
Contents
For additional assistance, contact Technical Support

Paradox overview

DLL reference

Paradox overview
The topics below provide step-by-step instructions for working with the Paradox DLL.

 General
 Tables
 Records and fields
 Indexing and searching
 BLOBs
 Multi-user support

Paradox overview
The topics below provide step-by-step instructions for working with the Paradox DLL.

 General
Using the Paradox engine
Specifications
Naming rules
Data types
Initialization
Maximum table and block size

 Tables
 Records and fields
 Indexing and searching
 BLOBs
 Multi-user support

Paradox overview
The topics below provide step-by-step instructions for working with the Paradox DLL.

 General
 Tables
Working with tables
Opening a table
Closing a table
Deleting a table
Other table operations
Table information operations

 Records and fields
 Indexing and searching
 BLOBs
 Multi-user support

Paradox overview
The topics below provide step-by-step instructions for working with the Paradox DLL.

 General
 Tables
 Records and fields
Working with records
Adding a record
Deleting records
Getting the number of the current record
Clearing a record
Working with fields
Reading field values
Writing field values

 Indexing and searching
 BLOBs
 Multi-user support

Paradox overview
The topics below provide step-by-step instructions for working with the Paradox DLL.

 General
 Tables
 Records and fields
 Indexing and searching
Indexing and searching
Kinds of indexes
creating indexes
maintaining indexes
deleting indexes
sort order
How searching works
Performing a search

 BLOBs
 Multi-user support

Paradox overview
The topics below provide step-by-step instructions for working with the Paradox DLL.

 General
 Tables
 Records and fields
 Indexing and searching
 BLOBs
Working with BLOBs
Displaying a graphic BLOB
Public and private BLOBs
Reading a memo BLOB
Reading a binary BLOB
Reading a graphic BLOB
Writing a memo BLOB
Writing a graphic BLOB
Writing a binary BLOB
Writing a binary BLOB from a file
Writing a binary BLOB to a file
Writing and reading the BLOB leader

 Multi-user support

Paradox overview
The topics below provide step-by-step instructions for working with the Paradox DLL.

 General
 Tables
 Records and fields
 Indexing and searching
 BLOBs
 Multi-user support
Sharing tables with multiple users
Locking
Types of locks
Automatic locks
Manual locks
Checking lock status
Going to a locked record
Managing concurrent operations
Managing security

Database DLL reference
 TB30PDX.DLL
 TB30DB3.DLL

Database DLL reference
 TB30PDX.DLL
Initialization and finalization functions
Table functions
Record functions
Field functions
BLOB functions
Key and index functions
Search functions
Password and security functions
Sharing and concurrency functions
Error messages

 TB30DB3.DLL

Database DLL reference
 TB30PDX.DLL
 TB30DB3.DLL
checkDBIndex()
closeAllDBFiles()
closeDBFile()
closeDBIndexFile()
createDBFieldTag()
createDBFile()
createDBIndexFile()
deleteDBFile()
deselectDBIndexFile()
findDBKey()
firstDBKey()
firstDBRecord()
freeDBFieldTag()
getDBDateFormat()
getDBErrorString()
getDBFieldCount()
getDBFieldName()
getDBFieldPrecision()
getDBFieldType()
getDBFieldValue()
getDBFieldWidth()
getDBFileName()
getDBIndexExpression()
getDBIndexFileName()
getDBKeyType()

getDBKeyValue()
getDBNavigateToDeleted()
getDBRecordCount()
getDBRecordDeleted()
getDBRecordNumber()
gotoDBRecord()
lastDBKey()
lastDBRecord()
nextDBKey()
nextDBRecord()
openDBFile()
openDBIndexFile()
packDBFile()
previousDBKey()
previousDBRecord()
reindexDBFile()
removeDBRecords()
selectDBFile()
selectDBIndexFile()
setDBDateFormat()
setDBFieldTag()
setDBFieldValue()
setDBNavigateToDeleted()
setDBRecordDeleted()
writeDBRecord()

Technical support contact information

Telephone support
Contact Asymetrix at the telephone numbers listed below for information on telephone support contracts.

Australia/Asia Pacific (61+3) 5255471

Europe (except France and
Germany), Middle East, Africa,
Russia

44-923-208-433

UK 0800-716-957 (freephone)

France 05-90-83-19 (freephone)

Germany 01-30-81-27-07 (freephone)

USA and rest of world 206-637-1600

Online services
Asymetrix provides complimentary support via fax, Asymetrix BBS, CompuServe, America Online, and Internet to
registered users. Technical support responds to online queries within 48 hours (Monday to Friday).

Technical support fax

Australia/Asia Pacific (61+3) 5255-482
Europe 44-923-208-419
USA 206-454-0672

Asymetrix BBS

Line 1 (1200-2400 baud/9600 baud, 206-451-1173

US Robotics HST mode)
Line 2 (9600-14,400 baud v.32bis) 206-451-8290

America Online

Find Asymetrix in the Industry Connection,
a subset of the Computing and Software area.

CompuServe

Windows Third Party Developer A forum, section 1 go asymetrix or go winapa
Multimedia Vendors forum, Section 15 go multiven
IBM Ultimedia Tools A forum, Section 5 go ultiatools

Internet

techsup@asymetrix.com
support@asymetrix.com

Initialization and finalization functions
TB30PDX.DLL

exitPX() Closes the Paradox environment

getPXMaxFiles() Gets the maximum number of file handles that can be
used by the Engine

getPXMaxFilesFromINI() Gets the maximum number of files from the WIN.INI file

getPXMaxLocks() Gets the maximum number of record locks that can be
used by the Engine

getPXMaxLocksFromINI() Gets the maximum number of locks from the WIN.INI file

getPXMaxTables() Gets the maximum number of Table handles that can be
used by the Engine

getPXMaxTablesFromINI() Gets the maximum number of tables from the WIN.INI
file

getPXSwapSize() Gets the internal swap buffer size

getPXSwapSizeFromINI() Gets the swap size from the WIN.INI file

getPXUserInfo() Gets user information from the WIN.INI file

initializePX() Initializes the Paradox Engine for concurrency operations

savePX() Saves swap buffer to disk

setPXINIMaxFiles() Sets the MaxFiles entry in the [Paradox Engine] section
of the WIN.INI file.

setPXINIMaxLocks() Sets the MaxLocks entry in the [Paradox Engine] section
of the WIN.INI file.

setPXINIMaxTables() Sets the MaxTables entry in the [Paradox Engine] section
of the WIN.INI file.

setPXINISwapSize() Sets the SwapSize entry in the [Paradox Engine] section
of the WIN.INI file.

setPXSortOrder() Sets the sort order

setPXTableCreateMode() Sets the mode for creating tables

setPXTableMaxSize() Sets the maximum block size for new tables

setPXUserInfo() Sets user information in the WIN.INI file

Table functions
TB30PDX.DLL

addPXTable() Copies records from one table to another

closePXTable() Closes a table

copyPXTable() Copies one table family to another

createPXTable() Creates a table

decryptPXTable() Decrypts a table

deletePXTable() Deletes a table family

doesPXTableExist() Tests if a table exists

emptyPXTable() Removes all records from a table. Fails if table is open or
preemptive locks exist that prevent a full lock

encryptPXTable() Encrypts a table. Fails if table is open or preemptive locks
exist that prevent a full lock

getPXErrorString() Gets the error message for an error number

getPXFieldCount() Returns the number of fields in a table

getPXKeyFieldCount() Returns the number of key fields in a table

getPXMaxLocks() Gets the maximum number of record locks per table

getPXMaxTables() Gets the maximum number of tables that can be open at
one time

getPXRecordCount() Gets the number of records in a table

openPXTable() Opens a table

packPXTable() Packs the database, and removes any space occupied
by deleted records.

renamePXTable() Changes the base name of a table family

setPXTableCreateMode() Sets the mode for creating tables

setPXTableMaxSize() Sets the maximum block size for new tables

upgradePXTable() Upgrades an older Paradox table (Paradox 3.5 or later) to
the latest table format

Record functions
TB30PDX.DLL

appendPXRecord() Adds an empty record to a table

deletePXRecord() Deletes the current record from a table

emptyPXRecord() Clears the current record of a table

firstPXRecord() Moves to the first record of a table

getPXRaw() Gets raw data from the current record of a table

getPXRawDataSize() Gets the size of the raw data in a record

getPXRecordNumber() Gets the current record number of a table

gotoPXRecord() Moves to a specified record of a table

insertPXRecord() Inserts an empty record into a table

lastPXRecord() Moves to the last record of a table

nextPXRecord() Moves to the next record of a table

previousPXRecord() Moves to the previous record of a table

setPXRaw() Writes raw data to the current record of a table

updatePXRecord() Updates the current record in a table

Field functions
TB30PDX.DLL

emptyPXField() Empties a field of the current record of a table

getPXFieldNames() Gets a list of field names in a table

getPXFieldType() Gets the field type for a field

getPXFieldValue() Gets the contents of a field in the current record of a table

setPXFieldValue() Sets the contents of a field in the current record of a table

BLOB functions
TB30PDX.DLL

clonePXBlob() Creates private BLOBs from public BLOBs in the current record

closePXBitmapWindow() Closes a bitmap window

closePXBlob() Closes a BLOB

dropPXBlob() Drops (releases) a BLOB from the current record of a table

freePXBlobMemory() Frees the global memory referenced by a BLOB handle

freePXGraphicBlob() Frees the GDI memory referenced by a bitmap handle

freePXGraphicBlobPalette() Frees the GDI memory referenced by the Windows color palette

getPXBitmapSize() Gets the size of a bitmap

getPXBlob() Reads data from a BLOB

getPXBlobQuick() Reads BLOB leader directly from the current record of a table

getPXBlobSize() Gets the size of a BLOB

getPXFileSize() Gets the size of a file for BLOB operations

getPXGraphicBlob() Returns a handle to a Windows bitmap

getPXGraphicBlobPalette() Returns a handle to the standard Windows color palette

getPXMemoBlob() Returns a memo BLOB as a ToolBook string

openPXBitmapWindow() Opens a child window for displaying a bitmap

openPXBlobRead() Opens a BLOB for reading operations

openPXBlobWrite() Opens a BLOB for writing operations

setPXBitmapWindowInfo() Sets display attributes for bitmap window

setPXBlob() Writes data to a BLOB

setPXBlobFromFile() Converts a file into BLOB format

setPXGraphicBlob() Copies a handle to a Windows bitmap into a graphic BLOB

setPXGraphicBlobFromFile() Converts a bitmap file into BLOB format

setPXMemoBlob() Copies a string into a memo BLOB

writePXBlobToFile() Writes a BLOB to a file

writePXGraphicBlobToFile() Writes a graphic BLOB as a bitmap file

Key and index functions
TB30PDX.DLL

addPXKey() Creates a primary or secondary index on a table

dropPXKey() Deletes a primary or secondary index

mapPXKey() Obtains a field handle for a composite or case-insensitive,
single-field index

queryPXKey() Gets information about an index

searchPXField() Searches a table on a specified field

searchPXKey() Searches a table for a key match

Search functions
TB30PDX.DLL

searchPXField() Searches a table on a specified field

searchPXKey() Searches a table for a key match

Password and security functions
TB30PDX.DLL

addPXPassword() Enters a password
decryptPXTable() Decrypts a table
deletePXPassword() Removes a password
encryptPXTable() Encrypts a table. Fails if table is open or

preemptive locks exist that prevent a full lock
isPXTableProtected() Tests if a table is encrypted

Sharing and concurrency functions
TB30PDX.DLL

getPXNetErrorUser() Reports the name of the user causing a locking error

getPXNetUserName() Obtains the name of a user

gotoPXNetRecordLock() Returns to a previously locked record

isPXNetRecordLocked() Determines if the current record has been locked

isPXNetTableChanged() Tests if a table has been changed

lockPXNetFile() Locks a file

lockPXNetRecord() Locks the current record of a table

lockPXNetTable() Locks a table

refreshPXNetTable() Resynchronizes a shared table

unlockPXNetFile() Unlocks a file

unlockPXNetRecord() Unlocks the current record of a table

unlockPXNetTable() Unlocks a table

Error messages
TB30PDX.DLL

1 Drive not ready
2 Directory not found
3 File is busy
4 File is locked
5 Could not find file
6 Table is corrupted
7 Primary index is corrupted
8 Primary index is out of date
9 Record is locked
10 Sharing violation
11 Sharing violation
12 No access to directory
13 Sort for index different from table
14 Single user but directory is shared
15 Multiple Paradox net files found
16 Directory is in use by Paradox 3.5
21 Insufficient password rights
22 Table is write-protected
30 Data type mismatch
31 Argument is out of range
33 Invalid argument
40 Not enough memory to complete operation
41 Not enough disk space to complete operation
50 Another user deleted record
51 Operations N/A for BLOB open mode
52 BLOB already open
53 Invalid offset into BLOB
54 Invalid size for BLOB
55 Another user modified BLOB
56 BLOB file corrupted
57 Cannot index on a BLOB
59 Invalid BLOB handle
60 Cannot search on a BLOB field
70 No more file handles available
72 No more table handles available
73 Invalid date given
74 Invalid field name
75 Invalid field handle
76 Invalid table handle
78 Engine not initialized

99 Table name is invalid
101 End of table
102 Start of table
103 No more record handles available
104 Invalid record handle
105 Operation on empty table
106 Invalid lock code
107 Engine not initialized with PXNetInit
108 Invalid file name
109 Invalid unlock
110 Invalid lock handle
111 Too many locks on table
112 Invalid sort order table
113 Invalid net type
114 Invalid directory name
115 Too many passwords specified
116 Invalid password
117 Buffer is too small for result
118 Table is busy
119 Table is locked
120 Table was not found
121 Secondary index was not found
122 Secondary index is corrupted
124 Disk is write-protected
125 Record too big
126 General system error
127 Not enough stack space to complete operation
128 Table is full
129 Not enough swap buffer space to complete operation
130 Table is SQL replica
131 Too many clients for the engine DLL
132 Exceeds limits specified in WIN.INI
133 No more slots for file handle remapping
134 Can't share Paradox net file -- is SHARE.EXE loaded?
135 Can't run engine in Windows real mode
136 Can't modify table opened on non-maintained secondary index
137 Timed out trying to achieve a lock
251 Unable to lock or unlock memory
252 Undefined error code
253 Too many items in list parameter

79 Previous fatal error, cannot proceed
81 Table structures are different
82 Engine already initialized
83 Unable to perform operation on open table
86 No more temporary names available
89 Record was not found
92 Table cannot be upgraded
93 Feature not available for tables older than Paradox 4.0
94 Table is indexed
95 Table is not indexed
96 Secondary index is out of date
97 Key violation
98 Could not login on network

254 Missing items in list parameter
255 Internal error no:
256 File I/O error
257 Invalid graphic BLOB format
258 Windows GDI failure
259 Invalid window handle
260 Invalid bitmap handle
261 BLOB window registration failed
262 BLOB window creation failed
263 Invalid BLOB window color
264 Invalid BLOB window display mode
265 Invalid BLOB window position/size
266 Unable to re-open table after dropPXKey
267 Invalid Entry in [Paradox Engine] section of WIN.INI

addPXKey()
TB30PDX.DLL

Engine Function PXKeyAdd()

Description Creates a primary or secondary index on a table

Syntax addPXKey(<table alias>,<field names>,<mode>)

Declaration INT addPXKey(STRING,STRING,INT)

Parameters <table alias> Alias for table to add key on.    Table must be open.

<field names> Comma-separated list of names of fields used to create key

<mode> Mode for creating index
0 Primary index (key)
1 Secondary index (maintained only when open)
2 Incremental Secondary index (maintained even if closed)

Returns 0 Successful operation
< 0 Error number

Example

--Add an index to table and open table on new index
fieldNumber = mapPXKey("myDatabase", "Last Name, First Name", "Last name
First", 1)
get addPXKey("myDatabase", "Last name First", 2)
get closePXTable("myDatabase") -- close on old index
get openPXTable("myDatabase", "c:\data\mydata.db", fieldNumber,savemode)

addPXPassword()
TB30PDX.DLL

Engine Function PXPswAdd()

Description Enters a password

Syntax addPXPassword(<password>)

Declaration INT addPXPassword(STRING)

Parameters <password> Password to use

Returns 0 Successful operation
< 0 Error number

Example

--enter password to encrypt table
get addPXPassword(text of field "Password")
if it >= 0

get openPXTable("myDatabase", "C:\data\mydb", 0, 0)
else

request "Incorrect password"
end

addPXTable()
TB30PDX.DLL

Engine Function PXTblAdd()

Description Adds records from one table to another

Syntax addPXTable(<source table>,<destination table>)

Declaration INT addPXTable(STRING,STRING)

Parameters <source table> Filename of source table providing records to add

<destination table> Filename of destination table

Returns 0 Successful operation
< 0 Error number

Example

--Merge the table specified in field "database" to the current database
get addPXTable("c:\data\newData.db", "c:\data\currData.db")
if it = 0

request "merge successful"
else

request getPXErrorString(it)
end

appendPXRecord()
TB30PDX.DLL

Engine Function PXRecAppend()

Description Adds a record to a table

Syntax appendPXRecord(<table alias>)

Declaration INT appendPXRecord(STRING)

Parameters <table alias> Alias of table to append record to

Returns 0 Successful operation
< 0 Error number

Example

--Add a new record to the database with the contents of the recordBuffer
if name of target = "add"

get appendPXRecord("myDatabase")
end

clonePXBlob()
TB30PDX.DLL

Engine Function PXBlobClone()

Description Creates private BLOBs from public BLOBs in the current record

Syntax clonePXBlob(<table alias>,<field name>)

Declaration INT clonePXBlob(STRING,STRING)

Parameters <table alias> Alias of table to use

<field name> Name of field from which to create BLOB

NULL Create private BLOBs from all BLOBs in record

Returns 0 Successful operation
< 0 Error number

Example

--Get a private copy of the BLOB to modify
--other users can view the public BLOB.

lockHandle = lockPXNetRecord("myDatabase")
if lockHandle >= 0

hBlobClone = clonePXBlob("myDatabase", "graphic")
if it < 0

request getPXErrorString(it)
break

end
get unlockPXNetRecord("myDatabase", lockHandle)

else
request getPXErrorString(lockHandle)

end

closePXBitmapWindow()
TB30PDX.DLL

Engine Function None

Description Closes a bitmap window and destroys the associated bitmap

Syntax closePXBitmapWindow(<window handle>)

Declaration INT closePXBitmapWindow(WORD)

Parameters <window handle> Window handle returned by openPXBitmapWindow()

Returns 0 Successful operation
< 0 Error number

Example

to handle closeBitmap
system hBMP,hPal,hWndBMP

-- When we're finished with the bitmap and the window:
-- close the window

get closePXBitmapWindow(hWndBMP)
-- free the Windows handle to the bitmap

get freePXGraphicBlob(hBMP)
-- ditto for the palette

get freePXGraphicBlobPalette(hPal)
end closeBitmap

closePXBlob()
TB30PDX.DLL

Engine Function PXBlobClose()

Description Closes a BLOB

Syntax closePXBlob(<BLOB handle>,<accept>)

Declaration INT closePXBlob(INT,INT)

Parameters <BLOB handle> Handle to BLOB to close

<accept> Accept or reject changes
0 Reject
1 Accept

Returns 0 Successful operation
< 0 Error number

Example

--Close the private BLOB and post the changes to the database
lockHandle = lockPXNetRecord("myDatabase")
if lockHandle >= 0

get closePXBlob(hModifiedBlob, 1)
get unlockPXNetRecord("myDatabase", lockHandle)

else
request getPXErrorString(lockHandle)

end

closePXTable()
TB30PDX.DLL

Engine Function PXTblClose()

Description Closes a table

Syntax closePXTable(<table alias>)

Declaration INT closePXTable(STRING)

Parameters <table alias> Alias of table to close

Returns 0 Successful operation

< 0 Error number

Example

get closePXTable("myTable")
if it < 0

request getPXErrorString(it)
end if

copyPXTable()
TB30PDX.DLL

Engine Function PXTblCopy()

Description Copies one table family to another

Syntax copyPXTable(<source table>,<destination table>)

Declaration INT copyPXTable(STRING,STRING)

Parameters <source table> Base name of source table family

<destination table> Base name of destination table family

Returns 0 Successful operation
< 0 Error number

Example

--Allow the user to install a local copy of the database
ask "Enter path for local database"
if it <> null

get copyPXTable("d:\data\netDB", it)
if it < 0

request getPXErrorString(it)
end

end

createPXTable()
TB30PDX.DLL

Engine Function PXTblCreate()

Description Creates a table

Syntax createPXTable(<table name>,<field names>,<field types>)

Declaration INT createPXTable(STRING,STRING,STRING)

Parameters <table name> Name of table (Engine assumes .DB extension.)

<field names> List of field names

<field types> List of field types

Returns 0 Successful operation
< 0 Error number

Example

--Create a database of CD names, artists, songs, and album covers
get createPXTable("c:\data\CDbase", "Title, artist, songs, cover", \
 "A25, A25, M40, G10")

decryptPXTable()
TB30PDX.DLL

Engine Function PXTblDecrypt()

Description Decrypts a table

Syntax decryptPXTable(<table file name>)

Declaration INT decryptPXTable(STRING)

Parameters <table file name> Name of the table file to decrypt

Returns 0 Successful operation
< 0 Error number

Example

--Remove password protection from file
get isPXTableProtected("c:\data\mydb")
if it = 1

get addPXPassword("rosebud") -- sent table password to engine
get decryptPXPassword("c:\data\mydb")

end

deletePXPassword()
TB30PDX.DLL

Engine Function PXPswDel()

Description Removes a password

Syntax deletePXPassword(<password>)

Declaration INT deletePXPassword(STRING)

Parameters <password> Password to delete

Returns 0 Successful operation
< 0 Error number

Example

--Remove password from system list
get deletePXPassword("rosebud")
if it < 0

request "Invalid password"
end

deletePXRecord()
TB30PDX.DLL

Engine Function PXRecDelete()

Description Deletes the current record from a table

Syntax deletePXRecord(<table alias>)

Declaration INT deletePXRecord(STRING)

Parameters <table alias> Alias of table from which to delete current record

Returns 0 Successful operation
< 0 Error number

Example

--Ask for confirmation to delete the current record
request "Do you really want to delete the current record?" with "OK" or
"Cancel"
if it = "OK"

get deletePXRecord("myDatabase")
end

deletePXTable()
TB30PDX.DLL

Engine Function PXTblDelete()

Description Deletes a table family

Syntax deletePXTable(<table file name>)

Declaration INT deletePXTable(STRING)

Parameters <table file name> File name of table family to delete*

*The engine does not check whether the file is a valid Paradox file before it deletes it.

Returns 0 Successful operation
< 0 Error number

Example

--Delete database
request "do you really want to delete the whole database?" with "OK" or\
 "Cancel"
if it = OK

get deletePXTable("c:\data\CDBase")
end

doesPXTableExist()
TB30PDX.DLL

Engine Function PXTblExist()

Description Tests if a table exists

Syntax doesPXTableExist(<table name>)

Declaration INT doesPXTableExist(STRING)

Parameters <table name> File name of table to look for

Returns 1 Table exists
0 Table does not exist
< 0 Error number

Example

--Check to see if a table exists before copying to the name
get doesPXTableExist("c:\data\myData")
if it = 1

request "Table already exists"
else

copyPXTable("n:\data\shared", "c:\data\myData")
end

dropPXBlob()
TB30PDX.DLL

Engine Function PXBlobDrop()

Description Drops (releases) a BLOB from the current record of a table

Syntax dropPXBlob(<table alias>,<field name>)

Declaration INT dropPXBlob(STRING,STRING)

Parameters <table alias> Alias of table to use

<field name> Name of BLOB field to release

Returns 0 Successful operation
< 0 Error number

Example

--Delete the memo BLOB "summaryText" from the current record
get dropPXBlob("myDatabase", "summaryText")
if it < 0

request PXErrorString(it)
end

dropPXKey()
TB30PDX.DLL

Engine Function PXKeyDrop()

Description Deletes a primary or secondary index

Syntax dropPXKey(<table alias>,<field name>,<index ID>)

Declaration INT dropPXKey(STRING,STRING,WORD)

Parameters <table alias> Alias of table to use

<field name> Field name of key for case-sensitive, single-field, secondary index
only    otherwise leave null

<index ID> Handle of index to delete (if field name is not provided)

If you delete the primary index, all secondary indexes are deleted also.

Returns 1 Deleted primary index, re-opened the table unindexed
2 Deleted index the table was open on; re-opened the table on the primary index
< 0 Error number

emptyPXField()
TB30PDX.DLL

Engine Function None

Description Empties a field of the current record of a table. Changes do not take effect in the table until
updatePXRecord() is used.

Syntax emptyPXField(<table alias>,<field name>)

Declaration INT emptyPXField(STRING,STRING)

Parameters <table alias> Alias of table to use

<field name> Name of field to set to blank

Returns 0 Successful operation
< 0 Error number

Example

--Clear the data from field "date" for all records in the database
get firstPXRecord("myDatabase")
get emptyPXfield("myDatabase", "date")
while nextPXRecord("myDatabase") >= 0

get emptyPXField("myDatabase", "date")
end

emptyPXRecord()
TB30PDX.DLL

Engine Function PXRecBufEmpty()

Description Clears the buffer for current record of a table. The record in the table is changed when
updatePXRecord(), insertPXRecord(), or appendPXRecord() is used.

Syntax emptyPXRecord(<table alias>)

Declaration INT emptyPXRecord(STRING)

Parameters <table alias> Alias of table that contains the record

Returns 0 Successful operation
< 0 Error number

Example

--Create an empty record in the database
get emptyPXRecord("myDatabase")
get appendPXRecord("myDatabase")

emptyPXTable()
TB30PDX.DLL

Engine Function PXTblEmpty()

Description Removes all records from a table. Fails if table is open or preemptive locks exist that prevent
a full lock.

Syntax emptyPXTable(<table file name>)

Declaration INT emptyPXTable(STRING)

Parameters <table file name> File name of table from which to remove records

Returns 0 Successful operation
< 0 Error number

Example

--Start over again on this table
get emptyPXTable("c:\data\myData")
if it = 0

request "ready to start again"
else

request getPXErrorString(it)
end

encryptPXTable()
TB30PDX.DLL

Engine Function PXTblEncrypt()

Description Encrypts a table. Fails if table is open or preemptive locks exist that prevent a full lock.

Syntax encryptPXTable(<table file name>,<password>)

Declaration INT encryptPXTable(STRING,STRING)

Parameters <table file name> File name of table to encrypt

<password> Password to use

Returns 0 Successful operation
< 0 Error number

Example

-- Set master password for file
get encryptPXTable("c:\data\mydb", "rosebud")
-- pass password to table, then open table
if it >= 0

get addPXPassword("rosebud")
get openPXTable("myDatabase", "c:\data\mydb", 0,0)

else
request getPXErrorString(it)

end

exitPX()
TB30PDX.DLL

Engine Function PXExit()

Description Closes the Paradox environment

Syntax exitPX()

Declaration INT exitPX()

Parameters None

Returns 0 Successful operation
< 0 Error number

Example

--Close the table and exit the Paradox environment
get closePXTable("myDatabase")
get exitPX()

firstPXRecord()
TB30PDX.DLL

Engine Function PXRecFirst()

Description Moves to the first record of a table

Syntax firstPXRecord(<table alias>)

Declaration INT firstPXRecord(STRING)

Parameters <table alias> Alias of table to use

Returns 0 Successful operation
< 0 Error number

Example

--Navigate to the first record in the database and compare against \
--text in field "lastName"
get firstPXRecord("myDatabase")
if getPXFieldValue("myDatabase", "lastName") = text of field "lastName"

request "matches the first record"
else

request "values do not match"
end

freePXBlobMemory()
TB30PDX.DLL

Engine Function None

Description Frees the global memory referenced by a BLOB handle

Syntax freePXBlobMemory(<handle>)

Declaration INT freePXBlobMemory(WORD)

Parameters <handle> Handle to Windows global memory returned from getPXBlob()

Returns 0 Successful operation
< 0 Error number

Example

--Get 4 bytes of BLOB at offset 1024 and free it if the value is not correct
hBinaryData = getPXBlob(hBlob, 4, 1024)
pBinaryData = globalLock(hBinaryData) -- globalLock is linked from KERNEL
if pointerDWORD(0, pBinaryData) <> 97825378 -- example literal value

get globalUnlock(hBinaryData) -- globalUnlock is linked from KERNEL
get freePXBlobMemory(hBinaryData)

else ...

freePXGraphicBlob()
TB30PDX.DLL

Engine Function None

Description Frees the GDI memory referenced by a bitmap handle

Syntax freePXGraphicBlob(<hBitmap>)

Declaration INT freePXGraphicBlob(WORD)

Parameters <hBitmap> Bitmap handle returned by getPXGraphicBlob()

Returns 0 Successful operation
< 0 Error number

Example

--Release GDI system resources used by bitmap handle after the \
--window closes
get closePXBitmapWindow(hWND) --hWND is handle returned from

--openPXBitmapWindow()
get freePXGraphicBlob(hBitmap) --hBitmap is handle returned from

--getPXGraphicBlob()
if it < 0

request getPXErrorString(it)
end

freePXGraphicBlobPalette()
TB30PDX.DLL

Engine Function None

Description Frees the GDI memory referenced by the Windows color palette

Syntax freePXGraphicBlobPalette(<hPalette>)

Declaration INT freePXGraphicBlob(WORD)

Parameters <hPalette> Handle returned by getPXGraphicBlobPalette()

Returns 0 Successful operation
< 0 Error number

Example

--Free GDI system resourses used by the palette
--hPal is the palette handle returned from the \
--getPXGraphicBlobPalette() function
get freePXGraphicBlobPalette(hPal)
if it < 0

request "harmless internal error"
end

getPXBitmapSize()
TB30PDX.DLL

Engine Function None

Description Gets the size of a bitmap for graphic BLOB operations

Syntax getPXBitmapSize(<bitmap handle>)

Declaration LONG getPXBitmapSize(INT)

Parameters <bitmap handle> Handle to bitmap

Returns >= 0 Size of graphic BLOB in bytes
0 Error

Example

BMPSize = getPXBitmapSize(hBitmap)
hPXBMP = openPXBlobWrite("myTable","Picture",BMPSize,0)
if hPXBMP < 0

request getPXErrorString(it)
-- clean up Windows stuff
break

end if
get setPXGraphicBlob(hPXBMP,hBitmap)

getPXBlob()
TB30PDX.DLL

Engine Function PXBlobGet()

Description Reads data from a BLOB

Syntax getPXBlob(<BLOB handle>,<size>,<offset>)

Declaration LONG getPXBlob(INT,WORD,LONG)

Parameters <BLOB handle> Handle to BLOB from which to read data

<size> Size of BLOB in bytes (1 - 256mb)

<offset> Offset from start of BLOB to begin reading

Returns >= 0 Handle to Windows global memory
< 0 Error number

Example

--Read in WMF stored as BLOB and call user-defined \
--"put it on the Clipboard" function
hBlob = openPXBlobRead("myDatabase", "metafile")
if it >= 0

hMeta = getPXBlob(hBlob, getPXBlobSize(hBlob), 0)
if hMeta > 0

get placeOnClipboard(hMeta)
end
get closePXBlob(hBlob, 0)

end

getPXBlobQuick()
TB30PDX.DLL

Engine Function PXBlobQuickGet()

Description Reads BLOB leader directly from the current record of a table

Syntax getPXBlobQuick(<table alias>,<field name>,<size>)

Declaration LONG getPXBlobQuick(STRING,STRING,INT)

Parameters <table alias> Alias of table to use

<field name> Name of BLOB field

<size> Size of leader (0 - 240)

Returns >= 0 Handle to private BLOB
< 0 Error number

Example

--Get the original file name for BLOB from beginning of BLOB and pass \
--it to function to write it to the same file again.

hFileName = getPXBlobQuick("myDatabase", "binaryData", 13)
pFileName = globalLock(hFileName) -- globalLock is linked from KERNEL
get saveBlob(pointerString(0, pFileName)) -- user defined function
get globalUnlock(hFileName) -- globalLock is linked from KERNEL
get freePXBlobMemory(hFileName)

getPXBlobSize()
TB30PDX.DLL

Engine Function PXBlobGetSize()

Description Gets the size of a BLOB

Syntax getPXBlobSize(<BLOB handle>)

Declaration LONG getPXBlobSize(INT)

Parameters <BLOB handle> Handle to BLOB

Returns >= 0 Size of BLOB
< 0 Error number

Example

hBlob = openPXBlobRead("Bintest", "Binfield")
set bSize to getPXBlobSize(hBlob)
request bSize
hB = getPXBlob(hBlob,bSize, 0)
get closePXBlob(hBlob, 0)

getPXErrorString()
TB30PDX.DLL

Engine Function None

Description Gets the error message for an error number

Syntax getPXErrorString(<error number>)

Declaration STRING getPXErrorString(INT)

Parameters <error number> Error number returned from other DLL functions

Returns Error message for given error number

If an error occurs, NULL is returned and sysError is set to the error number

Example

--If an error occurs, request the error message for the user to see
get openPXTable("myDatabase", "C:\DATA\CUSTOMER.DB", 0, 0)
if it < 0

request getPXErrorString(it)
end

getPXFieldCount()
TB30PDX.DLL

Engine Function PXRecNFlds()

Description Returns the number of fields in a table

Syntax getPXFieldCount(<table alias>)

Declaration INT getPXFieldCount(STRING)

Parameters <table alias> Alias of table

Returns >= 0 Number of fields in table
< 0 Error number

Example

--Compare the number of fields in the database
--with the number of fields on the pages

dbFields = getPXFieldCount("myDatabase")
objList = objects of this page
step i from 1 to itemCount("objList")

pop objList
if object of it is "field"

decrement dbFields
end

end
if dbFields = 0

request "correct number of fields"
end

getPXFieldNames()
TB30PDX.DLL

Engine Function PXFldName()

Description Gets a list of field names in a table

Syntax getPXFieldNames(<table alias>)

Declaration STRING getPXFieldNames(STRING)

Parameters <table alias> Alias of table

Returns Comma-separated list of field names

If an error occurs, NULL is returned and sysError is set to the error number.

Example

fieldNames = getPXFieldNames("myDatabase")
step i from 1 to textlineCount(fieldNames)

put TAB&getPXFieldType("myDatabase", textline i of fieldNames)\
after textline i of fieldNames

end
request "The record format is"&CRLF&fieldNames

getPXFieldType()
TB30PDX.DLL

Engine Function PXFldType()

Description Gets the type for a field (as well as the length for an alphanumeric field and the width of a
BLOB field)

Syntax getPXFieldType(<table alias>,<field name>)

Declaration STRING getPXFieldType(STRING,STRING)

Parameters <table alias> Alias of table to use

<field name> Name of field of which to get type

Returns Field type using these codes:

Code Meaning Length Notes
Annn Alphanumeric nnn bytes <= 255, no ASCII zero

(embedded null)

D Date 4 (Julian format, start
date = Jan 1, 1 AD)

N Numeric 8 +/- 10^-307 to +/- 10^308
(15 significant digits)

S Short numeric 2 +/- 32,767

$ Numeric,
currency

8 +/- 10^-307 to +/- 10^308
(15 significant digits)

M Unformatted
memo BLOB

see BLOB topic

B Unformatted
binary BLOB

see BLOB topic

G Graphics
BLOB

see BLOB topic

If an error occurs, null is returned and sysError is set to the error number.

Example

--Check whether the field is a BLOB. If it is a BLOB \
--then call routine to get its value.
pxFieldType = getPXFieldType("myDatabase", fieldName)
if pxFieldType is in "M B F O G"

--call user defined handler to get BLOB value
get mygetBlobValue("myDatabase", fieldName, pxFieldType)

end

getPXFieldValue()
TB30PDX.DLL

Engine Functions: PXGetAlpha(), PXGetDate(), PXGetDouble(), PXGetLong(), PXGetShort()

Description Gets the contents of a field in the current record of a table

Syntax getPXFieldValue(<table alias>,<field name>)

Declaration STRING getPXFieldValue(STRING,STRING)

Parameters <table alias> Alias of table to use

<field name> Name of field of which to get contents

Returns Contents of given field from the current record of the given table.

If an error occurs, NULL is returned and sysError is set to the error number.

Example

--Get the name, age, and birthDate values from the current record and put
them
--into fields on the page
set text of field "name" to getPXFieldValue("myDatabase", "name")
set text of field "age" to getPXFieldValue("myDatabase", "age")
set text of field "birthdate" to getPXFieldValue("myDatabase", "birth date")

getPXFileSize()
TB30PDX.DLL

Engine Function None

Description Gets the size of a file for BLOB operations.

Syntax getPXFileSize(<file name>)

Declaration LONG getPXFileSize(STRING)

Parameters <file name> Name of file

Returns >= 0 Size of file in bytes

0 Error

Example

to handle buttonClick
-- find out how large the graphic BLOB will be

request getPXFileSize("arrow1.bmp") + 8
end

getPXGraphicBlob()
TB30PDX.DLL

Engine Function None

Description Returns a handle to a Windows bitmap

Syntax getPXGraphicBlob(<BLOB handle>)

Declaration LONG getPXGraphicBlob(INT)

Parameters <BLOB handle> Handle returned by openPXBlobRead() or
openPXBlobWrite()

Returns HBITMAP - handle to a Windows device dependent bitmap suitable to be selected into a
Device Context or put on the Clipboard.

Comments It is the caller's responsibility to free the bitmap handle.    This is done by calling
freePXGraphicBlob(), which will free the GDI memory taken by the BLOB.    Handles
placed on the Clipboard are managed by the Clipboard, and freeing them will cause errors.

Example

--Get handle to bitmapBlob and show it in a window
hBlob = openPXBlobRead("myDatabase", "BlobField")
if hBlob >= 0

hBitmap = getPXGraphicBlob(hBlob)
hWnd = openPXBitmapWindow(hBitmap, null, clientHandle of mainWindow, \
"0,0", 0, "")

end

getPXGraphicBlobPalette()
TB30PDX.DLL

Engine Function None

Description Returns a handle to the standard Windows color palette

Syntax getPXGraphicBlobPalette(<BLOB handle>)

Declaration LONG getPXGraphicBlobPalette(INT)

Parameters <BLOB handle> Handle returned by openPXBlobRead() or
openPXBlobWrite()

Returns Handle to the Windows palette for the graphic BLOB.

Comments The user is responsible for freeing the handle using freePXGraphicBlobPalette().
Handles placed on the Clipboard are managed by the Clipboard and freeing them will cause
errors.

Example

--Get handle to bitmap and handle to palette to put on Clipboard
hBlob = openPXBlobRead("myDatabase", "Graphic")
if hBlob >= 0

hBitmap = getPXGraphicBlob(hBlob)
hPalette = getPXGraphicBlobPalette(hBlob)

end

getPXKeyFieldCount()
TB30PDX.DLL

Engine Function PXKeyNFlds()

Description Returns the number of key fields in a table

Syntax getPXKeyFieldCount(<table alias>)

Declaration INT getPXKeyFieldCount(STRING)

Parameters <table alias> Aliasof table to use

Returns >= 0 Number of fields in primary key
< 0 Error number

Example

--Request the key fields in this database
get getPXKeyFieldCount("myDatabase")

getPXMaxFiles()
TB30PDX.DLL

Engine Function PXGetDefaults()

Description Gets the value the Engine is currently using for the maximum number of files that can be
used

Syntax getPXMaxFiles()

Declaration INT getPXMaxFiles()

Parameters None

Returns >= 0 Maximum file handles
< 0 Error number

Example

--Make sure there are enough file handles for the tables and indexes
--The number needed is stored as a user defined property of the book
if getPxMaxFiles() < numHandlesNeeded of this book

get setPXINIMaxFiles(numHandlesNeeded of this book)
if it < 0

request "Unable to allocate sufficient file handles for this
database"&CRLF\

"Please increase FILES = in config.sys"
end

end

getPXMaxLocks()
TB30PDX.DLL

Engine Function PXGetDefaults()

Description Gets the value the Engine is currently using for the maximum number of locks    that can be
used

Syntax getPXMaxLocks()

Declaration INT getPXMaxLocks()

Parameters None

Returns >= 0 Maximum locks
< 0 Error number

Example

--get the current INI setting
get getPXMaxLocksFromINI()

--If the current ini value is less than what I need then try to reset it.
if it < myExpectedValue

get setPXINIMaxLocks(myExpectedValue)
get initializePX(myTable) --somebody else has initialized the engine.
get getPXMaxLocks()
if it < myExpectedValue
--somebody else has linked the engine and I cannot set the maxlocks to

what I
--need so I will give error and exit

request "Unable to set number of locks. Please Exit all other
Paradox"&CRLF&"Engine applications and try again."

send exit
end

end

getPXMaxTables()
TB30PDX.DLL

Engine Function PXGetDefaults()

Description Gets the value the Engine is currently using for the maximum number of tables that can be
used

Syntax getPXMaxTables()

Declaration INT getPXMaxTables()

Parameters None

Returns >= 0 Maximum tables usable by engine
< 0 Error number

Example

--Check whether all of the tables in this database can be opened at once
--The number of tables in this database is stored as a user defined property
of the book
if getPXMaxTables() < numTables of this book

get setPXINIMaxTables(numTables of this book)
if it < 0

request "Unable to open all of the tables in this database"
end

end

getPXMemoBlob()
TB30PDX.DLL

Engine Function None

Description Returns a memo BLOB as a ToolBook string

Syntax getPXMemoBlob(<BLOB handle>)

Declaration STRING getPXMemoBlob(INT)

Parameters <BLOB handle> Handle returned by openPXBlobRead() or
openPXBlobWrite()

Returns A string if successful

If error, returns NULL and sets sysError to the error value

Example

--Get text of memo and put it into a field
hBlob = openPXBlobRead("myDatabase", "reviewText")
text of field "review" = getPXMemoBlob(hBlob)
get closePXBlob(hBlob, 0)

Comments Will return the whole BLOB if it is <= 64K bytes and return an error if the BLOB is > 64K
bytes.    Memo BLOBs > 64K bytes should be accessed by the getPXBlob() function and
the data taken out in chunks from the global memory buffer.

getPXNetErrorUser()
TB30PDX.DLL

Engine Function PXNetErrorUser()

Description Reports the name of the user causing a locking error

Syntax getPXNetErrorUser()

Declaration STRING getPXNetErrorUser()

Parameters None

Returns Name of network user causing locking error

If an error occurs, null is returned and sysError is set to the error number

Example

--Request the name of the user who has the record locked if a locking error
--occurs
get lockPXRecord("myDatabase")
if it = -9 -- record locked

request getPXNetErrorUser() && "has the record locked."
end

getPXNetUserName()
TB30PDX.DLL

Engine Function PXNetUserName()

Description Obtains the name of the user

Syntax getPXNetUserName()

Declaration STRING getPXNetUserName()

Parameters None

Returns Name of network user

If an error occurs, null is returned and sysError is set to the error number

Example

--Get the user name for this user to personalize the greeting
get getPXNetUserName()
if it <> null

request "Hello" && it & ", welcome to my database."
end

getPXRaw()
TB30PDX.DLL

Engine Function PXRawGet()

Description Gets raw data from the current record of a table

Syntax getPXRaw(<table alias>,<size>)

Declaration LONG getPXRaw(STRING,INT)

Parameters <table alias> Alias of table to use

<size> Size of the record structure in bytes.    Use
getPXRawDataSize() to get the size.

Returns >= 0 handle to raw data
< 0 Error number

Examples

--Save the contents of the current record for undo function
--sizeofData is calculated previously
hRawData = getPXRaw("myDatabase", sizeofData)
request "You may now change the contents of the record."

getPXRawDataSize()
TB30PDX.DLL

Engine Function None

Description Gets the raw data size for the current record of a table

Syntax getPXRawDataSize(<table alias>)

Declaration INT getPXRawDataSize(STRING)

Parameters <table alias> Alias of table to use

Returns >= 0 Size of raw data
< 0 Error number

Example

rSize = getPXRawDataSize("myTable")

getPXRecordCount()
TB30PDX.DLL

Engine Function PXTblNRecs()

Description Gets the number of records in a table

Syntax getPXRecordCount(<table alias>)

Declaration LONG getPXRecordCount(STRING)

Parameters <table alias> Alias of table to use

Returns >= 0 Number of records in given table
< 0 Error number

Example

--Get the number of records in the database and step through them \
--setting field "lastName" to 3
get firstPXRecord("myDatabase")
step i from 1 to getPXRecordCount("myDatabase")

get setPXFieldValue("myDatabase", "lastName", "3")
get nextPXRecord("myDatabase")

end

getPXRecordNumber()
TB30PDX.DLL

Engine Function PXRecNum()

Description Gets number of the current record in a table

Syntax getPXRecordNumber(<table alias>)

Declaration LONG getPXRecordNumber(STRING)

Parameters <table alias> Alias of table to use

Returns >= 0 Current record number in given table
< 0 Error number

Example

--Put the record number into the status box
get getPXRecordNumber("myDatabase")
if it >= 0

text of field "status" = "RECORD" && it && "out of" &&
getPXRecordCount("myDatabase")
end

getPXSortOrder()
TB30PDX.DLL

Engine Function PXGetDefaults()

Description Gets the default sort order character

Syntax getPXSortOrder()

Declaration STRING getPXSortOrder()

Parameters None

Returns Sort order character
a ASCII sort order
i International sort order
n Norwegian/Danish sort order
s Swedish/Finnish sort order
d Norwegian/Danish sort order for Paradox 4.0

If an error occurs, NULL is returned and sysError is set to the error number

Example

--Make sure sort order is international before opening table. The open\
--will fail if the sort orders don't match
if getPXSortOrder() is not "i"

get setPXSortOrder("i")
end
get openPXTable("myDatabase" "C:\data\accts", 0, 0)

getPXSwapSize()
TB30PDX.DLL

Engine Function PXGetDefaults()

Description Gets the internal swap buffer size

Syntax getPXSwapSize()

Declaration INT getPXSwapSize()

Parameters None

Returns >= 0 Size of swap buffer
< 0 Error number

Example

--Make sure swap buffer is 4K * number of tables (which is the \
--recommended minimum) The number of tables is stored as a user \
--defined property of the book
if getPXSwapSize() < 4*numTables of this book

get setPXINISwapSize(4*numTables of this book)
end

gotoPXNetRecordLock()
TB30PDX.DLL

Engine Function PXNetRecGotoLock()

Description Returns to a previously locked record

Syntax gotoPXNetRecordLock(<table alias>,<lock handle>)

Declaration INT gotoPXNetRecordLock(STRING,INT)

Parameters <table alias> Alias of table to use

<lock handle> Handle to previous record lock

Returns 0 Successful operation
< 0 Error number

Example

--Go back to the locked record. Cannot go back to it by number
--because somebody else could have deleted a record (which would
--change the numbers)
lockHandle = lockPXNetRecord("myDatabase")
send compareValues -- might navigate in the database
get gotoPXNetRecordLock("myDatabase", lockHandle)
get unlockPXNetRecord("myDatabase", lockHandle)

gotoPXRecord()
TB30PDX.DLL

Engine Function PXRecGoto()

Description Moves to a specified record of a table (in index order)

Syntax gotoPXRecord(<table alias>,<record number>)

Declaration INT gotoPXRecord(STRING,LONG)

Parameters <table alias> Alias of table to traverse

<record number> Number of record to move to

Returns 0 Successful operation
< 0 Error number

Example

--Ask the user which record to go to by number
ask "Enter the number of the record to go to."
if it <> null

get gotoPXRecord("myDatabase", it)
end

initializePX()
TB30PDX.DLL

Engine Function PXWinInit()

Description Initializes the Paradox engine for concurrent operations.    This function checks the
UserName, NetNamePath, NetType, ShareLocal, and PX35Locking parameters in the
WIN.INI file.    If values have not been set for them, it sets the default values.    (See
setPXUserInfo() for descriptions of these parameters.)

Syntax initializePX(<client name>)

Declaration INT initializePX(STRING)

Parameters <client name> Arbitrary name for client application. For example, you can use the
name of the current book.

Returns 0 Successful operation
< 0 Error number

Example

--Initialize the Paradox environment
get initializePX(name of this book)
if it < 0

request getPXErrorString(it)
end

insertPXRecord()
TB30PDX.DLL

Engine Function PXRecInsert()

Description Inserts an empty record into a table

Syntax insertPXRecord(<table alias>)

Declaration INT insertPXRecord(STRING)

Parameters <table alias> Alias of table into which to insert record

Returns 0 Successful operation
< 0 Error number

Example

--Insert record before the current record in a non-indexed table
ask "Enter record number to insert before."
if it <> null

get gotoPXRecord("myDatabase", it)
end
get insertPXRecord("myDatabase")

isPXNetRecordLocked()
TB30PDX.DLL

Engine Function PXNetRecLocked()

Description Determines if the current record has been locked

Syntax isPXNetRecordLocked(<table alias>)

Declaration INT isPXNetRecordLocked(STRING)

Parameters <table alias> Alias of table to use

Returns 1 Net record is locked
0 Net record is not locked
< 0 Error number

Example

--Check whether the record is locked before locking it
get isPXNetRecordLocked("myDatabase")
if it = 1

request getPXNetErrorUser()&& "has the record locked."
else

get lockPXRecord("myDatabase")
end

isPXNetTableChanged()
TB30PDX.DLL

Engine Function PXNetTblChanged()

Description Tests if a table has been changed

Syntax isPXNetTableChanged(<table alias>)

Declaration INT isPXNetTableChanged(STRING)

Parameters <table alias> Alias of table to test

Returns 1 Network table is changed
0 Network table is not changed
< 0 Error number

Example

--Check whether the table has been changed by another user \
--before updating
get isPXNetTableChanged("myDatabase")
if it = 0

get updatePXRecord("myDatabase")
end

isPXTableProtected()
TB30PDX.DLL

Engine Function PXTblProtected()

Description Tests if a table is encrypted

Syntax isPXTableProtected(<table file name>)

Declaration INT isPXTableProtected(STRING)

Parameters <table file name> File name of table to test

Returns 1 Table is protected
0 Table is not protected
< 0 Error number

Example

--Check whether the table is encrypted before asking for the password
get isPXTableProtected(text of field "table name")
if it = 1

ask "Enter table password"
if it <> null

get addPXPassword(it)
end

end

lastPXRecord()
TB30PDX.DLL

Engine Function PXRecLast()

Description Moves to the last record of a table

Syntax lastPXRecord(<table alias>)

Declaration INT lastPXRecord(STRING)

Parameters <table alias> Alias of table to use

Returns 0 Successful operation
< 0 Error number

Example
--Go to the last record in the table and get the value
--of the field "name"
get lastPXRecord("myDatabase")
if it >= 0

get getPXFieldValue("myDatabase", "name")
if it >= 0

request it
end

end

lockPXNetFile()
TB30PDX.DLL

Engine Function PXNetFileLock()

Description Locks a file

Syntax lockPXNetFile(<file name>,<lock type>)

Declaration INT lockPXNetFile(STRING,INT)

Parameters <file name> Name of file to lock

<lock type> Type of lock
1 Full lock, no concurrency
2 Write lock
3 Prevent write lock
4 Prevent full lock, full concurrency

Returns 0 Successful operation
< 0 Error number

Example

--Attempt to lock the config file so it can be edited
get lockPXNetFile("n:\db.cfg", 1)
if it = 0

send updateConfig
get unlockPXFile("n:\db.cfg", 1)

else
request "config file in use, could not update"

end

lockPXNetRecord()
TB30PDX.DLL

Engine Function PXNetRecLock()

Description Locks the current record of a table

Syntax lockPXNetRecord(<table alias>)

Declaration LONG lockPXNetRecord(STRING)

Parameters <table alias> Alias of table of which to lock current record

Returns >= 0 Handle to record lock
< 0 Error number

Example

--Lock the record and then update it
lockHandle = lockPXNetRecord("myDatabase")
if lockHandle >= 0

get updatePXRecord("myDatabase")
get unlockPXNetRecord("myDatabase")

end

lockPXNetTable()
TB30PDX.DLL

Engine Function PXNetTblLock()

Description Locks a table

Syntax lockPXNetTable(<table alias>,<lock type>)

Declaration INT lockPXNetTable(STRING,INT)

Parameters <table alias> Alias of table to lock

<lock type> Type of lock
1 Full lock, no concurrency
2 Write lock
3 Prevent write lock
4 Prevent full lock, full concurrency

Returns 0 Successful operation
< 0 Error number

Example

--Put a full lock on the table to prevent access by other users
get lockPXNetTable("myDatabase", 1)
if it < 0

request getPXErrorString(it)
else

send workWithTable
get unlockPXNetTable("myDatabase", 1)

end

mapPXKey()
TB30PDX.DLL

Engine Function PXKeyMap()

Description Maps one or more fields to a single index key field handle.

Syntax mapPXKey(<table alias>,<field names>,<key field name>,<mode>)

Declaration LONG mapPXKey(STRING,STRING,STRING,INT)

Parameters <table alias> Alias of table to use

<field names> Names of fields to be used for the key

<key field name> Name of index key field

<mode> Index mode
0 Case-sensitive index
1 Case-insensitive index

Returns >= 0 handle to index
< 0 Error number

Example

See addPXKey

nextPXRecord()
TB30PDX.DLL

Engine Function PXRecNext()

Description Moves to the next record of a table

Syntax nextPXRecord(<table alias>)

Declaration INT nextPXRecord(STRING)

Parameters <table alias> Alias of table to traverse

Returns 0 Successful operation
< 0 Error number

Example

--Step through the records starting at the first one and clear the \
--field "Balance due"
get firstPXRecord("myDatabase")
while nextPXRecord("myDatabase") >= 0

get setPXFieldValue("myDatabase", "Balance due", 0)
end

openPXBitmapWindow()
TB30PDX.DLL

Engine Function None

Description Opens a child window for displaying a bitmap

Syntax openPXBitmapWindow(<bitmap handle>,<palette handle>,
<parent handle>,<position/bounds>,<mode>,
<background color>)

Declaration INT openPXBitmapWindow(WORD,WORD,WORD,STRING,INT,STRING)

Parameters <bitmap handle> Windows bitmap handle returned by
getPXGraphicBlob()

<palette handle> Optional Windows palette handle returned by
getPXGraphicBlobPalette()

(Enter 0 to use the ToolBook palette.)

<parent handle> Window in which to create child

<position/bounds> Comma-separated list of two or four numbers representing
the position or bounds of the child window in screen
coordinates

<mode> Display mode for bitmap:
0 Normal - Bitmap is displayed in top-left corner of window.

If <position/bounds> is a point, window is sized to
fit bitmap. If <position/bounds> is a rectangle,
window is sized to rectangle

1 Centered - If <position/bounds> is a point, bitmap
is centered around point and window is sized to fit
bitmap. If <position/bounds> is a rectangle,
bitmap is centered in window and window is sized to
rectangle

2 Stretched - If <position/bounds> is a point,
window is sized to fit bitmap. If <position/bounds>
is a rectangle, bitmap is stretched to fit window and
window is sized to rectangle

<background color> Comma-separated list representing the RGB values for the
window background color. Defaults to the system window
background color

Returns > 0 Handle to bitmap window
< 0 Error number

Example

-- table is the currently open table, fieldName is the name of the
-- field that has the BLOB in it.
to handle showBitmap table,fieldName

system hBMP,hPal,hWndBMP
-- We get a PX type handle to the BLOB
hPXToBMP = openPXBlobRead(table,fieldName)
-- We put the BLOB in memory and get a Windows style handle to it
hBMP = getPxGraphicBlob(hPXToBMP)
-- Same with its associated palette
hPal = getPxGraphicBlobPalette(hPXToBMP)
-- Done with the PX handle
get closePXBlob(hPXToBMP, 0)
-- Open a window and show the graphic BLOB.
hWndBMP = openPXBitmapWindow (hBMP, hPal, clientHandle of mainWindow, \
pageUnitsToClient(position of ellipse "Center"), 2, \

rgbFill of ellipse "Center")
-- Imagine the ellipse "center" to be a point, with the mode set to 2,
-- the bitmap will show at its normal size centered on
-- the 1 dimensional ellipse.

end showBitmap

openPXBlobRead()
TB30PDX.DLL

Engine Function PXBlobOpenRead()

Description Opens a BLOB for reading operations

Syntax openPXBlobRead(<table alias>,<field name>)

Declaration LONG openPXBlobRead(STRING,STRING)

Parameters <table alias> Alias of table in which to open BLOB

<field name> Name of BLOB field

Returns >= 0 Handle to BLOB
< 0 Error number

Example

--Read a memo BLOB into a field
hBlob = openPXBlobRead("myDatabase", "ReviewText")
text of field "review" = getPXMemoBlob(hBlob)
get closePXBlob(hBlob, 0)

openPXBlobWrite()
TB30PDX.DLL

Engine Function PXBlobOpenWrite()

Description Opens a BLOB for writing operations

Syntax openPXBlobWrite(<table alias>,<field name>,<size>,<save
current>)

Declaration LONG openPXBlobWrite(STRING,STRING,LONG,INT)

Parameters <table alias> Alias of table in which to open BLOB

<field name> Name of BLOB field

<size> Size of BLOB field (0 - 256MB)

<save current> Copy mode:
0 New BLOB, no copying takes place
1 Copy BLOB, new private BLOB is created of <size> bytes

Returns >= 0 Handle to BLOB
< 0 Error number

Example

--place 10K of binary data into a BLOB
hBlob = openPXBlobWrite("myDatabase", "bits", 10240, 0)
get setPXBlob(hBlob, 10240, 0, hBits)
get closePXBlob(hBlob, 1)

openPXTable()
TB30PDX.DLL

Engine Function PXTblOpen()

Description Opens a table

Syntax openPXTable(<table alias>,<table filename>,<index ID>,<save
every change>)

Declaration INT openPXTable(STRING,STRING,INT,INT)

Parameters <table alias> A name you assign to the table to be used for subsequent
access. Can be arbitrary, but must be unique to this view of the
table during this session.

<table filename> File name of table to open

<index ID> Index type by which to order records:
0 Order of primary index (If you have not created an

index for the table, enter 0)
1-255 Field number for case-sensitive, single-field,

secondary index
>256 Field handle for composite or case-insensitive, single-

field index

<save every change> Mode for saving changes:**
0 Changes are saved in swap buffer
1 Changes are saved to disk

**Changes to a shared table are always saved to disk, regardless of mode

Returns 0 Successful operation
< 0 Error number

Example

-- "myTable" is an arbitrary alias.
-- curTable is a user property set to the name of the db file (without
-- extension).
get openPXTable("myTable", curTable of this book, 0, 0)
if it < 0

request getPXErrorString(it)
end if

packPXTable()
TB30PDX.DLL

Engine Function None

Description Packs the database and removes any space occupied by deleted records.

Syntax packPXTable(<table alias>)

Declaration INT packPXTable(STRING)

Parameters <table alias> Table alias specified when the table was opened

Returns 0 Successful operation
< 0 Error number

Example

--Pack the database before copying it
--(This can take a while)
sysCursor = 4
get packPXTable("myDatabase")
if it = 0

get copyPXTable("c:\data\myData", "n:\data\shareDB")
end
Comments This can be a long process and is not recommended as part of normal table operations.

previousPXRecord()
TB30PDX.DLL

Engine Function PXRecPrev()

Description Moves to the previous record of a table

Syntax previousPXRecord(<table alias>)

Declaration INT previousPXRecord(STRING)

Parameters <table alias> Alias of table to traverse

Returns 0 Successful operation
< 0 Error number

Example

--Go back one record and compare the date field against today's date
get previousPXRecord("myDatabase")
if it >= 0

if getPXFieldValue("myDatabase", "date") < sysDate
request "book is overdue"

else
request "book is not overdue"

end
end

queryPXKey()
TB30PDX.DLL

Engine Function PXKeyQuery()

Description Gets information about an index.    Use this function to get the index handle that you pass in
openPXTable().

Syntax queryPXKey(<index file name>)

Declaration STRING queryPXKey(STRING)

Parameters <index file name> Name of index file to query

Returns List containing field name, field count, mode, list of field handles, and index ID.

For case-sensitive, single-field index:
<field name>, 1, 0, <field handle>, <index ID>

For composite or case-insensitive, single-field index:
<field name>, <field count>, 1, <field handles>, <index

ID>

If an error occurs, null is returned and sysError is set to the error number

Example

--Search index files for table to find the right index ID
--fileList already contains a comma-seperated list of files

found = false
i = 1
while not found and i <= itemCount(fileList)

get queryPXKey(item i of fileList)
if item 1 of it = "Last name First"

indexID = last item of it
found = TRUE

else
increment i

end
end

refreshPXNetTable()
TB30PDX.DLL

Engine Function PXNetTblRefresh()

Description Resynchronizes a shared table

Syntax refreshPXNetTable(<table alias>)

Declaration INT refreshPXNetTable(STRING)

Parameters <table alias> Alias of table to use

Returns 0 Successful operation
< 0 Error number

Example

--Test whether the table has been changed and refresh it if it has
get isPXNetTableChanged("myDatabase")
if it = 1

get refreshPXNetTable("myDatabase")
end

renamePXTable()
TB30PDX.DLL

Engine Function PXTblRename()

Description Changes the base name of a table family

Syntax renamePXTable(<source table>,<destination table>)

Declaration INT renamePXTable(STRING,STRING)

Parameters <source table> Base name of source table family to be renamed

<destination table> New base name for the source table family

Returns 0 Successful operation
< 0 Error number

Example

--Rename the old database before copying it to a local drive
get renamePXtable("c:\data\myData", "c:\data\oldData")
get copyPXTable("n:\data\commData", "c:\data\myData")

savePX()
TB30PDX.DLL

Engine Function PXSave()

Description Saves the swap buffer to disk

Syntax savePX()

Declaration INT savePX()

Parameters None

Returns 0 Successful operation
< 0 Error number

Example

--Force the swap buffer to write to disk every five appends to the table
if appendCount >= 5

get savePX()
end

searchPXField()
TB30PDX.DLL

Engine Function PXSrchFld()

Description Searches a table on a specified field.    If the table is currently open on the primary index, you
can search on any secondary index, whether composite or not. If the table is currently open
on a secondary index (composite or not), you can only search on that index.    The mode
parameter controls the scope of the search.    Mode 0 searches from the first record in the
table looking for an exact match on the data in the key fields.    Mode 1 starts from the current
record searching for an exact match.    Mode 2 starts from the first record and searches for a
match.    For modes 0 and 1, if -89 is returned the current record is not moved from where it
was before the search.    For mode 2, if there is not an exact match, two posibilities exist:

1. There is a record that is greater than the search value. The current record is moved to the
first such record and -89 is returned.

2. The search value is greater than all records in the table. The current record is moved to
the end of the table and -101 is returned

Syntax searchPXField(<table alias>,<field name>,<index ID>,<mode>)

Declaration INT searchPXField(STRING,STRING,WORD,INT)

Parameters <table alias> Alias of table to search

<field name> Field name of key for case-sensitive, single-field, secondary index
only;    otherwise leave null

<index ID> Handle of index (if field name is not provided)

<mode> Search mode:
0 Search from beginning of table
1 Search from next record in table
2 Search for nearest record if no match

Returns 0 Successful operation
< 0 Error number

Example

--Open the table with a case insensitive index and search for a \
--last name and age
--When the index was created, the ID was saved in a user-defined \
--property of the book
get openPXTable("myDatabase", "c:\data\rolodex.db",lastName_Age_Index of this
book, 0)
get emptyPXRecord("myDatabase") -- set search buffer to known state
--set values to search for
get setPXFieldValue("myDatabase", "name", text of field "name")
get setPXFieldValue("myDatabase", "age", text of field "age")
get searchPXField("myDatabase", "", lastName_Age_Index of this book, 0)
if it < 0

request getPXErrorString(it)
end

searchPXKey()
TB30PDX.DLL

Engine Function PXSrchKey()

Description Searches a table for a key match.    The mode parameter controls the scope of the search.
Mode 0 searches from the first record in the table looking for an exact match on the data in
the key fields.    Mode 1 starts from the current record searching for an exact match.    Mode 2
starts from the first record and searches for a match.    For modes 0 and 1, if -89 is returned
the current record is not moved from where it was before the search.    For mode 2, if there is
not an exact match two posibilities exist:

1. There is a record that is greater than the search value. The current record is moved to the
first such record and -89 is returned.

2. The search value is greater than all records in the table. The current record is moved to
the end of the table and -101 is returned

Syntax searchPXKey(<table alias>,<number of fields>,<field
values>,<mode>)

Declaration INT searchPXKey(STRING,INT,STRING,INT)

Parameters <table alias> Alias of table to search

<fields> Number of fields (<= fields in primary key)

<field values> List of values to search for

<mode> Search mode:
0 Search from beginning of table
1 Search from next record in table
2 Search for nearest record if no match

Returns 0 Successful operation -- exact match found
< 0 Error

Example

--Search for name in primary index
get searchPXKey("myDatabase", "2", "Smith, John", 0)
if it >= 0

request "found"
else

request "not found"
end

setPXBitmapWindowInfo()
TB30PDX.DLL

Engine Function None

Description Sets the display attributes for a bitmap window.    Null (or 0) data parameters are not
changed.

Syntax setPXBitmapWindowInfo(<window handle>,<bitmap handle>,\

<palette handle>,<mode>,<background color>)

Declaration INT setPXBitmapWindowInfo(INT,INT,INT,INT,STRING)

Parameters <window handle> Bitmap window handle

<palette handle> Optional Windows palette handle

<bitmap handle> Windows bitmap handle

<mode> Display mode for bitmap:
1 Normal - Bitmap is displayed in top-left corner of

window. If <position/bounds> is a point, window
is sized to fit bitmap. If <position/bounds> is a
rectangle, window is sized to rectangle

2 Centered - If <position/bounds> is a point, bitmap
is centered around point and window is sized to fit
bitmap. If <position/bounds> is a rectangle,
bitmap is centered in window and window is sized to
rectangle

3 Stretched - If <position/bounds> is a point,
window is sized to fit bitmap. If
<position/bounds> is a rectangle, bitmap is
stretched to fit window and window is sized to rectangle

<background color> Comma-separated list representing the RGB values for the
window background color

Returns 0 Successful operation
< 0 Error number

Example

-- this will show the graphic blob in a window
-- hWndBitmap is a handle to a window you've already created,
-- possibly with openPXBitmapWindow()
hPrivateBlob = openPXBlobRead("myTable", "Picture")
if hPrivateBlob < 0

send PXError hPrivateBlob -- cleanup
break

else
hBitmap = getPXGraphicBlob(hPrivateBlob)
hPalette = getPXGraphicBlobPalette(hPrivateBlob)
get closePXBlob(hPrivateBlob, 0)

end if
get setPXBitmapWindowInfo(hWndBitmap, hBitmap, hPalette, 2, \
rgbfill of this page)
if it < 0

request getPXErrorString(it)
end if

setPXBlob()
TB30PDX.DLL

Engine Function PXBlobPut()

Description Writes data to a BLOB

Syntax setPXBlob(<BLOB handle>,<size>,<offset>,<buffer>)

Declaration INT setPXBlob(INT,DWORD,LONG,WORD)

Parameters <BLOB handle> Handle to BLOB

<size> Size of buffer (1 - 256MB)

<offset> Offset from start of BLOB to start writing

<buffer> Handle to BLOB data

Returns 0 Successful operation
< 0 Error number

Example

See openPXBlobWrite()

setPXBlobFromFile()
TB30PDX.DLL

Engine Function None

Description Imports a file directly into a BLOB field

Syntax setPXBlobFromFile(<BLOB handle>,<size>,<file
offset>,<offset>,<file name>)

Declaration INT setPXBlobFromFile(INT,DWORD,DWORD,DWORD,STRING)

Parameters <BLOB handle> Handle returned by openPXBlobWrite()

<size> Number of bytes of file to read

<file offset> Offset from beginning of file to start reading

<offset> Offset from beginning of BLOB to write

<file name> File to read from.

Returns 0 Successful operation
< 0 Error number

Example

--Store wave file as BLOB
hBlob = openPXBlobWrite("myDatabase", "wave", fileSize, 0)
if hBlob >= 0

get setPXBlobFromFile(hBlob, fileSize, 0, 0, fileName)
get closePXBlob(hBlob, 1)

end
Comments If size is 0 the whole file is read up to 256MB.

setPXFieldValue()
TB30PDX.DLL

Engine Functions: PXPutAlpha(), PXPutDate(), PXPutDouble(), PXPutLong(), PXPutShort()

Description Sets the contents of a field in the current record of a table

Syntax setPXFieldValue(<table alias>,<field name>,<field value>)

Declaration INT setPXFieldValue(STRING,STRING,STRING)

Parameters <table alias> Alias of table to use

<field name> Name of field to set

<field value> New contents for field

Returns 0 Successful operation
< 0 Error number

Example

--Set the fields in the current record from the fields on the page
get setPXFieldValue("myDatabase", "name", text of field "name")
get setPXFieldValue("myDatabase", "age", text of field "age")
get setPXFieldValue("myDatabase", "birthDate", text of field "birthDate")

setPXGraphicBlob()
TB30PDX.DLL

Engine Function None

Description Creates a graphic BLOB from a Windows GDI handle to a bitmap

Syntax setPXGraphicBlob(<BLOB handle>,<hBitmap>,<hPalette>)

Declaration INT setPXGraphicBlob(INT,WORD,WORD)

Parameters <BLOB handle> Handle returned by openPXBlobWrite()

<hBitmap> Handle to Windows device dependent bitmap

<hPalette> Handle to Windows palette for bitmap (0 for Windows default palette)

Returns 0 Successful operation
< 0 Error number

Example

--Save bitmap from ToolBook resource as a BLOB in the database
hBitmap = GDIHandle(bitmap "logo")
hBlob = openPXBlobWrite("myDatabase", "graphic", item 5 of \
resourceInfo of bitmap "logo", 0)
if hBlob >= 0

get setPXGraphicBlob(hBlob, hBitmap, hPalette)
get closePXBlob(hBlob, 1)

end

setPXGraphicBlobFromFile()
TB30PDX.DLL

Engine Function None

Description Imports a bitmap file into a BLOB field

Syntax setPXGraphicBlobFromFile(<BLOB handle>, <file name>)

Declaration INT setPXGraphicBlobFromFile(INT,STRING)

Parameters <BLOB handle> Handle returned by openPXBlobWrite()

<file name> File to read from.

Returns 0 Successful operation
< 0 Error number

Example

--Put 256color.bmp bitmap into BLOB field of current record
hBlob = openPXBlobWrite("myDatabase", "graphic", fileSize, 0)
if hBlob >= 0

get setPXGraphicBlobFromFile(hBlob, "c:\windows\256color.bmp")
get closePXBlob(hBlob, 1)

end
Comments File must be a Windows bitmap (.BMP or .DIB).    All other graphic file formats are considered

unstructured.

setPXINIMaxFiles()
TB30PDX.DLL

Engine Function PXSetDefaults()

Description Sets the value of the MaxFiles entry of the [Paradox Engine] section of the WIN.INI file.    The
Paradox Engine reads this value the first time it is initialized to set the maximum number of
files that can be used by the Engine.    Calling this function does not cause the Engine to read
the defaults, it only writes to the INI file.

Syntax setPXINIMaxFiles(<maximum files>)

Declaration INT setPXINIMaxFiles(INT)

Parameters <maximum files> Number of file handles (3 - 255)

Returns 0 Successful operation
< 0 Error number

Example

See getPXMaxFiles()

setPXINIMaxLocks()
TB30PDX.DLL

Engine Function PXSetDefaults()

Description Sets the value of the MaxLocks entry of the [Paradox Engine] section of the WIN.INI file.   
The Paradox Engine reads this value the first time it is initialized to set the maximum number
of locks that can be used by the Engine.    Calling this function does not cause the Engine to
read the defaults, it only writes to the INI file.

Syntax setPXINIMaxLocks(<maximum locks>)

Declaration INT setPXINIMaxLocks(INT)

Parameters <maximum locks> Number of record locks (1 - 128)

Returns 0 Successful operation
< 0 Error number

Example

See getPXMaxLocks()

setPXINIMaxTables()
TB30PDX.DLL

Engine Function PXSetDefaults()

Description Sets the value of the MaxTables entry of the [Paradox Engine] section of the WIN.INI file.   
The Paradox Engine reads this value the first time it is initialized to set the maximum number
of tables that can be used by the Engine.    Calling this function does not cause the Engine to
read the defaults, it only writes to the INI file.e

Syntax setPXINIMaxTables(<maximum tables>)

Declaration INT setPXINIMaxTables(INT)

Parameters <maximum tables> Number of tables (1 - 64)

Returns 0 Successful operation
< 0 Error number

Example

See getPXMaxTables()

setPXMemoBlob()
TB30PDX.DLL

Engine Function None

Description Copies a string into a memo BLOB

Syntax setPXMemoBlob(<BLOB handle>,<text>)

Declaration INT setPXMemoBlob(INT,STRING)

Parameters <BLOB handle> Handle returned by openPXBlobWrite()

<text> String of text, < 64K bytes in length.

Returns 0 Successful operation
< 0 Error number

Example

--Save text of notes field into a BLOB in the database
hBlob = openPXBlobWrite("myDatabase", "notes", charCount(text of \
field "notes"), 0)
if hBlob >= 0

get setPXMemoBlob(hBlob, text of field "notes")
get closePXMemoBlob(hBlob, 1)

end

setPXRaw()
TB30PDX.DLL

Engine Function PXRawPut()

Description Writes raw data to the current record of a table

Syntax setPXRaw(<table alias>,<data handle>,<size>)

Declaration INT setPXRaw(STRING,INT,INT)

Parameters <table alias> Alias of table to use

<data handle> Handle to raw data

<size> Size of raw data

Returns 0 Successful operation
< 0 Error number

Example

--Restore the original contents of the current record from saved buffer
get setPXRaw("myDatabase", hRawData, sizeofData)
-- Free the memory allocated for the raw data buffer in the call to
getRawData()
get freePXBlobMemory(hRawData)
clear hRawData

setPXSortOrder()
TB30PDX.DLL

Engine Function PXSetDefaults()

Description Sets the sort order

Syntax setPXSortOrder(<sort order>)

Declaration INT setPXSortOrder(STRING)

Parameters <sort order> Sort order character:
a ASCII sort order
i International sort order
n Norwegian/Danish sort order
s Swedish/Finnish sort order
d Norwegian/Danish sort order for Paradox 4.0

Returns 0 Successful operation
< 0 Error number

Example

See getPXSortOrder()

setPXINISwapSize()
TB30PDX.DLL

Engine Function PXSetDefaults()

Description Sets the value of the SwapSize entry of the [Paradox Engine] section of the WIN.INI file.   
The Paradox Engine reads this value the first time it is initialized to set the size of the Swap
Buffer that will be used by the Engine.    Calling this function does not cause the Engine to
read the defaults, it only writes to the INI file.e

Syntax setPXINISwapSize(<swap size>)

Declaration INT setPXINISwapSize(INT)

Parameters <swap size> Swap size in K (8 - 256).    Minimum 4K per table

Returns 0 Successful operation
< 0 Error number

Example

See getPXSwapSize()

setPXTableCreateMode()
TB30PDX.DLL

Engine Function PXTblCreateMode()

Description Sets the mode for creating tables

Syntax setPXTableCreateMode(<mode>)

Declaration INT setPXTableCreateMode(INT)

Parameters <mode> Mode for creating tables:
0 Create Paradox 3.5 compatible tables
1 Create Paradox 4.0 compatible tables

Returns 0 Successful operation
< 0 Error number

Example

--Ask the user which Paradox version table to create
request "Which version Paradox table do you want to create?" with "4.0" or
"3.5"
if it = "4.0"

get setPXTableCreateMode(1)
else

get setPXTableCreateMode(0)
end

setPXTableMaxSize()
TB30PDX.DLL

Engine Function PXTblMaxSize()

Description Sets the maximum table size and block size for new tables. Block size is determined by the
maximum table size:
Maximum table size Block size
64MB 1KB
128MB 2KB
256MB 4KB

Syntax setPXTableMaxSize(<size>)

Declaration INT setPXTableMaxSize(INT)

Parameters <size> Maximum table size in megabytes (64,128, or 256)

Returns 0 Successful operation
< 0 Error number

Example

--Set the maximum size for the table
get setPXMaxTableSize(64) -- 64 megabytes

unlockPXNetFile()
TB30PDX.DLL

Engine Function PXNetFileUnlock()

Description Unlocks a file

Syntax unlockPXNetFile(<file name>,<lock type>)

Declaration INT unlockPXNetFile(STRING,INT)

Parameters <file name> Name of file to unlock

<lock type> Type of lock:
1 Full lock, no concurrency
2 Write lock
3 Prevent write lock
4 Prevent full lock, full concurrency

Returns 0 Successful operation
< 0 Error number

Example

See lockPXNetFile()

unlockPXNetRecord()
TB30PDX.DLL

Engine Function PXNetRecUnlock()

Description Unlocks the current record of a table

Syntax unlockPXNetRecord(<table alias>,<lock handle>)

Declaration INT unlockPXNetRec(STRING,INT)

Parameters <table alias> Alias of table to use

<lock handle> Handle to record lock

Returns 0 Successful operation
< 0 Error number

Example

See lockPXNetRecord()

unlockPXNetTable()
TB30PDX.DLL

Engine Function PXNetTblUnlock()

Description Unlocks a table

Syntax unlockPXNetTable(<table alias>,<lock type>)

Declaration INT unlockPXNetTable(STRING,INT)

Parameters <table alias> Alias of table to unlock

<lock type> Type of lock:
1 Full lock, no concurrency
2 Write lock
3 Prevent write lock
4 Prevent full lock, full concurrency

Returns 0 Successful operation
< 0 Error number

Example

See lockPXNetTable()

updatePXRecord()
TB30PDX.DLL

Engine Function PXRecUpdate()

Description Updates the current record in a table

Syntax updatePXRecord(<table alias>)

Declaration INT updatePXRecord(STRING)

Parameters <table alias> Alias of table to use

Returns 0 Successful operation
< 0 Error number

Example

--Write the contents of the current record buffer to the current record
request "Save changes to record?" with "OK" or "Cancel"
if it = "OK"

get updatePXRecord("myDatabase")
end

upgradePXTable()
TB30PDX.DLL

Engine Function PXTblUpgrade()

Description Upgrades an older Paradox table (Paradox 3.5 or later)

Syntax upgradePXTable(<table alias>)

Declaration INT upgradePXTable(STRING)

Parameters <table alias> Alias of table to upgrade

Returns 0 Successful operation
< 0 Error number

Example

--Upgrade the requested table to 4.0 format
ask "Enter the name of the table to upgrade."
if it <> null

get upgradePXTable(it)
end

writePXBlobToFile()
TB30PDX.DLL

Engine Function None

Description Exports a BLOB to a DOS file

Syntax writePXBlobToFile(<BLOB handle>,<file name>,<mode>)

Declaration LONG writePXBlobToFile(INT,STRING,INT)

Parameters <BLOB handle> Handle returned by openPXBlobRead() or
openPXBlobWrite()

<file name> Path and file name of file to write to

<mode> Mode in which to write file:
0 normal; can be read or written without restriction.
1 read-only; cannot be opened for writing by other applications.
2 overwrite; if the file exists overwrite it.
3 read-only & Overwrite.

Returns > 0 number of bytes written to the file if successful
< 0 Error number

Comments If the specified file exists and modes 0 or 1 are specified, no file is written and an error is
returned.    A Windows .BMP file is written.

Example

--Save wave file to disk
hBlob = openPXBlobRead("myDatabase", "sound")
if hBlob >= 0

get writePXblobToFile(hBlob, "sound.wav", 2)
playSound("sound.wav")
get closePXBlob(hBlob, 0)

end

writePXGraphicBlobToFile()
TB30PDX.DLL

Engine Function None

Description Exports a graphic BLOB as a bitmap file

Syntax writePXGraphicBlobToFile(<BLOB handle>, <file name>, <mode>)

Declaration LONG writePXGraphicBlobToFile(INT,STRING,INT)

Parameters <BLOB handle> handle returned by openPXBlobRead() or
openPXBlobWrite()

<file name> path and file name of file to write to

<mode> Mode in which to write file:
0 normal; can be read or written without restriction.
1 read-only; cannot be opened for writing by other applications.
2 overwrite; if the file exists overwrite it.
3 read-only & Overwrite.

Returns > 0 number of bytes written to the file if successful
< 0 Error number

Comments If the specified file exists and modes 0 or 1 are specified, no file is written and an error is
returned.    A windows BMP file is written.

Example

--Save bitmap out to file
hBlob = openPXBlobRead("myDatabase", "graphic")
if hBlob >= 0

get writePXGraphicBlobToFile(hBlob, "graphic.bmp", 0)
get closePXBlob(hBlob)

end

getPXUserInfo()
TB30PDX.DLL

Engine Function None

Description Returns a comma-separated list of values from the [Paradox engine] section of the WIN.INI
file

Syntax getPXUserInfo(<list of values>)

Declaration STRING getPXUserInfo()

Parameters none

Returns UserName, NetNamePath, NetType, ShareLocal, PX35Locking

(For descriptions of the returned values, see setPXUserInfo().)

If an error occurs, null is returned and sysError is set to the error number.

Example

get getPXUserInfo()
if it is NULL

request sysError
end if
if item 1 of it is "Charlie"

set item 1 of it to "Charles"
get setPXUserInfo(it)

end if

setPXUserInfo()
TB30PDX.DLL

Engine Function None

Description Takes a comma-separated list of values and writes them to the [Paradox engine] section of
the WIN.INI file

Syntax setPXUserInfo(<list of values>)

Declaration INT getPXUserInfo(STRING)

Parameters <list of values> Comma-separated list of values:
UserName the name of the user of the application. If no

name is entered, the default "PxEngine" is
used in the WIN.INI file.

NetNamePath the location of PARADOX.NET or
PDOXUSRS.NET. (The default is C:\) If you
are using only local tables on your own PC,
enter C:\

NetType Always use a value of 2, even if you're not
using a network. (Default is 2.)

ShareLocal "yes" if your tables are to be shared with
Paradox or with an engine application
running in a DOS window. (Default is "no.")

PX35Locking "yes" if the Paradox 3.5 locking protocol is
used. (Default is "no.")

Returns 0 Successful operation
< 0 Error number

Example

get setPXUserInfo("John User,c:\,2,No,No")

getPXSwapSizeFromINI()
TB30PDX.DLL

Engine Function none

Description Gets the value of the SwapSize entry from the [Paradox Engine] section of the WIN.INI file.   
The Paradox Engine reads this value the first time it is initialized to set the maximum size of
the swap buffer that can be used by the Engine.    Calling this function does not cause the
Engine to read the defaults, it only queries the .INI file.    To get the value the Engine is
currently using call getPXSwapSize().

Syntax getPXSwapSizeFromINI()

Declaration INT getPXSwapSizeFromINI()

Parameters None

Returns >= 0 ini setting

< 0 Error number

Example

if getPXSwapSizeFromINI() < 64
request "Swap buffer is less than 64K, this application runs"&CRLF\

"faster with a larget swap buffer."

getPXMaxTablesFromINI()
TB30PDX.DLL

Engine Function none

Description Gets the value of the MaxTables entry from the [Paradox Engine] section of the WIN.INI file.
The Paradox Engine reads this value the first time it is initialized to set the maximum number
of tables that can be used by the Engine.    Calling this function does not cause the Engine to
read the defaults, it only queries the .INI file.    To get the value the Engine is currently using
call getPXMaxTables().

Syntax getPXMaxTablesFromINI()

Declaration INT getPXMaxTablesFromINI()

Parameters None

Returns >= 0 Maximum tables usable by engine
< 0 Error number

Example
--get the current INI setting
get getPXMaxTablesFromINI()

--If the current ini value is less than what I need then try to reset it.
if it < myExpectedValue

get setPXINIMaxTables(myExpectedValue)
get initializePX(myTable) --somebody else has initialized the engine.
get getPXMaxTables()
if it < myExpectedValue

--somebody else has linked the engine and I cannot set the maxtables to what
--I need so I will give error and exit

request "Unable to set number of tables. Please Exit all other
Paradox"&CRLF&\

"Engine applications and try again."
send exit

end
end

getPXMaxFilesFromINI()
TB30PDX.DLL

Engine Function none

Description Gets the value of the MaxFiles entry from the [Paradox Engine] section of the WIN.INI file.   
The Paradox Engine reads this value the first time it is initialized to set the maximum number
of files that can be used by the Engine.    Calling this function does not cause the Engine to
read the defaults, it only queries the .INI file.    To get the value the Engine is currently using
call getPXMaxFiles().

Syntax getPXMaxFilesFromINI()

Declaration INT getPXMaxFilesFromINI()

Parameters None

Returns >= 0 Maximum tables usable by engine
< 0 Error number

Example
--get the current INI setting
get getPXMaxFilesFromINI()

--If the current ini value is less than what I need then try to reset it.
if it < myExpectedValue

get setPXINIMaxFiles(myExpectedValue)
get initializePX(myTable) --somebody else has initialized the engine.
get getPXMaxFiles()
if it < myExpectedValue
--somebody else has linked the engine and I cannot set the maxfiles to

what
--I need so I will give error and exit

request "Unable to set number of files. Please Exit all other
Paradox"&CRLF&\

"Engine applications and try again."
send exit

end
end

getPXMaxLocksFromINI()
TB30PDX.DLL

Engine Function none

Description Gets the value of the MaxLocks entry from the [Paradox Engine] section of the WIN.INI file.   
The Paradox Engine reads this value the first time it is initialized to set the maximum number
of locks that can be used by the Engine.    Calling this function does not cause the Engine to
read the defaults, it only queries the .INI file.    To get the value the Engine is currently using
call getPXMaxLocks().

Syntax getPXMaxLocksFromINI()

Declaration INT getPXMaxLocksFromINI()

Parameters None

Returns >= 0 Maximum tables usable by engine
< 0 Error number

Example
--get the current INI setting
get getPXMaxLocksFromINI()

--If the current ini value is less than what I need then try to reset it.
if it < myExpectedValue

get setPXINIMaxLocks(myExpectedValue)
get initializePX(myTable) --somebody else has initialized the engine.
get getPXMaxLocks()
if it < myExpectedValue
--somebody else has linked the engine and I cannot set the maxlocks to

what
--I need so I will give error and exit

request "Unable to set number of locks. Please Exit all other
Paradox"&CRLF&\

"Engine applications and try again."
send exit

end
end

checkDBIndex()
TB30DB3.DLL

Syntax checkDBIndex(<file name>)

Declaration INT checkDBIndex(STRING)

Description Checks the specified index file against the current dBASE file.

Parameter <file name> Valid file name of the index file to check.

Returns 1 The index file is accurate.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 18 Bad key reference.
- 19 Multiple keys refer to same record.
- 25 A record newer than the corresponding key was found.
- 26 A key was not sorted.
- 22 No key for a record.
- 53 No index file with the specified name.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
to handle buttonClick

get checkDBIndex("c:\egypt\hiero.ndx")
if It <= - 3

local newFileName
ask "Index file not accurate. Try new index file?"
if sysError <> cancel and It <> null

put It into newFileName
get checkDBIndex(newFileName)

end if
else

request "Accurate index file"
end if

end buttonClick

closeAllDBFiles()
TB30DB3.DLL

Syntax closeAllDBFiles()

Declaration INT closeAllDBFiles()

Description Closes all open dBASE and index files.

Parameters None

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
to handle exit

get closeAllDBFiles()
end exit

closeDBFile()
TB30DB3.DLL

Syntax closeDBFile(<file name>)

Declaration INT closeDBFile(STRING)

Description Closes the specified dBASE file and all related index files.

Parameter <file name> The name of the dBASE file to close.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 28 No dBASE file with the specified name.
- 29 The index file could not be closed.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
to handle error value, string

request "Error (" & val & ") " & string
get closeDBFile(fileName)

end error

closeDBIndexFile()
TB30DB3.DLL

Syntax closeDBIndexFile(<file name>)

Declaration INT closeDBIndexFile(STRING)

Description Closes the specified dBASE index file.

Parameter <file name> The name of the dBASE index file to close.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 53 No index file with the specified name.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
to handle error value, string

request "Error (" & val & ") " & string
get closeDBIndexFile(fileName)

end error

createDBFieldTag()
TB30DB3.DLL

Syntax createDBFieldTag(<number of fields>)

Declaration INT createDBFieldTag(WORD)

Description Creates a field tag that specifies the number of fields in a dBASE file to create with
createDBFile(). For details about creating a dBASE file, see createDBFile().

Parameter <number of fields> The number of fields the tag can contain. It can be a valid number of
fields for a dBASE file.

Returns If no error occurs, createDBFile() returns a number that is the <field tag number>
parameter to reference the tag in setDBFieldTag(), createDBFile(), and
freeDBFieldTag(). If an error occurs, such as not enough memory, createDBFieldTag()
returns 0.

Example
--Gets return value for tag number
put createDBFieldTag(noFields) into tagNumber
if tagNumber = 0

request "Error creating field tag"
break

end if

createDBFile()
TB30DB3.DLL

Syntax createDBFile(<file name>,<field tag number>,<preserve existing>)

Declaration INT createDBFile(STRING,WORD,WORD)

Description Creates and opens a dBASE file with the specified name and number of fields using the contents of
the field tag data structure. The number of fields and their potential values depend on parameters
passed with createDBFieldTag() and setDBFieldTag().

To create a dBASE file with the dBASE DLL:

1. Create a field tag of the appropriate size with createDBFieldTag(), with a parameter
that indicates the number of fields the tag can contain. The return value from this function is a
number used to reference the field tag when calling createDBFile() and
freeDBFieldTag().

A field tag is an array of data structures used to create a dBASE file.

2. Set the contents of the field tag with setDBFieldTag(), with parameters for each field that
indicate the tag number, name, type, width, and decimal precision (numeric fields only).

3. Call createDBFile() with the appropriate parameters to create the dBASE file based on
the contents of the field tag.

4. Free the field tag with freeDBFieldTag().

Parameters <file name> The name of the dBASE file to create.

<field tag number> The return value from the createDBFieldTag(), which must
be called before calling createDBFile().

<preserve existing> If this parameter is 1, ToolBook will not create the new file nor
delete the existing one if the dBASE file <file name> already
exists. If this parameter is 0, ToolBook will delete the existing file
and create a new one.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 27 The dBASE file could not be created.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Examples

get createDBFile(dbFileName,tagNumber,1)
if It <= 0

request "Error creating file"
break
end if
step i from 1 to itemCount(fieldNames)

put item i of fieldNames into It
ask "What is field type for field " & It & "?"
put It && ", " into item i of fieldType
put item i of fieldNames into It
ask "What is field width for field " & It & "?"
put It && ", " into item i of fieldWidth

end step

createDBIndexFile()
TB30DB3.DLL

Syntax createDBIndexFile(<file name>,<sort expression>, \
<unique key>,<preserve existing>)

Declaration INT createDBIndexFile(STRING,STRING,WORD,WORD)

Description Creates and opens a dBASE index file with the specified name and sort expression, and defines
whether each key in the index file must be unique and whether to delete an existing index file with
the same name.

Parameters <file name> The name of the index file to create.

<sort expression> The expression that defines the index file's sort criteria. The
expression can include literal field names, constants, and operators.
The resulting type of the sort expression must be numeric, logical,
date, or character.

Sort expression syntax elements:
Type Values
Numeric operators + - * / ** ^

Character operators +

Relational operators = <> # < > <= >= $

Logical operators .NOT. .OR. .AND.

Functions CTODDATE RECNO
DELETED STR
DTOC TIME
IIF UPPER
RECCOUNT VAL

Constants .T. .F.

<unique key> An integer that specifies whether each key in the index file must be
unique. If <unique key> is 1, then the uniqueness of each key in
the index file will be maintained. If <unique key> is 0, the keys
will not be checked for uniqueness.

<preserve existing> An integer that specifies whether to preserve an existing index file. If
<preserve existing> is 1, ToolBook will not create the new
file nor delete the existing one. If <preserve existing> is 0,
ToolBook will delete the existing file and create a new one.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The sort expression contains an error or the file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
--Makes index available for browsing records in order defined by
--sort expression
if createDBIndexFile("temp.ndx","LASTNAME + FIRSTN",1,0) <

1 request getDBErrorString(It)
end

deleteDBFile()
TB30DB3.DLL

Syntax deleteDBFile(<file name>)

Declaration INT deleteDBFile(STRING)

Description Deletes the specified file and any associated index files currently open.

Parameter <file name> The name of the dBASE file to delete.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 20 The function failed because of an out-of-memory condition.
- 28 No dBASE file with the specified name.
- 29 The index file could not be closed.

deselectDBIndexFile()
TB30DB3.DLL

Syntax deselectDBIndexFile()

Declaration INT deselectDBIndexFile()

Description Deselects the currently selected index file so it is no longer the current index file. The current index
file determines the order in which to navigate in the current dBASE file. The index file must have
been opened previously with openDBIndexFile().

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

findDBKey()
TB30DB3.DLL

Syntax findDBKey(<search string>)

Declaration INT findDBKey(STRING)

Description Searches the current index file to find the closest key that matches the specified string. The resulting
key becomes the current key and the record referenced by the key becomes the current record.
When the file is already indexed, this is the fastest way to search for a record.

Parameter <search string> The search string that ToolBook uses to search for a match in the index file.

Returns The return value indicates the result of the search:
1 Exact match found.
2 String found at beginning of longer string.
3 String not found, next key becomes current key.
4 String greater than last key, last key becomes current key.

If an error occurs, this function returns:
0 An internal error occurred.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 10 The record was marked as deleted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

firstDBKey()
TB30DB3.DLL

Syntax firstDBKey()

Declaration INT firstDBKey()

Description Makes the first key in the current index file the current key and makes the record referenced by the
first key the current record. If the navigate-to-deleted switch is off, this function skips records marked
as deleted.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 TThe file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.
- 15 The database is empty.

For other negative return values, use getDBErrorString() to get an explanation of the error.

firstDBRecord()
TB30DB3.DLL

Syntax firstDBRecord()

Declaration INT firstDBRecord()

Description Makes the first record in the current dBASE file the current record. If the navigate-to-deleted switch is
off, this function skips records marked as deleted until an undeleted record is found.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 10 No such record; the database is empty or all records are deleted and navigate-to-deleted is

not in effect.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
--Does lead read before looping through records
set recordcount to
set It to null
get firstDBRecord()
if It <= 0

send error It, "getting first record in dBASE file"
break buttonClick

end if

freeDBFieldTag()
TB30DB3.DLL

Syntax freeDBFieldTag(<field tag number>)

Declaration INT freeDBFieldTag(WORD)

Description Frees memory used by the field tag created with createDBFieldTag().

Parameter <field tag number> The number returned when creating the tag with
createDBFieldTag().

Returns 1 The function was successful.
- 7 The field tag is invalid.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
--Gets return value for tag number
put createDBFieldTag(noFields) into tagNumber
if tagNumber = 0

request "Error creating field tag"
break

end if
step i from 1 to itemCount(fieldNames)

get setDBFieldTag(tagNumber,i,item i of fieldNames, \
item i of fieldType,item i of fieldWidth,0)

if It <= 0
request "Error setting field tag"
break

end if
end step
get createDBFile(dbFileName,itemCount(fieldNames), \

tagNumber,1)
if It <= 0

request "Error creating file"
break

end if
get freeDBFieldTag(tagNumber)
if It <= 0

request "Error freeing field tag"
break

end if

getDBDateFormat()
TB30DB3.DLL

Syntax getDBDateFormat()

Declaration STRING getDBDateFormat()

Description Gets the date format currently in use by the DLL.

Parameters None.

Returns A string containing the current date format.

If no error occurs, getDBDateFormat() returns the name of the current index file. Otherwise, it
returns null and sysError is set to one of these values:

- 3 Too many clients for this DLL or not enough memory.
- 20 Not enough memory to execute the function.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBErrorString()
TB30DB3.DLL

Syntax getDBErrorString(<error code>)

Declaration STRING getDBErrorString(INT)

Description Returns a string describing the error.

Parameter <error code> A numeric code returned by any function in the DLL.

Returns If no error occurs, getDBErrorString() returns a string that describes the error. Otherwise, it
returns null and sysError is set to one of these values:

- 8 The file, index, or system is corrupted.
- 20 The function failed due to an out-of-memory condition.
- 72 No string corresponds to that code.

getDBFieldCount()
TB30DB3.DLL

Syntax getDBFieldCount()

Declaration INT getDBFieldCount()

Description Returns the number of fields in the current dBASE file.

Parameters None.

Returns If no error occurs, getDBFieldCount() returns the number of fields in the current dBASE file.
Otherwise, it returns:

- 3 Too many clients for this DLL or not enough memory.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
if getDBFieldCount() < 1

send error It, "getting count of fields in dBASE file"
end if

getDBFieldName()
TB30DB3.DLL

Syntax getDBFieldName(<field position>)

Declaration STRING getDBFieldName(WORD)

Description Returns the name of the field of the specified column number.

Parameter <field position> The column number of the field in the current dBASE file.

Returns If no error occurs, getDBFieldName() returns the name of the field in the current dBASE file.
Otherwise, it returns null and sysError is set to one of these values:

- 3 Too many clients for this DLL or not enough memory.
- 11 No such field.
- 12 No current dBASE file; use openDBFile() first.
- 20 The function failed due to an out-of-memory condition.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
--Loops through the fields in the dBASE file, building background
--of book
step i from 1 to numFields

clear sysError
get getDBFieldName(i)
if sysError is not null

send error sysError, "getting field name in dBASE file"
break buttonClick

end if
put It & "," after fldnames --Builds list of

--field names for
--this file

draw recordField from x,y to 9180,y+360 --Draws and names
set name of selection to It --record field
increment y by adv

end step

getDBFieldPrecision()
TB30DB3.DLL

Syntax getDBFieldPrecision(<field name>)

Declaration INT getDBFieldPrecision(STRING)

Description Returns the number of decimal places for the specified numeric field.

Parameter <field name> The name of the numeric field.

Returns If no error occurs, getDBFieldPrecision() returns the number of decimal places for the
specified numeric field. Otherwise, it returns:

- 3 Too many clients for this DLL or not enough memory.
- 4 The field name is invalid.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBFieldType()
TB30DB3.DLL

Syntax getDBFieldType(<field name>)

Declaration INT getDBFieldType(STRING)

Description Returns the field type for a field name in the current dBASE file.

Parameter <field name> The name of the field for which you want the field type.

Returns If no error occurs, getDBFieldType() returns:
1 The field type is character.
2 The field type is logical.
3 The field type is date.
4 The field type is numeric.
5 The field type is memo.

If an error occurs, this function returns:
- 3 Too many clients for this DLL or not enough memory.
- 4 The field name is invalid.
- 6 The field type is invalid.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBFieldValue()
TB30DB3.DLL

Syntax getDBFieldValue(<field name>)

Declaration STRING getDBFieldValue(STRING)

Description Returns the value of the specified field for the current dBASE record and file. This is the value as it
exists in the record buffer; in other words, if you made changes to the field with
setDBFieldValue(), but did not use writeDBRecord(), this function returns the value
stored in the buffer, not the value in the file.

Parameter <field name> The name of the field whose value you want.

Returns If no error occurs, getDBFieldValue() returns the value of the specfied field. Otherwise, it
returns null and sysError is set to one of these values:
- 3 Too many clients for this DLL or not enough memory.
- 4 The field name is invalid.
- 6 The field type is invalid.
- 12 No current dBASE file; use openDBFile() first.
- 20 The function failed because of an out-of-memory condition.
- 23 An error occurred while reading a memo file.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
while true

increment recordCount
step i from 1 to totalField

set sysError to null
get getDBFieldValue(item i of fieldNames)
if sysError is not null

send error sysError, "getting value of field."
break buttonClick

end if
put It into text of recordField (item i of fieldNames)

end step
get nextDBRecord()
if It <= 0

break while
end if
send newPage

end while

getDBFieldWidth()
TB30DB3.DLL

Syntax getDBFieldWidth(<field name>)

Declaration INT getDBFieldWidth(STRING)

Description Returns the width of the specified field in the current dBASE record and file.

Parameter <field name> The name of the field whose width you want.

Returns If no error occurs, getDBFieldWidth() returns the width in characters for the current dBASE
record and file. Otherwise, it returns:
- 3 Too many clients for this DLL or not enough memory.
- 4 The field name is invalid.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBFileName()
TB30DB3.DLL

Syntax getDBFileName()

Declaration STRING getDBFileName()

Description Returns the name of the current dBASE file.

Parameters None.

Returns If no error occurs, getDBFileName() returns the path and file name of the current dBASE file.
Otherwise, it returns null and sysError is set to one of these values:
- 3 Too many clients for this DLL or not enough memory.
- 12 No current dBASE file; use openDBFile() first.
- 20 The function failed because of an out-of-memory condition.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBIndexExpression()
TB30DB3.DLL

Syntax getDBIndexExpression()

Declaration STRING getDBIndexExpression()

Description Returns the expression used to form the keys of the current index file for the current dBASE file.

Parameters None.

Returns If no error occurs, getDBIndexExpression() returns the expression used to form the keys of
the current index file for the current dBASE file. Otherwise, it returns null and sysError is set to
one of these values:
- 3 Too many clients for this DLL or not enough memory.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.
- 20 The function failed because of an out-of-memory condition.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBIndexFileName()
TB30DB3.DLL

Syntax getDBIndexFileName()

Declaration STRING getDBIndexFileName()

Description Returns the name of the currently selected index file.

Parameters None.

Returns If no error occurs, getDBIndexFileName() returns the name of the current index file.
Otherwise, it returns null and sysError is set to one of these values:
- 3 Too many clients for this DLL or not enough memory.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.
- 20 The function failed because of an out-of-memory condition.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBKeyType()
TB30DB3.DLL

Syntax getDBKeyType()

Declaration INT getDBKeyType()

Description Returns the type of the current key in the current index file.

Parameters None.

Returns If no error occurs, getDBKeyType() returns one of three possible values for the type of the
current key:
1 The current key type is character.
3 The current key type is date.
4 The current key type is numeric.

Otherwise, it returns null and sysError is set to one of these values:
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.

For other negative return values, use getDBErrorString().

getDBKeyValue()
TB30DB3.DLL

Syntax getDBKeyValue()

Declaration STRING getDBKeyValue()

Description Returns the value of the current key for the current index file.

Parameters None.

Returns If no error occurs, getDBKeyValue() returns the value of the current key for the current index
file. Otherwise, it returns null and sysError is set to one of these values:
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.
- 14 No current key; use a function such as firstDBKey() first.
- 20 The function failed because of an out-of-memory condition.

For other negative return values, use getDBErrorString().

getDBNavigateToDeleted()
TB30DB3.DLL

Syntax getDBNavigateToDeleted()

Declaration INT getDBNavigateToDeleted()

Description Returns the state of the switch that controls navigation to records marked as deleted. This switch is
off by default, which means that normal navigation from record to record will skip over the deleted
records. The records are not actually removed from the file until it is compacted with
packDBFile(). To set the switch, use setDBNavigateToDeleted().

Parameters None.

Returns 0 Navigate-to-deleted switch is off.
1 Navigate-to-deleted switch is on.
- 3 Too many clients for this DLL or not enough memory.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
request "Allow navigation to deleted records?" with "No" or "Yes"
if It is "Yes"

get setDBNavigateToDeleted(1)
else

get setDBNavigateToDeleted(0)
end

getDBRecordCount()
TB30DB3.DLL

Syntax getDBRecordCount()

Declaration LONG getDBRecordCount()

Description Returns the number of records in the current dBASE file.

Parameters None.

Returns If no error occurs, getDBRecordCount() returns the number of records in the current dBASE
file. Otherwise, it returns:
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
to handle recordCount

get getDBRecordCount()
if It <= 0

send error It, "getting record count in dBASE file"
break recordCount

end if
put It into totalRecords
while true

increment recordCount
step i from 1 to totalFields

set sysError to null
get getDBFieldValue(item i of fieldNames)
if sysError is not null

send error sysError, "getting value of field"
break recordCount

end if
put It into text of recordField(item i of fieldNames)

end step
set It to null --Reads the next record
get nextDBRecord()
if It <= 0

if recordCount < totalRecords
request "Only processed " & recordCount & \

" out of " & totalRecords
end if
break while

end if
end while

end recordCount

getDBRecordDeleted()
TB30DB3.DLL

Syntax getDBRecordDeleted()

Declaration INT getDBRecordDeleted()

Description Determines if the current record is marked for deletion.

Parameters None.

Returns 1 The current record is marked for deletion.
0 The current record is not marked for deletion.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 32 No current record.

For other negative return values, use getDBErrorString() to get an explanation of the error.

getDBRecordNumber()
TB30DB3.DLL

Syntax getDBRecordNumber()

Declaration LONG getDBRecordNumber()

Description Returns the number of the current record.

Parameters None.

Returns If no error occurs, getDBRecordNumber() returns the number of the current record. Otherwise,
it returns:
0 No current record.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.

gotoDBRecord()
TB30DB3.DLL

Syntax gotoDBRecord(<record number>)

Declaration INT gotoDBRecord(DWORD)

Description Navigates to the specified record number in the data file and makes it the current record.

Parameter <record number> The number of the record you want to make current.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 10 No such record.
- 12 No current dBASE file; use openDBFile() first.
- 87 The record was marked as deleted and navigate-to-deleted is off; see

getDBNavigateToDeleted().

For other negative return values, use getDBErrorString() to get an explanation of the error.

lastDBKey()
TB30DB3.DLL

Syntax lastDBKey()

Declaration INT lastDBKey()

Description Makes the last key in the current index file the current key and makes the record referenced by the
last key the current record. Unless the navigate-to-deleted switch is on, this function skips records
marked as deleted.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.
- 15 The database is empty.

For other negative return values, use getDBErrorString() to get an explanation of the error.

lastDBRecord()
TB30DB3.DLL

Syntax lastDBRecord()

Declaration INT lastDBRecord()

Description Makes the last record in the current dBASE file the current record. If the last record is marked as
deleted and the navigate-to-deleted switch is off, the last undeleted record becomes the current
record.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 10 No such record; the database is empty or all records are deleted and navigate-to-deleted is

off.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

nextDBRecord()
TB30DB3.DLL

Syntax nextDBRecord()

Declaration INT nextDBRecord()

Description Makes the next record in the current dBASE file the current record. Unless the navigate-to-deleted
switch is on, this function skips records marked as deleted.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 10 No such record (current record is last record).
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
get nextDBRecord()
if It <= 0

if recordCount < totalRecords
request "Only processed" && recordCount &&\

"out of" && totalRecords
end

end

openDBFile()
TB30DB3.DLL

Syntax openDBFile(<file name>)

Declaration INT openDBFile(STRING)

Description Opens and initializes the specified file and makes it the current dBASE file.

Parameter <file name> The name of the dBASE file to open.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 36 The file could not be opened.
- 88 A memo field exists but the memo file could not be opened.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
ask "Name of dBASE file to open?"
put It into text of field "dBASEFileName"
get openDBFile(text of field "dBASEFileName")
if It <> 1

send error It, "Opening dBASE file"
break

end if

openDBIndexFile()
TB30DB3.DLL

Syntax openDBIndexFile(<file name>)

Declaration INT openDBIndexFile(STRING)

Description Opens the specified index file and makes it the current index file for the current dBASE file. The first
logical record in the order defined by the index becomes the current record.

Parameter <file name> The name of the index file to open for the current dBASE file.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

previousDBKey()
TB30DB3.DLL

Syntax previousDBKey()

Declaration INT previousDBKey()

Description Makes the key before the current key in the current index file the current key. Unless the navigate-to-
deleted switch is on, this function skips records marked as deleted.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.
- 71 The key was already the first key.

For other negative return values, use getDBErrorString() to get an explanation of the error.

previousDBRecord()
TB30DB3.DLL

Syntax previousDBRecord()

Declaration INT previousDBRecord()

Description Makes the record before the current record in the current dBASE file the current record. If the current
record is the first record, then it will remain the current record. Unless the navigate-to-deleted switch
is on, this function skips records marked as deleted.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 10 No such record; the current record is the first record.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
--Backs up the record pointer
step i from 1 to 100

get previousDBRecord()
end step
send displayRecord

reindexDBFile()
TB30DB3.DLL

Syntax reindexDBFile(<file name>)

Declaration INT reindexDBFile(STRING)

Description Reindexes the specified index file. The data file associated with the index file must be open before
calling the function. On completion of reindexing, the specified index file becomes the current index.

Parameter <file name> The name of the index file to reindex.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 53 No index file with the specified name.

For other negative return values, use getDBErrorString() to get an explanation of the error.

removeDBRecords()
TB30DB3.DLL

Syntax removeDBRecords(<start number>,<end number>)

Declaration INT removeDBRecords(DWORD,DWORD)

Description Removes from the current dBASE file the records in the specified range, inclusive.

Parameters <start number> The beginning of the range of records to delete.

<end number> The end of the range of the records to delete. To delete only one record,
specify that record number for both <start number> and <end
number>.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

nextDBKey()
TB30DB3.DLL

Syntax nextDBKey()

Declaration INT nextDBKey()

Description Makes the next key in the current index file the current key and makes the record referenced by that
key the current record. If the current key is the last key, then it will remain the current key. Unless the
navigate-to-deleted switch is on, this function skips records marked as deleted.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 13 No current index file; use openDBIndexFile() first.
- 70 The key is the last key.

For other negative return values, use getDBErrorString() to get an explanation of the error.

selectDBFile()
TB30DB3.DLL

Syntax selectDBFile(<file name>)

Declaration INT selectDBFile(STRING)

Description Makes the specified file the current dBASE file. This function opens the file if it is not already open. If
the dBASE file is already open and has an associated index file, this file becomes the current index
file.

Parameter <file name> The name of the file to be the current dBASE file.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 28 No dBASE file with the specified name.

For other negative return values, use getDBErrorString() to get an explanation of the error.

selectDBIndexFile()
TB30DB3.DLL

Syntax selectDBIndexFile(<file name>)

Declaration INT selectDBIndexFile(STRING)

Description Makes the specified index file the current index file and uses it to navigate in the current dBASE file.

Parameter <file name> The name of the index file to select.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 53 No index file with the specified name.

For other negative return values, use getDBErrorString() to get an explanation of the error.

packDBFile()
TB30DB3.DLL

Syntax packDBFile()

Declaration INT packDBFile()

Description Compacts the current dBASE file by reclaiming space occupied by records marked for deletion. After
the file is compacted, the current record is the last record in the data file.

Parameters None.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 12 No current dBASE file; use openDBFile() first.
- 31 The dBASE file may be corrupted.

For other negative return values, use getDBErrorString() to get an explanation of the error.

writeDBRecord()
TB30DB3.DLL

Syntax writeDBRecord(<record number>)

Declaration INT writeDBRecord(DWORD)

Description Writes the contents of the record buffer into the specified record and updates all open index files. The
contents of the record buffer is set with setDBFieldValue().

Parameter <record number> The number of the record where you want to write the contents of the
record buffer. If <record number> is 0, then the current record is
updated with the contents of the record buffer. If <record number>
indicates a higher record number than is in the dBASE file, ToolBook
appends a new record that contains the contents of the record buffer. If
<record number> specifies a record with contents, then
writeDBRecord() overwrites the contents of that record.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 9 The function failed because of a duplicate key.
- 12 No current dBASE file.
- 79 The record was marked as deleted: write operation was denied.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
get writeDBRecord(totRecs + 1)
if It <> 1

send error It, "writing dBASE record"
break

end if
increment totRecs

setDBDateFormat()
TB30DB3.DLL

Syntax setDBDateFormat(<format string>)

Declaration INT setDBDateFormat(STRING)

Description Sets the date format to use in transactions through the DLL.

Parameter <format string> Any string that specifies a valid dBASE date format. The date format
specified is a visual representation of the date.
For Example:
YY.MM.DD
CCYY.MM.DD
MM/DD/YY
DD-MM/YY
DD-MM/CCYY
MMM DD/YY

Y, M, and D specify the year, month, and day, respectively. For more
than two M characters, a letter representation of the month is used. The
default date format is MM/DD/YY (month/day/year).

Returns 1 The function was successful (even if the date format string itself was invalid).
- 3 Too many clients for this DLL or not enough memory.

For other negative return values, use getDBErrorString() to get an explanation of the error.

setDBFieldTag()
TB30DB3.DLL

Syntax setDBFieldTag(<field tag number>,<field item>,<field name>, \
<field type>,<field width>,<field decimals>)

Declaration INT setDBFieldTag(WORD,WORD,STRING,STRING,WORD,WORD)

Description Sets the specified field in the specified field tag to the specified field name, type, width, and decimal
precision. You can use this function to specify information for more than one field by calling it again
for different fields with the same tag number.

Parameters <field tag number> The number returned by createDBFieldTag().

<field item> The number of the field to set. For details about setting the number of
fields in a field tag, see createDBFieldTag().

<field name> The name of the field. The name cannot be more than ten characters.

<field type> The field type, which can be one of the following:
Value dBASE field type
"1", "c", or "C" Character

"2", "l", or "L" Logical

"3", "d", or "D" Date

"4","n", or "N" Numeric

"5", "m", or "N" Memo

If <field type> evaluates to character, you must specify a field
width with <field width>. If <field type> evaluates to date or
memo, you do not need to specify a field width. If <field type>
evaluates to numeric, you must specify a field width and the decimal
precision with <field decimals>.

<field width> An integer indicating the width of the field. If this parameter is <= 0 for a
character field, then <field width> defaults to 254. If this
parameter is <= 0 for a numeric field, then <field width> defaults
to 10. The maximum width for a numeric field is 19. If the field type is
memo, date or logical, this parameter is ignored.

<field decimals> The number of decimal places in a numeric field. It is ignored for other
field types. If <field decimals> is 0 for a numeric field, then the
contents of the field is treated as an integer. If it is more than 0, it must
be smaller than or equal to <field width> - 2. If <field
decimals> is negative, larger than 15, or larger than <field
width> - 2, the function returns an error.

Returns 1 The function was successful.
- 6 The field type is invalid.
- 7 The field tag is invalid.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
step i from 1 to itemCount(fieldNames)

get setDBFieldTag(tagNumber,i,item i of fieldNames, \
item i of fieldType,item i of fieldWidth,0)

if It <= 0
request "Error setting field tag"

break
end if

end step

setDBFieldValue()
TB30DB3.DLL

Syntax setDBFieldValue(<field name>,<new value>)

Declaration INT setDBFieldValue(STRING,STRING)

Description Sets the contents of the specified field in the current record to the specified new value. Changes to
field values made by this function are stored in the record buffer until you call writeDBRecord().

Parameters <field name> The name of the field whose value you want to change.

<new value> The new value for the specified field.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 4 The field name is invalid.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 26 A memo field could not be written.
- 32 No current record.
- 60 The date is invalid for a date field.
- 62 The data is invalid for the field type.
- 73 The text is too long to fit in the field.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Example
if setDBFieldValue(textline j of text of field "sname",l) <> 1

increment totInval
end if

setDBNavigateToDeleted()
TB30DB3.DLL

Syntax setDBNavigateToDeleted(<option>)

Declaration INT setDBNavigateToDeleted(INT)

Description Sets a switch to allow navigation to records marked for deletion.

Parameter <option> 0 to turn navigate-to-deleted off; 1 to turn it on. The default is off.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.

For other negative return values, use getDBErrorString() to get an explanation of the error.

setDBRecordDeleted()
TB30DB3.DLL

Syntax setDBRecordDeleted(<delete value>)

Declaration INT setDBRecordDeleted(WORD)

Description Marks the current record for deletion.

Parameter <delete value> Determines whether the current record is marked for deletion. If this value
is >= 1, then the record is marked for deletion. If the value is <= 0, then this
function removes the mark that indicates the record is to be deleted.

Returns 1 The function was successful.
- 3 Too many clients for this DLL or not enough memory.
- 8 The file, index, or system is corrupted.
- 12 No current dBASE file; use openDBFile() first.
- 32 No current record; use a function such as firstDBRecord() first.

For other negative return values, use getDBErrorString() to get an explanation of the error.

Using the Paradox Engine
Paradox overview

The Paradox Engine is a set of functions that perform the data-handling operations -- for example, creating,
opening, and closing tables and reading and writing data -- of the Paradox relational database manager.
ToolBook's TB30PDX.DLL contains functions that enable you to control the Paradox Engine to perform database
operations. You can work with tables created by the Paradox database manager, or you can create your own
tables.

Data Storage
Data is stored in tables, with one table to a file. A table contains one or more records. Each record contains one or
more fields. A field can contain alphabetic or numeric data.

Binary Large Objects (BLOBs)
A BLOB is any block of binary data (such as a graphic, video clip, or sound) or a block of text data that is larger
than 255 bytes. BLOBs are stored in a separate file; the BLOB's handle is stored in a field in the table.

Indexes
Tables can be indexed by any field or combination of fields, other than BLOBs. You can not index on a BLOB field.
You can have any number of indexes for a table (but you can only use one at a time).

Moving data
Logically, data moves to and from the table by way of a transfer buffer. TB30PDX.DLL functions that read and write
data take care of moving data into and out of the buffer, so you never have to deal with it directly. To write a value
to a field, go to the record where you want to put the record, set the value for the field in the record, and then
update the record in the database table.

Physically, data moves in blocks by way of a swap buffer (cache). The engine takes care of all physical data
movement automatically, although you can control the operations yourself.

Specifications
Naming rules
Data types
Initialization
Working with tables
Working with records
Working with fields
Working with BLOBs
Indexing and searching
Sharing tables with multiple users
Error messages

Specifications
Paradox overview

Maximum table size 256MB

Maximum records per table As many as will fit in 256MB

Maximum bytes per record 4000 for non-keyed (non-indexed) tables

1350 for keyed (indexed) tables

Maximum fields per record 255

Maximum field size in table 255 characters

Maximum size of a BLOB 256MB

Maximum size of the BLOB file 256MB

Maximum fields in a composite index 16

Maximum passwords 50

Maximum password size 15 characters

Maximum field name size 25 characters

Maximum table name size 128 characters

Naming rules
Paradox overview

Tables
The base database table is a DOS file with a .DB extension; its name must follow standard DOS naming
conventions.

If index and BLOB files are associated with the base table, they are given the same name with different
extensions. BLOB files have the .MB extension.

Primary indexes have a .PX extension. Secondary indexes have a .Xnn or .Ynn extension, where nn is a number
supplied by the engine.

Fields
Maximum 25 characters
May contain spaces but may not begin with a space
May contain any printable character except double quotes ("), brackets ([]), braces ({ }), number signs (#),

left or right parentheses (), or the character combination ->
May not duplicate another field name in the same table

Data specifications
Paradox overview

Five field types
Alphanumeric (A) Full range of ASCII characters except embedded null (ASCII 0).

Maximum length 255 characters
Each character requires one byte

Numeric (N) 15 significant digits including the decimal point. Numbers with more than 15
significant digits are rounded and stored in scientific notation.
Real numbers from ±10 ^ -307 to ±10 ^ 308
Requires 8 bytes per field

Currency ($) 15 significant digits including the decimal point

Real numbers from ±10 ^ -307 to ±10 ^ 308

Requires 8 bytes

Formatted according to the currency format selected in the Windows Control
Panel

Short number (S) Signed integers between -32,767 and 32,767

Requires 2 bytes

Date (D) Any valid date between January 1, 1 AD to December 31, 9999

Paradox stores the data as a 4-byte integer equal to the number of days since
January 1, 1 AD.

Three BLOB types
Memo (M) Unformatted text

Binary (B) Unstructured binary (arbitrary data such as bit patterns and sound)

Graphic (G) Windows .DIB bitmaps

Initialization
Paradox overview

Before you can use the Paradox Engine, you have to initialize it by calling initializePX(). Calling   
initializePX() sets the following parameters to their default values. If you want to set any of these
parameters to a different value, call the function listed below, then call initializePX().

Default value
Parameter Description (range) To change, call
Swap buffer
size

Amount of memory available for swapping data
in and out of memory. Each table requires 4K.
Allocate more to reduce disk accesses, but too
large an allocation could cause program to run
out of memory.

32K
(8K - 256K)

setPXINISwapSize()

Max file
handles

Maximum number of file handles available to
the engine.

10
(3 - 255)

getPXMaxFiles()

Max tables Maximum number of tables that can be open at
one time

5
(1 - 64)

setPXINIMaxTables(
)

Max locks Maximum number of locks per table 32
(1 - 128)

setPXINIMaxLocks()

Sort order The type of sort to use ASCII
(see function
description)

setPXSortOrder()

Maximum table and block size
Initialization and finalization functions
Engine defaults

Maximum table and block size
Paradox overview

The maximum table size is the maximum amount of disk space a table can occupy. The block size is the amount
of data that is moved into and out of the swap buffer at one time. (The buffer size can be from 8 to 256KB; the
default size is 32KB.)

The block size is determined by the maximum table size. The defaults are 2KB blocks and 128MB maximum table
size. You can call setPXTableMaxSize() to select one of these combinations:

Maximum table size Block size

64MB 1KB

128MB 2KB

256MB 4KB

Working with tables
Paradox overview

Creating tables
To create a table, call the function createPXTable() and pass it the table name, a list of 1 to 255 field names,
and a list of corresponding field types and sizes.

Warning
If a table with the same name already exists in the same directory and is not open, it (and all associated
BLOB and index files) are deleted without warning. Before creating a table, use doesPXTableExist()
to check for the existence of a table with the same name.

By default, the engine creates a Paradox 4.0-format table. If you want to create a table in Paradox 3.5 format, call
setPXTableCreateMode() first. The argument specifies the type of format to use. All subsequent tables
created by createPXTable() will be in the format specified until you call setPXTableCreateMode()
again to switch modes. (When you initialize the engine, the create mode is reset to the default.)

You can set a maximum size for a table by calling setPXTableMaxSize() before calling
createPXTable(). All subsequent tables created by createPXTable() are limited to that size until you
call setPXTableCreateMode() again to change the limit.

After you create a table, you must open it before you can use it.

Opening a table
Closing a table
Deleting a table
Table information operations
Other table operations
Table functions

Opening a table
Paradox overview

Call openPXTable() to open a table. The arguments for the function include:

An alias to assign to the table to be used for subsequent access
The file name of the table (without the extension)
The handle (number) of the index to use to order records. Use 0 if you haven't created an index for the table
The mode for saving changes

If the table has an index, the records are presented in the order of the index. If not, they are presented in the order
in which they were entered into the table. You can open the same table multiple times with different indexes to get
different views of the records.

Closing a table
Paradox overview

Call closePXTable() to close a table. Specify the alias of the table you want to close.

If you don't close all tables before quitting the application, the DLL closes the tables for you, but you lose all data
that has not been posted to the tables.

Deleting a table
Paradox overview

To delete a table, call deletePXTable() with the file name of the table you want to delete. The table must be
closed. If there are index files or a BLOB file associated with the table, they are automatically deleted as well.

The contents of the table and related BLOB and index files are physically erased from the disk.

Other table operations
Paradox overview

TB30PDX.DLL functions can be used to perform a variety of operations on tables. For each of these functions, the
tables must be referred to by name, not by alias.

copyPXTable() Makes a copy of a table family (the base table plus associated BLOB and index files)
with another name. Composite indexes are not copied. If a table by that name already
exists and is closed, it is overwritten.

renamePXTable() Changes the name of the base table and any associated BLOB and index files

addPXTable() Adds records from one table to another. Data types for corresponding fields in the two
tables must match; BLOB fields must match in both type and length of leader.

emptyPXTable() Removes all records from a table, physically deleting them from the disk, but leaves the
table structure intact.    Private BLOBs in associated record buffers are released, and
pending dropPXBlob() operations are ignored.

Table information operations
Paradox overview

TB30PDX.DLL functions can be used to obtain information about tables.

doesPXTableExist() Does the specified table exist?    (Refer to the table by name, not alias.)

isPXTableProtected() Is the specified table encrypted?    (Refer to the table by alias.)

isPXNetTableChanged() Has the table been changed since the last time you called
refreshPXNetTable()?    (Refer to the table by alias.)

getPXRecordCount() How many records are in the table?    (Refer to the table by alias.)

getPXFieldCount() How many fields are in the table?    (Refer to the table by alias.)

getPXFieldType() What is the type of a field?    Also returns the length of an alphanumeric field
and the width of a BLOB field. (Refer to the table by alias and the field by
name.)

getPXFieldNames() What are the names of the fields in the table?    (Refer to the table by alias.)

getPXKeyFieldCount() How many key fields are in the table?    (Refer to the table by alias.)

Working with records
Paradox overview

Moving to a record
Functions for moving to specific records include:

gotoPXRecord() Go to the record specified by index number. (This method is unreliable when the
table is shared on a network, because records can be added or deleted without
your knowledge, thereby changing record numbers.)

firstPXRecord() Go to the first record in the table or index.

lastPXRecord() Go to the last record in the table or index.

nextPXRecord() Go to the record after the current one in the table or index.

previousPXRecord() Go to the record before the current one in the table or index.

The result you get from using one of these functions to move to a particular record depends on whether the table
has an index and, if it does, on the index you assigned when you opened the table.

If the table has no index, records are accessed in the order in which they were entered into the table. The first
physical record is record number 1 (not 0), the next is record 2, and so on. "First record" is the first physical record
in the table; "next record" is the next physical record after the current one.

If you assign an index to the table when you open it, records are referred to according to their order in the index,
which may not be the same as their physical order in the table. Thus, record number 1 is the first record in the
index, number 2 is the next record in the index, and so on.    "First record" is the first record in the index; "next
record" is the next record in the index after the current one.

If you have locked a record, you can use gotoPXNetRecordLock() to go to the locked record.

Adding a record
Deleting records
Getting the number of the current record
Clearing a record
Record functions

Adding a record
Paradox overview

To add a record to a table:
1. Use setPXFieldValue() to set values in the record fields.

2. Call appendPXRecord() or insertPXRecord() to add the record to the table.

If the table is indexed, the record is added in its proper position in the index.
If the table is not indexed, appendPXRecord() adds the record to the end of the table, while
insertPXRecord() inserts the record before the current record.

Deleting records
Paradox overview

To delete a record:
1. If the table is not already open, open it and assign it an alias.
2. Find the record you want to delete.

Go to a particular record or search for the contents of a key field in an indexed table
3. Call deletePXRecord() to delete the record.

This function deletes one record at a time. To delete additional records, go to the record and call
deletePXRecord()    again for each record.

To delete all records:
With the table closed, call emptyPXTable().

Getting the number of the current record
Paradox overview

To get the number of the current record:
1. Call getPXRecordNumber().

This function returns the number of the record in the index that is currently open for the table. If you change
indexes for a table, the records could have different numbers. There is no way to get the physical record number.

The record number is not a reliable way to find a record in shared tables, because other users can add or delete
records without your knowledge, thereby changing the numbers of some or all of the records.

Clearing a record
Paradox overview

Clearing a record means deleting the data in the fields without deleting the record from the table.

To clear a record:
1. Move to the record you want to clear.
2. Call emptyPXRecord().

Working with fields
Paradox overview

Getting information about a field
There are two functions that return information about fields:

getPXFieldNames() returns a list of field names in the specified table. The table must be open.
getPXFieldType() returns the type of the named field in the current record, as well as the length of an

alphanumeric field and the width of a BLOB field. To get the types of all fields in a record, use the
getPXFieldType() function in a loop, as shown in the example.
Example
to handle buttonClick
-- We eliminate blobs to let the user choose a field to index the table on

local temp
fieldNames = getPXfieldNames (DBTable of this book)
step i from 1 to itemCount(fieldNames)

testName = item i of fieldNames
get PXFieldType(testName)
if first char of it is in "MGBFO"

continue step
end if
put testName & "," after temp

end step
clear last char of temp

-- lists all the fields that can have an index
request temp

end buttonClick

Reading field values
Writing field values
Field functions

Reading field values
Paradox overview

To read a field value:
1. Move to the record you want to read.
2. Call getPXFieldValue() once for each field you want to read in the current record.

This function can be used with any type of data except BLOBs.

Writing field values
Paradox overview

To write a field value:
1. Move to the record you want to write.
2. Call setPXFieldValue() to change the value of a specific field in the current record.

This function can be used with any type of data except BLOBs.

When you're finished writing field values, call updatePXRecord() to write the changes to the table.

Indexing and searching
Paradox overview

Using indexes
An index to a table is like the thumb index to a dictionary:    It helps you find information quickly. When you want to
look up a word in a dictionary, the thumb index narrows your search to words starting with the same letter. In the
same way, when the engine needs to find data in an indexed table, it can go directly to the part of the table that
contains the information before it starts to search each record in detail.

If the table had no index, the engine would have to search each record, starting with the first one, every time it
wanted to find something.

When the engine sorts records according to an index, the sorting is done in memory. The engine does not
physically rearrange the records on the disk.

Creating indexes
Maintaining indexes
Deleting indexes
Sort order
How searching works
Performing a search
Key and index functions
Search functions

Kinds of indexes
Paradox overview

The engine provides two main kinds of indexes:    primary and secondary.

A primary index is always the first one or more contiguous fields in a record. These fields, taken together, are the
key for the record. Duplicate key values are not allowed.

Each table must have a primary index. If you don't create one, the engine will create one for you.

Secondary indexes are optional. You can use a secondary index to present the records in a different order from
the primary index. Secondary indexes can use any single field or any group of fields.

BLOBs cannot be used in either kind of index.

Primary indexes are always maintained automatically. Whenever you change the data in a table, the engine
automatically checks for key violations, sorts the table in key-field order, and updates the index.
A single-field secondary index can be case-sensitive or case-insensitive.
Secondary indexes can be automatically maintained or not, as you choose.
You can have only one primary index for a table, but you can have as many secondary indexes as you want. You can
have only one index open at a time for each table alias. (However, you can have the same table open more than
once under different aliases, and each could have a different index.)

Creating indexes
Paradox overview

To create a primary index:
1. Open the table.
2. Call addPXKey().

Pass the the numbers of the fields you want to have the index comprise and the code for the type of index you
want.

To create a secondary index:
1. Open the table.
2. Call mapPXKey() with the numbers and names of the fields you want to use for the index.

3. Call addPXKey() to create the index.

Maintaining indexes
Paradox overview

Indexes are maintained automatically. There's nothing you need to do to maintain them.

Deleting indexes
Paradox overview

Call dropPXKey() to delete an index. The table must be open when you delete the index. If you delete a
primary index, all secondary indexes for the same table are also deleted.

Sort order
Paradox overview

To set the sort order for a table, call setPXSortOrder() before you call initializePX(). (If you don't call
setPXSortOrder(), ASCII sort order is used by default.)

You can choose from these sort orders:

ASCII sort order
International sort order
Norwegian/Danish sort order
Swedish/Finnish sort order
Norwegian/Danish sort order for Paradox 4.0

How searching works
Paradox overview

You can search for a match on a key field in the primary index or in a secondary index. When you're using a
primary index that has more than one field in its key, you can specify how many of those fields (starting with the
first) you want to include in the search.

You can search only for exact matches (although you can have the engine return the nearest non-matching
record). Boolean operators -- such as greater than, less than, or not equal to -- are not available. You cannot
search for BLOBs.

You can specify one of three types of search modes:

Mode 0    -- Search for an exact match, starting at the beginning of the table.

Mode 1    -- Search for an exact match, starting at the next record after the current one.

Mode 2    -- Search for the nearest match, starting at the beginning of the table.

In all cases, the search proceeds downward in the table.

In mode 0 or mode 1, if the engine finds an exact match, it makes that record the current record. If it does not find
an exact match, it does not change the current record.

In mode 2, the engine finds the first record that contains a value equal to or greater than the value you're
searching for. For example, suppose a series of records contain the following values in the first field:

Harriott

Harry

Horrace

Now suppose you search for "Herman" in mode 2. "Horrace" is the first value equal to or greater than the search
value, so the engine makes that record the current record. If the engine doesn't find a value equal to or greater
than the value you're searching for, it makes the last record in the table the current record.

Remember that the order of records is determined by the index in use at the moment. If you perform the same
search with a different index, you might get different results.

Performing a search
Paradox overview

Performing a search is a two-step operation:

1. Put the value you want to match into the appropriate field of setPXFieldValue().

2. Call searchPXKey() or searchPXField() to search for a match to the value.

Example
get setPXFieldValue("myDatabase", "name", text of field "name")
get searchPXField("myDatabase", "name", "nameIndex", 2)
if it < 0

request getPXErrorString(it)
end

Working with BLOBs
Paradox overview

BLOBs (binary large objects) are binary objects of any size (such as a video clip, sound file, or bitmap) or blocks of
text larger than 255 bytes. They can be any size up to 256MB.

A table can have up to 255 BLOB fields.

BLOBs are not stored in the table but in a separate file. The BLOB field in the table contains a pointer to the BLOB
data in the separate file.

The BLOB field can also have a leader of up to 240 bytes, which stores a copy of that many bytes from the
beginning of the BLOB. If the BLOB is smaller than the size of the leader, the entire BLOB can be stored in the
table.

TB30PDX.DLL supports three kinds of BLOBs:

M -- memo (unformatted text)

B -- unstructured binary (arbitrary data such as bit patterns and sound)

G -- structured graphics (arbitrary data with a header defining structure)

When you call createPXTable() to create a table, you specify the type of BLOB and the size of the BLOB
field leader (if any) in bytes in the list of field types.

Public and private BLOBs
Cloning BLOBs
Reading a memo BLOB
Reading a binary BLOB
Reading a graphic BLOB
Writing a memo BLOB
Writing a graphic BLOB
Writing a binary BLOB
Writing a binary BLOB from a file
Writing a binary BLOB to a file
Displaying a graphic BLOB
Writing and reading the BLOB leader
BLOB functions

Public and private BLOBs
Paradox overview

Public BLOBs are those that can be read by anyone who has access to the database table with which they are
associated. A private BLOB is a local copy of a public BLOB or a new BLOB that has not been written to the table
for the first time. A private BLOB can be seen only by the user who opened it. When a private BLOB is posted to a
table, it becomes a public BLOB.

TB30PDX.DLL and the engine take care of managing public and private BLOBs for you.

Cloning BLOBs

Reading a memo BLOB
Paradox overview

To read a memo BLOB:
1. Go to the record that contains the reference to the BLOB.
2. Use openPXBlobRead() to open the BLOB to read.

The engine returns the handle to the BLOB in the BLOB file.
3. Use the getPXMemoBlob() function to set a variable equal to the BLOB.

4. Use closePXBlob() to close the BLOB.

5. Display the variable with any suitable ToolBook technique.

Example
to handle buttonClick

hPrivateBlob = openPXBlobRead(DBTable, fieldName)
if hPrivateBlob < 0

send PXError hPrivateBlob
else

request getPXMemoBlob(hPrivateBlob)
get closePXBlob(hPrivateBlob, 0)

end
end

Reading a binary BLOB
Paradox overview

To read a binary BLOB:
1. Go to the record that contains the reference to the BLOB.
2. Use openPXBlobRead() to open the BLOB to read.

The engine returns the handle to the BLOB in the BLOB file.
3. Use the getPXBlob() function to read the BLOB into memory.

The function returns the Windows handle to the BLOB.
4. Use closePXBlob() to close the BLOB.

5. Use the kernel globalLock() function to get a pointer to the BLOB in memory.

6. Set a variable equal to the contents of memory at the pointer location.
7. Use the kernel globalUnlock() function to unlock memory.

8. Display the variable with any suitable ToolBook technique.
9. Use the kernel globalFree() function to remove the BLOB from memory.

Example
to handle buttonClick

request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))
request "Open Table:" &&

getPXErrorString(openPXTable("Bintest","Bintest",0,0))
linkDLL "kernel"

pointer globalLock(word)
word globalunlock(word)
word globalFree(word)

end linkDLL
-- we know the fieldName, in this case we'll try "Binfield"
hBlob = openPXBlobRead("Bintest", "Binfield")
set bSize to getPXBlobSize(hBlob)
hB = getPXBlob(hBlob,bSize, 0)
get closePXBlob(hBlob, 0)
set pB to globalLock(hB)
request pointerString(0,pB)
get globalUnlock(hB)
get globalFree(hB)
request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))

end

Reading a graphic BLOB
Paradox overview

To read a graphic BLOB:
1. Go to the record that contains the reference to the BLOB.
2. Use openPXBlobRead() to open the BLOB to read.

The engine returns the handle to the BLOB in the BLOB file.
3. Use the getPXGraphicBlob function to read the BLOB into memory.

The function returns the Windows handle to the BLOB.
4. Use closePXBlob() to close the BLOB.

5. Display the BLOB.
6. Use freePXGraphicBlob and freePXGraphicBlobPalette to free the Windows handle to the

bitmap and the palette.

Example
-- table is the currently open table, fieldName is the name of the
-- field that has the BLOB in it.
to handle showBitmap table,fieldName

system hBMP,hPal,hWndBMP
--get a PX-type handle to the BLOB
hPXToBMP = openPXBlobRead(table,fieldName)
--put the BLOB into memory and get a Windows-style handle to it
hBMP = getPxGraphicBlob(hPXToBMP)
--Same with its associated palette
hPal = getPxGraphicBlobPalette(hPXToBMP)
get closePXBlob(hPXToBMP, 0)
-- Open a window and show the graphic BLOB.
myParent = clientHandle of mainWindow
myPosition = pageUnitsToClient(position of ellipse "Center")
myColor = rgbFill of ellipse "Center"
hWndBMP = openPXBitmapWindow(hBMP, hPal, myParent, myPosition, 2, myColor)
--Imagine the ellipse "center" to be a point. With the mode
--set to 2, the bitmap will show at its normal size centered on
--the 1-dimensional ellipse.

end showBitmap

to handle closeBitmap
system hBMP,hPal,hWndBMP
--When you're finished with the bitmap and the window, close the window
get closePXBitmapWindow(hWndBMP)
--free the Windows handle to the bitmap
get freePXGraphicBlob(hBMP)
get freePXGraphicBlobPalette(hPal) -- same for the palette

end closeBitmap

Writing a memo BLOB
Paradox overview

To write a memo BLOB:
1. Go to the record you want to write.
2. Use the charCount() function to get the size of the BLOB you want to write.

3. Use openPXBlobWrite() to open the BLOB to write.

4. Use the setPXMemoBlob() function to write the BLOB.

5. Use closePXBlob() to close the BLOB.

6. Use appendPXRecord() or insertPXRecord() to add a new record or updatePXRecord() to
update an existing one.

Example

blobSize = charCount(value)
blobHandle= openPXBlobWrite(DBTable of self, fieldName, BLOBSize, 0)
if blobHandle < 0

sysError = getPXErrorString(it)
else

get setPXMemoBlob(blobHandle, value)
sysError = getPXErrorString(it)
get closePXBlob(blobHandle, 1)

end

Writing a graphic BLOB
Paradox overview

To write a graphic BLOB:
1. Save the BLOB you want to write as a file.
2. Go to the record you want to write.
3. Use the getPXFileSize() function to get the size of the BLOB you want to write.

4. Add 8 bytes to that size.
The extra 8 bytes are for a header that is added automatically to tell the engine what kind of graphic the BLOB
is.

5. Use openPXBlobWrite() to open the BLOB to write.

6. Use the setPXGraphicBlobFromFile() function to write the BLOB.

7. Use closePXBlob() to close the BLOB.

8. Use appendPXRecord() or insertPXRecord() to add a new record or updatePXRecord() to
update an existing one.

Example

blobSize = getPXFileSize(value) + 8
blobHandle= openPXBlobWrite(DBTable of self, fieldName, blobSize, 0)
if blobHandle< 0

send PXError blobHandle
else

get setPXGraphicBlobFromFile(blobHandle, value)
sysError = getPXErrorString(it)
get closePXBlob(blobHandle, 1)

end

Writing a binary BLOB
Paradox overview

Example
to handle buttonClick

set foo to text of field "foo"
linkDLL "kernel"

WORD globalAlloc(word,dword)
POINTER globalLock(word)
WORD globalFree(word)
WORD globalUnlock(word)

end linkDLL

set hBuf to globalAlloc(68,512)
set pMemBuf to globalLock(hBuf)
request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))
request "Open Table:" &&

getPXErrorString(openPXTable("Bintest","Bintest",0,0))
get pointerString(0,pMemBuf,foo)
hBlob = openPXBlobWrite("Bintest", "BinField", 512, 0)
if hBlob < 0

request getPXErrorString(hBlob)
get globalUnlock(hBuf)
get globalFree(hBuf)
break

end
request "Set blob:" && getPXErrorString(setPXBlob(hBlob,512,0,hBuf))
get closePXBlob(hBlob, 1)
get globalUnlock(hBuf)
get globalFree(hBuf)
request "Update blob:" && getPXErrorString(updatePXRecord("Bintest"))
request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))

end

Displaying a graphic BLOB
Paradox overview

Before you can display a graphic BLOB, you must create a window for it. You can create the window and display
the BLOB at the same time, or you can create the window without displaying a BLOB. You can leave the window
open and use it to display a series of BLOBs.

To create the window and display a BLOB:
1. Call openPXBitmapWindow() to create the window.

The parameters for the function are:

<bitmap handle> The handle to the BLOB returned by getPXGraphicBlob()

<palette handle> The palette handle returned by getPXGraphicBlobPalette(). (Enter 0 to
use the ToolBook palette.)

<parent handle> Window in which to create the child window

<position/bounds> Comma-separated list of two screen-coordinate numbers representing the
position, or four screen-coordinate numbers representing the bounds, of the child
window

<mode> Display mode for bitmap

0 Normal
1 Centered
2 Stretched

<background color> Comma-separated list representing the RGB values for the window background
color. Pass null or "" to use the system window background color.

The function returns the handle to the window.

To create the window without displaying a BLOB:
When you call openPXBitmapWindow(), pass the handle to a bitmap that is a ToolBook resource instead
of the handle to a BLOB. Pass 0 instead of the handle to a BLOB palette.
The ToolBook resource bitmap is displayed in the window.

To display a BLOB in an existing window:
1. Call setPXBitmapWindowInfo() to display the bitmap.

The parameters for the function are:

<window handle> The handle to the bitmap window returned by openPXBitmapWindow()

<bitmap handle> The handle to the BLOB returned by getPXGraphicBlob()
<palette handle> The palette handle returned by getPXGraphicBlobPalette(). (Enter 0 to

use the ToolBook palette.)
<mode> Display mode for bitmap

0 Normal
1 Centered
2 Stretched

<background color> Comma-separated list representing the RGB values for the window background
color

When you finish looking at the BLOB, you should call freePXgraphicBlob()    and
freePXGraphicBlobPalette() to free the memory used by the BLOB handle and the palette handle. You
should also redraw the screen to remove the image of the BLOB.

Example
--table is the currently open table, fieldName is the name of the
--field that has the BLOB in it.
to handle showBitmap table,fieldName

system hBMP,hPal,hWndBMP
--We get a PX type handle to the BLOB
hPXToBMP = openPXBlobRead(table,fieldName)
--We put the BLOB in memory and get a Windows style handle to it

hBMP = getPxGraphicBlob(hPXToBMP)
--Same with its associated palette
hPal = getPxGraphicBlobPalette(hPXToBMP)
--Done with the PX handle
get closePXBlob(hPXToBMP, 0)
--Open a window and show the graphic BLOB.
hWndBMP = openPXBitmapWindow(hBMP, hPal, clientHandle of \
mainWindow, pageUnitsToClient(position of ellipse "Center"), \
2,rgbFill of ellipse "Center")
--Imagine the ellipse "center" to be a point. With the mode set to
--2, the bitmap will show at its normal size centered on
--the 1 dimensional ellipse.

end showBitmap
To close the window:
Example
to handle closeBitmap

system hBMP,hPal,hWndBMP
--When we're finished with the bitmap and the window:
--close the window
get closePXBitmapWindow(hWndBMP)
--free the Windows handle to the bitmap
get freePXGraphicBlob(hBMP)
--ditto for the palette
get freePXGraphicBlobPalette(hPal)

end closeBitmap

Writing and reading the BLOB leader
Paradox overview

The BLOB leader is a part of the BLOB that is stored in the database table itself as well as in the BLOB file. The
leader is optional and can be up to 240 bytes long. You set the length of the leader when you use
createPXTable() to create the table.

 Example
get createPXTable("c:\data\CDbase", "Title, artist, songs, cover", \

"A25, A25, M240, G0")

creates two BLOB fields:    one memo field with a 240-byte leader and a graphic field with a 0-byte leader.

The leader is useful for storing a description or other data about the BLOB. If the BLOB itself is less than 240
bytes long, it can be stored entirely in the leader, but it is also stored in the BLOB file.

To write the BLOB leader:
1. If the leader for a BLOB field is longer than 0 bytes, it is filled automatically with the first part of the BLOB when

you write the BLOB to the BLOB file. The entire BLOB is stored in the BLOB file; the part that is stored in the
leader is a duplicate.

You can read the BLOB leader without reading the entire BLOB.

To read the BLOB leader:
1. Go to the record from which you want to read the BLOB leader.
2. Use the getPXBlobQuick() function to read the leader.

Example
to handle buttonClick

linkDLL "kernel"
pointer globalLock(word)
word globalunlock(word)
word globalFree(word)

end linkDLL
request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))
request "Open Table:" &&

getPXErrorString(openPXTable("Bintest","Bintest",0,0))
-- we know the fieldName, in this case we'll try "home_address"

fieldSize = getPXFieldType("Bintest","home_address")
clear first char of fieldSize
hQuickBlob = getPXBlobQuick("Bintest","home_address",fieldSize)
pQB = globalLock(hQuickBlob)
request pointerString(0,pQB)
get globalUnlock(hQuickBlob)
get globalFree(hQuickBlob)

end

Sharing tables with multiple users
Paradox overview

Paradox database tables can be shared over a network, or they can be shared between two or more ToolBook
applications running on the same computer. The engine has several functions you can use to allow several users
access to tables while protecting the integrity of the data.

Locking
Managing concurrent operations
Managing security
Sharing and concurrency functions
Password and security functions

Locking
Paradox overview

The main requirement for sharing tables safely and successfully is to work out a scheme for locking and unlocking
records and tables. There are four types of locks. Some locks are placed and removed automatically by the
engine, but most must be handled explicitly by the ToolBook application.

Locks can be placed on tables, on other kinds of files, and on records.

A single user can lock an object only once, but more than one user can place locks on the same object as long as
the locks don't conflict. For example, if you place a full lock on a table, another user can place a write lock on the
same table, but no one can place a prevent full lock on the table.

Each user can place only one lock on a single object at a time. However, each user can lock up to 128 records at
a time in each open table.

Your locking scheme needs to balance protection of data with access to the data. More stringent locks provide
greater assurance of data integrity but make it more difficult for multiple users to have access. For example, if you
place a write lock on an entire table while you are working on just one record, no one else will be able to write to
any record in the table.

In general, you use a full lock when you want to prevent another user from seeing data that may be invalid or
when you're performing operations such as sorting, restructuring, emptying, or deleting a table.

Prevent locks preclude others from placing locks on objects. A prevent full lock on a table means that no one can
place a full lock on the table; however, they can place a write lock on it. Placing a prevent write lock or a prevent
full lock on an object ensures that you will have access to the object any time you want. However, prevent locks
can interfer with other users' operations. For example, if another user wants to perform an operation that requires
write-locking a table, and you have placed a prevent write lock on the table, the other user will not be able to
proceed until you remove it.

Note that locking a table or file is different from protecting it with a password.

Types of locks
Automatic locks
Manual locks
Checking lock status
Going to a locked record

Types of locks
Paradox overview

There are two types of locks and two types of "prevent" locks:

Lock type Effect Applies to
Full lock Prevents all other users from accessing the object in any way Tables, files

Write lock Allows other users to read from the object but does not allow
them to change its structure or contents

Tables, files,
records

Prevent write lock Prevents other users from placing either a full lock or write lock
on the object

Tables, files

Prevent full lock Prevents other users from placing a full lock on an object. They
can still place write locks on it.

Tables, files

Automatic locks
Paradox overview

The engine automatically locks objects when the following functions are called:

Function Lock
addPXTable() Write lock on source table, full lock on destination table

copyPXTable() Write lock on source table, full lock on destination table

createPXTable() Full lock on table being created

deletePXTable() Full lock on table being deleted

emptyPXTable() Full lock on table being emptied

openPXTable() Prevent full lock on table being opened

renamePXTable() Full lock on source table, full lock on destination table

addPXKey() Full lock on table

dropPXKey() Full lock on table

Manual locks
Paradox overview

Use the following functions to place and remove locks from files, tables, and records:

Function Use
lockPXNetFile() Place a full, write, prevent full, or prevent write lock on

the specified file

unlockPXNetFile() Remove a lock from the specified file

lockPXNetTable() Place a full, write, prevent full, or prevent write lock on
the specified table

unlockPXNetTable() Remove a lock from the specified table

lockPXNetRecord() Place a write lock on the current record in the specified
table. Returns the lock handle for the locked record.

unlockPXNetRecord() Remove a lock from the record specified by the lock
handle returned by lockPXNetRecord()

You can lock a record only once. You can lock up to 128 records at a time in each open table.

Checking lock status
Paradox overview

To find out if the current record is locked, call isPXNetRecordLocked(). The function returns 1 if the record
is locked and 0 if it is not.

Example
to handle buttonClick

set DB to DBTable of this book
get isPXNetRecordLocked(DB)
if it < 0

request getPXErrorString(it)
else

request it
end if

get isPXNetTableChanged(DB)
if it < 0

request getPXErrorString(it)
else

request it
end if

get isPXTableProtected(DB)
if it < 0

request getPXErrorString(it)
else

request it
end if

end

Going to a locked record
Paradox overview

To go to a locked record, call gotoPXNetRecordLock(), specifying the lock handle returned by
lockPXNetRecord().

Managing concurrent operations
Paradox overview

There are four functions that are useful for managing concurrent operations:
isPXNetTableChanged() Tells you if the table has been changed by another user since

the last time you read from it; notifies you if the current record
has been deleted or if the record number has changed

refreshPXNetTable() Gets current data for the current record; notifies you if the
current record has been deleted

getPXNetUserName() Gets the name of the user from the WIN.INI file

getPXNetErrorUser() Reports the name of the user causing a locking error

Managing security
Paradox overview

The engine provides password protection at the table level. If you add a password to a table, the table is
encrypted, and all users must supply the correct password before they can open it    Once the correct password is
supplied, data is decrypted when it is read from the table and encrypted when it is written to the table.

A password can be up to 15 characters long.

The following functions are used for managing security:
encryptPXTable() Adds password protection to a table. The table is encrypted with

the password you choose. The table must be closed when you
add password protection.

decryptPTTable() Removes password protection from a table. The table is
decrypted and can be opened by anyone. The table must be
closed when you remove password protection.

isPXTableProtected() Determines whether a table is protected by a password

addPXPassword() Passes a password to the engine to enable you to open a
password-protected table. You can pass several passwords (but
only one per function call) so you can open multiple password-
protected tables.

deletePXPassword() Deactivates a password so it can no longer be used to open
password-protected tables. You can continue to use any tables
that were opened with the password.

Alias
A name you give to a table when you open it. The alias is used to refer to the table in functions as long as it is open.

Normal bitmap display mode
The bitmap is displayed in top-left corner of the window. If <position/bounds> is a point, the window is sized to
fit    the bitmap. If <position/bounds> is a rectangle, the window is drawn as specified. If the bitmap is smaller
than the window, the background color shows around it. If the bitmap is larger than the window, it is cropped.

Centered bitmap display mode
If <position/bounds> is a point, the bitmap is centered on the point and the window is sized to fit the bitmap. If
<position/bounds> is a rectangle, the window is drawn as specified and the bitmap is centered in the window.
If the bitmap is smaller than the window, the background color shows around it. If the bitmap is larger than the
window, it is cropped.

Stretched bitmap display mode
If <position/bounds> is a point, the window is sized to fit the bitmap. If <position/bounds> is a rectangle,
the window is drawn as specified and the bitmap is stretched to fill it.

Handle
A number that can be used to refer to a file, index, or BLOB.

BLOB
A BLOB is any block of binary data (such as a graphic, video clip, or sound) or a block of text data that is larger than
255 bytes. BLOBs are stored in a separate file, and the BLOB's handle is stored in a field in the table.

Mode
0 Changes are saved in swap buffer

1 Changes are saved to disk

Changes to a shared table are always saved to disk, regardless of the mode.

Index handle
0 for the primary index for a table

1 - 255 (the number of the field) for case-sensitive, single-field secondary indexes

>256 Field handle for composite or case-insensitive, single-field indexes

Cloning BLOBs
Paradox overview

If you read a BLOB from a record, the BLOB is cleared from memory when you go to another record. If you want to
keep that BLOB in memory while going to other records, you can use the clonePXBlob() function to clone it.

When you clone a BLOB, you create a private copy of a public BLOB.

Writing a binary BLOB from a file
Paradox overview

Example
to handle buttonClick

request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))
request "Open Table:" &&

getPXErrorString(openPXTable("Bintest","Bintest",0,0))
set blobSize to getPXFileSize("blob.txt")
hBlob = openPXBlobWrite("Bintest", "BinField", blobSize, 0)
if hBlob < 0

request getPXErrorString(hBlob)
get globalUnlock(hBuf)
get globalFree(hBuf)
break

end
request "Set blob from file:" &&

getPXErrorString(setPXBlobFromFile(hBlob,blobSize,0,0,"blob.txt"))
get closePXBlob(hBlob, 1)
request "Update blob:" && getPXErrorString(updatePXRecord("Bintest"))
request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))
get globalUnlock(hBuf)
get globalFree(hBuf)

end

Writing a binary BLOB to a file
Paradox overview

Example
to handle buttonClick

request "Close Table:" && getPXErrorString(closePXTable("Bintest",1))
request "Open Table:" &&

getPXErrorString(openPXTable("Bintest","Bintest",0,0))
--we know the fieldName, in this case we'll try "Binfield"
hBlob = openPXBlobRead("Bintest", "Binfield")
set wE to writePXBlobToFile(hBlob,"c:\database\blob2.txt",2)
if wE < 0

request "Write to file:" && \
getPXErrorString(wE)

else
request "File size written:" && wE

end if
request "Close Table:" && \
getPXErrorString(closePXTable("Bintest",1))

end

Engine defaults
When the first Engine function is called, the MaxFiles, MaxLocks, MaxTables, and SwapSize entries are read from
the [Paradox Engine] section of the WIN.INI file and stored in the PDOXWIN.DLL as long as it is in memory.    All
applications that use the Paradox Engine share this instance of the PDOXWIN.DLL.    Therefore, once any
application has loaded the DLL and called an Engine function, the only way to change the value of the any of
these variables is to exit all applications that use the Engine and change the WIN.INI settings.    The following
functions can be called to query and change the WIN.INI file without causing the Engine to read the defaults.

getPXSwapSizeFromINI()
getPXMaxTablesFromINI()
getPXMaxFilesFromINI()
getPXMaxLocksFromINI()
setPXINIMaxFiles()
setPXINIMaxLocks()
setPXINIMaxTables()
setPXINISwapSize()

