Chapter 10

Introduction to programming

Contents
Getting Startedcoceevvevierinieeeeeee e 10-2
Creating, saving, and running a programccecceeeeeennee 10-3
The programiming MeNU.........cocceeeveeeveeereenreerneessrerseennees 104
Algebraic and RPN modescocceoerveninieninsiininiencceee 10-5
Using functions that require argumentsc.......... 10-5
Handling data.........ccceeeeeieeiiiennieniienieeeenteereesieeeesee e 10-6
INPUL data.....cccovueeieiiieee e 10-6
(0101503017 21 - RS 10-6
How a program flOWSccoeceeevueeiieniienneenieniesiecieeneens 10-6
Nested procedures.........co.coveeiererneeneeneeneneeneseesesseees 10-7
Working with variables........ccccecevvieniierneinnieniienieceeneenne 10-8
Using local variablesccocceeveervierrinnieniieeneenseeseeaees 10-8
Setting variables.........ccccoieverieneninnineceeere e 10-8

Setting a local variable to the result of a calculation. 10-10

Using global variablesccoccovverneeniiennieenneenienneennns 10-11
EXaMPIEcooiiiiiiiiiiiieeeteeteee e 10-11
Looping and branching........c..cceecueevveeveernernveenseenseenieennnn. 10-13
Comparison functions..........ccceeveeeeeeeeecieeeciieecee e, 10-13
Conditional and looping structures............cceccecveeueenee. 10-13
EXample ... 10-14
TrapPING EITOTS ..covviirieiiienierreeeitrieerte st e seesreeseeeseeseees 10-15
EXAMPIE ...coeiiiiiiiiieieeeeteeteeee e 10-16

Introduction to programming Page 10-1

=)
=
o
Q.
c
0O
=7,
o
=
=
5]
e
=}
o
Q
o1}
=
3.
3
)

[=2}
£
£
£
g
D
e
[« %
o
e
=
S
Lt
[&]
3
o
g
£

Introduction

This chapter describes how to create and run programs on the HP 49G.
The HP 49G has a rich programming environment. Programs can range in
complexity from a simple task such as performing a sequence of
arithmetic operations, to a complex process that requests input, performs
extensive processing, and outputs results in a graphical format.

This chapter focuses on creating and running programs in algebraic mode
only. See the Advanced User’s Guide for information on creating and
using programs in RPN mode. See the Pocket Guide for details of the
programming commands that are available.

Getting started

This section contains an example of how to create a simple program to
calculate the hypotenuse of a right-angle triangle, using Pythagoras’
theorem. When you start the program, you supply the known side lengths
as arguments.

This program is an example of a simple algebraic calculation using the
arguments that you specify. Within the program, the calculation is
enclosed in single quotes ((©)()) to delimit it as an algebraic object. If you
need to do extensive processing involving looping and branching, you use
anested procedure ((©)>)) to delimit the procedure from the arguments.

The program does the following:

e [t collects the known side lengths as arguments and stores them as
local variables, that is, variables that exist only while the program is
running.

e [t uses the variables to calculate the length of the hypotenuse, and
returns the result to the history.

Create the program as follows:

1. Put the program delimiters on the command line.

«»

2. Define the two local variables to accept the arguments for the side
length.

ALPHA) A (SPC) (ALPHY B (SPO) « - AB»

Page 10-2 Introduction to programming

3. Define the equation to calculate the hypotenuse.

Note that you need to use () to enclose the equation and separate it
from the definition of the arguments.

CO®EEO AP AYY2
APHOB (792 « - AB' (A"2+B"2)'»

4. Move the cursor out of the program and specify that you want to store
the program as “PYTH”.

@ @ETOn AP APHPYTH « —AB' (A*2+B"2) » » PYTH

5. Press (ENTER) to store the program.

ENTER
When you run the program, you specify the lengths of the sides as
arguments to the program. For example, to run the program to calculate
the hypotenuse of a right angle triangle with sides of 3 and 4 units:
1. Display a list of the variables in the directory.

VAR
2. Press the function key that corresponds to your program. The program

name is inserted on the command line. Press to insert
parentheses after the program name.

3. Enter your arguments, separated by a (©)(5), between the parentheses.
3@)4
4. Press (ENTER) to calculate the hypotenuse.
ENTER

The result is returned to history.

Creating, saving, and running a program

A program is an object that you can store in a variable. That is, you create
a program, assign it a name and save it in a directory.

e To create a program, press (°)(>). The program delimiters appear on
the command line ready for you to enter code, and the PRG
annunciator appears at the top of the screen to indicate that you are in
program mode.

5
=
o
Q.
c
0O
=7,
o
=
=
5]

e
=}
o

Q
o1}
=
3.
3

)

Use the keyboard functions and keys, and select commands from the
programming menu, to create your program. As you select function
keys and operator keys, the functions and operations appear in your
program.

Introduction to programming Page 10-3

Use ; to separate functions and calculations within a nested procedure.
To enter ;, press and hold down (), and press (SPC).

For readability, you can use to add line breaks.
For details on editing a program—for example cutting, copying, and
pasting code—see See “Editing the command line” on page 2-13.
¢ To save your program:
a. Press to move the cursor past the end of the program.
b. Press to insert the ¥ symbol after the program.
c. Enter a name for the program, and press ENTER).
e To run a program:

a. Access the directory where the program resides and either enter
the program name on the command line, or press and select it
from the function-key menu.

The program name should now be on the command line.
b. Press to insert parentheses after the program name.
c. Enter the argument or arguments separated by a ()(5), and press

ENTER).

The programming menu

The programming menu contains the commands you can use in a
program. Select a category to display the available commands in that
category. From the menu, you select commands to include in your
program. The programming menu is a typing aid only. You need to know
the syntax of the commands, and how to use them in your program. See
the pocket guide for details of programming commands and their syntax.

Examining the programming menu is a good way to get an idea of the
types of programming operations that are available on the HP 49G.

To display the programming menu, press (<) (PRG).

[=2}
£
£
£
g
D
e
[« %
o
e
=
S
Lt
[&]
3
o
g
£

Page 10-4 Introduction to programming

Algebraic and RPN modes

In RPN mode, the HP 49G makes extensive use of the stack. When
developing programs in RPN mode, you use the stack to:

e provide the data that your program uses
e construct the commands that your program uses

¢ hold the output that your program generates.

In algebraic mode, the stack is not available. You use other methods to
build your program and to pass data to it.

Using functions that require arguments

When using a function that requires arguments:
e In RPN mode, you place the arguments on the stack before calling the
function.

e [In algebraic mode, you supply the arguments, enclosed in parentheses,
after the function call.

For example, you can use the INPUT command to prompt for data. The
following code segments demonstrate how to use the INPUT command to
collect data in both RPN and algebraic modes.

¢ In RPN mode, the following code segment prompts for input, collects
the data as a string and converts it to a number. At the end of the
process, the data is on level 1 of the stack:

«"ENTER A NUMBER"

INPUT
OBJ-> »

e In Algebraic mode, the following code segment performs the same
operation. At the end of this process, the data is stored in a global
variable, NUM1, ready for use in the program.

Note that, since you are using a global rather than a local variable, you
can follow the variable declaration with a function.

« INPUT ("ENTER A NUMBER",") NUMZ,;

OBJ- (NUM1) b NUML1 »

=
=
(]
(o
=)
o
(=,
o
3
o
]
©
=
(]
LE
[
E
3
>
(=}

Introduction to programming Page 10-5

[=2}
£
£
£
g
D
e
[« %
o
e
=
S
Lt
[&]
3
o
g
£

Handling data

This section briefly describes how you can supply data to your programs,
and how you can output data that your programs produce.

Input data

You can use one of the following methods to specify the data that you
want your program to use:

e as arguments when you run the program
e as variables that you create in memory before you run the program

¢ Dby prompting for input as the program runs.

— See "Using functions that require arguments” on page 10-5 for an
example of using the INPUT function to prompt for data.

— When you use a function such as INPUT to collect numeric data
while the program runs, the data is returned as a string. You need to
convert it to a number using a function such as OBJ .

Output data

Data that is output in algebraic mode is written to the history. Note the
following points regarding output:

e When the program completes, the history displays the last output only.
This is displayed at level 1. To retain outputs created during
processing, you can write the output to a global variable or variables as
the program progresses. This method gives you the flexibility to format
the output, and to add comments to improve clarity.

¢ Some functions return multiple values. For these functions, values are
written to a list. Unless you output to a variable, the list appears on the
history.

How a program flows

HP 49G programs have one entrance point—at the beginning of the
program—and one exit point—at the end of the program. There is no
command such as GOTO that you can use to jump to a point within a
program. Within a program, you use looping and branching structures
suchas| F THEN to control the order of operations. See "Conditional and
looping structures” on page 10-13 for details.

Page 10-6 Introduction to programming

You can run other programs from within your programs. In this manner,
you can create modular programs. For example, you could create three
discrete component programs named INPUT, PROCESSING, and
OUTPUT. You could then create a master program that runs each of these
components in turn, as follows:

« INPUT PROCESSING OUTPUT »

Nested procedures

If you use local variables to collect input arguments, you need to use
nested procedures if you want to perform branching and looping. You
cannot perform branching and looping from within an algebraic object.

To insert a new nested procedure in your code, press to insert the
delimiters. Enter the procedure code between the delimiters.

For example, in the following programming segment, the input arguments
are assigned to variables A and B. The algebraic object, a calculation that
adds the variables, needs to be enclosed in single quotes as it immediately
follows the local variable definition. This example returns the sum of A
and B to the history.

« - AB'A+B'»

In the following programming segment you use a nested procedure, as the
processing involves more than a simple calculation. This example
compares A and B, and carries out calculations based on the comparison.
The results of the calculations are stored in global variables C and D.

« - AB
«|IF A>B
THEN A-B » C; A"2-B"2 » D
ELSEB-A »C
END

»

»

5
=
o
Q.
c
0O
=7,
o
=
=
5]

e
=}
o

Q
o1}
=
3.
3

)

N
by :}’. Note that within a nested procedure, you need to use ; to
& separate calculations. To insert a ; character, press and hold
and press (©PC).

Introduction to programming Page 10-7

Working with variables

You use variables to hold data within your programs. There are two types
of variables within the HP 49G programming environment.

¢ You create local variables within your program. For example, local
variables hold the values set by the arguments you use when you call
the program.
A program can only access a local variable inside the nested procedure
where it was created, and any nested procedures that it contains.

® You can create global variables in a program or you can use existing
global variables. See chapter 7, “Storing objects” for details on how to
create global variables. Note the following points:
— Global variables are available anywhere within a program.
— Toremove a global variable using code, use the PURGE command.

— Ifyou use global variables in your program, they must be located in
the same directory, or higher, as the program.

Using local variables

There are some constraints with local variables that you need to be aware
of. These are as follows:

e Immediately after a local variable declaration, the program code must
contain either:

— an algebraic calculation enclosed in single quotes
— anested procedure enclosed by « » .

¢ Alocal variable is available in the nested procedure where it was
created, and all nested procedures that it contains.

¢ You can create a local variable with the same name as an existing
global variable (that is, a variable in the same directory or higher as the
program). Commands that use the variable name will use the local
variable value rather than the global variable value.

Setting variables

You generally set variables to inputs or to the results of processes and
calculations that your program performs. You can use local variables to
store intermediate results that you want to re-use in subsequent nested
procedures within your program. Use global variables to store data for
wider access.

[=2}
£
£
£
g
D
e
[« %
o
e
=
S
Lt
[&]
3
o
g
£

Page 10-8 Introduction to programming

Setting local variables to hold input arguments

1. On the command line, position the cursor immediately to the right of
the opening « symbol.
2. Press to insert the — symbol.

3. Enter a local variable name for each input argument your program
uses, separating each with a (SPC).

For example, if your program uses two arguments, and you want to set the
value of these arguments to local variables A and B, the beginning of your
program would appear as follows:

ALPHA) A SPC) ALPHY B
« - AB

Setting a local variable to a value

After the value, press to insert the -+ symbol, and enter the local
variable name.

For example, to set local variable G to hold 9.81, the acceleration of
gravity, you create the variable as follows:

9.81O)E) WM G
« 9.81 5> G»

The following example:
e accepts an input argument
e creates the local variable G
e multiplies it by the argument, and places the result on the history.
« - A
«981L - G
« A*G »
»
»
In the following example, the A*G calculation does not recognize the

local variable G as 9.81, as it is outside the nested procedure where the
variable was declared. The A+Gcalculation recognizes G as 9.81

« - A
«9.81 - G'A+G'»
A*G

»

=)
=
o
Q.
c
0O
=7,
o
=
=
5]
e
=}
o
Q
o1}
=
3.
3
)

Introduction to programming Page 10-9

[=2}
£
£
£
g
D
e
[« %
o
S
=
S
S
[&]
3
o
g
£

Setting a local variable to the result of a calculation

The following program segment demonstrates how to set a local variable
to the result of a calculation, and to use the result in a subsequent
calculation. The program accepts two input arguments and uses these in
the calculations.

1. On the command line, insert the program delimiters and specify the
local variables to hold the input arguments.

ALPHA) A (SPC) (ALPHA) B (SPO)
« - AB

»

2. Start a new nested procedure and define the initial calculation.

APHDA (D APHYB
« - AB

« A+B

»
»

3. Store the results of the calculation to local variable C.

ALPHD C
« - AB

«A+B - C
»
»

4. Open a new nested procedure and enter a calculation that uses the
result of the initial calculation.

ALPHA) C(H) (%) () (O) ALPHH A (=) (ALPHY B

ALPHA)C
« - AB

«A+B - C
« C+ ./ (A-B)
»
»

»

Page 10-10 Introduction to programming

Using global variables
You can use existing global variables in your programs. Global variables
are different to local variables in the following ways:

¢ Global variables are available to the entire program, independent of
nested procedures.

e Unlike local variables, you can create more than one global variable in
a nested procedure.

Within a program, you use the key to define a global variable. The
key produces a P symbol on the command line.

Example

The following program demonstrates the use of a global variable to hold
the data a program uses, and to hold the output it produces. It performs
the following tasks:

e [t accepts an input argument and calculates its percentage of a value in
the global variable “TOTL”. You create TOTL before you run the
program.

e It stores the result into another global variable, “RESLT1”.
¢ It converts the numeric result to a string and adds “%” for readability.
To create the program, perform the following;:

1. Insert the program delimiters onto the command line and define the
input variable.

ALPHD) A
« - A

»

2. Create a new nested procedure.

« - A

«

»

=)
=
o
Q.
c
0O
=7,
o
=
=
5]
e
=}
o
Q
o1}
=
3.
3
)

»

Introduction to programming Page 10-11

3. Enter the percentage calculation.
(SO (APH) A () (ALPHA) (ALPHA TO TLALPHA) () (X) 100
« - A
« (A/ITOTL)*100

»

»

4. Store the results into the global variable “RESLT1”. Note that after the
calculation, you need to insert a ; to delimit the algebraic commands
(hold down () and press &0)).

ALPHA) (ALPHORESLT'1 (ALPHA
« - A
« (A/ITOTL)*100 P RESLTI1;

»

»

5. Add “%” and save the resulting string back into RESLT1. Note the

following:
e To insert the % symbol, use the Characters tool () CHARS)) or press
ALPHA) (1.

e When you add a string to a number, the resulting value is a string.
You do not need to convert the number.

(ALPHA) (ALPHORESLT 1 (ALPHA) () (") (5P0) () CHARS) % ENTER) (») (STO®) (ALPHA) (ALPHA)
RESLT1

« - A

« (AITOTL)*100 P RESLTL;

RESLT1+" %" P» RESLT1

»

»

Before you run this program, create a global variable named “TOTL” and
assign a number to it.

[=2}
£
£
£
g
D
e
[« %
o
e
=
S
S
[&]
3
o
g
£

Page 10-12 Introduction to programming

Looping and branching

This section introduces the use of conditional branching and looping
within a program. Conditional structures evaluate 0 as false, and any other
value as true.

Comparison functions

The HP 49G provides comparison functions that you can use in
conjunction with the conditional and looping structures. You access them
from the Programming Test menu. For example, to test A in relation to B,
use the following:

==B Returns true if A equals B.
AzB Returns true if A does not equal B.
A<B Returns true if A is less than B.
A>B Returns true if A is greater than B.
A<B Returns true if A is less than or equal to B.
A=>B Returns true if A is greater than or equal to B.

SAME(A, B) Returns true if A is exactly the same object as B.

Conditional and looping structures

The following conditional and looping commands are available:
e IF comparison THEN code END

If comparison evaluates to true, that is a non-zero value, runs code.
e IF comparison THEN code-1 ELSE code-2 END

If comparison evaluates to true, runs code- 1. If comparison evaluates
to false, code-2 is run.

e CASE expression-1 THEN code-1 END
expression-2 THEN code-2 END

expression-n THEN code-n END
END

Runs the code that corresponds to the first expression in the structure
that evaluates to true.

5
=
o
Q.
c
0O
=7,
o
=
=
5]

e
=}
o

Q
o1}
=
3.
3

)

Introduction to programming Page 10-13

[=2}
£
£
£
g
D
e
[« %
o
e
=
S
Lt
[&]
3
o
g
£

START (start, end) code NEXT

Runs code, increments start. Repeats until start > end. The code is
always run at least once.

START (start, end) code STEP (incr)

Runs code, increments start by the number specified by incr. (incr can
be an expression.) Repeats until start > end. The code is always run at
least once.

FOR (var, start, end) code NEXT

Runs code, sets var to start. Increments var, and repeats until var >
end. This is similar to START... NEXT except that you can use var in
your code.

FOR (var, start, end) code STEP (incr)

Runs code, increments var by the number specified by incr. (incr can
be an expression.) Repeats until start > end. This is similar to START
... STEP except that you can use var in your code.

DO code UNTIL comparison END

Runs code, then tests to see if comparison evaluates to true. Ends if it
does. Repeats code if it does not. The code is always run at least once.
WHILE comparison REPEAT code END

Checks if comparison evaluates to true. Runs code if it does. Repeats
until test returns false. This is similar to DO ... UNTIL except that code
is not run if comparison evaluates to false the first time.

Example

The following example processes a list of numeric values that is stored in
a variable named MARKS. It performs the following:

It determines the number of elements in the list.
For each element in the list, the program compares the element to the
pass value:

a. Ifthe element is greater than or equal to the pass value, inserts
“Pass” after the value.

b. If the element is less than the pass mark, inserts “Fail” after the
value. Note that this converts the value to a string.

It replaces the original value with the string.

Page 10-14 Introduction to programming

« @ Local variable S is used
@ to store the step number.
@ Step from 1 to the size of the list.
FOR(S,1,SIZE(MARKS))
@ Extracts the element from the list
GET(MARKS,S) - E
@ Compares it to the pass mark, amends and
@ replaces with the new value.
«IFE =50 THEN
E+"Pass" p E
ELSE
E+" Fail" b E
END ;
REPL(MARKS,S{E}) MARKS
»

NEXT

»

Trapping errors

By default, a program halts when it encounters an error. If you want
sections of your program to deal with errors rather than halt the program,
you need to include the sections inside error trapping structures. You can
then specify actions to take when your program encounters errors, rather
than halting the program. The following error trapping structures are
available.

e JFERR code THEN error-code END

If the program encounters an error while it is running code, the remain-
ing code is skipped and error-code is run. If no errors are encountered
in code, error-code is not run.

e IFERR code THEN error-code ELSE noerror-code END

If the program encounters an error while it is running code, the remain-
ing code is skipped and error-code is run. If no errors are encountered
in code, noerror-code is run.

Introduction to programming Page 10-15

=3
=
(]
(o
=)
o
(=,
o
3
o
]
©
=
(]
LE
[
E
3
>
(=}

Example

The following example creates the list of marks used in the previous
example. If a non-numeric value is entered, the program prompts with an
error message. The program performs the following:

e It sets up aloop to collect 20 values.
e It prompts for an input value.
e [t tests the input to check if it is a number.

e [f the generates an error, the error is trapped, and an error message is
displayed to prompt for a numeric value.

«

@ Set numeric mode so that error trap works
SF(-3) ;

@ Create an empty list

{} MIARKS ;

@ Set up a loop for 20 entries.

WHILE SIZE(MARKS)<20 REPEAT

@ Start error-checking routine.

IFERR INPUT("Enter a number","") - N
@ Attempt to convert the entry to a number.
@ This generates an error if non-numeric
«0OBJ -(N)+1-1 - N

@ If no error, append the entry to the list.

« MARKSHN b MARKS

»

»

THEN

@This appears if entry is non-numeric.
MSGBOX("INVALID ENTRY, TRY AGAIN")
END ;

END

»

[=2}
£
£
£
g
D
e
[« %
o
e
=
S
Lt
[&]
3
o
g
£

Page 10-16 Introduction to programming

	Getting started
	Creating, saving, and running a program
	The programming menu

	Algebraic and RPN modes
	Using functions that require arguments

	Handling data
	Input data
	Output data

	How a program flows
	Nested procedures

	Working with variables
	Using local variables
	Setting variables
	Setting local variables to hold input arguments
	Setting a local variable to a value

	Setting a local variable to the result of a calculation
	Using global variables
	Example

	Looping and branching
	Comparison functions
	Conditional and looping structures
	Example

	Trapping errors
	Example

