
File Manager Functions

This topic contains descriptions of the file manager functions that perform the following operations:

Current Position Mark, Positioning 
Default Access Rights Information, Getting 
Directory Contents, Creating and Determining 
End-Of-File Mark, Positioning 
File Data to Disk, Flushing 
File, Directory, and Volume Information Determination
File Operations, Performing Basic 
File Range, Locking 
File Refnums, Manipulating 
Filenames and Patterns, Matching 
Files and Directories, Moving and Deleting 
Files, Copying 
Paths, Comparing 
Paths, Converting to and from Other Representations 
Paths, Creating 
Paths, Disposing 
Paths, Duplicating 
Path, Extracting Information 
Path Type, Determining 



Current Position Mark, Positioning

FMSeek
FMTell

Click here to view a list of all File Manager Functions.

FMSeek

syntax MgErr FMSeek(fd, ofst, mode);

FMSeek sets the current position mark for a file to the specified point, relative to the beginning of the file, 
the current position in the file, or the end of the file. If an error occurs, the current position mark does not 
move.

Parameter Type Description
fd File File descriptor associated with the file.
ofst int32 New position of the current position mark. The position is 

the number of bytes from the beginning of the file, the 
current position mark, or the end of the file, as 
determined by mode.

mode int32 Position in the file relative to which FMSeek sets the 
current position mark for a file.
If mode is fStart, the current position mark moves to 
ofst bytes relative to the start of the file (ofst must be 
greater than or equal to 0).
If mode is fCurrent, the current position mark moves 
ofst bytes from the current position mark (ofst can be 
positive, 0, or negative).
If mode is fEnd, the current position mark moves to ofst 
bytes from the end of the file (ofst must be less than or 
equal to 0).

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.
fEOF Attempt to seek before the start or after the end of the file.
fIOErr Unspecified I/O error occurred.

FMTell

syntax MgErr FMTell(fd, ofstp);

FMTell returns the position of the current position mark in the file.

Parameter Type Description
fd File File descriptor associated with the file.
ofstp int32 * Address at which FMTell stores the position of the 

current position mark, in terms of bytes relative to the 



beginning of the file. If an error occurs, the contents of 
ofstp is undefined.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.
fIOErr Unspecified I/O error occurred.



Default Access Rights Information, Getting 

FGetDefGroup

Click here to view a list of all File Manager Functions.

FGetDefGroup

syntax LStrHandle FGetDefGroup(groupHandle);

FGetDefGroup gets the LabVIEW default group for a file or directory.

Parameter Type Description
groupHandle LStrHandle Handle that represents the LabVIEW default group for a 

file or directory.
If groupHandle is NULL, FGetDefGroup allocates a 
new handle and returns the default group in it. If 
groupHandle is a handle, FGetDefGroup returns it, 
and groupHandle resizes to hold the default group.

returns The resulting LStrHandle; if groupHandle was not NULL, then the return value is the 
same LStrHandle as groupHandle. If an error occurs, NULL is returned.



Directory Contents, Creating and Determining

FListDir
FNewDir

Click here to view a list of all File Manager Functions.

FListDir

syntax MgErr FListDir(path, list, typeH);

FListDir determines the contents of a directory.

The function fills the (AZ) handle passed in list with a CPStr, where the cnt field specifies the number of 
concatenated Pascal strings that follow in the str[] field. See the Dynamic Data Types section of Chapter 
5, Manager Overview, in the Code Interface Reference Manual for a description of the CPStr data type. If 
typeH is not NULL, the function fills the AZ handle passed in typeH with the file type information for each 
file name or directory name stored in list.

Parameter Type Description
path Path Path of the directory whose contents you want to 

determine.
list CPStrHandle Application zone handle in which FListDir stores a 

series of concatenated Pascal strings, preceded with a 
4-byte integer field, cnt, that indicates the number of 
items in the buffer.

typeH FileType Application zone handle in which FListDir stores a 
series of FileType records. If typeH is not NULL, then 
FListDir stores one FileType record in typeH for 
each Pascal string in list. The nth FileType in typeH 
denotes the file type information about the file or 
directory named in the nth string in list.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound Directory not found.
fNoPerm Access denied (file/directory/disk is locked/protected).
mFullErr Insufficient memory.
fIOErr Unspecified I/O error occurred.

FNewDir

syntax MgErr FNewDir(path, permissions);

FNewDir creates a new directory with the specified permissions. If an error occurs, the function does 
not create the directory.

Parameter Type Description
path Path Path of the directory you want to create.



permissions int32 Permissions for the new directory. For a description of 
permissions, see the topic file permissions.

returns MgErr, which can contain the errors in the following list.

Error escription
mgArgErr A bad argument was passed to the function. Verify path.
fNoPerm Access denied (file/directory/disk is locked /protected).
fDupPath Directory already exists.
fIOErr Unspecified I/O error occurred.



End-Of-File Mark, Positioning

FGetEOF
FSetEOF

Click here to view a list of all File Manager Functions.

FGetEOF

syntax MgErr FGetEOF(fd, sizep);

FGetEOF returns the size of the specified file.

Parameter Type Description
fd File File descriptor associated with the file.
sizep int32 * Address at which FGetEOF stores the size of the file in 

bytes. If an error occurs, the contents of *sizep is 
undefined.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.
fIOErr Unspecified I/O error occurred.

FSetEOF

syntax MgErr FSetEOF(fd, size);

FSetEOF sets the size of the specified file. If an error occurs, the file size does not change.

Parameter Type Description
fd File File descriptor associated with the file.
size int32 New file size in bytes.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor or size < 0.
fDiskFull Disk is full.
fNoPerm Access denied (file exists or something is locked/protected).
fIOErr Unspecified I/O error occurred.



File Data to Disk, Flushing

FFlush

Click here to view a list of all File Manager Functions.

FFlush
Flushing File Data to Disk

syntax MgErr FFlush(fd);

FFlush writes any buffered data for the specified file out to the disk.

Parameter Type Description
fd File File descriptor associated with the file.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.
fIOErr Unspecified I/O error occurred.



File, Directory, and Volume Information Determination

FExists
FGetAccessRights
FGetInfo
FGetVolInfo
FSetAccessRights
FSetInfo

Click here to view a list of all File Manager Functions.

FExists

syntax int32 FExists(path);

FExists returns information about the specified file or directory. It returns less information than 
FGetInfo, but it is much quicker on many platforms.

Parameter Type Description
path Path Path of the file or directory about which you want 

information.

returns int32, which is one of the following values.

Error Description
kFIsFile Specified item is a file.
kFIsFolder Specified item is a directory or folder.
kFNotExist Specified item does not exist.

FGetAccessRights

syntax MgErr FGetAccessRights(path, owner, group, 
permPtr);

FGetAccessRights returns access rights information about the specified file or directory.

Parameter Type Description
path Path Path of the file or directory about which you want access 

rights information.
owner PStr Address at which FGetAccessRights stores the owner 

of the file or directory.
group PStr Address at which FGetAccessRights stores the group 

of the file or directory.
permPtr int32 * Address at which FGetAccessRights stores the 

permissions of the file or directory. For a description of 
permissions, see the topic file permissions.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.



Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound File not found.
fIOErr Unspecified I/O error occurred.

FGetInfo

syntax MgErr FGetInfo(path, infop);

FGetInfo returns information about the specified file or directory.

Parameter Type Description
path Path Path of the file or directory about which you want 

information.
infop FInfoPtr Address where FGetInfo stores information about the 

file or directory. If an error occurs, the information is 
undefined.
See also the Pointers as Parameters section of Chapter 
1, CIN Overview in the Code Interface Referenc Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound File not found.
fIOErr Unspecified I/O error occurred.

FGetVolInfo

syntax MgErr FGetVolInfo(path, vinfo);

FGetVolInfo gets a path specification and information for the volume containing the specified file or 
directory.

Parameter Type Description
path Path Path of a file or directory contained on the volume from 

which you want to get information. This path is 
overwritten with a path specifying the volume containing 
the specified file or directory. If an error occurs, this path 
is undefined.

vinfo VInfoRec * Address at which FGetVolInfo stores the information 
about the volume. If an error occurs, the information is 
undefined.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fIOErr Unspecified I/O error occurred.



FSetAccessRights

syntax MgErr FSetAccessRights(path, owner, group, permPtr);

FSetAccessRights sets access rights information for the specified file or directory. If an error occurs, 
no information changes.

Parameter Type Description
path Path Path of the file or directory for which you want to set 

access rights information.
owner PStr New owner that FSetAccessRights sets for the file or 

directory if owner is not NULL.
group PStr New group that FSetAccessRights sets for the file or 

directory if group is not NULL.
permPtr int32 * Address of new permissions that FSetAccessRights 

sets for the file or directory if permPtr is not NULL.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound File not found.
fIOErr Unspecified I/O error occurred.

FSetInfo

syntax MgErr FSetInfo(path, infop);

FSetInfo sets information for the specified file or directory. If an error occurs, no information changes.

Parameter Type Description
path Path Path of the file or directory for which you want to set 

information.
infop FInfoPtr Address of information FSetInfo sets for the file or 

directory.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound File not found.
fIOErr Unspecified I/O error occurred.



File Operations, Performing Basic

FCreate
FCreateAlways
FMClose
FMOpen
FMRead 
FMWrite

Click here to view a list of all File Manager Functions.

FCreate

syntax MgErr FCreate(fdp, path, permissions, openMode, 
denyMode, group);

FCreate creates a file with the name and location specified by path and with the specified permissions, 
and opens it for writing and reading, as specified by openMode. If the file already exists, an error is 
returned.

You can use denyMode to control concurrent access to the file from within LabVIEW. The group 
parameter allows you to assign the file to a UNIX group; under Windows or Macintosh, group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address referred to by fdp. If an 
error occurs, the function stores 0 in the address referred to by fdp and returns an error.

Note: Before attempting to call this function, make sure that you understand how to use the fdp 
parameter. See the Pointers as Parameters section of Chapter 1, CIN Overview in the Code 
Interface Reference Manual for more information about this parameter.

Parameter Type Description
fdp File * Address at which FCreate stores the file descriptor for 

the new file. If FCreate fails, it stores 0 in the address 
fdp. See the Pointers as Parameters section of Chapter 
1, CIN Overview in the Code Interface Reference 
Manual for more information about using this parameter.

path Path Path of the file that you want to create.
permissions int32 Permissions to assign to the new file. For a description 

of permissions, see the topic file permissions.
openMode int32 Access mode to use in opening the file. Can have the 

following values, which are defined in the file 
extcode.h.

· openReadOnly: Open for reading.

· openWriteOnly: Open for writing

· openReadWrite: Open for both reading and writing
denyMode int32 Mode that determines what level of concurrent access to 

the file is allowed. Can have the following values, which 
are defined in the file extcode.h.

· denyReadWrite: Prevents others from reading 
from and writing to the file while it is open.



· denyWriteOnly: Prevents others from writing to 
the file only while it is open

· denyNeither: allows others to read from and write 
to the file while it is open.

group PStr UNIX group you want to assign to the new file.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fIsOpen File is already open for writing. This error is returned only on the 

Macintosh and the Sun. The PC returns fIOErr when the file is already 
open for writing.

fNoPerm Access denied (something is locked/protected).
fDupPath A file of that name already exists.
fTMFOpen Too many files open.
fIOErr Unspecified I/O error occurred.

FCreateAlways

syntax MgErr FCreateAlways(fdp, path, permissions, openMode, 
denyMode, group);

FCreateAlways creates a file with the name and location specified by path and with the specified 
permissions, and opens the file for writing and reading, as specified by openMode. If the file already 
exists, this function opens and truncates the file.

You can use denyMode to control concurrent access to the file from within LabVIEW. The group 
parameter allows you to assign the file to a UNIX group; under Windows or Macintosh, group is ignored.

If the function creates the file, the resulting file descriptor is stored in the address referred to by fdp. If an 
error occurs, the function stores 0 in the address referred to by fdp and returns an error.

Note: Before attempting to call this function, make sure that you understand how to use the fdp 
parameter. See the Pointers as Parameters section of Chapter 1, CIN Overview in the Code 
Interface Reference Manual for more information about this parameter.

Parameter Type Description
fdp File * Address at which FCreateAlways stores the file 

descriptor for the new file. If FCreateAlways fails, it 
stores 0 in the address fdp.See the Pointers as 
Parameters section of Chapter 1, CIN Overview in the 
Code Interface Reference Manual for more information 
about using this parameter.

path Path Path of the file that you want to create.
permissions int32 Permissions to assign to the new file For a description of 

permissions, see the topic file permissions.
openMode int32 See FMOpen for a description of openMode.
denyMode int32 See FMOpen for a description of denyMode.
group PStr UNIX group you want to assign to the new file.

returns MgErr, which can contain the errors in the following list.



Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fIsOpen File is already open for writing. This error is returned only on the 

Macintosh and the Sun. The PC returns fIOErr when the file is already 
open for writing.

fNoPerm Access denied (something is locked/protected).
fDupPath A file of that name exists.
fTMFOpen Too many files open.
fIOErr Unspecified I/O error occurred.

FMClose

syntax MgErr FMClose(fd);

FMClose closes the file associated with the file descriptor fd.

Parameter Type Description
fd File File descriptor associated with the file you want to close.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor.
fIOErr Unspecified I/O error occurred.

FMOpen

syntax MgErr FMOpen(fdp, path, openMode, denyMode);

Note: Before attempting to call this function, make sure that you understand how to use the fdp 
parameter. See the Pointers as Parameters section of Chapter 1, CIN Overview in the Code 
Interface Reference Manual for more information about this parameter.

FMOpen opens a file with the name and location specified by path for writing and reading, as specified by 
openMode.

With the denyMode parameter, you control concurrent access to the file from within LabVIEW. 

If this function opens the file, the resulting file descriptor is stored in the address referred to by fdp. If an 
error occurs, 0 is stored in the address referred to by fdp and the error is returned.

Parameter Type Description
fdp File * Address at which FMOpen stores the file descriptor for 

the opened file. If the function fails, FMOpen stores 0 in 
the address fdp. 
See the Pointers as Parameters section of Chapter 1, 
CIN Overview in the Code Interface Reference Manual 
for more information about using this parameter.

path Path Path of the file that you want to open.
openMode int32 Access mode to use in opening the file. Can have the 

following values, which are defined in the file 
extcode.h.

· openReadOnly: Open for reading.



· openWriteOnly: Open for writing; file is not 
truncated (data is not removed). On the Macintosh, 
this mode provides true write-only access to files. On 
a PC or a UNIX system, LabVIEW I/O functions are 
built in the C standard I/O library, with which you 
have write-only access to a file only if you are 
truncating the file or making the access append-only. 
Therefore, this mode actually allows both read and 
write access to files on a PC or UNIX system.

· openReadWrite: Open for both reading and 
writing.

· openWriteOnlyTruncate: Open for writing; 
truncates the file.

denyMode int32 Mode that determines what level of concurrent access to 
the file is allowed. Can have the following values, which 
are defined in the file extcode.h.

· denyReadWrite: Prevents others from reading 
from and writing to the file while it is open.

· denyWriteOnly: Prevents others from writing to 
the file only while it is open

· denyNeither: allows others to read from and write 
to the file while it is open.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fIsOpen File is already open for writing. This error is returned only on the 

Macintosh and the Sun. The PC returns fIOErr when the file is already 
open for writing.

fNotFound File not found.
fTMFOpen Too many files open.
fIOErr Unspecified I/O error occurred.

FMRead

syntax MgErr FMRead(fd, inCount, outCountp, buffer);

FMRead reads inCount bytes from the file specified by the file descriptor fd. The function starts from the 
current position mark (see the FMSeek and FMTell functions), and reads the data into memory, starting 
at the address specified by buffer.

The function stores the actual number of bytes read in *outCountp. The number of bytes can be less 
than inCount if the function encounters end-of-file before reading inCount bytes. The number of bytes 
will be zero if any other error occurs.

Parameter Type Description
fd File File descriptor associated with the file from which you 

want to read.
inCount int32 Number of bytes you want to read.
outCountp int32 * Address at which FMRead stores the number of bytes 

read. FMRead will not store any value if NULL is passed. 



See the Pointers as Parameters section of Chapter 1, 
CIN Overview in the Code Interface Reference Manual 
for more information about using this parameter.

buffer UPtr Address where FMRead will store the data.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor or inCount < 0.
fEOF EOF encountered.
fIOErr Unspecified I/O error occurred.

FMWrite

syntax MgErr FMWrite(fd, inCount, outCountp, buffer);

FMWrite writes inCount bytes from memory, starting at the address specified by buffer, to the file 
specified by the file descriptor fd, starting from the current position mark (see the FMSeek and FMTell 
functions).

The function stores the actual number of bytes written in *outCountp. The number of bytes stored can be 
less than inCount if an fDiskFull error occurs before the function writes inCount bytes. The number of 
bytes stored will be zero if any other error occurs.

Parameter Type Description
fd File File descriptor associated with the file to which you want 

to write.
inCount int32 Number of bytes you want to write.
outCountp int32 * Address at which FMWrite stores the number of bytes 

actually written. FMWrite will not store any value if NULL 
is passed.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview in the Code Interface Reference Manual 
for more information about using this parameter.

buffer UPtr Address of the data you want to write.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Not a valid file descriptor or inCount < 0.
fDiskFull Out of space.
fNoPerm Access denied.
fIOErr Unspecified write error occurred.



File Range, Locking

FLockOrUnlockRange

Click here to view a list of all File Manager Functions.

FLockOrUnlockRange

syntax MgErr FLockOrUnlockRange(fd, mode, offset, count, 
lock);

FLockOrUnlockRange locks or unlocks a section of a file.

Parameter Type Description
fd File File descriptor associated with the file. 
mode int32 Position in the file relative to which 

FLockOrUnlockRange determines the first byte to lock 
or unlock.
If mode is fStart, the first byte to lock or unlock is 
located offset bytes from the start of the file (offset must 
be greater than or equal to 0).
If mode is fCurrent, the first byte to lock or unlock is 
located offset bytes from the current position mark 
(offset can be positive, 0, or negative).
If mode is fEnd, the first byte to lock or unlock is located 
offset bytes from the end of the file (offset must be less 
that or equal to 0).

offset int32 The position of the first byte to lock or unlock. The 
position is the number of bytes from the beginning of the 
file, the current position mark, or the end of the file, as 
determined by mode.

count int32 Number of bytes to lock or unlock starting at the location 
specified by mode and offset.

lock Bool32 A boolean that specifies whether 
FLockOrUnlockRange locks or unlocks a range of 
bytes. If lock is TRUE this functions locks a range; if 
FALSE the function unlocks a range.

returns MgErr, which can contain the errors in the following list.

Error Description
fIOErr Unspecified I/O error occurred.



File Refnums, Manipulating 

FDisposeRefNum
FlsARefNum
FNewRefNum
FRefNumToFD
FRefNumToPath

Click here to view a list of all File Manager Functions.

FDisposeRefNum

syntax MgErr FDisposeRefNum(refNum);

FDisposeRefNum disposes of the specified file refnum.

Parameter Type Description
refNum LVRefNum File refnum of which you want to dispose.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Invalid file refnum.

FIsARefNum

syntax Bool32 FIsARefNum(refNum);

FIsARefNum determines whether refNum is a valid file refnum.

Parameter Type Description
refNum LVRefNum File refnum whose validity you want to determine.

returns A boolean, which can have the following values for this function.

Value Description
TRUE File refnum has been created and not yet disposed.
FALSE Otherwise.

FNewRefNum

syntax MgErr FNewRefNum(path, fd, refNumPtr);

FNewRefNum creates a new file refnum for an open file with the name and location specified by path and 
the file descriptor fd.

If the file refnum is created, the resulting file refnum is stored in the address referred to by refNumPtr. If 
an error occurs, NULL is stored in the address referred to by refNumPtr and the error is returned.

Parameter Type Description
path Path The path of the open file for which you wish to create a 



file refnum.
fd File The file descriptor of the open file for which you wish to 

create a file refnum.
refNumPtr LVRefNum * Address at which FNewRefNum stores the new file 

refnum.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.

FRefNumToFD

syntax MgErr FRefNumToFD(refNum, fdp);

FRefNumToFD gets the file descriptor associated with the specified file refnum.

If no error occurs, the resulting file descriptor is stored in the address referred to by fdp. If an error 
occurs, NULL is stored in the address referred to by fdp and the error is returned.

Parameter Type Description
refNum LVRefNum The file refnum whose associated file descriptor you 

wish to get.
fdp File * Address at which FRefNumToFD stores the file 

descriptor associated with the specified file refnum.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Invalid file refnum.

FRefNumToPath

syntax MgErr FRefNumToPath(refNum, path);

FRefNumToPath gets the path associated with the specified file refnum, and stores the resulting path in 
the existing path, path.

If no error occurs, path is set to the path associated with the specified file refnum. If an error occurs, path 
is set to the canonical invalid path.

Parameter Type Description
refNum LVRefNum The file refnum whose associated path you wish to get.
path Path Path where FRefNumToPath stores the path associated 

with the specified file refnum. This path must already 
have been created.



returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.



Filenames and Patterns, Matching 

FStrFitsPat

Click here to view a list of all File Manager Functions.

FStrFitsPat

syntax Bool32 FStrFitsPat(pat, str, pLen, sLen);

FStrFitsPat determines whether a filename, str, matches a pattern, pat.

Parameter Type Description
pat uChar * Pattern (string) to which filename is to be compared. The 

following characters have special meanings in the 
pattern.

· \ : The following character is literal, not treated as 
having a special meaning. A single backslash at the 
end of pat is the same as two backslashes.

· ? : Match any one character.

· * : Match zero or more characters.
str uChar * Filename (string) to compare to pattern.
pLen int32 Number of characters in pat.
sLen int32 Number of characters in str.

returns FStrFitsPat returns TRUE if the filename fits the pattern; FALSE if otherwise.



Files and Directories, Moving and Deleting

FMove
FRemove

Click here to view a list of all File Manager Functions.

FMove

syntax MgErr FMove(oldPath, newPath);

FMove moves a file or renames it if the new path indicates the file is to remain in the same directory.

Parameter Type Description
oldPath Path Path of the file or directory you want to move.
newPath Path Path, including the name of the file or directory, where 

you want the file or directory to be moved.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound The original file could not be found.
fNoPerm Access denied (file/directory/disk is locked/protected).
fDiskFull Disk is full.
fDupPath The new file already exists.
fIsOpen The original file is open for writing.
fTMFOpen Too many files open.
mFullErr Insufficient memory.
fIOErr Read, write, or unspecified I/O error occurred.

FRemove

syntax MgErr FRemove(path);

FRemove deletes a file or a directory. If an error occurs, this function does not remove the file or directory.

Parameter Type Description
path Path Path of the file or directory you want to delete.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound The file could not be found.
fNoPerm Access denied (file/directory/disk is locked/protected).
fIsOpen File is open or directory is not empty.
fIOErr Unspecified I/O error occurred.



Files, Copying

FCopy

Click here to view a list of all File Manager Functions.

FCopy

syntax MgErr FCopy(oldPath, newPath);

FCopy copies a file, preserving the type, creator, and access rights. The file to be copied must not be 
open. If an error occurs, the new file is not created.

Parameter Type Description
oldPath Path Path of the file you want to copy.
newPath Path Path, including filename, where you want the new file to 

be stored.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
fNotFound The original file could not be found.
fNoPerm Access denied (file/directory/disk is locked/protected).
fDiskFull Disk is full.
fDupPath The new file already exists.
fIsOpen The original file is open for writing.
fTMFOpen Too many files open.
mFullErr Insufficient memory.
fIOErr Read, write, or unspecified I/O error occurred



Paths, Comparing

FlsAPath
FlsAPathOrNotAPath
FlsEmptyPath
FPathCmp

Click here to view a list of all File Manager Functions.

FIsAPath

syntax Bool32 FIsAPath(path);

FIsAPath determines whether path is a valid path.

Parameter Type Description
path Path Path whose validity you want to determine.

returns A boolean, which can have the following values for this function.

Value Description
TRUE Path is well formed and type is absolute or relative.
FALSE Otherwise.

FIsAPathOrNotAPath

syntax Bool32 FIsAPathOrNotAPath(path);

FIsAPathOrNotAPath determines whether path is a valid path or the canonical invalid path.

Parameter Type Description
path Path Path whose validity you want to determine.

returns A boolean, which can have the following values for this function.

Value Description
TRUE Path is well formed, and type is absolute, relative, or not a path.
FALSE Otherwise.

FIsEmptyPath

syntax Bool32 FIsEmptyPath(path);

FIsEmptyPath determines whether path is a valid empty path.

Parameter Type Description
path Path Path whose validity and emptiness you want to 

determine.

returns A boolean, which can have the following values for this function.



Value Description
TRUE Path is well formed and empty, and type is absolute or relative.
FALSE Otherwise.

FPathCmp

syntax int32 FPathCmp(lsp1, lsp2);

FPathCmp compares the two specified paths.

Parameter Type Description
lsp1 Path First path to compare.
lsp2 Path Second path to compare.

returns int32, which can have the following values for this function.

Value Description
-1 Paths are of different types (for example, one is absolute and the other is 

relative).
0 Paths are identical.
n+1 Paths have the same first n components, but are not identical.



Paths, Converting to and from Other Representations

FArrToPath
FFlattenPath
FPathToArr
FPathToAZString
FPathToDSSString
FStringToPath
FTextToPath
FUnFlattenPath

Click here to view a list of all File Manager Functions.

FArrToPath

syntax MgErr FArrToPath(arr, relative, path);

FArrToPath converts a specified one-dimensional LabVIEW array of strings to a path of the type 
specified by relative. Each string in the specified array is converted in order into a component name of 
the resulting path.

If no error occurs, path is set to a path whose component names are the strings in arr. If an error occurs, 
path is set to the canonical invalid path.

Parameter Type Description
arr UHandle The (DS) handle containing the array of strings which 

you wish to convert to a path.
relative Bool32 If relative is TRUE, then the resulting path is relative; 

otherwise, the resulting path is absolute.
path Path Path where FArrToPath stores the resulting path. This 

path must already have been allocated.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.

FFlattenPath

syntax int32 FFlattenPath(p, fp);

FFlattenPath converts a path into a flat form that you can use to write the path as information to a file. 
The function stores the resulting flat path in a pre-allocated buffer and returns the number of bytes.

You can determine the size needed for the flattened path by passing NULL for fp, in which case the 
function returns the necessary size without writing anything into the location pointed to by fp.

Parameter Type Description
p Path Path you want to flatten.
fp UPtr Address in which FFlattenPath stores the resulting 



flattened path. If this value is NULL, FFlattenPath 
does not write anything to this address, but does return 
the size that the flattened path would require.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns int32, indicating the number of bytes required to store the flattened path.

FPathToArr

syntax MgErr FPathToArr(path, relativePtr, arr);

FPathToArr converts a specified path to a one-dimensional LabVIEW array of strings and determines 
whether the specified path is relative. Each component name of the specified path is converted in order 
into a string in the resulting array.

If no error occurs, arr is set to an array of strings containing the component names of path. If an error 
occurs, arr is set to an empty array.

Parameter Type Description
path Path The path which you wish to convert to an array of 

strings.
relativePtr Bool32 * Address at which to store a boolean value telling 

whether the specified path is relative.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

arr UHandle (DS) Handle where FPathToArr stores the resulting 
array of strings. This handle must already have been 
allocated.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Badly formed path or unallocated array.
mFullErr Insufficient memory.

FPathToAZString

syntax MgErr FPathToAZString(p, txt);

FPathToAZString converts a specified path to an LStr and stores the string as an application zone 
handle. The LStr contains the platform-specific syntax for the path. 

Parameter Type Description
p Path Path that you want to convert to a string.
txt LStrHandle * Address at which FPathToAZString stores the 

resulting string. If the value at txt is nonzero, the function 
assumes that it is a valid handle, resizes the handle, fills 
in its value, and stores the handle at the address 
referred to by txt.
See the Pointers as Parameters section of Chapter 1, 



CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.
fIOErr Unspecified I/O error occurred.

FPathToDSString

syntax MgErr FPathToDSString(p, txt);

FPathToDSString converts a specified path to an LStr and stores the string as a data space zone 
handle. The LStr contains the platform-specific syntax for the path. 

Parameter Type Description
p Path Path that you want to convert to a string.
txt LStrHandle * Address at which FPathToDSString stores the resulting 

string. If the value at txt is nonzero, the function 
assumes that it is a valid handle, resizes the handle, fills 
in its value, and stores the handle at the address 
referred to by txt.
See the Pointer as Parameters section of Chapter 1, CIN 
Overview, in the Code Interface Reference Manual for 
more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.
fIOErr Unspecified I/O error occurred.

FStringToPath

syntax MgErr FStringToPath(text, p);

FStringToPath creates a path from an LStr. The LStr contains the platform-specific syntax for a 
path.

Parameter Type Description
text LStrHandle String that contains the path in platform-specific syntax.
p Path * Address at which FStringToPath stores the resulting 

path. If the value at p is non-zero, the function assumes 
that it is a valid path, resizes the path, and fills in its 
value. If the value at p is zero (NULL), the function 
creates a new path, fills in its value, and stores the path 
at the address referred to by p.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.



returns MgErr, which can contain the errors in the following list.

Error Description
mFullErr Insufficient memory.

FTextToPath

syntax MgErr FTextToPath(text, tlen, *p);

FTextToPath creates a path from a string (at the address text) that represents a path in the platform-
specific syntax for a path.

Parameter Type Description
text UPtr String that contains the path in platform-specific syntax.
tlen int32 Number of characters in text.
p Path * Address at which FTextToPath stores the resulting 

path. If the value at p is non-zero, the function assumes 
that it is a valid path, resizes the path, and fills in its 
value. If the value at p is zero (NULL), the function 
creates a new path, fills in its value, and stores the path 
at the address referred to by p.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mFullErr Insufficient memory.

FUnFlattenPath

syntax int32 FUnFlattenPath(fp, pPtr);

FUnFlattenPath converts a flattened path (created using FFlattenPath) into a path.

Parameter Type Description
fp UPtr Pointer to the flattened path you want to convert to a 

path.
pPtr Path * Address at which FUnFlattenPath stores the resulting 

path.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns The number of bytes the function interpreted as a path.



Paths, Creating

FAddPath
FAppendName
FAppPath
FEmptyPath
FMakePath
FNotAPath
FRelPath

Click here to view a list of all File Manager Functions.

FAddPath

syntax MgErr FAddPath(basePath, relPath, newPath);FAddPath 
creates an absolute path by appending a relative path to an 
absolute path

Note: You can pass in the same path variable for the new path that you use for the basePath or 
relPath. Thus, the following three variations for calling this function work.

FAddPath(basePath, relPath, newPath);

/* the new path is returned in a third path variable */

FAddPath(path, relPath, path);

/* the new path writes over the old base pathÊ*/

FAddPath(basepath, path, path);

/* the new path writes over the old relative pathÊ*/

Parameter Type Description
basePath Path Absolute path to which you want to append a relative 

path.
relPath Path Relative path you want to append to the existing base 

path.
newPath Path Path returned by FAddPath.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.

FAppendName

syntax MgErr FAppendName(path, name);

FAppendName appends a file or directory name to an existing path.

Parameter Type Description
path Path Base path to which you want to append a new file or 

directory name. FAppendName returns the resulting 



path in this parameter.
name PStr File or directory name that you want to append to the 

existing path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.

FAppPath

syntax MgErr FAppPath(p);

FAppPath determines the path to the currently executing LabVIEW application.

Parameter Type Description
p Path Path in which FAppPath stores the path to the currently 

executing LabVIEW application. p must already be an 
allocated path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.
fNotFound File not found.
fIOErr Unspecified I/O error occurred.

FEmptyPath

syntax Path FEmptyPath(p);

FEmptyPath makes an empty absolute path. Making a path an empty absolute path is not the same as 
disposing the path.

Parameter Type Description
p Path Path allocated by FEmptyPath. If p is NULL, 

FEmptyPath allocates a new path and returns the 
value. If p is a path, the existing path is set to be an 
empty path, and the new p is returned.

returns The resulting path; if p was not NULL, the return value is the same emptyabsolute path as 
p. If an error occurs, NULL is returned.

FMakePath

syntax Path FMakePath(path, type, [volume, directory, 
directory, ..., name,] NULL);

The brackets indicate that the volume, directory, and name parameters are optional.

FMakePath creates a new path. If path is NULL, the function allocates and returns a new path. 
Otherwise, path is set to the new path, and path is returned. If an error occurs, or the path is not specified 



correctly, NULL is returned. 

When you are finished using a path, you should dispose of it using FDisposePath.

Parameter Type Description
path Path Parameter in which FMakePath returns the newly 

created path if path is not NULL.
type int32 Type of path to create. If type is fAbsPath, the new 

path will be absolute. If type is fRelPath, the new path 
will be relative.

vol PStr Pascal string containing a legal volume name. An empty 
string means go up a level in the path hierarchy. This 
parameter is optional, and is only used for absolute 
paths on Macintosh or Windows platforms.

directory PStr Pascal string containing a legal directory name. An 
empty string means go up a level in the path hierarchy. 
Parameter is optional.

name PStr File or directory name. An empty string means go up a 
level in the path hierarchy. Parameter is optional.

NULL PStr Marker indicating the end of the path.

returns The resulting path; if you specified path, the return value is the same path as path. If an 
error occurs, NULL is returned.

FNotAPath

syntax Path FNotAPath(p);

FNotAPath creates a path that is the canonical invalid path.

Parameter Type Description
p Path Path allocated by FNotAPath. If p is NULL, FNotAPath 

allocates a new canonical invalid path and returns the 
value. If p is a path, the existing path is set to the 
canonical invalid path, and the new p is returned.

returns The resulting path. If p was not NULL, the return value is the same canonical invalid path 
as p. If an error occurs, NULL is returned.

FRelPath

syntax MgErr FRelPath(startPath, endPath, relPath);

FRelPath computes a relative path between two absolute paths.

Note: You can pass in the same path variable for the new path that you use for the startPath or 
relPath. Thus, the following three variations for calling this function work.

FRelPath(startPath, endPath, relPath);

/* the relative path is returned in a third path variable */

FRelPath(startPath, endPath, startPath);



/* the new path writes over the old startPath */

FRelPath(startPath, endPath, endPath);

/* the new path writes over the old endPath */

Parameter Type Description
startPath Path Absolute path from which you want the relative path to 

be computed.
endPath Path Absolute path to which you want the relative path to be 

computed.
relPath Path Path returned by fAddPath.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.
mFullErr Insufficient memory.



Paths, Disposing

FDisposePath

Click here to view a list of all File Manager Functions.

FDisposePath

syntax MgErr FDisposePath(p);

FDisposePath disposes of the specified path.

Parameter Type Description
p Path Path you want to dispose of.

returns MgErr, which can contain the errors in the following list.

Error Description
mZoneErr Invalid path.



Paths, Duplicating

FPathCpy
FPathToPath

Click here to view a list of all File Manager Functions.

FPathCpy

syntax MgErr FPathCpy(dst, src);

FPathCpy duplicates the path specified by src, and stores the resulting path in the existing path, dst.

Parameter Type Description
dst Path Path where FPathCpy places the resulting duplicate 

path. This path must already have been created.
src Path Path that you want to duplicate.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

FPathToPath

syntax MgErr FPathToPath(p);

FPathToPath duplicates the specified path and returns the new path in the same variable.

Parameter Type Description
p Path * Address of path to duplicate. Variable to which 

FPathToPath returns the resulting path.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.



Path, Extracting Information

FDepth
FDirName
FNameFNamePtr
FVolName

Click here to view a list of all File Manager Functions.

FDepth

syntax int32 FDepth(path);

FDepth computes the depth (number of component names) of a specified path.

Parameter Type Description
path Path Path whose depth you want to determine.

returns int32 indicating the depth of the specified path, which can have the following values for 
this function.

Value Description
-1 Badly formed path.
0 Path is the root directory.
1 Path is in the root directory.
2 Path is in a subdirectory of the root directory, one level from the root 

directory.
n-1 Path is n-2 levels from the root directory.
n Path is n-1 levels from the root directory.

FDirName

syntax MgErr FDirName(path, dir);

FDirName creates a path for the parent directory of a specified path.

Note: You can pass in the same path variable for the parent path that you use for path. Thus, the 
following variations for calling this function work.

err = FDirName(path, dir);

/* the parent path is returned in a second path variable */

err = FDirName(path, path);

/* the parent path writes over the existing pathÊ*/

Parameter Type Description
path Path Path whose parent path you want to determine.
dir Path Parameter in which FDirName stores the parent path.

returns MgErr, which can contain the errors in the following list.



Error Description
mgArgErr A bad argument was passed to the function. Verify path.

FName

syntax MgErr FName(path, name);

FName copies the last component name of a specified path into a string handle and resizes the handle as 
necessary.

Parameter Type Description
path Path Path whose last component name you want to 

determine.
name StringHandle Handle in which FName returns the last component 

name as a Pascal string.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Badly formed path or path is root directory.
mFullErr Insufficient memory.

FNamePtr

syntax MgErr FNamePtr(path, name);

FNamePtr copies the last component name of a specified path to the address specified by name. This 
routine does not allocate space for the returned data, so name must specify allocated memory of 
sufficient size to hold the component name.

Parameter Type Description
path Path Path whose last component name you want to 

determine.
name PStr Address at which FNamePtr stores the last component 

name as a Pascal string. This address must specify 
allocated memory of sufficient size to hold the name.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Badly formed path or path is root directory.
mFullErr Insufficient memory.

FVolName

syntax MgErr FVolName(path, vol);

FVolName creates a path for the volume of a specified absolute path by removing all but the first 
component name from path.



Note: You can pass in the same path variable for the volume path that you use for path. Thus, 
the following variations for calling this function work.

err = FVolName(path, vol);

/* the parent path is returned in a second path variable */

err = FVolName(path, path);

/* the parent path writes over the existing pathÊ*/

Parameter Type Description
path Path Path whose volume path you want to determine.
vol Path Parameter in which FVolName stores the volume path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.



Path Type, Determining

FGetPathType
FlsAPathOfType
FSetPathType

Click here to view a list of all File Manager Functions.

FGetPathType

syntax MgErr FGetPathType(path, typePtr)

FGetPathType returns the type (relative, absolute, or not a path) of the specified path.

Parameter Type Description
path Path Path whose type you want to determine.
typePtr int32 * Address at which FGetPathType stores the type. 

*typePtr can have the following values:

· fAbsPath: The path is an absolute path.

· fRelPath: The path is a relative path.

· fNotAPath: The path is the canonical invalid path 
or an error occurred.

See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr A bad argument was passed to the function. Verify path.

FIsAPathOfType

syntax Bool32 FIsAPathOfType(path, ofType);

FIsAPathOfType determines whether the specified path is a valid path of the specified type (relative or 
absolute). 

Parameter Type Description
path Path Path that you want to compare to the specified type.
ofType int32 Type that you want to compare to the path's type. type 

can have the following values:

· fAbsPath: Compare the path's type to absolute.

· fRelPath: Compare the path's type to relative.

returns A boolean, which can have the following values for this function.

Values Description
TRUE Path is well formed and type is identical to ofType.
FALSE Otherwise.



FSetPathType

syntax MgErr FSetPathType(path, type);

FSetPathType changes the type of the specified path (which must be a valid path) to the specified type 
(relative or absolute).

Parameter Type Description
path Path Path whose type you want to change.
type int32 New type that you want the path to have. type can have 

the following values:

· fAbsPath: The path is an absolute path.

· fRelPath: The path is a relative path.

returns MgErr, which can contain the errors in the following list.

Error Description
mgArgErr Badly formed path or invalid type.



File/Directory Information Record

Several routines in the file manager work with a data structure that defines the attributes of a file or 
directory. The following list gives the file/directory information record.

typedef struct {

int32 type; * system specific file type-- 0 for 
directories */

int32 creator; * system specific file creator-- 0 
for folders (on Mac only)*/

int32 permissions; * system specific file access 
rights */

int32 size; /* file size in bytes (data fork on 
Mac) or entries in directory*/

int32 rfSize; /* resource fork size (on Mac only) 
*/

uInt32 cdate; /* creation date: seconds since 
system reference time */

uInt32 mdate; /* last modification date: seconds 
since system ref time */

Bool32 folder; /* indicates whether path refers to 
a folder */

Bool32 isInvisible; /* indicates whether file is 
visible in File Dialog (on Mac 
only)*/

Point location; /* system specific desktop 
geographical location (on Mac 
only)*/

Str255 owner; /* owner (in pascal string form) of 
file or folder */

Str255 group; /* group (in pascal string form) of 
file or folder */

} FInfoRec, *FInfoPtr;



File Type Record

The file type record is:

typedef struct {
int32 flags;
int32 type;

} FileType;

Only the least significant four bits of flags contain useful information. The remaining bits are reserved 
for use by LabVIEW. You can test these four bits using the following four masks:

#define kIsFile 0x01
#define kRecognizedType 0x02
#define kIsLink 0x04
#define kFIsInvisible 0x08

The kIsFile bit is set if the item described by the file type record is a file; otherwise it is clear. The 
kRecognizedType bit is set if the item described is a file for which you can determine a 4-character file 
type; otherwise it is clear. The kIsLink bit is set if the item described is a UNIX link or Macintosh alias; 
otherwise it is clear. The kFIsInvisible bit is set if the item described will not appear in a file dialog; 
otherwise it is clear.

The value of type is defined only if the kRecognizedType bit is set in flags. In this case, type is the 
4-character file type of the file described by the file type record. This 4-character file type is provided by 
the file system on the Macintosh and is computed by examining the file name extension on other 
systems.



Path Data Type

The file manager defines the Path data type for use in describing paths to files and directories. The data 
structure for the Path data type is private. You use file manager routines to create and manipulate 
Paths.



File Permissions

The file manager uses the int32 data type to describe permissions for files and directories. The 
manager uses only the least significant nine bits of the int32.

On a UNIX computer, the nine bits of permissions correspond exactly to nine UNIX permission bits 
governing read, write, and execute
permissions for user, group, and others. Permission bits on a UNIX system are represented in the 
following illustration.

On the PC, permissions are ignored for directories. For files, only bit 7 (the UNIX user write permission 
bit) is used. If this bit is clear, the file is read-only. Otherwise, you can write to the file.

On the Macintosh, all nine bits are used for directories (folders). The bits which control read, write, and 
execute permissions, respectively, on a UNIX system are used to control See Files, Make Changes, and 
See Folders access rights, respectively, on the Macintosh. For files, only bit 7 (the UNIX user write 
permission bit) is used. If this bit is clear, the file is locked. Otherwise, the file is not locked.



Volume Information Record

The volume information record is:

typedef struct {
int32 size; /* size in bytes of a kuhvkjhgvku volume 

*/
int32 used; /* number of bytes used on volume */
int32 free; /* number of bytes available for use on 

volume */
} VInfoRec;

 



Memory Manager Functions

This topic contains descriptions of the memory manager functions that perform the following operations:

Handle and Pointer Verification 
Handles, Allocating and Releasing 
Handles, Manipulating Properties 
Memory Utilities 
Memory Zone Utilities 
Pointers, Allocating and Releasing 



Handle and Pointer Verification

AZCheckHandle/DSCheck Handle 
ASCheckPtr/DSCheckPtr 

Click here to view a list of all Memory Manager Functions.

AZCheckHandle/DSCheckHandle

syntax MgErr AZCheckHandle(h);
MgErr DSCheckHandle(h);

XXCheckHandle verifies that the specified handle is really a handle. If the handle is not a real 
handle, this function returns mZoneErr.

Parameter Type Description
h UHandle Handle to verify.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mZoneErr Handle or pointer not in specified zone.

AZCheckPtr/DSCheckPtr

syntax MgErr AZCheckPtr(p);
MgErr DSCheckPtr(p);

XXCheckPtr verifies that the specified pointer is a pointer allocated with XXNewPtr or 
XXNewPClr. If the pointer is not a real pointer, this function returns mZoneErr.

Parameter Type Description
p UPtr Pointer to verify.

returns MgErr, which can contain the errors in the following list. 

Error Description
noErr No error.
mZoneErr Handle or pointer not in specified zone.



Handles, Allocating and Releasing

AZDispose Handle/DSDisposeHandle 
AZEmptyHandle/DSEmpty Handle
AZGetHandleSize/DSGetHandleSize
AZNewHandle/DSNewHandle
AZNewHClr/DSNewHClr
AZReallocHandle/DSReallocHandle
AZRecoverHandle/DSRecoverHandle
AZSetHandleSize/DSSetHandleSize
AZSetHSzClr/DSSetHSzClr

Click here to view a list of all Memory Manager Functions.

AZDisposeHandle/DSDisposeHandle

syntax MgErrAZ DisposeHandle(h);
MgErrDS DisposeHandle(h);

XXDisposeHandle releases the memory referenced by the specified handle. 

Parameter Type Description
h UHandle Handle you want to dispose of.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mZoneErr Handle or pointer not in specified zone.

AZEmptyHandle/DSEmptyHandle

syntax MgErrAZ EmptyHandle(h);
MgErrDS EmptyHandle(h);

XXEmptyHandle releases the memory referenced by a handle, and replaces the handle's master 
pointer with NULL.

The master pointer is set to NULL, but remains a valid master pointer after this call. All handle-
based references to the block of memory point to the NULL handle. If you reallocate space for the 
handle using XXReallocHandle, all references to the old handle will reference the new block of 
memory.

Parameter Type Description
h UHandle Handle to empty.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mZone ErrHandle or pointer not in specified zone.



AZGetHandleSize/DSGetHandleSize

syntax int32 AZGetHandleSize(h);
int32 DSGetHandleSize(h);

XXGetHandleSize returns the size of the block of memory referenced by the specified handle. 

Parameter Type Description
h UHandle Handle whose size you want to determine.

returns The size in bytes of the relocatable block referenced by the handle h. If an error occurs, 
XXGetHandleSize returns a negative number.

AZNewHandle/DSNewHandle

syntax UHandle ZNewHandle(size);
UHandle DSNewHandle(size);

XXNewHandle creates a new handle to a relocatable block of memory of the specified size. The 
routine aligns all handles and pointers in DS to accommodate the largest possible data 
representations for the platform in use.

Parameter Type Description
size int32 Size, in bytes, of the handle to create.

returns A handle of the specified size. Returns NULL if the routine fails.

AZNewHClr/DSNewHClr

syntax UHandle AZNewHClr(size);
UHandle DSNewHClr(size);

XXNewHClr creates a new handle to a relocatable block of memory of the specified size and 
initializes the memory to zero.

Parameter Type Description
size int32 Size, in bytes, of the handle to create.

returns A handle of the specified size, where the block of memory is set to all zeros. Returns 
NULL if the routine fails.

AZReallocHandle/DSReallocHandle

syntax MgErr AZReallocHandle(h, size);
MgErr DSReallocHandle(h, size);

XXReallocHandle creates a new block of memory and sets the specified handle to reference 
the block of memory.

If h is not already an empty handle, the function releases the block of memory referenced by h 
before creating the new block. A handle is an empty handle if you called XXEmptyHandle on the 
handle, or if you marked the handle as purgeable and the memory manager purged it from 



memory.

Parameter TypeD escription
h UHandle Handle to recover.
size int32 New size, in bytes, of the handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mgArgErr Invalid argument.
mFullErr Not enough memory to perform operation.
mZoneErr Handle or pointer not in specified zone.

AZRecoverHandle/DSRecoverHandle

syntax UHandle AZRecoverHandle(p);
UHandle DSRecoverHandle(p);

Given a pointer to a block of memory that was originally declared as a handle, 
XXRecoverHandle returns a handle to the block of memory.

This function is useful when you have the address of a block of memory that you know is a 
handle, and you need to get a true handle to the block of memory.

Parameter Type Description
p UPtr Pointer to a relocatable block of memory.

returns A handle to the block of memory to which p refers. Returns NULL if the 
routine fails.

AZSetHandleSize/DSSetHandleSize

syntax MgErr AZSetHandleSize(h, size);
MgErr DSSetHandleSize(h, size);

XXSetHandleSize changes the size of the block of memory referenced by the specified handle. 

While LabVIEW arrays are stored in DS handles, you should not use this function to resize array 
handles. Many platforms have memory alignment requirements that make it difficult to determine 
the correct size for the resulting array. Instead, you should use either NumericArrayResize or 
SetCINArraySize, which are described in the Resizing Arrays and Strings section of Chapter 
2, CIN Parameter Passing in the Code Interface Reference Manual. You should not use these 
functions on a locked handle.

Parameter Type Description
h UHandle Handle to resize.
size int32 New size, in bytes, of the handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.



mFullErr Not enough memory to perform operation.
mZoneErr Handle or pointer not in specified zone.

AZSetHSzClr/DSSetHSzClr

syntax MgErr ZSetHSzClr(h, size);
MgErr DSSetHSzClr(h, size);

XXSetHSzClr changes the size of the block of memory referenced by the specified handle and 
sets any new memory to zero. You should not use this function on a locked handle.

Parameter Type Description
h UHandle Handle to resize.
size int32 New size, in bytes, of the handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mFullErr Not enough memory to perform operation.
mZoneErr Handle or pointer not in specified zone.



Handles, Manipulating Properties

AZHLock 
AZHPurge 
AZHNoPurge 
AZHunlock

Click here to view a list of all Memory Manager Functions.

AZHLock

syntax MgErr AZHLock(h);

AZHLock locks the memory referenced by the application zone handle h so that the memory 
cannot move. This means the memory manager cannot move the block of memory to which the 
handle refers.

Do not lock handles more than necessary; it interferes with efficient memory management. Also, 
do not enlarge a locked handle.

Parameter Type Description
h UHandle Application zone handle to lock.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mZoneErr Handle or pointer not in specified zone.

AZHPurge

syntax void AZHPurge(h);

AZHPurge marks the memory referenced by the application zone handle h as purgeable. This 
means that in tight memory conditions the memory manager can perform an AZEmptyHandle on 
h. Use AZReallocHandle() to reuse a handle if the manager purges it.

If you mark a handle as purgeable, check the handle before using it to see if it has become an 
empty handle.

Parameter Type Description
h UHandle Application zone handle to mark as purgeable.

AZHNoPurge

syntax void AZHNoPurge(h);

AZHNoPurge marks the memory referenced by the application zone handle h as unpurgeable.

Parameter Type Description
h UHandle Application zone handle to mark as unpurgeable.



AZHUnlock

syntax MgErr AZHUnlock(h);

AZHUnlock unlocks the memory referenced by the application zone handle h so that it can be 
moved. This means that the memory manager can move the block of memory to which the handle 
refers if other memory operations need space.

Parameter Type Description
h UHandle Application zone handle to unlock.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mZoneErr Handle or pointer not in specified zone.



Memory Utilities

AZHandAndHand/DSHandAndHand 
AZHandToHand/DSHandToHand 
AZPtrAndHand/DSPtrAndHand 
AZPtrToHand/DSPtrToHand 
AZPtrToXHand/DSPtrToXHand 
ClearMem 
MoveBlock 
SwapBlock

Click here to view a list of all Memory Manager Functions.

AZHandAndHand/DSHandAndHand

syntax MgErr AZHandAndHand(h1, h2);
MgErr DSHandAndHand(h1, h2);

XXHandAndHand appends the data referenced by h1 to the end of the memory block referenced 
by h2.

The function resizes handle h2 to hold h1 and h2 data. If h1 is an AZ handle, you should lock it, 
because this routine can move memory.

Parameter Type Description
h1 UHandle Source of data to append to h2.
h2 UHandle Initial handle, to which the data of h1 is appended.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mFullErr Not enough memory to perform operation.
mZoneErr Handle or pointer not in specified zone.

AZHandToHand/DSHandToHand

syntax MgErr AZHandToHand(hp);
MgErr DSHandToHand(hp);

XXHandToHand copies the data referenced by the handle to which hp points into a new handle, 
and returns a pointer to the new handle in hp. 

You can use this routine to copy an existing handle into a new handle. The old handle remains 
allocated. This routine writes over the pointer that is passed in, so you should maintain a copy of 
the original handle.

Parameter Type Description
hp UHandle Pointer to handle to duplicate. A pointer to the resulting 

handle is returned in this parameter. See the Pointers as 
Parameters section of Chapter 1, CIN Overview, in the 



Code Interface Reference Manual for more information 
about using this parameter.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mFullErr Not enough memory to perform operation.
mZoneErr Handle or pointer not in specified zone.

AZPtrAndHand/DSPtrAndHand

syntax MgErr AZPtrAndHand(p, h, size);
MgErr DSPtrAndHand(p, h, size);

XXPtrAndHand appends size bytes from the address referenced by p to the end of the memory 
block referenced by h. 

Parameter Type Description
p UPtr Source of data to append to h.
h UHandle Handle to which the data of p is appended.
size int32 Number of bytes to copy from p.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mFullErr Not enough memory to perform operation.
mZoneErr Handle or pointer not in specified zone.

AZPtrToHand/DSPtrToHand

syntax MgErr AZPtrToHand(p, hp, size);
MgErr DSPtrToHand(p, hp, size);

XXPtrToHand creates a new handle of size bytes and copies size bytes from the address 
referenced by p to the handle.

Parameter Type Description
p UPtr Source of data to copy to the handle pointed to by hp.
hp UHandle Pointer to handle to duplicate. A pointer to the resulting 

handle is returned in this parameter. See the Pointers as 
Parameters section of Chapter 1, CIN Overview, in the 
Code Interface Reference Manual for more information 
about using this parameter

size int32 Number of bytes to copy from p to the new handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mFullErr Not enough memory to perform operation.



AZPtrToXHand/DSPtrToXHand

syntax MgErr AZPtrToXHand(p, h, size);
MgErr DSPtrToXHand(p, h, size);

XXPtrToXHand copies size bytes from the address referenced by p to the existing handle h, 
resizing h, if necessary, to hold the results. 

Parameter Type Description
p UPtr Source of data to copy to the handle h.
h UHandle Destination handle.
size int32 Number of bytes to copy from p to the existing handle.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mFullErr Not enough memory to perform operation.
mZoneErr Handle or pointer not in specified zone.

ClearMem

syntax void ClearMem(p, size);

ClearMem sets size bytes starting at the address referenced by p to 0.

Parameter Type Description
p UPtr Pointer to block of memory to clear.
size int32 Number of bytes to clear.

MoveBlock

syntax void MoveBlock(ps, pd, size);

MoveBlock moves size bytes from one address to another. The source and destination memory 
blocks can overlap.

Parameter Type Description
ps UPtr Pointer to source.
pd UPtr Pointer to destination.
size int32 Number of bytes to move.

SwapBlock

syntax void SwapBlock(ps, pd, size);

SwapBlock swaps size bytes between the section of memory referred to by ps and pd. The 
source and destination memory blocks should not overlap.

Parameter Type Description
ps UPtr Pointer to source.
pd UPtr Pointer to destination.



size int32 Number of bytes to move.



Memory Zone Utilities

AZHeapCheck/DSHeapCheck 
AZMaxMem/DSMaxMem 
AZMemStats/DSMemStats 

Click here to view a list of all Memory Manager Functions.

AZHeapCheck/DSHeapCheck

syntax int32 AZHeapCheck(Bool32 d);
int32 DSHeapCheck(Bool32 d);

XXHeapCheck verifies that the specified heap is not corrupt. This function returns a zero for an 
intact heap and a nonzero value for a corrupt heap.

Parameter Type Description
d Bool32 Dump extensive heap examination to auxiliary screen.

returns int32, which can contain the errors in the following list.

Value Description
noErr The heap is intact.
mCorruptErr The heap is corrupt.

AZMaxMem/DSMaxMem

syntax int32 AZMaxMem();
int32 DSMaxMem();

XXMaxMem returns the size of the largest block of contiguous memory available for allocation.

returns int32, the size of the largest block of contiguous memory available for 
allocation. 

AZMemStats/DSMemStats

syntax void AZMemStats(MemStatRec *msrp);
void DSMemStats(MemStatRec *msrp);

XXMemStats returns various statistics about the memory in a zone.

Parameter Type Description
msrp MemStatRec Returns statistics about the zone's free memory in a 

MemStatRec structure. See the Pointers as Parameters 
section of Chapter 1, CIN Overview, in the Code 
Interface Reference Manual for more information about 
using this parameter.



A MemStatRec structure is defined as follows. 

typedef struct {

int32 totFreeSize, maxFreeSize, nFreeBlocks;

int32 totAllocSize, maxAllocSize;

int32 nPointers, nUnlockedHdls, nLockedHdls;

int32 reserved [4];

}

The free memory in a zone consists of a number of blocks of contiguous memory. In the 
MemStatRec structure, totFreeSize is the sum of the sizes of these blocks, maxFreeSize is the 
largest of these blocks (as returned by XXMaxMem), and nFreeBlocks is the number of these 
blocks. 

Similarly, the allocated memory in a zone consists of a number of blocks of contiguous memory. 
In the MemStatRec structure, totAllocSize is the sum of the sizes of these blocks and 
maxAllocSize is the largest of these blocks. 

Because there are three different varieties of allocated blocks, the numbers of blocks of each type 
is returned separately.

nPointers (int32) is the number of pointers. nUnlockedHdls (int32) is the number of 
unlocked handles. nLockedHdls (int32) is the number of locked handles. Add these three 
values together to find the total number of allocated blocks.

The four reserved fields are reserved for use by National Instruments.



Pointers, Allocating and Releasing

AZDisposePtr/DSDisposePtr 
AZNewPClr/DSNewPClr 
AZNewPtr/DSNewPtr

Click here to view a list of all Memory Manager Functions.

AZDisposePtr/DSDisposePtr

syntax MgErr AZDisposePtr(p);
MgErr DSDisposePtr(p);

XXDisposePtr releases the memory referenced by the specified pointer.

Parameter Type Description
p UPtr Pointer to dispose.

returns MgErr, which can contain the errors in the following list.

Error Description
noErr No error.
mZoneErr Handle or pointer not in specified zone.

AZNewPClr/DSNewPClr

syntax UPtr AZNewPClr(size);
UPtr DSNewPClr(size);

XXNewPClr creates a new pointer to a nonrelocatable block of memory of the specified size and 
initializes the memory to zero.

Parameter Type Description
size int32 Size, in bytes, of the pointer to create.

returns A pointer to a block of size bytes filled with zeros. Returns NULL if the allocation could not 
be performed.

AZNewPtr/DSNewPtr

syntax UPtr AZNewPtr(size);
UPtr DSNewPtr(size);

XXNewPtr creates a new pointer to a nonrelocatable block of memory of the specified size.

Parameter Type Description
size int32 Size, in bytes, of the pointer to create.

returns A pointer to a block of size bytes. Returns NULL if the allocation could not 
be performed.



 



Support Manager Functions

This topic contains descriptions of the support manager functions that perform the following operations:

Byte Manipulation Operations
Mathematical Operations
String Manipulation
Utility Functions
Time Functions



Byte Manipulation Operations

Cat4Chrs
GetALong
Hi16
HiByte
HiNibble
Lo16
LoByte
Long
LoNibble
Offset
SetALong
Word

Click here to view a list of all Support Manager Functions.

Cat4Chrs *Macro*

syntax int32 Cat4Chrs(a,b,c,d);

Cat4Chrs constructs an int32 from four uInt8s, with the first parameter as the high byte and the last 
parameter as the low byte.

Parameter Type Description
a uInt8 High order byte of the high word of the resulting int32.
b uInt8 Low order byte of the high word of the resulting int32.
c uInt8 High order byte of the low word of the resulting int32.
d uInt8 Low order byte of the low word of the resulting int32.

returns The resulting int32.

GetALong *Macro*

syntax int32 GetALong(p);

GetALong retrieves an int32 from a void pointer. On the SPARCstation, this function can retrieve an 
int32 at any address, even if the int32 is not long word aligned.

Parameter Type Description
p void * Address from which you wish to read an int32.

returns int32 stored at the specified address.

Hi16 *Macro*

syntax int16 Hi16(x);

Hi16 returns the high order int16 of an int32.



Parameter Type Description
x int32 int32 of which you want to determine the high int16.

HiByte *Macro*

syntax int8 HiByte(x);

HiByte returns the high order int8 of an int16.

Parameter Type Description
x int16 int16 of which you want to determine the high int8.

HiNibble *Macro*

syntax uInt8 HiNibble(x);

HiNibble returns the value stored in the high four bits of an uInt8.

Parameter Type Description
x uInt8 uInt8 whose high four bits you want to extract.

Lo16 *Macro*

syntax int16 Lo16(x);

Lo16 returns the low order int16 of an int32.

Parameter Type Description
x int32 int32 of which you want to determine the low int16.

LoByte *Macro*

syntax int8 LoByte(x);

LoByte returns the low order int8 of an int16.

Parameter Type Description
x int16 int16 of which you want to determine the low int8.

Long*Macro*

syntax int32 Long(hi, lo);

Long creates an int32 from two int16s.

Parameter Type
hi int16 High int16 for the resulting int32.
lo int16 Low int16 for the resulting int32.

returns The resulting int32.



LoNibble *Macro*

syntax uInt8 LoNibble(x);

LoNibble returns the value stored in the low four bits of an uInt8.

Parameter Type Description
x uInt8 uInt8 whose low four bits you want to extract.

Offset *Macro*

syntax int16 Offset(type, field);

Offset returns the offset of the specified field within the structure called type.

Parameter Type Description
type - Structure that contains field.
field - Field whose offset you want to determine.

returns An offset as an int16.

SetALong *Macro*

syntax void SetALong(p,x);

SetALong stores an int32 at the address specified by a void pointer. On the SPARCstation, this 
function can retrieve an int32 at any address, even if it is not long word aligned.

Parameter Type Description
p void * Address at which you want to store an int32.

See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

x int32 Value that you want to store at the specified address.

Word*Macro*

syntax int16 Word(hi, lo);

Word creates an int16 from two int8s.

Parameter Type Description
hi int8 High int8 for the resulting int16.
lo int8 Low int8 for the resulting int16.

returns The resulting int16.



Mathematical Operations

Abs
Max
Min
Pin
RandomGen

Click here to view a list of all Support Manager Functions.

In addition to the mathematical operations documented in this topic, LabVIEW supports a number of other 
mathematical functions. These functions are implemented as defined in The C Programming Language 
by Brian W. Kernighan and Dennis M. Ritchie. Table 8.1 lists the prototypes for these functions.

Mathematical Functions Supported by LabVIEW

double atan(double);

double cos(double);

double exp(double);

double fabs(double);

double log(double);

double sin(double);

double sqrt(double);

double tan(double);

double acos(double);

double asin(double);

double atan2(double, double);

double ceil(double);

double cosh(double);

double floor(double);

double fmod(double, double);

double frexp(double, int *);

double ldexp(double, int);

double log10(double);

double modf(double, double *);

double pow(double, double);

double sinh(double);

double tanh(double);

For THINK C Users
To link the math functions when using THINK C, you need to add additional files to your project. You can 
link a modified version of an ANSI library provided by THINK C. The ANSI library must be modified to 
reference its globals from A4 instead of A5; this process is explained in the THINK C documentation in the 
section concerning building code resources (the section has different names in the various THINK C 
versions).



To make such a library, make a copy of the ANSI-A4 project (shipped with THINK C), and name it ANSI-
A4 copy (or any unique name). Add the math.c file (shipped with THINK C) to ANSI-A4 copy, and then 
select Build Library... under the Project menu. Name your new library mathlib (or any unique name). 
Adding mathlib to your CIN project makes it possible for your math functions to link. 

Abs

syntax int32 Abs(n);

Abs returns the absolute value of n, unless n is -2^31, in which case the function returns the number 
unmodified.

Parameter Type Description
n int32 int32 whose absolute value you want to find.

Max

syntax int32 Max(n,m);

Max returns the maximum of the two specified int32s.

Parameter Type Description
n,m int32 int32s whose maximum value you want to determine.

Min

syntax int32 Min(n,m);

Min returns the minimum of the two specified int32s.

Parameter Type Description
n,m int32 int32s whose minimum value you want to determine.

Pin

syntax int32 Pin(i,low,high);

Pin returns i coerced to fall within the range from low to high inclusive.

Parameter Type Description
i int32 Value you want to coerce to the specified range.
n int32 Low value of the range to which you want to coerce i.
m int32 High value of the range to which you want to coerce i.

returns i coerced to the specified range.

RandomGen

syntax void RandomGen(xp);

RandomGen generates a random number between 0 and 1 and stores it at xp.



Parameter Type Description
xp float64 * Location to store the resulting double-precision floating-

point random number.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.



String Manipulation

BlockCmp
CPStrBuf
CPStrCmp
CPStrIndex
CPStrInsert
CPStrLen
CPStrRemove
CPStrReplace
CPStrSize
CToPStr
FileNameCmp
FileNameIndCmp
FileNameCmp
FPrintf
HexChar
IsAlpha
IsDigit
IsLower
IsUpper
LStrBuf
LStrCmp
LStrLen
LStrPrintf
LToPStr
PPrintf
PPrintfp
PPStrCaseCmp
PPStrCmp
PStrBuf
PStrCaseCmp
PStrCat
PStrCmp
PStrCpy
PStrLen
PStrNCpy
PToCStr
PToLStr
SPrintF
SPrintfp
StrCat
StrCmp
StrCpy
StrLen
StrNCaseCmp
StrNCmp
StrNCpy
ToLower
ToUpper

Click here to view a list of all Support Manager Functions.



BlockCmp

syntax int32 BlockCmp(p1, p2, numBytes);

BlockCmp compares two blocks of memory to determine whether one is less than, the same as, or 
greater than the other. 

Parameter Type Description
p1 UPtr Pointer to a block of memory.
p2 UPtr Pointer to a block of memory.
numBytes int32 Number of bytes to compare.

returns A negative number, zero, or a positive number if s1 is less than, the same as, or greater 
than s2. 

CPStrBuf *Macro*

syntax uChar *CPStrBuf(sp);

CPStrBuf returns the address of the first string in a concatenated list of Pascal strings (that is, the 
address of sp->str).

Parameter Type Description
sp CPStrPtr Pointer to a concatenated list of Pascal strings.

returns The address of the first string of the concatenated list of Pascal strings.

CPStrCmp

syntax int32 CPStrCmp(s1p, s2p);

CPStrCmp lexically compares two concatenated lists of Pascal strings to determine whether one is less 
than, the same as, or greater than the other. This comparison is case sensitive, and the function 
compares the lists as if they were one string.

Parameter Type Description
s1p CPStrPtr Pointer to a concatenated list of Pascal strings.
s2p CPStrPtr Pointer to a concatenated list of Pascal strings.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

CPStrIndex

syntax PStr CPStrIndex(s1h, index);

CPStrIndex returns a pointer to the Pascal string denoted by index in a list of strings. If index is 
greater than or equal to the number of strings in the list, the function returns the pointer to the last string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.



index int32 Number of the string that you want, with 0 as the first 
string.

returns A pointer to the specified Pascal string.

CPStrInsert

syntax MgErr CPStrInsert(s1h, s2, index);

CPStrInsert inserts a new Pascal string before the index numbered Pascal string in a concatenated 
list of Pascal strings.      If index is greater than or equal to the number of strings in the list, the function 
places the new string at the end of the list. CPStrInsert resizes the list to make room for the new string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.
s2 PStr Pointer to a Pascal string.
index int32 Position that you want the new Pascal string to have in 

the list of Pascal strings, with 0 as the first string.

returns mFullErr if there is not enough memory. Returns noErr otherwise.

CPStrLen *Macro*

syntax int32 CPStrLen(sp);

CPStrLen returns the number of Pascal strings in a concatenated list of Pascal strings (that is, 
sp->cnt). Use the CPStrSize function to get the total number of characters in the list. 

Parameter Type Description
sp CPStrPtr Pointer to a concatenated list of Pascal strings.

returns The number of strings in the concatenated list of Pascal strings.

CPStrRemove

syntax void CPStrRemove(s1h, index);

CPStrRemove removes a Pascal string from a list of Pascal strings. If index is greater than or equal to 
the number of strings in the list, the function removes the last string. CPStrRemove resizes the list after 
removing the string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.
index int32 Number of the string that you want to remove, with 0 as 

the first string.

CPStrReplace

syntax MgErr CPStrReplace(s1h, s2, index);



CPStrReplace replaces a Pascal string in a concatenated list of Pascal strings with a new Pascal string.

Parameter Type Description
s1h CPStrHandle Handle to a concatenated list of Pascal strings.
s2 PStr Pointer to a Pascal string.
index int32 Number of the string that you want to replace, with 0 as 

the first string.

returns mFullErr if there is not enough memory. Returns noErr otherwise.

CPStrSize

syntax int32 CPStrSize(sp);

CPStrSize returns the number of characters in a concatenated list of Pascal strings. Use the 
CPStrLen function to get the number of Pascal strings in the concatenated list.

Parameter Type Description
sp CPStrPtr Pointer to a concatenated list of Pascal strings.

returns The number of characters in the concatenated list of Pascal strings.

CToPStr

syntax int32 CToPStr(cstr, pstr);

CToPStr converts a C string to a Pascal string. This function works even if the pointers cstr and pstr 
refer to the same memory location. If the length of cstr is greater than 255 characters, the function 
converts only the first 255 characters. The function assumes that pstr is large enough to contain cstr.

Parameter Type Description
cstr CStr Pointer to a C string.
pstr PStr Pointer to a Pascal string.

returns The length of the string, truncated to a maximum of 255 characters.

FileNameCmp *Macro*

syntax int32 FileNameCmp(s1, s2);

FileNameCmp lexically compares two file names, to determine whether one is less than, the same as, or 
greater than the other. This comparison uses the same case sensitivity as the file system (that is, case 
insensitive for the Macintosh and the PC, case sensitive for the Sun SPARCstation).

Parameter Type Description
s1 PStr Pointer to a Pascal string.
s2 PStr Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.



FileNameIndCmp *Macro*

syntax int32 FileNameIndCmp(s1p, s2p);

FileNameIndCmp is the same as FileNameCmp, except you pass the function handles to the string data 
instead of pointers. You can use FileNameIndCmp to compare two file names and lexically determine 
whether one is less than, the same as, or greater than the other. This comparison uses the same case 
sensitivity as the file system (that is, case insensitive for the Macintosh and the PC, and case sensitive for 
the Sun SPARCstation).

Parameter Type Description
s1p PStr * Pointer to a Pascal string. 
s2p PStr * Pointer to a Pascal string. 

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

FileNameNCmp *Macro*

syntax int32 FileNameNCmp(s1, s2, n);

FileNameNCmp lexically compares two file names to determine whether one is less than, the same as, or 
greater than the other, limiting the comparison to n characters. This comparison uses the same case 
sensitivity as the file system (that is, case insensitive for the Macintosh and the PC, case sensitive for the 
Sun SPARCstation).

Parameter Type Description
s1 CStr Pointer to a C string.
s2 CStr Pointer to a C string.
n uInt32 Maximum number of characters to compare.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

HexChar

syntax int32 HexChar(n);

HexChar returns the ASCII character in hex that represents the specified value n (0<=n<=15).

Parameter Type Description
n int32 Decimal value between 0 and 15.

returns The corresponding ASCII hex character. If n is out of range, the ASCII character 
corresponding to n modulo 16 is returned.

IsAlpha

syntax Bool32 IsAlpha(c);



IsAlpha returns TRUE if the character c is a lowercase or uppercase letter (that is, in the set a to z or A 
to Z). On the SPARCstation, this function also returns TRUE for international characters (ˆ, ‡, €, and so 
on).

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is an alphabetic character, and FALSE otherwise.

IsDigit

syntax Bool32 IsDigit(c);

IsDigit returns TRUE if the character c is between 0 and 9.

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is a numerical digit, and FALSE otherwise.

IsLower

syntax Bool32 IsLower(c);

IsLower returns TRUE if the character c is a lowercase letter (that is, in the set a to z). On the 
SPARCstation, this function also returns TRUE for lowercase international characters (, š, and so on).

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is a lowercase letter, and FALSE otherwise.

IsUpper

syntax Bool32 IsUpper(c);

IsUpper returns TRUE if the character c is between an uppercase letter (that is, in the set A to Z). On the 
SPARCstation, this function also returns TRUE for uppercase international characters (î, €, and so on).

Parameter Type Description
c char Character that you want to analyze.

returns TRUE if the character is an uppercase letter, and FALSE otherwise.

LStrBuf*Macro*

syntax uChar *LStrBuf(s);

LStrBuf returns the address of the string data of a long Pascal string (that is, the address of s->str).



Parameter Type Description
s LStrPtr Pointer to a long Pascal string.

returns The address of the string data of the long Pascal string.

LStrCmp

syntax LStrPtr LStrCmp(l1p, l2p);

LStrCmp lexically compares two long Pascal strings to determine whether one is less than, the same as, 
or greater than the other. This comparison is case sensitive.

Parameter Type Description
l1p LStrPtr Pointer to a long Pascal string.
l2p LStrPtr Pointer to a long Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

LStrLen *Macro*

syntax int32 LStrLen(s);

LStrLen returns the length of a long Pascal string (that is, s->cnt).

Parameter Type Description
s LStrPtr Pointer to a long Pascal string.

returns The number of characters in the long Pascal string.

LToPStr

syntax int32 LToPStr(lstrp, pstr);

LToPStr converts a long Pascal string to a Pascal string. If the long Pascal string is more than 255 
characters, the function converts only the first 255 characters. This function works even if the pointers 
lstrp and pstr refer to the same memory location. The function assumes that pstr is large enough to 
contain lstrp.

Parameter Type Description
lstrp LStrPtr Pointer to a long Pascal string.
pstr PStr Pointer to a Pascal string.

returns The length of the string, truncated to a maximum of 255 characters.

PPStrCaseCmp

syntax int32 PPStrCaseCmp(s1p, s2p);

PPStrCaseCmp is the same as PStrCaseCmp, except you pass the function handles to the string data 



instead of pointers. You can use PPStrCaseCmp to compare two Pascal strings lexically and determine 
whether one is less than, the same as, or greater than the other. This comparison ignores differences in 
case.

Parameter Type Description
s1p PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

PPStrCmp

syntax int32 PPStrCmp(s1p, s2p);

PPStrCmp is the same as PStrCmp, except you pass the function handles to the string data instead of 
pointers. You can use PPStrCmp to compare two Pascal strings lexically and determine whether one is 
less than, the same as, or greater than the other. This comparison is case sensitive.

Parameter Type Description
s1p PStr * Pointer to a Pascal string.
s2p PStr * Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

PStrBuf *Macro*

syntax uChar *PStrBuf(s);

PStrBuf returns the address of the string data of a Pascal string (that is, the address following the 
length byte).

Parameter Type Description
s PStr Pointer to a Pascal string.

PStrCaseCmp

syntax int32 PStrCaseCmp(s1, s2);

PStrCaseCmp lexically compares two Pascal strings to determine whether one is less than, the same as, 
or greater than the other. This comparison ignores differences in case.

Parameter Type Description
s1 PStr Pointer to a Pascal string.
s2 PStr Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.



PStrCat

syntax int32 PStrCat(s1, s2);

PStrCat concatenates a Pascal string, s2, to the end of another Pascal string, s1, and places the result 
in s1. This function assumes that s1 is large enough to contain the resulting string. If the resulting string is 
larger than 255 characters, then PStrCat limits the resulting string to 255 characters.

Parameter Type Description
s1 PStr Pointer to a Pascal string.
s2 PStr Pointer to a Pascal string.

returns The length of the resulting string.

PStrCmp

syntax int32 PStrCmp(s1, s2);

PStrCmp lexically compares two Pascal strings to determine whether one is less than, the same as, or 
greater than the other. This comparison is case sensitive.

Parameter Type Description
s1 PStr Pointer to a Pascal string.
s2 PStr Pointer to a Pascal string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

PStrCpy

syntax PStr PStrCpy(dst, src);

PStrCpy copies the Pascal string src to the Pascal string dst. This function assumes that the destination 
string is large enough to contain the source string. 

Parameter Type Description
dst PStr Pointer to a Pascal string.
src PStr Pointer to a Pascal string.

returns A copy of the destination Pascal string pointer.

PStrLen*Macro*

syntax uInt8 PStrLen(s);

PStrLen returns the length of a Pascal string (that is, the value at the first byte at the specified address).

Parameter Type Description
s PStr Pointer to a Pascal string.

PStrNCpy



syntax PStr PStrNCpy(dst, src, n);

PStrNCpy copies the Pascal string src to the Pascal string dst. If the source string is greater than n, the 
function copies only n bytes. This function assumes that the destination string is large enough to contain 
the source string.

Parameter Type Description
dst PStr Pointer to a Pascal string.
src PStr Pointer to a Pascal string.
n int32 Maximum number of bytes to copy including the length 

byte.

returns A copy of the destination Pascal string pointer.

PToCStr

syntax int32 PToCStr(pstr, cstr);

PToCStr converts a Pascal string to a C string. This function works even if the pointers pstr and cstr 
refer to the same memory location. This function assumes that cstr is large enough to contain pstr.

Parameter Type Description
pstr PStr Pointer to a Pascal string.
cstr CStr Pointer to a C string.

returns The length of the string.

PToLStr

syntax int32 PToLStr(pstr, lstrp);

PToLStr converts a Pascal string to a long Pascal string. This function works even if the pointers pstr 
and lstrp refer to the same memory location. The function assumes that lstrp is large enough to contain 
pstr.

Parameter Type Description
pstr PStr Pointer to a Pascal string.
lstrp LStrPtr Pointer to a long Pascal string.

returns The length of the string.

SPrintf
SPrintfp
PPrintf
PPrintfp
FPrintf
LStrPrintf



syntax int32 SPrintf(CStr destCSt, CStr cfmt, ...);
int32 SPrintfp(CStr destCSt, PStr pfmt, ...);
int32 PPrintf(PStr destPSt, CStr cfmt, ...);
int32 PPrintfp(PStr destPSt, PStr pfmt, ...);
int32 FPrintf(File destFile, CStr cfmt, ...);
MgErr LStrPrintf(LStrHandle destLsh, CStr cfmt,...);

All these functions format data into an ASCII format to a specified destination. A format string describes 
the desired conversions. These functions take a variable number of arguments, and each argument 
follows the format string paired with a conversion specification embedded in the format string. The second 
parameter, cfmt or pfmt, must be cast appropriately to either type CStr or PStr.

SPrintf prints to a C string, just like the C library function sprintf. sprintf returns the actual 
character count and appends a null byte to the end of the destination C string. 

SPrintfp is the same as SPrintf, except the format string is a Pascal string instead of a C string. As 
with SPrintf, SPrintfp appends a null byte to the end of the destination C string.

If you pass NULL for destCStr, SPrintf and SPrintfp do not write data to memory, and they return the 
number of characters required to contain the resulting data (not including the terminating null character).

PPrintf prints to a Pascal string with a maximum of 255 characters. PPrintf sets the length byte of 
the Pascal string to reflect the size of the resulting string. PPrintf does not append a null byte to the 
end of the string.

PPrintfp is the same as PPrintf, except the format string is a Pascal string instead of a C string. As 
with PPrintf, PPrintfp sets the length byte of the Pascal string to reflect the size of the resulting 
string.

FPrintf prints to a file specified by the refnum in fd. FPrintf does not embed a length count or a 
terminating null character in the data written to the file.

LStrPrintf prints to a LabVIEW string specified by destLsh. Because the LabVIEW string is a handle 
that may be resized, LStrPrintf can return memory errors just as DSSetHandleSize does.

These functions accept the following standard formats and special characters.

· Special characters that can be embedded in strings:

\b backspace

\f form feed

\n new line (inserts the system-dependent end-of-line char(s); for example, CR on Macintosh, NL 
on UNIX, CRNL on DOS)

\r carriage return

\s space

\t tab

%% percentage character (to print %)

· Format arguments:

%[-] [field size] [.precision] [argument size] [conversion]

[-] Left-justifies what is printed; if not specified, the data is right-justified.

[field size] Specifies the minimum width of the field to print into. If not specified, this defaults 
to 0. If there is less than the specified number of characters in the data to print, the function 
pads with spaces on the left if you specified -; otherwise the function pads on the right.



[.precision] Sets the precision for floating-point numbers (that is, the number of characters 
after the decimal place). For strings, this specifies the maximum number of characters to 
print.

[argument size] Specifies the data size for an argument. It applies only to the d, o, u, and x 
conversion specifiers. By default, the conversion for one of the specifiers is from a word (16-
bit integer). The flag l causes this conversion to convert the data so that the function assumes 
the data is a long integer value.

[conversion]

b binary

c print a character (%2c, %4c print on int16, int32 as a 2,4 char 
constant)

d decimal

e exponential

f fixed point format

H string handle (LStrHandle)

o octal

p Pascal string

P long Pascal string (LStrPtr)

q print a point (passed by value) as %d,%d representing horizontal, 
vertical coordinates

Q print a point (passed by value) as hv(%d,%d) representing horizontal, 
vertical coordinates

r print a rectangle (passed by reference) as %d,%d,%d,%d 
representing top,left, bottom, right coordinates

R print a rectangle (passed by reference) as tlbr(%d,%d,%d,%d) 
representing top,left, bottom, right coordinates

s string

u unsigned decimal

x hex

z Path

Any of the numeric conversion characters (x, o, d, u, b, e, f) can be preceded by {cc} to indicate 
that the number is passed by reference. cc can be iB, iW, É , cX depending on the corresponding 

numeric type. If cc is an asterisk (*) the numeric type (iB through cX) is an int16 in the argument list.

StrCat

syntax int32 StrCat(s1, s2);

StrCat concatenates a C string, s2, to the end of another C string, s1, placing the result in s1. This 
function assumes that s1 is large enough to contain the resulting string.

Parameter Type Description
s1 CStr Pointer to a C string.
s2 CStr Pointer to a C string.

returns The length of the resulting string.



StrCmp

syntax int32 StrCmp(s1, s2);

StrCmp lexically compares two strings to determine whether one is less than, the same as, or greater 
than the other.

Parameter Type Description
s1 CStr Pointer to a C string.
s2 CStr Pointer to a C string.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

StrCpy

syntax CStr StrCpy(dst, src);

StrCpy copies the C string src to the C string dst. This function assumes that the destination string is 
large enough to contain the source string.

Parameter Type Description
dst CStr Pointer to a C string.
src CStr Pointer to a C string.

returns A copy of the destination C string pointer.

StrLen

syntax int32 StrLen(s);

StrLen returns the length of a C string.

Parameter Type Description
s CStr Pointer to a C string.

returns The number of characters in the C string, not including the NULL terminating character.

StrNCaseCmp

syntax int32 StrNCaseCmp(s1, s2, n);

StrNCaseCmp lexically compares two strings to determine whether one is less than, the same as, or 
greater than the other, limiting the comparison to n characters. StrNCaseCmp ignores differences in case 
in performing the comparison.

Parameter Type Description
s1 CStr Pointer to a C string.
s2 CStr Pointer to a C string.



n uInt32 Maximum number of characters to compare.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

StrNCmp

syntax int32 StrNCmp(s1, s2, n);

StrNCmp lexically compares two strings to determine whether one is less than, the same as, or greater 
than the other, limiting the comparison to n characters.

Parameter Type Description
s1 CStr Pointer to a C string.
s2 CStr Pointer to a C string.
n uInt32 Maximum number of characters to compare.

returns <0, 0, or >0 if s1 is less than, the same as, or greater than s2. Returns <0 if s1 is an 
initial substring of s2.

StrNCpy

syntax CStr StrNCpy(dst, src, n);

StrNCpy copies the C string src to the C string dst. If the source string is less than n characters, the 
function pads the destination with null characters. If the source string is greater than n, then only n 
characters are copied. This function assumes that the destination string is large enough to contain the 
source string.

Parameter Type Description
dst CStr Pointer to a C string.
src CStr Pointer to a C string.
n int32 Maximum number of characters to copy.

returns A copy of the destination C string pointer.

ToLower

syntax uChar ToLower(c);

ToLower returns the lowercase value of c if c is an uppercase alphabetic character. Otherwise, it 
returns c unmodified. On the SPARCstation, this function also works for international characters (€ -> Š, 
and so on).

Parameter Type Description
c uChar Character that you want to analyze.

returns The lowercase value of c.



ToUpper

syntax uChar ToUpper(c);

ToUpper returns the uppercase value of c if c is a lowercase alphabetic character. Otherwise, it returns 
c unmodified. On the SPARCstation, this function also works for international characters (Š -> €, and so 
on).

Parameter Type Description
c uChar Character that you want to analyze.

returns The uppercase value of c 



Utility Functions

BinSearch
QSort
UnusedClick here to view a list of all Support Manager Functions.

BinSearch

syntax int32 BinSearch(arrayp, n, elmtSize, key, 
compareProcP);

BinSearch searches an array of an arbitrary data type using the binary search algorithm. In addition to 
passing the array that you want to search to this routine, you also pass a comparison procedure that this 
sort routine then uses to compare elements in the array.

The comparison routine should return a number less than zero if a is less than b, zero if a is equal to b, 
and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return type.

int32 compareProcP(UPtr a, UPtr b);

Parameter Type Description
arrayp UPtr Pointer to an array of data.
n int32 Number of elements in the array that you want to search.
elmtSize int32 Size in bytes of an array element.
key UPtr Pointer to the data that you want to search for.
compareProcP procPtr Comparison routine that you want BinSearch to use in 

comparing array elements. BinSearch passes this 
routine the addresses of two elements that it needs to 
compare.

returns The position in the array where the data is found (with 0 being the first element of the 
array), if it is found. If the data is not found, BinSearch returns -i-1, where i is the 
position where x should be placed.

QSort

syntax void QSort(arrayp,n,elmtSize, compareProcP());

QSort sorts an array of an arbitrary data type using the QuickSort algorithm. In addition to passing the 
array that you want to sort to this routine, you also pass a comparison procedure that this sort routine 
then uses to compare elements in the array.

The comparison routine should return a number less than zero if a is less than b, zero if a is equal to b, 
and a number greater than zero if a is greater than b.

You should declare the comparison routine to have the following parameters and return type.

int32 compareProcP(UPtr a, UPtr b);



Parameter Type Description
arrayp UPtr Pointer to an array of data.
n int32 Number of elements in the array that you want to sort.
elmtSize int32 Size in bytes of an array element.
compareProcP procPtr Comparison routine that you want QSort to use to 

compare array elements. QSort passes this routine the 
addresses of two elements that it needs to compare.

Unused *Macro*

syntax void Unused(x) 

Unused indicates that a function parameter or local variable is not used by that function. This is useful for 
suppressing compiler warnings for many compilers. Notice that no semicolon is used with this macro.

Parameter Type Description
x - Unused parameter or local variable.



Time Functions

ASCIITime
DateCString
DateToSecs
MilliSecs
SecsToDate
TimeCString
TimeInSecs

Click here to view a list of all Support Manager Functions.

ASCIITime

syntax CStr ASCIITime(secs);

ASCIITime returns a pointer to a string representing the date and time of day corresponding to t seconds 
after January 1, 1904, 12:00 AM, GMT. This function uses the same date format as that returned by the 
DateCString function using a mode of 2. The date is followed by a space, and the time is in the same 
format as that returned by the TimeCString function using a mode of 0. As an example, this function 
might return Tuesday, Dec 22, 1992 5:30. On the SPARCstation, this function accounts for international 
conventions for representing dates.

Parameter Type Description
secs uInt32 Seconds since the January 1, 1904, 12:00 AM, GMT.

returns The date and time as a C string.

DateCString

syntax CStr DateCString(secs, fmt);

Note: This function was formerly called DateString.

DateCString returns a pointer to a string representing the date corresponding to t seconds after 
January 1, 1904, 12:00 AM, GMT. On the SPARCstation, this function accounts for international 
conventions for representing dates.

Parameter Type Description
secs uInt32 Seconds since January 1, 1904, 12:00 AM, GMT.
fmt int32 Code describing the format for the returned string.

This parameter determines the format of the returned 
date string and can have the following values.

Fmt Meaning

0 Return the date in short date format, mm/dd/yy, where 
mm is a number between 1 and 12 representing the 
current month, dd is the current day of the month (1 
through 31), and yy is the last two digits of the 



corresponding year. An example is 12/31/92.
1 Return the date in long date format, dayName, 

MonthName, DayOfMonth, LongYear. An example is 
Thursday, December 31, 1992.

2 Return the date in abbreviated date format, 
AbbrevDayName, AbbrevMonthName, DayOfMonth, 
LongYear. An example is Thu, Dec 31, 1992.

returns The date as a C string.

DateToSecs

syntax uInt32 DateToSecs(dateRecordP);

DateToSecs converts from a time described using the DateRec data structure to the number of seconds 
since January 1, 1904, 12:00 AM, GMT.

Parameter Type Description
dateRecordP DateRec * Pointer to a DateRec structure. DateToSecs stores the 

converted date in the fields of the date structure referred 
to by dateRecordP.
See the Pointers as Parameters section of Chapter 1, 
CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

returns The corresponding number of seconds since January 1, 1904, 12:00 AM, GMT.

MilliSecs

syntax uInt32 MilliSecs();

returns The time since an undefined system time in milliseconds. The actual resolution of this 
timer is system dependent.

SecsToDate

syntax void SecsToDate(secs, dateRecordP);

SecsToDate converts the seconds since January 1, 1904, 12:00 AM, GMT into a data structure 
containing numerical information about the date, including the year (1904 through 2040), the month (1 
through 12), the day as it corresponds to the current year (1 through 366), month (1 through 31), and 
week (1 through 31), hour (0 through 23), the hour (0 through 23), minute (0 through 59), and second (0 
through 59) of that day, and a value indicating whether the time specified uses daylight savings time.

Parameter Type Description
secs uInt32 Seconds since January 1, 1904, 12:00 AM, GMT.
dateRecordP DateRec * Pointer to a DateRec structure. SecsToDate stores the 

converted date in the fields of the date structure referred 
to by dateRecordP.
See the Pointers as Parameters section of Chapter 1, 



CIN Overview, in the Code Interface Reference Manual 
for more information about using this parameter.

TimeCString

syntax CStr TimeCString(secs, fmt);

Note: This function was formerly called TimeString.

TimeCString returns a pointer to a string representing the time of day corresponding to t seconds after 
January 1, 1904, 12:00 AM, GMT. On the SPARCstation, this function accounts for international 
conventions for representing dates.

Parameter Type Description
secs uInt32 Seconds since January 1, 1904, 12:00 AM, GMT.
fmt int32 Code describing the format for the returned string.

The parameter fmt determines the format of the returned 
time string and can have the following values.

Fmt Meaning

0 Return the time in the format hh:mm. The first value, 
hh, represents the hour (0 through 23, with 0 as 
midnight), and the second value, mm, represents the 
minute (0 through 59).

1 Return the time in the format hh:mm:ss. The first value, 
hh, represents the hour, the second value, mm, 
represents the minute (0 through 59), and the third 
value, ss, represents the second (0 through 59).

returns The time as a C string.

TimeInSecs

syntax uInt32 TimeInSecs();

returns The current date and time in seconds relative to January 1, 1904, 12:00M AM, Greenwich 
mean time (GMT).

 



CIN Function Overview

This topic includes an overview of CIN functions. For specific function information, see the following 
topics:

Memory Manager Functions 
File Manager Functions 
Support Manager Functions 

Included with Code Interface Nodes (CINs) are a large set of external functions you can use to perform 
simple and complex operations. These functions organized into libraries called managers, range from 
low-level byte manipulation to routines for sorting data and managing memory. All CIN manager routines 
are platform-independent. If you use these routines, you can create CINs that will work on all platforms 
that LabVIEW supports.

The CIN managers include routines for memory, file, and support.

The memory manager routines can dynamically allocate, manipulate, and release memory.

The file manager routines include operations for creating, opening, and closing files, writing data to files, 
and reading data from files.    In addition, file manager routines allow you to create directories, determine 
characteristics of files and directories, and copy files. 

The support manager contains functions for bit or byte manipulation of data, string manipulation, 
mathematical operations, sorting, searching, and determining the current time and date.

For more general information on all the manager routines, refer to Chapter 5, Manager Overview, of the 
Code Interface Reference Manual.

 




