
UMIST

The Test Matrix Toolbox for Matlab

N. J. Higham

Numerical Analysis Report No. 237

December 1993

University of Manchester/UMIST

Manchester Centre for Computational Mathematics

Numerical Analysis Reports

DEPARTMENT OF MATHEMATICS

Reports available from:

Department of Mathematics

University of Manchester

Manchester M13 9PL

England

And by anonymous ftp from:

vtx.ma.man.ac.uk

(130.88.16.2)

in pub/narep

The Test Matrix Toolbox for Matlab

Nicholas J. Higham

�

December 3, 1993

Abstract

We describe version 2.0 of the Test Matrix Toolbox forMatlab 4. The toolbox con-

tains a collection of test matrices, routines for visualizing matrices, and miscellaneous

routines that provide useful additions to Matlab's existing set of functions. There

are 58 parametrized test matrices, which are mostly square, dense, nonrandom, and

of arbitrary dimension. The test matrices include ones with known inverses or known

eigenvalues; ill-conditioned or rank de�cient matrices; and symmetric, positive de�nite,

orthogonal, defective, involutary, and totally positive matrices. The visualization rou-

tines display surface plots of a matrix and its (pseudo-) inverse, the �eld of values,

Gershgorin disks, and two- and three-dimensional views of pseudospectra. We explain

the need for collections of test matrices and summarize the features of the collection

in the toolbox. We give examples of the use of the toolbox and explain some of the

interesting properties of the Frank and Pascal matrices, and of random, magic square

and companion matrices. The leading comment lines from all the toolbox routines are

listed.

Key words. test matrix,Matlab, pseudospectrum, visualization, Frank matrix,

Pascal matrix, companion matrix, magic square matrix, random matrix

AMS subject classi�cations. primary 65F05

Contents

1 Distribution : 2

2 Installation : 2

3 Quick Reference Tables : 2

4 Test Matrices : 6

5 Visualization : 12

6 Miscellaneous Routines : 16

7 Examples : 19

7.1 Magic Squares : 19

7.2 Random Matrices : 21

7.3 The Frank Matrix : 23

�

Department of Mathematics, University of Manchester, Manchester, M13 9PL, England

(na.nhigham@na-net.ornl.gov). This work was supported by Science and Engineering Research Coun-

cil grant GR/H52139.

1

2 Quick Reference Tables

7.4 The Pascal Matrix : 27

7.5 Companion Matrices : 30

7.6 Numerical Linear Algebra : 31

8 M-File Leading Comment Lines : 38

1. Distribution

If you wish to distribute the toolbox please give exact copies of it, not selected routines.

2. Installation

The Test Matrix Toolbox is distributed as a Unix shar �le, available by anonymous ftp from

The MathWorks at Internet address ftp.mathworks.com (144.212.100.10) in directory

pub/contrib/linalg as �le testmatrix.sh. This document is testmatrix.ps in the same

location.

To install the toolbox, download the shar �le into your main Matlab directory, then

type

sh testmatrix.sh

A directory testmatrix will be created containing the M-�les in the toolbox.

The toolbox is also available from vtx.ma.man.ac.uk (130.88.16.2) in directory

pub/higham as the compressed Unix tar �le �le testmatrix.tar.Z. This document is

narep237.ps.Z in the same location. To install the toolbox from this location, down-

load the tar �le (in binary mode) into a testmatrix directory (matlab/testmatrix is

recommended). Then uncompress the tar �le and untar it:

uncompress testmatrix.tar.Z

tar xvf testmatrix

To try the toolbox from within Matlab, change to the testmatrix directory and run

the demonstration script by typing tmtdemo. For serious use it is best to put the testmatrix

directory on the Matlab path before the matlab/toolbox entries|this is because several

toolbox routines have the same name asMatlab routines and are intended to replace them

(namely, compan, cond, hadamard, hilb, kron and pascal).

This document describes version 2.0 of the toolbox, dated November 14 1993.

3. Quick Reference Tables

This section contains quick reference tables to the Test Matrix Toolbox. All the M-�les in

the toolbox are listed by category, with a short description. More detailed documentation

is given in Section 8, or can be obtained on-line by typing help M-file_name.

Quick Reference Tables 3

Demonstration

tmtdemo Demonstration of Test Matrix Toolbox.

Test Matrices, A{K

augment Augmented system matrix.

cauchy Cauchy matrix.

chebspec Chebyshev spectral di�erentiation matrix.

chebvand Vandermonde-like matrix for the Chebyshev polynomials.

chow Chow matrix|a singular Toeplitz lower Hessenberg matrix.

circul Circulant matrix.

clement Clement matrix|tridiagonal with zero diagonal entries.

compan Companion matrix.

condex `Counter-examples' to matrix condition number estimators.

cycol Matrix whose columns repeat cyclically.

dingdong Dingdong matrix|a symmetric Hankel matrix.

dorr Dorr matrix|diagonally dominant, ill-conditioned, tridiagonal.

dramadah A (0; 1) matrix whose inverse has large integer entries.

fiedler Fiedler matrix|symmetric.

forsythe Forsythe matrix|a perturbed Jordan block.

frank Frank matrix|ill-conditioned eigenvalues.

gallery Famous, and not so famous, test matrices.

gearm Gear matrix.

gfpp Matrix giving maximal growth factor for Gaussian elimination

with partial pivoting.

grcar Grcar matrix|a Toeplitz matrix with sensitive eigenvalues.

hadamard Hadamard matrix.

hanowa A matrix whose eigenvalues lie on a vertical line in the complex

plane.

hilb Hilbert matrix.

invhess Inverse of an upper Hessenberg matrix.

invol An involutory matrix.

ipjfact A Hankel matrix with factorial elements.

jordbloc Jordan block.

kahan Kahan matrix|upper trapezoidal.

kms Kac{Murdock{Szeg�o Toeplitz matrix.

krylov Krylov matrix.

4 Quick Reference Tables

Test Matrices, L{Z

lauchli Lauchli matrix|rectangular.

lehmer Lehmer matrix|symmetric positive de�nite.

lesp A tridiagonal matrix with real, sensitive eigenvalues.

lotkin Lotkin matrix.

makejcf A matrix with given Jordan canonical form.

minij Symmetric positive de�nite matrix min(i; j).

moler Moler matrix|symmetric positive de�nite.

neumann Singular matrix from the discrete Neumann problem (sparse).

ohess Random, orthogonal upper Hessenberg matrix.

orthog Orthogonal and nearly orthogonal matrices.

parter Parter matrix|a Toeplitz matrix with singular values near �.

pascal Pascal matrix.

pdtoep Symmetric positive de�nite Toeplitz matrix.

pei Pei matrix.

pentoep Pentadiagonal Toeplitz matrix (sparse).

poisson Block tridiagonal matrix from Poisson's equation (sparse).

prolate Prolate matrix|symmetric, ill-conditioned Toeplitz matrix.

rando Random matrix with elements �1, 0 or 1.

randsvd Random matrix with pre-assigned singular values.

redheff A matrix of 0s and 1s of Redhe�er.

riemann A matrix associated with the Riemann hypothesis.

rschur An upper quasi-triangular matrix.

smoke Smoke matrix|complex, with a `smoke ring' pseudospectrum.

tridiag Tridiagonal matrix (sparse).

triw Upper triangular matrix discussed by Wilkinson and others.

vand Vandermonde matrix.

wathen Wathen matrix|a �nite element matrix (sparse, random entries).

wilk Various speci�c matrices devised/discussed by Wilkinson.

Visualization

fv Field of values (or numerical range).

gersh Gershgorin disks.

ps Dot plot of a pseudospectrum..

pscont Contours and colour pictures of pseudospectra.

see Pictures of a matrix and its (pseudo-) inverse.

Decompositions and Factorizations

cholp Cholesky factorization with pivoting of a positive semi-de�nite

matrix.

cod Complete orthogonal decomposition.

ge Gaussian elimination without pivoting.

gecp Gaussian elimination with complete pivoting.

poldec Polar decomposition.

signm Matrix sign decomposition.

Quick Reference Tables 5

Miscellaneous

bandred Band reduction by two-sided unitary transformations.

chop Round matrix elements.

comp Comparison matrices.

cond Matrix condition number in 1, 2, Frobenius, or in�nity norm.

cpltaxes Determine suitable axis for plot of complex vector.

dual Dual vector with respect to H�older p-norm.

eigsens Eigenvalue condition numbers.

house Householder matrix.

kron Kronecker tensor product (Matlab 4.1 version).

matrix Test Matrix Toolbox information and matrix access by number.

matsignt Matrix sign function of a triangular matrix.

pnorm Estimate of matrix p-norm (1 � p � 1).

qmult Pre-multiply by random orthogonal matrix.

rq Rayleigh quotient.

seqa Additive sequence.

seqcheb Sequence of points related to Chebyshev polynomials.

seqm Multiplicative sequence.

show Display signs of matrix elements.

skewpart Skew-symmetric (skew-Hermitian) part.

sparsify Randomly sets matrix elements to zero.

sub Principal submatrix.

symmpart Symmetric (Hermitian) part.

trap2tri Unitary reduction of trapezoidal matrix to triangular form.

6 Test Matrices

4. Test Matrices

Numerical experiments are an indispensable part of research in numerical analysis. We do

them for several reasons:

� To gain insight and understanding into an algorithm that is only partially understood

theoretically.

� To verify the correctness of a theoretical analysis and to see if the analysis completely

explains the practical behaviour.

� To compare rival methods with regard to accuracy, speed, reliability, and so on.

� To tune parameters in algorithms and codes, and to test heuristics.

One of the di�culties in designing experiments is �nding good test problems|ones that

reveal extremes of behaviour, cover a wide range of di�culty, are representative of practical

problems, and (ideally) have known solutions. In many areas of numerical analysis good

test problems have been identi�ed, and several collections of such problems have been

published. For example, collections are available in the areas of nonlinear optimization [39],

linear programming [16], [36], ordinary di�erential equations [13], and partial di�erential

equations [43].

Probably the most proli�c devisers of test problems have been workers in matrix com-

putations. Indeed, in the 1950s and 1960s it was common for a whole paper to be devoted

to a particular test matrix: typically its inverse or eigenvalues would be obtained in closed

form. An early survey of test matrices was given by Rutishauser [45]; most of the matrices

he discusses come from continued fractions or moment problems. Two well-known books

present collections of test matrices. Gregory and Karney [20] deal exclusively with the topic,

while Westlake [55] gives an appendix of test matrices. In the 24 years since these books

appeared several interesting matrices have been discovered (and in fact both books omit

some worthy test matrices that were known at the time).

The Test Matrix Toolbox contains an up-to-date, well documented and readily accessible

collection of test matrices. The matrices are given in the form of self-documenting Matlab

M-�les. For some of the matrices we give mathematical formulas for the matrix elements

in comment lines; in other cases the formulas can be reconstructed from the Matlab code.

We do not give exhaustive descriptions of matrix properties, or proofs of these properties;

instead, in the comment lines we list a few key properties and give references where further

details can be found.

With a few exceptions each of the 58 matrices satis�es the following requirements:

� It is a square matrix with one or more variable parameters, one of which is the dimen-

sion. Thus it is actually a parametrized family of matrices of arbitrary dimension.

� It is dense.

� It has some property that makes it of interest as a test matrix.

Test Matrices 7

The �rst criterion is enforced because it is often desirable to explore the behaviour of

a numerical method as parameters such as the matrix dimension vary. The third criterion

is somewhat subjective, and the matrices presented here represent the author's personal

choice. Note that we have omitted plausible matrices that we thought not \su�ciently

di�erent" from others in the collection. Although all but two of our test matrices are usually

real, those with an arbitrary parameter can be made complex by choosing a non-real value

for the parameter.

As well as their obvious application to research in matrix computations we hope that

the matrices presented here will be useful for constructing test problems in other areas,

such as optimization (see, for example, [3]) and ordinary di�erential equations.

We mention some other collections of test matrices that complement ours. The Harwell-

Boeing collection of sparse matrices, largely drawn from practical problems, is presented by

Du�, Grimes and Lewis [8], [9]. Bai [2] is building a collection of test matrices for the large-

scale nonsymmetric eigenvalue problem. Zielke [58] gives various parametrized rectangular

matrices of �xed dimension with known generalized inverses. Demmel and McKenney [6]

present a suite of Fortran 77 codes for generating random square and rectangular matrices

with prescribed singular values, eigenvalues, band structure, and other properties. This

suite is part of the testing code for LAPACK [1]. Our focus is primarily on non-random

matrices but we include a class of random matrices randsvd that has some of the features

of the Demmel and McKenney test set.

Where possible, we have chosen the names of the test matrices eponymously, since it is

easier to remember, for example, \the Kahan matrix", than \Example 3.8". For portability

reasons we restrict all M-�le names in the toolbox to eight characters (since this is the limit

in the MSDOS operating system, under which the Microsoft Windows version of Matlab

runs). We have written a routine matrix that accesses the matrices by number rather than

by name; this makes it easy to run experiments on the whole collection of matrices (with

parameters other than the matrix dimension set to their default values.)

The matrices described here can be modi�ed in various ways while still retaining some or

all of their interesting properties. Among the many ways of constructing new test matrices

from old are:

� Similarity transformations A X

�1

AX .

� Unitary transformations A UAV , where U

�

U = V

�

V = I .

� Kronecker products A A
 B or B
 A (for which Matlab has a routine kron).

1

� Powers A A

k

.

For a discussion of these techniques, and others, see [20, Chapter 2]. Techniques for ob-

taining a triangular, orthogonal, or symmetric positive de�nite matrix that is related to a

given matrix include

� Bandwidth reduction using unitary transformations (see toolbox routine bandred).

1

The toolbox includes the version of kron supplied with Matlab 4.1 which, unlike the Matlab 4.0 kron

function, generates sparse output for sparse input.

8 Test Matrices

� LU , Cholesky, QR and polar decompositions (see lu, chol, qr and, from the toolbox,

cholp, ge, gecp and poldec.)

See [18] for details of these techniques.

Another way to generate a new matrix is to perturb an existing one. One approach is to

add a random perturbation. Another is to round the matrix elements to a certain number

of binary places; this can be done using the toolbox routine chop.

Our programming style is as follows. Each M-�le foo begins with comment lines that

are displayed when the user types help foo. The �rst comment line, the H1 line, is a self-

contained statement of the purpose of the routine; the H1 lines are searched and displayed

by Matlab's lookfor command (e.g., lookfor toeplitz). Any further comments and

references follow a blank line and so are not displayed by help. As far as possible, every

routine sets default values for any arguments that are not speci�ed. In particular, for most

test matrix routines testmat, A = testmat(n) is a valid way to generate an n� n matrix.

In general we have strived for conciseness, modularity, speed, and minimal use of temporary

storage in our Matlab codes. Hence, where possible, we used matrix or vector constructs

instead of for loops and have used calls to existing M-�les.

Some of those matrices that are banded with a small bandwidth are given the sparse

storage format, to allow large matrices to be generated. The full function can be used

to convert to non-sparse storage (e.g., A = full(tridiag(32))). We check for errors in

parameters in some, but not all, cases. A few of the test matrix routines do not properly

handle the dimension n = 1 (for example, they halt with an error, or return an empty

matrix). We decided not to add extra code for this case, since the routines are unlikely to

be called with n = 1.

The �rst release of this toolbox (version 1.0, July 4 1989) was described in a technical

report [25]. The collection was subsequently published as ACM Algorithm 694 [27]. Prior

to the current version, version 2.0, the most recent release was version 1.3, November 14

1991, which was available from netlib [7] and from the author by anonymous ftp. Version

2.0 incorporates many additions and improvements over version 1.3 and takes full advantage

of the features of Matlab 4.

Tables 4.1 and 4.2 provide a summary of the properties of the test matrices. The column

headings have the following meanings:

Inverse: the inverse of the matrix is known explicitly.

Ill-cond: the matrix is ill-conditioned for some values of the parameters.

Rank: the matrix is rank-de�cient for some values of the parameters (we exclude \trivial"

examples such as vand, which is singular if its vector argument contains repeated

points). Note that there are some matrices that are mathematically rank-de�cient

but behave as ill-conditioned full rank matrices in the presence of rounding errors;

these are listed only as rank-de�cient (for example, chebspec).

Symm: the matrix is symmetric for some values of the parameters.

Pos Def: the matrix is symmetric positive de�nite for some values of the parameters.

Test Matrices 9

Orth: the matrix is orthogonal, or a diagonal scaling of an orthogonal matrix, for some

values of the parameters.

Eig: something is known about the eigensystem (or the singular values), ranging from

bounds or qualitative knowledge of the eigenvalues to explicit formulas for some or all

eigenvalues and eigenvectors.

We summarise further interesting properties possessed by some of the matrices. Recall

that A is a Hankel matrix if the anti-diagonals are constant (a

ij

= r

i+j

), idempotent if

A

2

= A, normal if A

�

A = AA

�

(or, equivalently, A is unitarily diagonalizable), nilpotent if

A

k

= 0 for some k, involutary if A

2

= I , totally positive (nonnegative) if the determinant of

every submatrix is positive (nonnegative), and a Toeplitz matrix if the diagonals are constant

(a

ij

= r

j�i

). A totally positive matrix has distinct, real and positive eigenvalues and its ith

eigenvector (corresponding to the ith largest eigenvalue) has exactly i� 1 sign changes [15,

Theorem 13, p. 105]; this property is important in testing regularization algorithms [21],

[22]. See [31] for further details of these matrix properties.

defective: chebspec, gallery, gear, jordbloc, triw

Hankel: dingdong, hilb, ipjfact

Hessenberg: chow, frank, grcar, ohess, randsvd

idempotent: invol

involutary: invol, orthog, pascal

normal (but not symmetric or orthogonal): circul

nilpotent: chebspec, gallery

rectangular: chebvand, cycol, kahan, krylov, lauchli, rando, randsvd, triw,

vand

Toeplitz: chow, dramadah, grcar, kms, parter, pentoep, prolate

totally positive or totally nonnegative: cauchy

2

, hilb, lehmer, pascal, vand

3

tridiagonal: clement, dorr, gallery, lesp, randsvd, tridiag, wilk

inverse of a tridiagonal matrix: kms, lehmer, minij

triangular: dramadah, jordbloc, kahan, pascal, triw

Finally, we note that several of the test matrices are related to those supplied with

Matlab. The functions hadamard and pascal were in the �rst release of the toolbox and

were subsequently included by The MathWorks in the Matlab distribution. The toolbox

version of hadamard is the same as the one in Matlab 4.0 except for the addition of an

2

cauchy(x,y) is totally positive if 0 < x

1

< � � � < x

n

and 0 < y

1

< � � � < y

n

[48, p. 295].

3

vand(p) is totally positive if the p

i

satisfy 0 < p

1

< � � � < p

n

[15, p. 99].

10 Test Matrices

Matrix Inverse Ill-cond Rank Symm Pos Def Orth Eig

augment

p p

cauchy

p p p p

chebspec

p p

chebvand

p p

chow

p p

circul

p p p

clement

p p p p

compan

p p p

condex

p

cycol

p

dingdong

p p

dorr

p

dramadah

p

�edler

p p p

forsythe

p p p

frank

p p

gallery

p p p p p p

gearm

p p

gfpp

p p

grcar

p

hadamard

p p p

hanowa

p

hilb

p p p p

invhess

p p p p p

invol

p p p

ipjfact

p p

jordbloc

p p p p

kahan

p p p

kms

p p p p

krylov

p

Table 4.1: Properties of the test matrices, A{K.

Test Matrices 11

Matrix Inverse Ill-cond Rank Symm Pos Def Orth Eig

lauchli

p

lehmer

p p p

lesp

p

lotkin

p p p

minij

p p p p

moler

p p p p

neumann

p p

ohess

p p p

orthog

p p p

parter

p

pascal

p p p p p

pdtoep

p p p p p

pei

p p p p p

pentoep

p p p p

poisson

p p p p

prolate

p p p p

rando

randsvd

p p p p p

redhe�

p

riemann

p

rschur

p p

smoke

p p

tridiag

p p p p p p

triw

p p

vand

p p

wathen

p p p

wilk

p p p p

Table 4.2: Properties of the test matrices, L{Z.

12 Visualization

0
5

10
0

5
10

-1

0

1

0
5

10
0

5
10

-5

0

5

x 10
4

0 2 4 6 8
10

-6

10
-4

10
-2

10
0

10
2

-2 0 2

-2

0

2

Figure 5.1: see(chebvand(8)).

H1 line, whereas the toolbox version of pascal contains more informative comment lines

than the Matlab 4.0 version and produces a di�erent pascal(n,2) matrix

4

(but one

that is still a cube root of the identity). The toolbox routine compan is more versatile

than the Matlab 4.0 version. Similarly, the toolbox routine vand is more versatile than

Matlab 4.0's vander. The toolbox version of hilb is coded di�erently and contains more

informative comments than the one in Matlab 4.0. The toolbox routine augment is similar

toMatlab 4.0's spaugment, but produces a non-sparse matrix instead of a sparse one. The

toolbox function cond supports the 1, 2, 1 and Frobenius norms, whereas Matlab 4.0's

cond supports only the 2-norm.

5. Visualization

The toolbox contains �ve routines for visualizing matrices. The routines can give insight

into the properties of a matrix that is not easy to obtain by looking at the numerical entries.

They also provide an easy way to generate pretty pictures!

The routine see displays a �gure with four subplots (strictly speaking four \axes", in

Matlab terminology) in the format

mesh(A) mesh(pinv(A))

semilogy(svd(A)) fv(A)

4

The new pascal(n,2) is generated by a call to rot90 and is \reverse upper triangular" instead of

\reverse lower triangular" as in the Matlab 4.0 version.

Visualization 13

0 20 40 60 80 100 120 140 160

0

20

40

60

80

100

120

140

160

nz = 2416

Figure 5.2: see(wathen(7,7)).

An example for the chebvand matrix is given in Figure 5.1. Matlab's mesh command

plots a three-dimensional, coloured, wire-frame surface, by regarding the entries of a matrix

as specifying heights above a plane. We use axis('ij'), so that the coordinate system

for the plot matches the (i; j) matrix element numbering. pinv(A) is the Moore{Penrose

pseudo-inverse A

+

of A, which is the usual inverse when A is square and nonsingular.

semilogy(svd(A)) plots the singular values of A (ordered in decreasing size) on a loga-

rithmic scale; the singular values are denoted by circles, which are joined by a solid line to

emphasise the shape of the distribution. From Figure 5.1 we can see that chebvand(8) has

a 2-norm condition number of about 10

5

and that the largest elements of its inverse are

in the lower triangle. For a sparse Matlab matrix, see simply displays a spy plot, which

shows the sparsity pattern of the matrix. The user could, of course, try see(full(A)) for a

sparse matrix, but for large dimensions the storage and time required would be prohibitive.

Figure 5.2 displays the result of applying see to the Wathen matrix|a symmetric positive

de�nite sparse matrix that comes from a �nite element problem.

The routine fv plots the �eld of values of a square matrix A 2 C

n�n

(also called the

numerical range), which is the set of all Rayleigh quotients,

�

x

�

Ax

x

�

x

: 0 6= x 2 C

n

�

;

the eigenvalues of A are plotted as crosses. The �eld of values is a convex set that contains

the eigenvalues. It is the convex hull of the eigenvalues when A is a normal matrix. If A is

Hermitian, the �eld of values is just a segment of the real line. For non-Hermitian A the �eld

14 Visualization

-2 0 2 4

-2

0

2

grcar(20)

-10 -5 0 5
-10

-5

0

5

10
compan(8)

0 20 40

-20

-10

0

10

20

circul(8)

-20 -15 -10 -5
-10

-5

0

5

10

lesp(8)

Figure 5.3: Fields of values (fv).

of values is usually two-dimensional and its shape and size gives some feel for the behaviour

of the matrix. Trefethen [52] notes that the �eld of values is the largest reasonable answer

to the question \Where in C does a matrix A `live' ?" and the spectrum is the smallest

reasonable answer.

Some examples of �eld of values plots are given in Figure 5.3. The circul matrix is

normal, hence its �eld of values is the convex hull of the eigenvalues. For an example of

how the �eld of values gives insight into the problem of �nding a nearest normal matrix

see [44]. An excellent reference for the theory of the �eld of values is [32, Chapter 1].

The routine gersh plots the Gershgorin disks for an A 2 C

n�n

, which are the n disks

D

i

= f z 2 C : jz � a

ii

j �

n

X

j=1

j 6=i

ja

ij

j g

in the complex plane. Gershgorin's theorem tells us that the eigenvalues of A lie in the union

of the disks, and an extension of the theorem states that if k disks form a connected region

that is isolated from the other disks, then there are precisely k eigenvalues in this region.

Thus the size of the disks gives a feel for how nearly diagonal A is, and their locations give

information on where the eigenvalues lie in the complex plane. Four examples of Gershgorin

disk plots are given in Figure 5.4; Gershgorin's theorem provides nontrivial information only

for the third matrix, ipjfact(8,1).

The last two routines, ps and pscont, are concerned with pseudospectra. The �-

Visualization 15

-40 -20 0
-20

-10

0

10

20
lesp(12)

-5 0 5

-5

0

5

hanowa(10)

-0.2 0 0.2 0.4 0.6 0.8
-0.5

0

0.5
ipjfact(8,1)

-2 0 2

-2

-1

0

1

2

smoke(16,1)

Figure 5.4: Gershgorin disks (gersh).

pseudospectrum of a matrix A 2 C

n�n

is de�ned, for a given � > 0, to be the set

�

�

(A) = f z : z is an eigenvalue of A +E for some E with kEk

2

� � g:

In other words, it is the set of all complex numbers that are eigenvalues of A+E for some

perturbation E of 2-norm at most �. For a normal matrix A the �-pseudospectrum is the

union of the balls of radius � around the eigenvalues of A. For nonnormal matrices the

�-pseudospectrum can take a wide variety of shapes and sizes, depending on the matrix and

how nonnormal it is. Pseudospectra play an important role in many numerical problems.

For full details see the work of Trefethen|in particular, [51] and [52].

The routine ps plots an approximation to the �-pseudospectrum �

�

(A), which it obtains

by computing the eigenvalues of a given number of random perturbations ofA. The eigenval-

ues are plotted as crosses and the pseudo-eigenvalues as dots. Arguments to ps control the

number and type of perturbations. Figure 5.5 gives four examples of 10

�3

-pseudospectra,

all of which involve the pentadiagonal Toeplitz matrix pentoep.

Another characterization of �

�

(A), in terms of the resolvent (zI � A)

�1

, is

�

�

(A) = f z : k(zI � A)

�1

k

2

� �

�1

g:

An alternative way of viewing the pseudospectrum is to plot the function

f(z) = k(zI �A)

�1

k

2

= �

min

(zI � A)

over the complex plane, where �

min

denotes the smallest singular value [52]. The routine

pscont plots log

10

f(z)

�1

and o�ers several ways to view the surface: by its contour lines

16 Miscellaneous Routines

-1 0 1

-1

-0.5

0

0.5

1

pentoep(32,0,1/2,0,0,1)

0 1 2
-1

-0.5

0

0.5

1

inv(pentoep(32,0,1,1,0,.25))

0 1 2 3

-1

0

1

pentoep(32,0,1/2,1,1,1)

-0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

pentoep(32,0,1,0,0,1/4)

Figure 5.5: Pseudospectra (ps).

alone, or as a coloured surface plot in two or three dimensions, with or without contour

lines. (The two-dimensional plot is the view from directly above the surface.) Two di�erent

pscont views of the pseudospectra of the triangular matrix triw(11) are given in Figures 5.6

and 5.7. Since all the eigenvalues of this matrix are equal to 1, there is a single point

where the resolvent is unbounded in norm|this is the \bottomless pit" in the pictures.

The spike in Figure 5.7 should be in�nitely deep; since pscont evaluates f(z) on a �nite

grid, the spike has a �nite depth dependent on the grid spacing. Also because of the grid

spacing chosen, the contours are a little jagged. Various aspects of the plots can be changed

from the Matlab command line upon return from pscont; for example, the colour map

(colormap), the shading (shading), and the viewing angle (view). For Figure 5.6 we set

shading interp and colormap copper.

Both pseudospectrum routines are computationally intensive, so the defaults for the ar-

guments are chosen to produce a result in a reasonable time (under 20 seconds on a SPARC-2

processor or equivalent); for plots that reveal reasonable detail it is usually necessary to

override the defaults.

6. Miscellaneous Routines

In addition to the test matrices and visualization routines, the Test Matrix Toolbox provides

several routines that can be used to manipulate matrices or compute matrix functions or

decompositions.

The decomposition functions o�ered are as follows.

Miscellaneous Routines 17

-0.5 0 0.5 1 1.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.6: pscont(triw(11), 0, 30, [-0.5 1.5 -1 1]).

-2
-1

0
1

2

-2

-1

0

1

2
-10

-8

-6

-4

-2

0

Figure 5.7: pscont(triw(11), 2, 15, [-2 2 -2 2]).

18 Miscellaneous Routines

(1) cholp computes the Cholesky factorization with pivoting �

T

A� = R

�

R of a Hermi-

tian positive semi-de�nite matrix A 2 C

n�n

. Here, R is upper triangular with nonnegative

diagonal elements and � is a permutation matrix chosen to permute the largest diagonal

element to the pivot position at each stage of the reduction (see [18, Section 4.2.9]). For the

usual Cholesky factorization, as computed by chol, � is the identity. Whereas chol can

break down when presented with a Hermitian positive semi-de�nite matrix that is singular,

cholp will always succeed.

(2) cod computes the complete orthogonal decomposition of a rank r matrix A 2 C

m�n

,

A = U

�

R 0

0 0

�

V;

where R 2 C

r�r

is upper triangular and U 2 C

m�m

and V 2 C

n�n

are unitary. The

criterion used to de�ne the numerical rank is a simple one based on the diagonal elements of

the upper triangular matrix from the QR factorization with column pivoting. The complete

orthogonal decomposition is an important tool in rank-de�cient least squares problems [18,

Sec. 5.5.2], [46].

(3) ge implements Gaussian elimination without pivoting. This routine is similar to

lu, except that no row interchanges are done. Thus the routine computes, if possible,

the LU factorization A = LU of A 2 C

n�n

. The routine is of pedagogical interest, but

also of practical interest because there are certain classes of Ax = b problem where a

more accurate solution is obtained from LU factorization when there are no row or column

interchanges [26].

(4) gecp implements Gaussian elimination with complete pivoting. Thus it computes

the factorization PAQ = LU of A 2 C

n�n

, where P and Q are permutation matrices and

L and U are lower and upper triangular, respectively. At the kth stage of the reduction of

A to triangular form, row and column interchanges are used to bring the element of largest

absolute value in the active submatrix to the pivot position (k; k) [18, Sec. 3.4.8].

(5) poldec computes the polar decomposition A = UH 2 C

m�n

, where H 2 C

n�n

is

Hermitian positive semi-de�nite and U 2 C

m�n

has orthonormal columns or rows, according

asm � n orm � n. The polar decomposition is a generalization of the polar representation

z = re

i�

for complex numbers. The factor U has the property that when m � n it is

the nearest matrix with orthonormal columns to A for both the 2-norm and the Frobenius

norm:

kA� Uk = minf kA�Qk : Q

�

Q = I; Q 2 C

m�n

g:

For more details see [23] or [31].

(6) signm computes the matrix sign decomposition A = SN 2 C

n�n

, where S = sign(A)

is the matrix sign function [29]. If A has the Jordan canonical form

A = XJX

�1

= X

�

J

1

0

0 J

2

�

X

�1

;

where the eigenvalues of J

1

lie in the open left half-plane and those of J

2

lie in the open

right half-plane, then

sign(A) = X

�

�I 0

0 I

�

X

�1

:

Examples 19

(The sign function is not de�ned if A has any pure imaginary eigenvalues). The matrix

sign function has several applications and is the subject of much recent research; see [29]

for details and further references. Since sign(A)

2

= I , signm provides one way to generate

involutary matrices.

The toolbox contains further miscellaneous routines, including the following ones.

bandred: bandwidth reduction by unitary transformation (called by randsvd).

comp: forms comparison matrices.

cond: generalizes the cond function supplied with Matlab 4.0 to work with the 1, 1 and

Frobenius norms (for square matrices) as well as the 2-norm.

qmult: Premultiplies a matrix by a random real orthogonal matrix from the Haar distribu-

tion (called by randsvd).

seqa, seqm: form additive or multiplicative sequences.

sparsify: randomly sets elements of a matrix to zero.

pnorm: estimates the p-norm of a matrix for 1 � p � 1 (Matlab's norm works only for

p = 1; 2;1;'fro').

eigsens: evaluates the Wilkinson condition numbers for the eigenvalues of a matrix.

7. Examples

In this section we give examples of the use of the toolbox and explain some of the interesting

properties of the Frank matrix and the Pascal matrix.

7.1. Magic Squares

In the winter 1993 MathWorks Newsletter, Moler described some of the fascinating prop-

erties of magic squares, as embodied in Matlab's magic function [38]. Some further prop-

erties can be illustrated with the aid of the toolbox. Recall that a magic square is an n� n

matrix containing the integers from 1 to n

2

whose row and column sums are all the same.

Let �

n

denote the magic sum of magic(n) (thus, �

n

= n

2

(n+ 1)=2).

Moler pointed out that the largest singular value of A = magic(n) (namely max(svd(A)))

is �

n

, but left the proof as an exercise. The largest singular value of A is its 2-norm, so the

problem is to prove that kAk

2

= �

n

. This leads naturally to the question of what is the

p-norm of a magic square, for any p between 1 and 1. The H�older p-norm of an m � n

matrix A is de�ned by

kAk

p

= max

x6=0

kAxk

p

kxk

p

; (7:1)

where p � 1 and kxk

p

= (

P

n

i=1

jx

i

j

p

)

1=p

. We can investigate the p-norm of a magic square

using the toolbox function pnorm, which computes an estimate of kAk

p

using a generalization

of the power method.

20 Examples

-300 -200 -100 0 100 200 300
-300

-200

-100

0

100

200

300

Figure 7.1: Gershgorin disks for magic(8).

for p = [1 1.5 2 exp(1) pi 10 inf]

fprintf(' %9.4f %9.4f\n', p, pnorm(magic(10),p))

end

1.0000 505.0000

1.5000 504.9968

2.0000 504.9968

2.7183 504.9971

3.1416 504.9997

10.0000 504.9988

Inf 505.0000

All the p-norms in this example are very close to �

10

= 505. Since the default convergence

tolerance for pnorm is 10

�4

, the exact p-norms could all be 505, as far as we can tell from

the estimates. In fact, kAk

p

� �

n

for all 1 � p � 1. The proof relies on the convexity of

the p-norm, which yields the inequality (see, [28], for example)

kAk

p

� kAk

1=p

1

kAk

1�1=p

1

:

(This inequality is well-known for p = 2.) For a magic square, kAk

1

= kAk

1

= �

n

, so the

inequality gives kAk

p

� �

n

. But by taking x in (7.1) to be the vector of all ones, we see

that kAk

p

� �

n

, and so it follows that kAk

p

= �

n

. This result is actually a special case of

an apparently little-known 1962 result of Stoer and Witzgall, which says that the norm of a

doubly stochastic matrix is 1 for any norm subordinate to a permutation-invariant absolute

vector norm [47].

Examples 21

0 200 400

-200

-100

0

100

200

n = 9

-200 0 200 400

-200

0

200

n = 10

-200 0 200 400 600
-500

0

500

n = 11

-200 0 200400600800

-500

0

500

n = 12

Figure 7.2: Field of values for magic(n).

To estimate the eigenvalues of magic(n) we can apply Gershgorin's theorem. Unfortu-

nately, the results are not very informative because the Gershgorin disks are all approxi-

mately the same, as is clear from the structure of the matrix; see Figure 7.1.

In his article, Moler pointed out that the function magic uses di�erent algorithms for

odd n, even n divisible by 4, and even n not divisible by 4. He gave four mesh plots to

illustrate the di�erence. Another approach is to look at the �elds of values|see Figure 7.2.

The plot for n = 10 re
ects the fact that magic(n) has rank n=2 + 2 when n is even

and not divisible by 4|there are only 6 eigenvalues away from the origin (magic(10) is

diagonalizable). For n divisible by 4 the rank is only 3.

7.2. Random Matrices

Random matrices are widely used for test purposes. The most popular way to generate a

random matrix is to take its entries from a normal or uniform distribution. Intuitively, one

might expect random matrices to be good at revealing programming errors and unusual

behaviour of algorithms because they are \not special". This expectation is not necessar-

ily correct, however. For example, Miller [37, pp. 96{97] describes a mutation experiment

involving Fortran codes for Gaussian elimination without pivoting, Gaussian elimination

with partial pivoting, and Gauss{Jordan elimination with partial pivoting. For each code,

all possible mutants were generated, where a mutant is obtained by making a single ty-

pographical change to the source code. All the mutants were tested on a single random

linear system Ax = b, with known solution, where a

ij

was chosen from the uniform [�1; 1]

22 Examples

distribution. Many mutants were detected by their failure to pass the test of producing a

solution with forward error less than a tolerance. However, some mutants passed this test,

including all those that solve a system correctly in exact arithmetic; mutants in the latter

class include those that select an incorrect pivot row and thus implement a numerically

unstable algorithm. A conclusion to be drawn from Miller's experiment is that random test

data can reveal some programming errors, but will not reveal all.

A good example of a problem for which random test matrices are very poor at revealing

weaknesses in algorithms is matrix condition number estimation. The popular condition

estimation algorithms can yield poor estimates but, in practice, never produce them for

a random matrix [24]. The role of random matrices here is to indicate the quality of the

estimates on average.

Edelman [11] summarizes the properties of random matrices well when he says that

What is a mistake is to psychologically link a random matrix with the intuitive

notion of a \typical" matrix or the vague concept of \any old matrix." In

contrast, we argue that \random matrices" are very special matrices. The larger

the size of the matrix the more predictable they are because of the central limit

theorem.

Various results are known about the behaviour of matrices with elements from the

standard normal distribution (mean 0, variance 1). Matrices of this type are generated by

Matlab's randn function. Let A

n

denote an n � n matrix from this distribution and let

E(�) be the expectation operator. Then, in the appropriate probabilistic sense, the following

results hold as n!1:

E(log(�

2

(A

n

))) � logn+ 1:537 (real data); (7.2)

E(log(�

2

(A

n

))) � logn+ 0:982 (complex data); (7.3)

kA

n

k

2

� 2

p

n (real data); (7.4)

kA

n

k

2

� 2

p

2

p

n (complex data); (7.5)

�(A

n

) �

p

n: (real or complex data): (7.6)

For details of (7.2){(7.5), see [10]. Edelman [10] conjectures that the condition number

results are true for any distribution with mean 0|in particular, the uniform [�1; 1] distri-

bution used by Matlab's rand function. The spectral radius result (7.6) has been proved

as an inequality by Geman [17] for independent identically distributed random variables

a

ij

with zero mean and unit variance, and computer experiments suggest the approximate

equality for the standard normal distribution [17].

Note that the �rst two results involve geometric means; the arithmetic mean,

lim

n!1

E(�

2

(A

n

)), is in�nite.

A question of interest in eigenvalue applications is how many eigenvalues of a random real

matrix are real. The answer has been given by Edelman, Kostlan and Shub [12]: denoting

by E

n

the expected number of real eigenvalues of an n�n matrix from the standard normal

distribution,

lim

n!1

E

n

p

n

=

r

2

�

:

Examples 23

Thus the proportion of real eigenvalues, E

n

=n, tends to zero as n!1. Exact formulae for

E

n

for �nite n are also given in [12].

7.3. The Frank Matrix

A famous test matrix for eigensolvers is the n � n upper Hessenberg matrix F

n

introduced

by Frank in 1958 [14], illustrated for n = 8 by

F = frank(8)

F =

8 7 6 5 4 3 2 1

7 7 6 5 4 3 2 1

0 6 6 5 4 3 2 1

0 0 5 5 4 3 2 1

0 0 0 4 4 3 2 1

0 0 0 0 3 3 2 1

0 0 0 0 0 2 2 1

0 0 0 0 0 0 1 1

In evaluating three eigenvalue algorithms Frank found that this matrix \gives our selected

procedures di�culties", and that \accuracy was lost in the smaller roots". The di�culties

encountered by Frank's codes were shown by Wilkinson [56, Section 8], [57, pp. 92{93] to

be caused by the inherent sensitivity of the eigenvalues to perturbations in the matrix.

The Frank matrix is interesting to analyze using Matlab. The toolbox function

eigsens evaluates the Wilkinson eigenvalue condition numbers, which are the reciprocals

of the cosines of the angles between the left and right eigenvectors:

F = frank(10);

[V, D, s] = eigsens(F); d = diag(D); [x, k] = sort(d);

[d(k) s(k)] % Eigenvalue followed by its condition number.

ans =

3.9100e-002 7.7788e+004

6.7743e-002 2.1165e+005

1.2426e-001 2.0811e+005

2.5692e-001 4.4765e+004

6.1859e-001 7.3339e+002

1.6166e+000 1.4589e+001

3.8922e+000 1.5570e+000

8.0476e+000 8.9143e-001

1.4762e+001 2.9807e+000

2.5575e+001 2.4721e+000

The output shows that the condition numbers grow, almost monotonically, as the eigen-

values decrease in size|in other words, the smallest eigenvalues are the most sensitive to

24 Examples

0 5 10 15 20 25

-15

-10

-5

0

5

10

15

Figure 7.3: ps(frank(10), 50, 1e-1, 0, 1).

perturbations in the matrix. The varying eigenvalue sensitivities can also be seen from

pseudospectral plots. Figure 7.3 shows the 0:1-pseudospectrum, which shows that pertur-

bations to F

10

of 2-norm at most 0:1 have the greatest e�ect on the smallest eigenvalues.

Another view is provided by Figure 7.4, for which we set colormap hot.

Further insight into the eigenvalues of F

n

can be obtained by looking at its characteristic

polynomial:

poly(F)

ans =

1.0e+004 *

Columns 1 through 7

0.0001 -0.0055 0.1035 -0.8310 2.9505 -4.5297 2.9505

Columns 8 through 11

-0.8310 0.1035 -0.0055 0.0001

The coe�cients seem to be palindromic! As a check we use the function charpoly from

Matlab 4's Maple Symbolic Toolbox [49] to compute the characteristic polynomial exactly:

Examples 25

-20

0

20

40

-20

-10

0

10

20
-4

-3

-2

-1

0

1

2

Figure 7.4: pscont(frank(10), 2, 25, [-7 33 -20 20]).

charpoly(F)

ans =

1-55*x+1035*x^2-8310*x^3+29505*x^4-45297*x^5+29505*x^6-8310*x^7+1035*x^8-55*x^9+x^10

Any matrix whose characteristic polynomial �

n

has a palindromic coe�cient vector has

eigenvalues occurring in reciprocal pairs, since �

n

(�) = �

n

�

n

(1=�). In particular, it has

determinant 1, and 1 is an eigenvalue when n is odd. We can check the determinant

property numerically:

F = frank(20); [det(F) det(F')]

ans =

1 -14

F = frank(25); [det(F) det(F')]

ans =

1 -48886168

26 Examples

Since det(A) = det(A

T

) for any matrix A, the output is mathematically incorrect. The rea-

son is that rounding errors in
uence Matlab's evaluation of det(F

T

n

) much more than its

evaluation of det(F

n

); an illuminating discussion of this phenomenon is given by Frank [14]

and Wilkinson [56, Section 8], [57, pp. 92{93]. The extreme sensitivity of det(F

n

) to per-

turbations in F

n

is easy to see: if we change the (1; n) element from 1 to 1+ �, then det(F

n

)

changes from 1 to 1 + (�1)

n

(n� 1)!�.

The inverse of F

n

is lower Hessenberg. This can be seen using the following representa-

tion of F

n

noted by Rutishauser [45, Section 9]:

F

n

= PC

n

P;

where P is the identity with the order of its columns reversed (I = eye(n); P = I(:,

n:-1:1) in Matlab notation) and

C

n

=

2

6

6

6

6

4

1

�1 1

�1 1

.

.

.

.

.

.

�1 1

3

7

7

7

7

5

�1

2

6

6

6

6

4

1 1

1 2

1

.

.

.

.

.

.

n� 1

1

3

7

7

7

7

5

:

(By manipulating the identity det(F

n

� �I) = det(C

n

� �I) the reciprocal pair property

of the eigenvalues can be proved; cf. [54].) As an illustration, here is the exact inverse as

returned by the Maple Symbolic Toolbox (theMatlab function inv produces nonzero, but

tiny, upper triangular elements because of rounding errors):

inverse(frank(8))

ans =

[1, -1, 0, 0, 0, 0, 0, 0]

[-7, 8, -1, 0, 0, 0, 0, 0]

[42, -48, 7, -1, 0, 0, 0, 0]

[-210, 240, -35, 6, -1, 0, 0, 0]

[840, -960, 140, -24, 5, -1, 0, 0]

[-2520, 2880, -420, 72, -15, 4, -1, 0]

[5040, -5760, 840, -144, 30, -8, 3, -1]

[-5040, 5760, -840, 144, -30, 8, -3, 2]

In his 1958 paper, Frank commented

\At the moment, the largest matrices resolved on the [Univac] 1103A are two 20-

order matrices, one real symmetric and one complex. In both cases computing

time was approximately one hour, and 6{8 places of accuracy were obtained."

The complete eigensystem of a complex 20� 20 matrix A is found in under a second by the

Matlab command eig(A) on the workstation used for the examples reported here! This

improvement over Frank's timing is attributable not only to hardware advances but also

to an algorithmic breakthrough: eig uses the QR algorithm, which was not available to

Frank.

Examples 27

7.4. The Pascal Matrix

The numbers in Pascal's triangle satisfy, practically speaking,

in�nitely many identities.

R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics (1989)

One of the most interesting test matrices in the toolbox is the Pascal matrix P

n

2 IR

n�n

,

de�ned by

p

ij

=

(i+ j � 2)!

(i� 1)!(j � 1)!

=

�

i+ j � 2

j � 1

�

:

The rows of Pascal's triangle appear as anti-diagonals of P

n

:

P = pascal(6)

P =

1 1 1 1 1 1

1 2 3 4 5 6

1 3 6 10 15 21

1 4 10 20 35 56

1 5 15 35 70 126

1 6 21 56 126 252

The earliest reference to the Pascal matrix appears to be by Newman and Todd in 1958 [41]

(see also [40, pp. 240{241]); these authors say that the matrix was introduced to them

by Rutishauser. The matrix was independently suggested as a test matrix by Ca�ney in

1963 [4].

Rutishauser [45, Section 8] notes that P

n

belongs to the class of moment matrices M

whose elements are contour integrals

m

ij

=

Z

C

z

j�1

(z)

i�1

w(z) dz:

All moment matrices corresponding to a positive weight function w(z) on a contour C are

Hermitian positive de�nite (as is easily veri�ed by considering the quadratic form y

�

My).

The choice C = [0; 1], with weight function w(z) = 1, yields the Hilbert matrix. The Pascal

matrix is obtained for C the circle f z : jz � 1j = 1 g and w(z) = (2�i(z � 1))

�1

(not

w(z) = (2�)

�1

as stated in [45]); the change of variable z = 1 + exp(i�) yields a moment

integral with a positive weight function.

Remarkably, the Cholesky factor of the Pascal matrix again contains the rows of Pascal's

triangle, now arranged column-wise:

R = chol(P)

R =

1 1 1 1 1 1

28 Examples

0 1 2 3 4 5

0 0 1 3 6 10

0 0 0 1 4 10

0 0 0 0 1 5

0 0 0 0 0 1

The scaled Cholesky factor S = R

T

diag(1;�1; 1;�1; : : : ; (�1)

n+1

) is returned by pascal(n,1):

S = pascal(6, 1)

S =

1 0 0 0 0 0

1 -1 0 0 0 0

1 -2 1 0 0 0

1 -3 3 -1 0 0

1 -4 6 -4 1 0

1 -5 10 -10 5 -1

It is involutary: S

2

= I . This special property leads us to several more properties of P = P

n

.

First, since P = SS

T

, P

�1

= S

�T

S

�1

= S

T

S, and so P

�1

has integer entries (as is also

clear from the fact that det(P) = det(S)

2

= 1). Moreover,

P = SS

T

= S(S

T

S)S

�1

= SP

�1

S

�1

;

so P and P

�1

are similar and hence have the same eigenvalues. In other words, as for the

Frank matrix, the eigenvalues appear in reciprocal pairs and the characteristic polynomial

has a palindromic coe�cient vector. To illustrate:

charpoly(P)

ans =

1-351*x+6084*x^2-13869*x^3+6084*x^4-351*x^5+x^6

eig(P)

ans =

0.0030

0.0643

0.4893

2.0436

15.5535

332.8463

Since P is symmetric, its eigenvalues are its singular values and so we also have that

kPk

2

= kP

�1

k

2

and kPk

F

= kP

�1

k

F

. Now

p

nn

� kPk

2

� (kPk

1

kPk

1

)

1=2

=

�

2n�1

n

�

p

nn

;

Examples 29

where for the last equality we used a binomial coe�cient summation identity from [19,

p. 161]. Hence, using Stirling's approximation (n! �

p

2�n(n=e)

n

),

�

2

(P

n

) �

�

(2n)!

(n!)

2

�

2

�

16

n

n�

:

Thus P

n

is exponentially ill-conditioned as n!1.

It is worth pointing out that it is not hard to generate symmetric positive de�nite

matrices with determinant 1 and the reciprocal root property. Let X = ZDZ

�1

where Z

is nonsingular and D = diag(�1) 6= �I . Then X

2

= I and the matrix A = X

T

X has the

desired properties. If we choose Z lower triangular then X is the Cholesky factor of A up

to a column scaling by diag(�1).

The Pascal matrix can be made singular simply by subtracting 1 from the (n; n) element.

To see this, note that

P � e

n

e

T

n

= SS

T

� e

n

e

T

n

= S(I � (Se

n

)(Se

n

)

T

)S

T

= S diag(1; 1; : : : ; 1; 0)S

T

:

This perturbation, �P = �e

n

e

T

n

, is far from being the smallest one that makes P singular,

which is �P

opt

= ��

n

v

n

v

T

n

, where �

n

is the smallest eigenvalue of P and v

n

is the corre-

sponding unit eigenvector, for k�P

opt

k

2

= �

n

= kP

�1

k

2

is of order (n!)

2

=(2n)!, as we saw

above.

A more subtle property of the Pascal matrix is that it is totally positive. Karlin [34,

p. 137] shows that the matrix with elements

�

i+j�1

j

�

, (i; j = 0; 1; : : :) is totally positive; the

Pascal matrix is a submatrix of this one and hence is also totally positive. From the total

positivity it follows that the Pascal matrix has distinct eigenvalues, which, as we already

know from the positive de�niteness, are real and positive.

T = pascal(n; 2) is obtained by rotating S clockwise through 90 degrees and multiplying

by �1 if n is even:

T = pascal(6, 2)

T =

-1 -1 -1 -1 -1 -1

5 4 3 2 1 0

-10 -6 -3 -1 0 0

10 4 1 0 0 0

-5 -1 0 0 0 0

1 0 0 0 0 0

It has the surprising property that it is a cube root of the identity, a property noted by

Turnbull [53, p. 332]:

T*T

ans =

30 Examples

0 0 0 0 0 1

0 0 0 0 -1 -5

0 0 0 1 4 10

0 0 -1 -3 -6 -10

0 1 2 3 4 5

-1 -1 -1 -1 -1 -1

T*T*T

ans =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Finally, we note that it is trivial to plot an approximation to the Sierpinski gasket [42,

Section 2.2] in Matlab: simply type spy(rem(pascal(n),2)). See Figure 7.5. The pic-

ture produced by this command is incorrect for large n, however, because the elements of

pascal(n) become too large to be exactly representable.

7.5. Companion Matrices

The companion matrix associated with the characteristic polynomial

det(A� �I) = (�1)

n

(�

n

� a

n�1

�

n�1

� � � � � a

0

)

of A 2 C

n�n

is the matrix

C =

2

6

6

6

6

4

a

n�1

a

n�2

: : : : : : a

0

1 0 : : : : : : 0

0 1

.

.

.

0

.

.

.

.

.

.

0 0

0 : : : : : : 1 0

3

7

7

7

7

5

:

The toolbox function compan computes C, via the call C = compan(A). It is easy to check

that C has the same characteristic polynomial as A, and that if � is an eigenvalue of C

then (�

n�1

; �

n�2

; : : : ; �; 1)

T

is a corresponding eigenvector. Since C � �I has rank at least

n � 1 for any �, C is non-derogatory, that is, in the Jordan form no eigenvalue appears in

more than one Jordan block. It follows that A is similar to C only if A is non-derogatory.

There are no explicit formulae for the eigenvalues of C, but, perhaps surprisingly, the

singular values have simple representations [35]:

�

2

1

=

1

2

(�+

p

�

2

� 4a

2

0

);

�

2

i

= 1; 2 � i � n� 1;

�

2

n

=

1

2

(��

p

�

2

� 4a

2

0

);

Examples 31

0 5 10 15 20 25 30

0

5

10

15

20

25

30

nz = 243

Figure 7.5: spy(rem(pascal(32),2)).

where � = 1 + a

2

0

+ � � �+ a

2

n�1

.

The comp function is a useful means for generating new test matrices from old. For any

A 2 C

n�n

, compan(A) is a nonnormal matrix with the same eigenvalues as A (to be precise,

compan(A) is normal if and only if A is a multiple of the identity matrix).

Companion matrices tend to have interesting pseudospectra, as shown in Figures 7.6

and 7.7. For more information see [50].

7.6. Numerical Linear Algebra

The Test Matrix Toolbox M-�les embody some well-known and other not so well-known

results from numerical linear algebra.

The function gfpp generates n�n matrices that produce the maximum growth of 2

n�1

for Gaussian elimination with partial pivoting; these include Wilkinson's classic example [57,

p. 212]

gfpp(7)

32 Examples

-40 -20 0 20
-40

-20

0

20

40
ps

-5 0 5

-5

0

5

pscont

-40 -20 0 20 40
-50

0

50
ps (rl = 1)

-5 0 5
-5

0

5
ps (rl = -1)

Figure 7.6: Pseudospectra of compan(hadamard(12)).

ans =

1 0 0 0 0 0 1

-1 1 0 0 0 0 1

-1 -1 1 0 0 0 1

-1 -1 -1 1 0 0 1

-1 -1 -1 -1 1 0 1

-1 -1 -1 -1 -1 1 1

-1 -1 -1 -1 -1 -1 1

as well as all members of the \2

n�1

class" described by Higham and Higham [30]. The

following extract uses the toolbox routine gecp to evaluate the growth factor for complete

pivoting on the Wilkinson matrix.

n = 20; A = gfpp(n);

[L, U] = lu(A); % Partial pivoting.

[max(max(abs(U))) / max(max(abs(A))) 2^(n-1)] % Approximation to growth factor.

ans =

524288 524288

Examples 33

-20 0 20
-30

-20

-10

0

10

20

30

A = clement(10) (rl = 1)

0 2 4 6 8

-4

-2

0

2

4

A = triw(16)

Figure 7.7: Pseudospectra of compan(A).

% Complete pivoting using toolbox routine GECP.

[L, U, P, Q, rho] = gecp(A); rho

rho =

2

As the output shows, complete pivoting is perfectly stable for these matrices. However, sev-

eral of the matrices produced by orthog yield relatively large growth for complete pivoting:

growth of order n=2 for real data, or n for a particular complex matrix [30].

n = 50;

for k = [-2 -1 1 2 3]

A = orthog(n, k);

[L, U, P, Q, rho] = gecp(A);

fprintf(' %g\n', rho)

end

25.3116

24.7028

25.6214

25.3296

50

34 Examples

A = hadamard(64);

[L, U, P, Q, rho] = gecp(A); rho

rho =

64

It is easy to show that complete pivoting su�ers growth of at least n for an n�n Hadamard

matrix. However, Hadamard matrices do not exist for all n.

TheMatlab function rcond computes an upper bound for �

1

(A)

�1

= (kAk

1

kA

�1

k

1

)

�1

using the LINPACK condition estimation algorithm. Although this algorithm is very re-

liable in general, parametrized matrices are known for which it can perform arbitrarily

badly [5]. Here are two examples, from the toolbox routine condex. The underestimation

ratio is approximately the same in both examples, but the second is probably the more

serious because rcond does not detect any ill-conditioning whatsoever.

A = condex(4, 1, 1e8); format short e

% True estimate true/estimate

[cond(A,1) 1/rcond(A) cond(A,1)*rcond(A)]

ans =

8.0000e+016 5.6000e+008 1.4286e+008

A = condex(3, 2, 1e8);

[cond(A,1) 1/rcond(A) cond(A,1)*rcond(A)]

ans =

6.0000e+008 7.5000e+000 8.0000e+007

The QR decomposition with column pivoting of A 2 C

m�n

(m � n) is a decomposition

A� = Q

h

R

0

i

where � is a permutation matrix chosen according to a certain pivoting

strategy, Q is orthogonal, and R is upper triangular [18, Section 5.4.1]. This decomposition

is often used to estimate the rank of A; in particular, jr

nn

j provides an upper bound for

the smallest singular value �

min

(A) of A that is usually at most a factor of 10 too big.

Kahan [33] designed a matrix for which jr

nn

j can be approximately 2

n�1

times bigger than

�

min

(A), and which thus shows the fallibility of the QR decomposition with column pivoting

for revealing rank. The toolbox function kahan generates Kahan's matrix:

n = 25;

A = kahan(n, 0.6);

[Q, R, Pi] = qr(A);

norm(Pi-eye(n),1), R(n,n)/min(svd(A))

Examples 35

ans =

0

ans =

1.0638e+006

Kahan's matrix A(�) is upper triangular and is designed so that � is the identity in the

QR decomposition with column pivoting. In practice, rounding errors can cause � to di�er

from the identity for the Kahan matrix, thus nullifying the example (the test on � � I in

the above example con�rms that � is indeed the identity here). The toolbox routine adds

a small perturbation to the diagonal elements of A(�) so that � = I for a range of choices

of n and �. If we set the perturbation in the above example to zero, this is what happens:

A = kahan(n, 0.6, 0); % Third parameter is the diagonal perturbation.

[Q, R, Pi] = qr(A);

norm(Pi-eye(n),1), R(n,n)/min(svd(A))

ans =

2

ans =

1.1953

The toolbox contains two matrices, one a Toeplitz matrix and the other a Hankel matrix,

whose eigenvalues or singular values are related to �:

A = parter(10); format long

e = svd(A); [e e-pi]

ans =

3.14159265358968 -0.00000000000011

3.14159265356666 -0.00000000002313

3.14159265139317 -0.00000000219663

3.14159252749873 -0.00000012609106

3.14158778157056 -0.00000487201924

3.14145930586226 -0.00013334772753

3.13895248060091 -0.00264017298888

3.10410768313639 -0.03748497045341

2.78691548240413 -0.35467717118566

1.30096907002970 -1.84062358356009

36 Examples

A = dingdong(10);

e = eig(A); [e abs(e)-pi/2]

ans =

-1.57079632679484 -0.00000000000006

-1.57079632569658 -0.00000000109831

-1.57079389078528 -0.00000243600962

1.57079632678333 -0.00000000001157

1.57079626374937 -0.00000006304553

1.57072965293113 -0.00006667386377

-1.56947624030045 -0.00132008649444

1.55205384156819 -0.01874248522670

-1.39345774120206 -0.17733858559283

0.65048453501485 -0.92031179178005

Finally, here is an example of the use of the function matrix to access the test matrices

sequentially, by number. The following piece of code steps through all the square matrices

of arbitrary dimension, setting A to each 10 � 10 matrix in turn (any matrix parameters

are at their default values). It evaluates the 2-norm condition number and the ratio �(A) =

max

i

j�

i

(A)j=min

i

j�

i

(A)j of the largest to smallest eigenvalue in absolute value.

c = []; e = [];

j = 1;

for i=1:matrix(0)

A = full(matrix(i, 10));

if norm(skewpart(A),1) % If not Hermitian...

c1 = cond(A);

eg = eig(A);

e1 = max(abs(eg)) / min(abs(eg));

% Filter out extremely ill-conditioned matrices.

if c1 <= 1e10, c(j) = c1; e(j) = e1; j = j + 1; end

end

end

As is well known, �

2

(A) can be arbitrarily larger than �(A). The plots in Figure 7.8,

produced from the vectors c and e from the above code, con�rm that �

2

(A)=�(A) can be

large.

Examples 37

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

cond: x, eig_ratio: o

0 5 10 15 20 25 30
10

0

10
2

10
4

10
6

10
8

cond/eig_ratio

Figure 7.8: Comparison of condition number with extremal eigenvalue ratio.

38 bandred

8. M-File Leading Comment Lines

The demonstration �le tmtdemo is not listed here.

function C = augment(A, alpha)

%AUGMENT Augmented system matrix.

% AUGMENT(A) is the square matrix [EYE(m) A; A' ZEROS(n)] of

% dimension m+n, where A is m-by-n. It is the symmetric and

% indefinite coefficient matrix of the augmented system associated

% with a least squares problem minimize NORM(A*x-b).

% Special case: if A is a scalar, n say, then AUGMENT(A) is the

% same as AUGMENT(RANDN(p,q)) where n = p+q and

% p = ROUND(n/2), that is, a random augmented matrix

% of dimension n is produced.

% If a second, scalar argument ALPHA is supplied, then the (1,1)

% block of A is ALPHA*EYE(m).

% The eigenvalues of AUGMENT(A) are given in terms of the singular

% values s(i) of A (where m>n) by

% 1/2 +/- SQRT(s(i)^2 + 1/4), i=1:n (2n eigenvalues),

% 1, (m-n eigenvalues).

% If m < n then the first expression provides 2m eigenvalues and the

% remaining n-m eigenvalues are zero.

%

% See also SPAUGMENT.

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 5.6.4.

function A = bandred(A, kl, ku)

%BANDRED Band reduction by two-sided unitary transformations.

% B = BANDRED(A, KL, KU) is a matrix unitarily equivalent to A

% with lower bandwidth KL and upper bandwidth KU

% (i.e. B(i,j) = 0 if i > j+KL or j > i+KU).

% The reduction is performed using Householder transformations.

% If KU is omitted it defaults to KL.

% Called by RANDSVD.

% This is a `standard' reduction. Cf. reduction to bidiagonal form

% prior to computing the SVD. This code is a little wasteful in that

% it computes certain elements which are immediately set to zero!

%

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

cauchy 39

% Johns Hopkins University Press, Baltimore, Maryland, 1989.

% Section 5.4.3.

function C = cauchy(x, y)

%CAUCHY Cauchy matrix.

% C = CAUCHY(X, Y), where X, Y are N-vectors, is the N-by-N matrix

% with C(i,j) = 1/(X(i)+Y(j)). By default, Y = X.

% Special case: if X is a scalar CAUCHY(X) is the same as CAUCHY(1:X).

% Explicit formulas are known for DET(C) (which is nonzero if X and Y

% both have distinct elements) and the elements of INV(C).

% C is totally positive if 0 < X(1) < ... < X(N) and

% 0 < Y(1) < ... < Y(N).

% References:

% D.E. Knuth, The Art of Computer Programming, Volume 1,

% Fundamental Algorithms, second edition, Addison-Wesley, Reading,

% Massachusetts, 1973, p. 36.

% E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,

% Linear Algebra and Appl., 149 (1991), pp. 1-18.

% O. Taussky and M. Marcus, Eigenvalues of finite matrices, in

% Survey of Numerical Analysis, J. Todd, ed., McGraw-Hill, New York,

% pp. 279-313, 1962. (States the totally positive property on p. 295.)

function C = chebspec(n, k)

%CHEBSPEC Chebyshev spectral differentiation matrix.

% C = CHEBSPEC(N, K) is a Chebyshev spectral differentiation

% matrix of order N. K = 0 (the default) or 1.

% For K = 0 (`no boundary conditions'), C is nilpotent, with

% C^N = 0 and it has the null vector ONES(N,1).

% C is similar to a Jordan block of size N with eigenvalue zero.

% For K = 1, C is nonsingular and well-conditioned, and its eigenvalues

% have negative real parts.

% For both K, the computed eigenvector matrix X from EIG is

% ill-conditioned (MESH(REAL(X)) is interesting).

% References:

% C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral

% Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1988; p. 69.

% L.N. Trefethen and M.R. Trummer, An instability phenomenon in

% spectral methods, SIAM J. Numer. Anal., 24 (1987), pp. 1008-1023.

% D. Funaro, Computing the inverse of the Chebyshev collocation

% derivative, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 1050-1057.

40 chow

function C = chebvand(m,p)

%CHEBVAND Vandermonde-like matrix for the Chebyshev polynomials.

% C = CHEBVAND(P), where P is a vector, produces the (primal)

% Chebyshev Vandermonde matrix based on the points P,

% i.e., C(i,j) = T_{i-1}(P(j)), where T_{i-1} is the Chebyshev

% polynomial of degree i-1.

% CHEBVAND(M,P) is a rectangular version of CHEBVAND(P) with M rows.

% Special case: If P is a scalar then P equally spaced points on

% [0,1] are used.

% Reference:

% N.J. Higham, Stability analysis of algorithms for solving confluent

% Vandermonde-like systems, SIAM J. Matrix Anal. Appl., 11 (1990),

% pp. 23-41.

function [R, P, I] = cholp(A, pivot)

%CHOLP Cholesky factorization with pivoting of a pos. semi-definite matrix.

% [R, P] = CHOLP(A) returns R and a permutation matrix P such that

% R'*R = P'*A*P. Only the upper triangular part of A is used.

% [R, P, I] = CHOLP(A) returns in addition the index I of the last

% positive diagonal element of R. The first I rows of R contain

% the Cholesky factor of A.

% [R, I] = CHOLP(A, 0) forces P = EYE(SIZE(A)), and therefore produces

% the same output as R = CHOL(A) when A is positive definite (to

% within roundoff).

% This routine is based on the LINPACK routine CCHDC. It works

% for both real and complex matrices.

%

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 4.2.9.

function c = chop(x, t)

%CHOP Round matrix elements.

% CHOP(X, t) is the matrix obtained by rounding the elements of X

% to t significant binary places.

% Default is t = 24, corresponding to IEEE single precision.

function A = chow(n, alpha, delta)

%CHOW Chow matrix - a singular Toeplitz lower Hessenberg matrix.

% A = CHOW(N, ALPHA, DELTA) is a Toeplitz lower Hessenberg matrix

circul 41

% A = H(ALPHA) + DELTA*EYE, where H(i,j) = ALPHA^(i-j+1).

% H(ALPHA) has p = FLOOR((N+1)/2) zero eigenvalues, the rest being

% 4*ALPHA*COS(k*PI/(N+2))^2, k=1:N-p.

% Defaults: ALPHA = 1, DELTA = 0.

% References:

% T.S. Chow, A class of Hessenberg matrices with known

% eigenvalues and inverses, SIAM Review, 11 (1969), pp. 391-395.

% G. Fairweather, On the eigenvalues and eigenvectors of a class of

% Hessenberg matrices, SIAM Review, 13 (1971), pp. 220-221.

function C = circul(v)

%CIRCUL Circulant matrix.

% C = CIRCUL(V) is the circulant matrix whose first row is V.

% (A circulant matrix has the property that each row is obtained

% from the previous one by cyclically permuting the entries one step

% forward; it is a special Toeplitz matrix in which the diagonals

% `wrap round'.)

% Special case: if V is a scalar then C = CIRCUL(1:V).

% The eigensystem of C (N-by-N) is known explicitly. If t is an Nth

% root of unity, then the inner product of V with W = [1 t t^2 ... t^N]

% is an eigenvalue of C, and W(N:-1:1) is an eigenvector of C.

% Reference:

% P.J. Davis, Circulant Matrices, John Wiley, 1977.

function A = clement(n, k)

%CLEMENT Clement matrix - tridiagonal with zero diagonal entries.

% CLEMENT(N, K) is a tridiagonal matrix with zero diagonal entries

% and known eigenvalues. It is singular if N is odd. About 64

% percent of the entries of the inverse are zero. The eigenvalues

% are plus and minus the numbers N-1, N-3, N-5, ..., (1 or 0).

% For K = 0 (the default) the matrix is unsymmetric, while for

% K = 1 it is symmetric.

% CLEMENT(N, 1) is diagonally similar to CLEMENT(N).

% Similar properties hold for TRIDIAG(X,Y,Z) where Y = ZEROS(N,1).

% The eigenvalues still come in plus/minus pairs but they are not

% known explicitly.

%

% References:

% P.A. Clement, A class of triple-diagonal matrices for test

% purposes, SIAM Review, 1 (1959), pp. 50-52.

% O. Taussky and J. Todd, Another look at a matrix of Mark Kac,

% Linear Algebra and Appl., 150 (1991), pp. 341-360.

42 compan

function [U, R, V] = cod(A, tol)

%COD Complete orthogonal decomposition.

% [U, R, V] = COD(A, TOL) computes a decomposition A = U*T*V,

% where U and V are unitary, T = [R 0; 0 0] has the same dimensions as

% A, and R is upper triangular and nonsingular of dimension rank(A).

% Rank decisions are made using TOL, which defaults to approximately

% MAX(SIZE(A))*NORM(A)*EPS.

% By itself, COD(A, TOL) returns R.

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 5.4.2.

function C = comp(A, k)

%COMP Comparison matrices.

% COMP(A) is DIAG(B) - TRIL(B,-1) - TRIU(B,1), where B = ABS(A).

% COMP(A, 1) is A with each diagonal element replaced by its

% absolute value, and each off-diagonal element replaced by minus

% the absolute value of the largest element in absolute value in

% its row. However, if A is triangular COMP(A, 1) is too.

% COMP(A, 0) is the same as COMP(A).

% COMP(A) is often denoted by M(A) in the literature.

% Reference (e.g.):

% N.J. Higham, A survey of condition number estimation for

% triangular matrices, SIAM Review, 29 (1987), pp. 575-596.

function A = compan(p)

%COMPAN Companion matrix.

% COMPAN(P) is a companion matrix. There are three cases.

% If P is a scalar then COMPAN(P) is the P-by-P matrix COMPAN(1:P+1).

% If P is an (n+1)-vector, COMPAN(P) is the n-by-n companion matrix

% whose first row is -P(2:n+1)/P(1).

% If P is a square matrix, COMPAN(P) is the companion matrix

% of the characteristic polynomial of P, computed as

% COMPAN(POLY(P)).

% References:

% J.H. Wilkinson, The Algebraic Eigenvalue Problem,

% Oxford University Press, 1965, p. 12.

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989,

% sec 7.4.6.

cond 43

% C. Kenney and A.J. Laub, Controllability and stability radii for

% companion form systems, Math. Control Signals Systems, 1 (1988),

% pp. 239-256. (Gives explicit formulas for the singular values of

% COMPAN(P).)

function y = cond(A, p)

%COND Matrix condition number in 1, 2, Frobenius, or infinity norm.

% For p = 1, 2, 'fro', inf, COND(A,p) = NORM(A,p) * NORM(INV(A),p).

% If p is omitted then p = 2 is used.

% A may be a rectangular matrix if p = 2; in this case COND(A)

% is the ratio of the largest singular value of A to the smallest

% (and hence is infinite if A is rank deficient).

function A = condex(n, k, theta)

%CONDEX `Counter-examples' to matrix condition number estimators.

% CONDEX(N, K, THETA) is a `counter-example' matrix to a condition

% estimator. It has order N and scalar parameter THETA (default 100).

% If N is not equal to the `natural' size of the matrix then

% the matrix is padded out with an identity matrix to order N.

% The matrix, its natural size, and the estimator to which it applies

% are specified by K (default K = 4) as follows:

% K = 1: 4-by-4, LINPACK (RCOND)

% K = 2: 3-by-3, LINPACK (RCOND)

% K = 3: arbitrary, LINPACK (RCOND) (independent of THETA)

% K = 4: N >= 4, SONEST (Higham 1988)

% (Note that in practice the K = 4 matrix is not usually a

% counter-example because of the rounding errors in forming it.)

% References:

% A.K. Cline and R.K. Rew, A set of counter-examples to three

% condition number estimators, SIAM J. Sci. Stat. Comput.,

% 4 (1983), pp. 602-611.

% N.J. Higham, FORTRAN codes for estimating the one-norm of a real or

% complex matrix, with applications to condition estimation

% (Algorithm 674), ACM Trans. Math. Soft., 14 (1988), pp. 381-396.

function x = cpltaxes(z)

%CPLTAXES Determine suitable AXIS for plot of complex vector.

% X = CPLTAXES(Z), where Z is a complex vector,

% determines a 4-vector X such that AXIS(X) sets axes for a plot

% of Z that has axes of equal length and leaves a reasonable amount

% of space around the edge of the plot.

% Called by FV, GERSH, PS and PSCONT.

44 dramadah

function A = cycol(n, k)

%CYCOL Matrix whose columns repeat cyclically.

% A = CYCOL([M N], K) is an M-by-N matrix of the form A = B(1:M,1:N)

% where B = [C C C...] and C = RANDN(M, K). Thus A's columns repeat

% cyclically, and A has rank at most K. K need not divide N.

% K defaults to ROUND(N/4).

% CYCOL(N, K), where N is a scalar, is the same as CYCOL([N N], K).

%

% This type of matrix can lead to underflow problems for Gaussian

% elimination: see NA Digest Volume 89, Issue 3 (January 22, 1989).

function A = dingdong(n)

%DINGDONG Dingdong matrix - a symmetric Hankel matrix.

% A = DINGDONG(N) is the symmetric N-by-N Hankel matrix with

% A(i,j) = 0.5/(N-i-j+1.5).

% The eigenvalues of A cluster around PI/2 and -PI/2.

% Invented by F.N. Ris.

%

% Reference:

% J.C. Nash, Compact Numerical Methods for Computers: Linear

% Algebra and Function Minimisation, second edition, Adam Hilger,

% Bristol, 1990 (Appendix 1).

function [c, d, e] = dorr(n, theta)

%DORR Dorr matrix - diagonally dominant, ill-conditioned, tridiagonal.

% [C, D, E] = DORR(N, THETA) returns the vectors defining a row diagonally

% dominant, tridiagonal M-matrix that is ill-conditioned for small

% values of the parameter THETA >= 0.

% If only one output parameter is supplied then

% C = FULL(TRIDIAG(C,D,E)), i.e., the matrix iself is returned.

% The columns of INV(C) vary greatly in norm. THETA defaults to 0.01.

% The amount of diagonal dominance is given by (ignoring rounding errors):

% COMP(C)*ONES(N,1) = THETA*(N+1)^2 * [1 0 0 ... 0 1]'.

% Reference:

% F.W. Dorr, An example of ill-conditioning in the numerical

% solution of singular perturbation problems, Math. Comp., 25 (1971),

% pp. 271-283.

function A = dramadah(n, k)

%DRAMADAH A (0,1) matrix whose inverse has large integer entries.

% An anti-Hadamard matrix A is a matrix with elements 0 or 1 for

dual 45

% which MU(A) := NORM(INV(A),'FRO') is maximal.

% A = DRAMADAH(N, K) is an N-by-N (0,1) matrix for which MU(A) is

% relatively large, although not necessarily maximal.

% Available types (the default is K = 1):

% K = 1: A is Toeplitz, with ABS(DET(A)) = 1, and MU(A) > c(1.75)^N,

% where c is a constant.

% K = 2: A is upper triangular and Toeplitz.

% The inverses of both types have integer entries.

%

% Another interesting (0,1) matrix:

% K = 3: A has maximal determinant among (0,1) lower Hessenberg

% matrices: det(A) = the n'th Fibonacci number. A is Toeplitz.

% The eigenvalues have an interesting distribution in the complex

% plane.

% References:

% R.L. Graham and N.J.A. Sloane, Anti-Hadamard matrices,

% Linear Algebra and Appl., 62 (1984), pp. 113-137.

% L. Ching, The maximum determinant of an nxn lower Hessenberg

% (0,1) matrix, Linear Algebra and Appl., 183 (1993), pp. 147-153.

function y = dual(x, p)

%DUAL Dual vector with respect to Holder p-norm.

% Y = DUAL(X, p), where 1 <= p <= inf, is a vector of unit q-norm

% that is dual to X with respect to the p-norm, that is,

% norm(Y, q) = 1 where 1/p + 1/q = 1 and there is

% equality in the Holder inequality: X'*Y = norm(X, p)norm(Y, q).

% Special case: DUAL(X), where X >= 1 is a scalar, returns Y such

% that 1/X + 1/Y = 1.

% Called by PNORM.

function [X, D, s] = eigsens(A)

%EIGSENS Eigenvalue condition numbers.

% EIGSENS(A) is a vector of condition numbers for the eigenvalues

% of A (reciprocals of the Wilkinson s(lambda) numbers).

% These condition numbers are the reciprocals of the cosines of the

% angles between the left and right eigenvectors.

% [V, D, s] = EIGSENS(A) is equivalent to

% [V, D] = EIG(A); s = EIGSENS(A);

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, Second

% Edition, Johns Hopkins University Press, Baltimore, Maryland,

% 1989, sec. 7.2.2.

46 frank

function A = fiedler(c)

%FIEDLER Fiedler matrix - symmetric.

% A = FIEDLER(C), where C is an n-vector, is the n-by-n symmetric

% matrix with elements ABS(C(i)-C(j)).

% Special case: if C is a scalar, then A = FIEDLER(1:C)

% (i.e. A(i,j) = ABS(i-j)).

% Properties:

% FIEDLER(N) has a dominant positive eigenvalue and all the other

% eigenvalues are negative (Szego 1936).

% Explicit formulas for INV(A) and DET(A) are given in (Todd 1977)

% and attributed to Fiedler. These indicate that INV(A) is

% tridiagonal except for nonzero (1,n) and (n,1) elements.

% [I think these formulas are valid only if the elements of

% C are in increasing or decreasing order---NJH.]

% References:

% G. Szego, Solution to problem 3705, Amer. Math. Monthly,

% 43 (1936), pp. 246-259.

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 159.

function A = forsythe(n, alpha, lambda)

%FORSYTHE Forsythe matrix - a perturbed Jordan block.

% FORSYTHE(N, ALPHA, LAMBDA) is the N-by-N matrix equal to

% JORDBLOC(N, LAMBDA) except it has an ALPHA in the (N,1) position.

% It has the characteristic polynomial

% DET(A-t*EYE) = (LAMBDA-t)^N - (-1)^N ALPHA.

% ALPHA defaults to SQRT(EPS) and LAMBDA to 0.

function F = frank(n, k)

%FRANK Frank matrix - ill-conditioned eigenvalues.

% F = FRANK(N, K) is the Frank matrix of order N. It is upper

% Hessenberg with determinant 1. K = 0 is the default; if K = 1 the

% elements are reflected about the anti-diagonal (1,N)--(N,1).

% The eigenvalues of F may be obtained in terms of the zeros of the

% Hermite polynomials. They are positive and occur in reciprocal

% pairs. Thus if N is odd, 1 is an eigenvalue.

% F has FLOOR(N/2) ill-conditioned eigenvalues---the smaller ones.

% For large N, DET(FRANK(N)') comes out far from 1---see Frank (1958)

% and Wilkinson (1960) for discussions.

%

% References:

% W.L. Frank, Computing eigenvalues of complex matrices by determinant

fv 47

% evaluation and by methods of Danilewski and Wielandt, J. Soc.

% Indust. Appl. Math., 6 (1958), pp. 378-392 (see pp. 385, 388).

% G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the

% computation of the Jordan canonical form, SIAM Review, 18 (1976),

% pp. 578-619 (Section 13).

% H. Rutishauser, On test matrices, Programmation en Mathematiques

% Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,

% 1966, pp. 349-365. Section 9.

% J.H. Wilkinson, Error analysis of floating-point computation,

% Numer. Math., 2 (1960), pp. 319-340 (Section 8).

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965 (pp. 92-93).

% The next two references give details of the eigensystem, as does

% Rutishauser (see above).

% P.J. Eberlein, A note on the matrices denoted by B_n, SIAM J. Appl.

% Math., 20 (1971), pp. 87-92.

% J.M. Varah, A generalization of the Frank matrix, SIAM J. Sci. Stat.

% Comput., 7 (1986), pp. 835-839.

function [f, e] = fv(B, nk, thmax, noplot)

%FV Field of values (or numerical range).

% FV(A, NK, THMAX) evaluates and plots the field of values of the

% NK largest leading principal submatrices of A, using THMAX

% equally spaced angles in the complex plane.

% The defaults are NK = 1 and THMAX = 16.

% (For a `publication quality' picture, set THMAX higher, say 32.)

% The eigenvalues of A are displayed as `x'.

% Alternative usage: [F, E] = FV(A, NK, THMAX, 1) suppresses the

% plot and returns the field of values plot data in F, with A's

% eigenvalues in E. Note that NORM(F,INF) approximates the

% numerical radius,

% max {abs(z): z is in the field of values of A}.

% Theory:

% Field of values FV(A) = set of all Rayleigh quotients. FV(A) is a

% convex set containing the eigenvalues of A. When A is normal FV(A) is

% the convex hull of the eigenvalues of A (but not vice versa).

% z = x'Ax/(x'x), z' = x'A'x/(x'x)

% => REAL(z) = x'Hx/(x'x), H = (A+A')/2

% so MIN(EIG(H)) <= REAL(z) <= MAX(EIG(H))

% with equality for x = corresponding eigenvectors of H. For these x,

% RQ(A,x) is on the boundary of FV(A).

%

% Based on an original routine by A. Ruhe.

%

48 gearm

% References:

% R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge

% University Press, 1991, Section 1.5.

% A.S. Householder, The Theory of Matrices in Numerical Analysis,

% Blaisdell, New York, 1964, Section 3.3.

% C.R. Johnson, Numerical determination of the field of values of a

% general complex matrix, SIAM J. Numer. Anal., 15 (1978),

% pp. 595-602.

function [A, e] = gallery(n)

%GALLERY Famous, and not so famous, test matrices.

% A = GALLERY(N) is an N-by-N matrix with some special property.

% The following values of N are currently available:

% N = 3 is badly conditioned.

% N = 4 is the Wilson matrix. Symmetric pos def, integer inverse.

% N = 5 is an interesting eigenvalue problem: defective, nilpotent.

% N = 8 is the Rosser matrix, a classic symmetric eigenvalue problem.

% [A, e] = GALLERY(8) returns the exact eigenvalues in e.

% N = 21 is Wilkinson's tridiagonal W21+, another eigenvalue problem.

% Original version supplied with MATLAB. Modified by N.J. Higham.

%

% References:

% J.R. Westlake, A Handbook of Numerical Matrix Inversion and Solution

% of Linear Equations, John Wiley, New York, 1968.

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965.

function [L, U, rho] = ge(A)

%GE Gaussian elimination without pivoting.

% [L, U, RHO] = GE(A) computes the factorization A = L*U,

% where L is unit lower triangular and U is upper triangular.

% RHO is the growth factor.

% By itself, GE(A) returns the final reduced matrix from the

% elimination containing both L and U.

function A = gearm(n, i, j)

%GEARM Gear matrix.

% A = GEARM(N,I,J) is the N-by-N matrix with ones on the sub- and

% super-diagonals, SIGN(I) in the (1,ABS(I)) position, SIGN(J)

% in the (N,N+1-ABS(J)) position, and zeros everywhere else.

% Defaults: I = N, j = -N.

% All eigenvalues are of the form 2*COS(a) and the eigenvectors

gecp 49

% are of the form [SIN(w+a), SIN(w+2a), ..., SIN(w+Na)].

% The values of a and w are given in the reference below.

% A can have double and triple eigenvalues and can be defective.

% GEARM(N) is singular.

% (GEAR is a Simulink function, hence GEARM for Gear matrix.)

% Reference:

% C.W. Gear, A simple set of test matrices for eigenvalue programs,

% Math. Comp., 23 (1969), pp. 119-125.

function [L, U, P, Q, rho] = gecp(A)

%GECP Gaussian elimination with complete pivoting.

% [L, U, P, Q, RHO] = GECP(A) computes the factorization P*A*Q = L*U,

% where L is unit lower triangular, U is upper triangular,

% and P and Q are permutation matrices. RHO is the growth factor.

% By itself, GECP(A) returns the final reduced matrix from the

% elimination containing both L and U.

function [G, e] = gersh(A, noplot)

%GERSH Gershgorin disks.

% GERSH(A) draws the Gershgorin disks for the matrix A.

% The eigenvalues are plotted as crosses `x'.

% Alternative usage: [G, E] = GERSH(A, 1) suppresses the plot

% and returns the data in G, with A's eigenvalues in E.

%

% Try GERSH(LESP(N)) and GERSH(SMOKE(N,1)).

function A = gfpp(T, c)

%GFPP Matrix giving maximal growth factor for Gaussian elim. with pivoting.

% GFPP(T) is a matrix of order N for which Gaussian elimination

% with partial pivoting yields a growth factor 2^(N-1).

% T is an arbitrary nonsingular upper triangular matrix of order N-1.

% GFPP(T, C) sets all the multipliers to C (0 <= C <= 1)

% and gives growth factor (1+C)^(N-1).

% GFPP(N, C) (a special case) is the same as GFPP(EYE(N-1), C) and

% generates the well-known example of Wilkinson.

% Reference:

% N.J. Higham and D.J. Higham, Large growth factors in

% Gaussian elimination with pivoting, SIAM J. Matrix Analysis and

% Appl., 10 (1989), pp. 155-164.

50 hanowa

function G = grcar(n, k)

%GRCAR Grcar matrix - a Toeplitz matrix with sensitive eigenvalues.

% GRCAR(N, K) is an N-by-N matrix with -1s on the

% subdiagonal, 1s on the diagonal, and K superdiagonals of 1s.

% The default is K = 3. The eigenvalues of this matrix form an

% interesting pattern in the complex plane (try PS(GRCAR(32))).

% References:

% J.F. Grcar, Operator coefficient methods for linear equations,

% Report SAND89-8691, Sandia National Laboratories, Albuquerque,

% New Mexico, 1989 (Appendix 2).

% N.M. Nachtigal, L. Reichel and L.N. Trefethen, A hybrid GMRES

% algorithm for nonsymmetric linear systems, SIAM J. Matrix Anal.

% Appl., 13 (1992), pp. 796-825.

function H = hadamard(n)

%HADAMARD Hadamard matrix.

% HADAMARD(N) is a Hadamard matrix of order N, that is,

% a matrix H with elements 1 or -1 such that H*H' = N*EYE(N).

% An N-by-N Hadamard matrix with N>2 exists only if REM(N,4) = 0.

% This function handles only the cases where N, N/12 or N/20

% is a power of 2.

% Reference:

% S.W. Golomb and L.D. Baumert, The search for Hadamard matrices,

% Amer. Math. Monthly, 70 (1963) pp. 12-17.

%

% History:

% NJH (11/14/91), revised by CBM, 6/24/92,

% comment lines revised by NJH, August 1993.

function A = hanowa(n, d)

%HANOWA A matrix whose eigenvalues lie on a vertical line in the complex plane.

% HANOWA(N, d) is the N-by-N block 2x2 matrix (thus N = 2M must be even)

% [d*EYE(M) -DIAG(1:M)

% DIAG(1:M) d*EYE(M)]

% It has complex eigenvalues lambda(k) = d +/- k*i (1 <= k <= M).

% Parameter d defaults to -1.

% Reference:

% E. Hairer, S.P. Norsett and G. Wanner, Solving Ordinary

% Differential Equations I: Nonstiff Problems, Springer-Verlag,

% Berlin, 1987. (pp. 86-87)

hilb 51

function H = hilb(n)

%HILB Hilbert matrix.

% HILB(N) is the N-by-N matrix with elements 1/(i+j-1).

% It is a famous example of a badly conditioned matrix.

% COND(HILB(N)) grows like EXP(3.5*N).

% See INVHILB (standard MATLAB routine) for the exact inverse, which

% has integer entries.

% HILB(N) is symmetric positive definite, totally positive, and a

% Hankel matrix.

% References:

% M.-D. Choi, Tricks or treats with the Hilbert matrix, Amer. Math.

% Monthly, 90 (1983), pp. 301-312.

% M. Newman and J. Todd, The evaluation of matrix inversion

% programs, J. Soc. Indust. Appl. Math., 6 (1958), pp. 466-476.

% D.E. Knuth, The Art of Computer Programming,

% Volume 1, Fundamental Algorithms, second edition, Addison-Wesley,

% Reading, Massachusetts, 1973, p. 37.

function [v, beta] = house(x)

%HOUSE Householder matrix.

% If [v, beta] = HOUSE(x) then H = EYE - beta*v*v' is a Householder

% matrix such that Hx = -sign(x(1))*norm(x)*e_1.

% NB: If x = 0 then v = 0, beta = 1 is returned.

% x can be real or complex.

% sign(x) := exp(i*arg(x)) (= x./abs(x) when x ~= 0).

% Theory: (textbook references Golub & Van Loan 1989, 38-43;

% Stewart 1973, 231-234, 262; Wilkinson 1965, 48-50).

% Hx = y: (I - beta*v*v')x = -s*e_1.

% Must have |s| = norm(x), v = x+s*e_1, and

% x'y = x'Hx =(x'Hx)' real => arg(s) = arg(x(1)).

% So take s = sign(x(1))*norm(x) (which avoids cancellation).

% v'v = (x(1)+s)^2 + x(2)^2 + ... + x(n)^2

% = 2*norm(x)*(norm(x) + |x(1)|).

%

% References:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989.

% G.W. Stewart, Introduction to Matrix Computations, Academic Press,

% New York, 1973,

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965.

52 ipjfact

function A = invhess(x, y)

%INVHESS Inverse of an upper Hessenberg matrix.

% INVHESS(X, Y), where X is an N-vector and Y an N-1 vector,

% is the matrix whose lower triangle agrees with that of

% ONES(N,1)*X' and whose strict upper triangle agrees with

% that of [1 Y]*ONES(1,N).

% The matrix is nonsingular if X(1) ~= 0 and X(i+1) ~= Y(i)

% for all i, and its inverse is an upper Hessenberg matrix.

% If Y is omitted it defaults to -X(1:N-1).

% Special case: if X is a scalar INVHESS(X) is the same as

% INVHESS(1:X).

% References:

% F.N. Valvi and V.S. Geroyannis, Analytic inverses and

% determinants for a class of matrices, IMA Journal of Numerical

% Analysis, 7 (1987), pp. 123-128.

% W.-L. Cao and W.J. Stewart, A note on inverses of Hessenberg-like

% matrices, Linear Algebra and Appl., 76 (1986), pp. 233-240.

% Y. Ikebe, On inverses of Hessenberg matrices, Linear Algebra and

% Appl., 24 (1979), pp. 93-97.

% P. Rozsa, On the inverse of band matrices, Integral Equations and

% Operator Theory, 10 (1987), pp. 82-95.

function A = invol(n)

%INVOL An involutory matrix.

% A = INVOL(N) is an N-by-N involutory (A*A = EYE(N)) and

% ill-conditioned matrix.

% It is a diagonally scaled version of HILB(N).

% NB: B = (EYE(N)-A)/2 and B = (EYE(N)+A)/2 are idempotent (B*B = B).

% Reference:

% A.S. Householder and J.A. Carpenter, The singular values

% of involutory and of idempotent matrices, Numer. Math. 5 (1963),

% pp. 234-237.

function [A, detA] = ipjfact(n, k)

%IPJFACT A Hankel matrix with factorial elements.

% A = IPJFACT(N, K) is the matrix with

% A(i,j) = (i+j)! (K = 0, default)

% A(i,j) = 1/(i+j)! (K = 1)

% Both are Hankel matrices.

% The determinant and inverse are known explicitly.

% If a second output argument is present, d = DET(A) is returned:

% [A, d] = IPJFACT(N, K);

jordbloc 53

% Suggested by P. R. Graves-Morris.

%

% Reference:

% M.J.C. Gover, The explicit inverse of factorial Hankel matrices,

% Dept. of Mathematics, University of Bradford, 1993.

function J = jordbloc(n, lambda)

%JORDBLOC Jordan block.

% JORDBLOC(N, LAMBDA) is the N-by-N Jordan block with eigenvalue

% LAMBDA. LAMBDA = 1 is the default.

function U = kahan(n, theta, pert)

%KAHAN Kahan matrix - upper trapezoidal.

% KAHAN(N, THETA) is an upper trapezoidal matrix

% that has some interesting properties regarding estimation of

% condition and rank.

% The matrix is N-by-N unless N is a 2-vector, in which case it

% is N(1)-by-N(2).

% The parameter THETA defaults to 1.2.

% The useful range of THETA is 0 < THETA < PI.

%

% To ensure that the QR factorization with column pivoting does not

% interchange columns in the presence of rounding errors, the diagonal

% is perturbed by PERT*EPS*diag([N:-1:1]).

% The default is PERT = 25, which ensures no interchanges for KAHAN(N)

% up to at least N = 90 in IEEE arithmetic.

% KAHAN(N, THETA, PERT) uses the given value of PERT.

% The inverse of KAHAN(N, THETA) is known explicitly: see

% Higham (1987, p. 588), for example.

% The diagonal perturbation was suggested by Christian Bischof.

%

% References:

% W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,

% 9 (1966), pp. 757-801.

% N.J. Higham, A survey of condition number estimation for

% triangular matrices, SIAM Review, 29 (1987), pp. 575-596.

function A = kms(n, rho)

%KMS Kac-Murdock-Szego Toeplitz matrix.

% A = KMS(N, RHO) is the N-by-N Kac-Murdock-Szego Toeplitz matrix with

% A(i,j) = RHO^(ABS((i-j))) (for real RHO).

54 krylov

% If RHO is complex, then the same formula holds except that elements

% below the diagonal are conjugated.

% RHO defaults to 0.5.

% Properties:

% A has an LDL' factorization with

% L = INV(TRIW(N,-RHO,1)'),

% D(i,i) = (1-ABS(RHO)^2)*EYE(N) except D(1,1) = 1.

% A is positive definite if and only if 0 < ABS(RHO) < 1.

% INV(A) is tridiagonal.

% Reference:

% W.F. Trench, Numerical solution of the eigenvalue problem

% for Hermitian Toeplitz matrices, SIAM J. Matrix Analysis and Appl.,

% 10 (1989), pp. 135-146 (and see the references therein).

function K = kron(A,B)

%KRON Kronecker tensor product.

% KRON(X,Y) is the Kronecker tensor product of X and Y.

% The result is a large matrix formed by taking all possible

% products between the elements of X and those of Y. For

% example, if X is 2 by 3, then KRON(X,Y) is

%

% [X(1,1)*Y X(1,2)*Y X(1,3)*Y

% X(2,1)*Y X(2,2)*Y X(2,3)*Y]

%

% If either X or Y is sparse, only nonzero elements are multiplied

% in the computation, and the result is sparse.

% Full: J. N. Little, 4-21-85.

% Sparse: T. R. Gardos (Georgia Tech), 5-4-93.

% Copyright (c) 1984-93 by The MathWorks, Inc.

%

% This version not strictly part of the toolbox - included here

% because version supplied with Matlab 4.0 is not sparse aware.

function B = krylov(A, x, j)

%KRYLOV Krylov matrix.

% KRYLOV(A, x, j) is the Krylov matrix

% [x, Ax, A^2x, ..., A^(j-1)x],

% where A is an n-by-n matrix and x is an n-vector.

% Defaults: x = ONES(n,1), j = n.

% KRYLOV(n) is the same as KRYLOV(RANDN(n)).

% Reference:

lauchli 55

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989, p. 369.

function A = lauchli(n, mu)

%LAUCHLI Lauchli matrix - rectangular.

% LAUCHLI(N, MU) is the (N+1)-by-N matrix [ONES(1,N); MU*EYE(N))].

% It is a well-known example in least squares and other problems

% that indicates the dangers of forming A'*A.

% MU defaults to SQRT(EPS).

% Reference:

% P. Lauchli, Jordan-Elimination und Ausgleichung nach

% kleinsten Quadraten, Numer. Math, 3 (1961), pp. 226-240.

function A = lehmer(n)

%LEHMER Lehmer matrix - symmetric positive definite.

% A = LEHMER(N) is the symmetric positive definite N-by-N matrix with

% A(i,j) = i/j for j >= i.

% A is totally nonnegative. INV(A) is tridiagonal, and explicit

% formulas are known for its entries.

% N <= COND(A) <= 4*N*N.

% References:

% M. Newman and J. Todd, The evaluation of matrix inversion

% programs, J. Soc. Indust. Appl. Math., 6 (1958), pp. 466-476.

% Solutions to problem E710 (proposed by D.H. Lehmer): The inverse

% of a matrix, Amer. Math. Monthly, 53 (1946), pp. 534-535.

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 154.

function T = lesp(n)

%LESP A tridiagonal matrix with real, sensitive eigenvalues.

% LESP(N) is an N-by-N matrix whose eigenvalues are real and smoothly

% distributed in the interval approximately [-2*N-3.5, -4.5].

% The sensitivities of the eigenvalues increase exponentially as

% the eigenvalues grow more negative.

% The matrix is similar to the symmetric tridiagonal matrix with

% the same diagonal entries and with off-diagonal entries 1,

% via a similarity transformation with D = diag(1!,2!,...,N!).

% References:

% H.W.J. Lenferink and M.N. Spijker, On the use of stability regions in

% the numerical analysis of initial value problems,

56 matrix

% Math. Comp., 57 (1991), pp. 221-237.

% L.N. Trefethen, Pseudospectra of matrices, in Numerical Analysis 1991,

% Proceedings of the 14th Dundee Conference,

% D.F. Griffiths and G.A. Watson, eds, Pitman Research Notes in

% Mathematics, volume 260, Longman Scientific and Technical, Essex,

% UK, 1992, pp. 234-266.

function A = lotkin(n)

%LOTKIN Lotkin matrix.

% A = LOTKIN(N) is the Hilbert matrix with its first row altered to

% all ones. A is unsymmetric, ill-conditioned, and has many negative

% eigenvalues of small magnitude.

% The inverse has integer entries and is known explicitly.

% Reference:

% M. Lotkin, A set of test matrices, MTAC, 9 (1955), pp. 153-161.

function A = makejcf(n, e, m, X)

%MAKEJCF A matrix with given Jordan canonical form.

% MAKEJCF(N, E, M) is a matrix having the Jordan canonical form

% whose i'th Jordan block is of dimension M(i) with eigenvalue E(i),

% and where N = SUM(M).

% Defaults: E = 1:N, M = ONES(SIZE(E)) with M(1) so that SUM(M) = N.

% The matrix is constructed by applying a random similarity

% transformation to the Jordan form.

% Alternatively, the matrix used in the similarity transformation

% can be specified as a fifth parameter.

% In particular, MAKEJCF(N, E, M, EYE(N)) returns the Jordan form

% itself.

% NB: The JCF is very sensitive to rounding errors.

function A = matrix(k, n)

%MATRIX Test Matrix Toolbox information and matrix access by number.

% MATRIX(K, N) is the N-by-N instance of the matrix number K in

% the Test Matrix Toolbox (including some of the matrices provided

% with MATLAB), with all other parameters set to their default.

% N.B. Only those matrices which take an arbitrary dimension N

% are included (thus GALLERY is omitted, for example).

% MATRIX(K) is a string containing the name of the K'th matrix.

% MATRIX(0) is the number of matrices, i.e. the upper limit for K.

% Thus to set A to each N-by-N test matrix in turn use a loop like

% for k=1:matrix(0)

% A = matrix(k, N);

matsignt 57

% Aname = matrix(k); % The name of the matrix

% end

% MATRIX(-1) returns the version number and date of the toolbox.

% MATRIX with no arguments lists the names of the M-files in the

% collection.

% References:

% N.J. Higham, The Test Matrix Toolbox for Matlab, Numerical

% Analysis Report No. 237, Department of Mathematics,

% University of Manchester, England, December 1993.

% N.J. Higham, Algorithm 694: A collection of test matrices in

% MATLAB, ACM Trans. Math. Soft., 17 (1991), pp. 289-305.

%

% Matrices omitted are: gallery, hadamard, hanowa, lauchli,

% neumann, wathen, wilk.

% Matrices provided with MATLAB that are included here: invhilb,

% magic.

function S = matsignt(T)

%MATSIGNT Matrix sign function of a triangular matrix.

% S = MATSIGN(T) computes the matrix sign function S of the

% upper triangular matrix T using a recurrence.

% Adapted from FUNM. Called by SIGNM.

function A = minij(n)

%MINIJ Symmetric positive definite matrix MIN(i,j).

% A = MINIJ(N) is the N-by-N symmetric positive definite matrix with

% A(i,j) = MIN(i,j).

% Properties, variations:

% INV(A) is tridiagonal: it is minus the second difference matrix

% except its (N,N) element is 1.

% 2*A-ONES(A) (Givens' matrix) has tridiagonal inverse and

% eigenvalues .5*sec^2([2r-1)PI/4N], r=1:N.

% (N+1)ONES(A)-A has elements MAX(i,j), and also has a tridiagonal

% inverse.

% References:

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 158.

% D.E. Rutherford, Some continuant determinants arising in physics and

% chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.

% (For the eigenvalues of Givens' matrix.)

58 ohess

function A = moler(n, alpha)

%MOLER Moler matrix - symmetric positive definite.

% A = MOLER(N, ALPHA) is the symmetric positive definite N-by-N matrix

% U'*U where U = TRIW(N, ALPHA).

% For ALPHA = -1 (the default) A(i,j) = MIN(i,j)-2, A(i,i) = i.

% A has one small eigenvalue.

% Nash (1990) attributes the ALPHA = -1 matrix to Moler.

%

% Reference:

% J.C. Nash, Compact Numerical Methods for Computers: Linear

% Algebra and Function Minimisation, second edition, Adam Hilger,

% Bristol, 1990 (Appendix 1).

function [A, T] = neumann(n)

%NEUMANN Singular matrix from the discrete Neumann problem (sparse).

% NEUMANN(N) is the singular, row diagonally dominant matrix resulting

% from discretizing the Neumann problem with the usual five point

% operator on a regular mesh.

% It has a one-dimensional null space with null vector ONES(N,1).

% The dimension N should be a perfect square, or else a 2-vector,

% in which case the dimension of the matrix is N(1)*N(2).

% Reference:

% R.J. Plemmons, Regular splittings and the discrete Neumann

% problem, Numer. Math., 25 (1976), pp. 153-161.

function H = ohess(x)

%OHESS Random, orthogonal upper Hessenberg matrix.

% H = OHESS(N) is an N-by-N real, random, orthogonal

% upper Hessenberg matrix.

% Alternatively, H = OHESS(X), where X is an arbitrary real

% N-vector (N > 1) constructs H non-randomly using the elements

% of X as parameters.

% In both cases H is constructed via a product of N-1 Givens rotations.

% Note: See Gragg (1986) for how to represent an N-by-N (complex)

% unitary Hessenberg matrix with positive subdiagonal elements in terms

% of 2N-1 real parameters (the Schur parametrization).

% This M-file handles the real case only and is intended simply as a

% convenient way to generate random or non-random orthogonal Hessenberg

% matrices.

%

% Reference:

orthog 59

% W.B. Gragg, The QR algorithm for unitary Hessenberg matrices,

% J. Comp. Appl. Math., 16 (1986), pp. 1-8.

function Q = orthog(n, k)

%ORTHOG Orthogonal and nearly orthogonal matrices.

% Q = ORTHOG(N, K) selects the K'th type of matrix of order N.

% K > 0 for exactly orthogonal matrices, K < 0 for diagonal scalings of

% orthogonal matrices.

% Available types: (K = 1 is the default)

% K = 1: Q(i,j) = SQRT(2/(n+1)) * SIN(i*j*PI/(n+1))

% Symmetric eigenvector matrix for second difference matrix.

% K = 2: Q(i,j) = 2/SQRT(2*n+1)) * SIN(2*i*j*PI/(2*n+1))

% Symmetric.

% K = 3: Q(r,s) = EXP(2*PI*i*(r-1)*(s-1)/n) / SQRT(n) (i=SQRT(-1))

% Unitary, the Fourier matrix. Q^4 is the identity.

% This is essentially the same matrix as FFT(EYE(N))/SQRT(N)!

% K = 4: Helmert matrix: a permutation of a lower Hessenberg matrix,

% whose first row is ONES(1:N)/SQRT(N).

% K = 5: Q(i,j) = SIN(2*PI*(i-1)*(j-1)/n) + COS(2*PI*(i-1)*(j-1)/n).

% Symmetric matrix arising in the Hartley transform.

% K = -1: Q(i,j) = COS((i-1)*(j-1)*PI/(n-1))

% Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).

% K = -2: Q(i,j) = COS((i-1)*(j-1/2)*PI/n))

% Chebyshev Vandermonde-like matrix, based on zeros of T(n).

% References:

% N.J. Higham and D.J. Higham, Large growth factors in Gaussian

% elimination with pivoting, SIAM J. Matrix Analysis and Appl.,

% 10 (1989), pp. 155-164.

% P. Morton, On the eigenvectors of Schur's matrix, J. Number Theory,

% 12 (1980), pp. 122-127. (Re. ORTHOG(N, 3))

% H.O. Lancaster, The Helmert Matrices, Amer. Math. Monthly, 72 (1965),

% pp. 4-12.

% D. Bini and P. Favati, On a matrix algebra related to the discrete

% Hartley transform, SIAM J. Matrix Anal. Appl., 14 (1993),

% pp. 500-507.

function A = parter(n)

%PARTER Parter matrix - a Toeplitz matrix with singular values near PI.

% PARTER(N) is the matrix with (i,j) element 1/(i-j+0.5).

% It is a Cauchy matrix and a Toeplitz matrix.

% At the Second SIAM Conference on Linear Algebra, Raleigh, N.C.,

% 1985, Cleve Moler noted that most of the singular values of

60 pdtoep

% PARTER(N) are very close to PI. An explanation of the phenomenon

% was given by Parter; see also the paper by Tyrtyshnikov.

%

% References:

% The MathWorks Newsletter, Volume 1, Issue 1, March 1986, page 2.

% S.V. Parter, On the distribution of the singular values of Toeplitz

% matrices, Linear Algebra and Appl., 80 (1986), pp. 115-130.

% E.E. Tyrtyshnikov, Cauchy-Toeplitz matrices and some applications,

% Linear Algebra and Appl., 149 (1991), pp. 1-18.

function P = pascal(n, k)

%PASCAL Pascal matrix.

% P = PASCAL(N) is the Pascal matrix of order N: a symmetric positive

% definite matrix with integer entries taken from Pascal's

% triangle.

% The Pascal matrix is totally positive and its inverse has

% integer entries. Its eigenvalues occur in reciprocal pairs.

% COND(P) is approximately 16^N/(N*PI) for large N.

% PASCAL(N,1) is the lower triangular Cholesky factor (up to signs

% of columns) of the Pascal matrix. It is involutary (is its own

% inverse).

% PASCAL(N,2) is a transposed and permuted version of PASCAL(N,1)

% which is a cube root of the identity.

% References:

% R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix,

% Linear Algebra and Appl., 174 (1992), pp. 13-23 (this paper

% gives a factorization of L = PASCAL(N,1) and a formula for the

% elements of L^k).

% S. Karlin, Total Positivity, Volume 1, Stanford University Press,

% 1968. (Page 137: shows i+j-1 choose j is TP (i,j=0,1,...).

% PASCAL(N) is a submatrix of this matrix.)

% M. Newman and J. Todd, The evaluation of matrix inversion programs,

% J. Soc. Indust. Appl. Math., 6(4):466--476, 1958.

% H. Rutishauser, On test matrices, Programmation en Mathematiques

% Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,

% 1966, pp. 349-365. (Gives an integral formula for the

% elements of PASCAL(N).)

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 172.

% H.W. Turnbull, The Theory of Determinants, Matrices, and Invariants,

% Blackie, London and Glasgow, 1929. (PASCAL(N,2) on page 332.)

pei 61

function T = pdtoep(n, m, w, theta)

%PDTOEP Symmetric positive definite Toeplitz matrix.

% PDTOEP(N, M, W, THETA) is an N-by-N symmetric positive (semi-)

% definite (SPD) Toeplitz matrix, comprised of the sum of M rank 2

% (or, for certain THETA, rank 1) SPD Toeplitz matrices.

% Specifically,

% T = W(1)*T(THETA(1)) + ... + W(M)*T(THETA(M)),

% where T(THETA(k)) has (i,j) element COS(2*PI*THETA(k)*(i-j)).

% Defaults: M = N, W = RAND(M,1), THETA = RAND(M,1).

% Reference:

% G. Cybenko and C.F. Van Loan, Computing the minimum eigenvalue of

% a symmetric positive definite Toeplitz matrix, SIAM J. Sci. Stat.

% Comput., 7 (1986), pp. 123-131.

function P = pei(n, alpha)

%PEI Pei matrix.

% PEI(N, ALPHA), where ALPHA is a scalar, is the symmetric matrix

% ALPHA*EYE(N) + ONES(N).

% If ALPHA is omitted then ALPHA = 1 is used.

% The matrix is singular for ALPHA = 0, -N.

% Reference:

% M.L. Pei, A test matrix for inversion procedures,

% Comm. ACM, 5 (1962), p. 508.

function P = pentoep(n, a, b, c, d, e)

%PENTOEP Pentadiagonal Toeplitz matrix (sparse).

% P = PENTOEP(N, A, B, C, D, E) is the N-by-N pentadiagonal

% Toeplitz matrix with diagonals composed of the numbers

% A =: P(3,1), B =: P(2,1), C =: P(1,1), D =: P(1,2), E =: P(1,3).

% Default: (A,B,C,D,E) = (1,-10,0,10,1) (a matrix of Rutishauser).

% This matrix has eigenvalues lying approximately on

% the line segment 2*cos(2*t) + 20*i*sin(t).

%

% Interesting plots are

% PS(FULL(PENTOEP(32,0,1,0,0,1/4))) - `triangle'

% PS(FULL(PENTOEP(32,0,1/2,0,0,1))) - `propeller'

% PS(FULL(PENTOEP(32,0,1/2,1,1,1))) - `fish'

% References:

% R.M. Beam and R.F. Warming, The asymptotic spectra of

% banded Toeplitz and quasi-Toeplitz matrices, SIAM J. Sci.

% Comput. 14 (4), 1993, pp. 971-1006.

62 poldec

% H. Rutishauser, On test matrices, Programmation en Mathematiques

% Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165,

% 1966, pp. 349-365.

function [est, x, k] = pnorm(A, p, tol, noprint)

%PNORM Estimate of matrix p-norm (1 <= p <= inf).

% [EST, x, k] = PNORM(A, p, TOL) estimates the Holder p-norm of a

% matrix A, using the p-norm power method with a specially

% chosen starting vector.

% TOL is a relative convergence tolerance (default 1E-4).

% Returned are the norm estimate EST (which is a lower bound for the

% exact p-norm), the corresponding approximate maximizing vector x,

% and the number of power method iterations k.

% A nonzero fourth argument causes trace output to the screen.

% If A is a vector, this routine simply returns NORM(A, p).

%

% See also NORM, NORMEST.

% Note: The estimate is exact for p = 1, but is not always exact for

% p = 2 or p = inf. Code could be added to treat p = 2 and p = inf

% separately.

%

% Calls DUAL and SEQA.

%

% Reference:

% N.J. Higham, Estimating the matrix p-norm,

% Numer. Math., 62 (1992), pp. 539-555.

function A = poisson(n)

%POISSON Block tridiagonal matrix from Poisson's equation (sparse).

% POISSON(N) is the block tridiagonal matrix of order N^2

% resulting from discretizing Poisson's equation with the

% 5-point operator on an N-by-N mesh.

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989

% (Section 4.5.4).

function [U, H] = poldec(A)

%POLDEC Polar decomposition.

% [U, H] = POLDEC(A) computes a matrix U of the same dimension

% as A, and a Hermitian positive semi-definite matrix H,

prolate 63

% such that A = U*H.

% U has orthonormal columns if m>=n, and orthonormal rows if m<=n.

% U and H are computed via an SVD of A.

% U is a nearest unitary matrix to A in both the 2-norm and the

% Frobenius norm.

% Reference:

% N.J. Higham, Computing the polar decomposition---with applications,

% SIAM J. Sci. Stat. Comput., 7(4):1160--1174, 1986.

%

% (The name `polar' is reserved for a graphics routine.)

function A = prolate(n, w)

%PROLATE Prolate matrix - symmetric, ill-conditioned Toeplitz matrix.

% A = PROLATE(N, W) is the N-by-N prolate matrix with parameter W.

% It is a symmetric Toeplitz matrix.

% If 0 < W < 0.5 then

% - A is positive definite

% - the eigenvalues of A are distinct, lie in (0, 1), and

% tend to cluster around 0 and 1.

% W defaults to 0.25.

% Reference:

% J.M. Varah. The Prolate matrix. Linear Algebra and Appl.,

% 187:269--278, 1993.

function y = ps(A, m, tol, rl, marksize)

%PS Dot plot of a pseudospectrum.

% PS(A, M, TOL, RL) plots an approximation to a pseudospectrum

% of the square matrix A, using M random perturbations of size TOL.

% M defaults to a SIZE(A)-dependent value and TOL to 1E-3.

% RL defines the type of perturbation:

% RL = 0 (default): absolute complex perturbations of 2-norm TOL.

% RL = 1: absolute real perturbations of 2-norm TOL.

% RL = -1: componentwise real perturbations of size TOL.

% The eigenvalues of A are plotted as crosses `x'.

% PS(A, M, TOL, RL, MARKSIZE) uses the specified marker size instead

% of a size that depends on the figure size, the matrix order, and M.

% If MARKSIZE < 0, the plot is suppressed and the plot data is returned

% as an output argument.

% PS(A, 0) plots just the eigenvalues of A.

% For a given TOL, the pseudospectrum of A is the set of

% pseudo-eigenvalues of A, that is, the set

64 pscont

% { e : e is an eigenvalue of A+E, for some E with NORM(E) <= TOL }.

%

% Reference:

% L.N. Trefethen, Pseudospectra of matrices, in D.F. Griffiths and

% G.A. Watson, eds, Numerical Analysis 1991, Proceedings of the 14th

% Dundee Conference, vol. 260, Pitman Research Notes in Mathematics,

% Longman Scientific and Technical, Essex, UK, 1992, pp. 234-266.

function [x, y, z, m] = pscont(A, k, npts, ax, levels)

%PSCONT Contours and colour pictures of pseudospectra.

% PSCONT(A, K, NPTS, AX, LEVELS) plots LOG10(1/NORM(R(z))),

% where R(z) = INV(z*I-A) is the resolvent of the square matrix A,

% over an NPTS-by-NPTS grid.

% NPTS defaults to a SIZE(A)-dependent value.

% The limits are AX(1) and AX(2) on the x-axis and

% AX(3) and AX(4) on the y-axis.

% If AX is omitted, suitable limits are guessed based on the

% eigenvalues of A.

% The eigenvalues of A are plotted as crosses `x'.

% K determines the type of plot:

% K = 0 (default) PCOLOR and CONTOUR

% K = 1 PCOLOR only

% K = 2 SURFC (SURF and CONTOUR)

% K = 3 SURF only

% K = 4 CONTOUR only

% The contours levels are specified by the vector LEVELS, which

% defaults to -10:-1 (recall we are plotting log10 of the data).

% Thus, by default, the contour lines trace out the boundaries of

% the epsilon pseudospectra for epsilon = 1e-10, ..., 1e-1.

% [X, Y, Z, NPTS] = PSCONT(A, ...) returns the plot data X, Y, Z

% and the value of NPTS used.

%

% After calling this function you may want to change the

% color map (e.g., type COLORMAP HOT - see HELP COLOR) and the

% shading (e.g., type SHADING INTERP - see HELP INTERP).

% For an explanation of the term `pseudospectra' see PS.M.

% When A is real and the grid is symmetric about the x-axis, this

% routine exploits symmetry to halve the computational work.

% Colour pseduospectral pictures of this type are referred to as

% `spectral portraits' by Godunov, Kostin, and colleagues.

% References:

% V. I. Kostin, Linear algebra algorithms with guaranteed accuracy,

% Technical Report TR/PA/93/05, CERFACS, Toulouse, France, 1993.

% L.N. Trefethen, Pseudospectra of matrices, in D.F. Griffiths and

qmult 65

% G.A. Watson, eds, Numerical Analysis 1991, Proceedings of the 14th

% Dundee Conference, vol. 260, Pitman Research Notes in Mathematics,

% Longman Scientific and Technical, Essex, UK, 1992, pp. 234-266.

function B = qmult(A)

%QMULT Pre-multiply by random orthogonal matrix.

% QMULT(A) is Q*A where Q is a random real orthogonal matrix from

% the Haar distribution, of dimension the number of rows in A.

% Special case: if A is a scalar then QMULT(A) is the same as

% QMULT(EYE(A)).

% Called by RANDSVD.

%

% Reference:

% G.W. Stewart, The efficient generation of random

% orthogonal matrices with an application to condition estimators,

% SIAM J. Numer. Anal., 17 (1980), 403-409.

function A = rando(n, k)

%RANDO Random matrix with elements -1, 0 or 1.

% A = RANDO(N, K) is a random N-by-N matrix with elements from

% one of the following discrete distributions (default K = 1):

% K = 1: A(i,j) = 0 or 1 with equal probability,

% K = 2: A(i,j) = -1 or 1 with equal probability,

% K = 3: A(i,j) = -1, 0 or 1 with equal probability.

% N may be a 2-vector, in which case the matrix is N(1)-by-N(2).

function A = randsvd(n, kappa, mode, kl, ku)

%RANDSVD Random matrix with pre-assigned singular values.

% RANDSVD(N, KAPPA, MODE, KL, KU) is a (banded) random matrix of order N

% with COND(A) = KAPPA and singular values from the distribution MODE.

% N may be a 2-vector, in which case the matrix is N(1)-by-N(2).

% Available types:

% MODE = 1: one large singular value,

% MODE = 2: one small singular value,

% MODE = 3: geometrically distributed singular values,

% MODE = 4: arithmetically distributed singular values,

% MODE = 5: random singular values with unif. dist. logarithm.

% If omitted, MODE defaults to 3, and KAPPA defaults to SQRT(1/EPS).

% If MODE < 0 then the effect is as for ABS(MODE) except that in the

% original matrix of singular values the order of the diagonal entries

% is reversed: small to large instead of large to small.

% KL and KU are the lower and upper bandwidths respectively; if they

66 riemann

% are omitted a full matrix is produced.

% If only KL is present, KU defaults to KL.

% Special case: if KAPPA < 0 then a random full symmetric positive

% definite matrix is produced with COND(A) = -KAPPA and

% eigenvalues distributed according to MODE.

% KL and KU, if present, are ignored.

function A = redheff(n)

%REDHEFF A matrix of 0s and 1s of Redheffer.

% A = REDHEFF(N) is an N-by-N matrix of 0s and 1s defined by

% A(i,j) = 1 if j = 1 or if i divides j,

% A(i,j) = 0 otherwise.

% It has N - FLOOR(LOG2(N)) - 1 eigenvalues equal to 1,

% a real eigenvalue (the spectral radius) approximately SQRT(N),

% a negative eigenvalue approximately -SQRT(N),

% and the remaining eigenvalues are provably ``small''.

% Barrett and Jarvis (1992) conjecture that

% ``the small eigenvalues all lie inside the unit circle

% ABS(Z) = 1'',

% and a proof of this conjecture, together with a proof that some

% eigenvalue tends to zero as N tends to infinity, would yield

% a new proof of the prime number theorem.

% The Riemann hypothesis is true if and only if

% DET(A) = O(N^(1/2+epsilon)) for every epsilon > 0

% (`!' denotes factorial).

% See also RIEMANN.

% Reference:

% W.W. Barrett and T.J. Jarvis,

% Spectral Properties of a Matrix of Redheffer,

% Linear Algebra and Appl., 162 (1992), pp. 673-683.

function A = riemann(n)

%RIEMANN A matrix associated with the Riemann hypothesis.

% A = RIEMANN(N) is an N-by-N matrix for which the

% Riemann hypothesis is true if and only if

% DET(A) = O(N! N^(-1/2+epsilon)) for every epsilon > 0

% (`!' denotes factorial).

% A = B(2:N+1, 2:N+1), where

% B(i,j) = i-1 if i divides j and -1 otherwise.

% Properties include, with M = N+1:

% Each eigenvalue E(i) satisfies ABS(E(i)) <= M - 1/M.

% i <= E(i) <= i+1 with at most M-SQRT(M) exceptions.

% All integers in the interval (M/3, M/2] are eigenvalues.

rq 67

%

% See also REDHEFF.

% Reference:

% F. Roesler, Riemann's hypothesis as an eigenvalue problem,

% Linear Algebra and Appl., 81 (1986), pp. 153-198.

function z = rq(A,x)

%RQ Rayleigh quotient.

% RQ(A,x) is the Rayleigh quotient of A and x, x'*A*x/(x'*x).

% Called by FV.

function A = rschur(n, mu, x, y)

%RSCHUR An upper quasi-triangular matrix.

% A = RSCHUR(N, MU, X, Y) is an N-by-N matrix in real Schur form.

% All the diagonal blocks are 2-by-2 (except for the last one, if N

% is odd) and the k'th has the form [x(k) y(k); -y(k) x(k)].

% Thus the eigenvalues of A are x(k) +/- i*y(k).

% MU (default 1) controls the departure from normality.

% Defaults: X(k) = -k^2/10, Y(k) = -k, i.e., the eigenvalues

% lie on the parabola x = -y^2/10.

% References:

% F. Chatelin, Eigenvalues of Matrices, John Wiley, Chichester, 1993;

% Section 4.2.7.

% F. Chatelin and V. Fraysse, Qualitative computing: Elements

% of a theory for finite precision computation, Lecture notes,

% CERFACS, Toulouse, France and THOMSON-CSF, Orsay, France,

% June 1993.

function see(A, k)

%SEE Pictures of a matrix and its (pseudo-) inverse.

% SEE(A) displays MESH(A), MESH(PINV(A)), SEMILOGY(SVD(A),'o'),

% and (if A is square) FV(A) in four subplot windows.

% SEE(A, 1) plots an approximation to the pseudospectrum in the

% third window instead of the singular values.

% SEE(A, -1) plots only the eigenvalues in the fourth window,

% which is much quicker than plotting the field of values.

% If A is complex, only real parts are used for the mesh plots.

% If A is sparse, just SPY(A) is shown.

68 signm

function y = seqa(a, b, n)

%SEQA Additive sequence.

% Y = SEQA(A, B, N) produces a row vector comprising N equally

% spaced numbers starting at A and finishing at B.

% If N is omitted then 10 points are generated.

function x = seqcheb(n, k)

%SEQCHEB Sequence of points related to Chebyshev polynomials.

% X = SEQCHEB(N, K) produces a row vector of length N.

% There are two choices:

% K = 1: zeros of T_N, (the default)

% K = 2: extrema of T_{N-1},

% where T_k is the Chebsyhev polynomial of degree k.

function y = seqm(a, b, n)

%SEQM Multiplicative sequence.

% Y = SEQM(A, B, N) produces a row vector comprising N

% logarithmically equally spaced numbers, starting at A ~= 0

% and finishing at B ~= 0.

% If A*B < 0 and N > 2 then complex results are produced.

% If N is omitted then 10 points are generated.

function show(x)

%SHOW Display signs of matrix elements.

% SHOW(X) displays X in `FORMAT +' form, that is,

% with `+', `-' and blank representing positive, negative

% and zero elements respectively.

function [S, N] = signm(A)

%SIGNM Matrix sign decomposition.

% [S, N] = SIGNM(A) is the matrix sign decomposition A = S*N,

% computed via the Schur decomposition.

% S is the matrix sign function, sign(A).

% Reference:

% N.J. Higham, The matrix sign decomposition and its relation to

% the polar decomposition, Numerical Analysis Report No. 225,

% University of Manchester, England, April 1993;

% to appear in Linear Algebra and Appl.

skewpart 69

function S = skewpart(A)

%SKEWPART Skew-symmetric (skew-Hermitian) part.

% SKEWPART(A) is the skew-symmetric (skew-Hermitian) part of A,

% (A - A')/2.

% It is the nearest skew-symmetric (skew-Hermitian) matrix to A in

% both the 2- and the Frobenius norms.

function A = smoke(n, k)

%SMOKE Smoke matrix - complex, with a `smoke ring' pseudospectrum.

% SMOKE(N) is an N-by-N matrix with 1s on the

% superdiagonal, 1 in the (N,1) position, and powers of

% roots of unity along the diagonal.

% SMOKE(N, 1) is the same except for a zero (N,1) element.

% The eigenvalues of SMOKE(N, 1) are the N'th roots of unity;

% those of SMOKE(N) are the N'th roots of unity times 2^(1/N).

%

% Try PS(SMOKE(32)). For SMOKE(N, 1) the pseudospectrum looks

% like a sausage folded back on itself.

% GERSH(SMOKE(N, 1)) is interesting.

% Reference:

% L. Reichel and L.N. Trefethen, Eigenvalues and pseudo-eigenvalues of

% Toeplitz matrices, Linear Algebra and Appl., 162-164:153-185, 1992.

function A = sparsify(A, p)

%SPARSIFY Randomly sets matrix elements to zero.

% S = SPARSIFY(A, P) is A with elements randomly set to zero

% (S = S' if A is square and A = A', i.e. symmetry is preserved).

% Each element has probability P of being zeroed.

% Thus on average 100*P percent of the elements of A will be zeroed.

% Default: P = 0.25.

function S = sub(A, i, j)

%SUB Principal submatrix.

% SUB(A,i,j) is A(i:j,i:j).

% SUB(A,i) is the leading principal submatrix of order i,

% A(1:i,1:i), if i>0, and the trailing principal submatrix

% of order ABS(i) if i<0.

function S = symmpart(A)

%SYMMPART Symmetric (Hermitian) part.

% SYMMPART(A) is the symmetric (Hermitian) part of A, (A + A')/2.

% It is the nearest symmetric (Hermitian) matrix to A in both the

% 2- and the Frobenius norms.

70 triw

function [Q, T] = trap2tri(L)

%TRAP2TRI Unitary reduction of trapezoidal matrix to triangular form.

% [Q, T] = TRAP2TRI(L), where L is an m-by-n lower trapezoidal

% matrix with m >= n, produces a unitary Q such that QL = [T; 0],

% where T is n-by-n and lower triangular.

% Q is a product of Householder transformations.

% Called by RANDSVD.

%

% Reference:

% G.H. Golub and C.F. Van Loan, Matrix Computations, second edition,

% Johns Hopkins University Press, Baltimore, Maryland, 1989.

% P5.2.5, p. 220.

function T = tridiag(n, x, y, z)

%TRIDIAG Tridiagonal matrix (sparse).

% TRIDIAG(X, Y, Z) is the tridiagonal matrix with subdiagonal X,

% diagonal Y, and superdiagonal Z.

% X and Z must be vectors of dimension one less than Y.

% Alternatively TRIDIAG(N, C, D, E), where C, D, and E are all

% scalars, yields the Toeplitz tridiagonal matrix of order N

% with subdiagonal elements C, diagonal elements D, and superdiagonal

% elements E. This matrix has eigenvalues (Todd 1977)

% D + 2*SQRT(C*E)*COS(k*PI/(N+1)), k=1:N.

% TRIDIAG(N) is the same as TRIDIAG(N,-1,2,-1), which is

% a symmetric positive definite M-matrix (the negative of the

% second difference matrix).

% References:

% J. Todd, Basic Numerical Mathematics, Vol. 2: Numerical Algebra,

% Birkhauser, Basel, and Academic Press, New York, 1977, p. 155.

% D.E. Rutherford, Some continuant determinants arising in physics and

% chemistry---II, Proc. Royal Soc. Edin., 63, A (1952), pp. 232-241.

function t = triw(n, alpha, k)

%TRIW Upper triangular matrix discussed by Wilkinson and others.

% TRIW(N, ALPHA, K) is the upper triangular matrix with ones on

% the diagonal and ALPHAs on the first K >= 0 superdiagonals.

% N may be a 2-vector, in which case the matrix is N(1)-by-N(2) and

% upper trapezoidal.

% Defaults: ALPHA = -1,

% K = N - 1 (full upper triangle).

% TRIW(N) is a matrix discussed by Kahan, Golub and Wilkinson.

%

vand 71

% Ostrowski (1954) shows that

% COND(TRIW(N,2)) = COT(PI/(4*N))^2,

% and for large ABS(ALPHA),

% COND(TRIW(N,ALPHA)) is approximately ABS(ALPHA)^N*SIN(PI/(4*N-2)).

%

% Adding -2^(2-N) to the (N,1) element makes TRIW(N) singular,

% as does adding -2^(1-N) to all elements in the first column.

% References:

% G.H. Golub and J.H. Wilkinson, Ill-conditioned eigensystems and the

% computation of the Jordan canonical form, SIAM Review,

% 18(4), 1976, pp. 578-619.

% W. Kahan, Numerical linear algebra, Canadian Math. Bulletin,

% 9 (1966), pp. 757-801.

% A.M. Ostrowski, On the spectrum of a one-parametric family of

% matrices, J. Reine Angew. Math., 193 (3/4), 1954, pp. 143-160.

% J.H. Wilkinson, Singular-value decomposition---basic aspects,

% in D.A.H. Jacobs, ed., Numerical Software---Needs and Availability,

% Academic Press, London, 1978, pp. 109-135.

function V = vand(m, p)

%VAND Vandermonde matrix.

% V = VAND(P), where P is a vector, produces the (primal)

% Vandermonde matrix based on the points P, i.e. V(i,j) = P(j)^(i-1).

% VAND(M,P) is a rectangular version of VAND(P) with M rows.

% Special case: If P is a scalar then P equally spaced points on [0,1]

% are used.

% Reference:

% N.J. Higham, Stability analysis of algorithms for solving

% confluent Vandermonde-like systems, SIAM J. Matrix Anal. Appl.,

% 11 (1990), pp. 23-41.

function A = wathen(nx, ny, k)

%WATHEN Wathen matrix - a finite element matrix (sparse, random entries).

% A = WATHEN(NX,NY) is a sparse random N-by-N finite element matrix

% where N = 3*NX*NY + 2*NX + 2*NY + 1.

% A is precisely the `consistent mass matrix' for a regular NX-by-NY

% grid of 8-node (serendipity) elements in 2 space dimensions.

% A is symmetric positive definite for any (positive) values of

% the `density', RHO(NX,NY), which is chosen randomly in this routine.

% In particular, if D = DIAG(DIAG(A)), then

% 0.25 <= EIG(INV(D)*A) <= 4.5

% for any positive integers NX and NY and any densities RHO(NX,NY).

72 Acknowledgements

% This diagonally scaled matrix is returned by WATHEN(NX,NY,1).

% Reference:

% A.J. Wathen, Realistic eigenvalue bounds for the Galerkin

% mass matrix, IMA J. Numer. Anal., 7 (1987), pp. 449-457.

function [A, b] = wilk(n)

%WILK Various specific matrices devised/discussed by Wilkinson.

% [A, b] = WILK(N) is the matrix or system of order N.

% N = 3: upper triangular system Ux=b illustrating inaccurate solution.

% N = 4: lower triangular system Lx=b, ill-conditioned.

% N = 5: HILB(6)(1:5,2:6)*1.8144. Symmetric positive definite.

% N = 21: W21+, tridiagonal. Eigenvalue problem.

% References:

% J.H. Wilkinson, Error analysis of direct methods of matrix inversion,

% J. Assoc. Comput. Mach., 8 (1961), pp. 281-330.

% J.H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied

% Science No. 32, Her Majesty's Stationery Office, London, 1963.

% J.H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University

% Press, 1965.

Acknowledgements

In preparing the earlier test matrix collections I bene�ted from the helpful suggestions of

people too numerous to mention. While working on the new toolbox I received valuable

advice from Cleve Moler and Nick Trefethen. Per Christian Hansen o�ered helpful comments

on a draft version of this document. Alan Edelman helped me with the section on random

matrices.

References 73

References

[1] E. Anderson, Z. Bai, C. H. Bischof, J. W. Demmel, J. J. Dongarra, J. J. Du Croz,

A. Greenbaum, S. J. Hammarling, A. McKenney, S. Ostrouchov, and D. C. Sorensen.

LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia,

1992.

[2] Zhaojun Bai. A collection of test matrices for the large scale nonsymmetric eigenvalue

problem (version 0.0). Manuscript, April 1993.

[3] Richard Bartels and Barry Joe. On generating discrete linear l

1

test problems. SIAM

J. Sci. Stat. Comput., 10(3):550{561, 1989.

[4] John Ca�ney. Another test matrix for determinants and inverses. Comm. ACM,

6(6):310, 1963.

[5] A. K. Cline and R. K. Rew. A set of counter-examples to three condition number

estimators. SIAM J. Sci. Stat. Comput., 4(4):602{611, 1983.

[6] J. W. Demmel and A. McKenney. A test matrix generation suite. LAPACK Working

Note #9, Courant Institute of Mathematical Sciences, New York, 1989.

[7] Jack J. Dongarra and Eric Grosse. Distribution of mathematical software via electronic

mail. Comm. ACM, 30(5):403{407, 1987.

[8] Iain S. Du�, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems. ACM

Trans. Math. Soft., 15(1):1{14, 1989.

[9] Iain S. Du�, Roger G. Grimes, and John G. Lewis. Users' guide for the Harwell{Boeing

sparse matrix collection (release 1). Report RAL-92-086, Atlas Centre, Rutherford

Appleton Laboratory, Didcot, Oxon, December 1992.

[10] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM J.

Matrix Anal. Appl., 9(4):543{560, 1988.

[11] Alan Edelman. Eigenvalue roulette and random test matrices. In Marc S. Moonen,

Gene H. Golub, and Bart L. De Moor, editors, Linear Algebra for Large Scale and

Real-Time Applications, volume 232 of NATO ASI Series E, pages 365{368. Kluwer

Academic Publishers, Dordrecht, 1993.

[12] Alan Edelman, Eric Kostlan, and Michael Shub. How many eigenvalues of a random

matrix are real? To appear in J. Amer. Math. Soc., 1994.

[13] W. H. Enright and J. D. Pryce. Two FORTRAN packages for assessing initial value

methods. ACM Trans. Math. Soft., 13(1):1{27, 1987.

[14] W. L. Frank. Computing eigenvalues of complex matrices by determinant evaluation

and by methods of Danilewski and Wielandt. J. Soc. Indust. Appl. Math., 6:378{392,

1958.

74 References

[15] F. R. Gantmacher. The Theory of Matrices, volume two. Chelsea, New York, 1959.

[16] David M. Gay. Electronic mail distribution of linear programming test problems.

Mathematical Programming Society COAL Newsletter, December:10{12, 1985.

[17] Stuart Geman. The spectral radius of large randommatrices. Ann. Probab., 14(4):1318{

1328, 1986.

[18] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins

University Press, Baltimore, Maryland, second edition, 1989.

[19] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A

Foundation for Computer Science. Addison-Wesley, Reading, Massachusetts, 1989.

[20] Robert T. Gregory and David L. Karney. A Collection of Matrices for Testing Com-

putational Algorithms. John Wiley, New York, 1969. Reprinted with corrections by

Robert E. Krieger, Huntington, New York, 1978.

[21] Per Christian Hansen. Regularization tools. A Matlab package for analysis and solution

of discrete ill-posed problems. Report UNIC-92-03, UNI�C, Technical University of

Denmark, DK-2800 Lyngby, Denmark, June 1992.

[22] Per Christian Hansen. Test matrices for regularization methods. Report UNIC-93-09,

UNI�C, Technical University of Denmark, DK-2800 Lyngby, Denmark, August 1993.

[23] Nicholas J. Higham. Computing the polar decomposition|with applications. SIAM

J. Sci. Stat. Comput., 7(4):1160{1174, October 1986.

[24] Nicholas J. Higham. A survey of condition number estimation for triangular matrices.

SIAM Review, 29(4):575{596, 1987.

[25] Nicholas J. Higham. A collection of test matrices in MATLAB. Numerical Analysis

Report No. 172, University of Manchester, England, July 1989.

[26] Nicholas J. Higham. How accurate is Gaussian elimination? In D. F. Gri�ths and G. A.

Watson, editors, Numerical Analysis 1989, Proceedings of the 13th Dundee Conference,

volume 228 of Pitman Research Notes in Mathematics, pages 137{154. Longman Sci-

enti�c and Technical, Essex, UK, 1990.

[27] Nicholas J. Higham. Algorithm 694: A collection of test matrices in MATLAB. ACM

Trans. Math. Soft., 17(3):289{305, September 1991.

[28] Nicholas J. Higham. Estimating the matrix p-norm. Numer. Math., 62:539{555, 1992.

[29] Nicholas J. Higham. The matrix sign decomposition and its relation to the polar de-

composition. Numerical Analysis Report No. 225, University of Manchester, England,

April 1993. To appear in Linear Algebra and Appl.

[30] Nicholas J. Higham and Desmond J. Higham. Large growth factors in Gaussian elim-

ination with pivoting. SIAM J. Matrix Anal. Appl., 10(2):155{164, April 1989.

References 75

[31] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press,

1985.

[32] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge Uni-

versity Press, 1991.

[33] W. Kahan. Numerical linear algebra. Canadian Math. Bulletin, 9:757{801, 1966.

[34] Samuel Karlin. Total Positivity, volume 1. Stanford University Press, 1968.

[35] Charles Kenney and Alan J. Laub. Controllability and stability radii for companion

form systems. Math. Control Signals Systems, 1:239{256, 1988.

[36] I. J. Lustig. An analysis of an available set of linear programming test problems.

Computers and Operations Research, 16:173{184, 1989.

[37] Webb Miller. The Engineering of Numerical Software. Prentice-Hall, Englewood Cli�s,

New Jersey, 1984.

[38] Cleve B. Moler. MATLAB's magical mystery tour. The MathWorks Newsletter, 7(1):8{

9, 1993.

[39] J. J. Mor�e, B. S. Garbow, and K. E. Hillstrom. Testing unconstrained optimization

software. ACM Trans. Math. Soft., 7:17{41, 1981.

[40] Morris Newman. Matrix computations. In John Todd, editor, Survey of Numerical

Analysis, pages 222{254. McGraw-Hill, New York, 1962.

[41] Morris Newman and John Todd. The evaluation of matrix inversion programs. J. Soc.

Indust. Appl. Math., 6(4):466{476, 1958.

[42] Heinz-Otto Peitgen, Hartmut J�urgens, and Dietmar Saupe. Fractals for the Classroom.

Part One: Introduction to Fractals and Chaos. Springer-Verlag, New York, 1992.

[43] J. R. Rice and R. E. Boisvert. Solving Elliptic Problems using ELLPACK. Springer-

Verlag, New York, 1985.

[44] A. Ruhe. Closest normal matrix �nally found! BIT, 27:585{598, 1987.

[45] H. Rutishauser. On test matrices. Programmation en Math�ematiques Num�eriques,

�

Editions Centre Nat. Recherche Sci., Paris, 165:349{365, 1966.

[46] G. W. Stewart. Updating a rank-revealing ULV decomposition. SIAM J. Matrix Anal.

Appl., 14(2):494{499, 1993.

[47] J. Stoer and C. Witzgall. Transformations by diagonal matrices in a normed space.

Numer. Math., 4:158{171, 1962.

[48] Olga Taussky and Marvin Marcus. Eigenvalues of �nite matrices. In John Todd, editor,

Survey of Numerical Analysis, pages 279{313. McGraw-Hill, New York, 1962.

76 References

[49] The MathWorks, Inc. Maple Symbolic Toolbox. Natick, Massachusetts, May 1993. Beta

test edition.

[50] Kim-Chuan Toh and Lloyd N. Trefethen. Pseudozeros of polynomials and pseudospec-

tra of companion matrices. Technical Report TR 93-1360, Department of Computer

Science, Cornell University, Ithaca, New York, June 1993.

[51] Lloyd N. Trefethen. Pseudospectra of matrices. In D. F. Gri�ths and G. A. Watson,

editors, Numerical Analysis 1991, Proceedings of the 14th Dundee Conference, volume

260 of Pitman Research Notes in Mathematics, pages 234{266. Longman Scienti�c and

Technical, Essex, UK, 1992.

[52] Lloyd N. Trefethen. Spectra and Pseudospectra: The Behavior of Non-Normal Matrices

and Operators. 1994. Book in preparation.

[53] H. W. Turnbull. The Theory of Determinants, Matrices, and Invariants. Blackie,

London and Glasgow, 1929.

[54] J. M. Varah. A generalization of the Frank matrix. SIAM J. Sci. Stat. Comput.,

7(3):835{839, 1986.

[55] Joan R. Westlake. A Handbook of Numerical Matrix Inversion and Solution of Linear

Equations. John Wiley, New York, 1968.

[56] J. H. Wilkinson. Error analysis of
oating-point computation. Numer. Math., 2:319{

340, 1960.

[57] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, 1965.

[58] G. Zielke. Report on test matrices for generalized inverses. Computing, 36:105{162,

1986.

