={» J8

THE VIRTUAL TEXTURE
ENGINE

Texture Management on Permedia®3 & GLINT® R3

WHITE PAPER

Issue 1

©3Dlabs Inc. Ltd. 1999 — www.3dlabs.com 1

Proprietary Notice

The material in this document is the intellectual property of 3B/ubs. It is provided solely for
information. You may not reproduce this document in whole or in part by any means. While every
care has been taken in the preparation of this document, 3B/abs accepts no liability for any
consequences of its use. Our products are under continual improvement and we reserve the right to
change their specification without notice. 3D/zbs may not produce printed versions of each issue of
this document. The latest version will be available from the 3D/ub5 web site.

3DV/.bs products and technology are protected by a number of worldwide patents. Unlicensed use of
any information contained herein may infringe one or more of these patents and may violate the
appropriate patent laws and conventions.

3DV/ubs is the worldwide trading name of 3D/abs Inc. Lid.
3DV/ubs, GLINT and PERMEDIA are registered trademarks of 3D/zbs Inc. Led.

Microsoft, Windows and Direct3D are cither registered trademarks or trademarks of Microsoft Corp.
in the United States and/or other countries. OpenGL is a registered trademark of Silicon Graphics,
Inc. Macintosh and Power Macintosh are registered trademarks and QuickDraw is a trademark of
Apple Computer Inc. All other trademarks are acknowledged and recognized.

© Copyright 3D/abs Inc. Led. 1999. All rights reserved worldwide.

Email: info@3dlabs.com
Web: http://www.3dlabs.com

3D/ubs Lid. 3D/abs KK
Meadlake Place Shiroyama JT Mori Bldg
Thorpe Lea Road, Egham 16F
Surrey, TW20 8HE 40301 Toranomon
United ngdom Minato-ku, TOkyO, 105,
Tel: +44 (0) 1784 470555 Japan

Tel: +81-3-5403-4653

Fax: +44 (0) 1784 470699 Fax: +91-3-5403-4646

3D/245 Inc.
480 Portrero Avenue
Sunnyvale, CA 94086, United States
Tel: (408) 530-4700 Fax: (408) 530-4701

Overview

Permedia3 and GLINT R3 graphics processors have a hardware texture management system called the Virtual
Texture engine. The Virtual Texture engine gives the following application-level benefits:

* Smoother utilization of bus bandwidth to reduce application “stutter.”

* Reduces amount of physical on-card memory required to run texture-heavy applications.
* Enables more textures per scene for a given memoty size.

* Enables larger textures at greater color depths, up to 2048x2048 at 32-bit color.

* Enables mip-mapping on larger textures, up to 2048x2048 at 32-bit color.

Justification

The ability to handle large amounts of texture data is becoming very important for applications in multiple
vertical market segments. Although the total amount of textures used in a given application may be quite large,
many applications are structured so that only a small area of large texture is to be shown at full resolution. For
example when textures are used to produce a realistic flight simulation environment, only the textured terrain
close to the viewer has to show fine detail; terrain far from the viewer is textured using low resolution textutre
levels, since a pixel corresponding to these areas covers many texels at once. For many applications that use
large texture maps, the maximum amount of texture memory in use for any given viewpoint is bounded.

Applications take advantage of this fact by doing texture data management in software. While very important,
this technique can only be optimized so far. The ideal configuration is a graphics processor that manages
texture allocation in hardware and only loads the minimum amount of texture data necessary for rendering.

By only loading the texels necessary for rendering, you get the following technology benefits:

* Use less bus bandwidth than schemes like traditional full texture allocation, AGP texture execute and
texture compression.

* Fully utilize all available on-card memory without any of the memory holes associated with allocation of
whole textures.

Virtual Texturing does exactly this and provides these technology benefits to the graphics sub-system. The end-
user and application benefits outlined in the introduction are derived directly from these technology benefits.

How it works

The Virtual Texture engine is analogous to the instruction cache in your CPU. In an instruction cache, the CPU
maintains a logical to physical address mapping of program instructions. When the CPU has a miss in the L1
and L2 cache, it DMAs the requested block of instructions from system memory into these cache levels. With
Virtual Texturing, the principle is the same except that instead of instructions, it is fetching texture data, and
instead of L1 and L2 instruction caches, we have on-chip and on-board texture memory.

Virtual textuting creates a logical address space for texture memory that maps to physical locations on-chip, on-
card and in system memory. The maximum size for this logical address space s 256MB and is allocated in 4KB
pages. When a texel is required for rendering by the graphics core, the Virtual Texture engine does a table
lookup to see where the texture data is located. If the texture is not on-card, the Virtual Texture engine will
DMA the required page into on-card memory where it can be accessed at full pixel rates by the graphics core.

Since the Virtual Texture engine operates on 4KB logical pages instead of on whole textures, it allows both
optimization of bus bandwidth as well as full use of on-board texture memory.

Optimization of bus bandwidth

©3Dlabs Inc. Ltd. 1999 — www.3dlabs.com 3

The Virtual Texture engine only transfers texture data into on-card memory when it is needed. This is different
from traditional texture architectures that must load the entire texture onto the card before even the first texel
is rendered. The chart below illustrates how texture data is transferred across the bus in a fairly common case.

Texture Download (512x512 mip-mapped "reveal™)

1600
1400 Application stutters here

1200

Virtual Texturing loads texture data

1000 A smoothly for consistent frame rates g Standard Textures
800

600
400 /
200
0 L A

123456 7 8 910111213141516

Unit Time

Virtual Textures

Kbytes loaded onto card

Chart 1 — Texture download for a 512K texture being revealed from behind an occluding object.

A 512x512 texel, 32-bit, mip-mapped texture is revealed from behind an occluding object. In the traditional
case, the entire texture, including all mip-map levels, must be downloaded onto the card before the first stripe
of the “revealed” texture can be rendetred. This massive one-time hit leads to a significant drop in application
performance that would be perceived as a stutter in frame rate. In contrast, the Virtual Texture engine
downloads only the pages holding the cutrently visible texels from the currently blended mip-map levels. As
more of the texture is rendered, the Virtual Texture engine DMAs the texels in smoothly without
overwhelming the card bus. Also significant in this example is that since only the current mip-map levels are
being loaded, the Virtual Texturing method uses less on-card memory to render the exact same scene.

The next example demonstrates the maximum benefit case for the transfer of texture data. In this case there is
a 2Kx2K, 32-bit, mip-mapped texture applied to two sides of a Y corridor split. As the user approaches this
split, the texture becomes progtessively larger in the view, switching mip-map levels as it comes. In the
traditional case, over 21MB of texture data needs to be loaded onto the card before the texture can be drawn.
This leads to a delay in rendering so large that the application would become non-interactive. Also problematic,
ignoring bandwidth issues, is that it is highly unlikely that there is 21MB of free texture memory on the card,
even in 32MB configurations.

Virtual Texturing overcomes both of these problems. First, note that the Virtual Texture engine allows the
graphics processor to start rendeting after loading only 8KB of data for the first two mip-map levels. As the
split in the corridor comes closet, the appropriate mip-map levels are loaded on a per-pixel basis. The result is a
smooth utilization of the bus that prevents the application from stuttering. Second, the Virtual Texture engine
only needs to keep the current

©3Dlabs Inc. Ltd. 1999 — www.3dlabs.com 4

Texture Download (2K x 2K mip-mapped "travel down the hall towards it")

100000
Application stutters here
10000
° Virtual Texturing loads texture data smoothly for consistent
So frame rates
8w
5 3 1000
3 ‘é M Standard Textures
Bs 1 Virtual Textures
o=
g % 100
P
o)
¥4
10

Unit time

Chart 2 — Texture download for 2Kx2K mip-mapped texture on a Y in the corridor (note: log scale)

mip-map level in memory. This means that even at full resolution, the texture only takes up 16MB on-card as
compared to 21MB required by the traditional method.

Full utilization of on-board texture memory

Virtual Texturing provides further benefit by allowing all available on-card memoty to be allocated for texture
data. Traditional architectures require that textures placed in on-card memory be allocated in a contiguous
block. This means that even if the card has 512KB of free texture memory that is scattered around in the
“holes” between the currently allocated textures, a 512KB texture could not be loaded onto the card because
the memory is not all together. By using logical to physical address mapping, the Virtual Texture engine has full
random access to the texture data it needs in 4K pages. This allows texture data to be placed into whatever
memory is available, even if it is scattered around at different physical addresses.

Compatison to AGP Texture Execute

Another way to handle textures which don't fit into graphics memoty is to use AGP texturing (AGP execute).
In this case, system memory is used as texture memory and texels are fetched across AGP in 128-bit chunks as
needed. This allows easy application texture management - just keep all the textures in system memory.

Although this method is easy, application performance is still not optimal.

Bandwidth comparison:

Bus Peak Bandwidth
On-card Memory 2,000 MB/s

AGP 4x 1,066 MB/s

AGP 2x 533 MB/s
PCI-32 132MB/s

The on-card memory bus is much faster than even an AGP 2x bus, so rendering out of on-card memory is
required for maximum performance.

Even if the bandwidths were identical, the AGP bus and system memory bus need to be used for things other
than fetching texels:

* Program instructions (system memory to L2 and L1 cache)
* Polygon data (system memory and AGP)

©3Dlabs Inc. Ltd. 1999 — www.3dlabs.com 5

e Chip state data (system memory to AGP)

These other uses for the pathways inside the AGP chipset require that the full AGP bandwidth cannot be
allocated to transferring texture data. By interleaving 4K texture page reads with the normal AGP chipset
datastream and keeping often-used data on-card, the Virtual Texture engine creates an efficient dataflow that
keeps applications from stuttering.

Comparison to texture compression

One popular method for increasing available texture memory is through texture compression. Although texture
compression does allow for more textures in system memory and in on-card memory than traditional
uncompressed texture allocation, it still has three major drawbacks:

e Texture compression still allocates textures as whole-chunks, leaving gaps of wasted on-card memory.

e Texture compression still downloads texture as whole-objects, wasting bus bandwidth on texels that will
potentially not be used.

e Texture compression requites custom application support.

* Texture compression sacrifices image quality.

Virtual Texturing provides the best of both worlds by combining transparent application support with optimal
memory and bus utilization.

Application use of the Virtual Texture engine

Virtual Texturing is available for both OpenGL 1.x and Direct 3D 6.x. In both environments, the Virtual
Texturing engine operates transparently. OpenGL applications will automatically use it. Direct3D applications
will use it if they select the appropriate Direct3D texture storage mode.

OpenGL

OpenGL does not include a texture memory management interface. This means that OpenGL applications
cannot manage texture memory themselves, and that (without the Virtual Texture engine) the OpenGL ICD
has to do it. This is slower, much less efficient, and much less robust than hardware texture memory
management.

Direct3D

Virtual Texturing is also suppozrted in Direct3D. Developers who use Direct3D will be given the choice of
using Virtual Texturing, or managing texture memory themselves. Permedia3 and GLINT R3 support the AGP
execute mode and AGP 2x.

References

http://www.3dlabs.com/products/index.html — Permedia3 datasheet

©3Dlabs Inc. Ltd. 1999 — www.3dlabs.com 6

