Advanced ColdFusion
Development

ColdFusion 4.0 for Windows® NT,
Windows 95/98, and Solaris

Allaire Corporation

Copyright Notice

© Allaire Corporation. All rights reserved.

This manual, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. The content of
this manual is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Allaire Corporation. Allaire
Corporation assumes no responsibility or liability for any errors or inaccuracies that
may appear in this book.

Except as permitted by such license, no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, electronic,

mechanical, recording, or otherwise, without the prior written permission of Allaire

Corporation.

ColdFusion is a registered trademark and Allaire, HomeSite, the ColdFusion logo and
the Allaire logo are trademarks of Allaire Corporation in the USA and other countries.
Microsoft, Windows, Windows NT, Windows 95, Microsoft Access, and FoxPro are
registered trademarks of Microsoft Corporation. All other products or name brands
are the trademarks of their respective holders. Solaris is a trademark of Sun
Microsystems Inc. UNIX is a trademark of Novell Inc. PostScript is a trademark of
Adobe Systems Inc.

Part Number: AA-ADDEV-RK

Contents

Chapter 1: Advanced ColdFusion Development 1
AbOoUL thiS MANUAL......ceiiiiiieeiriiitcrietre ettt ettt et s et ae e eae st snene 2
DEVEIOPET RESOUICEScuveueuiivirienieieieiteteieeiesteste sttt ebe s bttt e bt e st bt sbesbesteste st estssessessessentenensesesses 2
Developing Applications in ColdFusion StUIOceeceevrirenieneiieineneneneseeeeeeeeee e 3
About ColdFusion DOCUMENTAtIONcc.ecurutrireriinicteirienieteteeeteeeses et ste st essessesesaeseeseesennens 3

Documentation distribution4
Reading online documentation.. .4
CONTACHNG ALAITE. ...ttt ettt s et sb et s et e b s bt et e e s et besbesaensen 5

Chapter 2: Functions and Expressions 7

About ColdFUSION EXPIreSSIONScvevieuiruiriiniiteteesiesiertenteteteessestesesteseeeesessessessessesessessessesseneene 8
What's iN @N EXPIreSSIONT...c..evueutiririiriirrerieterterteitettstestet et et st s e stesbest et et ssessessessensenseseesesnessese 8

EXPIession EXAMPLESc.cceeirmiirieinieiireeteieeetereresreeeeee et se e sese s sese e enenene
Creating Expressions in ColdFusion Studio
The Structure of Expressions

Numbers....

Strings......cecvee.. .

BOOLEAN VALUES ...ttt ettt et

COM obijects....
Variables..........
Operatorscocceeeveereeeseeenns
Arithmetic operators
STINE OPETALOTLS ..veiriiiiiiiieniietcent ettt s st b e st eb e s et et e b st e besbessennes
Decision, 0r COMPAriSON, OPETALOLSeceeeverrerierierireenereesesteseesseessessesseesseeseessesseesessens
BOOLEAN OPETATOTS ...ttt ettt et sa et s et r e ae et et se s e sens
Operator precedence...
Functions.......c.ceeeevveenenne.
Function types....... .
FUNCHOIN USAZEeoviiviiiiiiiiiiiiieieetetent ettt st sre et saesr s b s sanen e saaenesaesnes

iv Advanced ColdFusion Development

Optional arguments in fUNCHONSccviririiririetererererertetee ettt ettt
Functions that return @ BOOLEAMc..ceeveeiriirinieinieireceeeercenrece et
Using Pound Signs......cccccevevevenenieneneenennenne
Pound signs inside CFOUTPUT tags
Pound signs inside strings............cccceeeuee.
Pound signs inside tag attribute values
NEStEd POUNA SIGIIS......eeviruirriiiieiieirierierte ettt sttt et ettt et e s esb et et esessessessesbenaenens
Pound signs in general expressions..
Typeless Expression Evaluation
Operation-driven evaluation.............
CONVEISION DETWEETL LYPES ...eeviuviniiieiiiiriiiieteieitetee ettt ettt sttt s et sbesse s e e aesesnens
Examples of Typeless EXpression EValUationcccecveverererienieenineneneneeneeeeeesessesseseessssesnens
Debugging and Troubleshooting Expressions ..
Setting watches in the deDUZEETcc.coevuiriiiiiiinireeeeeteere ettt
Testing expressions using CESET and CFOUTPUTccccccccivirinenenieneneneneneneseenieeenens 31

Chapter 3: Dynamic Expression Evaluation 33

About Dynamic Expression EValUationccceceeveirinenienninincncneeieeceeseseeseeseeieseesensennene 34
SEIING EXPIESSIONS ..uvevniiiiiiiieiiiiiiicret ettt sa e s bbb e sae st e st esbesaenes 34
Evaluating String EXPIESSIONS.c..ccurtrirerereieiniers ettt eteeesee e sressessest et sessessessesaesennens 35
Pound Signs Inside String EXPreSSionsccoeievieererenieninietneniestentesieeeeesessestesseseesessessessens 36
Setting Variables DYyNamiCallycccoeeuerieriririeneninieieneeteeseseietet ettt siae e 37
Using the SetVariable and Evaluate functions together.........c..coccevevevievieceninenenenieninennene 37

Chapter 4: Regular Expressions 39

REGUIAT EXPIESSIONS.c..cveueeneeuiriiiierienieiestetetete st st ettt sttt st et et b s bt e e e st ssesaesesbensentesestenassessens

AbOUL TeGUIAT EXPIESSIONS ...euveveieieiiiirierietetertet ettt ettt sae et ese e
Single-Character Regular Expressions.....
Character Classes........ccccoevverererrenvennennes
Multi-Character Regular Expressions ...
USING BACKIEIETENCESuveneeuiiiieiiieieieietetetet ettt ettt ettt sttt et e seb et entene
Returning Matched SUD-EXPIESSIONS.coeveriiririririenienteteeeesientessesteteessessessessesseseesessessessenees
Anchoring a Regular Expression to a String....

Regular expression examples...................

Regular expressions in CEML.........coccoiviiennininieietneeeniesretesteseeeeessessessessese e e e s sseaenees

Chapter 5: Working with Arrays 47

ADOUL ATTAYS «..eeuevirieieieiteiteent ettt et ere st sttt st b e s b s bbb be s bt b e b st et et b e e bt sae b et emeaeebesbesaensenes
Creating an array
Array terms............
DYNAIMIC AITAYS. .. eecterueereerreeeenrereersenreesresteetesseseestestesessessessesseessesseeseesseessesseensessessesssesenseens

MultidimensionNal ATTAYS.....ccocveeruererieririrenentertetetr ettt ettt sbe st sesre et smeeeent

Basic Array Techniques...................
Adding elements to an array
Shifting indexes in @ dynamic array........c..coeeeeveererereneneenesesenrennens

Referencing Elements in Dynamic Arrays

Contents

Additional referencing Methodscoevievriirinierierneee et
Calculating an array iNAEX......cocevereeerirerenienierieeeeeeste sttt st e ste st st et sessesseseeseesessessesses
Populating Arrays with Data......................
Populating an array with ArraySet....
Populating an array with CFLOOP.........c.ccvieiiiriiiiieineneeieeeeeeste et
Using Nested Loops for 2D and 3D Arrays
Nesting CFLOOPs for a 2D array
Nesting CFLOOPs for a 3D array
Populating an Array from a QUETY.......cccceuevueverenenenenieneenenenennees .
ATTAY FUNCHONS c..ciiviiiiiiiiiicitctctec ettt ettt et et ae b st sae st b saeenene

Chapter 6: Working with Structures 57

ADOUL STIUCTUTES ...c.veueeveiinieieieiteitetestest ettt et s st ettt et s b e st e et bt bbb et et et esesberesbesaensenes
Structure notation.................

Creating and Using Structures
Creating SIIUCTUIEScoviviiiiiiiiicicit et
Adding data to structures
Finding information in StIUCLULESccccevriririeneneieeneneereeeeeeeeee e
Getting information about structures
Copying structures
Deleting structures

SEIUCTUTE EXAIMIPLE ..ottt ettt ettt sttt st st et sbe bt ese et ebesbesaesesbententens

Using Structures as Associative Arrays
Looping throUgh StIUCTUTIES. ...c..cveviriiririciceeieete sttt ettt ettt

SEIUCTUTE FUNCHONS ...ttt sttt sb e st ene s s

Chapter 7: Exchanging Data via XML 67

An Overview of Distributed Data for the Webc.ccccvririnenininiinenicrereeeneseeseeeene
WDDX COmpPONENtsceeveeeeeereeenseensueenne
Working With Application-Level Data.............

Data Exchange Across APPliCAtION SEIVETSc.ccuevurueriirierierinirinieniertentereseeessessessesteseeeesessesses
HOW WDDX WOIKS.......ociuiiiiiiimiiiiniicii sttt sse e ns
Converting CFML Data to a JavaScript Object
Transferring Data From Browser t0 SEIVETc.cceverueriivienierenerenienenieneeeeeeeneesseseeeenes

Chapter 8: Using CFML Scripting 75

ADOUE CESCIIPT 1ttt ettt ettt ettt ettt sa et st et e s st et e sat et e saesatesbesatenbesbe et ensestensesanensanns
CFScript example
Supported statements
The CFScript Language
] L) 013 0 1P
EXPIESSIONS ...ttt ettt et e st e st et e st e et e bt e st e e bt e bt e st e e be e se e seennee s
Variables.........cccceverennene
Comments.......ccccceeveeenneene
Differences from JavaScript.....
RESEIVEA WOTITS ... cucueuiiiiireieieiertccte ettt ettt sttt et seen e e

Vi Advanced ColdFusion Development

Interaction of CFScript with CFML

Chapter 9: Structured Exception Handling 83

Overview of Exception Handling in ColdFusion
Types of recoverable exceptions supported
Exception-Handling Strategiescceeverereiinininiiicicinteenerctetereee ettt sessesaeseenens
Exception Handling EXamPIEc..cceoveiririneniininieiecrececenen ettt sse s e sene
CETHROW SYIITAX...c.veitiiiiiiiiiiiieniententestete sttt ettt sresstsre s sbe s s ne b sassne st snesaesnnene
CEFTRY SYIEAK ..c.uttiitiiiiiiteete ettt ettt et et et e et et es bt e st e e e r e st e s sae e st e sanesneeneesaesnneean
CFCATCH syntax
Order Of @VAIUALIONcccoviirieeieieiircecteeereete ettt a et n et ene
Exception Information in CFCATCHc.cocieiiiriiiiininteestetee ettt st sttt
Database exceptionscoecevuuee
Locking exceptions................
MissingInclude exceptions

Chapter 10: Accessing the Registry 91
Overview of Registry Access in COIAFUSIONccuevieiririenierieieieeneneneesietet ettt 92
Getting REGISIIY VALUES.......coevuirieiiieeeiiesiestetere sttt ettt s sb e sttt s e s sbenseeene 92
Setting Registry Values
Deleting RegIStIy VALUES......c.coveeriiririeieieineterteteri ettt ettt st seneene b 94

Chapter 11: Building ColdFusion Extensions 95
About COldFUSION EXtEIISIONS. ...c..ccueriiiiiriiriirieieteteesesetctere ettt sae st ese s sne s s

Building ColdFusion Extensions in CFML
Allaire Tag Gallerycccoevevievieinineieeeeesereteee et
Allaire Alive

Custom Tag Editors

INStAllING CUSTOM TAGSeveeveverreieieieeiriesiestete sttt sttt ste st et eesbesbestesteseesessessessestetesessessessesensensens
Local tags
SRATEA TAGS ...veutenieirerie ettt ettt sttt ettt en e st

WIHtING CUSTOIN TAZS ..uviviiiiiiiiiiiiiiieniertnteet ettt b e st ae st s a e aeae
NamMING CUSTOIN TAGS....cuvereeiireriertenierteeeete et eiee st esses bt e sesse st eseseesesaeennesaesnsesaesneens
TAG SCOPE ettt ettt et s st et ettt e e s s ne e nnes
Defining attributes

EXAIMIPLE TAZS ...veverveieieieieiieieeiesteste ettt ettt sttt st sttt et s b e s bbb et st b s b esneeent
UHLEY TGS cveverrerenieteiereeieet ettt ettt sttt sttt e a et et sb e s bt e s ese e st s seresbeneennene
Function tags......c..........

User interface tags........cocevveveverennennn.

CFML 4.0 Custom Tag Enhancements
Main features 0f CFML 4.0 CUSTOIM TAZSecveueruerrerierienienieieriiniessetetesessessessessensessesessessensens
TAG NESTING.c.eeiiiiiiiiiiiiiieniet ettt s sa s sbe st b s
Associating sub-tags with the base tag.........ccocceevereieininncnenccceeneee
TaG INSTANICE AALA.....ceeieeierirrerierieieeeee ettt et bese et s saesnene
Pattern of execution
MOdes Of EXECULIONcvviuiiiiiiccii s

Contents vii

Specifying execution modes
CEEXIT .ottt b e bbb s
Access to generated content
Inter-tag data eXxchangeccccceeeeveveieinencnenicceneeceeee
High-level data exchange
Managing CUSTOIM TaAGScoeruerierierieeirierietese et se st et st esee st ere e b e sseesesresanesesnsensesaeseenns
Resolving file NAmMe CONTIICESocviriririirrieieeee ettt
Securing CUSTOIM TAGS ...cccvervieveerrieierieeiere ettt sttt ettt e bt et se st e sesaesnneee
Encrypting CuStom Tagscccoeviivuiniiiiiniiiiiiiicientnie et srere st en s ne e
Building Extensions in C++...
SAMIPLE CA TAGS vttt ettt sttt est et ea e s bt st et ese bt sbesbesbesae st sens
IMPIEMENTING CEX TAZS ...cuveuteutererririeienieteieiestestetestsse st steste st et estesessessestestesaeseesessesessessensessesne
Debugging CFX tags
Re@IStEriNgG CEX tAS....veeveerterrerrtereereeriereetenteeresseseesesueetessesaeessesaeessesseessesseeseesseensessesnsenes
Managing CEX TagScccevtiriiriiiiiiiicientcient ettt eaesre bbb eae st ae st b ene st ens
Adding a CFXtagc..cooeeunene
Changing CFX tag settings....
Deleting a CEX tag.......cccevuevenne
Using COM and CORBA ODJECLS ...c..eveirreruirienienirieiniesiestetesesiesiessessetestesessessessessensensesessessensens
ADOUL CORBAL.......ociiiiiicccii e
Getting Started with COM Components..
Getting set up: COM........
Register the object.......ccccoeveerineneniencnenennne
Find the component ProgID and Methodsccccoeervererierienieenenieneneieneeeeesesiesieeens
Using the OLE/COM ODJECT VIEWETcc.eeuerieieriririinienienteteesiesiessessetetesessessessessensessesessessensens
Creating and Using COM ODJECLScccevuvuerirerienteieirerieseesienteteteessessessestesesassessessessenes
Two ways to create objects with CFOBJECTccccoivieviiviinnenenencnieeeeeeneniennene
Setting Properties and Invoking Methodsccccoeveeevineninenenenienenencneneneeeeeseenenee
Getting Started with CORBA ODJECLEScoerierieririeinienierieteeeienicresietete e ssess sttt ssensens
Using CFOBJECT to create @8 CORBA ODJECKccveieuiruerierienieteiecnienieniesieteteeeeeee e

Chapter 12: The ColdFusion Extension API 123

The ColdFusion Extension (CFX) APL.......cccooviirireirennreienennreeeeeeereresseseeesesesseseesesessenenes 124
The CCFXEXCEPHION ClaSS ...cuveveuiruieireirieienieieistesesiestestese st stestestetestesessessessesseseessesessessessessesens 125
The CCFXQUETY CLASS....ccutruirririeieienteteesiesietestereesesiestestetetesessesbessestesessessessessensensesessessessesensens
Class members................
CCFXQuery:AddROWcccceevveveruerennennene
CCFXQuery::GetColumns
CCEFXQUETY::GETDATA.cueeiiiiiiieiieeiecetete ettt st st s st
CCEFXQUETY:IGETINAITIC. ...c..eeiiiiiiieiteeiie ettt ettt e e st se e e e sne e saee s besneesanessnennnes
CCFXQuery::GetRowCount
CCFXQUETY:SEDALA ...cuvenniiiiiiiiiiiiiiciiitcieit ettt st sae sttt e be s benneas
CCFXQUETY::SetQUETYSIIING ..cuveviiiiiiiiiiiiiiiectcieet ettt ettt saeas 129
CCEXQUETY::SetTOtalTIIMEc.eeienieiiieieieteeeie ettt ettt ettt sbe bbb 129
The CCFXREQUEST CLASS ...c..eeveruerieienteieeriesierieniestesteestesbetestesessessessessessestesessessessessensensesessessesens 130
Overview
ClasS MEINIDETScuvimiiiiiieirieiirereteneet ettt er et et a et se et s sene e ene e s ens 130
CCEFXReqUEStIAAAQUETYveuviieiieniieniiieieteitee ettt st stese et ese s s s saesaese e sbessesbesae e sens 131

viii Advanced ColdFusion Development

CCFXReqUESTATITIDULEEXISES ...c.veveviriiriiriiieieireniereesteiee ettt ettt sb st st b b
CCFXRequest::CreateStrinGSet.......coueiirirruerierrieieeietesteseesesee st see st estesreseessesneessessessensenns
CCEFXRequest::Debugcc.coceevevereeennennee
CCFXRequest::GetAttributecc........
CCFXRequest::GetAttributeList
CCFXRequest::GetCUSTOMDATAcc.ceiviiiieriiiieeieeet ettt s sne e
CCEFXREQUESTIGETQUETY ...covieiiiiiiieiieiteteete ettt ettt st e e e sne e sree s nesmeesnneesneennes
CCFXRequest::GetSetting.........cccceeveeeennene
CCFXRequest::ReThrowException
CCFXRequest::SetCustomData.................
CCFXRequest::
CCFXRequest::
CCFXRequest::
CCFXReqUESTIWTITEDEDUZcoeeveviieieiiriteesiesietetete ettt sttt ste sttt et ss s b st e e st e s es
The CCEXSHIINGSE ClaSS.....coverueiiieeriieieierietetetesesietestert ettt et seesesre st ste et sessessesaesennens
OVEIVIEWceevvevvernnennenne
Class members................
CCFXStringSet::AddString
CCFXStringSet::GetCount

CCFXStringSet::GetINdeXFOISIIINGcoevterieieririenieieierteteiese sttt et e e sessetessesessessessesaennens 140
CCFXStrINGSet::GETSIIINE. ..coveiuietiriiiiiniiitiniietcert ettt sr s a s st enesaesnens 140
Chapter 13: Connecting to LDAP Directories .143
ColdFusion SUPPOIt fOr LDAPco.iiiiiieiirieniteriesitesteie ettt ettt sae et st st e ste st et e s e esaesaeeanens 144
DITECTOTY STTUCTUTESeoviiiiiiiiiiiiiiiiceieie ettt sa e sttt ettt re st e sae b e b eassesaens 144
Viewing direCtOry SChEIMAcoevverieierieirini ettt 145
LDAP QtTIDULES ...c.vvenveieniinieieiteieeeteeeteeeet ettt e ne e s e ae et st s e st snenenes 146

Key Terms
OPETALIONS ..ttt ettt ettt et et s e et e st e s e et e s e sae et essesaeesaessteneesseensenseeseessessensessesnnensenns 147
SEATCH FAILETS ...ttt ettt sttt st b e st e st e st et e bt et e besbe st e sbesaeetanaas 148
EXAIMPLES. ..ottt ettt sttt et s ae et e ste s at e st e s st eat e s bt e st e beebe e bebe st e stesatentanas 148

Chapter 14: Application Security

ColdFusion SeCUIItY FEAtUIES........ccueveruiriirienieieiniertetetetnt ettt ettt sre s
Remote Development Services (RDS) Security
RDS and BaSIC SECUTILY ..c.vevveuveiruiriiriinierteieresiesietestest et sestestest et e e ssessessesseseesaesesbesbesens
Configuring RDS SECUTILYccvevurueririerierteieierienietestesteteesressetesseseeseesessessessessesessessessessesens
Overview of User Security
IMpPlementation SUIMIMATYcccoeerteererrererienirterenieresteseseesesestenessesesesseseesesesseressesesseseseesens
Using Advanced Security in Application Pages.........c.ceceeverenievineninenenenieneeneneneseeeeennens
CFAUTHENTICATE Syntax........cocevveevverernvennenne
Authentication and Authorization functions....
Catching security eXceptionscoeeceveeveevervennene
Example of User Authentication and AUthOriZation...........cecceeverierieererienenenierieeneseseseene 160
Authenticating users in Application.CfM.......cc.coevvevnirinininiireneeeseeeeeeeee 160
Checking for Authentication and AuthoriZationc.cceeeveevevieerenvenenenienieenesesceeene 162

CHAPTER 1

Advanced ColdFusion
Development

The programming techniques and server features presented here are "advanced" in
the sense that they give ColdFusion developers tools to build and deploy Web
applications at the highest levels of current technology. The skills you need to work
with these tools are extensions of the skills you have already mastered in ColdFusion
and in other development environments.

The strengths of ColdFusion’s tag-based language and open architecture are evident
in both the depth of its programming capabilities and in the rapid adoption of new
technologies to meet the demands of today’s Web solutions.

Allaire’s goal of encapsulating complexity for developers applies equally to data
manipulation, language extensibility, supporting technologies, and server options.

This preface gives a brief overview of the topics covered, a description of the product
documentation set, and a listing of additional ColdFusion resources.

Contents
o About this ManUal..........cccerieiririenineieieeetetesese ettt s ene 2
* DeVElOPEr RESOUICES.......cceeieuiriireieieiteteieeitete et te e s e stesse et esbesaeseeseeneene 2
* Developing Applications in ColdFusion Studio..........c.ccccevererervereniesenenennens 3
e About ColdFusion DOCUMENTAtIONccveeeuterererenienieeeteesesesieseeeeseenessensens 3

o ContaCtiNG AllAITE......coueririirriieierteerestetete ettt ettt e ebe b seens 5

2 Advanced ColdFusion Development

About this Manual

Advanced ColdFusion Development describes a wide range of features, including:
+ Data manipulation using expressions and CFML functions
» Exchanging structured data via XML
* CFML scripting
¢ Custom tags
* CFML Extensions
 Incorporating object technologies via COM/DCOM and CORBA
» Connecting to LDAP directories
* Regular expressions
 Using arrays and structures

* Application security

Developer Resources

Allaire Corporation is committed to setting the standard for customer support in
developer education, technical support, and professional services. Our Web site is
designed to give you quick access to the entire range of online resources.

Allaire Developer Services

Resource Description
Allaire Web site General information about Allaire products and
services.

www.allaire.com

Technical Support Allaire offers a wide range of professional
support programs. This page explains all of the

www.allaire.com/support | 4
available options.

Professional Education Information about classes, on-site training, and

www.allaire.com/education online courses offered by Allaire.

Developer Community All of the resources you need to stay on the
cutting edge of ColdFusion development,
including online discussion groups, Knowledge
Base, Component Exchange, Resource Library,
technical papers and more.

www.allaire.com/developer

Allaire Alliance The growing network of solution providers,
application developers, resellers, and hosting

www.allaire.com/partners ’ - >) -
services creating solutions with ColdFusion.

Chapter 1: Advanced ColdFusion Development 3

Developing Applications in ColdFusion Studio

ColdFusion Studio is a special version of HomeSite, Allaire’s award-winning HTML
editor. HomeSite’s strengths in Web page creation have been enhanced with powerful
tools specifically designed for ColdFusion development.

All of the components of dynamic page creation and site management are accessible
from Studio.

» View your data sources.

¢ Quickly build SQL statements to insert in CFQUERY.

» Access the complete HTML and CFML tag sets from the Tag Chooser.
 Edit code from tag-specific editors or from the Tag Inspector.

* Render pages with internal or external browsers and visually edit page elements
in Design view.

» Create projects to group your application pages and support files for easy
maintenance and uploading.

* Quickly make global changes to files using extended search and replace.
« Save code blocks for re-use as snippets.

* Build ColdFusion expressions from the complete set of ColdFusion functions,
constants, operators, and variables available in the Expression Builder.

» Debug dynamic pages against ColdFusion Server.
» View your site’s structure in the Visualizer.

+ Validate HTML and CFML code.

« Verify links for individual files or entire projects.

» Enable version source control of your files for team development.

About ColdFusion Documentation

The documentation set is designed to provide support for all components of the
ColdFusion development system. Both the print and online versions are organized to
allow you to quickly locate the information you need.

The documentation set contains:

Getting Started with ColdFusion — Covers system installation and basic configuration,
describes the components of the ColdFusion development system, and introduces the
ColdFusion Markup Language (CFML).

Administering ColdFusion Server — Describes configuration options for maximizing
performance, managing data sources, setting security levels, and a range of
development and site management tasks.

Advanced ColdFusion Development

Developing Web Applications with ColdFusion — Presents the fundamentals of
ColdFusion application development and deployment, including data sources, user
interfaces, and Web technologies. The development tools in ColdFusion Studio are
covered in detail.

Advanced ColdFusion Development — Gives an overview of CFML elements such as
functions, expressions, arrays, scripting, and XML data exchange. It also discusses
custom tags, ColdFusion API tags, integrating object technologies, and site
management.

CFML Language Reference — Provides the complete syntax, with example code, of all
CFML tags and functions.

Quick Reference Card — An online (Acrobat) guide to CFML.

Documentation distribution

The ColdFusion CD-ROM contains the complete document set. The setup program
installs the document set by default.

The print manuals are available in Adobe Acrobat (PDF) format from the
dochome.htm page in the /cfdocs directory of your Web root. If the files are not
available locally, you get them from our Web site at http://www.allaire.com/products/
COLDFUSION/Documentation.cfm.

You can also access the documentation in HTML from both of these locations.
Documentation conventions

When reading, please be aware of these formatting cues:
¢ Code samples, filenames, and URLs are set in a distinct font.
» Notes and tips are identified by bold type in the margin.
 Bulleted lists present options and features.
¢ Numbered steps indicate procedures.
» Tool button icons are generally shown with procedure steps.
* Menu levels are separated by the greater than (>) sign.

» Text for you to type in is set in italics.

Reading online documentation

You can open the online documents in a number of ways:

» From your browser, click the ColdFusion Documentation link on the Welcome
to ColdFusion page. Each page contains links to other documents and a search
window.

 In ColdFusion Studio, click the Help tab in the Resources area to open the help
tree. You can expand the list to select topics by title.

Chapter 1: Advanced ColdFusion Development 5

Tip You can extend the online documentation in Studio by adding your own HTML files.
Just copy a folder to the Help directory under the ColdFusion Studio directory. Press F5
to refresh the Help reference list. You can now browse and search these files in the Help
References.

Contacting Allaire

Corporate headquarters

Allaire Corporation
One Alewife Center
Cambridge, MA 02140

Tel: 617.761.2000 voice
Fax: 617.761.2001 fax

http://www.allaire.com

Technical support
Telephone support is available Monday through Friday 8 A.M. to 8 PM. Eastern time
(except holidays).

Toll Free: 888.939.2545 (U.S. and Canada)
Tel: 617.761.2100 (outside U.S. and Canada)

Postings to the ColdFusion Support Forum can be made at any time.

Sales

Toll Free: 888.939.2545
Tel: 617.761.2100
Fax: 617.761.2101

Email: sales@allaire.com
Web: http://www.allaire.com/store

Advanced ColdFusion Development

CHAPTER 2

Functions and Expressions

This chapter describes ColdFusion expressions — powerful, easy-to-learn language
constructs that allow you to create more sophisticated applications.

Contents
e About ColdFusion EXPressionscccceererereenieneriienenienienienieseeeeseseesenns 8
* Creating Expressions in ColdFusion Studio............cceeeerverererenienieneesenenennens 9
e The Structure of EXPIeSSiOnNS.......cceceeeriererierienierie et stete et s seesaesaeeneens 9
® OPETALTOTS .eeeneeeiieeieeeteette ettt et e et ee st e e ste s st e sat e e ste e e st esab e e seeeemeesaseesseesasesaseeee 16
® FUNCHONS ..ttt 21
o USING POUNM SIBNS ..cuerveruiiiiiiiiiiniineieteteteiestesietestest et sae s 24
o Typeless Expression EValUationc..ccoeeeveeirinenienienienineneneneeneeeeeneenenne 27
» Examples of Typeless Expression Evaluation...........c.cccceceeerervenenenieneeennenn 29

Debugging and Troubleshooting EXpressions...........cccceceevevvereneenneneneenene. 30

Advanced ColdFusion Development

About ColdFusion Expressions

At a basic level, you use expressions in ColdFusion application pages to perform
operations on data. Since you can embed expressions in ColdFusion Markup Language
(CFML) tags and CFScript blocks, you can create standard programming logic to
manipulate data.

For example, you can use expressions in the ColdFusion tags CFSET and CFIF to create
standard IF-ELSE statements:

<CFIF 1 + 1 is 2>

The world 1is rational.

<CFELSE>

Go home, today’s a bad day.

</CFIF>

Some of the uses for expressions are to:
¢ Perform mathematical calculations.
* Manipulate strings.
» Execute date-and-time operations.
« TFormat dates, times, and numbers.

* Add data to arrays and structures.

What'’s in an expression?

Expressions can contain a wide variety of objects or elements. Expressions can be built
using the following components:

 Basic terms: numbers, strings, Boolean (logical) values, date-and-time objects,
lists, and complex objects like arrays, structures, queries, and COM objects

 Variables that store some previously computed data
» Functions that manipulate data in predefined ways

» Operators that combine simple expressions to create more complex ones

Expression examples

For example:
¢ 1 + 1 is a mathematical expression that evaluates to 2.

* 1 is 2 isalogical expression that evaluates to the string NO (also the Boolean
value FALSE).

o Left("Monkey", 4) is a string expression that evaluates to the string Monk.

» DateFormat(CreateDate(1998, 9, 11), "dddd, mmmm d, yyyy") is a date-and-
time formatting operation that evaluates to Friday, September 11, 1998.

See the CFML Language Referencefor a full catalog of ColdFusion tags and functions.

Chapter 2: Functions and Expressions 9

Creating Expressions in ColdFusion Studio

In ColdFusion Studio, you can use the Expression Builder to create CFML expressions.
You can use this visual tool to combine functions, operators, and values into CFML
expressions.

To build expressions:

1. Place the cursor at the point in the document where you want to insert the
expression.

2. Right-click and select Insert Expression or choose Tools > Expression Builder. You
can open and close the list of Expression Elements to show or hide the functions,
constants, operators, and variables.

3. Inthe Functions list, choose an expression type to display the expression elements
in the adjoining pane. For example, select Date and Time to see all the ColdFusion
functions for manipulating date and time values.

4. Double-click an element to add it to the element list.
5. Add operators by clicking on them in the operator toolbar.

6. Click Insert to add the expression in the current document.

The Structure of Expressions

This section is about the objects that can be used to build expressions. The objects and
their properties are described in detail. Knowledge of the material in this section will
enable the construction of powerful and flexible ColdFusion expressions.

The basic terms — numbers, strings, Boolean (logical) values, date-and-time objects,
lists, and complex objects such as arrays, structures, queries, and COM objects — are
the simplest expressions that exist. This section defines the meaning and properties of
each of these terms.

Numbers

ColdFusion supports both integer numbers (numbers with no decimal part, for
example, 14) and real numbers (numbers with a decimal part, such as 3.127). Real
numbers are also known as floating-point numbers. Integer and real numbers can be
freely intermixed in expressions, so, for example, 1.2 + 3 evaluates to 4.2.

ColdFusion can work with both very large and very small real numbers. The range of
ColdFusion numbers is approximately 10300, or +1 with 300 zeros after it. Most
operations are accurate to 12 digits after the decimal point.

Advanced ColdFusion Development

Scientific notation

In ColdFusion, numbers can also be represented in what is known as engineering, or
scientific notation. The format of such numbers is xEy, where x is a positive real
number in the range 1.0 (inclusive) to 10 (exclusive) and y is an integer number. The
value of a number in the engineering notation is x times 10V, so, for example, 4.0E2 is
4.0 times 102 which is equal to 400. Similarly, 2.5E-2 is equal to 2.5 times 10-2, which is
equal to 0.025. Engineering notation is very useful for writing very large and very small
numbers.

Strings

In ColdFusion, text values are stored in strings. Strings are pieces of text delimited on
both ends by either single or double quotes. For example, the two strings below are
equivalent:

"This is a string"
"This is a string’

nn

An empty string can be written as "" (a pair of double quotes with nothing in between),
oras ’’ (apair of single quotes with nothing in between). Strings can have arbitrary
size, limited only by the amount of available memory on the ColdFusion server.

Using quote marks and pound signs

Strings can use either single or double quotes. To use a single quote inside a string that
is single quoted, use two single quotes. This is known as escaping the single quote:
’Single Quote: ’’ Double Quote: "’

To use a double quote inside a double-quoted string, use two double quotes. This is
known as escaping the double quote:

"Single Quote: ’ Double Quote:

Because strings can be in either double quotes or single quotes, both of these strings
are equivalent.

To insert a pound sign in a string, the pound sign must be escaped, or doubled, as in:

"This is a pound sign ##"

Boolean values

Boolean values store the result of a logical operation. Thus their value can be one of
truth, or falsity. ColdFusion has two special constants — TRUE and FALSE — for each
of these values. For example:

e 1 IS 1isan expression that evaluates to TRUE.
e "Monkey" CONTAINS "Money" is an expression that evaluates to FALSE.

The two Boolean values can be used directly in expressions, as in:

Chapter 2: Functions and Expressions 11

<CFSET UserHasBeenHere=TRUE>

The numerical value of TRUE is 1. The numerical value of FALSE is 0. When converted
to a string, TRUE becomes “YES” and FALSE becomes “NO”.

Date-and-time values

Note

ColdFusion can perform a variety of operations on date-and-time values. Date-and-
time values identify a date and time in the range 100AD to 9999AD.

There are a variety of ways in which a date-and-time value can be entered in
ColdFusion. You can use the functions that create date-and-time objects using various
criteria. (See the CFML Language Reference for information about date-and-time
functions.)

You can also directly enter a date-and-time object in a familiar format:

"October 30, 1998"
"Oct 30, 1998"
"Oct. 30, 1998"
"10/30/98"
"1998-30-10"

21st century dates

Two-digit years from 00 to 29 are treated as 215t century dates; 30 to 99 are treated as
20th century dates.

"October 30, 2015"
"October 30, 15"

Time formats

If no time part is specified, time is set to 12:00am. Times can be added in a variety of
common formats as well:

"October 30, 1998 02:34:12"
"October 30, 1998 2:34a"
"October 30, 1998 2:34am"
"October 30, 1998 02:34am"
"October 30, 1998 2am"

The time part of the object is accurate to the second.

Internally to ColdFusion, date-and-time values are represented on a time line as a
subset of the real numbers. This is done for efficiency in evaluation and because it
directly mimics the method used by many popular database systems, including
Microsoft Access. One day is equal to the difference between two successive integers.
The time portion of the date-and-time value is stored in the fractional part of the real
number.

Thus, arithmetic operations can be used to manipulate date-and-time values. For
example, Now() + 1 will evaluate to tomorrow at the same time. However, we strongly

Advanced ColdFusion Development

discourage ColdFusion developers from using this potentially troublesome method of
manipulating date-and-time objects. Date-and-time manipulation routines should be
used instead.

Lists

Lists are objects that enable ColdFusion developers to easily perform sophisticated
manipulation operations on collections of elements returned by Web browsers and
some ColdFusion functions such as ValueList, QuotedValueList.

Lists are a special kind of string. When a string is viewed as a list, all characters inside it
are divided into two types—delimiters and non-delimiters. Elements of the list consist
of the text between (one or more) delimiters. Elements consist entirely of non-
delimiter characters. In general, the structure of a string viewed as a list can be
described as:

"TextElementDeTlimiterTextElementTextDelimiterText.."
Here’s an example of how this might look:

“Biology,Chemistry,Geology,Physics”

Examples

* “1,2,3”is a three-element list with “,” as the delimiting character. The first
element is “1”, the second is “2”, and the third is “3”.

» “First;Second” is a two-element list with “;” as the delimiting character. The first
element is “First”, the second is “Second”.

* “AB;CD” is a three-element list with “,” as the delimiting character. The first
element is “A”, the second is “B;C”, and the third is “D”.

* “AB;CD” is a two-element list with “;” as the delimiting character. The first
element is “A,B”, the second is “C,D”. “A,B;C,D” is a four-element list with both

,” and “;” as the delimiting characters. The first element is “A”, the second is
“B”, the third is “C,” and the fourth is “D”.

As the examples show, a list can have more than one delimiting character. The default

“w»

delimiting character, used by all list processing functions is a comma: “,”.

Elements in lists can be separated by more than one delimiter. For example, the list
“1xx2xyz3” has the three elements “1”, “2”, and “3” as long as the delimiters include all
of “x”, “y”, and “z".

Delimiters before the first element and after the last element will be ignored. Thus the
list “1xx2xyz3” from the previous example will be processed in the same way as the list
“zzylxx2xyz3yz”.

Note that the structure of lists is flat — that is, lists cannot be nested into one another.
Also, lists can contain no “empty” elements. A list can be empty, however. The empty

list is equivalent to the empty string "".

A word of caution: white space is not considered a delimiter. When using lists where
elements may be separated by white space as well as other delimiters, be sure to add

Chapter 2: Functions and Expressions 13

the white space characters to the delimiters. For example, “1, 2, 3” should probably be
processed with both the comma and the space as delimiters.

Structures

You can use structures to create and maintain key-value pairs. You can also use
structures to refer to related string values as a unit rather than individually. For
example, a structure lets you build a collection of related variables that are grouped
under a single name. You can also use structures to create associative arrays.

You create structures by assigning a variable name to the structure with the StructNew
function. For example, to create a structure named employee, use this syntax:

<CFSET employee=StructNew()>
You can add key-value pairs to the structure using the StructInsert function:
<CFSET value=StructInsert(structure_name, key, value)>

For more information about structures, see the Working with Structures chapter in this
book.

Arrays

Note

Arrays are essentially tables of objects or data that can be indexed. Although the
ArrayNew function only supports creating up to three-dimensional arrays, there is no
limit on array size or maximum dimension. You can piece together arrays of dimension
greater than three by adding arrays to array indexes.

Array objects can be created by assigning an existing array to a new variable:
<CFSET myarray2=myarray>

In this case, a separate copy of the data in myarray is copied to myarray2. Changes
made in myarray are not reflected in myarray?2. It is very important to understand that
such assignments are very resource-intensive since the entire array is copied from one
variable to the other. This operation can significantly affect performance when large
arrays are involved.

Elements stored in an array are referenced as follows:
<CFSET myarray[1][2]=Now()>

For more information about arrays, see the Working with Arrays chapter in this book.

Complex objects, such as arrays, structures, queries, and COM objects, are passed to
custom tags surrounded by pound signs (#).

Advanced ColdFusion Development

Queries

Note

Like arrays, ColdFusion queries can be referenced as objects by assigning a query to a
variable:

<CFQUERY NAME=myquery
DATASOURCE=mydata
SELECT * FROM CUSTOMERS
</CFQUERY>

<CFSET myquery2=myquery>

In this case (unlike the same operation with arrays) the query is not copied. Instead,
both names point to the record set data so that if you make changes to the table
referenced in the query, the original query and the query object myquery2 will both
reflect those changes.

Query columns can be referenced as if they were one-dimensional arrays using cursor-
style processing. However, they are not dynamically scalable.

<CFSET myvar=queryname.columnname[index]>

Multiple queries of the same name can now be run in the same application page, so
dynamic expression evaluation doesn’t need to be used to run queries inside a loop.
And queries can be passed as objects to custom tags.

However, queries and variables cannot have the same name at the same time in the
same application page. You can make a query available to all ColdFusion applications
on a specified server by assigning a query to a server variable:

<CFSET Server.query=myquery>
When you want to clear the server scope query, you reassign the query object:

<CFSET Server.query=0>

Complex objects, such as arrays, structures, queries, and COM objects are passed to
custom tags surrounded by pound signs (#).

COM objects

COM (Component Object Model) objects are non-visual components that encapsulate
specific functionality you can invoke in your application pages. ActiveX, OCX, CORBA,
and ADO objects are examples of COM objects.

COM obijects are created using CFOBJECT and CFSET (when the right-hand side of the
expression evaluates to an object):

<CFOBJECT ACTION="Create"

NAME="Mailer"
CLASS=SMTP.Mailer>

<CFSET myvar=Mailer>
<CFSET MessageObj=Mailer.GetCurrentMessageObject()>

Chapter 2: Functions and Expressions 15

Note

COM objects generally contain methods, like functions, you can use to execute certain
operations:

<CFSET temp=Mailer.SendMail()>

COM objects also generally contain properties you can read and write using
ColdFusion variables:

<CFSET Mailer.FromName=Form.fromname>

Properties can be invoked on either side of an assignment:
<l--- To set the Mailer.Subject property --->
<CFSET Mailer.Subject=form.subject>

<l--- To get the Mailer.Subject property --->
<CFSET subject=Mailer.Subject>

Methods and properties can return objects such as arrays, queries, and other COM
objects.

For a COM object to be used by ColdFusion, it needs to be registered and it needs to
expose the IDispatch interface. For more information about COM objects, see the
Using Objects chapter in this book.

Complex objects, such as arrays, structures, queries, and COM objects are passed to
custom tags surrounded by pound signs (#).

Variables

When variables are used in ColdFusion expressions, the value stored in the variable is
returned. The values can be one of the previously described basic objects: numbers,
strings, Boolean values, date-and-time objects, or lists.

Variable names must begin with a letter that can be followed by any number of letters,
numbers, or the underscore character “_". For example, TheVariable_1 and
TheVariable_2 are valid variable names, while 1stVariable and WhatAVariable! are not.

Sometimes variable names can begin with a qualifier that itself is a variable name. The
qualifier name of a variable is separated from the qualified name with a period
character (.). For example, Form.MyVariable is a valid qualified variable name. The
qualifier, in this case “Form,” signifies that we are interested in the form variable
MyVariable, as opposed to, for example, the client variable MyVariable
(Client.MyVariable). Qualifiers are also known as scopes. Thus MyVariable is said to
belong to the Form scope.

In some cases, a variable must have pounds signs around it to allow ColdFusion to
distinguish it from string or HTML text and to insert its value as opposed to its name.
For more information on how to use pound signs in expressions see Using Pound
Signs.

16 Advanced ColdFusion Development

Functions

Because ColdFusion functions return basic objects, such as numbers, strings, Boolean
values, date-and-time objects, lists, arrays, structures, queries, and COM objects, their
results are basic expression terms.

Operators
Operators combine sub-expressions to create more complex expressions. The general
syntax for using operators is:
Expression Operator Expression

For example, 2 * (3 + 4) is a valid expression in which the plus (+) operator is used to
combine two numbers into an expression (which evaluates to 7), while the
multiplication (*) operator is used to combine the number 2 with the expression (3 + 4)
to produce the final result of 14.

ColdFusion has four types of operators:
 Arithmetic operators
» String operators
¢ Decision, or comparison, operators

 Boolean operators

Arithmetic operators

ColdFusion has nine arithmetic operators for addition, subtraction, multiplication,
division, remainder calculation, integer division, exponentiation, and sign changing.

Arithmetic Operators

Operator | Description

+,-,%/ The basic arithmetic operators: addition, subtraction,
multiplication, and division. In the case of division, the right
operand cannot be zero.

MOD Returns the remainder (modulus) after a number is divided by a
divisor. The result has the same sign as the divisor. The right
operand cannot be zero. For example, 11 MOD 4 is 3.

\ Divides two integer values. Use the \ (trailing slash) to separate the
integers. The right operand cannot be zero. For example, 9 \ 4 is 2.

A Returns the result of a number raised to a power (exponent). Use the
A (caret) to separate the number from the power. The left operand
cannot be zero. For example, 2 A 3 is 8.

Chapter 2: Functions and Expressions 17

Unary arithmetic operators
There are two unary arithmetic operators for setting the sign of a number either
positive or negative (+ or -). They modify the value as you would expect. For example:
e +2is2
e -2is(-1)*2

Examples

<CFSET DoubleNumber=2 * Form.Number>
<CFSET Number=(2 + 3) * 2>

<CFIF Form.Number IS DoubleNumber / 2>
...CFML tags...

</CFIF>

String operators

In ColdFusion multiple strings can be concatenated with the & (ampersand) operator.

ColdFusion also supports the automatic concatenation of variable values and function
return results delimited by pounds inside strings. For more information, see Using
Pound Signs.

Examples

<CFSET Textl="Jack is not " & (Form.Height * 2)>
<CFSET Text2="This text " & "continues..">

You can also output strings using variables, as in this example:

<CFSET Textl="John “>
<CFOUTPUT>#Text1#Smith
</CFOUTPUT>

Advanced ColdFusion Development

Decision, or comparison, operators

ColdFusion has eight decision, or comparison, operators that produce a Boolean
TRUE/FALSE result based on the result of the test they perform on their two
arguments.

Decision Operators

Operator Description

IS Performs a case-insensitive comparison of the two
values and returns true if the values are identical.

IS NOT Opposite behavior of is.

CONTAINS Checks to see if the value on the left is contained in
the value on the right and returns true if it is.

DOES NOT CONTAIN Opposite behavior of contains.

GREATER THAN Checks to see if the value on the left is greater than
the value on the right and returns true if it is.

LESS THAN Opposite behavior of greater than.

GREATER THAN OR EQUAL TO Checks to see if the value on the left is greater than
or equal to the value on the right and returns true
if it is.

LESS THAN OR EQUAL TO Checks to see if the value on the left is less than or

equal to the value on the right and returns true if it
is.

Shorthand notation for Boolean operators

You can replace some Boolean operators with shorthand notations to make your
CEFML more compact, as shown in the following table:

Shorthand Notation for Boolean Operators

Operator Alternative name(s)
IS EQUAL, EQ

ISNOT NOT EQUAL, NEQ
CONTAINS Not available

DOES NOT CONTAIN Not available

Chapter 2: Functions and Expressions 19

Shorthand Notation for Boolean Operators (Continued)

Operator Alternative name(s)
GREATER THAN GT
LESS THAN LT

GREATER THAN OR EQUAL TO GTE, GE

LESS THAN OR EQUAL TO LTE, LE

Example

<CFSET ResultValue=4 IS NOT Form.Number>

If Form.Number is not 4, ResultValue would be TRUE, which would be output as the

string "TRUE".

Boolean operators

Boolean, or Logical, operators perform logical connective and negation operations.
The operands of Boolean operators are Boolean (TRUE/FALSE) values. ColdFusion has
the following six Boolean operators:

Boolean Operators

Operator

Description

NOT

Reverses the value of an argument. For example, NOT
TRUE is FALSE and vice versa.

AND

Returns TRUE if both arguments are TRUE; returns FALSE
otherwise. For example, TRUE AND TRUE is TRUE, but
TRUE AND FALSE is FALSE.

OR

Returns TRUE if any of the arguments is TRUE; returns
FALSE otherwise. For example, TRUE OR FALSE is TRUE,
but FALSE OR FALSE is FALSE.

XOR

Exclusive or—either, or, but not both. Returns TRUE if the
truth values of both arguments are different; returns
FALSE otherwise. For example, TRUE XOR TRUE is FALSE,
but TRUE XOR FALSE is TRUE.

20

Advanced ColdFusion Development

Boolean Operators (Continued)

Operator Description

EQV Equivalence both true or both false. The EQV operator is
the opposite of the XOR operator. For example, TRUE EQV
TRUE is TRUE, but TRUE EQV FALSE is FALSE.

IMP Implication. A IMP B is the truth value of the logical
statement “If A Then B.” AIMP B is FALSE only when A is
TRUE and B is FALSE.

The Boolean operators are most often used in CFIF and CFELSEIF tags to control the
execution of CFML tags in an application page. They are also used in the CONDITION
attribute of the CFLOOP tag. Boolean operators are also used in the IIf function.

Examples

<CFIF IsDefined("Form.FName") AND IsDefined("Form.LName")>
. CFML tags...
</CFIF>

<CFLOOP CONDITION="NOT (IndexValue LTE 1 OR IndexValue GTE 10)">
. CFML tags...
</CFLOOP>

Operator precedence

The order of precedence controls which operator is evaluated first in an expression.
Operators on the same line have the same precedence.

Operator precedence, highest to lowest

Unary +, Unary -

EQ, NEQ, LT, LTE, GT, GTE, CONTAINS, DOES NOT CONTAIN
NOT
AND
OR
XOR
EQV
IMP

To enforce a specific non-standard order of evaluation, you must parenthesize
expressions. For example:

Chapter 2: Functions and Expressions 21

e 6-3*2isequalto0
e (6-3)*2isequalto6

Parenthesized expressions can be arbitrarily nested. When in doubt about the order in
which operators in an expression will be evaluated, always use parentheses.

Functions

Functions are predefined operations you can use to manipulate data. In ColdFusion,
functions let you perform decision-making, date/time-formatting, and other common
operations automatically.

ColdFusion provides a variety of functions that perform many types of tasks. For
example, you can use a mathematical function to take the square root of a number, or
a string function to find the first letter of a word.

See the CFML Language Reference for a full catalog of ColdFusion functions.

Function types

In ColdFusion, functions are organized by category, as shown in the following table:

Function Categories

Category Purpose

Administrative functions Perform actions on client variables.

Array functions Create, edit, and manage arrays.

Date and Time functions Perform date-and-time actions.

Decision functions Test for arrays, queries, and simple values.

Display and Formatting functions Control the display of dates, times, and

numbers.

Dynamic Evaluation functions Evaluate dynamic expressions, define

variable values.

International locale functions Perform date, time, and currency
formatting based on a specified locale,
such as French (Standard) and French

(Canadian).

List functions

Perform actions on lists.

Mathematical and Trigonometric
functions

Perform mathematical operations on
values.

22

Advanced ColdFusion Development

Function Categories (Continued)

Category Purpose

Query functions Perform actions on queries.

Strings functions Perform actions on text values.

Structure functions Create, edit, and manage structures.
System-level functions Perform actions on directories and paths.

Function usage

All functions return a value, which is one of the basic expression objects:

Often,

Numbers

Strings

Boolean values
Date-and-time objects
Lists

Arrays

Structures

Queries

COM objects

the returned value is computed based on some data passed to the function from

the ColdFusion application page. Data is passed to functions via their arguments (also
known as parameters).

Although some functions take no parameters, such as, Now() which returns the current
date and time, most functions take at least one argument. Any valid ColdFusion
expression can be an argument to a function. This means that functions can take
functions as arguments. (This is known as nesting functions.)

The following table illustrates function syntax and usage guidelines.

Function Syntax Guidelines

Usage Example
The exception — no arguments Function()
Basic format Function(Data)

Nesting functions Functionl(Function2(Data))

Chapter 2: Functions and Expressions 23

Function Syntax Guidelines (Continued)

Usage Example

Separate multiple arguments with Function(datal, data2, data3)

commas

Enclose string arguments in single Function(’This is a demo’) Function("This
or double quotes is a demo")

Arguments are expressions Functionl(X*Y, Function2("Text"))

To learn how to insert functions in various types of expressions see Using Pound Signs.

Optional arguments in functions

Some functions may take optional arguments after their required arguments. If
omitted, optional arguments take some default value. For example:

Replace("FooFoo", "Foo", "Boo") returns "BooFoo"
Replace("FooFoo", "Foo", "Boo", "ALL") returns "BooBoo"

The difference in behavior is explained by the fact that the Replace function takes an
optional fourth argument which specifies the scope of replacement. The default value
is “ONE” which explains why only the first occurrence of “Foo” was replaced with
“Boo”. In the second example, a fourth argument is provided that forces the function to
replace all occurrences of “Foo” with “Boo”.

Functions that return a Boolean

When you test the return of any function that returns a Boolean value, the output will
always appear to be YES or NO. The actual Boolean return is TRUE or FALSE, but when
tested in a CFIF statement, the Boolean return is converted to its string equivalent, YES
or NO.

Each of the following examples demonstrates a valid test for a Boolean return:

<CFIF #booleanfunction(argl, arg2)# IS TRUE>
<CFIF #booleanfunction(argl, arg2)# IS "YES">
<CFIF #booleanfunction(argl, arg2)# IS 1>
<CFIF #booleanfunction(argl, arg2)#>

Note in the second example that YES must be enclosed in quotation marks since it is
resolved as a string. This is an important point to keep in mind for an example such as:

<CFSET ReturnValue= #booleanfunction(argl, arg2)#-
<CFIF ReturnValue IS "YES">

24

Advanced ColdFusion Development

Preferred method

The preferred method from the previous examples omits the explicit condition from
the expression, as shown below:

<CFIF #booleanfunction(argl, arg2)#>

Using Pound Signs

Pound signs (#) have special meaning in ColdFusion. When a CFML application page
is processed, ColdFusion treats text delimited by pound signs differently from plain
text.

Two simple and very important points about pound signs in CFML are:
» Use pound signs to distinguish expressions from plain text.

» When expressions are evaluated, the resulting value is substituted for the
expression text.

For example, to output the current value of a variable named “Form.MyFormVariable,”
you must delimit the variable name with pound signs:

<CFOUTPUT>Value is #Form.MyFormVariable#</CFOUTPUT>

When ColdFusion processes an expression, it replaces the text of the expression and
the two pound signs around it with its resulting value. In the example above, the
expression #Form.MyFormVariable# is replaced with whatever value has been
assigned to it.

While the guidelines for using pound signs in CFML are simple, there is still some
possibility for confusion to arise. This is particularly true in cases where expressions
and plain text are mixed together. The following sections provide more details on how
pound signs should be used in CFML.

Pound signs inside CFOUTPUT tags

Expressions containing a single variable or a single function can be used freely inside
CFOUTPUT tags as long as they are enclosed in pound signs.

<CFOUTPUT>
Value 1is #Form.MyTextField#
</CFOUTPUT>

<CFOUTPUT>
The name 1is #FirstName# #LastName#.
</CFOUTPUT>

<CFOUTPUT>
Cos(0) is #Cos(0)#
</CFOUTPUT>

Chapter 2: Functions and Expressions 25

If pounds are not used around these expressions, the expression text rather than the
expression value will appear in the output generated by the CFOUTPUT statement.

Note that two expressions inside pound signs can be adjacent to one another, as in

<CFOUTPUT>
"Mo" and "nk" is #Left("Moon", 2)# #Mid("Monkey", 3, 2)#
</CFOUTPUT>

Complex expressions

Complex expressions involving one or more operators cannot be inserted inside
CFOUTPUT tags. The following example will produce an error.

<CFOUTPUT>1 + 1 is #1 + 1#</CFOUTPUT>

To insert the value of a complex expression in the output generated by a CFOUTPUT
statement, use CFSET to set a variable to the value of the expression and use that
variable inside the CFOUTPUT statement, as is shown below:

<CFSET Result=1 + 1>
<CFOUTPUT>1 + 1 1is #Result#</CFOUTPUT>

Pound signs inside strings

Expressions containing a single variable or a single function can be used inside strings
as long as they are enclosed in pound signs.

<CFSET TheString="Value 1is #Form.MyTextField#">
<CFSET TheString="The name is #FirstName# #LastName#.">
<CFSET TheString="Cos(0) is #Cos(0)#">

ColdFusion automatically replaces the expression text with the value of the variable or
the value returned by the function. For example, the following pairs of CFSET
statements produce the same result:

<CFSET TheString="Hello, #FirstName#!">
<CFSET TheString="Hello, " & FirstName & "!">

If pound signs are not used around these expressions, the expression text as opposed
to the expression value will appear in the string. For example, the following pairs of
CFSET statements produce the same result:

<CFSET TheString="Hello, FirstName!">
<CFSET TheString="Hello, " & "First" & "Name!">

As in the case of the CFOUTPUT statement, in strings two expressions can be adjacent
to each other, as in

<CFSET TheString="Monk is #Left("Moon", 2)##Mid("Monkey", 3, 2)#">

Note that the double quotes around “Moon” and “Monkey” need not be escaped (or
doubled, asin ""Moon"" and ""Monkey""). This is because the text between the pound
signs is treated as an expression that is evaluated first before its value is inserted inside
the string.

Advanced ColdFusion Development

Inserting complex expressions in strings

Complex expressions involving one or more operators cannot be inserted inside
strings. The following example produces an error:

<CFSET TheString="1 + 1 is #1 + 1#">

To insert the value of a complex expression inside a string, use CFSET to set some
variable to the value of the expression and use that variable inside the string, or use the
string concatenation operator:

<CFSET Result=1 + 1>
<CFSET TheString="1 + 1 is #Result#">
<CFSET TheString="1 + 1 is " & (1 + 1)>

To insert the pound character inside a string, use two pound signs as shown below:
<CFSET TheString="This is a pound sign ##.">

Pound signs inside tag attribute values

The rules for using pound signs inside strings apply to the use of pound signs inside
tag attribute values. The following example demonstrates the point:

<CFCOOKIE NAME="TestCookie"
VALUE="The value 1is #CookieValue#">

If the value of a tag attribute is a variable, function, or array element, use the following
syntax:

<CFCOOKIE NAME="TestCookie"
VALUE=#CookieValue#>

<CFCOOKIE NAME="TestCookie"
VALUE=#CookieValueArray[Index]#>

This usage is more efficient than VALUE="#CookieValue#".

Nested pound signs

There are very few cases in which pound signs can be nested inside the same
expression. Usually, the need for nested pound signs arises because of the high degree
of complexity of the expression. The following example shows a valid use of nested
pound signs:

<CFSET Sentence="The length of the full name
is #lLen("#FirstName# #LastName#")#">

The pound signs need to be nested so that the values of the variables FirstName and
LastName are inserted in the string whose length the Len function will calculate.
Generally, the existence of nested pounds implies the presence of a complicated
expression. For example, the above piece of CFML could be rewritten to improve its
readability:

<CFSET FullName="#FirstName# #LastName#">
<CFSET Sentence="The length of the full name
is #Len(FullName)#">

Chapter 2: Functions and Expressions 27

A common mistake is to put pound signs around the arguments of functions, as in:

<CFSET ResultText="#Len(#TheText#)#">
<CFSET ResultText="#Min(#ThisVariable#, 5 + #ThatVariable#)#">
<CFSET ResultText="#Len(#Left("Some text", 4)#)#">

All of the above statements result in errors. As a general rule, never put pound signs
around function arguments.

Pound signs in general expressions

Allaire recommends that pound signs be used only where necessary. The following
example demonstrates the preferred method for referencing variables.

<CFSET SomeVar=Varl + Max(Var2, 10 * Var3) + Var4>
It is a cleaner and more efficient method.
In contrast, note the following example, which uses pound signs unnecessarily:

<CFSET #SomeVar#=#Varl# + #Max(Var2, 10 * Var3)# + #Vard#>

Typeless Expression Evaluation

Typelessness in the evaluation of expressions refers to a system'’s ability to
automatically convert between data types in order to satisfy the requirements of the
operations in expressions.

ColdFusion has a typeless expression evaluation system that simplifies data
manipulation for Web developers. Instead of worrying about compatibility between
data types and the conversions from one data type to another, ColdFusion developers
can focus on the operations they would like to perform on the data.

Operation-driven evaluation

Traditional programming languages enforce strict rules about mixing different types of
objects in expressions. For example, in a language such as Fortran, Pascal, C/C++, or
Basic, the expression ("8" * 10) produces some form of compile or run-time error
because the multiplication operator expects two numerical operands and "8" is a
string. Developers using such languages must constantly worry about converting
between data types to ensure error-free program execution. For example, the above
expression may have to be written as (ToNumber("8") * 10).

In ColdFusion, however, the expression ("8" * 10) evaluates to the number 80 without
generating an error. When ColdFusion processes the multiplication operator, it
automatically tries to convert its operands to numbers. Since “8” can be successfully
converted to the number 8, the expression evaluates to 80.

How ColdFusion processes expressions

In general, ColdFusion processes an expression using the following steps:

28

Advanced ColdFusion Development

1. Inthe case of operators, ColdFusion determines the required operands. For
example, the multiplication operator requires its operands to be numbers and the
CONTAINS operator requires its operands to be strings. In the case of functions,
the required function arguments are determined. For example, the Min function
expects two numbers as arguments, and the Len function expects a string.

2. Inthe case of operators, ColdFusion evaluates all operands. In the case of
functions, all arguments are evaluated.

3. Inthe case of operators, ColdFusion converts all operands that are of a different
type from the required type to the required type. In the case of functions, all
arguments that are of a different type from the required type are converted to the
required type. (If a conversion fails, and ColdFusion reports an error.)

Because ColdFusion performs automatic conversions based on the operations that are
involved in the evaluation of an expression, its typeless expression evaluation
mechanism is essentially operation-driven evaluation. Operation-driven evaluation
lets ColdFusion developers focus on what they want to do with data, not on the details
of ensuring error-free expression evaluation.

Conversion between types

While the typeless expression evaluation mechanism in ColdFusion is very powerful, it
cannot perform miracles — not all conversions that seem obvious to a ColdFusion
developer can be performed automatically. For example, "eight" * 10 will produce an
error since ColdFusion does not convert the string “eight” to the number 8.

While typeless expression evaluation does provide developers with a lot of flexibility at
practically no cost, it has its intricacies. It can be helpful to understand the way in
which some special values and types — such as Boolean — are converted.

The following table explains how conversions are performed. The first column lists the
value to be converted. The last four columns list the result of the conversion to a
Boolean, a number, a date-and-time value, and a string. Note that complex types, such
as arrays, structures, queries, and COM objects, cannot be converted.

Examples of Data Type Conversions

Value As Boolean As Number As Date-and-Time As String

"YES” TRUE 1 Error "YES"

“NO” FALSE 0 Error “NO”

TRUE TRUE 1 Error “YES”

FALSE FALSE 0 Error “NO”

Number TRUE if Number is Number See Date-and-time values. Number is
not 0, FALSE converted using a
otherwise default format.

Chapter 2: Functions and Expressions

29

Examples of Data Type Conversions (Continued)

Value As Boolean As Number As Date-and-Time As String
String If “YES” or “NO” or | Ifit can be A date-and-time value if String
if the string can be | converted to a String is an ODBC date, time,
convertedtoa number, it is. or timestamp; or if it is
number, it is expressed in a standard US
treated just like date or time format,
"Number." including the use of full or
abbreviated month names.
Days of week or unusual
punctuation result in error.
Dashes, forward-slashes, and
spaces are generally allowed.
Date Error See Date-and- Date Automatic
time values. conversion is to
ODBC timestamp
type.

Examples of Typeless Expression Evaluation

The following examples demonstrate ColdFusion’s typeless expression evaluation.

Example 1

2 * TRUE + "YES" - ('y’ & "es™)
Value as string: "2"

Explanation: (2*TRUE) is equal to 2; ("YES"-"yes") is equal to 0 because “Yes” converts

to 1. And, of course, 2 * 0 equals 0.

Example 2

TRUE AND 2 * 3
Value as string: "YES"

Explanation: 6 is TRUE as a Boolean; TRUE AND TRUE is TRUE.

Example 3

"Five is " & 5

Value as string: "Five is 5"

Explanation: 5 gets converted to the string "5".

30

Advanced ColdFusion Development

Example 4

DateFormat("October 30, 1998" + 1)
Value as string: "31-Oct-98"

Explanation: The addition operator forces the string “October 30, 1998” first to be
converted to a date-and-time object and then again converted to a number. The
number is incremented by one. The DateFormat function requires its argument to be a
date-and-time object; thus the result of the addition is converted back to a date-and-
time object. The addition of 1 has moved the date one day ahead.

Debugging and Troubleshooting Expressions

There are several ways to test expressions in ColdFusion application pages. If you're
using ColdFusion Studio to develop your application, you can use the interactive
debugger to do the following:

» Set watches.
» Use the evaluator to troubleshoot your expressions.

Or, you can also test expressions by assigning the expression to a variable and
outputting its contents using the CFOUTPUT tag.

Setting watches in the debugger

The interactive debugger in ColdFusion Studio lets you set breakpoints and watches to
evaluate ColdFusion expressions. You can evaluate ColdFusion expressions at
breakpoints using the Watches pane of the debugger.

You can use the evaluator box at the top of the Watches pane of the Debug window to
evaluate arbitrary expressions when the debugger is suspended at a breakpoint. Use
the evaluator when you want to know how an expression evaluates as you step through
code, line by line.

Watches allow you to evaluate the same expression or variable every time you stop
execution. When you set a watch, the debugger evaluates the watched expression. A
hand pops up when the expression’s value changes from one line to the next as you
step through code.

To set watches:

1. Choose Debug > Watches or click the Watches button on the Debug toolbar. The
Watches pane appears.

2. Cutand paste the expression or variable you want to watch into the list box at the
top of the pane.

3. Choose Evaluate to find the value of the expression at the next breakpoint or line
where the Debugger stops.

Chapter 2: Functions and Expressions 31

The Evaluator window shows the results of the evaluation at the current point in
processing the page.

4. Choose Watch to add the expression in the evaluator list box to the list of watched
expressions.

The Watch area shows the values of watched expressions and any error messages
in resolving these parameters.

5. Press the Start/Continue button to continue debugging.

6. When you are finished debugging, press End.

Note You can use the evaluator to change values of variables, create new variables, or
practice using ColdFusion functions in your expressions.

Testing expressions using CFSET and CFOUTPUT

One of the simplest ways to test an expression is to write a piece of code that assigns an
expression to a variable using the CFSET tag and then display the contents of the
variable using CFOUTPUT. You can use this technique directly in the application page
in which you are experiencing the problem.

The following example illustrates how to debug an expression using CFSET and
CFOUTPUT. Imagine we are using a complex expression inside the DESTINATION
attribute of the CFFILE tag.

<CFFILE ACTION="UpTload"
FILEFIELD="FileFormField"
DESTINATION="ExpandPath(’text.txt’) & ’\text.txt’">

To debug the expression, insert a simple CFSET and CFOUTPUT statement before the
CFFILE tag:

<CFSET TempVariable=ExpandPath(’text.txt’) & ’\text.txt’>
<CFOUTPUT>Destination="#TempVariable#"</CFOUTPUT>

This CFML code assigns the expression to a temporary variable (TempVariable) and
displays it enclosed in quotes. The quotes are very useful when debugging string
expressions in which unwanted spaces need to be detected.

The above test code results in the following page output.
"d:\webdocs\text.txt\text.txt"

The CFOUTPUT produces results that are easily interpreted. In this case, the error
occurs because of the duplication of the filename at the end of the expanded path.
Using the simple test script, the problem in the expression was resolved and the
correct CFFILE tag was specified as:

<CFFILE ACTION="Upload"

FILEFIELD="FileFormField"
DESTINATION=ExpandPath("text.txt")>

32

Advanced ColdFusion Development

For more information

For more information on debugging and troubleshooting your applications, see the
Debugging and Troubleshooting chapter of the Developing Web Applications with
ColdFusion book.

See the CFML Language Reference for a full catalog of ColdFusion tags and functions.

CHAPTER 3

Dynamic Expression Evaluation

This chapter examines dynamic expression evaluation in ColdFusion. As a
prerequisite to understanding this material, a CFML developer should be thoroughly
familiar with ColdFusion expressions.

See the Functions and Expressions chapter of this book for information on
ColdFusion expressions. See the CFML Language Reference for descriptions of all

ColdFusion functions.

Contents
e About Dynamic Expression Evaluation.........c.ccceceeeverenenenenencneneenenennenn 34
o Evaluating String EXPIreSSiONSceceeuevuetrerierienenienieeeeeresresenteseesesseseessens 35
* Pound Signs Inside String EXPressions.........cc.ceevevvereeerrereneneneeneneeseeenens 36

* Setting Variables Dynamically

34 Advanced ColdFusion Development

About Dynamic Expression Evaluation

Dynamic expression evaluation is an advanced technique in ColdFusion application
development that allows CFML expressions to be created dynamically using string
operations and evaluated as needed. Expressions are evaluated using one or more of
the four dynamic expression evaluation functions — Evaluate, SetVariable, IIf, and DE.

To appreciate the power and flexibility of dynamic expressions in CFML, you must first
understand what dynamic expressions are and how are they used.

String expressions

Central to the notion of dynamic expression evaluation is the concept of a string
expression. A string expression is nothing more than a CFML expression inside a
string, for example, “1+1”.

Any CFML expression can be converted to a string expression by following these
simple steps:

 Start with the expression text.
» Escape any double quotes in it.
* Put double quotes around it.

The following table shows several examples of the process:

Sample Conversions to String Expressions

Step 1 Step 2 Step 3

2 2 2"

2 * (11 MoD 3) 2 * (11 moD 3) "2 * (11 mMOD 3)"
Form.MyFormVariable | Form.MyFormVariable "Form.MyFormVariable"
Min(X, Y) Min(X, Y) "Min(X, Y)"

"Some text" ""Some text"" """Some text"""

"A double quote """ | ""A double quote """""" | """A double quote """""""

The last two examples demonstrate one of the difficulties with string expressions —
the proliferation of quotes. In general, if some expression text has N double quote
characters in it, its string expression equivalent will have 2*N+2 double quotes in it
(every double quote must be escaped and two more are added one on either end of the
expression text). In the last example, the expression text has 4 double quotes to start
with, therefore its string expression equivalent has 10!

This explosion of double quotes makes string expressions harder to read. There are two
things you can do to improve the situation. The simplest thing to do is to mix single

Chapter 3: Dynamic Expression Evaluation 35

and double quotes. The last two examples from above then could take the following
form:

Simplifying String Expressions

Step 1 Step 2 Step 3
’Some text’ ’Some text’ "’Some text’"
"Some text" "Some text" ""Some text"’

'A double quote 'A double quote "’A double quote

You can also use the DE (Delay Evaluation) function to convert strings to string
expressions. It has a specific use within dynamic expression evaluation, but it comes in
handy for this particular task. Start by storing the text of the expression you want to
convert to a string expression in a variable. Then apply the DE function to that variable
to get the desired result.

For example, the following two pieces of CFML code are equivalent:

<CFSET TheStringExpression = "’A double quote >

<CFSET TheExpression = 'A double quote "’>
<CFSET TheStringExpression = DE(TheExpression)>

See the CFML Language Reference for details on the DE function.

Evaluating String Expressions

String expressions (which are often called dynamic expressions since their structure
can easily change) can be evaluated using the Evaluate function. The Evaluate function
takes a string expression, evaluates it, and returns the result. When ColdFusion is
asked to evaluate the string expression "1+1", it produces the expected result of 2.

Examples

The following table illustrates the use of the Evaluate function:

Using the Evaluate Function

CFML expression Result
Evaluate("2") 2
Evaluate("2 * (11 MOD 3)") 4

Evaluate("Form.MyFormvariable") the value of Form.MyFormVariable

36

Advanced ColdFusion Development

Using the Evaluate Function (Continued)

CFML expression Result
Evaluate("Min(X, Y)'") the smaller of the values of X and Y
Evaluate(DE("Some text")) Some text

Evaluate(DEC’A double quote "’)) A double quote "

The guidelines for calling the Evaluate function are shown below:

Guidelines for Calling the Evaluate Function

To get Use

the result of (1 + A) Evaluate("1 + A")
the value of variable A Evaluate("A™)

the number 2 Evaluate("2")

the string A Evaluate(DE("A™))

Note the difference between the second and the fourth example. In the second
example, we want to evaluate the expression A which should resolve to the value of the
variable A (or an error if A does not exist). In the last example, we want to evaluate the
expression “A” which should resolve to the text inside the string, or simply A. To inform
ColdFusion of the difference (without worrying about escaping quotes), you call the
DE function.

Pound Signs Inside String Expressions

Developers must be careful when using pound signs inside string expressions.
Consider the following example as a guideline on when to use pound signs inside
string expressions:

<CFSET A=2>

<CFSET Expressionl="1 + #A#">

<CFSET Expression2="1 + A">

<l--- This will produce a 3 --->
<CFOUTPUT>#Evaluate(Expressionl)#</CFOUTPUT>

<l--- This will produce a 3 also --->

<CFOUTPUT>#Evaluate(Expression2)#</CFOUTPUT>

Chapter 3: Dynamic Expression Evaluation 37

Note

<!--- Now change the value of A --->
<CFSET A=5>

<l--- This will produce a 3 again, because Expressionl
is equal to the string "1 + 2". The value of A,

which was 2 at the time Expressionl got its value

was directly inserted into the expression text. --->

<CFOUTPUT>#Evaluate(Expressionl)#</CFOUTPUT>

<l--- This will produce a 6, because Expression2
is equal to "1 + A". The name, rather than the
value of the variable A was inserted into the

text of Expression2. --->

<CFOUTPUT>#Evaluate(Expression2)#</CFOUTPUT>

To build dynamic expressions with variables inside them, do not use pound signs
around the variable names when you build the expression text.

Setting Variables Dynamically

In addition to evaluating expressions whose text is generated dynamically, ColdFusion
allows developers to assign values to variables whose names are dynamic using the
SetVariable function. SetVariable returns the value that was set. The following simple
example shows how SetVariable can be used:

<CFSET VariableName="MyVariable">
<CFSET Value=2 A 10>
<CFSET ValuelustSet=SetVariable(VariableName, Value)>

After the third CFSET statement, the resulting value of the MyVariable variable is 1024.

Using the SetVariable and Evaluate functions together

The following example demonstrates how the SetVariable and Evaluate functions can
work together. The first loop sets ten variables with names MyVarl, MyVar2, etc. to the
values 100, 200, etc. up to 1000. The second loop outputs the names and values of
these variables.

<CFLOOP INDEX="Counter" FROM="1" TO="10">
<CFSET Result=SetVariable("MyVar#Counter#", Counter*100)>
</CFLOOP>

<CFLOOP INDEX="Counter"
FROM="1" TO="10">

38

Advanced ColdFusion Development

<CFOUTPUT>
MyVar#Counter#=#Evaluate ("MyVar#Counter#")#

</CFOUTPUT>

</CFLOOP>

Example

The final example shows how you might implement the <CFPARAM
NAME="VariableName” DEFAULT="DefaultValue”>tagin CFML:

<l--- Initialize the necessary variables --->

<CFSET VariableName="SomeVariable">
<CFSET DefaultValue="Default value">

<l--- Use Evaluate to call ParameterExists with
the name of the variable whose existence we
want to check for --->

<CFIF NOT Evaluate("ParameterExists(#VariableName#)")>

<!--- If the variable does not exist, use
SetVariable to set its value to the default --->

<CFSET Result=SetVariable(VariableName, DefaultValue)>

</CFIF>

<l--- Check to see that the variable

has been created --->

<CFOUTPUT>
#VariableName#=#Evaluate(VariableName)#

</CFOUTPUT>

The CFML above executes as if the condition inside the CFIF tag were:

NOT ParameterExists(SomeVariable)

Advanced dynamic expressions

There are two additional dynamic expression evaluation functions, IIf and DE. For
more information on these functions, refer to the Functions and Expressions chapter
in this book.

See the CFML Language Reference for details on specific CFML functions.

CHAPTER 4

Regular Expressions

This chapter describes how regular expressions work in ColdFusion. As a prerequisite
to understanding this material, a CFML developer should be thoroughly familiar
with ColdFusion expressions.

See Chapter 2, “Functions and Expressions,” on page 7 for information on
ColdFusion expressions. See the CFML Language Reference for descriptions of all
ColdFusion functions.

Contents
o Regular EXPIesSiOnscocevvevierieniniinenienieteinienrenietesteseeesresse st snesae s 40
* Single-Character Regular EXpressions...........ccceeeerererieneeesesienienieneeneeennenns 40
¢ Character ClASSEScceueueruererreuereererenreereeteresesneeeeseesreesesesseneseseseesesessenes 41
e Multi-Character Regular EXpressions.........cccceeeeveeieninenenenieneneeseneneneennene 42
o USIiNg BaCKIEEIENCES.ccueiruiruiriiiirteteieieeicteiest ettt sttt 42
e Returning Matched Sub-EXPressionscccceeeerierereenenenenenieneeeesrennens 43
* Anchoring a Regular Expression to @ String..........cocceeeeeverenenniencnenenennenne. 44

40

Advanced ColdFusion Development

Regular Expressions

Most people who have worked with the UNIX operating system or have done Web
development using the Perl language will be familiar with regular expressions.
ColdFusion supports regular expressions in functions whose names begin with the
letters "RE", for example, REFind, REReplace, REFindNoCase, and REReplaceNoCase.

About regular expressions

Regular expressions allow for very powerful and flexible string search and replace
operations. In traditional search and replace operations, as in the Find and Replace
functions of ColdFusion, developers must provide the exact text to be searched for.

This makes searches for dynamic data very difficult, if not impossible. For example,
how can you find the first occurrence in a string of any word that consists entirely of
capital letters that has spaces around it? Using regular expressions, the tasks is trivial:

<CFSET IndexOfOccurrence=REFind(" [A-Z]+ ",
"Some BIG string")>
<l--- The value of IndexOfOccurrence is 5 --->

Web developers often have to process large amounts of dynamic textual data. Regular
expressions can be invaluable to the developer writing complex ColdFusion
applications.

Use the case-insensitive functions, REFindNoCase and REReplaceNoCase, for
expressions where the search string is likely to be mixed case.

Single-Character Regular Expressions

This section describes the rules for creating regular expressions (REs). Regular
expressions can be used to match complex string patterns.

The following rules determine one-character REs that match a single character:
e Special charactersare: + * 2 . [A $ () { | \
» Any character that is not a special character matches itself.

» Abackslash (\) followed by any special character matches the literal character
itself, that is, the backslash escapes the special character.

» Aperiod (.) matches any character, for example, “.umpty” matches either
“Humpty” or “Dumpty.”

* A set of characters enclosed in brackets ([]) is a one-character RE that matches
any of the characters in that set. For example, "[akm]" matches an "a", "k", or

"

"m".

» Anyregular expression can be followed by one of the following suffixes: {m,n}
forces a match of m through n (inclusive) occurrences of the preceding regular
expression. The suffix {m,} forces a match of at least m occurrences of the
preceding regular expression. The syntax {,n} is not allowed.

Chapter 4: Regular Expressions 41

» Arange of characters can be indicated with a dash. For example, “[a-z]”
matches any lowercase letter. However, if the first character of the set is the
caret (M), the RE matches any character except those in the set. It does not
match the empty string. For example: [*akm] matches any character except “a”,
“k”, or “m”. The caret loses its special meaning if it is not the first character of

the set.

» Allregular expressions can be made case insensitive by substituting individual
characters with character sets, for example, [Nn] [Ii] [Cc] [Kk].

Character Classes

In ColdFusion regular expressions, you can specify a character using one of the POSIX
character classes. You enclose the character class name inside two square brackets, as
in this example:

REReplace (“Allaire’s Web Site”,”[[:space:]]1",”*”,”ALL”)
This code replaces all the spaces with *, producing this string:
Allaire’s*Web*Site

The following table shows the POSIX character classes that ColdFusion supports.

Supported Character Classes

Character Class Matches

alpha Matches any letter. Same as [A-Za-Z].

upper Matches any upper-case letter. Same as [A-Z].

lower Matches any lower-case letter. Same as [a-Z].

digit Matches any digit. Same as [0-9].

alnum Matches any alphanumeric character. Same as [A-Za-z0-9].

xdigit Matches any hexadecimal digit. Same as [0-9A-Fa-f].

space Matches a tab, new line, vertical tab, form feed, carriage return, or
space.

print Matches any printable character.

punct Matches any punctuation character, thatis, one of ' #S% & ‘() *+,
s 5<=>1@ /18 _{|}~

graph Matches any of the characters defined as a printable character
except those defined to be part of the space character class.

entrl Matches any character not part of the character classes [:upper:],
[:lower:], [:alpha:], [:digit:], :punct:], [:graph:], [:print:], or [:xdigit:].

42

Advanced ColdFusion Development

Multi-Character Regular Expressions

You can use the following rules to build a multi-character regular expressions:

Parentheses group parts of regular expressions together into grouped sub-
expressions that can be treated as a single unit. For example, (ha)+ matches one
or more instances of “ha”.

A one-character regular expression or grouped sub-expressions followed by an
asterisk (*) matches zero or more occurrences of the regular expression. For
example, [a-z]* matches zero or more lower-case characters.

A one-character regular expression or grouped sub-expressions followed by a
plus (+) matches one or more occurrences of the regular expression. For
example, [a-z]+ matches one or more lower-case characters.

A one-character regular expression or grouped sub-expressions followed by a
question mark (?) matches zero or one occurrences of the regular expression.
For example, xy?z matches either “xyz” or “xz”.

The concatenation of regular expressions creates a regular expression that
matches the corresponding concatenation of strings. For example, [A-Z][a-z]*
matches any capitalized word.

The OR character (|) allows a choice between two regular expressions. For
example, jell(ylies) matches either “jelly” or “jellies”.

Braces ({}) are used to indicate a range of occurrences of a regular expression, in
the form {m, n} where m is a positive integer equal to or greater than zero
indicating the start of the range and n is equal to or greater than m, indicating
the end of the range. For example, (ba){0,3} matches up to three pairs of the
expression “ba”.

An excellent reference on regular expressions is Mastering Regular Expressions,
Jeffrey E. E Friedl. O'Reilly & Associates, Inc., 1997. ISBN: 1-56592-257-3, http://
www.oreilly.com.

Using Backreferences

ColdFusion Server supports backreferencing, which allows you to match text in
previously matched sets of parentheses. A slash followed by a digit n (\n) is used to
refer to the nth parenthesized sub-expression.

One example of how backreferencing can be used is searching for doubled words -- for
example, to find instances of ‘the the’ or ‘is is’ in text. The following example shows the
syntax you use for backreferencing in regular expressions in ColdFusion:

REReplace(“There is is coffee in the the kitchen”,
»([A=Za-z]9)[1+\17,”*”, "ALL")

This code searches for words that are all letters ([A-Za-z]+) followed by one or more
spaces []+ followed by the first matched sub-expression in parentheses. The parser

Chapter 4: Regular Expressions 43

Note

detects the two occurrences of is as well as the two occurrences of the and replaces
them with an asterisk, resulting in the following text:

There * coffee in * kitchen

Using backreferences in replace strings

You can now use backreferences in replace strings. Backreferences in the replace string
refer to parenthesized matched sub-expressions in the regular expression search. For
example, to replace all repeated words in a text string with a single word, you can use
the following syntax:

REReplace(“There is is a cat in in the kitchen”,
“([A-Za-z]+)[1+\17,"\1")

This results in the sentence:
“There 1is a cat in in the kitchen”

You can use the optional fourth parameter in REReplace, ReturnSubExpression, to
replace all repeated words, as in the following code,

REReplace(“There is is a cat in in the kitchen”,
“([A-Za-z]+)[1+\1”,”\1”,”ALL")

This results in the following string:

“There 1is a cat in the kitchen”

To use backreferences in either the search string or the replace string, you must use
parentheses around the sub-expression. Otherwise, ColdFusion throws an exception.

Returning Matched Sub-Expressions

Regular expressions in ColdFusion allow you to access matched sub-expressions using
the REFind and REFindNoCase functions. If you set the fourth parameter,
ReturnSubExpression, to TRUE, the function returns a CFML structure with two arrays
containing the positions and lengths of the matched sub-expressions, if any.

You can find the structure’s contents using the keys “pos” and “len”. If there are no
occurrences of the regular expression, the “pos” and the “len” arrays each contain 1
element with a value of 0.

Example
<CFSET subExprs=REFind(“([A-Za-z]+)[1+\1”,

"There is is a cat in in the kitchen”,1,”TRUE”)>
<CFSET posarray = subExprs.pos>

<CFSET lenarray=subExprs.Ten>

After these statements, posarray[1]=7, lenarray[1]=6, posarray[2]=7, and lenarray[2]=2.

44 Advanced ColdFusion Development

Note that posarray[1] and 1enarray[1] refer to the entire matched expression (“is
is”), while posarray[2] and Tenarray[2] refer to the first parenthesized sub-
expression. This is always the case, because the complete matched expression is
returned in the first element and the parenthesized elements are returned sequentially
from indices 2 onwards. Posarray[1] and Tenarray[1] are both 0 if there are no
matches.

Anchoring a Regular Expression to a String
All or part of a regular expression can be anchored to either the beginning or end of the
string being searched:

 Ifthe caret () is at the beginning of a (sub)expression, the matched string must
be at the beginning of the string being searched.

« If the dollar sign ($) is at the end of a (sub)expression, the matched string must
be at the end of the string being searched.

Regular expression examples

The following examples show some regular expressions and describe what they match.

Regular Expression Examples

Expression Description
[\?&]value= A URL parameter value in a URL.
[A-Z]: (\\[A-Z0-9_1+)+ An uppercase DOS/Windows full

path that (a) is not the root of a drive,
and (b) has only letters, numbers,
and underscores in its text.

[A-Za-z][A-Za-z0-9_]* A ColdFusion variable with no
qualifier.

([A-Za-z][A-Za-z0-9_1*) (\.[A-Za-z] [A-Za- A ColdFusion variable with no more

z0-9_]%)7? than one qualifier, for example,

Form.VarName, but not
Form.Image.VarName.

(\+[-)7[1-9][0-9]* An integer that does not begin with a
zero and has an optional sign.

(\+]-)?[1-91[0-91*(\.[0-9]1%)7 A real number.

(\+]-)?[1-91\. [0-9]*E(\+|-)?[0-9]+ A real number in engineering

notation.

Chapter 4: Regular Expressions 45

Regular Expression Examples (Continued)

Expression Description

a{2,4} Two to four occurrences of 'a”: aa,
aaa, aaaa.

(ba){3,} At least three 'ba’ pairs: bababa,
babababa, ...

Regular expressions in CFML

The following examples of CFML show some common uses of regular expression
functions.

Examples of Regular Expression Functions

Expression Description
REReplace (CGI.Query_String, Returns the query string with parameter
"CFID=[0-9]+[&]*", "™) CFID and its numeric value stripped out.
REReplace(“I Love Jellies”, 1 Lxxx JXXXXXX

"[[:Tower:1]1",”x"”, ALL”

RERepTaceNoCase(“cabaret”,” [A-Z]", GGGGGGG
”G”,”ALL”)

REReplace (Report, "\$[0-9,]*\.[0- | Returns the string value of the variable

9 *M, MEFEE AR, Report with all positive numbers in the dollar
format changed to "$*** **",

REFind ("[Uul\.?[SsI\.?[Aa}\.?", Finds the position of the first occurrence of

Report) the abbreviation USA in the variable Report.

REFindNoCase(“a+c”,” ABCAACCDD”) 4

REReplace(“There is is coffee 1in There * coffee in * kitchen

the the kitchen”,”([A-Za-z]+)
[1+4\17,7%”,"ALL™)

REReplace(report, "<[A>]*>", "", Removes all HTML tags from a string value of
"ATTY) the report variable.

46

Advanced ColdFusion Development

CHAPTER 5

Working with Arrays

ColdFusion supports dynamic multidimensional arrays. This section explains the
basics of creating and handling arrays. It also provides several examples showing
how arrays can enhance your ColdFusion application code.

Contents

About Arrays

Multidimensional Arrays

Basic Array Techniques

Referencing Elements in DyNamic AITays........cccceeveeveeerreriereeneereesesesensennens 51
Populating Arrays With Data.........cccceverueruerierinenenenienieteeeesese e 52
Using Nested Loops for 2D and 3D AITays......cc.ceceeveeeererenenrereneeneneneneensenes 53
Populating an Array from @ QUETYcc.ceeeverererenierientertneneseniesieeeseeressenes 54

ATTAY FUNCHONS ...ttt st s 56

48

Advanced ColdFusion Development

About Arrays

If you’'ve worked with arrays in the C programming language, or even read about
working with them in C, you might regard an array as a tabular structure used to hold
data, much like a spreadsheet table with clearly defined limits and dimension. A 2-
dimensional (2D) array would be like a simple table; a 3-dimensional array would be
like a cube made up of individual cells.

ColdFusion arrays aren’t quite that simple because they are dynamic. So in a 2D array,
for example, you might have what you could think of as columns of differing lengths
based on the data that has been added or removed, whereas in a conventional array,
array size is constant and symmetrical.

Creating an array

In ColdFusion, you declare an array by assigning a variable name to the new array as
follows:

<CFSET mynewarray=ArrayNew(x)>

where x is the number of dimensions (from 1 to 3) in the array you want to create. You
can visualize a one-dimensional (1D) array as a string of cells, like a single row from a
table.

Once created, you can add data to the array, in this case using a form variable:
<CFSET mynewarray[3]=Form.emailaddress>
Data in an array is referenced by index number, in the following manner:

#My1DArray[index1]#

#My2DArray[index1] [index2]#

#My3DArray[index1] [index2] [index3]#

Array terms

The following terms will help you understand subsequent discussions of ColdFusion
arrays:

» Array dimension — The relative complexity of the array structure.

» Index - The position of an element in a dimension, ordinarily surrounded by
square brackets: mylDarray[1], my2Darray[1][1], my3Darray[1][1][1].

» Array element — Data stored in an array index.

The syntax my2darray[1] [3]="Paul” is the same as saying ‘My2dArray is a two
dimensional array and the value of the array element index [1][3] is “Paul”.

Chapter 5: Working with Arrays

Dynamic arrays
Dynamic arrays expand to accept data you add to them and contract as you remove

data from them. This diagram shows the difference between a static 2D array and a
ColdFusion dynamic 2D array.

Conventional fixed-size 2D array

a[1] altin | al2

a[2] altliz]

a[3]

a[4] a[4][4]

ColdFusion dynamic 2D array

a[1] (af2] |a[3] |ald]

EOW REE REEI] R
a[1][2]

a[4][5]
a[1][6]

A ColdFusion 2D array is actually a 1D array that contains a series of additional 1D
arrays. Each of the arrays that make up a column can expand and contract
independently of any other column.

50

Advanced ColdFusion Development

Multidimensional Arrays

ColdFusion supports dynamic multidimensional arrays. When you declare an array
with the ArrayNew function, you can specify up to three dimensions. However, if
you're feeling particularly adventurous, you can increase an array’s dimensions by
nesting arrays as array elements:

<CFSET myarray=ArrayNew(1)>
<CFSET myotherarray=ArrayNew(2)>
<CFSET biggerarray=ArrayNew(3)>

<CFSET biggerarray[1][1][1]=myarray>

<CFSET biggerarray[1][1][1][10]=some_value>
<CFSET biggerarray[2][1][1]=myotherarray>
<CFSET biggerarray[2][1][1][4][2]=some_value>

<CFSET biggestarray=ArrayNew(3)>
<CFSET biggestarray[3]1[1][1]=biggerarray>
<CFSET biggestarray[2][1]1[1][2][3][1]=some_value>

Basic Array Techniques

To use arrays in ColdFusion, as in other languages, you need to first declare the array,
specifying its dimension. Once it’s declared, you can add array elements, which you
can then reference by index.

As an example, say you declare a one-dimensional array called "firstname":
<CFSET firstname=ArrayNew(1l)>

At first, the array firstname holds no data and is of an unspecified length. Now you
want to add data to the array:

<CFSET firstname[1]="Coleman">
<CFSET firstname[2]="Charlie">
<CFSET firstname[3]="Dexter">

Once you've added these names to the array, it has a length of 3:
<CFSET temp=ArrayLen(firstname)>

<l--- temp=3 --->

If you remove data from an index, the array resizes dynamically:

<CFSET temp=ArrayDeleteAt(firstname, 2)>
<!--- "Charlie" has been removed from the array --->

<CFOUTPUT>
The firstname array is #ArraylLen(firstname)#
indexes in length

</CFOUTPUT>

<l--- Now the array has a length of 2, not 3 --->

Chapter 5: Working with Arrays 51

The array now contains:

firstname[1]=Coleman
firstname[2]=Dexter

Adding elements to an array

You can add elements to an array by simply defining the value of an array element:

<CFSET myarray[l1]=form.variable>

But you can also employ a number of array functions to add data to an array. You can
use ArrayAppend to create a new array index at the end of the array. You can use
ArrayPrepend to create a new array index at the beginning of the array. You can also
use ArrayInsertAt to insert an array index and data. When you insert an array index
with ArrayInsertAt, as with ArrayDeleteAt, all indexes to the right of the new index are
recalculated to reflect the new index count.

For more information about these array functions, see the CFML Language Reference.

Shifting indexes in a dynamic array

Because ColdFusion arrays are dynamic, be careful when referencing array indexes. If
you add or delete an element from the middle of an array, subsequent index positions
all change.

When an array index is deleted, index positions in the array are recalculated. For
example, in a 1D array containing the months of the year, deleting index position [5]
removes the entry for May. If you then want to delete the entry for November, you
delete index position [10], not [11], since the index positions were recalculated after
index position [5] was removed.

Referencing Elements in Dynamic Arrays

Unlike the C language, in ColdFusion, array indexes are counted starting with position
1. In G, array indexes start with zero, so position 1 would be referenced as firstname[0].
In ColdFusion, position one is referenced as firstname[1].

Let’s add to the current firstname array example. For 2D arrays, you reference an index
by specifying two coordinates: myarray[1][1].

<!--- This example adds a 1D array to a 1D array --->
<CFSET firstname=ArrayNew(1)>
<CFSET firstname[1]="Coleman">
<CFSET firstname[2]="Charlie">
<CFSET firstname[3]="Dexter">

<l--- First, declare the array --->

52 Advanced ColdFusion Development

<CFSET fullname=ArrayNew(1)>

<l--- Then, add the firstname array to
index 1 of the fullname array --->

<CFSET fullname[1]=firstname>
<!--- Now we’11 add the last names for symmetry --->

<CFSET fullname[2][1]="Hawkins">
<CFSET fullname[2][2]="Parker">
<CFSET fullname[2][3]="Gordon">

<CFOUTPUT>
#fullname[1][1]# #fullname[2] [1]#

#fullname[1][2]# #fullname[2][2]#

#fullname[1][3]# #fullname[2][3]#

</CFOUTPUT>

Additional referencing methods

You can reference array indexes in the standard way: myarray|x] where x is the index
you want to reference. You can also use ColdFusion expressions inside the square
brackets to reference an index. The following are valid ways of referencing an array
index:

<CFSET myarray[l]=expression>
<CFSET myarray[1l + 1l]=expression>
<CFSET myarray[arrayindex]=expression>

Calculating an array index

As described earlier in Shifting indexes in a dynamic array, array indexes are
recalculated whenever data is added, removed, appended, or prepended to an array.
Keep this in mind when building an array that will be manipulated in any of these
ways.

Populating Arrays with Data

One-dimensional arrays can store any values, including queries and other arrays. You
can use a number of functions to populate an array with data, including ArraySet,
ArrayAppend, ArrayInsertAt, and ArrayPrepend. These functions are useful for adding
data to an existing array. In addition, several basic techniques are important to master:

» Populating an array with ArraySet
» Populating an array with CFLOOP

» Populating an array from a query

Chapter 5: Working with Arrays 53

Populating an array with ArraySet

You can use the ArraySet function to populate a 1D array, or one dimension of a multi-
dimensional array, with some initial value such as an empty string or 0 (zero). This can
be useful if you need to create an array of a certain size, but don’t need to add data to it
right away. Array indexes need to contain some value, such as an empty string, in order
to be referenced.

Use ArraySet to initialize all elements of an array to some value:
ArraySet (arrayname, startrow, endrow, value)
This example initializes the array myarray, indexes 1 to 100, with an empty string.

ArraySet (myarray, 1, 100, "")

Populating an array with CFLOOP

A common and very efficient method for populating an array is by creating a looping
structure that adds data to an array based on some condition using CFLOOP.

In the following example, a simple one-dimensional array is populated with the names
of the months using a CFLOOP. A second CFLOOP is used to output data in the array to
the browser.

<CFSET months=ArrayNew(1)>
<CFLOOP INDEX="Toopcount" FROM="1" TO="12">
<CFSET months[loopcount]=MonthAsString(loopcount)>
</CFLOOP>
<CFLOOP INDEX="Toopcount" FROM="1" TO="12">
<CFOUTPUT>
#months [Toopcount]#

</CFOUTPUT>

</CFLOOP>

Using Nested Loops for 2D and 3D Arrays

To output values from 2D and 3D arrays, you need to employ nested loops to return
array data. With a 1D array, a single CFLOOP is sufficient to output data, as in the
example just above. With arrays of dimension greater than one, you need to maintain
separate loop counters for each array level.

54 Advanced ColdFusion Development

Nesting CFLOOPs for a 2D array

The following example shows how to handle nested CFLOOPs to output data from a 2D
array:

<P>The values in my2darray are currently:

<CFLOOP INDEX="OuterCounter"
FROM="1" TO="#ArrayLen(my2darray)#">

<CFLOOP INDEX="InnerCounter" FROM="1"
TO="#ArrayLen(my2darray[OuterCounter])#">

<CFOUTPUT>
[#0uterCounter#] [#InnerCounter#]:
#my2darray[OuterCounter] [InnerCounter]#

</CFOUTPUT>
</CFLOOP>

</CFLOOP>

Nesting CFLOOPs for a 3D array

For 3D arrays, you simply nest an additional CFLOOP:

<P>My3darray’s values are currently:

<CFLOOP INDEX="Diml1"
FROM="1" TO="#ArrayLen(my3darray)#">

<CFLOOP INDEX="Dim2"
FROM="1" TO="#ArraylLen(my3darray[Dim1l])#">

<CFLOOP INDEX="Dim3" FROM="1"
TO="#ArrayLen(my3darray[Diml] [Dim2])#">

<CFOUTPUT>
[#Diml#] [#Dim2#] [#Dim3#]:
#my3darray[Diml] [Dim2] [Dim3]#

</CFOUTPUT>
</CFLOOP>
</CFLOOP>

</CFLOOP>

Populating an Array from a Query

When populating an array from a query, keep the following things in mind:

Chapter 5: Working with Arrays 55

* Query data cannot be added to an array all at once. A looping structure is
generally required to populate an array from a query.

* Query column data can be referenced using array-like syntax. For example,
myquery.col_name][1] references data in the first row in the column col_name.

You can use a CFSET tag to define values for array indexes, as in the following example:
<CFSET arrayname[x]=queryname.column[row]>

In the following example, a CFLOOP is used to place four columns of data from a
sample data source into an array, "myarray.”

<!--- Do the query --->

<CFQUERY NAME="test" DATASOURCE="cfsnippets">
SELECT EMPLOYEE_ID, LASTNAME,
FIRSTNAME, EMAIL
FROM EMPLOYEES

</CFQUERY>

<!--- Declare the array --->
<CFSET myarray=ArrayNew(2)>
<l--- Populate the array row by row --->
<CFLOOP QUERY="TEST">
<CFSET myarray[CurrentRow] [1]=test.employee_id[CurrentRow]>
<CFSET myarray[CurrentRow] [2]=test.LASTNAME[CurrentRow]>
<CFSET myarray[CurrentRow] [3]=test.FIRSTNAME[CurrentRow]>
<CFSET myarray[CurrentRow] [4]=test.EMAIL[CurrentRow]>
</CFLOOP>
<!l--- Now, create a loop to output the array contents --->
<CFSET Total_Records=Test.RecordCount>
<CFLOOP INDEX="Counter" FROM=1 TO="#Total_Records#">
<CFOUTPUT>
ID: #MyArray[Counter][1]#,
LASTNAME: #MyArray[Counter][2]#,
FIRSTNAME: #MyArray[Counter][3]#,
EMAIL: #MyArray[Counter][4]#

</CFOUTPUT>

</CFLOOP>

56 Advanced ColdFusion Development

Array Functions

The following functions are available for creating, editing, and handling arrays:

Array Functions

Function Description

ArrayAppend Appends an array index to the end of a specified array.
ArrayAvg Returns the average of the values in the specified array.
ArrayClear Deletes all data in a specified array.

ArrayDeleteAt Deletes data from a specified array at the specified index.

ArraylnsertAt

Inserts data in a specified array at the specified index.

ArraylsEmpty Returns TRUE if the specified array is empty of data.

ArraylLen Returns the length of the specified array.

ArrayMax Returns the largest numeric value in the specified array.
ArrayMin Returns the smallest numeric value in the specified array.
ArrayNew Creates a new array of specified dimension.

ArrayPrepend Adds an array element to the beginning of the specified array.

ArrayResize

Resets an array to a specified minimum number of elements.

ArraySet Sets the elements in a 1D array in a specified range to a specified
value.

ArraySort Returns the specified array with elements sorted numerically or
alphanumerically.

ArraySum Returns the sum of values in the specified array.

ArraySwap Swaps array values in the specified indexes.

ArrayTolList Converts the specified one dimensional array to a list, delimited with
the character you specify.

IsArray Returns TRUE if the value is an array.

ListToArray Converts the specified list, delimited with the character you specify,

to an array.

For more information about each of these functions, see the Array Functions section of
the CFML Language Reference.

CHAPTER 6

Working with Structures

ColdFusion supports structures for managing lists of key-value pairs. This section
explains the basics of creating and working with structures.

Contents
® ADOUL SETUCTUTIES......coirriieieienieiteetesteteteieeie ettt sresre st s sa e 58
e Creating and USING SIIUCTUIESc..ceeruerueererrerienierenieeeesresiesieneesessessessessens 58
o Structure EXamMPIe......ccooceevieriiriininiententetesitet ettt ettt 61
e Using Structures as ASSOCIAtIVE AITAYSccceevvrvverrernvirernienienienientireneenenes 63

LI # 00 (o183 20 o od 0 (o) o SO TN 64

58 Advanced ColdFusion Development

About Structures

ColdFusion supports the creation and handling of Structures, which enable developers
to create and maintain key-value pairs. A structure lets you build a collection of related
variables that are grouped under a single name. Structures are also known as
associative arrays. You can define ColdFusion structures dynamically.

You can use structures to refer to related string values as a unit rather than individually.
To maintain employee lists, for example, you can create a structure that holds
personnel information such as name, address, phone number, id number, etc. Then
you can refer to this collection of information as a structure called employee rather
than as a collection of individual variables.

Structure notation

Developers can use three types of notation for structures:

Objects.property

You can use the object.property notation to refer to values in a structure. So a property,
prop, of an object, obj, can be referred to as obj.prop. This notation is useful for simple
assignments, as in this example:

depts.John="Sales"

Use this notation only when the property names (keys) are known in advance and they
are strings, with no special characters, numbers, or spaces. You cannot use the dot
notation when the property, or key, is dynamic.

Associative arrays

If the key name is not known in advance, or contains spaces, numbers or special
characters, you can use associative array notation. This uses structures as arrays with
string indexes, for example, depts[“John”] or depts[“John Doe”]="Sales”.

See Using Structures as Associative Arrays for more information.

Structure functions

The Structure functions should be used when the simpler syntax styles described
above cannot be used, for example when dynamic keys are required. The sections in
this chapter describe how to use the Structure functions.

Creating and Using Structures

This section explains how to use the structure functions to create and use structures in
ColdFusion. We use as our example a sample structure called employee, which is used
to add new employees to a corporate information system.

Chapter 6: Working with Structures 59

Creating structures

You create structures by assigning a variable name to the structure with the StructNew
function:

<CFSET mystructure=StructNew()>
For example, to create a structure named employee, use this syntax:
<CFSET employee=StructNew()>

Now the structure exists and you can add data to it.

Adding data to structures

After you've created a structure, you add key-value pairs to the structure using the
StructInsert function:

<CFSET value=StructInsert(structure_name, key, value [, AllowOverwrite])>

The AllowOverwrite parameter is optional and can be either TRUE or FALSE. It can be
used to specify whether an existing key should be overwritten or not. The default is
FALSE.

When adding string values to a structure, enclose the string in quotation marks. For
example, to add a key, John, with a value, Sales, to an existing structure called
Departments, use this syntax:

<CFSET value=StructInsert(Departments, “John”, “Sales”)>

To change the value associated with a specific key, use the StructUpdate function. For
example, if John moves from the Sales department to the Marketing department, you
would use this syntax to update the Departments associative array:

<CFOUTPUT>
Personnel moves: #StructUpdate(Departments, “John”, “Marketing”)#
</CFOUTPUT>

Example of adding data to a structure
The following example shows how to add content to a sample structure named
employee, building the content of the value fields dynamically using form variables:

<CFSET rc=StructInsert(employee, "firstname", "#FORM.firstname#")>
<CFSET rc=StructInsert(employee, "Tastname", "#FORM.lastname#")>
<CFSET rc=StructInsert(employee, "email", "#FORM.email#")>

<CFSET rc=StructInsert(employee, "phone", "#FORM.phone#")>

<CFSET rc=StructInsert(employee, "department", "#FORM.department#")>

Finding information in Structures

To find the value associated with a specific key, use the StructFind function:

StructFind(structure_name, key)

Advanced ColdFusion Development

Example

The following example shows how to generate a list of keys defined for a structure.

<CFLOOP COLLECTION=#department# item=person>
<CFOUTPUT>
Key - #person#

Value - #StructFind(department,person)#

</CFOUTPUT>

Note that the StructFind function is case-insensitive. When you enumerate key-value
pairs using a loop, the keys appear in upper-case.

Getting information about structures

To find out if a given value represents a structure, use the IsStruct function:
IsStruct(variable)
This function returns TRUE if variable is a structure.

Structures are not indexed numerically, so to find out how many name-value pairs
exist in a structure, use the StructCount function, as in this example:

StructCount(employee)
To discover whether a specific Structure contains data, use the StructIsEmpty function:
StructIsEmpty(structure_name)

This function returns TRUE if the structure is empty and FALSE if it contains data.

Finding a specific key

To learn whether a specific key exists in a structure, use the StructKeyExists function.
StructKeyExists(structure_name, key)

If the name of the key is known in advance, you can use the ColdFusion function
IsDefined, as in this example:

<CFSET temp=IsDefined(“structure_name.key")>

But if the key is dynamic, or contains special characters, you must use the
StructKeyExists function:

<CFSET temp=StructKeyExists(structure_name, key)>

Copying structures

To copy a structure, use the StructCopy function. This function takes the name of the
structure you want to copy and returns a new structure with all the keys and values of
the named structure.

StructCopy(structure)

This function throws an exception if structure doesn't exist.

Chapter 6: Working with Structures 61

Use the StructCopy function when you want to create a physical copy of a structure.
You can also use assignment to create a copy by reference.

Deleting structures

To delete an individual name-value pair in a structure, use the StructDelete function:
StructDelete(structure_name, key)
This deletes the named key and its associated value.

You can also use the StructClear function, to delete all the data in a structure but keep
the structure instance itself:

StructClear(structure_name)

Structure Example

Structures are particularly useful for grouping together a set of variables under a single
name. In the following example files, structures are used to collect information from a
form, structure.cfm, and submit that information to a custom tag at
addemployee.cfm.

These example files show how you can use a structure to pass information to a custom
tag, named CF_ADDEMPLOYEE.

Example file structure.cfm

<!--- This example shows how to use the StructInsert
function. It calls the CF_ADDEMPLOYEE custom tag,
which uses the addemployee.cfm file. --->

<HTML>

<HEAD>

<TITLE>Add New Employees</TITLE>

</HEAD>

<BODY>

<H1>Add New Employees</H1>
<l--- Establish parms for first time through --->

<CFPARAM NAME="FORM. firstname" DEFAULT="">
<CFPARAM NAME="FORM.Tlastname" DEFAULT="">
<CFPARAM NAME="FORM.email" DEFAULT="">
<CFPARAM NAME="FORM.phone" DEFAULT="">
<CFPARAM NAME="FORM.department" DEFAULT="">

<!--- If all form fields are passed, create structure
named employee and add values --->

<CFIF #FORM.FIRSTNAME# EQ "'">
<P>Please fill out the form.

Advanced ColdFusion Development

<CFELSE>

<CFOUTPUT>

<CFSCRIPT>
employee=StructNew();
StructInsert(employee, "firstname", "#FORM.firstname#");
StructInsert(employee, "Tlastname", "#FORM.lastname#");
StructInsert(employee, "email", "#FORM.email#");
StructInsert(employee, "phone", "#FORM.phone#");
StructInsert(employee, "department", "#FORM.department#");

</CFSCRIPT>

<P>First name is #StructFind(employee, "firstname")#</P>
<P>Last name is #StructFind(employee, "Tastname")#</P>
<P>EMail is #StructFind(employee, "email")#</P>

<P>Phone is #StructFind(employee, "phone")#</P>
<P>Department is #StructFind(employee, "department")#</P>
</CFOUTPUT>

<l--- Call the custom tag that adds employees --->

<CF_ADDEMPLOYEE EMPINFO="#employee#">
</CFIF>

<HR>

<FORM ACTION="structinsert.cfm" METHOD="Post">

<P>First Name:

<INPUT NAME="firstname" TYPE="text" HSPACE="30" MAXLENGTH="30">
<P>Last Name:

<INPUT NAME="Tastname" TYPE="text" HSPACE="30" MAXLENGTH="30">
<P>EMail:

<INPUT NAME="email" TYPE="text" HSPACE="30" MAXLENGTH="30">
<P>Phone:

<INPUT NAME="phone" TYPE="text" HSPACE="20" MAXLENGTH="20">
<P>Department:

<INPUT NAME="department" TYPE="text" HSPACE="30" MAXLENGTH="30">

<P>
<INPUT TYPE="Submit" VALUE="OK">
</FORM>

</BODY>
</HTML>

Example file addemployee.cfm

<P>This file is an example of a custom tag used

to add employees. Employee information 1is passed
through the employee structure (the EMPINFO attribute).
In UNIX, you must also add the Emp_ID.

<CFSWITCH EXPRESSION="#ThisTag.ExecutionMode#">
<CFCASE VALUE="start">
<CFIF StructIsEmpty(attributes.EMPINFO)>

Chapter 6: Working with Structures 63

<CFOUTPUT>Error. No employee data was passed.</CFOUTPUT>
<CFEXIT METHOD="ExitTag">

<CFELSE>
<!--- Add the employee --->
<!--- In UNIX, you must also add the Emp_ID --->

<CFQUERY NAME="AddEmployee" DATASOURCE="cfsnippets">
INSERT INTO Employees
(FirstName, LastName, Email, Phone, Department)
VALUES
<CFOUTPUT>
(
‘#StructFind(attributes.EMPINFO, "firstname")#’
‘#StructFind(attributes.EMPINFO, "lastname")#’
‘“#StructFind(attributes.EMPINFO, "email")#’
‘#StructFind(attributes.EMPINFO, "phone")#’ ,
‘#StructFind(attributes.EMPINFO, "department")#’
)
</CFOUTPUT>
</CFQUERY>
</CFIF>
<CFOUTPUT><HR>Employee Add Complete</CFOUTPUT>
</CFCASE>
</CFSWITCH>

Using Structures as Associative Arrays
You can also use structures as associative arrays. Structures index data by string keys
rather than by integers.

You might use structures to create an associative array that matches people’s names
with their departments. In this example, a structure named Departments includes an
employee named John, listed in the Sales department. To access John's department,
you would use the syntax, Departments[“John”].

A structure’s key must be a string. The values associated with the key can be anything:
e astring
e aninteger
* anarray

* another structure

Looping through structures

The following example shows how you can loop through a structure to output its
contents. Note that when you enumerate key-value pairs using a loop, the keys appear
in upper-case.

64

Advanced ColdFusion Development

<l--- Create a structure and loop through its contents --->
<CFSET Departments=StructNew()>
<CFSET val=StructInsert(Departments, “John”, “Sales”)>
<CFSET val=StructInsert(Departments, “Tom”, “Finance”)>
<CFSET val=StructInsert(Departments, “Mike”, “Education”)>
<!l--- Build a table to display the contents --->
<CFOUTPUT>
<TABLE cellpadding="2" cellspacing="2">

<TR>

<TD>Employee</TD>
<TD>Dept.</TD>

</TR>
<!--- In CFLOOP, use ITEM to create a variable
called person to hold value of key as loop runs --->

<CFLOOP COLLECTION=#Departments# ITEM="person”>

<TR>

<TD>#person#</TD>
<TD>#Departments [person]#</TD>
</TR>

</CFLOOP>

</TABLE>
</CFOUTPUT>

Structure Functions

There are several new functions that help you create and manage structures in
ColdFusion applications.

Structure Functions

Function Description

IsStruct Returns TRUE if the specified variable is a structure.

StructClear Removes all data from the specified structure.

StructCopy Returns a new structure with all the keys and values of the specified
structure.

StructCount Returns the number of keys in the specified structure.

Chapter 6: Working with Structures 65

Structure Functions

Function Description

StructDelete Removes the specified item from the specified structure.

StructFind Returns the value associated with the specified key in the specified
structure.

Structlnsert Inserts the specified key-value pair into the specified structure.

StructlsEmpty Indicates whether the specified structure contains data. Returns
TRUE if the structure contains no data, and FALSE if it does contain
data.

StructKeyExists Returns TRUE if the specified key is in the specified structure.

StructNew Returns a new structure.

StructUpdate Updates the specified key with the specified value.

Note that in all cases, except StructDelete, an exception will be thrown if the referenced
key or structure does not exist.

For more information on these functions, see the CFML Language Reference.

66

Advanced ColdFusion Development

CHAPTER 7

Exchanging Data via XML

You can now move complex CFML data structures across the Web using Web
Distributed Data Exchange (WDDX). This new capability is based on XML 1.0 and is
used to exchange data between CFML applications and other applications.

Additionally, CFML data structures can be instantiated as WDDX elements for access
by JavaScript statements on the browser.

This functionality is encapsulated in the CFWDDX tag.

Contents
* An Overview of Distributed Data for the Web..........cccccecereveneninnnnncnnne. 68
¢ WDDX COMPONENLS ...cooviriieriiiiieritenieeeeeresee et e sreeneesseesneeseeseesneesseesnee 68
* Working With Application-Level Data.......c..ccccecevevienerenenenenenienneneneeeene 69
* Data Exchange Across Application SEeIvers........c.ccccoeveevereneneneeneneneneennenes 69
o HOW WDDX WOIKS ...cveuiririiirenirieinieeeeenteteinreeeae st seeenesesesseesseeseeessenesenes 69
* Converting CFML Data to a JavaScript Object.........cccceevurererenenenernenennenn 70

» Transferring Data From Browser t0 SEIVer.........cccocueveeevereneenineneneenieneeeenes 72

68 Advanced ColdFusion Development

An Overview of Distributed Data for the Web

Web Distributed Data Exchange (WDDX) is an Extensible Markup Language (XML)
vocabulary for describing complex data structures such as arrays, associative arrays,
and recordsets in a generic fashion so they can be moved between different
application server platforms and between application servers and browsers using only
HTTP Target platforms for WDDX include ColdFusion, Active Server Pages, JavaScript,
and Perl.

Unlike other approaches to creating XML-based generic distributed object systems for
the Web, WDDX is not designed as an analog of traditional object programming
languages. These approaches use XML as a generic descriptor for initiating remote
procedure calls between different object frameworks. This is a valuable approach to
the problem of using traditional object-based applications to the Internet, but it is
more useful as a bridge between different programming paradigms than it is as a Web-
native methodology for distributing structured data between application frameworks.

There are several problems with merging the distributed object model of computing
with the Internet. Primarily, this model was designed with a completely different vision
of what general internetworking would look like. Instead of the "dumb and
disconnected" model of HTTP, distributed computing was built on the assumption of
rich network services that would allow resources on remote machines to act like local
components. These services allow an application on one system to find, invoke, and
maintain state with objects on a remote system. Communication between objects on
remote systems uses an efficient, special-purpose wire protocol.

But these services are a barrier to development in the disconnected world. At the most
fundamental level, the wire protocols of Distributed COM and CORBA are blocked by
most Web firewall software. But the largest barrier is that client-server oriented
distributed computing frameworks impose a development methodology that is
radically different from that of the Web. This methodology excludes the vast majority
of developers building Web applications whose main tools are tag-based markup
languages and scripting. While WDDX will work with systems that support component
object development paradigms, there is a large set of applications that can benefit
from the general characteristics of a distributed data system without the client-server
overhead.

A business scenario for using ColdFusion’s XML implementation is available at
http://www.microsoft.com/xml/scenario/allaire.asp.

WDDX Components

The core of WDDX is the XML vocabulary, and a set of components for each of the
target platforms to serialize and de-serialize data into the appropriate data structure
and a document type definition (DTD) that describes the structure of standard data
types. Functionally, this creates a way to move data, its associated data types and
descriptors that allow the data to be manipulated on a target system between arbitrary
application servers.

Chapter 7: Exchanging Data via XML 69

The first version of WDDX is based on XML 1.0, which is a W3C Recommendation.
Other W3C efforts now in the works will have obvious application to WDDX when they
are completed, including the XML-Data proposal and metadata formats such as the
Resource Description Framework (RDF). The WDDX DTD supports versioning,
allowing these and other enhancements to be folded into the specification as they
become available without disrupting working applications.

Working With Application-Level Data

The real strength of WDDX is clear if the client and server are seen as a unified
platform for applications. This is a subtle, but profound, distinction from the
traditional view of an application where services are partitioned between the client
and server.

In client-server, a client might query a database and get a recordset that can be
browsed, updated and returned to the server without requiring a persistent
connection. In this scenario, data is highly-structured and that structure is baked into
the client side of the application ahead of time.

While this style of databinding relies on the presence of data sources that expose well-
structured data of known types, WDDX is designed to transport application-level data
structures to facilitate seamless computing between the client and the server side of a
web application. Application-level data structures generally differ from data exposed
via traditional data sources, e.g., databases. They are generally more complex and ad
hoc, with dynamic structure. WDDX allows developers to work with this data without
the overhead of setting up a datasource for every type of data needed. Therefore, it
integrates nicely with and complements other approaches that rely on existing data
sources.

Data Exchange Across Application Servers

The other common use of WDDX is expected to be sending complex, structured data
seamlessly between different application server platforms. This will allow an
application based on ColdFusion at one business to send a purchase order, for
instance, to a supplier running a CGI-based system. The supplier could then extract
information from the order and pass it to a shipping company running an application
based on ASP. Unlike traditional client-server approaches (including distributed object
systems) minimal to no prior knowledge of the source or target systems is required by
any of the others.

How WDDX Works

The WDDX vocabulary describes a data object with a high level of abstraction. For
instance, a simple object with two string properties might take the following form after
it is serialized into a WDDX XML representation for delivery via HTTP:

70

Advanced ColdFusion Development

<var name=’x’>

<struct>
<var name=’a’>

<string>Property a</string>
</var>

<var name='b’>
<string>Property b</string>
</var>

</struct>

</var>

The deserialization of this XML by the WDDX Serializer object would create a structure
similar to what would be created directly by this JavaScript object declaration:

ool

X
X.

X.b =

new Object();

"Property a";
"Property b";

See the CFML Language Reference for more information on JavaScript objects.

Converting CFML Data to a JavaScript Object

The following example demonstrates the transfer of a CFQUERY result set from a
CFML template executing on the server to a JavaScript object that is processed by the
browser.

The application consists of five principal sections:

Running a data query

Calling the WDDX JavaScript utility

Specifying the conversion type and the input and output variables
Calling the conversion function

Outputting the object data in HTML

This example uses a registered ColdFusion 4.0 datasource and can be run from
ColdFusion Server.

<l---

Create a simple query --->

<CFQUERY NAME = ’'q’ DATASOURCE =’snippets’>
SELECT Message_Id, Thread_id,
Username, Posted from messages
</CFQUERY>

<script language=javascript>

<l---

Bring in WDDX JS support objects

A <script src=></script> can be used instead
wddx.js is part of the ColdFusion distribution --->
<CFINCLUDE template=’/CFIDE/scripts/wddx.js’>

Chapter 7: Exchanging Data via XML

71

<!--- Use WDDX to move from CFML data to]S --->
<CFWDDX ACTION=’cfml12js’ input=#q# topLevelVariable='q’>

<!--- Recordset dumping routine --->
function dumpWddxRecordset(r)
{

// Get row count
nRows = r.getRowCount();

// Determine column names
colNames = new Array();

i=0;
for (col in r)
{
if (typeof(r[col]) == "object")
{
colNames[i++] = col;
}
}

// Dump the recordset data

o = "Dumping recordset...<p>";

o += "<table cellpadding=3pt><tr>";
for (i = 0; i < colNames.length; ++i)

{
}

o += "</tr>";

o += "<td>" + colNames[i] + "</td>";

for (row = 0; row < nRows; ++row)

{
o += "<tr>";
for (i = 0; i < colNames.length; ++i)
{
o += "<td>" + r.getField(row, colNames[i]) + "</td>";
}
o += "</tr>";
}

o += "</table>";
// Write the table to the HTML stream

document.write(o);

}
<!--- Dump the recordset --->
dumpWddxRecordset(q);

</script>

72 Advanced ColdFusion Development

Transferring Data From Browser to Server

This example serializes form field data, posts it to the server, deserializes it, and
outputs the data. For simplicity, only a small amount of data is collected. In
applications where complex JavaScript data collections are generated, this basic
approach can be extended very effectively.

<!--- Get WDDX JS utility objects --->
<script language="JavaScript"
src="/CFIDE/scripts/wddx.js"></script>

<!--- Add data binding code --->
<script>

// Generic serialization to a form field
function serializeData(data, formField)

{
wddxSerializer = new WddxSerializer();
wddxPacket = wddxSerializer.serialize(data);
if (wddxPacket != null)
{
formField.value = wddxPacket;
}
else
{
alert("Couldn’t serialize data");
}
}

// Person info recordset
var personInfo = new WddxRecordset(new Array("firstName",
"TastName"));

// Add next record
function doNext()

{
nRows = personInfo.getRowCount();
personInfo.firstName[nRows] =
document.personForm. firstName.value;
personInfo.lastName[nRows] = document.personForm.lastName.value;
document.personForm. firstName.value = "";
document.personForm.lastName.value = "";
}
</script>
<!--- Data collection form --->

<form action="wddx_browser_2_server.cfm" method="post"
name="personForm">

<!--- Input fields --->
Personal information<p>
First name: <input type=text name=firstName>

Chapter 7: Exchanging Data via XML 73

Last name: <input type=text name=lastName>

<p>

<!--- Navigation & submission bar --->

<input type="button" value="Next" onclick="doNext()">

<input type="button" value="Serialize"
onclick="serializeData(personInfo, document.personForm.wddxPacket)">
<input type="submit" value="Submit">

<p>

<!--- This is where the WDDX packet will be stored --->

WDDX packet display:<p>

<textarea name="wddxPacket" rows="10" cols="80" wrap="Virtual"><
/textarea>

</form>

<!--- Server-side processing --->

<hr>

<p>Server-side processing<p>

<CFIF isdefined("form.wddxPacket")>
<CFIF form.wddxPacket neq "">

<!--- Deserialize the WDDX data --->
<CFWDDX action="wddx2cfm1" input=#form.wddxPacket#
output="personInfo">

<!--- Display the query --->
The submitted personal information is:<p>
<CFOUTPUT query=personInfo>
Person #CurrentRow#: #firstName# #lastName#

</CFOUTPUT>
<CFELSE>
The client did not send a well-formed WDDX data packet!

</CFIF>
<CFELSE>

No WDDX data to process at this time.
</CFIF>

74

Advanced ColdFusion Development

CHAPTER 8

Using CFML Scripting

ColdFusion now offers a server-side scripting language, CFScript, that provides
ColdFusion functionality in script syntax. This JavaScript-like language gives
developers the same control flow, but without tags.

This chapter describes the CFScript language’s functionality and syntax.

Contents

® ADOUL CFSCIIPT vttt ettt ettt ere s st e st st sbe st e
o The CFSCript LANGUAZE.cceoermtrenreiiiiieienienteteteteteresre ettt see e
» Interaction of CFScript with CFMLu.......cccccevtririninienieineneneseieieesesee e

76 Advanced ColdFusion Development

About CFScript

ColdFusion now has a server-side scripting language, CFScript, that offers ColdFusion
functionality in script syntax.

This JavaScript-like language offers the same control flow, but without tags. CFScript
regions are bounded by <CFSCRIPT> and </CFSCRIPT>. You can use ColdFusion
expressions, but not CFML tags, inside a CFScript region.

See Chapter 2, “Functions and Expressions,” on page 7 for more on CFML expressions.

CFScript example

The following example shows how a block of CFSET tags can be rewritten in CFScript:

Using CFML tags

<CFSET employee=StructNew()>

<CFSET employee. firstname=FORM. firstname>

<CFSET employee.lastname=FORM. Tastname>

<CFSET employee.email=FORM.email>

<CFSET empTloyee.phone=FORM.phone>

<CFSET employee.department=FORM.department>
<CFOUTPUT>About to add #FORM.firstname# #FORM.lastname#
</CFOUTPUT>

Using CFScript

<CFSCRIPT>
employee=StructNew();
employee. firstname=FORM. firstname;
employee.lastname=FORM. lastname;
employee.email=FORM.email;
employee.phone=FORM. phone;
employee.department=FORM.department;
WriteOutput("About to add " & FORM.firstname & " " &

FORM.Tastname);

</CFSCRIPT>

The WriteOutput function appends text to the page output stream. Although you can
call this function anywhere within a page, it is most useful inside a CFSCRIPT block.
See the CFML Language Reference for information on the WriteOutput function.

Supported statements

CFScript supports the following statements:
o if-else
« while

¢ do-while

Chapter 8:

Using CFML Scripting 77

o for

e break

e continue
» for-in

* switch-case

For more information
The following JavaScript references may be useful in understanding the concepts and
control flow statements in CFScript:

» Netscape’s JavaScript Guide

« Netscape’s JavaScript Reference

» David Flanagan'’s JavaScript: The Definitive Guide, published by O’Reilly &
Associates, 1996, 1998, http://www.oreilly.com.

The CFScript Language

This section explains the syntax of the CFScript language.

Statements

Note that in CFScript semicolons define the end of a statement. Line breaks in your
source are insignificant. You can enclose multiple statements in curly braces:

{ statement; statement; statement; }

The following statements are supported in CFScript:

Assignment: lval = expr ;

Note that lval can be a simple variable, an array reference, or a member of a structure.

x = "positive"; /y = x; a[3]=5;/ structure.member=10;

CFML expression: expr ;
StructInsert(employee,"lastname", FORM. Tastname);

For more information on ColdFusion expressions see Chapter 2, “Functions and
Expressions,” on page 7 in this book.

if-else: if(expr) statement [else statement] ;

if(score GT 1)

result = "positive";
else

result = "negative";

78

Advanced ColdFusion Development

for loop: for (init-expr ; test-expr; final-expr) statement ;
Note that init-expr and final-expr can be one of the following:

+ asingle assignment expression, for example, x=5 or loop=loop+1

non

» any ColdFusion expression, for example, SetVariable("a",a+1)
e empty
The test-expr can be one of the following:

» any ColdFusion expression, for example, A LT 5, loop LE x, or Y EQ "not found"
AND loop LT end

* empty
Here are some examples of for loops:

// Multiline for statement
for(Loopl=1;
Loopl LT 10;
Loopl = Loopl + 1);
a[loopl]=1oopl;

// Complete for Toop in a single line.
for(loop=0; loop LT 10; loop=Tloop+l)arr[Toop]=Toop;

// Uses braces to note the code to Toop over
forC; 5)
{
indx=indx+1;
if(Find("key",strings[indx],1))
break;

while loop: while (expr) statement;

// Use braces to note the code to Toop over
a = ArrayNew(1);
while (loopl LT 10)
{
a[Toopl] = Toopl + 5;
Toopl = loopl + 1;
3

a = ArrayNew(1);

while (loopl LT 10)

{
a[loopl] = loopl + 5;
Toopl = loopl +1;

Chapter 8: Using CFML Scripting

do-while loop: do statement while (expr) ;

// Complete do-while Toop on a single Tine
a = ArrayNew(1);
do {a[loopl] = loopl + 5; Toopl = Toopl + 1;} while (loopl LT 10);

// Multiline do-while Toop

a = ArrayNew(1);

do

{
a[loopl] = loopl + 5;
Toopl = loopl + 1;

}

whiTle (Toopl LT 10);

switch-case: switch (expr) {case const-expr : statement break ; default : statement }

In this syntax, const-expr must be a constant (i.e., not a variable, a function, or other
expression). Only one default statement is allowed. There can be multiple case
statements. You cannot mix Boolean and numeric case values in a switch statement.

No two constants may be the same inside a switch statement.

switch(name)

{

case “John”:

{
male=true;
found=true;
break;

}

case “Mary”:

{
male=false;
found=true;
break;

}

default:

{

found=false;
break;

}
} //end switch

for-in loop: for (variable in collection) statement ;

Note that variable can be any ColdFusion identifier, and collection must be the name
of an existing ColdFusion structure.

for (x in mystruct) mystruct[x]=0;

79

80 Advanced ColdFusion Development

continue: skip to next loop iteration

for (loop=1; loop LT 10; Toop = Toop+l)
{

if(a[loop]=0) continue;

a[loop]l=1;

break: break out of the current switch statement or loop

forC; 5)
{
indx=indx+1;
if(Find("key",strings[indx],1))
break;

Expressions
CFScript supports all CFML expressions. CFML expressions include operators (such as
+, -, EQ, etc.) as well as all CFML functions.

See the Functions and Expressions chapter for information about CFML operators and
functions.

Note You cannot use CFML tags in CFScript.

Variables

Variables can be of any ColdFusion type, such as numbers, strings, arrays, queries, and
COM objects. You can read and write variables within the script region.

Comments

Comments in CFScript blocks begin with two forward slashes (//) and end at the line
end. You can also enclose CFScript comments between /* and */. Note that you cannot
nest /* and */ inside other comment lines.

Differences from JavaScript

While CFScript is based on JavaScript, there are some key differences you’ll want to
note:

» CFScript uses ColdFusion expressions, which are neither a subset nor a
superset of JavaScript expressions. For example, there is no < operator in
CFScript.

Chapter 8: Using CFML Scripting 81

No user-defined functions or variable declarations are available.
CFScript is case-insensitive.

All statements end in a semi-colon, and line breaks in your code are
insignificant.

In CFScript, assignments are statements, not expressions.

Some implicit objects are not available, such as Window and Document.

Note CFScript is not directly exportable to JavaScript. Only a limited subset of JavaScript can
run inside CFScript.

Reserved words

In addition to the names of ColdFusion functions and words reserved by ColdFusion
expressions (such as NOT, AND, IS, and so on), the following words are reserved in
CFScript. Do not use these words as variables or identifiers in your scripting code:

for
while
do

if

else
switch
case
break
default
in

continue

Interaction of CFScript with CFML

You enclose CFScript regions inside <CFSCRIPT> and </CFSCRIPT> tags. No other
CFML tags are allowed inside a CFSCRIPT region.

A CFSCRIPT tag block must contain at least one CFScript statement, and comments
are not considered statements. If there are no statements, you should comment out
the entire CFSCRIPT block (including its enclosing <CFSCRIPT> and </CFSCRIPT>
blocks) with CFML comment tags.

You can read and write ColdFusion variables inside CFScript, as shown in this
example:

82 Advanced ColdFusion Development

<CFOUTPUT QUERY="employees">

<CFSCRIPT>
//‘testres’ is a column in the "employees" query

if(testres EQ 1)
result="positive";

else
result="negative";

</CFSCRIPT>

<!--- The variable result takes its
value from the script region --->

Test for #name# is #result#.

</CFOUTPUT>

CHAPTER 9

Structured Exception Handling

The ColdFusion Server offers a means for developers to catch and process exceptions
in ColdFusion application pages, through the CFTRY, CFCATCH, and CFTHROW

tags.

Contents
* Overview of Exception Handling in ColdFusionccceceevevenevcnnncnennencns 84
* Exception-Handling Strat€giescceceevererrerreneeierieenenienienieeeessesseseeseenes 85
* Exception Handling EXample........cccccocerivenieriininnneneneneeneeeneseeeeneeneene 86

* Exception Information in CFCATCH

84 Advanced ColdFusion Development

Overview of Exception Handling in ColdFusion

Used with one or more CFCATCH tags, the CFTRY tag allows developers to catch and
process exceptions in ColdFusion pages. Exceptions include any event that disrupts
the normal flow of instructions in a ColdFusion page, such as failed database
operations, missing include files, or developer-specified events.

You use the following syntax for CFTRY/CFCATCH blocks:
<CFTRY>
. Add code here ...

<CFCATCH TYPE="exception type">
... Add exception processing code here ...
</CFCATCH>

. Additional CFCATCH blocks go here ...
</CFTRY>

In order for ColdFusion to handle an exception, it must appear within a CFTRY block.
You might enclose an entire application page in a CFTRY block, using a CFCATCH
block around a potential error.

To catch errors in a single problematic SQL statement, for example, you might narrow
the focus by using a CFTRY block with a CFCATCH TYPE="Database” tag, outputting
the CFCATCH.State information as well.

See the CFML Language Reference for information on the CFTRY, CFCATCH, and
CFTHROW tags.

Types of recoverable exceptions supported

The ColdFusion Server supports several types of recoverable exceptions. Use the TYPE
attribute in the CFCATCH tag to determine which type of exception to catch.

Application-defined exception events

ColdFusion applications can raise exceptions using the CFTHROW tag, with an
optional diagnostic message. CFTHROW raises an exception that can be caught by a
CFCATCH TYPE="Application" tag, or a CFCATCH TYPE="Any" tag. This exception
can also be caught by a CFCATCH block that has no TYPE attribute.

Database failures

Use the CFCATCH tag with TYPE="Database" or CFCATCH TYPE="Any" to catch failed
database operations, such as failed SQL statements, ODBC problems, and so on.

Template errors

Use the CFCATCH tag with TYPE="Template" or TYPE="Any" to catch general
application page errors.

Chapter 9: Structured Exception Handling 85

Note

Missing included file errors

Use the CFCATCH tag with TYPE="MissingInclude" or TYPE="Any" to catch errors for
missing included files.

Object exceptions

Use the CFCATCH TYPE="Object" tag to catch exceptions in ColdFusion code that
works with objects.

Security exceptions

Use the CFCATCH TYPE="Security" tag to raise catchable exceptions in ColdFusion
code that works with security.

Expression exceptions

Use the CFCATCH TYPE="Expression” tag to catch exceptions when an expression fails
evaluation.

Locking exceptions

Use the CFCATCH tag with TYPE="Lock" to catch failed locking operations, such as
when a CFLOCK critical section times out or fails at runtime.

Unexpected internal exceptions

You can catch unexpected exceptions in the ColdFusion Server with the CFCATCH
TYPE="Any" tag.

Attempting to handle unexpected exceptions in CFML code can cause unpredictable
results, and may seriously degrade or crash the ColdFusion Server.

Exception-Handling Strategies

Developers can use CFTRY with CFCATCH to handle exceptions based on their point
of origin within an application page, or based on diagnostic information.

Handling exceptions based on point of origin

Use the CFTRY tag with one or more CFCATCH blocks to define a ColdFusion block for
exception handling. When an application page raises an error condition, the
ColdFusion server checks the stack of currently active blocks for a corresponding
CFCATCH handler. At extremes, an exception-prone tag might be enclosed in a
specialized combination of CFTRY and CFCATCH to immediately isolate the tag's
exceptions, or to use CFTRY with CFCATCH TYPE="Any" at a main processing level to
gracefully terminate a subsystem's processing in case of an unexpected error.

86

Advanced ColdFusion Development

Handling exceptions based on diagnostic information

Use CFCATCH with the attribute TYPE="exception type" to catch specific types of
exceptions. A CFCATCH handler can further analyze the exception’s diagnostic
information, and re-throw the exception if the exceptional condition requires further
handling.

Exception Handling Example

The following example shows CFTRY and CFCATCH, using a sample data source called
company and a sample included file, includeme. cfm.

If the data access driver raises an exception during the CFQUERY statement’s
execution, the application page flow continues to the CFCATCH TYPE="Database"
exception handler. It then resumes with the next statement after the CFTRY block,
once the CFCATCH TYPE="Database" handler completes.

Similarly, the CFCATCH TYPE="MissingInclude" block handles exceptions raised by
the CFINCLUDE tag. Any unknown, but possibly recoverable, exceptions are handled
by the CFCATCH TYPE="Any" block.

<!--- Wrap code you want to check in a CFTRY block --->

<CFTRY>
<CFQUERY NAME="test" DATASOURCE="company">
SELECT DepartmentID, FirstName, LastName
FROM empToyees
WHERE employeeID=#EmpID#
</CFQUERY>

<HTML>
<HEAD>

<TITLE>Test CFTRY/CFCATCH</TITLE>
</HEAD>

<BODY>

<HR>

<CFINCLUDE TEMPLATE="1includeme.cfm">
<CFOUTPUT QUERY="test">
<P>Department: #DepartmentID#
<P>Last Name: #LastName#

<P>First Name: #FirstName#

</CFOUTPUT>
<HR>
<!--- Use CFCATCH to test for missing included files.
Print Message and Detail error messages. --->

<CFCATCH TYPE="MissingInclude">
<H1>Missing Include File</H1>
<CFOUTPUT>

Chapter 9: Structured Exception Handling 87

Message: #CFCATCH.Message#
Detail: #CFCATCH.Detail#

File name: #CFCATCH.MissingFilename#

</CFOUTPUT>
</CFCATCH>
<l--- Use CFCATCH to test for database errors.
Print error messages. --->

<CFCATCH TYPE="Database">

<H1>Database Error</H1>

<CFOUTPUT>

Message: #CFCATCH.Message#
Native error code: #CFCATCH.NativeErrorCode#
SQLState: #CFCATCH.SQLState#
Detail: #CFCATCH.Detail#

</CFOUTPUT>

</CFCATCH>

<l--- Use CFCATCH with TYPE="Any"
to find unexpected exceptions. --->

<CFCATCH TYPE="Any">
<H1>0ther Error: #CFCATCH.Type#</H1>

<CFOUTPUT>

Message: #CFCATCH.message#
Detail: #CFCATCH.Detail#

</CFOUTPUT>
</CFCATCH>
</CFTRY>
</BODY>
</HTML>

CFTHROW syntax

Use CFTHROW within a CFTRY block to raise an error condition. The CFCATCH block
can access this message through CFCATCH.message.

<CFTHROW MESSAGE="...diagnostic message...">

This form of the CFTHROW tag throws a new CFML-recoverable exception with the
specified diagnostic message.

Using CFTHROW without the MESSAGE attribute throws a new CFML-recoverable
exception with an empty diagnostic message.

88 Advanced ColdFusion Development

CFTRY syntax

The CFTRY tag starts a ColdFusion exception-handling block. One or more CFCATCH
tags must be included within a CFTRY block.

<CFTRY>
...0ther CFML tags...

<CFCATCH TYPE="Any">
</CFTRY>

Note A CFCATCH block must be the last set of tags within a CFTRY block.

CFCATCH syntax

The CFCATCH tag catches exceptions of the type specified in the TYPE attribute, such
as database, application, missing include, or application page.

<CFCATCH TYPE="exception type”>

The following form of the CFCATCH tag catches all CFML-recoverable exceptions
generated within the preceding CFTRY block, or within any of the CFTRY block’s
children.

<CFCATCH TYPE="Any">
A CFCATCH tag without a TYPE attribute is equivalent to CFCATCH TYPE="Any".

Order of evaluation

For a given CFTRY block, CFCATCH tags are tested in the order in which they appear in
the application page.

Note An exception raised within a CFCATCH block cannot be handled by the CFTRY block
that immediately encloses the CFCATCH tag.

See the CFML Language Referencefor information on the syntax of the exception
handling tags, CFTRY, CFCATCH, and CFTHROW.

Exception Information in CFCATCH
Within a CFCATCH block, the active exception’s properties can be accessed as
variables:
CFCATCH.TYPE -- The exception’s type, returned as a string:
» Application
» Database

e Template

Chapter 9: Structured Exception Handling 89

» MissingInclude

* Object

* Security

» Expression

» Lock

e Any
CFCATCH.MESSAGE — The exception's diagnostic message, if one was provided. If no
diagnostic message is available, this is an empty string.

CFCATCH.DETAIL — A detailed message from the CFML interpreter. This message,
which contains HTML formatting, can help to determine which tag threw the
exception.

Database exceptions

For database exceptions, ColdFusion supplies some additional diagnostic information.
The following variables are available whenever the exception type is database:

CFCATCH.NATIVEERRORCODE — The native error code associated with this
exception. Database drivers typically provide error codes to assist in the diagnosis of
failing database operations. The values assumed by CFCATCH.NATIVEERRORCODE
are driver-dependent. If no error code is provided, the value of NativeErrorCode is -1.

CFCATCH.SQLSTATE — The SQLSTATE code associated with this exception. Database
drivers typically provide error codes to assist in the diagnosis of failing database
operations. The values assumed by CFCATCH.SQLSTATE are driver-dependent. If no
SQLSTATE value was provided, the value of SQLSTATE is -1.

Locking exceptions

For exceptions related to CFLOCK sections, there is additional information available
within the CFCATCH block:

CFCATCH.LOCKNAME — The name of the affected lock. This is set to “anonymous” if
the lock name is not known.

CFCATCH.LOCKOPERATION — The operation that failed. This is set to “unknown” if
the failed operation is unknown.

Missinginclude exceptions

For exceptions related to missing files, where the type of exception is MissingInclude,
the following variable is available:

CFCATCH.MISSINGFILENAME — The name of the file missing in an exception of type
MissingInclude.

920

Advanced ColdFusion Development

CHAPTER 10

Accessing the Registry

ColdFusion includes the CFREGISTRY tag, which allows you to get, set, and delete
registry values.

Contents

* Overview of Registry Access in ColdFusion

o Getting Registry ValUESccceververereienieininiereneteteieeeeve e

o Setting Registry ValUes.......ccccoeirverienieienieininieiereteeeeeeseesteste e
e Deleting Registry ValUesc.cceveeererieniinienieinineicicteeerenieeeseesie e 94

92 Advanced ColdFusion Development

Overview of Registry Access in ColdFusion

ColdFusion includes the CFREGISTRY tag, which allows you to get, set, and delete
registry values. The registry is a database that Windows NT uses to maintain
hierarchical information about users, hardware, and software. It includes keys and
values:

» Keys can contain either values or other keys. A key and the keys/values below it
are referred to as a branch.

 Values are conceptually split into two parts: value name and value data.

To maintain consistency with other CFML tags, the CFREGISTRY tag refers to keys and
value names as entries. Additionally, the CFREGISTRY SET action uses the value
attribute to refer to value data.

Solaris note: ColdFusion for Solaris includes functionality that emulates the registry.

The registry contains information critical to your system. Be very careful when
modifying and deleting registry values. Depending on expected usage, you might
consider using the Basic Security tab of the ColdFusion Administrator to implement a
tag restriction on the CFREGISTRY tag (this is especially true for ISPs, whose server
may host a large and diverse set of applications).

Getting Registry Values

You can use CFREGISTRY with either the GET or GETALL actions to retrieve multiple
keys and values from the registry.

Getting all keys and values

Use CFREGISTRY with the GETALL action to return all registry keys and values defined
in a branch. You can access these values as follows:

» CFREGISTRY creates a record set that contains #Entry#, #Type#, and #Value#.
You can access through tags such as CFOUTPUT. To fully qualify these variables
use the record set name, as specified in the NAME attribute of the CFREGISTRY
tag.

o If #Type# is a key, #Value# is an empty string.

« If you specify Any for TYPE, GetAll also returns any binary registry values. For
binary values, the #Type# variable contains UNSUPPORTED and #Value# is
blank.

You can optionally specify the SORT attribute to sort the record set based on the
contents of the Entry, Type, and Value columns. Specify any combination of
columns in a comma separated list. ASC (ascending) or DESC (descending) can
be specified as qualifiers for column names. ASC is the default. For example:

Sort="type ASC, entry ASC"

Chapter 10: Accessing the Registry 93

To get all values for a specified registry key:

1. Code a CFREGISTRY tag with the GETALL action, specifying the branch, type, and
record set name.

<CFREGISTRY ACTION="GetATT1"
BRANCH="HKEY_LOCAL_MACHINE\Software\Microsoft\Java VM"
TYPE="Any" NAME="RegQuery">

2. Access the record set (this example uses the CFTABLE tag):

<H1>CFREGISTRY ACTION="GetATll1"</H1>

<CFTABLE QUERY="RegQuery" COLHEADERS
HTMLTABLE BORDER="Yes">

<CFCOL HEADER="Entry" WIDTH="35"
TEXT="#RegQuery.Entry#">

<CFCOL HEADER="Type" WIDTH="10"
TEXT="#RegQuery.Type#">

<CFCOL HEADER="Value" WIDTH="35"
TEXT="#RegQuery.Value#">

</CFTABLE>

Getting a specific value

Use CFREGISTRY with the GET action to access a single registry value and store it in a
ColdFusion variable.

To get a specific registry value:

1. Code a CFREGISTRY tag with the GET action, specifying the branch, the entry to
be accessed, the type (optional), and a variable in which to return the value.
<CFREGISTRY ACTION="Get"

BRANCH="HKEY_LOCAL_MACHINE\Software\Microsoft\Java VM"
ENTRY="ClassPath" TYPE="String" Variable="RegValue">

2. Access the variable:

<H1>CFREGISTRY ACTION="Get"</H1>
<CFOUTPUT>

<P>

Java ClassPath value 1is #RegValue#
</CFOUTPUT>

Setting Registry Values

Use CFREGISTRY with the SET action to add a registry key, add a new value, or update
value data. CFREGISTRY creates the key or value if it does not exist.

To set a registry value:

Call the CFREGISTRY tag with the SET action, specifying the branch, the entry to
set, the type of data contained in the value, and the value data. This example
assumes a session variable named LastFileName:

94 Advanced ColdFusion Development

<CFREGISTRY ACTION="Set"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref"
ENTRY="LastCFMO1" TYPE="String"
VALUE="#SESSION. LastFileName#">

If the specified value does not exist, ColdFusion creates it. If the value already
exists, ColdFusion updates the value data.

To set a registry key:

Call the CFREGISTRY tag with the SET action, specifying the branch, the entry to
set, specifying KEY for the TYPE attribute:

<CFREGISTRY ACTION="Set"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref"
ENTRY="Temp" TYPE="Key">

Deleting Registry Values

You can use CFREGISTRY with the DELETE action to delete registry keys and values.

To delete a registry value:

Call the CFREGISTRY tag with the DELETE action, specifying the branch and value
name:

<CFREGISTRY ACTION="Delete"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref"
ENTRY="LastCFM01">

To delete a registry key:

Call the CFREGISTRY tag with the DELETE action, specifying the branch of the key
to be deleted (including the key name):

<CFREGISTRY ACTION="Delete"
BRANCH="HKEY_LOCAL_MACHINE\Software\cflangref">

Be careful when using the DELETE action; if you delete a key, CFREGISTRY also
deletes values and subkeys defined beneath the key.

CHAPTER 11

Building ColdFusion Extensions

This chapter provides information about building and deploying ColdFusion
Extensions or CFXs. In this release of ColdFusion, we're consolidating our approach
to ColdFusion extensions (CFXs). In addition to custom tags built in CFML, CFXs can
be built using C/C++, JavaScript/VBScript, COM/CORBA, or Java, VTML, and

WIZML.

Contents
o About ColdFusion EXtENSIONS.......ccceceerreererererreirreenrerineereeereesreesneeseenenens 96
* Building ColdFusion Extensions in CEMLcccccceeerirrinenenenienienenenennenns 96
o Installing CuStOIM TaS.......ccvevererrerrerieieieeeeriententetestereeessessessestesessesbeseeseenes 97
e Writing CUSTOIM TaGSereeiirereeeeneereeeeceestt ettt s 97
o EXaAMPIE TGS c.eoviuiiiiririirieieitetee ettt ettt ettt 98
e CFML 4.0 Custom Tag ENhancementsc.coceeeeeieereneeneeneesenrenseneenees 102
e Managing Custom TagSccccecuerverierierienienieieeeeee ettt 109
e Securing CuStom Tags.........ceevvuervirniiriiiiiniiiiiicncie et 110
e Encrypting CuStom Tags......cccecerveevuereereenienieeeneeeesieeteseenseessessee e e enensens 110
e Building EXtensions i CH+cecceveveereeeienenenienienieeeeeiessesteseesieessessesseseenees 111
o Implementing CEX TagScccecrverirenienieininenenietenterenenresresie e seenees 112
o Managing CEX TagS......cccceveerterrerierieneneeniesteeeeteeesieeseessesieessessee e sseesaesnens 114

Using COM and CORBA Objects
Getting Started with COM Components

Using the OLE/COM ODbjJeCt VIEWETc..cceeerrerrerenienieenenreniesieeesesresseseenees 117
Creating and Using COM ODJECTScccevurereruenuenieieinenerieneeseeeesesresveeenes 118
Setting Properties and Invoking Methods.........ccceceeverevevnninnnencnenienennen. 120

Getting Started with CORBA ODJECTS....c..ccuetrerereieieeeenreniereeeseeeeereseeees 121

92 Advanced ColdFusion Development

About ColdFusion Extensions

ColdFusion Extensions (CFXs) are an open XML-based framework for extending
ColdFusion with new server components and connectivity to enterprise systems using
COM, CORBA, C/C++, VBScript, JavaScript, or CFML.

In addition, ColdFusion Studio supports two built-in languages, VIML and WIZML.
VTML is an XML based language used to define visual tool components and dialogs.
WIZML, also an XML based language is used to create application wizards that can be
distributed to developers working in ColdFusion Studio. For more information see
Customizing the Development Environment.

Building ColdFusion Extensions in CFML

ColdFusion custom tags built in CFML, a technology introduced in ColdFusion 3.0, are
an essential part of the ColdFusion support for rapid application development and
code re-use. Custom tags are now a valued resource for the ColdFusion developer
community and demonstrate the rich variety of solutions — utilitarian, sophisticated,
and even whimsical — that can be built in ColdFusion.

Custom tags extend the ColdFusion development model of encapsulating complexity
by enabling you to wrap functionality in a page that can be called from a ColdFusion
application page.

Allaire Tag Gallery

The success of CFML custom tags is best seen by a visit to the Tag Gallery at http://
www.allaire.com/taggallery. Tags are grouped in several broad categories and are
downloadable as freeware, shareware, or commercial software. You can quickly view
each tag’s syntax and usage information.

The Gallery contains a wealth of background information on custom tags and an
online discussion forum for tag topics.

Tag names with the CF_ preface are CFML custom tags, those with the CEX_ preface
are ColdFusion Extensions written in C++. For more information about the CFX API,
see Chapter 12, “The ColdFusion Extension API,” on page 123.

Allaire Alive

An online RealVideo title called “Using Custom Tags” is available at the Allaire alive
section of our Web site. It presents an overview of custom tags as a component
architecture for the emerging Web platform and outlines the creation and use of CFML
custom tags.

The video is part of Allaire Alive, an educational service that offers Web videos on
topics specific to ColdFusion development and application deployment as well as
broader industry issues. The titles are available free for online viewing or download.

Chapter 11: Building ColdFusion Extensions 97

Custom Tag Editors

As you scroll through the Gallery listings, you will notice a number of the tags are
marked with <VTM> after the tag name. These tags include a special file written in
Allaire’s Visual Tool Markup Language. Click on the <VTM> link to read about how
VTML is used to create custom interfaces in ColdFusion Studio.

When you download and unzip a custom tag that includes a vtm file, copy that file to
the /Templates/TagEditors folder under your Studio root directory. When you insert
the custom tag into a page, a tag editor (Ctrl + F4) is available for the selected tag. Many
of these editors contain embedded help for their syntax and usage.

See Customizing the Development Environment for more information.

Installing Custom Tags

Custom tags are cfm files with a difference. They are created just like any other
ColdFusion page, but they must be installed in a specific location to be accessible from
the calling template. ColdFusion loads the first instance it finds of the custom tag
called by a template, so avoid placing copies of a custom tag in different locations.
Custom tags written in CFML are typically named using the CF_* convention to
distinguish them from CFXs written in C/C++, which use the CFX_* convention.

Local tags

The ColdFusion engine responds to a request for a custom tag by first searching the
directory of the calling template. This allows you to keep a custom tag file in the same
directory as the page that uses it.

Shared tags

To share a custom tag among applications in multiple directories, place it in the
Custom Tags folder under your ColdFusion installation directory. You can create sub-
folders to organize custom tags — ColdFusion searches recursively for the Custom
Tags directory, stepping down through any existing subdirectories until the custom tag
is found.

Writing Custom Tags

All CEML constructs can be used in custom tags and HTML can be included, too. You
only need to be aware of a few requirements when creating custom tags.

98 Advanced ColdFusion Development

Naming Custom Tags

Custom tags are identified by the CF_ prefix. Beyond that, you are free to use any
naming convention that fits your development practice. Unique descriptive names
make it easy for you and others to find the right tag. For example, the tag name
CF_MyTag invokes the file MyTag.cfm

If you are concerned about possible name conflicts when invoking a custom tag or if
the application must use a variable to dynamically call a custom tag at runtime, the
CEFMODULE element provides a solution. See Resolving file name conflicts.

Tag scope

Because custom tags are individual templates, there is no automatic exposure of
variables and other data between a custom tag and the calling template. To pass data,
you define attributes for the custom tag just as in standard CFML coding.

Data pertaining to the HTTP request or to current application is visible, however. This
includes the variables in Form, URL, CGI, Cookies, Server, Application, Session, and
Client.

Defining attributes

As the creator of the custom tag, you have the responsibility to specify a syntax for the
tag’s functionality. CFML custom tags support both required and optional attributes.
Attributes are defined as name-value pairs. Custom tag attributes conform to CFML
coding standards:

» Attributes are case-insensitive.
 Attributes may be listed in any order within a tag.
 Attribute=value pairs for a tag must be separated by a space.

« Passed values that contain spaces must be enclosed in double-quotes.

Example Tags

You may have already jumped to the Tag Gallery to peruse the selections; your own
interests and development needs will guide you there. A few samples will be presented
here to illustrate their rich variety. These samples are taken from some of the Gallery’s
major tag categories.

Utility tags

CF_MERGEQUERY, written by Michael Dinowitz, performs a single task that can be
very useful when outputting multiple query result sets. It is distributed with

Chapter 11: Building ColdFusion Extensions 99

ColdFusion and can be selected from the Custom Tags folder in the Tag Chooser
(CTRL4+E) in ColdFusion Studio.

<CF_MERGEQUERY Queryl = "queryl" Query2="query2">

Function tags

Custom tags are often developed to perform a specific operation within an application.
They can be written to supply interface elements and data for ColdFusion tags and
functions.

CF_COUNTWORD, written by Rob Bilson, performs a well-defined function using just
three CFSET tags to handle input, processing, and output. This tag replicates the
function of an existing CFX tag written in C++ but it is easier to implement because it
does not have to be explicitly registered. The code is well-commented and the author
created a custom editor in VTML for the tag, making it easy for others to use.

<l--- set local variable to the passed attribute --->
<CFSET MyString = attributes.Mystring>

<l--- Get the number of words in the string by treating
the string as a 1list and using the space character as the
delimiter. Note that the tag assumes a single Tine string
where words are separated by one or more spaces --->

<CFSET WordsInString = ListLen(MyString, " ")>

<l--- return the count back to the calling template --->
<CFSET Caller.NumberOfWords = WordsInString>

User interface tags

CF_COOLLINK, written by Brian Shin, allows you to generate links that change color
on mouseover and then change color again when you click the link. You can also
specify a custom message to appear in the browser’s status bar.

As you read through the code you will notice that it utilizes a number of familiar CFML
and HTML elements:

» An easily-configurable set of attributes

* An embedded style tag to specify output formatting

 JavaScript that initiates mouseover actions based on results of a browser test
» Conditional logic

¢ OQutput of returned values from variables

100

Advanced ColdFusion Development

The CoolLink code
<--- CoolLink.cfm to change 1ink appearance
and properties --->
<--- This tag should be called as follows:
CF_CoolLink
LinkName = “Allaire”

LinkHref = “http://www.allaire.com”

OnColor = “Purple”

OffColor = “Orange”

ClickColor = “Red”

>
etc. --—>
<!--- NOTE: This tag allows 1links to change color in IE4,

and the most control can be achieved in IE4. However, it
should gracefully degrade (not give errors) for all
other browsers -->

<l--- Initialize all Attribute Scope variables so
they have defaults --->
<CFPARAM NAME="Attributes.LinkName” DEFAULT="Allaire”>
<CFPARAM NAME="Attributes.LinkHref”
DEFAULT="http://www.allaire.com”>

<CFPARAM
<CFPARAM
<CFPARAM
<CFPARAM
<CFPARAM
<CFPARAM

NAME="Attributes.
NAME="Attributes.
NAME="Attributes.
NAME="Attributes.
NAME="Attributes.
NAME="Attributes.

OnColor” DEFAULT="violet”>
OffColor” DEFAULT="Navy”’>
ClickColor” DEFAULT="Red”>
LinkFont” DEFAULT="Arial”>
LinkSize” DEFAULT="14">
LinkMessage”

DEFAULT="#Attributes.LinkHref#”>

<BODY LINK=<CFOUTPUT>"#Attributes.OffColor#”</CFOUTPUT>
v1ink="<CFOUTPUT>#Attributes.OffColor#”</CFOUTPUT> >

<STYLE>
BODY

{font-family:<CFOUTPUT>#Attributes.LinkFont#</CFOUTPUT>
;color:black;font-size:
<CFOUTPUT>#Attributes.LinkSize#</CFOUTPUT>;}

</STYLE>

<SCRIPT LANGUAGE="javascript”>

<!--- find out what browser is being used --->
browserType = navigator.appName

browserVer = parselInt(navigator.appVersion)

if (browserType == “Microsoft Internet Explorer” && browserVer >= 4)
browser = “IE4”;
else browser = “other”

if (browser == “IE4”) { document.body.onmouseover=makeCool;

Chapter 11: Building ColdFusion Extensions 101

document.body.onmouseout=makeNormal;

<!l--- this will change the color of the Tink when moused-over,
if you have IE4--->
function makeCoo1() {
src = event.toElement;
if (src.tagName == ‘A’) {
src.oldcol = ‘<CFOUTPUT>#Attributes.0ffColor#</CFOUTPUT>’;
src.style.color ‘<CFOUTPUT>#Attributes.OnColor#</CFOUTPUT>";
}
}
function makeNormal() {
src=event.fromElement;
if (src.tagName == ‘A’) {
src.style.color ‘<CFOUTPUT>#Attributes.OffColor#</CFOUTPUT>";
}
}

<!--- this will change the color of the Tink
when it’s clicked, if you have IE4 --->
function makeCooler() {
if (src.tagName == ‘A’) {
src.oldcol = ‘<CFOUTPUT>#Attributes.0ffColor#</CFOUTPUT>’;
src.style.color ‘<CFOUTPUT>#Attributes.ClickColor#</CFOUTPUT>’;
}
}

</SCRIPT>

<CFSET BROWSERTYPE=#CGI.HTTP_USER_AGENT#>
<l--- If IE4 --->
<CFIF (FIND(“MSIE 4.0”, BROWSERTYPE))>
<!l--- Make the Link Cool --->
<CFSET CLICKACTION = “onclick="makeCooler()’”>
<CFELSE>
<!--- Otherwise don’t make the Tink highlighted --->
<CFSET CLICKACTION = “ “>
</CFIF>

<!--- Output the Link --->

<CFOUTPUT>

<A HREF="#Attributes.linkhref#” TARGET="main”
ONMOUSEOVER="window.status="#Attributes.linkmessage#’; return true”
#CLICKACTION# >#Attributes.linkname#

</CFOUTPUT>

<--- /CoolLink.cfm to change 1link appearance and properties --->

102 Advanced ColdFusion Development

CFML 4.0 Custom Tag Enhancements

This release of ColdFusion adds significant new features to CFML custom tags. These
changes are part of overall architectural enhancements designed to address requests
for greater power and flexibility in custom tags.

Main features of CFML 4.0 custom tags

* 100% backward compatibility

» End tags are accessible through any invocation syntax

» Atag’s generated content is accessible

» Sub-tags can communicate their attributes to the base tag

» Collaborating tags can exchange data without user intervention
» Tagimplementations can be provided in a single file

» Tags have control over iteration, that is, the number of times the tag body
executes

Tag nesting

In CFML 4.0, any tag with an end tag present can be an ancestor to another tag.

For developers seeking to encapsulate complex functionality or data operations,
nesting custom tags can be a productive mechanism. The logic of nesting tags is based
on the relationship you establish between elements within a custom tag. Generally,
ancestor/descendant and parent/child terminology is used to describe nested
hierarchies, as it provides an easily recognizable frame of reference. A more generic
terminology uses the idea of base tags and the sub-tags they contain. These
relationships can be framed according to individual preferences and the exact nature
of a given hierarchy.

Associating sub-tags with the base tag

While the ability to create nested custom tags is a tremendous productivity gain,
keeping track of complex nested tag hierarchies can become a chore. A simple
mechanism, the CFASSOCIATE tag, lets the parent know what the children are up to.
By adding this tag to a sub-tag, you enable communication of its attributes to the base
tag.

See “High-level data exchange” on page 108for details.

Chapter 11: Building ColdFusion Extensions 103

Tag instance data

During the execution of a custom tag template ColdFusion keeps some amount of data
related to the tag instance. The ThisTag scope is used to preserve this data with a
unique identifier. The behavior is similar to the File scope.

The following variables are generated by the ThisTag scope:
» ExecutionMode — valid values are “start” and “end”

» HasEndTag — used for code validation, it distinguishes between custom tags
that have and don’t have end tags for ExecutionMode=start. The name of the
Boolean value is ThisTagHasEndTag.

¢ GeneratedContent — can be processed as a variable.

» AssocAttribs — holds the attributes of all nested tags if CFASSOCIATE was used
them.

Pattern of execution

The same CFML template may be executed for both the start and end tag of a custom
tag.

Modes of execution

A custom tag template may be invoked in either of two modes:
» Start tag execution
+ End tag execution

If an end tag is not explicitly provided and shorthand empty element syntax
(<TagName .../>) is not used, then the custom tag template will be invoked only once
in start tag mode. If a tag must have an end tag provided, use ThisTag.HasEndTag
during start tag execution to validate this.

Specifying execution modes

A variable with the reserved name ThisTag.ExecutionMode will specify the mode of
invocation of a custom tag template. The variable will have one of the following values:

 Start — start tag execution
* End — end tag execution

During the execution of the body of the custom tag, the value of the ExecutionMode
variable is going to be inactive. In this framework, the template of a custom tag that
wants to perform some processing in both modes may look something like the
following:

104

Advanced ColdFusion Development

<CFIF ThisTag.ExecutionMode is ’start’>
<l--- Start tag processing --->
<CFELSE>
<!--- End tag processing --->
</CFIF>

CFSWITCH can also be used:

<CFSWITCH expression=#ThisTag.ExecutionMode#>
<CFCASE value=’start’>

<!--- Start tag processing --->
</CFCASE>
<CFCASE value=’end’>
<!l--- End tag processing --->
</CFCASE>
</CFSWITCH>

CFEXIT

CFEXIT terminates execution of a custom tag. In ColdFusion 4.0, CFEXIT has been
extended with a METHOD attribute that specifies where execution continues. With the
introduction of start and end tags for custom tags, CFEXIT can specify that processing
continues from the first child of the tag or continues immediately after the end tag
marker.

The METHOD attribute can also be used to specify that the tag body should be
executed again. This enables custom tags to act as high-level iterators, emulating
CFLOOP behavior.

The following table summarizes CFEXIT behavior:

CFEXIT Behavior in a Custom Tag

METHOD Attribute Value | Location of CFExit Call | Behavior

ExitTag (default) Base template Acts like CFABORT
ExecutionMode=start Continue after end tag
ExecutionMode=end Continue after end tag

ExitTemplate Base template Acts like CFABORT
ExecutionMode=start Continue from first child

in body

ExecutionMode=end Continue after end tag

Loop Base template Error

Chapter 11: Building ColdFusion Extensions 105

CFEXIT Behavior in a Custom Tag

METHOD Attribute Value | Location of CFExit Call Behavior

ExecutionMode=start Error
ExecutionMode=end Continue from first child
in body

Access to generated content

Custom tags can access and modify the generated content of any of its instances using
the ThisTag.GeneratedContent variable. In this context, the term generated content
means the portion of the results that is generated by the body of a given tag. This
includes all results generated by descendant tags, too. Any changes to the value of this
variable will result in changes to the generated content.

ThisTag.GeneratedContent is always empty during the processing of a start tag. Any
output generated during start tag processing is not considered part of the tag’s
generated content.

As an example, consider a tag that comments out the HTML generated by its
descendants. Its implementation could look something like this:

<CFIF ThisTag.ExecutionMode is ’end’>
<CFSET ThisTag.GeneratedContent =

’<!--#ThisTag.GeneratedContent#-->">
</CFIF>

Inter-tag data exchange

A key custom tag feature for CFML 4.0 is the ability of collaborating custom tags to
exchange complex data without user intervention and without violating the
encapsulation of a tag’s implementation outside the circle of its collaborating tags. The
following issues need to be addressed:

¢ What data should be accessible?
» Which tags can communicate to which tags?
» How are the source and targets of the data exchange identified?

* What CFML mechanism is used for the data exchange?

What data is accessible?

To enable developers to obtain maximum productivity in an environment with few
restrictions, CFML 4.0 custom tags can expose all their data to collaborating tags.

Custom tag developers should document all variables that collaborating tags can
access and/or modify. Developers of custom tags that collaborate with other custom
tags should make sure that they do not modify any undocumented data.

106

Advanced ColdFusion Development

We highly recommend that developers preserve encapsulation by putting all tag data
access and modification operations into custom tags. For example, rather than
documenting that the variable Q in a tag’s implementation holds an important query
result set and expecting users of the custom tag to manipulate Q directly, the developer
should create another nested custom tag that manipulates Q. This protects the users of
the custom tag from changes in the tag’s implementation.

Where is data accessible?

Two custom tags can be related in a variety of ways in a template. One can be a sibling,
parent, ancestor, child, or descendant of the other. For most practical purposes, sibling
and cousin relationships rarely matter. Ancestor and descendant relationships do
matter because they relate to the order of tag nesting.

A tag’s descendants are inactive while the template is executed, that is, they have no
instance data. The tag's data access is therefore restricted to ancestors only. Ancestor
data will be available from the current template and from the whole runtime tag
context stack. The tag context stack is the path from the current tag element back up
the hierarchy of nested tags, including those in included pages and custom tag
references, to the start of the base page for the request. CFINCLUDE tags and custom
tags will appear on the tag context stack.

Custom tag names
To avoid ambiguity, the following naming convention should be observed for CFML
tags:

» Native tags: CFTagName

* CFXtags: CFX_TagName

» Shorthand invocation: CF_TagName

» Shared tags: <CFMODULE Name="path.TagName"> CF_TagName

» Application-specific tags: <CFMODULE template="path/TagName.cfm">
CF_lagName

Note that since this naming convention makes the name of a custom tag template the
same as the name of the tag, name collisions are possible. However, locality of
reference suggests that tags with a close ancestral relationship are likely to be related. It
is unlikely that unrelated tags with the same template name have a close ancestral
relationship.

Ancestor data access

The ancestor’s data is represented by a structure object that contains all the ancestor’s
data, in much the same way that a COM object in CFML contains properties.

The following set of functions provide access to ancestral data:

Chapter 11: Building ColdFusion Extensions 107

» GetBaseTagList() — Returns a comma-delimited list of uppercased ancestor tag
names. An empty string is returned if this is a top-level tag. The first element of
a non-empty list is the parent tag.

* GetBaseTagData(TagName, InstanceNumber=1) — Returns an object that
contains all the variables, scopes, etc. of the nth ancestor with a given name. By
default, the closest ancestor is returned. If there is no ancestor by the given
name or if the ancestor does not expose any data (such as CFIF), an exception is
thrown.

Example: Ancestor data access

This example was snipped from a custom tag.

<CFIF thisTag.executionMode is ’start’>
<l--- Get the tag context stack
The Tist will Took something Tike
"CFIF,MYTAGNAME..." --->
<CFSET ancestorList = getBaseTagList()>

<!l--- Qutput your own name because CFIF is
the first element of the tag context stack --->
<CFOUTPUT>I’m custom tag #ListGetAt(ancestorlist,2)#<p></CFOUTPUT>

<!--- Determine whether you are nested inside a Toop --->
<CFSET 1dinLoop = ListFindNoCase(ancestorList,’CFLOOP’)>
<CFIF inLoop neq O>

I’'m running in the context of a CFLOOP tag.<p>
</CFIF>

<!--- Determine whether you are nested inside
a custom tag. Skip the first two elements of the
ancestor list, i.e., CFIF and the name of the
custom tag I'm in --->
<CFSET inCustomTag = ’’>
<CFLOOP 1index=elem
Tist=#ListRest(ListRest(ancestorList))#>
<CFIF (Left(elem, 3) eq 'CF_’")>
<CFSET inCustomTag = elem>
<CFBREAK>
</CFIF>
</CFLOOP>
<CFIF inCustomTag neq ’’>
<!--- Say you are there --->
<CFOUTPUT>
I’m running in the context of a custom
tag named #inCustomTag#.<p>
</CFOUTPUT>

<l--- Get the tag instance data --->
<CFSET tagData = getBaseTagData(inCustomTag)>

108

Advanced ColdFusion Development

<!--- Find out the tag’s execution mode --->
I’'m located inside the
<CFIF tagData.thisTag.executionMode neq ’'inactive’>
template because the tag is in
its start or end execution mode.
<CFELSE>
body
</CFIF>
<p>
<CFELSE>
<l--- Say you are lonely --->
I’m not nested inside any custom tags. :A(<p>
</CFIF>

</CFIF>

High-level data exchange

There are many cases in which descendant tags are used only as a means for data
validation and exchange with an ancestor tag, such as CFHTTP/CFHTTPPARAM and
CFTREE/CFTREEITEM. You can use the CFASSOCIATE tag to encapsulate this
processing.

The tag syntax is:

<CFASSOCIATE BaseTag=base_tag name
DataCollection=collection_name>

When CFASSOCIATE is encountered in a sub-tag, the sub-tag’s attributes are
automatically saved in the base tag. The attributes are in a structure appended to the
end of an array whose name is ‘ThisTag.collection_nameé. The default value for the
DataCollection attribute is ‘AssocAttribs’. This attribute should be used only in cases
where the base tag can have more than one type of sub-tag. It is convenient for keeping
separate collections of attributes, one per tag type.

CFASSOCIATE performs the following operations:

<l--- Get base tag instance data --->
<CFSET data = getBaseTagData(baseTag).thisTag>

<l--- Create a string with the attribute
collection name --->
<CFSET collectionName = ’'data.#dataCollection#"’>
<!--- Create the attribute collection, if necessary --->

<CFIF not isDefined(collectionName)>
<CFSET "#collectionName#" = arrayNew(1l)>

</CFIF>
<!--- Append the current attributes
to the array --->

<CFSET temp=arrayAppend(evaluate(collectionName), attributes)>

Chapter 11: Building ColdFusion Extensions 109

The CFML code accessing sub-tag attributes in the base tag could look like the

following:

<l--- Protect against no sub-tags --->
<CFPARAM Name=’thisTag.assocAttribs’ default=#arrayNew(1l)#>

<!--- Loop over the attribute sets of all sub-tags --->
<CFLOOP 1index=1 from=1
to=#arraylLen(thisTag.assocAttribs)#>

<l--- Get the attributes structure --->

<CFSET subAttribs = thisTag.assocAttribs[i]>

<!l--- Perform other operations --->
</CFLOOP>

Managing Custom Tags

If you deploy custom tags in a multi-developer environment or distribute your tags
publicly, you may want to make use of two additional ColdFusion capabilities:

* An advanced invocation syntax to resolve possible name conflicts

» Advanced Security. See Administering ColdFusion Server for information about
implementing Advanced Security and also Application Security in this book.

* Encryption. See “Encrypting Custom Tags” on page 110 for more information.

Resolving file name conflicts

To avoid errors caused by duplicate custom tag file names, use the CFMODULE tag in
the calling template. Note that only one of the required attributes can be used in a

given instance of the tag:

CFMODULE Attributes
Attribute Description
Template Required. Specifies a relative path to the cfm file. Same as Template

attribute in <CFINCLUDE>.

Example: <CFMODULE TEMPLATE="../MyTag.cfm"> identifies a
custom tag file in the parent directory.

110 Advanced ColdFusion Development

CFMODULE Attributes
Attribute Description (Continued)
Name Required if Template attribute is not used. Use period -separated

names to uniquely identify a sub-directory under the Custom Tags
root directory.

Example: <CFMODULE NAME="Allaire.Alive.GetUserOptions">
identifies the file GetUserOptions.cfm in Custom Tags\Allaire.Alive
directory under the ColdFusion root directory.

Attributes Optional. You can list the custom tag’s attributes.

Securing Custom Tags

ColdFusion’s security framework enables you to selectively restrict access to individual
tags or to tag directories. This can be an important safeguard in team development. To
use this feature, you register Custom Tags as a security resource on the ColdFusion

Administrator Advanced Security page and then enter the tags by name or by directory.

For more information about securing custom tags using ColdFusion Advanced
security, see Administering ColdFusion Server.

Encrypting Custom Tags

The command-line utility cfcrypt can be used to encrypt any ColdFusion application.
By default, the utility is installed in the /cfusion/bin directory. It is especially useful
for securing custom tag code before distributing it.

CFCRYPT uses the following syntax:
CFCRYPT 1infile outfile [/r /q] [/h "message"] /v"2"

The following options are supported:

cfcrypt Command Line Options

Option Description

input file Name of the file you want to encrypt. cfcrypt will not process an
encrypted file.

output file Path and filename of the output file.

Warning: If no output file name is specified, a warning message asks
if you want to continue. If you continue the process, the encrypted
file overwrites the source file.

Chapter 11: Building ColdFusion Extensions 111

cfcrypt Command Line Options

Option

Description

/r

Recursive, when used with wildcards, recurses through subdirectories
to encrypt files.

/q

Suppresses warning messages.

/h

Header, allows custom header to be written to the top of the
encrypted file(s).

N

Required parameter that allows encryption using a specified version
number. Use “1” for pages you want to be able to run on ColdFusion
3.x. Use “2" for pages you want to run strictly on ColdFusion 4.0 and

later.

Example

cfcrypt c:\inetpub\wwwroot\myapp\entrypoint.cfm tags\custom0l.cfm /h
"The code in this custom tag is encrypted" /v "2"

This command encrypts entrypoint.cfm for use with ColdFusion Server 4.0. and
saves it to the subdirectory encryptedpages\enrtypoint.cfm. If you attempt to open
the output file for editing, only the message specified in the /h option will be readable.

If you enter cfcrypt without arguments, a message box appears (Windows) showing
the command syntax you can use.

CFCrypt Template Encryption Liility
Allsire Corp.

Usage:

cfcrypt infile [outfile] [#]] [h "This is & header.."] & "2

infile source file(s) to encrypt

outfile file(=) to save to (can be omitted for in-place encryption])

I optional parameter that enables recursive directory processing

oy optional parameter that suppresses warning messages

h optional parameter that allovws a custom header to be prepended to the encrypted file
M mandstory parameter that allovs encryption using & specified version numkber

Note While it is possible to encrypt binary files with CFCRYPT, it is not recommended.

Building Extensions in C++

Another technology supported for extending ColdFusion is C++. ColdFusion exposes a
C++ based API you can employ for encapsulating specific features in a ColdFusion tag,
generally known as a CFX tag. The ColdFusion Application Programming Interface

112 Advanced ColdFusion Development

(CFAPI) is a C++ based API for creating C++ based tags for use in ColdFusion. These
custom tags implemented as DLLs and have the following capabilities:

» The ability to handle any number of custom attributes.
» The ability to use and manipulate ColdFusion queries for custom formatting.

+ The ability to generate ColdFusion queries for interfacing with non-ODBC
based information sources.

» The ability to dynamically generate HTML to be returned to the client.

» The ability to set variables within the ColdFusion application page from which
they are called.

» The ability to throw exceptions which result in standard ColdFusion error
messages.

On Windows NT, you can get started quickly by using the ColdFusion Custom Tag
Visual C++ AppWizard to generate a tag. The custom tag wizard is automatically
installed during setup if Visual C++ 4.0 or higher is present on your system. By
modifying the default tag implementation and experimenting, you will quickly learn
how to use the API.

Before you can use your C++ compiler to build custom tags, you must enable the
compiler to locate the CFAPI header file, cfx.h. On Windows NT, you do this by adding
the CFAPI Include directory (\cfusion\cfapi\include) to your list of global include
paths. On Solaris, you will need -I <incTudepath> on your compile line (see the
Makefile directory list example).

Solaris only

CEX tags built on Solaris must be thread safe and should be compiled with the -mt
switch on the Sun compiler.

Sample C++ tags

Two CFX tags are included to give you additional insight into working with the CFAPI.
The two example tags are:

» CFX_DIRECTORYLIST — Queries a directory for the list of files it contains.

e CFX_NTUSERDB (Windows NT only) — Allows addition and deletion of NT
users.

On Windows NT, these tags are located in the \cfusion\cfxapi\examples directory.
On Solaris, look in installdirectory/coldfusion/cfx/examples.

Implementing CFX Tags

The key concept to understand in building custom tags is the use of the tag request
object, represented by the C++ class CCFXRequest. This object represents a request
made from an application page to a custom tag. A pointer to an instance of a request

Chapter 11: Building ColdFusion Extensions 113

object is passed to the main procedure of a custom tag. The methods available from
the request object allow the custom tag to accomplish its work.

See Chapter 12, “The ColdFusion Extension API,” on page 123 for reference
information about the CFX API.

Debugging CFX tags

Once a debug session is configured, you can run your custom tag from within the
debugger, set breakpoints, single-step, and so on.

Windows NT

Custom tags can easily be debugged within the Visual C++ environment. To debug a
tag, open the Build Settings dialog and click the Debug tab. Set the Executable for
debug session setting to the full path to the ColdFusion Engine (such as,
c:\cfusion\bin\cfserver.exe) and set the program arguments setting to -DEBUG.

Solaris

You can debug custom tags on Solaris using the dbx debugger. You should shutdown
ColdFusion using the stop script.

Set the environment variables, including LD_LIBRARY_PATH and CFHOME as they are set
in the start script. You should then be able to run the cfserver executable under the dbx
debugger and set break points in your CFX code. You may need to set a break point in
main (“stop in main”) so dbx loads the symbols for your CFX before you can set
breakpoints in your code.

Registering CFX tags

You must register custom tags in the ColdFusion Administrator before you can use
them within application pages. To register or modify the settings for a tag, use the
Extensions, CFX Tags page of the ColdFusion Administrator, as described in
“Managing CFX Tags” on page 114in this chapter.

Windows NT only. The Visual C++ Custom Tag Wizard automatically registers custom
tags so that they can be tested and debugged.

Distribution

If you are distributing a custom tag, you may want to automatically register the custom
tag during the setup process by writing the registration entries directly into the
Registry. The location, key, and value names to write are as follows:

Hive — HKEY_LOCAL_MACHINE
Key — SOFTWARE\A1Taire\ColdFusion\CurrentVersion\CustomTags\TagName

Values:

114

Advanced ColdFusion Development

« LibraryPath — The full path to the DLL (Windows NT) or shared object (Solaris)

that implements the custom tag.

* ProcedureName — The name of the procedure to call for processing tag

requests.

» Description — A description of the tag's functionality for browsing by end
users.

» CacheLibrary — Indicates whether to keep the DLL or shared object loaded in
RAM (1 or 0).

You can create a file containing this information by using the Regedit utility to export
the registry entry from a machine on which the custom tag is already installed.

You can also use the Regedit utility to import custom tags to the registry (on either
Windows NT or Solaris). To do this:

1.

Export the custom tag’s registry entry by using the Regedit utility. This creates a file
similar to the following:

REGEDIT4

[HKEY_LOCAL_MACHINE\SOFTWARE\A11aire\ColdFusion\CurrentVersion\
CustomTags\CFX_TEST]
"LibraryPath"="C:\\cfusion\\cfx\\CFX_TEST\\test.d11"
"ProcedureName"="ProcessTagRequest"

"Description"="Sample CFX tag."

"CacheLibrary"="1"

In the install script, import the registry entry by including the following command
in the install script:

regedit importfilename

Managing CFX Tags

To use a CFX tag in your ColdFusion applications, first register it in the Extensions, CFX
Tags page in the ColdFusion Administrator.

Adding a CFX tag
To add a CFX tag:
1. Click CFX Tags on the ColdFusion Administrator home page. The Registered CFX
Tags page opens. All registered custom tags appear in the list.
2. Click Add. The New CFX Tag page opens.
3. Type in the new tag name after the CFX_ prefix.
4. Enter the path in the Server library (DLL) box or click Browse Server to locate the

library you want to use.

Chapter 11: Building ColdFusion Extensions 115

5. Enter the procedure that implements the tag. The procedure name you enter must
correspond with an existing procedure in the DLL you've chosen. Procedure
names are case sensitive.

6. Click the Keep library loaded box to prevent having to reload the library into
memory each time a referenced page is accessed.

7. Optionally type a description of the tag’s function in the Description box. The text
appears with the tag name in the Registered CFX Tags list.

8. Click Add to save the new tag.
Changing CFX tag settings

To change a CFX tag:

1. Click the tag you want to change in the Registered CFX Tags list.
2. Make changes as needed on the Edit CFX Tag page.

3. Click Apply to save the changes.

Deleting a CFX tag

To delete a CFX tag:
1. Click the tag you want to delete in the Registered CFX Tags list.

2. Click Delete on the Edit CFX Tag page. The tag is removed from the list but is not
deleted from the system.

Using COM and CORBA Objects

ColdFusion supports COM and CORBA objects through the CFOBJECT tag. COM
(Component Object Model) is an architecture defined by Microsoft to enable
component portability, reusability, and versioning. OLE, for example, is an
implementation of COM. DCOM (Distributed Component Object Model) is an
implementation of COM for distributed services, allowing access to components
residing on a local network or anywhere on the Internet.

COM objects can reside locally, or on any other machine on the network, or on other
networks. Currently, COM is supported on Windows NT and Windows 95/98.

To find out more about COM/DCOM, go to http://www.microsoft.com.

About CORBA

CORBA (Common Object Request Broker Architecture) is a specification for a
distributed object system. In this model, an object is an encapsulated entity whose
services are accessed only through well defined interfaces. The location and

116 Advanced ColdFusion Development

implementation of each object is hidden from the client requesting the services.
ColdFusion supports CORBA 2.0 on both Windows and Solaris.

The main features of CORBA 2.0 are:
* ORB Core
* OMG Interface Definition Language (OMG IDL)
 Interface Repository
» Language Mappings
 Stubs and Skeletons
* Dynamic Invocation and Dispatch
* Object Adapters
 Inter-ORB Protocols

You access CORBA objects through the CFOBJECT tag. An Object Request Broker
(ORB) is required. Popular ORBs include Visibroker, Orbix, and CorbaPlus.

For more information, see “Getting Started with CORBA Objects” on page 121in this
chapter.

Getting Started with COM Components

An important thing to keep in mind when working with COM objects in ColdFusion is
that the components you use with ColdFusion are non-visual — that is, they don't have
agraphical interface. They are server-side components that encapsulate business logic
you can invoke in your ColdFusion applications. If you were to invoke an object with a
graphical interface in your ColdFusion application, a window for the component
might appear on the web server desktop, not the user's desktop. And each time the
component was invoked, another window would open until server resources were
exhausted.

COM objects used by ColdFusion are dynamically linked components. Late binding
means that the component is not linked into ColdFusion until it’s actually needed. If
you want to change a component on a live site, you just have to make sure no one is
using it, and it’s free to be swapped out with a new version.

COM objects can be transparently relocated on a network. A component on a different
machine on a network is treated the same as a component on the local system.
Components can also be referenced on machines outside the local network by using
DCOM.

Getting set up: COM

To make use of COM components in your ColdFusion application, you need at least
the following items:

Chapter 11: Building ColdFusion Extensions 117

» The Microsoft COM/OLE Viewer, available (last time we checked) at http://
www.microsoft.com/oledev/olecom/oleview.htm, is a handy tool you can use
to view COM/OLE object interfaces.

» The COM objects you want to use in your ColdFusion application pages. These
are typically DLLs or EXEs. These components should allow late binding, that
is, implement the IDispatch interface. The COM/OLE Viewer from Microsoft
allows you to view the component interface so that you can properly define the
CLASS attribute for the CFOBJECT tag and the properties and methods for the
object, in lieu of adequate documentation.

Register the object

Once you've acquired the object you want to use, you may need to register it with
Windows NT in order for ColdFusion (or anything else) to find it. Some objects may be
deployed with their own setup programs that register objects automatically, while
others may require the use of the Windows NT regsvr32 utility. You can invoke
regsvr32.exe either from a command prompt (a.k.a. DOS box) or using the NT Run
command, in the following form:

regsvr32 c:\path\filename.d11

Find the component ProgID and methods

Your COM object should provide documentation explaining each of the component’s
methods and the ProgID. With this information, you're ready to work with the
CFOBJECT tag. If you don’t have documentation, use the COM/OLE Viewer to view the
component’s interface. The COM/ OLE Viewer will tell you all you need to know about
the component’s interface.

Using the OLE/COM Object Viewer

The OLE/COM Object Viewer is available for free from http://www.microsoft.com/
oledev. The simple installation installs the executable by default as
\mstools\bin\oleview.exe. You use the OLE viewer to retrieve a COM object’s
Program ID as well as its methods and properties.

Once you've installed the COM object, make sure you register it using the
regsvr32.exe utility. Otherwise you won't find the object in the OLE viewer. The OLE
viewer retrieves all COM objects and controls from the rEgistry, and presents the
information in a simple format, sorted into groups for easy viewing.

By selecting the category and then component you want to use, you can see the
Program ID of the COM object you want to use. The OLE viewer also gives you access
to options for the operation of the object.

To view an object’s properties:

1. Open the OLE viewer and scroll to the object you want.

118 Advanced ColdFusion Development

COM Object Viewer M [=] B3

File Ohiect View Help

Bz | L]]

&, NSPlay Tiger Detais Property Page Object 1] o NTAcosss User Class
ty, NSFlay Tiger Gereral Properly Page Object ARSI {CPAC4350.BF03-11DO-B770-000001136428)
SR ¥ liTAccess.User Class

Dispatch Registiy | Implementation | Activation | Launch Pemissians | Access 4 | ¥
@ Wnknown

@ Iser

1, MACOMPAT Namespace Object

1, MAICOMPAT Provider Objsct

&, ODM EVENTNOTIFICATIONHANDLER

&, Office Compatible 1.0

&, Office Graphics Fiters Thumbnail Extractor

&, OLE Docfils Froperty Page

D oLEviewsr Automation Interface Viswers

DY oLEviewer Defaut Interface Viewer

D8 oLEviewer IPersist Interface Viewers =
DY oLEviewer Unknown Interface viewsr

DY oLEviewer Typelib Interface Viewsrs

DY oLEviewer UDT Interface Viewers

2 Option Propery Page 2.1

& OPWNoLink

#.0CK Cracle Scheduler Catral ;I;I « 1 =l

Ready 4

CLSID = (009541 Ad-3681 101 C-52F 3-040224009C02}
{CFOC4350-6F03-11D0-8770-000001136426) = NTAccsss User Clas

InprocServer3z [=no names] = CWRNTISystem32inta_user i

InprocServer32 [Threadnghodsl] = Both

FroglD = NTAccess User 1

Frogrammable

rogiD = NTAccess Ussr
NTAccess Ussr 1 = NTAccsss User Class
CLSID = {CFOC4350-BF03-11D0-B770-0000011 36428}

2. Select and expand the object in the OLE viewer.

By right clicking the object, an option appears for viewing it. If you view the
Typelnfo, you'll see the object’s methods and properties. Some objects will not
have any access to the Typelnfo area. This is determined when an object is built
and by the language used.

Mypelnfo Viewer [_[O]x]
File igw
o
= 3 Wser (User Interface) BN 5
57 m] Methods uuid(CFIC434F-BF09-11D0-8770-000001136428) .
m helpstring('IlUser Interface’).
Server dual
m Server
m User dispinterface Ilser {
m User propertiss:
methods:
M GetThreadUserName [id(0x00000001), propgst, helpstring('Get
M UserLagon Server Name valus")]
m ChangePassword BSTR Server{):
m Addlser [id¢0x00000001). propput. helpstring(’Get
Server NHame valus")]
m
it void Serverilin] BSTR rhs);
UserCourt [id(0=00000002), propget, helpstring(’Get
m Userftem UserName valus")]
m GetPasswordage ESTR Ussz();
M GetaxPasswordage [id¢0x00000002). propput. helpstring(’Get
m i, Userlane valus")
ripReman void User([in] BSTE rhs):
™M NeverExpirePassword [id(0x00000003), helpstring('Gst Thread
m NeverExpirePas=word User Name")]
M AccountComment BSTR GetThreadUserNams();
M fecountComment [id¢0x00000004). helpstring('Logon User')]
void UserLogon(
™ Fullame [in] BSTR bstrDomain.
m Fullame [in] BSTR bstrPassword,
m ResetPagsword 53| [in] VARIANT_BOOL =l
Ready v

Creating and Using COM Objects

In the following example, an SMTP mail handling component is created using
CFOBJECT.

<CFOBJECT ACTION=CREATE
NAME=MAILER
CLASS=SMTP.Mailer>

Chapter 11: Building ColdFusion Extensions 119

The component needs to be created by ColdFusion before any methods in the
component can be invoked or properties assigned in your application pages. This
(hypothetical) SMTP component includes a large number of methods and properties
you can use to perform a wide range of mail handling tasks. Methods perform actions
and have return values you can use. Properties often return information or store
information about a component. They do not execute and may not include any
parameters. In the OLE/COM Viewer, methods and properties may be grouped
together, making it a little confusing at first to determine one from the other.

Our hypothetical SMTP mail component includes properties such as:
* BodyText
* ConfirmRead
* ContentType
* FromName
* FromAddress

You use these properties to define elements of the mail message you want to send. The
SMTP Mailer component also includes a number of methods, such as:

» SendMail

* AddRecipient
+ AddCC

+ AddAttachment

Two ways to create objects with CFOBJECT

There are essentially two ways to create objects using CFOBJECT: Using the Create
method, which takes a COM object and instantiates it. The other connection type uses
the Connect method, which links to an object that is already running on the server.

The ACTION attribute of CFOBJECT

The CFOBJECT ACTION attribute accepts two arguments, CREATE and CONNECT.
You use CREATE to instantiate the object (typically a DLL) prior to invoking methods
or assigning properties.

You use CONNECT to connect to an object (typically an EXE) that is already running
on the specified server.

The CONTEXT attribute of CFOBJECT

The CFOBJECT CONTEXT attribute accepts three arguments:

« INPROC - This means an InProcess server object (typically a DLL) that is
running in the same process space as the calling process, such as, ColdFusion.

» LOCAL- This is an OutofProcess server object (typically an EXE) that is running
outside the ColdFusion process space but running locally on the same server.

120 Advanced ColdFusion Development

« REMOTE - This is also an OutofProcess server object (also typically an EXE)
that is running outside the ColdFusion process space, but running remotely,
either on your corporate network, or out there somewhere on the Internet.
Using REMOTE implies using the SERVER attribute to identify where the object
resides.

Setting Properties and Invoking Methods

The following example, using a hypothetical SMTPMailer COM object, shows how you
can assign properties to the mail message you want to send, and how you execute
component methods in order to handle mail messages. In the example, form variables
are used to provide method parameters and properties, such as the name of the
recipient, the desired email address, and so on.

<l--- First, create the object --->
<CFOBJECT ACTION="Create"

NAME="MaiTer"
CLASS="SMTPsvg.Mailer">

<l--- Then, use the form variables from the
user entry form to populate a number of properties
necessary to create and send the message. --->

<CFSET Mailer.FromName = #form.fromname#>
<CFSET Mailer.RemoteHost = #RemoteHost#>
<CFSET Mailer.FromAddress = #form.fromemail#>
<CFSET Mailer.Subject = "Testing CFOBJECT">
<CFSET Mailer.BodyText = "#form.msgbody#">
<CFSET Mailer.SMTPLog = "#logfile#">

<!--- Last, use the AddRecipient and SendMail
methods to finish and send the message along --->

<CFSET Mailer.AddRecipient("#form.fromname#","#form.fromemail#")>
<CFSET success=Mailer.SendMail()>

<l--- First, create the object --->

<CFOBJECT ACTION="Create"
NAME="Mailer"
CLASS="SMTPsvg.Mailer">

<!--- Then, use the form variables from the
user entry form to populate a number of properties
necessary to create and send the message --->

<CFSET Mailer.FromName = #form.fromname#>
<CFSET Mailer.RemoteHost = #RemoteHost#>
<CFSET Mailer.FromAddress = #form.fromemail#>
<CFSET Mailer.Subject = "Testing CFOBJECT">

Chapter 11: Building ColdFusion Extensions 121

<CFSET Mailer.BodyText = "#form.msgbody#">
<CFSET Mailer.SMTPLog = "#logfile#">

<!l--- Last, use the AddRecipient and
SendMail methods to finish and send
the message along --->

<CFSET Mailer.AddRecipient("#form.fromname#","#form.fromemail#")>
<CFSET success=Mailer.SendMail()>

Getting Started with CORBA Objects

CORBA is the Common Object Request Brokerage Architecture, a specification for a
component object system. ColdFusion Enterprise version 4.0 supports CORBA,
through the Dynamic Invocation Interface (DII).

ColdFusion Enterprise version 4.0 is bundled with deployment software from
VisiBroker for C++ 3.2. These runtime DLLs are used to invoke operations on object
references made available using the CFOBJECT tag.

A directory for logging output from VisiBroker is created when you first start
ColdFusion Server, Enterprise edition. This directory is called vbroker\1og and its
location is determined as follows:

1. IfVisiBroker is already installed on the server, the log directory is the directory
pointed to by the VBROKER_ADM environment variable.

2. Ifthisis a new VisiBroker installation, the log directory is created on the root of the
drive from which ColdFusion Server is started. For example, if ColdFusion is
installed in c:\cfusion or opt/coldfusion (Solaris), then the log directory will be
c:\vbroker\1og or /vbroker (Solaris).

3. If the creation of the log directory on the root fails, then the directory is created in
the ColdFusion installation directory.

Note User-defined types are not supported (i.e., structures).

Using CFOBJECT to create a CORBA object

In the CFOBJECT tag, several key attributes are required for calling CORBA objects:
» Set the TYPE attribute to CORBA. If no TYPE is specified, COM is assumed.

» The CONTEXT attribute shows how the object reference is obtained. Set the
CONTEXT either to "IOR", for a file containing the object’s unique
Interoperable Object Reference, or to “NameService”.

» If the CONTEXT attribute is set to IOR, set the CLASS attribute to the file
containing the stringified version of the IOR. ColdFusion must be able to read
this IOR file at all times, so it should be local to the server or on the network in
an open, accessible location.

122 Advanced ColdFusion Development

» If the CONTEXT attribute is set to a NameService, the CLASS attribute must
include a period-delimited naming context for the naming service, such as
Allaire.Department.Dev.

» Set the NAME attribute to the name your application uses to call the object’s
operations and attributes.

See the CFML Language Reference for information about the CFOBJECT tag as well as
examples of CFOBJECT tag creating a CORBA object.

Information about CORBA

To learn more about CORBA, see the Object Management Group’s site at
http://www.omg.org.

CHAPTER 12

The ColdFusion Extension API

This chapter documents the ColdFusion Extension Application Programming
Interface (CFXAPI), which you use to extend ColdFusion using C++.

Contents
¢ The ColdFusion Extension (CFX) API........cccccocterimieneneenienenrienieneeeeseenees
e The CCFXEXCEPON ClaASScccecerverterueiiieiiniinienienieteteresesresiesieneeesressesaeees
¢ The CCEFXQUETY ClaSSccueruemirirenienieieieresientententeseeteressessessesseeesessesseseenees
¢ The CCFXREQUESE ClaSS......ccctrcuerieriinierienienieienteiesieetessesseessesseessesseessessens

The CCEXStriNGSet CLaSScoevverieieireniirierierieteteiesesete et eese s seessesaeseene

124

Advanced ColdFusion Development

The ColdFusion Extension (CFX) API

For information about implementing ColdFusion Extensions (CFX) with C++, see
Chapter 11, “Building ColdFusion Extensions,” on page 95.

Class

Members

The CCFXException Class

n/a

The CCFXQuery Class

CCFXQuery::AddRow
CCFXQuery::GetColumns
CCFXQuery::GetData
CCFXQuery::GetName
CCFXQuery::GetRowCount
CCFXQuery::SetData
CCFXQuery::SetQueryString
CCFXQuery::SetTotalTime

The CCFXRequest Class

CCFXRequest:AddQuery
CCFXRequest::AttributeExists
CCFXRequest::CreateStringSet
CCFXRequest:Debug
CCFXRequest:GetAttribute
CCFXRequest:GetAttributelList
CCFXRequest:GetCustomData
CCFXRequest:GetQuery
CCFXRequest:GetSetting
CCFXRequest::ReThrowException
CCFXRequest::SetCustomData
CCFXRequest:SetVariable
CCFXRequest::ThrowException
CCFXRequest:Write
CCFXRequest:WriteDebug

The CCFXStringSet Class

CCFXStringSet::AddString
CCFXStringSet::GetCount
CCFXStringSet:GetIndexForString
CCFXStringSet::GetString

Chapter 12: The ColdFusion Extension API 125

The CCFXException Class

Abstract class that represents an exception thrown during the processing of a
ColdFusion Extension (CFX) procedure.

Exceptions of this type can be thrown by the classes CCFXRequest, CCEXQuery, and
CCEXStringSet. Your ColdFusion Extension code must therefore be written to handle
exceptions of this type. (See the CCFXRequest::ReThrowException tag for more details
on doing this correctly.)

The CCFXQuery Class

Abstract class that represents a query used or created by a ColdFusion Extension
(CFX). Queries contain 1 or more columns of data that extend over a varying number of
TOWsS.

Class members

virtual int AddRow
Adds a new row to the query.
virtual CCFXStringSet* GetColumns
Retrieves a list of the query’s column names.
virtual LPCSTR GetData(int iRow, int iColumn)
Retrieves a data element from a row and column of the query.
virtual LPCSTR GetName
Retrieves the name of the query.
virtual int GetRowCount
Retrieves the number of rows in the query.
virtual void SetData(int iRow, int iColumn, LPCSTR lpszData)
Sets a data element within a row and column of the query.
virtual void SetQueryString(LPCSTR 1pszQuery)
Sets the query string that will displayed along with query debug output.
virtual void SetTotalTime(DWORD dwMilliseconds)
Sets the total time that was required to process the query (used for debug output).

CCFXQuery::AddRow

int CCFXQuery: :AddRow(void)

126

Advanced ColdFusion Development

Example

Add a new row to the query. You should call this function each time you want to
append a row to the query.

Returns the index of the row that was appended to the query.

The following example demonstrates the addition of 2 rows to a query that has 3
columns ('City’, 'State’, and 'Zip’):

// First row

int iRow ;

iRow = pQuery->AddRow() ;

pQuery->SetData(iCity, iRow, "Minneapolis") ;
pQuery->SetData(iState, iRow, "MN") ;
pQuery->SetData(iZip, iRow, "55345") ;

// Second row

iRow = pQuery->AddRow() ;

pQuery->SetData(iCity, iRow, "St. Paul") ;
pQuery->SetData(iState, iRow, "MN") ;
pQuery->SetData(iZip, iRow, "55105") ;

CCFXQuery::GetColumns

Example

CCFXStringSet* CCFXQuery::GetColumns(void)

Retrieves a list of the column names contained in the query.

Returns an object of class CCFXStringSet which contains a list of the columns
contained in the query. You are not responsible for freeing the memory allocated for
the returned string set (it will be automatically freed by ColdFusion after the request is
completed).

The following example retrieves the list of columns and then iterates over the list,
writing each column name back to the user.

// Get the Tlist of columns from the quer

CCFXStringSet* pColumns = pQuery->GetColumns() ;
int nNumColumns = pColumns->GetCount() ;

// Print the 1list of columns to the user

pRequest->Write("Columns in query: ") ;
for(int i=1; i<=nNumColumns; i++)
{

pRequest->Write(pColumns->GetString(i)) ;
pRequest->Write(" ") ;

Chapter 12: The ColdFusion Extension API 127

CCFXQuery::GetData

LPCSTR CCFXQuery: :GetData(int iRow, int T1CoTlumn)

Retrieves a data element from a row and column of the query. Row and column indexes
begin with 1. You can determine the number of rows in the query by calling
GetRowCount. You can determine the number of columns in the query by retrieving
the list of columns using GetColumns and then calling CCEXStringSet::GetCount on
the returned string set.

Returns the value of the requested data element.

iRow
Row to retrieve data from (1-based).

1Column
Column to retrieve data from (1-based).

Example The following example iterates over the elements of a query and writes the data in the
query back to the user in a simple, space-delimited format:

int iRow, 1iCol ;

int nNumCols = pQuery->GetColumns()->GetCount() ;
int nNumRows = pQuery->GetRowCount() ;

for (iRow=1; iRow<=nNumRows; iRow++)

{
for (iCol=1; iCol<=nNumCols; iCoTl++)
{
pRequest->Write(pQuery->GetData(iRow, iCol)) ;
pRequest->Write(" ") ;
}
pRequest->Write("
") ;
}

CCFXQuery::GetName

LPCSTR CCFXQuery: :GetName(void)
Retrieves the name of the query. Returns the name of the query.

Example The following example retrieves the name of the query and writes it back to the user:

CCFXQuery* pQuery = pRequest->GetQuery() ;
pRequest->Write("The query name is: ") ;
pRequest->Write(pQuery->GetName()) ;

128

Advanced ColdFusion Development

CCFXQuery::GetRowCount

Example

LPCSTR CCFXQuery: :GetRowCount(void)

Retrieves the number of rows in the query. Returns the number of rows contained in
the query.

The following example retrieves the number of rows in a query and writes it back to the
user:

CCFXQuery* pQuery = pRequest->GetQuery() ;
char buffOutput[256] ;
wsprintf(buffOutput,
"The number of rows in the query is %1d.",
pQuery->GetRowCount()) ;
pRequest->Write(buffOutput) ;

CCFXQuery::SetData

Example

void CCFXQuery::SetData(int 7Row, int T1Column, LPCSTR IpszData)

Sets a data element within a row and column of the query. Row and column indexes
begin with 1. Before calling SetData for a given row, you should be sure to call AddRow
and use the return value as the row index for your call to SetData.

iRow
Row of data element to set (1-based).

1Column
Column of data element to set (1-based).

1pszData
New value for data element.

The following example demonstrates the addition of 2 rows to a query that has 3
columns ('City’, 'State’, and 'Zip’):

// First row

int iRow ;

iRow = pQuery->AddRow() ;

pQuery->SetData(iCity, iRow, "Minneapolis") ;
pQuery->SetData(iState, iRow, "MN") ;
pQuery->SetData(iZip, iRow, "55345") ;

// Second row

Chapter 12: The ColdFusion Extension API 129

iRow = pQuery->AddRow() ;

pQuery->SetData(iCity, iRow, "St. Paul") ;
pQuery->SetData(iState, iRow, "MN") ;
pQuery->SetData(iZip, iRow, "55105") ;

CCFXQuery::SetQueryString

Example

void CCFXQuery: :SetQueryString(LPCSTR T1pszQuery)

Sets the query string which will displayed along with the query debug output. For
queries generated by the DBQUERY tag, this is the SQL statement. For your custom tag,
it may be something different, or you may not want to display a query string at all.

TpszQuery
Text of query string.

The following example is from a hypothetical custom tag that does directory browsing
based on a command string passed to the tag:

LPCSTR 1pszDirListCommand =
pRequest->GetAttribute("COMMAND") ;

...Create a query (pQuery) and populate it with the
contents of the directory Tisting...

pQuery->SetQueryString(1pszDirListCommand) ;

CCFXQuery::SetTotalTime

Example

void CCFXQuery: :SetTotalTime(DWORD dwMil77seconds)

Sets the number of milliseconds that were required to process this query. This number
will be displayed along with the query debug output.

dwMill1iseconds
Execution time in milliseconds.

The following example demonstrates the methodology used to set the total time for a
query:
DWORD dwStartTime = GetCurrentTime() ;

...execute the query and populate it with data...

pQuery->SetTotalTime(GetCurrentTime() - dwStartTime) ;

130 Advanced ColdFusion Development

The CCFXRequest Class

Overview

Abstract class that represents a request made to a ColdFusion Extension (CFX). An
instance of this class is passed to the main function of your extension DLL. The class
provides several interfaces which may be used by the custom extension, including
functions for reading and writing variables, returning output, creating and using
queries, and throwing exceptions.

Class Members

virtual BOOL AttributeExists(LPCSTR 1pszName)
Checks to see whether the attribute was passed to the tag.
virtual LPCSTR GetAttribute(LPCSTR 1pszName)
Retrieves the value of the passed attribute.
virtual CCFXStringSet* GetAttributelList()
Retrieves a list of all attribute names passed to the tag.
virtual CCFXQuery* GetQuery()
Retrieves the query that was passed to the tag.
virtual LPCSTR GetSetting(LPCSTR TpszSettingName)
Retrieves the value of a custom tag setting.
virtual void Write(LPCSTR TpszOutput)
Writes text output back to the user.
virtual void SetVariable(LPCSTR 1pszName, LPCSTR 1pszValue)
Sets a variable in the template that contains this tag.
virtual CCFXQuery* AddQuery(LPCSTR 1pszName, CCFXStringSet* pColumns)
Adds a query to the template that contains this tag.
virtual BOOL Debug()
Checks whether the tag contains the DEBUG attribute.
virtual void WriteDebug(LPCSTR 1pszOutput)
Writes text output into the debug stream.
virtual CCFXStringSet* CreateStringSet()
Allocates and returns a new CCFXStringSet instance.
virtual void ThrowException(LPCSTR 1pszError, LPCSTR 1pszDiagnostics)
Throws an exception and ends processing of this request.

virtual void ReThrowException(CCFXException* e)

Chapter 12: The ColdFusion Extension API 131

Re-throws an exception that has been caught.
virtual void SetCustomData(LPVOID 1pvData)

Sets custom (tag specific) data to carry along with the request.
virtual LPVOID GetCustomData()

Gets the custom (tag specific) data for the request.

CCFXRequest::AddQuery

Example

CCFXQuery* CCFXRequest: :AddQuery(LPCSTR TpszName, CCFXStringSet*
pColumns)

Adds a query to the calling template. This query can then be accessed by DBML tags
(e.g., DBOUTPUT or DBTABLE) within the template. Note that after calling AddQuery,
the query exists but is empty (i.e., it has 0 rows). To populate the query with data, you
should call the CCFXQuery member functions CCFXQuery::AddRow and
CCFXQuery::SetData.

Returns a pointer to the query that was added to the template (an object of class
CCFXQuery). You are not responsible for freeing the memory allocated for the returned
query (it will be automatically freed by ColdFusion after the request is completed).

TpszName
Name of query to add to the template (must be unique).

pColumns
List of columns names to be used in the query.

The following example adds a query named 'People’ to the calling template. The query
has two columns ('FirstName’ and 'LastName’) and two rows:

// Create a string set and add the column names to it
CCFXStringSet* pColumns = pRequest->CreateStringSet() ;
int iFirstName = pColumns->AddString("FirstName") ;
int iLastName = pColumns->AddString("LastName") ;

// Create a query which contains these columns
CCFXQuery* pQuery = pRequest->AddQuery("People", pColumns) ;

// Add data to the query

int iRow ;

iRow = pQuery->AddRow() ;
pQuery->SetData(iRow, iFirstName, "John") ;
pQuery->SetData(iRow, ilLastName, "Smith")
iRow = pQuery->AddRow() ;
pQuery->SetData(iRow, iFirstName, "Jane"
pQuery->SetData(iRow, ilLastName, "Doe") ;

A

132 Advanced ColdFusion Development

CCFXRequest::AttributeExists

BOOL CCFXRequest::AttributeExists(LPCSTR TpszName)

Checks to see whether the attribute was passed to the tag. Returns TRUE if the
attribute is available; otherwise, returns FALSE.

TpszName
Name of the attribute to check (case insensitive).

Example The following example checks to see if the user passed an attribute named
DESTINATION to the tag and throws an exception if the attribute was not passed:

if (pRequest->AttributeExists("DESTINATION")==FALSE)

{
pRequest->ThrowException(
"Missing DESTINATION parameter",
"You must pass a DESTINATION parameter in "
"order for this tag to work correctly.") ;
3

CCFXRequest::CreateStringSet

CCFXStringSet* CCFXRequest::CreateStringSet(void)

Allocates and returns a new CCEXStringSet instance. Note that string sets should
always be created using this function as opposed to directly using the 'new’ operator.

Returns an object of class CCEXStringSet. You are not responsible for freeing the
memory allocated for the returned string set (it will be automatically freed by
ColdFusion after the request is completed).

Example The following example creates a string set and adds 3 strings to it:

CCFXStringSet* pColors = pRequest->CreateStringSet() ;
pColors->AddString("Red") ;

pColors->AddString("Green") ;

pColors->AddString("Blue") ;

CCFXRequest::Debug

BOOL CCFXRequest::Debug(void)

Checks whether the tag contains the DEBUG attribute. You should use this function to
determine whether or not you need to write debug information for this request. (See
the CCFXRequest::WriteDebug tag for details on writing debug information.)

Returns TRUE if the tag contains the DEBUG attribute; otherwise, returns FALSE.

Chapter 12: The ColdFusion Extension API 133

Example The following example checks to see whether the DEBUG attribute is present, and if it

is, it writes a brief debug message:

if (pRequest->Debug())
{

pRequest->WriteDebug("Top secret debug info") ;
}

CCFXRequest::GetAttribute

Example

LPCSTR CCFXRequest: :GetAttribute(LPCSTR TpszName)

Retrieves the value of the passed attribute. Returns an empty string if the attribute
does not exist. (Use CCFX:AttributeExists to test whether an attribute was passed to the
tag.)

Returns the value of the attribute passed to the tag. If no attribute of that name was
passed to the tag, an empty string is returned.

TpszName
Name of the attribute to retrieve (case insensitive).

The following example retrieves an attribute named DESTINATION and writes its
value back to the user:

LPCSTR TpszDestination = pRequest->GetAttribute("DESTINATION") ;
pRequest->Write("The destination is: ") ;
pRequest->Write(1pszDestination) ;

CCFXRequest::GetAttributelList

Example

CCFXStringSet* CCFXRequest::GetAttributelList(void)

Retrieves a list of all attribute names passed to the tag. To retrieve the value of an
individual attribute, you should use the GetAttribute member function.

Returns an object of class CCFXStringSet that contains a list of all attributes passed to
the tag.

You are not responsible for freeing the memory allocated for the returned string set (it
will be automatically freed by ColdFusion after the request is completed).

The following example retrieves the list of attributes and then iterates over the list,
writing each attribute and its value back to the user.

LPCSTR 1pszName, 1pszValue ;
CCFXStringSet* pAttribs = pRequest->GetAttributelList() ;
int nNumAttribs = pAttribs->GetCount() ;

for(int i=1; i<=nNumAttribs; i++)

134

Advanced ColdFusion Development

TpszName = pAttribs->GetString(i) ;

TpszValue = pRequest->GetAttribute(TpszName) ;
pRequest->Write(1pszName) ;

pRequest->Write(" = ") ;

pRequest->Write(lpszValue ;

pRequest->Write("
") ;

CCFXRequest::GetCustomData

Example

LPVOID CCFXRequest: :GetCustomData(void)

Gets the custom (tag specific) data for the request. This member is typically used from
within subroutines of your tag implementation to extract tag specific data from within
the request.

Returns a pointer to the custom data or returns NULL if no custom data has been set
during this request using SetCustomData.

The following example retrieves a pointer to a request specific data structure of
hypothetical type MYTAGDATA:

void DoSomeGruntWork(CCFXRequest* pRequest)

{
MYTAGDATA* pTagData =
(MYTAGDATA*)pRequest->GetCustomData() ;
. remainder of procedure ...
3

CCFXRequest::GetQuery

Example

CCFXQuery* CCFXRequest: :GetQuery(void)

Retrieves the query that was passed to the tag. To pass a query to a custom tag, you use
the QUERY attribute. This attribute should be set to the name of an existing query
(created using the DBQUERY tag or another custom tag). The QUERY attribute is
optional and should only be used by tags that need to process an existing dataset.

Returns an object of class CCFXQuery that represents the query that was passed to the
tag. If no query was passed to the tag, NULL is returned. You are not responsible for
freeing the memory allocated for the returned query (it will be automatically freed by
ColdFusion after the request is completed).

The following example retrieves the query which was passed to the tag. If no query was
passed , an exception is thrown:

Chapter 12: The ColdFusion Extension API 135

CCFXQuery* pQuery

= pRequest->GetQuery() ;
if (pQuery == NULL)

{
pRequest->ThrowException(
"Missing QUERY parameter",
"You must pass a QUERY parameter in "
"order for this tag to work correctly.") ;
}

CCFXRequest::GetSetting

Example

LPCSTR CCFXRequest: :GetSetting(LPCSTR TpszSettingName)

Retrieves the value of a global custom tag setting. Custom tag settings are stored within
the CustomTags section of the ColdFusion Registry key.

Returns the value of the custom tag setting. If no setting of that name exists, an empty
string is returned.

TpszSettingName
Name of the setting to retrieve (case insensitive).

The following example retrieves the value of a setting named 'VerifyAddress’ and uses
the returned value to determine what actions to take next:

LPCSTR 1pszVerify = pRequest->GetSetting("VerifyAddress") ;
BOOL bVerify = atoi(lpszVerify) ;
if (bVerify == TRUE)
{
// Do address verification...

}

CCFXRequest::ReThrowException

Example

void CCFXRequest: :ReThrowException(CCFXException* e)

Re-throws an exception that has been caught within an extension procedure. This
function is used to avoid having C++ exceptions thrown by DLL extension code
propagate back into ColdFusion. You should catch ALL C++ exceptions that occur in
your extension code and then either re-throw them (if they are of the CCFXException
class) or create and throw a new exception using ThrowException.

e
An existing CCFXException that has been caught.

The following code demonstrates the correct way to handle exceptions in ColdFusion
Extension DLL procedures:

136 Advanced ColdFusion Development

try

{
...Code which could throw an exception...

}

catch(CCFXException* e)

{
...Do appropriate resource cleanup here...
// Re-throw the exception
pRequest->ReThrowException(e) ;

}

catch(...)

{
// Something nasty happened, don’t even try
// to do resource cleanup
pRequest->ThrowException(

"Unexpected error occurred in CFX tag", "") ;
}

CCFXRequest::SetCustomData

void CCFXRequest: :SetCustomData(LPVOID TpvData)

Sets custom (tag specific) data to carry along with the request. You should use this
function to store request specific data that you want to pass along to procedures within
your custom tag implementation.

TpvData
Pointer to custom data.

Example The following example creates a request-specific data structure of hypothetical type
MYTAGDATA and stores a pointer to the structure in the request for future use:

void ProcessTagRequest(CCFXRequest* pRequest)

{
try
{
MYTAGDATA tagData ;
pRequest->SetCustomData((LPVOID)&tagData) ;
remainder of procedure ...
}

CCFXRequest::SetVariable

void CCFXRequest::SetVariable(LPCSTR TpszName, LPCSTR IpszValue)

Chapter 12: The ColdFusion Extension API 137

Example

Sets a variable in the calling template. If the variable name specified already exists in
the template, its value is replaced. If it does not already exist, a new variable is created.
The values of variables created using SetVariable can be accessed in the same manner
as other template variables (e.g., #MessageSent#).

TpszName
Name of variable.

TpszValue
Value of variable.

The following example sets the value of a variable named 'MessageSent’ based on the
success of an operation performed by the custom tag:

BOOL bMessageSent ;
...attempt to send the message...

if (bMessageSent == TRUE)

{

pRequest->SetVariable("MessageSent", "Yes") ;
3
else
{

pRequest->SetVariable("MessageSent", "No") ;
3

CCFXRequest::ThrowException

Example

void CCFXRequest::ThrowException(LPCSTR TpszError,
LPCSTR TpszDiagnostics)

Throws an exception and ends processing of this request. You should call this function
when you encounter an error that does not allow you to continue processing the
request. Note that this function is almost always combined with the
ReThrowException member function to provide protection against resource leaks in
extension code.

1pszError
Short identifier for error.

1pszDiagnostics
Error diagnostic information.

The following example throws an exception indicating that an unexpected error
occurred while processing the request:

138 Advanced ColdFusion Development

char buffError[512] ;
wsprintf(buffError,
"Unexpected Windows NT error number %1d "
"occurred while processing request.", GetLastError()) ;

pRequest->ThrowException("Error occurred", buffError) ;

CCFXRequest::Write

void CCFXRequest: :Write(LPCSTR TpszOutput)
Writes text output back to the user.

TpszOutput
Text to output.

Example The following example creates a buffer to hold an output string, fills the buffer with
data, and then writes the output back to the user:

CHAR buffOutput[1024] ;

wsprintf(buffOutput, "The destination is: %s",
pRequest->GetAttribute ("DESTINATION")) ;

pRequest->Write(buffOutput) ;

CCFXRequest::WriteDebug

void CCFXRequest: :WriteDebug(LPCSTR TpszOutput)

Writes text output into the debug stream. This text is only displayed to the end-user if
the tag contains the DEBUG attribute. (For more information, see the Debug member
function.)

TpszOutput
Text to output.

Example The following example checks to see whether the DEBUG attribute is present, and if it
is, it writes a brief debug message:

if (pRequest->Debug())
{

pRequest->WriteDebug("Top secret debug info") ;
}

Chapter 12: The ColdFusion Extension API 139

The CCFXStringSet Class

Overview

Abstract class that represents a set of ordered strings. Strings can be added to a set and
can be retrieved by a numeric index (the index values for strings are 1-based). To create
a string set, you should use the CCFXRequest member function
CCFXRequest::CreateStringSet.

Class members

virtual int AddString(LPCSTR 1pszString)
Adds a string to the end of the list.
virtual int GetCount()
Gets the number of strings contained in the list.
virtual LPCSTR GetString(int iIndex)
Gets the string located at the passed index.
virtual int GetIndexForString(LPCSTR 1pszString)
Gets the index for the passed string.

CCFXStringSet::AddString

int CCFXStringSet: :AddString(LPCSTR TpszString)

Adds a string to the end of the list. Returns the index of the string that was added.

1pszString
String to add to the list.

Example The following example demonstrates adding three strings to a string set and saving the
indexes of the items that are added:

CCFXStringSet* pSet = pRequest->CreateStringSet() ;
int iRed = pSet->AddString("Red") ;

int iGreen = pSet->AddString("Green") ;
int iBlue = pSet->AddString("Blue") ;

CCFXStringSet::GetCount

int CCFXStringSet: :GetCount(void)

140 Advanced ColdFusion Development

Gets the number of strings contained in the string set. This value can be used along
with the GetString function to iterate over the strings in the set (when iterating,
remember that the index values for strings in the list begin at 1).

Returns the number of strings contained in the string set.

Example The following example demonstrates using GetCount along with GetString to iterate
over a string set and write the contents of the list back to the user:

int nNumItems = pStringSet->GetCount() ;

for (int i=1; i<=nNumItems; i++)

{
pRequest->Write(pStringSet->GetString(i)) ;
pRequest->Write("
") ;

CCFXStringSet::GetindexForString

int CCFXStringSet: :GetIndexForString(LPCSTR TpszString)

Does a case insensitive search for the passed string.

If the string is found, its index within the string set is returned. If it is not found, the
constant CFX_STRING_NOT_FOUND is returned.

1pszString
String to search for.

Example The following example illustrates searching for a string and throwing an exception if it
is not found:

CCFXStringSet* pAttribs = pRequest->GetAttributeList() ;
int iDestination =

pAttribs->GetIndexForString("DESTINATION") ;
if (iDestination == CFX_STRING_NOT_FOUND)

{
pRequest->ThrowException(
"DESTINATION attribute not found."
"The DESTINATION attribute 1is required "
"by this tag.") ;
}

CCFXStringSet::GetString

LPCSTR CCFXStringSet: :GetString(int iIndex)

Retrieves the string located at the passed index (note that index values are 1-based).

Chapter 12: The ColdFusion Extension API 141

Returns the string located at the passed index.

iIndex
Index of string to retrieve.

Example The following example demonstrates using GetString along with GetCount to iterate
over a string set and write the contents of the list back to the user:

int nNumItems = pStringSet->GetCount() ;

for (int i=1; i<=nNumItems; i++)

{
pRequest->Write(pStringSet->GetString(i)) ;
pRequest->Write("
") ;

142 Advanced ColdFusion Development

CHAPTER 13

Connecting to LDAP Directories

Support for the Lightweight Directory Access Protocol (LDAP) API in CFML is part of
Allaire’s commitment to open networking standards.

Contents
e ColdFusion SUppOrt for LDAP.......cccovcerieririeieeieiesteteseeiteseeec et 144
® DITeCtOrY SIIUCTUTIESeecveiereeieeeeiteeeteeie ettt et st s sae e 144
¢ KeY TEIMS...coiiiiiiiiiiiii e 146
® OPETALIONS «.enneeeiieeiiieiieetee ettt st ee e et e st ee st e e ste s bt e st e e ste s st e sbeeseeesmeenaeean 147
o SeATCR FAILOIS ..ttt 148

EXAIMPLES ..ttt sttt st ettt et st eb e e sbe b et e b s be e eas 148

144 Advanced ColdFusion Development

ColdFusion Support for LDAP

The CFLDAP tag extends ColdFusion’s query capabilities to TCP network directory
services. CFLDAP offers developers significant opportunities in several areas:

» Create Internet White Pages for users to easily locate people and resources and
to receive information about them. Selected ODBC data (names, contact
information, etc.) can be copied to an LDAP server.

» Provide a front end to manage and update directory entries.

 Build applications that incorporate data from directory queries in their
processes.

As its name implies, LDAP is the lightweight version of the X.500 Directory Access
Protocol. It fills a need for access to directory structures that is less complex and
demanding of system resources than DAP. The development of an LDAP server in the
Internet environment enables direct access to directories without the requirement to
query X.500 servers, though this remains an option. LDAP retains the majority of DAP
functionality and is a major step forward in the evolution of the global directory
service envisioned by X.500.

References

Extensions to the LDAP protocol are ongoing and its wide support in the Internet
community is growing. Additional material on LDAP is available from these sources:

» The LDAP specification was originally developed at the University of Michigan.
Their site http://www.umich.edu/~dirsvcs/ldap/index.html contains a wealth
of information and resources.

» The stated purpose of the Internet Engineering Task Force LDAP Extensions
Working Group is to "...define and standardize extensions to the LDAP version 3
protocol and extensions to the use of LDAP on the Internet.” Their site is at
http:/ /www.ietf.org/html.charters/ldapext-charter.html.

» The Directory Enabled Networks (DEN) specification, based on LDAP, is under
development by a number of vendors, including Microsoft and Cisco Systems.
You can follow the progress of this proposed standard at the DEN Ad Hoc
Working Group site at http://murchiso.com/den/.

Directory Structures

An LDAP directory is usually a hierarchical structure, though this is not a requirement.
LDAP supports a flat, or one-level, structure as readily as multiple levels. The
illustration below shows a simplified tree of entries from the root level to the individual
level.

Chapter 13: Connecting to LDAP Directories 145

Root

Country

Organization

Unit

Individual

The complexity and flexibility allowed in this structure is a key to LDAP’s success. A
directory’s structure abstracts the structure of the organization it represents. Properly
devising and maintaining this structure is the LDAP server administrator’s
responsibility. The type, quantity, and accessibility of the information for individual
entries will obviously vary widely across organizations and their LDAP servers.

A ColdFusion application developed for an organization’s intranet could easily include
LDAP query and output capability from its internal LDAP server and from allied
servers. Changes in the directory structure would, presumably, be updated in the
application code. Venturing into the wider world of the Internet needs special
attention, though. Communication with data source administrators is as important in
LDAP implementations as it is in other data-driven applications.

Viewing directory schema

Currently, you cannot use CFLDAP to determine the attributes of an LDAP data source.
The syntax requires the distinguished name of an entry to initiate a query. In other
words, the user must supply the starting point for a search. Full support of the LDAP
3.0 standard will be enabled in a future ColdFusion release.

As a ColdFusion developer, you must do the work of providing that starting point for
your users or for an LDAP query you run internally. The more focus you can provide
the user, the more effective the search.

146 Advanced ColdFusion Development
LDAP attributes
Following is a list of the common attributes:
Common LDAP Attributes
Attribute Name
C country
st state or province
| locality
o organization
ou organizational unit
cn common name
sn surname
Key Terms

Following is a brief description of the LDAP information structure.

Entry

The basic information object of LDAP is the entry. An entry is composed of attributes,

each of which has a type defining what information can be contained in the attribute’s
values and what behaviors the attribute exhibits during processing. Entries are subject
to content rules that specify its required and optional attributes. Content rules can be

defined in the syntax or on the LDAP server.

Distinguished name

A naming convention for LDAP entries ensures compliance with the protocol
regardless of the complexity of directory trees. LDAP name syntax begins at the entry
level and specifies each level up to the root. In other words, it proceeds from the
individual to the global. The Distinguished Name of an entry locates it in the directory
tree. Each Distinguished Name (DN) is made up of Relative Distinguished Names
(RDN) that contain one or more of the entry’s attributes. As with file systems
pathnames and URLSs, entering the correct LDAP name format is essential to
successful search operations.

Chapter 13: Connecting to LDAP Directories 147

Scope

Sets the limits of a search from the starting point of a query. The default is one level
below the distinguished name specified in the Start attribute. If, for example, the Start
attribute is "ou=support, o=allaire" the level below "support" is searched. You can
optionally restrict a query to the level of the Start entry or extend it to the entire
subtree.

Referral

While not supported directly in the LDAP2 standard, the ability of an LDAP server to
refer a client query to another server is an attractive feature and has been
implemented in the Netscape and University of Michigan servers. ColdFusion
developers need to be aware of the possibilities for referrals when designing their
query forms.

Operations

An LDAP directory is a database with a limited and specific role in an organization. It
offers performance advantages over conventional databases, and its operations are
familiar to database users.

Security

You can restrict access to CFLDAP operations by setting the user name and password
attributes. You could, for instance, allow queries by all users but limit update
operations to qualified users.

Query

CFLDAP implements the extensive search parameters of the LDAP API. You can
develop meaningful forms-based pages that focus the user’s search by controlling the
tag’s attributes. The syntax permits a high level of control of search criteria via the filter
attribute.

Output

Query results can be sorted and returned to the browser or they can be further
processed by CFOUTPUT, CFREPORT, and related tags.

Update

Entries can be added, modified, and deleted. Remote administration of an LDAP server
is one possible use of these options.

148

Advanced ColdFusion Development

Search Filters

A search string of the form attribute operator value defines the filter syntax. The default
filter, objectclass=*, returns all entries for the attribute.

The following table lists the filter operators. Note the prefix notation for the Boolean

operators.

CFLDAP Filter Operators

Operator

Example

o=allaire - organization name equals allaire

o~=alliare - organization name approximates allaire

st>=ma - names appearing after "ma" in an alphabetical state attribute
list

st<=ma - names appearing before "ma" in an alphabetical state
attribute list

o=alla* - organization names starting with "alla"
o=*aire - organization names ending with "aire"

o=all*aire - organization names starting with "all and " ending with
"aire"

(&(o=allaire)(co=usa)) - organization name = "allaire" AND country =
"usa

(|(o=allaire)(sn=allaire)) - organization name = "allaire" OR surname =
allaire

(/(STREET=¥)) - all entries that do NOT contain a StreetAddress attribute

Although sophisticated search criteria can be constructed from these filter operators,
performance may degrade if the LDAP server is slow to process the synchronous
search routines supported by CFLDAP. The TIMEOUT and MAXROWS attributes can
be used to control query performance.

Examples

The Query sample code can be copied to a ColdFusion application page and tested.
The code examples for the Delete and ModifyDN actions use placeholders for the
SERVER, USERNAME, and PASSWORD values because these must be specified by the user.

Chapter 13: Connecting to LDAP Directories 149

Example: Action="Query"

This example uses CFLDAP to retrieve the name and telephone numbers for US
organizations with a common name that starts with 'A’ through 'E’. The search starts
in the country: US. The filter is a regular expression that limits the search to
expressions of any length that begin with "A," "B," "C," "D," or "E."

<CFLDAP NAME="OrgList"
SERVER="1dap.itd.umich.edu"
ACTION="QUERY"
ATTRIBUTES="o0,st,telephoneNumber"
SCOPE="ONELEVEL"
FILTER="(] (0=A*) (0=B*) (0=C*) (0=D*) (o=E*))"
MAXROWS=200
SORT="0"
START="c=US">

<HTML>
<HEAD>

<TITLE>LDAP Directory Example</TITLE>
</HEAD>

<BODY>

<H3>US Organizations begining with
the letter A’ thru 'E’:</H3>

<CFFORM NAME="GridForm" ACTION="org_query.cfm">

<CFGRID NAME="grid_one"
QUERY="OrgList"
HEIGHT=250
WIDTH=620
HSPACE=20
VSPACE="6">

<CFGRIDCOLUMN NAME="o"
HEADER="0rganization" WIDTH=380>
<CFGRIDCOLUMN NAME="st"
HEADER="State" WIDTH=100>
<CFGRIDCOLUMN NAME="telephoneNumber"
HEADER="Phone ##" WIDTH=150>
</CFGRID>

</CFFORM>

</BODY>
</HTML>

Example: Action="Delete"

This example executes a Delete based on the user selection, and then performs a query
of the LDAP data source.

150

Advanced ColdFusion Development

<!--- If the delete parameter is sent

then run this update --->

<CFIF IsDefined(dn)>

<CFLDAP Name="LDAPDelete"
SERVER="1dap.com"
USERNAME="cn=Directory Manager,
o=Ace Industry, c=US"

PASSWORD="testT1dap"
ACTION="Delete"
DN=#dn#>

</CFIF>

<l--- Use CFLDAP to retrieve the common name
and distinguished name for all employees that
have a surname that contains ens and a common
name that is > K. Search starts in the country
US and organization Ace Industry. --->

<CFLDAP Name="EntryList"
SERVER="1dap.com"
ACTION="Query"
ATTRIBUTES="dn,cn, sn"
SCOPE="SUBTREE"
SORT="cn ASC"
FILTER="(cn>=A)"
START="0=Ace Industry, c=US"
TIMEOUT=30>

Example: Action="ModifyDN"

This code determines whether an insert or an update to an entry in an LDAP data
source was requested and executes an LDAP operation accordingly. Output is directed
to pages that populate forms with data returned in the LDAP operation.

<!--- If the update parameter is sent
then run this update --->

<l--- If the insert parameter is sent
then run this insert --->

<CFIF IsDefined(rename_dn)>

<CFLDAP Name="CustomerRename"
SERVER="1dap.com"
USERNAME="cn=Directory Manager,

o=Ace Industry, c=US"

PASSWORD="test1dap"
ACTION="MODIFYDN"
ATTRIBUTES=#new_dn#
DN=#rename_dn#>

<CFELSE>

<CFIF IsDefined(dn)>
<CFSET #UPDATE_ATTRS#=#mailtag# & #email# & ";" &

Chapter 13: Connecting to LDAP Directories

151

#phonetag# & #Phone#>

<CFLDAP Name="CustomerModify"

SERVER="1dap.com"
USERNAME="cn=Directory Manager,

o=Ace Industry, c=US"
PASSWORD="testTdap"
ACTION="MODIFY"
ATTRIBUTES=#UPDATE_ATTRS#
DN=#dn#>

<CFELSE>
<!--- If the insert parameter is sent
then run this insert --->

<CFIF IsDefined(Distinguished_Name)>
<CFSET #ADD_ATTRS# = "objectclass=top,

person,organizationalPerson,inetOrgPerson;"

#fullnametag# &
#Fullname# &

&

#surnametag# &
#Surname# &

&

#mailtag# &
#Email# &

&

#phonetag# &
#Phone#>

<CFLDAP Name="CustomerAdd"

SERVER="1dap.com"
USERNAME="cn=Directory Manager,
o=Ace Industry, c=US"
PASSWORD="test1dap"
ACTION="Add"
ATTRIBUTES=#ADD_ATTRS#
DN=#Distinguished_Name#>

</CFIF>
</CFIF>
</CFIF>
<l--- Use CFLDAP to retrieve the common

name and distinguished name for all employees
that have a surname that contains ens and a common
name that is > K. Search starts in the country US

and organization Ace Industry.--->

<CFLDAP Name="EntryList"
SERVER="1dap.com"

ACTION=

ATTRIBU

"Query"
TES="dn,cn, sn"

152

Advanced ColdFusion Development

SCOPE="SUBTREE"
SORT="sn ASC"

FILTER="(&(sn=*ens*) (cn>=K))"
START="0=Ace Industry, c=US"

MAXROWS=50
TIMEOUT=30>

<HTML>
<HEAD>

<TITLE>LDAP Directory Example</TITLE>

</HEAD>

<P>To modify the attributes of an entry,

select the entry and click the Update

button. To create a new entry, click the

Add button.

<CFFORM NAME="MyForm"
ACTION="Tdap_update.cfm"
TARGET="Lower">

<CFSELECT NAME="dn"
SIZE="5"
REQUIRED="Yes"
QUERY="EntryList"
Value="dn"
Display="cn">

</CFSELECT>

<INPUT TYPE="Submit" VALUE="Update...

</CFFORM>

<FORM ACTION="1dap_add.cfm"
METHOD="Post"
TARGET="Lower">

<INPUT TYPE="Submit" VALUE="Add...">

</FORM>

</BODY>
</HTML>

CHAPTER 14

Application Security

ColdFusion 4.0 for Windows NT supports several levels of Advanced Security. This
chapter describes how to deploy user security, which is controlled by the ColdFusion
developer and offers runtime user security. It also describes the Remote
Development Services security feature, where developers accessing server resources
through ColdFusion Studio are authenticated before receiving access to protected
resources.

For information on setting up security elements or using Administrator-controlled
security features, see Administering ColdFusion Server.

Contents
e ColdFusion SECUTity FEATUTIEScceceruerueeriruerienieieteneeeeresresseseeseeseenesseees 154
* Remote Development Services (RDS) SECULILY........ccecervererrerereerererennennes 154
o Overview Of USEr SECUTILYcccccerverirenienieininienienieteteieseereresie e 155
* Using Advanced Security in Application Pagescceceeevverererrenerennenen 156

+ Example of User Authentication and Authorization...........ccccceeeereeenrenennee 160

154

Advanced ColdFusion Development

ColdFusion Security Features

Note

Security options in ColdFusion have been greatly enhanced in this release. ColdFusion
Server now supports several levels of Advanced Security:

* Remote Development Services Security (RDS) — Developers accessing server
resources through ColdFusion Studio can be authenticated before receiving
access to protected resources.

» User security — Implemented in ColdFusion application pages by the
ColdFusion developer, User Security offers runtime user authentication and
authorization.

» Server sandbox security — Controlled by the ColdFusion administrator of a
hosted site, offers runtime security based on directory access at hosted sites
(ColdFusion Enterprise only).

¢ Administrator security — Individual administrative operations can be secured
against unauthorized access.

This chapter describes User Security and Remote Development Services (RDS)
security. For more information on the Sandbox and Administrator security features,
see Administering ColdFusion Server.

Advanced security is not currently supported in ColdFusion Server for Solaris.

Remote Development Services (RDS) Security

ColdFusion RDS security provides security services to developers working in
ColdFusion Studio. RDS security is at the core of the security framework in a team-
oriented ColdFusion development environment where groups of developers, working
in ColdFusion Studio, require different levels of access to ColdFusion files and data
sources.

Working in ColdFusion Studio, developers access these ColdFusion resources
remotely, opening *.cfm files or accessing data sources. RDS security authenticates
users and grants them access only to the resources appropriate to their login.
Authentication is carried out against the NT domain server or an LDAP directory
specified in the Administrator as part of a security context.

RDS and Basic security

In addition to Advanced security and debugging, RDS security also provides basic
security for ColdFusion. Access to RDS for Basic security is enabled by specifying a
ColdFusion Studio password on the Administrator Basic Security page. RDS secures
ColdFusion Server data sources and files, and enables file browsing and debugging as
well.

Chapter 14: Application Security 155

To access these resources, developers in ColdFusion Studio must supply a password
which, when authenticated, permits access to RDS Services: file browsing, editing,
database operations, debugging, and so on.

For more information see the Configuring Basic Security chapter in the Administering
ColdFusion Server book.

Configuring RDS security

A ColdFusion Administrator implements RDS security, so that when developers
attempt to access protected resources, they must provide a username and password.

When developers working in ColdFusion Studio connect to the ColdFusion Server and
attempt to access remote servers, files or data sources, access is granted according to
the rules and policies associated with their logins.

For more information see the Administering ColdFusion Server book.

Overview of User Security

The advanced User Security feature allows ColdFusion developers to authenticate
users and match protected resources with authorized users in ColdFusion application
pages.

The User Security feature is composed of the following elements:

Advanced Security Concepts

Term Description

Security At the top level of the security hierarchy, the security context is a kind
contexts of container in which rules, policies, and users are referenced.

Security rules You use rules to define the access restrictions you want for a particular

ColdFusion resource, such as defining which SQL statements are
allowed to be executed against a specific data source or which CFML
tag ACTIONS are restricted.

Users/groups Individual users and groups are authenticated within a particular
domain. A security directory can be a specified Windows NT domain or
an LDAP directory.

User directories | Defines the mechanism to use when authenticating users. Available
mechanisms are: a Windows NT domain, which authenticates users
with accounts on the server you specify; an LDAP directory that stores
user and group account information.

156 Advanced ColdFusion Development

Advanced Security Concepts (Continued)

Term Description
Security A policy associates specific users or groups with privileges to a set of
policies restricted resources that these users have access to. These restrictions

are in the form of rules, such as allowing a particular user or group to
execute a SQL UPDATE on a particular data source.

ColdFusion ColdFusion resources include data sources, Verity collections,
resources ColdFusion tags, custom tags, specific files, and so on.

Security server A hostname or IP address you specify where the security authentication
and authorization services run and is used to authenticate individual
users or groups.

Security A security framework established by applying a particular security
sandboxes context, with all that it contains, to a directory structure. Intended
mainly to help ISPs hosting ColdFusion applications to partition
application pages in individually secure areas.

Implementation summary

To implement runtime user security for applications, you use the ColdFusion
Administrator to

* Set up the security server.
» Create a security context for your application.
» Set up rules and policies that match secured resources with authorized users.

After the security framework is in place, you use the CFAUTHENTICATE tag in
individual application pages (or the Application.cfm file) to authenticate users. The
IsAuthenticated and IsAuthorized functions enable developers to offer or deny access
based on the established security policies.

See the Example of User Authentication and Authorization in this chapter to see code
examples that show how this works.

Using Advanced Security in Application Pages

After you set up the security context, rules, and policies for your application, you can
use security in application pages. This section describes how developers use security
tags and functions to authenticate users and provide or withhold resources according
to the security context’s rules.

* You can use CFAUTHENTICATE on any application page, or on the
Application.cfm file for your application, to authenticate users (in other words,
to make sure they are who they say they are, and are allowed to use this security

Chapter 14: Application Security 157

context). Pass this information to subsequent pages, where you can test for
authentication.

ColdFusion sets a cookie, CFAUTH, to contain authentication information. If
you choose not to use this cookie, you must check authentication for each
request.

» The IsAuthenticated function checks to see if the current user is authenticated.

* The IsAuthorized function checks to see if the user is authorized for certain
resources.

Encrypting application pages

You can encrypt strings using the Encrypt and Decrypt functions. See the CFML
Language Reference for descriptions of these functions.

CFAUTHENTICATE syntax

The CFAUTHENTICATE tag has several required attributes:

» SECURITYCONTEXT— Describes which security context to use for
authentication and authorization. This name matches the security context as
defined in the Advanced Security page of the Administrator.

* USERNAME — The username required to access the protected resources.
* PASSWORD — The password required to access the protected resources.

The USERNAME and PASSWORD are usually variables passed in a cookie from form
fields on a secure login page for the current session.

In addition, CFAUTHENTICATE has two optional attributes:

* SETCOOKIE — Indicates whether ColdFusion sets a cookie to contain
authentication information. This cookie is encrypted and includes the user
name, security context, browser remote address, and the http user agent.
Default is Yes.

 THROWONFAILURE — Indicates whether ColdFusion throws an exception of
type Security if authentication fails. Default is Yes.

Example

<CFAUTHENTICATE SECURITYCONTEXT="SecurityContextName”
USERNAME=#userID#
PASSWORD=#pwd#>

If the user has not already been defined in the system, a ColdFusion Security exception
is thrown. You can either reject access to the resource or re-route the user to a login
page. For example, you can display a login form and then pass the user along to the
originally-requested page.

For information on exception handling strategies in ColdFusion, see Chapter 9,
“Structured Exception Handling,” on page 83.

158

Advanced ColdFusion Development

See the CFML Language Reference for a full description of the CFAUTHENTICATE tag.

Authentication and Authorization functions

Note

After using CFAUTHENTICATE to check if the user is defined for the security context,
you can use two security functions:

 IsAuthenticated checks to see if the current session has been authenticated by
the CFAUTHENTICATE tag.

» IsAuthorized checks whether the authenticated user has access to the named
resource, based on rules defined in the security context.

IsAuthenticated Syntax
The IsAuthenticated function returns TRUE if the user has been authenticated for the
current request; otherwise, it returns FALSE.

The IsAuthenticated function does not take any parameters. Instead it checks whether
a CFAUTHENTICATE tag has been successfully executed for the current request. If not,
iflooks for the CFAUTH cookie to determine if the user is authenticated or not.

If you choose not to set a cookie in CFAUTHENTICATE (by specifying
SETCOOKIE="No" in CFAUTHENTICATE), you must call CFAUTHENTICATE for every
request in the application.

IsAuthorized Syntax
Once a user is authenticated, you can use the IsAuthorized function to check which
resources the user is allowed to access.

IsAuthorized returns TRUE if the user is authorized to perform the specified action on
the specified ColdFusion resource. IsAuthorized takes three parameters:

IsAuthorized(ResourceType, ResourceName, [ResourceAction])

For example, to check whether the authenticated user is authorized to update a
datasource resource called orders, use this syntax:

IsAuthorized("Datasource", "orders", "update")

The IsAuthorized function returns TRUE if the user is authorized for the named
Datasource, or if the Datasource is not protected in the security context.

The ColdFusion server only checks to see if a user is authorized when a developer
specifically requests it with the IsAuthorized function. It is up to the developer to
decide what action to take based on the results of the IsAuthorized call.

See the CFML Language Reference for full descriptions of the IsAuthorized and
IsAuthenticated functions.

Chapter 14: Application Security 159

Catching security exceptions

You can use the structured exception handling tags, CFTRY and CFCATCH, to catch
security exceptions. Setting the TYPE attribute in CFCATCH to “Security” enables you
to catch failures in the CFAUTHENTICATE tag. You can also catch catastrophic failures
from the IsAuthorized or IsAuthenticated functions.

Set the THROWONFAILURE attribute to Yes and enclose the CFAUTHENTICATE tag in
a CFTRY/CFCATCH block if you want to handle possible exceptions programmatically.

For information on exception handling strategies in ColdFusion, see Chapter 9,
“Structured Exception Handling,” on page 83.

Example

<!--- This exaple shows the use of excpetion handling
with CFAUTHENTICATE in an Application.cfm file --->
<HTML>
<HEAD>
<TITLE>CFAUTHENTICATE Example</TITLE>
</HEAD>

<BODY>
<H3>CFAUTHENTICATE Example></H3>

<P>The CFAUTHENTICATE tag authenticates a user and
sets the security context for an application.

<P>Code this tag in the Application.cfm file to set a
security context for your application.

<P>If the user has not already been defined in the
system, you can either reject the page, request that
the user respecify the username and password, or define
a new user.

<!--- This code is from an Application.cfm file --->
<CFTRY>

<CFAUTHENTICATE SECURITYCONTEXT="Allaire”
USERNAME=#user#
PASSWORD=#pwd#>

<CFCATCH TYPE="Security”’>
<!--- The message to display --->
<H3>Authentication error</H3>
<CFOUTPUT>

<--- Display the message. Alternatively,

you might place code here to define the

user to the security context. --->
<P>#CFCATCH.Message#
</CFOUTPUT>

160 Advanced ColdFusion Development

</CFCATCH>
</CFTRY>

<CFAPPLICATION NAME="Personnel”>

</BODY>
</HTML>

Example of User Authentication and Authorization

The following sample pages illustrate how a developer might implement user security
by authenticating users and then allowing users to see/use only the resources they are
authorized to use.

In this example, a user requests a page in an application named Orders, which is part
of a security context, also named Orders, that governs pages and resources for an order
tracking application.

User security is generally handled in two steps:

« First, the Application.cfm page checks to see if the current user is
authenticated. If not, we present a login form and the user must submit a
username and password for authentication.

If a user passes the authentication test, ColdFusion passes a cookie to carry the
user’s authentication state to subsequent application pages governed by this
Application.cfm page.

» Next, only authenticated users are able to access the requested application
page, for selecting and updating customer orders in a database. This page
checks to see which resources the authenticated user is authorized to see and
use.

Authenticating users in Application.cfm

This example code for an Application.cfm page checks first to see whether the current
user is authenticated by checking to see if a login form was submitted. If the username
and password can be authenticated for the current security context, the user passes
through and the requested page is served.

If the Application.cfm page does not receive the user’s login information from the
previous page, it prompts the user to provide a username and password. The user’s
response is checked against the list of valid users defined for the current security
context.

If the user passes the authentication step too, the requested page appears. We use the
CGl variables script_name and query_string keep track of the page originally
requested. This way, once users are authenticated, we can serve the page they
originally requested.

All pages governed by this Application.cfm page — those in the same directory as
Application.cfm and in its sub-tree — will invoke this authentication test.

Chapter 14: Application Security 161

Note To use this code in your own Application.cfm page, change the application name and
security context name to match your application and security names.

Example: Application.cfm
<CFAPPLICATION NAME="Orders">

<CFIF not IsAuthenticated()>
<l--- The user is not authenticated --->

<CFSET showLogin = "No">
<CFIF IsDefined("form.username") and
IsDefined("form.password")>

<l--- The login form was submitted --->
<CFTRY>
<CFAUTHENTICATE SecurityContext="Orders"
username="#form.username#"
password="#form.password#"
setCookie="YES">

<CFCATCH TYPE="security">
<!l--- Security error in login occurred,
show login again --->
<H3>Invalid Login</H3>
<CFSET showLogin = "Yes'">
</CFCATCH>
</CFTRY>

<CFELSE>

<l--- The login was not detected --->
<CFSET showLogin = "Yes">

</CFIF>

<CFIF showLogin>
<!--- Recreate the url used to call this template --->
<CFSET url = "#cgi.script_name#">

<CFIF cgi.query_string is not >
<CFSET url = url & "?#cgi.query_string#">

</CFIF>
<!--- Populate the login with the recreated url --->
<CFOUTPUT>

<FORM ACTION="#url#" METHOD="Post'">

<TABLE>

<TR>

<TD>username:</TD>
<TD><INPUT TYPE="text" NAME="username"></TD>
</TR>

162

Advanced ColdFusion Development

<TR>

<TD>password:</TD>

<TD><INPUT TYPE="password" NAME="password"></TD>
</TR>

</TABLE>

<INPUT TYPE="submit" VALUE="Login">

</FORM>
</CFOUTPUT>
<CFABORT>
</CFIF>

</CFIF>

Checking for Authentication and Authorization

Inside application pages, developers can use the IsAuthorized function to check
whether an authenticated user is authorized to access the protected resources, and
then display only the authorized resources.

The following sample page appears to users who pass the authentication test in the
Application.cfm page above. It uses the IsAuthorized function to test whether
authenticated users are allowed to update or select data from a datasource.

Example: orders.cfm

<l--- This example calls the IsAuthorized function. --->

<!--- First, check whether a form button was submitted --->
<CFIF IsDefined("form.btnUpdate")>

<l--- Is user is authorized to update or select
information from the Orders data source? --->

<CFIF ISAUTHORIZED("DataSource", "Orders", "update")>
<CFQUERY NAME="AddItem" DATASOURCE="Orders">

INSERT INTO Orders

(Customer, OrderID)

VALUES

<CFOUTPUT> (#Customer#, #0rderID#)</CFOUTPUT>

</CFQUERY>

<CFOUTPUT QUERY="AddItem">

Authorization Succeeded. Order information added:

#Customer# - #O0rderID#

</CFOUTPUT>

<CFELSE>
<CFABORT SHOWERROR="You are not allowed

Chapter 14: Application Security 163

to update order information.">
</CFIF>
</CFIF>

<CFIF ISAUTHORIZED("DataSource", "Orders", "select")>
<CFQUERY NAME="GetList" DATASOURCE="Orders">
SELECT * FROM Orders
</CFQUERY>
Authorization Succeeded. Order information follows:
<CFOUTPUT QUERY="GetList">
#Customer# - #BalanceDue#

</CFOUTPUT>

<CFELSE>
<CFABORT SHOWERROR="You cannot view
order information.">

</CFIF>

For more information

For more information on setting up security in ColdFusion, see the Configuring
Advanced Security chapter of the Administering ColdFusion Server book.

164 Advanced ColdFusion Development

Index

Special
21st century dates 11

A

Accessing ancestor data 106
Accessing generated
content 105
ACTION attribute, in
CFOBJECT 119
Adding
CFXtags 114
data to structures 59
queries 131
rows toaquery 126
string 139
Advanced dynamic
expressions 38
Advanced security
concepts 155
implementing 156
Allaire
contacting 5
Developer resources 2
Documentation 3
Sales 5
Technical support 5
Web site 2
Allaire Alive 96
Allaire Tag Gallery 96
Ancestor data access 106
Anchoring a regular expression to
astring 44
Application.cfm file
application security 160
Application-defined exception
events 84
Arithmetic operators 16
Arrays
adding elements 51
basic techniques 50
creating 48

dynamic 49

functions 56

index 48

multidimensional 50

populating with CFLOOP 53

populating with data 52

terminology 48
Arrays, associative 58, 63
ArraySet function 53
Associating sub-tags with the base

tag, CFML custom tags 102
Associative arrays 58,63
Attributes in CFXs

getting 133

passing 132
Authenticating users in

Application.cfm 160
Authentication example 160
Authorization

example 160

Backreferences in regex replace
strings 43

Boolean operators 19

Boolean values 10

Building Extensionsin C++ 111

Building Extensions in CFML 96

C

C++ extensions 111
Calculating an array index 52
Catching security
exceptions 159
CCFXException class 125
CCFXQuery
AddRow 125
GetColumns 126
GetData 127
GetName 127
GetRowCount 128

SetData 128
SetQueryString 129
SetTotalTime 129
CCFXRequest

AddQuery 131
AttributeExists 132
CreateStringSet 132
Debug 132
GetAttribute 133
GetAttributeList 133
GetCustomData 134
GetQuery 134
GetSetting 135
ReThrowException 135
SetCustomData 136
SetVariable 136
ThrowException 137
Write 138
WriteDebug 138
CCFXStringSet

AddString 139
GetCount 139
GetIndexForString 140
GetString 140
CF_COOLLINK custom tag 99
CF_COUNTWORD customtag 99
CF_MERGEQUERY custom
tag 98
CFAPItag 112
CFAPI_tag_table 124
CFAUTHENTICATE tag
example 157

syntax 157

using SETCOOKIE 157
CFCATCH tag

exception handling 83
exception information 88
variables 88

cfcrypt encryption utility 110
CFEXIT 104

CFLDAPtag 144

166

Advanced ColdFusion Development

Action="Delete" 149
Action="ModifyDN" 150
Action="Query" 149
CFML custom tag enhancements 102
CFML Scripting 75
CFMODULE tag
resolving custom tag name
conflicts 109
CFOBJECTtag 117
ACTION attribute 119
CORBA objects 121
CFOUTPUT tag, LDAP 147
CFREGISTRY tag 92
CFREPORT tag, LDAP 147
CFScript 75
assignment statements 77
CFML expressions 77
comments 80
differences from JavaScript 80
expressions 80
interaction with CFML 81
reserved words 81
CFTHROW tag
exception handling 83
syntax 87
CFTRYtag 88
exception handling 83
order of evaluation 88

CFWDDX 67

CFX tags
adding 114
C++

CFXtags 111

changing settings 115

implementing 112

Solaris 112
Character classes in regular

expressions 41
CLASS attribute 117
ColdFusion expressions, about 8
ColdFusion extensions, about 96
ColdFusion Support for LDAP 144
COM objects 14

creating 118

invoking methods 120

late binding 116

setting properties 120

transparent location 116
COM/OLE Viewer 117
Comments in CFScript 80
Common Object Request Broker

Architecture. See CORBA. 115
Complex expressions 25
Configuring RDS security 155

Contacting Allaire 5
Converting CFML Data to a JavaScript
Object 70

Copying structures 60
CORBA objects

CFOBJECT 121

getting started 121
OMGIDL 116

using 115

Corporate headquarters, Allaire 5
Custom C++tag 124
adding and deleting 114
CCFXException class 125
CCFXQuery class 125
CCFXRequest class 130
CCFXStringSet class 132
debugging and registering 113
global setting 135

request object 112
settings 115

Custom CFML tags

deleting 115

editors 97

encrypting 110
enhancements 102
examples 98
modes of execution 103
names 106

resolving name conflicts 109
securing 110

sharing 97

Custom tags

installing 97

managing 109

naming 98

writing 97

D

Data exchange across application
servers 69
Database
exceptions 89
failures 84
LDAP 147
Date-and-time values 11
DBQUERY tag 134
DCOM 115
DEBUG attribute
Debugging
CFXtags 113
custom pagesand tags 113
expressions 30
setting watches 30

132,138

Decision, or Comparison,
operators 18
Defining Attributes 98
Deleting
CFXtags 115
custom CFMLtags 115
Registry values 94
structures 61
Developer resources 2
Developing applications in ColdFusion
Studio 3
Directory, LDAP.TCP 144
Distinguished name 146
Distributing custom CFML tags 113
DLLs, deploying COM objectsas 117
DN (Distinguished Name) 146
Documentation
Allaire 3
distribution 4
Dynamic arrays 49
shifting indexes 51
Dynamic expression evaluation 33
about 34
string expressions 34
Dynamic variables 37

E
Encrypting application pages 157
Encrypting custom CFML tags 110
Encryption

using cfcrypt 110
Evaluate function 37

guidelines 36

string expressions 36

using with SetVariable function 37
Evaluating dynamic expressions 33
Exception handling 83

database exceptions 89

exception types 84

locking exceptions 89

strategies 85

types of recoverable exceptions 84

using CFCATCH 88

using CFTHROW 87

using CFTRY 88
Exceptions

application-defined 84

database 84
EXEs, COM objects deployed as 117
Expression Builder 9
Expressions

21st century dates 11

about 8

arithmetic operators 16

Index 167
arrays 13 | comparison 18
Boolean values 10 Implementing CFX tags 112 decision 18
COM objects 14 Inserting complex expressions in decision, or comparison 18
creating 9 strings 26 precedence 20
creating in ColdFusion Studio 9 Installing custom tags 97 string operators 17
date-and-time values 11 Optional arguments in functions 23

debugging 30
evaluating 30
examples 8
exceptions 85
Expression Builder 9
how ColdFusion processes 27
in CFScript 80
integer numbers 9
lists 12
numbersin 9
operators 16
queries 14

real numbers 9
scientific notation 10
setting watches 30
strings 10
structure of 9
structures 13
testing 31

time formats 11
troubleshooting 30
typelessness 27
variables 15
Extensions, about 96
Extensions, C++ 111

F

Find and Replace commands 40
Functiontags 99
Functions 21

Boolean values 23
ColdFusion 21

types 21

usage 22

G

Generated content, accessing 105
Getting Registry Values 92

H

Handling exceptions
based on diagnostic
information 86
based on point of origin 85
High-level data exchange 108
How WDDX Works 69

Interaction of CFScript with CFML 81
Inter-tag data exchange 105
IsAuthenticated function 158
IsAuthorized function 158

K

Key-value pairs in structures 57

L
Late binding, COM objects 116
LDAP
attributes 146
key terms 146
viewing directory schema 145
Lists, in expressions 12
Local CFML custom tags, installing 97
Locking exceptions 85
Looping through structures 63

M

Managing CFX Tags 114

Managing custom tags 109

Microsoft COM/OLE Viewer 117

Missing included file errors 85

MissingInclude exceptions 89

Modes of execution, custom CFML
tags 103

Multi-character regular
expressions 42

Multidimensional arrays 50

Naming custom tags 98

resolving conflicts 109
Nested pound signs in expressions 26
Nesting CFLOOPs

2D array 54

3Darray 54

(o)
Object exceptions 85
OLE viewer 117
OMG Interface Definition
Language 116
Online documentation 4
Operation-driven evaluation 27
Operators 16

arithmetic 16

Boolean 18

ORBs 116
Order of evaluation 88
Output, LDAP 147

P
Populating arrays with data 52
POSIX character classes 41
Pound signs
in CFOUTPUT tags 24
in general expressions 27
inside string expressions 36
inside strings 25
inside tag attributes 26
nested 26
using 24
Properties and methods
COM 120

Q
Queries 14
QUERY attribute 134
Query, data

adding 126

CFX 124
execution time 129
LDAP 147

R
RDN (Relative Distinguished
Names) 146
RDS security 154
configuring 155
Referencing elements in dynamic
arrays 51
Referral, LDAP 147
REFind function 40
REFindNoCase function 40
Registering
CFXtags 113
COM objects 117
Registry
getting a specific value 93
getting all keys and values 92
Registry Values 92
Regular expressions
anchoring to search string 44
backreferences 42
CFML examples 45

168

Advanced ColdFusion Development

character classes 41
examples 44
finding repeated words 43
multi-character 42
returning matched sub-
expressions 43
single-character 40
Remote Development Services (RDS)
Security 154
REReplace function 40
REReplaceNoCase function 40
Reserved words in CFScript 81
Resolving file name conflicts in custom
CFMLtags 109

S

Sales, Allaire 5
Sample C++tags 112
Scientific notation in expressions 10
Scope, LDAP 147
Scripting in CFML 75
Search and replace 40
Search Filters 148
Securing custom tags 110
Security
application security 153
authentication example 160
authorization example 160
contexts 155
encrypting strings 157
exceptions 85
LDAP 147
policies 156
rules 155
sandboxes 156
server 156
user directories 155
users/groups 155
Server, LDAP 144
SETCOOKIE in CFAUTHENTICATE 157
Setting
global customtag 135
Properties and invoking methods in
CFOBJECT 120
variables dynamically 37
Setting Registry values 93
SetVariable function
using with Evaluate function 37
Shared custom CFML tags 97
Shifting indexes in dynamic arrays 51
Shorthand notation for Boolean
operators 18
Single-character regular
expressions 40

Solaris
building CFX tags 112
String expressions 34
converting CFML expressions 34
evaluating 35
pound signs (#) 36
quote marks 34
Structured exception handling. See also
Exception handling 83
Structures 13,57
about 58
adding datato 59
as associative arrays 63

copying 60
creating 58
deleting 61

examples 61
finding informationin 59
functions 64
getting information about 60
looping through 63
notation 58

Supported statements in CFScript 76

T
Tag Gallery 96
TCP network directory 144
Technical support, Allaire 5
Template errors, handling 84
Testing expressions using CFSET and
CFOUTPUT 31
Thread safe, CFX tags 112
Time formats 11
Transferring Data From Browser to
Server 72
Troubleshooting
expressions 30
Typeless expression evaluation
examples 29
Typelessness
conversion between types 28
in expressions 27
Types of recoverable exceptions
supported 84

U

Unary arithmetic operators 17
Unexpected internal exceptions 85
Updating data, LDAP 147

User security 153

authenticating users 158
authorizing users 158
catching exceptions 159
concepts 155

example 161
example of IsAuthorized 162
implementing 156
overview 155
Using backreferences in regex replace
strings 43

\")

Variables in CFScript 80

Viewing directory schema, LDAP 145
Visual Tool Markup Language 97
VIML 97

w
WDDX 69
Components 68
example 70
Web Distributed Data Exchange
(WDDX) 67
Windows NT 113
COM objects 117
Writing custom tags 97

X
XML and ColdFusion 67

	Advanced ColdFusion Development
	About this Manual
	Developer Resources
	Developing Applications in ColdFusion Studio
	About ColdFusion Documentation
	Documentation distribution
	Reading online documentation

	Contacting Allaire

	Functions and Expressions
	About ColdFusion Expressions
	What’s in an expression?
	Expression examples

	Creating Expressions in ColdFusion Studio
	The Structure of Expressions
	Numbers
	Strings
	Boolean values
	Date-and-time values
	Lists
	Structures
	Arrays
	Queries
	COM objects
	Variables

	Operators
	Arithmetic operators
	String operators
	Decision, or comparison, operators
	Boolean operators
	Operator precedence

	Functions
	Function types
	Function usage
	Optional arguments in functions
	Functions that return a Boolean

	Using Pound Signs
	Pound signs inside CFOUTPUT tags
	Pound signs inside strings
	Pound signs inside tag attribute values
	Nested pound signs
	Pound signs in general expressions

	Typeless Expression Evaluation
	Operation-driven evaluation
	Conversion between types

	Examples of Typeless Expression Evaluation
	Debugging and Troubleshooting Expressions
	Setting watches in the debugger
	Testing expressions using CFSET and CFOUTPUT

	Dynamic Expression Evaluation
	About Dynamic Expression Evaluation
	String expressions

	Evaluating String Expressions
	Pound Signs Inside String Expressions
	Setting Variables Dynamically
	Using the SetVariable and Evaluate functions together

	Regular Expressions
	Regular Expressions
	About regular expressions

	Single-Character Regular Expressions
	Character Classes
	Multi-Character Regular Expressions
	Using Backreferences
	Returning Matched Sub-Expressions
	Anchoring a Regular Expression to a String
	Regular expression examples
	Regular expressions in CFML

	Working with Arrays
	About Arrays
	Creating an array
	Array terms
	Dynamic arrays

	Multidimensional Arrays
	Basic Array Techniques
	Adding elements to an array
	Shifting indexes in a dynamic array

	Referencing Elements in Dynamic Arrays
	Additional referencing methods
	Calculating an array index

	Populating Arrays with Data
	Populating an array with ArraySet
	Populating an array with CFLOOP

	Using Nested Loops for 2D and 3D Arrays
	Nesting CFLOOPs for a 2D array
	Nesting CFLOOPs for a 3D array

	Populating an Array from a Query
	Array Functions

	Working with Structures
	About Structures
	Structure notation

	Creating and Using Structures
	Creating structures
	Adding data to structures
	Finding information in Structures
	Getting information about structures
	Copying structures
	Deleting structures

	Structure Example
	Using Structures as Associative Arrays
	Looping through structures

	Structure Functions

	Exchanging Data via XML
	An Overview of Distributed Data for the Web
	WDDX Components
	Working With Application-Level Data
	Data Exchange Across Application Servers
	How WDDX Works
	Converting CFML Data to a JavaScript Object
	Transferring Data From Browser to Server

	Using CFML Scripting
	About CFScript
	CFScript example
	Supported statements

	The CFScript Language
	Statements
	Expressions
	Variables
	Comments
	Differences from JavaScript
	Reserved words

	Interaction of CFScript with CFML

	Structured Exception Handling
	Overview of Exception Handling in ColdFusion
	Types of recoverable exceptions supported

	Exception-Handling Strategies
	Exception Handling Example
	CFTHROW syntax
	CFTRY syntax
	CFCATCH syntax
	Order of evaluation

	Exception Information in CFCATCH
	Database exceptions
	Locking exceptions
	MissingInclude exceptions

	Accessing the Registry
	Overview of Registry Access in ColdFusion
	Getting Registry Values
	Setting Registry Values
	Deleting Registry Values

	Building ColdFusion Extensions
	About ColdFusion Extensions
	Building ColdFusion Extensions in CFML
	Allaire Tag Gallery
	Allaire Alive
	Custom Tag Editors

	Installing Custom Tags
	Local tags
	Shared tags

	Writing Custom Tags
	Naming Custom Tags
	Tag scope
	Defining attributes

	Example Tags
	Utility tags
	Function tags
	User interface tags

	CFML 4.0 Custom Tag Enhancements
	Main features of CFML 4.0 custom tags
	Tag nesting
	Associating sub-tags with the base tag
	Tag instance data
	Pattern of execution
	Modes of execution
	Specifying execution modes
	CFEXIT
	Access to generated content
	Inter-tag data exchange
	High-level data exchange

	Managing Custom Tags
	Resolving file name conflicts

	Securing Custom Tags
	Encrypting Custom Tags
	Building Extensions in C++
	Sample C++ tags

	Implementing CFX Tags
	Debugging CFX tags
	Registering CFX tags

	Managing CFX Tags
	Adding a CFX tag
	Changing CFX tag settings
	Deleting a CFX tag

	Using COM and CORBA Objects
	About CORBA

	Getting Started with COM Components
	Getting set up: COM
	Register the object
	Find the component ProgID and methods

	Using the OLE/COM Object Viewer
	Creating and Using COM Objects
	Two ways to create objects with CFOBJECT

	Setting Properties and Invoking Methods
	Getting Started with CORBA Objects
	Using CFOBJECT to create a CORBA object

	The ColdFusion Extension API
	The ColdFusion Extension (CFX) API
	The CCFXException Class
	The CCFXQuery Class
	Class members

	CCFXQuery::AddRow
	CCFXQuery::GetColumns
	CCFXQuery::GetData
	CCFXQuery::GetName
	CCFXQuery::GetRowCount
	CCFXQuery::SetData
	CCFXQuery::SetQueryString
	CCFXQuery::SetTotalTime
	The CCFXRequest Class
	Overview
	Class Members

	CCFXRequest::AddQuery
	CCFXRequest::AttributeExists
	CCFXRequest::CreateStringSet
	CCFXRequest::Debug
	CCFXRequest::GetAttribute
	CCFXRequest::GetAttributeList
	CCFXRequest::GetCustomData
	CCFXRequest::GetQuery
	CCFXRequest::GetSetting
	CCFXRequest::ReThrowException
	CCFXRequest::SetCustomData
	CCFXRequest::SetVariable
	CCFXRequest::ThrowException
	CCFXRequest::Write
	CCFXRequest::WriteDebug
	The CCFXStringSet Class
	Overview
	Class members

	CCFXStringSet::AddString
	CCFXStringSet::GetCount
	CCFXStringSet::GetIndexForString
	CCFXStringSet::GetString

	Connecting to LDAP Directories
	ColdFusion Support for LDAP
	Directory Structures
	Viewing directory schema
	LDAP attributes

	Key Terms
	Operations
	Search Filters
	Examples

	Application Security
	ColdFusion Security Features
	Remote Development Services (RDS) Security
	RDS and Basic security
	Configuring RDS security

	Overview of User Security
	Implementation summary

	Using Advanced Security in Application Pages
	CFAUTHENTICATE syntax
	Authentication and Authorization functions
	Catching security exceptions

	Example of User Authentication and Authorization
	Authenticating users in Application.cfm
	Checking for Authentication and Authorization

