
Developing Web
Applications
with ColdFusion
ColdFusion 4.0 for Windows® NT,
Windows 95/98, and Solaris
Allaire Corporation

Copyright Notice

© Allaire Corporation. All rights reserved.

This manual, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. The content of
this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Allaire Corporation. Allaire
Corporation assumes no responsibility or liability for any errors or inaccuracies that
may appear in this book.

Except as permitted by such license, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without the prior written permission of Allaire
Corporation.

ColdFusion is a registered trademark and Allaire, HomeSite, the ColdFusion logo and
the Allaire logo are trademarks of Allaire Corporation in the USA and other countries.
Microsoft, Windows, Windows NT, Windows 95, Microsoft Access, and FoxPro are
registered trademarks of Microsoft Corporation. All other products or name brands
are the trademarks of their respective holders. Solaris is a trademark of Sun
Microsystems Inc. UNIX is a trademark of Novell Inc. PostScript is a trademark of
Adobe Systems Inc.

Part number: AA-DWACF-RK

Contents
Chapter 1: Welcome to ColdFusion...1

Product Features .. 2
Rapid development .. 2
Scalable deployment .. 2
Open integration .. 3
Total security... 3

Learning About Web Development and ColdFusion .. 4
New to Web development? .. 4
New to ColdFusion? ... 5
Experienced Web developer?... 5

Developer Resources ... 5
Developing Applications in ColdFusion Studio .. 6
About ColdFusion Documentation .. 7

Documentation set... 7
Documentation distribution ... 7
Reading online documentation... 7
Using online help in ColdFusion Studio... 8
Documentation conventions... 9

Contacting Allaire... 9

Chapter 2: ColdFusion Fundamentals ..11

ColdFusion Components .. 12
The ColdFusion Server... 12
The ColdFusion Administrator.. 12
ColdFusion Studio.. 12
ColdFusion application pages... 12
ODBC data sources... 13
Other data sources.. 13
ColdFusion Extensions .. 13

Creating a ColdFusion Application .. 13
Planning your ColdFusion Application.. 13

Plan the flow of data in your application.. 14
Developing ColdFusion Application Pages.. 14

ColdFusion application design.. 15

iv Developing Web Applications with ColdFusion
Providing Data Sources ..16
Implementing Security...17
Load Balancing..17
Testing and Debugging your Application ...17

Using the interactive debugger ..18
Outputting the server’s debug information ..18

Chapter 3: ColdFusion Studio Quick Start..19

Exploring the Studio Workspace ...20
Using context menus ..20
The Resources Area ...20
The Editor pane ...21

Creating HTML Pages with Templates and Wizards..21
HTML Wizards...21
Dynamic HTML Wizards ..22
Style Editor...22

Creating Applications with Templates and Wizards..23
Application Development Tools in Studio ...23

Tools ...24
Debugger..24
Search ...24
Browsers...25

Customizing the Workspace ..25
Keyboard Shortcuts ..25

Chapter 4: Creating and Manipulating Variables ..31

Creating and Using Variables ..32
Using CFSET to create variables ..32
Displaying variables in a page ..33
Testing for a variable’s existence ...33

Creating Default Variables with CFPARAM ..34
Naming and Scoping Variables..35

Variable names ..35
Qualifying, or scoping, variable references...36
Performance and scoping...36
How ColdFusion looks up variables ..37
Using pound signs...37

Passing Variables to Pages with URLs and Forms..38
Passing parameters with a URL..38
Passing parameters with a form...39

Kinds of Variables ...40
Using variables across several application pages...42

Client Variables ...42
Creating a client variable ..43
Standard client variables ..43
Using client state management without cookies..44
Client variable storage options ..44

Contents v
Storing client variables in cookies ...45
Getting a list of client variables ..45

Server Variables...46
Sample server variable output ...47

Using Application and Session Variables ...47
Enabling application and session variables ..47
Session variables ...48
Application variables ..48
Using application variables ..49

Creating HTTP Cookie Variables ...50
Creating cookies with the CFCOOKIE tag ...50

Using CGI Environment Variables ..51
CGI client variables ...53

Chapter 5: Controlling Page Flow ...55

Conditional Processing (CFIF and CFSWITCH)...56
Using CFSWITCH with CFCASE and CFDEFAULTCASE ...56
Using CFIF with CFELSEIF and CFELSE ...56
Compound conditional statements...58
Using CFELSEIF...58

Redirecting Application Page Requests (CFLOCATION)...59
Stopping Application Page Processing (CFABORT)...60
Including Application Page Files (CFINCLUDE) ...60

Potential uses of the CFINCLUDE tag ...61
Creating Loops (CFLOOP)..61

Index loops...62
Conditional loops..63
Query Loops...63
List Loops ...64
Looping over a COM collection..65
Nesting loops ...65
Breaking out of a loop ...66

Chapter 6: Using the Application Framework ...67

Understanding the Web Application Framework ..68
Application-level settings and functions...68
Client state management..69
Custom error handling ...69
Web server security integration ...69

Establishing Application-Level Settings ...69
Advantages of using the Application Framework...70
Defining an application ..70
Establishing an application root directory..71
Behavior with CFINCLUDE ..72

Using Application and Session Variables ...72
Session variables ...73
Application variables ..75

vi Developing Web Applications with ColdFusion
Tips for using session and application variables ..76
Managing session and application variables ..77

Client Variables and Client State Management ...78
Choosing a client variable storage method...78
Using client state management ...79

Default Variables and Constants ...82
Using CFLOCK for Exclusive Locking ...83
Generating Custom Error Messages (CFERROR) ..84

Creating an error application page ..84
Application Security ...85

Integrating with web server security..86
Authentication...86
Encryption ...86

Chapter 7: Debugging and Troubleshooting...87

Using the Interactive Debugger in ColdFusion Studio..88
Getting Started...88
Configuring a Remote Development Server ...88

Creating RDS Mappings ...89
File mapping examples ...89
Specifying server mappings..92

Running the Interactive Debugger ..92
Debug windows...94
Stepping through code..94
Evaluating expressions and setting watches...95
Debugging across multiple pages ..95

Debug Settings in ColdFusion Administrator ..96
Generating debug information without setting options..97
Generating debug information for an individual query...97
Error messages...97

Troubleshooting..98
ODBC data source configuration ...98
HTTP/URL ...99
CFML syntax errors ...99
CFML Syntax Checker...100

Chapter 8: Understanding Data Sources..101

Data Source Basics..102
Open Database Connectivity (ODBC) ...102
Installing ODBC drivers ..102
Databases...102

Adding an ODBC Data Source ...103
ODBC Naming Conventions..104
Using Native Database Drivers..105

Bundled drivers ...105
Attributes for enabling native drivers ..105

Using OLE DB Connectivity ...106

Contents vii
Structured Query Language (SQL) Overview..107
Resources ...107
SQL syntax overview ...107
Syntax elements...108
SQL Extensions ..109

Chapter 9: Selecting and Presenting Data ...111

Selecting Data with the CFQUERY Tag ...112
Using Dynamic Query Parameters ..112

Sources for dynamic parameters ...113
Caching Query Results ...114
Executing Stored Procedures ...115

Calling stored procedures from CFQUERY ...115
Calling stored procedures from CFSTOREDPROC...115

Date Formatting Functions..116
Date, time, and number formatting functions ...116
Special formatting functions ..117

Displaying the Query Result Set ..118
Nested CFOUTPUT and grouping ...120
CFQUERY properties ..121
Returning partial recordsets...122
Using parameters in CFOUTPUT sections..122
Using the pound sign in CFOUTPUT sections ...122

Presenting Query Results in a Table..123
CFML tables ...123
HTML tables ..124
Dynamic display of record detail information..124

Creating an HTML Query Form...126
Set the form’s ACTION and METHOD attributes ...126
Implement data query fields ..127
Pattern matching searches ...129

Returning MIME Content Types (CFCONTENT) ..129
Using CFREPORT for Crystal Reports Output ..131

Chapter 10: Using Studio Database Tools..133

Introduction to Database Tools...134
Registering Data Sources..134
Connecting to Data Sources ..134
Opening an ODBC Data Source...135
Viewing Database Schema and Data...135
Building SQL Queries..136
Building a SELECT Query...137
Inserting Queries into a Page ...138
Running and Editing Queries...139

Running Queries..139
Editing Queries ..139

viii Developing Web Applications with ColdFusion
Chapter 11: Inserting, Updating, and Deleting Data141

Inserting Data..142
Creating an HTML Insert Form ...142

Setting a form’s ACTION attribute...142
Implementing data entry fields..142
Hidden form fields ..143

Creating an Insert Page with CFINSERT ...143
CFINSERT datasource...144

Creating an Insert Page with CFQUERY..145
Basic SQL syntax..145

Updating Data...145
Creating an Update Form ..146

Dynamically populating an update form ..146
Designating the primary key ..146

Creating an Update Page with CFUPDATE ..147
Creating an Update Page with CFQUERY...148

Syntax ...148
Deleting Data ..149

Syntax ...149
Data Input Validation ...150

Required form fields..150
Hidden form fields ..151
Automatic validation of numeric and date fields ...152
Additional notes on validation ...152

Dynamic HTML Forms...152
Using checkboxes and multiple select lists in HTML forms..153
Checkboxes ..153
Multiple select lists..155

Dynamic SQL...157
Transaction Processing (CFTRANSACTION) ...158

Setting transaction isolation ..159
ODBC driver support for transactions...159

Chapter 12: Building Dynamic Java Forms ..161

Creating Forms with the CFFORM Tag ...162
Using HTML in a CFFORM...162
CFFORM controls..163
Improving performance with ENABLECAB ..163
Browsers that disable Java ..163

Input Validation with CFFORM Controls ...164
Input Validation with JavaScript ...164

JavaScript objects passed to the validation routine ...165
Handling failed validation ..165

Building Tree Controls with CFTREE ..166
Populating a tree with query data ..167
Grouping output from a query ...168
CFTREE form variables ...169

Contents ix
Input validation with CFTREE..170
Structuring Tree Controls...170

Image names in a CFTREE..172
Using commas in CFTREEITEM ..172

Embedding URLs in a CFTREE ..173
The APPENDKEY attribute in CFTREEITEM ..174
The TARGET attribute in CFTREEITEM ..174

Data Grids with CFGRID ..174
Populating a grid from a query...175
Hiding columns in a grid ..176

Creating an Updateable Grid ...176
Editing data in a CFGRID..177
Using CFGRIDUPDATE ..181
Embedding images in a grid...182

Grid Data Selection Options ..184
Select mode and form variables ...184
Using the URL attribute ..185
The HREF attribute ...185
The APPENDKEY attribute in CFGRIDKEY...186

Building Slider Bar Controls...187
CFSLIDER form variable...187
Formatting options with CFSLIDER ..188

Building Text Entry Boxes ..188
CFTEXTINPUT form variable...188
Input validation with CFTEXTINPUT..189

Building Drop-Down List Boxes ..189
Populating a CFSELECT with query data ..190

Building Form Controls..191
Embedding Java Applets ..192

Registering a Java applet...193
Using CFAPPLET to embed an applet ...194
Handling form variables from an applet ...195

Chapter 13: Managing Files on the Server ...197

Using CFFILE ..198
Uploading Files ...198

Creating a file upload HTML form...198
Creating a file upload application page...199
Resolving conflicting file names ..199
Controlling the type of file uploaded...200

Setting File and Directory Attributes...200
UNIX...201
Windows...201

Evaluating the Results of a File Upload...202
Moving, Renaming, Copying, and Deleting Server Files ...203

Moving a file (ACTION="MOVE")..204
Renaming a file (ACTION="RENAME")...204
Copying a file (ACTION="COPY")..204

x Developing Web Applications with ColdFusion
Deleting a file (ACTION="DELETE") ...204
Reading, Writing, and Appending to a Text File...205

Read a text file (ACTION="READ") ..205
Write a text file (ACTION="WRITE") ...205
Append to a text file (ACTION="APPEND")..206

Performing Directory Operations..206
Returning file information (ACTION="LIST") ..207

Chapter 14: Performing File Operations with CFFTP209

Establishing a Connection ..210
File and Directory Operations ...211
Connection Caching...213

Caching connections across multiple pages...214
Connection caching actions and attributes ..215

CFFTP Variables..216
CFFTPResult.ReturnValue variable ...216
STOPONERROR variables...217
CFFTP.ErrorCode values ..217
CFFTP query object properties ..218

Chapter 15: Accessing Remote Servers with HTTP....................................221

Using CFHTTP to Interact with the Web ..222
Allaire Alive ..222
Using Secure Sockets Layer (SSL) with CFHTTP ..222

CFHTTP Tag Syntax ..222
Resolving links in retrieved pages..223

Using the CFHTTP Get Method...224
Example: Retrieving to a variable...224
Example: Retrieving to a file ...224
Example: Retrieving a binary file ...224

Creating a Query from a Text File..225
Example: Creating a query from a text file ..225

Using the CFHTTP Post Method ...226
Example: Pass variables to a ColdFusion page ...226
Example: Returns results of CGI program...227

Chapter 16: Sending and Receiving Email ...229

Using ColdFusion with Mail Servers ...230
Sending Email Messages (SMTP) ..230

Sending SMTP mail with CFMAIL..230
SMTP Examples with CFMAIL ...231

Sending form-based email ...231
Sending query-based email ..232
Sending email to multiple recipients...232

Customizing Email for Multiple Recipients..233
Attaching a MIME file ...234

Contents xi
Advanced Sending Options..234
Sending mail as HTML..235
Overriding default SMTP server settings...235
Error logging and undelivered messages ..235

Receiving Email Messages (CFPOP) ..236
Using CFPOP ...236
CFPOP query variables ...237

Handling POP Mail ...237
Returning only message headers ...238
Returning an entire message..239
Returning attachments with messages..240
Deleting messages...241

Chapter 17: Indexing and Searching Data ...243

Searching a ColdFusion Web Site..244
Advantages of using Verity ...244
Online Verity training ...245
Verity collections ...245

Supported File Types..246
Support for International Languages ..247
Creating a Collection ..247

Running the ColdFusion Administrator..248
Coding the CFCOLLECTION tag..248

Indexing a Collection..250
Selecting an indexing method..250

Populating a Collection from Document Files ...251
Indexing files with the ColdFusion Administrator ...251
Indexing files with CFINDEX..251

Populating a Collection from a Query...252
Indexing database query results ..252
Indexing multiple columns ..253
Custom fields ...253
Advantages of indexing a data source ...253

Indexing CFLDAP Query Results ...254
Indexing CFPOP Query Results ...255
Managing Collections...256

Maintenance options ..256
Scheduling collection maintenance ..257
Securing a collection ...257

Building a Search Interface ..257
The Verity wizard...257
Operators and modifiers...258
Operators ...258
Basic search operations ..259
Result columns ..259
Summarization ..260
CFSEARCH properties...260

Using Query Expressions ...261

xii Developing Web Applications with ColdFusion
Simple query expressions ...261
Explicit query expressions ..262
Expression syntax ..262
Special characters..263

Precedence Evaluation ...263
Precedence rules ...264
Prefix and infix notation ...264
Commas in expressions ..264
Delimiters in expressions ...265
Angle brackets for operators...265
Double quotation marks in expressions..265
Backslashes in expressions...265

Searching with Wildcards...265
Searching for wildcards as literals..266
Searching for special characters as literals..266

Operators and Modifiers ..267
Evidence operators..267
Proximity operators...267
Relational operators..269
Numeric and date relational operators ...269
Text comparison operators ..270
Document fields ..270
Concept operators...272
Score operators..272
Search modifiers..274

Collection Examples ...275

Chapter 18: Managing Files...279

Working with Local Files ..280
Working with Remote Files ..281

Adding an FTP server ..281
Accessing a remote server...282

Chapter 19: Creating and Editing Application Pages................................285

Creating Application Pages ..286
Creating new pages ...286
Using the Edit, Design, and Browse views ..287
Opening existing files..287

Editing Application Pages ..288
Entering and editing text ..288

Using Code Snippets ..290
Shared Snippets...290

Editing Tag Attributes and Values ...291
Using Search and Replace ..291
Using the Tag Inspector and Tag Tree...292
Entering special characters ..292
Tag completion..292

Contents xiii
Running the CodeSweeper to Format Code ...293
Configuring CodeSweeper..293

Editing Shortcuts ..295
Saving CFM files..296
Previewing Application Pages..297

Remote Development Services server mappings ...297
Viewing pages in the internal browser ..298
Viewing pages in your external browser..298
Visual editing in the Design view ...298

Productivity Tips...299
Set up the user interface to suit your preferences ..299
Manage files in Projects ..299
Use site visualization ..299
Use Snippets for frequently-used code ...300
Create custom templates ..300
Customize your development environment...300

Chapter 20: Using Projects for Site Management301

Why Use Projects?...302
The Projects Tab ...302
Project Commands ...302

The Projects menu ..302
The Projects Toolbar ...303

Managing Files in a Project ..303
Working on Project Files ..304
Previewing Pages in a Project ..304
Deploying a Project...305
Verifying Links in a Project...305

Chapter 21: Adding Source Control for Development Projects307

Why Use Source Control?...308
Implementing a Source Control System ...308

Standard source control commands ...309
Choosing a Source Control Provider ...309
Creating a Studio Project for Source Control ...309

Establishing a Working Directory ..309
Adding a Studio project to source control...310

Managing Files in Source Control ...311
Check in options..311
Command options ..311
Adding files and subdirectories..312
Synchronizing files ..312

Chapter 22: Maintaining Web Applications ...315

Using Search and Replace..316
Running a basic search ...316

xiv Developing Web Applications with ColdFusion
Using the extended search and replace feature..316
Replacing special characters ..317
Replacing double-spaced lines ..317

Searching with Regular Expressions ...317
Special characters..317
Single-character regular expressions...317
Character classes ...318
Multi-character regular expressions..319
Backreferences ..320
Anchoring a regular expression to a string..320
Resources ...321

Spell Checking...321
Validating Code...322
Verifying Links...322
Testing Page Download Times ..323

Chapter 23: Customizing the Development Environment325

The Visual Tool Markup Language (VTML)..326
Customizing Tag Chooser and Expression Builder..326

Customization objective...326
Dialog Definition Files..327

Category tag ...328
Element tag ..329

Creating Tag Definitions ..329
Creating a tag definition file ...330
Defining attributes ..331
Defining attribute categories..333

Building Tag Editors ...333
Defining controls...334
Populating dialogs with tag data..337
Generating the tag...338
Variables passed to the layout template..338
Special variables ..339

Adding Tag Help ...340
Providing help from an external file ..341

VTML Container/Control Reference...341
TabDialog container ...341
TabPage container ..342
Panel container..343
Label control ..345
TextBox control ...346
DropDown control ..347
FontPicker control...348
ColorPicker control ...349
CheckBox control ..350
RadioGroup control ..351
TextArea control ..352
SQLTextArea control ...353

Contents xv
FileBrowser control ...355
Image control...357
ActiveX control ..358

Building Custom Wizards...358
Saving wizard files ...359

Creating Wizard Definition Pages ...359
VTML for Wizards tag summary...359
VTML for Wizards tag reference...359
Dynamic expressions in tags ..362
Bound controls ..362
Wizard definition page example ..363

Creating Wizard Output Templates ..365
Using WIZML...365
Parameters ...365
Expressions and functions..366
WIZ Tags...367
Special considerations ..367
WIZML reference...367

Wizard Definition Page Library ...369
SelectNameAndLocation ..369
SelectDataSource ..370
SelectTables ...371
SelectTable...372
SelectTableJoins ..373
SelectFields ..374
SelectField..375

xvi Developing Web Applications with ColdFusion

C H A P T E R 1
Chapter 1 Welcome to ColdFusion
ColdFusion is a rapid application development system for professional developers
who want to create dynamic Web applications and interactive Web sites. It provides
the fastest way to integrate browser, server, and database technologies into powerful
Web applications. With ColdFusion, you can build everything from online stores to
sophisticated business systems.

Developing applications with ColdFusion does not require coding in a traditional
programming language; instead, you build applications by combining standard
HTML with a straightforward server-side markup language, the ColdFusion Markup
Language (CFML).

Contents

• Product Features .. 2

• Learning About Web Development and ColdFusion 4

• Developer Resources.. 5

• Developing Applications in ColdFusion Studio... 6

• About ColdFusion Documentation .. 7

• Contacting Allaire... 9

2 Developing Web Applications with ColdFusion
Product Features
This release marks a significant milestone in the evolution of ColdFusion as a
development system for building scalable Web applications that integrate browser,
server, and database technologies.

The focus of our development work has been in four major areas: rapid development,
scalable deployment, open integration, and total security. Each of these areas is
highlighted below.

Rapid development

ColdFusion 4.0 will continue to enhance the speed of development and ease-of-use
that have been the hallmark of the development system from its beginning.
ColdFusion 4.0 will increase development productivity by integrating ColdFusion
Studio more closely with ColdFusion Server, extending the visual tools, and expanding
the functionality of the tag-based server scripting language, CFML.

New Feature Highlights

• Two-way Visual Programming — ColdFusion Studio 4.0 includes new, more
powerful visual programming tools including a WYSIWYG design mode and
enhanced visual database tools.

• Dynamic State Simulation — The IDE supports establishing state for pages so
developers can preview the interactions between pages that rely on multiple
variables.

• Dynamic Page Quality Assurance — New tools support validating links,
configuring dynamic page previewing and validating CFML grammar in pages.

• One-step Deployment — New features extend the site- and page-management
features to support flexible deployment of complex applications to multiple
servers, making the process of moving from development to deployment
simple and straightforward.

• Site Visualization — ColdFusion Studio 4.0 supports the ability visualize sites
and see how pages are linked to each other across a system.

• CFScript — CFML has been extended to support traditional scripting syntax for
complex data processing on the server using branching and looping.

Scalable deployment

ColdFusion has already reached a point where it is being used to deliver very large
volume sites and applications servicing tens of thousands of users. The 4.0 release
provides powerful new features that significantly enhance scalability.

Chapter 1: Welcome to ColdFusion 3
New Feature Highlights

• Load Balancing — ColdFusion 4.0 supports native load balancing giving
developers the ability to deploy large volume applications in high performance
clusters that scale to meet any user demands. (Enterprise Edition only.)

• High Availability — ColdFusion 4.0 supports the creation of multi-server
clusters with automatic fail-over if any server goes down – providing the
infrastructure for deploying large volume high-availability sites. (Enterprise
Edition only.)

• Open State Repository — State information can be moved out of the registry
into a pluggable external data source so servers can be easily configured for
clustering and load balancing.

• Advanced Thread Pooling — ColdFusion Server offers sophisticated thread
pooling using i/o completion ports and tight integration with web server APIs.

• Integration with NT Performance Monitor — ColdFusion Server is fully
integrated with the NT Performance Monitor for increased manageability and
tuning.

Open integration

ColdFusion offers better integration with server systems including mail, web servers
and directories than any other IRAD system. In the 4.0 release, the integration has been
extended to support Extensible Markup Language (XML) and enterprise technologies.

• Automatic XML Parsing — ColdFusion Server supports automatic parsing of
XML data into CFML variables and the translation of CFQUERY record sets into
XML.

• Native Database Drivers — ColdFusion 4.0 supports native database
connectivity for Oracle and Sybase. (Enterprise Edition only.)

• CORBA – ColdFusion 4.0 extends its integration with component standards by
supporting Common Object Request Broker Architecture (CORBA) and
possibly Enterprise JavaBeans. (Enterprise Edition only.)

• ColdFusion Extensions (CFX) — ColdFusion 4.0 supports the creation of more
complex CFXs (formerly called “Custom Tags”) making it possible to extend
ColdFusion with components created with CFML, C/C++, COM, CORBA,
JavaBeans, JavaScript and VBScript.

Total security

ColdFusion currently provides a secure environment for development and
deployment. The security features in this release enable a much greater range of
flexibility and control over security both for development and deployment.

• Open Authentication System — Developers can leverage a wide range of
different user authentication systems in their applications from within

4 Developing Web Applications with ColdFusion
ColdFusion including Windows NT security, LDAP directories, and proprietary
user and group databases.

• Advanced Remote Development Security — The Remote Development
Services (RDS) used by ColdFusion Studio allows for user and group security
configuration for all resources including files and databases using a
configurable backend authentication system that integrates with existing user
and group databases.

• Server Sandbox Deployment — With the server sandbox, server administrators
can control what resources (files, databases and components) an application
has access to when it is running on a server. This lets server administrators
deploy multiple applications on the same server without creating the risk that
one application will access another application’s resources.

Learning About Web Development and ColdFusion
Web application development is such a new field and requires such a mix of emerging
and established technologies that meeting the documentation needs of ColdFusion
users is quite a challenge. The skills required to build and deploy dynamic Web content
range across HTML, databases, graphic arts, networking, a slew of scripting and
programming languages, and even writing!

We have tried to present information on ColdFusion development and supporting
technologies so that you can pursue topics of interest to you and integrate them into
your overall learning process.

While it is certainly possible for an individual to master all these skills, the team
approach has quickly become the only realistic development model for delivering
complex applications and we address issues such as building and maintaining Web
projects and working with version source control.

We also include pointers to many resources, both print and online, that provide
additional information about ColdFusion and supporting technologies.

New to Web development?

The ColdFusion Markup Language is a tag-based language that integrates with HTML
to provide greatly enhanced functionality for Web sites. The skills you are building in
HTML and Web site development are a solid foundation for ColdFusion development.

ColdFusion Studio is an easy-to-use HTML editor that offers many powerful features
for building and maintaining Web sites. It is also the integrated development
environment (IDE) for ColdFusion. That means you can use Studio to learn HTML, to
develop and test Web sites, and then to develop dynamic content with CFML.

Chapter 1: Welcome to ColdFusion 5
New to ColdFusion?

Getting Started with ColdFusion presents a quick tour of a ColdFusion application.
This book, Developing Web Applications with ColdFusion, is the best place to start
learning about building ColdFusion applications.

If you want access to experienced ColdFusion developers, you can participate in the
Allaire Online Forums, where you can post messages and read replies on all subjects
relating to ColdFusion. Check out the Forums at http://forums.allaire.com.

Experienced Web developer?

You’ll probably want to get going with your project, so take a look at the chapters on
setting up data sources, managing input and output, the application framework, Java
forms, and programming variables. Getting Started with ColdFusion includes a
complete application with lots of working code samples that you can drop in to quickly
prototype a project. If you want to integrate COM, CORBA, custom tags, CF API tags,
LDAP, CFML scripting, or XML data exchange into your applications, see Advanced
ColdFusion Development.

Developer Resources
Allaire Corporation is committed to setting the standard for customer support in
developer education, technical support, and professional services. Our Web site is
designed to give you quick access to the entire range of online resources.

Allaire Developer Services

Resource Description

Allaire Web site

www.allaire.com

General information about Allaire products and
services.

Technical Support

www.allaire.com/support

Allaire offers a wide range of professional
support programs. This page explains all of the
available options.

Professional Education

www.allaire.com/education

Information about classes, on-site training, and
online courses offered by Allaire.

6 Developing Web Applications with ColdFusion
Developing Applications in ColdFusion Studio
ColdFusion Studio is a special version of HomeSite, Allaire’s award-winning HTML
editor. HomeSite’s strengths in Web page creation have been enhanced with powerful
tools specifically designed for ColdFusion development.

All of the components of dynamic page creation and site management are accessible
from Studio.

• View your data sources.

• Quickly build SQL statements to insert in CFQUERY.

• Access the complete HTML and CFML tag sets from the Tag Chooser.

• Edit code from tag-specific editors or from the Tag Inspector.

• Render pages with internal or external browsers and visually edit page elements
in Design view.

• Create projects to group your application pages and support files for easy
maintenance and uploading.

• Quickly make global changes to files using extended search and replace.

• Save code blocks for re-use as snippets.

• Build ColdFusion expressions from the complete set of CF functions, constants,
operators, and variables available in the Expression Builder.

• Debug application code.

• View your site’s structure in the Visualizer.

• Validate HTML and CFML code.

• Verify links for individual files or entire projects.

• Enable version source control of your files for team development.

Developer Community

www.allaire.com/developer

All of the resources you need to stay on the
cutting edge of ColdFusion development,
including online discussion groups, Knowledge
Base, Component Exchange, Resource Library,
technical papers and more.

Allaire Alliance

www.allaire.com/partners

The growing network of solution providers,
application developers, resellers, and hosting
services creating solutions with ColdFusion.

Allaire Developer Services (Continued)

Resource Description

Chapter 1: Welcome to ColdFusion 7
About ColdFusion Documentation
The documentation set is designed to provide support for all components of the
ColdFusion development system. Both the print and online versions are organized to
allow you to quickly locate the information you need.

Documentation set

The documentation set contains:

Getting Started with ColdFusion — Covers system installation and basic configuration,
describes the components of the ColdFusion development system, and introduces the
ColdFusion Markup Language (CFML).

Administering ColdFusion Server — Describes configuration options for maximizing
performance, managing data sources, setting security levels, and a range of
development and site management tasks.

Developing Web Applications with ColdFusion— Presents the fundamentals of
ColdFusion application development and deployment, including data sources, user
interfaces, and Web technologies. The development tools in ColdFusion Studio are
covered in detail.

Advanced ColdFusion Development — Gives an overview of CFML elements such as
functions, expressions, arrays, scripting, and XML data exchange. Also discusses
custom tags, CF API tags, integrating object technologies, and site management.

CFML Language Reference — Provides the complete syntax, with example code, of all
CFML elements.

Quick Reference Card — An online (Acrobat) guide to CFML.

Documentation distribution

The ColdFusion CD-ROM contains the complete document set. The setup program
installs the document set by default.

The print manuals are available in Adobe Acrobat (PDF) format from the
dochome.htm page in the /cfdocs directory of your Web root. If the files are not
available locally, you get them from our Web site at http://www.allaire.com/products/
COLDFUSION/Documentation.cfm.

You can also access the documentation in HTML from both of these locations.

Reading online documentation

You can open the online documents in a number of ways:

• From your browser, click the ColdFusion Documentation link on the Welcome
to ColdFusion page. Each page contains links to other documents and a search
window.

8 Developing Web Applications with ColdFusion
• In ColdFusion Studio, click the Help tab in the Resources area to open the help
tree. You can expand the list to select topics by title.

Using online help in ColdFusion Studio

Studio’s innovative online documentation system provides a variety of help options:

• Help References — The complete documentation set is available in HTML

• Dialog Help — Inline help for all HTML and CFML tags in the Tag Chooser and
tag editors

• Tag Insight — Opens a selectable list of attributes for the current tag

To set Tag Insight options, go to the Tag Help tab in Options > Settings (F8).

The default display of the online documentation is in the Resources pane for high
resolution (1024x768 and up) monitor settings and in the internal for all others.

Full-text search is available for the entire Help References set.

To use full-text search for Help References:

Tip You can extend the online documentation in Studio by adding your own HTML files.
Just copy a folder to the Help directory under the ColdFusion Studio directory. Press F5
to refresh the Help reference list. You can now browse and search these files in the Help
References.

1. Click the Help Search button on the Help toolbar to open the search dialog.

2. Type in the search text and click a search criterion button. Search text is saved
in the drop-down list for future use.

3. Set the scope of the search by selecting All References or use CTRL + mouse
click to choose individual references. You can search down to the page level.

4. Click Search. The results display in the Resources area. Double-click on a result
reference to open the document.

5. Click the Help References button to return to document tree.

6. Click the Results button to return to the last search results.

Chapter 1: Welcome to ColdFusion 9
Documentation conventions

When reading, please be aware of these formatting cues:

• Code samples, filenames, and URLs are set in a distinct font.

• Notes and tips are identified by bold type in the margin.

• Bulleted lists present options and features.

• Numbered steps indicate procedures.

• Toolbutton icons are generally shown with procedure steps.

• Menu levels are separated by the greater than (>) sign.

• Text for you to type in is set in italics.

Contacting Allaire

Corporate headquarters

Allaire Corporation
One Alewife Center
Cambridge, MA 02140

Tel: 617.761.2000 voice
Fax: 617.761.2001 fax

http://www.allaire.com

Technical support

Telephone support is available Monday through Friday 8 A.M. to 8 P.M. Eastern time
(except holidays).

Toll Free: 888.939.2545 (U.S. and Canada)
Tel: 617.761.2100 (outside U.S. and Canada)

Postings to the ColdFusion Support Forum (http://forums.allaire.com) can be made at
any time.

Sales

Toll Free: 888.939.2545
Tel: 617.761.2100
Fax: 617.761.2101

Email: sales@allaire.com
Web: http://www.allaire.com/store

10 Developing Web Applications with ColdFusion

C H A P T E R 2
Chapter 2 ColdFusion Fundamentals
This section describes the basic components in a ColdFusion application and
outlines the steps in planning and designing your ColdFusion applications.

If you’re new to ColdFusion, explore the sample applications described in Getting
Started with ColdFusion and read the following sections that describe how
ColdFusion works.

Contents

• ColdFusion Components .. 12

• Creating a ColdFusion Application... 13

• Planning your ColdFusion Application .. 13

• Developing ColdFusion Application Pages .. 14

• Providing Data Sources.. 16

• Implementing Security .. 17

• Load Balancing... 17

• Testing and Debugging your Application... 17

12 Developing Web Applications with ColdFusion
ColdFusion Components
ColdFusion applications rely on several core components:

• ColdFusion Server

• ColdFusion Administrator

• ColdFusion Studio

• ColdFusion application pages

• ODBC data sources and other data sources

• ColdFusion Extensions

The ColdFusion Server

The ColdFusion Server listens for requests from the Web server to process ColdFusion
application pages. It runs as a service under Windows NT.

The ColdFusion Administrator

You use the Administrator to configure various ColdFusion Server options, including:

• ColdFusion data sources

• Debugging output

• Server settings

• Application security

• Server clustering

• Scheduling page execution

• Directory mapping

See Administering ColdFusion Server for details on using the Administrator.

ColdFusion Studio

ColdFusion Studio is the development environment for ColdFusion Server. It offers
visual development tools, including dynamic page previews using your Web browser,
an interactive debugger, a query builder, an expression builder, project management
and source control tools, and many other productivity enhancements.

ColdFusion application pages

Application pages are the functional parts of a ColdFusion application, including the
user interface pages and forms that handle data input and format data output. They
can contain ColdFusion tags, HTML tags, CFScript, JavaScript, and anything else you

Chapter 2: ColdFusion Fundamentals 13
can normally embed in an ordinary HTML page. The default file extension used for
ColdFusion application pages is .CFM.

ODBC data sources

ColdFusion applications may interact with any database that supports the ODBC
standard.

Other data sources

ColdFusion is not limited to ODBC data sources. You can also retrieve data from
OLEDB, native database drivers, directory servers that support the Lightweight
Directory Access Protocol (LDAP), mail servers that support the Post Office Protocol
(POP), data indexed in Verity collections, and so on.

ColdFusion Extensions

ColdFusion offers an open XML-based framework for extending ColdFusion with new
server components and connectivity to enterprise systems using COM, CORBA, C/
C++, VBScript, JavaScript, ActiveX, or CFML.

See the Building Cold Fusion Extensions chapter in Advanced ColdFusion Development
for more information.

Creating a ColdFusion Application
Creating a ColdFusion application involves the following considerations:

• Planning your ColdFusion application

• Building application pages

• Providing data sources

• Implementing security

• Testing and debugging your application

The following sections suggest how you might approach each phase.

Planning your ColdFusion Application
Real-world applications require planning and preparation. Keep in mind that although
you can plan your application to the last detail, you should anticipate changes as the
development process moves forward.

Application design relies on a number of strategies:

• Researching the problem and strategizing a solution.

14 Developing Web Applications with ColdFusion
• Stating the goals of your application.

• Determining what data is necessary for your application and what output is
required to satisfy your goals.

• Deciding whether your application requires user or resource security.

• Planning the overall structure of your application.

Plan the flow of data in your application

Many application designers find it essential to draw a flowchart to help them visualize
how their application operates. Building such a chart can help you test ideas you have
about how data will be handled by your application, before you start writing pages.

Use an iterative process

If you are just starting out as a ColdFusion developer or don’t have a lot of experience
building applications, you might want to flesh out your plans as best you can and then
start building application pages. Your process will evolve as your application
components evolve.

As you test your application pages, your insight into how to proceed will evolve as well.
You may find yourself retracing your steps to rebuild parts of your application. A rapid
iterative cycle means you build components of your application, test them, revise
them, and then move on to the next stage. This approach can help you get off the
ground quickly without worrying that every detail of your application has been
planned.

Developing ColdFusion Application Pages
When you build a ColdFusion application, you create application pages to capture
data and provide output. Application pages can contain ColdFusion Markup Language
(CFML) tags, HTML tags, Custom CFML tags, CFScript, JavaScript code, and anything
else that an HTML page can contain.

When browser clients such as Netscape Communicator, or Microsoft Internet Explorer,
request an ordinary HTML page, the browser interprets the HTML page and renders
the output in the browser window. When a browser requests a ColdFusion application
page, ColdFusion first processes it and then outputs HTML to the web browser. No
client software, components, or plug-ins are needed to open ColdFusion application
pages. All the processing occurs on the server.

To retrieve data in a ColdFusion application, you can build ColdFusion pages to
capture the data a user enters in a form. Most ColdFusion applications interact with an
ODBC data source, but other data sources are also available. You can retrieve data from
a variety of sources, such as directory servers (LDAP), mail servers (POP), data indexed
in Verity collections, or FTP servers.

Chapter 2: ColdFusion Fundamentals 15
ColdFusion application design

A ColdFusion application can consist of dozens of application pages, depending on its
complexity. Pages typically perform specific functions, such as providing a user-entry
interface, presenting output, or retrieving data.

Design considerations

For Web applications, efficiency is crucial. You’ll want to find the best way to balance
the need for server-intensive operations like large database queries against the need to
display information for your users as quickly as possible. If you are designing an
application to run in a corporate intranet, you may not have the bandwidth
constraints imposed by designing an application to run over the public Web.

Additional design considerations include planning for code reuse (which includes
commenting your code and using clear, descriptive names for variables and data
sources) and following other programming and database design conventions.

Security

ColdFusion developers can use the authentication and authorization features to
control access to applications based on runtime user security. After setting up the
security framework in the ColdFusion Administrator, you can authenticate users
against NT domains or LDAP directories.

Scheduling

ColdFusion’s ability to cache pages as well as database queries can dramatically affect
the performance of your Web applications. In addition, with ColdFusion’s page
scheduling feature, you can schedule large database operations for off-hours to
produce static HTML pages of data for your application.

User entry pages

Application pages can consist of CFML or HTML or both, according to the role they
play in your application. You may choose to build forms in straight HTML for users to
enter data, or use one of the many Java applet-based ColdFusion form controls (such
as a tree control, data grid, or slider) without having to know anything about Java.

It’s easy to use forms to collect data from users. And it’s just as easy to pass form data
to a ColdFusion application page for processing. When a form is submitted, form
variables are passed to the application page specified in the form ACTION attribute.
Form variables can be referenced to display data, perform queries, or serve in a variety
of other operations.

The application page can use the form data to execute some process, whether it’s
running a query against an ODBC data source or retrieving mail. In a shopping cart
application, for example, you could give users a simple way to add items to a virtual
shopping basket using a form.

16 Developing Web Applications with ColdFusion
Multipurpose application pages

In addition to pages that perform a data collecting role, you’ll probably design pages
that simply process data passed to them from a query, form input, or by some other
means.

Often, ColdFusion application pages perform some degree of processing in addition to
whatever information they might display to the user. For example, you might have a
page that displays a table of data retrieved from a database. The ColdFusion code that
performs the retrieval can be written in the page header, so that when the page is
requested by a browser, ColdFusion runs a query against the specified data source and
produces a page dynamically based on user selections or other variables you can
create and use.

Providing Data Sources
Any ColdFusion application can make use of any available supported data source.
Once a data source has been made available to ColdFusion using the ColdFusion
Administrator, interacting with that data source is a simple matter of naming the data
source and telling ColdFusion what you want to do. Often, this interaction employs the
CFQUERY tag, as the following example shows:

<CFQUERY NAME="EmployeeName"
DATASOURCE="BigCompany">
SELECT FirstName + " " + LastName
FROM Employees AS FullName

</CFQUERY>

This example is saying: “Give me the list of names from the BigCompany database that
are in the FirstName and LastName columns of the Employees table. And while you're
at it, combine the FirstName and LastName columns into a new column called
FullName.” Here, the script passed by CFQUERY is an example of a simple SQL
(Structured Query Language) statement. For a quick introduction to SQL, see Chapter
11, “Inserting, Updating, and Deleting Data,” on page 141.

Other types of data sources

In addition to traditional ODBC data sources (which can include spreadsheet and text
files) your ColdFusion application pages can also retrieve data from a variety of Web
data sources:

• Directory servers that support LDAP, such as Netscape Directory Server or
Microsoft Active Directory.

• Any standard mail server that supports POP.

• File Transfer Protocol (FTP) servers.

Chapter 2: ColdFusion Fundamentals 17
Implementing Security
As you plan and build a ColdFusion application, you’ll need to consider security in
several ways — securing both your development environment and your application’s
resources.

ColdFusion Server now supports several levels of Advanced Security:

• Remote Development Services Security (RDS) — Developers accessing server
resources through ColdFusion Studio can be authenticated before receiving
access to protected resources.

• User security — Implemented in ColdFusion application pages by the
ColdFusion developer, User Security offers runtime user authentication and
authorization.

• Server sandbox security — Controlled by the ColdFusion administrator of a
hosted site, offers runtime security based on directory access at hosted sites
(ColdFusion Enterprise only).

• Administrator security — Individual administrative operations can be secured
against unauthorized access.

See Administering ColdFusion Server for information on using the Administrator to set
up security rules and policies, as well as RDS security for developers working in
ColdFusion Studio.

In the User Security chapter of the Advanced ColdFusion Development book, you’ll find
information and examples on how developers can implement user runtime security
using CFML tags and functions.

Note Advanced security is not currently supported in ColdFusion Server for Solaris.

Load Balancing
Cold Fusion offers powerful new features that significantly enhance scalability,
including load balancing and support for multi-server clusters with automatic fail-
over for large volume applications, and advanced thread pooling. Increased
performance monitoring features enable you to manage and tune your servers more
easily.

See the Clustering and Load Balancing chapter of Administering ColdFusion Serverfor
information on load balancing features.

Testing and Debugging your Application
There are several ways to debug ColdFusion applications. ColdFusion Studio offers
interactive debugging tools. You can also retrieve debugging output when the
ColdFusion Server processes your application pages.

18 Developing Web Applications with ColdFusion
Using the interactive debugger

Developers working in ColdFusion Studio can use the interactive debugger to set
breakpoints and watches, evaluate expressions and variables, step through lines of
code, and investigate the stack.

See Chapter 7, “Debugging and Troubleshooting,” on page 87 for instructions on
setting up and running the interactive debugger in ColdFusion Studio.

Outputting the server’s debug information

As you build your ColdFusion application pages, you can test pages by simply opening
them in a browser. There is no need to compile or link your pages. You can make a tiny
change and see the results of your change immediately by simply opening the page in
your browser. Most ColdFusion developers run ColdFusion and a Web server locally,
on their own computers, and test applications by editing and viewing or running pages
side-by-side. Once your application is ready, you can very easily deploy your pages to a
remote server.

ColdFusion provides several debugging options to help you troubleshoot your
application. For every ColdFusion transaction – that is, every time a browser requests a
ColdFusion page – debugging data can be viewed that provides information about the
operation to help you track down problems and coding errors. With debugging
activated, this information is displayed in your Web browser at the bottom of every
application page.

See Administering ColdFusion Server for details on setting the debug output options in
the Administrator.

C H A P T E R 3
Chapter 3 ColdFusion Studio Quick Start
This chapter introduces ColdFusion Studio, the integrated development
environment (IDE) for the ColdFusion Development System. Studio combines
powerful visual programming and database tools for both individual and team
development.

Contents

• Exploring the Studio Workspace ... 20

• Creating HTML Pages with Templates and Wizards 21

• Creating Applications with Templates and Wizards...................................... 23

• Application Development Tools in Studio ... 23

• Customizing the Workspace.. 25

• Keyboard Shortcuts.. 25

20 Developing Web Applications with ColdFusion
Exploring the Studio Workspace
Studio offers a highly customizable interface; you can set it up to suit your work style.
Nearly all of the Workspace elements are movable, so you can float panes and toolbars
and dock them in new locations. The main workspace areas are shown below.

Using context menus

You can right-click (or left-click, for you southpaws) in any of the areas shown above to
open a context-sensitive command menu.

The Resources Area

All the resources needed for development work in Studio are accessible from this area.
You can click on the top border and drag the pane to float it or dock it in another part of
the workspace. To resize the Resources area, you can drag the side border and the
divider between the top and bottom panes. Select Options > Resource Tab Caption to
change tab display. Click F10 to toggle the display.

Document tab

Drive list

Directory list

Editor toolbar

Editor

File list

Resources tabs

Main toolbar

Browser toolbar QuickBar

Chapter 3: ColdFusion Studio Quick Start 21
The tabs at the bottom of this pane control display for:

• Files — The top pane displays the local and network directory structure, the
bottom pane lists the files in the selected folder. Double-click a file to open it.

• Remote — Add FTP and RDS servers for remote development work.

• DB — Configure ColdFusion servers, view data sources, and open the Query
Builder.

• Projects — Create projects to store and manage application pages and
supporting files. You can add projects to your version source control system.

• Site View — Displays a graphic representation of links in the current document.

• Snippets — Store code blocks for re-use. Snippets can be shared with other
users.

• Help — View ColdFusion documentation and other online resources. You can
edit existing help files and add new HTML files.

• Tag Inspector — The top pane displays the Tag Tree, a customizable view of
document hierarchies. The bottom pane displays the Tag Inspector, which gives
you an interactive “property sheets” mode for writing and editing tags.

You can toggle the Resources pane display (F10) and adjust the size of the panes by
dragging their borders. Right-click on a Resources tab to select display options.

The Editor pane

Click on a tab at the top of the pane to move among these modes:

• Edit — Create new documents, write, edit, and test code.

• Browse — View the current page in the internal browser.

• Design — Dynamically work with page elements, such as text blocks, tables,
forms, and images. Changes are reflected in the HTML code.

Creating HTML Pages with Templates and Wizards
Select File > New to open an extensive selection of templates and wizards to help you
get started building a site or composing page elements such as styles, frames, and
tables.

Tip Use the File > Save As Template command to add the current document to the File >
New > Custom tab. You can then use it as a starting point for new documents.

HTML Wizards

Many of the wizards listed here are also available on the HTML toolbars.

• Quick Start — Build a page framework by entering meta information.

22 Developing Web Applications with ColdFusion
• Tables — Define a table structure and properties and enter attributes for
individual cells.

• Frames — Design a frameset, make selections for frame layout and appearance,
and specify a source URL for the frame content.

• Open Browser window — Generates code for the JavaScript openWin function
based on the specified URL and window attributes. Create links to display text
and images in a custom browser window. The window display is browser-
dependent and should be tested.

• Multimedia — Two wizards make it easy to synchronize RealAudio files with
HTML page display and to embed RealAudio controls on your pages.

Dynamic HTML Wizards

Dynamic HTML wizards generate styles and JavaScript to create an outline or slide
show. Click the DHTML tab on the File > New dialog to select a wizard:

• Outline — Create a multi-level outline by typing in or pasting the outline text
and defining properties for the display. The JavaScript code for the outline is
inserted in the document head.

• Slide Show — Build slide presentations that run in a browser. All the features of
desktop presentation products – layout and duration control, transition
options, and integrated images and text – are available.

Style Editor

This mini-application provides a complete interface for designing and previewing
styles. You have a number of options for working in the editor:

• Click File > New and select StyleEd from the HTML tab

• Right-click in a <STYLE> block and select Edit Style Block on the menu

• Right-click on a link to a style sheet and select Edit Linked StyleSheet

• Right click on a file in the file list with the.css extension and select Edit
StyleSheet

Chapter 3: ColdFusion Studio Quick Start 23
Creating Applications with Templates and Wizards
The File > New dialog also contains a collection of helpful wizards for writing
templates. To use wizards that require data sources, you must first establish a
connection to a Cold Fusion server. Click the Remote Resource tab, right-click in the
server pane, and add an RDS server. You can then double-click on a server name in the
Server pane to connect the data source.

Click the CFML tab to select a wizard:

• Custom Tag — Builds a parameter-checking framework for creating custom
tags in CFML.

• Data Entry — Creates a data entry application for a selected data source.
Specify a table and the fields you want to include. The wizard generates an
entry form and an application page that inserts the data when the form is
submitted.

• Data Drill-Down — Produces an application that searches the selected data
sources and returns results and detail pages.

• Exception Handling — Generates a TRY-CATCH framework in which you can
enter code for a CFTRY tag. You can optionally enable handling of database,
template, included missing files, object, security, application-defined, and
unexpected internal failures.

• Table to JS — Generates a JavaScript object from the contents of a table in a
registered ColdFusion data source.

• LDAP — Enter LDAP server information and directory entries to create an
application to view and edit directories and to submit a directory view form.

• Library — Builds access to a file library for users.

• Mailing List — Builds an email application from the selected data source of
email addresses.

• Record Viewer — Generates an application to manage, preview, and edit
selected records in a table.

• Tree control — Produces a Java tree control from selected data sources.

• Verity — Builds an application based on selected search criteria to generate an
indexed collection of the specified data sources. This wizard can be used in
conjunction with the Library Wizard to index library files.

Application Development Tools in Studio
This section gives a brief description of the major development tools.

24 Developing Web Applications with ColdFusion
Tools

You can try these features on the Tools menu to get a sense of what Studio has to offer
as an IDE:

• Tag Chooser — A repository of HTML, CFML, HDML, VTML, and Custom tags.
The embedded help window provides syntax and usage information for the
selected tag.

• Expression Builder — Insert CFML expression elements (functions, constants,
operators, variables) directly or double-click to build complex expressions in
the expressions pane.

• SQL Builder — View database schema and construct and test SQL operations
for insertion in templates.

• Spell Check — Use the integrated spell checker or optionally use the Microsoft
Word spell checker if it is installed.

• Code Validator — Check the syntax of the current tag or an entire document.
Open the Options > Settings dialog (F8) and click the Validation tab to enable
validation and to specify CFML and HTML versions.

• Document Weight — Presents a list of the current document’s dependencies
(links to Web resources) calculates approximate download times for common
modem types.

• Verify Links — Tests the links in the current document and returns the Web
server error message for unsuccessful links.

Debugger

The Debugger lets you map ColdFusion servers and debug CFML code using an
extensive tool set on the Debug menu and toolbar. See the Keyboard Shortcuts section
below for a list of Debug shortcuts.

For more information, see the Debugging and Troubleshooting chapter.

Search

The Search menu provides some powerful features for editing files:

• Extended Find and Replace — Works across open documents or can recursively
search folders. Support for regular expressions enables sophisticated search
criteria.

• Replace Special Characters — Change ASCII extended characters to equivalent
HTML and back. To set auto-conversion of extended characters, open the
Options > Settings > Files tab.

• Replace Double-Spacing with Single-Spacing — Quickly re-format pages.

Chapter 3: ColdFusion Studio Quick Start 25
Browsers

You can preview your code in a number of ways:

• If Internet Explorer is detected during the Studio installation, you are prompted
to use it as the internal browser. Open the Options > Settings > Browse tab to
add it later and to set Web server mappings for processing pages.

• The Studio installation also auto-detects a number of common browsers if they
are installed on your system. Click Options > Configure Internal Browsers to
review and edit the list.

Customizing the Workspace
A development tool needs to provide a productive interface for its users, and the best
way to do that is to give users the greatest possible flexibility to set up the interface in a
way that works for them. Here are some options:

• Resize the Resources and Results panes by dragging their borders.

• Right-click on Resources tab to change the display.

• Drag toolbars to any location or dock them vertically on the workspace borders.

• Right-click in the Resources Directories pane to access Windows Explorer
commands.

• Right-click in the Resources Files pane to set file and display options.

• Right-click in the main toolbar or the QuickBar to set, add, and remove
toolbars.

• Open the Options > Customize dialog (SHIFT + F8) to change toolbar layout,
keyboard shortcuts, and to add shortcut keys for snippets.

• Open the Options dialog (F8) to explore a wide range of settings for tags,
documents, help, tools, server mappings, and the internal browser.

Keyboard Shortcuts
Studio offers a full set of keyboard commands for file management and document
editing. A section at the end of the list contains shortcuts for the Debugger. You can

26 Developing Web Applications with ColdFusion
change shortcut keys and add new ones by opening the Options > Customize dialog
and selecting the Keyboard Shortcuts tab.

File and Document Keyboard Commands

Command Key

File > Open Ctrl+O

File > Close Ctrl+W

File > Close All Shift+Ctrl+W

File > New Ctrl+N

File > Save Ctrl+S

File > Save As Shift+Ctrl+S

File > Print Ctrl+P

Edit > Cut Ctrl+X

Edit > Copy Ctrl+C

Edit > Paste Ctrl+V

Edit > Undo Ctrl+Z

Edit > Redo Shift+Ctrl+Z

Delete Line Ctrl+Y

Delete to end of line Ctrl+Del

Delete previous word Ctrl+Backspace

Edit > Select All Ctrl+A

Edit > Goto line Ctrl+G

Goto previous start tag Ctrl+[

Goto next start tag Ctrl+]

Edit current tag Ctrl+F4

Edit > Set Bookmark Ctrl+K

Edit > Goto Next Bookmark Shift+Ctrl+K

Insert expanded code or open templates list Ctrl+J

Edit > Indent Shift+Ctrl+.

Chapter 3: ColdFusion Studio Quick Start 27
Edit > Unindent Shift+Ctrl+,

Search > Find Ctrl+F

Search > Replace Ctrl+R

Search > Find Next F3

Search > Extended Find Shift+Ctrl+F

Search > Extended Replace Shift+Ctrl+R

Find matching tag Ctrl+M

Tools > Open Tag Chooser Ctrl+E

Tools > Spell Check F7

Spell check all Shift+F7

Tools > Mark Spelling Errors Ctrl+F7

Tools > Validate Document Shift+F6

Tools > Validate Current Tag F6

View > Full Screen F10

View > Resources Tab F9

Goto previous document Shift+Ctrl+Tab

Goto next document Ctrl+Tab

Open current document in external browser F11

Open current document in DreamWeaver Ctrl+D

Toggle browse mode F12

Open Tag Inspector F4

Toggle > Special Characters Shift+Ctrl+X

Toggle Tag Insight Shift+F2

Toggle Tag Tips F2

Toggle QuickBar Ctrl+H

Toggle Results pane Shift+Ctrl+L

File and Document Keyboard Commands (Continued)

Command Key

28 Developing Web Applications with ColdFusion
Options > Settings F8

Options > Customize Shift+F8

Open Anchor dialog Shift+Ctrl+A

Insert Bold tag Ctrl+B

Insert BR tag Shift+Ctrl+B

Insert BR tag and new line Ctrl+Enter

Insert Center tag Ctrl+Q

Insert Comment tag Shift+Ctrl+M

Open IMG dialog Shift+Ctrl+I

Insert Italic tag Ctrl+I

Insert non-breaking space Shift+Ctrl+Space

Insert Paragraph tag Shift+Ctrl+P

Insert Underline tag Ctrl+U

Insert Start brackets <> Ctrl+,

Insert End bracket </> Ctrl+.

Debugger Keyboard Commands

Command Key

Start/Continue Ctrl + F5

Start - No debugging Ctrl + Alt + F5

End Alt + F5

Restart Ctrl + Shift + F5

Step Into Ctrl + F8

Step Over Ctrl + F9

Run To Cursor Ctrl + F11

File and Document Keyboard Commands (Continued)

Command Key

Chapter 3: ColdFusion Studio Quick Start 29
Variables Alt + Q

Watches Alt + W

Recordsets Alt + R

Stack Alt + K

Output Alt +P

Breakpoints ALT + B

Toggle Breakpoint Alt + X

Clear All Breakpoints Alt + F6

Debug Settings Alt + Y

Development Mappings Alt + M

Debugger Keyboard Commands (Continued)

Command Key

30 Developing Web Applications with ColdFusion

C H A P T E R 4
Chapter 4 Creating and Manipulating
Variables
In ColdFusion, a variable is, very simply, a parameter that is assigned a value. You can
use variables in ColdFusion applications in many different ways. You use variables in
ColdFusion forms, for example, to hold data submitted in an application. Variables
are essential in handling form inputs, for passing data from each field in a form to the
application’s ACTION page. These variables are also called dynamic parameters.

This section describes how to use ColdFusion variables, how to distinguish between
the various types of variables, and how to create and delete ColdFusion variables.

Contents

• Creating and Using Variables .. 32

• Creating Default Variables with CFPARAM.. 34

• Naming and Scoping Variables ... 35

• Passing Variables to Pages with URLs and Forms.. 38

• Kinds of Variables... 40

• Client Variables... 42

• Server Variables .. 46

• Using Application and Session Variables ... 47

• Creating HTTP Cookie Variables... 50

• Using CGI Environment Variables .. 51

32 Developing Web Applications with ColdFusion
Creating and Using Variables
There are many reasons why you create variables in a ColdFusion page. To create a
variable, you name it and assign a value to it.

<CFSET FirstName="Jack">

In this simple example, you use the CFSET tag to initialize the value. The scope of this
variable is local, or within the application page where it is created.

When creating an array to store information, for example, you also use the CFSET tag
to define a variable that contains the array:

<CFSET myarray=ArrayNew(1)>

You then use CFSET to add data to array elements:

<CFSET myarray[1]="January">
<CFSET myarray[2]="February">
...

For information about creating arrays in ColdFusion, see Advanced ColdFusion
Development

Another example is a CGI variable, which can be referenced to provide information
about a particular user. You could determine a user’s browser type by using the
following CGI variable:

<CFOUTPUT>
#CGI.HTTP_USER_AGENT#

</CFOUTPUT>

Using CFSET to create variables

The CFSET tag supports the creation of variables and the manipulation of variable
values. You can use CFSET anywhere in an application page. The variable that is
created can be used anywhere in the page after the CFSET tag.

If no variable prefix is supplied, the variables you create with CFSET are local variables,
meaning they are available only on the page where they were created and pages
included in it.

The CFSET tag can use a static value, a dynamic parameter, or an expression to create
the variable.

The following shows the syntax of the CFSET tag:

<CFSET VariableName = Value, Parameter, or Expression>

Example: Static values

To create a variable called UserName based on a static string, use this syntax:

<CFSET UserName="Joe Doe">

Use quotation marks when the variable’s value is a text string.

Chapter 4: Creating and Manipulating Variables 33
To create a variable UserNumber with a static numeric value, use this syntax:

<CFSET UserNumber=26>

Note ColdFusion variables are typeless, which means you do not have to identify the type of
data they contain, such as text or numbers. For more information on typeless
expressions, see the Functions and Expressions chapter in Advanced ColdFusion
Development.

Example: Dynamic parameters

To create a variable CurrentUser_ID based on the column name User_ID in a database
query (GetUserID), which returns a numeric value, use this syntax:

<CFSET CurrentUser_ID=GetUserID.User_ID>

To create a variable UserDescription with a string that combines a dynamic parameter
and text, use this syntax:

<CFSET UserDescription="#UserName# is a wonderful person.">

Example: Expressions

You can also use CFSET to create variables based on expressions. To create a variable
called TotalValue based on a mathematical expression, use this syntax:

<CFSET TotalValue=2 * (4 + 5)>

To create a variable that combines strings and expressions, use an ampersand (&) sign:

<CFSET Pay="John’s take home pay is" & (TotalValue - 1000)>

For more information, see the Functions and Expressions chapter in the Advanced
ColdFusion Development book.

Displaying variables in a page

To display the variable that has been set for a specific user, enclose the variable to be
evaluated inside CFOUTPUT tags, as in the following code:

<CFOUTPUT>
Your favorite color is #Client.FavoriteColor#.

</CFOUTPUT>

Inside CFOUTPUT tags, always enclose variable names in pound signs (#). This signals
that the variable name needs to be evaluated as a dynamic parameter. This way,
ColdFusion outputs the variable’s value and not the variable name itself.

Testing for a variable’s existence

Before relying on a variable’s existence in an application page, you can test to see if it
exists using the IsDefined function. For example, the following code checks to see if a
Form variable named Order_ID exists:

34 Developing Web Applications with ColdFusion
<CFIF Not IsDefined("FORM.Order_ID")>
<CFLOCATION URL="previous_page.cfm">

</CFIF>

See the CFML Language Referencefor more information on the IsDefined function.

Troubleshooting

If you attempt to evaluate a variable that has not been defined, ColdFusion will not be
able to process the page. To help diagnose such problems, use the interactive debugger
in ColdFusion Studio or turn Debugging on in the ColdFusion Administrator. The
Administrator debugging information shows which variables are being passed to your
application pages.

See the Debugging and Troubleshooting chapter for information on catching and
fixing errors.

Creating Default Variables with CFPARAM
Another way to create a variable is to test for its existence and supply a default value if
the variable does not already exist. The following example shows how to use the
CFPARAM tag to check for the existence of an optional client variable and to set a
default value if the variable does not already exist:

<CFPARAM NAME="Client.FavoriteColor" DEFAULT="Red">

Using CFPARAM

The following shows the syntax of the CFPARAM tag:

<CFPARAM NAME="VariableName" DEFAULT="DefaultValue">

There are two ways to use the CFPARAM tag, depending on how you want the
validation test to proceed.

• Use CFPARAM with only the NAME attribute to test that a required variable
exists. If it does not exist, the ColdFusion server stops processing the page.

• Use CFPARAM with both the NAME and DEFAULT attributes to test for the
existence of an optional variable. If the variable exists, processing continues
and the value is not changed. If the variable does not exist, it is created and set
to the value of the DEFAULT attribute.

Example: Testing for variables

Using CFPARAM with the NAME variable is a way to clearly define the variables that a
page or a custom tag expects to receive before processing can proceed. This can make
your code more readable, as well as easier to maintain and to debug.

For example, the following series of CFPARAM tags indicates that this page expects two
form variables named StartRow and RowsToFetch:

Chapter 4: Creating and Manipulating Variables 35
<CFPARAM NAME="Form.StartRow">
<CFPARAM NAME="Form.RowsToFetch">

If the page with these tags is called without either one of the form variables, an error
occurs and the page stops processing.

Example: Setting default values

In this example, CFPARAM is used to see if optional variables exist. If it does,
processing continues. If it does not exist, it is created and set to the DEFAULT value.

<CFPARAM NAME="Cookie.SearchString" DEFAULT="temple">

<CFPARAM NAME="Client.Color" DEFAULT="Grey">

<CFPARAM NAME="ShowExtraInfo" DEFAULT="No">

You can also use CFPARAM to set default values for URL and Form variables, instead of
using conditional logic.

Naming and Scoping Variables
This section describes how to name variables, lists the order in which ColdFusion
evaluates them, and offers guidelines for using variables in your applications.

Variable names

When naming ColdFusion variables and form fields, keep these guidelines in mind:

• Variables must begin with a letter, which can be followed by any number of
letters, numbers, or the underscore character.

• Variables must be all one word.

• Do not use spaces or special characters in variable names.
For example, UserName_1, UserName2, and User_Name are valid, but 1stUser,
WhatAName!, and User-Name are not.

• For field names and variables, use descriptive names, not abbreviations. It will
be much easier for others to read your code, and for you to remember how it
works yourself, when you revisit it months later.

• Note that queries and variables cannot have the same name in the same
ColdFusion application page.

• Although ColdFusion variables are not case-sensitive, keep capitalization
consistent in order to keep your code consistent.

• In writing queries and forms, match your form field names with the
corresponding database field name.

36 Developing Web Applications with ColdFusion
Qualifying, or scoping, variable references

ColdFusion distinguishes between identically named parameters from different
sources with a specific prefix for each source or “scope.” For example, to specify a
variable called State that is passed in a form submission, you would use Form.State. To
specify a variable named State passed in a URL, you would use URL.State.

You don't need to use the prefix unless two variables in different scopes have the same
name. However, for readability and processing speed, it is a good idea to use prefixes.
For example, the variable “Form.lastname” is far more self-evident than a variable
called “lastname.”

The following chart shows the prefixes for each variable type:

Tip Always use the prefix for application and session variables.

Performance and scoping

You can improve performance by always qualifying your variables with the proper
scope. Adding variable scopes improves processing speed but the trade-off is that it
may not be so easy to reuse the same code in other applications or pages.

In the following example, both forms of the following variable are permitted. However,
the example that includes a scoping prefix will be evaluated more quickly than the
unscoped example:

Variable Prefix

Type Reference

Queries QueryName.variablename

Local Variables.variablename

URL Parameters URL.variablename

Form Fields Form.variablename

Client Client.variablename

Server Server.variablename

Session Session.variablename

Application Application.variablename

HTTP Cookies Cookie.variablename

CGI Environment CGI.variablename

Chapter 4: Creating and Manipulating Variables 37
<CFOUTPUT>
#Client.fullname#
#fullname#

</CFOUTPUT>

How ColdFusion looks up variables

When scoping isn’t used, that is, when you don’t include a variable prefix, like
“Form.myformvar,” ColdFusion attempts to find variables in the following order:

1. Local variables created using CFSET and CFQUERY

2. CGI variables

3. File variables

4. URL variables

5. Form variables

6. Cookie variables

7. Client variables

Note ColdFusion does not attempt to automatically find Application and Session variables.
You must use prefixes with these variables.

See Kinds of Variables for information on each type of ColdFusion variable. For
information on File variables, see Chapter 13, “Managing Files on the Server,” on page
197.

Using pound signs

Pound signs are required around variables in strings and when variables are used as
arguments for parameters in ColdFusion tags, such as CFOUTPUT, CFMAIL, and
CFQUERY, and when outputting their values.

To output the value of a variable, rather than its name, you surround the variable name
with pound signs and place the name between <CFOUTPUT> and </CFOUTPUT>
tags.

Here are some guidelines for using pound signs with variables and expressions:

• In CFML pound signs are used to distinguish expressions from plain text.

• In CFOUTPUT and CFQUERY tags, enclose variables and functions in pound
signs:

<CFOUTPUT>The value is #Form.MyTextField#.</CFOUTPUT>

<CFOUTPUT>The name is #FirstName# #LastName#.</CFOUTPUT>

<CFOUTPUT>Cos(0) is #Cos(0)#</CFOUTPUT>

In this example, the SQL statement calls for single quotes to enclose a text
string, the value represented by the form variable #FORM.LastName#.

<CFQUERY NAME="Search" DATASOURCE="Company">

38 Developing Web Applications with ColdFusion
Select * From Employees

Where LastName=’#FORM.LastName#’

</CFQUERY>

Note that pound signs are necessary only where you need to distinguish
expressions from text, for example, when variables are embedded in text
strings:

<CFSET A="Hello, #name#">

• In CFSET statements, do not overuse pound signs. For example, do not use
<CFSET x=#Cos(0)#+1>; instead, use <CFSET x=Cos(0)+1>.

• Similarly, <CFSET FullName=FirstName & " " & LastName> is the same thing
as <CFSET FullName="#FirstName# #LastName#">.

• Pound signs are required when variables are used inside ColdFusion tags such
as CFOUTPUT, CFMAIL, and CFQUERY.

<CFOUTPUT>Your favorite color is #Client.FavoriteColor#.

</CFOUTPUT>

• Because pound signs serve as formatting codes in ColdFusion, you need to take
special measures when including pound signs in a CFOUTPUT section. To
include a pound sign that is not used as a field delimiter, use two consecutive
pound signs (##).

For more information on using pound signs in ColdFusion pages, see the Functions
and Expressions chapter in the Advanced ColdFusion Development book.

Passing Variables to Pages with URLs and Forms
In some cases, you will want to make a parameter that exists in one page available to
another page. There are many ways to pass a variable between two pages: in a URL, in
a form, or using browser cookies and client variables.

Passing parameters with a URL

You can pass dynamic parameters from one page to another by appending them to the
URL reference to the target page. Separate the parameter from the URL filename
address with a question mark (?). Parameters are passed by appending the name of the
variable you are passing and its associated value.

The scope of these variables is the target page of the hyperlink that carries the URL
variables.

Example

In this example, the hyperlink passes a variable named “user_id” with a value of 5 and
a variable named “color” with a value set to the expression #mycolor# to the
example.cfm page:

Chapter 4: Creating and Manipulating Variables 39

In the target page, example.cfm, you can refer to these variables as URL.user_id and
URL.color.

<CFOUTPUT>
Your user ID is #URL.user_id# and
your favorite color is #URL.mycolor#.
</CFOUTPUT>

Formatting issues

When formatting URL parameter values, keep the following formatting issues in mind:

• Use a ? to separate the URL address from the query string you’re passing.

• Use an ampersand & to separate variable pairs.

• Do not use spaces. Some browsers cut off the URL when they detect a space.

• Do not use special characters, such as & ?, . and #.

If you are passing values that may contain spaces or special characters, use the
function URLEncodedFormat.

<CFSET FullName="Bob Smith">
<CFOUTPUT>

Click here
</CFOUTPUT>

See the CFML Language Reference for more information on the URLEncodedFormat
function.

Passing parameters with a form

You can use a form to pass variables between pages by allowing a user to enter or
choose a value in a form. Use the resulting Form variables on the form’s action page to
process values passed in the form. You can also use hidden input types to pass a
variable in a form to another page.

Example: Hidden input

The form below includes a hidden input named “Customer_ID” that is passed to the
example.cfm page:

<FORM ACTION="example.cfm" METHOD="Post">
<INPUT TYPE="Hidden"

NAME="Customer_ID" VALUE="24">
<INPUT TYPE="Submit" VALUE="Enter">

</FORM>

The example.cfm page will be passed the parameter Form.Customer_ID with the value
set by the previous page.

40 Developing Web Applications with ColdFusion
Example: Dynamic parameters

It is also possible to pass a value based on a dynamic parameter, such as the result of a
query, as illustrated below:

<FORM ACTION="example.cfm" METHOD="Post">

<CFOUTPUT QUERY="GetCustomer">
<INPUT TYPE="Hidden" NAME="Customer_ID"

VALUE="#Customer_ID#">
</CFOUTPUT>

<INPUT TYPE="Submit" VALUE="Enter">
</FORM>

In the example.cfm page, you can refer to the variables created with this form as
Form.Customer_ID.

Kinds of Variables
ColdFusion supports several types of variables. This section describes the types of
variables available and how you use them.

The following table describes the types of variables you can use in a ColdFusion
application page.

ColdFusion Variable Types

Variable Type Description

Queries As soon as a query has been run, you can use its results as dynamic
parameters. For example, if you create a query named LookupUser
that finds the ID for a given user name, you might want to use this
ID in another query or in a CFOUTPUT.

Local Variables This is the default scope for variables created with the CFSET and
CFPARAM tags. For example, <CFSET A=5> sets the variable A to 5.
This variable is available only on the page where it is created and
any included pages.

URL Parameters Parameters appended to URLs after the application page name
using a variablename=value format.

Form Fields The most common way of passing parameters to a page is to use
form fields. When a user enters data in a form field, a parameter
with the name of the form field is passed to the action page.

Chapter 4: Creating and Manipulating Variables 41
The section How ColdFusion looks up variables describes the order in which
ColdFusion finds variables in application pages.

Client ColdFusion client variables are variables associated with a
particular client. Client variables allow you to maintain state as a
user moves from page to page in an application. They are stored in
the system registry by default, but you can also choose to store
them in a cookie or in a database.

For more information, see the Using the Application Framework
chapter of this book.

Server ColdFusion server variables are associated with the current Web
server and are available to all ColdFusion applications until the
ColdFusion server is shut down. This server scope allows you to
define variables that all your ColdFusion application pages can
reference.

Session Session variables are tied to an individual client and persist for as
long as that Client ID maintains a session. Session variables, like
current client variables, require a client name to work and are only
available to that Client ID.

Unlike client variables, session variables are stored in the server’s
memory and can be set to time-out after a precise period of
inactivity.

Application Application variables are tied to an individual application as
defined in the CFAPPLICATION NAME attribute, typically used in
the Application.cfm file. Application variables only work if an
application name has been defined.

For more information about the Application.cfm file, see the
Using the Application Framework chapter of this book.

HTTP Cookies HTTP Cookie variables are stored in the browser. They are available
every time the browser makes a page request. You can create
cookie variables with the CFCOOKIE tag.

CGI Environment Every page request has several environment variables sent to it
that relate to the context in which it was requested. The variables
available will depend on the browser and server software in use for
a given request.

Note: CGI environment variables are created even when you are
using one of the Web servers that supports a server API.

ColdFusion Variable Types

Variable Type Description

42 Developing Web Applications with ColdFusion
Using variables across several application pages

Within ColdFusion, most variables apply only to a single template. However, four types
of variables can be used across multiple application pages:

• Client variables store identifying information about an individual client.

Client variables are designed to hold long-term information particular to an
individual client. You can store client variables in the system registry, a
database, or in a cookie named for the application.

• Server variables are valid for all ColdFusion applications on a particular server.

Server variables are used to store information (typically read-only) that does
not change often and can be shared across many users and ColdFusion
applications.

• Session variables are valid for as long as an individual Client ID maintains a
session.

Session variables are useful for storing short-term information needed for a
single site visit or set of requests. They are specific to individual users.

• Application variables are valid for a specified application.

Application variables are available to individual, specified applications and to
all users of that application who access your ColdFusion server. They are stored
in the server’s memory and can be set to time out at specified intervals.
Application variables are general and available to all users.

Note In cases where variables are available to several application pages, make sure to keep
your variable names straight. See Variable names in this chapter for more information.

Client Variables
In ColdFusion, client variables help you to keep track of users as they move through
the pages within an application. They offer a convenient way to store user preferences.

ColdFusion achieves client state management by creating a client record for each
browser that requests a page in an application in which client state management is
enabled. The client record is identified by a unique token (a combination of CFID and
CFTOKEN), which is stored in an HTTP cookie in the user’s browser.

The application can then define variables within the client record. These client
variables are accessible as parameters in every application page that the client
requests within the scope of an application.

See the Client Variables and Client State Management section in the Using the
Application Framework chapter for information on setting up client state
management using the CLIENTMANAGEMENT attribute in the CFAPPLICATION tag.

Chapter 4: Creating and Manipulating Variables 43
Creating a client variable

When client state management is enabled for an application, you can use the system
to keep track of any number of variables associated with a particular client.

You create client variables by defining a variable with the Client scope using either the
CFSET or CFPARAM tag.

To create a client variable:

1. Turn on client state management by setting CLIENTMANGEMENT=”Yes” in the
CFAPPLICATION tag in your Application.cfm file.

<CFAPPLICATION NAME="myapplication"
CLIENTMANAGEMENT="Yes">

2. Also in the CFAPPLICATION tag, choose a storage location for your client variables
by adding the CLIENTSTORAGE attribute.

The default location is set in the Variables page of the ColdFusion Administrator. It
can be the system registry, an existing datasource, or cookies.

See Client variable storage options for more information.

CLIENTSTORAGE="mydatasource"

3. In ColdFusion Studio, click the CFSET tool. Enter the variable name, preceded by
the Client scope, and assign a value to it, for example:

<CFSET Client.FavoriteColor="Cornflower Blue">

See Variable names for guidelines on creating variable names.

Once a client variable has been set in this manner, it is available for use within any
application page in your application that is accessed by the client for whom the
variable is set.

Standard client variables

In addition to storing custom client variables, the Client object has several standard
variables. These variables can be useful in providing customized behavior depending
on how often users visit your site and when they last visited. For example, the following
code shows the date of a user’s last visit to your site:

<CFOUTPUT>
Welcome back to the Web
SuperShop, your last visit
was on #DateFormat(Client.LastVisit)#.

</CFOUTPUT>

The standard Client object attributes are read-only (they can be accessed but not set by
your application) and include

• CFID

• CFToken

44 Developing Web Applications with ColdFusion
• URLToken

• HitCount

• TimeCreated

• LastVisit

Note In the Variables page of the ColdFusion Administrator, you disable automatic updating
of global variables. This keeps ColdFusion from updating every page when client
variables are enabled. See Administering ColdFusion Server for more information.

Using client state management without cookies

You can use ColdFusion’s client state management without cookies. To use this
functionality, you must pass the client ID (CFID) and the client security token
(CFTOKEN) between pages, either in hidden form fields or appended to URLs.

Note In ColdFusion, client state management is explicitly designed to work with cookies, the
standard tool for identifying clients. Using client state management without cookies
requires careful programming to ensure that the URLToken is always passed between
application pages.

Client variable storage options

The system-wide default for storing client variables is in the system registry. In the
ColdFusion Administrator, you can change this setting and choose instead to store
client variables in a SQL database or in cookies.

You do this in two steps: by configuring the client variable storage option in the
ColdFusion Administrator, and then noting the client variable storage location in the
CFAPPLICATION tag. See Administering ColdFusion Server for information on using
the Administrator to set up a client variable storage location.

You use the CLIENTSTORAGE attribute in the CFAPPLICATION tag to specify where
you want to store client variables, providing one of three values:

• Registry

• The name of a configured client store

• Cookie

The following example shows how you enable client state management using a sample
database called mydatasource.

<CFAPPLICATION NAME="myapplication"
CLIENTMANAGEMENT="Yes"
CLIENTSTORAGE="mydatasource">

If no CLIENTSTORAGE setting is specified, the default location, as noted in the
ColdFusion Administrator Variables page, is used.

Chapter 4: Creating and Manipulating Variables 45
Note Client storage mechanisms are exclusive; when one storage type is in use, the values
stored in other client stores are unavailable.

Storing client variables in cookies

When you choose CLIENTSTORAGE="Cookie", ColdFusion creates a cookie named for
the application name. Storing client data in a cookie is scalable to large numbers of
clients, but this storage mechanism has some limitations. Chief among them is that if
the client turns off cookies in the browser, client variables won’t work.

Consider these additional limitations before implementing cookie storage for client
variables:

• Netscape Navigator allows only 20 cookies from a particular host to be set.
ColdFusion uses two of these cookies for CFID and CFTOKEN, and also creates
a cookie named CFGLOBALS to hold global data about the client, such as
HitCount, TimeCreated, and LastVisit.

• Netscape Navigator sets a size limit of 4K bytes per cookie. ColdFusion encodes
non-alphanumeric data in cookies with a URL encoding scheme that expands
at a 3-1 ratio, which means you should not store large amounts of data for each
client. ColdFusion will throw an error if you try to store more than 4000
encoded bytes of data for a client.

Getting a list of client variables

To obtain a list of the custom client parameters associated with a particular client, use
the GetClientVariablesList function.

<CFOUTPUT>#GetClientVariablesList()#</CFOUTPUT>

The GetClientVariablesList function returns a comma-separated list of variable names
defined for the application context declared by CFAPPLICATION, if any. The standard
system-provided client variables (CFID, CFToken, URLToken, HitCount, TimeCreated,
and LastVisit) are not returned in the list.

Deleting client variables

Unlike normal variables, client variables and their values persist over time. (In this
fashion they are akin to cookies.) To delete a client variable, use the
DeleteClientVariable function. For example:

<CFSET IsDeleteSuccessful=DeleteClientVariable("MyClientVariable")>

The DeleteClientVariable function operates only on variables within the scope
declared by CFAPPLICATION, if any.

Also, through the Variables page of the ColdFusion Administrator, you can edit the
client variable storage to remove client variables after a set number of days. (The
default value is 90 days if client variables are stored in the registry, ten days if stored in
a datasource.)

46 Developing Web Applications with ColdFusion
Note You cannot delete the system-provided client variables (CFID, CFToken, URLToken,
HitCount, TimeCreated, and LastVisit).

For more information

For more information about using client variables in ColdFusion applications, see
Chapter 6, “Using the Application Framework,” on page 67.

Server Variables
Server variables are available to all users and all applications accessing the current web
server, until the ColdFusion server is shut down.

Server variables are useful for storing information that does not change often and can
be shared across many users and ColdFusion applications. You might use server
variables to store information needed by all applications running at your site — for
example, information about a datasource. Use server variables when it’s more efficient
to store general information in memory than to run a query with each request.

In addition, the following built-in server variables are available in ColdFusion and
provide feedback on your ColdFusion server:

• Server.ColdFusion.ProductName — Returns the ColdFusion product name.

• Server.ColdFusion.ProductVersion — Returns the ColdFusion product release
information.

• Server.ColdFusion.ProductLevel — Returns the ColdFusion product level
information.

• Server.ColdFusion.SerialNumber — Returns the ColdFusion serial number.

• Server.OS.Name — Returns the server operating system name.

• Server.OS.AdditionalInformation — Returns additional information about the
server operating system.

• Server.OS.Version — Returns the operating system version of the server.

• Server.OS.BuildNumber — Returns the build number of the server operating
system.

Note Server variables are read-write; be careful not to overwrite these built-in server
variables.

Chapter 4: Creating and Manipulating Variables 47
Sample server variable output

The following table shows sample server variable output for a Windows NT
installation:

For information about the CGI variables that are created by Web servers and browsers,
see “Using CGI Environment Variables” on page 51 in this chapter.

Using Application and Session Variables
Session and application variables are persistent variable “scopes.” You access these
variables by prefacing the variable name with the scope name, for example:
“Session.MyVariable” or “Application.MyVariable.” And because they are persistent,
you can pass values between pages with a minimum of effort.

Enabling application and session variables

Session and application variables are similar in operation to client variables. Like
client variables, they are enabled with the CFAPPLICATION tag. See the CFML
Language Reference for more information on the CFAPPLICATION tag.

Unlike client variables, however, which are stored in either the system registry, a
datasource, or a cookie, application and session variables are always stored in the
ColdFusion server’s memory. This method offers obvious performance advantages. In
addition, you can set time-out values for these variables either with CFAPPLICATION,
or by specifying time-outs in the ColdFusion Administrator. You can also simply
disable application and session variables entirely.

Server Variable Sample Output

Variable Sample Output

Server.ColdFusion.ProductName ColdFusion Engine

Server.ColdFusion.ProductVersion 4, 0, 0, 0

Server.ColdFusion.ProductLevel Professional

Server.ColdFusion.SerialNumber varies

Server.OS.Name NT/Solaris

Server.OS.AdditionalInformation Service Pack 3

Server.OS.Version 4.0/5.0.3

Server.OS.BuildNumber 1381

48 Developing Web Applications with ColdFusion
For information on setting time-outs for variables, see the Administering ColdFusion
Server book.

Session variables

Use session variables when the variables are needed for a single site visit or set of
requests. For example, you might use session variables to store a user’s selections in a
shopping cart application. (You would use client variables if the variable is needed for
future visits.)

Session variables are designed to store session-level data. They are a convenient place
to store information that all pages of your application might need as long as a single
user is running that application. Using session variables, an application could initialize
itself with user-specific data the first time a user hit a page of that application. This
information could then remain available while that user continues to use that
application. For example, information about a specific user’s preferences could be
retrieved from a database once, the first time the user hits any page of an application.
This information would remain available throughout that user’s session, thereby
avoiding the overhead of retrieving the preferences again and again.

Session variables work exactly as client variables do, in that they require a client name
(client ID) and are always scoped within that client ID. Session variables also work
within the scope of an application name if one is supplied, in which case their scope
will be the combination of the client ID and the application name.

To enable session variables, set SESSIONMANAGEMENT="Yes" in the CFAPPLICATION tag
in your Application.cfm file.

You create session variables using the CFSET tag. See “Using CFSET to create
variables” on page 32 in this chapter.

Session variable time-outs

Session variables have a specific lifetime, and it is this lifetime that defines a “session.”
For example, when you access a session variable within its specified lifetime, the
variable returns a value because your request occurs during a single, time-limited
session. On the other hand, if you do not access a session variable within its specified
lifetime, the variable will time-out and will no longer be available to you.

The default time-out for session variables is set to 20 minutes. In the Variables page of
the ColdFusion Administrator, you can change this time-out value. See the
Administering ColdFusion Server book for more information.

You can also set the time-out period for session variables inside a specific application
(thereby overruling the Administrator default setting) by using the SESSIONTIMEOUT
attribute of the CFAPPLICATION tag.

Application variables

An application refers to all the related web pages that make up a particular piece of
functionality. In ColdFusion, you define an application by giving it a name using the

Chapter 4: Creating and Manipulating Variables 49
CFAPPLICATION tag. By using the same application name in a CFAPPLICATION tag, a
set of templates can define themselves as being part of the same logical application.

Note The value you set for the NAME attribute in CFAPPLICATION is limited to 64
characters.

You create application variables using the CFSET tag. See “Using CFSET to create
variables” on page 32 in this chapter.

Using application variables

Application variables are designed to store application-level data. They are a
convenient place to store information that all pages of your application might need no
matter who (what client) is running that application. Using application variables, an
application could initialize itself, say, when the first user hits any page of that
application. This information could then remain available indefinitely to all
subsequent hits of any pages of that application, thereby avoiding the overhead of
repeated initialization.

Because the data stored in application variables are available to all pages of an
application and remains available indefinitely, or until the ColdFusion server shuts
down, application variables are very convenient. However, because all clients running
an application see the same set of application variables, they are not useful for client-
specific information. If you wish to do the same sorts of things, but on a client-specific
basis, session variables are for you.

Application variables work very much as client variables do, except that they require an
application name be associated with them. (Thus, they are always scoped within that
application name.)

Unlike client variables, however, they do not require that a client name (client ID) be
associated with them. Thus, they are available to any clients that specify the same
application name.

Differentiating client, session, and application variables

Here's a table that maps out these relationships:

Client, Session, and Application Variables

Variable
Type

Application
Names

ClientIDs Client
Mgmt

Session
Mgmt

Time-out

Client Optional Required Required n/a Optional

Session Optional Required Required Required Optional

Application Required n/a n/a n/a Optional

50 Developing Web Applications with ColdFusion
Application variable time-outs

Application variables have a specific lifetime, and it is this lifetime that defines an
“application.” For example, when you access an application variable inside a specific
application, the variable returns a value because your request occurs on a page
declared in the CFAPPLICATION tag to be part of a single application.

The default time-out period for application variables is two days. In the Variables page
of the ColdFusion Administrator, you can define time-out values for application and
session variables. See the Administering ColdFusion Server book for more information.

You can also set the time-out period for application variables inside a specific
application (thereby overruling the Administrator default setting) by using the
APPLICATIONTIMEOUT attribute of the CFAPPLICATION tag.

Scoping application and session variables

ColdFusion does not attempt to automatically evaluate Application and Session
variables. You must use variable prefixes with these variables, as in
Session.variablename or Application.variablename.

For more information about application and session variables, see the Using the
Application Framework chapter in this book.

Creating HTTP Cookie Variables
Cookies are a general mechanism used by server-side applications such as ColdFusion
to store information in individual browsers. Cookies stored in a browser can then be
retrieved by the server-side application. With cookies, applications can create
variables specifically for an individual browser. For example, you could create a cookie
for background color and then customize the background color of your site for each
user.

Cookies are domain-specific, that is, they are set and retrieved for a specific server
reference, such as www.allaire.com or 127.0.0.1. A specific domain can set a maximum
of 20 cookies in a user’s browser (ColdFusion uses two of these cookies, for CFID and
CFTOKEN).

Using the Secure Sockets Layer (SSL), cookies can be sent securely. They are persistent,
so they will stay stored in the browser until they expire or are deleted. Cookies are
currently supported by almost all major commercial browsers.

Creating cookies with the CFCOOKIE tag

A cookie created using the CFCOOKIE tag is available to all ColdFusion pages as well as
other Web applications in the domain that can access cookies. This means you can
pass parameters to subsequent pages using browser cookies.

Note that cookies were not designed to store secure information such as passwords or
credit card numbers.

Chapter 4: Creating and Manipulating Variables 51
To create a cookie:

1. In ColdFusion Studio, click the Cookie tool button on the CFML Advanced toolbar.

2. Enter the name and value of the cookie variable. This example creates a variable
named Cookie.User_ID with a value of 2344, which will expire in 100 days:

<CFCOOKIE NAME="User_ID" VALUE="2344"
EXPIRES="100">

Note If ColdFusion executes a CFLOCATION tag on the same page following the creation of
cookie variables with CFCOOKIE, the cookie variables are lost.

For more information on CFCOOKIE, see the CFML Language Reference.

Using cookies in a page

Once you store a cookie in the client’s browser, it is automatically sent to your Web
server every time a page is requested by that client. The value of a cookie variable can
be accessed in the same way that other types of dynamic parameters (such as URL and
Form variables) are accessed. For example, use the Cookie prefix to display the
User_ID cookie variable created in the previous example in a CFOUTPUT section,
following this syntax:

<CFOUTPUT> #Cookie.User_ID# </CFOUTPUT>

Note It’s a good idea to test whether a cookie exists before you use it in an application page.

Deleting cookies

To delete a cookie, you use the CFCOOKIE tag with the EXPIRES attribute set to “now”:

<CFCOOKIE NAME="User_ID" VALUE="#User_ID#"
EXPIRES="now">

The cookie will be deleted when the user closes the browser.

Using CGI Environment Variables
Each time a browser makes a request to a server, a set of environment variables are
created, some by the Web server and some by the browser.

In ColdFusion, these variables are referred to as CGI environment variables and they
use the “CGI” prefix (even if your server is using a server API instead of CGI to
communicate to the ColdFusion Server).

The environment variables contain a range of data about the transaction between the
browser and the server, such as the IP Address, browser type, and authenticated
username. You can reference CGI environment variables for a given page request
anywhere in the page. All CGI variables are read-only.

52 Developing Web Applications with ColdFusion
Note The environment variables available to your applications depend on the browser and
server software in use for a given request.

Testing for CGI variables

Because not all CGI variables are supported by every browser, ColdFusion always
returns TRUE when testing for the existence of a CGI variable, even if the variable is
not supported by the client browser. The way around this is to test for an empty string,
instead of a boolean return, to see whether the CGI variable is available.

<CFIF CGI.varname IS NOT "">
CGI variable exists

<CFELSE>
CGI variable does not exist

</CFIF>

CGI server variables

The following table describes the most common CGI environment variables created on
the server (not all of these will be available with every server):

CGI Server Variables

Variable Description

SERVER_SOFTWARE The name and version of the information server software
answering the request (and running the gateway).
Format: name/version.

SERVER_NAME The server’s hostname, DNS alias, or IP address as it
appears in self-referencing URLs.

GATEWAY_INTERFACE The revision of the CGI specification to which this server
complies. Format: CGI/revision.

SERVER_PROTOCOL The name and revision of the information protocol this
request came in with. Format: protocol/revision.

SERVER_PORT The port number to which the request was sent.

REQUEST_METHOD The method with which the request was made. For HTTP,
this is Get, Head, Post, and so on.

PATH_INFO The extra path information, as given by the client. Scripts
can be accessed by their virtual pathname, followed by
extra information at the end of this path. The extra
information is sent as PATH_INFO.

PATH_TRANSLATED The server provides a translated version of PATH_INFO,
which takes the path and does any virtual-to-physical
mapping to it.

Chapter 4: Creating and Manipulating Variables 53
CGI client variables

The following chart describes the most common CGI environment variables created by
the browser and passed in the request header:

SCRIPT_NAME A virtual path to the script being executed; used for self-
referencing URLs.

QUERY_STRING The query information that follows the ? in the URL that
referenced this script.

REMOTE_HOST The hostname making the request. If the server does not
have this information, it sets REMOTE_ADDR and does
not set REMOTE_HOST.

REMOTE_ADDR The IP address of the remote host making the request.

AUTH_TYPE If the server supports user authentication, and the script
is protected, this is the protocol-specific authentication
method used to validate the user.

REMOTE_USER

AUTH_USER

If the server supports user authentication, and the script
is protected, this is the username they have
authenticated as. (Also available as AUTH_USER.)

REMOTE_IDENT If the HTTP server supports RFC 931 identification, this
variable is set to the remote username retrieved from the
server. Use this variable for logging only.

CONTENT_TYPE For queries that have attached information, such as
HTTP POST and PUT, this is the content type of the data.

CONTENT_LENGTH The length of the content as given by the client.

CGI Server Variables

Variable Description

CGI Client Variables

Variable Description

HTTP_REFERER The referring document. This is the document that
linked to or submitted form data.

HTTP_USER_AGENT The browser the client is currently using to send the
request. Format: software/version library/version.

54 Developing Web Applications with ColdFusion

C H A P T E R 5
Chapter 5 Controlling Page Flow
This chapter discusses the methods for controlling application page flow. Each time
an application page is requested, ColdFusion dynamically constructs an HTML page
based on the page’s CFML and HTML content.

Application page flow control gives you a great deal of flexibility in how dynamic
pages are created and how your application will function. You can control how
ColdFusion processes your application pages using CFSWITCH and CFIF blocks to
control page flow by testing different conditions.

This chapter also describes how to include other application pages in your pages,
how to use looping tags, and how to redirect users.

Contents

• Conditional Processing (CFIF and CFSWITCH) .. 56

• Redirecting Application Page Requests (CFLOCATION)............................... 59

• Stopping Application Page Processing (CFABORT)....................................... 60

• Including Application Page Files (CFINCLUDE) ... 60

• Creating Loops (CFLOOP) ... 61

56 Developing Web Applications with ColdFusion
Conditional Processing (CFIF and CFSWITCH)
ColdFusion offers two ways to handle conditional processing: CFSWITCH and CFIF.
These tags allow you to customize the behavior of your ColdFusion applications in
powerful ways.

Using CFSWITCH with CFCASE and CFDEFAULTCASE

Used with CFCASE and CFDEFAULTCASE, the CFSWITCH tag evaluates a passed
expression and passes control to the CFCASE tag that matches the expression result.
You can also optionally include a CFDEFAULTCASE, which receives control if there is
no matching CFCASE tag value.

The CFSWITCH tag offers better performance than a series of CFIF/CFELSEIF tags,
and the resulting code is easier to read. However, the VALUE attributes of CFCASE tags
must be constants whose value is known at when server processes the page.

The following example shows the syntax of a simple CFSWITCH tag:

<CFSWITCH EXPRESSION=#Switch#>
<CFCASE VALUE="4"> Case four </CFCASE>
<CFCASE VALUE="1"> Case one </CFCASE>
<CFCASE VALUE="2"> Case two </CFCASE>
<CFCASE VALUE="3"> Case three </CFCASE>
<CFCASE VALUE="2.5"> Case two and a half </CFCASE>
<CFCASE VALUE="5"> Case five </CFCASE>
<CFCASE VALUE="6"> Case six </CFCASE>

<CFDEFAULTCASE> Default case </CFDEFAULTCASE>

</CFSWITCH>

In each CFCASE tag, the VALUE attribute shows one or more constant values that
CFSWITCH compares to the specified expression (in this example, the variable
#Switch#). If a value matches the expression, CFSWITCH executes the code between
the CFCASE start and end tags.

See the CFML Language Reference for details on the syntax of CFSWITCH.

Using CFIF with CFELSEIF and CFELSE

You can also use CFIF, CFELSE, and CFELSEIF to conditionally process a section of an
application page.

The specific syntax for a simple conditional block is:

<CFIF value operator value>
... HTML and CFML tags
<CFELSE>
... HTML and CFML tags
</CFIF>

The CFELSE tag is not required.

Chapter 5: Controlling Page Flow 57
Note that the expression inside the CFIF tag uses “operators” such as IS, IS NOT, etc.
rather than equal signs. See the Functions and Expressions chapter in Advanced
ColdFusion Development for information on conditional operators in ColdFusion.

Example 1: Conditionally returning a query result set

To test whether a query returned any records, you can check wither the query’s record
count is zero, using the syntax:

<CFIF #CustomerSearch.RecordCount# IS 0>

<!--- Inform user that we had no hits --->
<P>Sorry, no customers matching your
criteria were found.</P>

<CFELSE>
<!--- Show the list of customers retrieved --->

<CFOUTPUT Query="Customers">
#FirstName# #LastName#

</CFOUTPUT>

</CFIF>

To display an output section only if the user explicitly requests it, as recorded in this
example in a variable called ShowCustomers, use the syntax:

<CFIF #Form.ShowCustomers# IS "Yes">
Customer List: <P>
<CFOUTPUT Query="Customers">
#FirstName# #LastName#

</CFOUTPUT>

</CFIF>

Example 2: Conditionally returning a record section

One of the most powerful uses of conditional tags is for record-by-record formatting of
query results. To accomplish this, place the conditional tags within CFOUTPUT
sections.

When conditional tags are placed within CFOUTPUT sections, they are evaluated once
for every row in the query result set. This allows you to customize the display of results
depending upon whether or not a field is present in an individual row.

For example, in this example, not every contact in the result set has a phone number.
So putting the CFIF inside CFOUTPUT ensures that the “Phone:” label is printed only
where the #Phone# field has a value. The label is not printed if the #Phone# variable is
empty.

58 Developing Web Applications with ColdFusion
<CFOUTPUT QUERY="Contacts">

<HR>
Name: #Name#

Title: #Title#

<CFIF #Phone# IS NOT "">
Phone: #Phone#

</CFIF>
</CFOUTPUT>

Compound conditional statements

A compound conditional statement combines multiple conditional statements with
Boolean operators. The specific syntax for a compound conditional block is:

<CFIF (value operator value) Boolean Operator
(value operator value) Boolean Operator
(value operator value)>

... HTML and CFML tags
</CFIF>

You can use CFELSE and CFELSEIF with compound conditional blocks. The most
common Boolean operators are:

Example

The following example assumes that a query named “GetEmployee” has returned
information about an employee. The code displays an HTML message if the query
result for an employee file shows that the employee is both in the sales department and
earns a bonus of more than $5,000 a year.

<CFIF (#GetEmployee.Department# IS "Sales") AND
(#GetEmployee.Bonus# GE 5000)>

<H4>Congratulations on your sales bonus!</H4>
</CFIF>

Using CFELSEIF

Using CFELESIF allows you to perform sophisticated conditional processing within
your dynamic pages. It offers a way to combine conditional statements without

Operator Description

AND Conjunction

OR Disjunction

NOT Logical negation

Chapter 5: Controlling Page Flow 59
multiple nested IF statements. The following example shows the syntax of a
conditional block.

<CFIF condition1>
Display this text only if condition1 is true.

<CFELSEIF condition2>
Display this text only if condition1 is
false and condition2 is true.

<CFELSEIF condition3>
Display this text only if condition1
and condition2 are false and condition3 is true.

<CFELSE>
Display this if condition1, condition2,
and condition3 are false.

</CFIF>

Note CFELSEIF can only be used within a CFIF. The CFELSE is optional.

Example

Imagine an application in which you enter your age and then see a message based on
that age. The following conditional block would display the proper message depending
on the age you entered.

<CFIF #Form.Age# LESS THAN 12>
You’re only a child (0 - 11 years old).

<CFELSEIF #Form.Age# LESS THAN 20>
You’re a teenager (12 - 19 years old).

<CFELSEIF #Form.Age# LESS THAN 60>
You’re an adult (20 - 59 years old).

<CFELSE>
You’re a senior citizen (older than 59).
</CFIF>

Redirecting Application Page Requests (CFLOCATION)
You can redirect a page request to another page or to another URL using the
CFLOCATION tag. This is useful if you want to define an application page that
performs one or more CFQUERYs and then moves on to another page, or if you want
the URL to which the user is directed to depend on a dynamic parameter.

60 Developing Web Applications with ColdFusion
Example

For example, you can use CFIF to test if a user is logged in (has the user’s password
been confirmed?) and if not, relocate the user to another URL using CFLOCATION:

<CFIF #NewPassword# IS NOT ‘#PasswordConfirmation#’>
<CFLOCATION URL="invalidpassword.cfm">

</CFIF>

This example manages validation of a new user’s password by evaluating whether the
new password was confirmed properly. If not, the application page routes the user to a
different page that notifies the user that the password was not confirmed properly (for
example, “invalidpassword.htm”).

It is also possible to use dynamic parameters within the URL attribute of the
CFLOCATION tag. For example, to dynamically determine the page to send the user to
based on a dynamic parameter named “Page,” use the syntax:

<CFLOCATION URL="#Page#">

Stopping Application Page Processing (CFABORT)
The CFABORT tag stops processing of an application page at the tag location.
ColdFusion simply returns everything that was processed before the CFABORT tag.
CFABORT is often used with conditional logic to stop the processing of an application
page because of a particular condition.

As the following example illustrates, the CFABORT tag has no attributes.

<P>This HTML content is returned
to in the final page.</P>
<CFABORT>

<P>This HTML content is NOT returned
in the final page.</P>

Including Application Page Files (CFINCLUDE)
As the applications you develop with ColdFusion become more complex, you will
require ways to simplify the presentation of your CFML application page files and to
reuse code. The CFINCLUDE tag helps to fulfill these requirements.

Essentially, CFINCLUDE inserts another application file into the current page. It’s a
handy way to reuse common code.

Note You cannot use CFINCLUDE to cause a CFIF, CFLOOP, or CFOUTPUT tag block to be
split across different application pages.

The CFINCLUDE tag has a TEMPLATE attribute that specifies an existing application
page file to process and return to the client. This application page file is processed as if
it is a part of the file into which it is included. For example, if you create a variable in an

Chapter 5: Controlling Page Flow 61
application page and use a CFINCLUDE, the included application page can reference
the variable created in the main application page.

Syntax

The syntax of the CFINCLUDE tag is:

<CFINCLUDE TEMPLATE="FileName">

Here, FileName represents the relative path of the application page file to be included.

Examples

For example, one of the simplest applications of CFINCLUDE is for adding common
header and footer code to your pages, following this model:

<CFINCLUDE TEMPLATE="header.cfm">
... Page contents
<CFINCLUDE TEMPLATE=”footer.cfm”>

To process the file index.cfm, which is up one directory level from the current
application page:

<CFINCLUDE TEMPLATE="../index.cfm">

Potential uses of the CFINCLUDE tag

• Your application might display the same CFTABLE repeatedly on different
pages. Rather than copy and paste the code from page to page, you could create
an application page for the table and include it wherever it is needed.

• You could create application page files called “header.cfm” and “footer.cfm,”
which contain a standard set of HTML text and tags to include at the beginning
and end of the pages in your application. You could then modify the look and
feel of your entire site by changing just two application pages.

• You might have a complicated set of nested CFIF/CFELSE statements that
could be clarified if the code to be executed was hidden away in application
pages rather than displayed inline.

Do not split code blocks across included pages. Be sure to keep beginning and ending
tags together.

Creating Loops (CFLOOP)
Looping is a very powerful programming technique that lets you repeatedly display a
set of instructions or some output depending on a particular set of conditions.
CFLOOP allows for four different types of loops:

• Index loops (also called FOR loops)

• Conditional loops (also called WHILE loops)

62 Developing Web Applications with ColdFusion
• Looping over a query

• Looping over a list

• Looping over a COM collection

You use the attributes of the CFLOOP tag to choose which type of loop to use.

Index loops

An index loop repeats based on a range of numeric values. Use this type of loop when
you know the number of times the loop should run.

Example of an index loop

The INDEX variable will be incremented on each iteration of the loop. The following
example loops five times, displaying the index value of the loop each time:

<CFLOOP INDEX="LoopCount" FROM="1" TO="5">
The loop index is <CFOUTPUT>#LoopCount#</CFOUTPUT>.

</CFLOOP>

The results would look like this in a browser:

The loop index is 1.

The loop index is 2.

The loop index is 3.

The loop index is 4.

The loop index is 5.

Example 2 of a stepped index loop

The STEP value has a default value of 1, but you can set the step value to change the
way the INDEX value is incremented. The following example counts backwards from 5:

<CFLOOP INDEX="LoopCount" FROM="5" TO="1" STEP="-1">
The loop index is <CFOUTPUT>#LoopCount#</CFOUTPUT>.

</CFLOOP>

The results would look like this in a browser:

The loop index is 5.

The loop index is 4.

The loop index is 3.

The loop index is 2.

The loop index is 1.

Index loops are commonly known as a FOR loop, as in ‘loop FOR this range of values.’

Chapter 5: Controlling Page Flow 63
Conditional loops

A conditional loop iterates over a set of instructions while a given condition is true. To
use this type of loop correctly, the instructions must change the condition every time
the loop iterates until the condition evaluates as FALSE.

Example

The following example increments the parameter “CountVar” from 1 to 5.

<!--- Set the variable CountVar to 1 --->
<CFSET #CountVar#= 0>

<!--- Loop until CountVar is 5 --->
<CFLOOP CONDITION="CountVar LT 5">

<CFSET #CountVar#=#CountVar# + 1>
The loop index is <CFOUTPUT>#CountVar#</CFOUTPUT>.

</CFLOOP>

The results would look like this in a browser:

The loop index is 1.

The loop index is 2.

The loop index is 3.

The loop index is 4.

The loop index is 5.

Conditional loops are commonly known as WHILE loops, as in ‘loop WHILE this
condition is true.’

Query Loops

A loop over a query repeats for every record in the query result set. The CFLOOP results
are just like a CFOUTPUT. During each iteration of the loop, the columns of the current
row will be available for output.

On the other hand, using a CFLOOP query is much slower than using CFOUTPUT with
a query.

Example: Using CFLOOP to display a record set

The following example shows a CFLOOP tag that works just like a CFOUTPUT:

<CFQUERY NAME="MessageRecords" DATASOURCE="Customer">
SELECT * FROM Messages

</CFQUERY>

<CFLOOP QUERY="MessageRecords">
<CFOUTPUT> #Message_ID# </CFOUTPUT>

</CFLOOP>

64 Developing Web Applications with ColdFusion
Example: Next n record sets in a query

CFLOOP also provides iteration over a record set with dynamic starting and stopping
points. Thus, you can begin at the tenth row in a query and end at the twentieth.

Using this mechanism provides a simple means to get the next n sets of records from a
query. The following example loops from the tenth through the twentieth record
returned by “MyQuery:”

<CFSET Start=10>
<CFSET End=20>

<CFLOOP QUERY="MyQuery" STARTROW="#Start#" ENDROW="#End#">
<CFOUTPUT>#MyQuery.MyColName#</CFOUTPUT>

</CFLOOP>

The loop is done when there are no more records or when the current record is greater
than the value of the ENDROW attribute.

Example: Looping over a query

The following example uses the CFINCLUDE tag to combine into a single document all
the application pages returned in querying a list of application page names.

<CFQUERY NAME="GetFile" DATASOURCE="Library" MAXROWS=5>
SELECT FileName FROM Templates

</CFQUERY>

<CFLOOP QUERY="FileName">
<CFINCLUDE TEMPLATE="#FileName#">

</CFLOOP>

If you just need to loop through a query “Record Count” number of times, you can use
CFOUTPUT, as in this example:

<CFOUTPUT QUERY="MyQuery">
Text and #variablename#

</CFOUTPUT>

List Loops

Looping over a list offers the option of walking through elements contained within a
variable or value returned from an expression. In a list loop, the INDEX attribute
specifies the name of a variable to receive the next element of the list. The LIST
attribute holds a list or a variable containing a list.

This loop displays the names of each of the Beatles:

<CFLOOP INDEX="ListElement" LIST="John,Paul,George,Ringo">
<CFOUTPUT>#ListElement#</CFOUTPUT>

</CFLOOP>

Although CFLOOP expects elements in the list to be separated by commas by default,
you are free to specify your own element boundaries in the DELIMITER attribute.

Chapter 5: Controlling Page Flow 65
Here’s the same loop as before, only this time CFLOOP will treat commas, colons, or
slashes as list element delimiters:

<CFLOOP INDEX="ListElement"
LIST="John/Paul,George::Ringo" DELIMITERS=",:/">
<CFOUTPUT>#ListElement#</CFOUTPUT>

</CFLOOP>

Delimiters need not be specified in any particular order. Note that consecutive
delimiters are treated as a single delimiter; thus, the two colons in the previous
example are treated as a single delimiter between “George” and “Ringo.”

Looping over a COM collection

The CFLOOP COLLECTION attribute allows you to loop over a COM/DCOM collection
object. A COM/DCOM collection object is a set of similar items referenced as a group
rather than individually. For example, the group of open documents in an application
is a type of collection. Each collection item is referenced in the CFLOOP by the variable
name you supply in the ITEM attribute. This type of iteration is generally used to
access every object within a COM/DCOM collection. The loop is executed until all
objects have been accessed.

The COLLECTION attribute is used with the ITEM attribute in a CFLOOP. In the
example that follows, ITEM is assigned a variable called file2, so that with each cycle
in the CFLOOP, each item in the collection is referenced. In the CFOUTPUT section,
the name property of the file2 item is referenced for display.

This example employs a COM object to output a list of files. In this example, FFUNC is a
collection of file2 objects.

<CFOBJECT CLASS="FileFunctions.files"
NAME="FFunc"
ACTION="Create">

<CFSET FFunc.Path="c:\">
<CFSET FFunc.Mask="*.*">
<CFSET FFunc.attributes=16>
<CFSET x=FFunc.GetFileList()>

<CFLOOP COLLECTION=#FFUNC# ITEM="file2">
<CFOUTPUT> #file2.name#

</CFOUTPUT>

</CFLOOP>

Nesting loops

A CFLOOP block can also contain other CFLOOPs. In this case, the inner loop will
execute from start to finish as many times as the outer loop executes. Loops can be
nested as deeply as you like.

Here the inner loop will execute on each iteration of the outer loop for a grand total of
15 times:

66 Developing Web Applications with ColdFusion
<CFLOOP INDEX="OuterLoopCount" FROM="1" TO="3">
<CFOUTPUT>Outer loop #OuterLoopCount#</CFOUTPUT>

<CFLOOP INDEX="InnerLoopCount" FROM="1" TO="5">
<CFOUTPUT>Inner loop #InnerLoopCount#</CFOUTPUT>

</CFLOOP>

</CFLOOP>

Breaking out of a loop

When ColdFusion encounters the CFBREAK tag in a loop, it terminates the execution
of the loop and proceeds to process the application page starting with the line
immediately following the end of the loop. This is generally less elegant than
constructing the loop with an appropriate conditional, but there are times when
breaking out of a loop can simplify a tag structure that’s complicated or deeply nested.

The following example isn’t a terribly good use of CFBREAK, but it shows the tag in
action:

<CFLOOP INDEX="LoopCount" FROM=1 TO=100>
The value is <CFOUTPUT>#LoopCount#</CFOUTPUT>.

<CFIF LoopCount IS 7>
<CFBREAK>
</CFIF>

</CFLOOP>

The results would look like this in a browser:

The value is 1.

The value is 2.

The value is 3.

The value is 4.

The value is 5.

The value is 6.

The value is 7.

For more information

For more information on the CFML tags used for controlling page flow, see the CFML
Language Reference.

C H A P T E R 6
Chapter 6 Using the Application
Framework
The ColdFusion Web Application Framework is a powerful tool you can use to help
structure your ColdFusion applications. This section describes how to create and use
the Application.cfm file, the application page that controls the application
framework.

Contents

• Understanding the Web Application Framework.. 68

• Establishing Application-Level Settings... 69

• Using Application and Session Variables ... 72

• Client Variables and Client State Management ... 78

• Default Variables and Constants... 82

• Using CFLOCK for Exclusive Locking ... 83

• Generating Custom Error Messages (CFERROR)... 84

• Application Security... 85

68 Developing Web Applications with ColdFusion
Understanding the Web Application Framework
A ColdFusion application is a collection of application pages that work together.
Applications can be as simple as a guest book or as sophisticated as a full Internet
commerce system with catalog pages, shopping carts, and reporting. You can combine
individual applications to create advanced Web systems.

The ColdFusion Web Application Framework is based on four basic components:

• Application-level settings and functions

• Client state management

• Custom error handling

• Web server security integration

With these components, you can easily combine your ColdFusion application pages
into sophisticated Web applications.

Application-level settings and functions

ColdFusion offers application-level features that help you control settings, variables,
and features available across the entire application. Once you have defined an
application, you can use the application-level features in addition to all of the other
features in ColdFusion.

The application framework relies on a special application-wide template called
Application.cfm, which defines application-level settings and functions such as:

• The application name

• Client state management options

• Application and session variables

• Default variables

• Custom error pages

• Data sources

• Default style settings

• Exclusive locks

• Other application-level constants

Note Because UNIX is case sensitive, the application framework file must be spelled with an
initial capital, Application.cfm, for applications that run on UNIX platforms.

See Establishing Application-Level Settings in this chapter.

Chapter 6: Using the Application Framework 69
Client state management

Because the Web is a stateless system, each connection a browser makes to a Web
server is unique in the eyes of the Web server. However, within an application it is
important to be able to keep track of users as they move through the pages within the
application. This is the definition of client state management.

You can maintain client state by seamlessly tracking variables for a browser as the user
moves from page to page in an application. This can be used in place of other methods
for tracking client state such as using URL parameters, hidden form fields, and HTTP
cookies.

See Enabling Client State Management for more information.

Custom error handling

Using the CFERROR tag, you can display customized HTML pages when errors occur.
This allows you to maintain a consistent look and feel within your application even
when errors occur. It also allows you to optionally suppress the display of error
information.

CFERROR is often used with CFTRY, CFCATCH, and CFTHROW to customize error
pages in ColdFusion applications.

See Generating Custom Error Messages (CFERROR) for more information.

Web server security integration

You can integrate your applications with the user authentication and security provided
by your Web server. In addition, the ColdFusion Server offers a security framework that
controls access to applications, pages, data sources, and users. You set the bounds of a
security domain using the CFAUTHENTICATE tag.

See Integrating with web server security for more information.

Establishing Application-Level Settings
When any ColdFusion application page is requested, ColdFusion searches up the
page’s directory tree for an Application.cfm file. When it is found, the
Application.cfm code is logically included at the beginning of that page.

If it is not found, ColdFusion searches up the directory tree until it finds an
Application.cfm file. If more than one Application.cfm file lives in the current
directory tree, ColdFusion uses the first one it finds.

Note ColdFusion continues searching for the Application.cfm file up to the root directory
of the hard drive where the web root resides.

70 Developing Web Applications with ColdFusion
Advantages of using the Application Framework

Because the Application.cfm page is processed before any other application page, it
gives you the ability to set application-level parameters, and to perform queries and
other functions.

Since Application.cfm files are standard ColdFusion application pages, you may use
CFML code within them to dynamically determine the values of application-level
settings based on queries, client-state information, and so on.

By defining a scope for one or more applications, Application.cfm files can be
implemented for individual or multiple applications. A single Application.cfm file,
installed in your ColdFusion application root directory, can globally control settings in
multiple applications nested below the root.

Note ColdFusion Server scope variables are available to all application pages. This is a
potential source of conflict with variables set in Application.cfm pages. See How
ColdFusion looks up variables in Chapter 4, “Creating and Manipulating Variables,” on
page 31 for information on the order in which ColdFusion finds variables.

The flexibility of ColdFusion allows for a number of different ways to configure
ColdFusion applications. The following sections describe a basic approach that will
work for most cases.

Defining an application

An important step in designing a ColdFusion application is mapping out its directory
structure.

Before you start building the application, establish a root directory for the application.
Application pages may also be stored in sub-directories of the root directory.

Note In UNIX, the references to Application.cfm are case-sensitive. The filename must be
spelled with an initial capital.

To set up an application framework:

1. Create an Application.cfm file in the root of the application directory for
application-level settings.

2. Set application-level settings and error handling.

3. Enable client state management with the CFAPPLICATION tag.

4. Enable any optional features you want, such as security (using
CFAUTHENTICATE), locking (using CFLOCK), or error handling (using
CFERROR).

For details on setting up user security in the Application.cfm file, see the user
security information in Advanced ColdFusion Development.

Chapter 6: Using the Application Framework 71
Establishing an application root directory

All of the page files in an application do not need to be in the same root directory.
However, defining a root directory for an application has a number of advantages:

• Development: The application is easier to develop and maintain because the
application page files are well organized.

• Portability: The application can be more easily moved to another server or
another part of a server without having to change any code in the application
page files.

• Application-level Settings: Application pages that fall under the same root
directory can share application-level settings and functions.

• Security: Application pages that fall under the same directory can share Web
server security settings.

You can use a single Application.cfm file for your application, or use many different
Application.cfm files that govern individual sections of the application.

Application scope example

The directory trees below illustrate two approaches to implementing the Application
Framework.

• In the first example, a company named Web Wonders, Inc. uses a single
Application.cfm file installed in their application root directory to process all
application page requests.

• The illustration on the right shows how Bandwidth Associates uses the settings
in individual Application.cfm files to specify processing for ColdFusion
applications at the departmental level. Only the Products application pages are
processed using the settings in the root Application.cfm file. The Consulting,
Marketing, and Sales directories each has its own Application.cfm file.

72 Developing Web Applications with ColdFusion
Behavior with CFINCLUDE

Only one Application.cfm file is ever processed for each ColdFusion application
page. The presence of an Application.cfm file is an implicit CFINCLUDE. If it is
present in the directory tree, there is no way not to include it. (For this reason, it is the
ideal location to set application-level variables.)

When the requested application page has a CFINCLUDE tag pointing to an additional
application page, ColdFusion does not initiate another search up the directory tree
based on the included application page.

This is an important behavior to understand. Upon opening a requested application
page, ColdFusion searches for the Application.cfm file only once.

Using Application and Session Variables
In ColdFusion, you use variables to work around the Web’s inherent statelessness.
Session and application variables are persistent variable "scopes." You access these
variables by prefacing the variable name with the scope name, for example:
Session.MyVariable or Application.MyVariable. And because they are persistent, you
can pass values between pages with a minimum of effort.

Products

Application.cfm

Orders

Support

Services

Application.cfm

Application.cfm

Application.cfm

Application.cfm

Web Wonders, Inc. Bandwidth Associates

Products

Consulting

Marketing

Sales

Chapter 6: Using the Application Framework 73
Enabling application and session variables

Session and application variables are similar in operation to client variables. Like
client variables, they are enabled with the CFAPPLICATION tag. See the CFML
Language Reference for more information on the CFAPPLICATION tag.

Unlike client variables, however, which are stored in either the system registry, a data
source, or a cookie, application and session variables are always stored in the
ColdFusion server’s memory. This method offers obvious performance advantages. In
addition, you can set time-out values for these variables either with CFAPPLICATION,
or by specifying time-outs in the ColdFusion Administrator. You can also simply
disable application and session variables entirely.

For information on setting time-outs for variables, see Administering ColdFusion
Server.

Session variables

Use session variables when the variables are needed for a single site visit or set of
requests. For example, you might use session variables to store a user’s selections in a
shopping car application. (Use client variables when the variable is needed for future
visits.)

How long do sessions last?

A session refers to all the connections that a single client might make to a server in the
course of viewing any pages associated with a given application. This logical view of a
session begins with the first connection by a client and ends (after a specified time-out
period) after that client’s last connection.

It’s important to understand that sessions are specific to individual users. As a result,
every user has a separate session and has access to a separate set of session variables.

It’s also important to understand that a session is a logical construct. Because of the
stateless nature of the Web, it’s not always possible to define a precise point at which a
session ends. In the real world, a session ends when the user finishes using an
application and goes off to do something else. In most cases, however, a web
application has no way of knowing if a user is finished or if he’s just lingering over a
page.

To impose some structure where there is none, session variables have a programmer-
specified time-out period associated with them. If the user does not access a page of
the application within this time-out period, ColdFusion interprets this as the end of
the session and clears any variables associated with that session.

Session variable time-outs

Session variables have a specific lifetime, and it is this lifetime that defines a “session.”
For example, when you access a session variable within its specified lifetime, the
variable returns a value because your request occurs during a single, time-limited

74 Developing Web Applications with ColdFusion
session. On the other hand, if you do not access a session variable within its specified
lifetime, the variable will time-out and will no longer be available to you.

The default time-out for session variables is set to 20 minutes. In the Variables page of
the ColdFusion Administrator, you can change this time-out value. See the
Administering ColdFusion Server book for more information.

You can also set the time-out period for session variables inside a specific application
(thereby overruling the Administrator default setting) by using the SESSIONTIMEOUT
attribute of the CFAPPLICATION tag.

Using session variables

Session variables are designed to store session-level data. They are a convenient place
to store information that all pages of your application might need during a user
session. Using session variables, an application could initialize itself with user-specific
data the first time a user hit a page of that application. This information could then
remain available while that user continues to use that application. For example,
information about a specific user’s preferences could be retrieved from a database
once, the first time a user hits any page of an application. This information would
remain available throughout that user’s session, thereby avoiding the overhead of
retrieving the preferences again and again.

Session variables work exactly as client variables do, in that they require a client name
(client ID) and are always scoped within that client ID. Session variables also work
within the scope of an application name if one is supplied, in which case their scope
will be the combination of the client ID and the application name.

Because session variables no longer require client variables to be turned on, the
following read-only variables have been added to the session variable scope: CFID,
CFTOKEN, and URLTOKEN.

To enable session variables, set SESSIONMANAGEMENT="Yes" in the CFAPPLICATION tag
in your Application.cfm file.

Example

<!--- This example illustrates CFAPPLICATION --->
<!-- Begin Application -->
<!---

MODULE: application.cfm
PURPOSE: application.cfm file for our sample
CREATED: today’s date
AUTHOR: the author
COPYRIGHT: (c) 1998 the author for a company
CHANGE HISTORY:

--->
<!--- name application, set session variables to on --->
<CFAPPLICATION NAME=’GetLeadApp’ SESSIONMANAGEMENT=’Yes’>
<!--- set data source for this application --->
<CFSET dsn = ’my_dsn’>
<!--- set global error handling for this application --->
<CFERROR TYPE=’REQUEST’ TEMPLATE=’request_err.cfm’

Chapter 6: Using the Application Framework 75
MAILTO=’webmaster@mysite.com’>
<CFERROR TYPE=’VALIDATION’ TEMPLATE=’val_err.cfm’

MAILTO=’webmaster@mysite.com’>

<!--- set some global variables for this application
to be triggered on every page --->
<CFSET MainPage = ’default.cfm’>
<CFSET session.current_location = ’Davis, Porter, Alewife’>
<CFSET sm_location = ’dpa’>
<CFSET current_page = ’#cgi.path_info#?#cgi.query_string#’>
<!-- End Application -->

Application variables

An application refers to all the related web pages that make up a particular piece of
functionality. In ColdFusion, you define an application by giving it a name using the
CFAPPLICATION tag. By using the same application name in a CFAPPLICATION tag,
you definte a set of pages as being part of the same logical application.

Note The value you set for the NAME attribute in CFAPPLICATION is limited to 64
characters.

Using application variables

Application variables are designed to store application-level data. They are a
convenient place to store information that all pages of your application might need no
matter who (what client) is running that application. Using application variables, an
application could initialize itself, say, when the first user hit any page of that
application. This information could then remain available indefinitely to all
subsequent hits of any pages of that application, by all users, thereby avoiding the
overhead of repeated initialization.

Because the data stored in application variables is available to all pages of an
application and remains available until ColdFusion Server is shut down, application
variables are very convenient. However, because all clients running an application see
the same set of application variables, they are not useful for client-specific
information. To target variables for specific clients, use session variables.

Application variables require an application name be associated with them and are
always scoped within that application name.

Unlike client and session variables, however, they do not require that a client name
(client ID) be associated with them. Thus, they are available to any clients that specify
the same application name.

Application variable time-outs

Application variables have a specific lifetime, and this lifetime defines an
“application.” For example, when you access an application variable inside a specific

76 Developing Web Applications with ColdFusion
application, the variable returns a value because your request occurs on a page
declared in the CFAPPLICATION tag to be part of a single application.

The default time-out period for application variables is two days. In the Variables page
of the ColdFusion Administrator, you can define time-out values for application and
session variables. See Administering ColdFusion Server for more information.

You can set the time-out period for application variables within a specific application
(thereby overriding the default setting in the ColdFusion Administrator) by using the
APPLICATIONTIMEOUT attribute of the CFAPPLICATION tag.

If no clients access the application within the specified time-out period, ColdFusion
Server destroys its application variables.

Differentiating client, session, and application variables

This table shows the relationships among client, session, and application variables:

Variable scopes are required

ColdFusion does not attempt to automatically evaluate Application and Session
variables. You must use variable prefixes with these variables, as in
Session.variablename or Application.variablename.

Tips for using session and application variables

In general, session and application variables are designed to hold information that you
seldom write but are read often. In most cases, the values of these variables are set
once, most often when an application is first started (Application variables) or the first
time a user begins using an application (Session variables). Then the values of these
variables will be referenced many times throughout the life of the application or the
course of a session.

When using application variables, keep in mind that these variables are shared by all
instances of an application that might be running on a server. Because of this sharing,
applications cannot assume that values saved in these variables will not be overwritten
by other instances of the same application that might be simultaneously running on
the server. Of course, this is not a problem if these variables are treated as “write-once,
read-many,” but can be a problem if they are written to indiscriminately.

Kinds of Variables

Variable
Type

Application
Names

Client
IDs

Client
Mgmt

Session
Mgmt

Time-out

Client Optional Required Required n/a Optional

Session Optional Required Required Required Optional

Application Required n/a n/a n/a Optional

Chapter 6: Using the Application Framework 77
Example

Here is an example of the use of several application variables. Note that they are used
within the Application.cfm file since this is a natural place to perform an operation
that needs to be done every time any of the application’s pages are run. In this
example, an application variable, Application.Initialized, is used as a flag to indicate
whether or not the application variables have been initialized.

<!--- Declare a name for this application. This
automatically turns on application scope --->

<CFAPPLICATION NAME="AccountCheck">

<!--- Test to see if application variables
have already been defined --->

<CFIF NOT IsDefined("application.initialized")>
<CFSET application.query1= ??? >
<CFSET application.query2= ??? >
<CFSET application.initialized=1>

</CFIF>

Managing session and application variables

When you install ColdFusion, the default time-out for session variables is set to 20
minutes and for application variables, two days. There are two ways to manage
application and session variable expiration. You can override these values by
specifying different time-out values in the CFAPPLICATION tag. Or you can redefine
the default time-out values in the ColdFusion Administrator.

To enable session and application scopes, and to define time-out options, open the
Variables page of the ColdFusion Administrator. You can specify individual time-out
settings for each variable type. Although these variables occupy very little of
ColdFusion's available memory, you have the option of disabling their use altogether,
or limiting their use with time-outs. See Administering ColdFusion Server for more
information about using the Variables settings.

Getting a list of application and session variables

The variable scope names “application” and “session” are registered as ColdFusion
structures. This enables you to use the ColdFusion Structure functions to get a list of
application and session variables. For example, you can use CFLOOP with the
StructFind function to output a list of application and session variables defined for a
specific application.

To find a list of client variables, you use the GetClientList function.

See the CFML Language Reference for more information on these functions. See the
chapter Working with Structures in the Advanced ColdFusion Development book.

78 Developing Web Applications with ColdFusion
Client Variables and Client State Management
The Web is a stateless system. Each connection that a browser makes to a Web server is
unique in the eyes of the Web server. However, within an application it is important to
be able to keep track of users as they move through the pages within the application.
This is the definition of client state management.

ColdFusion achieves client state management by creating a client record for each
browser that requests an application page in an application in which client state
management is enabled. The client record is identified by a unique token that is stored
in an HTTP cookie in the user’s browser.

The application can then define variables within the client record. These client
variables are accessible as parameters in every application page that the client
requests within the scope of the application.

Enabling Client State Management

To set up client state management, each page in the application must contain a
CFAPPLICATION tag that sets the name of the application and enables the
CLIENTMANAGEMENT attribute. The best place to put this tag is at the beginning of
the Application.cfm file, which is included in all of the application’s pages. This way
client state management is enabled for every page in the application.

For example, to enable client state management for the sample Products application,
add this CFAPPLICATION code to the beginning of the Application.cfm file:

<CFAPPLICATION NAME="Products" CLIENTMANAGEMENT="Yes">

All application pages at and beneath this Application.cfm file in the directory
structure are now able to use client state management.

Note Client state management can work without cookies as well. See Using client state
management without cookies in this chapter.

Choosing a client variable storage method

The system-wide default is for client variables to be stored in the system registry. But
your site administrator can choose to store them instead in a SQL database or in
cookies.

There are two steps to changing client variable storage: by setting a client variable
storage option in the Variables page of the ColdFusion Administrator, and then by
noting the client variable storage location in the CFAPPLICATION tag. See
Administering ColdFusion Server for information on using the ColdFusion
Administrator.

You use the CLIENTSTORAGE attribute in the CFAPPLICATION tag to specify where
you want to store client variables, providing one of three values:

• Registry

• The name of a configured client store

Chapter 6: Using the Application Framework 79
• Cookie

The following example shows how you enable client state management using a sample
database called mydatasource.

<CFAPPLICATION NAME="myapplication"
CLIENTMANAGEMENT="Yes"
CLIENTSTORAGE="mydatasource">

If no ClientStorage setting is specified, the default location, as noted in the ColdFusion
Administrator Variables page, is used.

Note Client storage mechanisms are exclusive; when one storage type is in use, the values
set in other storage options are unavailable.

Cookie storage

When you set CLIENTSTORAGE="Cookie" the cookie that ColdFusion creates has the
application’s name. Storing client data in a cookie is scalable to large numbers of
clients, but this storage mechanism has some limitations. Chief among them is that if
the client turns off cookies in the browser, client variables won’t work.

Consider these additional limitations before implementing cookie storage for client
variables:

• Netscape Navigator allows only 20 cookies from a particular host to be set.
ColdFusion uses two of these cookies for CFID and CFTOKEN, and also creates
a cookie named CFGLOBALS to hold global data about the client, such as
HitCount, TimeCreated, and LastVisit. This limits you to 17 unique applications
per host.

• Netscape Navigator sets a size limit of 4K bytes per cookie. ColdFusion encodes
non-alpha-numeric data in cookies with a URL encoding scheme that expands
at a 3-1 ratio, which means you should not store large amounts of data per
client. ColdFusion will throw an error if you try to store more than 4000
encoded bytes of data for a client.

Using client state management

When client state management is enabled for an application, you can use the system
to keep track of any number of variables associated with a particular client.

Creating a client variable

To create a client variable and set the value of the parameter, use the CFSET or
CFPARAM tag.

Example

The following example sets the value of a client variable named FavoriteColor to “Red”:

<CFSET Client.FavoriteColor="Red">

80 Developing Web Applications with ColdFusion
Once a client variable has been set in this manner, it is available for use within any
application page in your application that is accessed by the client for whom the
variable is set.

Example

The following example shows how to use the CFPARAM tag to check for the existence
of a client parameter and to set a default value if the parameter does not already exist:

<CFPARAM NAME="Client.FavoriteColor" DEFAULT="Red">

Using client variables

A client variable is accessed using the same syntax as other types of variables, and can
be used anywhere other ColdFusion variables are used.

Example

To display the favorite color that has been set for a specific user, use the following code:

<CFOUTPUT>
Your favorite color is #Client.FavoriteColor#.

</CFOUTPUT>

Standard client variables

In addition to storing custom client variables, the Client object has several standard
parameters. These parameters can be useful in providing customized behavior
depending on how often users visit your site and when they last visited. For example,
the following code shows the date of a user’s last visit to your site:

<CFOUTPUT>
Welcome back to the Web SuperShop. Your last
visit was on #DateFormat(Client.LastVisit)#.

</CFOUTPUT>

The standard Client object attributes are read-only (they can be accessed but not set by
your application) and include CFID, CFToken, URLToken, HitCount, TimeCreated, and
LastVisit.

Using client state management without cookies

You can use ColdFusion’s client state management without cookies. However, we do
not recommend this course. Developers who choose to maintain client state without
cookies must ensure that every request carries CFID and CFTOKEN.

To maintain client state without cookies, set the SETCLIENTCOOKIES attribute of the
CFAPPLICATION tag to No. Then, the developer must maintain client state in URLs. by
passing the client ID (CFID)and the client security token (CFTOKEN) between pages,
either in hidden form fields or appended to URLs. You accomplish this using the
variable Client.URLTOKEN or Session.URLTOKEN.

Chapter 6: Using the Application Framework 81
Note In ColdFusion, client state management is explicitly designed to work with cookies, the
standard tool for identifying clients. Using client state management without cookies
requires careful programming to ensure that the URLToken is always passed between
application pages.

Getting a list of client variables

To obtain a list of the custom client parameters associated with a particular client, use
the GetClientVariablesList function.

<CFOUTPUT>#GetClientVariablesList()#</CFOUTPUT>

The GetClientVariablesList function returns a comma-separated list of variable names
defined for the application context declared by CFAPPLICATION, if any. The standard
system-provided client variables (CFID, CFToken, URLToken, HitCount, TimeCreated,
and LastVisit) are not returned in the list.

Deleting client variables

Unlike normal variables, client variables and their values persist over time. (In this
fashion they are akin to cookies.) To delete a client variable, use the
DeleteClientVariable function. For example:

<CFSET IsDeleteSuccessful=DeleteClientVariable("MyClientVariable")>

The DeleteClientVariable function operates only on variables within the scope
declared by CFAPPLICATION, if any. See the CFML Language Reference for more
information on this function.

Also, through the Variables page of the ColdFusion Administrator, you can edit the
client variable storage to remove client variables after a set number of days. (The
default value is 90 days when client variables are stored in the registry, ten days when
stored in a data source.)

See Administering ColdFusion Server for more information about setting time-out
values.

Note The system-provided client variables (CFID, CFToken, URLToken, HitCount,
TimeCreated, and LastVisit) cannot be deleted.

Client variables with CFLOCATION behavior

When using CFLOCATION to redirect to a path that contains .dbm or .cfm, the
Client.URLToken is automatically appended to the URL. This behavior can be
suppressed by adding the attribute ADDTOKEN=“No” to the CFLOCATION tag.

Variable caching

All client variable reads and writes are cached to help decrease the overhead of client
state management operations. See the Adminstering ColdFusion Server book for
information on variables and server clustering.

82 Developing Web Applications with ColdFusion
Exporting the client variable database

If your client variable database is stored in the system registry and you need to move it
to another machine, you can export the registry key that stores your client variables
and take it to your new server. The system registry allows you to export and import
registry entries.

To export your client variable database from the registry:

1. Open the registry editor. In UNIX, use the program, /<install_dir>/
coldfusion/bin/regedit.

2. Find and select the following key:
HKEY_LOCAL_MACHINE\SOFTWARE\Allaire\ColdFusion\
CurrentVersion\Clients

3. On the Registry menu, click Export Registry File.

4. Enter a name for the registry file.

Once you’ve created a registry file, you can take it to a new machine and import it by
selecting Import Registry File on the Registry Editor Registry menu.

For more information on using variables in ColdFusion applications, see Chapter 4,
“Creating and Manipulating Variables,” on page 31 in this book.

Default Variables and Constants
It is often useful to set default variables and application-level constants in the
Application.cfm file. For example you may want to designate:

• A data source you’re using

• A domain name

• Style settings such as fonts or colors

• Other important application-level variables

Example: Application.cfm

The following example shows a complete Application.cfm file for the sample
Products application:

<!--- Set application name and enable client
variables option, with client variables stored in
a data source called mycompany --->

<CFAPPLICATION NAME="Products"
CLIENTMANAGEMENT="Yes"
CLIENTSTORAGE="mycompany">

<!--- Install custom error pages --->

Chapter 6: Using the Application Framework 83
<CFERROR TYPE="REQUEST"
TEMPLATE="RequestErr.cfm"
MAILTO="admin@company.com">

<CFERROR TYPE="VALIDATION"
TEMPLATE="ValidationErr.cfm">

<!--- Set application constants --->

<CFSET HomePage="http://www.mycompany.com">
<CFSET PrimaryDataSource="CompanyDB">

Using CFLOCK for Exclusive Locking
The CFLOCK tag single-threads access to the CFML constructs in its body, so that the
body of the tag can be executed by at most one request at a time. A request executing
inside a CFLOCK tag has an "exclusive lock" on the tag. No other requests are allowed
to start executing inside the tag while a request has an exclusive lock. ColdFusion
issues exclusive locks on a first-come first-serve basis.

Using CFLOCK around CFML constructs that modify shared data ensures that the
modifications occur one after the other and not all at the same time. As a general rule,
you should use the CFLOCK tag to perform updates to variables in the Application,
Server, and Session scopes in the Application.cfm file.

Example

<!--- This example shows how CFLOCK can be used to
guarantee the consistency of data updates to variables
in the Application, Server, and Session scopes. The
following code might be part of Application.cfm. --->

<HTML>
<HEAD>CFLOCK Example</HEAD>

<BODY>
<H3>CFLOCK Example</H1>

<CFLOCK NAME="ApplicationData" TIMEOUT=30>
<CFIF NOT IsDefined("Application.IsApplicationDataInitialized")>

<CFSET Application.IsApplicationDataInitialized=TRUE>
<CFSET Application.ImportantValue = 5>

</CFIF>
</CFLOCK>
<CFOUTPUT>

Important value is #Application.ImportantValue#
</CFOUTPUT>

</BODY>
</HTML>

84 Developing Web Applications with ColdFusion
See the CFML Language Referencefor more information on using CFLOCK.

Generating Custom Error Messages (CFERROR)
ColdFusion displays error pages that can help you to debug your application. There are
two types of errors in ColdFusion:

1. REQUEST — Request errors occur when a application page is requested and there
is an error in the page’s code.

2. VALIDATION — Validation errors occur when a user violates the form field
validation rules during a form submittal.

By default, ColdFusion returns a standard page for these errors. But you may want to
customize the error pages that are returned, to make them consistent with the look
and feel of your application. Custom error pages also allow you to control the error
information that users see, as well as offering work-arounds or ways for users to report
the errors.

You set the custom error application pages with the CFERROR tag. You can set the
custom error application pages page-by-page, but because custom error pages
generally apply to an entire application, it is more efficient to include the CFERROR tag
in the Application.cfm file. After you create a custom error page, you must include
the CFERROR tag in your application’s Application.cfm page.

For information on the syntax of the CFERROR tag, see the CFML Language Reference.

Creating an error application page

The error application page is a file that includes HTML and the parameters associated
with the error. The error application page cannot use any CFML tags.

The parameters associated with an error depend on the type of error. All the error
parameters use the Error prefix (for example, Error.Diagnostics).

See the CFML Language Reference for more information on the error variables and on
using the CFERROR tag.

The following examples show the two types of custom error pages.

Example of a request error

The following example shows a custom error page for a request error:

<HTML>
<HEAD>

<TITLE>Products - Error</TITLE>
</HEAD>
<BODY>

<CFOUTPUT>
<H2>Sorry</H2>

Chapter 6: Using the Application Framework 85
<P>An error occurred when you requested this page.
Please email the Webmaster to report this error. We
will work to correct the problem and apologize
for the inconvenience.</P>

<TABLE BORDER=1>
<TR><TD>Error Information

#Error.DateTime#

#Error.Template#

#Error.RemoteAddress#

#Error.HTTPRefer#

</TD></TR></TABLE>

</CFOUTPUT>
</BODY>
</HTML>

Example of a validation error

The following example shows a custom error page for a validation error.

<HTML>
<HEAD>

<TITLE>Products - Error</TITLE>
</HEAD>
<BODY>

<H2>Oops</H2>

<P>You failed to complete all the fields
in the form. The following problems occurred:</P>

#Error.InvalidFields#

</BODY>
</HTML>

Application Security
ColdFusion also offers a security framework that lets you apply security to pages,
applications, and users. First you use the Advanced Security page of the ColdFusion
Administrator to set up a security context that governs access to resources for
authenticated users. Then you use the CFAUTHENTICATE tag in your
Application.cfm file to authenticate users.

For details and examples of securing your application pages, see the Application
Security chapter in Advanced ColdFusion Development.

86 Developing Web Applications with ColdFusion
Integrating with web server security

If the application pages in your application are located in the Web server document
directory, you can use your Web server’s native authentication and encryption services
to secure your ColdFusion application. Each Web server has a different way of
configuring security settings, creating users, groups, and establishing privileges.
Consult your Web server documentation for instructions on configuring your server’s
settings.

Authentication

In ColdFusion, you can use the CFAUTHENTICATE tag in the Application.cfm file to
establish a security domain for your application. See the Application Security chapter
in the Advanced ColdFusion Development book for information on using
CFAUTHENTICATE to establish a user’s authentication state.

You can also use your Web server’s authentication system. When the Web server
authenticates a user, it returns a unique variable that is available within your
application page as the CGI Environment parameter “Auth_User.” You can use this
parameter to access additional information about a user out of a database. In general,
it is more straightforward to simply organize your security on an application page
level.

Encryption

ColdFusion offers two functions to encrypt strings in application pages: Encrypt() and
Decrypt(). See the CFML Language Reference for information on using these functions.

Because ColdFusion returns Web pages to the Web server, you can also use your Web
server’s encryption technology to encrypt the pages in your applications. This is
especially useful for commerce applications that require a higher level of security.

For more information on securing your application pages, see the Application Security
chapter in the Advanced ColdFusion Development manual. Also, for information on
using the security features in the ColdFusion Administrator, see the security chapters
in Administering ColdFusion Server.

C H A P T E R 7
Chapter 7 Debugging and
Troubleshooting
There are several ways to debug your ColdFusion pages and track errors. This
chapter describes how to use the Interactive Debugger in ColdFusion Studio to set
breakpoints and debug dynamic pages against the ColdFusion Server.

It also describes the debugging output that is written as a footer to the pages
generated by ColdFusion.

Contents

• Using the Interactive Debugger in ColdFusion Studio.................................. 88

• Creating RDS Mappings .. 89

• Running the Interactive Debugger ... 92

• Debug Settings in ColdFusion Administrator.. 96

• Troubleshooting ... 98

88 Developing Web Applications with ColdFusion
Using the Interactive Debugger in ColdFusion Studio
Developers can use the interactive debugger in ColdFusion Studio to debug dynamic
pages against the ColdFusion application server.

You can use the debugging tools to:

• Set breakpoints and watches

• Evaluate variables and expressions

• Step through lines of code

• Investigate the code stack

• Monitor recordsets

• Observe variables in all scopes

To run the interactive debugger, you use the Debug menu or the commands on the
Debug toolbar in ColdFusion Studio. But first, you need to set up the debugger with the
correct paths to both your application pages and your ColdFusion server.

The following sections describe these procedures in detail.

Getting Started

First, you need to take the following steps to set up the debugging session:

• Select the ColdFusion server against which you’d like to run the debugging
session.

• Provide mappings to specify the ColdFusion Studio path, the ColdFusion Server
path, and the browser’s path to the files you’d like to debug.

• Specify the first page in the application to be debugged.

Configuring a Remote Development Server

To access a remote server in ColdFusion Studio, you must first configure the server and
provide security login information if the server is protected through ColdFusion
security.

To configure a remote development server:

1. In ColdFusion Studio, open the first application page you would like to debug and
choose Debug > Debug Settings.

2. In the Debug Start pane of the Remote Development Settings dialog box, choose
Add RDS Server from the drop-down list.

3. In the Configure RDS Server dialog box, enter the description, host name, user
name, password, and port of the Remote Server. You can also choose whether or
not to use Secure Sockets Layer to access the server.

Chapter 7: Debugging and Troubleshooting 89
4. If your remote server is protected by ColdFusion RDS Security, enter the user
name and password you use to access this protected resource.

5. Click OK.

Creating RDS Mappings
Because the interactive debugger runs in ColdFusion Studio, against the ColdFusion
Server and displaying to a Web browser, you must specify file mappings for the
directory where the application lives.

Before you start debugging an application, you need to know the following mappings:

• Studio Path — How does ColdFusion Studio see the directory?

• Server Path — How does the Web server/ColdFusion server see the directory?

• Browser Path — How does the browser see the directory?

An important part of setting up the debugger is creating mappings that inform the
debugger how the local paths you use in ColdFusion Studio translate into server paths
and URLs.

File mapping examples

The following scenarios show how file mappings work when you have local or remote
files matched with either local or remote servers:

• ColdFusion Studio and Server on the same machine

• ColdFusion Studio debugging on remote ColdFusion Server using drive
mappings

• ColdFusion Studio debugging on remote ColdFusion Server using Network
Neighborhood

• ColdFusion Studio debugging on remote ColdFusion Server using RDS file
access

ColdFusion Server and Studio on the same machine

Debugging against a local ColdFusion Server is the most common scenario. In most
cases, this arrangement allows both the Server and Studio to see the directories in the
same way.

For example, the local path c:\inetpub\wwwroot translates to an identical server path
C:\inetpub\wwwroot, and a URL path of http://215.180.21.1/. The use of
mappings in such a scenario is mainly for URL resolutions. The URL part of the
mapping instructs ColdFusion Studio how a physical file can be viewed in a browser.

90 Developing Web Applications with ColdFusion
In this example, you would create a mapping as follows:

Studio accesses files on a remote ColdFusion server using drive
mappings

Developers often debug against a remote ColdFusion server across an internal
network. In many cases, they use a network drive mapping.

For example, a user may have a remote drive X:\ mapped to a network shared
directory \\MYSERVER\WEBPROJECTS\ where WEBPROJECTS is the name of the shared
directory in the network server MYSERVER.

In such a scenario, a file that appears to Studio as

X:\App1\Index.cfm

May be viewed by the CF server as

C:\webprojects\App1\index.cfm

The browser may view it using the URL path

http://215.180.21.1/App1/index.cfm

In order to resolve the communication between ColdFusion Studio and the Server, you
need to create a mapping for the App1 directory as follows:

Studio accesses files on a remote ColdFusion server using UNC
paths/Network Neighborhood

Developers can debug code against remote ColdFusion servers across an internal
network. They often use the Network Neighborhood to access a file on a remote Cold
Fusion server. For example, a developer may be accessing a file on
\\myserver\webprojects\ where webprojects is the name of the shared directory in
the network server myserver.

ColdFusion Server and Studio on same machine

Studio Path C:\inetpub\wwwroot\

Server Path C:\inetpub\wwwroot\

Browser/URL Path http://215.180.21.1/

Studio accesses files on remote ColdFusion server using drive mappings

Studio Path X:\App1\

Server Path C:\webprojects\App1\

Browser/URL Path http://215.180.21.1/App1/

Chapter 7: Debugging and Troubleshooting 91
In such a scenario, a file that appears to Studio as

\\myserver\webprojects\App1\Index.cfm

May be viewed by the ColdFusion server as

c:\webprojects\App1\index.cfm

The browser may view it using the URL path

http://215.180.21.1/App1/index.cfm

ColdFusion Studio and the Server need to understand how a file location appears to
the parties involved. You therefore need to create a mapping for the App1 directory as
follows:

Studio accesses files on a remote ColdFusion server using RDS-
based remote file access

When developing outside local area networks, many developers access files on a
ColdFusion Server across the Internet using the RDS-based remote file access available
from the Remote tab in ColdFusion Studio.

In such a scenario, a file that appears to Studio as

RDS://MY_RDS_SERVER/C:/webprojects/App1/index.cfm

May be viewed by the ColdFusion server as

C:\webprojects\App1\index.cfm

The browser may view it using the URL path

http://215.180.21.1/App1/index.cfm

Although the server path can be inferred from the local RDS path, you still need to
create a mapping. In special scenarios, ColdFusion Server to Studio path resolution
could become ambiguous. You therefore need to create a mapping for the App1
directory as follows:

Studio accesses files on remote CF server using UNC paths/Network
Neighborhood

Studio Path \\MYSERVER\WEBPROJECTS\App1\

Server Path C:\webprojects\App1\

Browser/URL Path http://215.180.21.1/App1/

Studio accesses files on remote CF server using RDS remote file access

Studio Path RDS://MY_RDS_SERVER/C:/WEBPROJECTS/App1/

92 Developing Web Applications with ColdFusion
Specifying server mappings

The debugger in ColdFusion Studio relies on these mappings to communicate to the
ColdFusion server the correct file paths of all files with breakpoints. You create these
mappings in the Mappings pane of the Remote Development Settings dialog box.

To specify server and file mappings for debugging:

1. Choose Debug > Development Mappings to open the Mappings pane of the
Remote Development Settings dialog box.

2. In the ColdFusion Server list box at the top of the dialog box, choose the
ColdFusion server against which you’ll run the debugging session.

3. In the Studio Path box, enter the file path ColdFusion Studio uses for the page
you’re debugging. Click Add.

If you’re debugging against a local server, the Studio and ColdFusion Server paths
are the same. So if you chose localhost, for example, in the ColdFusion Server list
box above, the CF Server Path is the same as the Studio path you just entered.

4. If you’re debugging against a remote server, enter the CF Server Path.

The CF Server path needs to be the same as the alias or virtual mapping your web
server uses to access the file.

5. Specify the Browser Path, or URL, of the application and click Add.

6. Click OK.

Running the Interactive Debugger
Running the debugger helps you find problems in code by tracing the way ColdFusion
evaluates the page, step by step. You do this by placing breakpoints in the page to stop
execution of the page, and then step through subsequent lines of code, checking the
values of variables and expressions to make sure the code is behaving as you’d expect.

After you’ve set up remote development settings and file mappings, you can use the
commands on the Debug menu and the Debug toolbar to run the debugger.

See Chapter 3, “ColdFusion Studio Quick Start,” on page 19 for a list of keyboard
shortcuts for the debugger.

Note You cannot debug encrypted templates.

Server Path C:\webprojects\App1\

Browser/URL Path http://215.180.21.1/App1/

Studio accesses files on remote CF server using RDS remote file access

Chapter 7: Debugging and Troubleshooting 93
To run the interactive debugger:

1. In ColdFusion Studio, open the first page in the application you want to debug.

The Debug toolbar appears at the bottom of the application window. You can
undock the toolbar by double-clicking on the undock bars on the left-hand side of
the toolbar, drop it into the Quick Bar, or keep it docked.

2. In your ColdFusion application page, set breakpoints in your code by clicking in
the gutter on the left side of the editor window.

The breakpoint lines are colored red. Choose Debug > Toggle Breakpoints to turn
breakpoints on and off. Use the Debug > Clear Breakpoints to delete all
breakpoints in the current document.

3. In the Debug toolbar, hit the Start/Continue tool.

The Remote Development Settings dialog box appears. It shows the default local
server.

4. Specify the Start URL, which is the URL you use to view the page, and click OK.
The list box shows the pages currently open in ColdFusion Studio.

Enter a fully qualified file path relative to your local ColdFusion server -- for
example, http://127.0.0.1/SomeServerPath/index.cfm.

The Debug Start dialog box displays every time you press the Start button in the
Debugger. Use the check box on the Debug Start pane to disable the display of this
box the next time you hit the RUN button.

Whenever possible, ColdFusion Studio tries to calculate the URLs of open file
using the RDS development mappings, which you can set in the Mappings tab.
These mappings are also required to develop on remote servers.

Based on the RDS Security settings at your site, you’ll see a login prompt to access
protected resources.

5. Enter a user name and password if necessary to access remote servers.

The debugger starts, and it forwards your URL to the Browse view. When the
ColdFusion server encounters the breakpoint, a blue bar appears at the
breakpoint in the Edit view. At this point, the ColdFusion server has an open
session, and it waits for your reply from ColdFusion Studio.

6. To continue, hit the Start/Continue button again, and the server moves to the next
breakpoint.

The final time you hit the Start/Continue button, ColdFusion executes the page
and outputs it to the browser.

7. To stop the debugging session, hit the End button.

Note The debugger is active until you hit the End button on the Debug toolbar or choose
Debug > End. This allows you to debug across multiple pages.

94 Developing Web Applications with ColdFusion
Debug windows

Choose View > Debug Window to open the Debug window. There are several panes to
this window:

• Variables — Displays all scopes of local variables.

• Watches — Use this window to set watches and evaluate expressions and
variables.

• Recordsets — Displays the list of recordsets initialized in the current
application page. This pane tracks both CFQUERY-based database recordsets
and dynamic recordsets generated programmatically.

• Output — Shows the output of the page as it is being generated.

• Breakpoints — Shows all the breakpoints that you have set in all files. You can
view, disable, and remove breakpoints from this window, and edit their
conditions.

• Tag Stack — Shows a hierarchy of tag and page attributes, and values.

Each of these windows has an associated command button on the Debug toolbar.

You can undock these windows individually, so you can see breakpoints while you're
looking at the Watches, for example.

Stepping through code

You can use the Step Into, Step Over, Step Out, and Run to Cursor tools on the Debug
toolbar to step through your code.

• Step Into proceeds to the next unit of execution in your code. Use this
command to walk through code line-by-line.

If the next step is inside an included file or CFX, the debugger steps into the
next file.

• Step Over operates in the same way as Step Into, except that it does not step
into included files (CFINCLUDE, CFMODULE, or CFLOCATION) or custom
tags. It executes the included code but does not trace through the included
code step-by-step.

• Step Out is used when you are inside a block of included code and want to step
back to the point in your original page where you entered the included code.

• Use Run to Cursor to execute up to the cursor position, without having to set a
breakpoint. Note that cursor location must be beyond you. If there are
breakpoints between your location and the cursor, Run to Cursor will stop at
these intervening breakpoints.

Chapter 7: Debugging and Troubleshooting 95
Evaluating expressions and setting watches

You can use the evaluator box at the top of the Watches pane of the Debug window to
evaluate arbitrary expressions when the debugger is suspended at a breakpoint. Use
the evaluator when you want to know how an expression evaluates as you step through
code, line by line.

Watches allow you to evaluate the same expression or variable every time you stop
execution. When you set a watch, the debugger evaluates the watched expression. A
hand pops up when the expression’s value changes from one line to the next as you
step through code.

To set watches:

1. Choose Debug > Watches or click the Watches button on the Debug toolbar. The
Watches pane appears.

2. Cut and paste the expression or variable you want to watch into the list box at the
top of the pane.

3. Choose Evaluate to find the value of the expression at the next breakpoint or line
where the Debugger stops.

The Evaluator window shows the results of the evaluation at the current point in
processing the page.

4. Choose Watch to add the expression in the evaluator list box to the list of watched
expressions.

The Watch area shows the values of watched expressions and any error messages
in resolving these parameters.

5. Press the Start/Continue button to continue debugging.

6. When you are finished debugging, press End.

Note You can use the evaluator to change values of variables, create new variables, or
practice using ColdFusion functions in your expressions.

Debugging across multiple pages

The debugger is active even after a page is loaded, and until you press the End button
on the Debug toolbar or choose Debug > End.

This enables you to debug applications across multiple HTML and CFML pages. For
example, you can test the submission of an HTML form and its subsequent processing
by a ColdFusion application page.

96 Developing Web Applications with ColdFusion
Debug Settings in ColdFusion Administrator
ColdFusion can provide important debugging information for every application page
requested by a browser. When enabled, debug output is shown in a block following
normal page output. The debug output can help you track down programming
problems.

You can select from the following debug output options:

• Show variables

• Show processing time

• Show SQL and data source name

• Show query information

Note By default, when you enable any of these options, debug output becomes visible to all
users. You can, however, restrict debug output to a selected IP address.

For information on the debugging and logging settings in the ColdFusion
Administrator, see the Administering ColdFusion Server book.

In the Debugging page of the ColdFusion Administrator, click the boxes to enable these
output options:

Debug Settings in ColdFusion Administrator

Setting Description

Enable performance monitoring Allows the standard NT Performance Monitor
application to display information about the current
ColdFusion Server. On platforms that do not support
the NT Performance Monitor, a command line utility,
CFSTAT, is provided to display the same information.
(You must restart the ColdFusion Server for changes
in this setting to take effect.)

Show variables Displays the CGI environment variables, Form fields,
URL parameters, and cookies passed with the client
request.

Show processing time Displays the time, in milliseconds, it took the
ColdFusion Server to process the page request.

Show SQL and data source name Allows you to view the SQL statement and data
source name in use when an error occurs.

Show query information Displays the number of records, processing time, and
SQL statement for each query executed.

Chapter 7: Debugging and Troubleshooting 97
You can limit display of debugging output to selected users by creating a list of IP
addresses. Type the addresses in the text box and use the Add and Remove buttons to
manage the list.

If no entries are made, the information is displayed to all users. Click Apply to save the
settings.

For more information on using the Administrator, see Administering ColdFusion
Server.

Generating debug information without setting options

You can view the parameters and CGI environment variables for an individual
application page without changing the global settings. Simply append the parameter
“mode=debug” to the end of the URL.

www.myserver.com/cfdocs/test.cfm?mode=debug

Generating debug information for an individual query

You can view debug information for an individual query by putting the DEBUG
attribute into the opening CFQUERY tag:

<CFQUERY NAME="TestQuery" DATASOURCE="MyDB" DEBUG>
SELECT * FROM TestTable

</CFQUERY>

When this query runs, it places the debug information into the output page where the
query is placed.

Error messages

If ColdFusion is unable to fulfill a request because of an error, it returns a diagnostic
message to the user. The message includes a link that allows the user to e-mail a report
of the error to the site administrator. You enable this feature in the Mail Logging page
of the ColdFusion Administrator. Errors are written to a log file for later review.

Database errors

If a database error occurs, the following information is returned (if enabled in the
Administrator Debugging page):

• The ODBC error code and textual explanation of the error code.

• The extended error message returned from the ODBC driver.

• The name of the ODBC data source being used.

• The SQL statement submitted to the database. Note that for Insert and Update
actions, this statement includes parameter markers represented by a "?" in
place of the data values sent to the database.

98 Developing Web Applications with ColdFusion
Syntax errors

If a syntax error occurs while processing a application page, the following information
is returned:

• The line of the application page file on which the syntax error occurred.

• A printout of that line and the lines above and below it.

• An indication of which tokens the CGI script was looking for when it
encountered the syntax error.

Other errors

Other errors that may occur are system related. Examples of these errors include:

• Out of memory

• File or disk access errors (disk full or damaged, sharing violation, etc.)

These errors are also reported to the client and written to the log file, but it is often
more difficult to provide detailed diagnostics for them. If you get a message that does
not explicitly identify the cause of the error, check on key system parameters like
available memory and disk space.

For information on using the Logging settings and Mail Logging settings of the
ColdFusion Administrator, see the chapter Configuring the ColdFusion Server in the
Administering ColdFusion Server book.

Troubleshooting
The following section describes a few common problems that you may encounter and
ways to resolve them.

ODBC data source configuration

Problem: ODBC driver manager cannot make a connection to the database.

The basic requirement for getting ColdFusion to work with an ODBC data source is
that the ODBC driver manager establishes a connection to the database. Many ODBC
problems result from the inability to connect to the database. Connection errors are
difficult to diagnose. They include problems with the location of files, network
connections, and database client library configuration.

Before you take any other diagnostic steps or seek technical support, verify that you
can connect to the database. You can do this by clicking the Verify button on the ODBC
Data Sources page of the ColdFusion Administrator. If you are unable to make a simple
connection from that page, you need to work with your database and/or driver vendor
to solve the problem.

Problem: Data source does not exist or name is incorrectly specified.

Chapter 7: Debugging and Troubleshooting 99
Create data sources before you refer to them in your application source files. Also,
check the spelling of the data source name.

HTTP/URL

Problem: The METHOD in forms sent to the ColdFusion server must be Post.

When you invoke a ColdFusion application page from within an HTML form, you must
use METHOD="Post" rather than METHOD="Get", which is the default. The
METHOD attribute is specified as part of the FORM tag. For example:

<FORM ACTION="test.cfm" METHOD="Post">

If you do not use METHOD="Post", ColdFusion cannot correctly decode the contents
of your form submission.

Problem: URLs cannot have embedded spaces.

Many browsers complain when you include spaces in URLs. The correct way to do this
is to use a plus sign (+) wherever you want to include a space. ColdFusion correctly
translates the + sign into a space.

A common scenario in which this error occurs is when you dynamically generate your
URL from database text fields that may have embedded spaces. To avoid this problem,
include only numeric values in the dynamically generated portion of URLs.

Or, you can use the URLEncodedFormat function, which automatically replaces
spaces with + signs. See the CFML Language Reference for information on using this
function.

CFML syntax errors

Problem: An end tag is omitted.

It is a common error to omit the end tag for the CFQUERY, CFOUTPUT, CFTABLE, or
CFIF tag. If you get an error message you don’t understand, the first thing you should
do is make sure all your CFML tags have matching end tags where appropriate.

When developing pages in ColdFusion Studio, use the Tag Completion feature, which
adds an editing tag each time you create an opening tag.

Problem: Invalid attribute or value.

If you use an invalid attribute or attribute values, ColdFusion returns an error message.
To prevent such syntax errors, use the ColdFusion syntax validation tools in
ColdFusion Studio.

Problem: Mismatched quotes and escape characters.

Check strings in attributes and expressions for proper placement of single and double
quotes.

100 Developing Web Applications with ColdFusion
CFML Syntax Checker

Version 4.0 of the Cold Fusion Application Server features stricter enforcement of
CFML syntax rules. Strict checking can uncover hidden bugs and other types of
undesirable behaviors in your ColdFusion application pages. Allaire recommends that
you always use the strictest possible level of CFML validation.

In rare cases, the more relaxed validation mechanisms used by previous versions of
Cold Fusion may have allowed you to use syntactically incorrect CFML constructs. The
CFML Syntax Checker is a simple application that can aid you in the process of
discovering which of your CFML templates may not conform to the rules CFML 4.0.

The CFML Syntax Checker is available in your ColdFusion installation directory at
install_dir/cfdocs/cfmlsyntaxcheck.cfm.

For more information, see the online documentation in the CFML Syntax Checker
application.

C H A P T E R 8
Chapter 8 Understanding Data Sources
This chapter provides an overview of database structures and procedures for
accessing data sources for ColdFusion applications. It introduces two standards for
working with databases — Open Database Connectivity (ODBC) and the Structured
Query Language (SQL).

We’ll also take a look at a powerful productivity tool called Query Builder. It is part of
ColdFusion Studio and is designed for viewing data sources and building SQL
statements.

Contents

• Data Source Basics ... 102

• Adding an ODBC Data Source... 103

• ODBC Naming Conventions ... 104

• Using Native Database Drivers ... 105

• Using OLE DB Connectivity .. 106

• Structured Query Language (SQL) Overview... 107

102 Developing Web Applications with ColdFusion
Data Source Basics
For ColdFusion developers, the term "data source" can refer to a number of different
types of structured content accessible locally or across a network. You can query Web
sites, LDAP servers, POP mail servers, and documents in a variety of formats.

Most commonly though, a database will drive your applications and in this section a
data source is defined as the entry point for database operations.

Open Database Connectivity (ODBC)

ODBC is the standard interface for connecting to a data source from an application.
The application must have an ODBC driver installed and configured for each data
source. You can check your system’s installed drivers by opening the ODBC Data
Source Manager in the Windows Control Panel.

You can learn more about ODBC and download the ODBC 3.0 Programmer’s Reference
at http://www.microsoft.com/data/odbc/kill/download.htm.

Installing ODBC drivers

You can install the Microsoft Data Access Components (MDAC 2.0) from the
ColdFusion menu on the Windows Start menu. The installed set of ColdFusion ODBC
drivers includes:

• Microsoft SQL Server

• Microsoft Access and FoxPro databases

• Borland dBase-compliant databases

• Microsoft Excel worksheet data ranges

• Delimited text files

Databases

A thorough knowledge of databases is not necessary for developing a ColdFusion
application that interacts with a database, but you will need to learn some basic
concepts and techniques.

A database is a structure for storing units of information. Database management
systems (DBMS) standardize the collection and maintenance of data and provide an
interface for retrieving data.

The data in a database is organized in tables, which are collections of information
about particular items. Those items can be individuals, products, or any entities that
can be uniquely identified. A table consists of a grid of columns and rows. A column
defines a unit of data such as a name, date, or zip code. Data is entered on each row
under the appropriate column headings. A single row constitutes one data record
because the data in that row applies to a unique item. Data can be organized in
multiple tables to fill a wide range of user needs in an efficient manner. This type of

Chapter 8: Understanding Data Sources 103
data structure is known as a relational database and is the type used for all but the
simplest data sets. The structure of a database is called the schema.

From this basic description, a few database design rules emerge. First, each record
must contain a unique identifier, known as the primary key. This could be an employee
ID, a part number, or a customer number. This is typically the column used to
maintain each record’s unique identity among the tables in a relational database.
Second, once a column has been defined to contain a specific type of information, the
data must be entered in that column in a consistent way. This is accomplished by
defining a data type for the column, such as allowing only numeric values to be
entered in the zip code column. Third, assessing user needs and incorporating those
needs in the database design is essential to a successful implementation. A well-
designed database accommodates the changing data needs within an organization.

For example, most companies maintain a database of their customers. At a minimum,
this database contains columns (or fields) for information such as the customer’s
name, address, and phone number. Additional information on orders, payments,
shipping instructions, and so on may be included as part of an order processing
application. Sales information for each customer order can be stored and used to
analyze sales trends and to determine sales commissions. How this data is organized is
a function of the size and scope of the data itself and the complexity of the intended
database operations.

The best way to familiarize yourself with the capabilities of your database product or
DBMS is to review the product documentation.

Adding an ODBC Data Source
Assuming there is a data source available against which your ColdFusion application is
to run, you need to identify it as a ColdFusion data source. To do this, open the Data
Sources ODBC page of the ColdFusion Administrator.

To add a data source:

1. Enter a name for the new data source.

2. Select the appropriate ODBC driver from the list.

3. Click Add to open the Create ODBC Data Source page.

4. Enter information for the new data source in the appropriate fields. Click CF
Settings to display optional settings.

5. Click Create. The new data source is added to the system and displays on the Data
Sources page. To edit data source information, click on the data source name in
the list.

6. To test the data source, open the Verify Data Source page and select it from the list.

You can now work with the data source by coding data operations in your application
pages.

104 Developing Web Applications with ColdFusion
For more information about managing data sources, see Administering ColdFusion
Server.

Tip ColdFusion Studio provides a set of tools to make your work with data sources more
productive.

ODBC Naming Conventions
The formatting of table and field names varies considerably across data sources. As a
working standard for data sources, ODBC defines a naming convention that
developers can follow in database construction. Adhering to the standard makes your
code more portable, giving you increased deployment flexibility and significantly
decreasing the cost of scaling applications to higher-performance database systems.

The standard requires that names begin with a letter and consist only of letters,
numbers, and the underscore character. ColdFusion uses the same standard for
identifying query columns. Therefore, the tables and queries you use with ODBC and
ColdFusion must also adhere to this standard.

Although ODBC allows spaces in table names, ColdFusion does not. You must use
aliases to access tables and field names that contain spaces. In addition, some data
sources require you to specify table owner and table qualifier information to access the
data source.

It is possible to sidestep the ODBC/ColdFusion naming requirements by enclosing
references to nonstandard names with the backquote (‘) character and by using the
SQL “AS” keyword to alias nonstandard names into standard names. However, these
techniques are burdensome and lead to the creation of non-portable code that is
significantly less readable.

Table owners and qualifiers

The ODBC data sources for which ColdFusion bundles desktop drivers generally allow
you to access their tables by simply naming them in the SQL statement. A principal
exception is SQL Server, which requires extended information.

The following statement is intended to return all the records from a SQL Server table
called Orders. To accomplish this, the table name must be preceded by the database
name (orderdb) and the database owner (dbo).

SELECT *
FROM orderdb.dbo.order

Other client/server databases like Oracle and Sybase have their own requirements.
Check the product documentation for the correct qualifiers.

The Microsoft Excel driver requires the backquote (`) and dollar sign ($) to qualify a
worksheet name in a statement. The example below returns all the rows from a
worksheet called "sheet1" in an Excel workbook that has been added as an ODBC data
source.

Chapter 8: Understanding Data Sources 105
SELECT *
FROM ‘sheet1$‘

Using Native Database Drivers
Drivers written specifically for accessing data sources directly from ColdFusion can be
installed with the Enterprise version of the ColdFusion Application Server. Because
they do not need to route SQL queries through the ODBC Driver Manager, they offer a
performance advantage for large-scale data operations.

Open the ColdFusion Administrator Datasources Native Driver page to manage the
drivers.

Bundled drivers

The current set of native drivers contains:

• Oracle 7.3 — requires Oracle 7.3.3 client

• Oracle 8.0 — requires Oracle 8.0.4.0.0

• Sybase System 11 — requires Sybase 11.1.1 client libraries. Sybase patch ebf
7729 is recommended

Attributes for enabling native drivers

You can use the attributes listed below to override settings on the Administrator Native
Driver page:

• DBSERVER — Enter the Sybase or Oracle server name.

• DBNAME (Sybase only) — Enter the database name.

• BLOCKFACTOR (ODBC and Oracle only) — Set the maximum number of rows
to return for each query. The default value is 1, the maximum value is 100.
Certain ODBC drivers may dynamically reduce the block factor at runtime.

These attributes are supported in the CFQUERY, CFINSERT, CFUPDATE,
CFGRIDUPDATE, and CFSTOREDPROC tags.

Note For Sybase SQL Server the syntax for calling a stored procedure with CFQUERY is
different for ODBC and the native Sybase driver. ODBC requires brackets and the word
"call". The native driver does not have this requirement.

ODBC syntax:

<CFQUERY DATASOURCE="" NAME="">
{call dbo.stored_procedure_name}
</CFQUERY>

Native driver syntax:

106 Developing Web Applications with ColdFusion
<CFQUERY DATASOURCE="" NAME="">
dbo.stored_procedure_name
</CFQUERY>

Using OLE DB Connectivity
The OLE DB driver is included with the Professional and Enterprise versions of
ColdFusion on Win32 platforms.

OLE DB data stores

CF developers can now access a range of new data stores, including:

• MAPI-based data stores such as Microsoft Exchange and Lotus Mail

• Non-relational data stores, such as Lotus Notes

• LDAP 2.0 data

• Data from OLE applications like word processors and spreadsheets

• Mainframe data

• HTML and text files, flat-file data

Enabling this capability requires installation of OLE DB providers available from third-
party vendors. The provider software handles data processing in response to requests
from the consumer, in this case ColdFusion.

After installing and configuring the provider software, you can open the CF
Administrator Data Sources OLE DB page and add data stores supported by that
provider. As with other CF data sources, you enter a name and description and select
advanced settings as needed. You will also need to enter:

Provider — the ProgID

ProviderDSN — the data source name

The data source displays on the main OLE DB page and can be used in queries.

OLE DB providers for SQL data stores

Performance gains can be made by running an OLE DB provider, instead of an ODBC
driver, to process SQL. This is dependent on how the provider implement the data call.
Some providers route OLE DB calls through the ODBC Driver Manager, while others go
directly to the database. These latter are akin to native drivers in providing an
alternative to ODBC. Providers are available for all the major relational DBMS products
as well as the data stores listed above.

OLE DB is a Microsoft specification. For more information, including a list of provider
vendors, go to their OLE DB site.

Chapter 8: Understanding Data Sources 107
Structured Query Language (SQL) Overview
SQL is the standard language for performing database operations. Its syntax is
relatively simple, yet it is powerful enough to handle complex data tasks. SQL
commands are encapsulated in the CFQUERY tag to perform data operations in
ColdFusion. The simplicity of this mechanism is one of the principal reasons why
ColdFusion is so popular with developers of data-driven Web applications.

Resources

While a working knowledge of SQL is an important asset for ColdFusion development,
a thorough discussion of SQL syntax and usage is beyond the scope of this user guide.
A number of useful resources can be found at the Online SQL Meta Reference.

SQL syntax overview

A SQL statement is a command made up of clauses that specify the operation to
perform, the data source, and any instructions needed to complete the operation.
Each clause must begin with a keyword.

Here’s a simple example of a SQL statement enclosed in a ColdFusion query:

<CFQUERY NAME="zip_02140"
DATASOURCE="Customer">
SELECT first_name, last_name, phone

FROM Customer
WHERE zip_code = 02140
ORDER BY last_name

</CFQUERY>

The statement uses the SELECT keyword to search the database. The first line of the
statement consists of a keyword followed by the identifiers of the data columns to be
retrieved. The second line is a clause that names the data source, in this case the
Customer table. The third clause uses the equal sign (=) operator to set a condition that
limits the records returned to the specified zip code. The fourth clause sorts the result
set by the specified column.

This query returns a sorted list of the first name, last name, and phone number of
every record in the Customer table that has the value "02140" in the zip code column.
The result set can then be presented in an HTML table using the CFOUTPUT tag.

SQL statements also can be used to manipulate the records in a database, create and
remove data objects, and to run administrative tasks such as setting user access to data
sources. The complete SQL syntax is available in ColdFusion, though most ColdFusion
applications focus on queries and data maintenance operations.

Note Some DBMS vendors use non-standard SQL syntax (known as a dialect) in their
products. ColdFusion does not validate the SQL in a CFQUERY, so you are free to use
any syntax that is supported by your data source. Check your DBMS documentation
for non-standard SQL usage.

108 Developing Web Applications with ColdFusion
Syntax elements

The following sections present brief descriptions of the main SQL command elements.

Statements

These keywords identify commonly-used SQL commands:

• SELECT — Retrieves the specified records.

• INSERT — Adds a new row.

• UPDATE — Changes values in the specified rows.

• DELETE — Removes the specified rows.

Statement clauses

These keywords are used to refine SQL statements:

• FROM — Names the data source for the operation.

• WHERE — Sets one or more conditions for the operation.

• ORDER BY — Sorts the result set in the specified order.

• GROUP BY — Groups the result set by the specified select list items.

Operators

These specify conditions and perform numeric functions:

Operator Description

AND Both conditions must be met, such as Paris AND Texas

OR At least one condition must be met, such as Smith OR Smyth

NOT Exclude the condition following, such as Paris NOT France

= Equal to

<> Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

+ Addition

- Subtraction

Chapter 8: Understanding Data Sources 109
SQL Extensions

This section describes the ODBC extensions to SQL, which enable a high degree of
code portability across data sources.

Several extensions to SQL grammar are defined by ODBC. These extensions make
ODBC SQL more portable across data sources by providing a uniform syntax for
features that vary across database systems. The most commonly used ODBC SQL
extensions include those defined for date/time specification, scalar functions, and
stored procedures.

Date/Time Specifications

ODBC defines a universal format for specifying date and time values. If you need to
include a literal date or time value inside a SQL statement, always use this format. The
formats for date, time, and date/time values are as follows:

When you use the ColdFusion Insert and Update actions, date fields are automatically
validated and converted to the ODBC date format, so you do not need to format the
user’s input. However, when you submit SQL statements directly using a CFQUERY
tag, be sure you properly format all dates and times.

One way to achieve this for dates entered by users is to apply a date validation rule to
the appropriate form field. This ensures that a valid date is entered and the date is
automatically converted to the ODBC format.

Scalar Functions

Many database drivers allow you to call functions within SQL statements. These
functions typically perform numeric calculations, string manipulation, date/time
manipulation, and the retrieval of system information. Because the names and syntax
of these functions are often different across data sources, ODBC defines a set of data
source-independent scalar functions.

/ Division

* Multiplication

Operator Description

Value Format Example

Date { d ’yyyy-mm-dd’ } { d ’1995-06-20’ }

Time { t ’hh:mm:ss’ } { t ’15:34:08’ }

Date/Time { ts ’yyyy-mm-dd hh:mm:ss’ } { ts ’1995-06-20 15:34:08’ }

110 Developing Web Applications with ColdFusion
The syntax for calling ODBC scalar functions is as follows:

{ fn scalar-function }

where scalar-function refers to the function name and its arguments enclosed in
parentheses. The following examples illustrate how two commonly used scalar
functions are used in SQL statements. The first example illustrates calling CURDATE to
obtain the current date:

SELECT *
FROM Orders
WHERE ShipDate>={ fn CURDATE() }

The second example illustrates calling LEFT to get the left-most 5 characters of a postal
code entered by a user:

SELECT *
FROM Customers
WHERE PostalCode={ fn LEFT(’#Form.PostalCode#’, 5) }

The ODBC 3.0 Programmer’s Reference is a good source of information on the
extensive set of available functions.

C H A P T E R 9
Chapter 9 Selecting and Presenting Data
This chapter explains how to select and output data in a dynamic Web page. It shows
how to use a number of CFML tags to query a database and then present the results
of that query in a Web page.

Contents

• Selecting Data with the CFQUERY Tag ... 112

• Using Dynamic Query Parameters ... 112

• Caching Query Results... 114

• Executing Stored Procedures .. 115

• Date Formatting Functions ... 116

• Displaying the Query Result Set.. 118

• Presenting Query Results in a Table.. 123

• Creating an HTML Query Form .. 126

• Returning MIME Content Types (CFCONTENT) .. 129

• Using CFREPORT for Crystal Reports Output.. 131

112 Developing Web Applications with ColdFusion
Selecting Data with the CFQUERY Tag
To select and output data from a database, you create a ColdFusion application page
that includes both CFML and HTML. The application page contains sections for
selecting the data and for outputting the results of the selection.

This section introduces ColdFusion data source queries using the Structured Query
Language (SQL) in a CFQUERY tag.

The first step is to define a query to select data from a database. ColdFusion uses the
CFQUERY tag to define queries. The full syntax for the CFQUERY tag is:

<CFQUERY NAME="query_name"
DATASOURCE="ds_name"
USERNAME="username"
PASSWORD="password"
MAXROWS="number"
TIMEOUT="milliseconds"
BLOCKFACTOR="1" (default)
DBPOOL="database connection pool name"
DEBUG="yes/no">

SQL statements
</CFQUERY>

Note If a SQL statement becomes too long to fit on a single line, you can split it across
multiple lines.

Example

Here is a simple example from a database called Company associated with an ODBC
data source named CompanyDB.

To create a query called “EmployeeList” that retrieves all of the records in the
Employees table, use this syntax:

<CFQUERY NAME="EmployeeList" DATASOURCE="CompanyDB">
SELECT *
FROM Employees

</CFQUERY>

Using Dynamic Query Parameters
You can harness the real power of the CFQUERY tag when you dynamically customize
the contents of a SQL statement by embedding dynamic parameters in the application
page. Dynamic parameters (also called variables) include form fields, parameters
passed in the URL, and CGI environment information.

The convention for including a dynamic parameter inside a SQL statement is to
enclose it in pound signs, such as #State#. When ColdFusion reads text enclosed by #
signs, it searches through all Form, URL, cookies, client, and CGI variables looking for
one that matches the specified name. When it finds the name, it substitutes the

Chapter 9: Selecting and Presenting Data 113
appropriate value for the parameter reference. To fully identify a variable, enter the
variable type with the variable name, such as #Form.State#.

Sources for dynamic parameters

The following table summarizes the primary sources from which you can draw
dynamic parameters for use in your SQL queries:

Sources for Dynamic Parameters

Source Description

Form fields The most common way of passing parameters to an application
page. When a user enters data in a form field, a parameter
bearing the name of the form field (#Form.formfield#) is
passed to the application page.

URL parameters Parameters that are embedded on the end of a URL (such as,
/input.cfm?name=adam).

Server variables A variable that remains available to all application pages until
the ColdFusion application server terminates.

CGI environment An environment variable interpreted by the browser. Every
request sent to an application page has several environment
variables that relate to the context in which it was sent. The
variables available depend on the browser and server software
in use for a given request, such as CGE.UserAgent.

Query objects Query columns you can reference once a query has been
executed. Once a query has been run, its results can be used as
dynamic parameters in other queries. For example, a query that
returns a column called UserID can be referenced in the
following form:

queryname.UserID

HTTP Cookies General mechanism for storing and retrieving information about
the Web client (browser).

Client variables Used to store persistent client variables in the system registry on
the Web server. These variables are specific to an individual
browser accessing your ColdFusion application.

Session variables Variables available only for an individual session. Session
variables are tied to an individual client and persist for as long as
that Client ID maintains a session.

Application
variables

Variables available only for an individual application. Application
names are defined in the CFAPPLICATION tag, which is typically
used in the Application.cfm file.

114 Developing Web Applications with ColdFusion
Example: Dynamic SQL

If you created a form to allow end users to search for employees by last name, you
could use the following SQL statement with dynamic parameters:

SELECT *
FROM Employees
WHERE LastName = ’#Form.LastName#’

If the user entered “Rucker” for LastName, the SQL statement sent to the database
would be:

SELECT *
FROM Employees
WHERE LastName = ’Rucker’

Using single quotes around literal text

You will notice that the parameter Form.LastName was surrounded by single
quotation marks (‘). These are necessary for all literal strings of alphanumeric
characters. You do not need to use quotation marks around numbers. You might
wonder what happens when a parameter value that contains one or more single quote
characters is substituted into a section of a SQL statement delimited by single quotes.
Wouldn't this cause a SQL syntax error?

Not if handled properly. ODBC allows you to denote a single quote inside a quote-
delimited string by using two consecutive single quote characters (''). Since you can't
possibly be expected to do this yourself, ColdFusion automatically replaces the single
quote (') with two single quotes ('') before including parameter values in SQL
statements.

Note In special cases, you might want to suppress automatic escaping of single quotes. To
do this, use the PreserveSingleQuotes function.

Caching Query Results
The ability to save query result sets in server memory is a significant performance
enhancement for all ColdFusion sites, especially those supporting a high volume of
repetitive data access.

To call cached query data, the new query must match exactly any of the following
values that it uses: have the same data source, query name, DBTYPE, SQL statement,
user name, and password as the cached data set. If you are using native drivers, the
query syntax must also match the DBSERVER and DBNAME (Sybase only) values.

Two CFQUERY attributes control the cache implementation:

• CFCACHEDAFTER — Sets a date to check before running a new query

• CFCACHEDWITHIN — Sets a time range to check using the CreateTimeSpan
function

Chapter 9: Selecting and Presenting Data 115
The cache is self-regulating once the maximum number of stored queries is set. That
is, when the limit is reached, the oldest result set is replaced by the current one.You set
the appropriate number of queries to cache on the ColdFusion Administrator Server
Settings page.

In setting the optimal cache value, consider such factors as available system resources
and the time required to process complex queries versus storing the result sets in
memory.

The decision point for enabling the cache and for choosing which attribute to set is the
level of tolerance you (and your users) have for the timeliness of query results. For
important record sets that are frequently updated, a short time interval is
recommended for maintaining the cache. Generally, the more static the record set, the
greater the time interval that can be safely set.

Executing Stored Procedures
Many database systems allow you to create stored procedures to return result sets for
commonly-used data queries. Check your DBMS documentation for details of your
system’s implementation of this feature.

This section describes two methods of coding access to stored procedures:

• Specifying call parameters in a CFQUERY

• Using CFSTOREDPROC and its associated tags

Calling stored procedures from CFQUERY

You can call stored procedures from within CFQUERY, as in the example below. This
query calls a SQL Server stored procedure that retrieves all orders due to ship on the
date specified:

<CFQUERY NAME="GetOrdersForDate"
DATASOURCE="Orders Database">

{ call OrderDB.dbo.sp_getorders(#OrderDate#) }
</CFQUERY>

While this method is still available, we recommend using the CFSTOREDPROC tag to
add greater flexibility and control to stored procedure operations.

Calling stored procedures from CFSTOREDPROC

The CFSTOREDPROC tag wraps SQL call parameters in tag attributes to simplify the
process of retrieving data and to add functions not available in a CFQUERY call
statement. It supports both ODBC and native data sources.

CFSTOREDPROC is used to identify the stored procedure and its data source and to set
options. Two additional tags are nested within it:

116 Developing Web Applications with ColdFusion
• CFPROCPARAM — Set the data and procedure types, variables and values, and
other options

• CFPROCRESULT — Identifies the result set for output and optionally limits the
result set if multiple sets are returned by the stored procedure

Before deciding which of the two stored procedure methods to employ, answer these
questions:

Do I need to specify input/output parameters for the query?

Do I need to return a result code for the query?

Do I need to select from multiple result sets in a stored procedure?

If you answer Yes to all three of these questions, you should be using CFSTOREDPROC
in your applications.

Date Formatting Functions
When dates are returned by ColdFusion, they might not be in precisely the format in
which you want it displayed. ColdFusion provides special formatting functions that
allow you to format dates for output.

Date, time, and number formatting functions

The following functions are available for manipulating dates, times, and numbers:

Note Brackets indicate optional arguments.

If the mask has no sign specifier, positive and negative numbers will not align in
columns. Thus, if you expect to have both positive and negative numbers, either use
the () or use the "-" sign, which will force a space in front of positive numbers and a
minus in front of negative numbers.

Tip To achieve the correct column spacing on the output, use the <PRE> tag.

Date, Time, and Number Formatting Functions

Function Description

DateFormat(Date[,mask]) Case-insensitive. Creates a custom-formatted U.S.
English date value. Use LSDateFormat for
international date formats.

TimeFormat(Date[,mask]) Case-sensitive. Create a custom-formatted time
value.

NumberFormat(Number[,mask]) Create a custom-formatted number value.

Chapter 9: Selecting and Presenting Data 117
Special formatting functions

The functions listed in the following table provide special formatting options.

Formatting Functions

Function Description

HTMLCodeFormat Useful for display of HTML code posted using TEXTAREA
fields. Strips carriage returns and escapes all special
characters (<, >, ", &).

HTMLEditFormat Behaves identically to HTMLCodeFormat except that it does
not add the <PRE> tag to the output text.

ParagraphFormat Useful for displaying data entered into TEXTAREA fields.
Converts CR/LF sequences into spaces and double CR/LF
sequences into HTML paragraph markers (<P>).

PreserveSingleQuotes Useful in SQL statements to prevent ColdFusion from
automatically escaping single quotes contained in values
derived from dynamic parameters. For example, to include a
dynamic parameter in a SQL statement and suppress the
escaping of single quotes, use the syntax:

SELECT * FROM Customers

WHERE CustomerName

IN (#PreserveSingleQuotes(CustNames)#)

StripCR Useful for preformatted (PRE) display of data entered into
TEXTAREA fields. Strips all carriage returns from the field.

URLEncodedFormat URL encodes the string parameter that is passed to it
(replaces spaces with a “+” and non-alphanumeric characters
with equivalent hexadecimal escape sequences). This
function enables you to pass arbitrary strings (including
those with spaces in them) within URLs. (ColdFusion
automatically decodes all URL parameters that are passed to
an application page.)

118 Developing Web Applications with ColdFusion
The next section covers the presentation of data with the CFOUTPUT tag.

Displaying the Query Result Set
Once you’ve created a CFQUERY in your application page file, you can then reference
its results within other CFML tags. The query results can be used to dynamically create
an HTML page.

As you learn to use CFML tags in application page files, keep in mind that you can also
use HTML tags and text in application page files. Wherever you use standard HTML
tags and text inside your application page, ColdFusion simply passes the tags and text
directly back to the client browser.

The most flexible way to display data retrieved from a CFQUERY is to define a CFML
output section in your application page file using the CFOUTPUT tag. Output is
generated for each record in a result set. Output can be linked to a specific query or
contain content from multiple queries. A CFOUTPUT tag can contain:

• Literal text

• HTML tags

• References to query columns

• References to dynamic parameters like form fields

• Functions

Basic output code has the following syntax:

ValueList &
QuotedValueList

The two output functions ValueList and QuotedValueList
facilitate using the results of queries to drive subsequent
queries.

The ValueList function takes as its argument the name of a
query column, such as Customers.CustomerID, and returns a
comma-separated list of the values for each of the records in
the query for that column.

For example, if you run a query that returns four distinct
customer records, the result of ValueList function would be
like: 22,43,51,96. The QuotedValueList function would return
’21,’ ’43,’ ’51,’ ’96’ for the same data.

YesNoFormat Displays Boolean data as Yes or No. All non-zero values
display as Yes. Zero values display as No.

Formatting Functions (Continued)

Function Description

Chapter 9: Selecting and Presenting Data 119
<CFOUTPUT QUERY="queryname" MAXROWS=n >
Literal text, HTML tags, and
dynamic field references (e.g., #FullName#)

</CFOUTPUT>

Database field names in CFOUTPUT sections

Some databases, such as Microsoft Access, allow field names to contain embedded
spaces, as in, “Region Name.” ColdFusion does not support references to these fields in
CFOUTPUT sections. Aside from maintaining compatibility with ColdFusion, avoiding
the use of spaces in table names is a sound practice, since it maximizes the portability
of your work across database systems. You can use an underscore as a separator, such
as “Region_Name”

Field names must always begin with a letter and contain only alphanumeric
characters. You can use the SQL keyword AS to alias field names. For example, the
statement

SELECT 401K AS FK FROM Employee_Withholding

will be processed correctly in a CFQUERY.

Example: CFOUTPUT

Use the CFOUTPUT tag to display data from the result set of the EmployeeList query in
a browser. For this example, we’ve chosen to display the first name, last name, and
phone number of each employee. It’s good programming practice to specify the query
name as part of the variable name.

The following example shows the complete code for the application page:

<!--- Query to select customers --->
<CFQUERY NAME="EmployeeList" DATASOURCE="CompanyDB">

SELECT *
FROM Employees

</CFQUERY>
<HTML>
<HEAD>

<TITLE>Employee List</TITLE>
</HEAD>

<BODY>

<H2>Employee List</H2>

<!--- Output section --->
<CFOUTPUT QUERY="EmployeeList">

<HR>
#EmployeeList.FirstName# #EmployeeList.LastName#
(Phone: #EmployeeList.PhoneNumber#)

</CFOUTPUT>

</BODY>
</HTML>

120 Developing Web Applications with ColdFusion
You could call this application page using a standard URL reference:

http://myserver/cfdocs/employeelist.cfm

The application page reference can be in a hyperlink, as well.

Employee List

The output, formatted using the HTML <HR> and
 tags, would look like this:

<HR>
Deborah Jones (Phone: 612-227-1019)

<HR>
John Smith (Phone: 507-452-7224)

<HR>
Frank Wilson (Phone: 612-831-9555)

Nested CFOUTPUT and grouping

You can nest CFOUTPUT tags to create grouped displays of output, much like the
grouping features of most database report writers. Grouping is accomplished by
adding the GROUP attribute to a CFOUTPUT tag and then nesting another
CFOUTPUT tag within the first. The formatting instructions above and below the inner
tag display the group header and footer information. The formatting instructions in
the inner CFOUTPUT tag display record detail information.

Example: Grouping

The following code uses the CFOUTPUT GROUP attribute to display the query results
based on the “CourseLevel” value of the query. The ORDER BY keyword of the SQL
statement sorts the result set by the CourseLevel field. There is no limit to the number
of CFOUTPUT statements that you can nest together. If you want to use multiple levels
of grouping, you need to set multiple levels of sorting in your SQL query (e.g., “ORDER
BY Region, State”).

<CFQUERY NAME="Courses" DATASOURCE="CourseDB">
SELECT *
FROM CourseList
WHERE Department_ID = ’#Form.Department#’
ORDER BY CourseLevel

</CFQUERY>

<CFOUTPUT QUERY="Courses" GROUP="CourseLevel">
<H4>#CourseLevel#</H4>

<CFOUTPUT>
 #CourseNumber# - #CourseName#
</CFOUTPUT>

</CFOUTPUT>

The area between the outer CFOUTPUT containing the GROUP attribute and the inner
CFOUTPUT containing the “CourseNumber” and “CourseName” parameters contains

Chapter 9: Selecting and Presenting Data 121
the text and formatting for the header of each section. Correspondingly, the area below
the inner CFOUTPUT contains the text and formatting for the footer of each section.

The output from this application page is three course level headings (Basic,
Intermediate, and Advanced). Each level contains an unordered list of the courses
offered at that level.

The final output in a Web browser would look like this:

Basic
100 - Physiology

Intermediate
510 - Neurobiology
500 - Plant Biology

Advanced
820 - Neurobiology
800 - Microbiology

CFQUERY properties

Each CFQUERY you execute has three properties that you can access to provide record
number information.

Example: Query columns

To report the number of records returned from the CustomerList query and a list of the
query columns use the syntax:

<CFOUTPUT>
The search returned information
on #CustomerList.RecordCount# customers.

Columns queried were #CustomerList.ColumnList#.

</CFOUTPUT>

To print a row number next to each record displayed in a query, use the syntax:

<CFOUTPUT QUERY="CustomerList">
#CurrentRow# - #FirstName# #LastName#

</CFOUTPUT>

Record Numbers

Record Numbers Description

RecordCount The total number of records returned by the query.

CurrentRow The current row of the query being processed by
CFOUTPUT.

ColumnList Returns a comma-delimited list of the query columns.

122 Developing Web Applications with ColdFusion
Returning partial recordsets

For large recordsets you may want to display only a portion of the records retrieved.
You can accomplish this with the STARTROW and MAXROWS attributes of the
CFOUTPUT tag.

STARTROW designates the first row of the recordset that should be returned in the
output. The MAXROWS determines the number of rows that will be returned in total.

Example: Partial recordset

This example shows returning records 10-20 from the recordset created by the
EmployeeList query:

<CFOUTPUT QUERY="EmployeeList"
STARTROW="10" MAXROWS="20">
#FirstName# #LastName# #Phone#

</CFOUTPUT>

Using parameters in CFOUTPUT sections

CFOUTPUT sections are not used exclusively for outputting information returned
from queries. You can also use CFOUTPUT sections to display Form, URL, Cookie,
Client, Server, Session, Application, and CGI environment parameters. be sure to
qualify references to the parameters with the appropriate prefix (Form, URL, or CGI) so
that ColdFusion is clear that the parameters are not referring to columns in the query
result set. Like column names passed from a query, parameters must be enclosed in
pound signs (#). The parameter’s value is printed once for every row in the result set.
For example, to report the criteria a user entered into the employee search form, use
the syntax:

<CFOUTPUT>
<P>The search for #Form.LastName# in the
#Form.Department# returned these results:</P>

</CFOUTPUT>

Using the pound sign in CFOUTPUT sections

Because the # sign serves as a special formatting code for ColdFusion, you need to take
special measures when you include it in a CFOUTPUT section. To include a # sign that
is not used as a field delimiter, use two consecutive # signs (##).

For example:

<CFOUTPUT QUERY="CustomerList">
Phone ##: #PhoneNumber#

</CFOUTPUT>

When ColdFusion processes the output, the two pound signs that follow the text
“Phone” print as a single pound sign.

Chapter 9: Selecting and Presenting Data 123
Presenting Query Results in a Table
Presenting query result sets using simple HTML formatting is usually adequate if the
number of records returned is small. However, you might need a more compact and
structured display of query results. Because the CFOUTPUT tag can include HTML
code, you can use standard HTML table tags to build a table dynamically.

CFML tables

CFML also includes a pair of table tags, CFTABLE and CFCOL, that work together to
present query results in an useful tabular format. This format uses the HTML <PRE>
tag to precisely control the width and alignment of the columns displayed. The result is
a clear, concise rendering of your query results.

Example: CFTABLE

This example uses the CFTABLE and CFCOL tags to present output:

<CFTABLE QUERY="Messages" MAXROWS=10>
<CFCOL HEADER="Subject" WIDTH=25

TEXT="<I>#Subject#</I>">
<CFCOL HEADER="User Name" WIDTH=15

TEXT="#UserName#">
<CFCOL HEADER="Date" WIDTH=15

ALIGN=RIGHT
TEXT="#DateFormat(DateSubmitted)#">

</CFTABLE>

This code creates a table with three columns labeled “Subject,” “User Name,” and
“Date.” These labels appear only if you specify at least one of the HEADER attributes.
The table draws its data from the CFQUERY named “Messages” and shows no more
than 10 rows. The columns display according to the HTML tags and dynamic
parameters contained in their associated TEXT attribute.

Double-quotes and pound signs in the CFCOL attribute

Since ColdFusion uses the double-quotes (") and the pound sign (#) to delimit the
TEXT values of the CFCOL attribute, both require special syntax. To specify a single
double-quote, use two double-quotes (""). To specify a single pound sign, use two
pound signs (##).

For example, to present a list of documents and provide a hyperlink to each document,
you must include a hypertext anchor tag (which uses double-quotes to delimit its
HREF attribute) within the TEXT attribute. To accomplish this, use the syntax:

TEXT="#DocName#"

When ColdFusion processes the code, it replaces the two double-quote pairs
surrounding the HREF attribute with a solitary double-quote pair.

124 Developing Web Applications with ColdFusion
HTML tables

Even though the preformatted tables produced by the CFTABLE tag are effective,
HTML tables are far more elegant and flexible. To make this transition easier, another
CFTABLE attribute called HTMLTABLE is available. This attribute renders a CFTABLE
as an HTML table rather than as a preformatted table.

Using the HTMLTABLE attribute changes the interpretation and applicability of some
CFTABLE and CFCOL attributes:

• The HEADERLINES and COLSPACING attributes of the CFTABLE tag are
ignored.

• The WIDTH attribute of the CFCOL tag is interpreted as the percentage of
available screen width, rather than as the number of characters.

Note Displaying result sets using HTML tables does not require the use of the CFTABLE tag
with the HTMLTABLE attribute. You can also use the CFOUTPUT tag to construct
HTML tables. For maximum control over the appearance of your tables, the
CFOUTPUT tag is clearly a superior approach.

Dynamic display of record detail information

The most commonly used format for displaying the results of a search is a table such as
a CFTABLE or other highly compact listing. This type of listing is excellent for the
purpose of quickly browsing records but is often limited in the amount of information
conveyed.

The solution to this problem is to display records in a compact form and then create a
hypertext link from each record to another page that provides more detailed
information. This type of master-detail approach is explained, including how to
implement this functionality from within both CFOUTPUT and CFTABLE tags.

Creating links to detail records

Creating a link to detail records involves the steps below, assuming you already have an
application page file that displays a summary list of records.

To create a link to detail records:

1. Select a key piece of information in the summary record to serve as the clickable
link to the detail information such as the company name field in a list of firms.

2. Enclose the text you want to use as the clickable link in a hypertext link anchor
(HREF) that calls an application page file that displays detail information. The
URL of this anchor should pass a unique record identifier to the next application
page so it knows which record to display detail information for.

3. Implement a ColdFusion page file that displays the detail information.

Chapter 9: Selecting and Presenting Data 125
Example: Record detail

Suppose you want to display a list of companies and let the user click on a company’s
name to get more detailed information on the company. Further assume that each
company is represented in the database by a unique Company_ID and that you have
an application page file called compinfo.cfm that can display information on a
company given a passed Company_ID.

In this case, your CFOUTPUT section would look similar to the example below:

<CFOUTPUT Query="CompanySearch">

#CompName#

#ContactPerson# (#ContactPhone#)

</CFOUTPUT>

The CompanyName field displays as a hypertext link, which invokes the application
page file compinfo.cfm with the Company_ID as a URL argument. This application
page then displays the appropriate detail information for the company.

Use this technique whenever you want to implement dynamic display of detail
records. The general form of the technique is as follows (note once again that the HREF
should be contained on a single line in your application pages):

#RecordName#

Here, TemplateFile is the name of the application page that implements the record
detail view. This application page uses the Record_ID_Data (passed as the URL
parameter Record_ID) to determine which record to display. The user can click the text
RecordName in the main listing to invoke the application page.

Embedding detail links in CFTABLE columns

You can also use this technique for embedding record detail links inside the TEXT
attribute of CFCOL tags. Because the TEXT attribute is delimited by quotes and the
HREF attribute of the anchor is also delimited by quotes, be sure that you escape the
HREF quotes properly.

The general form of the technique is modified as follows to work properly inside a
TEXT attribute:

#RecordName#

Note that there are now two quotes surrounding the HREF attribute of the anchor. If
the earlier example were modified to display inside a TEXT attribute, it would look like
this:

TEXT="#CompName#"

Once again, be sure you keep the entire TEXT attribute on a single line.

Tip You can create simple drill down search applications that use the techniques explained
in this section with one of the ColdFusion Web Application Wizards. To run a wizard,
click the Web Application Wizards icon in the ColdFusion program group.

126 Developing Web Applications with ColdFusion
Creating an HTML Query Form
The most common way to create dynamic parameters is with a form serving as the
user interface. You can build HTML forms to include user entry text boxes, select
boxes, radio buttons, and checkboxes for users to enter information. Forms are easy to
create and offer a number of flexible data input options. The form variables that are
automatically created when a form is submitted can be used to create queries to your
data source.

In addition to HTML forms, you can also create forms using the ColdFusion CFFORM
tag. See Chapter 12, “Building Dynamic Java Forms,” on page 161 if you want to build
custom forms that contain graphical elements like tree view controls, slider controls,
and grid display controls.

Example: Query form

The following example demonstrates a simple HTML form:

<FORM ACTION="employeesearch.cfm" METHOD="Post">
<PRE>

Last Name: <INPUT TYPE="text"
NAME="LastName">
Department:
<SELECT NAME="Department">

<OPTION>Accounting
<OPTION>Administration
<OPTION>Engineering
<OPTION>Sales

</SELECT>
<INPUT TYPE="Submit" VALUE="Search">

</PRE>
</FORM>

The form above has two inputs: LastName and Department. The user can fill in the text
area with a last name and select a department from the select list. Each OPTION tag
lists a possible selection the user can make. When the submit button is clicked, the
ColdFusion page specified in the ACTION attriubte is opened, and the form variables
are passed to the page as dynamic parameters.

Suppose the user enters the name “Peterson” and chooses “Sales.” When she clicks the
submit button, the form variables shown below will be sent to the application page
employeesearch.cfm:

LastName=Peterson

Department=Sales

Set the form’s ACTION and METHOD attributes

You must set the form’s ACTION attribute. The ACTION attribute in your HTML form
tells the browser which application page to call when the user clicks a submit button.
You also must set the form’s METHOD attribute to Post. In the following example, the

Chapter 9: Selecting and Presenting Data 127
employeesearch.cfm application page is executed when the user submits the form for
processing.

<FORM ACTION="employeesearch.cfm" METHOD="Post">

Implement data query fields

Creating search fields for an HTML form is very simple. You need only implement the
HTML form fields for each database column you want to search. To make your
application pages more legible, it is helpful to make the form field names identical to
your database column names.

For example, if you have a table called Employees with three columns called
FirstName, LastName, and Department, your form fields might look like this:

Name: <INPUT TYPE="text" NAME="FirstName">
LastName: <INPUT TYPE="text" NAME="LastName">
Department: <INPUT TYPE="text" NAME="Department">

In your forms, you can use the full range of HTML input widgets, including list boxes,
radio buttons, check boxes, and multi-line text boxes, in your forms.

REQUESTTIMEOUT URL parameter

When passing a request for a ColdFusion page, you can use the REQUESTTIMEOUT
parameter in the URL to specify the number of seconds before the data source
connection times out. The REQUESTTIMEOUT parameter overrides the default
timeout specified in the ColdFusion Administrator. This option can prevent a data
source connection from timing out for operations that need more connection time to
complete.

To use this parameter, you pass a URL for an application page with the
REQUESTTIMEOUT parameter specifying the number of seconds before timing out,
in the following form:

http://myserver.com/cfpages?REQUESTTIMEOUT=100

This parameter is typically used for administrative tasks such as data source updates
and is not necessary for normal processing.

Example: Dynamic SQL

The example application page below, searchform.cfm, can be created as a query form.

<HTML>
<HEAD>

<TITLE>Employee Search</TITLE>
</HEAD>

<BODY>

<FORM ACTION="employeesearch.cfm" METHOD="Post">
<PRE>
Last Name: <INPUT TYPE="text" NAME="LastName">

128 Developing Web Applications with ColdFusion
Department: <SELECT NAME="Department">
<OPTION>Accounting
<OPTION>Administration
<OPTION>Engineering
<OPTION>Sales

</SELECT>
<INPUT TYPE="Submit" VALUE="Search">
</PRE>

</FORM>

</BODY>
</HTML>

The example application page below (EmployeeSearch.cfm) can be created to select
and display the search.

<!--- CFML application page to implement
employee search --->

<!--- Query the database --->
<CFQUERY NAME="EmployeeList"

DATASOURCE="CompanyDB">
SELECT *
FROM Employees

WHERE LastName = ’#LastName#’
AND Department = ’#Department#’

</CFQUERY>

<!--- Page header --->
<HTML>
<HEAD>

<TITLE>Employee Search Results</TITLE>
</HEAD>

<BODY>
<H2>Organization Search Results</H2>

<!--- Summarize search criteria for user --->
<CFOUTPUT>

<P>The search for #Form.LastName# in
the #Form.Department#
returned these results:</P>

</CFOUTPUT>

<--- Display results --->
<CFOUTPUT QUERY="EmployeeList">
<HR>
#FirstName# #LastName# (Phone: #PhoneNumber#)

</CFOUTPUT>

<!--- Page footer --->
<P>
Thank you for searching the

Chapter 9: Selecting and Presenting Data 129
employee database!</P>
<HR>

</BODY>
</HTML>

Pattern matching searches

When you provide your users the ability to enter text values as part of a search front
end, you normally do not want to search for exactly the value they have entered.
Rather, you want to search for a value similar to what they entered. In this case, a
pattern matching search is appropriate.

To implement a pattern matching search, use the LIKE operator in combination with
one or more wildcard characters (represented by “%” in ODBC queries).

For example, to allow users to search for people by filling out a form field called
“LastName,” use the SQL statement:

SELECT *
FROM Employees
WHERE LastName LIKE ’#LastName#%’

This query returns the record of every person whose last name begins with the value
entered. For example, a search for “Jon” would return records for people with names
beginning with “Jon,” including “Jones” and “Jonson.”

Returning MIME Content Types (CFCONTENT)
MIME (Multipurpose Internet Mail Extensions) was created for several purposes, one
of which was to create an explicit link between data files and applications that are used
to view and edit the files. MIME accomplishes this by providing a content type
specification with each data file.

On the Web, the exchange of data happens using Hypertext Transport Protocol (HTTP).
Both the Web server and the Web client must agree on the content type of the file, and
either the client must be able to understand files of that format, or the client needs to
find an application that can use the files.

By default, the content type ColdFusion uses when it generates data for the browser is
text/html. This is simply an HTML file type. Despite the fact that text/html is the most
frequently used content type on the Web, there might be instances when you want to
use ColdFusion to dynamically generate documents of other content types.

Example: Returning VRML

To dynamically return a different VRML (Virtual Reality Modeling Language) model
based on a parameter passed in the URL, use the syntax:

130 Developing Web Applications with ColdFusion
<CFCONTENT TYPE="x-world/x-vrml">
<CFQUERY NAME="GetCyberCafeRoom"
DATASOURCE="CyberCafe">
SELECT VRML_Script

FROM CyberCafeRooms
WHERE FloorNumber=#URL.FloorNumber#

</CFQUERY>

<CFOUTPUT QUERY="GetCyberCafeRoom">
#VRML_Script#

</CFOUTPUT>

An important issue to consider when sending non-HTML content types to the client is
the browser’s ability to understand the data type. All major browsers come with a set of
predefined content types, which are either supported by the browser itself or by an
auxiliary application often referred to as a viewer. Therefore, it’s important that you
notify a user in advance when you intend to use a content type that may not be directly
supported by their browser.

Example: Populating an Excel spreadsheet

The following example demonstrates a way to use ColdFusion to dynamically generate
a spreadsheet that can load directly into Microsoft Excel. In order to do this seamlessly,
you must associate the text/tabdelimited content type with your local Microsoft Excel
application:

<CFCONTENT TYPE="text/tabdelimited">
<CFQUERY NAME="GetFinancialData"

DATASOURCE="MutualFunds">
SELECT *
FROM Funds
WHERE Fund_ID=#Fund_ID#

</CFQUERY>
<P>Month Value Percentage Gain Estimate</P>
<CFOUTPUT QUERY="GetFinancialData">
#Month# #Value# #PercentageGain# #Estimate#
</CFOUTPUT>

The spaces between fields and headers are actually tab characters. Tab characters are
required in order for Excel to correctly parse the columns in the table.

Note ColdFusion strips all text output that occurs in an application page before the
occurrence of the CFCONTENT tag.

Tip If you just need to quickly add a range of cells from a spreadsheet to a page, you can
copy the range and paste it into ColdFusion Studio’s Design window. The data is
automatically converted to an HTML table.

Example: Returning a file

The following example illustrates how to use CFCONTENT to return a file from the web
server. The advantage of this scenario is that you can control access to files. Using

Chapter 9: Selecting and Presenting Data 131
CFCONTENT with the FILE attribute allows you to return files that are not stored in the
root of your Web server document directory.

<CFCONTENT TYPE="text/tabdelimited"
FILE="c:\land\topo.txt">

Note ColdFusion generates an error if it finds any output after the CFCONTENT in this type
of file retrieval operation.

Using CFREPORT for Crystal Reports Output
ColdFusion provides a simple tag syntax to integrate custom report formats created in
Crystal Reports 5.0 or later into your application pages. This section describes the
process from the ColdFusion side; consult your Crystal Reports documentation for the
details of creating and managing reports.

To use this feature, follow these steps:

• Install Crystal Reports on your Web server.

• Copy the Crystal Reports files (*.rpt) that you want to use with ColdFusion to
your ColdFusion application page directory.

• Add the CFREPORT tag to your application pages.

These steps assume that you have established an ODBC data source for ColdFusion on
the Web server. The ColdFusion service calls the Crystal Reports engine to process the
CFREPORT tag from a submitted application page. The formatted data set is included
in the output to the browser.

Processing report requests from users can be time-consuming. CFREPORT is most
efficient when used to publish reports to a static location.

Example: CFREPORT

ColdFusion allows tremendous flexibility in the runtime customization of Crystal
Reports, including the ability to dynamically set the selection formula, sort order,
target data source, and any custom formula within a report. The parameters you set in
the CFREPORT tag take precedence over those in the report file.

Let’s start with a simple example not based on any dynamic inputs:

<CFREPORT REPORT="d:\reports\myreport.rpt">
</CFREPORT>

In most cases, reports that you run will be based on criteria specified by the user or an
application. The CFREPORT tag allows the specification of this criteria in a manner
similar to the way the CFQUERY tag allows the specification of dynamic SQL
statements.

The next example uses a function to determine the application page path. The report
displays only those records that match ZIP code and last name criteria entered into an

132 Developing Web Applications with ColdFusion
HTML form. The curly brackets enclosing the value names are required Crystal
Reports syntax.

<CFREPORT REPORT="#GetDirectoryFromPath
(Application PagePath)#myreport.rpt"
{ZipCode}="#Form.ZipCode#" AND
{LastName} LIKE "#Form.LastName#*"

</CFREPORT>

You can use the body of the CFREPORT tag to provide a custom report selection
formula using Crystal Reports selection language. The following example illustrates all
the tag’s attributes. Note the use of the named formula “@Title” to specify the report
name from form input.

<CFREPORT REPORT="#GetDirectoryFromPath
(CF_application page_path)#myreport.rpt"
DATASOURCE=”CustomerReports
USERNAME=”TSEliot”
PASSWORD=”#Form.password#”
FORMULA="#Form.ReportTitle#">
ORDERBY=”ZipCode”>

{ZipCode} = "#Form.ZipCode#" AND
{LastName} LIKE "#Form.LastName#*" AND
{FirstName} LIKE "#Form.FirstName#*"

</CFREPORT>

As with CFOUTPUT, conditional processing of data using CFIF, CFELSEIF, and CFELSE
provides added flexibility to your output.

C H A P T E R 1 0
Chapter 10 Using Studio Database Tools
This chapter describes how to use the IDE visual database tools to significantly
accelerate development of the database components of ColdFusion applications.

Contents

• Introduction to Database Tools .. 134

• Registering Data Sources ... 134

• Connecting to Data Sources.. 134

• Opening an ODBC Data Source .. 135

• Viewing Database Schema and Data.. 135

• Building SQL Queries... 136

• Building a SELECT Query .. 137

• Inserting Queries into a Page .. 138

• Running and Editing Queries.. 139

134 Developing Web Applications with ColdFusion
Introduction to Database Tools
ColdFusion Studio’s visual database tools support application development using both
local and remote data sources. For ease of use, all data sources are treated as remote,
whether they reside on the localhost machine or another machine. Access to data
sources becomes transparent when a server is configured in Studio.

Studio's database tools support:

• Remote database development

• Data source schema and data browsing

• Visual SQL query building

Registering Data Sources
A basic set of ODBC drivers and sample data is installed with all versions of
ColdFusion. Native database drivers are installed with the Enterprise version and OLE-
DB drivers are installed with the Professional and Enterprise versions. To work with
your data sources, you must first register them with ColdFusion Server. To do this,
open the ColdFusion Administrator and select the ODBC or native drivers page under
the data sources heading. From there, you simply name the data source, select the
appropriate driver, and click Add.

For more information on managing data sources, see Administering ColdFusion Server.

To test the connection, open the Verify Data Source page, select from the drop-down
list and click Verify. A help message is generated if the test connection fails.

When these steps are completed, you can move to Studio to access the data source.

Connecting to Data Sources
Studio uses the Database Connection Manager in the ColdFusion Server to connect to
remote data sources.

To add an RDS server for database access:

1. Click the Remote Files tab.

2. Right-click in the file list and select Add RDS Server.

3. Complete the Remote Host fields in the Configure RDS Server dialog:

• Description — Required. The name that appears in the server list.

• Host Name — Required. The server domain name, such as
www.allaire.com or an IP address.

• User Name — Required if the server is password-protected. Open the
ColdFusion Administrator Server page to edit the Studio password.

Chapter 10: Using Studio Database Tools 135
• Password — Optional. If the server is password-protected you must use
a password. Open the ColdFusion Administrator Server page to edit the
Studio password.

• Port — Required. The port on the server used by the Web server. Use
default unless specified by server administrator.

• Use Secure Sockets Layer (SSL) — Optional. Allows exchanges between
Studio and the server to be encrypted via SSL.

4. Complete the ColdFusion RDS Security fields:

• User Name — Required if the server is password-protected. Open the
ColdFusion Administrator Server page to edit or disable the Studio
password.

• Password — Optional. If the server is password-protected you must use
a password. Open the ColdFusion Administrator Server page to edit or
disable the Studio password.

5. Click Prompt for Password to enable these entries.

6. Click OK to complete the dialog.

Opening an ODBC Data Source
You can now open your data sources from Studio.

To open a data source:

1. Click the Database tab in the Resources pane to open the Database Servers list.
The available ColdFusion servers are shown in the drop-down list.

2. Select the server whose data sources you want to access and double-click on the
server name to open the data sources list.

3. Double-click on a data source name to expand the list.

At this point, you can view the database schema by opening the Tables list and
expanding the individual tables. The name and definition of each column is listed. For
example, City (TEXT 50) is a data field called City with the data type TEXT and a
maximum field length of fifty characters. Double-click on a table name to view the
records in that table.

Viewing Database Schema and Data
You can view the structure of any ODBC or native data source.

To view a data source schema:

1. Click the Database tab in the Resource pane.

136 Developing Web Applications with ColdFusion
2. Double-click on a data source in the server pane or right-click on a server and
choose Connect.

3. Click the + sign next to an entry on the list of accessible data sources.

4. Click the + sign next to a Table folder to view the database tables.

5. Click the + sign next to a table to view the columns and column data types.

Views are only available in databases that support creating views or tables stored as
queries.

To view data in a table:

1. Open the data source schema in the Database Resource tab.

2. Double-click on a table or right-click on a table and choose View Data.

You can only browse data in the data browsing window. You cannot modify data or add
new records.

Tip To insert column or table names into a page, just drag and drop the table or column
into the editor. This is useful when you are building database reports.

Building SQL Queries
Studio provides a powerful visual query builder to build, test, and save database
queries with the Structured Query Language (SQL).

Choose one of these commands to open the Query Builder:

• Right-click on a database or on a table in the Database (DB) Resource tab and
choose New Query.

• Click Tools > SQL Builder and select a database from the Select Database Query
dialog.

• Open the CFQUERY tag editor and click New Query.

The Query Builder is designed to let you build different kinds of queries and then insert
them into an application page. The Query Builder supports developing four types of
SQL queries:

• Select

• Insert

• Update

• Delete

The Query Builder has three panes:

• Table pane — Provides a view of the tables in your query and allows you to
create joins between tables.

Chapter 10: Using Studio Database Tools 137
• Properties pane — Allows you to set the properties of the query such as the
columns that are being selected or the columns that are being updated.

• SQL pane — Shows you the SQL that is being built by the query builder. The
SQL pane does not support reverse editing, so any changes you make in this
pane will not be made to the query in the Properties pane or the Table pane.

The Query Builder toolbar gives you quick access to many of its functions.

Query Builder opens a SELECT statement by default, since this is the most common
type of query. If you have not chosen a table, you will be asked to select one to use for
the query.

To create an insert, update, or delete query, choose the type from the Query Builder
toolbar or right-click in the Table pane and choose the Query Type.

Building a SELECT Query
SQL SELECT statements let you specify the data from which to build the recordset.

To create a SELECT statement:

1. Open the Query Builder for the data source you want to query.

2. When the Query Builder opens, select the first table you want to query.

3. Right-click in the Table pane and choose Add Table or click the Add Table button
in the tool bar to add additional tables to the query.

4. Drag and drop column names between tables to create joins.

5. Right-click on a join to delete the join or change it to an inner or outer join.

6. Drag the columns you want to display onto the Column section of the Properties
pane.

7. Set additional query attributes in the Properties pane.

8. Save or insert the query into your page.

To use a CFML variable in a SQL WHERE clause:

1. Click in the Criteria column in the Properties pane for the column that you want
use in the WHERE clause.

2. Open the select box and choose CFVARIABLE.

3. Double-click on the variable and rename it to the variable in your application.

To save a query:

1. Click the Save Query button on the Query toolbar.

2. Enter a name for the query in the dialog.

3. Click Save.

138 Developing Web Applications with ColdFusion
Saved queries are stored on the ColdFusion Database Server. They can be edited and
used by to everyone who has access to that server.

If you edit a SQL statement in the SQL pane and then save the query, the changes are
saved. However, if you modify the Table pane or change any values in the Properties
pane, a new SQL statement is generated, overwriting any edits you made in the SQL
pane.

Inserting Queries into a Page
You have four options for inserting a query directly into a CFML page from the Query
Builder:

• If you open the Query Builder from the CFQUERY tag editor, it will prompt you
to insert the query when you close the editor.

• If you open the Query Builder from a CFML page, the it will prompt you to
insert the query when you close it.

• Click the Copy SQL to Clipboard button on the Query toolbar. Close the Query
Builder and paste the SQL into your page.

• Click the Copy CFQUERY button on the Query toolbar. Close the Query Builder
and paste the CFQUERY tag into your page.

To insert a saved query:

Method 1

1. Open the data source schema in the Database Resource tab.

2. Open the Queries folder in the data source you want to use.

3. Drag and drop the query onto the page.

Method 2

1. Click the CFQUERY button on the CFML Basic tag toolbar or select CFQUERY
from the Tag Chooser (CTRL+E).

2. Enter a name for the query.

3. Click the Insert Query button.

4. Choose a server from the select box.

5. Open the Queries folder in the data source you want to use.

6. Select a query and click Insert.

7. Click Apply in the CFQUERY tag editor.

Chapter 10: Using Studio Database Tools 139
Running and Editing Queries
You can do a lot of work with SQL statements after building them.

Running Queries

You can test your SQL code in Query Builder before inserting it a page.

To run a query in the Query Builder:

1. Click the Run Query button.

2. You are prompted to enter values for any CFML variables in the query.

Warning When you click the Run Query button, the SQL statement is actually processed. If you
run an INSERT, UPDATE, or DELETE statement, the changes you coded in the SQL
statement are made in the data source.

Editing Queries

If you save a query, you can edit it later. Pages that contain the edited query are not
automatically updated, so you will need to re-insert the query for the changes to take
effect.

To edit a query:

1. Open the query folder for the data source you want to use.

2. Double-click on the query you want to edit.

3. Make changes in the Table pane and the Properties pane.

4. Save the new query.

Note The interactions among the Query Builder panes differ somewhat. If you write a query
in the SQL pane and save it, the code is not reflected in the Properties or Table panes. If
you take an action, such as adding a table, in the Properties or Table panes, the SQL
pane is refreshed with the SQL generated from these panes.

140 Developing Web Applications with ColdFusion

C H A P T E R 1 1
Chapter 11 Inserting, Updating, and
Deleting Data
This chapter describes how to insert, update, and delete data in a database with
ColdFusion.

Contents

• Inserting Data... 142

• Creating an HTML Insert Form... 142

• Creating an Insert Page with CFINSERT... 143

• Creating an Insert Page with CFQUERY ... 145

• Updating Data .. 145

• Creating an Update Form .. 146

• Creating an Update Page with CFUPDATE .. 147

• Creating an Update Page with CFQUERY... 148

• Deleting Data.. 149

• Data Input Validation... 150

• Dynamic HTML Forms .. 152

• Dynamic SQL.. 157

• Transaction Processing (CFTRANSACTION) ... 158

142 Developing Web Applications with ColdFusion
Inserting Data
Inserting data into a database is usually done with two application pages:

• An insert form

• An insert action page

You can create an insert form with CFFORM tags or with standard HTML form tags.
When the form is submitted, form variables are passed to a ColdFusion page that
performs an insert operation (and whatever else is called for) on the specified data
source. The insert page can contain either a CFINSERT tag or CFQUERY tag with a SQL
insert statement. The insert page should also contain a message for the end user.

Creating an HTML Insert Form
When creating a form in HTML, recall that you must specify the ACTION and
METHOD attributes. Generally, the METHOD attribute is “POST” and the ACTION
attribute specifies the name of the ColdFusion page (.CFM) file you want to execute.

Setting a form’s ACTION attribute

The ACTION attribute in an HTML form tells the browser what to do when the user
clicks the Submit button. In the following example, the insdata.cfm page is executed
when the user submits the form data for processing.

<FORM ACTION="insdata.cfm" METHOD="Post">

Implementing data entry fields

Creating data entry fields for an HTML form is very simple: you need only create the
HTML form fields for each database field into which you want to insert data. The
names of your form fields must be identical to the names of your database fields.

For example, if you have a table called Employees with three fields called FirstName,
LastName, and Phone, your form fields might look like this:

First Name: <INPUT TYPE="text" NAME="FirstName">
Last Name: <INPUT TYPE="text" NAME="LastName">
Phone: <INPUT TYPE="text" NAME="Phone">

You can use the full range of HTML input controls, including list boxes, radio buttons,
checkboxes, and multi-line text boxes in your forms. When ColdFusion reads the
contents of the form submittal, it uses the NAME attribute to map HTML form fields to
the corresponding database fields and inserts the data entered by the user into the
appropriate database fields.

Chapter 11: Inserting, Updating, and Deleting Data 143
Hidden form fields

Hidden fields are a special type of form input field. When you define a hidden input
field, the field remains a part of the HTML form but is not displayed to the user. When
a user submits the form, the VALUE of the hidden field (which is typically specified
when preparing the form) is sent to ColdFusion along with user-entered fields that are
not hidden.

For example, if you want a form submitted by a user to always include the site from
which it was submitted, you might have a hidden input field such as:

<INPUT TYPE="Hidden" NAME="SiteName" VALUE="CompanyName">

In the above case, every time a user completes the HTML form, a variable with the
name “SiteName” and the value “CompanyName” is passed as a part of the form
submittal.

Example: HTML insert form

The following example demonstrates a simple HTML form:

<FORM ACTION="insdata.cfm" METHOD="Post">
<!-- Data entry fields -->

<PRE>
First Name: <INPUT TYPE="text" NAME="FirstName">
Last Name: <INPUT TYPE="text" NAME="LastName">
Phone: <INPUT TYPE="text" NAME="Phone">
<INPUT TYPE="Submit" VALUE="Enter Information">

</PRE>
</FORM>

The form has three inputs: FirstName, LastName, and Phone. The user can enter data
in these text areas and click the Submit button. When the Submit button is clicked, the
form action is carried out, and all inputs (including hidden inputs) are made available
to the next page.

Suppose the user enters his first name as “William,” his last name as “Gibson,” and his
phone as “(212)323-9734.” When he clicks the Submit button, the form variables
shown below are sent to the page:

FirstName=William
LastName=Gibson
Phone=(212)323-9734

This page might display these variables, insert them into the database, or perhaps do
both depending on your application.

Creating an Insert Page with CFINSERT
The CFINSERT tag is the easiest way to handle simple inserts from either a CFFORM or
an HTML form.

144 Developing Web Applications with ColdFusion
In most cases, the optional attributes are not needed. The TABLEOWNER and
TABLEQUALIFIER attributes are rarely necessary but are provided for compatibility
with ODBC drivers that require you to specify a table owner and/or table qualifier.
Neither of these fields needs to be specified for the Microsoft ODBC Desktop Drivers
bundled with ColdFusion.

ODBC drivers that require table owners and/or qualifiers to be specified include all
SQL Server and Oracle drivers, as well as all Intersolv Q&E drivers.

CFINSERT datasource

The ODBC data source is named “Employees DB” and the table you want to insert data
into is named “Employees.” Given this information, the CFINSERT tag would be
included in your page as follows:

<CFINSERT DATASOURCE="Employee DB" TABLENAME="Employees">

Example: HTML form page

The following example illustrates an HTML form with the CFINSERT tag.

<!-- HTML form to input data -->
<HTML>
<HEAD>

<TITLE>Input Form</TITLE>
</HEAD>
<BODY>

<FORM ACTION="EmployeeInsert.cfm"
METHOD="Post">

<PRE>
First Name: <INPUT TYPE="text"

NAME="FirstName">
Last Name: <INPUT TYPE="text"

NAME="LastName">
Phone: <INPUT TYPE="text"

NAME="Phone">
<INPUT TYPE="Submit"

VALUE="Insert Information">
</PRE>
</FORM>

</BODY>
</HTML>

Example: CFINSERT action page

<!--- Inserts the data from the the HTML Form --->
<CFINSERT DATASOURCE="Employee DB"

TABLENAME="Employees">

<HTML>

Chapter 11: Inserting, Updating, and Deleting Data 145
<HEAD>
<TITLE>Input Form</TITLE>

</HEAD>
<BODY>

<CENTER><H2>Thank You!</H2></CENTER>
<HR>
<P>Thank you for entering your data into
our database - please visit our site often!</P>
<HR>

</BODY>
</HTML>

Creating an Insert Page with CFQUERY
For more complex inserts from a form submittal you can use a SQL INSERT statement
in a CFQUERY tag instead of a CFINSERT tag. The SQL INSERT statement is more
flexible because you can insert information selectively or use functions within the
statement.

Basic SQL syntax

The syntax for a basic SQL insert statement is:

INSERT INTO tablename (columnnames)
VALUES (values)

The VALUES keyword specifies the values for the columns in the new row. You have to
type the values you want to add in the same order as the columns in the columnnames
section of the statement.

Example: CFQUERY insert

To insert the form data from the example above with a CFQUERY use this syntax:

<CFQUERY NAME="AddEmployee"
DATASOURCE="Employee DB">
INSERT INTO Employees (FirstName, LastName, Phone)
VALUES (’#Form.FirstName#’, ’#Form.LastName#’,
’#Form.Phone#’)

</CFQUERY>

Updating Data
Updating data in a database is usually done with two pages:

• An update form

• An update page

146 Developing Web Applications with ColdFusion
The update form is created with CFFORM tags or HTML form tags. The update form
calls an update page which can contain either a CFUPDATE tag or a CFQUERY tag with
a SQL UPDATE statement. The update page should also contain a message for the end
user that reports on the update completion.

Creating an Update Form
An update form is similar to an insert form with two key differences. An update form
contains a reference to the primary key of the record that is being updated. A primary
key is a field or combination of fields in a database table that uniquely identifies each
record in the table. For example, in a table of Employee names and addresses, only the
Employee_ID would be unique to each record. Because the purpose of an update form
is to update existing data, the contents of an update form are usually populated out of
a database.

Dynamically populating an update form

To populate the fields of an update form, you must first select the record out of the
database with a CFQUERY. Then put the form in a CFOUTPUT statement to reference
the fields.

Designating the primary key

The easiest way to designate the primary key in an update form is to include a hidden
input field with the value of the primary key for the record you want to update.

Example: Primary key value

<!--- Query to select record --->
<CFQUERY NAME="EmployeeRecord"

DATASOURCE="Employee DB">
SELECT *

FROM Employees
WHERE Employee_ID = #URL.EmployeeID#

</CFQUERY>

<HTML>
<HEAD>

<TITLE>Input Form</TITLE>
</HEAD>
<BODY>

<CFOUTPUT QUERY="EmployeeRecord">

<!--- Input form --->
<FORM ACTION="EmployeeUpdate.cfm" METHOD="Post">

<!--- Primary Key value indicating record to update --->

Chapter 11: Inserting, Updating, and Deleting Data 147
<INPUT TYPE="Hidden" NAME="Employee_ID"
VALUE="#Employee_ID#">

<PRE>
FirstName: <INPUT TYPE="Text" NAME="FirstName"

VALUE="#FirstName#">
LastName: <INPUT TYPE="Text" NAME="LastName"

VALUE="#LastName#">
Phone: <INPUT TYPE="Text" NAME="Phone"

VALUE="#Phone#">

<INPUT TYPE="Submit" VALUE="Update Information">

</PRE>
</FORM>
</CFOUTPUT>

</BODY>
</HTML>

In this example, Employee_ID is the primary key of the Employees table, so a hidden
field named Employee_ID is included in the HTML form. The hidden field indicates to
ColdFusion which record to update. In this case, the record ID was passed as the URL
parameter EmployeeID:

http://web_root/updateform.cfm?employeeid=2

Creating an Update Page with CFUPDATE
The CFUPDATE tag is the easiest way to handle simple updates from a front end form.
The CFUPDATE tag has an almost identical syntax to the CFINSERT tag.

To use CFUPDATE, you must include all of the fields that comprise the primary key in
your form submittal. The CFUPDATE tag automatically detects the primary key fields
in the table you are updating and seeks them out in the submitted form fields.
ColdFusion uses the primary key field(s) to select the record to update. It then updates
the appropriate fields in the record using the remaining form fields submitted.

Example: CFUPDATE page

The ODBC data source is named “Employee DB,” and the table you want to update is
named “Employees.” With the form example just described as the front end, the
CFUPDATE tag would be included in your page as follows:

<CFINSERT DATASOURCE="Employee DB"
TABLENAME="Employees">

<!--- This is the page EmployeeUpdate.cfm --->
<CFUPDATE DATASOURCE="Employee DB"

TABLENAME="Employees">

<HTML>
<HEAD>

<TITLE>Reply</TITLE>
</HEAD>

148 Developing Web Applications with ColdFusion
<BODY>

<H2>Thank You!</H2>
<HR>
<P>Thank you for updating your data in
our database - please visit our site often!</P>
<HR>

</BODY>
</HTML>

Creating an Update Page with CFQUERY
For more complicated updates, you can use a SQL update statement in a CFQUERY tag
instead of a CFUPDATE tag. The SQL update statement is more flexible for
complicated updates.

Syntax

The syntax for a SQL update statement is:

UPDATE tablename
SET columnname = value
WHERE condition

After the SET clause, a table column must be named. Then, you indicate a constant or
expression as the value for the column.

Example: CFQUERY update page

To update the record with the front end form from the example above using a
CFQUERY use this syntax:

<CFQUERY NAME="UpdateEmployee"
DATASOURCE="Employee DB">
UPDATE Employees

SET Firstname=’#Form.Firstname#’,
LastName=’#Form.LastName#’,
Phone=’#Form.Phone#’

WHERE Employee_ID=#Employee_ID#
</CFQUERY>

Note The WHERE statement is optional, but if you do not use it in the SQL UPDATE
statement or the UPDATE command, then every row in the database will be updated.

Chapter 11: Inserting, Updating, and Deleting Data 149
Deleting Data
Deleting data in a database can be done with a single delete page. The delete page
contains a CFQUERY tag with a SQL delete statement.

Syntax

The syntax for a SQL delete statement is:

DELETE FROM tablename
WHERE condition

The condition controls whether or not the delete statement deletes a single record,
several records, or all records.

Example: Deleting a single record

The following example demonstrates deleting a single employee from the Employees
table.

DELETE FROM Employees
WHERE Employee_ID = 1

Example: Deleting several records

The following example demonstrates deleting several records from the Employee
table. The example assumes that there are several Employees in the sales department.

DELETE FROM Employees
WHERE Department = ’Sales’

Example: Deleting all records

The following example demonstrates deleting all the records from the Employees
table.

DELETE FROM Employees

Note Deleting records from a database is not reversible. Use delete statements carefully.

Example: Complete delete page

<!--- Page to delete single employee record --->
<CFQUERY NAME="DeleteEmployee"

DATASOURCE="Employee DB">
DELETE FROM Employees
WHERE Employee_ID = #URL.EmployeeID#

</CFQUERY>

<HTML>
<HEAD>

<TITLE>Delete Employee Record</TITLE>

150 Developing Web Applications with ColdFusion
</HEAD>
<BODY>
<H3>The employee record has been deleted.</H3>

</BODY>
</HTML>

Data Input Validation
When you use forms to capture input data from users for a database query, you often
want to validate the user’s input before sending the query to the database. This is
especially true when you create front ends for SQL statements that require a specific
data type, for example SQL statements containing date or numeric comparisons.
Validation ensures correct processing by the data source.

You can apply validation rules to any form submittal sent to the ColdFusion
application server. ColdFusion offers several different types of data input validation.

Required form fields

One of the weaknesses of HTML forms is the inability to define input fields as required.
Because this is a particularly important requirement for database applications,
ColdFusion provides a server-side mechanism for requiring users to enter data in
fields.

To define an input field as required, use a hidden field that has a NAME attribute
composed of the field name and the suffix “_required.” For example, to require that the
user enter a value in the FirstName field, use the syntax:

<INPUT TYPE="hidden" NAME="FirstName_required">

If the user leaves the FirstName field empty, ColdFusion rejects the form submittal and
returns a message informing the user that the field is required. You can customize the
contents of this error message using the VALUE attribute of the hidden field. For

Data Input Validation Types

Validation Type Description

Client-side In a CFFORM, you can specify a JavaScript program in the
ONVALIDATE attribute of tags like CFINPUT, CFGRID, CFSLIDER,
CFTEXTINPUT, and CFTREE to perform input validation.

Server-side In a CFFORM, you can enable validation in tags that support input
validation (like CFINPUT and CFTEXTINPUT) using the VALIDATE
attribute.

You can also use hidden fields in HTML forms to require user
entries and to validate several common data types.

Chapter 11: Inserting, Updating, and Deleting Data 151
example, if you want the error message to read “You must enter your first name,” use
the syntax:

<INPUT TYPE="hidden"
NAME="FirstName_required"
VALUE="You must enter your first name.">

Hidden form fields

Another weakness of HTML forms is that you cannot validate data input by users.
ColdFusion enables you to do several types of data validation by adding hidden fields
to forms. The hidden field suffixes you can use to do validation are as follows:

Examples: Hidden fields

The following examples illustrate the use of hidden fields to validate data. In this
example (a hotel reservation form), the FORM being validated contains the fields
“Rooms,” “Guests,” and “ArrivalDate.” To ensure that the Rooms field contains an
integer, that the Guests field is from 1 to 12, and that the ArrivalDate is a valid date, add
the following hidden fields to the form:

Form Field Validation Using Hidden Fields

Field Suffix Value Attribute Description

_integer Custom error
message

Verifies that the user enters a number. If the
user enters a floating point value, it is
rounded to an integer.

_float Custom error
message

Verifies that the user enters a number. Does
not do any rounding of floating point values.

_range MIN=MinValue

MAX=MaxValue

Verifies that the numeric value entered is
within the specified boundaries. You can
specify one or both of the boundaries
separated by a space.

_date Custom error
message

Verifies that a date has been entered and
converts the date into the proper ODBC date
format. Will accept most common date forms,
for example, 9/1/98; Sept. 9, 1998).

_time Custom error
message

Verifies that a time has been correctly entered
and converts the time to the proper ODBC
time format.

_eurodate Custom error
message

Verifies that a date has been entered in a
standard European date format and converts
into the proper ODBC date format.

152 Developing Web Applications with ColdFusion
<INPUT TYPE="hidden"
NAME="Rooms_integer"
VALUE="You must enter a number for the Rooms field.">

<INPUT TYPE="hidden"
NAME="Guests_range"
VALUE="MIN=1 MAX=12">

<INPUT TYPE="hidden"
NAME="ArrivalDate_date"
VALUE="This is not a valid arrival date.">

The VALUE attribute is optional. A default message displays if no value is supplied.

When the form is submitted, ColdFusion scans the form fields to find any validation
rules you specified. The rules are then used to analyze the user’s input. If any of the
input rules are violated, ColdFusion sends an error message to the user that explains
the problem. The user then must go back to the previous screen, correct the problem
and resubmit the form. ColdFusion will not accept the submittal until the entire form
is entered correctly.

Automatic validation of numeric and date fields

If you use CFINSERT or CFUPDATE and you specified columns in your database that
are numeric, date, or time, then form fields inserting data into these fields are
automatically validated. You can use the hidden field validation functions for these
fields to display a custom error message.

Additional notes on validation

• Adding a validation rule to a field does not make it a required field. You need to
add a separate _required hidden field if you want to ensure user entry.

• Because numeric values often contain commas and dollar signs, these
characters are automatically stripped out of fields with _integer, _float, or
_range rules before they are validated and saved to the database.

Dynamic HTML Forms
One of the most important tools for working with relational databases in a Web
application is dynamic forms. A dynamic form is an HTML form that uses elements
created with database query results and CFML. Most often these elements are either
radio buttons, check boxes, select lists, or multiple select lists.

You can use dynamic forms to help ensure data integrity, to speed coding, and to
create relationships between tables in your database.

Chapter 11: Inserting, Updating, and Deleting Data 153
Example: Query form

This example shows a select list of park names that is created with a query against the
parks table.

<CFQUERY NAME="ParkNames"
DATASOURCE="ParkDB”>
SELECT ParkName_ID, ParkName

FROM Parks
</CFQUERY>

<FORM ACTION="example.cfm" METHOD="Post">
<SELECT NAME="ParkName_ID">
<CFOUTPUT QUERY="ParkNames">

<OPTION VALUE="#ParkName_ID#">#ParkName#
</CFOUTPUT>
</SELECT>
<INPUT TYPE="submit" VALUE="Submit">

</FORM>

When this form is submitted, it passes the ParkName_ID, which is the primary key for
the chosen park. This value can be then used by the example.cfm page. Other elements
of a form can be dynamically created in the same way.

The following section explains how to work with checkboxes and multiple select lists
that can be created in dynamic forms.

Using checkboxes and multiple select lists in HTML forms

When an HTML form contains either a list of checkboxes with the same name or a
multiple select box, the user’s entries are made available as a comma-delimited list
with the selected values. These lists can be very useful for a wide range of inputs.

Note If no value is entered for a checkbox or multiple select lists then no variable is
created.The SQL INSERT statement will not work correctly if there are no values. To
correct this problem, make the form fields required or use Dynamic SQL.

Checkboxes

When you put a series of checkboxes with the same name in an HTML form the
variable that is created contains a comma-delimited list of values. This can be done
either with numeric values or alphanumeric strings. These two types of values are
treated slightly differently.

Searching numeric values

Suppose you want to present a user with a list of organizations. A user is prompted to
select one or more organizations using checkboxes. The query retrieves detailed
information on the selected organization(s).

154 Developing Web Applications with ColdFusion
Select one or more companies to get information on:

<INPUT TYPE="checkbox"
NAME="SelectedOrgs"
VALUE="5">
Mobil Corporation

<INPUT TYPE="checkbox"
NAME="SelectedOrgs"
VALUE="19">
Shapeware, Inc.

<INPUT TYPE="checkbox"
NAME="SelectedOrgs"
VALUE="13">
BankBoston

<INPUT TYPE="hidden"
NAME="SelectedOrgs_required"
VALUE="You must select at least one organization.">

Note that while the text displayed to the user is the name of the organization, the
VALUE attribute of each checkbox corresponds to the underlying database primary
key for the organization’s record.

If the user checked the Shapeware and BankBoston items, the value of the
SelectedOrgs form field would be “19,13.” If this parameter were used in the following
SQL statement:

SELECT *
FROM Organizations
WHERE Organization_ID IN (#SelectedOrgs#)

the statement sent to the database would be:

SELECT *
FROM Organizations
WHERE Organization_ID IN (19,13)

This statement retrieves detailed information on Shapeware and Bank of Boston that
you can then display to the user with a CFOUTPUT section.

Searching string values

To search for a database field containing string values (instead of numeric), you must
modify both the checkbox and CFQUERY syntax.

In the first example, we searched for company information based on a numeric
primary key field called “Organization_ID.” If instead the primary key was a database
field called “OrganizationName” that contained string values, we must make the
following two modifications:

Single quotes must be added to the value attributes of the checkboxes.

Chapter 11: Inserting, Updating, and Deleting Data 155
<INPUT TYPE="checkbox"
NAME="SelectedOrgs"
VALUE="’Mobil Corporation’">
Mobil Corporation

<INPUT TYPE="checkbox"
NAME="SelectedOrgs"
VALUE="’ShapeWare, Inc.’">
Shapeware, Inc.

<INPUT TYPE="checkbox"
NAME="SelectedOrgs"
VALUE="’Bank of Boston’">
BankBoston

<INPUT TYPE="checkbox"
NAME="SelectedOrgs_required"
VALUE="You must select at least one organization.">

If the user checked the Shapeware and BankBoston items, the value of the
SelectedOrgs form field would be ’ShapeWare, Inc.’,’BankBoston’.

You must use the ColdFusion PreserveSingleQuotes function in the SQL statement to
prevent ColdFusion from escaping the single quotes in the form field value:

SELECT *
FROM Organizations
WHERE OrganizationName IN
(#PreserveSingleQuotes(SelectedOrgs)#)

The statement sent to the database would be:

SELECT *
FROM Organizations
WHERE OrganizationName IN (’ShapeWare, Inc.’,’BankBoston’)

Multiple select lists

ColdFusion treats multiple select lists (HTML input type SELECT with attribute
MULTIPLE) just like checkboxes. The data made available to your page from any
multiple select list is a comma-delimited list of the entries selected by the user. For
example, a multiple select list contains three entries: red, green, and blue. The user
selects red and green. The value of the form field variable is then ’red’, ’green’.

As with checkboxes, two cases exist when querying for information with multiple
select lists: searching a database field containing numeric values, and searching a
database field containing string values.

Searching numeric values

For example, suppose you want the user to select organizations from a multiple select
box. The query retrieves detailed information on the selected organization(s):

156 Developing Web Applications with ColdFusion
Select one or more companies to get more information on:
<SELECT Name="SelectOrgs" MULTIPLE>

<OPTION VALUE="5">Mobil Corporation
<OPTION VALUE="19">ShapeWare, Inc.
<OPTION VALUE="13">BankBoston

</SELECT>

<INPUT TYPE="hidden"
NAME="SelectedOrgs_required"
VALUE="You must select at least one organization.">

If the user selected the Shapeware and BankBoston items, the value of the
SelectedOrgs form field would be 19,13.

If this parameter were used in the following SQL statement:

SELECT *
FROM Organizations
WHERE Organization_ID IN (#SelectedOrgs#)

the statement sent to the database would be:

SELECT *
FROM Organizations
WHERE Organization_ID IN (19,13)

Searching string values

Suppose you want the user to select organizations from a multiple select list. The
database field to be searched is a string field. The query retrieves detailed information
on the selected organization(s):

Select one or more companies to get
more information on:
<SELECT Name="SelectOrgs" MULTIPLE>

<OPTION VALUE="’Mobil Corporation’">Mobil Corporation
<OPTION VALUE="’ShapeWare, Inc.’">ShapeWare, Inc.
<OPTION VALUE="’BankBoston’">BankBoston

</SELECT>

<INPUT TYPE="hidden"
NAME="SelectedOrgs_required"
VALUE="You must select at least one organization.">

If the user selected the Shapeware and BankBoston items, the value of the
SelectedOrgs form field would be ’ShapeWare, Inc.’,’BankBoston’.

As when using checkboxes to search database fields containing string values, the
ColdFusion PreserveSingleQuotes function must be used with multiple select boxes:

SELECT *
FROM Organizations
WHERE OrganizationName IN (#PreserveSingleQuotes(SelectedOrgs)#)

The statement sent to the database would be:

Chapter 11: Inserting, Updating, and Deleting Data 157
SELECT *
FROM Organizations
WHERE OrganizationName IN (’ShapeWare, Inc.’, ’BankBoston’)

Dynamic SQL
Embedding SQL queries that use dynamic parameters is a powerful mechanism for
linking variable inputs to database queries. However, in more sophisticated
applications, you will often want user inputs to determine not only the content of
queries but also the structure of queries.

Dynamic SQL allows you to dynamically determine (based on runtime parameters)
which parts of a SQL statement are sent to the database. So if a user leaves a search
field empty, for example, you could simply omit the part of the WHERE clause that
refers to that field. Or, if a user does not specify a sort order, the entire ORDER BY
clause could be omitted.

Dynamic SQL is implemented in ColdFusion by using CFIF/CFELSEIF/CFELSE tags to
control how the SQL statement is constructed.

Syntax

A dynamic SQL statement using the CFQUERY tag takes the following form:

<CFQUERY NAME="queryname"
DATASOURCE="datasourcename">

...Base SQL statement

<CFIF value operator value >
...additional SQL
</CFIF>

</CFQUERY>

Example: Using CFIF

For example, in the following code, a series of CFIF tags determine which SQL
statements to append to the base SQL SELECT statement:

<CFQUERY NAME="GetParkList"
DATASOURCE="CF 4.0 Examples">
SELECT *

FROM Parks
WHERE 0=0

<CFIF #ParkName# is not "">
AND ParkName LIKE ’%#ParkName#%’

</CFIF>

<CFIF #ParkType# is not "AllTypes">
AND ParkType = ’#ParkType#’

</CFIF>

158 Developing Web Applications with ColdFusion
<CFIF #Region# is not "AllRegions">
AND Region = ’#Region#’

</CFIF>

<CFIF #State# is not "">
AND State = ’#State#’

</CFIF>

</CFQUERY>

Tip The WHERE 0=0 clause has no impact on the query submitted to the database. But if
none of the conditions is true, it ensures that the WHERE clause does not result in a
SQL syntax error.

Example: Creating a select list

This example shows how to use dynamic SQL to ensure that a multiple select list is
created.

<CFQUERY NAME="GetParkList"
DATASOURCE="CF 4.0 Examples">

SELECT *
FROM Parks
WHERE 0=0

<CFIF IsDefined("ParkName_ID")>
AND ParkName_ID IN (#Form.ParkName_ID#)

</CFIF>
</CFQUERY>

Transaction Processing (CFTRANSACTION)
You can use the CFTRANSACTION tag to maintain consistency across queries. All
queries contained within a CFTRANSACTION tag are treated as a transactional unit.
This means that changes made to the database are not permanently committed until
all queries in the transaction block execute successfully. If an error occurs in one of the
queries, all changes made by previous queries within the transaction block are rolled
back.

Syntax and example

The following example illustrates the use of CFTRANSACTION. If an error occurs in the
second query, CFTRANSACTION guarantees that a transfer of account funds does not
leave the database in an inconsistent state:

<CFTRANSACTION>

<CFQUERY NAME="WithdrawCash"
DATASOURCE="BankDB">
UPDATE Accounts

Chapter 11: Inserting, Updating, and Deleting Data 159
SET Balance=Balance - #Amount#
WHERE Account_ID=#AccountFrom#

</CFQUERY>

<CFQUERY NAME="DepositCash"
DATASOURCE="BankDB">

UPDATE Accounts
SET Balance=Balance + #Amount#

WHERE Account_ID=#AccountTo#

</CFQUERY>

</CFTRANSACTION>

If an error occurs during the execution of the “DepositCash” query, the update made in
the “WithdrawCash” query is automatically rolled back. Transactions are only
supported for the same datasource.

Setting transaction isolation

You can specify an optional ISOLATION attribute with the CFTRANSACTION tag. The
ISOLATION attribute provides fine-grained control over how the database engine
performs locking during the transaction.

Valid values for the ISOLATION attribute are:

• READ_UNCOMMITTED

• READ_COMMITTED

• REPEATABLE_READ

• SERIALIZABLE

Note VERSIONING is no longer a valid value for this attribute and is no longer supported in
ColdFusion.

ODBC driver support for transactions

Not every driver supports transactions and not every driver that supports transactions
supports all ISOLATION levels. When you attempt to use a transaction/isolation-level
combination for a specific driver, ColdFusion queries the driver for its transaction
capabilities. ColdFusion returns an error if the driver indicates it is not capable of
implementing the request. Consult your driver’s documentation for more information
on the ISOLATION levels it supports and on the behavior of the driver for each level.

160 Developing Web Applications with ColdFusion

C H A P T E R 1 2
Chapter 12 Building Dynamic Java Forms
This chapter shows you how to use the CFFORM tag to enrich your forms with
sophisticated graphical controls, including several Java applet-based controls. These
controls can be enabled without the need to code Java directly.

Contents

• Creating Forms with the CFFORM Tag... 162

• Input Validation with CFFORM Controls ... 164

• Input Validation with JavaScript ... 164

• Building Tree Controls with CFTREE.. 166

• Structuring Tree Controls .. 170

• Embedding URLs in a CFTREE ... 173

• Data Grids with CFGRID ... 174

• Creating an Updateable Grid .. 176

• Grid Data Selection Options.. 184

• Building Slider Bar Controls .. 187

• Building Text Entry Boxes .. 188

• Building Drop-Down List Boxes.. 189

• Building Form Controls ... 191

• Embedding Java Applets.. 192

162 Developing Web Applications with ColdFusion
Creating Forms with the CFFORM Tag
The CFFORM tag allows you to create dynamic forms in CFML and gives you access to
a wide range of form controls, such as Java applet-based tree, slider, and grid controls,
as well as the standard HTML control types like check boxes, radio buttons, text input
boxes, and edit boxes. With CFFORM, you gain the advantage of access to these Java
applet-based controls without having to know the Java language, and, you don’t have
to juggle CFOUTPUT tags and HTML FORM tags to reference ColdFusion variables in
your forms.

Forms created using the CFFORM tags are structured just as HTML forms. Within the
<CFFORM> and </CFFORM> tags, you place entries for form controls, such as check boxes
and radio buttons (using CFINPUT), data grids (using CFGRID), tree controls
(CFTREE), or drop-down lists and select boxes (CFSELECT).

The HTML Reference contains complete online information on the HTML FORM tag.
You can open it from the Window Start menu by clicking Welcome to ColdFusion and
then selecting it from the Documentation list. You can also open it from the
ColdFusion Studio Help References.

Using HTML in a CFFORM

You can use the HTML FORM tag in combination with the CFFORM tag. ColdFusion
generates HTML forms dynamically from CFFORM tags and passes through to the
browser any HTML code it finds in the form. You can also replace your existing HTML
FORM tags with ColdFusion CFFORM and your forms will work fine.

Advantages of Using Dynamic Forms

Building a form with CFFORM provides the following advantages over building a form
using just HTML:

• You no longer have to juggle CFOUTPUT sections and HTML FORM tags in
order to use ColdFusion expressions. Expressions can be used directly in tags
inside a CFFORM.

• CFFORM elements include a number of Java applet-based controls you can use
immediately without having to learn about Java. These dynamic controls add
tremendous power to forms.

• Most CFFORM controls offer input validation attributes you can use to validate
a user’s entry, selection, or interaction. Input validation is often done with
JavaScript. You can reference JavaScript programs in your CFFORM.

• Using CFAPPLET, you can simplify the job of embedding custom Java applets of
your own in your CFFORM.

For nearly all CFFORM controls, you can specify font characteristics, alignment, size,
scrolling properties, as well as a number of other options.

Chapter 12: Building Dynamic Java Forms 163
CFFORM controls

When you build a form using CFFORM, you typically use one or more of the following
controls:

• CFGRID — A Java applet-based control used to create a data grid you can
populate from a query or by defining the contents of individual cells. Grids can
also be used to insert, update, and delete records from a data source.

• CFSLIDER — A Java applet-based control used to define a slider.

• CFINPUT — Used to place radio buttons, check boxes, or text input boxes.

• CFTREE and CFTREEITEM — More Java applet-based controls used to define a
tree control and individual tree control items.

• CFTEXTINPUT — A Java applet-based control used to define a text input box.

• CFSELECT — Used to define a drop-down list box.

• CFAPPLET — Allows you to embed your own Java applets.

Improving performance with ENABLECAB

The CFFORM ENABLECAB attribute allows you to improve the performance of Java-
applet based CFFORM controls. When you use ENABLECAB, ColdFusion prompts the
end user to accept a download of the Java classes needed for the CFFORM controls that
use them. CAB files are digitally signed using VeriSign digital IDs to ensure file security.

Note The ENABLECAB attribute is supported only for MS Internet Explorer clients that have
Authenticode 2.0 installed. Authenticode 2.0 can be downloaded from
http://www.microsoft.com/ie/security/authent2.htm.

Browsers that disable Java

Since each of the Java applet-based controls, CFGRID, CFSLIDER, CFTEXTINPUT, and
CFTREE require a Java applet to run, browsers that do not support Java or that have
disabled Java execution will not execute the forms that contain these controls. Using
the NOTSUPPORTED attribute, ColdFusion allows you to present an error message
rather than the blank applet space that appears in the browser. This attribute is
available in each of the Java applet-based controls as well as the CFAPPLET tag. You
use NOTSUPPORTED to specify the message you want to appear, formatted as HTML,
when an application page is loaded by a browser that does not support Java.

164 Developing Web Applications with ColdFusion
Input Validation with CFFORM Controls
The CFINPUT and CFTEXTINPUT tags include the VALIDATE attribute, which allows
you to specify a valid data type entry for the control. You can validate user entries on
the following data types.

When you specify an input type in the VALIDATE attribute, ColdFusion tests for the
specified input type and submits form data only on a successful match. A true value is
returned on successful form submission, false if validation fails.

Input Validation with JavaScript
In addition to native ColdFusion input validation using the VALIDATE attribute of the
CFINPUT and CFTEXTINPUT tags, the following tags support the ONVALIDATE
attribute, which allows you to specify a JavaScript function to handle your CFFORM
input validation:

• CFINPUT

Input Validation Controls

VALIDATE Entry Description

Date Verifies US date entry in the form mm/dd/yyy.

Eurodate Verifies valid European date entry in the form dd/mm/
yyyy.

Time Verifies a time entry in the form hh:mm:ss.

Float Verifies a floating point entry.

Integer Verifies an integer entry.

Telephone Verifies a telephone entry. Telephone data must be
entered as ###-###-####. The hyphen separator (-) can
be replaced with a blank. The area code and exchange
must begin with a digit between 1 and 9.

Zipcode (U.S. formats only) Number can be a 5-digit or 9-digit
zip in the form #####-####. The hyphen separator (-)
can be replaced with a blank.

Creditcard Blanks and dashes are stripped and the number is
verified using the mod10 algorithm.

Social_security_number Number must be entered as ###-##-####. The hyphen
separator (-) can be replaced with a blank.

Chapter 12: Building Dynamic Java Forms 165
• CFGRID

• CFSLIDER

• CFTEXTINPUT

• CFTREE

JavaScript objects passed to the validation routine

The following JavaScript objects are passed by ColdFusion to the JavaScript function
you specify in the ONVALIDATE attribute:

• form_object

• input_object

• object_value

Handling failed validation

The ONERROR attribute allows you to specify a JavaScript function you want to
execute in the event of a failed validation. For example, if you specify a JavaScript
function to handle input validation in the ONVALIDATE attribute you can also specify
a JavaScript function in the ONERROR attribute to handle a failed validation, which
returns a false value. ONERROR is available in the following CFFORM tags:

• CFGRID

• CFINPUT

• CFSELECT

• CFSLIDER

• CFTEXTINPUT

• CFTREE

When you specify a JavaScript routine in the ONERROR attribute, ColdFusion passes
the following JavaScript objects to the specified routine:

• form_object

• input_object

• object_value

• error message text

Example: Form validation

The following sample ColdFusion page includes JavaScript to validate an entry for an
email address:

166 Developing Web Applications with ColdFusion
<HTML>
<HEAD>

<TITLE>JavaScript Validation</TITLE>

<SCRIPT>
<!--

function testbox(form) {
Ctrl = form.inputbox1;
if (Ctrl.value == "" || Ctrl.value.indexOf (’@’, 0) == -1) {
return (false);
} else

return (true);
}

//-->
</SCRIPT>

</HEAD>

<BODY>
<H2>JavaScript validation test</H2>

<P>Please enter your email address:</P>
<CFFORM NAME="UpdateForm"

ACTION="update.cfm" >
<CFINPUT TYPE="text"
NAME="inputbox1"
REQUIRED="YES"
ONVALIDATE="testbox"
MESSAGE="Sorry, invalid entry."
SIZE="10"
MAXLENGTH="10">

<INPUT TYPE="Submit" VALUE=" Update... ">
</CFFORM>

</BODY>
</HTML>

See the following Web sites for information on JavaScript validation scripts:

• http://javascript.developer.com

• http://www.dannyg.com/javascript

• http://www.hotwired.com/webmonkey/javascript/

Building Tree Controls with CFTREE
The CFTREE form control is one of the most useful of the Java applet-based tags in
ColdFusion. With it, you can create collapsible tree controls populated from data
source queries. To build a tree control with CFTREE, you use individual CFTREEITEM

Chapter 12: Building Dynamic Java Forms 167
tags to populate the control. Tree controls are very useful for displaying hierarchical
information in a space-saving control. You can create shallow or deep tree structures,
and you can specify one of six built-in icons to represent individual items in the tree
control.

Populating a tree with query data

The following very simple CFTREE example is populated with data from a CFQUERY. It
uses a minimum of CFTREE and CFTREEITEM attributes to show how you can create
and populate a tree control with just a handful of CFML.

First, the query selects data from the data source:

<CFQUERY NAME="Engineering" DATASOURCE="cfsnippets">
SELECT FirstName + ’ ’ + LastName AS FullName
FROM EMPLOYEES

</CFQUERY>

Next, the CFTREE is built using data from the query:

<CFFORM NAME="form1" ACTION="submit.cfm"
METHOD="Post">

<CFTREE NAME="tree1" REQUIRED="yes"
HSCROLL="no" vSCROLL="yes">
<CFTREEITEM VALUE=FullName

QUERY="Engineering"
QUERYASROOT="yes"
IMG="folder,document">

</CFTREE>
</CFFORM>

The resulting tree control looks like this:

This example uses the QUERYASROOT attribute to specify the query name as the root
level of the tree control. The QUERYASROOT attribute takes either a yes/no argument,
or a name you want to appear as the root level for data returned by a CFQUERY. You

168 Developing Web Applications with ColdFusion
could, for example, populate a CFTREE with data from several different, identical
queries or from several different data sources. Using QUERYASROOT allows you to
specify each individual query as the source of data for a particular section of the
CFTREE.

Grouping output from a query

In a similar query, you may want to organize your employees by the department they
work in and then display a complete list that reflects organization by department. In
this case, ColdFusion provides a very simple means for displaying output from an
ordered CFQUERY in a CFTREE. You separate column names with commas in the
CFTREEITEM VALUE attribute, and ColdFusion understands you want the tree control
to reflect the ordering of the SQL statement:

Example: Grouping query output

<!--- CFQUERY with an ORDER BY clause --->
<CFQUERY NAME="myquery" DATASOURCE="cfsnippets">

SELECT DEPARTMENT, FirstName + ’ ’ + LastName
AS FullName
FROM EMPLOYEES
ORDER BY DEPARTMENT

</CFQUERY>

<!--- Build the tree control --->
<CFFORM NAME="form1" ACTION="submit.cfm"

METHOD="Post">

<CFTREE NAME="tree1"
HSCROLL="no"
VSCROLL="no"
BORDER="yes"
HEIGHT="350"
REQUIRED="yes">

<CFTREEITEM VALUE="Department, FullName"
QUERY="myquery"
QUERYASROOT="Department"
IMG="cd,folder">

</CFTREE>

<INPUT TYPE="Submit" VALUE="Submit">
</CFFORM>

Note how comma-separated items in the IMG and the VALUE attributes correspond.
The first column, Department, is represented with one of ColdFusion’s built-in
CFTREE images, the CD image. The second column, FullName, is represented with
another built-in image, the folder. If the IMG attribute is left out altogether, ColdFusion
uses the folder image for all levels in the tree.

The resulting tree control looks like this:

Chapter 12: Building Dynamic Java Forms 169
If the user selects the name "Peter Jacobsen" in this tree, the following form variables
are returned by ColdFusion:

form.tree1.node = Peter Jacobsen
form.tree1.path = Department\Sales\Peter Jacobsen

You can specify the backslash character used to delimit each element of the path form
variable in the CFTREE DELIMITER attribute.

Note The following tree examples all use the result set from the CFQUERY above. The
datasource, a Microsoft Access database called cfsnippets.mdb, is installed with CFAS.
To run any of the tree examples, just reference “myquery” or drop the query into your
test template.

CFTREE form variables

The CFTREE tag allows you to force a user to select an item from the tree control by
setting the REQUIRED attribute to YES. With or without the REQUIRED attribute,
ColdFusion passes two form variables to the application page specified in the CFTREE
ACTION attribute:

• form.treename.node — Returns the node of the user selection.

• form.treename.path — Returns the complete path of the user selection, in the
form: root\node1\node2\node_n\value

The root part of the path is only returned if you set the COMPLETEPATH attribute of
CFTREE to YES; otherwise, the path value starts with the first node.

170 Developing Web Applications with ColdFusion
Input validation with CFTREE

With CFTREE controls, there is no VALIDATE attribute with which, using other
CFFORM controls, you can validate a number of data types. However, you can use the
REQUIRED attribute in CFTREE to force a user to select an item from the tree control.
In addition, you can specify a JavaScript in the ONVALIDATE attribute to perform
validation.

Structuring Tree Controls
Tree controls built with CFTREE can be very complex. Knowing how to specify the
relationship between multiple CFTREEITEM entries will help you handle even the
most labyrinthine of CFTREE constructs.

Example: One-level tree control

The following example CFTREE code uses the CFQUERY consists of a single root and a
number of individual items:

<CFFORM NAME="form1" ACTION="submit.cfm">
<CFTREE NAME="tree1">

<CFTREEITEM VALUE="FullName"
QUERY="myquery"
QUERYASROOT="Department">

</CFTREE>

<INPUT TYPE="submit" VALUE="Submit">
</CFFORM>

The resulting tree looks like this:

Chapter 12: Building Dynamic Java Forms 171
Example: Multilevel tree control

When populating a CFTREE, you manipulate the structure of the tree by specifying a
TREEITEM parent. In this example, every TREEITEM, except the top level, specifies a
parent. The PARENT attribute allows your CFTREE to show the relationships between
elements in the tree control.

<CFFORM NAME="form1" ACTION="cfform_submit.cfm"
METHOD="Post">

<CFTREE NAME="tree1" HSCROLL="no" VSCROLL="no"
BORDER="no">
<CFTREEITEM VALUE="Divisions">
<CFTREEITEM VALUE="Development"

PARENT="Divisions" IMG="folder">
<CFTREEITEM VALUE="Product One"

PARENT="Development">
<CFTREEITEM VALUE="Product Two"

PARENT="Development">
<CFTREEITEM VALUE="GUI"

PARENT="Product Two" IMG="document">
<CFTREEITEM VALUE="Kernel"

PARENT="Product Two" IMG="document">
<CFTREEITEM VALUE="Product Three"

PARENT="Development">
<CFTREEITEM VALUE="QA"

PARENT="Divisions" IMG="folder">
<CFTREEITEM VALUE="Product One"

PARENT="QA">
<CFTREEITEM VALUE="Product Two" PARENT="QA">
<CFTREEITEM VALUE="Product Three"

PARENT="QA">
<CFTREEITEM VALUE="Support"

PARENT="Divisions" IMG="fixed">
<CFTREEITEM VALUE="Product Two"

PARENT="Support">
<CFTREEITEM VALUE="Sales"

PARENT="Divisions" IMG="cd">
<CFTREEITEM VALUE="Marketing"

PARENT="Divisions" IMG="document">
<CFTREEITEM VALUE="Finance"

PARENT="Divisions" IMG="element">
</CFTREE>

</CFFORM>

172 Developing Web Applications with ColdFusion
The resulting tree control looks like this:

Image names in a CFTREE

When you use the TYPE="Image" attribute, ColdFusion attempts to display an image
corresponding to the value in the column, which can be a built in ColdFusion image
name, or an image of your choice in the cfide\classes directory or subdirectory,
referenced with a relative URL.

The built-in image names are:

• cd

• computer

• document

• element

• folder

• floppy

• fixed

• remote

Using commas in CFTREEITEM

Commas are used to separate CFTREEITEM, VALUE, DISPLAY, IMG, and HREF
attribute values. You use commas to separate column names in a CFTREE you want to
populate with data from a query. As in the following example, two columns returned by
the query are specified in the VALUE attribute:

Chapter 12: Building Dynamic Java Forms 173
<CFTREE NAME="tree1" VSCROLL="no"
HSCROLL="no" BORDER="no">

<CFTREEITEM VALUE="Department,LastName"
QUERY="myquery"
QUERYASROOT="Company B"
IMG="folder,folder,document"
PARENT="Company B">

</CFTREE>

In this tree control, Department and LastName are returned by the query. The tree is
constructed with LastName entries organized under Department names (assuming
the query included an ORDER BY clause on DEPARTMENT). Note also the value of the
IMG attribute. Since the tree control consists of three separate levels, you can specify a
different built-in or custom image for each level of the tree control by separating each
image name with a comma.

Embedding URLs in a CFTREE
The HREF attribute in the CFTREEITEM tag allows you to designate tree items as links.
To use this feature in a CFTREE, you simply define the destination of the link in the
HREF attribute of CFTREEITEM.

Example: Adding Web links

<CFFORM ACTION="submit.cfm">

<CFTREE NAME="oak"
HIGHLIGHTHREF="yes"
HEIGHT="100"
WIDTH="200"
HSPACE="100"
VSPACE="6"
HSCROLL="no"
VSCROLL="no"
BORDER="no"
DELIMITER="?">

<CFTREEITEM VALUE="Important Links">
<CFTREEITEM VALUE="Allaire Home"

PARENT="Important Links"
IMG="document"
HREF="http://www.allaire.com">

<CFTREEITEM VALUE="Allaire Forums"
PARENT="Important Links"
IMG="document"
HREF="http://forums.allaire.com">

</CFTREE>
</CFFORM>

174 Developing Web Applications with ColdFusion
The resulting tree control looks like this:

The APPENDKEY attribute in CFTREEITEM

When a user selects a tree item and submits the form, the CFTREEITEMKEY variable is
appended to the URL passed to the application page specified in the CFFORM
ACTION attribute, in the form:

http://myserver.com?CFTREEITEMKEY=selected_value

You can disable this key by setting the APPENDKEY attribute in the CFTREE tag to No.

The TARGET attribute in CFTREEITEM

Use the TARGET attribute in the CFTREEITEM tag to specify a target for the link you’ve
specified in the HREF attribute. When populating a CFTREE with data from a
CFQUERY, you can separate TARGET attribute values in a comma-separated list to
correspond with each level of linked tree items in your CFTREE, as shown here:

TARGET="FRAME_BODY,_blank,_top"

Data Grids with CFGRID
The CFGRID tag, another Java applet-based CFFORM control, allows you to build
CFFORM grid controls. A grid control resembles a spreadsheet table and can contain
data populated from a CFQUERY or from other sources of data. As with other CFFORM
tags, CFGRID offers a wide range of data formatting options as well as the option of
validating user selections with a JavaScript validation script.

Other CFGRID features include:

• Alphanumeric sorting of data in a grid

• Data updates, inserts and deletes

• Images can be embedded in a grid

When users select grid data and submit the form, ColdFusion passes the selection
information as form variables to the application page specified in the CFFORM
ACTION attribute.

Note If you specify a CFGRID tag with a QUERY attribute defined and no corresponding
CFGRIDITEM attribute, the default grid that is created contains all the columns in the
query.

Chapter 12: Building Dynamic Java Forms 175
CFGRID is used with the CFGRIDCOLUMN tag, much as CFTREE uses CFTREEITEM.
In CFGRID, you define a wide range of row and column formatting options, as well as a
query name, selection options, and so on. You use the CFGRIDCOLUMN tag to define
individual columns in the grid.

Although the CFGRID tag includes a large number of attributes, the basics of building
a CFGRID are very straightforward, as you’ll see.

Populating a grid from a query

The following example shows a very basic CFGRID populated with data from a
CFQUERY:

<CFQUERY NAME="getdata" DATASOURCE="cfsnippets">
SELECT * FROM Employees

</CFQUERY>

<CFFORM NAME="Form1" ACTION="submit.cfm" METHOD="Post">

<CFGRID NAME="employee_grid" QUERY="getdata"
SELECTMODE="single">

<CFGRIDCOLUMN NAME="Employee_ID">
<CFGRIDCOLUMN NAME="LastName">
<CFGRIDCOLUMN NAME="Department">

</CFGRID>

<INPUT TYPE="Submit" VALUE="Submit">
</CFFORM>

The resulting CFGRID looks like this:

176 Developing Web Applications with ColdFusion
Note If you specify a CFGRID tag with a QUERY attribute defined and no corresponding
CFGRIDITEM attributes, the default grid that is created contains all the columns in the
query.

Hiding columns in a grid

You can use the CFGRIDCOLUMN DISPLAY attribute to hide columns you want to
retrieve from a data source but not expose to an end user, such as a customer ID or
other primary key column. In the following example, the Employee ID column is
retrieved, but not displayed:

<CFQUERY NAME="getdata" DATASOURCE="cfsnippets">
SELECT * FROM Employees

</CFQUERY>

<CFFORM NAME="Form1"
ACTION="submit.cfm"
METHOD="Post"
ENABLECAB="Yes">

<CFGRID NAME="grid1" QUERY="getdata"
SELECTMODE="single">

<CFGRIDCOLUMN DISPLAY="No"
NAME="Employee_ID">

<CFGRIDCOLUMN NAME="LastName">
<CFGRIDCOLUMN NAME="Department">

</CFGRID>

<INPUT TYPE="Submit" VALUE="Submit">

</CFFORM>

Creating an Updateable Grid
You can build grids so that end users are allowed to edit data. These edits can be the
basis for changes you make to a data source either by forming queries with CFQUERY
or by using the CFGRIDUPDATE tag, which passes edits made to grid data directly to
your data source.

Individual cell data can be edited and rows can be inserted, deleted or updated. You
enable this facility by specifying SELECTMODE="EDIT" in the CFGRID tag and by
enabling the INSERT or DELETE attributes in CFGRID. A grid can now provide data
source management, offer data input and review, as well as display tabular data in a
grid format.

There are essentially two ways to use an updateable grid to make changes to your
ODBC data sources. You can create a page to which you pass the CFGRID form
variables and in that page perform CFQUERY operations to update data source
records. Or you can pass grid edits to a page that includes the CFGRIDUPDATE tag,
which passes data directly to the data source. Although using CFQUERY gives you

Chapter 12: Building Dynamic Java Forms 177
complete control over interactions with your data source, CFGRIDUPDATE provides a
much simpler interface for operations that do not require the same level of control.

Editing data in a CFGRID

To enable grid editing, you use the SELECTMODE="EDIT" attribute. When enabled, a
user can edit cell data and insert or delete grid rows. Users change the content of a cell
by clicking on it and editing its contents using simple editing operations. When
enabled users can select a row and delete it, or select a row and insert a new row. When
a CFFORM containing a CFGRID is submitted, data about changes to grid cells are
stored in one-dimensional arrays you can reference like any other ColdFusion array.

The following arrays are created to keep track of edits to grid rows and cells:

For example, you have an updateable CFGRID called "mygrid" consisting of two
displayable columns, col1, col2, and one hidden column, col3. When an end user
selects and changes data in a row, arrays are created to store the original values for all
columns as well as the new column values for rows that have been updated, inserted,
or deleted.

mygrid.col1[row_index]
mygrid.col2[row_index]
mygrid.col3[row_index]
mygrid.original.col1[row_index]
mygrid.original.col2[row_index]
mygrid.original.col3[row_index]

Where row_index is the array index containing the grid data.

If the end user makes a change to a single cell in col2, you can reference the edit
operation, the original cell value, and the edited cell value in the following arrays:

<CFSET edittype = mygrid.RowStatus.Action[1]>

<CFSET new_value = mygrid.col2[1]>

<CFSET old_value = mygrid.original.col2[1]>

Arrays Used to Store Grid Cell Edit Information

Array reference Description

gridname.colname [row_index] Stores the new value of an edited
grid cell

gridname.Original.colname [row_index] Stores the original value of the
edited grid cell

gridname.RowStatus.Action [row_index] Stores the edit type made against
the edited grid cell.

178 Developing Web Applications with ColdFusion
Specifying alternate text for the Insert or Delete buttons

If you want the Insert or Delete buttons in an updateable grid to use text other than
"Insert" or "Delete," you can specify alternate text in the INSERTBUTTON and
DELETEBUTTON attributes.

Multi-row edits

The use of arrays to track changes allows ColdFusion to manage changes to more than
one row in a CFGRID. ColdFusion coordinates entries in the arrays used to store edit
type (Update, Insert, or Delete), with arrays that store original grid data and edited grid
data. For each grid cell edit, an entry is created in the RowStatus array, and
corresponding entries are made in the arrays that store the new cell value and the
original cell value.

Sorting grid data

The CFGRID SORT attribute allows you to include sort buttons in your grid control.
When enabled, sort buttons are automatically added to the grid. When clicked, data is
sorted in the selected column. ColdFusion sorts columns either as text or as numeric
data.

The following CFGRID attributes are available for defining various options relating to
sorting data:

• PICTUREBAR — When Yes, an image button is substituted for the Sort text
button.

• SORTASCENDINGBUTTON — You can specify the text to use for the Sort
Descending button if you don't want to use the default, which is "A -> Z".

• SORTDESCENDINGBUTTON — You can specify the text to use for the Sort
Descending button if you don't want to use the default, which is "Z <- A".

Note Users must first select a column before clicking a sort button.

Example: Editable grid

This grid example demonstrates an updateable grid, in which the SELECTMODE
attribute is "Edit" and the INSERT and DELETE attributes are "yes." When the form is
submitted, the handle_grid.cfm page displays the type of edits that were made to the
data source, Update, Delete, or Insert and interacts with the data source directly to
perform the corresponding actions.

Grid.cfm

<HTML>
<HEAD>

<TITLE>Simple Update Grid Example</TITLE>
</HEAD>

<CFQUERY NAME="CourseList"

Chapter 12: Building Dynamic Java Forms 179
DATASOURCE="cfsnippets">
SELECT * FROM Courses

</CFQUERY>

<BODY BGCOLOR="#FFFFFF">

<CFFORM NAME="GridForm"
ACTION="handle_grid.cfm">

<CFGRID NAME="course_grid"
HEIGHT=170
WIDTH=400
HSPACE=10
VSPACE=6
ALIGN="RIGHT"
SELECTCOLOR="white"
SELECTMODE="edit"
ROWHEADERS="YES"
ROWHEADERWIDTH=25
ROWHEADERALIGN="right"
COLHEADERS="YES"
QUERY="CourseList"
GRIDDATAALIGN="left"
BGCOLOR="green"
INSERT="YES"
DELETE="YES"
SORT="YES"
MAXROWS=60>

<CFGRIDCOLUMN NAME="course_id"
HEADER="Course ID"
WIDTH=80
ITALIC="NO"
HEADERALIGN="center"
HEADERITALIC="NO"
HEADERBOLD="YES"
DISPLAY="NO">

<CFGRIDCOLUMN NAME="number"
HEADER="Course ##"
WIDTH=80
ITALIC="NO"
HEADERALIGN="center"
HEADERITALIC="NO"
HEADERBOLD="YES"
DISPLAY="YES"
SELECT="YES">

<CFGRIDCOLUMN NAME="description"
HEADER="Description"
WIDTH=240
ITALIC="No"
HEADERALIGN="center"
HEADERITALIC="No"

180 Developing Web Applications with ColdFusion
HEADERBOLD="Yes"
BOLD="Yes"
ITALIC="Yes"
DISPLAY="Yes">

</CFGRID>

<!---
<H3>Editable Grid</H3>

This is a grid that is populated

from a query. The select mode is

update. The description column

is presented in Bold and Italic.

 --->

<INPUT TYPE="Submit" VALUE=" Push me... ">

</CFFORM>

</BODY>
</HTML>

The grid and action button look like this:

Changes you make in the course list are reflected in the Courses table in the cfsnippets
data source. You can view the table in Studio by going to the DB tab and opening the
data source.

Handle_grid.cfm

<HTML>
<HEAD>

<TITLE>Catch submitted grid values</TITLE>
</HEAD>
<BODY>

<H3>Grid values for FORM.Course_grid row updates</H3>

<CFIF IsDefined("form.course_grid.rowstatus.action")>

<CFLOOP INDEX = "Counter" FROM = "1" TO =
#ArrayLen(form.course_grid.rowstatus.action)#>

Chapter 12: Building Dynamic Java Forms 181
<CFOUTPUT>
The row action for #Counter# is:
#form.course_grid.rowstatus.action[Counter]#

</CFOUTPUT>

<CFIF form.course_grid.rowstatus.action[Counter] IS "D">

<CFQUERY NAME="InsertNewCourse"
DATASOURCE="cfsnippets">
DELETE from courses
WHERE course_id=#form.course_grid.original.course_id[Counter]#

</CFQUERY>

<CFELSEIF form.course_grid.rowstatus.action[Counter] IS "U">

<CFQUERY NAME="UpdateExistingCourse"
DATASOURCE="cfsnippets">
UPDATE courses
SET description=’#form.course_grid.description[Counter]#’ ,
"Number"=’#form.course_grid.number[Counter]#’
WHERE
course_id=#form.course_grid.original.course_id[Counter]#

</CFQUERY>

<CFELSEIF form.course_grid.rowstatus.action[Counter] IS "I">

<CFQUERY NAME="InsertNewCourse"
DATASOURCE="cfsnippets">
INSERT into courses
("Number", description)
VALUES (’#form.course_grid.number[Counter]#’,
’#form.course_grid.description[Counter]#’)

</CFQUERY>

</CFIF>
</CFLOOP>

</CFIF>

</BODY>
</HTML>

Using CFGRIDUPDATE

The CFGRIDUPDATE tag allows you to perform updates to a data source directly from
a CFGRID. You don’t need to form a CFQUERY to perform updates, CFGRIDUPDATE
handles the entire transaction, taking grid cell edit information directly from the
CFGRID tag. It’s a much simpler, but slightly more abstracted method for updating
data from a grid control.

182 Developing Web Applications with ColdFusion
In the earlier example, data from an edited grid was passed to a page that used
CFQUERY tags in a CFIF construct to update a data source. For many updates,
CFGRIDUPDATE is easier.

For example, the following code accepts grid update data from a grid named "Courses"
originating in a separate page.

<CFGRIDUPDATE GRID="Courses"
DATASOURCE="CF 4.0 Examples"
TABLENAME="Courses"
KEYONLY="NO">

The arrays that store information about changes to CFGRID data (as well as original
grid cell values) are passed to CFGRIDUPDATE when the form is submitted.
CFGRIDUPDATE uses these arrays to build the SQL necessary to perform the data
source updates.

The edits originating in the Courses grid could consist of multiple cell edits, row
inserts, and row deletions. CFGRIDUPDATE passes all of these edits to the specified
data source, saving you the task of having to craft CFQUERY statements to do the same
work. Very handy.

The KEYONLY attribute

CFGRIDUPDATE includes the KEYONLY attribute, which allows you to force
ColdFusion to compare the original value of the updated fields with the data in the
corresponding table field. If they are the same, that is, if no other process has changed
the data since the grid was edited, the update passes. If the comparison fails an error is
generated. Use KEYONLY="No" when you want to be sure that no other process has
updated the same data. Use KEYONLY="Yes" if no other process can potentially
change the same data.

Embedding images in a grid

The CFGRIDROW tag allows you to place images in a grid cell. You do this by first using
the TYPE="IMAGE" attribute in a CFGRIDCOLUMN tag to tell ColdFusion that you
want data in the current column to be interpreted as an image. You can use one of the
built-in image names ColdFusion provides (same as those for CFTREEITEM) or specify
an image file of your choice. The built-in image names are as follows:

Built-in Image Names

Image Example

cd

computer

document

Chapter 12: Building Dynamic Java Forms 183
Here’s part of a CFGRID showing the CFGRIDCOLUMN tag using TYPE="IMAGE" to
define the column that will contain images, and the CFGRIDROW tags that populate
each column with row data.

...
<CFGRIDCOLUMN

NAME="dept_name"
HEADER="Dept"
SELECT="NO"
DATAALIGN="Center"
WIDTH=40
TYPE=IMAGE>

<CFGRIDCOLUMN
NAME="emp_lname"
HEADER="Name">

<CFGRIDROW DATA="folder,Jones">
<CFGRIDROW DATA="document,Smith">
...

Note In this example, commas are used to separate the image name that appears in the first
column from the data that appears in the second column.

Using your own images in a grid

When you want to use your own image files instead of the built-in ColdFusion images,
you need to specify the relative path to the directory where the image file can be found,
as well as the image file name itself.

When you specify the relative path to the images you want to use, note that the path is
relative to the location of the Java class that enables the CFGRID control. Ordinarily,
this will be:

web_root\cfide\classes\images

element

floppy

folder

fixed

remote

Built-in Image Names

Image Example

184 Developing Web Applications with ColdFusion
You can specify a location relative to this directory, or you can simply place your files in
the cfide\classes\images folder and use the image name without an extension, just as
you would use one of the built-in image names.

In the following code chunk, the CFGRIDROW tags use external images found in the
web_root\images directory.

...
<CFGRIDCOLUMN

NAME="dept_name"
HEADER="Dept"
SELECT="NO"
DATAALIGN="Center"
WIDTH=40
TYPE=IMAGE>

<CFGRIDCOLUMN
NAME="emp_lname"
HEADER="Name">

<CFGRIDROW DATA="..\..\..\images\icon1.gif,Jones">
<CFGRIDROW DATA="..\..\..\images\icon2.gif,Smith">
...

Grid Data Selection Options
You can control how you want users to interact with your grid control. You can limit a
user to simply browsing data displayed in the grid control, or you can enable several
different selection options by specifying values in the SELECTMODE attribute.

You can specify the following selection behaviors in the SELECTMODE attribute:

• Single — User selections are limited to a single cell in the grid control.

• Column — When a user selects a cell, data from the column containing the
selected cell is included in the selection.

• Row — When a user selects a cell, data from the row containing the selected cell
is included in the selection.

• Browse — Users cannot select cells in the grid control.

• Edit — Users can edit cell data.

Select mode and form variables

Grid data is submitted in a CFFORM as form variables, depending on the value of the
SELECTMODE attribute as follows:

• When SELECTMODE="Single" grid data is returned as grid_name.selectedname
and the selected value.

• When SELECTMODE="Column" grid data is returned as a comma-separated
list of all the values for the selected column.

Chapter 12: Building Dynamic Java Forms 185
• When SELECTMODE="Row" grid data is returned as grid_name.colum1_name
and grid_name.column2_name and their respective values for the selected row.

• When SELECTMODE="Browse" no selection data is returned.

• When SELECTMODE="Edit" three one-dimensional arrays are created if cell
data is changed.

Using the URL attribute

When specifying a URL with grid items, the value of the SELECTMODE attribute
determines whether the link is limited to a single grid item or extends to a grid column
or row. When a user clicks on a linked grid item, a CFGRIDKEY variable is appended to
the URL in the following form:

http://myserver.com?CFGRIDKEY=selection

The value of selection is determined by the value of the SELECTMODE attribute:

• When SELECTMODE="SINGLE" selection is the value of the column you
clicked.

• When SELECTMODE="ROW" selection is a comma-separated list of column
values in the clicked row, beginning with the value of the first cell in the selected
row.

• When SELECTMODE="COLUMN" selection is a comma-separated list of row
values in the clicked column, beginning with the value of the first cell in the
selected column.

The HREF attribute

You can use the HREF attribute to associate a hyperlink with a selected row or cell.
ColdFusion interprets the value of the HREF attribute as either a query column that
stores the text of a link or the text of the hyperlink itself. The destination specified
either literally in the HREF attribute or by reference to the query column is resolved
relative to the current application page.

In the following code fragment, the HREF attribute is used in two CFGRIDCOLUMN
blocks. Because the HREF attribute refers to a CFGRIDCOLUMN, each row is
associated with a different URL, based on the value of the dept_url column in the
selected row. Note also that the last CFGRIDCOLUMN is a hidden column used to hide
the value of the dept_url field.

<CFFORM NAME="GridForm"
ACTION="catch_grid10.cfm"
TARGET="Lower">

<CFGRID NAME="grid_ten"
HEIGHT=170
WIDTH=400
HSPACE=10
VSPACE=6

186 Developing Web Applications with ColdFusion
ALIGN="Right"
SELECTMODE="Row"
ROWHEADERS="Yes"
COLHEADERS="Yes"
QUERY="DeptList"
GRIDDATAALIGN="Left"
HIGHLIGHTHREF="No"
APPENDKEY="No"
SORT="Yes">

<CFGRIDCOLUMN NAME="dept_id"
HEADER="Department"
WIDTH=80
ITALIC="No"
HEADERALIGN="Center"
HEADERITALIC="No"
HEADERBOLD="Yes"
HREF="dept_url"
TYPE="Numeric">

<CFGRIDCOLUMN NAME="dept_name"
HEADER="Name"
ITALIC="No"
HEADERALIGN="Center"
HEADERITALIC="No"
HEADERBOLD="Yes"
HREF="dept_url">

<CFGRIDCOLUMN NAME="dept_url"
DISPLAY="No">

</CFGRID>

<INPUT TYPE="Submit" VALUE="Submit">

</CFFORM>

The APPENDKEY attribute in CFGRIDKEY

When a user selects a grid item and submits the form, the CFGRIDKEY variable is
appended to the URL passed to the application page specified in the CFFORM
ACTION attribute, in the form:

http://myserver.com?CFGRIDMKEY=selected_value

You can disable this key by setting the APPENDKEY="NO".

Chapter 12: Building Dynamic Java Forms 187
Building Slider Bar Controls
The CFSLIDER control is one of ColdFusion’s Java applet-based CFFORM controls.
With it you can create a slider control and define a wide range of formatting options for
slider label text, as well as slider scale increments, range, positioning, and behavior.

As with CFTREE and CFGRID, input validation can be serviced with a JavaScript
specified in the ONVALIDATE attribute.

Example: CFSLIDER control

The following example shows a simple CFSLIDER control:

<CFFORM NAME="Form1" ACTION="submit.cfm"
METHOD="Post">

<CFSLIDER NAME="myslider"
GROOVECOLOR="black"
BGCOLOR="white"
TEXTCOLOR="black"
FONT="Trebuchet MS"
BOLD="yes"
RANGE="0,1000"
SCALE="10"
VALUE="640"
FONTSIZE="24"
LABEL="Slider %value%"
WIDTH="400">

</CFFORM>

The resulting slider looks like this:

CFSLIDER form variable

The value of the form variable passed from a CFSLIDER control to a ColdFusion
application page is determined by the position of the slider on the scale. The form
variable is passed as:

slider_name=slider_value

In the earlier example, the form variable would have been passed as:

myslider=slider_value

188 Developing Web Applications with ColdFusion
Formatting options with CFSLIDER

As with other CFFORM controls, CFSLIDER offers many formatting, positioning, and
alignment options. You can specify colors for the groove in which the slider knob
moves, as well as label font name, size, boldface, italics, and color.

Building Text Entry Boxes
The CFTEXTINPUT tag is a very close relative to the HTML INPUT=text tag. With
CFTEXTINPUT, however, you can also specify font and alignment options, as well as
enable one of two input validation methods using either a JavaScript or the VALIDATE
attribute in CFTEXTINPUT.

Example: CFTEXTINPUT control

The following example shows a basic CFTEXTINPUT control. This example validates a
date entry, which means that a user must enter a valid date in the form mm/dd/yy.

Please enter a date:
<CFFORM NAME="Form1" ACTION="cfform_submit.cfm" METHOD="Post">

<CFTEXTINPUT NAME="entertext"
VALUE="mm/dd/yy"
MAXLENGTH="10"
VALIDATE="date"
FONT="Trebuchet MS">

<INPUT TYPE="Submit"
VALUE="Submit">

</CFFORM>

The CFTEXTINPUT looks like this:

CFTEXTINPUT form variable

The value of the form variable passed from a CFTEXTINPUT control to a ColdFusion
application page is determined by the entry in the CFTEXTINPUT control. The form
variable is passed as:

textinput_name=textinput_value

Chapter 12: Building Dynamic Java Forms 189
In the example just above, the form variable would have been passed as:

entertext=textinput_value

So in the destination application page, the form variable is referenced as #entertext#.

Input validation with CFTEXTINPUT

You can validate user input for the CFTEXTINPUT control on the following data
formats:

Building Drop-Down List Boxes
The drop-down list box you can create with CFSELECT is a close relative of the HTML
SELECT tag. CFSELECT gives you more control over user inputs, error handling, and
allows you to populate the selection list from a query.

Input Validation Controls

VALIDATE Entry Description

date Verifies US date entry in the form mm/dd/yyy.

Eurodate Verifies valid European date entry in the form dd/mm/
yyyy.

Time Verifies a time entry in the form hh:mm:ss.

Float Verifies a floating point entry.

Integer Verifies an integer entry.

Telephone Verifies a telephone entry. Telephone data must be
entered as ###-###-####. The hyphen separator (-) can
be replaced with a blank. The area code and exchange
must begin with a digit between 1 and 9.

Zipcode (U.S. formats only) Number can be a 5-digit or 9-digit
zip in the form #####-####. The hyphen separator (-)
can be replaced with a blank.

Creditcard Blanks and dashes are stripped and the number is
verified using the mod10 algorithm.

social_security_number Number must be entered as ###-##-####. The hyphen
separator (-) can be replaced with a blank.

190 Developing Web Applications with ColdFusion
Populating a CFSELECT with query data

When you populate a CFSELECT with data from a query, you only need to specify the
name of the query that is supplying data for the CFSELECT and the query column
name for each list element you want to display.

Example: Populate a CFSELECT from a data column:

<CFQUERY NAME="myquery"
DATASOURCE="cfsnippets">
SELECT * FROM Employees

</CFQUERY>

<CFFORM NAME="Form1" ACTION="submit.cfm"
METHOD="Post">

<CFSELECT NAME="myselectbox"
QUERY="myquery"
VALUE="Employee_ID"
DISPLAY="FirstName"
REQUIRED="yes"
MULTIPLE="yes"
SIZE="8">

</CFSELECT>

<INPUT TYPE="Submit"
VALUE="Submit">

</CFFORM>

The resulting drop-down list box looks like this:

Note that because the MULTIPLE attribute is used, the user can select multiple entries
in the select box. When MULTIPLE is omitted or SINGLE is explicitly used and the SIZE
attribute is set to zero, the resulting CFSELECT looks like this:

Chapter 12: Building Dynamic Java Forms 191
One other thing to note about this example: since the VALUE tag specifies the primary
key for the Employee table, this data is used in the form variable that is passed to the
application page specified in ACTION.

Building Form Controls
Like its HTML counterpart the INPUT tag, CFINPUT supports the following form input
controls:

• Radio buttons

• Check boxes

• Text entry boxes

• Password entry boxes

CFINPUT also allows is input validation using one of two methods: attributes in the
CFINPUT tag, or a JavaScript that you specify.

Example: CFINPUT controls

The following application page contains a form with a variety of CFINPUT controls:

<CFFORM NAME="Form1" ACTION="submit.cfm" METHOD="Post">

<TABLE CELLPADDING=5 border=0>
<TR><TD>Please enter your user login:

<CFINPUT TYPE="text" NAME="loginID" VALUE="name"></TD></TR>
<TR><TD>Please also enter your password:

<CFINPUT TYPE="password" NAME="pwd" VALUE="password"></TD></TR>
<TR><TD>Please select one:

<CFINPUT TYPE="radio" NAME="radio1" VALUE="select1">Embodied

<CFINPUT TYPE="radio" NAME="radio1" CHECKED="yes" VALUE="select2">
Disembodied

<CFINPUT TYPE="radio" NAME="radio1" VALUE="select3">Don’t
Know</TD></TR>
<TR><TD>Make your selections here:

<CFINPUT TYPE="checkbox" NAME="checkbox1" VALUE="one">Derrida

<CFINPUT TYPE="checkbox" NAME="checkbox1" CHECKED="yes"
VALUE="two">Foucault

<CFINPUT TYPE="checkbox" NAME="checkbox1" VALUE="three">
Kristeva</TD></TR>
<TR><TD><INPUT TYPE="Submit" VALUE="Submit"></TD></TR>

</TABLE>

</CFFORM>

192 Developing Web Applications with ColdFusion
This code generates the following form:

Embedding Java Applets
The CFAPPLET tag allows you to embed Java applets in a CFFORM. To use CFAPPLET,
you must first register your Java applet using the ColdFusion Administrator Applets
page. In the Administrator, you define the interface to the applet, encapsulating it so
that each invocation of the CFAPPLET tag is very simple.

CFAPPLET offers several advantages over using the HTML APPLET tag:

• Return values — Since CFAPPLET requires a form field name attribute, you can
avoid having to code additional JavaScript to capture the applet's return values.
You can reference return values like any other ColdFusion form variable:
form.variablename.

• Ease of use — Since the applet's interface is defined in the Administrator, each
instance of the CFAPPLET tag in your pages only needs to reference the applet's
name and specify a form variable name.

• Parameter options — You can override parameter values you defined in the
Administrator by specifying the parameter value pair in CFAPPLET. Unless
overridden, ColdFusion uses the parameter value pairs you defined in the
Administrator.

When an applet is registered, enter just the applet source and the form variable name:

<CFAPPLET APPLETSOURCE="Calculator"
NAME="calc_value">

Chapter 12: Building Dynamic Java Forms 193
By contrast, with the HTML APPLET tag, you’d have to invoke all the applet’s
parameters every time you wanted to use it in a ColdFusion page.

Registering a Java applet

Before you can use a Java applet in your ColdFusion pages, you must first register the
applet in the Administrator.

To register a Java applet:

1. Open the ColdFusion Administrator by clicking on the Administrator icon in the
ColdFusion Program group and entering the Administrator password (if required).

2. Click the Applets button to open the Registered Applets page.

3. Enter a name for the applet you want to register and click Register New Applet.
Enter the information your applet requires, and choose the height, width, vertical
and horizontal space, and alignment you want.

Applet registration fields are explained in the following table.

Applet Registration Fields

Field Description

Codebase Enter the base URL of the applet: the directory that
contains the applet components. The applet class files
must be located within the web browser root directory.
Example:

http://servername/classes

Code This is the name of the file that contains the applet
subclass. The filename is relative to the codebase URL.
The *.class file extension is not required.

Method Enter the method name in the applet that returns a
string value. You use this method name in the NAME
attribute of the CFAPPLET tag to populate a form
variable with the method’s value. If the applet has no
method, leave this field blank.

Height Enter a measurement in pixels for the vertical space for
the applet.

Width Enter a measurement in pixels for the horizontal space
for the applet.

Vspace Enter a measurement in pixels for the space above and
below the applet.

194 Developing Web Applications with ColdFusion
Click Create to complete the process.

Using CFAPPLET to embed an applet

Once you’ve registered an applet, you can use the CFAPPLET tag to place the applet in
a ColdFusion page. The CFAPPLET tag has two required attributes, APPLETSOURCE
and NAME. Since the applet has been registered, and each applet parameter defined
with a default value, you can invoke the applet with a very simple form of the
CFAPPLET tag:

<CFAPPLET APPLETSOURCE="appletname"
NAME="form_variable">

Overriding alignment and positioning values

To override any of the values defined in the Administrator for the applet, you can use
the optional CFAPPLET parameters to specify custom values. For example, the
following CFAPPLET tag specifies custom spacing and alignment values:

<CFAPPLET APPLETSOURCE="myapplet"
NAME="applet1_var"
HEIGHT=400
WIDTH=200
VSPACE=125
HSPACE=125
ALIGN="left">

Hspace Enter a measurement in pixels for the space on each
side of the applet.

Align Choose the alignment you want.

Java Not Supported Message This message is displayed by browsers that do not
support Java applets. If you want to override this
message, you specify a different message in the
CFAPPLET NOTSUPPORTED attribute.

Parameter Name Enter a name for a required applet parameter. Your Java
applet will typically provide the parameter name
needed to use the applet. Enter each parameter in a
separate parameter field.

Value For every parameter you enter, define a default value.
Your applet documentation will provide guidelines on
valid entries.

Applet Registration Fields (Continued)

Field Description

Chapter 12: Building Dynamic Java Forms 195
Overriding parameter values

You can also override the values you assigned to applet parameters in the
Administrator by providing new values for any parameter. Note that in order to
override a parameter, you must have already defined the parameter and a default value
for it in the ColdFusion Administrator Applets page.

<CFAPPLET APPLETSOURCE="myapplet"
NAME="applet1_var"
Param1="registered parameter"
Param2="registered parameter">

Handling form variables from an applet

The CFAPPLET tag requires you to specify a form variable name for the applet. This
variable, referenced like other ColdFusion form variables, form.variable_name
holds the value the applet method provides when it is executed in the CFFORM.

Not all Java applets return values. Some, like many graphical widgets, do not return a
specific value; they do their flipping, spinning, fading, exploding, and that’s that. For
this kind of applet, the method field in the Administrator remains empty. Other
applets, however, do have a method that returns a value. You can only use one method
for each applet you register. If an applet includes more than one method that you want
to access, you can register the applet with a unique name an additional time for each
method you want to use.

To reference a Java applet return value in your application page:

1. Specify the name of the method in the Register New Applet page of the ColdFusion
Administrator.

2. Specify the method name in the NAME attribute of the CFAPPLET tag when you
code your CFFORM.

When your page executes the applet, a form variable is created with the name you
specified. If you don’t specify a method, no form variable is created.

196 Developing Web Applications with ColdFusion

C H A P T E R 1 3
Chapter 13 Managing Files on the Server
The CFFILE, CFDIRECTORY, and CFCONTENT tags handle browser/server file
management tasks. To perform server-to-server operations, use the CFFTP tag.

Contents

• Using CFFILE.. 198

• Uploading Files... 198

• Setting File and Directory Attributes .. 200

• Evaluating the Results of a File Upload .. 202

• Moving, Renaming, Copying, and Deleting Server Files 203

• Reading, Writing, and Appending to a Text File... 205

• Performing Directory Operations ... 206

198 Developing Web Applications with ColdFusion
Using CFFILE
The CFFILE tag gives you the ability to work with files on your server in a number of
ways:

• Uploading files from a client to the Web server using an HTML form.

• Moving, renaming, copying, or deleting files on the server.

• Reading, writing, or appending to text files on the server.

The required attributes depend on the ACTION specified. For example, if
ACTION="WRITE", ColdFusion expects the attributes associated with writing a text
file.

Note Consider the security and logical structure of directories on the server before allowing
users access to them.

Uploading Files
File uploading requires that you create two files:

• An HTML form to enter file upload information

• An action page containing the file upload code

Creating a file upload HTML form

HTML forms can be designed in most browsers to give users the ability to upload files.
Setting the HTML INPUT tag type to "file" instructs the browser to prepare to read and
transmit a file from the user’s system to your server. Setting the ENCTYPE FORM
attribute to "multipart/form-data" tells the server that the form submission contains
an uploaded file.

Example: An HTML form for file upload

<FORM ACTION="FileUpload.cfm"
ENCTYPE="multipart/form-data"
METHOD="Post">
<PRE>

File Name: <INPUT NAME="FileName" TYPE="text">
File: <INPUT NAME="FileContents" TYPE="file">

<INPUT TYPE="submit" VALUE="Upload File">
</PRE>
</FORM>

The user can enter a file path or browse the system and pick a file to send.

Note The FORM attribute ENCTYPE “multipart/form-data” must be included.

Chapter 13: Managing Files on the Server 199
Creating a file upload application page

Submitting a file does not save it on the server. When a file is submitted, it is encoded
and sent along with the other form data. The CFFILE tag in the file upload application
page decodes the file and saves its contents on the server.

Example: Upload a file

The following example shows a CFFILE tag that could be placed in the
"FileUpload.cfm" file referred to in the previous example:

<CFFILE ACTION="UPLOAD"
FILEFIELD="FileContents"
DESTINATION="C:\Web\Uploads\">

If the file upload form that requested this application page sent a file named
KeyMemo.doc, the file is saved to the server as:

c:\Web\Uploads\KeyMemo.doc

To save the file under a different name, specify the new file name in the DESTINATION
attribute. In this example, “KeyMemo.doc” is saved on the server as
“UploadedFile.doc":

<CFFILE ACTION="UPLOAD"
FILEFIELD="FileContents"
DESTINATION="C:\Web\Uploads\UploadedFile.doc">

You could also make any of these attributes dynamic variables. For example, you could
set the file name based on information from a database query.

Note The FILEFIELD attribute expects the name of a form field, not the contents of the form
field, so you should not enclose the form field in # signs.

Resolving conflicting file names

When a file is saved to the server, there is a risk that another file may already exist with
the same name. In the event of this occurrence, there are a number of actions you can
take using the NAMECONFLICT attribute.

Example: Resolving a name conflict

The following example will create a unique file name, while retaining the file
extension, if there is a name conflict when the file is uploaded:

<CFFILE ACTION="Upload"
FILEFIELD="FileContents"
DESTINATION="C:\Web\Uploads\"
NAMECONFLICT="MAKEUNIQUE">

200 Developing Web Applications with ColdFusion
Controlling the type of file uploaded

For some applications, you might want to restrict the type of file that is uploaded. For
example, you may not want to accept graphic files in a document library.

The ACCEPT attribute is used to restrict the type of file that will be allowed in an
upload. When an ACCEPT qualifier is present, the uploaded file’s MIME content type
must match the criteria specified or an error will occur. ACCEPT takes a comma-
separated list of MIME data names, optionally with wildcards.

A file’s MIME type is determined by the browser. Common types, like "image/gif" and
"text/plain", are registered in your browser.

Example: Restricting file types

This CFFILE specification will only save an image file that is in the GIF format:

<CFFILE ACTION="Upload"
FILEFIELD="UploadFile"
DESTINATION="c:\uploads\MyImage.GIF"
NAMECONFLICT="OVERWRITE"
ACCEPT="image/gif">

This CFFILE specification will only save an image file that is either a GIF or a JPEG:

<CFFILE ACTION="Upload"
FILEFIELD="UploadFile"
DESTINATION="c:\uploads\MyImage.GIF"
NAMECONFLICT="OVERWRITE"
ACCEPT="image/gif, image/jpeg">

This CFFILE specification will only save an image file, but the format doesn't matter:

<CFFILE ACTION="Upload"
FILEFIELD="UploadFile"
DESTINATION="c:\uploads\MyImage.GIF"
NAMECONFLICT="OVERWRITE"
ACCEPT="image/*">

Note Any file will be saved if ACCEPT is omitted, left empty, or contains "*/*".

Setting File and Directory Attributes
File attributes in Windows are defined using the CFFILE ATTRIBUTES attribute. In
UNIX, file and directory permissions are defined using the CFFILE and CFDIRECTORY
MODE attribute.

Chapter 13: Managing Files on the Server 201
UNIX

In UNIX, you can set permissions on files and directories for owner, group, and other.
Values for the MODE attribute correspond to octal values for the UNIX chmod
command:

• 4 = Read only

• 2 = Read/write

• 1 = Read/write/execute

You enter permissions values in the MODE attribute for each type of user: owner,
group, other in that order. For example to assign read permissions for all:

MODE=444

To give a file or directory owner read/write/execute permissions and read only
permissions for everyone else:

MODE=744

Windows

In Windows, you can set the following file attributes:

• ReadOnly

• Temporary

• Archive

• Hidden

• System

• Normal

If ATTRIBUTES is not used, the file’s existing attributes are maintained. If Normal is
specified as well as any other attributes, Normal is overridden by whatever other
attribute is specified.

Example: Setting file attribute

This example sets the archive bit for the uploaded file:

<CFFILE ACTION=”Copy”
SOURCE=”c:\files\upload\keymemo.doc”
DESTINATION=”c:\files\backup\”
ATTRIBUTES=”Archive”>

202 Developing Web Applications with ColdFusion
Evaluating the Results of a File Upload
After a file upload is completed, you can retrieve status information using file upload
variables. This status information includes a wide range of data about the file, such as
the file’s name and the directory where it was saved.

The preferred syntax for file upload status variables uses the CFFILE prefix, for
example, CFFILE.ClientDirectory. The File prefix is retained for backward
compatibility. The file status variables can be used anywhere that ColdFusion variables
are used.

The following file upload status variables are available after an upload.

File Upload Variables

Parameter Description

AttemptedServerFile Initial name ColdFusion used attempting to save a file, for
example, myfile.txt. See the “Resolving conflicting file
name” section above.

ClientDirectory Directory location of the file uploaded from the client’s
system.

ClientFile Name of the file uploaded from the client’s system, such
as myfile.txt.

ClientFileExt Extension of the uploaded file on the client’s system
without a period, for example, txt not.txt.

ClientFileName Filename without an extension of the uploaded file on
the client’s system.

ContentSubType MIME content subtype of the saved file, such as gif for
image/gif.

ContentType MIME content type of the saved file, such as image for
image/gif.

DateLastAccessed Date and time the uploaded file was last accessed.

FileExisted Indicates (Yes or No) whether or not the file already
existed with the same path.

FileSize Size of the uploaded file.

FileWasAppended Indicates (Yes or No) whether or not ColdFusion
appended the uploaded file to an existing file.

FileWasOverwritten Indicates (Yes or No) whether or not ColdFusion
overwrote a file.

Chapter 13: Managing Files on the Server 203
Use the File prefix to refer to these variables, for example, #File.FileExisted#.

Note File status variables are read-only. They are set to the results of the most recent CFFILE
operation. If two CFFILE tags execute, the results of the first are overwritten by the
subsequent CFFILE operation.

Moving, Renaming, Copying, and Deleting Server Files
With CFFILE, you can create application pages to manage files on your Web server. You
can use the tag to move files from one directory to another, rename files, copy a file, or
delete a file.

The examples below show static values for many of the attributes. However, the value
of all or part of any attribute in a CFFILE tag can be a dynamic parameter. This makes
CFFILE a very powerful tool.

FileWasRenamed Indicates (Yes or No) whether or not the uploaded file
was renamed to avoid a name conflict.

FileWasSaved Indicates (Yes or No) whether or not ColdFusion saved a
file.

OldFileSize Size of a file that was overwritten in the file upload
operation.

ServerDirectory Directory of the file actually saved on the server.

ServerFile Filename of the file actually saved on the server.

ServerFileExt Extension of the uploaded file on the server, without a
period, for example, txt not.txt.

ServerFileName Filename, without an extension, of the uploaded file on
the server.

TimeCreated Time the uploaded file was created.

TimeLastModified Date and time of the last modification to the uploaded
file.

File Upload Variables (Continued)

Parameter Description

204 Developing Web Applications with ColdFusion
Moving a file (ACTION="MOVE")

CFFILE can be used to move a file from one location on the server to another.

Example

The following example moves the file "KeyMemo.doc" file from the c:\files\upload\
directory to the c:\files\memo\ directory:

<CFFILE ACTION="MOVE"
SOURCE="c:\files\upload\KeyMemo.doc"
DESTINATION="c:\files\memo\">

Renaming a file (ACTION="RENAME")

CFFILE can be used to rename a file on a server.

Example

The following example renames the file KeyMemo.doc to OldMemo.doc:

<CFFILE ACTION="Rename"
SOURCE="c:\files\memo\KeyMemo.doc"
DESTINATION="c:\files\memo\OldMemo.doc">

Copying a file (ACTION="COPY")

CFFILE can be used to copy a file from one directory to another on the server.

Example

The following example saves a copy of the KeyMemo.doc file in the c:\files\backup\
directory:

<CFFILE ACTION="Copy"
SOURCE="c:\files\upload\KeyMemo.doc"
DESTINATION="c:\files\backup\">

Deleting a file (ACTION="DELETE")

CFFILE can be used to delete a file on the server.

Example

The following example permanently deletes the specified file:

<CFFILE ACTION="Delete"
FILE="c:\files\upload\”oldfile.txt">

Chapter 13: Managing Files on the Server 205
Reading, Writing, and Appending to a Text File
In addition to managing files on the server, you can use CFFILE to read, create, and
modify text files.

This gives you the ability to

• Create log files.

• Generate static HTML documents.

• Use text files to store information that can be brought into Web pages.

Read a text file (ACTION="READ")

You can use CFFILE to read an existing text file. The file is read into a dynamic
parameter which you can use anywhere in the application page. For example, you
could read a text file and then insert its contents into a database. Or you could read a
text file and then use one of the find and replace functions to modify the contents.

Example

The following example will create a variable named "Message" which will contain the
contents of the file “update.txt:”

<CFFILE ACTION="Read"
FILE="C:\Web\message.txt"
VARIABLE="Message">

The variable "Message" could then be used in the application page. For example, you
could display the contents of the message.txt file in the final Web page:

<CFOUTPUT>#Message#</CFOUTPUT>

Write a text file (ACTION="WRITE")

You can use CFFILE to write a text file based on dynamic content. For example, you
could create static HTML files or log actions in a text file.

Example

The following example creates a file with the information a user entered into an HTML
insert form:

<CFFILE ACTION="Write"
FILE="C:\files\updates\#Form.UpdateTitle#.txt"
OUTPUT="Created By: #Form.FullName#
Date: #Form.Date#
#Form.Content# ">

If the user submitted a form in which:

206 Developing Web Applications with ColdFusion
UpdateTitle="FieldWork"
FullName="John Lunch"
Date="10/1/98"
Content="We had a wonderful time in Cambridgeport."

ColdFusion would create a file named FieldWork.txt in the c:\files\updates\
directory. And the file would contain the text:

Created By: John Lunch
Date: 10/1/98
We had a wonderful time in Cambridgeport.

Append to a text file (ACTION="APPEND")

CFFILE can be used to append additional text to the end of an existing text file, for
example, when creating log files.

Example

The following example will append the text string “But Davis Square was more fun.” to
the file FieldWork.txt which was created in the previous example:

<CFFILE ACTION="Append"
DESTINATION="C:\files\updates\FieldWork.txt"
OUTPUT="But Davis Square was more fun.">

Performing Directory Operations
Use the CFDIRECTORY tag to return file information from a specified directory and to
create, delete, and rename directories.

As with CFFILE, ColdFusion administrators can disable CFDIRECTORY processing in
the ColdFusion Administrator Tags page.

CFDIRECTORY Attributes

Attribute Description

ACTION Optional. Defines the action to be taken with directory(ies)
specified in DIRECTORY. Valid entries are:

• List

• Create

• Delete

• Rename

Default is List.

DIRECTORY Required for all ACTIONs. The name of the directory you want
the action to be performed against.

Chapter 13: Managing Files on the Server 207
Returning file information (ACTION="LIST")

When using the ACTION=LIST, CFDIRECTORY returns five result columns you can
reference in your CFOUTPUT:

• Name — Directory entry name.

NAME Required for ACTION="List". Ignored for all other actions. Name
of output query for directory listing.

FILTER Optional for ACTION="List". Ignored for all other actions. Filter to
be applied to returned names, for example, "*.cfm"

MODE Optional. Used only when ACTION="Create" to define the
permissions for a directory in Solaris. Ignored in Windows. Valid
entries correspond to the octal values (not symbolic) of the Unix
chmod command. Permissions are assigned for owner, group,
and other, respectively. For example:

MODE=644
assigns the owner read/write permissions and group/
other read permission.

MODE=666
Assigns read/write permissions for
owner, group, and other.

MODE=777
Assigns read, write, and execute permissions for all.

SORT Optional for ACTION="List". Ignored for all other actions. List of
query columns to sort directory listing by. Any combination of
columns from query output can be specified in comma
separated list. ASC or DESC can be specified as qualifiers for
column names.

For example, in a CFDIRECTORY tag returning where
NAME="mydir", you can sort as follows:

SORT="dirname ASC, filename2 DESC, size,
datelastmodified"

Where colname is the name of any

column of data returned in the

CFDIRECTORY operation.

NEWDIRECTORY Required for ACTION="Rename". Ignored for all other actions.
The new name of the directory specified in the DIRECTORY
attribute.

CFDIRECTORY Attributes (Continued)

Attribute Description

208 Developing Web Applications with ColdFusion
• Size — Directory entry size.

• Type — File type: F or D for File or Directory.

• DateLastModified — Date an entry was last modified.

• Attributes — File attributes, if applicable.

• Mode — (Solaris only) The octal value representing the permissions setting for
the specified directory. For information about octal values, refer to the man
pages for the chmod shell command.

Example

You can use query results columns in standard CFML expressions, preceding the
column name with the name of the query:

<CFDIRECTORY
DIRECTORY="c:\winnt\system32"
NAME="mydirectory"
SORT="size ASC, name DESC, datelastmodified">

<CFOUTPUT QUERY=”mydirectory”>
Name: #mydirectory.name#

Size: #mydirectory.size#

Type: #mydirectory.type#

Date last modified: #mydirectory.datelastmodified#

Attributes: #mydirectory.attributes#

Mode: #mydirectory.mode#

</CFOUTPUT>

C H A P T E R 1 4
Chapter 14 Performing File Operations with
CFFTP
The CFFTP tag allows you to perform tasks on remote servers via the File Transfer
Protocol (FTP). CFFTP allows you to cache connections for batch file transfers.

For server/browser operations, use the CFFILE, CFCONTENT, and CFDIRECTORY
tags.

Contents

• Establishing a Connection... 210

• File and Directory Operations... 211

• Connection Caching .. 213

• CFFTP Variables ... 216

210 Developing Web Applications with ColdFusion
Establishing a Connection
Using CFFTP involves two distinct types of operations, connecting and transferring
files.

Note CFFTP is a COM object and is not supported in Microsoft Windows NT 3.51.

Example: FTP logon

This example shows an FTP connection being opened to a server that requires a
username and password.

<CFFTP CONNECTION=FTP
USERNAME="betauser"
PASSWORD="monroe"
SERVER="beta.company.com"
ACTION="Open"
STOPONERROR="No">

Since the USERNAME and PASSWORD attributes are required for CFFTP, you establish
an anonymous connection by entering "anonymous" as the username and an email
address (by convention) for the password.

Chapter 14: Performing File Operations with CFFTP 211
File and Directory Operations
Once a connection has been established you can perform file and directory operations
to and from the connected FTP server. Use the following CFFTP attributes to do file
and directory operations once a CFFTP connection has been established.

CFFTP File and Directory Operation Attributes

Attribute Description

ACTION Required if connection is not already cached. If
connection caching is used, the ACTION attribute is
not required. Determines the FTP operation to
perform. Can be one of the following:

• ChangeDir

• CreateDir

• ListDir

• GetFile

• PutFile

• Rename

• Remove

• GetCurrentDir

• GetCurrentURL

• ExistsDir

• ExistsFile

• Exists

Note: Names of objects (files and directories) are
case-sensitive. Thus a ListDir on test.log will not
find test.LOG.

USERNAME Required if the FTP connection is not already cached.
If connection caching is used, the USERNAME
attribute is not required. User name to pass in the FTP
operation.

PASSWORD Required if the FTP connection is not already cached.
If connection caching is used, the PASSWORD
attribute is not required. Password to log the user.

NAME Required for ACTION="ListDir". Specifies the query
name to hold the directory listing.

212 Developing Web Applications with ColdFusion
SERVER Required if the FTP connection is not already cached.
If connection caching is used, the SERVER attribute is
not required. The FTP server to connect to.

TIMEOUT Optional. Value in seconds for the timeout of all
operations, including individual data request
operations. Defaults to 30 seconds.

PORT Optional. The remote port to connect to. Defaults to
21 for FTP.

CONNECTION Optional. The name of the FTP connection. Used to
cache the current FTP connection or to reuse
connection information from a previous connection
of the same name. All calls to CFFTP with the same
connection name will reuse the same FTP connection
information.

ASCIIEXTENSIONLIST Optional. A semicolon delimited list of file extensions
that force ASCII transfer mode when
TRANSFERMODE="Autodetect". Default extension list
is:

txt;htm;html;cfm;cfml;shtm;shtml;css;asp;
asa

TRANSFERMODE Optional. The FTP transfer mode you want to use.
Valid entries are ASCII, Binary, or Autodetect. Defaults
to Autodetect.

AGENTNAME Optional. Application or entity conducting transfer.

FAILIFEXISTS Optional. Yes or No. Defaults to Yes. Specifies whether
a GetFile operation will fail if a local file of the same
name already exists.

DIRECTORY Required for ACTION=ChangeDir, CreateDir, ListDir,
and ExistsDir. Specifies the directory on which to
perform an operation.

LOCALFILE Required for ACTION=GetFile, and PutFile. Specifies
the name of the file on the local file system.

REMOTEFILE Required for ACTION=GetFile, PutFile, and ExistsFile.
Specifies the name of the file on the FTP server’s file
system.

CFFTP File and Directory Operation Attributes (Continued)

Attribute Description

Chapter 14: Performing File Operations with CFFTP 213
Connection Caching
Once you’ve established a connection with CFFTP, you can reuse the connection to
perform additional FTP operations. To do this, you use the CONNECTION attribute
when establishing a first connection to define and name an FTP connection object

ATTRIBUTES Optional. Defaults to "Normal." A comma delimited list
of file attributes. Specifies the file attributes for the
local file in a GetFile. Can be any combination of the
following:

• ReadOnly

• Hidden

• System

• Archive

• Directory

• Compressed

• Temporary

• Normal

File attributes differ according to environment.

ITEM Required for ACTION=Exists, and Remove. Specifies
the object, file or directory, of these actions.

EXISTING Required for ACTION=Rename. Specifies the current
name of the file or directory on the remote server.

NEW Required for ACTION=Rename. Specifies the new
name of the file or directory on the remote server.

RETRYCOUNT Optional. Number of retries until failure is reported.
Default is one (1).

STOPONERROR Optional. Yes or No. When Yes, halts all processing and
displays an appropriate error. Default is No.

When No, three variables are populated:

• CFFTP.Succeeded — Yes or No.

• CFFTP.ErrorCode — Error number (See
STOPONERROR variables, below.)

• CFFTP.ErrorText — Message text explaining error
condition.

CFFTP File and Directory Operation Attributes (Continued)

Attribute Description

214 Developing Web Applications with ColdFusion
that stores information about the connection. Any additional FTP operations that use
the same CONNECTION name automatically make use of the information stored in
the connection object. This facility helps save the time necessary to connect and logon
to an FTP server and improves file transfer operation performance.

When you access an already active FTP connection, you don’t need to re-specify the
following connection attributes:

• USERNAME

• PASSWORD

• SERVER

In this case, developers have to make sure that when they use frames and multiple
requests come in only one frame is going to use the connection object.

Caching connections across multiple pages

CFFTP caching is maintained only in the current page unless you explicitly assign a
CFFTP connection to a variable with application or session scope. Assigning a CFFTP
connection to an application variable could cause problems, since multiple users
could access the same connection object at the same time. Creating a session variable
for a CFFTP connection makes the most sense.

You cache a connection object for a session by assigning the connection name to a
session variable:

Example: Caching a connection

<CFFTP ACTION=connect
USERNAME="anonymous"
PASSWORD="me@home.com"
SERVER="ftp.eclipse.com"
CONNECTION="Session.myconnection">

In this example, the connection cache remains available to other pages within the
current session. Of course, you need to be sure that you’ve enabled session variables in
your application first.

Note Changes to a cached connection, such as changing RETRYCOUNT or TIMEOUT
values, may require re-establishing the connection.

Chapter 14: Performing File Operations with CFFTP 215
Connection caching actions and attributes

The following table shows which CFFTP attributes are required for CFFTP actions
when employing connection caching. If connection caching is not used, the
connection attributes USERNAME, PASSWORD, and SERVER must be specified.

Example: An FTP session

The following example opens an FTP connection, retrieves a file listing, showing file or
directory name, path, URL, length, and modification date. Connection caching is used
to maintain the link to the server, and automatic error checking is enabled.

<--- open FTP connection --->
<CFFTP CONNECTION=FTP

USERNAME="betauser"
PASSWORD="monroe"
SERVER="beta.company.com"
ACTION="Open"
STOPONERROR="Yes">

<--- get current directory name --->
<CFFTP CONNECTION=FTP

ACTION="GetCurrentDir"
STOPONERROR="Yes">

<--- output directory name --->
<CFOUTPUT>

CFFTP Required Attributes by Action

Action Attributes Action Attributes

Open none Rename EXISTING

NEW

Close none Remove SERVER

ITEM

ChangeDir DIRECTORY GetCurrentDir none

CreateDir DIRECTORY GetCurrentURL none

ListDir NAME

DIRECTORY

ExistsDir DIRECTORY

GetFile LOCALFILE

REMOTEFILE

ExistsFile REMOTEFILE

PutFile LOCALFILE

REMOTEFILE

Exists ITEM

216 Developing Web Applications with ColdFusion
FTP directory listing of #cfftp.returnvalue#.<p>
</CFOUTPUT>

<--- get directory info --->
<CFFTP CONNECTION=FTP

ACTION="listdir"
DIRECTORY="/*."
NAME="q"
STOPONERROR="Yes">

<--- output dirlist results --->
<HR>
<P>FTP Directory Listing:</P>

<CFTABLE QUERY="q" HTMLTABLE>
<CFCOL HEADER="Name" TEXT="#name#">
<CFCOL HEADER="Path" TEXT="#path#">
<CFCOL HEADER="URL" TEXT="#url#">
<CFCOL HEADER="Length" TEXT="#length#">
<CFCOL HEADER="LastModified"
TEXT="Date(Format#lastmodified#)">
<CFCOL HEADER="IsDirectory"

TEXT="#isdirectory#">
</CFTABLE>

CFFTP Variables
Variables returned for CFFTP operations are as follows:

• CFFTPResult.ReturnValue

• Three variables populated when the value of the STOPONERROR attribute is
"No."

• CFFTP query object when the value of the ACTION attribute is "ListDir."

Sections that follow describe each of these variable types.

CFFTPResult.ReturnValue variable

The value of the CFFTPResult.ReturnValue variable is determined by the result of the
ACTION attribute used in CFFTP.

CFFTPResult.ReturnValue Variable

CFFTP ACTION Value of CFFTPResult.ReturnValue

GetCurrentDir String value of the current directory

GetCurrentURL String value of the current URL

Chapter 14: Performing File Operations with CFFTP 217
STOPONERROR variables

The following variables are created when the STOPONERROR attribute is No:

• CFFTP.Succeeded — Yes or No

• CFFTP.ErrorCode — Error number (See CFFTP.ErrorCode values below)

• CFFTP.ErrorText — Message text explaining error condition

CFFTP.ErrorCode values

The following table lists the error codes that can be returned in the CFFTP.ErrorCode
variable:

ExistsDir Yes or No

ExistsFile Yes or No

Exists Yes or No

CFFTPResult.ReturnValue Variable (Continued)

CFFTP ACTION Value of CFFTPResult.ReturnValue

CFFTP.ErrorCode Values

Error Code Description

0 Operation succeeded

1 System error (OS or FTP protocol error)

2 An Internet session could not be established

3 FTP session could not be opened

4 File transfer mode not recognized

5 Search connection could not be established

6 Invoked operation valid only during a search

7 Invalid timeout value

8 Invalid port number

9 Not enough memory to allocate system resources

10 Cannot read contents of local file

11 Cannot write to local file

218 Developing Web Applications with ColdFusion
CFFTP query object properties

When you use CFFTP with the ListDir action, you must also specify a value for the
NAME attribute. The value of the NAME attribute is used to hold the results of the
ListDir action in a query object. The query object consists of columns you can
reference in the form:

queryname.columname[row]

Where queryname is the name of the query as specified in the NAME attribute and
columnname is one of the columns returned in the query object as shown in the
following table. Row is the row number for each file/directory entry returned by the
ListDir operation. A separate row is created for each entry.

12 Cannot open remote file for reading

13 Cannot read remote file

14 Cannot open local file for writing

15 Cannot write to remote file

16 Unknown error

17 reserved

18 File already exists

19 reserved

20 reserved

21 Invalid retry count specified

CFFTP.ErrorCode Values (Continued)

Error Code Description

CFFTP Query Object Columns

Column Description

Name Filename of the current element

Path File path (without drive designation) of the
current element

URL Complete URL for the current element (file or
directory)

Length Number indicating file size of the current element

Chapter 14: Performing File Operations with CFFTP 219
The example at the beginning of this chapter includes a LISTDIR action and the output
of the query.

LastModified Unformatted date/time value of the current
element

Attributes String indicating attributes of the current element

IsDirectory Boolean value indicating whether object is a file
or directory

CFFTP Query Object Columns (Continued)

Column Description

220 Developing Web Applications with ColdFusion

C H A P T E R 1 5
Chapter 15 Accessing Remote Servers
with HTTP
This section describes how ColdFusion wraps the complexity of Hypertext Transfer
Protocol communications in a simplified tag syntax that allows you to easily extend
your site’s offerings across the Web.

Contents

• Using CFHTTP to Interact with the Web .. 222

• CFHTTP Tag Syntax.. 222

• Using the CFHTTP Get Method .. 224

• Creating a Query from a Text File.. 225

• Using the CFHTTP Post Method ... 226

222 Developing Web Applications with ColdFusion
Using CFHTTP to Interact with the Web
The CFHTTP tag is one of the more powerful tags in the CFML tag set. It can be used to:

• GET pages and query results from the Web for local rendering.

• POST data to a remote server, CFML template, or CGI application and process
the returned data.

HTTP, the Hypertext Transfer Protocol, manages a variety of communications between
Web clients and servers. The method by which a transaction is executed determines
both what the server processes and what is delivered to the browser. In addition to
HTML documents, HTTP supports content types such as binary files, graphics, audio,
and video through the MIME (Multipurpose Internet Mail Extensions) standard.

The HTTP standard specifies that information about a client request and a server
response, as well as the status of a transaction are generated in request and response
headers as part of an HTTP session. The HTTP protocol has several communication
methods used to exchange information between a client and a server. The CFHTTP tag
implements the most commonly used methods, GET and POST. CFHTTP syntax is
quite simple but offers a number of options for specifying output, resolving links, and
building queries from delimited text files.

Allaire Alive

A video titled, “Creating Web Agents” is available at http://alive.allaire.com. It gives an
overview of HTTP and covers the use of CFHTTP for creating automated processes
such as:

• Search agents

• Transaction agents

• Messaging agents

The video is part of Allaire Alive, an educational service that offers Web videos on
topics specific to ColdFusion development and application deployment as well as
broader industry issues. The titles are available free for online viewing or download.

Using Secure Sockets Layer (SSL) with CFHTTP

There is a limitation on ColdFusion’s ability to handle SSL transactions with CFHTTP
on Windows NT. See Knowledge Base article #1096 at http://www.allaire.com/
Support/KnowledgeBase/SearchForm.cfm for details.

CFHTTP Tag Syntax
The basic syntax for the CFHTTP tag is listed below:

Chapter 15: Accessing Remote Servers with HTTP 223
<CFHTTP URL="hostname"
USERNAME="username"
PASSWORD="password"
NAME="queryname"
COLUMNS="query_columns"
PATH="path"
FILE="filename"
METHOD="get_or_post"
DELIMITER="character"

TEXTQUALIFIER="character"
RESOLVEURL="Yes/No"
PROXYSERVER="hostname">

</CFHTTP>

Note A closing tag is only required for CFHTTP Post operations.

Resolving links in retrieved pages

To maintain relative links in pages you retrieve from a server via CFHTTP, set the
RESOLVEURL attribute to Yes. The following HTML tags, which can contain links, are
resolved when RESOLVEURL=Yes:

• IMG SRC

• A HREF

• FORM ACTION

• APPLET CODE

• SCRIPT SRC

• EMBED SRC

• EMBED PLUGINSPACE

• BODY BACKGROUND

• FRAME SRC

• BGSOUND SRC

• OBJECT DATA

• OBJECT CLASSID

• OBJECT CODEBASE

• OBJECT USEMAP

Note If a URL on a retrieved page points to a binary file, the page is not displayed. You can
store the file locally by entering a path as the value of the PATH attribute.

224 Developing Web Applications with ColdFusion
Using the CFHTTP Get Method
Use Get to retrieve text and binary files from a specified server. The examples below
illustrate a few common GET operations. The Get method is a one-way transaction in
which CFHTTP retrieves an object. By comparison, the Post method is a two-way
transaction in which CFHTTP passes variables to a ColdFusion page or CGI program
which then returns data, usually processing what was received.

Example: Retrieving to a variable

The following example uses the Get method to perform a simple file request on the
default page of the Yahoo Web site (as of this writing of course) and stores the contents
of the file in a variable. Using CFOUTPUT, the page is rendered from the contents of
the variable and displayed in the browser.

<CFHTTP METHOD="Get"
URL="http://www.yahoo.com/index.htm"
RESOLVEURL="Yes">

<CFOUTPUT>
#CFHTTP.FileContent#

</CFOUTPUT>

When FILE and PATH attributes are omitted, ColdFusion stores the contents of the file
index.htm in the CFHTTP.FileContent variable. Note that, without the RESOLVEURL
attribute set to "Yes," relative links in the downloaded page would be broken. When set
to Yes, RESOLVEURL turns relative links into absolute links that resolve correctly.

Example: Retrieving to a file

The following example also uses the Get method to perform a simple file request, as
above, but the addition of the PATH and FILE attributes results in the retrieved file
being saved to the server as a variable.

<CFHTTP
METHOD = "get"
URL="http://www.yahoo.com/index.htm"
PATH="c:\temp"
FILE="yahooindex.htm">

Note that when the PATH and FILE attributes are used, the RESOLVEURL attribute is
ignored, even if present. The contents of the retrieved file can be referenced in the
CFHTTP.FileContents variable.

Example: Retrieving a binary file

Like the previous example, this example retrieves a file from a server and saves it to the
location specified in the PATH and FILE attributes. The only difference is the MIME
type of the retrieved file.

Chapter 15: Accessing Remote Servers with HTTP 225
<CFHTTP
METHOD="Get"
URL="http://maximus/downloads/quakestuff/q2_test.zip"
PATH="c:\quake2\install"
FILE="quake2beta.zip">

<CFOUTPUT>
#CFHTTP.MimeType#

</CFOUTPUT>

The CFOUTPUT block at the end displays the MIME type of the downloaded file,
which in this case, is interpreted as application/zip.

Creating a Query from a Text File
Using the CFHTTP Get operation, you can create a query object from a delimited text
file. This is a powerful means for processing and handling generated text files. Once the
query object is created, it is very simple to reference columns in the query and perform
other ColdFusion magic on the data.

Text files are processed in the following manner:

• You specify a delimiter with the DELIMITER attribute. If data in a field includes
the delimiter character, it must be quoted or qualified with some other
character, which you specify with the TEXTQUALIFIER attribute.

• By default, the first row of the text file is interpreted as column heading text. You
can replace this heading text by specifying alternate heading text in the
COLUMNS attribute, making sure that you supply an alternate for every
column of data in the text file.

• When duplicate column heading names are encountered, ColdFusion adds an
underscore character to the duplicate column name to make it unique. For
example, if two CustomerID columns are found, the second is renamed
"CustomerID_".

Example: Creating a query from a text file

In this example, a query object is created from a comma-delimited text file. The
CFOUTPUT tag is used to output specific columns in the query. The text file consists of
six columns, separated by commas. The first row of the file looks like this:

OrderID,OrderNum,OrderDate,ShipDate,ShipName,ShipAddress

This example accepts the first row of the text file as the column names:

<CFHTTP METHOD="Get"
URL="http://127.0.0.1/orders/june/orders.txt"
NAME="juneorders"
DELIMITER=","
TEXTQUALIFIER="""">

226 Developing Web Applications with ColdFusion
<CFOUTPUT QUERY="juneorders">
OrderID: #OrderID#

Order Number: #OrderNum#

Order Date: #OrderDate#

</CFOUTPUT>

You can substitute different column names by using the COLUMNS attribute:

<CFHTTP METHOD="Get"
URL="http://127.0.0.1/orders/june/orders.txt"
NAME="juneorders"

COLUMNS="ID, Number,Date"
DELIMITER=","
TEXTQUALIFIER="""">

<CFOUTPUT QUERY="juneorders">
Order ID: #ID#

Order Number: #Number#

Order Date: #Date#

</CFOUTPUT>

Using the CFHTTP Post Method
Use the Post method to send cookie, form, CGI, URL, and file variables to a specified
ColdFusion page or CGI program. For Post operations, the CFHTTPPARAM tag must
be used for each variable you want to post. Unlike the Get method, Post passes data to
a specified ColdFusion page or to some executable, that interprets the variables being
sent and returns data.

For example, when you build an HTML form using the Post method, you specify the
name of the program to which form data will be passed. Using the Post method in
CFHTTP is exactly the same.

Example: Pass variables to a ColdFusion page

The following example passes the five supported variable types to the page specified in
the URL attribute. The page that receives this data is also shown. It returns the value of
the variables which appears in the client’s browser. This example uses the CFFILE tag
in the page that receives the Posted variables to upload the contents of the file variable
to c:\temp\junk.

The CFOUTPUT section in posttest.cfm references the CFHTTP.FileContent
variable, which is used to display the output from the server.cfm file. If the
CFHTTP.FileContents variable were left out, the browser output would be limited to
the contents of the posttest.cfm file.

Sample file: posttest.cfm

Chapter 15: Accessing Remote Servers with HTTP 227
<CFHTTP METHOD="Post"
URL="http://housebeat/cfdocs/server.cfm"
USERNAME="user1"
PASSWORD="user1pwd">

<CFHTTPPARAM TYPE="Cookie"
VALUE="cookiemonster"
NAME="mycookie6">

<CFHTTPPARAM TYPE="CGI"
VALUE="cgivar "

NAME="mycgi">
<CFHTTPPARAM TYPE="URL"

VALUE="theurl"
NAME="myurl">

<CFHTTPPARAM TYPE="Formfield"
VALUE="wbfreuh@allaire.com"
NAME="emailaddress">

<CFHTTPPARAM TYPE="File"
NAME="myfile"
FILE="c:\temp\cyberlogo.gif">

</CFHTTP>

<CFOUTPUT>
#CFHTTP.filecontent#
#CFHTTP.mimetype#

</CFOUTPUT>

Sample file: server.cfm

You have POSTed to me.

<CFFILE DESTINATION="c:\temp\junk"

NAMECONFLICT="Overwrite"
FILEFIELD="myfile"
ACTION="Upload"
ATTRIBUTES="Normal">

<CFOUTPUT>
The URL variable is: #url.myurl#

The Cookie variable is: #cookie.mycookie6#

The CGI variable is: #cgi.mycgi#.

The Formfield variable is: #form.myformfield#.

</CFOUTPUT>

This example uses the CFFILE tag to upload the contents of the file variable to
c:\temp\junk.

Example: Returns results of CGI program

The following example runs a CGI program, search.exe, that searches the site and
returns the hits on the value specified in VALUE.

228 Developing Web Applications with ColdFusion
<CFHTTP METHOD="Post"
URL="http://www.thatsite.com/search.exe"
RESOLVEURL="Yes">

<CFHTTPPARAM TYPE="Formfield"
NAME="search"
VALUE="hello">

</CFHTTP>

<CFOUTPUT>
#CFHTTP.MimeType#

Length: #len(cfhttp.filecontent)#

Content: #htmlcodeformat(cfhttp.filecontent)#

</CFOUTPUT>

C H A P T E R 1 6
Chapter 16 Sending and Receiving Email
You can add interactive email features to your ColdFusion applications, providing
complete two-way interface to mail servers via the CFMAIL tag and the CFPOP tag.
The boom in Internet mail services makes ColdFusion’s enhanced email capability a
vital link to your users.

Contents

• Using ColdFusion with Mail Servers... 230

• Sending Email Messages (SMTP).. 230

• SMTP Examples with CFMAIL .. 231

• Customizing Email for Multiple Recipients ... 233

• Advanced Sending Options ... 234

• Receiving Email Messages (CFPOP) ... 236

• Handling POP Mail... 237

230 Developing Web Applications with ColdFusion
Using ColdFusion with Mail Servers
Adding email to your ColdFusion applications lets you respond automatically to user
requests. You can use email in your ColdFusion applications in many different ways.
These are just a few examples:

• Trigger email messages based on users’ requests or orders.

• Allow users to request and receive additional information or documents
through email.

• Confirm customer information based on order entries or updates.

• Send invoices or reminders, using information pulled from database queries.

ColdFusion offers several ways to integrate email into your applications. For sending
email, you generally use the Simple Mail Transfer Protocol (SMTP). For receiving mail,
you use the Post Office Protocol (POP) to retrieve email from the mail server. To use
email messaging in your ColdFusion applications you must have access to an SMTP
server, as well as a valid POP account and password.

In your ColdFusion application pages, you use the CFMAIL and CFPOP tags to send
and receive mail respectively. The following sections describe ColdFusion email
features and offer examples of these tags.

Sending Email Messages (SMTP)
Before you set up ColdFusion to send email messages, you must have access to an
SMTP email server. Also, before you run application pages that refer to the email
server, you must configure the ColdFusion Administrator to use the SMTP server.

To configure ColdFusion for email:

1. Open the Mail page in the ColdFusion Administrator.

2. In the Mail Server box, enter the address of the SMTP mail server you want
ColdFusion to use.

3. Leave the Server Port and Connection Timeout settings at their default values.

4. Click Apply to save the settings.

5. To verify server settings, click the Verify button to make sure ColdFusion can
access your mail server.

See the Administering ColdFusion Server book for more information on the
Administrator’s mail settings.

Sending SMTP mail with CFMAIL

The CFMAIL tag provides support for sending SMTP (Simple Mail Transfer Protocol)
email from within ColdFusion applications. The CFMAIL tag is similar to the
CFOUTPUT tag, except that CFMAIL outputs the generated text as SMTP mail

Chapter 16: Sending and Receiving Email 231
messages rather than to the display screen. All attributes and commands you use with
CFOUTPUT you can also use with CFMAIL.

Here’s an example of a basic use of the CFMAIL tag, using form variables to resolve the
From, To, Subject, and message body components of the mail message.

<CFMAIL QUERY="GetList"
TO="#Email#"
FROM="Sales DepartmentList Manager"
SUBJECT="#Form.Subject#">

#FORM.Body#

</CFMAIL>

More detailed examples follow in subsequent sections. Also, see the CFML Language
Reference for a full catalog of the CFMAIL tag’s attributes and values.

SMTP Examples with CFMAIL
An application page with the CFMAIL tag dynamically generates email messages based
on the tag’s settings. Some of the things you can accomplish with CFMAIL are:

• Send a mail message whose recipient and contents are determined by data the
user enters in an HTML form.

• Use a query to send a mail message to a database-driven list of recipients.

• Use a query to send a customized mail message, such as a billing statement to a
list of recipients that is dynamically populated from a database.

• Send a MIME file attachment along with a mail message.

The CFMAIL tag behaves like the CFOUTPUT tag. It shares some attributes used by
CFOUTPUT - QUERY, GROUP, STARTROW, and MAXROWS - and it employs several
mail-specific attributes to handle mail header information and MIME and HTML files.

See the CFML Language Reference for a more information.

Sending form-based email

In the example below, the contents of a customer inquiry form submittal are
forwarded to the marketing department. Note that the same application page could
also insert the customer inquiry into the database.

<CFMAIL FROM="#Form.EMailAddress#"
TO="marketing@allaire.com"
SUBJECT="Customer Inquiry">

A customer inquiry was posted to our Web site:

Name: #Form.FirstName# #Form.LastName#

232 Developing Web Applications with ColdFusion
Subject: #Form.Subject#

#Form.InquiryText#

</CFMAIL>

Sending query-based email

In the example below, a query ("ProductRequests") is run to retrieve a list of the
customers who have inquired about a product over the last seven days. This list is then
sent, with an appropriate header and footer, to the marketing department:

<CFMAIL QUERY="ProductRequests"
FROM="webmaster@allaire.com"
TO="marketing@allaire.com"
SUBJECT="ColdFusion status report">

Here is a list of people who have inquired about
Allaire ColdFusion over the last seven days:

<CFOUTPUT>
#ProductRequests.FirstName# #ProductRequests.LastName#
(#ProductRequests.Company#) - #ProductRequests.EMailAddress#
</CFOUTPUT>

Regards,
The WebMaster
webmaster@allaire.com

</CFMAIL>

Note the use of the nested CFOUTPUT tag to present a dynamic list embedded within
a normal CFMAIL message. The text within the CFOUTPUT is repeated for each row in
the "ProductRequests" query, while the text above and below it serve as the header and
footer (respectively) for the mail message.

Note The GROUP attribute specifies the query column to use when you group sets of
records together to send as a single email message. For example, if you send a set of
billing statements out to your customers, you might group them on “Customer_ID.”
The GROUP attribute, which is case sensitive, eliminates adjacent duplicates in the
case where the data is sorted by the specified field.

Sending email to multiple recipients

In the following example, a query ("CFBetaTesters") is run to retrieve a list of people
who are beta testing ColdFusion. This query is then used to send a notification to each
of these testers that a new version of the beta release is available:

Chapter 16: Sending and Receiving Email 233
<CFMAIL QUERY="CFBetaTesters"
FROM="beta@allaire.com"
TO="#TesterEMail#"
SUBJECT="ColdFusion Beta Four Available">

To all ColdFusion beta testers:

ColdFusion Beta Four is now available for downloading
from the Allaire site.The URL for the download is:

http://beta.allaire.com

Regards,
ColdFusion Technical Support
beta@allaire.com

</CFMAIL>

Note that in this example, the contents of the CFMAIL tag are not dynamic, that is, they
don’t use any # delimited dynamic parameters. What is dynamic is the list of email
addresses to which the message is sent. Note the use of the "TesterEMail" column from
the "CFBetaTesters" query in the TO attribute.

Customizing Email for Multiple Recipients
In the following example, a query ("GetCustomers") is run to retrieve the contact
information for a list of customers. This query is then used to send an email to each
customer asking them to verify that their contact information is still valid:

<CFMAIL QUERY="GetCustomers"
FROM="service@allaire.com"
TO="#EMail#"
SUBJECT="Contact Info Verification">

Dear #FirstName# -

We’d like to verify that our customer
database has the most up-to-date contact
information for your firm. Our current
information is as follows:

Company Name: #Company#
Contact: #FirstName# #LastName#

Address:
#Address1#
#Address2#
#City#, #State# #Zip#

Phone: #Phone#
Fax: #Fax#
Home Page: #HomePageURL#

234 Developing Web Applications with ColdFusion
Please let us know if any of the above
information has changed, or if we need to
get in touch with someone else in your
organization regarding this request.

Thanks,
Allaire Customer Service
service@allaire.com

</CFMAIL>

Note that in the TO attribute of CFMAIL, the #Email# query column causes one
message to be sent to the address listed in each row of the query. Also note the use of
the other query columns (FirstName, LastName, etc.) within the CFMAIL section to
customize the contents of the message for each recipient.

Attaching a MIME file

In the following example, a MIME-encoded file is sent along with an email message:

<CFMAIL FROM="info@allaire.com"
TO="jdoe@supercomputer.com"
SUBJECT="File you requested"
MIMEATTACH="c:\cfmanual.doc">

Dear Joe,

Here is a copy of the file you requested.

Regards,
The Allaire Team

</CFMAIL>

For more information about the attributes and values for the CFMAIL tag, see the
CFML Language Reference.

Advanced Sending Options
The ColdFusion implementation of SMTP mail uses a spooled architecture. This
means that when a CFMAIL tag is processed in an application page, the messages
generated are not sent immediately. Instead, they are spooled to disk and processed in
the background. This architecture has two distinct advantages:

1. End users of your application are not required to wait for SMTP processing to
complete before a page returns to them. This is especially useful when a user
action causes more than a handful of messages to be sent.

2. Messages sent using CFMAIL are delivered reliably, even in the presence of
unanticipated events like power outages or server crashes.

Chapter 16: Sending and Receiving Email 235
In most cases, spooled messages are processed immediately by ColdFusion and
delivery occurs almost instantly. If, however, ColdFusion is either extremely busy or
has a large existing queue of messages, delivery could occur some time after the
request is submitted.

Sending mail as HTML

Most newer Internet mail applications are capable of reading and interpreting HTML
code in a mail message. The CFMAIL tag allows you to specify the message type as
HTML. The TYPE attribute, which only accepts HTML as an argument, informs the
receiving email client that the message has embedded HTML tags that need to be
processed. This feature is only useful when sending messages to mail clients that
understand HTML.

Overriding default SMTP server settings

You can use the following optional CFMAIL attributes to override the default SMTP
Server settings set with the ColdFusion Administrator:

Error logging and undelivered messages

All errors that occur during the processing of SMTP messages are logged to the file
errors.log in the ColdFusion log directory. Error log entries contain the date and time
of the error as well as diagnostic information on why the error occurred.

All messages not delivered because of an error are written to the
\cfusion\mail\undelivr directory. The error log entry corresponding to the
undelivered message contains the name of the file written to the undelivr directory.

See Administering ColdFusion Server for more information about the mail logging
settings in the ColdFusion Administrator.

CFMAIL Tag

Optional Attributes Description

SERVER The address of the SMTP server to use for sending messages.

PORT The TCP/IP port on which the SMTP server listens for requests.
This is almost always 25.

TIMEOUT The time, in seconds, before timing out the connection to the
SMTP server.

236 Developing Web Applications with ColdFusion
Receiving Email Messages (CFPOP)
CFPOP, the Post Office Protocol tag, expands the ColdFusion developer’s ability to add
Internet mail client features and email consolidation to applications. While a
conventional mail client provides an adequate interface for personal mail, there are
many cases where an alternative interface to some mailboxes is desirable. CFPOP is a
tool to develop targeted mail clients to suit the specific needs of a wide range of
applications.

Use CFPOP in applications when you want to receive email. Here are two instances
where implementing POP mail makes sense:

• If your site has generic mailboxes that are read by more than one person
(sales@yourcompany.com), it may be more efficient to construct a ColdFusion
mail front-end to supplement individual user mail clients.

• In many applications, the processing of mail can be automated when the mail
is formatted to serve a particular purpose. For example, when subscribing to a
list server.

Use the CFPOP tool in the CFML Advanced toolbar in ColdFusion Studio to add CFPOP
tags to your pages.

See the CFML Language Referencefor more information on CFPOP syntax and
variables.

CFPOP Example

This example shows the basic syntax of CFPOP:

<CFPOP SERVER="my.mailserver.com"
USERNAME=#username#
PASSWORD=#pwd#
ACTION="GetHeaderOnly"
NAME="getmsghdrs">

<BODY>
<CFOUTPUT>
You have #getmsghdrs.RecordCount# messages to read.
</CFOUTPUT>

<CFOUTPUT QUERY="getmsghdrs">
<P>Date: #getmsghdrs.date#</P>
<P>From: #getmsghdrs.from#</P>

</CFOUTPUT>
</BODY>

Using CFPOP

To implement the CFPOP tag in your ColdFusion application:

1. Choose which mail boxes you want to access within your ColdFusion application.

Chapter 16: Sending and Receiving Email 237
2. Determine what mail message components you need to process: message header,
message body, attachments, etc.

3. Decide if you need to store the retrieved messages in a database.

4. Decide if you need to delete messages from the POP server once you’ve retrieved
them.

5. Incorporate the CFPOP tag in your application and create a user interface for
accessing a given mailbox.

6. Build an application page to handle the output. Retrieved messages can include
ASCII characters that do not display properly in the browser.

Use the CFOUTPUT tag with the HTMLCodeFormat and HTMLEditFormat
functions to control output to the browser. Note the use of these functions in the
examples.

CFPOP query variables

Two variables are returned for each CFPOP query that provide record number
information:

• RecordCount: The total number of records returned by the query.

• CurrentRow: The current row of the query being processed by CFOUTPUT in a
query-driven loop.

You can reference these properties in a CFOUTPUT tag by prefixing the query variable
with the query name in the NAME attribute of CFPOP:

<CFOUTPUT>
This operation returned #Sample.RecordCount# messages.
</CFOUTPUT>

Handling POP Mail
You use the ACTION attributes of the CFPOP tag to describe the data set to retrieve.
You can get all data (GetAll), get header data only (GetHeaderOnly), or delete mail
(DELETE).

This section gives an example of each usage:

• Retrieving only message headers

• Retrieving a message body

• Retrieving attachments

• Deleting messages

Note that for any of the examples below to work, you’ll need to reference an existing
POP mail server with a valid user and password. Save the code example to a directory
using the indicated filenames. Then open each CFM file to run the example.

238 Developing Web Applications with ColdFusion
Returning only message headers

When you use the CFPOP tag with ACTION="GetHeaderOnly", ColdFusion returns
only the mail message header information to the query specified in the NAME
attribute. The following columns are returned:

• DATE

• FROM

• MESSAGENUMBER

• REPLYTO

• SUBJECT

• CC

• TO

Header information

Mail message header information returned by CFPOP may be enclosed in HTML
coding. You can use the ColdFusion function HTMLCodeFormat to replace HTML tags
with escaped characters, such as > for > and < for <.

In addition, the date returned by CFPOP can be processed with ParseDateTime, which
accepts an argument for converting POP date/time objects into GMT (Greenwich
Mean Time).

See the CFML Language Referencefor information on these ColdFusion functions.

You can reference any of these columns in a CFOUTPUT tag, as the following example
shows.

<CFOUTPUT>
#ParseDateTime(queryname.date, "POP")#
#HTMLCodeFormat(queryname.from)#
#HTMLCodeFormat(queryname.messagenumber)#

</CFOUTPUT>

Example of retrieving message headers

Users can retrieve and optionally delete mail messages from a POP mail server. This
first example, hdronly.cfm, illustrates how to retrieve message header information.
You can use the code as is after you’ve supplied your POP mail server name, user name
and password.

This code retrieves the message headers and stores them in a CFPOP result set called
Sample.

Sample file: hdronly.cfm

Chapter 16: Sending and Receiving Email 239
<HTML>
<HEAD>
<TITLE>POP Mail Message Header Example</TITLE>
</HEAD>

<BODY>
<H2>This example retrieves message
header information:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#
ACTION="GetHeaderOnly"
NAME="Sample">

<CFOUTPUT QUERY="Sample">
MessageNumber: #HTMLEditFormat(Sample.MESSAGENUMBER)#

To: #HTMLEditFormat(Sample.TO)#

From: #HTMLEditFormat(Sample.FROM)#

Subject: #HTMLEditFormat(Sample.SUBJECT)#

Date: #HTMLEditFormat(Sample.DATE)#

Cc: #HTMLEditFormat(Sample.CC)#

ReplyTo: #HTMLEditFormat(Sample.REPLYTO)#

</CFOUTPUT>

</BODY>
</HTML>

Returning an entire message

When you use the CFPOP tag with ACTION="GetAll", ColdFusion returns the same
columns returned with GETHEADERONLY, as well as two additional columns, BODY
and HEADER.

Example

In this sample file, hdrbody.cfm, the ACTION attribute is set to GetAll, so it retrieves
the message body as well as its header.

Sample file: hdrbody.cfm

<HTML>
<HEAD>
<TITLE>POP Mail Message Body Example</TITLE>
</HEAD>

<BODY>
<H2>This example adds retrieval of
the message body:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#

240 Developing Web Applications with ColdFusion
ACTION="GetAll"
NAME="Sample">

<CFOUTPUT QUERY="Sample">
MessageNumber: #HTMLEditFormat(Sample.MESSAGENUMBER)#

To: #HTMLEditFormat(Sample.TO)#

From: #HTMLEditFormat(Sample.FROM)#

Subject: #HTMLEditFormat(Sample.SUBJECT)#

Date: #HTMLEditFormat(Sample.DATE)#

Cc: #HTMLEditFormat(Sample.CC)#

ReplyTo: #HTMLEditFormat(Sample.REPLYTO)#

Body: #HTMLCodeFormat(Sample.BODY)#

Header: #HTMLCodeFormat(Sample.HEADER)#

</CFOUTPUT>

</BODY>
</HTML>

Returning attachments with messages

When you use the CFPOP tag with ACTION="GetAll", and add the ATTACHMENTPATH
attribute, ColdFusion returns two additional columns:

• ATTACHMENTS contains a tab-separated list of all source attachment names.

• ATTACHMENTFILES contains a tab-separated list of the actual temporary
filenames written to the server. Use the CFFILE tag to delete the temporary files.

Not all messages have attachments. If a message has no attachments, both
ATTACHMENTS and ATTACHMENTFILES will be equal to an empty string.

Managing attachment filenames

To avoid any problems with duplicate filenames, ColdFusion creates temporary files
for all attachments. If you retrieve files with attachments, you can use the
ATTACHMENTPATH attribute to choose where the attachment files go. It is the
developer’s responsibility to manage these files so they can be accessed
unambiguously.

Also note that it is the developer’s responsibility to clean up any temporary files written
as a result of executing a CFPOP tag.

Example

This retrieval example, attach.cfm, retrieves all parts of the message including
attachments.

Sample File: attach.cfm

Chapter 16: Sending and Receiving Email 241
<HTML>
<HEAD>
<TITLE>POP Mail Message Attachment Example</TITLE>
</HEAD>

<BODY>
<H2>This example retrieves message header,
body, and all attachments:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#
ACTION="GetAll"
ATTACHMENTPATH="c:\attachdir"
NAME="Sample">

<CFOUTPUT QUERY="Sample">
MessageNumber: #HTMLEditFormat(Sample.MESSAGENUMBER)#

To: #HTMLEditFormat(Sample.TO)#

From: #HTMLEditFormat(Sample.FROM)#

Subject: #HTMLEditFormat(Sample.SUBJECT)#

Date: #HTMLEditFormat(Sample.DATE)#

Cc: #HTMLEditFormat(Sample.CC)#

ReplyTo: #HTMLEditFormat(Sample.REPLYTO)#

Attachments: #HTMLEditFormat(Sample.ATTACHMENTS)#

Attachment Files: #HTMLEditFormat(Sample.ATTACHMENTFILES)#

Body: #HTMLCodeFormat(Sample.BODY)#

Header: #HTMLCodeFormat(Sample.HEADER)#

</CFOUTPUT>

</BODY>
</HTML>

Deleting messages

By default, retrieved messages are not deleted from the POP mail server. If you want to
delete retrieved messages, you must set the ACTION attribute to Delete.

The MESSAGENUMBER attribute returned by all CFPOP retrievals contains the
message number you need to pass back to the POP mail server to have the
corresponding message deleted. A few notes:

• Once a message is deleted, it’s gone for good.

• Message numbers are reassigned at the end of every POP mail server
communication that contains a delete action. For example, if four messages are
retrieved from a POP mail server, the message numbers returned will be 1,2,3,4.
If two messages are then deleted within a single CFPOP tag, messages 3 and 4
will be assigned message numbers 1 and 2, respectively.

Example

Sample file: msgdel.cfm

242 Developing Web Applications with ColdFusion
<HTML>
<HEAD>
<TITLE>POP Mail Message Delete Example</TITLE>
</HEAD>

<BODY>
<H2>This example deletes messages:</H2>

<CFPOP SERVER="mail.company.com"
USERNAME=#username#
PASSWORD=#password#
ACTION="Delete"
MESSAGENUMBER="1,2,3">

</BODY>
</HTML>

For more information

For more information on using the CFMAIL and CFPOP tags, see the CFML Language
Reference.

C H A P T E R 1 7
Chapter 17 Indexing and Searching Data
You can provide a full-text search capability for documents and data sources on a
ColdFusion site by enabling the Verity search engine.

Contents

• Searching a ColdFusion Web Site.. 244

• Supported File Types.. 246

• Support for International Languages ... 247

• Creating a Collection ... 247

• Indexing a Collection ... 250

• Populating a Collection from Document Files .. 251

• Populating a Collection from a Query .. 252

• Indexing CFLDAP Query Results .. 254

• Indexing CFPOP Query Results... 255

• Managing Collections .. 256

• Building a Search Interface ... 257

• Using Query Expressions... 261

• Precedence Evaluation .. 263

• Searching with Wildcards .. 265

• Operators and Modifiers.. 267

• Collection Examples .. 275

244 Developing Web Applications with ColdFusion
Searching a ColdFusion Web Site
Verity, Inc. SEARCH’97 engine is bundled with ColdFusion to provide full-text indexing
and searching functionality. This feature allows you to enhance your ColdFusion
applications with a powerful search engine, giving your users intelligent access to
content.

The ColdFusion online documentation employs Verity for searches against the
installed document set. The first time you click the Search button on the ColdFusion
Documentation home page, you will be prompted to index the set. When that is
completed, you can run searches.

Here are some of the possible uses for Verity in ColdFusion:

• Index your Web site and provide a generalized search mechanism, such as a
form interface, for executing searches.

• Index specific directories containing documents for subject-based searching.

• Index CFQUERY result sets, giving your end users the ability to search against
the data. Since collections are made up of data optimized for retrieval, this
method is much faster than performing multiple database queries to return the
same data.

• Index CFLDAP and CFPOP query results.

• Manage and search collections generated outside of ColdFusion using native
Verity tools. This additional capability requires only that the full path to the
collection be specified in the index command.

• Index email generated by ColdFusion application pages and create a searching
mechanism for the indexed messages.

• Build collections of inventory data and make those collections available for
searching from your ColdFusion application pages.

• Support international users in a range of languages from both the CFINDEX
and CFSEARCH tags.

Advantages of using Verity

Verity can index the output from queries so that you or an end user can search against
the result sets. This has a clear advantage in speed of execution because pointers to the
result sets are stored in a Verity index that is optimized for searching. You can reduce
the programming overhead of query constructs by allowing users to construct their
own queries and execute them directly. You need only be concerned with presenting
the output to the client browser.

Verity can index database text fields, such as notes and product descriptions, that
cannot be effectively indexed by native database tools.

When indexing collections containing documents in Adobe Acrobat (PDF) format,
Verity scans for the document title (if one has been entered in Acrobat Exchange). The
document title displays in the search results list.

Chapter 17: Indexing and Searching Data 245
Indexing Web pages returns the URL for each document. This is a valuable document
management feature.

Online Verity training

A video titled “Creating Search Engines with Verity” is available at http://
alive.allaire.com. The video gives an overview of the Verity implementation in
ColdFusion and illustrates the development process with sample code.

The video is part of Allaire Alive, an educational service that offers Web videos on
topics specific to ColdFusion development and application deployment as well as
broader industry issues. The titles are available free for online viewing or download.

Verity collections

The Verity engine performs searches against collections. A collection is a special
database created by Verity that contains pointers to the indexed data that you specify
for that collection. ColdFusion’s Verity implementation supports collections of three
basic data types:

• Text files such as HTML pages and CFML templates.

• Binary documents (see the Supported Document Types list below).

• Result sets returned from CFQUERY, CFLDAP, and CFPOP queries.

You can build a collection from individual documents or an entire directory tree.
Collections can be stored anywhere, so you have a lot of flexibility in accessing indexed
data. This adds enormous value to any content-rich Web site.

The first step in implementing Verity is to create a collection. This can be done either
through the ColdFusion Administrator or programmatically. The next step is to
populate the collection, that is, to select the data and generate the index. You now have
a searchable data source. Designing a search interface and a results page complete the
process.

Following is a brief description of the Verity tags.

CFCOLLECTION

Provides a programming interface for the commands available on the ColdFusion
Administrator Verity page.

CFINDEX

Used primarily to populate collections and to update the index.

CFSEARCH

Used to define the search. The tag’s attributes give you precise control of search results.

246 Developing Web Applications with ColdFusion
Supported File Types
The ColdFusion Verity implementation supports a wide array of document types. This
means you can index Web pages, ColdFusion applications, and many binary
document types and produce search results that include summaries of these
documents.

The following table lists the supported document types.

Supported Document Types

Documents Versions

Text files

HTML, CFML, DBM, SGML, XML, N/A

ANSI, ASCII, Plain Text N/A

Word processors

Adobe Acrobat (PDF)

Adobe FrameMaker (MIF)

Aplix Words

Corel WordPerfect for Windows

Corel WordPerfect for Macintosh

Lotus AMI Pro

Lotus AMI Pro Write Plus

Lotus Word Pro

Microsoft Office

MS Rich Text Format (RTF)

MS Word for Windows

MS Word for DOS

MS Word for Macintosh

MS Notepad, WordPad

MS Write, MS Works

XYWrite

All

All

4.2

5.x 6, 7, 8

2, 3

2, 3

all

96, 97

95, 97

1.x, 2.0

2, 6, 95, 97

4, 5, 6

4.0, 5.0, 6.0

all

all

4.12

Spreadsheets

Corel QuattroPro

Lotus 1-2-3 for DOS/Windows

Lotus 1-2-3 for OS/2

MS Excel

MS Works

7, 8

2.0, 3.0, 4.0, 5.0, ’96, ’97

2

3, 4, 5, ’95, ’97

all

Chapter 17: Indexing and Searching Data 247
Support for International Languages
The ColdFusion International Language Search Pack can be purchased and installed to
index data in any the following languages:

• Danish

• Dutch

• Finnish

• French

• German

• Italian

• Norwegian

• Portuguese

• Spanish

• Swedish

The default language for Verity collections is English. To index data in one of the
supported languages, you must select the language from the drop-down list when you
create a collection on the ColdFusion Administrator Verity page. You must then enter
the selected language as a value of the LANGUAGE attribute in both the CFINDEX and
CFSEARCH tags used against that collection.

To order the Language Pack, contact Allaire Customer Service or visit our online store
at http://www.allaire.com/store. The default installation directory for the
dictionaries is in \cfusion\verity\common.

Creating a Collection
ColdFusion provides two interfaces for creating a Verity collection. You can make
selections on the ColdFusion Administrator Verity page or code the CFCOLLECTION
tag.

Presentation

Corel Presentations

Lotus Freelance

MS PowerPoint

7.0, 8.0

96, 97

4.0, 95, 97

Supported Document Types (Continued)

Documents Versions

248 Developing Web Applications with ColdFusion
Running the ColdFusion Administrator

Open the ColdFusion Administrator Verity page. If you checked the option to install
the ColdFusion Documentation, the documentation collection is listed by default. The
Verity engine is used to search our online documents.

To create a new collection:

1. In the Add a Collection section, type in a name for the collection.

2. Type in a path for the location of the new collection. By default, new collections
are added to \Cfusion\Verity\Collections\.

3. If you have an International Language Search Pack installed, you can select a
language for the collection from the drop-down list.

4. Click Create a new collection. When the collection is created, the name and full
path of the new collection appear in the Verity Collections list at the top of the
page.

You can easily enable access to a collection on the network by creating a local reference
(an alias) for that collection. It only needs to be a valid Verity collection; it doesn’t
matter whether it was created within ColdFusion or another tool.

To add an existing collection:

1. In the Add a Collection section, type in the collection alias.

2. Enter the full path to the collection.

3. Select Language if needed.

4. Click Map an existing collection.

5. Click Apply.

If the collection is subsequently moved, the alias path must be updated. The Delete
command, when used on a mapped collection, only deletes the alias.

Coding the CFCOLLECTION tag

Creating and maintaining collections from a CFML application eliminates the need to
access the ColdFusion Administrator. This can be an advantage when you need to
schedule these tasks or to allow users to perform them without exposing the
Administrator.

With the introduction of CFCOLLECTION, Verity tasks can now be grouped in a more
logical way. CFCOLLECTION can be used for collection creation and maintenance and
CFINDEX can be used to populate and update collections.

The valid values for the ACTION attribute are:

• Create — Creates a new collection using the specified path and optionally
specified language.

• Repair — Attempts to fix corrupted data in the specified collection.

Chapter 17: Indexing and Searching Data 249
• Delete — Deletes the specified collection.

• Optimize — Reorganizes the collection data for greater efficiency, similar to a
DBMS optimize operation.

• Map — Assigns an alias to an existing collection.

The CREATE and MAP actions require a collection name and path. The MAP action
additionally requires an alias name. The LANGUAGE attribute is required for data in
languages other than English. Only the ACTION and COLLECTION attributes are
required for maintenance tasks.

<CFCOLLECTION ACTION="action"
COLLECTION="collection"
PATH="implementation directory"
LANGUAGE="language">

Example: Collection action page

This example processes input from a form. Notice the use the new CFSWITCH tag to
control page flow.

<HTML>
<HEAD>

<TITLE>CFCOLLECTION</TITLE>
</HEAD>

<BODY>
<H1>CFCOLLECTION</H1>

<CFOUTPUT>

<CFSWITCH EXPRESSION=#FORM.CollectionAction#>

<CFCASE VALUE="Create">

<CFCOLLECTION ACTION="Create"
COLLECTION="#FORM.CollectionName#"
PATH="C:\CFUSION\Verity\Collections\">

</CFCASE>

<CFCASE VALUE="Repair">

<CFCOLLECTION ACTION="REPAIR"
COLLECTION="#FORM.CollectionName#">
<P>Collection repaired.

</CFCASE>

<CFCASE VALUE="Optimize">

<CFCOLLECTION ACTION="OPTIMIZE"
COLLECTION="#FORM.CollectionName#">
<P>Collection optimized.

</CFCASE>

250 Developing Web Applications with ColdFusion
<CFCASE VALUE="Delete">

<CFCOLLECTION ACTION="DELETE"
COLLECTION="#FORM.CollectionName#">
<P>Collection deleted.

</CFCASE>

</CFSWITCH>

</CFOUTPUT>
</BODY>
</HTML>

The CFCOLLECTION tag operates at the collection level. To add content to a
collection, use the CFINDEX tag.

Indexing a Collection
At this point, the new collection is just an empty shell. In fact, if you hold it up to your
ear you can hear the ocean. You can use the CF Administrator or CFINDEX to populate
the collection with indexed data.

Note You can index and search against Verity collections created outside of ColdFusion by
using the EXTERNAL attribute of CFINDEX and CFSEARCH.

Selecting an indexing method

Use the following guidelines to determine which method to use.

The following sections give instructions for each of the indexing methods.

Using the CF Administrator or CFINDEX

Use the Administrator if Use the CFINDEX tag if

You want to index document files. You want to index ColdFusion query results.

The collection won’t be updated very
frequently.

You need to dynamically populate or update
a collection from a ColdFusion application
page.

You want to generate the collection
without writing any CFML code.

Your collection needs to be updated
frequently.

You want to generate a one-time
collection.

Your collection needs to be updated by other
people.

Chapter 17: Indexing and Searching Data 251
Populating a Collection from Document Files
This section covers the two methods for indexing files.

Indexing files with the ColdFusion Administrator

To index a collection from the Verity page:

1. Select a collection name in the Verity Collections box.

2. Click Index to open the index page. The selected collection name appears at the
top of the page.

3. Enter a single file type or multiple file types separated by commas.

4. Type in the directory path for the collection or click Browse Server and navigate to
the directory in which to begin the index.

5. Check the Recursively index subdirectories box if you want to extend the indexing
operation to all directories below the selected path.

6. Optionally, you can enter a Return URL to prepend to all indexed files. This allows
you to easily create a link to any of the files in the index. A typical entry might be
something like http://localhost/wwwroot/.

7. If the International Language Search Pack is installed, you can select one of the
supported languages.

8. Click Update to begin the indexing process. The time required to generate the
index depends on the number and size of the selected files in the path.

As you can see, this interface allows you to easily build a very specific index based on
the file extension and path information you enter. In most cases, your server file
structures need not be changed to accommodate the generation of indices.

In your ColdFusion application, you can populate and search multiple collections,
each of which can be designed to focus on a specific group of documents or queries,
according to subject, document type, location, or any other logical grouping. Searches
can be performed against multiple collections, giving you lots of flexibility in designing
your search interface.

Indexing files with CFINDEX

To programmatically index files, set the index parameters in CFSET tags, then specify
those values in CFINDEX attributes. To illustrate these steps, we’ll use a section of an
indexing template generated by the Verity Wizard in ColdFusion Studio. To run the
wizard, click File > New and select the Verity Wizard from the CFML tab of the New
Document dialog.

This collection is a set of draft documents and supporting files used during the review
process of the ColdFusion 4.0 documentation.

252 Developing Web Applications with ColdFusion
<CFSET IndexCollection = "Review Docs">
<CFSET IndexDirectory = "C:\Projects\CF40\Doc Source\">
<CFSET IndexRecurse = "YES">
<CFSET IndexExtensions = ".htm, .doc, .xls">
<CFSET IndexLanguage = "English">

The collection parameters listed here mirror those on the Administrator Verity Index
page. The extensions list for this index includes HTML files, Microsoft Word
documents, and Excel worksheets. To revert to the default extensions, simply enter
double quotes with no space between. Other wildcards, such as *.* have no effect.

The indexing attributes and values are then entered.

<CFINDEX COLLECTION="#IndexCollection#"
ACTION="REFRESH"
TYPE="PATH"
KEY="#IndexDirectory#\"
EXTENSIONS="#IndexExtensions#"
RECURSE"#IndexRecurse#"
LANGUAGE="#IndexLanguage#">

Below this you can enter other CFML code as needed and HTML page elements for the
search interface.

Type attribute options

Generally, a server path is entered as the value for the TYPE attribute, but you can use
the TYPE="FILE" option under special circumstances, such as indexing a database
table containing a list of file names. For more information on this topic, see the Allaire
Knowledge Base article, "Using Indirection with CFINDEX TYPE=FILE" (ID# 1083) on
our Web site.

Populating a Collection from a Query
Indexing the result set from a ColdFusion query involves an extra step not required
when indexing documents. You need to code the query and output parameters, then
point the CFINDEX tag at the result set from a CFQUERY, CFLDAP, or CFPOP query.

To index a ColdFusion query:

1. Create the collection on the ColdFusion Administrator Verity page.

2. Execute a query and output the data.

3. Populate the collection using the CFINDEX tag.

Indexing database query results

To populate a collection from a CFQUERY you specify a KEY, which corresponds to the
primary key of the data source, and the BODY, the column in which you want to

Chapter 17: Indexing and Searching Data 253
conduct searches. The following extract shows only the CFQUERY and CFINDEX parts
of the process.

<!--- Select the entire table --->
<CFQUERY NAME="Messages"

DATASOURCE="CF 4.0 Examples">
SELECT *

FROM Messages
</CFQUERY>

<!--- Output the result set --->
<CFOUTPUT QUERY=”Messages”>

#Message_ID#, #Subject#, #Title#, #MessageText#

</CFOUTPUT>

<!--- Index the result set --->
<CFINDEX COLLECTION="DBINDEX"

ACTION="UPDATE"
TYPE="CUSTOM"
BODY="MessageText"
KEY="Message_ID"
TITLE="Subject"
QUERY="Messages">

This CFINDEX statement specifies the MessageText column as the core of the
collection and names the table’s primary key, the Message_ID column, as the KEY
value. Note that the TITLE attribute names the Subject column. The TITLE attribute
can be used to designate an output parameter.

Indexing multiple columns

To index more than one column in a collection, enter a comma-separated list of
column names for values of the BODY attribute, such as:

BODY=FirstName,LastName,Company

Custom fields

The CFINDEX tag supports two custom attributes, CUSTOM1 and CUSTOM2, that you
can use to store data during an indexing operation. The query columns you specify as
values for these attributes are returned in a CFSEARCH of the collection. For more
information on this topic, see the Allaire Knowledge Base article, “Custom1, Custom2
and Summary Fields” (ID# 1081) on our Web site.

Advantages of indexing a data source

The main advantage of performing searches against a Verity collection over using
CFQUERY alone is that the database is indexed in a form that provides faster access.
Use this technique instead of CFQUERY in the following cases:

254 Developing Web Applications with ColdFusion
• You want to index textual data. Verity collections containing textual data can be
searched much more efficiently with CFINDEX than searching a database with
CFQUERY.

• You want to give your users access to data without interacting directly with the
data source itself.

• You want to improve the speed of queries.

• You want your end users to run queries but not update a database table.

• You do not want to expose your data source.

Indexing CFLDAP Query Results
The widespread use of the Lightweight Directory Access Protocol to build searchable
directory structures, both internally and across the Web, provides ColdFusion
developers with new opportunities to add value to the sites they create. Contact
information or other data from an LDAP-accessible server can be indexed and
searched by users. Remember to create the collection in the Administrator.

Two things to remember when creating an index from an LDAP query:

• Because LDAP structures vary greatly, you must know the server’s directory
schema and the exact name of every LDAP attribute you intend to use in a
query.

• The records on an LDAP server can be subject to frequent change. You may
want to re-index the collection before processing a search request.

In the example below, the search criterion is records with a telephone number in the
617 area code. Generally, LDAP servers use the Distinguished Name (dn) attribute as
the unique identifier for each record, so that is used as the KEY value for the index.

<!--- Run the LDAP query --->
<CFLDAP NAME=”OrgList”

SERVER=”my.ldapserver.com”
ACTION=”query”
ATTRIBUTES=”o, telephonenumber, dn, mail”
SCOPE=”onelevel”
FILTER=”(|(O=a*) (O=b*))”
SORT=”o”
START=”c=US”>

<!--- Output query result set --->
<CFOUTPUT QUERY=”OrgList”>

DN: #dn#

O: #o#

TELEPHONENUMBER: #telephonenumber#

MAIL: #mail#

=============================

</CFOUTPUT>

<!--- Index the result set --->

Chapter 17: Indexing and Searching Data 255
<CFINDEX ACTION=”update”
COLLECTION=”ldap_query”
KEY=”dn”
TYPE=”custom”
TITLE=”o”
QUERY=”OrgList”
BODY=”telephonenumber”>

<!--- Search the collection --->
<!--- Use the wildcard * to contain the search string --->
<CFSEARCH COLLECTION=”ldap_query”

NAME=”s_ldap”
CRITERIA=”*617*”>

<!--- Output returned records --->
<CFOUTPUT QUERY=”s_ldap”>

#Key#, #Title#, #Body#

</CFOUTPUT>

Indexing CFPOP Query Results
The contents of mail servers are generally quite volatile; specifically, the
MessageNumber is reset as messages are added and deleted. To avoid mismatches
between the unique MessageNumber identifiers on the server and in the Verity
collection, it’s a good idea to re-index the collection before processing a search.

As with the other query types, you need to provide a unique value for the KEY attribute
and enter the data fields to index in the BODY attribute.

<!--- Run POP query --->
<CFPOP ACTION=”getall”

NAME=”p_messages
SERVER=”mail.mycompany.com”
USERNAME=”user1”
PASSWORD=”user1”>

<!--- Output POP query result set --->
<CFOUTPUT QUERY=”p_messages”>

#MESSAGENUMBER#

#FROM#

#TO#

#SUBJECT#

#BODY#

=========================

<!--- Index result set --->
<CFINDEX ACTION=”update”

COLLECTION=”pop_query”
KEY=”messagenumber”
TYPE=”custom”
TITLE=”subject”

256 Developing Web Applications with ColdFusion
QUERY=”p_messages”

BODY=”body”>

<!--- Search messages for the word “action” --->
<CFSEARCH COLLECTION=”pop_query”

NAME=”s_messages”
CRITERIA=”action”>

<!--- Output search result set --->
<CFOUTPUT QUERY=” s_messages”>

#Key#, #Title#

</CFOUTPUT>

The CFSEARCH code in the examples above uses the basic attributes needed to search
a collection. The next section expands on the capabilities of this tag for more detailed
input and output options.

Managing Collections
As with any data source, the maintenance requirements of a Verity collection are
dictated by the amount, frequency, and type of changes that occur in the records. You
can run maintenance routines directly from either the CFCOLLECTION or CFINDEX
tags or via the Administrator Verity page. The newer For more information on this
topic, see the Allaire Knowledge Base article, “Maintaining Collections” (ID# 1080) on
our Web site.

Maintenance options

Choose an option based on the following function descriptions.

• Repair — Runs internal Verity routines to fix corrupted records. If you suspect a
collection has become corrupted, it is probably safest to re-populate it.

• Optimize — Packs the indexed data for better performance. This is similar to
database optimization. This procedure can be used as part of routine
maintenance. The Optimize action is deprecated for CFINDEX except to
maintain legacy code; the newer CFCOLLECTION tag is recommended instead.
For more information on this command, see the Allaire Knowledge Base article,
“How To Optimize Your Verity Collection” (ID# 416) on our Web site.

• Purge — Removes all data from a collection.

• Delete (when used as a CFINDEX ACTION) — Deletes the specified KEY value,
or comma-separated values, from the collection.

• Delete (when used on the Administrator Verity page or in CFCOLLECTION) —
Deletes the entire collection.

• Update — Re-populates the collection with changed records and new records
and adds a key if one is not part of the collection. This operation does not delete
records that have been deleted from the data source. To update a collection

Chapter 17: Indexing and Searching Data 257
from the Administrator Verity main page, select a collection on the list, click
Index, then click Update on the index page.

• Refresh (CFINDEX ACTION only) — Deletes all data and re-populates the
collection.

Scheduling collection maintenance

The easiest way to perform collection management tasks is to create a ColdFusion
template that runs the operations, then add the task on the Administrator Scheduler
page. The page presents a wide range of scheduling options.

Securing a collection

A couple of possible scenarios for restricting access to a Verity collection are:

• The ColdFusion Administrator may need to specify developer access to
collections.

• A public site may need to limit user access to collections.

To restrict access to a collection, follow these steps:

1. Open the Advanced Server Security page of the ColdFusion Administrator and
click the Use Advanced Server Security box.

2. Click the Security Contexts button.

3. Enter a name for the secured collection and click Add.

4. Optionally enter a description for the secured collection.

5. Click Collections on the Enable Security for Resource Types list.

6. Click Apply.

An appropriate authentication interface can then be developed to allow access to the
secured collection. See the Advanced ColdFusion Development book for information
on advanced user security and authentication.

Building a Search Interface
The CFSEARCH tag provides users with a set of operators and modifiers to create
sophisticated query expressions. We’ll explore these options in detail below, but first
let’s take a look at getting a basic search application up and running.

The Verity wizard

To quickly create a search application for an existing collection, click the File > New
command in ColdFusion Studio and select the Verity Wizard in the CFML tab of the

258 Developing Web Applications with ColdFusion
New Document dialog. The wizard creates a set of application pages based on the
entries you make in the wizard dialogs.

You can customize the search interface by adding instructional text for users and
applying styles to the form pages.

Operators and modifiers

The power of the CFSEARCH tag is in the control it gives you over the Verity search
engine. The engine offers users a high degree of specificity in setting search
parameters.

Operators

An operator represents logic to be applied to a search element. This logic defines the
qualifications a document must meet to be retrieved. Operators are used to refine your
search or to influence the results in other ways. For example, you could construct an
HTML form for conducting searches. In the form, a user could perform a search for a
single term: server. You can refine your search by limiting the search scope in a number
of ways. Operators are available for limiting a query to a sentence or paragraph, and
you can search words based on proximity. The following operator types are available:

• Evidence operators — Used to specify basic and intelligent word searches.

• Proximity operators — For specifying the relative location of words in a
document.

• Relational operators — Search fields in a collection.

• Concept operators — Used to identify a concept in a document by combining
the meanings of search elements.

• Score operators — Allow you to manipulate the score returned by a search
element. The score percentage display can optionally be set to as many as four
decimal places.

• Natural language operators — Allow the use of natural language expressions in
forming queries.

Ordinarily, you use operators in explicit searches. They are used in the following
manner:

"<operator>search_string"

Modifiers

Modifiers can be used with operators to further refine query expressions. You can
specify case sensitivity in a query, or force the output to be ranked by relevancy.
Modifiers include:

• CASE — Sets case sensitivity. Verity searches are case-insensitive unless mixed
case characters are entered as CRITERIA values.

Chapter 17: Indexing and Searching Data 259
• MANY — Results are ranked by relevancy, which is determined by the number
of times the search value is found in a document.

• NOT — Eliminates documents containing the specified words.

• ORDER — Returns documents only if they contain words in the listed order.

Basic search operations

Conducting a basic search is very straightforward using the CFSEARCH tag. In the
following example, a simple search for the word "database" is performed on a
collection created from a directory of HTML files called "DOCS."

<CFSEARCH NAME="DocSearch"
COLLECTION="DOCS"
TYPE="Simple"
CRITERIA="database">

You use the CFOUTPUT tag to present the results of your search to your user. The
following example shows a fully defined URL:

<CFOUTPUT QUERY="DocSearch">

#DocSearch.Title#

</CFOUTPUT>

The DocSearch.Title variable presents the contents of the HTML TITLE tag. This
facility gives you excellent indexing options for managing large numbers of HTML
documents. With judicious use of the TITLE tag, you could offer excellent searching
options to users.

Result columns

Every search conducted with the CFSEARCH tag returns up to seven result columns
you can reference in your CFOUTPUT:

• URL — Returns the value of the URLPATH attribute defined in the CFINDEX tag
used to populate the collection. This value is always empty when you populate
the collection with CFINDEX with TYPE=CUSTOM.

• KEY — Returns the value of the KEY attribute defined in the CFINDEX tag used
to populate the collection.

• TITLE — Returns the value of the TITLE attribute defined by the <TITLE>
HTML tag in any HTML or ColdFusion application page file that was indexed by
CFINDEX. If the collection was TYPE=CUSTOM, TITLE returns the value of the
TITLE attribute defined by the CFINDEX tag. If the collection was TYPE=FILE,
TITLE also returns the value of the TITLE attribute defined by the CFINDEX tag.

• SCORE — Returns the relevancy score of the document based on the search
criteria.

• CUSTOM1 — The value returned from the CUSTOM1 attribute in CFINDEX.

• CUSTOM2 — The value returned from the CUSTOM2 attribute in CFINDEX.

260 Developing Web Applications with ColdFusion
• SUMMARY — The contents of the automatic summary generated by CFINDEX.

You can use these result columns in standard CFML expressions, preceding the result
column name with the name of the query:

#DocSearch.URL#
#DocSearch.KEY#
#DocSearch.TITLE#
#DocSearch.SCORE#

Summarization

As part of the indexing process, Verity automatically produces a summary of every
document file or query result set. The default summarization selects the best
sentences, based on internal rules, up to a maximum of 500 characters.
Summarization information is returned by default with every CFSEARCH operation.
For more information on this topic, see the Allaire Knowledge Base article, “Custom1,
Custom2 and Summary Fields” (ID# 1081) on our Web site.

To access the summary, invoke the property in the following form:

#search_query.Summary#

For example, in a search operation where the value of the NAME attribute is
"mysearch" the following CFML outputs the summary of the search results:

<CFOUTPUT QUERY="mysearch">
#Summary#

</CFOUTPUT>

For information on an advanced summarization technique, see the Allaire Knowledge
Base article, “Synchronizing information stored in Verity Collection Document Fields
with Corresponding Data from a Database” (ID# 1161) on our Web site.

CFSEARCH properties

Three properties are generated for each CFSEARCH query that provide information
about a particular query:

• RecordCount — The total number of records returned by the query.

• CurrentRow — The current row of the query being processed by CFOUTPUT.

• RecordsSearched — The total number of records in the index that were
searched. If no records were returned in the search, this property returns a null
value.

You can use CFSEARCH properties in much the same way you use other ColdFusion
system variables. For example, you can easily determine how many records were
returned in a search with the following code:

<CFOUTPUT>
<P>Your search returned
#queryname.RecordCount# records.</P>

</CFOUTPUT>

Chapter 17: Indexing and Searching Data 261
<--- Present a message to the user if no records are returned --->
<CFIF #cfuser.RecordCount# LTE 0>

<CFOUTPUT>
<P>Sorry no instances of "#Form.searchquery#" found.</P>

</CFOUTPUT>

<CFELSEIF #cfuser.RecordCount# GT 0>
<CFOUTPUT QUERY="cfuser">

#cfuser.Title#

</CFOUTPUT>

</CFIF>

Using Query Expressions
When you search a Verity collection, you use the CFSEARCH tag in a ColdFusion
application page. Use the CRITERIA attribute to specify the query expression you want
to pass to the search engine.

You can build two types of query expressions: simple and explicit. A simple query
expression is typically a word or words. An explicit query expression can employ a
number of operators and modifiers to refine the search. Although an explicit query can
employ operators and modifiers, all aspects of the search must be explicitly invoked. A
simple query expression is somewhat more powerful since it employs operators by
default. You can assemble an explicit query expression programmatically or simply
pass a simple query expression to the search engine directly from an HTML input
form.

The Verity query language provides many operators and modifiers for composing
queries. The following search techniques can be used in searching a Verity collection:

• Word searches

• Proximity searches

• Concept–based

• Field searches in which documents are match based on matching predefined
custom attributes

• Scoring operators

Simple query expressions

Simple queries allow end users to enter simple, comma-delimited strings and use
wildcard characters. By default, a simple query searches for words, not strings. For
example, entering the word "All" will find documents containing the word "all" but not
"allegorical." You can use wildcards, however to broaden the scope of the search. "All*"
will return documents containing both "all" and "alliterate." Case is ignored.

You can enter multiple words separated by commas: software, Microsoft, Oracle. The
comma in a Simple query expression is treated like a logical OR. If you omit the

262 Developing Web Applications with ColdFusion
commas, the query expression is treated as a phrase, so documents would be searched
for the phrase "software Microsoft Oracle."

Ordinarily, operators are employed in explicit query expressions. Operators are
normally surrounded by angle brackets < >. However, you can use the AND, OR, and
NOT operators in a simple query without using angle brackets: software AND
(Microsoft OR Oracle). To include an operator in a search, you surround it with double
quotation marks: software "and" Microsoft. This expression searches for the phrase
"software and Microsoft."

A simple query employs the STEM operator and the MANY modifier. STEM searches
for words that derive from those entered in the query expression, so that entering
"find" will return documents that contain "find," "finding," "finds," etc. The MANY
modifier forces the documents returned in the search to be presented in a list based on
a relevancy score.

Explicit query expressions

Explicit queries can be constructed using a variety of operators, including evidence,
proximity, relational, concept, and score operators. Most operators in an explicit query
expression are surrounded by angle brackets < >. You can use the AND, OR, and NOT
operators without angle brackets.

Expression syntax

You can use either simple or explicit syntax when stating simple query syntax. The
syntax you use determines whether the search words you enter will be stemmed, and
whether the words that are found will contribute to relevance-ranked scoring.

Simple syntax

When you use simple syntax, the search engine implicitly interprets single words as if
they were modified by the MANY and STEM operators. By implicitly applying the
MANY modifier, the search engine calculates each document’s score based on the
density of the search term in the searched documents. The more frequent the
occurrence of a word in a document, the higher the document's score.

As a result, the search engine ranks documents according to word density as it searches
for the word you specify, as well as words that have the same stem. For example,
"films," "filmed," and "filming" are stemmed variations of the word "film." To search
for documents containing the word "film" and its stem words, you can enter the word
"film" without modification. When documents are ranked by relevance, they appear in
a list with the most relevant documents at the top.

Explicit syntax

When you use explicit syntax, the search engine interprets the search terms you enter
as literals. For example, by entering the word "film" (including quotation marks) using

Chapter 17: Indexing and Searching Data 263
explicit syntax, the stemmed versions of the word "film", "films," "filmed," and
"filming" are ignored.

The following table shows all operators available for conducting searches of
ColdFusion Verity collections.

Special characters

A number of characters are handled in particular ways by the search engine.

A backslash (\) removes special meaning from whatever character follows it. To enter a
literal backslash in a query, use two in succession, such as this examples:

<FREETEXT>("\"Hello\", said Packard.")
"backslash (\\)"

Precedence Evaluation
The following rules apply for composing search expressions.

Verity Search Operators

< CONTAINS PHRASE

<= ENDS SENTENCE

= MATCHES STARTS

> NEAR STEM

>= NEAR/N SUBSTRING

Accrue OR WILDCARD

AND PARAGRAPH WORD

Special Search Characters

Characters Description

, () [These characters end a text token.

= > < ! These characters also end a text token. They are terminated by an
associated end character.

’ @ ‘ < { [! These characters signify the start of a delimited token. They are
terminated by an associated end character.

264 Developing Web Applications with ColdFusion
Precedence rules

While an expression is read from left to right, some operators carry more weight than
others. For example, AND operators take precedence over OR operators. To ensure that
an OR operator is interpreted prior to an AND operator, you can use parentheses to
enclose the OR operator:

(a OR b) AND c

Terms enclosed by parentheses are read first.

There must be at least one space between operators and words used in the expression.

When the search engine encounters nested parentheses, it starts with the innermost
term:

(a AND (b OR c)) OR d

This expression means: Look for documents that contain b or c as well as a, or that
contain d.

Prefix and infix notation

Search strings that use any operator other than evidence operators can be defined in
prefix notation or infix notation.

Prefix notation specifies that the operator comes before the search string:

AND (a,b)

When prefix notation is used, precedence is handled explicitly within the expression.
The following example means: “Look for documents that contain b and c first, then
documents that contain a”:

OR (a, AND (b,c))

Infix notation specifies that the operator is to be specified between each term within
the expression. The following example means: “Look for documents that contain a and
b or documents that contain c”:

a AND b OR c

When infix notation is used, precedence is implicit in the expression. For example, the
AND operator takes precedence over the OR operator.

Commas in expressions

If an expression includes two or more search terms within parentheses, a comma is
required as a separator between each element. The following example means: Look for
documents that contain any combination of a and b together. Note that in this
example, angle brackets are used with the OR operator.

<OR> (a, b)

Chapter 17: Indexing and Searching Data 265
Delimiters in expressions

Angle brackets < >, double quotation marks " ", and backslashes \ are used to delimit
various elements in a query expression.

Angle brackets for operators

Left and right angle brackets < > are reserved for designating operators and modifiers.
They are optional for the AND, OR, and NOT operators, but required for all other
operators.

Double quotation marks in expressions

You use double quotation marks to search for a word that is otherwise reserved as an
operator, such as AND, OR, and NOT.

Backslashes in expressions

To include a backslash \ in a search, insert two backslashes for each backslash
character you want to search for, such as C:\\CFUSION\\BIN.

Searching with Wildcards
This table shows the wildcard characters for searching Verity collections.

Verity Wildcard Characters

Wildcard Description

? Question. Specifies any single alphanumeric character.

* Asterisk. Specifies zero or more alphanumeric characters. Avoid using
the asterisk as the first character in a search string. Asterisk is ignored in
a set, [] or an alternative pattern { }.

[] Square brackets. Specifies one of any character in a set, as in "sl[iau]m"
which locates "slim," "slam," and "slum." Square brackets indicate an
implied OR.

{ } Curly braces. Specifies one of each pattern separated by a comma, as in
"hoist{s, ing, ed}" which locates "hoists," "hoisting," and "hoisted." Curly
braces indicate an implied AND.

266 Developing Web Applications with ColdFusion
Searching for wildcards as literals

To search for a wildcard character in your collection, you need to escape the character
with a backslash (\). For example:

To match a literal asterisk, you precede the * with two backslashes: "a*"

To match a question mark or other wildcard character: "Checkers\?"

Searching for special characters as literals

The following non-alphanumeric characters must be preceded by a backslash
character (\) in a search string:

• comma (,)

• left and right parentheses ()

• double quotation mark (")

• backslash (\)

• at sign (@)

• left curly brace ({)

• left bracket ([)

• less than sign (<)

• backquote (‘)

In addition to the backslash character, you can use paired backquotes (‘ ‘) to interpret
special characters as literals. For example, to search for the wildcard string "a{b" you
can surround the string with backquotes, as follows:

‘a{b‘

To search for a wildcard string that includes the literal backquote character (‘) you
must use two backquotes together and surround the whole string in backquotes:

‘*n‘‘t‘

^ Caret. Specifies one of any character not in the set as in "sl[^ia]m" which
locates "slum" but not "slim" or "slam."

- Hyphen. Specifies a range of characters in a set as in "c[a-r]t" which
locates every word beginning with "c," ending with "t," and containing
any letter from "a" to "r."

Verity Wildcard Characters (Continued)

Wildcard Description

Chapter 17: Indexing and Searching Data 267
Note that you can use either paired backquotes or backslashes to escape special
characters. There is no functional difference in the use of one or the other. For
example, you can query for the term: <DDA> in the following ways:

\<DDA\> or ‘<DDA>‘

Operators and Modifiers
This chapter presents details on the search operator and modifier types.

Evidence operators

Evidence operators can be used to specify either a basic word search or an intelligent
word search. A basic word search finds documents that contain only the word or words
specified in the query. An intelligent word search expands the query terms to create an
expanded word list so that the search returns documents that contain variations of the
query terms.

Documents retrieved using evidence operators are not ranked by relevance unless you
use the MANY modifier.

Proximity operators

Proximity operators specify the relative location of specific words in the document.
Specified words must be in the same phrase, paragraph, or sentence for a document to
be retrieved. In the case of NEAR and NEAR/N operators, retrieved documents are

Verity Evidence Operators

Operator Description

STEM Expands the search to include the word you enter and its
variations. The STEM operator is automatically implied in any
SIMPLE query. For example, the EXPLICIT query expression

<STEM>believe

yields matches such as, "believe," "believing," "believer".’

WILDCARD Matches wildcard characters included in search strings. Certain
characters automatically indicate a wildcard specification, such as *
and?. For example, the query expression

spam*

yields matches such as, "spam," "spammer," "spamming."

WORD Performs a basic word search, selecting documents that include
one or more instances of the specific word you enter. The WORD
operator is automatically implied in any SIMPLE query.

268 Developing Web Applications with ColdFusion
ranked by relevance based on the proximity of the specified words. Proximity operators
can be nested; phrases or words can appear within SENTENCE or PARAGRAPH
operators, and SENTENCE operators can appear within PARAGRAPH operators.

The following table describes each operator.

Verity Proximity Operators

Operator Description

NEAR Selects documents containing specified search terms. The closer
the search terms are to one another within a document, the higher
the document’s score. The document with the smallest possible
region containing all search terms always receives the highest score.
Documents whose search terms are not within 1000 words of each
other are not selected.

NEAR/N Selects documents containing two or more search terms within N
number of words of each other, where N is an integer between 1
and 1024 where NEAR/1 searches for two words that are next to
each other. The closer the search terms are within a document, the
higher the document’s score.

You can specify multiple search terms using multiple instances of
NEAR/N as long as the value of N is the same:

commute <NEAR/10> bicycle <NEAR/10>

train <NEAR/10>

PARAGRAPH Selects documents that include all of the words you specify within
the same paragraph. To search for three or more words or phrases,
you must use the PARAGRAPH operator between each word or
phrase.

PHRASE Selects documents that include a phrase you specify. A phrase is a
grouping of two or more words that occur in a specific order.
Examples of phrases:

mission oak

"mission oak"

mission <PHRASE> oak

<PARAGRAPH> (mission, oak)

SENTENCE Selects documents that include all of the words you specify within
the same sentence. Examples:

jazz <SENTENCE> musician

<SENTENCE> (jazz, musician)

Chapter 17: Indexing and Searching Data 269
Relational operators

Relational operators search document fields that have been defined in the collection.
Documents containing specified field values are returned. Documents retrieved using
relational operators are not ranked by relevance, and you cannot use the MANY
modifier with relational operators.

Numeric and date relational operators

The following operators are used for numeric and date comparisons.

Verity Numerical and Date Relational Operators

Operator Description

= Equals

> Greater than

>= Greater than or equal to

< Less than

<= Less than or equal to

270 Developing Web Applications with ColdFusion
Text comparison operators

Text comparison operators match words and parts of words. The following operators
are used for text comparisons.

Document fields

The values you specify for the CFINDEX attributes TITLE, KEY, URL, and CUSTOM can
be specified as document fields for use with relational operators in the CRITERIA
attribute. Document fields are referenced in text comparison operators. They are
identified as:

• CF_TITLE

• CF_KEY

• CF_URL

Verity Comparison Operators

Operator Description

CONTAINS Selects documents by matching the word or phrase you specify
with the values stored in a specific document field. Documents are
selected only if the search elements specified appear in the same
sequential and contiguous order in the field value. For example,
specifying "god" will match "God in heaven," "a god among men,"
or "good god" but not "godliness," or "gods."

MATCHES Selects documents by matching the query string with values
stored in a specific document field. Documents are selected only if
the search elements specified match the field value exactly. If a
partial match is found, a document is not selected. For example,
specifying "god" will match a document field containing only
"god" and will not match "gods," "godliness," or "a god among
men."

STARTS Selects documents by matching the character string you specify
with the starting characters of the values stored in a specific
document field.

ENDS Selects documents by matching the character string you specify
with the ending characters of the values stored in a specific
document field.

SUBSTRING Selects documents by matching the query string you specify with
any portion of the strings in a specific document field. For
example, specifying "god" will match "godliness," "a god among
men," "godforsaken," etc.

Chapter 17: Indexing and Searching Data 271
• CF_CUSTOM1

• CF_CUSTOM2

For more information on this topic, see the Allaire Knowledge Base article, “Using
Document Fields To Narrow Down Searches” (ID# 1082) on our Web site.

The SUBSTRING operator

You can use the SUBSTRING operator to match a character string with data stored in a
specified data source. In the following example, a data source called TEST1 contains
the table YearPlaceText, which itself contains three columns: Year, Place, and Text. Year
and Place make up the primary key. The following table shows the TEST1 schema.

The following application page matches records that have 1990 in the TEXT column
and are in the Place Utah. The search is performed against the collection that contains
the TEXT column and then is narrowed further by searching the string "Utah" in the
CF_TITLE document field. Recall that document fields are defaults defined in every
collection corresponding to the values you define for URL, TITLE, and KEY in the
CFINDEX tag.

<CFQUERY NAME="GetText"
DATASOURCE="TEST1">
SELECT Year+Place

AS Identifier, text
FROM YearPlaceText

</CFQUERY>

<CFINDEX COLLECTION="testcollection"
ACTION="Update"
TYPE="Custom"
TITLE="Identifier"
KEY="Identifier"
BODY="TEXT"
QUERY="GetText">

<CFSEARCH NAME="GetText_Search"
COLLECTION="testcollection"

YearPlaceText

Year Place Text

1990 Utah Text about Utah 1990

1990 Oregon Text about Oregon 1990

1991 Utah Text about Utah 1991

1991 Oregon Text about Oregon 1991

1992 Utah Text about Utah 1992

272 Developing Web Applications with ColdFusion
TYPE="Explicit"
CRITERIA="1990 and CF_TITLE <SUBSTRING> Utah">

<CFOUTPUT>
Record Counts:

#GetText.RecordCount#

#GetText_Search.RecordCount#

</CFOUTPUT>

<CFOUTPUT>
Query Results --- Should be 5 rows

</CFOUTPUT>

<CFOUTPUT QUERY="Gettext">
#Identifier#

</CFOUTPUT>

<CFOUTPUT>
Search Results -- should be 1 row

</CFOUTPUT>

<CFOUTPUT QUERY="GetText_Search">
#GetText_Search.TITLE#

</CFOUTPUT>

Concept operators

Concept operators combine the meaning of search elements to identify a concept in a
document. Documents retrieved using concept operators are ranked by relevance. The
following table describes each concept operator.

Score operators

Score operators govern how the search engine calculates scores for retrieved
documents. The maximum score a returned search element can have is 1.000. The
score percentage display can optionally be set to as many as four decimal places.

Verity Concept Operators

Operator Description

AND Selects documents that contain all of the search elements you
specify.

OR Selects documents that show evidence of at least one of the
search elements you specify.

ACCRUE Selects documents that include at least one of the search elements
you specify. Documents are ranked based on the number of search
elements found.

Chapter 17: Indexing and Searching Data 273
When a score operator is used, the search engine first calculates a separate score for
each search element found in a document, and then performs a mathematical
operation on the individual element scores to arrive at the final score for each
document.

Note that the document’s score is available as a result column. The SCORE result
column can be referenced to trap the relevancy score of any document retrieved. For
example:

<CFOUTPUT>
#Search1.Title#

Document Score=#Search1.SCORE#

</CFOUTPUT>

The following table lists the score operators.

Verity Score Operators

Operator Description

YESNO Forces the score of an element to 1 if the element’s score is non-
zero:

<YESNO>mainframe

If the retrieval result of the search on "mainframe" is 0.75, the
YESNO operator forces the result to 1. You can use YESNO to avoid
relevance ranking.

PRODUCT Multiplies the scores for documents matching a query. To arrive at
a document’s score, the search engine calculates a score for each
search element and multiplies these scores together:

<PRODUCT>(computers, laptops)

The resulting score for each document is multiplied together.

SUM Adds together the scores for documents matching a query, up to a
maximum value of 1:

<SUM>(computers, laptops)

The resulting scores are added together.

COMPLEMENT Calculates scores for documents matching a query by taking the
complement (subtracting from 1) of the scores for the query’s
search elements. The new score is 1 minus the search element’s
original score.

<COMPLEMENT>computers

If the search element’s original score is.785, the COMPLEMENT
operator recalculates the score as.215.

274 Developing Web Applications with ColdFusion
Search modifiers

Modifiers are combined with operators to change the standard behavior of an operator
in some way. For example, you can use the CASE modifier with an operator to specify
that you want to match the case of the search word.

Modifiers are as follows.

Verity Search Modifiers

Modifier Description

CASE Specifies a case-sensitive search:

<CASE>J[AVA, ava]

Searches for "JAVA" and "Java." If a search contains a mixed-case string,
the search request will be case-sensitive.

MANY Counts the density of words, stemmed variations, or phrases in a
document and produces a relevance-ranked score for retrieved
documents. Can be used with the following operators:

WORD

WILDCARD

STEM

PHRASE

SENTENCE

PARAGRAPH

<PARAGRAPH><MANY>javascript <AND> vbscript

The MANY modifier cannot be used with the following:

AND

OR

ACCRUE

Relational operators

Chapter 17: Indexing and Searching Data 275
Collection Examples
The following code examples demonstrate a very basic approach to populating and
searching a collection of documents and a collection of data from a ColdFusion query.
To run the example, save the code examples into the indicated file names all in the
same directory. Then open start.cfm to run the example.

Example: Choose the collection

This first sample, start.cfm, provides a simple starting point for populating a
collection. You can use the code as is, with a few minor changes. Note that for this
sample to work, you’ll first need to create two collections: one called DBINDEX and the
other, DOCS.

Start.cfm
<HTML>
<HEAD>

<TITLE>Verity Samples</TITLE>
</HEAD>

<H2>Pick which index you want to build</H2>
<P>Select the collection you want to populate:</P>

<FORM METHOD="POST" ACTION="index.cfm">
<INPUT TYPE=radio NAME=collection VALUE=DBINDEX checked>

Message table from CF 4.0 Examples

<INPUT TYPE=radio NAME=collection VALUE=DOCINDEX>

Documents in the Web server root directory tree

<INPUT TYPE=SUBMIT NAME=doindex VALUE="Populate">

NOT Used to exclude documents that contain the specified word or phrase.
Used only with the AND and OR operators.

Java <AND> programming <NOT> coffee

ORDER Used to specify that the search elements must occur on the same order
in which they were specified in the query. Can be used with the
following operators:

PARAGRAPH

SENTENCE

NEAR/N

Place the ORDER modifier before any operator:

<ORDER><PARAGRAPH>("server", "Java")

Verity Search Modifiers (Continued)

Modifier Description

276 Developing Web Applications with ColdFusion
</FORM>

<H3>Skip populating the collection, go right
to searching a collection</H3>
</BODY>
</HTML>

Example: Populate the collection

Now populate the collection you chose:

Index.cfm
<HTML>
<HEAD>

<TITLE>Verity Custom Tag Tests</TITLE>
</HEAD>

<CFQUERY NAME="Messages"
DATASOURCE="CF 4.0 Examples">
SELECT *

FROM Messages
</CFQUERY>

<BODY>
<CFIF #form.collection# IS "DBINDEX">

<CFINDEX COLLECTION="DBINDEX"
ACTION="UPDATE"
TYPE="CUSTOM"
BODY="Body"
KEY="Message_ID"
TITLE="UserName"
QUERY="Messages">

<CFELSE>
<CFINDEX COLLECTION="DOCS"

TYPE="PATH"
KEY="c:\inetpub\wwwroot"
URLPATH="http://127.0.0.1/"
EXTENSIONS=".htm, .html, .cfm, .cfml"
RECURSE="YES">

</CFIF>

<H2>Collection Successfully Generated</H2>
<H3>Search the collection</H3>

</BODY>
</HTML>

Example: Search the collection

With the collections populated, you can now offer a form for searching a collection:

Chapter 17: Indexing and Searching Data 277
Search.cfm

<HTML>
<HEAD>

<TITLE>CFINDEX and CFSEARCH samples</TITLE>
</HEAD>

<BODY>
<H2>Search</H2>
<P>Select search type:</P>
<FORM METHOD="POST" ACTION="vfp_search.cfm"><P>

<INPUT TYPE=radio
NAME=type
VALUE=Simple checked> Simple

<INPUT TYPE=radio
NAME=type
VALUE=Explicit> Explicit<P>

<P>Select data source:</P>
<INPUT TYPE=radio

NAME=source
VALUE=DBINDEX checked>

Messages Table

<INPUT TYPE=radio

NAME=source
VALUE=DOCS>

<P>Web doc root directory</P>
<P>Search string:</P>

<INPUT TYPE=text
NAME=searchstring SIZE=50><P>

<INPUT TYPE=SUBMIT
NAME=search1
VALUE="Search">

<INPUT TYPE=reset
VALUE="Reset">

</FORM>

</BODY>
</HTML>

Example: Present the search results

The following example processes the search results.

vfp_search.cfm
<HTML>
<HEAD>

<TITLE>Search output template</TITLE>
</HEAD>

<CFIF #form.source# IS "DBINDEX">
<CFSET #type#="messages">

<CFELSE>
<CFSET #type#="files">

</CFIF>

278 Developing Web Applications with ColdFusion
<BODY>

<CFSEARCH NAME="Search1"
COLLECTION="#form.source#"
FORM TYPE="#form.type#"
CRITERIA="#form.searchstring#">

<H2>Search Results</H2>

<CFOUTPUT>
#Search1.RecordCount# #type# found out of
#Search1.RecordsSearched# #type# searched.

</CFOUTPUT>

<HR NOSHADE>

<CFIF #form.source# IS "DBINDEX">
<CFOUTPUT QUERY="Search1">

Message #Search1.KEY# posted by #Search1.TITLE#

Score = #Search1.SCORE#

</CFOUTPUT>
<CFELSE>

<CFOUTPUT QUERY="Search1">
#Search1.Title#

</CFOUTPUT>
</CFIF>

<HR NOSHADE>
</BODY>
</HTML>

Example: Output from searching the DBINDEX collection

This application page presents each individual message.

cf_tag_verity_detail.cfm

<CFQUERY NAME="MessageDetail"
DATASOURCE="CF 4.0 Examples">
SELECT UserName, Subject, Body

FROM Messages
WHERE Message_ID = #ID#

</CFQUERY>

<CFOUTPUT QUERY="MessageDetail">
<PRE>

Message #URL.ID#

Posted by: #MessageDetail.UserName#

Subject: #MessageDetail.Subject#

#MessageDetail.Body#

</PRE>
</CFOUTPUT>

C H A P T E R 1 8
Chapter 18 Managing Files
This chapter outlines options and commands for viewing and managing local and
remote files.

Contents

• Working with Local Files.. 280

• Working with Remote Files.. 281

280 Developing Web Applications with ColdFusion
Working with Local Files
The Local Files tab gives you easy access to files stored on your PC or network drive.
The top pane displays available drives, the middle pane shows the directory tree for the
selected drive, and the bottom pane presents the file list for the selected folder.

To access files in the Files Resource tab:

1. Click the Local Files tab at the bottom of the Resources area.

2. Navigate to the drive and directory you want to access.

3. Double-click on a folder or click on the + sign to expand the view.

4. Click on a folder to display its files in the bottom pane.

5. Double-click on a file to open it in the editor.

Note When you open a read-only files, it is marked with a red dot on the document tab.
Right-click on the file in the file list and select Properties to change a file’s attributes.
This is not recommended if you are using a source control application to manage read
and write privileges.

To open a page from a Web site:

1. Choose File > Open From the Web.

2. Enter the URL for the document or select a file from your Bookmarks or Favorites
list.

3. If the remote site is accessed via a proxy server, click Proxy and enter the server
name and port number.

4. You can optionally set a time-out limit for the connection.

Note Only HTML files can be opened with this command. Opened files cannot be saved
back to the server. For remote file management procedures, see the Working with
Remote Files section below.

To filter the file list:

You can set the files list to show specific file types. The filter is a global setting for all
directories.

1. Right-click in the File pane and choose Filter.

2. Select a file type from the menu. The file list refreshes to apply the filter.

Open the Options > Settings (F8) File Settings tab to check the current list of file
extensions for the Web Documents menu item. You can edit this list as needed. The
Web Images option displays Web-supported graphic formats.

Chapter 18: Managing Files 281
Working with Remote Files
Support for remote development is tightly integrated with Studio, eliminating the need
for complicated network configurations or additional applications to access remote
files. Studio provides two ways to work with remote files:

• FTP — Create, open, edit, and save files on a remote server using the File
Transfer Protocol.

• RDS — Remote Development Services — Connect to a Cold Fusion Application
Server to access files and databases via HTTP.

To work with remote files:

1. Add FTP and RDS servers.

2. Connect to the remote server.

Adding an FTP server

You add servers in the Remote Files tab in the Resources area.

To add an FTP server:

1. Click the Remote Files Resource tab.

2. Right-click in the file pane and select Add FTP Server.

3. Complete the fields in the Configure FTP Server dialog:

• Description — Required. The text that displays in the server list.

• Host Name — Required. The server domain name, such as
www.allaire.com or an IP address.

• Initial Directory — Optional. The root directory of the FTP server.

• User Name — Required. Your login name or "anonymous" for
anonymous FTP servers.

• Password — Optional. Password with user name.

• Root URL — Optional. Root URL for link verification.

• Remote Port — The port on the server used by the FTP server. Use the
default unless specified by server administrator.

• Request Timeout — Set a value for the amount of time Studio waits for a
server connection to complete.

• Prompt for Password — Check this box to require a user password at
login.

• Use passive mode — Required for servers that use passive connections.

• Assume UTC file times — Check this box if the FTP server uses the UTC
time format.

282 Developing Web Applications with ColdFusion
4. Click OK to complete the dialog.

Note To edit server settings, right-click on a server name in the Remote Server list and select
Server Properties to open the Properties dialog.

To add an RDS server:

1. Click the Remote Files tab.

2. Right-click in the file list and select Add RDS Server.

3. Complete the Remote Host fields in the Configure RDS Server dialog:

• Description — Required. The name that appears in the server list.

• Host Name — Required. The server domain name, such as
www.allaire.com or an IP address.

• User Name — Required if the server is password-protected. Open the CF
Administrator Server page to edit the Studio password.

• Password — Optional. If the server is password-protected you must use
a password. Open the CF Administrator Server page to edit the Studio
password.

• Port — Required. The port on the server used by the Web server. Use
default unless specified by server administrator.

• Use Secure Sockets Layer (SSL) — Optional. Allows exchanges between
Studio and the server to be encrypted via SSL.

4. Complete the ColdFusion RDS Security fields:

• User Name — Required if the server is password-protected. Open the
CFAS Administrator Server page to edit or disable the Studio password.

• Password — Optional. If the server is password-protected you must use
a password. Open the CFAS Administrator Server page to edit or disable
the Studio password.

5. Click Prompt for Password to enable these entries.

6. Click OK to complete the dialog.

Accessing a remote server

Once you've added a remote server connection, it is easy to open that server and work
with the files.

To open files on a remote server:

1. Click the Remote Files tab.

2. Double-click on a server name or right-click and choose Connect.

3. Double-click on drives and directories to locate files.

Chapter 18: Managing Files 283
4. Double-click on a file to open it in the editor. Remote files are indicated by a blue
dot next to their names on the file name tab at the bottom of the editor window.

You can work with remote files just as you do with local ones. When you save files,
changes are saved to the remote server.

To add a new file to a remote server:

1. Open the file in the editor.

2. Select File > Save Remote Copy.

3. In the Remote Save dialog, double-click on the server, drive, and directory to open
the directory where you can to save the file. You can right-click in the directory list
to add a new directory.

4. Enter a file name with a recognized Studio extension. Click the File Extensions tab
of the Options > Settings dialog (F8) to check the current entries.

5. Click Save.

To add new directories to a remote server:

1. Click the Remote Files tab.

2. Double-click on a server name or right-click and choose Connect.

3. Double-click on drives and directories to locate files.

4. Right-click in the file pane and choose New Folder.

5. Enter a name for the new folder. The folder displays in the current directory.

284 Developing Web Applications with ColdFusion

C H A P T E R 1 9
Chapter 19 Creating and Editing
Application Pages
This chapter covers the basics of writing and editing pages in ColdFusion Studio,
with pointers to features that help you be as productive as possible.

Studio is used by professional Web developers, designers, production and content
teams creating sophisticated Web applications, as well as by people creating
individual Web pages and sites.

If you’re new to creating application pages, see the Quick Start lesson in Chapter 3,
“ColdFusion Studio Quick Start,” on page 19, which offers a basic guide to building a
Web application page.

Contents

• Creating Application Pages.. 286

• Editing Application Pages.. 288

• Using Code Snippets .. 290

• Editing Tag Attributes and Values ... 291

• Running the CodeSweeper to Format Code... 293

• Editing Shortcuts.. 294

• Saving CFM files ... 296

• Previewing Application Pages ... 297

• Productivity Tips .. 299

286 Developing Web Applications with ColdFusion
Creating Application Pages
Studio gives you control over your tags and content, while adding shortcuts to help you
create pages more quickly — as well as advanced features that help teams and savvy
Web developers increase their productivity.

New Users

If you’re new to ColdFusion Studio, you’ll want to begin with the Quick Start lesson, a
mini-tutorial that walks you through the steps to create and view dynamic pages. Then
you can follow the procedures and examples in this section.

See the CFML Language Reference for details on all CFML tags and functions.

Creating new pages

To create a new application page in Studio, you choose File > New to open the New
Document dialog box. Here you can choose to

• Create a blank document, with no tag codes.

• Use the default template to create a new file with the basic HTML document
tags: DOCTYPE, HTML, HEAD, TITLE, and BODY.

• Choose a Studio wizard that walks you through the steps for creating various
types of HTML and CFML pages.

To create a new page:

1. Launch Studio and click the New tool at the top left corner of the Standard toolbar.

The basic codes for an HTML page appear in the editor window.

The New tool creates files based on the default template stored at
\Allaire\Studio4\Wizards\HTML\Default Template.htm. You can customize
this file to change the content of your default template.

2. In the TITLE tag, enter a descriptive title in the place of "Untitled."

The text you enter in the TITLE tag appears in the browser’s window title, in a
search engine’s results list, as well as in a user’s bookmarks or favorites list when
someone bookmarks your page.

3. Click below the opening BODY tag to position the cursor in the document text
area. Now you’re ready to enter CFML tags and application page content.

Chapter 19: Creating and Editing Application Pages 287
Using the Edit, Design, and Browse views

Studio offers three views for each document:

Edit View is where you enter and edit text, add tags, and code your pages. This is the
primary work space in Studio, where you create and edit tags and content. Use the Edit
toolbar to close the current document, navigate among open documents, control word
wrap, and turn the gutter on and off.

Design View offers you the additional option of visual editing. You can edit the page
while seeing how the results would look in a browser. Design view is most useful if
you’re a new user, if you’re designing the major elements that fit on a page, or if you’re
creating a complex table.

Browse View shows how your page appears in a Web browser. You can view, but not
edit, the current page.

In this manual, most procedures and descriptions apply to the Edit view, unless
otherwise noted.

Opening existing files

You open existing files using the standard Windows File commands or using the Files
pane of the Resources tab in Studio:

• The easiest way to open a file is to double click the file’s icon in the File tab in
the Resources area.

• You can also open files by pressing CTRL and dragging a file from the Windows
Explorer into Studio.

• Choose File > Open or use the Open tool on the Standard toolbar. These
commands open the Open dialog box, where you can use the standard
Windows File Open choices on the Local pane.

Use the Remote tab of the File Open dialog box to access files on remote servers.

• To open files from the Web, choose File > Open from the Web.

Tip To open files you’ve used recently, choose File > Recent Files.

Setting File Open preferences

In the General page of the Settings dialog box, you can choose to always restore the last
open file when you start Studio. This feature is particularly useful if you frequently
open the same file every time you start Studio.

By default, Studio always opens to the folder you had open when you last closed
Studio. But you can change Studio’s default start up folder in the File Locations pane of
the Settings dialog box (F8).

288 Developing Web Applications with ColdFusion
Using the Edit toolbar

The Edit toolbar offers a command to show all the open files. You can also move from
one open file to the first, previous, next, or last open file using the arrows on the Edit
toolbar.

Editing Application Pages
Studio is designed to suit many different editing styles. Here are a few of the most
common editing tasks:

• Entering tags and content from scratch.

• Adding CFML Expressions

• Adding CFML Queries.

• Importing content from other sources and applying new tags.

• Changing existing tags and attributes.

Each type of task calls for different features and customizations. This section describes
the basic editing techniques and then offers pointers to features and settings to help
you work in the style that suits you best.

Entering and editing text

Use the tag and command tools on the toolbars and Quick Bar as you edit tags and
text.

To add text and tags from scratch:

1. Open a new document and click below the opening <BODY> tag.

2. In the Quick Bar, select a tag tool, such as the Paragraph tool on the Standard
toolbar.

The opening and closing <P> tags appear, with your cursor blinking in between. If
Tag completion is turned on, the closing tag appears when you finish typing the
opening tag.

3. Enter the tag’s contents and press Enter.

4. Right-click in the Edit window, and choose Insert Tag to open the Tag Chooser.

5. Choose a tag and click Select. If you choose a tag that has a tag editor, such as H2,
for example, the Tag Editor appears. Edit the tag entries as needed and click OK to
insert the tag code in your document.

If you choose a tag with no attributes, such as CENTER, the tag code appears in
the Edit window.

Chapter 19: Creating and Editing Application Pages 289
Inserting CFML Expressions

ColdFusion Studio has an Expression Builder that helps you build and add CFML
expressions to your ColdFusion application pages. The Expression Builder is a visual
tool for choosing and combining functions, operators, and values into CFML
Expressions.

To build expressions:

1. Place the cursor at the point in the document where you want to insert the
expression.

2. Right-click and select Insert Expression or choose Tools > Expression Builder. You
can open and close the list of Expression Elements to show or hide the functions,
constants, operators, and variables.

3. In the Functions list, choose an expression type to display the expression elements
in the adjoining pane. For example, select Date and Time to see all the ColdFusion
functions for manipulating date and time values.

4. Double-click an element to add it to the element list.

5. Add operators by clicking on them in the operator toolbar.

6. Click Insert to add the expression in the current document.

See the Functions and Expressions chapter in the Advanced ColdFusion Development
book for information about ColdFusion functions and expressions.

Adding links

To add hypertext links:

1. Select the text you’d like to link and click the Anchor tool on the Standard toolbar.

2. In the Anchor dialog box, enter the destination of the link, usually a URL or
filename, in the HREF box.

The selected text becomes a hyperlink.

Adding text from other files

To add and edit text from another file:

1. To add content from another file, choose File > Insert File. Choose a file and click
Open.

The contents of the file are inserted in the current document.

2. Select text you want to edit and use the Edit > Selection commands and editing
tools to add tag codes as needed. For example, to add
 tags for line breaks,
choose Edit > Selection > Add Line Breaks.

3. Use the Edit menu commands to indent text, or convert tag case as needed. Use
the Edit > Selection commands to convert text to lists or to a table.

290 Developing Web Applications with ColdFusion
Editing individual tag blocks

You can use shortcuts to quickly select and edit tag blocks:

• To select an entire CFML tag block — codes and content — press CTRL and
double-click.

• To select a range of tag and text, click to place the cursor at the start of the
selection, and press SHIFT-CTRL at the end of the selection block.

• To drag and drop HTML from Internet Explorer 4.0, press CTRL while selecting
text in Internet Explorer and drag it into Studio.

Using Code Snippets
The Code Snippets feature offers a quick way to store and re-use code. In the Snippets
pane of the Resources tab in ColdFusion Studio, you can create and store snippets for
your own use, and share code snippets with other developers.

The first procedure creates a code snippet that helps you quickly enclose ColdFusion
variables or other parameters in pound signs.

To create and use code snippets:

1. Open the Snippets pane of Resource tab, right-click and choose Create Folder.

2. Provide a name for the snippets folder, for example, MySnippets.

3. Right-click in the Snippets pane and choose Add Snippet. The Snippet dialog box
appears, with windows for you to enter Start Text and End Text.

4. Enter a name for the code snippet, for example, PoundSigns.

Note that snippet names cannot contain characters that are illegal in file names,
such as slashes, special characters, double quotes, etc.

5. In the Start Text window, enter the beginning of your snippet, for example, #.

6. In the End Text window, enter the ending text, for example, #. Click OK

7. Select a variable or expression in your CFML code and double-check the Pound
Signs snippet to enclose the selected text in pound signs.

Right-click on a snippet to edit or delete it.

Shared Snippets

You can share code snippets with other developers on your network.

To create shared snippets:

1. Choose Options > Settings or press F8 to open the Settings dialog box.

2. In the File Locations pane, choose a folder for Shared Snippets.

Chapter 19: Creating and Editing Application Pages 291
3. Use the Browse button to navigate to your ColdFusion Studio installation,
\UserData\Snippets folder and choose a Snippets folder to share.

4. In the Snippets pane of the Resource tab, right-click and choose Create Shared
Folder. The folder icon changes color to show it’s shared.

Editing Tag Attributes and Values
Studio offers a variety of editing tools that help you enter and edit tags more quickly
and accurately:

• Tag Insight — Popup menus that appear as you type tag and attribute names.
You turn it on and off in the Tag Help pane of the Settings dialog box (F8).

• The Tag Inspector — A property sheet-style display, that offers an interactive
display of the current tag’s attributes and values. Press F4 to open the Tag
Inspector for the current tag, or choose the Tag Inspector pane in the Resources
area.

• The Tag Tree — An expandable tree view at the top of the Tag Inspector. It
shows the tag hierarchy of all tags in the current document, a specific selection
of tags (only CFML tags or only HTML 4.0 tags), or a customized selection you
configure in an outline profile (only Table tags, for example).

• Tag Chooser — Selection window for creating and editing tags. Choose Tools >
Tag Chooser or right-click in the Edit window and choose Insert Tag.

• Tag Editors — Dialog boxes for editing Tag attributes and values. To open a tag
editor window, select the tag or click inside it, right-click and choose Edit Tag.

To edit tags and content:

1. Click inside an existing CFML tag, or create a new tag that takes attributes, for
example, CFQUERY, and put the cursor before the closing angle bracket (<).

2. Press the space bar. When the Tag Insight is turned on, a popup menu appears
showing the valid attributes for the current tag.

3. Choose an attribute, such as Datasource. The attribute appears, with your cursor
waiting between quotation marks for you to enter a value.

Tag Insight is especially useful when you’re not sure of the available attributes or
don’t care to type out long attribute names.

4. You can add additional attributes by pressing the space bar inside a tag.

Using Search and Replace

To find text or phrases in the current document or a set of documents, use the Search
menu commands. See Chapter 22, “Maintaining Web Applications,” on page 315 for
details on search and replace in Studio, including using regular expressions in your
search strings.

292 Developing Web Applications with ColdFusion
Using the Tag Inspector and Tag Tree

You can use the Tag Inspector to edit existing attribute values or to add new ones. It is
also very useful for editing tags that you create or modify — see Customizing the
Development Environment for information on creating your own tag editors.

To use the Tag Inspector:

1. Click inside a CFML tag and open the Tag Inspector in the Resources area.

2. Click in an attribute field and enter a value for the attribute.

When you click outside the current field, the new tag value appears in your code.

3. In the Tag Tree above the Tag Inspector, click on the + signs to expand the tag tree
display. Use the Tag Tree to inspect and navigate the document’s hierarchy.

Entering special characters

Because angle brackets and special characters are used in HTML coding, to display
special characters on a Web page you must use character entities to display special
characters on Web pages.

Studio automatically converts special characters to their corresponding character
entity. You can turn this feature on and off in the Tag Help pane of the Settings dialog
box (F8).

Also, you can use the Special Characters palette to add special characters to your
documents. Choose View > Special Characters or select the Special Characters tool on
the View toolbar to open this palette at the bottom of your Studio window.

Tag completion

When you’re typing HTML and CFML tag codes, you can choose to have Studio
“complete” the tag by adding a closing tag when you press the > key at the end of the
opening tag.

This feature is most helpful when you are typing HTML and CFML codes and text at
the same time, as opposed to editing isolated text and tags.

To turn Tag Completion on and off, use the Tag Completion check box in the Tag Help
pane of the Settings dialog box (F8).

You can also refine the way the Tag Completion feature works by clicking the Tag
Completion Settings button in the Tag Help pane and editing the list of tags on the tag
completion list. You can also choose whether to include ASP tags in tag completion
and whether to automatically close double quotes in attribute values.

Chapter 19: Creating and Editing Application Pages 293
Running the CodeSweeper to Format Code
CodeSweeper automates the task of getting your code properly formatted. It can be
very useful in a number of situations:

• Visually editing page elements in Design view can change code formatting. You
can set CodeSweeper to apply its formatting rules when you leave Design view.

• You can painlessly enforce a code style guide for multiple developers by simply
having them use the same settings.

• You can easily clean up the code formatting of an existing project as you review
the documents.

Configuring CodeSweeper

Select Options > CodeSweeper Settings to choose from the list of available
CodeSweepers. ColdFusion Studio installs a CodeSweeper optimized for HTML, one
that works on both HTML and ColdFusion Markup Language (CFML) tags, and one
that you can use for testing. When you have selected a CodeSweeper, you can then
specify the formatting rules you want to use.

CodeSweeper settings

You can set the following formatting rules for all tags:

• Set case for tag and attribute names. You can choose all upper or lower case or
preserve case, which leaves the case unchanged.

• The Format event names setting contains an additional option — Mixed Case
— which applies to case-sensitive JavaScript event handler names like
OnMouseOver. If this code is correct in your document, select Preserve Case for
this setting.

• Set the use of quotes for values.

• The Trim white space between tags setting cleans up spacing produced by
some code generation tools. It is enabled by default. We recommend leaving it
on and disabling it for individual tags as needed.

Click the Update button to save these settings.

Tag-specific settings

A wide range of options is available for the individual tags contained in each
CodeSweeper. Note that if you set formatting for the "All Other Tags" entry in the tag
list, those rules apply to every tag that appears in a document that is not in the list.

Click the CodeSweeper button on the Edit toolbar to run the selected CodeSweeper
on the current document.

294 Developing Web Applications with ColdFusion
• Insert a newline command for start and end tags.

• Set indent by tabs or spaces — a newline is inserted automatically for each
indented line when this option is checked.

• Enable indenting of nested sub-tags.

• Override the general trim white space setting by preventing trimming of white
space around the selected tag.

• Leave the selected tag unchanged when invoking CodeSweeper.

• Strip tag from document — this is handy for getting rid of superfluous and
unwanted tags inserted by code generation tools.

To set rules for a tag:

1. Select a tag from the list.

2. Change the specific settings.

3. Click Update Tag to save the settings for that tag.

To add a tag to a CodeSweeper:

1. Click Add Tag.

2. Enter the tag name and click OK.

3. Change tag settings.

4. Click Update Tag to save the settings.

Check the “Apply Current CodeSweeper when switching from Design view” box to
automatically run CodeSweeper on the active document when you leave Design view.

Adding a new CodeSweeper

You can easily create custom CodeSweepers to fit specific document types or coding
styles.

To add a new CodeSweeper:

1. Click the Add button.

2. Enter a name for the new CodeSweeper.

3. Change global and tag settings.

4. Click Update to save the settings.

Editing Shortcuts
You can customize the Studio editor to suit your preferences for writing and editing
code. For example, you can use color coding to distinguish HTML and CFML code

Chapter 19: Creating and Editing Application Pages 295
from text or scripting languages. The following features control the appearance of tags
and text in the editor.

The following features and shortcuts can help you work more productively in
ColdFusion Studio.

Turning word wrap on and off

To control whether text wraps in the Edit window as you type and enter content,
choose Options > Word Wrap or select the Word Wrap icon on the Editor toolbar on the
left hand side of the Edit window.

Using the Edit window gutter

You can toggle on and off a gutter on the left hand side of the Edit window. Use the
gutter to:

• Keep track of line numbers

• Set breakpoints for the interactive debugger

See the Debugging and Troubleshooting chapter for information on using the
interactive debugging tools.

Controlling tag case

You can control whether HTML and CFML tags appear in all upper or lower case. Use
the Tags settings in the General pane of the Settings dialog box (F8).

To change the case of all tags in the current document, use Edit > Convert Tag Case
command.

Using hexadecimal color values

To specify that all colors be inserted as hexadecimal numbers in Studio, use the Tags
settings in the General pane of the Settings dialog box (F8).

Color-coding tag names

Studio displays tag codes, attributes, and values in different colors to help you
distinguish tags from content. The document’s file type and file extension determine
which color scheme is employed.

To edit or change the color scheme for each file extension, use the Color Coding pane
of the Settings dialog box (F8).

Indenting code

Indenting your code in the Studio editor greatly increases the readability of the code,
even though it does not affect display in the browser (except for preformatted text).

296 Developing Web Applications with ColdFusion
Studio offers a way to automatically indent tags underneath each other. If you select
the Auto Indent button in the Edit pane of the Settings dialog box (F8), when you hit
the Enter key, Studio aligns your cursor with the indent level of the previous line.

Note that you can override this automatic matching of the previous line’s indent level
by placing the cursor manually or by using the arrow keys.

Keyboard Shortcuts

Studio offers keyboard shortcuts for many editing commands. You can also customize
these shortcuts. Choose Options > Customize and open the Keyboard Shortcuts pane
to see the current keyboard mappings and edit them to suit your preferences.

For more information on using keyboard shortcuts, see Chapter 3, “ColdFusion Studio
Quick Start,” on page 19.

Code Templates

Use the Code Templates feature as a shortcut to entering words that you type
frequently. On the Code Templates pane of the Settings dialog box (F8), you can add
and change these shortcuts, mapping abbreviations to words or phrases that you type
often.

To use the Code Templates feature while editing text, enter the abbreviation, for
example, dt4, and press CTRL-J. The abbreviation expands to the full phrase, for
example, <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">.

You can also use the Snippets feature to store frequently-used code blocks, such as
navigation bars, and complex table code that you use often, and so on. See Chapter 22,
“Maintaining Web Applications,” on page 315 for information on creating templates.

Saving CFM files
When you’re working on a file with unsaved changes, a mark appears next to the file
name on the file tab of the Edit window in ColdFusion Studio. Always save files before
adding links or images, to make sure the relative paths of the current document and
the source or destination file are resolved correctly.

To save files:

1. Click the Save tool or use the CTRL-S keyboard shortcut.

2. The first time you save a new file in Studio, you are prompted to provide a name
for the file. Enter a unique filename.

Usually, Web filenames appear in URLs that users have to type or bookmark. Keep
your filenames short and descriptive. Using all lowercase helps to minimize typing
errors and ensures cross-platform portability.

3. To save all the open files that have unsaved changes, choose Save > Save All.

Chapter 19: Creating and Editing Application Pages 297
Note To control whether files are saved in UNIX, PC, or Macintosh format, use the File
Settings pane of the Settings dialog box (F8).

Previewing Application Pages
As you develop applications in ColdFusion Studio, you can preview dynamic pages
against the ColdFusion Server. Studio offers an internal browser, but you can also
configure it to launch your browser in a separate window.

Note that in order to preview dynamic pages you must

• Configure external browsers.

• Have a Web server running on a server or workstation, and access to a
ColdFusion server.

• Establish mappings that associated the physical directory where a file is stored
with a server mapping and a URL. These mappings can be to a local server or to
an RDS server.

Remote Development Services server mappings

If you are building pages and want to preview them against an RDS server, you must
translate ColdFusion Studio paths to URLs. These URLs are resolved using the
following logic:

• If you are previewing a file opened using the RDS remote file access, the URL
resolution uses only the mappings for the specific RDS server.

• For all other files (local, mapped drives, UNC\NetworkNeighborhood), the URL
is resolved against the cumulative summary of mappings for all RDS servers.
When more than a single mapping resolved to a URL, a dialog prompts the user
to select which resolution they want to use.

• When a browsed file cannot be resolved to a URL, it is viewed as a local copy.

Whenever URL resolutions are used, you need to save the file for the changes to
appear.

For more detailed information on understanding RDS mappings, see the Debugging
and Troubleshooting chapter in this book.

Viewing pages in the internal browser

In the Browse pane of the Settings dialog box (F8), you can choose to use Microsoft
Internet Explorer 3.01 or higher as the internal browser for ColdFusion Studio.

Note Because of the way Netscape Navigator is built, it cannot be used as the internal
browser in ColdFusion Studio.

298 Developing Web Applications with ColdFusion
To preview a page in the internal browser:

1. To see the current open document in Studio’s internal browser, click the Browse
tab in the editor window.

The Browse view shows how your code, text, and graphics look in a Web browser.

2. To return to edit mode, choose the Edit tab.

Viewing pages in your external browser

You can choose to view the current document in an external browser. Studio
automatically detects which browsers you have installed and lists them in a drop-
down menu when you choose the External Browser tool on the View toolbar.

To configure Studio to use your external browser:

1. Choose Options > Configure External Browsers to open the External Browsers
dialog box.

You can add, edit, and delete browser listings, and use the arrow tools to re-order
the list of browsers.

2. To add your browser, click Add and in the Browser dialog box, enter its name and
the location of the *.exe file. Click OK.

3. Choose whether Studio should browse the page using a temporary copy, (meaning
you do not have to save the page first), prompt you to save your changes, or
automatically save changes whenever you launch an external browser.

4. Click OK.

Now when you press the External Browser tool on the View menu, your external
browsers are configured according to your preferences.

Visual editing in the Design view

Studio provides an optional visual editing view, called Design View, which lets you edit
HTML code while seeing how the results would look in a browser.

The Design view is most useful if you’re a new user, if you’re designing the major HTML
elements that fit on a page, or if you’re creating a complex table and want to create the
table’s form visually without coding the TABLE tags.

Note The Design view feature requires Microsoft’s Internet Explorer 4.01 or later. If you don’t
have this browser installed, or if you don’t intend to use the Design view, you can
disable the Design view in the Design page of the Settings (F8) dialog box.

To edit a page in Design view:

1. With a document open in the Edit window, save your changes and select the
Design tab in the editor. The Design view opens, showing a browser view of the
document that you can also use to edit text, styles, and graphics.

Chapter 19: Creating and Editing Application Pages 299
2. Use the Design view toolbars to edit text, change styles, add colors, or create
HTML tables and form elements.

3. If you’ve opened Design view and now prefer to cancel any changes, select the
Cancel Design View button to discard all changes and return to the Edit view.

4. Use the Edit and Browse tabs to return to the Edit and Browse modes.

Productivity Tips
Studio has dozens of features designed to help you work quickly and efficiently. Here
are some tips on how to increase your productivity coding pages in Studio.

Set up the user interface to suit your preferences

You can customize the Studio user interface by adding and moving toolbars and
windows. The procedures in this section refer to the default location of toolbars and
commands. If you fiddle with the setup and want to return to the original layout,
choose Options > Customize, select the Toolbars pane, and click the Reset to Defaults
button.

See Chapter 3, “ColdFusion Studio Quick Start,” on page 19 for information on
configuring Studio’s interface to suit your work style.

Manage files in Projects

Use the Projects feature to associate files as a cohesive project in Studio. When you
associate files together as a project, you can upload the entire project to your Web site.

See Chapter 20, “Using Projects for Site Management,” on page 301 for information on
creating projects in Studio.

Use site visualization

You can use the Site Visualization feature to see a graphical representation of the pages
and files that make up your site. See Chapter 22, “Maintaining Web Applications,” on
page 315 for more information.

Use Snippets for frequently-used code

The Snippets feature lets you store reusable code blocks, such as navigation bars, page
layout code, and so on. To create a tag snippet, open the Snippets tab in the Resources
area, right-click to create a snippets folder, and right-click again to create a tag snippet.

You can have private snippets and shared snippets, accessible using keyboard
shortcuts. To activate shared snippets, you need to specify a Shared Snippets folder in
the File Locations page of the Settings dialog box.

300 Developing Web Applications with ColdFusion
See the Using Code Snippets section for more information.

Create custom templates

Most Web sites benefit from design templates that set up the basic page and site
structure. Any HTML or CFML page can serve as a template in Studio. When you save a
file as a template, it is stored in the Studio\Wizards\Custom directory by default.

To build a page from a custom template, choose File > New to open the New File
Wizard, and select a template from the Custom page of the New Document dialog box.

For more information on how to create and use templates in Studio, see Chapter 22,
“Maintaining Web Applications,” on page 315.

Customize your development environment

Studio offers several ways for you to set up the interface to suit your preferences, to
create your own help files, and to add custom buttons, dialogs, and toolbars. For
example, you can create your own tag editors for Custom Tags and Extensions.

See Customizing the Development Environment for more information.

C H A P T E R 2 0
Chapter 20 Using Projects for Site
Management
This chapter describes how to use the Cold Fusion project management tools to
create, maintain, and use projects to manage application development.

Contents

• Why Use Projects? .. 302

• The Projects Tab ... 302

• Project Commands... 302

• Managing Files in a Project ... 303

• Working on Project Files .. 304

• Previewing Pages in a Project .. 304

• Deploying a Project .. 305

• Verifying Links in a Project .. 305

302 Developing Web Applications with ColdFusion
Why Use Projects?
Organizing your documents and supporting files in a ColdFusion Studio project can
significantly increase your productivity in a number of ways:

• Easily keep track of multiple projects in the Projects list.

• Projects provide a quick and easy way to add and remove files on your site.

• You can use Edit, Browse, and Design modes from the Projects tab.

• You can link external files to project files and link files within a project.

• Maintenance chores such as search and replace operations and verifying links
can be performed on all the files in a project.

• An entire project can be deployed on the network or to a remote FTP server.

• Projects can be integrated with version source control. You can use source
control as part of team development or to keep track of changes to your site
content.

The Projects Tab
Projects are created and used entirely through the Projects Resource tab. The Project
Resource tab has three panes:

• The top pane lists all of your projects.

• The middle pane shows the project folders.

• The bottom pane lists the files in the selected project. Use this pane to access
files in a project.

Project Commands

The Projects menu

Menu commands are active in the Local Files, Remote Files, and Project tabs. You can
access them in Edit, Browse, or Design modes.

• Create a new project

• Open a project

• Reopen an existing project

• Close the current project

Chapter 20: Using Projects for Site Management 303
The Projects Toolbar

The toolbar appears at the top of the Projects Resource tab and contains the following

tools:

Managing Files in a Project
Projects are created and maintained within your existing directory structure, making it
easy to control project contents. This allows you several options:

• Create a new project in an existing directory, optionally including sub-
directories.

• Build a new directory structure specifically for the project and work directly in it
or add folders and files as the project develops.

• Build a project locally, on the network, or on a remote server.

To create a project:

1. Click Projects > New Project or click the New Project tool button.

2. Enter a project name.

3. Enter a directory path or server in the Location box or click the Browse button and
select a location from either the Local or Remote tab.

4. Optionally include sub-folders by clicking the checkbox.

5. Enter file types for the project or select from the dropdown list.

6. Click OK. The project file (.apj) is created in the project root directory.

Note We recommend that you avoid using spaces in project folder and file names. Many
servers do not recognize them properly.

To add a file to a project:

1. Save the file to the project directory or move an existing file there.

2. Select a project from the projects drop-down list.

• Click the New Project tool button to set up a project. By default, projects are
saved with the Allaire Projects (.apj) extension.

• Click the Open Project toolbar and navigate to an existing project.

• Click the Deploy Project tool button to upload the project files to a server.

304 Developing Web Applications with ColdFusion
3. Right-click on the project and select Add Files to Project.

4. Select files from the list. You can filter the display in the Add Files dialog by
selecting from the Files of Type list.

5. Click OK to add the file. The file pane automatically refreshes.

To remove a file from a project:

1. Select one or more files in the file pane.

2. Right-click and select Remove from Project.

Note Using the Remove from Project command does not delete a file, it just removes the file
from the project configuration file.

Working on Project Files
Edit, Browse, and Design modes are all active in the Projects tab.

To open a project file:

• Double-click on a file in the file pane to open it in the editor

To open all project files:

• Right-click in the Folder pane and select Open All Documents in Project

To save project files:

1. Save the file to a project folder.

2. Right-click on the current project folder and select Add Files to Project.

3. Files saved to the current project directory are displayed in the dialog.

4. Select the files you want to add and click OK. The project configuration file is
automatically updated.

Previewing Pages in a Project
One of the most convenient features of projects is that you can set a Web server
mapping for a project directory. You can then route pages through the Web server for
preview.

To define a server mapping for a project:

1. Open the Options > Settings (F8) Browse tab.

2. Click the Enable server mappings checkbox.

3. Enter the local directory path of your project.

Chapter 20: Using Projects for Site Management 305
4. Enter a complete URL, such as http://www.myserver/files/, for the Web server
to use for processing HTML pages.

5. Click OK.

Deploying a Project
Since you can create and manage a project locally, on a network drive, or on a remote
server, deploying a project really means saving the project files to the host machine. In
a development environment that uses multiple servers, for example, development,
testing, staging, and production servers, you move the project through these processes
using the deployment options.

The project configuration file (.apj) remains on the host machine when project files are
deployed.

To deploy a project:

1. Open the project in the Projects tab.

2. Click the Deploy project tool button.

3. Select a location for the project files.

Verifying Links in a Project
Links in project files can be checked in a batch process.

To check the links in project files:

1. Right-click in the project folder pane and select Verify Links.

2. Select options for the files you want check.

3. Run the verification.

See “Verifying Links,” in Chapter 22 for more information on using the link checker.

306 Developing Web Applications with ColdFusion

C H A P T E R 2 1
Chapter 21 Adding Source Control for
Development Projects
This chapter describes how to use a source control application in Studio to manage
your ColdFusion pages and facilitate team development.

Contents

• Why Use Source Control? .. 308

• Implementing a Source Control System... 308

• Choosing a Source Control Provider... 309

• Creating a Studio Project for Source Control ... 309

• Managing Files in Source Control... 311

308 Developing Web Applications with ColdFusion
Why Use Source Control?
Version source control for ColdFusion applications is an essential component for
coordinating team development of complex projects. A source control system adds a
layer of file management responsibility but it offers clear advantages for developers,
managers, and support staff, including:

• Share files on a LAN without overwriting work or accidentally modifying files
simultaneously.

• Track versions of files and modifications as files are changed.

• Control the deployment of applications.

• Replicate applications to a local workstation for development and testing.

Source control systems really are about control; they are designed to control file
management in application development and related work. Common terms such as
check in, check out, lock, and unlock accurately describe the security procedures
required for an effective source control system.

Note A commitment by network administrators, managers, development teams, and staff to
support the system is essential to its success. Collaborative planning and
implementation of a source control system ensures that user needs are truly met.

Implementing a Source Control System
There are several possible scenarios for adding source control to your application
development work:

• A new installation of both Studio and a source control application

• Adding source control to an existing Studio installation

• Adding Studio to an existing source control system

Note The order of the steps required to use source control for Studio projects is determined
by which of these scenarios applies to your development environment, but all of the
following steps must be taken:

• Install and configure the source control application.

• Create a Studio project.

• Establish a working directory.

• Create a source control project or add an existing project to source control.

• Add and manage project files under source control.

Chapter 21: Adding Source Control for Development Projects 309
Standard source control commands

The standard source control commands are available to Studio projects from the main
menu and the context menus in the Projects Resource tab:

• Create a project and set its working directory.

• Add and remove files.

• Check-out a file to have exclusive editing rights.

• Check-in a file to make it available to another user.

• Get the latest version of a file without checking it out. You can view the file and
edit it but the changes are not saved to the file in source control.

• Open the source control application to set options.

Choosing a Source Control Provider
Studio uses the source-code control (SCC) interface to connect with a wide range of
standard source control products including Microsoft Visual SourceSafe, Intersolv
PVCS, and StarBase Versions. Studio can work with both client-based and server-based
systems.

Studio automatically populates a list of source control applications detected on your
system. You can then select the appropriate provider from the list.

The interface and command structure for source control applications varies from
vendor to vendor, so check the product documentation of your source control software
for specific procedures and options.

Creating a Studio Project for Source Control
A Studio project is a collection of files that make up a development project. The actual
physical location of project files and the types of files included in a project are
determined by the needs of the development team. Typically, application code,
documentation, media, testing materials, and other supporting files are included.

When you add a Studio project to source control for the first time, you are prompted to
choose a source control provider based on the source control applications Studio
detects on your system.

See Chapter 20, “Using Projects for Site Management,” on page 301 for information on
building Studio projects.

Establishing a Working Directory

The working directory is the point of interaction for files in a project. If you create a
project from an existing directory, that directory is automatically set as the working

310 Developing Web Applications with ColdFusion
directory. You can build a working directory and create a project from it or create a new
project first and then build the working directory.

The source control system is the central repository for your files once they are added to
it. If you delete files from the working directory, they will not be deleted from source
control unless you specifically remove them.

Note Once you set the working directory for a project, you cannot change it. To change the
working directory, you have to create a new project and move your files to that project.

Generally, you can create a working directory on your workstation to develop and test
your Web applications. The following configuration is required on your system:

• The working directory should be in the root of your Web server directory.

• Your workstation must be running the ColdFusion Application Server (single-
user or full version) and a Web server. The Application Server should be
configured to run the application that you are developing. This may mean
connecting to network ODBC data sources.

• To preview pages in a project, set the Project server mapping so that the
working directory is mapped to the URL for your local machine.

When you get or check files out of source control, they go into that project’s working
directory on your local machine.

Adding a Studio project to source control

All source control work is done in Studio through the project management tools in the
Projects Resource tab. Once you have a source control system installed and a working
directory configured for a Studio project, you can add that project to source control.

To add a Studio project to source control:

1. Open the context menu in the Project pane of the Project Resource tab.

2. Select Add Project to Source Control.

3. Choose a working directory if the project is not already assigned to a directory. If
you build a project from an existing directory, this directory will be the default
working directory.

4. Add a new project or select an existing one.

When you have added a project to source control, you can add the project files to the
source control database.

To add the files to source control:

1. Click on a folder in the Project Resource tab directory pane to open it.

2. Select the project files you want to add, right-click and select Source Control > Add
to Source Control.

3. Add the project.

Chapter 21: Adding Source Control for Development Projects 311
4. Associate the project with source control.

5. Repeat this process as needed for all directories and files.

Managing Files in Source Control
Although every source control system offers an array of options for managing source
files, all systems provide three basic functions for files that are in the system:

• Get — Copies the most recent version of a file from source control to the
working directory. The default attribute is usually read-only.

• Check In — Returns the file to source control. You can set options for handling
the files in your working directory, such as removing them or setting them to
read-only. These options provide a level of protection if you try to work on a file
that is not checked out.

• Check Out — Overwrites the copy of the file on your working directory (if you
chose to leave a copy there) with a read/write copy from source control. Most
source control systems lock files that are checked out so that no one else can
open them.

Check in options

Some source control systems provide options for protecting the local copy of a file after
it is added or checked in. The system can flag the local file as Read-Only or remove it
from the local directory. If a local copy of a file is edited after it is checked in, the
changes are overwritten when the file is checked out again. Check your source control
system’s documentation for available options.

Command options

Studio provides a variety of ways to access source control commands:

• Right-click on a file in the file pane, select Source Control on the context menu
and select a command. The context menu contains the complete source
control command set.

• Select a file in the file pane, click Tools > Source Control on the main toolbar
and select a command.

• Double-click on a file to open the local copy of the file as read-only, check it out,
or update the local file with the current version in source control and open it as
read-only.

The availability of commands for the selected file is based on the file's current status in
the source control system.

312 Developing Web Applications with ColdFusion
Adding files and subdirectories

As your development project progresses, you can add files and subdirectories to source
control.

To add a new file to source control:

1. Save the new file in the appropriate sub-directory of the working directory.

2. Add the file to the Studio project.

3. You will be prompted to add the file to source control.

To create a new subdirectory:

1. Add the subdirectory to your working directory.

2. Create a new folder in the correct location in the Studio project.

3. Add a file to the subdirectory and then add the file to the appropriate folder in the
Studio directory.

4. Add the file to source control. When you add the file, it automatically creates a new
subproject for the new folder in the Studio project.

Synchronizing files

A significant feature of source control for team development is the ability to update
your working directory as files are added, changed, and removed from source control
by team members. You can run these maintenance procedures based on the level of
source control activity of your team.

To synchronize project files with source control:

1. Right-click on a project in the Project Folder pane to open the context menu.

2. Select Synchronize with Source Control. The dialog contains tabs for adding and
removing local files based on their status in source control.

To add files from source control to your working directory:

1. Click the Add tab in the Synchronize Projects dialog.

2. The list shows files in source control that are not in your local project.

3. Click the list check box of the files you want to add, click Add, and click Close to
update the local project.

To remove local files:

1. Click the Remove tab in the Synchronize Projects dialog.

2. The list shows local files that are not in the source control project.

Chapter 21: Adding Source Control for Development Projects 313
3. Click the list check box of the files you want to remove, click Remove, and click
Close to update the local project.

314 Developing Web Applications with ColdFusion

C H A P T E R 2 2
Chapter 22 Maintaining Web Applications
As your Web site develops, you will inevitably need to make changes and test its
accuracy, completeness, and efficiency. Studio provides a full set of tools to
accomplish these necessary tasks.

Contents

• Using Search and Replace ... 316

• Searching with Regular Expressions ... 317

• Spell Checking .. 321

• Validating Code .. 322

• Verifying Links .. 322

• Testing Page Download Times .. 323

316 Developing Web Applications with ColdFusion
Using Search and Replace
Studio provides two levels of search and replace to help you maintain your Web pages
— basic and extended.

Running a basic search

To run a basic search in the current document, choose Search > Find to locate a
specific string in the current document or Search > Replace to replace all matches.

• The basic find command (CTRL + F) searches only in the current document.

• Clicking the Find Next button in the Find dialog box sequentially highlights
each match in the current document.

• When the search dialog box is closed, you can choose Search > Find Next (F3) to
resume the last search, starting where the cursor is positioned.

• Use the Search > Replace command (CTRL+ R) to replace matches selectively or
to replace all matches.

Using the extended search and replace feature

For more complex search and replace operations across documents, use the Search >
Extended Find command. Or, you can use the Search > Extended Replace command to
specify the replacement text as well as the string you’re looking for.

The extended search and replace commands offer a number of options to refine your
search:

• You can run the Extended Search (CTRL + SHIFT + F) and Extended Replace
(CTRL + SHIFT + R) features on the current document, all open documents, or
entire folders, including sub-folders.

• When searching through folders, you can restrict searches by selecting file
extensions from the File Types drop down list. You can also backup files before
making replacements at the folder level.

• Select the Match Case option for case-sensitive searches.

• Select Regular Expressions to enable parsing of regular expression entries. See
the section on Searching with Regular Expressions for details on using regular
expressions in Studio.

• Select the Skip Tags While Searching option to search the page content only,
excluding the tags themselves.

When you choose Replace operations, you are prompted to save all untitled open
documents.

The Results pane displays a list of locations where the matched string was replaced.
Double-click on a match in the list to highlight it in the document. Right-click in the
Results pane to clear the pane or close it.

Chapter 22: Maintaining Web Applications 317
Note The Extended Replace command skips read-only files.

Replacing special characters

Use the Search > Replace Special Characters command to either replace extended
characters with their HTML equivalents, or replace HTML tags with the equivalent
extended characters. This command works only in the current document.

Replacing double-spaced lines

Because of the way different operating systems treat carriage returns, text files saved
on UNIX or Macintosh systems may become double-spaced when opened in Studio.
Use the Search > Replace Double Spacing with Single Spacing command to collapse
double-spaced lines to single-spaced lines.

Searching with Regular Expressions
Studio supports searching with regular expressions (or regexes) to match patterns in
character strings in the Extended Find and Replace commands. Regular expressions
allow you to specify all the possible variants in a search and to precisely control
replacements. Ordinary characters are combined with special characters to define the
pattern for the search. The regex parser evaluates the selected files and returns each
matching pattern.

In the Find command, the matching pattern is added to the find list. In the Replace
operation, it triggers insertion of the replacement string. When replacing a string, it is
just as important to ensure what is not found as what is. Simple regular expressions
can be concatenated into complex search criteria.

Note The rules listed in this section are for creating regular expressions in Studio. The rules
used by other regex parsers may differ.

Special characters

Because special characters are the operators in regular expressions, in order to
represent a special character as an ordinary one, you need to precede it with a double
backslash (\\)

Single-character regular expressions

This section describes the rules for creating regular expressions. You can use regular
expressions in the Search > Extended Find and Replace commands to match complex
string patterns.

The following rules govern one-character regexes that match a single character:

318 Developing Web Applications with ColdFusion
• Special characters are: + * ? . [^ $ () { | \

• Any character that is not a special character matches itself.

• A backslash (\) followed by any special character matches the literal character
itself, that is, the backslash escapes the special character.

• A period (.) matches any character, for example, “.umpty” matches either
“Humpty” or “Dumpty.”

• A set of characters enclosed in brackets ([]) is a one-character RE that matches
any of the characters in that set. For example, "[akm]" matches an "a", "k", or
"m".

• Any regular expression can be followed by one of the following suffixes: {m,n}
forces a match of m through n (inclusive) occurrences of the preceding regular
expression. The suffix {m,} forces a match of at least m occurrences of the
preceding regular expression. The syntax {,n} is not allowed.

• A range of characters can be indicated with a dash. For example, “[a-z]”
matches any lowercase letter. However, if the first character of the set is the
caret (^), the regex matches any character except those in the set. It does not
match the empty string. For example: [^akm] matches any character except “a”,
“k”, or “m”. The caret loses its special meaning if it is not the first character of
the set.

• All regular expressions can be made case insensitive by substituting individual
characters with character sets, for example, [Nn][Ii][Cc][Kk].

Character classes

You can specify a character by using one of the POSIX character classes. You enclose
the character class name inside two square brackets, as in this example:

REReplace(“Allaire’s Web Site”,”[[:space:]]”,”*”,”ALL”)

This code replaces all the spaces with *, producing this string:

Allaire’s*Web*Site

The following table shows the POSIX character classes that Studio supports.

Supported Character Classes

Character
Class

Matches

alpha Matches any letter. Same as [A-Za-z].

upper Matches any upper-case letter. Same as [A-Z].

lower Matches any lower-case letter. Same as [a-z].

digit Matches any digit. Same as [0-9].

Chapter 22: Maintaining Web Applications 319
Multi-character regular expressions

You can use the following rules to build a multi-character regular expressions:

• Parentheses group parts of regular expressions together into grouped sub-
expressions that can be treated as a single unit. For example, (ha)+ matches one
or more instances of “ha”.

• A one-character regular expression or grouped sub-expressions followed by an
asterisk (*) matches zero or more occurrences of the regular expression. For
example, [a-z]* matches zero or more lower-case characters.

• A one-character regular expression or grouped sub-expressions followed by a
plus (+) matches one or more occurrences of the regular expression. For
example, [a-z]+ matches one or more lower-case characters.

• A one-character regular expression or grouped sub-expressions followed by a
question mark (?) matches zero or one occurrences of the regular expression.
For example, xy?z matches either “xyz” or “xz”.

• The concatenation of regular expressions creates a regular expression that
matches the corresponding concatenation of strings. For example, [A-Z][a-z]*
matches any capitalized word.

• The OR character (|) allows a choice between two regular expressions. For
example, jell(y|ies) matches either “jelly” or “jellies”.

• Braces ({}) are used to indicate a range of occurrences of a regular expression, in
the form {m, n} where m is a positive integer equal to or greater than zero
indicating the start of the range and n is equal to or greater than m, indicating

alnum Matches any alphanumeric character. Same as [A-Za-z0-9].

xdigit Matches any hexadecimal digit. Same as [0-9A-Fa-f].

space Matches a tab, new line, vertical tab, form feed, carriage return, or
space.

print Matches any printable character.

punct Matches any punctuation character, that is, one of ! ‘ # S % & ‘ () * + , -
. / : ; < = > ? @ [/] ^ _ { | } ~

graph Matches any of the characters defined as a printable character except
those defined to be part of the space character class.

cntrl Matches any character not part of the character classes [:upper:],
[:lower:], [:alpha:], [:digit:], [:punct:], [:graph:], [:print:], or [:xdigit:].

Supported Character Classes (Continued)

Character
Class

Matches

320 Developing Web Applications with ColdFusion
the end of the range. For example, (ba){0,3} matches up to three pairs of the
expression “ba”.

Backreferences

Studio supports backreferencing, which allows you to match text in previously
matched sets of parentheses. A slash followed by a digit n (\n) is used to refer to the nth
parenthesized sub-expression.

One example of how backreferencing can be used is searching for doubled words -- for
example, to find instances of ‘the the’ or ‘is is’ in text. The following example shows the
syntax you use for backreferencing in regular expressions:

(“There is is coffee in the the kitchen”,
”([A-Za-z]+)[]+\1”,”*”,”ALL”)

This code searches for words that are all letters ([A-Za-z]+) followed by one or more
spaces []+ followed by the first matched sub-expression in parentheses. The parser
detects the two occurrences of is as well as the two occurrences of the and replaces
them with an asterisk, resulting in the following text:

There * coffee in * kitchen

Anchoring a regular expression to a string

All or part of a regular expression can be anchored to either the beginning or end of the
string being searched:

• If a caret (^) is at the beginning of a (sub)expression, the matched string must
be at the beginning of the string being searched.

• If a dollar sign ($) is at the end of a (sub)expression, the matched string must be
at the end of the string being searched.

Expression examples

The following examples show some regular expressions and describe what they match.

Regular Expression Examples

Expression Description

[\?&]value= A URL parameter value in a URL.

[A-Z]:(\\[A-Z0-9_]+)+ An uppercase DOS/Windows full
path that (a) is not the root of a drive,
and (b) has only letters, numbers,
and underscores in its text.

[A-Za-z][A-Za-z0-9_]* A ColdFusion variable with no
qualifier.

Chapter 22: Maintaining Web Applications 321
Resources

An excellent reference on regular expressions is Mastering Regular Expressions by
Jeffrey E.F. Friedl, published by O’Reilly & Associates, Inc.

Spell Checking
You can check the spelling of your document content and, optionally, code syntax by
using either the internal spell checker or the Microsoft Office spell checker, which is
enabled if Office 95 or later is detected during installation. Open the Options > Settings
(F8) > Spelling tab to set options.

You can download additional dictionaries for international languages and legal and
medical terms from the Allaire Web site.

To run the spell checker:

([A-Za-z][A-Za-z0-9_]*)(\.[A-Za-z][A-Za-
z0-9_]*)?

A ColdFusion variable with no more
than one qualifier, for example,
Form.VarName, but not
Form.Image.VarName.

(\+|-)?[1-9][0-9]* An integer that does not begin with a
zero and has an optional sign.

(\+|-)?[1-9][0-9]*(\.[0-9]*)? A real number.

(\+|-)?[1-9]\.[0-9]*E(\+|-)?[0-9]+ A real number in engineering
notation.

a{2,4} Two to four occurrences of ’a’: aa,
aaa, aaaa.

(ba){3,} At least three ’ba’ pairs: bababa,
babababa, ...

Regular Expression Examples (Continued)

Expression Description

• Click the Spell check tool button or select Tools > Spell Check (F7). You can
select commands from the Spell dialog for words not found in the
dictionary.

• Click the Mark spelling errors tool button or select Tools > Mark Spelling
Errors (SHIFT+F7) to enable spell checking as you type. Right-click in a
word and select from the drop-down list of commands.

322 Developing Web Applications with ColdFusion
Validating Code
Before you publish Web pages, it's a good idea to check your code. Studio’s integrated
validation utility can be used to check and report on HTML syntax errors. It does not
correct the errors, but gives you a list of errors and comments. Double-click on an error
message to highlight it in the document.

Open the Options > Settings (F8) Validation tab to select the validation levels for the
current document.

To run the validator:

Verifying Links
Due to the transitory nature of Web pages, you'll undoubtedly find that some of the
sites you link to will move or be removed during the lifetime of your site. Tracking
down these "missing links" can be time-consuming, but Studio makes the job easier by
letting you know which links might be bad.

The Link Checker can verify the location of documents on Web sites, local HTML files,
and dependencies for graphics and other media files. Links to secure pages (HTTPS)
FTP links, and mailto links cannot be verified. By default, all the links will be checked,
but you can un-check as many links as you like to skip verifying them. Tags in
comments are not calculated.

To verify links in the current document:

• Click the Validate current document tool button or select Tools > Validate
Document (SHIFT + F6). The Validation Results pane displays either a "No
errors or warnings" message or lists the syntax errors it found.

• Choose Tools > Validate Current Tag (F6) to check the selected tag.

1. Click the Verify Links tool button or select Tools > Verify Links. The Links
Results pane lists the following:

• Source — The current document name proceeded by an icon identifying
the link as a document or media file.

• Link — The link as referenced in the document.

• Full URL — The path or IP address of the link.

• Status — Initially set to "Untested."

Chapter 22: Maintaining Web Applications 323
Link verification options:

Testing Page Download Times
Page download times are a frequently-cited metric of a site’s design and effectiveness.
If you are developing a public site, you need to be sensitive to achieving a balance
between attractive content and tolerable page-loading times. Studio can help you find
that balance by supplying real values for document download times across a range of
modem speeds.

To test the current document’s download time:

1. Select Tools > Document Weight. The file’s dependencies are listed along with file
size and download times for a range of modem speeds. Tags in comments are not
calculated.

2. If the page’s download time exceeds the site’s requirements, edit the page to
decrease the number or size of dependencies, and re-test.

Studio uses the Root URL setting in your FTP configuration to determine the relative
path to files.

2. Click the Start Link Verification button on the Link toolbar. Each link is
checked in order. The Status column displays OK for successful links and
returns an appropriate message for failed links.

3. The Stop button is enabled during the link test. Click it if you need to end the
test before it completes.

• Select a link in the list and click the Set Full URL tool button to change the
URL or the local directory Studio should use to process the relative link.
Entries made in this dialog are stored in the drop-drown list for future use.
Setting the root URL does not modify the source document, it is simply
used to tell Studio how to test relative links.

• Click the Set Timeout tool button to enter a time value after which the
tester moves to the next link in the list.

• Click the Set Proxy tool button and enter a server name and port number if
the link is routed through a proxy server.

• Click the Print button to produce a report of failed links. The report
displays in your default browser. You can publish the report, email it, or
print it from the browser.

• Right-click on a link in the list to select additional options.

324 Developing Web Applications with ColdFusion
To set the root URL for an FTP server:

1. Click the Remote Files tab in the Resources view.

2. Right-click on a server name and select Server Properties.

3. Complete the Root URL field.

C H A P T E R 2 3
Chapter 23 Customizing the Development
Environment
If you have used ColdFusion Studio for a while, you have probably taken advantage
of its flexible interface to position toolbars, set tag color-coding, define validation
levels, and a host of other options.

You can take this open interface several steps further by creating your own tag
editors. Many CFML custom tag developers build tag editors to distribute with their
tags. These can be identified in Allaire’s Tag Gallery (http://www.allaire.com/
developer/taggallery/) by the <VTM> marker next to the tag name. You can also
modify existing tag editors to suit your needs.

If you publish Web pages that require a lot of user input or if you develop ColdFusion
applications, you can build custom wizards to gather user input.

Contents

• The Visual Tool Markup Language (VTML) ... 326

• Customizing Tag Chooser and Expression Builder 326

• Dialog Definition Files ... 327

• Creating Tag Definitions .. 329

• Building Tag Editors ... 333

• Adding Tag Help ... 340

• VTML Container/Control Reference .. 341

• Building Custom Wizards .. 358

• Creating Wizard Definition Pages ... 359

• Creating Wizard Output Templates .. 365

• Wizard Definition Page Library... 369

326 Developing Web Applications with ColdFusion
The Visual Tool Markup Language (VTML)
VTML is a family of markup languages used to extend the Integrated Development
Environment (IDE) of HomeSite and ColdFusion Studio. Using VTML tags you can
modify, as well as, add various elements of the IDE.

VTML can be used to customize:

• Tag Inspector

• Tag Tips

• Tag Insight

• Tag Editing Dialogs

• Tag Outline Profiles

• Wizards

• Tag Chooser elements

• Expression Builder

Customizing Tag Chooser and Expression Builder
The Tag Chooser and Expression Builder are important tools of a web developer. The
Tag Chooser is one of the primary interfaces to tag selection in ColdFusion Studio. The
Expression Builder is used to compose complex expressions in ColdFusion Studio.

Customization objective

The Tag Chooser dialog was designed to adapt flexibly to the new requirements
imposed by the constant evolution of HTML and CFML, as well as to accommodate the
emergence of new tag-based languages. In a similar way, the Expression Builder
provides the user with a hierarchical view of various expression elements that grow
with the evolution of ColdFusion, as well as other web technologies.

With the above in mind, both of the dialogs were designed to be fully customizable
using VTML. The content, as well as the behavior of the dialogs is controlled by VTM
templates: MarkupTags.VTM and ExpressionElements.VTM in the \Templates\
directory. Two VTML tags, CAT and E let you customize the content of these dialogs.

Chapter 23: Customizing the Development Environment 327
Dialog Definition Files
The structure of the markuptags.vtm and expressionelements.vtm files is very
simple. They both contain a set of category and element tags. Category tags can
contain any number of elements or other nested category tags.

<CAT … main category>

<CAT … sub-category No.1>
<E … >
<E … >
<E … >

</CAT>
<CAT … sub-category No.2>

328 Developing Web Applications with ColdFusion
<E … >
<E … >

</CAT>

</CAT>

Every category represents a category in the category tree located on the left-hand side
of the dialogs. The elements in turn represent the tags or expression elements included
under each category. The following section explains how to create and update category
and element tags.

Category tag

The CAT tag is used to define a category in the category tree. The following attributes
can be used in the category tags.

Category Tag <CAT … >

CAPTION The caption of the category.

DESC The contents of the HTML help for the category. Notice that the
HELPFILE attribute can be used to specify the help as a separate
file.

HELPFILE The relative path to the HTML help for the category.

(HELPFILE = "Docs/MyTag.htm")

ICON "Folder"|"Elements"|RelativeFilePath. Defines the icon used for
the category. You can use a pre-defined Folder or Elements
category. In addition, a relative file path can be provided to a
custom BMP image (ICON ="images/custom.bmp"). By default,
the Folder icon is displayed.

EXPANDED YES\NO Indicates that the category tree-item should be
expanded the first time the dialog is displayed. By default this
value is set to NO.

SHOWSUBELEMENTS YES\NO. Indicates that when selected the elements of its sub-
categories will also be displayed on the right-hand side. For
example, when the "HTML Tags" category is selected the right
hand side displays all the tags included in all the HTML tag sub-
categories. By default, this value is set to YES.

Chapter 23: Customizing the Development Environment 329
Element tag

The E tag is used to define elements within a category. These elements are either Tags
in the Tag Chooser or Expression Elements in the Expression Builder.

The following attributes define the behavior of an element:

Creating Tag Definitions
Various features of the development environment require the knowledge about a
specific tag to operate properly. For instance the Tag Inspector feature cannot function
properly unless it knows the attributes of the tag being entered. In addition. it needs to
know the type of each tag attribute, and in special instances, even the enumerated
values for a specific attribute. The Tag Inspector uses a set of tag definitions to learn
about the specifics of various tags.

The tag definitions are stored in \Extensions\TagDefs\ under the installation
directory. VTML is used to create tag definitions. For instance, all the information
about the APPLET tag is stored in \Extensions\TagDefs\HTML\Applet.vtm. The
definition files are organized in language directories due to name conflicts between
various markup languages. Users can customize existing tag definitions, as well as
create new tag definition files.

The following features use the tag definition files:

• Tag Inspector

• Tag Tips

• Tag Insight

• Tag Editing Dialogs

Element Tag <E … >

CAPTION The caption of the element.

VALUE Tag Chooser — This value represents the tag string pasted when the tag is
selected. If a visual editor exists for the tag, an incomplete tag string should
be used to invoke the editor. For example, VALUE="MATED" would invoke the
visual tag editor for MYTAG stored in mytag.vtm. Expression Builder – This
value represents the syntax of the expression element to be pasted into the
expression textbox.

DESC The contents of the HTML help for the element. Notice that the HELPFILE
attribute can be used to specify the help as a separate file.

HELPFILE The relative path to the HTML help for the element.

(HELPFILE = "Docs/MyTag.htm")

330 Developing Web Applications with ColdFusion
Creating a tag definition file

Every tag editor file contains the following markup structure:

<TAG>

<ATTRIBUTES>

… Defines tag attribute properties and behavior

</ATTRIBUTES>

<ATTRIBCATEGORIES>

… Defines logical grouping for tag attributes
</ATTRIBCATEGORIES>

<EDITORLAYOUT>

… Defines the layout of a tag editor

</EDITORLAYOUT>

<TAGLAYOUT>

… Defines the tag generation template
</TAGLAYOUT>

<TAGDESCRIPTION>

… HTML-based documentation for the tag

</TAGDESCRIPTION>

</TAG>

You can create the definition file in three ways:

• Write it manually.

• Create it from an existing tag definition file (a good way to learn).

• Use the Tag Definitions Library dialog to add a tag and edit the generated file.

Chapter 23: Customizing the Development Environment 331
Defining attributes

The ATTRIBUTES block defines attributes inside the main TAG block. The
ATTRIBUTES block can only contain ATTRIB tags. The following example
demonstrates the definition of four tag attributes: VALUE, TITLE, ALT and ALIGN.

<ATTRIBUTES>
<ATTRIB NAME="VALUE">
<ATTRIB NAME="TITLE">
<ATTRIB NAME="ALT">
<ATTRIB NAME="ALIGN">
</ATTRIBUTES>

In most cases the features such as Tag Insight require to know more than just the
names of the attribute. You can use the ATTRIB tag to define:

• Attribute value types (e.g., color, file path)

• Enumerated values (e.g., LEFT, RIGHT, TOP, BOTTOM for the ALIGN attribute)

Defining attribute value types

The value type for a specific attribute can be specified using the TYPE attribute in the
ATTRIB tag.

<ATTRIBUTES>
<ATTRIB NAME="VALUE" TYPE="text" />
<ATTRIB NAME="BGCOLOR" TYPE="color"/>
<ATTRIB NAME="FONTFACE" TYPE="font" />
</ATTRIBUTES>

The possible value types are:

• TEXT — free text content

• ENUMERATED — a list of enumerated values

• COLOR — a color value (name or hex)

• FONT — font name or font family

• FILEPATH — a full file path

• DIRECTORY — a directory path

• FILENAME — file name only

• RELATIVEPATH — a relative representation of the path

• FLAG — an ON\OFFattribute containing no value

The following value types are available in ColdFusion Studio ONLY:

• QUERYNAME — a ColdFusion record set name

• EXPRESSION — a ColdFusion expression

332 Developing Web Applications with ColdFusion
Defining enumerated values

Enumerated values can be specified for attributes of TYPE="Enumerated." A subtag
ATTRIBOPTION is used to specify such values:

<ATTRIB NAME="CHARSET" TYPE="ENUMERATED">
<ATTRIBOPTION VALUE="iso-8859-1" CAPTION="Western" />
<ATTRIBOPTION VALUE="iso-8859-2" CAPTION="Central European (ISO)" />
<ATTRIBOPTION VALUE="iso-8859-8" CAPTION="Hebrew (ISO-Visual)" />

</ATTRIB>

The CAPTION attribute specifies the form in which the option appears in the drop-
down lists while the VALUE attribute specifies the underlying value used by the
attribute. The CAPTION attribute is optional.

ATTRIB Tag Attributes

NAME Name of the attribute.

TYPE (Optional) Type of the value expected for the attribute:

• TEXT - free text content

• ENUMERATED - a list of enumerated values

• COLOR - a color value (name or hex)

• FONT - font name or font family

• FILEPATH - a full file path

• DIRECTORY - a directory path

• FILENAME - file name only

• RELATIVEPATH - a relative representation of the path

• FLAG - an ON\OFF attribute containing no value

Special Types Available in ColdFusion Studio ONLY:

• QUERYNAME - a ColdFusion record set name

• EXPRESSION - a ColdFusion expression

CACHEFAMILY (Optional) The name of the cache family associated with the
attribute.

CONTROL (Optional) Use to populate the attribute value to a specific tag
editor control when editing existing tags.

Chapter 23: Customizing the Development Environment 333
Use the following attributes to specify enumerated values:

Defining attribute categories

Use the ATTRIBCATEGORIES section to define attribute categories. The categories are
used to organize the attributes when viewed in the Tag Inspector. The
ATTRIBCATEGORIES block can only contain ATTRIBGROUP tags. The following
example demonstrates the definition of four categories.

<ATTRIBCATEGORIES>
<ATTRIBGROUP NAME="Appearance"

ELEMENTS="BACKGROUND,BGPROPERTIES,LEFTMARGIN,TOPMARGIN"/>
<ATTRIBGROUP NAME="Colors"

ELEMENTS="BGCOLOR,VLINK,ALINK,LINK,TEXT"/>
<ATTRIBGROUP NAME="Misc"

ELEMENTS="GIZMO"/>
</ATTRIBCATEGORIES>

Use the following attributes to specify the category attributes:

Building Tag Editors
The definition of a Tag Editor is composed of three tasks:

• Layout of dialog controls

• Definition of how to populate controls with tag attributes

• Definition of the tag generation template

Have a look at the editor file mytag.vtm to see how this works. The following section
will explain how to compose the editor file.

ATTRIBOPTION Tag Attributes

VALUE The value of the enumeration option.

CAPTION (Optional) The visual representation of the
option if different from VALUE.

ATTRIBGROUP Tag Attributes

NAME The name of the category.

ELEMENTS The list of attributes included in the category.

334 Developing Web Applications with ColdFusion
Defining controls

This section contains only two kinds of tags: CONTROL and CONTAINER tags.
CONTROL and CONTAINER tags represent graphical controls. The tags are identical in
definition, with the exception that only CONTAINER tags have the capability to
contain other CONTROL tags.

A Panel control is a good example of a control that can be a CONTAINER containing
other CONTROLS, such as Labels or TextBoxes.

Look at the following example:

<TAG>
<EDITORLAYOUT HEIGHT=50 WIDTH=200>

<CONTAINER NAME="Panel1" TYPE="Panel" WIDTH=150 HEIGHT=50>
<CONTROL NAME="lblCode" TYPE="label" CAPTION="Code" DOWN=20

RIGHT=20 WIDTH=70/>

Chapter 23: Customizing the Development Environment 335
<CONTROL NAME="txtCode" TYPE="TextBox" ANCHOR="lblCode"
<CORNER="NE" WIDTH="30"/>

</CONTAINER>
</EDITORLAYOUT>

</TAG>

You can name the above template MYTAG.VTM and test it by attempting to edit an
empty MYTAG tag. The tag editor dialog would look like this:

The example displays a single Panel CONTAINER containing Label and TextBox
CONTROLs. Only a few controls can be containers:

• TabDialog — A tab dialog control capable of containing TabPage container
controls.

• TabPage — Only used inside a TabDialog container control.

• Panel — A general purpose panel container control. Can contain any regular or
container controls.

You may have already noticed that the control represented by a CONTROL or a
CONTAINER tag is defined by the TYPE attribute. We can also see that WIDTH and
HEIGHT attributes determine the size.

The ANCHOR and CORNER attributes determine the point relative to which the
control is positioned. The ANCHOR can be specified as the name of any control that
was already laid down. The corner specifies the corner of the anchor control to be used
for positioning. The possible choices are NE, NW, SE, and SW. The DOWN and RIGHT
attributes then specify the pixel offset from the anchor control.

336 Developing Web Applications with ColdFusion
The following attributes are available for the Control and Container tags:

CONTROL\CONTAINER attributes

TYPE Type of the control/container. Available control types are:

• Label

• TextBox

• CheckBox

• RadioGroup

• DropDown

• TextArea

• FontPicker

• ColorPicker

• Image

• FileBrowser

• SQLTextArea

• ActiveX

Available container types are:

• Panel

• TabDialog

• TabPage

NAME Name of the control.

ANCHOR (Optional) The name of the control relative to which control is
positioned. If omitted, control is positioned relative to the upper
left corner of its container.

CORNER (Optional) Corner of the ANCHOR control relative to which offset
position is calculated (NW, NE, SW, SE). The default is NW, the
upper-left corner.

DOWN Offset in pixels down from the anchor point (corner).

RIGHT Offset in pixels right from the anchor point (corner).

Chapter 23: Customizing the Development Environment 337
Populating dialogs with tag data

Once the layout of controls is completed one needs to define the way in which the
editor controls are populated when you are editing an existing tag. This is done in the
ATTRIBUTES block of the main tag editor template.

The ATTRIBUTES block can only contain ATTRIB tags. The ATTRIB tag defines the way
tag attribute values get filled into the dialog controls.

WIDTH Width of the control.

Can be specified in three ways:

• In pixels (e.g., WIDTH=200).

• As the name of another control (e.g.,
WIDTH="SomeControl"). In this case the width of the
specified control is used. The control must be already
positioned.

• Set to maximum (WIDTH="MAXIMUM"). Stretches control
to the right boundary of its container.

HEIGHT Height of the control.

Can be specified in three ways:

• In pixels (e.g., HEIGHT =200).

• As the name of another control (e.g., HEIGHT
="SomeControl"). In this case the height of the specified
control is used. The control must be already positioned.

• Set to maximum (HEIGHT ="MAXIMUM"). Stretches control
to the bottom boundary of its container.

LFWIDTH Width of the control used when user’s system is set to use large
fonts.

LFHEIGHT Height of the control used when user’s system is set to use large
fonts.

MAXWIDTHPADDING Used with WIDTH=MAXIMUM. Specifies the padding in pixels
from the container’s right boundary.

MAXHEIGHTPADDING Used with HEIGHT=MAXIMUM. Specifies the padding in pixels
from the container’s bottom boundary.

CONTROL\CONTAINER attributes (Continued)

338 Developing Web Applications with ColdFusion
<ATTRIBUTES>
<ATTRIB NAME="VALUE" CONTROL="txtName"/>
<ATTRIB NAME="TITLE" CONTROL="txtTitle"/>
<ATTRIB NAME="TITLE" CONTROL="txtTitle2"/>
<ATTRIB NAME="ALT" CONTROL="txtAltText"/>
<ATTRIB NAME="ALIGN" CONTROL="dropAlign"/>

</ATTRIBUTES>

The name attribute of the ATTRIB tag specifies the name of the attribute, while
CONTROL specifies which control the value of that attribute should be assigned to.
Notice that you can have multiple ATTRIB tags with the same NAME. This is common
for more complex tag editor dialogs where a single attribute value may have to be filled
into multiple controls.

Special $$TAGBODY attribute name

There is one special tag attribute name ($$TAGBODY) which is used when a control
needs to be populated by the body of a tag. An example of such a tag editor is the editor
for the HTML tag TEXTAREA. The body of the TEXTAREA tag is filled into the
txtTextAreaContent control using the following ATTRIB tag.

<ATTRIB NAME="$$TAGBODY" CONTROL="txtTextAreaContent"/>

Generating the tag

The final stage in the process of building a tag editor is the definition of how a tag gets
generated from the date entered into the editor controls. The tag generation logic is
stored in the TAGLAYOUT block. This block contains a short template used to generate
the final tag string. The markup language used the TAGLAYOUT template that was
originally designed for wizards and was therefore called Wizard markup language
(WIZML). Because of this, all the tags in this section begin with the WIZ prefix.

Consult the section for more info on WIZML. A good way to get started is to have a look
at the TAGLAYOUT sections of existing HTML tag editors located in the
\Extensions\TagDefs\HTML directory in the main installation directory.

Variables passed to the layout template

WIZML is described in a separate section though a few things should be noticed.
WIZML supports variables as well as functions. The value of each control of the tag
editor is passed to the template using a variable with the same name. Therefore a
ColorPicker named colorBGColor will pass its value in colorBGColor variable. The
TAGLAYOUT template can then use this data to generate the tag string.

<TAGLAYOUT>
<MYTAG COLOR="$${colorBGColor}">

</TAGLAYOUT>

The above example shows a simple layout template for a hypothetical tag with a single
attribute COLOR. Notice that in WIZML variables are embedded using the $${}

Chapter 23: Customizing the Development Environment 339
delimiters. If the user chose White in the colorBGColor ColorPicker, the above template
would generate the following tag:

<MYTAG COLOR="White">

Special variables

In addition to the CONTROL variables, a few other parameters get sent to the tag
layout template:

• OPTIONLowerCaseTags — returns ‘true’ or ‘false’. Specifies whether the tag
should be generated using lowercase.

• OPTIONLinearLayout — Returns ‘true’ or ‘false’. Specifies whether the tag
should be generated with its attributes in a single line or indented vertically.

• TAGDATAUnknownAttributes — A string containing all attributes which were
contained in the edited tag string but are not recognized by the editor.

Using OPTIONLowerCaseTags

This parameter can be used to create a layout template, which generates a tag in lower
or upper case based on user preferences. Here is a version of the MAYTAG layout
template responding to case preferences:

<TAGLAYOUT>

<WIZIF OPTIONLowerCaseTags EQ ’true’>
<mytag color="$${colorBGColor}">

<WIZELSE>
<MYTAG COLOR="$${colorBGColor}">

</WIZIF>

</TAGLAYOUT>

Using OPTIONLinearLayout

Some people like their tag attributes in a single line while others like them indented.
Here is a version of the MAYTAG layout template responding to such preferences:

<TAGLAYOUT>

<WIZIF OPTIONLinearLayout EQ ’true’>
<WIZSET Spacer = ’ ’ >

<WIZELSE>
<WIZSET Spacer = Chr(13) & Chr(10) & ’ ’ >

</WIZIF>

<MYTAG COLOR="$${clrBGColor}"$${Spacer}FACE="$${fontFace}
"$${Spacer}SIZE="$${txtSize}">

</TAGLAYOUT>

The template would generate a tag based on the following layout preference:

340 Developing Web Applications with ColdFusion
LINEAR:

<MYTAG COLOR="White" FACE="Arial" SIZE="10">

NONLINEAR:

<MYTAG COLOR="White"
FACE="Arial"
SIZE="10">

Using TAGDATAUnknownAttributes

The TagDataUnknownAttributes tag contains the list of attributes that are contained in
the original tag string but are not supported by the editor. For example, you may write
an editor for the HTML tag INPUT. You may provide editing capabilities for all basic
attributes, however the editor will not cover JavaScript event attributes (for example,
onCLick= …, etc.) In order not to lose these "unknown" attributes during the editing
process, the editor engine creates the TAGDATAUnknownAttributes variable
containing a list of unknown attributes together with their original values. You can use
this variable to ‘stamp’ all the unsupported attributes at the end of the tag you are
generating.

<TAGLAYOUT>
<MYTAG COLOR="$${colorBGColor}"
<WIZIF TAGDATAUnknownAttributes NEQ
""> $${TAGDATAUnknownAttributes}</WIZIF>>

</TAGLAYOUT>

If we edited a tag <MYTAG COLOR="Blue" onClick="CallThis">, the above template
would preserve the onClick attribute despite the fact that it is not supported in the
editor. The editor is also intelligent enough to list the unknown attributes in a linear or
indented format based on a user’s layout preferences, as described in the previous
section.

Adding Tag Help
You can associate an HTML-based help document with a tag by simply embedding the
help text inside the TAGDESCRIPTION block.

Here’s an example of a tag description block and the result in a Tag Editor:

<TAGDESCRIPTION HEIGHT=100>

CFAPPLICATION
<P>Defines scoping for a ColdFusion application and
enables or disables storing client variables in the system
registry. By default, client variables are disabled.
CFAPPLICATION is typically used in the Application.cfm
file to set defaults for a specific ColdFusion application.

</TAGDESCRIPTION>

Chapter 23: Customizing the Development Environment 341
Providing help from an external file

As the help content grows, it may become cumbersome to specify the entire body of
the help inside the TagDescription block. In addition, large bodies of help embedded
in the editor file will cause the editor dialog to open more slowly as more markup has
to be parsed to compose the editor. Under these circumstances, it advisable to provide
large help contents in a separate HTML file. Such files can then be referenced using a
relative path from the tag editor template.

For example:

<TAGDESCRIPTION HELPFILE="Docs/TagHelpFile.htm"/>

VTML Container/Control Reference
This section contains the complete syntax, with examples, for VTML containers and
controls.

TabDialog container

<CONTAINER TYPE="TabDialog" …

TabDialog control is a special container control, because it can only contain <CONTAINER
TYPE="TabPage"> tags. This is natural because one needs to specify the tab pages before
embedding more controls on the tab dialog itself.

342 Developing Web Applications with ColdFusion
TabDialog example:

<CONTAINER NAME="MainTabDialog" TYPE="TabDialog" WIDTH=MAXIMUM
HEIGHT=MAXIMUM>

<CONTAINER NAME="TabPage1" TYPE="TabPage" CAPTION="TEXTAREA Tag">

... embedded controls

</CONTAINER>

<CONTAINER NAME="TabPage2" TYPE="TabPage" CAPTION="Content">

... embedded controls

</CONTAINER>

</CONTAINER>

TabPage container

<CONTAINER TYPE="TabPage" …

TabPage control is also special because it can only be contained inside a TabDialog
CONTAINER control.

CAPTION Caption displayed on the top of the tab.

Chapter 23: Customizing the Development Environment 343
TabPage example:

<CONTAINER NAME="MainTabDialog" TYPE="TabDialog" WIDTH=MAXIMUM
HEIGHT=MAXIMUM>

<CONTAINER NAME="TabPage1" TYPE="TabPage" CAPTION="TEXTAREA Tag">

... embedded controls

</CONTAINER>

<CONTAINER NAME="TabPage2" TYPE="TabPage" CAPTION="Content">

... embedded controls

</CONTAINER>

</CONTAINER>

Panel container

Panel example:

<EDITORLAYOUT HEIGHT=225>

<CONTAINER TYPE="Panel" …

Panel is the most common container control. Panel can contain any control or container
except TabPage, which is restricted to TabDialog.

CAPTION Caption displayed in the upper left corner of the panel boundary.

344 Developing Web Applications with ColdFusion
<CONTAINER NAME="MainTabDialog" TYPE="TabDialog" WIDTH=MAXIMUM
HEIGHT=MAXIMUM>

<CONTAINER NAME="TabPage1" TYPE="TabPage" CAPTION="MYTAG Tag">

<CONTAINER NAME="Panel1" TYPE="Panel" DOWN=5 RIGHT=10
WIDTH="MAXIMUM" HEIGHT=125>

<CONTROL NAME="lblSource" TYPE="Label" CAPTION="Source:"
DOWN=17 RIGHT=10 WIDTH=50/>

<CONTROL NAME="txtSource" TYPE="TextBox" ANCHOR="lblSource"
CORNER="NE" WIDTH="MAXIMUM"/>

<CONTROL NAME="lblAlign" TYPE="Label" CAPTION="Align:"
ANCHOR="lblSource" CORNER="SW" DOWN=11 WIDTH=50/>

<CONTROL NAME="dropAlign">TYPE="DropDown" ANCHOR="lblAlign"
CORNER="NE" WIDTH=100>
<ITEM VALUE="TOP" CAPTION="TOP" />
<ITEM VALUE="MIDDLE" CAPTION="MIDDLE" SELECTED/>
<ITEM VALUE="BOTTOM" CAPTION="BOTTOM" />

</CONTROL>

</CONTAINER>

<CONTAINER NAME="Panel2" TYPE="Panel" CAPTION=" Panel 2 "
ANCHOR="Panel1" CORNER="SW" DOWN=5 WIDTH="MAXIMUM"

HEIGHT=MAXIMUM
</CONTAINER>

</CONTAINER>

<CONTAINER NAME="Advanced" TYPE="TabPage" CAPTION="Advanced">

</CONTAINER>

</CONTAINER>

</EDITORLAYOUT>

Chapter 23: Customizing the Development Environment 345
Label control

Label example:

<CONTROL NAME="lblSource" TYPE="Label" CAPTION="Source:" DOWN=17 RIGHT=10
WIDTH=50/>

<CONTROL TYPE="Label" …

Panel is the most common container control. Panel can contain any control or container
except TabPage, which is restricted to TabDialog.

CAPTION The text displayed by the label.

AUTOSIZE YES\NO. Automatically sizes the control to the text it contains. This
option is overridden if WIDTH or HEIGHT are explicitly specified.

TRANSPARENT YES\NO. Makes label transparent.

ALIGN LEFT\CENTER\RIGHT. Specifies the horizontal alignment of text in the
label.

VALIGN TOP\CENTER\BOTTOM. Specifies the vertical alignment of text in the
label.

346 Developing Web Applications with ColdFusion
TextBox control

TextBox example

<CONTROL NAME="lblSource" TYPE="Label" CAPTION="Source:" DOWN=17 RIGHT=10
WIDTH=50/>

<CONTROL NAME="txtSource" TYPE="TextBox" VALUE="Some Value"
ANCHOR="lblSource" CORNER="NE" WIDTH="MAXIMUM"/>

<CONTROL TYPE="TextBox" …

A simple textbox control.

VALUE The text displayed by the textbox.

AUTOSIZE YES\NO. Automatically sizes the control to the text it contains.
This option is overridden if WIDTH or HEIGHT are explicitly
specified.

EDITABLE YES\NO. Enables or disables editing.

AUTOSELECT YES\NO. Decides whether contents get highlighted when the
cursor enters the textbox.

MAXLENGTH Limits the amount of text in the textbox to a specific number of
characters.

PASSWORDCHAR A character to be used to mask entered text. You can create a
simple password box using PASSWORDCHAR="*".

CHARCASE NORMAL\UPPER\LOWER. Specifies whether entered text is
automatically uppercased of lowercased. The default is
NORMAL, preserving entered case.

VALIGN TOP\CENTER\BOTTOM. Vertical alignment of text in the label.

Chapter 23: Customizing the Development Environment 347
DropDown control

DropDown example

<CONTROL NAME="lblAlign"
TYPE="Label" CAPTION="Align:"
ANCHOR="lblSource" CORNER="SW" DOWN=11 WIDTH=50/>

<CONTROL NAME="dropAlign"
TYPE="DropDown" ANCHOR="lblAlign" CORNER="NE" WIDTH=100>
<ITEM VALUE="TOP" CAPTION="TOP" />
<ITEM VALUE="MIDDLE" CAPTION="MIDDLE" SELECTED/>
<ITEM VALUE="BOTTOM" CAPTION="BOTTOM" />

</CONTROL>

<CONTROL TYPE="DropDown" …

A drop-down listbox. This tag requires <ITEM> sub-tags, which specify the list of items in
the drop-down list. The item tag has CAPTION and VALUE attributes. CAPTION specifies the
visible item text while VALUE specifies the underlying value for the option. SELECTED
attribute specifies which item is initially selected. Then free-text is entered into an
EDITABLE DropDown, the actual text is considered to be the value of the control.

Example:

<CONTROL NAME="dropTagOptions" TYPE="DropDown" WIDTH="200">
<ITEM CAPTION="option1" VALUE="Value1"/>
<ITEM CAPTION="option2" VALUE="Value2" SELECTED/>
<ITEM CAPTION="option3" VALUE="Value3"/>
</CONTROL>

EDITABLE The EDITABLE attribute decides whether it behaves like an
editable combo-box or a fixed listbox.

348 Developing Web Applications with ColdFusion
FontPicker control

FontPicker example

<CONTROL NAME="lblFace" TYPE="Label" CAPTION="Font:" DOWN=17 RIGHT=10
WIDTH=50/>

<CONTROL NAME="fontFace" TYPE="FontPicker" ANCHOR="lblFace" CORNER="NE"
WIDTH="MAXIMUM"/>

<CONTROL TYPE="FontPicker" …

A simple drop-down list font picker.

EDITABLE The EDITABLE attribute decides whether a font name can be entered
manually into the listbox.

Chapter 23: Customizing the Development Environment 349
ColorPicker control

ColorPicker example

<CONTROL NAME="lblColor" TYPE="Label" CAPTION="Color:" ANCHOR="lblFace"
CORNER="SW" DOWN=11 WIDTH=50/>

<CONTROL NAME="colorColor" TYPE="ColorPicker" ANCHOR="lblColor"
CORNER="NE" WIDTH="MAXIMUM"/>

<CONTROL NAME="lblColor" TYPE="Label" CAPTION="Color:" ANCHOR="lblFace"
CORNER="SW" DOWN=11 WIDTH=50/>

<CONTROL NAME="colorColor" TYPE="ColorPicker" ANCHOR="lblColor"
CORNER="NE" WIDTH="MAXIMUM"/>

<CONTROL TYPE="ColorPicker" …

A simple drop-down color picker. Enables selection of a predefined color or special color
code. Control returns value as a color name or hexadecimal value based on user’s
preferences.

350 Developing Web Applications with ColdFusion
CheckBox control

Checkbox example

<CONTROL NAME="checkNoShading"TYPE="CheckBox" CAPTION=" No Shading"
ANCHOR="numWidth" CORNER="NE" DOWN=4 RIGHT=20 WIDTH=MAXIMUM/>

<CONTROL TYPE="CheckBox" …

A simple checkbox control. Returns ‘true’ or ‘false’.

CAPTION Caption displayed next to the checkbox.

CHECKED YES\NO. Specifies initial status.

Chapter 23: Customizing the Development Environment 351
RadioGroup control

RadioGroup example

<CONTROL NAME="radioNameConflict"
TYPE="RadioGroup" CAPTION="Radio One"
ANCHOR="lblAccept" CORNER="SW" DOWN=35
HEIGHT=MAXIMUM WIDTH=MAXIMUM

<ITEM VALUE="ERROR" CAPTION="ERROR – The file
will not be saved and ColdFusion will return
an error." SELECTED="TRUE"/>

<ITEM VALUE="SKIP" CAPTION="SKIP – Neither
saves the file nor throws an error."/>

<ITEM VALUE="OVERWRITE" CAPTION="OVERWRITE -
Replaces the existing file if name conflict occurs." />

<CONTROL TYPE="RadioGroup" …

A set of radio buttons. This tag requires <ITEM> sub-tags that specify the list of
radio buttons. The item tag has CAPTION and VALUE attributes. CAPTION specifies
the caption of the radio button, VALUE specifies the underlying value for the option.
The SELECTED attribute specifies which radio options should be pre-selected.

Example:

<CONTROL NAME="radioTagOptions" TYPE="RadioGroup" WIDTH="200">
<ITEM CAPTION="option1" VALUE="Value1"/>
<ITEM CAPTION="option2" VALUE="Value2" SELECTED/>
<ITEM CAPTION="option3" VALUE="Value3"/>
</CONTROL>

352 Developing Web Applications with ColdFusion
<ITEM VALUE="MAKEUNIQUE" CAPTION="MAKEUNIQUE - Automatically
generates a unique filename for the upload." />

</CONTROL>

TextArea control

TextArea example

<CONTROL NAME="txtContent" TYPE="TextArea"
DOWN=5 RIGHT=5
WIDTH=MAXIMUM HEIGHT=MAXIMUM
MAXWIDTHPADDING=5 MAXHEIGHTPADDING=5/>

<CONTROL TYPE="TextArea” …

A simple multi-line text entry control.

SCROLLBAR NONE\HORIZONTAL\VERTICAL\BOTH. Specifies which scrollbars should
be displayed.

WRAP YES\NO. Enables wrapping of text.

Chapter 23: Customizing the Development Environment 353
SQLTextArea control

SQLTextArea example

<CONTAINER NAME="TabPage1" TYPE="TabPage" CAPTION="CFQUERY Tag">

<CONTAINER NAME="Panel1" TYPE="Panel" DOWN=5 RIGHT=10
WIDTH="MAXIMUM" HEIGHT=80>

<CONTROL NAME="lblQueryName"
TYPE="Label" CAPTION="Query Name:"
DOWN=17 RIGHT=10 WIDTH=80/>

<CONTROL NAME="lblDataSource"
TYPE="Label" CAPTION="Data Source:"
ANCHOR="lblQueryName" CORNER="SW"

DOWN=10 RIGHT=0 WIDTH=80/>
<CONTROL NAME="txtQueryName" TYPE="TextBox" ANCHOR="lblQueryName"

<CONTROL TYPE="SQLTextArea" … (ColdFusion Studio ONLY)

A multi-line text entry control that allows the user to execute an SQL statement. The
control contains a button that the user can use to invoke the query builder.

SCROLLBAR NONE/HORIZONTAL/VERTICAL/BOTH. Specifies which
scrollbars should be displayed.

DSNAMECONTROL The name of the control that should be populated with the
Data Source name when a query is selected.

QUERYNAMECONTROL The name of the control that should be populated with the
Query Name when a query is selected.

WRAP YES\NO. Enables wrapping of text.

354 Developing Web Applications with ColdFusion
CORNER="NE" WIDTH=130/>
<CONTROL NAME="txtDataSource" TYPE="TextBox"

ANCHOR="lblDataSource" CORNER="NE" WIDTH=130/>
<CONTROL NAME="lblMaxRows" TYPE="Label" CAPTION="Max Rows:"

ANCHOR="txtQueryName" CORNER="NE" DOWN=0 RIGHT=10 WIDTH=70/>
<CONTROL NAME="lblTimeout" TYPE="Label" CAPTION="Timeout:"

ANCHOR="txtDataSource" CORNER="NE" DOWN=0 RIGHT=10 WIDTH=70/>
<CONTROL NAME="numMaxRows" TYPE="TextBox" ANCHOR="lblMaxRows"

CORNER="NE" WIDTH=30/>
<CONTROL NAME="numTimeout" TYPE="TextBox" ANCHOR="lblTimeout"

CORNER="NE" WIDTH=30/>
<CONTROL NAME="checkDebug" TYPE="CheckBox" CAPTION="Print debug

info" ANCHOR="numTimeout" CORNER="NE" RIGHT=10 DOWN=4
WIDTH=MAXIMUM/>

</CONTAINER>

<CONTROL NAME="lblSQLStatement" TYPE="Label" CAPTION="SQL
Statement:" ANCHOR="Panel1" CORNER="SW"DOWN=10 RIGHT=0
WIDTH=110/>

<CONTROL NAME="txtSQLStatement" TYPE="SQLTextArea"
ANCHOR="lblSQLStatement" CORNER="SW" DOWN="8" WIDTH=MAXIMUM
HEIGHT=MAXIMUM DSNAMECONTROL="txtDataSource"
QUERYNAMECONTROL="txtQueryName"/>

</CONTAINER>

Chapter 23: Customizing the Development Environment 355
FileBrowser control

<CONTROL TYPE="FileBrowser" …

A textbox used to enter a file path. The control contains two toolbar buttons providing
accessibility to local and remote file\directory browsing.

CAPTION The window caption that should displayed in the file\directory
browsing dialogs. For example: CAPTION="Select File You Want
Uploaded".

FILTER The file filter that should be used by the file\directory browsing
dialogs. For example: FILTER="*.gif;*.jpeg;*.jpg".

356 Developing Web Applications with ColdFusion
FileBrowser example

<CONTROL NAME="lblSource" TYPE="Label"
CAPTION="Source:" DOWN=17 RIGHT=10
WIDTH=60/>

<CONTROL NAME="txtSource" TYPE="FileBrowser" ANCHOR="lblSource"
CORNER="NE" WIDTH="MAXIMUM" RELATIVE
FILTER="*.htm;*.html;*.cfml;*.cfm;*.asp" />

DIRONLY YES\NO. Specifies that a directory is being selected. This option will
convert the file dialogs accessible from the browse buttons to
become directory-browsing dialogs. By default, file-browsing is
assumed.

FILENAMEONLY YES\NO. Specifies that only a file name should be entered into the
textbox when a file is specified in a local or remote file dialog. By
default the entire path would be pasted. The attribute is irrelevant
when the DIRONLY attribute is used.

RELATIVE YES\NO. Instructs the control to calculate the relative path when a file
or a directory path is selected. The relative path is calculated relative
to the file currently opened. When a new file is being edited, it first
has to be saved before a relative path can be calculated. By default,
the absolute path is assumed.

<CONTROL TYPE="FileBrowser" … (Continued)

Chapter 23: Customizing the Development Environment 357
Image control

Image example

<CONTROL NAME="imgApplet" TYPE="Image" FILEPATH="Images/Applet.bmp"
DOWN=10 RIGHT=10 AUTOSIZE="Yes"/>

<CONTROL TYPE="Image" …

An image control capable of containing BMP images.

FILEPATH Specifies the relative path of the image file from the editor template.

AUTOSIZE YES/NO. Automatically sizes the control to the image it contains. This
option is overridden if WIDTH or HEIGHT are explicitly specified.

TRANSPARENT YES/NO. Controls transparency.

CENTER YES/NO. Centers the image.

358 Developing Web Applications with ColdFusion
ActiveX control

ActiveX example

<CONTROL NAME="activexGizmoPicker" TYPE="ActiveX"
PROGID="company.Gizmo"/>

Building Custom Wizards
This section describes how you can give users an easy way to enter information that
can then be published on the Web or used to drive ColdFusion applications. Wizards
are an integral part of many software products today because they invite users to
perform complex tasks in an orderly, comprehensible interface. Another benefit is that
a well-designed wizard controls its input and ensures a high probability of user
success.

Allaire makes extensive use of wizards in HomeSite and Studio and now extends that
capability to developers. If you have worked with VTML to create or edit tag dialogs,
you are familiar with building interface containers and controls and with defining page
layout. You can now add the Wizard Markup Language (WIZML) to your skill set and
add wizards to your applications.

To create a wizard:

1. Write a wizard definition file (.vtm) to specify the pages, parameters, output, and
logical flow.

2. Implement one or more output template files (.wml) for the wizard.

3. Create wizard graphic (.bmp) files.

Each of these steps is described in detail in the following sections.

<CONTROL TYPE="ActiveX" …

A container for an embedded ActiveX control. For an ActiveX control to function properly
within a tag editor the ActiveX control must implement four methods:

• void SetValue(LPCTSTR sValue) - called to set the control value.

• BSTR GetValue() - called to retrieve the control value.

• void SetFocus() - called to set focus to the control.

• void IntitializeFromMarkup(LPCTSTR strMarkup) – called to initialize the ActiveX
control with the CONTROL tag in the Custom Markup application.

PROGID The ProgID of the ActiveX control.

Chapter 23: Customizing the Development Environment 359
Saving wizard files

The recommended way to organize wizards and supporting files is to save the .vtm and
.wml files in the \Wizards\Custom folder and to save the image files in the
\Wizards\Images folder of your Studio directory.

Creating Wizard Definition Pages
The first step in building a custom wizard is to write a VTML file to define the interface
and output parameters. This section describes the VTML tags used in this part of the
process and presents an example definition file.

VTML for Wizards tag summary

The following is the hierarchy of the tag set for wizard definition files:

WIZARD — The enclosing tag for the entire file; it defines the new wizard with a name,
caption and default image.

PARAM — When used as a sub-tag of the WIZARD tag, it defines a parameter that the
wizard uses to generate its output. These parameters are then available for use with
wizard output templates.

TEMPLATE — Defines an output template and identifies the file used for text output.

PAGE — Defines a wizard page that determines which page class to load.

PARAM — When used as a sub-tag of the PAGE tag, it sets the behavior of a page class.
This is useful for standard pages which are intended to be re-used across multiple
wizards.

INPUT — Defines an input control on a wizard page. If the NAME attribute of the
INPUT control matches both the name of a control on the wizard page as well as the
name of a PARAM defined within the WIZARD tag then the control is automatically
‘bound’ to the underlying parameter without requiring any explicit code.

NEXTPAGE — The NEXTPAGE tag allows for complex routing between pages based on
the value of conditional expressions.

PAGELAYOUT — Same as VTML syntax for containers and controls.

VTML for Wizards tag reference

The following tables provide the complete VTML syntax for writing wizard definition
files.

360 Developing Web Applications with ColdFusion
WIZARD

PARAM (for WIZARD tag)

TEMPLATE

Attribute Description

NAME Optional. Used to resolve the names of pages that belong to a
specific wizard. May be registered using the syntax
WizardName.PageName.

CAPTION Optional. Caption to display in the wizard’s title bar.

IMAGE Optional. Default bitmap to use for pages within the wizard.

Attribute Description

NAME Name of the parameter.

VALUE Initial value of the parameter.

REQUIRED Optional. The wizard manager will not enable the Finish button
until all required parameters are entered.

Attribute Description

NAME File name of the wizard (.wml) output template.

OUTPUTFILE Name of the file to which output to based on the results of
processing the template.

OUTPUTPATH Optional. Output directory for the file. Defaults to the value
of the variable LOCATION. Note that you must provide a
wizard page where the user can specify this value.

DESCRIPTION Optional. Description of the wizard page’s function for use
in the output summary page.

Chapter 23: Customizing the Development Environment 361
PAGE

PARAM (for PAGE tag)

INPUT

Attribute Description

TYPE Required for dynamic wizards.

"Dynamic" - VTML layout

"PageName" - from Page Library (see the Wizard Definition
Page Library section below)

NAME Name of the page.

CAPTION Caption to display in the top portion of the page.

IMAGE Optional. Override of the default wizard bitmap.

CONDITION Optional. Conditional expression which determines if the
page is displayed.

NEXTPAGE Optional. Name of page to go to after the current one. The
default page is to the next page defined in the
configuration file.

Attribute Description

NAME Name of the parameter.

VALUE Value of the parameter.

Attribute Description

NAME Name of the form control to which the INPUT is bound.

PARAM Optional. Name of parameter to which the INPUT is bound.
Defaults is the NAME attribute).

DEFAULT Optional. Default value for the input.

REQUIRED Optional. Is the input required?

362 Developing Web Applications with ColdFusion
NEXTPAGE

Dynamic expressions in tags

Any tag attribute may combine static, constant text with embedded dynamic
expressions that reference parameters or input controls. To embed an expression
within a text string, the following syntax is utilized:

$${ expression }

So, for example, to set the REQUIRED attribute of a parameter based on whether
another value was set, you would use the following syntax:

<PARAM NAME="RowsPerPage" VALUE="10"
REQUIRED="$${ ParameterExists(’Customize’) }">

Or, to customize the OUTPUTFILE attribute of the TEMPLATE tag using a name
attribute entered by the user, you would use the following syntax:

OUTPUTFILE="$${Name}Admin.cfm">

The expression syntax supported within the wizard configuration file is the same as the
one supported in wizard output templates (see the reference section for more details).

Bound controls

One of the most powerful capabilities of wizard pages are bound controls. Bound
controls allow you to place controls onto the wizard page and have their values
automatically bound to wizard parameters. To do this, simply add an INPUT sub-tag to
the PAGE tag for each control you wish to bind, making sure that the NAME attribute of
the INPUT tag matches the Name property of the control. All controls specified in the
layout can be bound.

VALIDATIONMSG Optional. A message to display to the user if the input is
required and a value is not entered.

LISTCONTENTS Optional. If this is TCustomListBox or TCustomComboBox
based input, then a comma-separated list will be used to
populate the list with values.

Attribute Description

NAME Name of a page to go to next.

CONDITION Conditional expression that determines whether to go to the page.
If multiple NEXTPAGE tags are specified, then the first one to match
a CONDITION will be the next page.

Attribute Description (Continued)

Chapter 23: Customizing the Development Environment 363
Wizard definition page example

This sample wizard creates an HTML template.

<WIZARD NAME=”DefaultTemplate” CAPTION=”Default HTML Template”>

<!--- wizard parameters --->
<PARAM NAME=”sDocType” VALUE=”HTML 4.0” REQUIRED=”true”>
<PARAM NAME=”sTitle” VALUE=””>
<PARAM NAME=”bMetaDescr” VALUE=”false”>
<PARAM NAME=”sMetaDescr” VALUE=””>
<PARAM NAME=”bMetaKeywords” VALUE=”false”>
<PARAM NAME=”sMetaKeywords” VALUE=””>

<!--- WIZARD PAGE --->

<!--- attributes page --->
<PAGE NAME=”DocAttribs” TYPE=”DYNAMIC”

CAPTION=”HTML Document Attributes”
IMAGE=”..\\images\\main.bmp”>

<PAGELAYOUT>
<CONTROL NAME=”lblDocType” TYPE=”label”

DOWN=”10” RIGHT=”10”
WIDTH=”90”
CAPTION=”Document Type:”

/>

<CONTROL NAME=”ddDocType” TYPE=”DropDown”
EDITABLE=”no”
ANCHOR=”lblDocType” corner=”NE” WIDTH=”MAXIMUM” down=”-5”>

<ITEM CAPTION=”HTML 2.0” VALUE=”HTML 2.0”/>
<ITEM CAPTION=”HTML 3.2” VALUE=”HTML 3.2”/>
<ITEM CAPTION=”HTML 4.0” VALUE=”HTML 4.0”/>

</CONTROL>

<CONTROL NAME=”lblTitle” TYPE=”label”
ANCHOR=”lblDocType” CORNER=”SW” down=”20”
WIDTH=”90”
CAPTION=”Title:”

/>

<CONTROL NAME=”tbTitle” TYPE=”TextBox”
ANCHOR=”lblTitle” CORNER=”NE” WIDTH=”MAXIMUM” down=”-5”

/>

<CONTAINER NAME=”pnlMetaDescription” TYPE=”Panel”
CAPTION=”Meta Description”
ANCHOR=”lblTitle” CORNER=”SW” DOWN=”20”
WIDTH=”MAXIMUM” MAXWIDTHPADDING=”10” HEIGHT=”80”

LFHEIGHT=”90”>

<CONTROL NAME=”chkMetaDescr” TYPE=”CheckBox”
CAPTION=”Add meta description:”

364 Developing Web Applications with ColdFusion
DOWN=”20” RIGHT=”15”
WIDTH=”MAXIMUM”/>

<CONTROL NAME=”tbMetaDescr” TYPE=”TextBox”
ANCHOR=”chkMetaDescr” CORNER=”SW” DOWN=”8”
WIDTH=”MAXIMUM”/>

</CONTAINER>

</PAGELAYOUT>

<INPUT NAME=”ddDocType” PARAM=”sDocType”>
<INPUT NAME=”tbTitle” PARAM=”sTitle” REQUIRED=”yes” VALIDATIONMSG=

“Please enter a document title” or some equivalent message>
<INPUT NAME=”chkMetaDescr” PARAM=”bMetaDescr”>
<INPUT NAME=”tbMetaDescr” PARAM=”sMetaDescr”>

</PAGE>

<!--- attributes page --->
<PAGE NAME=”MetaKeywords” TYPE=”DYNAMIC”

CAPTION=”Meta Keywords”
IMAGE=”..\\images\\main.bmp”>

<PAGELAYOUT>

<CONTROL NAME=”chkMetaKeywords” TYPE=”CheckBox”
CAPTION=”Add meta keywords:”
DOWN=”15” RIGHT=”10”
WIDTH=”MAXIMUM”/>

<CONTROL NAME=”taMetaKeywords” TYPE=”TextArea”
ANCHOR=”chkMetaKeywords” CORNER=”SW” down=”10”
HEIGHT=”MAXIMUM” width=”MAXIMUM”/>

</PAGELAYOUT>

<INPUT NAME=”chkMetaKeywords” PARAM=”bMetaKeywords”>
<INPUT NAME=”taMetaKeywords” PARAM=”sMetaKeywords”>

</PAGE>

<!--- OUTPUT TEMPLATE --->

<TEMPLATE
NAME=”Custom.wml”
OUTPUTFILE=”MyFile.cfm”
DESCRIPTION=”New HTML file”>

</WIZARD>

Chapter 23: Customizing the Development Environment 365
Creating Wizard Output Templates
The Wizard Markup Language (WIZML) enables the customization of files produced
by the wizards. WIZML is used inside the templates to dynamically create files based
on the data provided by the wizard. For example, if a wizard generates a tag called
<GIZMO> with a single attribute FILEPATH, the template could look as simple as this:

<GIZMO FILEPATH="$${txtFilePath}">

This example will create a file with a single <GIZMO> tag. Notice the syntax
$${variablename} that is used to populate the value of FilePath with the actual value
entered in the wizard.

Using WIZML

WIZML output templates use a high-level markup syntax that works very much like
CFML. Supported tags include WIZSET, /WIZELSE/WIZELSEIF, WIZLOOP, and
WIZINCLUDE. In addition, a simple expression syntax that is a subset of the
ColdFusion expression syntax and function library is supported within output
templates.

Parameters

Output templates are driven by the values of parameters, much like ColdFusion
templates are driven by the values of Form and URL parameters. Parameters can be
output directly or can be used to customize the type of output generated. The values of
these wizard parameters can originate from several locations:

• From a value set by a PARAM tag provided by the wizard

• From an embedded tag editor control

• Through execution of the WIZSET tag within the output template

To output the value of a parameter within a template, use a double dollar sign escape
sequence. For example, to output the value of a variable named Color you would use
the syntax $${Color}. While this is the recommended syntax, you can use a simpler
form when for a parameter value within the attribute of a WIZ tag. For example, <WIZIF
Color= “black”> is valid.

366 Developing Web Applications with ColdFusion
Expressions and functions

In addition to outputting and manipulating simple parameter values, an expression
syntax that includes support for a subset of the ColdFusion functions is also provided.
To output the value of an expression you add a set of curly braces to the $$ and include
the expression within the braces, for example:

$${ ’This is the ’ & Color }

$$(’The result of 7 divided by 22 is ’ & 7/22 }

$$(Left(’FooBar’, 3) }

As you can see from the example above, these expressions are very similar to
ColdFusion expressions. Strings are delimited using the single quote character. The
customary set of arithmetic and concatenation operators are supported (+,-,*,/,&). The
comparison operators LT, LTE, GT EQ, and NEQ are supported, and logical
comparisons using AND, NOT, and OR are supported.

The two main categories of functions currently supported are string and runtime.

String functions

• Chr

• Compare

• CompareNoCase

• Find

• FindNoCase

• LTrim

• RTrim

• Trim

• LCase

• UCase

• Len

• Left

• Right

• Mid

• RepeatString

Chapter 23: Customizing the Development Environment 367
Runtime functions

• ParameterExists

• SetVariable

• Evaluate

The syntax and behavior of all of these functions is identical to the equivalent
functions in ColdFusion, except for ParameterExists, which takes a string argument
rather than a direct variable reference.

WIZ Tags

The behavior of wizard output templates is controlled by the use of WIZ tags in the
template. These tags are like ColdFusion tags except that they are prefixed with the
characters WIZ instead of CF.

Supported tags

• WIZSET — Sets a wizard parameter.

• WIZINCLUDE — Includes another wizard output template.

• WIZLOOP — Iterates over a set of output.

• WIZBREAK/WIZCONTINUE — Assists in loop flow control.

• WIZIF/WIZELSEIF/WIZELSE — Sets conditional flow control.

Special considerations

Strings used within an output template tag attribute use the C-language convention (\)
for escaping special characters. For example, the following attribute uses a newline
character to split the value into two lines:

CAPTION="This is line one\nThis is line two"

Other special characters of note include carriage-return (\r), tab (\t), and slash (\\). For
example, the following attribute references a template in a directory two levels above
the current directory:

TEMPLATE="..\\..\\Header.wml"

WIZML reference

Here is the complete Wizard Markup Language syntax:

WIZSET

WIZSET works the same way as the ColdFusion CFSET tag.

For example:

368 Developing Web Applications with ColdFusion
<WIZSET Color = ’Red’>
<WIZSET Pi = 7/22>
<WIZSET ShortName = Left(LongName, 5)>

WIZINCLUDE

WIZLOOP, WIZBREAK, and WIZCONTINUE

The WIZLOOP tag supports several types of loops including:

• Index-based (using the INDEX, FROM, TO, and STEP attributes)

• Condition-based (using the CONDITION attribute)

• List-based (using the INDEX and LIST attributes)

• TStringList-based (using the INDEX and STRINGLIST attributes)

The attributes for the WIZLOOP tag are as follows:

The WIZBREAK and WIZCONTINUE tags have no attributes, and can be placed
anywhere within a WIZLOOP tag to either exit the loop (WIZBREAK) or move on to the
next loop iteration (WIZCONTINUE).

Attribute Description

TEMPLATE Required. The relative path of a template that is to be included in
the currently executing template.

WIZLOOP Tag Attributes

Attribute Description

INDEX Name of a variable for a loop to set on each iteration (required
for index and list-based loops). It serves as a counter.

FROM Index to start looping from.

TO Index to loop to.

STEP Step value for each increment (can be positive or negative).

CONDITION Conditional expression to control whether the loop should be
exited.

LIST A list of CommaText format. This is the format that a Delphi-
based string list uses to store textual representations of itself.

STRINGLIST The name of a parameter created with the SetObjectParameter
function which is of type TStringList.

Chapter 23: Customizing the Development Environment 369
WIZIF, WIZELSEIF, and WIZELSE

The WIZIF, WIZELSEIF, and WIZELSE tags work identically to the corresponding CFML
tags. Any valid Boolean expression can be used in the WIZIF and WIZELSEIF tags.

<WIZIF sDocType eq "HTML 4.0">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<wizelse sDocType eq "HTML 3.2">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<wizelse sDocType eq "HTML 2.0">

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

</WIZIF>

<HTML>
<HEAD>

<TITLE>$${sTitle}</TITLE>

<WIZIF bMetaDescr eq "true">
<META NAME="description" CONTENT="$${sMetaDescr}">

</WIZIF>

<WIZIF bMetaKeywords eq "true">
<META NAME="keywords" CONTENT="$${sMetaKeywords}">

</WIZIF>

</HEAD>
<BODY>

</BODY>
</HTML>

Wizard Definition Page Library
ColdFusion Studio contains a set of seven page definition files that you can use to
quickly build data access capabilities into your wizards. The pages are based on the
Studio Drill-down Wizard available in the File > New dialog.

SelectNameAndLocation

Description

This page collects application name and location where the destination directory for
the output templates. It allows the user to select the directory from the local or remote
server. This page is required if any of the following pages are included in the wizard.

370 Developing Web Applications with ColdFusion
Exposes controls

editApplicationName (textbox) — After the page is submitted, the content of this
textbox are copied to the SafeApplicationName parameter with all non-allowed
characters stripped out. This value can be then used as part of the file names.

editLocation (textbox) — This control should be bound to the Location parameter. The
value of this parameter is preset to the directory opened in the left pane.

Example

<PAGE name="SelectWizardNameAndLocation" type="SelectNameAndLocation"
caption="Data Drill-Down Application" image="..\\images\\Main.bmp">

<INPUT name="editApplicationName" param="ApplicationName"
required="yes"
validationMsg="You cannot leave the Application Name field
blank">

<INPUT name="editLocation" param="Location"required="yes"
validationMsg="You cannot leave the Location field blank">

</PAGE>

SelectDataSource

Description

This page displays a list of available data sources on the selected local or remote server.

Uses controls

cbDataSources (dropdown) — This control lists all available data sources. The control
exchanges with the bound parameter the name of the selected data source.

Reads parameters

ListBoxLabel — Caption for the dropdown control.

ListBoxDescription — More detailed description for the dropdown control.

ResetParams — Comma-delimited list of parameters that should be emptied if user
reselects the data source.

RemoveParams — Comma-delimited list of parameters that should be removed if user
reselects the data source.

Chapter 23: Customizing the Development Environment 371
Example

<PAGE name="DataSource" type="SelectDataSource" caption="Data Source"
image="..\\images\\SelectData.bmp">

<PARAM name="ListBoxLabel" value="Select data source:">
<PARAM name="ListBoxDescription"

value="Choose the data source from which you would like to display
data.\n\nIf your database is not registered as ODBC data source,
open the ODBC administrator in Control Panel and add system data
source for this database.">

<PARAM name="ResetParams" value="Joins">
<PARAM name="RemoveParams" value="Tables,SearchFields,ResultFields,

DetailFields,UniqueIdentifier">

<INPUT name="cbDataSources" param="DataSource" required="yes"
validationMsg="You did not select the data source. Please select
one before proceeding.">

</PAGE>

SelectTables

Description

This page displays a list of tables in the specified data source and lets the user select
one or more of them.

Exposes controls

lstTables (dropdown) — The control lists tables in the data source specified in the
DataSource parameter. The control exchanges with the bound parameter a comma-
delimited list of selected tables.

Reads parameters

DataSource (required) — Name of the data source

ListBoxLabel — Caption for the dropdown control

ListBoxDescription — More detailed description for the dropdown control

MultiSelect — If “YES”, user is allowed to select more than one table.

ResetParams — Comma-delimited list of parameters that should be emptied if user
reselects the tables.

RemoveParams — Comma-delimited list of parameters that should be removed if user
reselects the tables.

372 Developing Web Applications with ColdFusion
Example

<PAGE name="Tables" type="SelectTables" caption="Tables"
image="..\\images\\SelectTable.bmp">

<PARAM name="DataSource" value="$${DataSource}">
<PARAM name="ListBoxLabel" value="Select database tables:">
<PARAM name="ListBoxDescription"

value="Please specify the tables which will be involved in this
application. This should include any tables against which you
would like to search or tables containing data that will be
displayed on either the Result or Detail pages.\n\nPress Ctrl or
Shift together with the mouse click in order to select more than
one table. Do not select unrelated tables.">

<PARAM name="MultiSelect" value="yes">
<PARAM name="ResetParams" value="Joins">
<PARAM name="RemoveParams" value="SearchFields,ResultFields,

DetailFields,UniqueIdentifier">

<INPUT name="lstTables" param="Tables" required="yes"
validationMsg="You did not select any tables. Please select at
least one before proceeding.">

</PAGE>

SelectTable

Description

This page lets the user select one of the tables from the specified data source.

Exposes controls

cbTables (dropdown) — The control lists tables in the data source specified in the
DataSource parameter.

The control exchanges with the bound parameter the name of the selected table.

Reads parameters

DataSource (required) — Name of the data source

ListBoxLabel — Caption for the dropdown control

ListBoxDescription — More detailed description for the dropdown control

ResetParams — Comma-delimited list of parameters that should be emptied if user
reselects the table.

RemoveParams — Comma-delimited list of parameters that should be removed if user
reselects the table.

Chapter 23: Customizing the Development Environment 373
Example

<PAGE name="Table" type="Table" caption="Table"
image="..\\images\\SelectTable.bmp">

<PARAM name="DataSource" value="$${DataSource}">
<PARAM name="ListBoxLabel" value="Select database table:">
<PARAM name="ListBoxDescription"

value="Records from this table will be displayed in the record
viewer.">

<PARAM name="RemoveParams" value="Table,ViewFields,EditFields,
UniqueIdentifier">

<INPUT name="cbTables" param="Table" required="yes"
validationMsg="You didn’t select the table. Please select one
before proceeding.">

</PAGE>

SelectTableJoins

Description

The page lets the user select fields from multiple tables for table joins.

Exposes controls

lstJoins (dropdown) — The control lists field pairs as selected from the dropdown field
lists. This list can be pre-filled from the comma delimited list of items, where each item
has format “table1.field1=table2.field2”.

Reads parameters

DataSource (required) — Name of the data source

Tables (required) — Comma-delimited list of the tables

ListContent (required) — Input parameter

Example

<PAGE name="TableJoins" type="SelectTableJoins" caption="Table Joins"
image="..\\images\\SelectJoins.bmp">

<PARAM name="DataSource" value="$${DataSource}">
<PARAM name="Tables" value="$${Tables}">
<PARAM name="ListContent" value="$${Joins}">

<INPUT name="lstJoins" param="Joins">

</PAGE>

374 Developing Web Applications with ColdFusion
SelectFields

Description

This page displays all fields from the specified tables and lets the user select one or
more of them.

Exposes controls

lstFields (dropdown) — The control lists fields in the tables specified in the Tables
parameter. The control exchanges with the bound parameter a comma-delimited list
of selected fields, where each item is in format “table.field=type,size,required”. Type
specifies the type of the table field can have following values (BIT, CHAR, MEMO, INT,
FLOAT, DATETIME. Size gives information about size of the field in bytes (this might
not be true for certain DBMS and types). Required is “YES” if the field value cannot be
NULL.

Reads parameters

DataSource (required) — Name of the data source

Tables (required) — Comma-delimited list of the tables

ListBoxLabel — Caption for the dropdown control

ListBoxDescription — More detailed description for the dropdown control

MultiSelect — If “YES”, user is allowed to select more than one field

Example

<PAGE name="SearchFields" type="SelectFields" caption="Fields for Search
page" image="..\\images\\SearchCriteria.bmp">

<PARAM name="DataSource" value="$${DataSource}">
<PARAM name="Tables" value="$${Tables}">
<PARAM name="ListBoxLabel" value="Select the search fields:">
<PARAM name="ListBoxDescription"

value="Choose all fields that should be included as search
criteria on the Search page. Press Ctrl or Shift together with the
mouse click in order to select more than one field.">

<PARAM name="MultiSelect" value="yes">

<INPUT name="lstFields" param="SearchFields" required="yes"
validationMsg="You did not select any fields. Please select at
east one before proceeding.">

</PAGE>

Chapter 23: Customizing the Development Environment 375
SelectField

Description

This page lets the user select one field from the list of fields. The list of fields contains
all fields from the specified tables.

Exposes controls

cbFields (required) — The control lists fields in the tables specified in the Tables
parameter. The control exchanges with the bound parameter the field information in
the format “table.field=type.size.required” (see the SelectFields page)

Reads parameters

DataSource (required) — Name of the data source

Tables (required) — Comma-delimited list of tables

ListBoxLabel — Caption for the dropdown control

ListBoxDescription — More detailed description for the dropdown control

Example

<PAGE name="IDField" type="SelectField" caption="Unique Identifier"
image="..\\images\\UniqueIDDetail.bmp">

<PARAM name="DataSource" value="$${DataSource}">
<PARAM name="Tables" value="$${Tables}">
<PARAM name="ListBoxLabel" value="Select the unique identifier for

the Detail page:">
<PARAM name="ListBoxDescription" value="In order to ’drill-down’ to

the detail page the wizard needs to know the unique identifier for
the detail page. This is the field that determines which record
should be displayed in detailed form.\n\nFor example, if you are
building an application to search an employee database you might
use a field called ’Employee_ID’ as the unique identifier.">

<PARAM name="MultiSelect" value="no">

<INPUT name="cbFields" param="UniqueIdentifier" required="yes"
validationMsg="You did not select the unique identifier. Please
select one before proceeding.">

</PAGE>

376 Developing Web Applications with ColdFusion

Index 377
Special
" (Double-quote character) 123
199
(Pound sign) 123

form fields 199
inside CFOUTPUT 122

‘ (Backquote) 104
- (Minus sign) 116

A
ACCEPT attribute 200
ActiveX (VTML) 358
Adding an ODBC Data Source 103
Adding hyperlinks in Studio 289
Adding Tag Help 340
Administrator, Cold Fusion 12
Allaire

contacting 9
Customer Support 5
Developer Community 6
Professional Education 5
Technical Support 9

Allaire Alliance 6
Anchor tag, hypertext 123, 124
AND operator 58
Appending to text files 206
APPENDKEY attribute 174
Applet-based control, Java 162
Application development tools 23
Application Framework, Web 68

Application.cfm page 69
CFINCLUDE 72
client state management 42, 78
custom error pages 84
default variables 82
root directory 71

Application page 12
aborting processing 60
conditional processing 56
controlling page flow 55
cookies 51
directory 69
encrypting 86
error 84
file upload 199
including files 60
multipurpose 16
page requests 59
passing variables 38
URL 120
user entry 15
variables 40

Application Security 85
Application Server, Cold Fusion 12

Application variables 72
about 41, 48
example 77
managing 77
scoping 50
time-outs 50

Application, Cold Fusion 68
and data sources 16
components 12
creating 13
debugging 17
defining 70
planning 13

Application.cfm file 67, 69
and CFINCLUDE 72
application directories 71
application root directory 71
application-level settings 68
case-sensitivity 68
error handling 70
global settings 70
processing 70
setting up application

framework 70
user security 70

ASCII text file
appending to 206

Attachment, mail 231, 234, 240
AttemptedServerFile

file upload parameter 202
Attributes

setting file and directory 200
AUTH_TYPE variable 53
Authentication, user 86
Automatic validation 152

B
Backquote (‘) 104
Backreferences 320
Bandwidth 15
Boolean data 118
Bound controls 362
Breakpoints 94
Breakpoints window (debugger) 94
Browse view in Studio 287
Browser

client-state management 42, 78
content types 130
cookies 41, 50
environment variables 51
HTTP 222
mail 237
uploading files 198

Browser Path (RDS mappings) 89

Building a SELECT Query 137
Building Custom Wizards 358
Building Drop-Down List Boxes 189
Building Form Controls 191
Building Slider Bar Controls 187
Building SQL Queries 136
Building Tag Editors 333
Building Text Entry Boxes 188
Building Tree Controls with

CFTREE 166

C
Caching CFFTP connections

multiple pages 214
Caching Query Results 114
Caching, variable 81
Cascading Style Sheet editor 22
CAT tag (VTML) 328
Category tag 328
CF Administrator vs. CFINDEX 250
CFABORT tag 60
CFAPPLICATION tag 75

application variables 73
client storage options 44
example 74
session variables 73
variable time-outs 77

CFBREAK tag 66
CFCASE tag 56
CFCOL tag 123, 124

detail links 125
CFCONTENT tag 129
CFCOOKIE tag 41, 50
CFDEFAULTCASE tag 56
CFDIRECTORY tag 206
CFELSE tag 56, 132, 157
CFELSEIF tag 58, 132, 157
CFERROR page 84
CFFILE tag 203
CFFORM tag

and HTML 162
controls 162
inserting data 162
updating data 146
validation 150

CFFORM tag. See also Java form 162
CFFTP tag

caching connections 213
establishing a connection with 210
file and directory attributes 211
file and directory operations 211
operations 209
query object properties 218

CFFTP variables 216

378 Developing Web Applications with ColdFusion
CFFTP.ErrorCode values 217
CFFTPResult.ReturnValue 216
CFGRID tag 163
CFGRIDCOLUMN tag 175
CFGRIDITEM tag 176
CFGRIDKEY tag 185
CFGRIDUPDATE tag 181
CFHTTP tag 222

creating a query 225
Get method 224
Post method 226
RESOLVEURL attribute 223
retrieving a binary file 224
retrieving to a file 224
retrieving to a variable 224
sending variables 226
syntax 222

CFHTTPPARAM tag 226
CFID variable 43
CFIF tag 56, 132, 157
CFINCLUDE tag 60, 72

looping 64
CFINDEX tag 245
CFINPUT tag 163, 164
CFINSERT tag 142, 143
CFLOCATION tag 59, 81
CFLOCK tag 83
CFLOOP tag 61
CFMAIL tag 229, 230

advanced options 234
sending SMTP mail 230

CFML
editing tags in ColdFusion

Studio 291
Expressions, adding in ColdFusion

Studio 289
Syntax Checker 100
syntax errors 99

CFOUTPUT tag 118, 124
conditional tags 57
database field names 119
expressions 162
mail 232, 237
nested 120
pound sign (#) 122
updating data 146

CFPARAM tag 34, 79
creating variables 34

CFPOP tag 229, 236
ACTION attribute 237
ATTACHMENTFILES attribute 240
ATTACHMENTS attribute 240
example 236
query variables 237

receiving email 236
CFPROCPARAM tag 116
CFQUERY tag

CFSELECT 189
ColumnList property 121
CurrentRow property 121
debugging 97
grids 175
inserting data 142, 145
naming data sources 16
record number 121
RecordCount property 121
SQL 112, 157
tree control 167
updating data 146, 148

CFREPORT tag 131
CFSEARCH tag 245

properties 260
CFSELECT tag 163
CFSET tag 79

creating variables 32
dynamic parameters 33
static values 32
variables based on expressions 33

CFSLIDER tag 163
CFSTOREDPROC tag 115
CFSWITCH tag 56

conditional processing 56
CFTABLE tag 123, 124

COLSPACING attribute 124
detail links 125

CFTEXTINPUT tag 164
CFToken variable 43
CFTREE tag 166

embedding URLs 173
input validation 170

CFTREEITEM tag 163, 167
commas in 172

CFUPDATE tag 146, 147
CGI (Common Gateway Interface)

debugging 96
environment variables 41, 51

Character classes 318
CheckBox control 350
Checkboxes, in forms 153
Choosing a Source Control

Provider 309
Client state management 42, 78
Client variables 53

about 41
deleting 45
getting a list of 45
standard variables 43
storage options 44

storing in cookies 45
ClientDirectory

file upload parameter 202
ClientFile

file upload parameter 202
ClientFileExt

file upload parameter 202
ClientFileName

file upload parameter 202
Client-side validation 150
Code Snippets 290
Code Templates 296
CodeSweeper 293

setting up 293
settings 293
tag-specific settings 293

ColdFusion Administrator 12
Data Sources ODBC page 103
Debug settings 96
indexing files 251
Verify Data Source page 134
Verity page 248

ColdFusion Components 12
ColdFusion Studio 291

adding FTP servers 281
adding Help documents 340
adding RDS servers 88
Browse view 287
Cascading Style Sheet editor 22
CodeSweeper 293
customizing 25
customizing the environment 325
debugger 92
default template 286
Design view 287
Edit view 287
editing tags 290, 291
Editor pane 21
Expression Builder 326
expressions 289
external browsers 298
hexadecimal color values 295
implementing source control 308
importing text 289
indenting code 295
interface 20
internal browser 297
keyboard shortcuts 25
Local files tab 280
managing files 311
preferences 287
previewing dynamic pages 297
productivity tips 299
project management tools 301

Index 379
Query Builder 136
QuickBar 20
RDS mappings 89
RDS servers 134, 282
Remote files tab 282
Resources pane 20
shortcuts 294
source control 308
Special characters palette 292
spell checking 321
Tag Chooser 326
Tag completion 292
Tag editors 291
Tag Insight 291
Tag Inspector 291, 292
Tag Tree 291
toolbars 20
validating code 322
visual editing 298

Collection Examples 275
Color codes

setting 295
tag names 295

ColorPicker control 349
COMPLETEPATH attribute 169
Compound conditional

statements 58
Conditional loop 63
Conditional processing 56
Configure External Browsers

command 298
Configure RDS Server dialog box 88,

134
Connecting to Data Sources 134
Connection caching

actions and attributes 215
CONTENT_LENGTH variable 53
CONTENT_TYPE variable 53
ContentSubType

file upload parameter 202
ContentType

file upload parameter 202
Context menus in Studio 20
Convert tag case

in Studio 295
Cookie, HTTP

client record 42, 44, 78, 81
creating 50

Copying files 204
Creating

application pages 13
forms 142

Creating a ColdFusion Application 13
Creating a Query from a Text File 225

Creating a search collection 247
Creating a Studio Project for Source

Control 309
Creating an HTML Insert Form 142
Creating an HTML Query Form 126
Creating an Insert Page with

CFINSERT 143
Creating an Insert Page with

CFQUERY 145
Creating an Update Form 146
Creating an Update Page with

CFQUERY 148
Creating an Update Page with

CFUPDATE 147
Creating Application Pages 286
Creating Applications with Templates

and Wizards 23
Creating Default Variables with

CFPARAM 34
Creating HTML Pages with Templates

and Wizards 21
Creating HTTP Cookie Variables 50
Creating Loops

CFLOOP tag 61
Creating Tag Definitions 329
Creating Variables 32
Creating Wizard Definition Pages 359
Creating Wizard Output

Templates 365
Crystal Reports, CFREPORT 131
Custom error page 84
Custom fields 253
Customer Support, Allaire 5
Customizing ColdFusion Studio 25
Customizing Tag Chooser and

Expression Builder 326

D
Data

Boolean 118
deleting 149
grids 174
inserting 142
processing 15
updating 145

Data Formatting Functions 116
Data Grids with CFGRID 174
Data Input Validation 150
Data sources 101
Data. See also Displaying data 141
Database

client variables 82
errors 97
field names 119

Database Connection Manager 134
Database Tools 134
DateLastAccessed

file upload parameter 202
Dates

DATE_date field suffix 151
DateFormat function 116
format 109

Debug settings (Administrator) 96
Debugger

Keyboard shortcuts 28
Recordsets window 94
running 92
server mappings 92
Tag Stack window 94
using 88
Variables window 94
Watches window 94
windows 94

Debugging 17
ColdFusion Administrator 96
custom pages and tags 84
generating debug information 96
queries 97
settings 96

Default template in Studio 286
Default variable 82
Defining Attribute Categories 333
Defining attribute value types 331
Defining attributes (VTML) 331
Defining controls (VTML) 334
Defining enumerated values

(VTML) 332
Deleting

client variables 81
data 149
files 204
mail 241
records 149

DELIMITER attribute 64
Deploying a Project 305
Design view in Studio 287
Detail link 124
Developer Resources 5
Developing ColdFusion Application

Pages 14
Dialog Definition Files 327
Directory

application pages 69
Directory operations

CFDIRECTORY 206
Disk error 98
Displaying data

CFOUTPUT sections 120

380 Developing Web Applications with ColdFusion
formatting functions 116
grouping 120
partial recordsets 122
Query Result Set 118
record detail 124
report format, CFREPORT 131

Double-quote character (") 123
Download times 323
Driver, ODBC 144, 159

tables 104
DropDown control (VTML) 347
Dynamic Expressions in Tags 362
Dynamic HTML form 152
Dynamic pages

previewing 297
Dynamic pages. See Application

page 14
Dynamic parameters 203

SQL 117, 157
Dynamic parameters. See also

Variables 31
Dynamic SQL 157

E
E tag (VTML) 329
Edit tool bar 288
Edit view in Studio 287
Editing

application pages 288
in ColdFusion Studio 291
options 294
preferences in Studio 287
shortcuts 290, 294
tag attributes and values 291
tag blocks 290

Editing CFML tags 291
Element tag (VTML) 329
Email

attaching MIME files 234
configuring ColdFusion to

send 230
customizing for multiple

recipients 233
deleting messages 241
error logging 235
receiving 236
returning attachments with

messages 240
sending and receiving 229
sending form-based 231
sending query-based 232
sending to multiple recipients 232
undelivered messages 235

Email. See Mail 230

Embedding Java Applets 192
Embedding URLs in a CFTREE 173
Encrypting application pages 86
Encryption 86
ENCTYPE FORM attribute 198
ENDROW attribute 64
Environment variables 41, 113
Error 97

custom pages 84
database 97
input validation 84, 85
logging 97
mail 235
syntax 98

Error. See also Debugging 97
Establishing Application-Level

Settings 69
EURO_eurodate field suffix 151
Evaluating expressions (debugger) 95
Executing Stored Procedures 115
EXPIRES attribute 51
Explicit query expressions 262
Expression Builder

adding expressions to CFML
pages 289

customizing 326
Expression, Cold Fusion

CFFORM 162
expressionelements.vtm file 327
Expressions

creating 289
creating variables 33

Expressions and Functions
(VTML) 366

Extended Find command 316
Extended Replace command 316
Extended Search and Replace 316
External browser in ColdFusion

Studio 298

F
Field, form

hidden 143, 146, 151
HTML 143
names 104, 119
pound sign (#) 199
required 150

File
application page 60
errors 98
GET and POST 222
log 97
management 203
names 199, 204

registry 82
returning 131
status parameters 203
uploading 198

File and Directory Operations 211
FILE attribute 131
File uploading

evaluating results 202
parameters 202

FileBrowser control 355
FileExisted

file upload parameter 202
FILEFIELD attribute 199
FileSize

file upload parameter 202
FileWasAppended

file upload parameter 202
FileWasOverwritten

file upload parameter 202
FileWasRenamed

file upload parameter 203
FileWasSaved

file upload parameter 203
Find command 316
FLOAT_float field suffix 151
FontPicker control 348
FontPicker example 348
Form, data 15

checkboxes 153
insert 142
passing parameters 39
update 146
variables 169, 184, 187, 188

Form, data. See also Field, form 15
Formatting code in ColdFusion

Studio 293
Formatting functions 116
Forms data

hidden input 39
FTP server

adding in Studio 281

G
GATEWAY_INTERFACE variable 52
Generating Custom Error Messages

(CFERROR) 84
GetClientList function 77
GIF format 200
Grid, data 174
Grids

built-in image names 182
editing data in 177
hiding columns 176
HREF attribute 185

Index 381
images in 182
insert and delete buttons 178
multi-row edits 178
placing custom images in 183
selection options 184
sorting data in 178
specifying button text 178
tracking edits to 177
updating data in 176

GROUP attribute 120
Grouping, output 120, 168

H
HEADER attribute 123
Header, mail 238
HEADERLINES attribute 124
Help documents

creating your own 340
Hexadecimal color values 295
Hidden form field 143, 146, 151
Hiding columns in a grid 176
HitCount variable 44
HREF

CFGRID attribute 185
HREF attribute 123, 124, 125, 173
HTML form

and CFFORM 162
dynamic 152
file upload 198
inserting data 142
mail 231
METHOD attribute 99
updating data 146
validation 150, 151

HTML forms 15
HTML tags 118

FORM 162
table 123

HTMLCodeFormat function 117
HTMLEditFormat function 117
HTMLTABLE attribute 124
HTTP 129, 222
HTTP cookie 41

client record 42, 44, 78, 81
creating 50
variables 41

HTTP_REFERER variable 53
HTTP_USER_AGENT variable 53
Hypertext link

anchor tag 123, 124
detail records 124

I
Image control 357

IMG attribute 168
Implementing Security 17
Implementing Source Control 308
Importing text into Studio 289
Including files with CFINCLUDE 60
Indenting code in Studio 295
Index loops 62
Indexing a Collection 250
Indexing CFLDAP query results 254
Indexing CFPOP query results 255
Indexing database query results 252
Indexing files with CFINDEX 251
Indexing files with the ColdFusion

Administrator 251
Indexing multiple columns 253
INPUT tag 198
Input validation 141, 150

CFFORM 164
CFGRID 174
CFSLIDER 187
CFTEXTINPUT 189
CFTREE 170
errors 84, 85
Java form 170
JavaScript 164

Insert form 142
Insert page 142, 143
Inserting data 142
Inserting Queries into a Page 138
INTE_integer field suffix 151
Interactive debugger

running 92
using 88

Interactive debugger. See
Debugger 88

International languages support in
searching 247

ISOLATION attribute 159

J
Java applet

embedding in CFFORM 194
registering 193

Java form 162
data grids 174
input validation 170
tree controls 166

Java forms 15
JavaScript 162

objects 165
JPEG format 200

K
Keyboard shortcuts 25, 296

L
Label control 345
LastVisit variable 44
LIKE operator 129
Line breaks

adding in Studio 289
Link Checker 322
Link, detail 124
Links, verifying in a project 305
LIST attribute 64
Load balancing 17
Local files 280
Local Files tab in Studio 280
Local variables 40
Logging

errors 97
mail errors 235

Looping
breaking out 66
CFLOOP 61
conditional 63
index 62
nesting 65
over lists 64
over query 63

M
Mail

attachment 231, 234, 240
error message 97

Mail. See also Email, POP mail, SMTP
mail 230

Managing Collections 256
Managing Files in a Project 303
Managing files in Source Control 311
markuptags.vtm file 327
MAXROWS attribute 122
Memory error 98
Message, mail. See Mail, Email 241
MESSAGENUMBER attribute 241
METHOD attribute 99, 126, 142
Microsoft

Excel 130
MIME (Multipurpose Internet Mail

Extensions) 129
file attachments 231, 234
HTTP 222

MIME files
sending email 234

Minus sign (-) 116
Mode

setting file and directory 200
Moving files 204

382 Developing Web Applications with ColdFusion
Multi-character regular
expressions 319

MULTIPLE attribute 190
Multiple select list 155

N
NAMECONFLICT attribute 199
Names

data source 16
field 104, 119
file 199, 204
variables 35

Native Database Drivers 105
Nested CFOUTPUT tag 120
Nesting loops 65
Next n record sets 64
NOT operator 58
NumberFormat function 116

O
ODBC data source 135

date/time formats 109
drivers 104, 144, 159
naming conventions 16
troubleshooting 98

ODBC database drivers 134
ODBC naming conventions 104
OldFileSize

file upload parameter 203
OLE DB Connectivity 106
ONERROR attribute 165
Online help 8
ONVALIDATE attribute 150, 164
Operator, search

AND 58
NOT 58
OR 58

Operators and modifiers 258
OR operator 58
ORDER BY clause 157
Output

grouping 120, 168
reports 131

Output window (debugger) 94

P
Pages

delete 149
insert 142, 143
update 145, 147

Pages. See also Application pages 14
Panel container (VTML) 343
ParagraphFormat function 117
PARAM (for PAGE tag) 361

PARAM (for WIZARD tag) 360
Parameter, dynamic 203

SQL 117, 157
PARENT attribute 171
Partial recordset 122
Passing Variables to Pages with URLs

and Forms 38
Password

validation 60
PATH_INFO variable 52
PATH_TRANSLATED variable 52
POP mail 236

attachments 240
deleting 241
handling with CFPOP 237
headers 238

Populating collections
from a query 252
from document files 251

Populating dialogs with tag data
(VTML) 337

PORT attribute 235
POSIX character classes 318
POST attribute 226
Pound signs (#) 123

in CFOUTPUT sections 122
in form fields 199
variables 37

Precedence evaluation 263
Prefix notation 36
Presenting Query Results in a

Table 123
PreserveSingleQuotes function 117,

155
Previewing Application Pages 297
Previewing Pages in a Project 304
Primary key 146, 154
Productivity tips, in Studio 299
Project Commands 302
Projects

ColdFusion Studio 301
commands 302
deploying 305
managing files 303
previewing pages 304
Source Control 309
verifying links 305

Projects menu 302
Projects Tab 302
Projects Toolbar 303
Providing Help from an External

File 341
Proximity operators 267

Q
Query Builder 136

editing queries 139
testing SQL code 139

Query Object Columns
CFHTTP 218

Query variables 40
Query, data

CFSELECT 190
debugging 97
grids 175
looping 63
mail 232
record number 121
tree control 167

QUERY_STRING variable 53
QUERYASROOT attribute 167
QuotedValueList function 118

R
RadioGroup control (VTML) 351
RANGE_range field suffix 151
RDS Mappings 89
RDS servers

adding 134, 282
Reading text files 205
Receiving Email Messages

(CFPOP) 236
Record

deleting 149
detail 124
number query 121
partial recordsets 122
retrieving 57

Recordsets window (debugger) 94
Redirecting page requests 59
Regexes. See Regular Expressions 317
Registering Data Sources 134
Registry

as client storage option 44
Registry file 82
Regular Expressions 317

anchoring to a string 320
backreferences 320
character classes 318
examples 320
multi-character 319
single-character 317

Relational operators 269
Remote Development Services

mappings 297
Remote Development Services Server

configuring 88

Index 383
Remote Development Settings dialog
box 88

Remote files 281
Remote Files tab 282
REMOTE_ADDR variable 53
REMOTE_HOST variable 53
REMOTE_IDENT variable 53
REMOTE_USER variable 53
Renaming files 204
Replace 291, 316
Replace command 316
Replace Special Characters

command 317
Replacing double-spaced lines 317
Replacing special characters 317
Report 131
REQUEST_METHOD variable 52
REQUIRED attribute 169, 170
REs. See Regular Expressions 317
RESOLVEURL

CFHTTP attribute 223
Result columns 259
Returning content types 129
Returning MIME Content Types

(CFCONTENT) 129
Root directory 71
Run to Cursor command

(debugger) 94
Running and Editing Queries 139
Runtime functions (VTML) 367

S
Saving CFM files 296
Scalability 17
Scheduling collection

maintenance 257
Scope

server 36
variable 36
variables 35

Score operators 272
SCRIPT_NAME variable 53
Search 291, 316

case-sensitive 316
Modifiers 274
operations 259
with Regular Expressions 317
with Wildcards 265

Searching a ColdFusion Web Site 244
Security 17, 85
Security server 86
Select list, multiple 155
SelectDataSource (VTML) 370
Selecting data 141

with CFQUERY 112
SELECTMODE tag 184
Sending email messages (SMTP) 230
Server

client-state management 69, 78
HTTP 222
scope 36
security 86
uploading files 198

SERVER attribute 235
Server mappings (debugging) 92
Server Path (RDS mappings) 89
Server variables

about 41
CGI 52
ColdFusion server 46

Server. See Application Server, Cold
Fusion 12

SERVER_NAME variable 52
SERVER_PORT variable 52
SERVER_PROTOCOL variable 52
SERVER_SOFTWARE variable 52
ServerDirectory

file upload parameter 203
ServerFile

file upload parameter 203
ServerFileExt

file upload parameter 203
ServerFileName

file upload parameter 203
Server-side validation 150
Session variables 72

about 41
client IDs for 48
enabling 74
managing 77
scoping 50
time-outs 48

SET clause 148
Setting File Open preferences 287
Setting watches (debugger) 95
Settings dialog box 287
Shared Snippets 290
Simple query expressions 261
SINGLE attribute 190
Single quotes 114
Single-character regular

expressions 317
SIZE attribute 190
Slider control 187
SMTP (Simple Mail Transfer

Protocol) 230
SMTP mail

CFMAIL tag 230

errors 235
form-based 231
multiple recipients 232
overriding default server

settings 235
query-based 232
sending email 230
settings 235

Snippets 290
creating 290
shared 290

Source Control
adding a Project to 310
adding files and subdirectories 312
check in options 311
choosing a Source Control

Provider 309
commands 311
establishing a working

directory 309
implementing 308
managing files 311
synchronizing Files 312

Special $$TAGBODY attribute
name 338

Special characters 317
entering in Studio 292
palette 292

Spell checking 321
SQL (Structured Query Language)

CFQUERY tag 16, 112
creating SELECT statements 137
debugging 96
delete statement 149
dynamic parameters 117, 157
in statement 153
insert statement 142, 145
names 104
ODBC extensions 109
overview 107
query building 134
tables 104
update statement 146, 148

SQLTextArea control (VTML) 353
SSL (Secure Sockets Layer) 50
STARTROW attribute 122
Stepping through code

(debugger) 94
STOPONERROR variables 217
Stopping Application Page Processing

(CFABORT) 60
Stored procedures 115, 116
Storing client variables 44
String functions (VTML) 366

384 Developing Web Applications with ColdFusion
StripCR function 117
Structured Query Language

(SQL) 107, 136
Studio Path (RDS mappings) 89
Studio Workspace 20

Syntax
CFML 99
errors 98

Syntax Checker 100

T
TabDialog container (VTML) 341
Table, data 102, 141

SQL 104
TABLEOWNER attribute 144
TABLEQUALIFIER attribute 144
TabPage container(VTML) 342
Tag chooser

customizing (VTML) 326
Tag completion in Studio 292
Tag Definitions

creating 329, 330
Tag Editors (VTML) 333
Tag Editors in Studio 291
Tag Insight in Studio 291
Tag Inspector in Studio 291, 292
Tag Stack window (debugger) 94
Tag Tree in Studio 291
TARGET attribute 174
Technical Support, Allaire 5
TEMPLATE attribute 60
Templates 21
Testing applications 17
Testing download times 323
TEXT attribute, CFTABLE tag 123, 125
Text file 205

appending to 206
TextArea control (VTML) 352
TEXTAREA field 117
TextBox control (VTML) 346
Time format 109
TIME_time field suffix 151
TimeCreated

file upload parameter 203
variable 44

TimeFormat function 116
TimeLastModified

file upload parameter 203
Timeout

parameter 127
TIMEOUT attribute 235

Transaction Processing
(CFTRANSACTION) 158

Tree, data 166
form variables 169
input validation 170
populating 167
structure 170
URL 173

Troubleshooting 98

U
UNIX

file and directory permission 201
Update form 146
Update page 145, 147
Updateable grids

creating 176
Updating data 145
Uploading files 198
URL

CFTREE 173
debugging 96
embedded spaces 99
grids 185
page requests 59
parameters 40
passing parameters 38
troubleshooting 99
URLToken variable 44

URLEncodedFormat function 117
User authentication 86
User entry page 15
Uses controls (VTML) 370
Using Application and Session

Variables 47
Using CFGRIDUPDATE 181
Using CFHTTP to Interact with the

Web 222
Using CFREPORT for Crystal Reports

Output 131
Using CGI Environment Variables 51
Using Dynamic Query Parameters 112
Using Query Expressions 261
Using WIZML 365

V
VALIDATE attribute 150, 164
Validating Code 322
Validation tab of Settings dialog

box 322
Validation. See Input validation 141
VALUE attribute 168
ValueList function 118
Variables

across multiple pages 42
application 41, 72
caching 81
CGI 41
CGI environment 51
CGI server 52
client 41, 53
client, creating 43
ColdFusion Server 46
creating 32
creating with CFPARAM 34
creating with CFSET 32
default 34, 82
differentiating client, session, and

application 49
form 169, 184, 187, 188
HTTP Cookie 41
kinds of 40
local 40
naming 35
naming and scoping 35
order of look up 37
passing between pages 38
pound signs 37
prefixes 36
qualifying references to 36
scope 35
server 41
session 41, 48, 72, 77
setting default values for 35
testing 34
types in ColdFusion 40
types of 40
watching (debugger 94

Variables window (debugger) 94
Verify Data Source page 134
Verifying Links 322
Verifying Links in a Project 305
Verity search engine 244
Verity Wizard 257
Viewing Database Schema and

Data 135
Viewing pages in Studio

external browser 298
internal browser 297

Visual editing in Studio 298
Visual Tool Markup Language (VTML).

See also VTML 326
VRML (Virtual Reality Modeling

Language) 129
VTML 326

ActiveX control 358
Container/Control Reference 341
OPTIONLinearLayout 339

Index 385
OPTIONLowerCaseTags 339
Special Considerations 367
Special Variables 339
SQLTextArea 353
Supported tags 367
TabDialog 342
TabPage example 343
TAGDATAUnknownAttributes 340
TextArea example 352
TextBox example 346
Variables Passed to the Layout

Template 338
Wizards tag reference 359
Wizards tag summary 359

W
Watches window (debugger) 94
Watching variables (debugger) 95
Web application framework. See

Application Framework, Web 68
WHERE clause 157, 158
WHILE loop 63
WIDTH attribute 124
Wildcards 265
WIZ Tags 367
Wizard Definition Page Library 369
Wizard Definition Pages

creating 359
Wizard Output Templates

creating 365
Wizards in ColdFusion Studio 21
WIZIF, WIZELSEIF, and WIZELSE 369
WIZML 365, 369

Saving wizard files 359
WIZARD 360
Wizard definition page

example 363
Wizard Definition Page Library 369
WIZLOOP, WIZBREAK, and

WIZCONTINUE 368
WIZSET 367

WIZML Reference 367
WIZMLWIZINCLUDE 368
Word wrap

editing tags 295
Working on Project Files 304
Working with Local Files 280
Working with Remote Files 281
Writing text files 205

Y
YesNoFormat function 118

386 Developing Web Applications with ColdFusion

	Welcome to ColdFusion
	Contents
	Product Features
	Rapid development
	New Feature Highlights

	Scalable deployment
	New Feature Highlights

	Open integration
	Total security

	Learning About Web Development and ColdFusion
	New to Web development?
	New to ColdFusion?
	Experienced Web developer?

	Developer Resources
	Developing Applications in ColdFusion Studio
	About ColdFusion Documentation
	Documentation set
	Documentation distribution
	Reading online documentation
	Using online help in ColdFusion Studio
	Documentation conventions

	Contacting Allaire
	Corporate headquarters
	Technical support
	Sales

	ColdFusion Fundamentals
	Contents
	ColdFusion Components
	The ColdFusion Server
	The ColdFusion Administrator
	ColdFusion Studio
	ColdFusion application pages
	ODBC data sources
	Other data sources
	ColdFusion Extensions

	Creating a ColdFusion Application
	Planning your ColdFusion Application
	Plan the flow of data in your application
	Use an iterative process

	Developing ColdFusion Application Pages
	ColdFusion application design
	Design considerations
	Security
	Scheduling
	User entry pages
	Multipurpose application pages

	Providing Data Sources
	Other types of data sources

	Implementing Security
	Load Balancing
	Testing and Debugging your Application
	Using the interactive debugger
	Outputting the server’s debug information

	ColdFusion Studio Quick Start
	Contents
	Exploring the Studio Workspace
	Using context menus
	The Resources Area
	The Editor pane

	Creating HTML Pages with Templates and Wizards
	HTML Wizards
	Dynamic HTML Wizards
	Style Editor

	Creating Applications with Templates and Wizards
	Application Development Tools in Studio
	Tools
	Debugger
	Search
	Browsers

	Customizing the Workspace
	Keyboard Shortcuts

	Creating and Manipulating Variables
	Contents
	Creating and Using Variables
	Using CFSET to create variables
	Example: Static values
	Example: Dynamic parameters
	Example: Expressions

	Displaying variables in a page
	Testing for a variable’s existence
	Troubleshooting

	Creating Default Variables with CFPARAM
	Using CFPARAM
	Example: Testing for variables
	Example: Setting default values

	Naming and Scoping Variables
	Variable names
	Qualifying, or scoping, variable references
	Performance and scoping
	How ColdFusion looks up variables
	Using pound signs

	Passing Variables to Pages with URLs and Forms
	Passing parameters with a URL
	Example
	Formatting issues

	Passing parameters with a form
	Example: Hidden input
	Example: Dynamic parameters

	Kinds of Variables
	Using variables across several application pages

	Client Variables
	Creating a client variable
	Standard client variables
	Using client state management without cookies
	Client variable storage options
	Storing client variables in cookies
	Getting a list of client variables
	Deleting client variables
	For more information

	Server Variables
	Sample server variable output

	Using Application and Session Variables
	Enabling application and session variables
	Session variables
	Session variable time-outs

	Application variables
	Using application variables
	Differentiating client, session, and application variables
	Application variable time-outs
	Scoping application and session variables

	Creating HTTP Cookie Variables
	Creating cookies with the CFCOOKIE tag
	Using cookies in a page
	Deleting cookies

	Using CGI Environment Variables
	Testing for CGI variables
	CGI server variables
	CGI client variables

	Controlling Page Flow
	Contents
	Conditional Processing (CFIF and CFSWITCH)
	Using CFSWITCH with CFCASE and CFDEFAULTCASE
	Using CFIF with CFELSEIF and CFELSE
	Example 1: Conditionally returning a query result set
	Example 2: Conditionally returning a record section

	Compound conditional statements
	Example

	Using CFELSEIF
	Example

	Redirecting Application Page Requests (CFLOCATION)
	Example

	Stopping Application Page Processing (CFABORT)
	Including Application Page Files (CFINCLUDE)
	Syntax
	Examples
	Potential uses of the CFINCLUDE tag

	Creating Loops (CFLOOP)
	Index loops
	Example of an index loop
	Example 2 of a stepped index loop

	Conditional loops
	Example

	Query Loops
	Example: Using CFLOOP to display a record set
	Example: Next n record sets in a query
	Example: Looping over a query

	List Loops
	Looping over a COM collection
	Nesting loops
	Breaking out of a loop
	For more information

	Using the Application Framework
	Contents
	Understanding the Web Application Framework
	Application-level settings and functions
	Client state management
	Custom error handling
	Web server security integration

	Establishing Application-Level Settings
	Advantages of using the Application Framework
	Defining an application
	Establishing an application root directory
	Application scope example

	Behavior with CFINCLUDE

	Using Application and Session Variables
	Enabling application and session variables
	Session variables
	How long do sessions last?
	Session variable time-outs
	Using session variables
	Example

	Application variables
	Using application variables
	Application variable time-outs
	Differentiating client, session, and application variables
	Variable scopes are required

	Tips for using session and application variables
	Example

	Managing session and application variables
	Getting a list of application and session variables

	Client Variables and Client State Management
	Enabling Client State Management
	Choosing a client variable storage method
	Cookie storage

	Using client state management
	Creating a client variable
	Example
	Example
	Using client variables
	Example
	Standard client variables
	Using client state management without cookies
	Getting a list of client variables
	Deleting client variables
	Client variables with CFLOCATION behavior
	Variable caching
	Exporting the client variable database

	Default Variables and Constants
	Example: Application.cfm

	Using CFLOCK for Exclusive Locking
	Example

	Generating Custom Error Messages (CFERROR)
	Creating an error application page
	Example of a request error
	Example of a validation error

	Application Security
	Integrating with web server security
	Authentication
	Encryption

	Debugging and Troubleshooting
	Contents
	Using the Interactive Debugger in ColdFusion Studio
	Getting Started
	Configuring a Remote Development Server

	Creating RDS Mappings
	File mapping examples
	ColdFusion Server and Studio on the same machine
	Studio accesses files on a remote ColdFusion server using drive mappings
	Studio accesses files on a remote ColdFusion server using UNC paths/Network Neighborhood
	Studio accesses files on a remote ColdFusion server using RDS- based remote file access

	Specifying server mappings

	Running the Interactive Debugger
	Debug windows
	Stepping through code
	Evaluating expressions and setting watches
	Debugging across multiple pages

	Debug Settings in ColdFusion Administrator
	Generating debug information without setting options
	Generating debug information for an individual query
	Error messages
	Database errors
	Syntax errors
	Other errors

	Troubleshooting
	ODBC data source configuration
	HTTP/URL
	CFML syntax errors
	CFML Syntax Checker

	Understanding Data Sources
	Contents
	Data Source Basics
	Open Database Connectivity (ODBC)
	Installing ODBC drivers
	Databases

	Adding an ODBC Data Source
	ODBC Naming Conventions
	Table owners and qualifiers

	Using Native Database Drivers
	Bundled drivers
	Attributes for enabling native drivers

	Using OLE DB Connectivity
	OLE DB data stores
	OLE DB providers for SQL data stores

	Structured Query Language (SQL) Overview
	Resources
	SQL syntax overview
	Syntax elements
	Statements
	Statement clauses
	Operators

	SQL Extensions
	Date/Time Specifications
	Scalar Functions

	Selecting and Presenting Data
	Contents
	Selecting Data with the CFQUERY Tag
	Example

	Using Dynamic Query Parameters
	Sources for dynamic parameters
	Example: Dynamic SQL
	Using single quotes around literal text

	Caching Query Results
	Executing Stored Procedures
	Calling stored procedures from CFQUERY
	Calling stored procedures from CFSTOREDPROC

	Date Formatting Functions
	Date, time, and number formatting functions
	Special formatting functions

	Displaying the Query Result Set
	Database field names in CFOUTPUT sections
	Example: CFOUTPUT
	Nested CFOUTPUT and grouping
	Example: Grouping

	CFQUERY properties
	Example: Query columns

	Returning partial recordsets
	Example: Partial recordset

	Using parameters in CFOUTPUT sections
	Using the pound sign in CFOUTPUT sections

	Presenting Query Results in a Table
	CFML tables
	Example: CFTABLE
	Double-quotes and pound signs in the CFCOL attribute

	HTML tables
	Dynamic display of record detail information
	Creating links to detail records
	Example: Record detail
	Embedding detail links in CFTABLE columns

	Creating an HTML Query Form
	Example: Query form
	Set the form's ACTION and METHOD attributes
	Implement data query fields
	REQUESTTIMEOUT URL parameter
	Example: Dynamic SQL

	Pattern matching searches

	Returning MIME Content Types (CFCONTENT)
	Example: Returning VRML
	Example: Populating an Excel spreadsheet
	Example: Returning a file

	Using CFREPORT for Crystal Reports Output
	Example: CFREPORT

	Using Studio Database Tools
	Contents
	Introduction to Database Tools
	Registering Data Sources
	Connecting to Data Sources
	Opening an ODBC Data Source
	Viewing Database Schema and Data
	Building SQL Queries
	Building a SELECT Query
	Inserting Queries into a Page
	Running and Editing Queries
	Running Queries
	Editing Queries

	Inserting, Updating, and Deleting Data
	Contents
	Inserting Data
	Creating an HTML Insert Form
	Setting a form's ACTION attribute
	Implementing data entry fields
	Hidden form fields
	Example: HTML insert form

	Creating an Insert Page with CFINSERT
	CFINSERT datasource
	Example: HTML form page
	Example: CFINSERT action page

	Creating an Insert Page with CFQUERY
	Basic SQL syntax
	Example: CFQUERY insert

	Updating Data
	Creating an Update Form
	Dynamically populating an update form
	Designating the primary key
	Example: Primary key value

	Creating an Update Page with CFUPDATE
	Example: CFUPDATE page

	Creating an Update Page with CFQUERY
	Syntax
	Example: CFQUERY update page

	Deleting Data
	Syntax
	Example: Deleting a single record
	Example: Deleting several records
	Example: Deleting all records
	Example: Complete delete page

	Data Input Validation
	Required form fields
	Hidden form fields
	Examples: Hidden fields

	Automatic validation of numeric and date fields
	Additional notes on validation

	Dynamic HTML Forms
	Example: Query form
	Using checkboxes and multiple select lists in HTML forms
	Checkboxes
	Searching numeric values
	Searching string values

	Multiple select lists
	Searching numeric values
	Searching string values

	Dynamic SQL
	Syntax
	Example: Using CFIF
	Example: Creating a select list

	Transaction Processing (CFTRANSACTION)
	Syntax and example
	Setting transaction isolation
	ODBC driver support for transactions

	Building Dynamic Java Forms
	Contents
	Creating Forms with the CFFORM Tag
	Using HTML in a CFFORM
	Advantages of Using Dynamic Forms

	CFFORM controls
	Improving performance with ENABLECAB
	Browsers that disable Java

	Input Validation with CFFORM Controls
	Input Validation with JavaScript
	JavaScript objects passed to the validation routine
	Handling failed validation
	Example: Form validation

	Building Tree Controls with CFTREE
	Populating a tree with query data
	Grouping output from a query
	Example: Grouping query output

	CFTREE form variables
	Input validation with CFTREE

	Structuring Tree Controls
	Example: One-level tree control
	Example: Multilevel tree control
	Image names in a CFTREE
	Using commas in CFTREEITEM

	Embedding URLs in a CFTREE
	Example: Adding Web links
	The APPENDKEY attribute in CFTREEITEM
	The TARGET attribute in CFTREEITEM

	Data Grids with CFGRID
	Populating a grid from a query
	Hiding columns in a grid

	Creating an Updateable Grid
	Editing data in a CFGRID
	Specifying alternate text for the Insert or Delete buttons
	Multi-row edits
	Sorting grid data
	Example: Editable grid

	Using CFGRIDUPDATE
	The KEYONLY attribute

	Embedding images in a grid
	Using your own images in a grid

	Grid Data Selection Options
	Select mode and form variables
	Using the URL attribute
	The HREF attribute
	The APPENDKEY attribute in CFGRIDKEY

	Building Slider Bar Controls
	Example: CFSLIDER control
	CFSLIDER form variable
	Formatting options with CFSLIDER

	Building Text Entry Boxes
	Example: CFTEXTINPUT control
	CFTEXTINPUT form variable
	Input validation with CFTEXTINPUT

	Building Drop-Down List Boxes
	Populating a CFSELECT with query data
	Example: Populate a CFSELECT from a data column:

	Building Form Controls
	Example: CFINPUT controls

	Embedding Java Applets
	Registering a Java applet
	Using CFAPPLET to embed an applet
	Overriding alignment and positioning values
	Overriding parameter values

	Handling form variables from an applet

	Managing Files on the Server
	Contents
	Using CFFILE
	Uploading Files
	Creating a file upload HTML form
	Example: An HTML form for file upload

	Creating a file upload application page
	Example: Upload a file

	Resolving conflicting file names
	Example: Resolving a name conflict

	Controlling the type of file uploaded
	Example: Restricting file types

	Setting File and Directory Attributes
	UNIX
	Windows
	Example: Setting file attribute

	Evaluating the Results of a File Upload
	Moving, Renaming, Copying, and Deleting Server Files
	Moving a file (ACTION="MOVE")
	Example

	Renaming a file (ACTION="RENAME")
	Example

	Copying a file (ACTION="COPY")
	Example

	Deleting a file (ACTION="DELETE")
	Example

	Reading, Writing, and Appending to a Text File
	Read a text file (ACTION="READ")
	Example

	Write a text file (ACTION="WRITE")
	Example

	Append to a text file (ACTION="APPEND")
	Example

	Performing Directory Operations
	Returning file information (ACTION="LIST")
	Example

	Performing File Operations with CFFTP
	Contents
	Establishing a Connection
	Example: FTP logon

	File and Directory Operations
	Connection Caching
	Caching connections across multiple pages
	Example: Caching a connection

	Connection caching actions and attributes
	Example: An FTP session

	CFFTP Variables
	CFFTPResult.ReturnValue variable
	STOPONERROR variables
	CFFTP.ErrorCode values
	CFFTP query object properties

	Accessing Remote Servers with HTTP
	Contents
	Using CFHTTP to Interact with the Web
	Allaire Alive
	Using Secure Sockets Layer (SSL) with CFHTTP

	CFHTTP Tag Syntax
	Resolving links in retrieved pages

	Using the CFHTTP Get Method
	Example: Retrieving to a variable
	Example: Retrieving to a file
	Example: Retrieving a binary file

	Creating a Query from a Text File
	Example: Creating a query from a text file

	Using the CFHTTP Post Method
	Example: Pass variables to a ColdFusion page
	Example: Returns results of CGI program

	Sending and Receiving Email
	Contents
	Using ColdFusion with Mail Servers
	Sending Email Messages (SMTP)
	Sending SMTP mail with CFMAIL

	SMTP Examples with CFMAIL
	Sending form-based email
	Sending query-based email
	Sending email to multiple recipients

	Customizing Email for Multiple Recipients
	Attaching a MIME file

	Advanced Sending Options
	Sending mail as HTML
	Overriding default SMTP server settings
	Error logging and undelivered messages

	Receiving Email Messages (CFPOP)
	CFPOP Example
	Using CFPOP
	CFPOP query variables

	Handling POP Mail
	Returning only message headers
	Header information
	Example of retrieving message headers

	Returning an entire message
	Example

	Returning attachments with messages
	Managing attachment filenames
	Example

	Deleting messages
	Example
	For more information

	Indexing and Searching Data
	Contents
	Searching a ColdFusion Web Site
	Advantages of using Verity
	Online Verity training
	Verity collections
	CFCOLLECTION
	CFINDEX
	CFSEARCH

	Supported File Types
	Support for International Languages
	Creating a Collection
	Running the ColdFusion Administrator
	Coding the CFCOLLECTION tag
	Example: Collection action page

	Indexing a Collection
	Selecting an indexing method

	Populating a Collection from Document Files
	Indexing files with the ColdFusion Administrator
	Indexing files with CFINDEX
	Type attribute options

	Populating a Collection from a Query
	Indexing database query results
	Indexing multiple columns
	Custom fields
	Advantages of indexing a data source

	Indexing CFLDAP Query Results
	Indexing CFPOP Query Results
	Managing Collections
	Maintenance options
	Scheduling collection maintenance
	Securing a collection

	Building a Search Interface
	The Verity wizard
	Operators and modifiers
	Operators
	Modifiers

	Basic search operations
	Result columns
	Summarization
	CFSEARCH properties

	Using Query Expressions
	Simple query expressions
	Explicit query expressions
	Expression syntax
	Simple syntax
	Explicit syntax

	Special characters

	Precedence Evaluation
	Precedence rules
	Prefix and infix notation
	Commas in expressions
	Delimiters in expressions
	Angle brackets for operators
	Double quotation marks in expressions
	Backslashes in expressions

	Searching with Wildcards
	Searching for wildcards as literals
	Searching for special characters as literals

	Operators and Modifiers
	Evidence operators
	Proximity operators
	Relational operators
	Numeric and date relational operators
	Text comparison operators
	Document fields
	The SUBSTRING operator

	Concept operators
	Score operators
	Search modifiers

	Collection Examples
	Example: Choose the collection
	Example: Populate the collection
	Example: Search the collection
	Example: Present the search results
	Example: Output from searching the DBINDEX collection

	Managing Files
	Contents
	Working with Local Files
	Working with Remote Files
	Adding an FTP server
	Accessing a remote server

	Creating and Editing Application Pages
	Contents
	Creating Application Pages
	New Users
	Creating new pages
	Using the Edit, Design, and Browse views
	Opening existing files
	Setting File Open preferences
	Using the Edit toolbar

	Editing Application Pages
	Entering and editing text
	Inserting CFML Expressions
	Adding links
	Adding text from other files
	Editing individual tag blocks

	Using Code Snippets
	Shared Snippets

	Editing Tag Attributes and Values
	Using Search and Replace
	Using the Tag Inspector and Tag Tree
	Entering special characters
	Tag completion

	Running the CodeSweeper to Format Code
	Configuring CodeSweeper
	CodeSweeper settings
	Tag-specific settings
	Adding a new CodeSweeper

	Editing Shortcuts
	Turning word wrap on and off
	Using the Edit window gutter
	Controlling tag case
	Using hexadecimal color values
	Color-coding tag names
	Indenting code
	Keyboard Shortcuts
	Code Templates

	Saving CFM files
	Previewing Application Pages
	Remote Development Services server mappings
	Viewing pages in the internal browser
	Viewing pages in your external browser
	Visual editing in the Design view

	Productivity Tips
	Set up the user interface to suit your preferences
	Manage files in Projects
	Use site visualization
	Use Snippets for frequently-used code
	Create custom templates
	Customize your development environment

	Using Projects for Site Management
	Contents
	Why Use Projects?
	The Projects Tab
	Project Commands
	The Projects menu
	The Projects Toolbar

	Managing Files in a Project
	Working on Project Files
	Previewing Pages in a Project
	Deploying a Project
	Verifying Links in a Project

	Adding Source Control for Development Projects
	Contents
	Why Use Source Control?
	Implementing a Source Control System
	Standard source control commands

	Choosing a Source Control Provider
	Creating a Studio Project for Source Control
	Establishing a Working Directory
	Adding a Studio project to source control

	Managing Files in Source Control
	Check in options
	Command options
	Adding files and subdirectories
	Synchronizing files

	Maintaining Web Applications
	Contents
	Using Search and Replace
	Running a basic search
	Using the extended search and replace feature
	Replacing special characters
	Replacing double-spaced lines

	Searching with Regular Expressions
	Special characters
	Single-character regular expressions
	Character classes
	Multi-character regular expressions
	Backreferences
	Anchoring a regular expression to a string
	Expression examples

	Resources

	Spell Checking
	Validating Code
	Verifying Links
	Testing Page Download Times

	Customizing the Development Environment
	Contents
	The Visual Tool Markup Language (VTML)
	Customizing Tag Chooser and Expression Builder
	Customization objective

	Dialog Definition Files
	Category tag
	Element tag

	Creating Tag Definitions
	Creating a tag definition file
	Defining attributes
	Defining attribute value types
	Defining enumerated values

	Defining attribute categories

	Building Tag Editors
	Defining controls
	Populating dialogs with tag data
	Special $$TAGBODY attribute name

	Generating the tag
	Variables passed to the layout template
	Special variables
	Using OPTIONLowerCaseTags
	Using OPTIONLinearLayout
	Using TAGDATAUnknownAttributes

	Adding Tag Help
	Providing help from an external file

	VTML Container/Control Reference
	TabDialog container
	TabDialog example:

	TabPage container
	TabPage example:

	Panel container
	Panel example:

	Label control
	Label example:

	TextBox control
	TextBox example

	DropDown control
	DropDown example

	FontPicker control
	FontPicker example

	ColorPicker control
	ColorPicker example

	CheckBox control
	Checkbox example

	RadioGroup control
	RadioGroup example

	TextArea control
	TextArea example

	SQLTextArea control
	SQLTextArea example

	FileBrowser control
	FileBrowser example

	Image control
	Image example

	ActiveX control
	ActiveX example

	Building Custom Wizards
	Saving wizard files

	Creating Wizard Definition Pages
	VTML for Wizards tag summary
	VTML for Wizards tag reference
	WIZARD
	PARAM (for WIZARD tag)
	TEMPLATE
	PAGE
	PARAM (for PAGE tag)
	INPUT
	NEXTPAGE

	Dynamic expressions in tags
	Bound controls
	Wizard definition page example

	Creating Wizard Output Templates
	Using WIZML
	Parameters
	Expressions and functions
	String functions
	Runtime functions

	WIZ Tags
	Supported tags

	Special considerations
	WIZML reference
	WIZSET
	WIZINCLUDE
	WIZLOOP, WIZBREAK, and WIZCONTINUE
	WIZIF, WIZELSEIF, and WIZELSE

	Wizard Definition Page Library
	SelectNameAndLocation
	Description
	Exposes controls
	Example

	SelectDataSource
	Description
	Uses controls
	Reads parameters
	Example

	SelectTables
	Description
	Exposes controls
	Reads parameters
	Example

	SelectTable
	Description
	Exposes controls
	Reads parameters
	Example

	SelectTableJoins
	Description
	Exposes controls
	Reads parameters
	Example

	SelectFields
	Description
	Exposes controls
	Reads parameters
	Example

	SelectField
	Description
	Exposes controls
	Reads parameters
	Example

