long, it is @all
truncated; if it is too short, long
it is padded with spaces. >=
If you put single quotes () 86it

around it, it can contain
any characters;
otherwise, it cannot
contain:

@ :-,([{}])and

cannot begin with a digit.

a string Enclose the desired TEXT Oput x n/a
sequence of characters into card
within open and close field 50
curly quotes (Oentered OHi

with option-[andO entered

with option-shift-[). Notice ThereO
that the string is not null-
terminated.
an AE Enclose a comma- reco {x:100, AECreate
record separated list of elements y:-100} Record
in curly braces, where {origin:
each element consists of {x:100,
a keyword (a typecode) y:-100},
followed by a colon, extent:
followed by a value, {x:500,
which can be any of the y:500},
types listed in this table. cont:
[1,5,25]}
an AE Enclose a comma- list [123,-58, AECreate
descriptor separated list of OtestO] Descriptor List
list descriptors in square
brackets.
hex data Enclose an even number ?? (mustbe CO015764 (Hexdataisa
of hex digits between coercedD fe ABC1E component of
French quotes (Centered see next the string
with option-\ andE item) produced by
entered with option-shift- Make Alias)
\).
some other Embed data created in The sing(1234 nl/a
data type one of the types of this specified) Make Alias
table in parentheses and type code alis(Chex creates a hex
put the desired type code dump of dump of a file
before it. If the data is a an aliasE) description.
numeric, LabVIEW
coerces the data to the n/a
specified type if possible n/a
and returns the type(line)
errAECoercionFail error rang{star:
code if it cannot. If the 5, stop: 6}
data is of a different type,
LabVIEW replaces the
old typecode with the
specified type code.
null data Coerce an empty string to null () n/a

no type.

AppleEvent Parameter Creation Using Object Specifiers

Apple has created a high-level interface for creating AppleEvents called the Object Support Library. This
interface is actually layered on top of the AppleEvent parameter data structures described in the Creating
AppleEvent Parameters topic. This interface helps create common types of parameters, including range

specifications. LabVIEW object support Vis are located on the Low Level Apple Events palette.

Object Support VI Example

The following example creates an AppleEvent parameter using the object support Vis. This example
creates an AppleEvent parameter to be sent to a word processor, asking the word processor to return the
first line of a specified document whose first word is April and whose second word is is.

:iEi””

cond 1 AND lines of Doc Marme that meet first line of partial
cand 2 cond 1 AND cond 2 =3 partial

Fararmeters

ahbc

L
The following string that the previous diagram creates is quite complicated; tabs are added to make the
string easier to read. For further information about the Object Support Library consult the AppleEvent
Registry.

obj |

want: type(line),
from: obj {

want: type(line),
from: Doc Name,
form: test,

seld: logi {
term: [

cmpd {

relo:=,
objl:April,
obj2:0b7j {

want: type (word),

from: exmn(),
form: indx,
seld: 1

}

by

cmpd {

relo:=,
objl:is,
obj2:0b7j {
want: type (word),
from: exmn(),
form: indx,

seld: 2

logc: AND

form: indx,

Sending AppleEvents to LabVIEW from Other Applications

LabVIEW responds to required AppleEvents, which Apple expects all System 7 applications to support,
and to LabVIEW specific AppleEvents, designed specifically for LabVIEW. Both categories are described
in the following topics.

Required AppleEvents
LabVIEW Specific AppleEvents
Replies to AppleEvents

LabVIEW Specific AppleEvents

LabVIEW also responds to the LabVIEW specific AppleEvents Run VI, Abort VI, VI Active?, and Close VI.
With these events and the Open Documents AppleEvent, you can use other applications to
programmatically tell LabVIEW to open a VI, run it, and close it when it is finished. A thorough
understanding of AppleEvents, as described in Inside Macintosh, Volume VI, and the AppleEvent Registry
is a prerequisite for sending these AppleEvents to LabVIEW from other applications. You can send these
events between two or more LabVIEW applications by using the utility Vls described in the Sending

AppleEvents topic.

The LabVIEW specific AppleEvents are described in later topics, in a format similar to that used in the
AppleEvent Registry.

Replies to AppleEvents

If LabVIEW is unable to perform an AppleEvent, the reply contains an error code. If the error is not a
standard AppleEvent error, the reply also contains a string describing the error. The LabVIEW Specific
Error Codes for AppleEvent Messages summarizes the LabVIEW specific errors that can be returned in a
reply to an AppleEvent.

Event: Run VI
Event: Abort VI
Event: VI Active?
Event: Close VI

Event: Run VI

Description

Tells LabVIEW to run the specified VI(s). Before executing this event, the LabVIEW application
must be running, and the VI must be open (you can open the VI using the Open Documents
AppleEvent).

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID
GoVI ----

Event Parameters
Description Keyword Default Type
VI or List of VIs keyDirectObject (----) typeChar (char)

(required) or list
of typeChar (list)

Reply Parameters

Description Keyword Default Type
none
Possible Errors
Error Value Description
kLVE InvalidState 1000 The VI is in a state that does

not allow it to run.
kLVE_ FPNotOpen 1001 The VI front panel is not open.

kLVE CtrlErr 1002 The VI has controls on its front
panel that are in an error state.

kLVE VIBad 1003 The Vl is broken.

kLVE NotInMem 1004 The VI is not in memory.
Event: Abort VI
Description

Tells LabVIEW to abort the specified VI(s). Before executing this event, the LabVIEW application
must be running, and the VI must be open (you can open the VI using the Open Documents

AppleEvent). This message can only be sent to Vis that are executed from the top-level (subVIs
are aborted only if the calling VI is aborted).

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID
RsVI

Event Parameters

Description Keyword Default Type
VI or List of VIs keyDirectObject (----) typeChar (char)
(required) or list
of typeChar (list)

Reply Parameters

Description Required? Keyword Default Type
none
Possible Errors
Error Value Description
kLVE InvalidState 1000 The Vlis in a state that does

not allow it to run.
kLVE FPNotOpen 1001 The VI front panel is not open.

kLVE NotInMem 1004 The Vl is not in memory.

Event: VI Active?

Description

Requests information on whether a specific VI is currently running. Before executing this event, the
LabVIEW application must be running, and the VI must be open (you can open the VI using the Open
Documents AppleEvent). The reply indicates whether the VI is currently running.

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID
VIAC

Event Parameters

Description Keyword Default Type
VI Name keyDirectObject (----) typeChar (char)
(required)

Reply Parameters
Description Required? Keyword Default Type

Active? keyDirectObject (----) typeBoolean (required)

(bool)
Possible Errors

Error Value Description
kAEVtErrFPNotOpen 1001 The VIs front panel is not open.
kLVE NotInMem 1004 The VI is not in memory.

Event: Close VI

Description

Tells LabVIEW to close the specified VI(s). Before executing this event, the LabVIEW application must be
running, and the VI must be open (you can open the VI using the Open Documents AppleEvent).

Event Class

LBVW (Custom events use the Applications creator type for the
event class)

Event ID
CIVI

Event Parameters

Description Keyword Default Type

VI or List of Vs keyDirectObject (----) typeChar (char)
(required) or list of
typeChar (list)

Save Options keyAESaveOptions (savo) typeEnum (enum)
(not required) possible values:
yes and no

Reply Parameters

Description Keyword Default Type
none

Possible Errors
Error Value Description
kAEVtErrFPNotOpen 1001 The VIs front panel is not open.
kLVE NotInMem 1004 The VI is not in memory.
cancelError 43 The user cancelled the close

operation.

Click here to access the AppleEvents VI Overview (Macintosh) topic.

The following illustration shows the AppleEvents VI palette, which you access by selecting
Functions»Communication»AppleEvent.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

[S)dpen| | Gpan || Open [it
Aol O [obiest |serior '@' b

| i
=T (&
AESend Do Script
AESend Finder Open
AESend Open
AESend Open Document
AESend Print Document
AESend Quit Application

Get Target ID
PPC Browser

4

Subpalette Descriptions
LabVIEW Specific AppleEvent VI Descriptions
Low Level AppleEvent VI Descriptions

For examples of how to use the AppleEvent Vs, see the examples located in examples\comm\AE
Examples.1llb.

AESend Do Script
Sends the Do Script AppleEvent to a specified target application.

Soript annnnnee @ T Lnnn errar string
target |0 mooeeeen Do
zend options Soijot Errar

Script is a string containing instructions that the target application understands. It is typically in a
language specific to the target application. An example of an application with a script language is Claris
HyperCard.

target ID is a cluster of information describing the target application and its location. See the

Target ID topic for a further description of this cluster.

i send options is a cluster that specifies whether the target application can interact with the user

and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
ptions parameters.

(o)
error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Finder Open

Sends the AppleEvent to open specified applications or documents to the System 7 Finder on the

specified machine.

Full path of folder containing files E=]
_file names [S)open

cone containing Finder
Serwver containing Finder O

zend options

Full path of folder containing files describes the location of the folder that contains the files for
the Finder to open. This string must end in a colon ().

file names is an array containing the names of the files in the folder described by Full path of
folder containing files. The Finder opens these files.

Zone containing Finder describes the AppleTalk zone where the target Finder resides. If this
string is empty, this VI assumes that the zone is the same as that of the host Macintosh.

error string

errar

Server containing Finder describes the name of the Macintosh where the target Finder resides.
If this string is empty, this VI assumes that the server is the host computer Finder.

send options is a cluster that specifies whether the Finder can interact with the user and the
length of the AppleEvent timeout. See the Send Options topic for a discussion of the send options
parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the

CIN that generated it. See the AppleEvent Error Codes topic for more information.

Note: Apple may change the set of AppleEvents to which the Finder responds so that they
more closely conform to the standard set of AppleEvents. As a result, the AppleEvent
that AESend Finder Open sends to the Finder may not be supported in future versions
of the system software.

AESend Open
Sends the Open AppleEvent to a specified target application.

object specifier asmanaadd g T
target |[r moccmeed Open
zend options Ob ject Brror

errar string

object specifier specifies the object that LabVIEW opens in the target application.
target ID is a cluster of information describing the target application and its location. See the

Tari et ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send

oi tions parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Open Document

Sends the Open Document AppleEvent to the specified target application, telling the application to open
the specified document.

full pathnare of docurnent

T
Cpen

errar string

.. arget |
zane containing d-:-cl.ﬂ'nen
zetver containing docurnent

=zend options
full pathname of document describes the location of the document that the application opens.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

errar

zone containing document describes the location of the document that the application opens.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, AESend Open Document assumes the document is on the
host computer.

server containing document describes the location of the document that the application opens.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, AESend Open Document assumes the document is on the
host computer.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Print Document

Sends the Print Document AppleEvent to the specified target application, telling the application to print
the specified document.

full pathnarne of docurnent

&=

errar string

. target [s
zane containing d-:u:l.HTuen ,@,
server containing docurment

=zend options
full pathname of document describes the location of the document that the application prints.
target ID is a cluster of information describing the target application and its location. See the

Tari et ID topic for a further description of this cluster.

zone containing document describes the location of the document that the application prints.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, the Print Documents AppleEvent assumes the document is
on the host computer.

server containing document describes the location of the document that the application prints.
Notice that the application and document can reside in different locations. If zone containing document
and server containing document are blank, the Print Documents AppleEvent assumes the document is
on the host computer.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send

oi tions parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Quit Application
Sends the Quit Application AppleEvent to a specified target application.

errar

target 10 Eﬂf error string
zend options E errar

target ID is a cluster of information describing the target application and its location. See the

Target ID topic for a further description of this cluster.

i send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

Get Target ID

Returns a target ID for a specified application based on its name and location. You can either specify the
applications name and location or the VI searches the entire network for the application.

Appfport name first target D
Search entire network - ma;tnta] targets

Zone ond e Gt D all targets
Server “"""j.m _l—

errar

App/port name is the name of the application for which you want the target ID. This parameter
must exactly match the name of the application.

Search entire network determines whether the VI searches the entire network for the specified
application. See the table in this topic for a further discussion of search options.

Zone specifies the target computerOs zone that the VI searches. See the table in this topic for a
further discussion of search options.

Server specifies the server that the VI searches. See the table in this topic for a further
discussion of search options.

first target ID contains the target ID of the first application found whose name matches App/port
name.

total targets is the total number of applications that the VI finds whose names match App/port
name.

all targets contains an array of the target IDs of all matching applications.

error is non-zero only if something goes wrong during the search. Finding zero targets is not
necessarily an error if there are no applications with the specified name running and available on the

network. See the AppleEvent Error Codes topic for more information.
The following table summarizes the operation of Search entire network, Zone, and Server:

To search the Use the following parameters:
following locations:

The current Zone and Server must be unwired. Search entire network
computer must be FALSE.

A specific computer Zone and Server must specify the target computerOs zone
on the network and server. (If you do not wire Zone, the VI searches the
current zone.) Search entire network must be FALSE.

A specific zone Zone must specify the zone to be searched. Server must
be unwired. Search entire network must be FALSE.

The entire network Search entire network must be TRUE. The VI ignores
Zone and Server.

PPC Browser

Invokes the PPC Browser dialog box for selecting an application on a network or on the same computer

Tocation MEP type
prompt

default zpecified - :

default target ID mﬂn
location NBP type determines which computers on the network LabVIEW displays in the dialog
box. If this string is empty (default), only computers with applications using the PPC Toolbox appear in the

zelected target ID

arrar

dialog box.

prompt is the message that LabVIEW displays in the dialog box. If this string is empty (default),
Choose a program to link to: appears in the dialog box.

You can use this standard Macintosh dialog box to select a zone from the network, an object in that zone
(in System 7, this is typically the name of a persons computer), and an application. The VI then returns
the target ID cluster.

Prompt
MMacintoshes Application List Label

bowlorama 4¢| || File Sharing Extension it
Finder

o
AppleTalk Zones
15t & 2nd Floors ||
3rd Floor
Ath Floor

Sth floor
Fhase |1

-
5

Application list label is the title that appears for the list of PPC ports. If this string is empty

idefault), the title Programs appears.

default specified determines whether LabVIEW uses the default target ID parameter.

default target ID identifies and highlights the target that PPC Browser attempts to find.

target ID is a cluster that the VI returns after you make selections from the dialog box. See the
Tari et ID topic for a further description of this cluster.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. error 128 signifies that the user cancelled the dialog box. See the AppleEvent Error
Codes topic for more information.

LabVIEW specific AppleEvent VIs send messages that only LabVIEW applications (standard and run-time
systems) recognize. You can access the LabVIEW Specific AppleEvents VIs by selecting
Functions»Communication»LabVIEW Specific AppleEvents.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Pl

AESend Abort

AESend Close

AESend Open, Run, Close
AESend Run

AESend VI Active?

You should use these VIs only when communicating with LabVIEW applications. You can send these
messages either to the current LabVIEW application or to a LabVIEW application on a network. See the
AppleEvent Error Codes topic for more information.

AESend Abort
Sends the Abort VI AppleEvent to the specified target LabVIEW application.

W1 name [E ztring
target |0 eoocooo
zend options errar

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can
open the VI by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the

Target ID topic for a further description of this cluster.

i send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the_Send Options topic for a discussion of the send
options parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal
to the CIN that generated it. If error is 1000 the target VI is not running. See the AppleEvent Error
Codes topic for more information.

AESend Close
Sends the Close VI AppleEvent to the specified target LabVIEW application.

V1 narne
target ID
=zawve options
=zend options

prannnegrror string

errar

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can

open the VI by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the
Tari et ID topic for a further description of this cluster.

save options is an integer value that determines what the target LabVIEW should do if the VI
has been modified. If save options has a value of 0, the target LabVIEW prompts for a save. If save

options has a value of 1, the target LabVIEW saves the VI (if modified) without a prompt. If save options
has a value of 2, the target LabVIEW does not save the VI.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send

oi tions parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Open, Run, Close

Uses the Open Document, Run VI, VI Active?, and Close VI AppleEvent VIs to make a specified
LabVIEW application open, run, and close a VI.

Full pathnarne of I EEIRDE error string

target ID bmgh. errar
For this VI, you must specify the complete pathname of the VI you want to run. See Path Controls and
Refnums, for a description of path controls and indicators available in the Controls palette.

Full pathname of VI describes the full path of the VI that LabVIEW opens, runs, and closes.
target ID is a cluster of information describing the target application and its location. See the

Target ID topic for a further description of this cluster.

i error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend Run
Sends the Run VI AppleEvent to the target LabVIEW application.

%1 narne [~]
target I I========] w

send options

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can
open it by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the

Tari et ID topic for a further description of this cluster.

send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send

oi tions parameters.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

AESend VI Active?

Sends the VI Active? AppleEvent to the specified target LabVIEW application. VI running? is a Boolean
indicating whether the VI is currently executing.

frnnnnnan gbror sting

errar

V1 narne |3E V1 runming ?
target ID |||$? errar string
send options "o error

VI name is the actual name of the VI, not its pathname. The VI must already be open. You can
open the VI by using the AESend Open Document VI.

target ID is a cluster of information describing the target application and its location. See the
Target ID topic for a further description of this cluster.

i send options is a cluster that specifies whether the target application can interact with the user
and the length of the AppleEvent timeout. See the Send Options topic for a discussion of the send
options parameters.

VI running? is TRUE if the specified VI is currently running as a top level VI.

error string describes error information.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the AppleEvent Error Codes topic for more information.

Click here to select the AppleEvents VI Overview (Macintosh) topic.

You can use the Vls in this topic to construct AppleEvent parameters and send the AppleEvent. The high-
level Vls for sending AppleEvents, described earlier in this chapter, are based on the AESend VI, and are
good examples of creating AppleEvents and their parameters.

You can access the Low Level Apple Events palette, by selecting Functions» Communication»Low
Level Apple Events.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

«= Make
Send || Alias

FESIICE=II =]
freas el | St
Record) | 1520 | 2pec.

FE=ICESIE =]
Cregre| |Cresfe || cresfe
Eange| |Logicall | Comp.

DEsGC, s,

AECreate Comp Descriptor
AECreate Descriptor List
AECreate Logical Descriptor
AECreate Object Specifier
AECreate Range Descriptor
AECreate Record

AESend

Make Alias

AECreate Comp Descriptor

Creates a string describing an AppleEvent comparison record, which specifies how to compare
AppleEvent objects with another AppleEvent object or a descriptor record.

comnparison aperatar
operand 1 “heals comparizon descriptor

Somp.
opetand 2 Cest.

For example, you can use the output comparison descriptor string as an argument to the AESend VI, or
as an argument to AECreate Object Specifier to build a more complex descriptor string. See the Object
Support VI Example topic for an example of its use.

comparison operator is a descriptor type string that describes the comparison operation to
perform on the operands. The standard set of comparisons are:
> kAEGreaterThanThe value of operand1 is greater than the value of operand 2.
>= kAEGreaterThanEqualsThe value of operand1 is greater than or equal to the value of
operand 2.
kAEEqualsThe value of operand 1 is equal to the value of operand 2.
kAELessThanBDThe value of operand 1 is less than the value of operand 2.
<= kAELessThanEqualsThe value of operand1 is less than or equal to the value of operand 2.
bgwt kAEBeginsWithThe value of operand 1 begins with the value of operand 2 (for
example, the string operand begins with the string opera).
ends kAEEndsWithThe value of operand1 ends with the value of operand 2. For example, the
string operand ends with the string and.
cont kAEContainsThe value of operand1 contains the value of operand 2. For example, the

Al

string operand contains the string era.

operand 1 is an AppleEvent object specifier descriptor string. It specifies the first object in the
comparison to perform.

operand 2 is an AppleEvent record descriptor string. It can be an object specifier descriptor string
or any other record descriptor string with a value to compare to the value of operand 1.

comparison descriptor is the AppleEvent descriptor string.

AECreate Descriptor List

Creates a string describing a list of AppleEvent descriptors, which you can then use with the AESend VI.
You commonly use Descriptor lists when you create the operands for a logical descriptor.

Array of AE Descriptors reate &E Descriptor List

Array of AE Descriptors should contain AppleEvent descriptor strings, such as those output by
the AECreateE series of AppleEvent Vls.

AE Descriptor List is an AppleEvent descriptor string with the correct syntax for a list of all the
descriptors from the Array of AE Descriptors input array.

AECreate Logical Descriptor

Creates a string describing an AppleEvent logical descriptor, which you use with the AESend VI.

lagical operator ??]]
) peas logical descriptar
logical terrms [y

[&EDesc or AEDesclist)

AppleEvent logical records describe logical, or Boolean expressions of multiple terms, such as the AND of
two AppleEvent comparison records. For example, you can use the output logical descriptor string as an
argument to the AESend VI, or as an argument to AECreate Object Specifier VI to build a more complex
descriptor string. See the Object Support VI Example topic for an example of its use.

logical operator is a string describing the logical operation. The possible values are AND, OR,
and NOT.

logical terms is an AppleEvent list descriptor string, such as the output by the AECreate
Descriptor List VI. If the value of logical operator is AND or OR, this list can have any number of elements.
If the value of logical operator is NOT, this list has only a single element.

logical descriptor is an AppleEvent descriptor string created from the inputs.

AECreate Object Specifier
Creates a string describing an AppleEvent object, which you use with the AESend VI.

cl?s_s IC & =3

container Cragl . -

key form I OEEG% Object specifier
key data Spec.

An object specifier is an AppleEvent record whose type is obj and describes a specific object. It has four
elements: the class of the object, the containing object, a code indicating the form of the description, and
the description of the object.

class ID is a string that describes the class of the specified object. Examples of such strings are:
ccel for class Cell, ccol for class Column, and ctbl for class Table (from the Table Suite of
AppleEvents); and cDB for the class DataBase (from the DataBase Suite of AppleEvents).

container is an AppleEvent object specifier descriptor string that describes the containing object

of the specified object. It should be another object specifier that this VI creates. If this string is left empty
(the default value), the NULL object specifier is the container, and signifies the target application, which is
the outermost container of any object specifier

key form ID is a string describing the form of the key data. It tells how to interpret the key data.

The standard key forms are:

prop FormPropertyID means thatthe key data is the name of a property.

name FormName means that the key data is the name of the object.

1D FormUniquelD means that the key data is a unique identifier for the object.

indx FormAbsolutePosition means thatthe key data is a descriptor string for either a
positive integer, indicating the offset of the requested element from the beginning of the
container, or a negative integer, indicating its offset from the end of the container. The key
data can also be a descriptor string for an absolute ordinal (type abso) with one of the
following values: firs, last, midd, any,or all.

rele FormRelativePosition means the key data is a descriptor string for a relative
position (type enum) with a value of next or prev.

test FormTest means the key data is a descriptor string for either a comparison record or a
logical record (as created by either the AECreate Comp Descriptor VI or the AECreate Logical
Descriptor VI).

rang FormRange means the key data is a descriptor string for a range descriptor record (as
created by the AECreate Range Descriptor VI.)

key data is a string describing the object. The value of the key form ID parameter determines its
value.

Object specifier is the output descriptor string that the given inputs create. You can use it as the
input for calls to the AECreate Object Specifier VI or anywhere that requires an object specifier.

AECreate Range Descriptor

Creates a string describing an AppleEvent range descriptor record, which you use with the AESend VI.

range start

Fange descriptor

range stop

Range descriptor records are used in object specifiers whose key form is formRange (rang). They
describe a range of objects with two object specifiers: the start and the end of the range

range start is an object specifier descriptor string that describes the beginning of the range.
range stop is a object specifier descriptor string that describes the end of the range.
range descriptor is the output descriptor string that the given inputs create.

AECreate Record

Creates a string describing an AppleEvent descriptor record, which can then be used with the AESend VI.
You can use a record descriptor to bundle descriptors of different types. Each descriptor has its own
keyword, or name, and value

T
type Create
keywords and values errrmRacord

4E Recaord

type is a descriptor type string that describes the type of the AppleEvent record descriptor. Only
the first four characters are significant, however it is acceptable to have more or less than four characters.

=] keywords and values is an array of clusters containing the strings that describe the elements of
the record being created.

keywords is a descriptor type string that is the name of the record element. Only the first four
characters are significant.

values is an AppleEvent descriptor string that is the value of the record element. It can be any
descriptor string, such as those output by the AECreateE series of AppleEvent Vis.

AE Record is an AppleEvent record descriptor string created from the inputs. Other Vls requiring
an AppleEvent descriptor string input can use this string.

AESend
Sends an AppleEvent specified in parameters to the specified target application.
requested reply parameters
Ewvent Class and I ;E eply parameters
patamneters Send errar string
target 10 errar

send options

requested reply parameters is an array of strings containing a description of the reply
parameters you want. Each element should be an eight character string. The first four characters
constitute the keyword for the reply parameter. For example, ---- as a keyword specifies the direct object,
or default parameter. The second four characters are the type of the parameter. For example, bool means
the parameter is Boolean (TRUE or FALSE).

Event Class and ID is an eight character string containing two four character substrings. The first
four characters specify the event class. For example, you can use aevt for the Required Suite, or core for
the Core Suite. The second four characters specify the event ID. For example, you can use odoc for

Open Document, or quit for Quit.

i parameters is an array of AppleEvent descriptor strings for the arguments sent in the
AppleEvent. The first four characters of each string are the keyword for the parameter. For example, the
primary argument is called the direct object and always has the four character keyword ----. The
descriptor string for that parameter follows the first four characters.

target ID describes the application to which the AppleEvent is being sent. See the Target ID topic
for a further description of this cluster.

send options is a cluster describing options available for sending the AppleEvent. The most
important option is the Want reply option. If this Boolean is TRUE, then the AESend VI waits to receive a
reply from the target application. See the Send Options topic for a further description of send options
cluster.

[abe] reply parameters is an output array of strings that corresponds to the input requested reply

parameters. Each string in this array is a descriptor string for the reply parameter sent back by the target
application.

error string usually gives a more meaningful description of errors that occur when you send the

AppleEvent.

error is the error number of any error that occurs when you send the AppleEvent. Errors that
occur when a parameter is incorrectly specified, have corresponding error codes in the 12346 to 12364
range. In this case, the error string describes in more detail what was wrong with the parameter. Errors in
the range -1700 to -1732 indicate that something went wrong in the creation, sending or receiving of the
AppleEvent. This can indicate a problem either in LabVIEW or in the target application. Errors in the
range -900 to -932 indicate that something went wrong at the AppleEvent transport layer, the PPC
Toolbox. This means the connection could not be established between LabVIEW and the target
application.

Make Alias

Creates a unique description of a file from its pathname and location on the network. You can use this
description with the AESend VI when sending an AppleEvent that refers to a file.

File's full pathnzaggg PMake Aliaz (alis) AESend descriptor

Alias

Serwver name
alias kind
[0: riniral aliaz)

An alias is a data structure used by the Macintosh toolbox to describe file system objects (files, directories
and volumes). Do not confuse this with a Findermw alias file. A minimal alias contains a full path name to
the file and possibly the zone and server that the file resides on. A full alias contains more information,
such as creation date, file type, and creator. (The complete description of the structure of an alias is
confidential to Apple Computer.) Aliases are the most common way to specify a file system object as a
parameter to an AppleEvent.

errar

Files full pathname describes the file or folder. It includes any information about where the file or
folder resides on the network.

Zone is the AppleTalk zone where the server machine resides. If Server name is empty this string
is unused.

Server name is the name of the machine where the file or folder resides

alias kind describes the alias. The possible values are:

0: Minimal alias. Uses Zone and Server. You cannot use it in an AppleEvent sent to the Finderm.
The VI creates the alias from scratch, and does not check to see whether the file actually
exists or is accessible from the desktop. It must have a volume name with a colon following it.

1: Full alias. Ignores Zone and Server. You can use it in AppleEvents sent to any application,
including the Finderm. The VI creates this alias from scratch. If the file does not exist or is not
accessible from the desktop, it returns an error.

2: From Finderm alias file. Ignores Zone and Server. You can use it in AppleEvents sent to any
application, including the Finderm. Files full pathname specifies a Finderw alias file that points
to the specific file. Finderw alias files contain full aliases, and does not check to see whether
the file actually exists or is accessible from the desktop. The VI copies the contents of the
alias file to create the output alias.

Alias is the AppleEvent descriptor string.
error describes any errors that occur.

Get Target ID VI
Get Target ID

PPC Browser VI
PPC Browser

AESend Do Script VI
AESend Do Script

AESend Finder Open VI
AESend Finder Open

AESend Open VI
AESend Open

AESend Open Document VI

AESend Open Document

AESend Print Document VI
AESend Print Document

AESend Quit Application VI
AESend Quit Application

LabVIEW Specific AppleEvent Subpalette
LabVIEW Specific AppleEvent VI Descriptions

Low Level Apple Events Subpalette

Low Level AppleEvent VI Descriptions

AESend Abort VI
AESend Abort

AESend Close VI
AESend Close

AESend Open, Run, Close VI
AESend Open, Run, Close

AESend Run VI
AESend Run

AESend VI Active? VI
AESend VI Active?

Advanced Topics

Constructing and Sending Other AppleEvents
Creating AppleEvent Parameters

AESend VI
AESend

Make Alias VI
Make Alias

AECreate Comp Descriptor Vi

AECreate Comp Descriptor

AECreate Logical Descriptor VI

AECreate Loqgical Descriptor

AECreate Object Specifier VI
AECreate Object Specifier

AECreate Range Descriptor VI

AECreate Range Descriptor

AECreate Descriptor List VI

AECreate Descriptor List

AECreate Record VI
AECreate Record

Low Level AppleEvent Subpalette

Low Level AppleEvent VI Descriptions

Required AppleEvents

LabVIEW responds to the required AppleEvents, which are Open Application, Open Documents, Print
Documents, and Quit Application. These events are described in Inside Macintosh, \Volume VI.

This topic describes the LabVIEW Vs for Program to Program Communication (PPC), a low-level form of
Apple IAC by which Macintosh applications send and receive blocks of data.

Click here to access the PPC VI Descriptions topic.

Introduction to PPC

General PPC Behavior

Ports, Targets, IDs, and Sessions
PPC Client Example

PPC Server Example

Introduction to PPC

Program to Program Communication (PPC) is a high performance protocol for transferring blocks of data
between applications. You can use it to create Vls that act as clients or servers. Although supported by all
Macintoshes running System 7.x, it is not commonly used by most Macintosh applications. Instead, most
Macintosh applications use AppleEvents, for sending commands between applications, to communicate.

LabVIEW Vs can use PPC to send and receive large amounts of information between applications on the
same computer or different computers on a network. For two applications to communicate with PPC, they
must both be running and prepared to send or receive information. To launch an application remotely, you
can use the AESend Finder Open VI.

Although PPC is not as commonly supported as AppleEvents, it does provide some advantages. PPC is a
higher performance protocol than AppleEvents because PPC requires less overhead to transmit
information. Also, in LabVIEW you can create VIs that use PPC to act as clients or servers. You cannot
create diagrams that act as AppleEvent servers. However, because PPC does not define the form or
meaning of information that it transfers, it is more complicated to use.

PPC is similar in structure to TCP, in terms of both server and client applications. The PPC method for
specifying a remote application is different from the TCP method. Other than that, the two protocols
provide similar performance and features. Both protocols handle queueing and reliable transmission of
data. You can use both protocols with multiple open connections.

In deciding between TCP and PPC, the main point to consider is which platforms you plan to run your Vs
on, and with which platforms you can communicate. If your application is Macintosh only, PPC is a good
choice, because it is built into the operating system. TCP is built into Macintosh operating system version
7.5. To use TCP with an earlier system you must buy a separate TCP/IP driver from Apple. If buying the
separate driver is not an issue, then you may want to use TCP, because the TCP interface is simpler than
PPC. PPC uses some fairly complicated data structures to describe addresses.

If your application must communicate with other platforms or run on other platforms, then you should use
TCP/IP.

General PPC Behavior

To communicate using PPC, each application must open a named port, over which communication
sessions are established, as shown in the following figure. The application that requests communication is
the client; and the application with which the client communicates is the server. The server application
makes its availability known by issuing a PPC Inform Session operation. The client requests a session
with the server application, which can either accept or reject the request. If the server application accepts
the request, then the system establishes a session and the two applications can send and receive blocks
of information between them. When the applications finish communicating, you should end the session.
You may also want to close the port if you do not want to establish more sessions with that port.

You use the PPC Open Port VI to open a port for communication. PPC Open Port returns a port reference
number, which you use in subsequent operations relating to that port. You can have multiple ports open
simultaneously, as long as they each have a different name. Each port can support multiple sessions.

You can initiate a session using the PPC Start Session VI. You pass PPC Start Session a target ID and
the port reference number through which you want to communicate. If the target application accepts the
session, PPC Start Session returns a session reference number, which you use in subsequent
communication for that session. PPC Start Session also incorporates an authentication (password)
mechanism.

To receive session requests, use the PPC Inform Session VI. You can configure this VI to accept all
requests automatically, or you can decide whether to accept or reject the request based on the
information about the requesting application that this VI returns. You should accept or reject the request
using the PPC Accept Session VI immediately, because the other computer waits (hangs) until you accept
or reject its attempt to initiate a session, or until an error occurs.

When a session is established, you can use the PPC Write and PPC Read VIs to communicate with the
other application. When you are finished with a session, you should execute the PPC End Session VI and
close the port using the PPC Close Port VI.

Clisrt Sarver
Y —
= [
P Torkex Torkex —
Il P i e abon
PO Sl e
>
- ™y
£ rpr Balubbae Senplor Sebain o
.l‘crl-< - . Lk 2l
e - H Harl
Soan - - Lk
i S A RS A T o oo meeodde ey Fr
P AT P W PG el il PR A
NIp Lo il AR VIe oo oacls pa b
A aol C ol
H i
b -
R R s Wiz ST S RSN T
orniren Jor wacl pod op sl R b gt pral op sl
\ Pro et |

Ports, Target IDs, and Sessions

To communicate using PPC, both clients and servers must open ports that they use for subsequent
communication. The Open Port VI opens the port using a cluster that contains, among other things, the
name that you want to use for the port.

Ports are used to distinguish between different services that an application provides. Each application can
have multiple ports open simultaneously.

Each port can support several simultaneous sessions or conversations. To open a session, a client uses a
Target ID indicating the location of the server. PPC uses the same type of Target ID that the AppleEvent
VIs use. You can use the PPC Browser or the Get Target ID VIs to generate the Target ID for the remote

application.

A server waits for clients to attempt to open a session by using the PPC Inform Session VI. The server
can accept or reject the session by using the PPC Accept Session VI.

A client can attempt to open a session with a server by using the PPC Start Session VI.

After the session is started, you can use the PPC Read and PPC Write Vls to transfer data. You can close
a session using PPC End Session, and you can close a port using the PPC Close Port VI.

PPC Client Example
PPC Server Example

PPC Client Example

The following discussion explains how you can use PPC to fulfill each component of the general Client
model.

Open
Cann

teSru] Use the PPC Open Connection and PPC Open Session VlIs to open a connection to a server.
This requires that you specify the Target ID of the server, which you can get by using either the PPC
Browser VI or the Get Target ID VI. The end result is a port refnum and a session refnum, which are used

to communicate with the server.
Esnec
Cmd

s St To execute a command on the server, use the PPC Write VI to send the command to the server.
Next, use the PPC Read VI to read the results from the server. With the PPC Read VI, you must specify
the number of characters you want to read. As with TCP, this can be awkward, because the length of the
response can vary. The server can have a similar problem, because the length of a command may vary.
Following are several methods for addressing the problem of varying sized commands. These methods

can also be used with TCP.

¢ Precede the command and the result with a fixed size parameter that specifies the size of the
command or result. In this case, read the size parameter, and then read the number of characters
specified by the size. This option is efficient and flexible.

¢ Make each command and result a fixed size. When a command is smaller than the size, you can pad
it out to the fixed size.

¢ Follow each command and result with a specific terminating character. To read the data, you then
need to read data in small chunks until you get the terminating character.

Claze
Cann

teSrurl Use the PPC Close Session and PPC Close Connection Vls to close the connection to the server.

PPC Server Example

The following discussion explains how you can use PPC to fulfill each component of the general Server:

Initialize
il Use PPC Open Port in the initialization phase to open a communication port.

W ait
for a
Eonn | Use the PPC Inform Session VI to wait for a connection. With PPC, you can either automatically
accept incoming connections, or you can choose to accept or reject the session by using the PPC Accept
Session VI. This process of waiting for a session and then approving the session allows you to screen
connections.

Wait
fora
tmd | When a connection is established, you can read from that session to retrieve a command. As was

discussed in the PPC Client Example topic, you must decide the format for commands. If commands are
receded by a length field, then you need to first read the length field, and then read that amount of data.

Exec
Crnd

Execution of a command should be protocol independent, because it is something done on the
local computer. When finished, you pass the results to the next stage, where they are transmitted to the
client.

Feturn
Fesults

Use the PPC Write VI to return the result. As discussed in the PPC Client Example topic, the data
must be formatted in a form that the client can accept.

Claze

Conn Use the PPC Close Session VI to close the connection.

Shut
Dan

Serwer] Finally, when the server is finished, Use the PPC Close Port VI to close the port that you opened
in the initialization phase.

PPC Server with Multiple Connections

PPC handles multiple sessions and multiple ports easily. The methods for implementing each component
of a server, as described in the preceding topic, also work for a server with multiple connections.

Click here to access the Program to Program Communication VI Overview topic.

The following illustration shows the PPC VI palette, which you access by selecting
Functions»Communication»PPC.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Cpen || Start [|Infarmm) [Aeeept?
i P

Read || Write

End || Close || Cloze

Close All PPC Ports
Get Target ID

PPC Accept Session
PPC Browser

PPC Close Port
PPC End Session
PPC Inform Session
PPC Open Port
PPC Read

PPC Start Session
PPC Write

For examples of how to use the PPC Vls, see the examples located in examples\comm\PPC
Examples.llb.

Close All PPC Ports
Closes all the PPC ports that the PPC Open Port VI opened.

Claze ATl (tf'l.lf:"j ﬁﬁcloge'

Closing a port terminates all outstanding calls associated with the port with a portClosedErr (error -916).

You can use the Close All PPC Ports to handle abnormal conditions that leave ports open. An example of
an abnormal condition is when a VI is aborted before it can terminate normally and close the PPC port.
You can use the Close All PPC Ports VI during VI development, when such mistakes are more likely to be
made, or as a precaution at the beginning of any program that opens ports.

Close All (true) if TRUE closes all the ports that the PPC Open Port VI opened.
Get Target ID

Returns a target ID for a specified application based on its name and location. You can either specify the
application's name and location or the VI searches the entire network for the application.

App/port name is the name of the application for which you want the target ID. This parameter
must exactly match the name of the application.

Search entire network determines whether the VI searches the entire network for the specified
ai ilication. See the table in this topic for a further discussion of search options.

Zone specifies the target computerOs zone that the VI searches. See the table in this topic for a
further discussion of search options.

Server specifies the server that the VI searches. See the table in this topic for a further
discussion of search options.

first target ID contains the target ID of the first application found whose name matches App/port
name.

total targets is the total number of applications that the VI finds whose names match App/port
name.

all targets contains an array of the target IDs of all matching applications.

error is non-zero only if something goes wrong during the search. Finding zero targets is not
necessarily an error if there are no applications with the specified name running and available on the

network. See the AppleEvent Error Codes topic for more information.
The following table summarizes the operation of Search entire network, Zone, and Server:

To search the Use the following parameters:
following locations:

The current Zone and Server must be unwired. Search entire network
computer must be FALSE.

A specific computer Zone and Server must specify the target computerOs zone
on the network and server. (If you do not wire Zone, the VI searches the
current zone.) Search entire network must be FALSE.

A specific zone Zone must specify the zone to be searched. Server must
be unwired. Search entire network must be FALSE.

The entire network Search entire network must be TRUE. The VI ignores
Zone and Server.

PPC Accept Session

Accepts or rejects a PPC session request based on the Boolean accept?.

e

Rizaph™

=zezsion refnum
accept?‘ [:T:l
reject info — 1

You should accept or reject the request using the PPC Accept Session VI immediately, because the other
computer waits (hangs) until the VI accepts or rejects its attempt to initiate a session or an error occurs.

se=zion refrum output

errar

session refnum is a session reference number, which you use in subsequent communication for
this session.

accept? (T) determines whether the VI accepts or rejects a PPC session.
reject info contains an application-defined value you return if you reject a session.

session refnum output is the same value as session refnum if accept? is TRUE. Otherwise,
the value of session refnum output is 0.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Browser

Invokes the PPC Browser dialog box for selecting an application on a network or on the same computer

location NBP type determines which computers on the network LabVIEW displays in the dialog
box. If this string is empty (default), only computers with applications using the PPC Toolbox appear in the

dialog box.

prompt is the message that LabVIEW displays in the dialog box. If this string is empty (default),
Choose a program to link to: appears in the dialog box.

You can use this standard Macintosh dialog box to select a zone from the network, an object in that zone
(in System 7, this is typically the name of a person's computer), and an application. The VI then returns
the target ID cluster.

Application list label is the title that appears for the list of PPC ports. If this string is empty

%ult), the title Programs appears.

default specified determines whether LabVIEW uses the default target ID parameter.
default target ID identifies and highlights the target that PPC Browser attempts to find.

target ID is a cluster that the VI returns after you make selections from the dialog box. See the

Target ID topic for a further description of this cluster.

i error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. error 128 signifies that the user cancelled the dialog box. See the AppleEvent Error
Codes topic for more information.

PPC Close Port
Closes the specified PPC port.

it

Cloze

patt refnumn errar

Closing a port terminates all outstanding calls associated with the port with a portClosedErr (error -916).

port refnum is a unique port reference number.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC End Session

Ends the specified PPC session.

L

End

sezsion refnum arrar

Ending a session causes all outstanding calls associated with the session (PPC Read and PPC Write
calls) to finish with a sessClosedErr (error-917).

session refnum is a session reference number, which you use in subsequent communication for
this session.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Inform Session

Waits for a PPC session request.

part refnum ﬁ@ session refnum
autornatically accept (T e Inmm_:mL-hinitiatnr's target 1D
tireout ticks (0 no timmeout) — 1 _l_ request info

errar

port refnum contains the unique port reference number identifying the port the VI closes if a
timeout occurs or if the VI aborts before completing execution.

automatically accept if TRUE causes the VI to automatically accept any session request.
Otherwise, accept or reject the request using the PPC Accept Session VI immediately, because the other
computer waits (hangs) until the VI accepts or rejects its attempt to initiate a session or an error occurs.

timeout ticks if non-zero specifies the number of ticks PPC Inform Session waits for LabVIEW to
establish a session before returning the errTimedOut error. One tick equals 1/60 of a second.

session refnum is a session reference number, which you use in subsequent communication for
this session.

initiators target ID describes the application attempting to start a session.

request info is a cluster containing information about the user attempting to start a session.
request info contains the following parameters in the order listed.

user name, a string, is the name of the user that is attempting to start a session.
user data is an application-defined value that is the same as the user data value passed to PPC
Start Session.

request origin indicates the origin of the application requesting a session.
1: (Local Origin) The requesting application is on the same computer.
2: (Remote Origin) The requesting application is remote.

service type is a ring indicator. The service type is always 1 (Real Time) for the current version
of Apple PPC protocol.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Open Port

Opens a port for PPC communication and returns a unique port reference number in port refnum. You
can use a single port for multiple sessions.

portMarne ﬁ@

alias location name '
o]
network wisible (falzel) -8 pen

When opening a port using PPC Open Port, you must specify a portName cluster.

part refnum

errar

eetector] E_]

|| was registered
on netwoark

alias location name

e twrork
wizible

[falze)

portName is a cluster containing the following parameters in the order listed below.

nameScript is a 32-bit integer used in international localization that specifies the language
system you are using. Use a nameScript value of 0 for Roman language systems (for example, English);
consult Inside Macintosh, Volume VI for a list of available script codes.

selector describes the format of the type string parameter.

1: (creator/type) Signifies that type string is an 8-character string; the first four
characters are the creator (for example, LBVW), and the last four characters
define the port type.

2: (port type string) Signifies that type string is a 32-character (or less) description
of the service provided by the port .

port type string is an 8-character string; the first four characters are the creator (for example,
LBVW), and the last four characters define the port type, when selector has a value of 1. The type string
is a 32-character (or less) description of the service that the port provides when selector has a value of 2.
(In almost all cases, you should specify a value of 2 for selector, and use a description of the service
provided by the port for type string. Consult Inside Macintosh, Volume VI, for more information about
other cases.)

name is the name you give to the port. The value of name, which can be no more than 32
characters, is displayed in the PPC Browser dialog box list of port names. The Get Target ID VI uses
name to identify the port.

alias location name establishes an alias name for the port. The PPC Browser uses this alias to
determine which machines to display in its dialog box. If you leave this string empty the VI uses the
default alias PPCToolBox.

network visible determines whether the port is accessible to other machines on the network.
port refnum is a port reference number, which you use in subsequent operations relating to that

port.
error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Read

Reads a block of information from a specified session. If a timeout occurs or the VI aborts before
completing execution, the port that port refnum represents closes.

seszion refnum @ @ data bytes
n bytes ta read Fremd L — IE'I_? I}r'?e"“f':'
tirmeout ticks (0 no timeout) 2 erFoF

poll wait (10 ms) — 1

PPC Read executes asynchronously by starting to read the specified data and then polling until the read
is finished.

session refnum is a session reference number, which you use in subsequent communication for
this session.

n bytes to read specifies the number of bytes the VI reads.

timeout ticks value, if non-zero, specifies the number of ticks the PPC Inform Session VI waits
for a session to be established before returning the errTimedOut error. One tick equals 1/60 of a second.
poll wait (10 ms) determines how frequently PPC Read checks to see whether LabVIEW has
read the data successfully.

data bytes is an array of unsigned 8-bit integers that is written by the sender.

data info is a cluster of application-specific information that LabVIEW uses when reading and

writing blocks of data in a PPC session. This cluster contains three 32-bit integers: block creator, block
type, and user data. You can use these values to send information about the block of data to the

receiving application.

more is a Boolean indicating whether more data exists for the given block that the VI reads. The
application that writes the data can send the data in multiple pieces.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Start Session

Attempts to start a session with the application specified by target ID through the specified port. If a
timeout occurs or the VI aborts before completing execution, the port represented by port refnum closes.

timeout ticks (0: no timeout) ————

port refnum ﬁ@ zesgion refnum
ar 1| . .
user d.a?a (I:I[é Start reject info
Allow Dialag (tre) e arrar

prompt
timeout ticks (0: no timeout) if non-zero specifies the number of ticks PPC Inform Session waits
for a session to be established before returning the errTimedOut error. One tick equals 1/60 of a second.

port refnum is a unique reference number that specifies the port through which LabVIEW
attempts to start a session with the application.

target ID is a cluster of information describing the target application and its location.

user data is an application-defined value that the VI sends with the request for a session.

Allow Dialog (true) if TRUE displays the User Identity Dialog Box if the target application
requires authorization.

ﬁ prompt appears in the dialog box.

session refnum is a session reference number, which you use in subsequent communication for
this session.

reject info contains an application-defined number if the target application rejects the request.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Write

Writes a block of information to the specified session. If a timeout occurs or the VI aborts before
completing execution, the port represented by port refnum is closed. PPC Write executes
asynchronously by starting to write the specified data and then polling until the write is finished.

timeout ticks (0 : no timeout) —

zession refnum ;
@ @ length written
data biytes =T ' ?

data info e LR error

TREE e
poll wait (10 mis)

timeout ticks if non-zero specifies the number of ticks the PPC Inform Session VI waits for
LabVIEW to establish a session before returning the errTimedOut error. One tick equals 1/60 of a second.

session refnum is a session reference number, which you use in subsequent communication for
this session.

data bytes is an array of unsigned 8-bit integers to send to the target application.

data info is a cluster of application-specific information you use when reading and writing blocks

of data in a PPC session. data info contains three 32-bit integers: block creator, block type, and user
data. You can use these values to give information about the block of data to the receiving application.

more should be TRUE if you want to write more data for a given block. For example, if you want
to write a block of data in several calls to PPC Write, set more to TRUE on all but the last write of the

sequence.
poll wait (10 ms) determines how frequently PPC Write checks to see whether LabVIEW has

written the data successfully; for higher throughput, a value of zero is best.
length written is the actual number of bytes written. Except when the VI returns an error, length
written should always be the length of the byte array input.

error if negative, indicates a Macintosh error. If positive, error indicates an error internal to the
CIN that generated it. See the PPC Error Codes topic for a list of PPC error codes and their descriptions.

PPC Accept Session VI
PPC Accept Session

PPC Browser VI
PPC Browser VI

Close All PPC Ports VI
Close All PPC Ports

PPC Close Port VI
PPC Close Port

PPC End Session VI
PPC End Session

Get Target ID VI
Get Target ID

PPC Inform Session VI

PPC Inform Session

PPC Open Port VI
PPC Open Port

PPC Read VI
PPC Read

PPC Start Session VI
PPC Start Session

PPC Write VI
PPC Write

This section describes a set of Vis that you can use with User Datagram Protocol (UDP), a protocol in the
TCP/IP suite for communicating across a single network or interconnected set of networks.

Click here to access the UDP VI Descriptions topic.

User Datagram Protocol (UDP)
Using UDP

Note: If you are writing both the client and server, and your system can use TCP/IP, then TCP is
probably the best protocol to use because it is a reliable, connection-based protocol. UDP
is a connectionless protocol with higher performance, but it does not ensure reliable
transmission of data.

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) transmits data across networks. UDP can communicate to specific
processes on a computer. When a process opens a network connection to a particular port it only
receives datagrams that are addressed to that port on that computer. When a process sends a datagram,
it must specify the computer and port as the destination.

There are several reasons why UDP is rarely used directly. UDP does not guarantee data delivery. Each
datagram is routed separately, so datagrams may arrive out of order, be delivered more than once or not
delivered at all.

Typically, UDP is used in applications where reliability is not critical. For example, an application might
transmit informative data to a destination frequently enough that a few lost segments of data are not
problematic.

Using UDP

UDP is not a connection-based protocol like TCP. This means that a connection does not need to be
established with a destination before sending or receiving data. Instead, the destination for the data is
specified when each datagram is sent. The system does not report transmission errors.

You can use the UDP Open VI to create a connection. A port must be associated with a connection when
it is created so that incoming data can be sent to the appropriate application. The number of
simultaneously open UDP connections depends on the system. UDP Open returns a Network Connection
refnum, an opaque token used in all subsequent operations pertaining to that connection.

You can use the UDP Write VI to send data to a destination and the UDP Read VI to read it. Each write
requires a destination address and port. Each read contains the source address and port. Packet
boundaries are preserved. That is, a read never contains data sent in two separate write operations.

In theory, you should be able to send data packets of any size. If necessary, a packet is disassembled
into smaller pieces and sent on its way. At their destination, the pieces are reassembled and the packet is
presented to the requesting process. In practice, systems only allocate a certain amount of memory to
reassemble packets. A packet that cannot be reassembled is thrown away. The largest size packet that
can be sent without dissassembly depends on the network hardware.

When LabVIEW finishes all communications, calling the UDP Close VI frees system resources.

Click here to access the UDP VI Overview topic.

The following illustration shows the UDP VI palette, which you access by selecting
Functions»Communication»UDP:

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

e uoF| [BE uor| [B OoF| [UoF]
E E

UDP Close

UDP Open
UDP Read

UDP Write

UDP Close

Closes the UDP connection specified by connection ID.

connection 10 d_,"":'P connection 10 out
El

errar in Cno errar) ertar out

connection ID is a network connection refnum that identifies the UDP connection that you want
to close.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID. If the connection is not aborted, the
connection is still valid, and the remote machine can continue to send data.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

UDP Open

Attempts to open a UDP connection on the given port. Connection ID is an opaque token used in all
subsequent operations relating to the connection.

port UDF] cannection 10
==

errar in Cno errar) @

port is the local port with which you want to establish a UDP connection.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID is a network connection refnum that uniquely identifies the UDP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

UDP Read

errar aut

Returns a datagram in the string data out that has been received on the UDP connection specified by
connection ID.

cannection I UDF] cannection 10 out

rax size (5420 — e data ou
timeout s (250000 — J——

errar in (no error) T port
address

connection ID is a network connection refnum that identifies the UDP connection. You use this
connection ID value to refer to this connection in subsequent VI calls.

max size (548) is the maximum number of bytes to read.

timeout is in milliseconds. If the operation does not complete in the specified time, the VI
completes and returns an error. The default value is 25,000. A timeout value of -1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID. If the connection is not aborted, the
connection is still valid, and the remote machine can continue to send data.

data out is a string that contains the data read from the UDP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

port is the port of the UDP connection that sent the datagram.

address refers to the computer where a datagram originates.
address and port indicate the source of the datagram. If no data is received in the specified
timeout period, a timeout error is reported in error out. Due to limitations of the MacTCP driver,
the Macintosh has a time out resolution of 1 second and a minimum timeout of 2 seconds. max
size is the maximum size to expect for the incoming datagram. If the incoming datagram is larger
than max size, the datagram is truncated.

UDP Write

Writes the string data in to the remote UDP connection specified by address and port.

part
address
connection 10 oF connection |0 out

data in e

errar in (ne error) errar out
port is the port of the specified address where you want to send a datagram.
address refers to the computer where you want to send a packet.
connection ID is a refnum identifying the UDP connection.
data in is a string that contains the data to write to the UDP connection.

error in describes error conditions that occur prior to the execution of this VI. The default input of
his cluster is no error. See the Error In and Error Out Clusters topic for a further description of the

—

error in and error out clusters.
connection ID out has the same value as connection ID.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

In an Ethernet environment, restrict data to 8192 bytes. In a LocalTalk environment, restrict data
to 1458 bytes because of gateway performance considerations.

UDP Close VI
UDP Close

UDP Open VI
UDP Open

UDP Read VI
UDP Read

UDP Write VI
UDP Write

This topic describes the LabVIEW VIs for Dynamic Data Exchange (DDE) for Windows 3.1, Windows 95,
and Windows NT. These VIs execute DDE functions for sharing data with other applications that accept
DDE connections.

Click here to access the DDE VI Descriptions topic.
Click here to access the DDE Server VI Descriptions topic.

Dynamic Data Exchange

Using DDE as a Client

Services, Topics, and Data ltems

Using DDE as a Server

Using NetDDE

Examples of Client Communication with Excel
LabVIEW Vs as DDE Servers

Requesting Data versus Advising Data
Synchronization of Data

Dynamic Data Exchange

Dynamic Data Exchange is a client-controlled data passing protocol. One application, the client, passes
data to another application, the server.

Both applications must be running, and both must give Windows their callback function address before
DDE communication can begin. The callback function accepts any DDE messages that Windows sends
to the application.

A DDE client initiates a conversation with another application (a DDE server) by sending a connect
message. After establishing a connection, the client can send commands or data to the server, or request
data from the server.

A client can request data from a server by a request or an advise. A request is a single transfer of data. If
the client wants to montor a value over a period of time, the client must use an advise. An advise
establishes an active link between the two applications. The server then informs the client every time the
advise value changes. When the client no longer needs the changed values, it sends an advise stop
message to the server.

When all the DDE communication for the conversation is complete, the client sends a close conversation
message to the server.

DDE is most appropriate for communication with standard, off-the-shelf applications, such as Microsoft
Excel.

With LabVIEW, you can create VIs that act as clients to other applications (meaning they request or send
data to other applications). You can also create Vls that act as servers that provide named information for
access by other applications. As a server, LabVIEW does not use connection-based communication.
Instead, you provide named information to other applications, which can then read or set the values of
that information by name.

Using DDE as a Client
The Dynamic Data Exchange VIs give LabVIEW full DDE client capability.

To use DDE, you must first establish a conversation using the DDE Open Conversation VI. The VI must
specify the service and the topic. The service usually corresponds to the name of the server application

and the topic to the active file. DDE messages then carry data to or from specific locations in the active
file. For more information on how a specific application handles topic names and data item locations,
consult the documentation for that application.

When you have established a conversation, you can send data using the DDE Poke VI, send commands
using the DDE Execute VI, obtain data with the DDE Request VI, or initiate an advise protocol with the
DDE Advise Start VI.

The DDE Request VI sends a DDE message to the server every time you call it. The server must then
check the data requested and return it in another DDE message. If your VI checks the value frequently,
an advise protocol might be more efficient than a request.

The DDE Advise Start VI creates a local copy of the data value you are interested in. When you call the
DDE Advise Check VI, the VI returns this value without sending any DDE messages. At the same time,
the server application sends DDE messages every time the value changes, so that the local value is
always current. If the value seldom changes but is often needed, an advise can significantly reduce the
required number of DDE messages.

Caution: During a conversation, you must pass the conversation refnum to all other DDE Vis
involved in that conversation. Windows uses these refnums to identify the
conversation. If you alter the conversation refnum, or do not specify or wire the
conversation refnum, the VI fails. The same is true for the advise refnum. If you alter
advise refnum, or do not specify or wire advise refnum for the DDE Advise Check VI or
the DDE Advise Stop VI, the Vis fail and may cause a system failure.

The DDE protocol used by LabVIEW is ASCII based, and the transmission is terminated when a null byte
is reached. If the binary data has a null byte (00) in it, the transmission ends.

To send a number to another application, you must convert that number to a string. In the same way, you
must convert numbers received through a request or advise from the string format. Use the conversion
Vls from Functions»String. See String Functions for further information on how to use string conversion
Vis.

Stop all advises and closes all conversations using DDE Advise Stop and DDE Close Conversation after
all DDE commands have executed. This releases the system resources associated with these Vls.

Services, Topics, and Data ltems

With TCP/IP, you identify the process you want to talk to by its computer address and a port number. With
DDE, you identify the application you want to talk to by referencing the name of a service and a topic. The
server decides on arbitrary service and topic names. A given server generally uses its application name
for the service, but not necessarily. That server can offer several topics that it is willing to communicate.
With Excel, for example, the topic might be the name of a spreadsheet.

To communicate with a server, first find the names of the service and topic that you want to discuss. Then
open a conversation using these two names to identify the server.

Unless you are going to send a command to the server, you usually work with data items that the server
is willing to talk about. You can treat these as a list of variables that the server lets you manipulate. You
can change variables by name, supplying a new value for the variable. Or, you can request the values of
variables by name.

Using DDE as a Server

The first step to becoming a DDE server is to use the DDE Srv Register Service VI to tell Windows what
your service name and topic are going to be. At this point other applications can open DDE conversations
with your service.

You can call the DDE Srv Register Service VI multiple times with different service names to establish
multiple services or multiple times with the same service name but different topic names to establish
multiple topics for one service.

After specifying your service and topic names, you can define items for that service using the DDE Srv
Register ltem VI. After this call, other applications can request or poke the item, as well as initiate advises
on that item. LabVIEW fully manages all these transactions.

To change the value of an item, call the DDE Srv Set Iltem VI. This VI changes the value and informs all
clients that have advises on them.

To monitor whether a client has changed an item with a poke, call the DDE Srv Check Iltem VI. This VI
either returns the current value immediately or waits until a client changes the value. If a client pokes the
value before DDE Srv Check Item is called with wait for poke true, DDE Srv Check Item returns
immediately and reports that the value was poked.

You call the DDE Srv Unregister ltem VI and the DDE Srv Unregister Service VI to close down your DDE
server when you are finished. LabVIEW automatically disconnects any client conversations connected to
your server when DDE Srv Unregister Service is called.

Using NetDDE

NetDDE is built into Windows for WorkGroups 3.11, Windows 95 and Windows NT. It is also available for
Windows 3.1 with an add-on package from WonderWare. If you are using Windows 3.1 with the
WonderWare package, consult the WonderWare documentation on how to use netDDE.

When you communicate over the network, the meaning of the service and topic strings change. The
service name changes to indicate that you want to use networked DDE, and includes the name of the
computer you want to communicate with. The service name is of the following form.

\\computer-name\ndde$

You can supply any arbitrary name for the topic. You then edit the SYSTEM. IN1 file to associate this topic
name with the actual service and topic that you can use on the remote computer. This configuration also
includes parameters that configure the network connection.

If you are using Windows for WorkGroups, Windows 95, or Windows NT, use the following instructions:

SERVER MACHINE
CLIENT MACHINE

SERVER MACHINE

Windows for Workgroups
Windows 95
Windows NT

Windows for Workgroups

Add the following line to the [DDE Shares] section of the file system. ini on the server (application
receiving DDE commands):

Ivdemo = service_name,topic_name,,31,,0,,0,0,0

where:

lvdemo can be any name
service name is typically the name of the application, such as excel
topic_ name is typically the specific file name, such as sheetl

enter other commas and numbers as shown.

Windows 95

Note: NetDDE is not automatically started by Windows 95. You need to run the program
\WINDOWS\NETDDE .EXE. (This can be added to the startup folder so that it is always
started.)

To set up a netDDE server on Windows 95:

1. Run\WINDOWS\REGEDIT.EXE

2. Inthe tree display, open the folder My Computer\HKEY LOCAL MACHINE\
SOFTWARE\Microsoft\NetDDE\DD Shares

3. Create a new DDE Share by selecting EditsNew»Key and give it the name 1vdemo.

4. With the 1vdemo key selected, add the required values to the share as follows. (For future reference,
these keys are just being copied from the CHATS share but you cannot cut, copy, or paste keys or
values with REDEGIT.) Use Edit»New to add new values. When you create the key, the default value,
named (Default)and a value of (value not set) appears. Leave these values alone and add the

following:

Value Type Name Value

Binary Additional item count 00 00 00 00
String Application service_name
String Item service_name
String Password1 service_name
String Password2 service_name
Binary Permissions1 1f 00 00 00
Binary Permissions2 00 00 00 00
String Topic topic_name

5. Close REGEDIT.

6. Restart the machine. (NetDDE must be restarted for changes to take affect.)

CLIENT MACHINE

On the client machine (application initiating DDE conversation) no configuration changes are necessary.

Use the following inputs to DDE Open Conversation.vi:

Service: \\machine name\ndde$

Topic: 1vdemo

where:

machine name specifies the name of the server machine

1vdemo matches the name specified in the [DDE Shares] section on the server.

Consider the examples Chart Client.vi and Chart Server.vi foundin
examples\network\ddeexamp.11b. To use those Vls to pass information between two computers
using netDDE, you should do the following:

Server Machine:

Do not modify any front panel values.

2. Inthe system. ini file of the Server machine, add the following line in the [DDEShares] section:
lvdemo = TestServer,Chart,,31,,0,,0,0,0

Client Machine:
On the front panel, set the controls to the following:
Service = \\machine name\ndde$

Topic = 1vdemo
ltem = Random

SERVER MACHINE

Examples of Client Communication with Excel

Each application that supports DDE has a different set of services, topics, and data items that it can talk
about. Select Services, Topics, and Data ltems for more information on this topic. For example, two
different spreadsheet programs can take very different approaches to how they specify spreadsheet cells.
To find out what a given application supports, consult the documentation that came with that application.

Microsoft Excel, a popular spreadsheet program for Windows, has DDE support. You can use DDE to
send commands to Excel. You can also manipulate and read spreadsheet data by name. For more
information on how to use DDE with Excel, refer to the Microsoft Excel Users Guide 2.

With Excel, the service name is Excel. For the topic, you use the name of an open document, such as
spreadsheet document, or the word System.

If you use the name System, you can request information about the status of Excel, or send general
commands to Excel (commands that are not directed to a specific spreadsheet). For instance, for the
topic System, Excel talks about items such as Status, which has a value of Busy if Excel is busy, or
Ready if Excel is ready to execute commands). Another, more useful data item you can use when the
topic is Status is Topics, which returns a list of topics Excel can talk about, including all open spreadsheet
documents and the System topic.

The following VI shows how you can use the Topics command in LabVIEW. The value returned is a string
containing the names of the open spreadsheets and the work Excel.

itermn walue
Tapics

IExce-‘.l
Sl
OFEH | REGST) CLOSE|

Another way you can use the System topic with Excel is to instruct Excel to open a specific document. To
do this, you use the DDE Execute.vi to send an Excel Macro to Excel that instructs Excel to open the
document, as shown in the following LabVIEW diagram:

ter]

[OFENC"G SEXCELSD AT A& HLS™]I

" lal ODE DDE 13l DhE
gt =¥
OPEH EXELC CLOSE

After you open a spreadsheet file, you can send commands to the spreadsheet to read cell values. In this
case, your topic is the spreadsheet document name. The item is the name of a cell, a range of cells, or a
named section of a spreadsheet. For example, in the following diagram LabVIEW can retrieve the value
in the cell at row one column one. It then acquires a sample from the specified channel, and sends the
resulting sample back to Excel.

Fead the desired channell |Fead 1 sample from Send the channel's walue
firormn Excel the zpecified channel to Excel
and conwvert it 1o a string
EXCELp— 2= R1C2
[E DDE [E DDE [& ODE
topic] [oaTa s o]
paThreS 2]
(name of open OPEH| POEE CLOSE
spreadshest file)
T =
1-3CAH
I E
)

LabVIEW Vis as DDE Servers

You can create LabVIEW Vs that act as servers for data items. The general concept is that a LabVIEW
VI indicates that it is willing to provide information regarding a specific service in topic. LabVIEW can use
any name for the service and topic name. It might specify the service name to be the name of the
application (LabVIEW), and the topic name to be either the name of the Server VI, or a general
classification for the data it provides, such as Lab Data.

The Server VI then registers data items for a given service that it talks about. LabVIEW remembers the
data names and their values, and handles communication with other applications regarding the data.
When the server VI changes the value of data that is registered for DDE communication, LabVIEW
notifies any client applications that have requested notification concerning that data. In the same way, if
another application sends a Poke message to change the value of a data item, LabVIEW changes this
value.

You cannot use the DDE Execute Command with a LabVIEW VI acting as a server. If you want to send a
command to a VI, you must send the command using data items.

Also, notice that LabVIEW does not currently have anything like the System topic that Excel provides. The
LabVIEW application is not itself a server to which you can send commands or request status information.

It is important to understand that LabVIEW VIs act as servers and that at this time LabVIEW does not
itself provide any services to other applications.

The following example shows how to create a DDE Server VI that provides data to other client
applications. In this case, the data is a random number. You can easily replace the random number with
real world data from data acquisition boards or devices connected to the computer by GPIB, VXI, or serial
connections.

Serwice name,

topic name

T {7 NNIBS
— AN
SERUER ITEM ITEM SERUER,

The VI in the preceding diagram registers a server with LabVIEW. The VI registers an item that it is willing
to provide to clients. In the loop, the VI periodically sets the value of the item. As mentioned earlier,
LabVIEW notifies other applications that data is available. When the loop is complete, the VI finishes by
unregistering the item and unregistering the server.

The clients for this VI can be any applications that understand DDE, including other LabVIEW Vis. The
following diagram illustrates a client to the VI shown in the previous diagram. It is important that the
service, topic, and item names are the same as the ones used by the server.

waveform chart

sebvice nanme

topic namne

Conversation not apened.
‘ol need to start the serwver VI before running this one

Requesting Data versus Advising Data

The previous client example used the DDE Request VI in a loop to retrieve data. With DDE Request, the
data is retrieved immediately, regardless of whether you have seen the data before. If the server and the
client do not loop at exactly the same rate, you can duplicate or miss data.

One way to avoid duplicating data is to use the DDE Advise VIs to request notification of changes in the
value of a data item. The following diagram shows how you can implement this scheme:

sebvice nanme

topic name

o] DDE o] DDE
STOP = CLOSE

IEnnvergatinn not opened.

‘fou need to start the serwer VI before running this one.

In the preceding diagram, LabVIEW opens a conversation. It then uses the DDE Advise Start VI to
request notification of changes in the value of a data item. Every time through the loop, LabVIEW calls
the DDE Advise Check VI, which waits for a data item to change its value. When the loop is finished,
LabVIEW ends the advise loop by calling the DDE Advise Stop VI, and closing the conversation.

Synchronization of Data

The client server examples in the preceding section work well for monitoring data. However, in these
examples there is no assurance that the client receives all the data that the server sends. Even with the
DDE Advise loop, if the client does not check for a data change frequently enough, the client can miss a
data value that the server provided.

In some applications, missed data is not a problem. For example, if you are monitoring a data acquisition
system, missed data may not cause problems when you are observing general trends. In other
applications, you may want to ensure that no data is missed.

One major difference between TCP and DDE is that TCP queues data so that you do not miss it and you
get it in the correct order. DDE does not provide this service.

In DDE, you can set up a separate item, which the client uses to acknowledge that it has received the
latest data. You then update the acquired data item to contain a new point only when the client
acknowledges receipt of the previous data.

For example, you can modify the server example shown in the Requesting Data versus Advising Data
topic to set a state item to a specific value after it has updated the acquired data item. The server then
monitors the state item until the client acknowledges receipt of data. This modification is shown in the
following block diagram:

data awailable

Doooo0O[gpopl0oooooog
E........T:E'DE (3
= —+

ITEM ITEM

sebvice nanme

:

e BN
_’ i — TF .
SERUER ITEM (T3 : ITEHM

[=4

A client for this server, as shown in the following diagram, monitors the state item until it changes to data
available. At that point, the client reads the data from the acquired data item provided by the server, and
then updates the state item to data read value.

data awvailable

abc

o] DLE
=TEE
-)
3] DOE 3] DDE
2
OPEHM| CLOSE

data read

Conwversation not opened.
‘fou need to start the serwver Y before running this one.

This technique makes it possible to synchronize data transfer between a server and a single client.
However, it has some shortcomings. First, you can have only one client. Multiple clients can conflict with
one another. For example, one client might receive the data and acknowledge it before the other client
notices that new data is available.You can build more complicated DDE diagrams to deal with this
problem, but they quickly become awkward. For applications that involve only a single client, this is not a
problem.

Another problem with this technique of synchronizing communication is that the speed of your acquisition
becomes controlled by the rate at which you transfer data. You can address this issue by breaking the
acquisition and the transmission into separate loops. The acquisition can queue data which the
transmission loop would send. This is similar to the TCP Server example in which the server handles
multiple connections.

If your application needs reliable synchronization of data transfer, you may want to use TCP/IP instead,
because it provides queueing, acknowledgment of data transfer, and support for multiple connections at
the driver level.

Click here to access the DDE VI Overview (Windows) topic.

The top-level DDE Vs are used as clients. The DDE Server VI subpalette contains the DDE Server VI
Descriptions. The following illustration shows the DDE palette, which you access by selecting Function»
Communication»DDE.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

-
|
OPEHM| | CLOSE] ZERUER

[a] DOE o] OOE [a] DOE

RERQST POKE EXELC]

@] DDE @]l DDE @] DDE

STHART] | CHELCE STOP
VI Descriptions

DDE Advise Check

DDE Advise Start

DDE Advise Stop

DDE Close Conversation
DDE Execute

DDE Open Conversation
DDE Poke

DDE Request

Subpalette Descriptions

DDE Server VI Descriptions

For examples of how to use the DDE VIs, see the examples in the examples\comm\DDEexamp.11lb
library.

DDE Advise Check
Checks an advise value previously established by DDE Advise Start.

tirmeout(-11 ——|—|

advize refnum DE
wnnnnnd S)
UnUSeq ermne +_,

wait for change ?(F ALSE) -7 CHECE
error in (no error) R

advise refnum is the unique number that identifies this DDE advise link.
error in describes error conditions that occur prior to the execution of this VI. The default input of

this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

unused was previously the old data input. The DDE VIs now can track changes to the data
internally so this input is no longer needed. It remains so that Vls that used it do not break.

wait for change? specifies whether the VI should get the current value and return immediately or
wait until the value changes before returning.

error out contains error information. If error in indicates an error, then error out contains the

adwise refrum
current data
% ghanged ?
error out

same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

- advise refnum is the unique number that identifies this DDE advise link. It passes through this VI
to assist in execution timing.

current data always returns the most recently received value for the advise item.
changed? specifies whether the old data is the same as current data.

DDE Advise Start

Initiates an advise link.

conversation refnum DE adwvizse refnum
item = E)
‘Lr
ertar inno errar) START errar out

conversation refnum is the unique number that identifies this DDE conversation.
item is the location of the data from the server application that the VI communicates to the client

application.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

advise refnum is the unique number that identifies this DDE advise link.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Advise Stop
Cancels an advise link, previously established by DDE Advise Start.

advize refnum DLE cohversation refrium
=
errar in [ho ermar] STOR erar oLt

advise refnum is the unique number that identifies this DDE advise link.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

conversation refnum is the unique number that identifies this DDE conversation. Pass it through
this VI to assist in execution timing.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Close Conversation

Closes a DDE conversation.

conversation refnum DE
madelT ,close irmediatelyd -
error in (no error) | CLOSE} error out

conversation refnum is the unique number that identifies this DDE conversation.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

mode controls when the conversation closes. If mode is TRUE, the DDE conversation is always

closed. If mode is FALSE, the conversation closes only when an error passes in. Thus, if you wire the
error out of another DDE VI to the error in of the Close Conversation VI with a FALSE mode, the
conversation terminates only if an error occurs in the first VI.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Execute

Tells the DDE server to execute command.

tirmeout (-1

conversation refnum ‘ DE canversation refnum
command -~ B
error in (no error) EXED error out

conversation refnum is the unique number that identifies this DDE conversation.
command contains the command to be sent.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

-TF conversation refnum is the unique number that identifies this DDE conversation. It passes
through this VI to assist in execution timing.

DDE Open Conversation

Establishes a connection between LabVIEW and another application. You must call this VI before you use
any other DDE Vls (except Server VIs).

service [l ODE conwversation refrnum
topic ~tmmmy
P =3
ertar inno ertar) OFEH) ertar out

service is the name of the DDE server.
topic is the name of the DDE topic.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

conversation refnum is the unique number that identifies this DDE conversation. Returns 0 if an
error occurs.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

DDE Poke

Tells the DDE server to put the value data at item.

tirneout (-1

conversation refnum [5] DOE canversation refnumm
data -3 L;Eﬁ
™ error out

error in (no error)

conversation refnum is the unique number that identifies this DDE conversation.

item is the location where the VI pokes the data.
data contains the data the VI sends.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

- conversation refnum is the unique number that identifies this DDE conversation. It passes
through this VI to assist in execution timing.

DDE Request

Initiates a DDE message exchange to obtain the current value of item.

tirmeout (-1

conversation refnum DE canversation refnum
- —
item e data
error in (no error) | REGST) error out

conversation refnum is the unique number that identifies this DDE conversation.

item is the location of the requested data.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

- conversation refnum is the unique number that identifies this DDE conversation. It passes
through this VI to assist in execution timing.

data contains the data that the DDE Request returns.

This topic discusses the DDE Server Vls. To access these Vs, pop up on the DDE Server icon located on
the DDE palette.

| DDE Server

DDE ODE ODE ODE ODE ODE
B ESES B 2N e
SERUER| | ITEM SET CHELCE. ITEM SERUER
DDE Srv Check Item
DDE Srv Reqister Item
DDE Srv Register Service
DDE Srv Set Item
DDE Srv Unreqister Item
DDE Srv Unregister Service

DDE Srv Check Item

Sets the value of a previously defined DDE Item.

tirmeout (-1 —

item refnum + DIE itern refnumn
wait for poke(F ALSE) L __________ Ty glue
i CHECK e poked ?
error in (no error) EHECK e P ror out

DDE Sry¥ Check ltem.wi
item refnum is the unique number that identifies this DDE item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

timeout specifies how long to wait for the function to complete. The default value of -1 specifies
no timeout. If the specified amount of time expires before completion, the VI returns an error.

wait for poke specifies whether the VI should get the current value and return immediately or
wait until a client pokes the value before returning.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

item refnum is the unique number that identifies this DDE item.
value is the new value for the item.

poked? specifies whether the item has been poked by a DDE client since the last DDE Srv
Check Item.

DDE Srv Register Item

Establishes a DDE item for the service specified by service refnum.

service refnum 1 LCE itern refrurm
=]

Tue (==) w2 Y
error_in Er:nu:rrnr) e E error out
service refnum is the unique number that identifies this DDE service.
item is the name of the DDE item

value is the initial value for the item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

item refnum is the unique number that identifies this DDE item. Returns 0 if an error occurs.

DDE Srv Register Service

Establishes a DDE service to which clients can connect.

service + Doe service refnum
topic (5
P .,
error in (no error) SERUER error out

service is the name of the DDE server.
topic is the name of the DDE topic.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

service refnum is the unique number that identifies this DDE service. Returns 0 if an error
occurs.

DDE Srv Set Iltem

Sets the value of a previously defined DDE ltem.

item refoum T e item refnum
=]
walue (7]
error_in (no error) | SET | error out

item refnum is the unique number that identifies this DDE item.
value is the new value for the item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

item refnum is the unique number that identifies this DDE item.

DDE Srv Unregister Iltem

Removes the specified item from its service. DDE clients can no longer access the item after this VI
completes.

item refnum (13 serwvice refnum
=l
error_in (no error) ITEM error out

item refnum is the unique number that identifies this DDE item.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the

same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

service refnum is the unique number that identifies this DDE service.

DDE Srv Unregister Service

Removes the specified service. DDE clients can no longer connect to this service and all current
conversations are closed.

error_in (no error) {SERUER] error out

service refnum is the unique number that identifies this DDE service.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

error out contains error information. If error in indicates an error, then error out contains the

same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

service refnum

DDE Server Subpalette

DDE Server VI Descriptions

DDE Advise Check VI
DDE Advise Check

DDE Advise Start VI
DDE Advise Start

DDE Advise Stop VI
DDE Advise Stop

DDE Close Conversation VI

DDE Close Conversation

DDE Execute VI
DDE Execute

DDE Open Conversation VI

DDE Open Conversation

DDE Poke VI
DDE Poke

DDE Request VI
DDE Request

DDE Srv Check Item VI
DDE Srv Check Item

DDE Srv Register Item VI
DDE Srv Register Item

DDE Srv Register Service VI

DDE Srv Register Service

DDE Srv Set Item VI
DDE Srv Set Item

DDE Srv Unregister Item VI

DDE Srv Unreqister Item

DDE Srv Unregister Service VI

DDE Srv Unregister Service

Windows NT

Launch DDEShare.exe, found in the winnt/system32 directory. Select from the Shares»DDE
Shares»Add a Share... to register the service name and topic name on the server.

This topic discusses the LabVIEW VIs for OLE (Object Linking and Embedding) Automation, a feature
that you can use with LabVIEW to access objects exposed by automation servers in the system.

Click here to access the OLE Automation VI Descriptions topic.

OLE Automation Concepts
Using LabVIEW to Implement OLE Automation

The OLE Automation VI Library contains two levels of Vlis. Vls that are available on the Communication
palette represent the higher-level of functionality. These Vls use lower-level subVIs which are hidden from
the user, providing for a higher-level of encapsulation. Helper Vls are provided.

OLE Automation Concepts

In the context of Object Linking and Embedding, objects are defined as data abstractions exported by an
application. You manipulate these objects by using another Windows application. Linking and Embedding
are two of the methods used to access OLE objects.

You use OLE Automation to make the functions and methods of one application available for use by other
applications. You then access these functions or methods, which are usually grouped into objects.

An application supports automation as either a server or a client. Applications that expose objects and
provide methods for operating on those objects are called OLE automation servers. Applications that use
the methods exposed by another application are called OLE automation clients/controllers. The OLE VIs
enable LabVIEW to become an automation client.

Using LabVIEW to Implement OLE Automation

An OLE object exposes both methods and properties. Methods have the ability to modify a wide range of
values, whereas properties can set or get the value of a specific characteristic of the object. Some
servers provide a type library listing all exposed objects and the methods and properties of each object.

The typical steps in creating a client application using C are as follows:
¢ Get the IDispatch interface of the Object whose methods you want to access.

o Get the DispatchID of the method of that object.

o Invoke the method using the Invoke functions of the IDispatch interface, packing all parameters
into the parameter list.

In LabVIEW, do as follows:

e Use the Create Automation VI to get an Automation refnum, which uniquely defines the IDispatch
interface.

o Use the Execute Method VI to execute a method belonging to that object. If there is just one
parameter, it can be flattened. The type descriptors and the flattened string are then passed in as input
parameters. If there are multiple outputs, they are bundled in a cluster. The resultant cluster is then
flattened and wired to the correct input of the VI.

The implementation uses DLLs to perform the actual OLE calls. Parameters are passed to these DLLs as
flattened data.

Click here to access the OLE Automation VI Overview (Windows 95/NT) topic.

The following illustration shows the OLE Automation VI palette, which you access by selecting
Function»Communication»OLE.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

P L] [P i

REA&
REFMJUM

;

L= T

Create Automation Refnum
Execute Method

Get Property

List Methods or Properties
List Objects in Type Library
Release Refnum

Set Property

For examples of how to use the OLE Automation Vls, see the examples in examples\comm\OLE-
xxx.1l1b.

Create Automation Refnum

Given the object name (registered class name) of an OLE object, returns an Automation Refnum uniquely
identifying the instantiation.

Object Name @’ Autornation Refrnum
errar in Cno errar) BEM ertar out

Object Name. The class name of an OLE object.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Execute Method

Executes a method.

Autornation Refrom

] L Roturn Yalue Type Descriptor
op %Return “alue Data String
error out

Automation Refnum
Method Name ~f

Input Type Descriptor
Input Crata String
error in (no error)

Automation Refnum. Value uniquely defining an instantiation of an OLE class.
Method Name. Name of the method in that class to be invoked.

(€] |nput Type Descriptor. See Type Descriptors for more information.

Input Data String. The flattened string, passed as an input parameter. For more information, see
the Using LabVIEW to Implement OLE Automation section.

error in describes error conditions prior to the execution of this VI. The default input is no

error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI. The dup is provided to simplify
dataflow programming in a manner similar to the dup file refnums in file 1/O functions.

Return Value Type Descriptor. See Type Descriptors for more information.

Return Value Data String. The flattened string, passed as an output parameter. For more
information, see the Using LabVIEW to Implement OLE Automation topic.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Get Property

Gets the value of a property.

Automation Refnum {F=q oLE] Autornation Refrum
Property Name B Izl.,.,_,.,L:F'rnpertu Type Descriptor
error in no errar) FHDFmﬂmPrnpertg Data String
erraor aut

Automation Refnum Value uniquely defining an instantiation of an OLE class.
Property Name. Name of property in that class.
error in describes error conditions prior to the execution of this VI. The default input is no

error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI. The dup is provided to simplify
dataflow programming in a manner similar to the dup file refnums in file 1/0 functions.

Property Type Descriptor. See Type Descriptors for more information.

Property Data String. The flattened string, passed as an output parameter. For more
information, see the Using LabVIEW to Implement OLE Automation topic.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

List Methods or Properties

Lists all the methods or properties of an object.

Object Libary File
Object Marme ~

Method AProperty Flag - peeFUNG 5 Posssssss error out

errar in Cno error) oo i

Object Library File. Full path name of the object library

file (*.olb, *.tlb).

Object Name. String containing the name of the object.

Method/Property Flag. If set, lists all methods. Otherwise, lists all properties.

error in describes error conditions prior to the execution of this VI. The default input is no

error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Methods/Properties. An array of strings containing all the methods and/or properties in that

-------- Methods fPropetties

object.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

List Objects in Type Library
Lists all the objects in a type library.

Object Libatry File o

ISTALL

Objects
errar aut

a

errar in Cno errar)

Object Library File. Full path name of the object library
file (*.olb, *.tlb).
error in describes error conditions prior to the execution of this VI. The default input is no error.

See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Objects. An array of strings containing all objects defined in the object library file.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Release Refnum

Releases the refnum passed in as input.

&5
i oo o aut

error in Cno error) 4.

Automation Refnum. Value uniquely defining an instantiation of an OLE class.

error in describes error conditions prior to the execution of this VI. The default input is no
error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

Set Property

Sets the value of a property.

Automation Refnum

Autornation Befrum

Automation Refnum
Property Name
Input Type Descriptor
Input Crata String
errar in Cno error)

peccoooon error out

Automation Refnum. Value uniquely defining an instantiation of an OLE class.

Property Name. Name of the property in that class.

Input Type Descriptor. See Type Descriptors for more information.

Input Data String.The flattened string, passed as an input parameter. For more information, see
the Using LabVIEW to Implement OLE Automation section.

error in describes error conditions prior to the execution of this VI. The default input is no

error. See the Error In and Error Out Clusters topic for a further description of the error in and error out
clusters.

Automation Refnum. The Automation Refnum passed to a VI. The dup is provided to simplify
dataflow programming in a manner similar to the dup file refnums in file 1/0 functions.

error out contains error information. If error in indicates an error, then error out contains that
same information. Otherwise, it describes the error status produced by this VI. See the Error In and Error

Out Clusters topic for a further description of the error in and error out clusters.

Create Automation Refnum VI

Create Automation Refnum

Execute Method VI
Execute Method

Get Property VI
Get Property

List Methods or Properties VI

List Methods or Properties

List Objects in Type Library VI

List Objects in Type Library

Release Refnum VI

Release Refnum

Set Property VI
Set Property

Prefix Meaning Value
n- nano- 10-9
m- micro- 10-6
m- milli- 10-3
k- kilo- 103
M- mega- 106
Numbers/Symbols
A
abort The procedure that terminates a program when a mistake, malfunction, or error
occurs.
ANSI American National Standards Institute.
APDA Apple Programmer Developer Association.
array Ordered, indexed set of data elements of the same type.
ASCII American Standard Code for Information Interchange.
asynchronous Mode in which multiple processes share processor time. For example, execution

one executes while the others wait for interrupts, as while performing device

I/0 or waiting for a clock tick.

C
CIN

client

cluster

connection ID

control

Code Interface Node. Special block diagram node through which you can link
conventional, text-based code to a VI.

The application that sends or calls messages from the server application in a
dynamic data exchange.

A set of ordered, unindexed data elements of any data type including numeric,
Boolean, string, array, or cluster. The elements must be all controls or all
indicators.

A unique identification of a connection that you use for reference in subsequent
VI calls.

Front panel object for entering data into a VI interactively or into a subVI
programmatically.

D
DARPA

datagram

DDE

dialog box

dotted decimal

driver

E

ethernet

H

handler

I
IAC

icon

IEEE
indicator
internet
internetwork

P

L
LabVIEW

LF

Defense Advanced Research Projects Agency.

IP-packaged data components that contain, among other things, the data and a
header that indicates the source and destination addresses.

Dynamic Data Exchange. A client-controlled Windows protocol for communication
between applications.

An interactive screen with prompts in which the user specifies additional
information needed to complete a command.

A method of describing a 32-bit internet address in which the address is notation
divided into four 8-bit binary numbers and written as four integers
separated by decimal points.

Software used to manipulate a device or interface board.

A network system that carries audio and video information as well as computer
data.

A device driver installed as part of the operating system of the computer.

Interapplication Communication. A feature of Apple Macintosh system software
version 7 by which applications can communicate with each other.

Graphical representation of a node on a block diagram.
Institute of Electrical and Electronic Engineers.

Front panel object that displays output.

See internetwork.

Single or interconnected networks.

Internet Protocol. Protocol that performs the low-level service of packaging data
into components (datagrams). See TCP/IP.

Laboratory Virtual Instrument Engineering Workbench.

Line feed.

o)
OLE

OLE Automation

P

palette

PC
poke
PPC

protocol

R

refnum

remote address

SCSI
sec

server

spreadsheet

string

Megabytes of memory.

Digital display value for a floating-point representation of not a number, typically
the result of an undefined operation, such as log(-1).

Object Linking and Embedding.

A feature which allows LabVIEW to access objects by automation servers in the
system.

A collection of function or control icons from which you can select the control or
function you need.

Personal Computer. Used to refer to IBM-compatible computers.
An instruction that places a value into a specific location in memory.

Program-to-Program Communication. A low-level form of IAC by which
applications send and receive blocks of data.

Set of rules or conventions that cover the exchange of information between
computer systems.

An identifier of a DDE conversation or open files that can be referenced by
related Vls.

Address of the remote machine associated with a connection.

Small Computer System Interface (bus).
Seconds.

The application that receives messages from the client application in a dynamic
data exchange.

Any of a number of programs that arrange data and formulas in a matrix of cells.

A connected sequence of characters or bits treated as a single data item.

T
TCP Transmission Control Protocol. See TCP/IP.

TCP/IP Transmission Control Protocol/Internet Protocol. A suite of communications
protocols that you use to transfer blocks of data between applications.

timeout The time (in milliseconds) that a VI waits for an operation to complete. Generally,
a timeout of -1 causes a VI to wait indefinitely.

U

UDP User Datagram Protocol. See TCP/IP.

utility A program that helps the user run, enhance, create, or analyze other programs
and systems.

\'}

VI Virtual instrument. LabVIEW program; so called because it models the
appearance and function of a physical instrument.

W

wire Data path between nodes.

You can use these functions to share between LabVIEW and HIQ as well as to control HiQ from
LabVIEW. See the HiQ documentation on LabSuite for more detailed information on how to use the
functions.

The following illustration shows the HiQ palette, which you can access by selecting
Functions»Communication»HiQ.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

H é Hig E’ B
e | e |HialE
HiQ Apple Event Command VI Descriptions

HiQ PPC Data Transfer VI Descriptions
HiQ File Transfer VI Descriptions

HiQ supports seven Apple Event commands: the four required events--Run, Open, Print, and Quit; a
DoScript event for executing a script in a specified HiQ Worksheet; and an event for finding open HiQ Vils.

The following illustration shows the HiQ Apple Event Commands palette, which you can access by
selecting Functions»Communication»HiQ»HiQ Apple Event Commands.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

B) Y

Open || Find || Quit

Open || Print
Enter || Fun

Enter HiQ Script
Execute Script
Find an Open HiQ
Open HIQ

Open Worksheet
Print Worksheet
Quit HiQ

Enter HiQ Script

Prompts you to enter a HiQ-Script name.

Hil} Script name

Enter

Execute Script

Communicates to the selected HiQ to execute a specific HiQ-Script. If Script Name In is empty, this VI
prompts for a HiQ-Script name using the Enter HiQ Script VI.

. : Script Marme Out
Suript Narne !n ez zelected target IDout
zelected target D in =8 Fun o o aut

error in Cno error) o

Script Name In is the name of the HiQ-Script to execute.
selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- Script Name Out is the name of the HiQ-Script that executed.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Find an Open HiQ

Displays the PPC dialog box you can use to choose an open HiQ. HiQ must already be executing.

@ o celected target D oot

error in (no error) Find error oot

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Open HiQ

Displays the file dialog box you can use to choose the HiQ executable you want to open. If you want to
open a HiQ on the network, you must first mount the network drive using Chooser under the Apple menu.

Fath Marne rmnnnnananny
File Narne e
Zane @ zelected target 1D out

e reea] OpEN P error out

Server mﬁm
error in (no error)

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Open Worksheet

Opens a worksheet from the selected HiQ. If Worksheet Name In is empty, this VI prompts you for a
Worksheet name using a File dialog box.

b “Worksheet Mame Out
‘orksheet Name In pe=rm celected target |0 out

selected target D in e o) OPen ey
t
error in (no errar) I Error ou

Worksheet Name In is the name of the HiQ Worksheet to print. You can specify the full

pathname, if required.
h selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- Worksheet Name Out is the name of the HiQ Worksheet that was printed.
selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Print Worksheet

Communicates with the selected HiQ to print a specific Worksheet. If Worksheet Name In is empty, this VI
prompts you for a Worksheet name using a File dialog box.

- “Warksheet Mame Out
tforkshest Name !n ===z zelected target IDoout
zelected target ID in of Frint e e ok out

errar in (no errar) I

Worksheet Name In is the name of the HiQ Worksheet to open. You can specify the full
pathname, if required.

selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- Worksheet Name Out is the name of the HiQ Worksheet that was printed.

selected target ID out is a cluster of information describing the location of the target HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster

contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Quit HiQ

Closes the selected HiQ.

zelected target I in @ "
[pocooon g ot al

error in (no error) Quit

selected target ID in is a cluster of information describing the location of the target HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

The following illustration shows the HiQ PPC Data Transfer palette, which you can access by selecting
Functions»Communication»HiQ»HiQ PPC Data Transfer.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Hid Hid
b @ T @

Can Lrisc

Hiﬂ.—DE? Hiﬂ.—bE?
o L

Fead || Real+

Hid<F, Hiw<F,
b @ L @

Write || Real+

Hiw
L

Find

Hiwk,
e @

Crap+

HidF,
v @

Int+

Find an Open HiQ PPC Port
HiQ PPC Connect

HiQ PPC Disconnect

HiQ PPC Read

HiQ PPC Read Real+

HiQ PPC Write

HiQ PPC Write Integer+
HiQ PPC Write Real+

HiQ PPC Write Complex+

Find an Open HiQ PPC Port

Displays the PPC Browser dialog box for selecting an open HiQ PPC port on a network or on the same
computer.

Hid @Imselected target |0 out

error in Cno error) Find ertor out

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

selected target ID out is a cluster of information describing the location of the HiQ PPC server.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Connect

Establishes a connection with a HiQ PPC server.

*‘-’”’tﬁ't I :““"r"ri% @mHil:l FFC Connection aut
pat-tMarne !

tirneout ticks (0: no timeout) f

ertar in (no error)

Con poocccm arraor out

target ID is a cluster of information describing the location of the HiQ PPC server and contains a
complex cluster of information defined by Apple Computer, Inc. The Open HiQ and the Find an Open HiQ
Vls create this cluster.

portName is a cluster containing the following parameters in the order listed below. Wiring for this
input is optional.

nameScript is a 32-bit integer used in international localization that specifies the language
system you are using. Use a nameScript value of 0 for Roman language systems (for example, English);
consult Inside Macintosh, Volume VI for a list of available script codes.

selector describes the format of the type string parameter.

1. (creator/type) Signifies that type string is an 8-character string; the first four
characters are the creator (for example, LBVW), and the last four characters define
the port type.

2: (port type string) Signifies that type string is a 32-character (or less) description of the
service provided by the port

name is the name you give to the port. The value of name, which can be no more than 32
characters, is displayed in the PPC Browser dialog box list of port names. The Get Target ID VI uses
name to identify the port.

port type string is an 8-character string; the first four characters are the creator (for example,
LBVW), and the last four characters define the port type, when selector has a value of 1. The type string
is a 32-character (or less) description of the service that the port provides when selector has a value of 2.
(In almost all cases, you should specify a value of 2 for selector, and use a description of the service
provided by the port for type string. Consult Inside Macintosh, Volume VI, for more information about
other cases.)

timeout ticks (0: no timeout). If non-zero, timeout ticks specifies the number of ticks PPC

Inform Session waits for LabVIEW to establish a session before returning an error. One tick equals 1/60
of a second.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- HiQ PPC Connection out is a cluster of information describing the active PPC session. You use
this cluster as an input to other HiQ PPC ViIs to identify the active PPC session. The HiQ PPC Connection
out cluster contains the following parameters.

port refnum is a port reference number describing the local port associated with the current PPC
session.

session refnum is a session reference number describing the current HiQ PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Disconnect

Closes the active PPC port and ends the active PPC session.

HiQ PPC Connection In st 5 .
" oo g O ol

errar in (no error) oo Dise

HiQ PPC Connection is a cluster of information describing the active PPC session.

port refnum is a port reference number describing the local port associated with the current PPC
session.

session refnum is a session reference number describing the current HiQ PPC session.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In

and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Read

Reads the specified number of bytes from the server HiQ. A HiQ-Script must be executing on the server
that writes the specified number bytes.

Hil) FFC Connection in ,H,ig-ﬂg? Hill PPC Connection out
Murnbet of bytes to read T | ' data bytes
timeout ticks (0 no timeout) f Read " et o out
error in (no error)

HiQ PPC Connection in is a cluster of information describing the active PPC session.
Number of bytes to read specifies how many bytes to read from HiQ.

timeout ticks (0: no timeout) If non-zero, timeout ticks specifies the number of ticks PPC
Inform Session waits for LabVIEW to establish a session before returning an error. One tick equals 1/60
of a second.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- HiQ PPC Connection out is a cluster of information describing the active PPC session.

data bytes is a 1D array containing the data bytes received from HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Read Real+
Reads real data from the HiQ server. This VI works with the HiQ PPC_HiQ_LV_WriteData function.

Hi) PPC Connection in .".i%'D@ Hil) PPC Connection out

in € 3 Rea]+'=-=-Rea'l rmatriz
errar in [no error) oo
[oo arror aut

HiQ PPC Connection in is a cluster of information describing the active PPC session.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- HiQ PPC Connection out is a cluster of information describing the active PPC session.
Real matrix is a 2D array containing the data received from HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write

Writes a one-dimensional array of 1-byte data to the HiQ server. A HiQ-Script must be executing on the
server that reads the data.

Hi) PPC Connection in ;l,igﬂ-@ Hil) PPC Connection out
data biytes =T — ' length written
timeout ticks (0: no timeout) f B e Y T

ertar in (no error)

HiQ PPC Connection in is a cluster of information describing the active PPC session.

data bytes is a 1D array containing the data bytes to write to HiQ.

timeout ticks (0: no timeout) If non-zero, timeout ticks specifies the number of ticks PPC
Inform Session waits for LabVIEW to establish a session before returning an error. One tick equals 1/60
of a second.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- HiQ PPC Connection out is a cluster of information describing the active PPC session.

length written contains the actual number of bytes written to HiQ.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write Integer+

Writes either scalar, vector, or matrix integer data to the HiQ server. This VI works with the
PPC_HiQ_LV_ReadData function.

Integer zcalar

Hil) PPC Connection in L) Hi FPC Connection out
Integer wvector = '

. Int+ |poocooos apror out
errar in (o error) ol

Integer matrix .="

HiQ PPC Connection in is a cluster of information describing the active PPC session.
(132]] Integer vector is a 1D array containing the data to be written to HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- Integer scalar contains the scalar data to be written to HiQ.
Integer matrix is a 2D array containing the data to be written to HiQ.
HiQ PPC Connection out is a cluster of information describing the active PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write Real+

Writes either scalar, vector, or matrix real data to the HiQ server. This VI works with the
PPC_HiQ_LV_ReadData function.

Real scalar

Hil) FPC Connection in L) HilJ PPC Connection out
Real vectopr == Rea]+l +
errar in (o error) sl error ol

Real matrix '="
HiQ PPC Connection in is a cluster of information describing the active PPC session.

Real vector is a 1D array containing the real data to be written to HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- Real scalar contains the scalar real data to be written to HiQ.

Real matrix is a 2D array containing the real data to be written to HiQ.
HiQ PPC Connection out is a cluster of information describing the active PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

HiQ PPC Write Complex+

Writes either scalar, vector, or matrix complex data to the HiQ server. This VI works with the
PPC_HiQ_LV_ReadData function.

Complex scalar

Hil) FPC Connection in Haha Hilj PPC Connection out
Camnplex vector == '

. Crp+
error in (no error) e =TH error out

Cornplex mateix '="

HiQ PPC Connection in is a cluster of information describing the active PPC session.
Complex vector is a 1D array containing the complex data to be written to HiQ.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- Complex scalar contains the scalar, complex data to be written to HiQ.
Complex Matrix is a 2D array containing the complex data to be written to HiQ.
HiQ PPC Connection out is a cluster of information describing the active PPC session.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

The following illustration shows the HiQ File Transfer palette, which you can access by selecting
Functions»Communication»HiQ»HiQ File Transfer.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

B

B

B

Hid)

Read from HiQ Text File
Write to HiQ Text File

Read from HiQ Text File

Reads a specified number of rows from a HiQ, numeric text file beginning at a specified character offset
and converts the data to a two-dimensional, double-precision array of numbers. You can optionally
transpose the array. This VI opens the HiQ file before reading from it and closes the HiQ file after reading

from it.
farrnat (98.15g) ¥ new file path (Mot & Path i
file path (dialeg if erpty) { E1E] all Fows
nurnber of rows (2147423647) + first row
start of read offzet (0) %‘EHM ------ : — file position after read
rnax charsSrow (0=no limit) e EOF?

transpose? (false)

file path (dialog if empty) consists of the path name of the file. If file path is empty (default
value) or is Not A Path, the VI displays a file dialog box from which you can select a file. Error 43 occurs if

Welect Cancel in the dialog box.

number of rows (2147483647) is the maximum number of rows or lines the VI reads. For this VI,
a row consists of a character string ending with a carriage return, line feed, or a carriage return followed
by a line feed; a string ending with end of file; or a string that has the maximum line length specified by
the max characters per row input. If number of rows <0, the VI reads the entire file. The default value
is -1.
reading.
max chars/row (0=no limit) is the maximum number of characters the VI reads before ending
the search for the end of a row or line. The default is 0, which means that there is no limit to the number
of characters the VI reads.

transpose? (false) Set to TRUE to transpose the data after converting it from a string. The
default value is FALSE.

format (%.15g) specifies how to convert the characters to numbers; the default is %.15g. Refer
to the discussion of format strings and the Spreadsheet String To Array function.

new file path (Not A Path) is the path of the file from which the VI reads data. Not A Path is
returned if you select Cancel from the dialog box.

all rows is the data read from the file in the form of a 2D array of

double-precision numbers.

first row is the first row of the all rows array in the form of a 1D array of double-precision
numbers. You can use this output when you want to read one row into a 1D array.

file position after read is the location of the file mark after the read; it points to the character in
the file following the last character read.

EOF? is TRUE if you attempt to read past the end of the file.

start of read offset (0) is the position in the file, measured in characters, at which the VI begins

Write to HiQ Text File

Converts a 1D or 2D array of double-precision numbers to a text string and writes the string to a new file
or appends the string to an existing file. You can optionally transpose the data. This VI opens or creates
the file beforehand and closes it afterwards. You can use this VI to create a text file that HiQ can read.

format (%.15g)

file path (dialog if empty)
2D data =TI

1D data — . Hi

new file path (Mot & Path i...

append to file? (new file:F) - :

file path (dialog if empty) consists of the path name of the file. If file path is empty (default
value) or is Not A Path, the VI displays a file dialog box from which you can select a file. Error 43 occurs if

iou select Cancel in the dialog box.
2D data contains the double-precision numbers the VI writes to the file if 1D data is not wired or

is empty.

1D data contains the double-precision numbers the VI writes to the file if this input is not empty.
The VI converts the 1D array into a 2D array before optionally transposing it, converting it to a string and
writinr it to the file. If transpose? is FALSE, each call to this VI creates a new line or row in the file.
append to file? (new file:F) Set to TRUE if you want to append the data to an existing file. Set to
FALSE (default value) if you want to write the data to a new file or to replace an existing file.

transpose? (false) Set to TRUE to transpose the data before converting it to a string. The default
value is FALSE.

format (%.15g) specifies how to convert the numbers to characters. If the format string is %.15g
(default), the VI creates a string long enough to contain the number, with fifteen digits to the right of the
decimal point. If the format is %d, the VI converts the data to integer form using as many characters as
necessary to contain the entire number. Refer to the discussion of format strings and the Array To

Spreadsheet Stringfunction.
i new file path (Not A Path if...) is the path of the file to which the VI wrote data. Not A Path is
returned if you select Cancel from the dialog box.

HiQ Apple Event Command Vis

HiQ Apple Event Command VI Descriptions

HiQ PPC Data Transfer Vis
HiQ PPC Data Transfer VI Descriptions

HiQ File Transfer Vis

HiQ File Transfer VI Descriptions

Enter HiQ Script VI
Enter HiQ Script

Execute Script VI
Execute Script

Find an Open HiQ VI
Find an Open HiQ

Open HiQ VI
Open HIQ

Open Worksheet VI
Open Worksheet

Print Worksheet VI
Print Worksheet

Quit HiQ VI
Quit HiQ

Find an Open HiQ PPC Port VI
Find an Open HiQ PPC Port

HiQ PPC Connect VI
HiQ PPC Connect

HiQ PPC Disconnect VI
HiQ PPC Disconnect

HiQ PPC Read VI
HiQ PPC Read

HiQ PPC Read Real+ VI
HiQ PPC Read Real+

HiQ PPC Write VI
HiQ PPC Write

HiQ PPC Write Integer+ VI
HiQ PPC Write Integer+

HiQ PPC Write Real+ VI
HiQ PPC Write Real+

HiQ PPC Write Complex+ VI
HiQ PPC Write Complex+

Read from HiQ Text File VI
Read from HiQ Text File

Write to HiQ Text File VI
Write to HiQ Text File

You can use these VIs to pass data between applications. Named Pipes make process synchronization
simpler. The following illustration displays the Named Pipe VIs, which you access by selecting
Functions»Communication»PIPES.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

NG || ~F ||~ ||~

Open || Close || Fead || Write

Close Pipe
Open Pipe
Read From Pipe

Write to Pipe

Close Pipe

Closes the named pipe specified by a file descriptor.

file descriptor f\% file descriptor

EFFOF in (MO BFFOF Close error out

file descriptor is the file descriptor that you want to use when closing the pipe.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

- file descriptor is the file descriptor that you want to use when closing the pipe.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Open Pipe

Returns a file descriptor, which you pass to subsequent named pipe Vls. You can choose a path for the
named pipe and whether you want to use the named pipe for writing or reading data.

path to named pipe file descriptor

mode =] Eﬁ

errar in (no errar) e

path to named pipe is the path to the named pipe.
mode is either read or write.

error in describes error conditions occurring before this VI executes. If an error has already
occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error Out
Clusters topic for a further description of the error in and error out clusters.

fiIe descriptor is the file descriptor that you want to use when reading and writing to the opened

errar out

pipe.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Read From Pipe

Reads up to bytes to read data from the named pipe specified by file descriptor, returning the results in

the data string output. For this VI to function, you must have opened the pipe as a read pipe. ReadPipe
VI does not wait for data, so if the specified amount of data is not available, the VI returns whatever data
is available. EOF? is TRUE if the other end of the pipe has been closed.

file descriptor f@ file descriptor
bytes to read L bytes read
EFFOF N (N0 EFror) = data
error out

r"ﬂrJ

file descriptor is the file descriptor that you want to use when reading from the opened pipe.
- bytes to read is the number of bytes to be read.

error in (no error) describes error conditions occurring before this VI executes. If an error has
already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

-T"' file descriptor is the file descriptor that you want to use when reading from the opened pipe.

- bytes read is the number of bytes read, which may be less than the number of bytes in bytes to
read.

data is the data read from the pipe.
EOF? is the end of file.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Write to Pipe

Writes a data string to the named pipe specified by a file descriptor. For this VI to function, you must
have opened the pipe as a write pipe.

file descriptor f\% file descriptor
data -~ White L hytes written
BIFOr in (No error) === P e 21O OUt

file descriptor is the file descriptor that you want to use when writing to the opened pipe.
data is the data to write to the pipe.
error in (no error) describes error conditions occurring before this VI executes. If an error has

already occurred, this VI returns the value of the error in cluster in error out. See the Error In and Error
Out Clusters topic for a further description of the error in and error out clusters.

-TF file descriptor is the file descriptor that you want to use when writing to the opened pipe.

- bytes written is the number of bytes written, which may be less than the number of bytes in
data.

error out contains error information. If the error in cluster indicated an error, the error out cluster
contains the same information. Otherwise, error out describes the error status of this VI. See the Error In
and Error Out Clusters topic for a further description of the error in and error out clusters.

Close Pipe VI
Close Pipe

Open Pipe VI
Open Pipe

Read from Pipe VI

Read From Pipe

Write to Pipe VI
Write to Pipe

The following illustration displays the System Exec Vls, which you access by selecting Functions
»Communication.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

Exec Whindaws

THELD
LINIE

o) 1

System Exec VI for Windows
System Exec VI for UNIX

System Exec (Windows)

Runs an executable program by name.

carmnmand to execute mennnnead
Exec

errar

tun rinirnized ? CF] e

command to execute. Tells LabVIEW what command to call to execute your program.

run minimized ? (F). If set to TRUE, minimizes the run of your executable program. The default
is set to FALSE.

error. Returns an error.

System Exec (UNIX)

Runs an executable program by name. The System Exec VI also provides access to the standard input,
output, and error I/O streams for the application you execute. With this VI, you can also choose whether
you want the System Exec VI to wait for the application you execute to complete.

Run kdinimized?
Wait until Completion’
System Command Line 1 Standard Output
atandard Input - ; i Standard Error
Expected Output Size (4096 — Lomd | | it Status

System Command Line.

Run Minimized ? If set to TRUE, minimizes the run of your executable program. The default is
set to FALSE. In UNIX, LabVIEW does not use the Run Minimized ? parameter.

Wait until Completion? If TRUE, the string wired to Standard Input is available as input to the
command, and the System Exec VI returns the Standard Output and Standard Error when the
command completes. If FALSE, the System Exec VI runs the command in the background, and disables
the input and output streams.

Standard Input is the input to the command.

Expected Output Size (4096) is used for efficiency reasons and should be a number slightly
larger than the output size expected. By default, it has a value
of 4,096 characters. The command still runs correctly if you exceed the output size, but the System Exec

VI is less efficient in LabVIEW memory usage.

Standard Output is the output from the command.
Standard Error is the error output from the command.
Exit Status is the integer status returned by the command.

System Exec for Windows

System Exec (Windows)

System Exec for Unix

System Exec (Unix)

This topic discusses Internet Protocol (IP), Transmission Control Protocol (TCP), and internet addresses,
and describes the LabVIEW TCP Vis.

Click here to access the TCP VI Descriptions topic.

TCP/IP (all Platforms)

LabVIEW and TCP/IP

Internet Protocol

Using TCP

Internet Addresses

TCP Client Example

TCP Server Example

TCP Server with Multiple Connections

Setup

TCP/IP (all platforms)

TCP/IP is a suite of communication protocols, originally developed for the Defense Advanced Research
Projects Agency (DARPA). Since its development, it has become widely accepted, and is available on a
number of computer systems.

The name TCP/IP comes from two of the best known protocols of the suite, the Transmission Control
Protocol (TCP) and the Internet Protocol (IP). TCP, IP, and the User Datagram Protocol (UDP) are the
basic tools for network communication.

TCP/IP enables communication over single networks or multiple, interconnected networks, which are
known as an internetwork or internet. The individual networks can be separated by great geographical
distances. TCP/IP routes data from one network or internet computer to another. Because TCP/IP is
available on most computers, it can transfer information between diverse systems.

Transmission Control Protocol (TCP) ensures reliable transmission across networks, delivering data in
sequence without errors, loss, or duplication. When you pass data to TCP, it attaches additional
information and gives the data to IP, which puts the data into datagrams and transmits it. This process
reverses at the receiving end, with TCP checking the data for errors, ordering the data correctly, and
acknowledging successful transmissions. If the sending TCP does not receive an acknowledgment, it
retransmits the data segment. For these reasons, TCP is usually the best choice for network applications.

Internet Protocol

Internet Protocol (IP) transmits data across the network. This low-level protocol takes data of a limited
size and sends it as a datagram across the network. A datagram contains, among other things, the data
and a header indicating the source and destination addresses. IP determines the correct path for the
datagram to take across the network or internet, and sends the data to the specified destination. IP
makes a best-effort attempt to deliver data, but cannot guarantee delivery. Also, because IP routes each
datagram separately, it may arrive out of sequence. In fact, IP may deliver a single packet more than once
if it is duplicated in transmission. IP does not determine the order of packets. Instead, higher-level
protocols layered above IP order the packets and ensure reliable delivery. For this reason, IP is rarely
used directly; instead, TCP and UDP, which are built on top of IP, are most often used to transfer
information.

Using TCP

TCP is a connection-based protocol, which means that sites must establish a connection before
transferring data. TCP permits multiple simultaneous connections.

You initiate a connection either by waiting for an incoming connection or by actively seeking a connection
with a specified address. In establishing TCP connections, you have to specify both the address and a
port at that address. A port is represented by a number between 0 and 65535. With UNIX, port numbers
less than 1024 are reserved for privileged applications. Different ports at a given address identify different
services at that address, and make it easier to manage multiple simultaneous connections.

You can actively establish a connection with a specific address and port using the TCP Open Connection
VI. Using this VI, you specify the address and port with which you want to communicate. If the connection
is successful, the VI returns a connection ID that uniquely identifies that connection. Use this connection
ID to refer to the connection in subsequent VI calls.

You can use two methods to wait for an incoming connection:

o With the first method, you use the TCP Listen VI to create a listener and wait for an accepted
TCP connection at a specified port. If the connection is successful, the VI returns a connection ID
and the address and port of the remote TCP.

o With the second method, you use the TCP Create Listener VI to create a listener, and then use
the Wait on Listener VI to listen for and accept new connections. Wait on Listener returns the same
listener ID that was passed to the VI, as well as the connection ID for a connection. When you are
finished waiting for new connections, you can use TCP Close to close a listener. You cannot read from or
write to a listener.

The advantage of using the second method is that you can cancel a listen operation by calling TCP
Close. This is useful in the case where you want to listen for a connection without using a timeout, but you
want to cancel the listen when some other condition becomes true (for example, when the user presses a
button).

When a connection is established, you can read and write data to the remote application using the TCP
Read and TCP Write Vils.

Finally, use the TCP Close Connection VI to close the connection to the remote application. Notice that if
there is unread data and the connection closes, that data may be lost. This behavior is dependent upon
your operating system. For example, the Sun operating system implementation keeps unread data even
after the remote application closes the connection, while Windows NT immediately deletes any unread
data when a close connection is received. Connected parties should use a higher-level protocol to
determine when to close the connection. Once a connection is closed, you may not read or write from it
again.

Internet Addresses

Each host on an IP network has a unique, 32-bit internet address. This address identifies the network on
the internet to which the host is attached, and the specific computer on that network. You use this address
to identify the sender or receiver of data. IP places the address in the datagram headers, so that each
datagram is routed correctly.

One way of describing this 32-bit address is the IP dotted decimal notation. This divides the 32-bit
address into four 8-bit numbers. The address is written as the four integers, separated by decimal points.
For example, the 32-bit address

10000100 00001101 00000010 00011110
is written in dotted decimal notation as
132.13.2.30

Another way of using the 32-bit address is by names that are mapped to the IP address. Network drivers
usually perform this mapping by consulting a local hosts file that contains name to address mappings, or

consulting a larger database using the Domain Name System to query other computer systems for the
address for a given name. Your network configuration dictates the exact mechanism for this process,
which is known as hostname.

TCP Client Example

The following discussion is a generalized description of how to use the components of the Client block
diagram model with the TCP protocol.

Open
Cann

toZtwr| Use the TCP Open Connection VI to open a connection to a server. You must specify the internet

address of the server, as well as the port for the server. The address identifies a computer on the network.
The port is an additional number that identifies a communication channel on the computer that the server

uses to listen for communication requests. When you create a TCP server, you specify the port that you

want the server to use for communication.
Esnec
Cd

enSrurl - To execute a command on the server, use the TCP Write VI to send the command to the server.
You then use the TCP Read VI to read back results from the server. With the TCP Read VI, you must
specify the number of characters you want to read. This can be awkward, because the length of the
response may vary. The server can have the same problem with the command, because the length of a
command can vary.

Click here to access the Timeouts and Errors topic.

The following are several methods you can use to address varying sized commands:

o Precede the command and the result with a fixed size parameter that specifies the size of the
command or result. In this case, read the size parameter, and then read the number of characters
specified by the size. This option is efficient and flexible.

o Make each command and result a fixed size. When a command is smaller than the size, you can
pad it out to the fixed size.

o Follow each command and result with a specific terminating character. To read the data, you then
need to read data in small chunks until you get the terminating character.

Claze
Conn

toStur] Use the TCP Close Connection VI to close the connection to the server.

Timeouts and Errors

The TCP Client Example topic discussed communication protocol for the server. When you design a
network application consider carefully what should happen if something fails. For example, if the server
crashes, how would each of the client VIs handle it?

One solution is to make sure that each VI has a timeout. This way, if something fails to produce results,
after a certain amount of time, the client continues to execute. In continuing, the client can try to
reestablish execution, or it can report the error, and if necessary, shut the client application down. Select
Error In and Error Out Clusters for more information about errors.

TCP Server Example

The following discussion explains how you can use TCP to fulfill each component of the general server
model.

Initialize,
Seruer

No initialization is necessary with TCP, so this step can be left out.

W ait
for a

tenn | Use the TCP Listen VI to wait for a connection. You must specify the port that is used for
communication. This port must be the same port that the client attempts to connect. The TCP Client
Example topic provides more information about this VI..

W ait
for a
Crrd If a connection is established, read from that port to retrieve a command. As discussed in the
TCP Client example, you must decide the format for commands. If commands are preceded by a length
field, first read the length field, and then read the amount of data indicated by the length field.

Exec
Crnd

Execution of a command should be protocol independent, because it is performed on the local
computer. When finished, pass the results to the next stage, where they are transmitted to the client.

Use the TCP Write VI to return results. As discussed in the TCP Client example, the data must be
in a form that the client can accept.

Use the TCP Close Connection VI to close the connection.
This step can be left out with TCP, because everything is finished after you close the connection.
TCP Server with Multiple Connections

TCP handles multiple connections easily. You can use the methods described in the TCP Server Example
to implement the components of a server with multiple connections.

Click here to access the TCP VI Overview topic.

The following illustration shows the TCP VI palette, which you access by selecting
Functions»Communication»TCP.

Click on one of the icons below for VI description information. You can also click on the text jumps below
the icons to access VI descriptions.

= TCF = TCF %_TGF‘ TGF e TCF|
= =

;J_%? ELT:@?

IP To String

String To IP
TCP Close Connection

TCP Create Listener
TCP Listen

TCP Open Connection
TCP Read

TCP Wait on Listener
TCP Write

For examples of how to use the TCP Vls, see the examples in the examples\comm\tcpex.11b library.

IP To String

Converts an IP network address to a string.

net address

net address contains the network address.

dot notation determines whether name is in dot notation format.
name is the string equivalent of net address.

String To IP

Converts a string to an IP network address.

narne ZTR_IF net address

name contains the string you want to convert. If you do not specify a string as an input, the output
is the current machines IP address.

net address is the IP network address equivalent to name.
TCP Close Connection

Closes the connection associated with connection ID.

connection D TCF connection D aut
abort (Fj [P ==

errar in (no errar) error out

connection ID is a network connection refnum that identifies the connection that you want to
close.

abort determines whether LabVIEW closes the connection normally (the default value) or aborts
the connection. Currently, this parameter is ignored.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Create Listener

Creates a listener for a TCP connection.

T TCF Tistener ID
port ﬁ_@i
errar in Cno errar) c - ertar out

port is the port that the VI uses to listen for a connection.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

listener ID is a network connection refnum that uniquely identifies the Listener.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Listen

Creates a listener and waits for an accepted TCP connection at the specified port.

connection D

i ; (st £ | E';’E “l.ztép wepemote address
e n.::ﬁ::-r ﬁ'urE:;;r.rurj o - ngin?-tiftwt

When a listen on a given port begins, you may not use another TCP Listen VI to listen on the same port.
For example, suppose a VI has two TCP Listen VIs on its block diagram. If you start a listen on port 2222

with the first TCP Listen VI, any attempts to listen on port 2222 with the second TCP Listen VI fails.

port is the port that the VI uses to listen for a connection.

timeout is in milliseconds. If the connection is not established in the specified time, the VI
completes and returns an error. The default value for timeout is -1, which means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID is a network connection refnum that uniquely identifies the TCP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

remote address is the address of the remote machine associated with the TCP connection. This
address is in IP dot notation format. See the Internet Protocol (IP) topic for a description of IP dot
notation.

remote port is the port the remote system uses for the TCP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Open Connection
Attempts to open a TCP connection with the specified address and port.

addreszs

remote port
tirneout s (BO0000)
error in fno error)
local part

connection I

errar out

address is the address with which you want to establish a TCP connection. This address can be
in IP dot notation or it can be a hostname. See the Internet Addresses topic for a description of valid

si ecifications for address.

remote port is the port of the specified address with which you want to establish a TCP
connection.

timeout is in milliseconds. If the connection is not established in the specified time, the VI
completes and returns an error. The default value for timeout is 60,000 ms (1 minute). A timeout value of
-1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

local port is the port where you specify the local TCP connection port. Some servers only allow
connections to clients that use port numbers within a specified range that is dependent on the server. If
the value is 0, TCP chooses an unused port.

connection ID is a network connection refnum that uniquely identifies the TCP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Read

Receives up to bytes to read bytes from the specified TCP connection, returning the results in data out.

caonnection |0 TCF] dcu:u{'unecttinn ICr ot
by tes to read — ‘t-_ trdata ou
:]
T —
tireout ms (250000 J———

ertar in (no ertor)
connection ID is a refnum identifying the TCP connection.
bytes to read is the number of bytes to read from the specified connection.

timeout is in milliseconds. If the operation does not complete in the specified time, the VI
completes and returns an error. The default value
is 25,000. A timeout value of -1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID.
data out is a string that contains the data read from the TCP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

TCP Wait on Listener

Waits for an accepted TCP connection at the specified port.

listener ID in rELT_GE listener |0 out
157 B it
timeout rs Cwait forever ;-1 ——— W :9? — remntte- add:‘?SS
errar in (no error) o remote por
n=E===='E~rr|:|r' out

cannection 10
listener ID in is a network connection refnum identifying the Listener.

timeout is in milliseconds. If the connection is not established in the specified time, the VI
completes and returns an error. The default value
is 25,000. A timeout value of -1 means wait indefinitely.

error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

listener ID out has the same value as listener ID in.

remote address is the address of the remote machine associated with the TCP connection. This
address is in IP dot notation format. See the Internet Addresses topic for a description of IP dot notation.

remote port is the port the remote system uses for the TCP connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

connection ID is a network connection refnum that uniquely identifies the TCP connection. You
use this connection ID value to refer to this connection in subsequent VI calls.

TCP Write

Writes the string data in to the specified TCP connection.

cu:-nnecdtiutn I TGF] cannection 10 out
ata in e — by tes wiitten
tireout ms (25000) —] J——

errar in (no error)

connection ID is a refnum identifying the TCP connection.
data in is a string that contains the data to write to the TCP connection.

timeout is in milliseconds. If the operation does not complete in the specified time, the VI
completes and returns an error. The default value is 25,000. A timeout value of -1 means wait indefinitely.
error in describes error conditions that occur prior to the execution of this VI. The default input of
this cluster is no error. See the Error In and Error Out Clusters topic for a further description of the
error in and error out clusters.

connection ID out has the same value as connection ID.
bytes written is the number of bytes the VI writes to the specified connection.

error out contains error information. If error in indicates an error, then error out contains the
same error information. Otherwise it describes the error status that this VI produces. See the Error In and
Error Out Clusters topic for a further description of the error in and error out clusters.

LabVIEW and TCP/IP

You can use the TCP/IP suite of protocols with LabVIEW on all platforms. LabVIEW has a set of TCP and
UDP Vls that you can use to create client or server Vls.

Before you can use TCP/IP, you need to make sure that you have the right setup. This setup varies,
depending on the computer you use.

Windows 3.x
Windows 95/NT
Macintosh
UNIX

Windows 3.x

To use TCP/IP, you must install an ethernet board along with its low-level driver. In addition, you must
purchase and install TCP/IP software that includes a Windows Sockets (WinSock) DLL conforming to
standard 1.1. WinSock is a standard interface that enables application communication with a variety of
network drivers. Several vendors provide network software that includes the WinSock DLL. Install the
ethernet board, the board drivers, and the WinSock DLL according to the software vendor instructions.

Several vendors supply WinSock drivers that work with a number of boards. You can contact the vendor
of your board to inquire if they offer a WinSock DLL you can use with the board. Install the WinSock DLL
according to vendor instructions.

National Instruments has tested a number of WinSock DLLs to verify which work correctly. These tests
showed that many DLLs do not fully comply with the standard, so you may want to try a demo version of
a DLL before you buy the real version. You can usually obtain a demo version from the manufacturer.
Most demo versions are fully functional, but they expire after a certain amount of time.

If you have access to the internet, several of these demos are available by anonymous ftp from
sunsite.unc.edu. inthe directory/pub/micro/pc-stuff/ms-windows/ winsock/packages.
Refer to your LabVIEW Release Notes for a detailed list of WinSock DLLs tested by National Instruments.

Windows 95/NT

TCP support is built into Windows NT. You do not need to use a third-party DLL to communicate using
TCP.

Macintosh

TCP/IP is built in to Macintosh operating system version 7.5. To use TCP/IP with an earlier system, you
need to install the MacTCP driver software, available from the Apple Programmer Developer Association
(APDA). You can contact APDA at (800) 282-2732 for information on licensing the MacTCP driver.

UNIX

TCP/IP support is built-in. Assuming your network is configured properly, no additional setup for LabVIEW
is necessary.

TCP Close Connection VI

TCP Close Connection

TCP Create Listener VI
TCP Create Listener

TCP Listen VI
TCP Listen

TCP Open Connection VI

TCP Open Connection

TCP Read VI
TCP Read

TCP Wait on Listener VI
TCP Wait On Listener

TCP Write VI
TCP Write

IP To String VI
IP To String

String To IP VI
String To IP

This section answers common questions about LabVIEW and networking communications. Questions are
divided into sections according to the relevant platform: Questions for All Platforms, Windows Only, and
Macintosh Only. Please contact National Instruments if you have further questions or suggestions
regarding LabVIEW.

Questions for All Users
Questions for Windows Users
Questions for Macintosh Users

How do | use LabVIEW to communicate with other applications?

Communicating with other applications, often called interprocess or interapplication communication, can
be done with the standard networking protocols on each platform. LabVIEW has support for TCP
(Transmission Control Protocol) and UDP (User Datagram Protocol) on all platforms.

Windows
In addition, LabVIEW for Windows supports DDE (Dynamic Data Exchange).

Macintosh

In addition, LabVIEW for Macintosh supports IAC (Interapplication Communication). IAC includes Apple
Events and PPC (Program to Program Communication).

UNIX
LabVIEW for UNIX only supports TCP and UDP.

In addition, for many instrumentation applications, file /O provides a simple, adequate method of sending
information between applications.

How do | launch another application with LabVIEW?

On Windows and UNIX, use the System Exec VI (Functions»Communication). On Macintosh, use
AESend Finder Open (Functions »Communication»AppleEvent).

When would | want to use UDP instead of TCP?

Typically, UDP is used in applications where reliability is not critical. For example, an application might
transmit informative data to a destination frequently enough that a few lost segments of data are not
problematic. Also, UDP can be used to broadcast to any machine(s) wanting to listen to the server.

What port numbers can | use with TCP and UDP?

A port is represented by a number between 0 and 65535. With UNIX, port numbers less
than 1024 are reserved for privileged applications (e.g. ftp). When you specify a local port, you can use
the value of 0 which would cause TCP and UDP to choose an unused port.

Why cant | broadcast using UDP?

Because the broadcast address varies among domains, you need to find out from your system
administrator what broadcast address to use. For example, the broadcast address OXFFFFFFFF is not
correct for your domain. Additionally, your machine may default to not allow broadcasting unless the
process is run by the root user.

What winsock.d1ll can | use with LabVIEW?

This question pertains to Windows 3.x only, as Windows 95 and Windows NT include this file in their
operating systems.

Any WinSock driver that conforms to standard 1.1 should work with LabVIEW. You can find Information
regarding National InstrumentsO in-house testing of the winsock.d11 in your online Release Notes.

Recommended:

e TCPOpen version 1.2.2 from Lanera Corporation
(408) 956-8344.

e Trumpet (version 1.0 tested). Available via anonymous ftp to ftp.utas.edu.au in the directory
/pc/trumpet/winsock/*. For information send electronic mail to trumpet-
info@petros.psychol.utas.eduau.

e Super-TCP version 3.0 R1 from Frontier Technologies Corporation (414) 241-4555.

e NEWT/Chameleon version 3.11 from NetManage, Inc.
(408) 973-7171.

e Windows for Workgroups winsock.dl1 from Microsoft.

Not Recommended:

National InstrumentsO limited testing of these products yielded various problems and crashes while
attempting TCP/IP communication. At this time, National Instruments can neither recommend these
products nor support customers attempting TCP/IP communication with these winsock.d11s.

e Distinct TCP/IP version 3.1 from Distinct Corporation
(408) 741-0781.

e PCTCP version 2.x from FTP Software, Inc. (508) 685-4000.

How do | call an Excel macro using DDE?

Use the DDE Execute VI. This VI tells the DDE server to execute a command string in which you specify
the action for Excel to perform and the name of the macro. Make sure to include the correct parentheses
and brackets around the command. Refer to the Excel UserOs Guide for more information. Some
common examples are shown below:

Command String Action
[RUN("MACRO1")] Runs MACRO1
[RUN("MACRO1!IR1C1")] Runs MACRO1 starting at

Row 1, Column 1

[OPEN("C:\EXCEL\SURVEY.XLS")] Opens SURVEY.XLS

Why doesn't DDE Poke work with Microsoft Access?

Microsoft Access cannot accept data directly from DDE clients. To get data into an Access database you
must create a macro in that database to import the data from a file. In the simple case these macros need
only be two actions long. First do a SetWarnings to suppress Access dialogs, then do a
TransferSpreadsheet or TransferText to get the data. After this macro is defined, you can call the macro
by sending an execute to that database with the macro name as the data. Refer to the example VI
Sending Data to Access.vi located in examples\network\access.11b to see how this is done.

What commands do | use to communicate with a non-LabVIEW
application using DDE?

The DDE commands are specific to the application with which you are interfacing. Consult the LabVIEW
User Manual or online reference for the specific application to see which commands are available.

How do | install LabVIEW as a shared application on a file server?

Provided the user has a license for each client, the process is as follows:

¢ Install the LabVIEW Full Development System on the server. (Unless there is NI hardware on the
server, it is not necessary to install NI-DAQ or GPIB.DLL).

¢ Each local machine should use its own labview.ini file for LabVIEW preferences. If a
labview. ini file does not already exist on the local machine, you can create this (empty) text
document using a text editor, such as Microsoft Notepad. The first line of 1abview.ini mustbe
[labview]. To have a local setting for 1abview.ini, LabVIEW requires a command line argument
containing the path to the preferences. For example, if the 1abview.exe file is on drive W:
\LABVIEW and the labview.ini file is on C:\LVWORK (the hard drive on the local machine), modify
the command line option of the LabVIEW icon in Program Manager to be:

W:\LABVIEW\LABVIEW.EXE-pref

Note: pref must be lower case. Additionally, each local machine must have its own LabVIEW
temporary directory. This is done in LabVIEW by choosing EditEPreferences....

¢ You do not need GPIB.DLL on the server machine, unless you are using a GPIB board on this
machine. You then need the gpibdrv file in the LabVIEW directory. Then, on each machine that has
a GPIB board, you need to install the driver for that board. You can do this by either using the drivers
that came with the board, or by doing a custom LabVIEW installation, in which only the desired GPIB
driver is installed on the local machine.

e The same procedure for GPIB.DLL applies to NI-DAQ.

Why does the Synch DDE Client / Server hang on NT after many
transfers?

There are some problems with DDE in LabVIEW for NT that result in VIs hanging during DDE Poke and
DDE Request operations. This limitation is specific to Windows NT.

Are there plans for LabVIEW to support OLE?

OLE (Object Linking and Embedding) is a way of embedding objects from one application into another
application. For example, a spreadsheet might be included on a word processing document. When the
text document is loaded, the current values that are found in the spreadsheet are automatically included
into the document. National Instruments is currently investigating support for OLE for a future version of
LabVIEW; however, no dates have been set on when a version including OLE support will be available.

OLE Automation is a technique by which Automation servers can expose methods and properties to other
applications and Automation controllers can access the methods and properties of other applications.
LabVIEW 4.x is an OLE Automation controller. There is a library of VIs, which you can use to execute
properties and methods exposed by Automation servers.

What is a target ID?

Target ID is used in the Apple Events and PPC VIs on the Macintosh; it serves as a reference to the
application that you are trying to launch, run, or abort. The target ID to an application can be accessed by
one of the following commands:

Get Target ID - takes the name and location of the application as input, searches the network for it, and
returns the target ID;

PPC Browser - pops up a dialog box that you can use to select an application, which may be across the
network or on your computer.

The target ID you generated at the beginning of your VI should be used as an input to all subsequent
Apple Event functions to open, print, close, or run the application.

Why can't | see my application in the dialog box generated by PPC
Browser?

If the application you want to connect cannot be used with Apple Events, it does not show up in the PPC

Browser dialog box. If you are certain that the desired application supports Apple Events, make sure that
you have turned on File Sharing on your Macintosh. Select Control » Sharing Setup to turn File Sharing
on.

How can | close the Finder using Apple Events?
Use the VI AESend Quit Application to quit the Finder or any other application.

PPC Error Codes

AppleEvent Error Codes
LabVIEW Specific PPC Error Codes
TCP and UDP Error Codes

LabVIEW Specific Error Codes for AppleEvent Messages
DDE Error Codes

-900

-902

-903

-904

-905

-906

-907

-908

-909

-910

-911

-912

-913

-914

-915

-916

-917

-919

-922

-923

-924

-925

notInitErr

nameTypeErr

noPortErr

noGlobalsErr

localOnlyErr
destPortErr
sessTableErr
noSessionErr
badReqErr

portNameExistsErr

noUserNameErr
userRejectErr

noMachineNameErr

noToolboxNameErr
noResponseErr
portClosedErr
sessClosedErr
badPortNameErr

noDefaultUserErr

notLoggedInErr
noUserRefErr

networkErr

PPC Toolbox has not been initialized.

Invalid or inappropriate locationKindSelector in
locationName.

Invalid port name. Unable to open port or bad
portRefNum.

The system is unable to allocate memory. This is a
critical error, and you should restart.

Network activity is currently disabled.

Port does not exist at destination.

PPC Toolbox is unable to create a session.
Invalid session reference number.

Bad parameter or invalid state for this operation.

Another port is already open with this name (perhaps in
another application).

User name unknown on destination machine.
Destination rejected the session request.

User has not named his Macintosh in the Network
Setup Control Panel.

A system resource is missing.

Unable to contact destination application.
The port was closed.

The session has closed.

PPCPortRec is invalid.

User has not specified owner name in Sharing Setup
Control Panel.

The default userRefNum does not yet exist.
Unable to create a new userRefNum.

An error has occurred in the network.

-926

-927

-928

-930

-931

-932

-1700

-1701

-1702

-1703

-1704

-1705

-1706

-1707

-1708

-1709

-1710

-1711

-1712

-1713

-1714

-1715

nolnformErr

PPCStart failed because destination did not have an

inform pending.

authFailErr
noUserRecErr

badServiceMethodE
r

badLocNameErr

guestNotAllowedErr

errAECoercionFail

errAEDescNotFound
errAECorruptData
errAEWrongDataType
errAENotAEDesc
errAEBadListltem
errAENewerVersion
errAENotAppleEvent

errAEReplyNotValid

errAEERReplyNotValid

errAEUnknownSendMode

errAEWaitcanceled

errAETimeout
errAENoUserlInteraction
errAENotASpecialFunction

errAEParamMissed

UserOs password is wrong.
Invalid user reference number.

Service method is other than ppcServiceRealTime.

Location name is invalid.

Destination port requires authentication.

Data could not be coerced to the requested
descriptor type.

Descriptor record was not found.

Data in an Apple event could not be read.
Wrong descriptor type.

Not a valid descriptor record.

Operation involving a list item failed.

Need a newer version of Apple Event Manager.
The event is not an Apple event.

AEResetTimer was passed an invalid reply
parameter.

AEResetTimer was passed an invalid reply
parameter.

Invalid sending mode was passed.

User canceled out of wait loop for reply or
receipt.

Apple event timed out.
No user interaction allowed.
Wrong keyword for a special function.

Handler did not get all required parameters.

-1716

-1717

-1718

-1719

errAEUnknownAddressType Unknown Apple event address type.

errAEHandlerNotFound No handler in the dispatch tables fits the
parameters to AEGetEventHandler or
AEGetCoercionHandler.

errAEReplyNotArrived The contents of the reply you are accessing

errAElllegallndex

errNoPPCToolBox

errNoGlobals
errTimedOut

errAuthRequired

errbadState

have not arrived yet.

Index is out of range in a put operation.

The PPC ToolBox either does not exist (it requires
System 7.0 or later) or it could not be initialized.

The CIN in the PPC VI could not get its globals.

The PPC operation exceeded its timeout limit.

The target specified in the PPC Start Session VI required
authentication, but the authentication dialog was not

allowed.

The PPC Start Session VI found itself in an unexpected
state.

53

54

55

56

57

58

59

60

61

62

63

65

66

1000

1001

1002

1003

mgNotSupported

ncBadAddressErr

ncinProgressErr

ncTimeOutErr

ncBusyErr

ncNotSupportedErr

ncNetErr

ncAddrinUseErr

ncSysOutOfMemErr

ncSysConnAbortedErr

ncConnRefusedErr

ncAlreadyConnectedErr

ncConnClosedErr

kLVE_InvalidState

LabVIEW: Manager call not
supported

The net address was il
formed

Operation is in progress.

Operation exceeded the
user-specified time limit.

The connection was busy.
Function not supported.
The network is down,
unreachable, or has been

reset.

The specified address is
currently in use.

System could not allocate
necessary memory.

System caused connection
to be aborted.

Connection is not
established.

Connection is already
established.

Connection was closed by
peer.

The Vl is in a state that does not allow it

to run.

kLVE_FPNotOpen

kLVE_CtrlErr

The VI front panel is not open.

The VI has controls on its front panel that

are in an error state.

kLVE_VIBad

The VI is broken.

1004 KLVE_NotInMem The VI is not in memory.

00000

14001

14002

14003

14004

14005

14006

14007

14008

14009

14010

14011

14012

14013

14014

14015

14016

14017

DDE_INVALID_REFNUM
DDE_INVALID_STRING

DDEML_ADVACKTIMEOUT

DDEML_BUSY

DDEML_DATAACKTIMEOUT

DDEML_DDL_NOT_INITIALIZED

DDEML_DLL_USAGE

DDEML_EXECACKTIMEOUT

DDEML_INVALIDPARAMETER

DDEML_LOW_MEMORY

DDEML_MEMORY_ERROR
DDEML_NOTPROCESSED
DDEML_NO_CONV_ESTABLISHED
DDEML_POKEACTIMEOUT

DDEML_POSTMSG_FAILED

DDEML_REENTRANCY

DDEML_SERVER_DIED

No error.
Invalid refnum.
Invalid string.

Request for a synchronous advise
transaction has timed out.

Response set the DDE_FBUSY bit.

Request for a synchronous data
transaction has timed out.

DDEML called without first calling
DdeInitialize, or was passed an
invalid instance identifier.

A monitor or client-only application has
attempted a DDE transaction.

Request for a synchronous execute
transaction has timed out.

Parameter not validated by the DDML.

Server application has outrun client,
consuming large amounts of memory.

A memory allocation failed.

Request or poke is for an invalid item
Client conversation attempt failed.
Transaction failed.

Request for a synchronous poke
transaction has timed out.

An application with a synchronous
transaction in progress attempted to
initiate another transaction, or a DDEML
callback function called
DdeEnableCallback.

Server-side transaction attempted on
conversation terminated by client, or
service terminated before completing a
transaction.

14018 DDEML_SYS_ERROR Internal error in the DDMEML.
14019 DDEML_UNADVACKTIMEOUT Request to end advise has timed out.

14020 DDEML_UNFOUND_QUEUE_ID Invalid transaction identifier passed to
DDEML function.

