IS

macromedia’

FLASHMX

2004

Using Components

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Bright Tiger, Clustercats, ColdFusion, Contribute, Design In Motion, Director, Dream Templates,
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Fontographer, FreeHand, Generator, HomeSite,
JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track, LikeMinds, Lingo, Live
Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Flash, Macromedia M Logo and
Design, Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel, Made with Macromedia, Made with
Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic, Open Sesame!, Roundtrip, Roundtrip
HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what the web can be, and Xtra are either
registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions
including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within this publication may
be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in certain jurisdictions
including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

smson Sorenson™ Spark™ video compression and decompression technology licensed from
spark Sorenson Media, Inc.

Opera ° browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO
STATE.

Copyright © 2003 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc. Part Number ZFL70M500

Acknowledgments
Director: Erick Vera
Project Management: Stephanie Gowin, Barbara Nelson

Writing: Jody Bleyle, Mary Burger, Kim Diezel, Stephanie Gowin, Dan Harris, Barbara Herbert, Barbara Nelson, Shirley Ong,
Tim Statler

Managing Editor: Rosana Francescato

Editing: Mary Ferguson, Mary Kraemer, Noreen Maher, Antonio Padial, Lisa Stanziano, Anne Szabla
Production Management: Patrice O’ Neill

Media Design and Production: Adam Barnett, Christopher Basmajian, Aaron Begley, John Francis, Jeff Harmon
First Edition: October 2003

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS

INTRODUCTION: Getting Started with Components. 7
Intended audience. 7
System reqUITMENTS . . . oo vttt ettt 8
Installing components. i 8
About the documentation 9
Typographical conventions 9
Terms used in thismanual. o o 10
Additional resources 10

CHAPTER 1: About Components. it 11
Benefits of v2 components 12
Categories Of COMPONENTSo vviiiii it 12
Componentarchitecture o i i i 12
What's new in v2 COMPONENTS. « . o vt vt vuee ettt iee e e e e e 13
About compiled clipsand SWCfiles..........o i il 14
Accessibility and components oo i 14

CHAPTER 2: WorkingwithComponents i, 15
The Components panel. o i i i 15
Components in the Library panel o i 16
Components in the Component Inspector panel and Property inspector. 16
Components in Live Preview. oo o i 17
Working with SWC files and compiled clipso.oiia... 18
Adding components to Flash documents.o oL 18
Setting COMPONENE PATAMETELSo vt v ettt e e e e e e 21
Deleting components from Flash documents. 21
Using code hints 21
ADOUL COMPONENT EVENTS. « « « v v e e ettt eee et e et eee e et ian e e 22
Creating custom focus Navigationttt ttttiiiteiei i ... 24
Managing component depth inadocument 25
About using a preloader with components. o oL 25
Upgrading version 1 components to version 2 architecture 25

CHAPTER 3: CustomizingComponents. ..., .. 27

Using styles to customize component colorand text 27
About themesottt 34
About skinning components i i i 36
CHAPTER 4: Components Dictionary.oouiiinininiinnanan . 43
User interface (UI) cOMPONENES . ..o vvvvutinee et 43
Data COMPONEITS « « .+ v et ettt ettt e e et e e e e ea 44
Media COMPONENTS . . vttt t ettt ettt e 45
Managers. . . oo v vt 45
SCIEENS o\ 45
Accordion component (Flash Professional only) 45
Alert component (Flash Professionalonly) 58
Button component e 66
CellRenderer APTot 77
CheckBoX COMPONENt. . .\ v vttt 83
ComboBox component.ovviiiiiiiiiiiii i 91
Data binding classes (Flash Professional only) 118
DataGrid component (Flash Professional only) 149
DataHolder component (Flash Professional only) 181
DataProvider APT oo 183
DataSet component (Flash Professionalonly) 193
DateChooser component (Flash Professionalonly) 237
DateField component (Flash Professional only) 248
DepthManager class e 265
FocusManager class 270
Form class (Flash Professional only).o, 277
Label component. 282
Listcomponent. 287
Loader COMPONENT .« vt v vttt ettt e e ettt e e 314
Media components (Flash Professional only) 325
Menu component (Flash Professionalonly). 365
MenuBar component (Flash Professionalonly) 392
NumericStepper COMPONENTot vttt ettt iee et eeeenn 402
PopUpManager classt 411
ProgressBar component. i 413
RadioButton component.uuuueuurueuneeeeeenneenennn 427
RDBMSResolver component (Flash Professional only) 436
Remote Procedure Call (RPC) Component API 447
Screen class (Flash Professional only).o, 452
ScrollPane component. 464
Slide class (Flash Professional only) oia.. 479
StyleManager class. 502
TextArea COMPONENT . . . oottt ettt e et 504
TextInput COMPONENT . . v vttt ettt ettt e 516
TransferObject interface ...ttt 527
Tree component (Flash Professional only) 530
TreeDataProvider interface (Flash Professional only) 548
UICOMPONENT .« et vttt et ettt e e e e e e e e e e e 553

4 Contents

UlEventDispatcher 560

UIODbject. . oo oo oot 562
Web service classes (Flash Professionalonly), 581
WebServiceConnector (Flash Professional only) 604
Window compPonentottt 613
XMLConnector component (Flash Professionalonly) 624
XUpdateResolver component (Flash Professional only) 632
CHAPTER 5: Creating Componentsvuit i 639
What's DEW « . o vt ettt 639
Working in the Flash environment o o oo 639
Creating COMPONENLSttt t ittt 642
Writing the component’s ACtONSCHIPL. -« oo vt v v v vttt 644
Importing classes.vuutt 645
Selecting a parentclass. o i i 646
Writing the constructor. 647
Versioning.o oo vttt 647
Class, symbol, and owner namesttt 647
Defining getters and SETTErs . .« ..ttt vttt ittt ettt 648
Componentmetadatattt 648
Defining component parametersvvetiuuieete e 654
Implementing core methods i 655
Handlingevents 655
SKINMING . .o 659
Addingstyles. 659
Making components accessible i 660
Exporting the componentuuuuuueuueuinnean 660
Making the component easier to Useuuuueneeuiennenen 662
Best practices when designing a component 663
INDEX . .. 665

Contents 5

Contents

INTRODUCTION
Getting Started with Components

Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 are the professional
standard authoring tools for producing high-impact web experiences. Components are the
building blocks for the Rich Internet Applications that provide those experiences. A component is
a movie clip with parameters that are set while authoring in Macromedia Flash, and ActionScript
APIs that allow you to customize the component at runtime. Components are designed to allow
developers to reuse and share code, and to encapsulate complex functionality that designers can
use and customize without using ActionScript.

Components are built on version 2 (v2) of the Macromedia Component Architecture, which
allows you to easily and quickly build robust applications with a consistent appearance and
behavior. This book describes how to build applications with v2 components and describes each
component’s application programming interface (API). It includes usage scenarios and procedural
samples for using the Flash MX 2004 or Flash MX Professional 2004 v2 components, as well as
descriptions of the component APIs, in alphabetical order.

You can use components created by Macromedia, download components created by other
developers, or create your own components.

Intended audience

This book is for developers who are building Flash MX 2004 or Flash MX Professional 2004
applications and want to use components to speed development. You should already be familiar
with developing applications in Macromedia Flash, writing ActionScript, and Macromedia
Flash Player.

This book assumes that you already have Flash MX 2004 or Flash MX Professional 2004 installed
and know how to use it. Before using components, you should complete the lesson “Create a
user interface with components” (select Help > How Do I > Quick Tasks > Create a user interface
with components).

If you want to write as little ActionScript as possible, you can drag components into a document,
set their parameters in the Property inspector or in the Components Inspector panel, and attach
an on() handler directly to a component in the Actions panel to handle component events.

If you are a programmer who wants to create more robust applications, you can create
components dynamically, use their APIs to set properties and call methods at runtime, and use
the listener event model to handle events.

For more information, see Chapter 2, “Working with Components,” on page 15.

System requirements

Macromedia components do not have any system requirements in addition to Flash MX 2004 or
Flash MX Professional 2004.

Installing components

A set of Macromedia components is already installed when you launch Flash MX 2004 or Flash
MX Professional 2004 for the first time. You can view them in the Components panel.

Flash MX 2004 includes the following components:

¢ Button component

® CheckBox component

® ComboBox component
® Label component

¢ List component

® Loader component

® NumericStepper component
® ProgressBar component
® RadioButton component
® ScrollPane component

¢ TextArea component

® TextInput component

* Window component

Flash MX Professional 2004 includes the Flash MX 2004 components and the following

additional components and classes:

® Accordion component (Flash Professional only)

® Alert component (Flash Professional only)

® Data binding classes (Flash Professional only)

® DateField component (Flash Professional only)

® DartaGrid component (Flash Professional only)

® DataHolder component (Flash Professional only)
® DataSet component (Flash Professional only)

® DateChooser component (Flash Professional only)
® Form class (Flash Professional only)

® Media components (Flash Professional only)

® Menu component (Flash Professional only)

® MenuBar component (Flash Professional only)

* RDBMSResolver component (Flash Professional only)
® Screen class (Flash Professional only)

® Slide class (Flash Professional only)

® Tree component (Flash Professional only)

8 Introduction: Getting Started with Components

® WebServiceConnector class (Flash Professional only)
® XMLConnector component (Flash Professional only)
® XUpdateResolver component (Flash Professional only)

To verify installation of the Flash MX 2004 or Flash MX Professional 2004 components:
1 Start Flash.

2 Select Window > Development Panels > Components to open the Components panel if it isn’t
already open.

3 Select Ul Components to expand the tree and view the installed components.

You can also download components from the Macromedia Exchange. To install components
downloaded from the Exchange, download and install the Macromedia Extension Manager.

Any component, whether it's a SWC file or a FLA file (see “About compiled clips and SWC files”
on page 14), can appear in the Components panel in Flash. Follow these steps to install
components on either a Windows or Macintosh computer.

To install components on a Windows-based or a Macintosh computer:

1 Quit Flash.

2 Place the SWC or FLA file containing the component in the following folder on your hard disk:

= \Program Files\Macromedia\Flash MX 2004\<language>\First Run\Components
(Windows)

= HD/Applications/Macromedia Flash MX 2004/First Run/Components (Macintosh)
3 Open Flash.

4 Select Window > Development Panels > Components to view the component in the
Components panel if it isn’t already open.

About the documentation

This document explains the details of using components to develop Flash applications. It assumes
the reader has general knowledge of Macromedia Flash and ActionScript. Specific documentation
is available separately about Flash and related products.

® For information about Macromedia Flash, see Getting Started with Flash (or Getting
Started Help), Using Flash Help, ActionScript Reference Guide Help, and ActionScript
Dictionary Help.

® For information about accessing web services with Flash applications, see Using Flash Remoting.

Typographical conventions
The following typographical conventions are used in this book:
® [talic fonr indicates a value that should be replaced (for example, in a folder path).
® Code font indicates ActionScript code.
® Code font italic indicates an ActionScript parameter.
* Bold font indicates a verbatim entry.

Note: Bold font is not the same as the font used for run-in headings. Run-in heading font is used
as an alternative to a bullet.

Typographical conventions 9

http://www.macromedia.com/exchange
http://www.macromedia.com/exchange/em_download/

Terms used in this manual

The following terms are used in this book:
atruntime When the code is running in Flash Player.

while authoring While working in the Flash authoring environment.

Additional resources

For the latest information on Flash, plus advice from expert users, advanced topics, examples,
tips, and other updates, see the Macromedia DevNet website, which is updated regularly. Check
the website often for the latest news on Flash and how to get the most out of the program.

For TechNotes, documentation updates, and links to additional resources in the Flash
Community, see the Macromedia Flash Support Center at www.macromedia.com/support/flash.

For detailed information on ActionScript terms, syntax, and usage, see ActionScript Reference
Guide Help and ActionScript Dictionary Help.

For an introduction to using components, see the Macromedia On Demand Seminar, Flash MX
2004 Family: Using Ul Components at www.macromedia.com/macromedia/events/online/
ondemand/index.html.

10 Introduction: Getting Started with Components

http://www.macromedia.com/devnet
http://www.macromedia.com/support/flash
http://www.macromedia.com/macromedia/events/online/ondemand/index.html
http://www.macromedia.com/macromedia/events/online/ondemand/index.html

CHAPTER 1
About Components

Components are movie clips with parameters that allow you to modify their appearance and
behavior. A component can provide any functionality that its creator can imagine. A component
can be a simple user interface control, such as a radio button or a check box, or it can contain
content, such as a scroll pane; a component can also be non-visual, like the FocusManager that
allows you to control which object receives focus in an application.

Components enable anyone to build complex Macromedia Flash MX 2004 and Macromedia
Flash MX Professional 2004 applications, even if they don’t have an advanced understanding of
ActionScript. Rather than creating custom buttons, combo boxes, and lists, you can drag these
components from the Components panel to add functionality to your applications. You can also
easily customize the look and feel of components to suit your design needs.

Components are built on version 2 (v2) of the Macromedia Component Architecture, which
allows you to easily and quickly build robust applications with a consistent appearance and
behavior. The v2 architecture includes classes on which all components are based, styles and skins
mechanisms that allow you to customize component appearance, a broadcaster/listener event
model, depth and focus management, accessibility implementation, and more.

Each component has predefined parameters that you can set while authoring in Flash. Each
component also has a unique set of ActionScript methods, properties, and events, also called an
API (application programming interface), that allows you to set parameters and additional
options at runtime.

Flash MX 2004 and Flash MX Professional 2004 include many new Flash components and
several new versions of components that were included in Flash MX. For a complete list of

components included with Flash MX 2004 and Flash MX Professional 2004, see “Installing
components” on page 8. You can also download components built by members of the Flash
community at the Macromedia Exchange.

il

http://www.macromedia.com/cfusion/exchange/index.cfm

Benefits of v2 components

Components enable the separation of coding and design. They also allow you to reuse code,
either in components you create, or by downloading and installing components created by
other developers.

Components allow coders to create functionality that designers can use in applications.
Developers can encapsulate frequently used functionality into components and designers can
customize the look and behavior of components by changing parameters in the Property inspector
or the Component Inspector panel.

Members of the Flash community can use the Macromedia Exchange to exchange components.
By using components, you no longer need to build each element in a complex web application
from scratch. You can find the components you need and put them together in a Flash document
to create a new application.

Components that are based on the v2 component architecture share core functionality such as
styles, event handling, skinning, focus management, and depth management. When you add the
first v2 component to an application, there is approximately 25K added to the document that
provides this core functionality. When you add additional components, that same 25K is reused
for them as well, resulting in a smaller increase in size to your document than you may expect. For
information about upgrading vl components to v2 components, see “Upgrading version 1
components to version 2 architecture” on page 25.

Categories of components

Components included with Flash MX 2004 and Flash MX Professional 2004 fall into five
categories: user interface components, data components, media components, managers, and
screens. User interface components allow you to interact with an application; for example, the
RadioButton, CheckBox, and TextInput components are user interface controls. Data
components allow you to load and manipulate information from data sources; the
WebServiceConnector and XMLConnector components are data components. Media
components allow you to play back and control streaming media; MediaController,
MediaPlayback, and MediaDisplay are the media components. Managers are nonvisual
components that allow you to manage a feature, such as focus or depth, in an application; the
FocusManager, DepthManager, PopUpManager, and StyleManager are the manager components
included with Flash MX 2004 and Flash MX Professional 2004. The screens category includes
the ActionScript classes that allow you to control forms and slides in Flash MX Professional 2004.
For a complete list of each category, see Chapter 4, “Components Dictionary,” on page 43.

Component architecture

You can use the Property inspector or the Component Inspector panel to change component
parameters to make use of the basic functionality of components. However, if you want greater
control over components, you need to use their APIs and understand a little bit about the way
they were built.

12

Chapter 1: About Components

http://www.macromedia.com/go/exchange

Flash MX 2004 and Flash MX Professional 2004 components are built using version 2 (v2) of the
Macromedia Component Architecture. Version 2 components are supported by Flash Player 6
and Flash Player 7. These components are not always compatible with components built using
version 1 (v1) architecture (all components released before Flash MX 2004). Also, vl components
are not supported by Flash Player 7. For more information, see “Upgrading version 1 components
to version 2 architecture” on page 25.

V2 components are included in the Components panel as compiled clip (SWC) symbols. A
compiled clip is a component movie clip whose code has been compiled. Compiled clips have
built-in live previews and cannot be edited, but you can change their parameters in the Property
inspector and Component Inspector panel, just as you would with any component. For more
information, see “About compiled clips and SWC files” on page 14.

V2 components are written in ActionScript 2.0. Each component is a class and each class is in an
ActionScript package. For example, a radio button component is an instance of the RadioButton
class whose package name is mx.controls. For more information about packages, see “Using
packages” in ActionScript Reference Guide Help.

All components built with version 2 of the Macromedia Component Architecture are subclasses
of the UIObject and UIComponent classes and inherit all properties, methods, and events from
those classes. Many components are also subclasses of other components. The inheritance path of
each component is indicated in its entry in Chapter 4, “Components Dictionary,” on page 43.

All components also use the same event model, CSS-based styles, and built-in skinning
mechanism. For more information on styles and skinning, see Chapter 3, “Customizing
Components,” on page 27. For more information on event handling, see Chapter 2, “Working
with Components,” on page 15.

What’s new in v2 components

Component Inspector panel allows you to change component parameters while authoring in
both Macromedia Flash and Macromedia Dreamweaver. (See “Components in the Component
Inspector panel and Property inspector” on page 16.)

Listener event model allows listener objects of functions to handle events. (See “About
component events’ on page 22.)

Skin properties allow you to load states only when needed. (See “About skinning components”
on page 36.)

CSS-based styles allow you to create a consistent look and feel across applications. (See “Using
styles to customize component color and text” on page 27.)

Themes allow you to drag a new look onto a set of components. (See “About themes”

on page 34.)

Halo theme provides a ready-made, responsive, and flexible user interface for applications.
Manager classes provide an easy way to handle focus and depth in a application. (See “Creating

custom focus navigation” on page 24 and “Managing component depth in a document”
on page 25.)

Base classes UlObject and UIComponent provide core functionality to all components.
(See “UlComponent” on page 553 and “UlObject” on page 562.)

What’s new in v2 components 13

Packaging as a SWC file allows easy distribution and concealable code. See Chapter 5,
“Creating Components,” on page 639.

Built-in data binding is available through the Component Inspector panel. For more information
about this feature, press the Help Update button.

Easily extendable class hierarchy using ActionScript 2.0 allows you to create unique
namespaces, import classes as needed, and subclass easily to extend components. See Chapter 5,

“Creating Components,” on page 639 and ActionScript Reference Guide Help.

About compiled clips and SWC files

A compiled clip is used to pre-compile complex symbols in a Flash document. For example, a
movie clip with a lot of ActionScript code that doesn't change often could be turned into a
compiled clip. As a result, both Test Movie and Publish would require less time to execute.

A SWC file is the file type for saving and distributing components. When you place a SWC file in
the First Run\Components folder, the component appears in the Components panel. When you
add a component to the Stage from the Components panel, a compiled clip symbol is added to
the library.

For more information about SWC files, see Chapter 5, “Creating Components,” on page 639.

Accessibility and components

A growing requirement for web content is that it should be accessible; that is, usable for people
with a variety of disabilities. Visual content in Flash applications can be made accessible to the
visually impaired with the use of screen reader software, which provides a spoken audio
description of the contents of the screen.

When a component is created, the author can write ActionScript that enables communication
between the component and a screen reader. Then, when a developer uses components to
build an application in Flash, the developer uses the Accessibility panel to configure each
component instance.

Most components built by Macromedia are designed for accessibility. To find out whether a
component is accessible, see its entry in Chapter 4, “Components Dictionary,” on page 43. When
you're building an application in Flash, you'll need to add one line of code for each component
(mx.accessibility.ComponentNameAccImpl.enableAccessibility();), and set the
accessibility parameters in the Accessibility panel. Accessibility for components works the same
way as it works for all Flash movie clips. For more information, see “Creating Accessible Content”

in Using Flash Help.

Most components built by Macromedia are also navigable by the keyboard. Each component’s
entry in Chapter 4, “Components Dictionary,” on page 43 indicates whether or not you can
control the component with the keyboard.

14

Chapter 1: About Components

CHAPTER 2
Working with Components

There are various ways to work with components in Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004. You use the Components panel to view components
and add them to a document during authoring. Once a component has been added to a
document, you can view its properties in the Property inspector or in the Component Inspector
panel. Components can communicate with other components by listening to their events and
handling them with ActionScript. You can also manage the component depth in a document and
control when a component receives focus.

The Components panel

All components are stored in the Components panel. When you install Flash MX 2004 or Flash
MX Professional 2004 and launch it for the first time, the components in the Macromedia\
Flash 2004\en\First Run\Components (Windows) or Macromedia Flash 2004/en/First Run/
Components (Macintosh) folder are displayed in the Components panel.

To display the Components panel:

® Select Window > Development Panels > Components.

@ Media Components

= @ UI Components

------ E Accordion

Alert

Button

CheckBox

ComboBox

[l DataGrid

DateChooser

DateField A/

15

Components in the Library panel
When you add a component to a document, it is displayed as a compiled clip (SWC file) symbol

in the Library panel.

it w Library - Untitled-2 =

One item in library

v

MName |Hnd =)

ﬁ ComboBox Cor;D
il

HE]0 @‘ < >

A ComboBox component in the Library panel.

You can add more instances of a component by dragging the component icon from the library to
the Stage.

For more information about compiled clips, see “Working with SWC files and compiled clips”
on page 18.

Components in the Component Inspector panel and
Property inspector

After you add an instance of a component to a Flash document, you use the Property inspector to
set and view information for the instance. You create an instance of a component by dragging it
from the Components panel onto the Stage; then you name the instance in the Property inspector
and specify the parameters for the instance using the fields on the Parameters tab. You can also set
parameters for a component instance using the Component Inspector panel. It doesn’t matter
which panel you use to set parameters; it’s simply a matter of personal preference. For more
information about setting parameters, see “Setting component parameters” on page 21.

To view information for a component instance in the Property inspector:
1 Select Window > Properties.

2 Select an instance of a component on the Stage.

3 To view parameters, click the Parameters tab.

Companent datz a0 =

P editzble false @
combo_box labels il
rowCount 5

w000 |y]es @

H:| 22.0 Y| 283.4 Parameters | .

16 Chapter 2: Working with Components

To view parameters for a component instance in the Component Inspector panel:
1 Select Window > Development Panels > Component Inspector.
2 Select an instance of a component on the Stage.

3 To view parameters, click the Parameters tab.

ii ¥ Component Inspector i
[Button w_

Pzrameters | Bindings | Schema

Name | Valus
icon

lsbel Button
lzbelPlacament right
selected false
toggle fals=
enzbled trus
visible trus
minHeight]
minWidth L]

Components in Live Preview

The Live Preview feature, enabled by default, lets you view components on the Stage as they will
appear in the published Flash content, including their approximate size. The live preview reflects
different parameters for different components. For information about which component
parameters are reflected in the Live Preview, see each component entry in Chapter 4,
“Components Dictionary,” on page 43. Components in Live Preview are not functional. To test
component functionality, you can use the Control > Test Movie command.

Button

A Button component with Live Preview enabled

I

A Button component with Live Preview disabled

To turn Live Preview on or off:

® Select Control > Enable Live Preview. A check mark next to the option indicates that it
is enabled.

For more information, see Chapter 5, “Creating Components,” on page 639.

Components in Live Preview 17

Working with SWC files and compiled clips

Components included with Flash MX 2004 or Flash MX Professional 2004 are not FLA files—
they are SWC files. SWC is the Macromedia file format for components. When you add a
component to the Stage from the Components panel, a compiled clip symbol is added to the
library. A SWC is a compiled clip that has been exported for distribution.

A movie clip can also be “compiled” in Flash and converted into a compiled clip symbol. The
compiled clip symbol behaves just like the movie clip symbol from which it was compiled, but
compiled clips display and publish much faster than regular movie clip symbols. Compiled clips
can’t be edited, but they do have properties that appear in the Property inspector and in the
Component Inspector panel and they include a live preview.

The components included with Flash MX 2004 or Flash MX Professional 2004 have already been

turned into compiled clips. If you create a component, you may choose to export it as a SWC for

distribution. For more information, see Chapter 5, “Creating Components,” on page 639.

To compile a movie clip symbol:

® Select the movie clip in the library and right-click (Windows) or Control-click (Macintosh),
and then select Convert to Compiled Clip.

To export a SWC:

® Select the movie clip in the library and right-click (Windows) or control-click (Macintosh),
and then select Export SWC File.

Note: Flash MX 2004 and Flash MX Professional 2004 continue to support FLA components.

Adding components to Flash documents

When you drag a component from the Components panel to the Stage, a compiled clip symbol is
added to the Library panel. Once a compiled clip symbol is in the library, you can also add that
component to a document/ at runtime by using the UIObject.createClassObject()
ActionScript method.

® Beginning Flash users can use the Components panel to add components to Flash documents,
specify basic parameters using the Property inspector or the Parameters tab in the Component
Inspector panel, and use the on() event handler to control components.

® Intermediate Flash users can use the Components panel to add components to Flash
documents and then use the Property inspector, ActionScript methods, or a combination of
the two to specify parameters. They can use the on () event handler, or event listeners to handle
component events.

® Advanced Flash programmers can use a combination of the Components panel and
ActionScript to add components and specify properties, or choose to implement
component instances at runtime using only ActionScript. They can use event listeners to
control components.

If you edit the skins of a component and then add another version of the component, or a
component that shares the same skins, you can choose to use the edited skins or replace the edited
skins with a new set of default skins. If you replace the edited skins, all components using those
skins are updated with default versions of the skins. For more information on how to edit skins,
see Chapter 3, “Customizing Components,” on page 27.

18

Chapter 2: Working with Components

Adding components using the Components panel

After you add a component to a document using the Components panel, you can add additional
instances of the component to the document by dragging the component from the Library panel
to the Stage. You can set properties for additional instances in the Parameters tab of the Property
inspector or in the Parameters tab in the Component Inspector panel.

To add a component to a Flash document using the Components panel:

1
2

N N N W

Select Window > Development Panels > Components.

Do one of the following:

= Draga component from the Components panel to the Stage.
= Double-click a component in the Components panel.

If the component is a FLA (all installed v2 components are SWCs) and if you have edited skins
for another instance of the same component, or for a component that shares skins with the
component you are adding, do one of the following:

= Select Don’t Replace Existing Items to preserve the edited skins and apply the edited skins to
the new component.

= Select Replace Existing Items to replace all the skins with default skins. The new component
and all previous versions of the component, or of components that share its skins, will use

the default skins.
Select the component on the Stage.
Select Window > Properties.
In the Property inspector, enter an instance name for the component instance.
Click the Parameters tab and specify parameters for the instance.
For more information, see “Setting component parameters” on page 21.
Change the size of the component as desired.

For more information on sizing specific component types, see the individual component
g 4
entries in Chapter 4, “Components Dictionary,” on page 43.

Change the color and text formatting of a component as desired, by doing one or more of
the following:

= Set or change a specific style property value for a component instance using the
setStyle() method available to all components. For more information, see
UIObject.setStyle().

« Edit multiple properties in the _global style declaration assigned to all v2 components.
= Ifdesired, create a custom style declaration for specific component instances.

For more information, see “Using styles to customize component color and text”

on page 27.

10 Customize the appearance of the component if desired, by doing one of the following:

= Apply a theme (see “About themes” on page 34).

= Edit a component’s skins (see “About skinning components” on page 36).

Adding components to Flash documents 19

Adding components using ActionScript

To add a component to a document using ActionScript, you must first add it to the library.
You can use ActionScript methods to set additional parameters for dynamically added
components. For more information, see Chapter 4, “Components Dictionary,” on page 43.
Note: The instructions in this section assume an intermediate or advanced knowledge
of ActionScript.
To add a component to your Flash document using ActionScript:
1 Draga component from the Components panel to the Stage and delete it.

This adds the component to the library.

Select the frame in the Timeline where you want to place the component.
3 Open the Actions panel if it isn’t already open.
4 Call the createClassObject () method to create the component instance at runtime.

This method can be called on its own, or from any component instance. It takes a component
class name, an instance name for the new instance, a depth, and an optional initialization
object as its parameters. You can specify the class package in the c7assName parameter, as in
the following:

createClassObject(mx.controls.CheckBox, "cb", 5, {Tabel:"Check Me"});

Or you can import the class package, as in the following:

import mx.controls.CheckBox;
createClassObject(CheckBox, "cb", 5, {label:"Check Me"});

For more information, see UIObject.createClassObject().

5 Use the ActionScript methods and properties of the component to specify additional options or
override parameters set during authoring.

For detailed information on the ActionScript methods and properties available to each
component, see their entries in Chapter 4, “Components Dictionary,” on page 43.

About component label size and component width and height

If a component instance that has been added to a document is not large enough to display its
label, the label text is clipped. If a component instance is larger than the text, the hit area extends

beyond the label.

Use the Free Transform tool or the setSize() method to resize component instances. You can
call the setSize() method from any component instance (see UIObject.setSize()). If you use
the ActionScript _width and _height properties to adjust the width and height of a component,
the component is resized but the layout of the content remains the same. This may cause the
component to be distorted in movie playback. For more information about sizing components,
see their individual entries in Chapter 4, “Components Dictionary,” on page 43.

20

Chapter 2: Working with Components

Setting component parameters

Each component has parameters that you can set to change its appearance and behavior. A
parameter is a property or method that appears in the Property inspector and Component
Inspector panel. The most commonly used properties and methods appear as authoring
parameters; others must be set using ActionScript. All parameters that can be set while authoring
can also be set with ActionScript. Setting a parameter with ActionScript overrides any value set
while authoring.

All v2 components inherit properties and methods from the UIObject class and the
UIComponent class; these are the properties and methods that all components use, such as
UIObject.setSize(), UIObject.setStyle(), UIObject.x, and UIObject.y. Each
component also has unique properties and methods, some of which are available as authoring
parameters. For example, the ProgressBar component has a percentComplete property
(ProgressBar.percentComplete), while the NumericStepper component has nextValue and
previousValue properties (NumericStepper.nextValue, NumericStepper.previousValue).

Deleting components from Flash documents

To delete a component's instances from a Flash document, you delete the component from the
library by deleting the compiled clip icon.

To delete a component from a document:
1 In the Library panel, select the compiled clip (SWC) symbol.

2 Click the Delete button at the bottom of the Library panel, or select Delete from the Library
panel options menu.

3 In the Delete dialog box, click Delete to confirm the deletion.

Using code hints

When you are using ActionScript 2, you can strictly type a variable that is based on a built-in
class, including component classes. If you do so, the ActionScript editor displays code hints for
the variable. For example, suppose you type the following:

import mx.controls.CheckBox;

var myCheckBox:CheckBox;
myCheckBox.

As soon as you type the period, Flash displays a list of methods and properties available for
CheckBox components, because you have typed the variable as a CheckBox. For more
information on data typing, see “Strict data typing” in ActionScript Reference Guide Help. For

information on using code hints when they appear, see “Using code hints” in ActionScript
Reference Guide Help.

Using code hints 21

About component events

All components have events that are broadcast when the user interacts with a component or when
something significant happens to the component. To handle an event, you write ActionScript
code that executes when the event is triggered.

You can handle component events in the following ways:

® Use the on() component event handler.

® Use event listeners.

Using the on() event handler

The easiest way to handle a component event is to use the on() component event handler. You
can assign the on () event handler to a component instance, just as you would assign a handler to
a button or movie clip.

When you use an on() event handler, an event object, event0bj, is automatically generated
when the event is triggered and passed to the handler. The event object has properties that
contain information about the event. The event object that is passed to the on () handler is always
eventObj. For more information, see “UlEventDispatcher” on page 560.

The keyword this, used inside an on () handler attached to a component, refers to the
component instance. For example, the following code, attached to the Button component
instance myButtonComponent, sends “_level0.myButtonComponent” to the Output panel:

on(click){
trace(this);
}
To use the on() event handler:
1 Drag a CheckBox component to the Stage from the Components panel.
2 Select the component and select Window > Actions.
3 In the Actions panel, enter the following code:

on(click){
trace("The " + eventObj.type + " event was broadcast");
}

You can enter any code you wish between the curly braces({}).
4 Select Control > Test Movie and select the check box to see the trace in the Output panel.

For more information, see each event entry in Chapter 4, “Components Dictionary,”
on page 43.

Using component event listeners

The most powerful way to handle component events is to use listeners. Events are broadcast by
components and any object that is registered to the event broadcaster (component instance) as a
listener can be notified of the event. The listener is assigned a function that handles the event. You
can register multiple listeners to one component instance. You can also register one listener to
multiple component instances.

22

Chapter 2: Working with Components

To use the event listener model, you create a listener object with a property that is the name of the
event. The property is assigned to a callback function. Then you call the
UIEventDispatcher.addEventListener() method on the component instance that’s
broadcasting the event and pass it the name of the event and the name of the listener object.
Calling the UIEventDispatcher.addEventListener() method is called “registering” or
“subscribing” a listener, as in the following:
listenerObject.eventName = function(evtObj){

// your code here
I
componentinstance.addEventListener("eventName", TistenerObject);
In the above code, the keyword this, if used in the callback function, is scoped to the
TistenerObject.

The evtObj parameter is an event object that is automatically generated when an event is
triggered and passed to the listener object callback function. The event object has properties that
contain information about the event. For more information, see “UlEventDispatcher”

on page 560.

For information about the events a component broadcasts, see each component’s entry in
Chapter 4, “Components Dictionary,” on page 43.

To register an event listener, do the following:

Drag a Button component to the Stage from the Components panel.

In the Property inspector, enter the instance name button.

Drag a TextInput component to the Stage from the Components panel.

In the Property inspector, enter the instance name myText.

Select Frame 1 in the Timeline.

Select Window > Actions.

N AN N R W N~

In the Actions panel, enter the following code:

form = new Object();
form.click = function(evt){
myText.text = evt.target;
}
button.addEventlListener("click", form);

The target property of the event object is a reference to the instance broadcasting the event.
This code displays the value of the target property in the text input field.

Additional event syntax

In addition to using a listener object, you can use a function as a listener. A listener is a function if
it does not belong to an object. For example, the following code creates the listener function
myHandler and registers it to buttonInstance:

function myHandler(eventObj){
if (eventObj.type == "click"){
// your code here
}
}
buttonInstance.addEventListener("click", myHandler);

Note: In a function listener, the this keyword is buttonInstance, not the Timeline on which the
function is defined.

About component events 23

You can also use listener objects that support a hand1eEvent method. Regardless of the name of
the event, the listener object's hand1eEvent method is called. You must use an if else ora
switch statement to handle multiple events, which makes this syntax clumsy. For example, the
following code uses an if else statement to handle the click and enter events:
myObj.handleEvent = function(o){
if (o.type == "click"){
// your code here
} else if (o.type == "enter"){
// your code here
}
}
target.addEventlListener("click", myObj);
target2.addEventListener("enter", myObj);

There is one additional event syntax style, which should be used only when you are authoring a
component and know that a particular object is the only listener for an event. In such a situation,
you can take advantage of the fact that the v2 event model always calls a method on the
component instance that is the event name plus “Handler”. For example, if you want to handle
the c1ick event, you would write the following code:

componentInstance.clickHandler = function(o){

// insert your code here
}

In the above code, the keyword this, if used in the callback function, is scoped to
componentInstance.

For more information, see Chapter 5, “Creating Components,” on page 639.

Creating custom focus navigation

When a user presses the Tab key to navigate in a Flash application or clicks in an application, the
FocusManager class determines which component receives focus. You don’t need to add a
FocusManager instance to an application or write any code to activate the FocusManager.

If a RadioButton object receives focus, the FocusManager examines that object and all objects
with the same groupName value and sets focus on the object with the selected property set
to true.

Each modal Window component contains an instance of the FocusManager so the controls on
that window become their own tab set, which prevents a user from inadvertently getting into
components in other windows by pressing the Tab key.

To create focus navigation in an application, set the tabIndex property on any components
(including buttons) that should receive focus. When a user presses the Tab key, the FocusManager
class looks for an enabled object with a tabIndex property that is higher than the current value of
tabIndex. Once the FocusManager class reaches the highest tabIndex property, it returns to
zero. For example, in the following, the comment object (probably a TextArea component)
receives focus first, and then the okButton object receives focus:

comment.tabIndex = 1;
okButton.tabIndex = 2;

You can also use the Accessibility panel to assign a tab index value.

24

Chapter 2: Working with Components

If nothing on the Stage has a tab index value, the FocusManager uses the z-order. The z-order is
set up primarily by the order components are dragged to the Stage, however, you can also use the
Modify/Arrage/Bring-to-Front/Back commands to determine the final z-order.

To give focus to a component in an application, call FocusManager.setFocus().

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of the
desired button, as in the following:

FocusManager.defaultPushButton = okButton;

The FocusManager class overrides the default Flash Player focus rectangle and draws a custom
focus rectangle with rounded corners.

Managing component depth in a document

If you want to position a component above or below another object in an application, you must
use the DepthManager class. The DepthManager application programming interface (API) allows
you to place user interface components in an appropriate z-order (for example, a combo box
drops down in front of other components, insertion points appear in front of everything, dialog
windows float over content, and so on).

The DepthManager has two main purposes: to manage the relative depth assignments within any
document, and to manage reserved depths on the root Timeline for system-level services such as
the cursor and tooltips.

To use the DepthManager, call its methods (see “DepthManager class” on page 265).
The following code places the component instance Toader below the button component:

loader.setDepthBelow(button);

About using a preloader with components

Components are set to Export in first frame by default. This causes the components to

load before the first frame of an application is rendered. If you want to create a preloader for
an application, you should deselect Export in first frame for any compiled clip symbols in
your library.

Note: If you're using the ProgressBar component to display loading progress, leave Export in first
frame selected for the ProgressBar.

Upgrading version 1 components to version 2 architecture

The v2 components were written to comply with several web standards (regarding events, styles,
getter/setter policies, and so on) and are very different from their v1 counterparts that were
released with Macromedia Flash MX and in the DRKs that were released before Macromedia
Flash MX 2004. V2 components have different APIs and were written in ActionScript 2.0.
Therefore, using v1 and v2 components together in an application can cause unpredictable
behavior. For information about upgrading vl components to use version 2 event handling,
styles, and getter/setter access to the properties instead of methods, see Chapter 5, “Creating
Components,” on page 639.

Upgrading version 1components to version 2 architecture 25

http://www.w3.org/TR/DOM-Level-3-Events/events.html

Flash applications that contain v1 components work properly in Flash Player 6 and Flash

Player 7, when published for Flash Player 6 or Flash Player 6 release 65. If you would like to
update your applications to work when published for Flash Player 7, you must convert your code
to use strict data-typing. For more information, see “Creating Classes with ActionScript 2.0” in
ActionScript Reference Guide Help.

26 Chapter 2: Working with Components

CHAPTER 3
Customizing Components

You might want to change the appearance of components as you use them in different
applications. There are three ways to accomplish this in Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004:

® Use the Styles APL.
* Apply a theme.
* Modify or replace a component’s skins.

The Styles API (application programming interface) has methods and properties that allow you to
change the color and text formatting of a component.

A theme is a collection of styles and skins that make up a component’s appearance.

Skins are symbols used to display components. Skinning is the process of changing the appearance
of a component by modifying or replacing its source graphics. A skin can be a small piece, like a
border’s edge or corner, or a composite piece like the entire picture of a button in its up state (the
state in which it hasnt been pressed). A skin can also be a symbol without a graphic, which
contains code that draws a piece of the component.

Using styles to customize component color and text

Every component instance has style properties and setStyle() and getStyle() (see
UIObject.setStyle() and UIObject.getStyle()) methods that you can use to modify and
access style properties. You can use styles to customize a component in the following ways:

® Set styles on a component instance.

You can change color and text properties of a single component instance. This is effective in
some situations, but it can be time consuming if you need to set individual properties on all
the components in a document.

® Use the _global style declaration that sets styles for all components in a document.

If you want to apply a consistent look to an entire document, you can create styles on the
_global style declaration.

® Create custom style declarations and apply them to specific component instances.

You may also want to have groups of components in a document share a style. To do this, you
can create custom style declarations to apply to specific components.

27

® Create default class style declarations.

You can also define a default class style declaration so that every instance of a class shares a
default appearance.

Changes made to style properties are not displayed when viewing components on the Stage using
the Live Preview feature. For more information, see “Components in Live Preview” on page 17.

Setting styles on a component instance

You can write ActionScript code to set and get style properties on any component instance.
The UTObject.setStyle() and UTObject.getStyle() methods can be called directly from
any component. For example, the following code sets the text color on a Button instance
called myButton:

myButton.setStyle("color", "OxFFOOFF");

Even though you can access the styles directly as properties (for example, myButton.color =
0xFFOOFF), it’s best to use the setStyle() and getStyle() methods so that the styles work
correctly. For more information, see “Setting style property values” on page 32.

Note: You should not call the UlObject.setStyle() method multiple times to set more than one
property. If you want to change multiple properties, or change properties for multiple component
instances, you should create a custom style format. For more information, see “Setting styles for
specific components” on page 29.

To set or change a property for a single component instance:

1 Select the component instance on the Stage.

2 In the Property inspector, give it the instance name myComp.

3 Open the Actions panel and select Scene 1, then select Layer 1: Frame 1.

4 Enter the following code to change the instance to blue:
myComp.setStyle("themeColor", "haloBlue");
The following syntax specifies a property and value for a component instance:
instanceName.setStyle("property", value);

5 Select Control > Test Movie to view the changes.

For a list of supported styles, see “Supported styles” on page 33.

Setting global styles

The _global style declaration is assigned to all Flash components built with version 2 of the
Macromedia Component Architecture (v2 components). The _global object has a property called
style (_global.style) that is an instance of CSSStyleDeclaration. This style property acts as
the _global style declaration. If you change a property’s value on the _global style declaration, the
change is applied to all components in your Flash document.

Some styles are set on a component class's CSSStyleDeclaration (for example, the
backgroundColor style of the TextArea and TextInput components). Because the class style
declaration takes precedence over the _global style declaration when determining style values,
setting backgroundColor on the _global style declaration would have no effect on TextArea and
TextInput. For more information, see “Using global, custom, and class styles in the same
document” on page 30.

28

Chapter 3: Customizing Components

To change one or more properties in the global style declaration:

1 Make sure the document contains at least one component instance.

For more information, see “Adding components to Flash documents” on page 18.
Create a new layer in the Timeline and give it a name.

Select a frame in the new layer on which (or before) the component appears.

Open the Actions panel.

N N

Use the following syntax to change any properties on the _global style declaration. You only
need to list the properties whose values you want to change, as in the following:

_global.style.setStyle("color", 0xCC6699);
_global.style.setStyle("themeColor", "haloBlue")
_global.style.setStyle("fontSize",16);
_global.style.setStyle("fontFamily" , "_serif");

For a list of styles, see “Supported styles” on page 33.

6 Select Control > Test Movie to see the changes.

Setting styles for specific components

You can create custom style declarations to specify a unique set of properties for specific
components in your Flash document. You create a new instance of the CSSStyleDeclaration
object, create a custom style name and place it on the _global.styles list
(Lglobal.styles.newStyle), specify the properties and values for the style, and assign the style
to an instance. The CSSStyleDeclaration object is accessible if you have placed at least one
component instance on the Stage.

You make changes to a custom style format in the same way that you edit the properties in the
_global style declaration. Instead of the _global style declaration name, use the
CSSStyleDeclaration instance. For more information on the _global style declaration, see “Setting
global styles” on page 28.

For information about the properties of the CSSStyleDeclaration object, see “Supported styles”
on page 33. For a list of which styles each component supports, see their individual entries in
Chapter 4, “Components Dictionary,” on page 43.
To create a custom style declaration for specific components:
1 Make sure the document contains at least one component instance.

For more information, see “Adding components to Flash documents” on page 18.

This example uses three button components with the instance names a, b, and c. If you use
different components, give them instance names in the Property inspector and use those
instance names in step 9.

Create a new layer in the Timeline and give it a name.
Select a frame in the new layer on which (or before) the component appears.

Open the Actions panel in expert mode.

N W N

Use the following syntax to create an instance of the CSSStyleDeclaration object to define the
new custom style format:

var styleObj = new mx.styles.CSSStyleDeclaration;

6 Set the styleName property of the style declaration to name the style:
styleObj.styleName = "newStyle";

Using styles to customize component color and text 29

7 Place the style on the global style list:
_global.styles.newStyle = styleObj;

Note: You can also create a CSSStyleDeclaration object and assign it to a new style declaration
by using the following syntax:

var styleObj = _global.styles.newStyle = new
mx.styles.CSSStyleDeclaration();

8 Use the following syntax to specify the properties you want to define for the myStyle
style declaration:
styleObj.fontFamily = "_sans";
styleObj.fontSize = 14;
styleObj.fontWeight = "bold";
styleObj.textDecoration = "underline";
styleObj.color = 0x336699;
styleObj.setStyle("themeColor", "haloBlue");

9 In the same Script pane, use the following syntax to set the sty1eName property of two specific
components to the custom style declaration:

a.setStyle("styleName", "newStyle");
b.setStyle("styleName", "newStyle");

You can also access styles on a custom style declaration using the setStyle() and getStyle()
methods. The following code sets the backgroundColor style on the newSty1e style declaration:

_global.styles.newStyle.setStyle("backgroundColor", "OxFFCCFF");

Setting styles for a component class

You can define a class style declaration for any class of component (Button, CheckBox, and so on)
that sets default styles for each instance of that class. You must create the style declaration before
you create the instances. Some components, like TextArea and TextInput, have class style
declarations predefined by default because their borderStyle and backgroundColor properties
must be customized.

The following code creates a class style declaration for CheckBox and sets the check box color
to blue:

var o = _global.styles.CheckBox = new mx.styles.CSSStyleDeclaration();
o.color = 0x0000FF;

You can also access styles on a class style declaration using the setStyle() and getStyle()
methods. The following code sets the color style on the RadioButton style declaration:

_global.styles.RadioButton.setStyle("color", "blue");

For more information on supported styles, see “Supported styles” on page 33.

Using global, custom, and class styles in the same document

If you define a style in only one place in a document, Flash uses that definition when it needs to
know a property’s value. However, one Flash document can have a _global style declaration,
custom style declarations, style properties set directly on component instances, and default class
style declarations. In such a situation, Flash determines the value of a property by looking for its
definition in all these places in a specific order.

30

Chapter 3: Customizing Components

First, Flash looks for a style property on the component instance. If the style isn’t set directly on
the instance, Flash looks at the styleName property of the instance to see if a style declaration is
assigned to it.

If the styleName property hasn’t been assigned to a style declaration, Flash looks for the property
on a default class style declaration. If there isn't a class style declaration, and the property doesn’t
inherit its value, the _global style declaration is checked. If the property is not defined on the
_global style declaration, the property is undefined.

If there isn’t a class style declaration, and the property does inherit its value, Flash looks for the
property on the instance’s parent. If the property isn't defined on the parent, Flash checks the
parent’s styleName property; if that isn't defined, Flash continues to look at parent instances until
it reaches the _global level. If the property is not defined on the _global style declaration, the
property is undefined.

The StyleManager tells Flash if a style inherits its value or not. For more information, see
“StyleManager class” on page 502.

Note: The CSS inherit value is not supported.

About color style properties

Color style properties behave differently than non-color properties. All color properties have a
name that ends in “Color”, for example, backgroundColor, disabledColor, and color. When
color style properties are changed, the color is immediately changed on the instance and in all of
the appropriate child instances. All other style property changes simply mark the object as
needing to be redrawn and changes don’t occur until the next frame.

The value of a color style property can be a number, a string, or an object. If it is a number, it
represents the RGB value of the color as a hexadecimal number (0xXRRGGBB). If the value is a
string, it must be a color name.

Color names are strings that map to commonly used colors. New color names can be added by
using the StyleManager (see “StyleManager class” on page 502). The following table lists the
default color names:

Color name Value

black 0x000000
white OxFFFFFF
red OxFFO000
green OxO0FFOO
blue OxOO000FF
magenta OxFFOOFF
yellow OxFFFFOO
cyan OxOOFFFF

Note: If the color name is not defined, the component may not draw correctly.

Using styles to customize component color and text 31

You can use any legal ActionScript identifier to create your own color names (for example,
"WindowText" or "ButtonText"). Use the StyleManager to define new colors, as in
the following:

mx.styles.StyleManager.registerColorName("special_blue", 0x0066ff);

Most components cannot handle an object as a color style property value. However, certain
components can handle color objects that represent gradients or other color combinations. For
more information see the “Using styles” section of each component’s entry in Chapter 4,
“Components Dictionary,” on page 43.

You can use class style declarations and color names to easily control the colors of text and
symbols on the screen. For example, if you want to provide a display configuration screen that
looks like Microsoft Windows, you would define color names like ButtonText and Window Text
and class style declarations like Button, CheckBox, and Window. By setting the color style
properties in the style declarations to ButtonText and WindowText and providing a user interface
so the user can change the values of ButtonText and WindowText you can provide the same color
schemes as Micosoft Windows, the Mac OS, or any operating system.

Setting style property values

You use the UIObject.setStyle() method to set a style property on a component instance, the
global style declaration, a custom style declaration, or a class style declaration. The following code
sets the color style of a radio button instance to red:

myRadioButton.setStyle("color", "red");
The following code sets the color style of the custom style declaration CheckBox:
_global.styles.CheckBox.setStyle("color", "white");

The UIObject.setStyle() method knows if a style is inheriting and notifies children of that
instance if their style changes. It also notifies the component instance that it must redraw itself to
reflect the new style. Therefore, you should use setStyle() to set or change styles. However, as
an optimization when creating style declarations, you can directly set the properties on an object.
For more information, see “Setting global styles” on page 28, “Setting styles for specific
components” on page 29, and “Setting styles for a component class” on page 30.

You use the UIObject.getStyle() method to retrieve a style from a component instance, the
global style declaration, a custom style declaration, or a class style declaration. The following code
gets the value of the color property and assigns it to the variable o:

var o = myRadioButton.getStyle("color");
The following code gets the value of a style property defined on the _global style declaration:
var r = _global.style.getValue("marginRight");

If the style isn’t defined, getStyle() may return the value undefined. However, getStyle()
understands how style properties inherit. So, even though styles are properties, you should use
UIObject.getStyle() to access them so you don't need to know whether the style is inheriting.

For more information, see UIObject.getStyle() and UIObject.setStyle().

32

Chapter 3: Customizing Components

Supported styles

Flash MX 2004 and Flash MX Professional 2004 come with two themes: Halo (HaloTheme.fla)
and Sample (SampleTheme.fla). Each theme supports a different set of styles. The Sample theme
uses all the styles of the v2 styles mechanism and is provided so that you can see a sample of those
styles in a document. The Halo theme supports a subset of the Sample theme styles.

The following style properties are supported by most v2 components in the Sample style. For
information about which Halo styles are supported by individual components, see Chapter 4,
“Components Dictionary,” on page 43.

If any values other than allowed values are entered, the default value is used. This is important if
you are re-using CSS style declarations that use values outside the Macromedia subset of values.

Components can support the following styles:

Style

Description

backgroundColor

borderColor

borderStyle

buttonColor

color

disabledColor

fontFamily
fontSize

fontStyle

fontWeight

highlightColor

marginlLeft

marginRight

scrollTrackColor

The background of a component. This is the only color style that
doesn’t inherit its value. The default value is transparent.

The black section of a three-dimensional border or the color
section of a two-dimensional border. The default value is
0Ox000000 (black).

» ”

The component border: either “none”, “inset”, “outset”, or
“solid”. This style does not inherit its value. The default value
is "solid".

The face of a button and a section of the three-dimensional
border. The default value is OXEFEEEF (light gray).

The text of a component label. The default value is OxO0O0000
(black).

The disabled color for text. The default color is Ox848384
(dark gray).

The font name for text. The default value is _sans.

The point size for the font. The default value is 10.

The font style: either “normal” or “italic”. The default value

is "normal".

The font weight: either “normal” or “bold”. The default value
is "normal".

A section of the three-dimensional border. The default value is
OxFFFFFF (white).

A number indicating the left margin for text. The default value
is O.

A number indicating the right margin for text. The default value
is O.

The scroll track for a scroll bar. The default value is OXEFEEEF
(light gray).

Using styles to customize component color and text 33

Style Description

shadowColor A section of the three-dimensional border. The default value is
0x848384 (dark gray).
symbolBackgroundColor The background color of check boxes and radio buttons. The

default value is OxFFFFFF (white).

symbolBackgroundDisabledColor The background color of check boxes and radio buttons when
disabled. The default value is OXEFEEEF (light gray).

symbolBackgroundPressedColor The background color of check boxes and radio buttons when
pressed. The default value is OxFFFFFF (white).

symbolColor The check mark of a check box or the dot of a radio button. The
default value is OxO00000 (black).

symbolDisabledColor The disabled check mark or radio button dot color. The default
value is Ox848384 (dark gray).

textAlign The text alignment: either “left”, “right”, or “center”. The default
value is "left".

textDecoration The text decoration: either “none” or “underline”. The default

value is "none".

textlndent A number indicating the text indent. The default value is O.

About themes

Themes are collections of styles and skins. The default theme for Flash MX 2004 and Flash MX
Professional 2004 is called Halo (HaloTheme.fla). The Halo theme was developed to let you
provide a responsive, expressive experience for your users. Flash MX 2004 and Flash MX
Professional 2004 include one additional theme called Sample (SampleTheme.fla). The Sample
theme allows you to experiment with the full set of styles available to v2 components. (The
Halo theme uses only a subset of the available styles.) The theme files are located in the
following folders:

® First Run\ComponentFLA (Windows)
® First Run/ComponentFLA (Macintosh)

You can create new themes and apply them to an application to change the look and feel
of all the components. For example, you could create a two-dimensional theme and a
three-dimensional theme.

The v2 components use skins (graphic or movie clip symbols) to display their visual appearances.
The .as file that defines each component contains code that loads specific skins for the
component. You can easily create a new theme by making a copy of the Halo or Sample theme
and altering the graphics in the skins.

A theme can also contain a new set of styles. You must write ActionScript code to create a global
style declaration and any additional style declarations. For more information, see “Using styles to
customize component color and text” on page 27.

34

Chapter 3: Customizing Components

Applying a theme to a document

To apply a new theme to a document, open a theme FLA as an external library, and drag the
theme folder from the external library to the document library. The following steps explain the
process in detail.

To apply a theme to a document:

1 Select File > Open and open the document that uses v2 components in Flash, or select
File > New and create a new document that uses v2 components.

2 Select File > Save and choose a unique name such as ThemeApply.fla.

3 Select File > Import > Open External Library and select the FLA file of the theme you want to
apply to your document.

If you haven’t created a new theme, you can use the Sample theme, located in the Flash 2004/
en/Configuration/SampleFLA folder.

4 In the theme’s Library panel, select Flash UI Components 2 > Themes > MMDefault and drag
the Assets folder of any component(s) in your document to the ThemeApply.fla library.

If youre unsure about which components are in the documents, you can drag the entire
Themes folder to the Stage. The skins inside the Themes folder in the library are automatically
assigned to components in the document.

Note: The Live Preview of the components on the Stage will not reflect the new theme.

5 Select Control > Test Movie to see the document with the new theme applied.

Creating a new theme

If you don’t want to use the Halo theme or the Sample theme you can modify one of them to
create a new theme.

Some skins in the themes have a fixed size. You can make them larger or smaller and the
components will automatically resize to match them. Other skins are composed of multiple
pieces, some static and some that stretch.

Some skins (for example, RectBorder and ButtonSkin) use the ActionScript Drawing API to draw
their graphics because it is more efficient in terms of size and performance. You can use the
ActionScript code in those skins as a template to adjust the skins to your needs.
To create a new theme:
1 Select the theme FLA file that you want to use as a template and make a copy.
Give the copy a unique name like MyTheme.fla.
2 Select File > Open MyTheme.fla in Flash.
3 Select Window > Library to open the library if it isn’t open already.
Double-click any skin symbol you want to modify to open it in symbol-editing mode.

The skins are located in the Themes > MMDefault > Component Assets folder (in this example,
Themes > MMDefault > RadioButton Assets).

5 Modify the symbol or delete the graphics and create new graphics.

You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

About themes 35

6 When you have finished editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

7 Repeat steps 4 - 6 until you've edited all the skins you want to change.

8 Apply MyTheme.fla to a document by following the steps in the previous section, “Applying a
theme to a document” on page 35.

About skinning components

Skins are symbols a component uses to display its appearance. Skins can either be graphic symbols
or movie clip symbols. Most skins contain shapes that represent the component’s appearance.
Some skins contain only ActionScript code that draws the component in the document.

Macromedia v2 components are compiled clips—you cannot see their assets in the library.
However, FLA files are installed with Flash that contain all the component skins. These FLA files
are called themes. Each theme has a different appearance and behavior, but contains skins with the
same symbol names and linkage identifiers. This allows you to drag a theme onto the Stage in a
document to change its appearance. For more information about themes, see “About themes”

on page 34. You also use the theme FLA files to edit component skins. The skins are located in
the Themes folder in the Library panel of each theme FLA.

Each component is composed of many skins. For example, the down arrow of the ScrollBar
subcomponent is made up of three skins: ScrollDownArrowDisabled, ScrollDownArrowUp, and
ScrollDownArrowDown. Some components share skins. Components that use scroll bars—
including ComboBox, List, and ScrollPane—share the skins in the ScrollBar Skins folder. You can
edit existing skins and create new skins to change the appearance of a component.

The .as file that defines each component class contains code that loads specific skins for the
component. Each component skin has a skin property that is assigned to a skin symbol’s Linkage
Identifier. For example, the pressed (down) state of the down arrow of the ScrollBar has the skin
property name downArrowDownName. The default value of the downArrowDownName property is
"ScrollDownArrowDown", which is the Linkage Identifier of the skin symbol. You can edit skins
and apply them to a component by using these skin properties. You do not need to edit the
component’s .as file to change its skin properties, you can pass skin property values to the
component’s constructor function when the component is created in your document.

Choose one of the following ways to skin a component based on what you want to do:

® To replace all the skins in a document with a new set (with each kind of component sharing
the same appearance), apply a theme (see “About themes” on page 34).

Note: This method of skinning is recommended for beginners because it doesn’t require
any scripting.

® To use different skins for multiple instances of the same component, edit the existing skins and
set skin properties (see the next section, “Editing component skins” on page 37, and “Applying
an edited skin to a component” on page 38).

® To change skins in a subcomponent (such as a scroll bar in a List component), subclass the
component (see “Applying an edited skin to a subcomponent” on page 39).

® To change skins of a subcomponent that aren’t directly accessible from the main component
(such as a List component in a ComboBox component), replace skin properties in the
prototype (see “Changing skin properties in the prototype” on page 41).

Note: The above methods are listed from top to bottom according to ease of use.

36

Chapter 3: Customizing Components

Editing component skins

If you want to use a particular skin for one instance of a component, but another skin for another
instance of the component, you must open a Theme FLA file and create a new skin symbol.
Components are designed to make it easy to use different skins for different instances.

To edit a skin, do the following:

1
2
3

Select File > Open and open the Theme FLA file that you want to use as a template.
Select File > Save As and select a unique name such as MyTheme.fla.
Select the skin or skins that you want to edit (in this example, RadioTrueUp).

The skins are located in the Themes > MMDefault > Component Assets folder (in this example,
Themes > MMDefault > RadioButton Assets > States).

Select Duplicate from the Library Options menu (or by right-clicking on the symbol), and give
the symbol a unique name like MyRadioTrueUp.

Select the Advanced button in the Symbol Properties dialog and select Export for ActionScript.

A Linkage Identifier that matches the symbol name is entered automatically.

6 Double-click the new skin in the library to open it in symbol-editing mode.

7 Modify the movie clip or delete it and create a new one.

You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

When you have finished editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

Select File > Save but don’t close MyTheme.fla. Now you must create a new document in which
to apply the edited skin to a component.

For more information, see the next section, “Applying an edited skin to a component”

on page 38, “Applying an edited skin to a subcomponent” on page 39, or “Changing skin
properties in the prototype” on page 41. For information about how to apply a new skin, see
“About skinning components” on page 36.

Note: Changes made to component skins are not displayed when viewing components on the Stage
using Live Preview.

About skinning components 37

Applying an edited skin to a component

Once you have edited a skin, you must apply it to a component in a document. You can either use
the createClassObject () method to dynamically create the component instances, or you can
manually place the component instances on the Stage. There are two different ways to apply skins
to component instances, depending on how you add the components to a document.

To dynamically create a component and apply an edited skin, do the following:
1 Select File > New to create a new Flash document.

2 Select File > Save and give it a unique name such as DynamicSkinning.fla.

3 Drag any components from the Components panel to the Stage, including the component
whose skin you edited (in this example, RadioButton), and delete them.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

4 Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage
of DynamicSkinning.fla and delete them.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

5 Open the Actions panel and enter the following on Frame I:

import mx.controls.RadioButton
createClassObject(RadioButton, "myRadio", 0, {trueUpIcon:"MyRadioTrueUp",
label: "My Radio Button"});

6 Select Control > Test Movie.

To manually add a component to the Stage and apply an edited skin, do the following:
1 Select File > New to create a new Flash document.
2 Select File > Save and give it a unique name such as ManualSkinning.fla.

3 Drag components from the Components panel to the Stage, including the component whose
skin you edited (in this example, RadioButton).

4 Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage
of ManualSkinning.fla and delete them.

This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

5 Select the RadioButton component on the Stage and open the Actions panel.

6 Attach the following code to the RadioButton instance:

onClipEvent(initialize){
truelUplcon = "MyRadioTrueUp";
}

7 Select Control > Test Movie.

38

Chapter 3: Customizing Components

Applying an edited skin to a subcomponent

In certain situations you may want to modify the skins of a subcomponent in a component, but
the skin properties are not directly available (for example, there is no direct way to alter the skins
of the scroll bar in a List component). The following code allows you to access the scroll bar skins.
All the scroll bars that are created after this code runs will also have the new skins.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in Chapter 4, “Components Dictionary,” on page 43.

To apply a new skin to a subcomponent, do the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin.
For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New to create a new Flash document.
Select File > Save and give it a unique name such as SubcomponentProject.fla.

4 Double-click the List component in the Components panel to add it to the Stage and press
Backspace to delete it from the Stage.

This adds the component to the Library panel, but doesnt make the component visible in
the document.

5 Drag MyScrollDownArrowDown and any other symbols you edited from MyTheme.fla to the
Stage of SubcomponentProject.fla and delete them.

This adds the component to the Library panel, but doesnt make the component visible in
the document.

6 Do one of the following:

= If you want to change all scroll bars in a document, enter the following code in the Actions
panel on Frame 1 of the Timeline:
import mx.controls.List

import mx.controls.scrollClasses.ScrollBar
Scrol1Bar.prototype.downArrowDownName = "MyScrollDownArrowDown";

You can then either enter the following code on Frame 1 to create a list dynamically:

createClassObject(List, "myListBox", 0, {dataProvider: ["AL","AR","AZ",
MCAT L HIM L UTD™ L TKATLULAT UMA™T)

Or, you can drag a List component from the library to the Stage.

= Ifyou want to change a specific scroll bar in a document, enter the following code in the
Actions panel on Frame 1 of the Timeline:

import mx.controls.List

import mx.controls.scrollClasses.ScrollBar

var oldName = ScrollBar.prototype.downArrowDownName;

ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

createClassObject(List, "mylListl", 0, {dataProvider: ["AL","AR","AZ",
"CA"™,"HI","ID", "KA"™,"LA","MA"1});

myListl.redraw(true);

ScrollBar.prototype.downArrowDownName = oldName;

Note: You must set enough data to have the scroll bars show up, or set the vScrol1Policy
property to true.

7 Select Control > Test Movie.

About skinning components 39

You can also set subcomponent skins for all components in a document by setting the skin
property on the subcomponent’s prototype object in the #initc1ip section of a skin symbol.
For more information about the prototype object, see Function.prototype in ActionScript
Dictionary Help.

To use #initclip to apply an edited skin to all components in a document, do the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin. For this

example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a new Flash document. Save it with a unique name such as

SkinsInitExample.fla.

3 Select the MyScrollDownArrowDown symbol from the library of the edited theme library
example, drag it to the Stage of SkinsInitExample.fla, and delete it.

This adds the symbol to the library without making it visible on the Stage.

4 Select MyScrollDownArrowDown in the SkinsInitExample.fla library and select Linkage from
the Options menu.

5 Select the Export for ActionScript check box. Click OK.

Export in First Frame is automatically selected.
6 Double-click MyScrollDownArrowDown in the library to open it in symbol-editing mode.
7 Enter the following code on Frame 1 of the MyScrollDownArrowDown symbol:

fFinitclip 10
import mx.controls.scrollClasses.ScrollBar;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
ffendinitclip

8 Do one of the following to add a List component to the document:

= Drag a List component from the Components panel to the Stage. Enter enough label
parameters so that the vertical scroll bar will appear.

= Drag a List component from the Components panel to the Stage and delete it. Enter the
following code on Frame 1 of the main Timeline of SkinsInitExample.fla:
createClassObject(mx.controls.List, "mylListBox1", 0, {dataProvider:
["AL","AR","AZ", "CA"™,"HI","ID", "KA","LA","MA"J});
Note: Add enough data so that the vertical scroll bar appears, or set vScrol1Policy to true.
The following example explains how to skin something that’s already on the stage. This example
skins only Lists; any TextArea or ScrollPane scroll bars would not be skinned.

To use #initclip to apply an edited skin to specific components in a document, do
the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

Select File > New and create a Flash document.

Select File > Save and give the file a unique name, such as MyVScroll Test.fla.

Drag MyScrollDownArrowDown from the theme library to the MyVScrollTest.fla library.
Select Insert > New Symbol and give it a unique name like MyVScrollBar.

Select the Export for ActionScript check box. Click OK.

Export in First Frame is automatically selected.

A N R W N

40

Chapter 3: Customizing Components

7 Enter the following code on Frame 1 of the MyVScrollBar symbol:
fFinitclip 10
import MyVScrollBar
Object.registerClass("VScrollBar", MyVScrollBar);
ffendinitclip
8 Drag a List component from the Components panel to the Stage.
9 In the Property inspector, enter as many Label parameters as it takes for the vertical scroll bar
to appear.
10 Select File > Save.
11 Select File > New and create a new ActionScript file.
12 Enter the following code:

import mx.controls.VScrollBar
import mx.controls.List
class MyVScrollBar extends VScrollBar{
function init():Void{
if (_parent instanceof List){
downArrowDownName = "MyScrollDownArrowDown";
}
super.init();
}
}

13 Select File > Save and save this file as MyVScrollBar.as.

14 Click a blank area on the Stage and, in the Property inspector, select the Publish
Settings button.

15 Select the ActionScript version Settings button.

16 Click the Plus (+) button to add a new classpath, and select the Target button to browse to the
location of the MyComboBox.as file on your hard drive.

17 Select Control > Test Movie.

Changing skin properties in the prototype

If a component does not directly support skin variables, you can subclass the component and
replace its skins. For example, the ComboBox component doesn’t directly support skinning its
drop-down list because the ComboBox uses a List component as its drop-down list.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in Chapter 4, “Components Dictionary,” on page 43.
To skin a subcomponent, do the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a Flash document.
3 Select File > Save and give the file a unique name, such as MyComboTest.fla.

4 Drag MyScrollDownArrowDown from the theme library above to the Stage of
MyComboTest.fla and delete it.

This adds the symbol to the library, but doesn’t make it visible on the Stage.

5 Select Insert > New Symbol and give it a unique name, such as MyComboBox.

About skinning components 11

6 Select the Export for ActionScript check box and click OK.
Export in First Frame is automatically selected.

7 Enter the following code in the Actions panel on Frame 1 actions of MyComboBox:
#initclip 10
import MyComboBox
Object.registerClass("ComboBox", MyComboBox);
f#fendinitclip

8 Drag a ComboBox component to the Stage.

9 In the Property inspector, enter as many Label parameters as it takes for the vertical scroll bar
to appear.

10 Select File > Save.
11 Select File > New and create a new ActionScript file (Flash Professional only).
12 Enter the following code:

import mx.controls.ComboBox
import mx.controls.scrollClasses.ScrollBar
class MyComboBox extends ComboBox{
function getDropdown():0bject{
var oldName = ScrollBar.prototype.downArrowDownName;
Scrol1Bar.prototype.downArrowDownName = "MyScrollDownArrowDown";
var r = super.getDropdown();
ScrollBar.prototype.downArrowDownName = oldName;
return r;
}
}

13 Select File > Save and save this file as MyComboBox.as.

14 Click a blank area on the Stage and, in the Property inspector, select the Publish
Settings button.

15 Select the ActionScript version Settings button.

16 Click the Plus (+) button to add a new classpath, and select the Target button to browse to the
location of the MyComboBox.as file on your hard drive.

17 Select Control > Test Movie.

42

Chapter 3: Customizing Components

CHAPTER 4
Components Dictionary

This reference chapter describes each component and each component’s application

programming interface (API).

Each component description contains information about the following:

® Keyboard interaction
® Live preview

® Accessibility

® Setting the component parameters

® Using the component in an application

® Customizing the component with styles and skins

® ActionScript methods, properties, and events

Components are presented alphabetically. You can also find components arranged by category in

the following tables:

User interface (Ul) components

Component

Description

Accordion component (Flash
Professional only)

Alert component (Flash
Professional only)

Button component
CheckBox component

ComboBox component

DateChooser component
(Flash Professional only)

DateField component (Flash
Professional only)

A set of vertical overlapping views with buttons along the top that
allow users to switch views.

A window that presents the user with a question and buttons to
capture their response.

A resizable button that can be customized with a custom icon.
Allows users to make a Boolean (true or false) choice.

Allows users to select one option from a scrolling list of choices.
This component can have an selectable text field at the top of the
list that allows users to search the list.

Allows users to select a date or dates from a calendar.

A unselectable text field with a calendar icon. When a user clicks
anywhere inside the bounding box of the component, a
DateChooser component is displayed.

43

Component

Description

DataGrid component (Flash
Professional only)

LLabel component
List component
L_oader component

Menu component (Flash
Professional only)

MenuBar component (Flash
Professional only)

NumericStepper component
ProgressBar component
RadioButton component

ScrollPane component

TextArea component
Textlnput component

Tree component (Flash
Professional only)

Window component

Allows users to display and manipulate multiple columns of data.

A non-editable, single-line text field.
Allows users to select one or more options from a scrolling list.
A container that holds a loaded SWF or JPEG file.

Allows users to select one command from a list; a standard
desktop application menu.

A horizontal bar of menus.

Clickable arrows that raise and lower the value of an number.
Displays the progress of a process, usually loading.
Allows users to select between mutually exclusive options.

Displays movies, bitmaps, and SWF files in a limited area using
automatic scroll bars.

An optionally editable, multiline text field.
An optionally editable, single-line text input field.

Allows a user to manipulate hierarchical information.

A draggable window with a title bar, caption, border, and Close
button that display content to the user.

Data components

Component

Description

Data binding classes (Flash
Professional only)

DataHolder component (Flash
Professional only)

DataProvider API

DataSet component (Flash
Professional only)

RDBMSResolver component
(Flash Professional only)

Web service classes (Flash
Professional only)

WebServiceConnector class
(Flash Professional only)

These classes implement the Flash runtime data
binding functionality.

Holds data and can be used as a connector between components.

This component is the model for linear-access lists of data. This
model provides simple array-manipulation capabilities that
broadcast their changes.

A building block for creating data-driven applications.

Allows you to save data back to any supported data source. This
resolver component translates the XML that can be received and
parsed by a web service, JavaBean, servlet, or ASP page.

These classes allow access to web services that use Simple Object
Access Protocol (SOPAP) found in the mx.services package.

Provides scriptless access to web service method calls.

44

Chapter 4: Components Dictionary

Component Description

XMLConnector component Reads and writes XML documents using the HTTP GET and
(Flash Professional only) POST methods.

XUpdateResolver component Allows you to save data back to any supported data source. This
(Flash Professional only) resolver component translates the DeltaPacket into XUpdate.

Media components

Component Description

MediaController component Controls streaming media playback in an application.
MediaDisplay component Displays streaming media in an application

MediaPlayback component A combination of the MediaDisplay and
MediaController components.

For more information on these components, see “Media components (Flash Professional only)”

on page 325.
Managers
Component Description
DepthManager class Manages the stacking depths of objects.
FocusManager class Handles Tab key navigation between components on the screen.
Also handles focus changes as users click in the application.
PopUpManager class Allows you to create and delete pop-up windows.
StyleManager class Allows you to register styles and manages inherited styles.
Screens
Component Description

Form class (Flash Professional Allows you to manipulate form application screens at runtime.
only)

Screen class (Flash Base class for the Slide and Form classes.
Professional only)

Slide class (Flash Professional Allows you to manipulate slide presentation screens at runtime.
only)

Accordion component (Flash Professional only)

The Accordion component is a navigator that contains a sequence of children that it displays one
at a time. The children must be a subclass of the UIObject class (which includes all components
and screens built using version 2 of the Macromedia Component Architecture), but most
commonly children are a subclass of the View class. This includes movie clips assigned to the class
mx.core.View. To maintain tabbing order in an accordion’s children, the children must also be
instances of the View class.

Accordion component (Flash Professional only) 45

An accordion creates and manages header buttons that a user can press to navigate between the
accordion’s children. An accordion has a vertical layout with header buttons that span the width
of the component. There is one header associated with each child, and each header belongs to the
accordion—not to the child. When a user clicks a header, the associated child is displayed below
that header. The transition to the new child uses a transition animation.

An accordion with children accepts focus, and changes the appearance of its headers to display
focus. When a user tabs into an accordion, the selected header displays the focus indicator. An
accordion with no children does not accept focus. Clicking components that can take focus
within the selected child gives them focus. When an Accordion instance has focus, you can use
the following keys to control it:

Key Description

Down arrow, Right arrow Moves focus to the next child header. Focus wraps from last to first
without changing the selected child.

Up arrow, Left arrow Moves focus to the previous child header. Focus wraps from first to last
without changing the selected child.

End Selects the last child.

Enter/Space Selects the child associated with the header that has focus.

Home Selects the first child.

Page Down Selects the next child. Selection wraps from the last child to the first child.

Page Up Selects the previous child. Selection wraps from the first child to the
last child.

Shift +Tab Moves focus to the previous component. This component may be inside

the selected child, or outside the accordion; it will never be another
header in the same accordion.

Tab Moves focus to the next component. This component may be inside the
selected child, or outside the accordion; it will never be another header in
the same accordion.

The Accordion component cannot be made accessible to screen readers.

Using the Accordion component (Flash Professional only)

The Accordion component can be used to present multi-part forms. For example, a three-child
accordion might present forms where the user fills out her shipping address, billing address, and
payment information for an e-commerce transaction. Using an accordion instead of multiple web
pages minimizes server traffic and allows the user to maintain a better sense of progress and
context in an application.

Accordion parameters

The following are authoring parameters that you can set for each Accordion component instance
in the Property inspector or in the Component Inspector panel:

childSymbols An array specifying the linkage identifiers of the library symbols to be used to
create the accordion's children. The default value is [] (empty array).

46

Chapter 4: Components Dictionary

childNames An array specifying the instance names of the accordion’s children. The default
value is [] (empty array).

childLabels An array specifying the text labels to use on the accordion’s headers. The default
value is [] (empty array).

childlcons An array specifying the linkage identifiers of the library symbols to be used as the
icons on the accordion's headers. The default value is [] (empty array).

You can write ActionScript to control these and additional options for the Accordion component
using its properties, methods, and events. For more information, see “Accordion class (Flash
Professional only)” on page 50.

Creating an application with the Accordion component

In this example, an application developer is building the checkout section of an online store. The
design calls for an accordion with three forms in which users enter their shipping address, billing
address, and payment information. The shipping address and billing address forms are identical.
To use screens to add an Accordion component to an application:

1 In Flash, select File > New and select Flash Form Application.

2 Double-click the text Form1 and enter the name addressForm.

Although it doesn't show up in the library, the addressForm screen is a symbol of the Screen
class (which is a subclass of the View class), which an accordion can use as a child.

3 With the form selected, in the Property inspector, set its visible property to false.
This hides the contents of the form in the application; the form only appears in the Accordion.

4 Drag components such as Label and TextInput from the Components panel onto the form to
create a mock address form; arrange them, and set their properties in the Parameters pane of the
Component Inspector panel.

Position the form elements in the upper left corner of the form. The upper left corner of the
form is placed in the upper left corner of the Accordion.

5 Repeat steps 2-4 to create a screen named checkoutForm.
6 Create a new form named accordionForm.

7 Drag an Accordion component from the Components panel to the accordionForm form and
name it myAccordion.

8 With myAccordion selected, in the Property inspector, do the following:
= For the childSymbols property, enter addressForm, addressForm, and checkoutForm.

These strings specify the names of the screens used to create the accordion's children.

Note: The first two children are instances of the same screen, because the shipping address
form and the billing address form have identical components.

= For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion's children.

= For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

9 Select Control > Test Movie.

Accordion component (Flash Professional only) 47

To add an Accordion component to an application, do the following:

1
2
3

Select File > New and create a new Flash Document.
Select Insert > New Symbol and name it AddressForm.

In the Create New Symbol dialog, click the Advanced button and select Export for
ActionScript. In the AS 2.0 class field, enter mx.core.View.

To maintain tabbing order in an accordion’s children, the children must also be instances of the
View class.

Drag components such as Label and TextInput from the Components panel onto the Stage to
create a mock address form; arrange them, and set their properties in the Parameters pane of the
Component Inspector panel.

Position the form elements in relation to 0, 0 (the middle) on the Stage. The 0, 0 coordinate of
the movie clip is placed in the upper left corner of the Accordion.

Select Edit > Edit Document to return to the main Timeline.

Repeat steps 2-5 to create a movie clip named CheckoutForm.

7 Drag an Accordion component from the Components panel to add it to the Stage on the

9

main Timeline.

In the Property inspector, do the following:

= Enter the instance name myAccordion.

= For the childSymbols property, enter AddressForm, AddressForm, and CheckoutForm.

These strings specify the names of the movie clips used to create the accordion's children.

Note: The first two children are instances of the same movie clip, because the shipping address
form and the billing address form are identical.

= For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion's children.

» For the childlLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

= For the childIcons property, enter Addresslcon, Addresslcon, and Checkoutlcon.

These strings specify the linkage identifiers of the movie clip symbols that are used as the
icons on the accordion headers. You must create these movie clip symbols if you want icons
in the headers.

Select Control > Test Movie.

To use ActionScript to add children to an Accordion component, do the following:

1
2
3

Select File > New and create a Flash Document.
Drag an Accordion component from the Components panel to the Stage.

In the Property inspector, enter the instance name myAccordion.

4 Draga TextInput component to the Stage and delete it.

This adds it to the Library so that you can dynamically instantiate it in step 6.

48

Chapter 4: Components Dictionary

5 In the Actions panel on Frame 1 of the Timeline, enter the following:

myAccordion.createChild("View", "shippingAddress", { Tabel: "Shipping
Address" });

myAccordion.createChild("View", "billingAddress", { label: "Billing Address"
1)

myAccordion.createChild("View", "payment", { Tabel: "Payment" });

This code calls the createChild() method to create its child views.

6 In the Actions panel on Frame 1, below the code you entered in step 4, enter the following code:

var o = myAccordion.shippingAddress.createChild("TextInput", "firstName");
o.move(20, 38);

.setSize(116, 20);

= myAccordion.shippingAddress.createChild("TextInput", "lastName");
.move(1l75, 38);

.setSize(145, 20);

O O O o

This code adds component instances (two TextInput components) to the accordion’s children.

Customizing the Accordion component (Flash Professional only)

You can transform an Accordion component horizontally and vertically both while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The setSize() method and the Transform tool only change the width of the accordion's headers
and the width and height of its content area. The height of the headers and the width and height
of the children are not affected. Calling the setSize() method is the only way to change the
bounding rectangle of an accordion.

If the headers are too small to contain their label text, the labels are clipped. If the content area of
an accordion is smaller than a child, the child is clipped.

Using styles with the Accordion component

You can set style properties to change the appearance of the border and background of an
Accordion component.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than non-color style properties. For more information, see “Using styles to customize component
color and text” on page 27.

An Accordion component supports the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

backgroundColor The background color.

borderColor The border color.

borderStyle The border style; possible values are "none", "solid", "inset", "outset",

"default”, "alert". The "default" value is the look of the Window component’s
border and the "alert" value is the look of the Alert component’s border.

Accordion component (Flash Professional only) 49

Style Description

headerHeight The height of the header buttons in pixels.

color The header text color.

disabledColor The color of a disabled accordion.

fontFamily The font name for the header labels.

fontSize The point size for the font of the header labels.

fontStyle The font style for the header labels; either "normal”, or "italic".
fontWeight The font weight for the header labels; either "normal", or "bold".
textDecoration The text decoration; either "none", or "underline".

openDuration The duration, in milliseconds, of the transition animation.
openEasing The tweening function used by the animation.

Using skins with the Accordion component

The Accordion component uses skins to represent the visual states of its header buttons. To skin
the buttons and title bar while authoring, modify skin symbols in the Flash Ul Components 2/
Themes/MMDefault/Accordion Assets skins states folder in the library of one of the themes FLA
files. For more information, see “About skinning components” on page 36.

An Accordion component is composed of its border and background, its header buttons, and its
children. The border and background are styleable, but not skinnable. The headers are skinnable,
but not styleable, using the subset of skins inherited from button listed below. An Accordion
component uses the following skin properties to dynamically skin the header buttons:

Property Description Default value

falseUpSkin The up state. accordionHeaderSkin
falseDownSkin The pressed state. accordionHeaderSkin
falseOverSkin The rolled-over state. accordionHeaderSkin
trueUpSkin The toggled state. accordionHeaderSkin

Accordion class (Flash Professional only)

Inheritance UIObject > UIComponent > View > Accordion
ActionScript Class Name mx.containers.Accordion

An Accordion is a component that contains children that are displayed one at a time. Each child
has a corresponding header button that is created when the child is created. A child must be an
instance of UIObject.

A movie clip symbol automatically becomes an instance of the UIObject class when it becomes a
child of an accordion. However, to maintain tabbing order in an accordion’s children, the children
must also be instances of the View class. If you use a movie clip symbol as a child, set its AS 2.0
class field to mx.core.View so that it inherits from the View class.

50

Chapter 4: Components Dictionary

Setting a property of the Accordion class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:

trace(mx.controls.Accordion.version);

Note: The following code returns undefined: trace(myAccordionInstance.version);.

Method summary for the Accordion class

Method

Description

Accordion.createChild()

Accordion.createSegment()

Accordion.destroyChildAt()

Accordion.getChildAt()

Creates a child for an accordion instance.

Creates a child for an accordion instance. The parameters for this
method are different from those of the createChild() method.

Destroys a child at a specified index position.

Gets a reference to a child at a specified index position.

Inherits all methods from UIObject, UIComponent and mx.core.View.

Property summary for the Accordion class

Property

Description

Accordion.numChildren
Accordion.selectedChild

Accordion.selectedIndex

The number of children of an accordion instance.
A reference to the selected child.

The index position of the selected child.

Inherits all properties from UIObject, UIComponent and mx.core.View.

Event summary for the Accordion class

Event

Description

Accordion.change

Broadcast to all registered listeners when the selectedIndex and
selectedChild properties of an accordion change due to a user’s
mouse click or key press.

Inherits all events from UIObject, UIComponent and mx.core.View.

Accordion component (Flash Professional only)

51

Accordion.change

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage

lTistenerObject = new 0Object();
listenerObject.change = function(eventObject)
// insert your code here
}
myAccordionInstance.addEventlListener("change", TistenerObject)

Description

Event; broadcast to all registered listeners when the selectedIndex and selectedChild
properties of an accordion change. This event is broadcast only when a user’s mouse click or key
press changes the value selectedChild or selectedIndex—not when the value is changed with
ActionScript. This event is broadcast before the transition animation occurs.

V2 components use a dispatcher/listener event model. The Accordion component dispatches a
change event when one of its buttons is pressed and the event is handled by a function (also
called a handler) on a listener object (717stenerObject) that you create. You call the
addEventListener() method and pass it a reference to the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. For more information about event
objects, see “Event Objects” on page 562.

Example

In the following example, a handler called myAccordionListener is defined and passed to the
myAccordion.addEventListener() method as the second parameter. The event object is
captured by change handler in the evtObject parameter. When the change event is broadcast, a
trace statement is sent to the Output panel, as follows:

myAccordionListener = new Object();
myAccordionListener.change = function(){
trace("Changed to different view");
}
myAccordion.addEventlListener("change", myAccordionlListener);

Accordion.createChild()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myAccordion.createChild(classOrSymbolName, instanceNamel, initialProperties])

52 Chapter 4: Components Dictionary

Parameters

classOrSymbolName This parameter can either be the constructor function for the class of the
UIODbject to be instantiated, or the linkage name, a reference to the symbol to be instantiated.
The class must be UIObject or a subclass of UIODbject, but most often it is a View or a subclass
of View.

instanceName The instance name of the new instance.

initialProperties An optional parameter that specifies initial properties for the new
instance. You can use the following properties:

® label This string specifies the text label that the new child instance uses on its header.

® icon This string specifies the linkage identifier of the library symbol that the child uses for
the icon on its header.

Returns
A reference to an instance of the UIODbject that is the newly created child.
Description

Method (inherited from View); creates a child for the Accordion. The newly created child is
added to the end of the list of children owned by the Accordion. Use this method to place views
inside the accordion. The created child is an instance of the class or movie clip symbol specified in
the classOrSymbolName parameter. You can use the 1abel and icon properties to specify a text
label and an icon for the associated accordion header for each child in the initialProperties
parameter.

When each child is created, it is assigned an index number in the order of creation and the
numChildren property is increased by 1.

Example

The following code creates an instance of the movie clip symbol PaymentForm named payment
as the last child of myAccordion:

var child = myAccordion.createChild("PaymentForm", "payment", { Tlabel:
"Payment", Icon: "paylcon" });

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:

var child = myAccordion.createChild(mx.core.View, "payment", { label:
"Payment", Icon: "paylcon" });

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:

import mx.core.View

var child = myAccordion.createChild(View, "payment", { label: "Payment", Icon:
"paylcon" });

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

Accordion component (Flash Professional only) 53

Accordion.createSegment()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

myAccordion.createSegment(classOrSymbolName, instanceNamel[, Tabell, iconl])

Parameters

classOrSymbolName This parameter can be either a reference to the constructor function for
the class of the UIObject to be instantiated, or the linkage name of the symbol to be instantiated.

The class must be UIObject or a subclass of UIODbject, but most often it is a View or a subclass
of View.

instanceName The instance name of the new instance.

Tabel This string specifies the text label that the new child instance uses on its header. This
parameter is optional.

icon This string is a reference to the linkage identifier of the library symbol that the child uses
for the icon on its header. This parameter is optional.

Returns

A reference to the newly created UIODbject instance.

Description

Method; creates a child for the Accordion. The newly created child is added to the end of the list
of children owned by the Accordion. Use this method to place views inside the accordion. The
created child is an instance of the class or movie clip symbol specified in the c7ass0rSymbolName

parameter. You can use the 7abel and 7con parameters to specify a text label and an icon for the
associated accordion header for each child.

The createSegment () method differs from the createChild() method in that 7ape7 and 7con
are passed directly as parameters, not as properties of an initalProperties parameter.

When each child is created, it is assigned an index number in the order of creation and the
numChildren property is increased by 1.

Example

The following example creates an instance of the PaymentForm movie clip symbol named
payment as the last child of myAccordion:

var child = myAccordion.createSegment("PaymentForm", "payment", "Payment",
"paylcon");

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:

var child = myAccordion.createSegment(mx.core.View, "payment", { label:
"Payment", Icon: "paylcon" });

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

54

Chapter 4: Components Dictionary

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:

import mx.core.View

var child = myAccordion.createSegment(View, "payment", { Tabel: "Payment",
Icon: "paylcon" });

child.cardType.text = "Visa";

child.cardNumber.text = "1234567887654321";

Accordion.destroyChildAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myAccordion.destroyChildAt(7ndex)

Parameters

index The index number of the accordion child to destroy. Each child of an accordion is
assigned a zero-based index number in the order that it was created.

Returns
Nothing.
Description

Method (inherited from View); destroys one of the accordion's children. The child to be
destroyed is specified by its index, which is passed to the method in the index parameter. Calling
this method destroys the corresponding header as well.

If the destroyed child is selected, a new selected child is chosen. If there is a next child, it is
selected. If there is no next child, the previous child is selected. If there is no previous child, the
selection is undefined.

Note: Calling the destroyChildAt () method decreases the numChildren property by 1.
Example

The following code destroys the last child of myAccordion:
myAccordion.destroyChildAt(myAccordion.numChildren - 1);
See also

Accordion.createChild()

Accordion component (Flash Professional only) 55

Accordion.getChildAt()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myAccordion.getChildAt(index)

Parameters

index The index number of an accordion child. Each child of an accordion is assigned a
zero-based index in the order that it was created.

Returns
A reference to the instance of the UIObject at the specified index.
Description

Method; returns a reference to the child at the specified index. Each accordion child is given an
index number for its position. This index number is zero-based, so the first child is 0, the second
child is 1, and so on.

Example

The following code gets a reference to the last child of myAccordion:
var lastChild:UIObject = myAccordion.getChildAt(myAccordion.numChildren - 1);

Accordion.numChildren

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.
Usage

myAccordion.numChildren
Description

Property (inherited from View); indicates the number of children (child UIObjects) in an
accordion instance. Headers are not counted as children.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The code myAccordion.numChild - 1
always refers to the last child added to an accordion. For example, if there were 7 children in an
accordion, the last child would have the index 6. The numChildren property is not zero-based so
the value of myAccordion.numChildren would be 7. The result of 7 - 1 is 6 which is the index
number of the last child.

56 Chapter 4: Components Dictionary

Example

The following example selects the last child:

myAccordion.selectedIndex = myAccordion.numChildren - 1;

Accordion.selectedChild
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myAccordion.selectedChild

Description

Property; the selected child if one or more children exist; undefined if no children exist. This
property is either of type UIObject, or undefined.

If the accordion has children, the code myAccordion.selectedChild is equivalent to the code
myAccordion.getChildAt(myAccordion.selectedIndex).

Setting this property to a child causes the accordion to begin the transition animation to display

the specified child.
Changing the value of seTectedChild also changes the value of seTectedIndex.

The default value is myAccordion.getChildAt(0) if the accordion has children. If the accordion
doesn’t have children, the default value is undefined.

Example
The following example gets the label of the selected child view:
var selectedlLabel = myAccordion.selectedChild.Tabel;
The following example sets the payment form to be the selected child view:

myAccordion.selectedChild = myAccordion.payment;
See also

Accordion.selectedIndex

Accordion.selectedindex
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myAccordion.selectedIndex

Accordion component (Flash Professional only) 57

Description

Property; the zero-based index of the selected child in an accordion with one or more children.
For an accordion with no child views, the only valid value is undefined.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The valid values of selectedIndex are 0,
1,2, ..., n- 1, where n is the number of children.

Setting this property to a child causes the accordion to begin the transition animation to display

the specified child.

Changing the value of seTectedIndex also changes the value of selectedChild.
Example

The following example remembers the index of the selected child:

var oldSelectedIndex = myAccordion.selectedIndex;

The following example selects the last child:

myAccordion.selectedIndex = myAccordion.numChildren - 1;
See also

Accordion.selectedChild, Accordion.numChildren

Alert component (Flash Professional only)

The Alert component allows you to pop up a window that presents the user with a message and
response buttons. The Alert window has a title bar that you can fill with text, a message that you
can customize, and buttons whose labels you can change. An Alert window can have any
combination of the following buttons: Yes, No, OK, and Cancel. You can change the text labels
on the buttons by using the following properties: Alert.yeslLabel, Alert.noLabel,
Alert.okLabel, and Alert.cancellabel. You cannot change the order of the buttons in an
Alert window; the button order is always OK, Yes, No, Cancel.

To pop up an Alert window, you must call the Alert.show() method. In order to call the
method successfully, the Alert component must be in the library. You must drag the Alert
component from the Components panel to the Stage and then delete the Alert component from
the Stage. This adds the component to the Library but doesn’t make it visible in the document.

The live preview for the Alert component is an empty window.

The text and buttons of an Alert window can be made accessible to screen readers. When you add
the Alert component to an application, you can use the Accessibility panel to make it accessible to
screen readers. First, you must add the following line of code to enable accessibility:

mx.accessibility.AlertAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the Alert component (Flash Professional only)

The Alert can be used whenever you want to announce something to a user. For example, you
could pop up an Alert when a user doesn’t fill out a form properly, or when a stock hits a certain
price, or when a user quits an application without saving his session.

58 Chapter 4: Components Dictionary

Alert parameters

There are no authoring parameters for the Alert component. You must call the ActionScript
Alert.show() method to pop up an Alert window. You can use other ActionScript properties to
modify the Alert window in an application. For more information, see “Alert class (Flash
Professional only)” on page 61.

Creating an application with the Alert component

The following procedure explains how to add a Alert component to an application while
authoring. In this example, the Alert component pops up when a stock hits a certain price.

To create an application with the Alert component, do the following:

1 Double-click the Alert component in the Components panel to add it to the Stage.

2 Press Backspace (Windows) or Delete (Macintosh) to delete the component from the Stage.
This adds the component to the library, but doesn’t make it visible in the application.

3 In the Actions panel, enter the following code on Frame 1 of the Timeline to define an event
handler for the c11ick event:
import mx.controls.Alert
myClickHandler = function (evt){
if (evt.detail == Alert.0K){
trace("start stock app");
// startStockApplication();
}
}
Alert.show("Launch Stock Application?", "Stock Price Alert", Alert.OK |
Alert.CANCEL, this, myClickHandler, "stockIcon", Alert.0K);

This code creates an Alert window with OK and Cancel buttons. When either button is
pressed, the myClickHandler function is called. But when the OK button is pressed, the
startStockApplication() method is called.

4 Control > Test Movie.

Customizing the Alert component (Flash Professional only)

The Alert positions itself in the center of the component that was passed as its parent parameter.
The parent must be a UIComponent. If it is a movie clip, you can register the clip as
mx.core.View so that it inherits from UIComponent.

The Alert window automatically stretches horizontally to fit the message text or any buttons that
are displayed. If you want to display large amounts of text, include line breaks in the text.

The Alert does not respond to the setSize() method.

Using styles with the Alert component

You can set style properties to change the appearance of an Alert component. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.

Alert component (Flash Professional only) 59

An Alert component supports the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal”, or "bold".

textDecoration The text decoration; either "none", or "underline".

buttonStyleDeclaration A class (static) CSSStyleDeclaration for the button’s text styles.

messageStyleDeclaration A class (static) CSSStyleDeclaration for the message’s text, border,
and background styles.

titleStyleDeclaration A class (static) CSSStyleDeclaration for the title's text styles.

Using skins with the Alert component

The Alert component uses the Window skins to represent the visual states of its buttons and title
bar. To skin the buttons and title bar while authoring, modify skin symbols in the Flash UI
Components 2/Themes/MMDefault/Window Assets skins states folder in the library of one of
the themes FLA files. For more information, see “About skinning components” on page 36.

There is ActionScript code in the RectBorder.as class that the Alert component uses to draw its
borders. You can use RectBorder styles to modify an Alert component as follows:
var myAlert = Alert.show("This is a test of errors", "Error", Alert.0K |

Alert.CANCEL, this);
myAlert.setStyle("borderStyle", "inset");

For information about RectBorder styles, see “Using skins with the List component”
on page 290.

An Alert component uses the following skin properties to dynamically skin the buttons and
title bar:

Property Description Default value
buttonUp The up state of the button. ButtonSkin
buttonDown The pressed state of the button. ButtonSkin
buttonOver The rolled-over state of button. ButtonSkin
titleBackground The window title bar. TitleBackground

60

Chapter 4: Components Dictionary

Alert class (Flash Professional only)
Inheritance UIObject > UlComponent > View > ScrollView > Window > Alert
ActionScript Class Name mx.controls.Alert

To use the Alert component, you drag an Alert component to the Stage and delete it so that the
component is in the document library but not visible in the application. Then you call
Alert.show() to pop up an Alert window. You can pass parameters to Alert.show() thatadd a
message, a title bar, and buttons to the Alert window.

Because ActionScript is asynchronous, the Alert component is not blocking, which means that
the lines of ActionScript code after the call to ATert.show() run right away. You must add
listeners to handle the c11ck events that are broadcast when a user presses a button and then
continue your code after the event is broadcast.

Note: In operating environments that are blocking (for example, Microsoft Windows), a call to
Alert.show() would not return until the user has taken an action, such as pushing a button.

Method summary for the Alert class

Event Description

Alert.show() Creates an Alert window with optional parameters.

Inherits all methods from UIObject and UIComponent.

Property summary for the Alert class

Property Description

Alert.buttonHeight The height of each button in pixels. The default value is 22.
Alert.buttonWidth The width of each button in pixels. The default value is 100.
Alert.cancellabel The label text for the Cancel button.

Alert.nolabel The label text for the No button.

Alert.okLabel The label text for the OK button.

Alert.yeslabel The label text for the Yes button.

Inherits all properties from UIObject and UIComponent.

Event summary for the Alert class

Event Description

Alert.click Broadcast when a button in an Alert window is clicked.

Inherits all events from UIObject and UIComponent.

Alert component (Flash Professional only) 61

Alert.buttonHeight
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
Alert.buttonHeight

Description

Property (class); a class property (static) that changes the height of the buttons.

See also

Alert.buttonWidth

Alert.buttonWidth
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
Alert.buttonWidth

Description

Property (class); a class property (static) that changes the width of the buttons.

See also

Alert.buttonHeight

Alert.click
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage

clickHandler = function(eventObject){
// insert code here

}

Alert.show(messagel, titlel, flagsl, parentl,

defaultButtonl]1111)

clickHandler[,

iconl,

62 Chapter 4: Components Dictionary

Description
Event; broadcast to the registered listener when the OK, Yes, No, or Cancel button is clicked.

V2 components use a dispatcher/listener event model. The Alert component dispatches a c1ick
event when one of its buttons is clicked and the event is handled by a function, also called a
handler, on a listener object (77stenerObject) that you create. You call the Alert. show()
method and pass it the name of the handler as a parameter. When a button in the Alert window is
clicked, the listener is called.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Alert.click event’s event
object has an additional detail property whose value is one of the following depending on which
button was clicked: ATert.0K, Alert.CANCEL, Alert.YES, Alert.NO. For more information
about event objects, see “Event Objects” on page 562.

Example

In the following example, a handler called myC11ickHandler is defined and passed to the
Alert.show() method as the 5th parameter. The event object is captured by myC11ickHandler in
the evt parameter. The detail property of the event object is then used within a trace
statement to send the name of the button that was clicked (Alert.0K or Alert.CANCEL) to the
Output panel, as follows:

myClickHandler = function(evt){
if(evt.detail == Alert.0K)({
trace(Alert.oklLabel);
jelse if (evt.detail == Alert.CANCEL){
trace(Alert.cancellabel);
}
}
Alert.show("This is a test of errors”, "Error", Alert.0K | Alert.CANCEL, this,
myClickHandler);

Alert.cancellLabel
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
Alert.cancellabel

Description
Property (class); a class property (static) that indicates the label text on the Cancel button.
Example

The following example sets the Cancel button’s label to “cancellation”:

Alert.cancellabel = "cancellation";

Alert component (Flash Professional only) 63

Alert.noLabel
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
Alert.nolabel

Description
Property (class); a class property (static) that indicates the label text on the No button.
Example

The following example sets the No button’s label to “nyet”:

Alert.nolLabel = "nyet";

Alert.okLabel
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
Alert.oklLabel

Description
Property (class); a class property (static) that indicates the label text on the OK button.
Example

The following example sets the OK button’s label to “okay”:
Alert.okLabel = "okay";

Alert.show()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage

Alert.show(messagel, titlel, flagsl, parentl, clickHandlerl, iconl,
defaultButtonl]1111)

64 Chapter 4: Components Dictionary

Parameters
message The message to display.

title The text in the Alert title bar. This parameter is optional. If the ¢ 7t e parameter is not
specified, the title bar is blank.

flags An optional parameter that indicates the button or buttons to display in the Alert
window. The default value is Alert . 0K, which displays an “OK” button. When you use
more than one value, separate the values with a | character. The value can be one or more of
the following:

® Alert.OK

® Alert.CANCEL

® Alert.YES

® Alert.NO

You can also use Alert.NONMODAL to indicate that the Alert window is non-modal. A non-modal
window allows a user to interact with other windows in the application.

parent The parent window for the Alert component. The Alert window centers itself in the
parent window. Use the value null or undefined to specify the _root Timeline. The parent
window must inherit from the UIComponent class. You can register the parent window with
mx.core.View to cause it to inherit from UIlComponent. This parameter is optional.

clickHandler A handler for the c1ick events broadcast when the buttons are clicked. In
addition to the standard click event object properties, there is an additional detai1 property,
which contains the value of the button flag that was clicked (Alert.0K, Alert.CANCEL,
Alert.YES, Alert.NO). This handler may be a function or an object. For more information, see
Chapter 2, “Using component event listeners,” on page 22.

icon A string that is the linkage identifier of a symbol in the library to use as an icon that is
displayed to the left of the text. This parameter is optional.

defaultButton Indicates which button is clicked when a user presses Enter (Windows) or
Return (Macintosh). This parameter can be one of the following values:

® Alert.OK

® Alert.CANCEL
® Alert.YES

® Alert.NO

Returns
The instance of the Alert class that is created.
Description

Method (class); a class (static) method that displays an Alert window with a message, an optional
title, optional buttons, and an optional icon. The title of the Alert appears at the top of the
window and is aligned to the left. The icon appears to the left of the message text. The buttons
appear centered below the message text and the icon.

Alert component (Flash Professional only) 65

Example

The following code is a simple example of a modal Alert window with an OK button:
Alert.show("Hello, world!");

The following code defines a click handler that sends a message to the Output panel about which
button was clicked:

myClickHandler = function(evt){
trace (evt.detail + "was clicked");

}

Alert.show("This is a test of errors”, "Error", Alert.0K | Alert.CANCEL, this,
myClickHandler);

Note: The event object’s detail property returns a number to represent each button. The OK buttons
is 4, the cancel button is 8, the yes button is 1, and the no button is 2.

Alert.yesLabel

Availability

B

Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
Alert.yeslLabel

Description

Property (class); a class property (static) that indicates the label text on the Yes button.

Example
The following example sets the OK button’s label to “da™:
Alert.yeslLabel = "da";

utton component

The Button component is a resizable rectangular user interface button. You can add a custom
icon to a button. You can also change the behavior of a button from push to toggle. A toggle
button stays pressed when clicked and returns to its up state when clicked again.

A button can be enabled or disabled in an application. In the disabled state, a button doesn’t
receive mouse or keyboard input. An enabled button receives focus if you click it or tab to it.
When a Button instance has focus, you can use the following keys to control it:

Key Description

Shift + Tab Moves focus to the previous object.

Spacebar Presses or releases the component and triggers the c11ick event.
Tab Moves focus to the next object.

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

66

Chapter 4: Components Dictionary

A live preview of each Button instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. However, in the live preview a custom
icon is represented on the Stage by a gray square.

When you add the Button component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to enable
accessibility for the Button component:

mx.accessibility.ButtonAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the Button component

A button is a fundamental part of any form or web application. You can use buttons wherever you
want a user to initiate an event. For example, most forms have a “Submit” button. You could also
add “Previous” and “Next” buttons to a presentation.

To add an icon to a button, you need to select or create a movie clip or graphic symbol to use as
the icon. The symbol should be registered at 0, 0 for appropriate layout on the button. Select the
icon symbol in the Library panel, open the Linkage dialog from the Options menu, and enter a
linkage identifier. This is the value to enter for the icon parameter in the Property inspector

or Component Inspector panel. You can also enter this value for the Button.icon

ActionScript property.

Note: If anicon is larger than the button it will extend beyond the button’s borders.

Button parameters

The following are authoring parameters that you can set for each Button component instance in
the Property inspector or in the Component Inspector panel:

label sets the value of the text on the button; the default value is Button.

icon adds a custom icon to the button. The value is the linkage identifier of a movie clip or
graphic symbol in the library; there is no default value.

toggle turns the button into a toggle switch. If true, the button remains in the down state when
pressed and returns to the up state when pressed again. If false, the button behaves like a normal
push button; the default value is false.

selected if the toggle parameter is true, this parameter specifies whether the button is pressed
(true) or released (false). The default value is false.

labelPlacement orients the label text on the button in relation to the icon. This parameter can be
one of four values: left, right, top, or bottom; the default value is right. For more information, see
Button.labelPlacement.

You can write ActionScript to control these and additional options for Button components using
its properties, methods, and events. For more information, see Button class.
Creating an application with the Button component

The following procedure explains how to add a Button component to an application while
authoring. In this example, the button is a Help button with a custom icon that will open a Help
system when a user presses it.

Button component 67

To create an application with the Button component, do the following:
1 Drag a Button component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name helpBtn.
3 In the Property inspector, do the following:
= Enter Help for the label parameter.
= Enter HelpIcon for the icon parameter.

To use an icon, there must be a movie clip or graphic symbol in the library with a linkage
identifier to use as the icon parameter. In this example, the linkage identifier is HelpIcon.

= Set the toggle property to true.

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

clippylListener = new Object();

clippyListener.click = function (evt){
clippyHelper.enabled = evt.target.selected;

}

helpBtn.addEventlListener("click", clippylListener);

The last line of code adds a c11 ck event handler to the he1pBtn instance. The handler enables
and disables the c11ippyHelper instance, which could be a Help panel of some sort.

Customizing the Button component

You can transform a Button component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the Button class (see Button
class). Resizing the button does not change the size of the icon or label.

The bounding box of a Button instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label clips to fit.

If an icon is larger than the button it will extend beyond the button’s borders.

Using styles with the Button component

You can set style properties to change the appearance of a button instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”

on page 27.

A Button component supports the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that doesn’t inherit its
value. Possible values are "haloGreen", "haloBlue", and "haloOrange".

color The text of a component label.
disabledColor The disabled color for text.
fontFamily The font name for text.

fontSize The point size for the font.

68

Chapter 4: Components Dictionary

Style Description

fontStyle The font style: either "normal”, or "italic".

fontWeight The font weight: either "normal”, or "bold".

Using skins with the Button component

The Button component uses the ActionScript drawing API to draw the button states. To skin the
Button component while authoring, modify the ActionScript code within the ButtonSkin.as file
located in the First Run\Classes\mx\skins\halo folder.

Ifyou use the UTObject.createClassObject() method to create a Button component instance
dynamically (at runtime), you can skin it dynamically. To skin a component at runtime, set the
skin properties of the initObject parameter that is passed to the createClassObject()
method. These skin properties set the names of the symbols to use as the button’s states, both with
and without an icon.

If you set the icon parameter while authoring or the icon ActionScript property at runtime, the
same linkage identifier is assigned to three icon states: falseUpIcon, falseDownIcon, and
trueUpIcon. If you want to designate a unique icon for any of the eight icon states (if, for
example, you want a different icon to appear when a user presses a button) you must set
properties of the initObject parameter that is passed to the createClassObject () method.

The following code creates an object called init0Object to use as the initObject parameter and
sets skin properties to new symbol linkage identifiers. The last line of code calls the
createClassObject() method to create a new instance of the Button class with the properties
passed in the initObject parameter, as follows:

var initObject = new Object();

initObject.falseUplcon = "MyFalseUpIcon";

initObject.falseDownlcon = "MyFalseDownlIcon";

initObject.trueUplcon = "MyTrueUpIcon";
createClassObject(mx.controls.Button, "ButtonInstance", 0, initObject);

For more information, see “About skinning components” on page 36, and
UIObject.createClassObject().

If a button is enabled, it displays its over state when the pointer moves over it. The button receives
input focus and displays its down state when it’s clicked. The button returns to its over state when
the mouse is released. If the pointer moves off the button while the mouse is pressed, the button
returns to its original state and it retains input focus. If the toggle parameter is set to true, the state
of the button does not change until the mouse is released over it.

If a button is disabled it displays its disabled state, regardless of user interaction.

A Button component uses the following skin properties:

Property Description

falseUpSkin The up state. The default value is RectBorder.
falseDownSkin The pressed state. The default value is RectBorder.
falseOverSkin The over state. The default value is RectBorder.
falseDisabledSkin The disabled state. The default value is RectBorder.

Button component 69

Property
trueUpSkin
trueDownSkin
trueOverSkin
trueDisabledSkin
falseUplcon
falseDownlcon
falseOverIcon
falseDisabledIcon
truelplcon

trueOverlcon

Description

The toggled state. The default value is RectBorder.

The pressed-toggled state. The default value is RectBorder.
The over-toggled state. The default value is RectBorder.
The disabled-toggled state. The default value is RectBorder.
The icon up state. The default value is undefined.

The icon pressed state. The default value is undefined.

The icon over state. The default value is undefined.

The icon disabled state. The default value is undefined.

The icon toggled state. The default value is undefined.

The icon over-toggled state. The default value is undefined.

trueDownlcon The icon pressed-toggled state. The default value is undefined.

trueDisabledIcon The icon disabled-toggled state. The default value is undefined.

Button class

Inheritance UIObject > UIComponent > SimpleButton > Button
ActionScript Class Name mx.controls.Button

The properties of the Button class allow you to add an icon to a button, create a text label, or
indicate whether the button acts as a push button, or a toggle switch at runtime.

Setting a property of the Button class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component Inspector panel.

The Button component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:

trace(mx.controls.Button.version);

Note: The following code returns undefined: trace(myButtonInstance.version);.

The Button component class is different from the ActionScript built-in Button object.

Method summary for the Button class

Inherits all methods from UIObject and UIComponent.

70

Chapter 4: Components Dictionary

Property summary for the Button class

Method

Description

SimpleButton.emphasized

SimpleButton.emphasizedStyleDeclaration

Button.icon
Button.label

Button.labelPlacement

Button.selected

Button.toggle

Indicates whether a button has the look of a default
push button.

The style declaration when the emphasized property
issetto true.

Specifies an icon for a button instance.
Specifies the text that appears within a button.

Specifies the orientation of the label text in relation to
anicon.

When the toggle property is true, specifies whether
the button is pressed (true) or not (false).

Indicates whether the button behaves as a
toggle switch.

Inherits all properties from UIObject and UIComponent.

Event summary for the Button class

Method

Description

Button.click

Broadcast when the mouse is pressed over a button
instance or when the Spacebar is pressed.

Inherits all events from UIObject and UIComponent.

Button.click
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.
Usage
Usage 1:

on(click){

}
Usage 2:
listenerObject = new Object();

listenerObject.click = function(eventObject){

}

buttonlInstance.addEventlListener("click", TistenerObject)

Button component 4

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the button or
if the button has focus and the Spacebar is pressed.

The first usage example uses an on () handler and must be attached directly to a Button
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Button
component instance myButtonComponent, sends “_level0.myButtonComponent” to the

Output panel:

on(click){
trace(this);
}

Please note that this differs from the behavior of this when used inside an on () handler attached
to a regular Flash button symbol. When this is used inside an on() handler attached to a button
symbol, it refers to the Timeline that contains the button. For example, the following code,
attached to the button symbol instance myButton, sends “_level0” to the Output panel:

on(release){
trace(this);
}

Note: The built-in ActionScript Button object doesn’t have a ¢ 11 ck event; the closest event
isrelease.

The second usage example uses a dispatcher/listener event model. A component instance
(buttonInstance) dispatches an event (in this case, c11ck) and the event is handled by a
function, also called a handler, on a listener object (717stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener () method (See
UIEventDispatcher.addEventListener()) on the component instance that broadcasts the
event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called buttonInstance is clicked. The first line of code labels the button. The second line
specifies that the button act like a toggle switch. The third line creates a listener object called
form. The fourth line defines a function for the c11ick event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function (in
this example, event0bj), to generate a message. The target property of an event object is the
component that generated the event (in this example, buttonInstance). The Button.selected
property is accessed from the event object’s target property. The last line calls the
addEventlistener() method from buttonInstance and passes it the c1ick event and the
form listener object as parameters, as in the following:

buttonInstance.label = "Click Test"

buttoninstance.toggle = true;
form = new Object();

72

Chapter 4: Components Dictionary

form.click = function(event0Obj){

trace("The selected property has changed to
}
buttonInstance.addEventListener("click", form);

+ eventObj.target.selected);

The following code also sends a message to the Output panel when buttonInstance is clicked.
The on() handler must be attached directly to buttonInstance, as in the following:

on(click){
trace("button component was clicked");
}

See also

UIEventDispatcher.addEventListener()

SimpleButton.emphasized
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
buttonInstance.emphasized

Description

Property; indicates whether the button is in an emphasized state (true) or not (false). The
empbhasized state is equivalent to the looks if a default push button. In general, use the
FocusManager.defaultPushButton property instead of setting the emphasized property
directly. The default value is false.

The emphasized property is a static property of the SimpleButton class. Therefore, you must
access it directly from SimpleButton, as in the following:

SimpleButton.emphasizedStyleDeclaration = "foo";

If you aren’t using FocusManager.defaultPushButton, you might just want to set a button to
the emphasized state, or use the emphasized state to change text from one color to another. The
following example, sets the emphasized property for the button instance, myButton:
_global.styles.foo = new CSSStyleDeclaration();

_global.styles.foo.color = 0xFF0000;

SimpleButton.emphasizedStyleDeclaration = "foo";
myButton.emphasized = true;

See also

SimpleButton.emphasizedStyleDeclaration

Button component 73

SimpleButton.emphasizedStyleDeclaration

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
buttonlnstance.emphasizedStyleDeclataion

Description
Property; a string indicating the style declaration that formats a button when the emphasized
property is set to true.

See also

SimpleButton.emphasized

Button.icon
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
buttonlInstance.icon

Description

Property; A string that specifies the linkage identifier of a symbol in the library to be used as an
icon for a button instance. The icon can be a movie clip symbol or a graphic symbol with an
upper left registration point. You must resize the button if the icon is too large to fit; neither the
button nor the icon will resize automatically. If an icon is larger than a button, the icon will
extend over the borders of the button.

To create a custom icon, create a movie clip or graphic symbol. Select the symbol on the Stage in
symbol-editing mode and enter 0 in both the X and Y boxes in the Property inspector. In the
Library panel, select the movie clip and select Linkage from the Options menu. Select Export for
ActionScript, and enter an identifier in the Identifier text box.

The default value is an empty string (""), which indicates that there is no icon.

Use the 1abelPlacement property to set the position of the icon in relation to the button.

Example

The following code assigns the movie clip from the Library panel with the linkage identifier
happiness to the Button instance as an icon:

myButton.icon = "happiness"

74 Chapter 4: Components Dictionary

See also

Button.labelPlacement

Button.label

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
buttonlInstance.label

Description

Property; specifies the text label for a button instance. By default, the label appears centered on
the button. Calling this method overrides the label authoring parameter specified in the Property
inspector or the Component Inspector panel. The default value is "Button".

Example

The following code sets the label to “Remove from list™:

buttonInstance.label = "Remove from Tist";
See also

Button.labelPlacement

Button.labelPlacement

Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.
Usage
buttonlnstance.labelPlacement
Description

Property; sets the position of the label in relation to the icon. The default value is "right". The
following are the four possible values, the icon and label are always centered vertically and
horizontally within the bounding area of the button:

® "right" The label is set to the right of the icon.

® "left" The label is set to the left of the icon.

® "bottom" The label is set below the icon.

® "top" The label is placed below the icon.

Button component 75

Example

The following code sets the label to the left of the icon. The second line of the code sends the
value of the T1abelPlacement property to the Output panel:

iconlnstance.labelPlacement = "left";
trace(iconlnstance.labelPlacement);

Button.selected

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
buttoninstance.selected

Description

Property; a Boolean value specifying whether a button is pressed (true) or not (false). The value
of the toggle property must be true to set the selected property to true. If the toggle
property is false, assigning a value of true to the selected property has no effect. The default
value is false.

The c1ick event is not triggered when the value of the selected property changes with
ActionScript. It is triggered when a user interacts with the button.

Example

In the following example, the toggle property is set to true and the selected property is set to
true which puts the button in a pressed state. The trace action sends the value true to the

Output panel:

ButtonInstance.toggle = true; // toggle needs to be true in order to set the
selected property
ButtonInstance.selected = true; //displays the toggled state of the button
trace(ButtonInstance.selected); //traces- true
See also

Button.toggle

Button.toggle
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
buttoninstance.toggle

76 Chapter 4: Components Dictionary

Description

Property; a Boolean value specifying whether a button acts like a toggle switch (true) or a push
button (false); the default value is false. When a toggle switch is pressed, it stays in a pressed
state until it’s clicked again.

Example

The following code sets the toggle property to true, which makes the myButton instance behave
like a toggle switch:

myButton.toggle = true;

CellRenderer API

The CellRenderer AP is a set of properties and methods that the List-based components (List,
DataGrid, Tree, and Menu) use to manipulate and display custom cell content for each of their
rows. This customized cell can contain a prebuilt component, such as a CheckBox, or any class
you create.

Understanding the List class

To use the CellRenderer API it is important to have an advanced understanding of the List class.
The DataGrid, Tree, and Menu components are extension of the List class, so understanding the
List class allows you to understand them as well.

Note: A component is a class but a class isn’t necessarily a component.

About the composition of the List class

List classes are composed of rows. These rows display rollover and selection highlights, are used as
hit states for row selection, and play a vital part in scrolling. Aside from selection highlights and
icons (such as the node icons and expander arrows of a Tree component), a row consists of one
cell (or, in the case of the DataGrid, many cells). In the default case, these cells are TextField
objects that implement the CellRenderer API. However, you can tell a List to use a different class
of component as the cell for each row. The only requirement is that the class must implement the
CellRenderer API, which the List uses for communicating with the cell.

z-order
lcons Cell

~— =

rollQver/Selection
highlight

Background (hit area)

The stacking order of a row in a List or DataGrid component.

Note: If a cell has button event handlers (onPress and so on) the background hit area may not
receive input necessary to trigger the events.

CellRenderer API a4

About the scrolling behavior of the List class

List classes use a fairly complex algorithm to scroll. A list only lays out as many rows as it can
display at once; items beyond the value of the rowCount property don't get rows at all. When the
list scrolls, it moves all the rows up or down (depending on the scrolling direction). The list then
recycles the rows that are scrolled out of view; it reinitializes them and uses them for the new rows
being scrolled into view by setting the value of the old row to the new item in the view and
moving the old row to where the new item is scrolled into view.

Because of this scrolling behavior, you cannot expect a cell to be used for only one value. Because
rows are recycled, it is the responsibility of the cell renderer to know how to completely reset its
state when it is set to a new value. For example, if your cell renderer creates an icon to display one
item, it might need to remove that icon when another item is rendered with it. Assume your cell
renderer is a container that will be filled with numerous item values over time, and it has to know
how to completely change itself from displaying one value to displaying another. In fact, your cell
should even know how to properly render undefined items, which might mean removing all old
content in the cell.

Using the CellRenderer API

You must write a class with four methods (Cel1Renderer.getPreferredHeight(),
CellRenderer.getPreferredWidth(), Cel1Renderer.setSize(),
CellRenderer.setValue()) that the List-based component uses to communicate with the cell.

There are two methods and a property (Cel1Renderer.getCellIndex(),
CellRenderer.getDatalabel(), and CellRenderer.1istOwner) that are given automatically
to a cell to allow it to communicate with the List-based component. For example, say a cell has a
check box within it that causes a row to be selected when it’s clicked. The cell renderer needs a
reference to the List-based component that contains it in order to call the seTectedIndex
property of the List-based component. Also, the cell needs to know which item index it is
currently rendering so that it can set selectedIndex to the correct number; the cell can use
CellRenderer.listOwner and Cel1Renderer.getCellIndex() to do so. You do not need to
implement these APIs; the cell receives them automatically when it is placed inside the
List-based component.

Methods to implement for the CellRenderer API

You must write a class with the following methods so that the List, DataGrid, Tree, or Menu, can
communicate with the cell:

Name Description

CellRenderer.getPreferredHeight() Returnsthe preferred height of a cell.
CellRenderer.getPreferredWidth() Returnsthe preferred width of a cell.
CellRenderer.setSize() Sets the width and height of a cell.

CellRenderer.setValue() Sets the content to be displayed in the cell.

78

Chapter 4: Components Dictionary

Methods provided by the CellRenderer API

The following are the methods that the List, DataGrid, Tree, and Menu give to the cell when it is
created within the component. You do not need to implement these methods.

Name Description

CellRenderer.getDatalabel () Returns a string containing the name of the cell renderer’s
data field.

CellRenderer.getCellIndex() Returns an object with two fields, columnIndex and rowIndex,

that indicate the position of the cell.

Properties provided by the CellRenderer API

The following is the property that the List, DataGrid, Tree, and Menu give to the cell when it is
created within the component. You do not need to implement this property.

Name Description

CellRenderer.listOwner A reference to the List that contains the cell.

CellRenderer.getDatalabel()

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
componentInstance.getDatalabel ()

Parameters
None.
Returns
A string.
Description
Method; returns a string containing the name of the cell renderer’s data field.

Example

The following code helps the cell discover that it’s rendering the data field "Price". The variable
p is now equal to "Price":

var p = getDatalabel();

CellRenderer API 79

CellRenderer.getCellindex()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
componentInstance.getCellIndex()

Parameters

None.
Returns

An object with two fields: coTumnIndex and itemIndex.
Description

Method; returns an object with two fields, columnIndex and itemIndex, that locate the cell in
the grid. Each field is an integer that indicates a cell’s column position and item position. For any
components other than the DataGrid, the value of columnIndex is always 0.

Example

This example edits a DataGrid’s dataProvider from within a cell:

var index = getCellIndex();
var colName = listOwner.getColumnAt(index.columnIndex).columnName;
listOwner.dataProvider.editField(index.itemIndex, colName, someVal);

CellRenderer.getPreferredHeight()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
componentInstance.getPreferredHeight()

Parameters

None.
Returns

The correct height for the cell.
Description

Method; the preferred height of a cell. This is especially important for getting the right height of
text within the cell. If you set this value higher than the rowHeight property of the component,
cells will bleed above and below the rows.

80 Chapter 4: Components Dictionary

Example

This example returns the value 20, which indicates that the cell wants to be 20 pixels high:

function getPreferredHeight(Void) :Number
{

return 20;
}

CellRenderer.getPreferredWidth()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
componentInstance.getPreferredWidth()

Parameters
None.

Returns
Nothing.

Description

Method; the preferred width of a cell. If you specify more width than the component has, the cell
may be cut off.

Example

This example returns the value 3, which indicates that the cell wants to be three times as big as the
length of the string it is rendering:

function getPreferredHeight(Void) : Number
{

return myString.length*3;
}

CellRenderer.listOwner
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
componentInstance.listOwnner

Description

Property; a reference to the list that owns the cell. That list can be a DataGrid, Tree, or List.

CellRenderer API 81

Example

This example finds the list’s selected item in a cell:

var s = listOwner.selectedItem;

CellRenderer.setSize()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
componentInstance.setSize(width, height)

Parameters
width A number that indicates the width at which to lay out the component.
height A number that indicates the height at which to lay out the component.
Returns
Nothing.
Description

Method; allows the list to tell its cells at what size they should lay themselves out. The
CellRenderer should do layout so that it fits within the area described, or visual display from the
cell may bleed into other parts of the list and appear broken.

Example

This example sizes an image within the cell to fit within the bounds specified by the list:

function setSize(w:Number, h:Number) : Void
{

image._width = w-2;

image._height = w-2;

image._x = image._y = 1;
}

CellRenderer.setValue()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
componentiInstance.setValue(suggested, item, selected)

82 Chapter 4: Components Dictionary

Parameters
suggested A value to be used for the cell renderer’s text, if any is needed.

item An object that is the entire item to be rendered. The cell renderer can use any properties of
this object it wants for rendering.

selected A Boolean value that indicates whether the row the cell is on is selected (true) or
not (false).

Returns
Nothing.
Description

Method; takes the values given and creates a representation of them within the cell. This clears up
any difference in what was displayed in the cell and what needs to be displayed in the cell for the
new item. It is important to remember that any cell could display many values during its time in
the list. This is the most important method in any cell renderer.

Example

This example loads an image in a loader component within the cell, depending on the
value passed:

function setValue(suggested, item, selected) : Void
{
//clear the Toader
loader.contentPath = undefined;
// the 1ist has URLs for different images in its data provider
if (suggested!=undefined)
lToader.contentPath = suggested;
}

CheckBox component

A check box is a square box that can be either selected or deselected. When it is selected, a check
appears in the box. You can add a text label to a check box and place it to the left, right, top,
or bottom.

A check box can be enabled or disabled in an application. If a check box is enabled and a user
clicks it or its label, the check box receives input focus and displays its pressed appearance. If a
user moves the pointer outside the bounding area of a check box or its label while pressing the
mouse button, the component’s appearance returns to its original state and it retains input focus.
The state of a check box does not change until the mouse is released over the component.
Additionally, the checkbox has two disabled states, selected and deselected, which do not allow
mouse or keyboard interaction.

If a check box is disabled it displays its disabled appearance, regardless of user interaction. In the
disabled state, a button doesn’t receive mouse or keyboard input.

CheckBox component 83

A CheckBox instance receives focus if a user clicks it or tabs to it. When a CheckBox instance has
focus, you can use the following keys to control it:

Key Description

Shift + Tab Moves focus to the previous element.

Spacebar Selects or deselects the component and triggers the c1ick event.
Tab Moves focus to the next element.

For more information about controlling focus, see “Creating custom focus navigation”
« b2l
on page 24 or “FocusManager class” on page 270.

A live preview of each CheckBox instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring.

When you add the CheckBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:

mx.accessibility.CheckBoxAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the CheckBox component

A check box is a fundamental part of any form or web application. You can use check boxes
wherever you need to gather a set of true or false values that aren’t mutually exclusive. For
example, a form collecting personal information about a customer could have a list of hobbies for
the customer to select; each hobby would have a check box beside it.

CheckBox parameters

The following are authoring parameters that you can set for each CheckBox component instance
in the Property inspector or in the Component Inspector panel:

label sets the value of the text on the check box; the default value is defaultValue.
selected sets the initial value of the check box to checked (true) or unchecked (false).

labelPlacement orients the label text on the check box. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
CheckBox.labelPlacement.

You can write ActionScript to control these and additional options for CheckBox components
using its properties, methods, and events. For more information, see CheckBox class.

Creating an application with the CheckBox component

The following procedure explains how to add a CheckBox component to an application while
authoring. The following example is a form for an online dating application. The form is a query
that searches for possible dating matches for the customer. The query form must have a check box
labeled "Restrict Age" permitting the customer to restrict his or her search to a specified age
group. When the "Restrict Age" check box is selected, the customer can then enter the minimum
and maximum ages into two text fields that are enabled only when "Restrict Age" is selected.

84

Chapter 4: Components Dictionary

To create an application with the CheckBox component, do the following:
1 Drag two TextInput components from the Components panel to the Stage.
2 In the Property inspector, enter the instance names minimumAge and maximumAge.
3 Drag a CheckBox component from the Components panel to the Stage.
4 In the Property inspector, do the following:
= Enter restrictAge for the instance name.
= Enter Restrict Age for the label parameter.
5 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

restrictAgelListener = new Object();

restrictAgelListener.click = function (evt){
minimumAge.enabled = evt.target.selected;
maximumAge.enabled = evt.target.selected;

}

restrictAge.addEventlListener("click", restrictAgelListener);

This code creates a c11ck event handler that enables and disables the minimumAge and
maximumAge text field components, that have already been placed on Stage. For more
information about the c1ick event, see CheckBox.c11ick. For more information about the
TextInput component, see “TextInput component” on page 516.

Customizing the CheckBox component

You can transform a CheckBox component horizontally and vertically both while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method
(UIObject.setSize()) or any applicable properties and methods of the CheckBox class (see
CheckBox class). Resizing the check box does not change the size of the label or the check box
icon; it only changes the size of the bounding box.

The bounding box of a CheckBox instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label clips to fit.

Using styles with the CheckBox component

You can set style properties to change the appearance of a CheckBox instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.

A CheckBox component supports the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

CheckBox component 85

Style Description

fontSize The point size for the font.

fontStyle The font style: either "normal”, or "italic".
fontWeight The font weight: either "normal”, or "bold".
textDecoration The text decoration: either "none", or "underline".

Using skins with the CheckBox component

The CheckBox component uses symbols in the Library panel to represent the button states. To
skin the CheckBox component while authoring, modify symbols in the Library panel. The
CheckBox component skins are located in the Flash Ul Components 2/Themes/MMDefault/
CheckBox Assets/states folder in the library of either the HaloTheme.fla file or the
SampleTheme.fla file. For more information, see “About skinning components” on page 36.

A CheckBox component uses the following skin properties:

Property Description

falseUpSkin The up state. Default is RectBorder.
falseDownSkin The pressed state. Default is RectBorder.
falseOverSkin The over state. Default is RectBorder.
falseDisabledSkin The disabled state. Default is RectBorder.
trueUpSkin The toggled state. Default is RectBorder.
trueDownSkin The pressed-toggled state. Default is RectBorder.
trueOverSkin The over-toggled state. Default is RectBorder.
trueDisabledSkin The disabled-toggled state. Default is RectBorder.

CheckBox class

Inheritance UIObject > UIComponent > SimpleButton > Button > CheckBox
ActionScript Class Name mx.controls.CheckBox

The properties of the CheckBox class allow you to create a text label and position it to the left,
right, top, or bottom of a check box at runtime.

Setting a property of the CheckBox class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The CheckBox component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:

trace(mx.controls.CheckBox.version);

Note: The following code returns undefined: trace(myCheckBoxInstance.version);.

86

Chapter 4: Components Dictionary

Method summary for the CheckBox class

Inherits all methods from UIObject and UIComponent.

Property summary for the CheckBox class

Property Description

CheckBox.label Specifies the text that appears next to a check box.
CheckBox.labelPlacement Specifies the orientation of the label text in relation to a check box.

CheckBox.selected Specifies whether the check box is selected (true) or deselected (false).

Inherits all properties from UIObject and UIComponent.

Event summary for the CheckBox class

Event Description

CheckBox.click Triggered when the mouse is pressed over a button instance.

Inherits all events from UIObject and UIComponent.

CheckBox.click

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.
Usage

Usage 1:

on(click){

}
Usage 2:

listenerObject = new Object();
listenerObject.click = function(eventObject){

}
checkBoxInstance.addEventlListener("click", TistenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the check box
or if the check box has focus and the Spacebar is pressed.

CheckBox component 87

The first usage example uses an on() handler and must be attached directly to a CheckBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the check box
myCheckBox, sends “_level0.myCheckBox” to the Output panel:

on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(checkBoxInstance) dispatches an event (in this case, c11ck) and the event is handled by a
function, also called a handler, on a listener object (11stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener() method (see
UIEventDispatcher.addEventListener()) on the component instance that broadcasts the
event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.
Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called checkBoxInstance is clicked. The first line of code creates a listener object called
form. The second line defines a function for the c11ick event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function
(in this example, event0bj) to generate a message. The target property of an event object is the
component that generated the event (in this example, checkBoxInstance). The
CheckBox.selected property is accessed from the event object’s target property. The last line
calls the addEventListener () method from checkBoxInstance and passes it the c11ick event
and the form listener object as parameters, as in the following:

form = new Object();
form.click = function(event0Obj){
trace("The selected property has changed to " + eventObj.target.selected);
}
checkBoxInstance.addEventListener("click", form);

The following code also sends a message to the Output panel when checkBoxInstance is
clicked. The on() handler must be attached directly to checkBoxInstance, as in the following:

on(click){
trace("check box component was clicked");
}

See also

UIEventDispatcher.addEventListener()

88 Chapter 4: Components Dictionary

CheckBox.label

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
checkBoxInstance.label

Description

Property; indicates the text label for the check box. By default, the label appears to the right
of the check box. Setting this property overrides the label parameter specified in the clip
parameters panel.

Example

The following code sets the text that appears beside the CheckBox component and sends the
value to the Output panel:

checkBox.label = "Remove from list";
trace(checkBox.label)

See also

CheckBox.labelPlacement

CheckBox.labelPlacement
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
checkBoxInstance.labelPlacement

Description

Property; a string that indicates the position of the label in relation to the check box. The
following are the four possible values (the dotted lines represent the bounding area of the
component; they are invisible in a document):

® "right" The check box is pinned to the upper left corner of the bounding area. The label is
set to the right of the check box. This is the default value.

® "left" The check box is pinned to the top right corner of the bounding area. The label is set
to the left of the check box.

CheckBox component 89

® "bottom" The label is set below the check box. The check box and label grouping are
centered horizontally and vertically.

Label

® "top" The label is placed below the check box. The check box and label grouping are
centered horizontally and vertically.

You can change the bounding area of component while authoring by using the Transform
command or at runtime using the UIObject.setSize() property. For more information, see
“Customizing the CheckBox component” on page 85.

Example
The following example sets the placement of the label to the left of the check box:
checkBox_mc.labelPlacement = "left";

See also

CheckBox.Tabel

CheckBox.selected
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
checkBoxInstance.selected

Description
Property; a Boolean value that selects (true) or deselects (false) the check box.
Example

The following example selects the instance checkbox1:

checkboxl.selected = true;

90 Chapter 4: Components Dictionary

ComboBox component

A combo box can be static or editable. A static combo box allows a user to make a single selection
from a drop-down list. An editable combo box allows a user to enter text directly into a text field
at the top of the list, as well as selecting an item from a drop-down list. If the drop-down list hits
the bottom of the document, it opens up instead of down. The combo box is composed of three
subcomponents: a Button component, a TextInput component, and a List component.

When a selection is made in the list, the label of the selection is copied to the text field at the top
of the combo box. It doesn’t matter if the selection is made with the mouse or the keyboard.

A ComboBox component receives focus if you click the text box or the button. When a
ComboBox component has focus and is editable, all keystrokes go to the text box and are handled
according to the rules of the TextInput component (see “TextInput component” on page 516),
with the exception of the following keys:

Key Description

Control+Down Opens the drop-down list and gives it focus.
Shift +Tab Moves focus to the previous object.

Tab Moves focus to the next object.

When a ComboBox component has focus and is static, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You can
also use the following keys to control a static combo box:

Key Description

Control+Down Opens the drop-down list and gives it focus.

Control+Up Closes the drop-down list, if open in the Stand alone and Browser versions of
the Flash Player.

Down Selection moves down one item.

End Selection moves to the bottom of the list.

Escape Closes the drop-down list and returns focus to the combo box in Test Movie
mode.

Enter Closes the drop-down list and returns focus to the combo box.

Home Selection moves to the top of the list.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Shift +Tab Moves focus to the previous object.

Tab Moves focus to the next object.

ComboBox component o

When the drop-down list of a combo box has focus, alphanumeric keystrokes move the selection
up and down the drop-down list to the next item with the same first character. You can also use
the following keys to control a drop-down list:

Key Description

Control+Up If the drop-down list is open, focus returns to the text box and the drop-down list
closes in the Stand alone and Browser versions of the Flash Player.

Down Selection moves down one item.

End The insertion point moves to the end of the text box.

Enter If the drop-down list is open, focus returns to the text box and the drop-down list
closes.

Escape If the drop-down list is open, focus returns to the text box and the drop-down list
closes in Test Movie mode.

Home The insertion point moves to the beginning of the text box.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Tab Moves focus to the next object.

Shift-End Selects the text from the insertion point to the End position.

Shift-Home Selects the text from the insertion point to the Home position.

Shift-Tab Moves focus to the previous object.

Up Selection moves up one item.

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items O-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation”
« b2l
on page 24 or “FocusManager class” on page 270.

A live preview of each ComboBox component instance on the Stage reflects changes made to
parameters in the Property inspector or Component Inspector panel while authoring. However,
the drop-down list does not open in the live preview and the first item displays as the

selected item.

When you add the ComboBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:

mx.accessibility.ComboBoxAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

92

Chapter 4: Components Dictionary

Using the ComboBox component

You can use a ComboBox component in any form or application that requires a single choice
from a list. For example, you could provide a drop-down list of states in a customer address form.
You can use an editable combo box for more complex scenarios. For example, in a driving
directions application you could use an editable combo box for a user to enter her origin and
destination addresses. The drop-down list would contain her previously entered addresses.

ComboBox parameters

The following are authoring parameters that you can set for each ComboBox component instance
in the Property inspector or in the Component Inspector panel:

editable determines if the ComboBox component is editable (true) or only selectable (false). The
default value is false.

labels populates the ComboBox component with an array of text values.

data associates a data value with each item in the ComboBox component. The data parameter is
an array.

rowCount sets the maximum number of items that can be displayed at one time without using a
scroll bar. The default value is 5.

You can write ActionScript to set additional options for ComboBox instances using the methods,
properties, and events of the ComboBox class. For more information, see ComboBox class.

Creating an application with the ComboBox component

The following procedure explains how to add a ComboBox component to an application
while authoring. In this example, the combo box presents a list of cities to select from in its
drop-down list.

To create an application with the ComboBox component, do the following:
1 Drag a ComboBox component from the Components panel to the Stage.
2 Select the Transform tool and resize the component on the Stage.

The combo box can only be resized on the Stage while authoring. Typically, you would only
change the width of a combo box to fit its entries.

3 Select the combo box and, in the Property inspector, enter the instance name comboBox.
4 In the Component Inspector panel or the Property inspector, do the following:

= Enter Minneapolis, Portland, and Keene for the label parameter. Double-click the label
parameter field to open the Values dialog. Then click the plus sign to add items.

» Enter MN.swf, OR.swf, and NH.swf for the data parameter.

These are imaginary SWF files that, for example, you could load when a user selects a city
from the combo box.

5 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

form = new Object();

form.change = function (evt){
trace(evt.target.selectedItem.label);

}

comboBox.addEventListener("change", form);

The last line of code adds a change event handler to the ComboBox instance. For more
information, see ComboBox.change.

ComboBox component 93

Customizing the ComboBox component

You can transform a ComboBox component horizontally and vertically while authoring. While
authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands.

If text is too long to fit in the combo box, the text clips to fit. You must resize the combo box
while authoring to fit the label text.

In editable combo boxes, only the button is the hit area—not the text box. For static combo
boxes, the button and the text box constitute the hit area.
Using styles with the ComboBox component

You can set style properties to change the appearance of a ComboBox component. If the name of
a style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”

on page 27.

The combo box has two unique styles. Other styles are passed to the button, text box, and
drop-down list of the combo box through those individual components, as follows:

® The button is a Button instance and uses its styles. (See “Using styles with the Button

component” on page 68.)

® The text is a TextInput instance and uses its styles. (See “Using styles with the TextInput

component” on page 518.)

® The drop-down list is an List instance and uses its styles. (See “Using styles with the List

component” on page 289.)

A ComboBox component uses the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that
doesn’t inherit its value. Possible values are "haloGreen", "haloBlue",
and "haloOrange".

color The text of a component label.

disabledColor

The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style: either "normal”, or "italic".
fontWeight The font weight: either "normal”, or "bold".

textDecoration

openDuration

openkasing

The text decoration: either "none", or "underline".

The number of milliseconds to open the drop-down list. The default
value is 250.

A reference to a tweening function that controls the drop-down list
animation. Defaults to sine in/out. For more equations, download a
list from Robert Penner’s website at www.robertpenner.com/easing/.

94

Chapter 4: Components Dictionary

http://www.robertpenner.com/easing/

Using skins with the ComboBox component

The ComboBox component uses symbols in the Library panel to represent the button states. The
ComboBox has skin variables for the down arrow. Other than that, it uses scroll bar and list skins.
To skin the ComboBox component while authoring, modify symbols in the Library panel and re-
export the component as a SWC. The CheckBox component skins are located in the Flash Ul
Components 2/Themes/MMDefault/ComboBox Assets/states folder in the library of either the
HaloTheme.fla file or the SampleTheme.fla file. For more information, see “About skinning
components” on page 30.

A ComboBox component uses the following skin properties:

Property Description

ComboDownArrowDisabledName The down arrow’s disabled state. Default is RectBorder.

ComboDownArrowDownName The down arrow’s down state. Default is RectBorder.
ComboDownArrowUpName The down arrow’s up state. Default is RectBorder.
ComboDownArrowOverName The down arrow’s over state. Default is RectBorder.

ComboBox class

Inheritance UIODbject > UIComponent > ComboBase > ComboBox
ActionScript Class Name mx.controls.ComboBox

The ComboBox component combines three separate subcomponents: Button, TextInput, and
List. Most of the APIs of each subcomponent are available directly from ComboBox component
and are listed in the Method, Property, and Event tables for the ComboBox class.

The drop-down list in a combo box is provided either as an Array or as a DataProvider object. If
you use a DataProvider object, the list changes at runtime. The source of the ComboBox data can
be changed dynamically by switching to a new Array or DataProvider object.

Items in a combo box list are indexed by position, starting with the number 0. An item can be one
of the following:

® A primitive data type.
® An object that contains a Tabel property and a data property.

Note: An object may use the ComboBox.labelFunction or ComboBox.labelField property to
determine the 1abel property.

If the item is a primitive data type other than string, it is converted to a string. If an item is an
object, the 1abel property must be a string and the data property can be any ActionScript value.

ComboBox component methods to which you supply items have two parameters, label and data,
that refer to the properties above. Methods that return an item return it as an Object.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:

trace(mx.controls.ComboBox.version);

Note: The following code returns undefined: trace(myComboBoxInstance.version);.

ComboBox component 95

Method summary for the ComboBox class

Property Description

ComboBox.addItem() Adds an item to the end of the list.
ComboBox.addItemAt() Adds an item to the end of the list at the specified index.
ComboBox.close() Closes the drop-down list.

ComboBox.getItemAt() Returns the item at the specified index.
ComboBox.open() Opens the drop-down list.

ComboBox.removeAll() Removes all items in the list.

ComboBox

ComboBox.

.removeltemAt()

replaceltemAt()

Removes an item from the list at the specified location.

Replaces an item in the list with another specified item.

Inherits all methods from UIObject and UIComponent.

Property summary for the ComboBox class

Property Description

ComboBox.dataProvider The data model for the items in the list.

ComboBox.dropdown Returns a reference to the List component contained by the
combo box.

ComboBox.dropdownWidth The width of the drop-down list, in pixels.

ComboBox.editable Indicates whether or not a combo box is editable.

ComboBox.labelField Indicates which data field to use as the label for the drop-down list.

ComboBox.labelFunction Specifies a function to compute the label field for the drop-down list.

ComboBox.Tlength Read-only. The length of the drop-down list.

ComboBox.rowCount The maximum number of list items to display at one time.

ComboBox.selectedIndex The index of the selected item in the drop-down list.

ComboBox.selectedItem The value of the selected item in the drop-down list.

ComboBox.text The string of the text in the text box.

ComboBox.textField A reference to the TextInput component in the combo box.

ComboBox.value The value of the text box (editable) or drop-down list (static).

Inherits all properties from UlObject and UIComponent.

96

Chapter 4: Components Dictionary

Event summary for the ComboBox class

Event Description

ComboBox.change Broadcast when the value of the combo box changes as a result of
user interaction.

ComboBox.close Broadcast when the drop-down list begins to close.

ComboBox.enter Broadcast when the Enter key is pressed.

ComboBox.itemRol10ut Broadcast when the pointer rolls off a drop-down list item.

ComboBox.itemRol10ver Broadcast when a drop-down list item is rolled over.

ComboBox.open Broadcast when the drop-down list begins to open.

ComboBox.scroll Broadcast when the drop-down list is scrolled.

Inherits all events from UIObject and UIComponent.

ComboBox.addltem()

Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.
Usage
Usage 1:
comboBoxInstance.addItem(7abell, datal)
Usage 2:
comboBoxInstance.addItem({label:Tabell, data:datall)
Usage 3:
comboBoxInstance.addItem(obj) ;
Parameters
Tabel A string that indicates the label for the new item.
data The data for the item; can be of any data type. This parameter is optional.
obj An object with a label property and an optional data property.
Returns
The index at which the item was added.
Description

Method; adds a new item to the end of the list.

ComboBox component

97

Example
The following code adds an item to the myComboBox instance:

myComboBox.addItem("this is an Item");

ComboBox.addltemAt()

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
comboBoxInstance.addItemAt(7ndex, Tabell, datal)

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

Tabel A string that indicates the label for the new item.

data The data for the item; can be any data type. This parameter is optional.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list at the index specified by the index parameter.
Indices greater than ComboBox. length are ignored.

Example

The following code inserts an item at index 3, which is the fourth position in the combo box list
(0 is the first position):

myBox.addItemAt(3, "this is the fourth Item");

ComboBox.change
Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.
Usage

Usage 1:

on(change){
// your code here
}

98 Chapter 4: Components Dictionary

Usage 2:

lTistenerObject = new Object();
listenerObject.change = function(eventObject)
// your code here
}
comboBoxInstance.addEventListener("change", IistenerObject)

Description

Event; broadcast to all registered listeners when the value of the combo box changes as a result of
user interaction.

The first usage example uses an on () handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:

on(change) {

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (717stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener() method (see
UIEventDispatcher.addEventListener()) on the component instance that broadcasts the
event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.
Example

The following example sends the instance name of the component that generated the change
event to the Output panel:

form.change = function(event0bj){

trace("Value changed to " + eventObj.target.value);
}
myCombo.addEventListener("change", form);

See also

UIEventDispatcher.addEventListener()

ComboBox component 99

ComboBox.close()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
myComboBox.close()

Parameters
None.
Returns
Nothing.
Description
Method; closes the drop-down list.
Example
The following example closes the drop-down list of the myBox combo box:
myBox.close();
See also

ComboBox.open()

ComboBox.close
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.
Usage
Usage 1:

on(close){
// your code here
}

Usage 2:

listenerObject = new Object();

listenerObject.close = function(eventObject) |
// your code here

}

comboBoxInstance.addEventlListener("close", listenerObject)

100 Chapter 4: Components Dictionary

Description
Event; broadcast to all registered listeners when the list of the combo box begins to retract.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:

on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, close) and the event is handled by a
function, also called a handler, on a listener object (17stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener () method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
Example

The following example sends a message to the Output panel when the drop-down list begins to
close:

form.close = function(){
trace("The combo box has closed");
}
myCombo.addEventListener("close", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.dataProvider
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
comboBoxInstance.dataProvider

Description

Property; the data model for items viewed in a list. The value of this property can be an array
or any object that implements the DataProvider interface. The default value is []. This is a
property of the List component but can be accessed directly from an instance of the
ComboBox component.

ComboBox component 101

The List component, and other data-aware components, add methods to the Array object’s
prototype so that they conform to the DataProvider interface (see DataProvider.as for details).
Therefore, any array that exists at the same time as a list automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the model of a list, and can be used to
broadcast model changes to multiple components.

If the array contains objects, the TabelField or 1abelFunction properties are accessed to
determine what parts of the item to display. The default value is "Tabel", so if such a field exists,
it is chosen for display; if not, a comma separated list of all fields is displayed.

Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will lose the selection.

Any instance that implements the DataProvider interface is eligible as a data provider for a List.
This includes Flash Remoting RecordSets, Firefly DataSets, and so on.

Example
This example uses an array of strings to populate the drop-down list:
comboBox.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];

This example creates a data provider array and assigns it to the dataProvider property, as in the
following:

myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
// these changes to the DataProvider will be broadcast to the Tist
myDP.addItem({ label: accounts[i].name,
data: accounts[il.accountID });
}

ComboBox.dropdown
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
myComboBox.dropdown

Description

Property (read-only); returns a reference to the List component contained by the combo box. The
List subcomponent isnt instantiated in the combo box until it needs to be displayed. However,
when you access the dropdown property, the list is created.

See also

ComboBox.dropdownWidth

102 Chapter 4: Components Dictionary

ComboBox.dropdownWidth

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.change

Description

Property; the width limit in pixels of the drop-down list. The default value is the width of the
ComboBox component (the TextInput instance plus the SimpleButton instance).

Example
The following code sets the dropdownWidth to 150 pixels:
myComboBox.dropdownWidth = 150;

See also

ComboBox.dropdown

ComboBox.editable

Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.
Usage
myComboBox.editable
Description

Property; indicates whether the combo box is editable (true) or not (false). An editable combo
box can have values entered into the text box that do not show up in the drop-down list. If a
combo box is not editable, only values listed in the drop-down list can be entered into the text
box. The default value is false.

Setting a combo box to editable clears the combo box text field. It also sets the selected index (and
item) to undefined. To make a combo box editable and still retain the selected item, use the
following code:

var ix = myComboBox.selectedIndex;
myComboBox.editable = true; // clears the text field.
myComboBox.selectedIndex = ix; // copies the label back into the text field.

Example

The following code makes myComboBox editable:

myComboBox.editable = true;

ComboBox component 103

ComboBox.enter

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:

on(enter) {
// your code here
}

Usage 2:

listenerObject = new Object();
listenerObject.enter = function(eventObject) |
// your code here
}
comboBoxInstance.addEventlListener("enter", IlistenerObject)

Description

Event; broadcast to all registered listeners when the Enter key has been pressed in the text box.
This event is only broadcast from editable combo boxes. This is a TextInput event that is
broadcast from a combo box. For more information, see TextInput.enter.

The first usage example uses an on () handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on () handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:

on(enter){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, enter) and the event is handled by a
function, also called a handler, on a listener object (717stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener () method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

104

Chapter 4: Components Dictionary

Example

The following example sends a message to the Output panel when the drop-down list begins
to close:

form.enter = function(){
trace("The combo box enter event was triggered");
}
myCombo.addEventListener("enter", form);
See also

UIEventDispatcher.addEventListener()

ComboBox.getltemAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
comboBoxInstance.getItemAt(index)

Parameters

index A number greater than or equal to 0, and less than ComboBox. 1ength. The index of the
item to retrieve.

Returns

The indexed item object or value. The value is undefined if the index is out of range.
Description

Method; retrieves the item at a specified index.
Example

The following code displays the item at index position 4:
trace(myBox.getItemAt(4).label);

ComboBox component 105

ComboBox.itemRollOut

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:

on(itemRol10ut){
// your code here
}

Usage 2:

listenerObject = new Object();
listenerObject.itemRol110ut = function(eventObject){
// your code here
}
comboBoxInstance.addEventlListener("itemRol110ut", TistenerObject)

Event Object

In addition to the standard properties of the event object, the itemRo110ut event has an
additional property: index. The index is the number of the item that was rolled out.

Description

Event; broadcast to all registered listeners when the pointer rolls out of drop-down list items.
This is a List event that is broadcast from a combo box. For more information, see
List.itemRol110ut.

The first usage example uses an on () handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:

on(itemRo110ut){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRo110ut) and the event is handled by
a function, also called a handler, on a listener object (7istenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

106

Chapter 4: Components Dictionary

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled off of:

form.itemRo110ut = function (event0Obj) {
trace("Item #" + eventObj.index + " has been rolled out of.");
}

myCombo.addEventListener("itemRol10ut", form);

See also

ComboBox.itemRol10ver, UIEventDispatcher.addEventListener()

ComboBox.itemRollOver
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.
Usage

Usage 1:

on(itemRol10ver) {

// your code here
}

Usage 2:

lTistenerObject = new Object();

listenerObject.itemRol10ver = function(eventObject){
// your code here
}

comboBoxInstance.addEventListener("itemRol10ver", IlistenerObject)

Event Object

In addition to the standard properties of the event object, the itemRo110ver event has an
additional property: index. The index is the number of the item that was rolled over.

Description

Event; broadcast to all registered listeners when the drop-down list items are rolled over. This is a
List event that is broadcast from a combo box. For more information, see List.itemRol10ver.

The first usage example uses an on () handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:

on(itemRol110ver) {
trace(this);
}

ComboBox component 107

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRo110ver) and the event is handled
by a function, also called a handler, on a listener object (717stenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:

form.itemRol10ver = function (eventObj) {
trace("Item #" + eventObj.index + " has been rolled over.");
}

myCombo.addEventListener("itemRol10ver", form);
See also

ComboBox.itemRol110ut, UTEventDispatcher.addEventlListener()

ComboBox.labelField
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
myComboBox.1abelField

Description

Property; the name of the field in dataProvider array objects to use as the label field. This is a
property of the List component that is available from a ComboBox component instance. For
more information, see List.labelField.

The default value is undefined.

Example

The following example sets the dataProvider property to an array of strings and sets the

TabelField property to indicate that the name field should be used as the label for the
drop-down list:

myComboBox.dataProvider = [
{name:"Gary", gender:"male"},
{name:"Susan", gender:"female"} 1;

myComboBox.labelField = "name";

108 Chapter 4: Components Dictionary

See also

List.labelFunction

ComboBox.labelFunction

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.labelFunction

Description

Property; a function that computes the label of a dataProvider item. You must define the
function. The default value is undefined.

Example

The following example creates a data provider and then defines a function to specify what to use
as the label in the drop-down list:

myComboBox.dataProvider = [
{firstName:"Nigel", lastName:"Pegg", age:"really young"},
{firstName:"Gary", lastName:"Grossman", age:"young"},
{firstName:"Chris", lastName:"Walcott", age:"old"},
{firstName:"Greg", lastName:"Yachuk", age:"really old"} 1;

myComboBox.TabelFunction = function(itemObj){
return (itemObj.lastName + ", " + itemObj.firstName);
}

See also

List.labelField

ComboBox.length

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.length

Description

Property (read-only); the length of the drop-down list. This is a property of the List component
that is available from an instance of ComboBox. For more information, see List.length. The
default value is 0.

ComboBox component 109

Example

The following example stores the value of Tength to a variable:

dropdownItemCount = myBox.length;

ComboBox.open()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
myComboBox.open()

Parameters
None.
Returns
Nothing.
Description
Property; opens the drop-down list.
Example

The following code opens the drop-down list for the combol instance:

combol.open();
See also

ComboBox.close()

ComboBox.open

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.
Usage

Usage 1:

on(open) {
// your code here
}

110 Chapter 4: Components Dictionary

Usage 2:

lTistenerObject = new Object();
listenerObject.open = function(eventObject){
// your code here
}
comboBoxInstance.addEventlListener("open", IlistenerObject)

Description
Event; broadcast to all registered listeners when the drop-down list begins to appear.

The first usage example uses an on () handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:

on(open){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, open) and the event is handled by a
function, also called a handler, on a listener object (717stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener () method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled out:

form.open = function () {
trace("The combo box has opened with text " + myBox.text);
}
myBox.addEventListener("open", form);
See also

ComboBox.close, UTEventDispatcher.addEventlListener()

ComboBox.removeAll()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
comboBoxInstance.removeAll()

ComboBox component m

Parameters
None.

Returns
Nothing.

Description

Method; removes all items in the list. This is a method of the List component that is available
from an instance of the ComboBox component.

Example

The following code clears the list:

myCombo.removeAll();
See also

ComboBox.removeltemAt(), ComboBox.replaceltemAt()

ComboBox.removeltemAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
listInstance.removeltemAt(index)

Parameters

index A number that indicates the position of the item to remove. This value is zero-based.
Returns

An object; the removed item (undefined if no item exists).
Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the index parameter collapse by one. This is a method of the List component that is
available from an instance of the ComboBox component.

Example

The following code removes the item at index position 3:

myCombo.removeltemAt(3);
See also

ComboBox.removeAll(), ComboBox.replaceltemAt()

12 Chapter 4: Components Dictionary

ComboBox.replaceltemAt()

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
comboBoxInstance.replaceltemAt(index, Tabell, datal)

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

Tabel A string that indicates the label for the new item.
data The data for the item. This parameter is optional.
Returns
Nothing.
Description

Method; replaces the content of the item at the index specified by the index parameter. This is a
method of the List component that is available from the ComboBox component.

Example

The following example changes the third index position:

myCombo.replaceltemAt(3, "new label");
See also

ComboBox.removeAll(), ComboBox.removeltemAt()

ComboBox.rowCount

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.rowCount

Description
Property; the maximum number of rows visible in the drop-down list. The default value is 5.

If the number of items in the drop-down list is greater than or equal to the rowCount property, it
resizes and a scroll bar is displayed if necessary. If the drop-down list contains fewer items than the
rowCount property, it resizes to the number of items in the list.

ComboBox component 113

This behavior differs from the List component, which always shows the number of rows specified
by its rowCount property, even if some empty space is shown.

If the value is negative or fractional, the behavior is undefined.
Example

The following example specifies that the combo box should have 20 or fewer rows visible:

myComboBox.rowCount = 20;

ComboBox.scroll
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.
Usage

Usage 1:

on(scroll){

// your code here
}

Usage 2:

listenerObject = new 0Object();

listenerObject.scroll = function(eventObject){
// your code here

}

comboBoxInstance.addEventListener("scroll", IistenerObject)

Event Object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values "horizontal" or "vertical". Fora
ComboBox scrol1 event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when the drop-down list is scrolled. This is a List
component event that is available to the ComboBox.

The first usage example uses an on () handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:

on(scroll){

trace(this);
}

14 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, scrol11) and the event is handled by a
function, also called a handler, on a listener object (717stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been scrolled to:

form.scroll = function (eventObj) {
trace("The 1ist had been scrolled to item # " + eventObj.target.vPosition);
}
myCombo.addEventListener("scroll", form);
See also

UIEventDispatcher.addEventListener()

ComboBox.selectedIndex
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
myComboBox.selectedIndex

Description

Property; the index (number) of the selected item in the drop-down list. The default value is 0.
Assigning this property clears the current selection, selects the indicated item, and displays that
label of the indicated item in the combo box's text box.

Assigning a selectedIndex that is out of range is ignored. Entering text into the text field of an
editable combo box sets selectedIndex to undefined.

Example

The following selects the last item in the list:

myComboBox.selectedIndex = myComboBox.length-1;
See also

ComboBox.selectedItem

ComboBox component 115

ComboBox.selectedltem

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.selectedItem

Description
Property; the value of the selected item in the drop-down list.

If the combo box is editable seTectedItem returns undefined if you enter any text in the text
box. It will only have a value if you select an item from the drop-down list, or the value is set via
ActionScript. If the combo box is static, the value of selectedItem is always valid.

Example

The following example shows selectedItem if the data provider contains primitive types:

var item = myComboBox.selectedItem;
trace("You selected the item " + item);

The following example shows selectedItem if the data provider contains objects with 1abe1 and
data properties:

var obj = myComboBox.selectedItem;

trace("You have selected the color named: " + obj.label);
trace("The hex value of this color is: " + obj.data);
See also

ComboBox.dataProvider, ComboBox.selectedIndex

ComboBox.text

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.text

Description

Property; the text of the text box. You can get and set this value for editable combo boxes. For
static combo boxes, the value is read-only.

Example

The following example sets the current text value of an editable combo box:

myComboBox.text = "California";

16

Chapter 4: Components Dictionary

ComboBox.textField

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.textField

Description
Property (read-only); a reference to the TextInput component contained by the ComboBox.

This property allows you to access the underlying TextInput component so that you can to
manipulate it. For example, you might want to change the selection of the text box or restrict the
characters that can be entered into it.

Example

The following code restricts the text box of myComboBox to only accept numbers:

myComboBox.textField.restrict = "0-9";

ComboBox.value

Availability

Flash Player 6 version 79.
Edition

Flash MX 2004.

Usage
myComboBox.value

Description

Property (read-only); if the combo box is editable, value returns the value of the text box. If the
combo box is static, value returns the value of the drop-down list. The value of the drop-down
list is the data field, or, if the data field doesn’t exist, the Tabel field.

Example

The following example puts the data into the combo box by setting the dataProvider property.
It then displays the value in the Output panel. Finally, it selects "California" and displays it in
the text box, as follows:

ch.dataProvider = [
{Tabel:"Alaska", data:"AZ"},
{lTabel:"California", data:"CA"},
{Tabel:"Washington", data:"WA"}1;
ch.editable = true;
ch.selectedIndex = 1;
trace('Editable value is "California": '+ cb.value);
ch.editable = false;
ch.selectedIndex = 1;
trace('Non-editable value is "CA": '+ cb.value);

ComboBox component 117

Data binding classes (Flash Professional only)

The data binding classes provide the runtime functionality for the data binding feature in Flash
MX Professional 2004. You can visually create and configure data bindings in the Flash authoring
environment using the Bindings tab in the Component Inspector panel, or you can
programmatically create and configure bindings using the classes in the mx.data.binding package.

For an overview of data binding, and how to visually create data bindings in the Flash authoring
tool, see “Data binding (Flash Professional only)” in Using Flash Help.

Making data binding classes available at runtime (Flash Professional only)

In order to make the data binding service classes available at runtime, the DataBindingClasses
component must be in your FLA file’s library. When you visually create bindings in the Flash
authoring environment, this component is automatically added to your document’s library. But if
you're only using ActionScript to create bindings at runtime, then you have to add this
component manually to your document’s library. For information on how to add this
component to your document, see “Working with data binding and web services at runtime
(Flash Professional only)” in Using Flash Help.

Classes in the mx.data.binding package (Flash Professional only)

The following table lists the classes in the mx.data.binding package.

Class Description

Binding class (Flash Creates a binding between two endpoints.
Professional only)

ComponentMixins class (Flash Adds data binding-specific functionality to components.
Professional only)

CustomFormatter class (Flash Base class for creating custom formatter classes.
Professional only)

CustomValidator class (Flash Base class for creating custom validator classes.
Professional only)

DataType class (Flash Provides read and write access to data fields of a
Professional only) component property.
EndPoint class (Flash Defines the source or destination of a binding.

Professional only)

TypedValue class (Flash Contains a data value and information about the value's data type.
Professional only)

Binding class (Flash Professional only)

ActionScript Class Name mx.data.binding.Binding

The Binding class defines an association between two endpoints, a source and a destination.
It listens for changes to the source endpoint and copies the changed data to the destination
endpoint each time the source changes.

18

Chapter 4: Components Dictionary

You can write custom bindings using the Binding class (and supporting classes), or use the
Bindings tab in the Component Inspector panel (Window > Development Panels >

Component Inspector).

Note: To make this class available at runtime, you must include the DataBindingClasses component

in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the Binding class

Method Description

Binding.execute() Fetches the data from the source component, formats it, and
assigns it to the destination component.

Constructor for the Binding class
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
new Binding(source, destination, [format], [isTwolWay])

Parameters

source A source endpoint of the binding. This parameter is nominally of type
mx.data.binding.EndPoint, but can be any ActionScript object that has the required Endpoint
fields (see EndPoint class (Flash Professional only)).

destination The destination endpoint of the binding. This parameter is nominally of type
mx.data.binding.EndPoint, but can be any ActionScript object that has the required Endpoint
fields (see EndPoint class (Flash Professional only)).

format (Optional) An object that contains formatting information. The object must have the
following properties:

® cls An ActionScript class that extends the class mx.data.binding.DataAccessor.

® settings An object whose properties provide optional settings for the formatter class
specified by c1s.

isTwoWay (Optional) A Boolean value that specifies whether the new Binding object is
bidirectional (true) or not (false). The default value is false.

Returns

Nothing.

Data binding classes (Flash Professional only) 119

Description

Constructor; creates a new Binding object. You can bind data to any ActionScript object that has
properties and emits events including, but not limited to, components.

A binding object exists as long as the inner-most movie clip contains both the source and
destination components. For example, if movie clip named “A” contains components “X” and
“Y”, and there is a binding between “X” and “Y”, then the binding is in effect as long as movie
clip A exists.

Note: It’s not necessary to retain a reference to the new Binding object, although you can. As soon as
the Binding object is created it immediately begins listening for "changed" events emitted by either
EndPoint. In some cases, however, you might want to save a reference to the new Binding object, so
that you can call its execute () method at a later time (see Binding.execute()).

Example

Example #1: In this example, the text property of a TextInput component (src_txt) is bound to
the text property of another TextInput component (dest_txt). When the src_txt text field
loses focus (that is, when the focusOut event is generated), the value of its text property is
copied into dest_txt.text.

import mx.data.binding.*;
var src = new EndPoint();
src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest= new EndPoint();
dest.component = dest_txt;
dest.property = "text";

new Binding(src, dest);

Example #2: This example demonstrates how to create a Binding object that uses a custom
formatter class. For more information on creating custom formatter classes, see
“CustomFormatter class (Flash Professional only)” on page 121.

import mx.data.binding.*;
var src = new EndPoint();
src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest= new EndPoint();
dest.component = text_dest;
dest.property = "text";

new Binding(src, dest, {cls: mx.data.formatters.Custom, settings: {classname:
"com.mycompany.SpecialFormatter"}});

Binding.execute()

Availability

Flash Player 6.

Edition

Flash MX Professional 2004.

120

Chapter 4: Components Dictionary

Usage
myBinding.execute([reversel)

Parameters

reverse A Boolean value that specifies whether the binding should also be executed from the
destination to the source (true), or only from the source to the destination (false). By default,
this value is false.

Returns

A nul1 value if the binding executed successfully; otherwise, returns an array of error messages
(strings) that describe the error, or errors, that prevented the binding from executing.

Description

Method; fetches the data from the source component and assigns it to the destination
component. If the binding uses a formatter, then the data is formatted before being assigned to
the destination.

This method also validates the data and causes either a valid or invalid event to be emitted by
the destination and source components. Data is assigned to the destination even if it’s invalid,
unless the destination is read-only.

If the reverse parameter is set to true, and the binding is two-way, then the binding is executed
in reverse (from the destination to the source).

Example

The following code, attached to a Button component instance, executes the binding in reverse
(from the destination component to the source component) when the button is clicked.
on(click) {

_root.myBinding.execute(true);
}

CustomFormatter class (Flash Professional only)
ActionScript Class Name mx.data.binding.CustomFormatter

The CustomFormatter class defines two methods, format() and unformat (), that provide the
ability to transform data values from a specific data type to String, and vice versa. By default, these
methods do nothing; you must implement them in a subclass of

mx.data.binding. CustomFormatter.

To create your own custom formatter, you first create a subclass of CustomFormatter that
implements format () and unformat () methods. You can then assign that class to a binding
between components either by creating a new Binding object with ActionScript (see “Binding
class (Flash Professional only)” on page 118), or by using the Bindings tab in the Component
Inspector panel. For information on assigning a formatter class using the Component Inspector,
see “Schema formatters (Flash Professional only)” in Using Flash Help.

You can also assign a formatter class to a component property on the Component Inspector
panel’s Schema tab. However, in that case, the formatter will only get used when the data is
needed in the form of a string. In contrast, formatters assigned using the Bindings panel, or
created with ActionScript, are used whenever when the binding is executed.

Data binding classes (Flash Professional only) 121

For an example of writing and assigning a custom formatter using ActionScript, see “Sample
custom formatter” on page 122.

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Sample custom formatter

The following example demonstrates how to create a custom formatter class and then apply it to a
binding between two components using ActionScript. In this example, the current value of a
NumericStepper component (its value property) is bound to the current value of a TextInput
component (its text property). The custom formatter class formats the current numeric value of
the NumericStepper component (for example, 1, 2, or 3) as its English word equivalent (for

»

example, “one”, “two”, or “three”) before assigning it to the TextInput component.

To create and use a custom formatter:
1 In Flash MX Professional 2004, create a new ActionScript file.

2 Add the following code to the file:

// NumberFormatter.as
class NumberFormatter extends mx.data.binding.CustomFormatter {
// Format a Number, return a String
function format(rawValue) {
var returnValue;
var strArray = new Array('one', 'two', 'three');
var numArray = new Array(l, 2, 3);
returnValue = 0;
for (var i = 0; i<strArray.length; i++) {

if (rawValue == numArray[i]) {
returnValue = strArrayl(il;
break;

}
}
return returnValue;
} // convert a formatted value, returns a raw value
function unformat(formattedValue) {
var returnValue;

var strArray = new Array('one', 'two', 'three');
var numArray = new Array(l, 2, 3);
returnValue = "invalid";

for (var i = 0; i<strArray.length; i++) {
if (formattedValue == strArray[i]) {
returnValue = numArray[i];
break;
}
}
return returnValue;

}
3 Save the ActionScript file as NumberFormatter.as.
4 Create a new Flash (FLA) document.
5 Open the Components panel (Window > Development Panels > Components).

122 Chapter 4: Components Dictionary

6 Drag a TextInput component to the Stage and name it textInput.

7 Drag a NumericStepper component to the Stage and name it stepper.

8 Open the Timeline (Window > Timeline) and select the first frame on Layer 1.
9 Open the Actions panel (Window > Development Panels > Actions).

10 Add the following code to the Actions panel:

import mx.data.binding.*;

var x:NumberFormatter;

var customBinding = new Binding({component:stepper, property:"value",
event:"change"}, {component:textInput, property:"text",
event:"enter,change"}, {cls:mx.data.formatters.Custom,
settings:{classname:"NumberFormatter"}});

The second line of code (var x:NumberFormatter) ensures that the byte code for your custom

formatter class is included in the compiled SWF file.
11 Select Window > Panels > Other Panels > Classes to open the Classes library.
12 Open your document’s library by selecting Window > Library.

13 Drag the DataBindingClasses component from the Classes library to your document’s library.

This makes the data binding runtime classes available for your document. .For more

information, see “Working with data binding and web services at runtime (Flash Professional

only)” in Using Flash Help.
14 Save the FLA file to the same folder that contains NumberFormatter.as.
15 Test the file (Control > Test Movie).

Click the buttons on the NumericStepper component and watch the contents of the TextInput

component update.

Method summary for the CustomFormatter class

Method Description
CustomFormatter.format() Converts from a raw datatype to a text string.
CustomFormatter.unformat() Converts from a text string to a raw datatype.

CustomFormatter.format()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.
Usage
This method is called automatically; you don’t invoke it directly.
Parameters

rawData The data to be formatted.

Data binding classes (Flash Professional only)

Returns

A formatted value.

Description

Method; converts from a raw data type to a new object.

This method is not implemented by default. You must define this method in your subclass of
mx.data.binding.CustomFormatter.

Example

See “Sample custom formatter” on page 122.

CustomFormatter.unformat()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

This method is called automatically; you don’t invoke it directly.

Parameters

formattedData The formatted data to convert back to the raw data type.

Returns

An unformatted value.

Description

Method; converts from a string, or other data type, to the raw data type. This transformation
should perform the exact inverse transformation of the CustomFormatter. format().

This method is not implemented by default. You must define this method in your subclass of
mx.data.binding.CustomFormatter.

For more information, see “Sample custom formatter” on page 122.

CustomValidator class (Flash Professional only)

ActionScript Class Name mx.data.binding.CustomValidator

You use the CustomValidator class when you want to perform custom validation of a data field
contained by a component.

To create a custom validation class, you first create a subclass of

mx.data.binding. CustomValidator that implements a method named validate (). This method
is automatically passed a value to be validated. For more information about how to implement
this method, see CustomValidator.validate().

124

Chapter 4: Components Dictionary

Next, you assign your custom validator class to a field of a component using the Component
Inspector panel's Schema tab. For an example of creating and using a custom validator class, see
the Example section in the entry for CustomValidator.validate().

To assign a custom validator, do the following:

1 In the Component Inspector panel (Window > Component Inspector), select the Schema tab.
2 Select the field you want to validate, and then select Custom from the Data Type pop-up menu.

3 Select the Validation Options field (at the bottom of the Schema tab), and click the magnifying
glass icon to open the Custom Validation Settings dialog box.

4 In the ActionScript Class text box enter the name of the custom validation class you created.

In order for the class you specify to be included in the published SWE, it must be in
the classpath.

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the CustomValidator class

Method Description

CustomValidator.validate() Performs validation on data.

CustomValidator.validationError() Reports validation errors.

CustomValidator.validate()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.
Usage
This method is called automatically; you don't invoke it directly.
Parameters
value The data to be validated; it can be of any type.
Returns
Nothing.
Description

Method; called automatically to validate the data contained by the value parameter. You must
implement this method in your subclass of CustomValidator; the default implementation
does nothing.

Data binding classes (Flash Professional only) 125

You can use any ActionScript code you like to examine and validate the data. If the data is not
valid, this method should call this.validationError() with an appropriate message. You can
call this.validationError() more than once if there are several validation problems with

the data.

Since the validate() method might be called repeatedly, you should avoid adding code to this
method that takes a long time to complete. Your implementation of this method should only
check for validity, and then report any errors using CustomValidator.validationError().
Similarly, your implementation should not take any action as a result of the validation test, such
as alerting the end user. Instead, create event listeners for valid and invalid events and alert the
end user from those event listeners (see example below).

Example

The following procedure demonstrates how to create and use a custom validation class. The
validate() method of the CustomValidator class, OddNumbersOnly.as, determines as invalid
any value that not an odd number. The validation occurs whenever the value of a
NumericStepper component changes, which is bound to the text property of a

Label component.

To create and use a custom validator class:
1 In Flash MX Professional 2004, create a new ActionScript (AS) file.
2 Add the following code to the AS file:

class 0ddNumbersOnly extends mx.data.binding.CustomValidator
{
public function validate(value) f{
// make sure the value is a Number
var n = Number(value);

if (String(n) == "NaN") {
this.validationError("'" + value + "' is not a number.");
return;

}

// make sure the number is odd

if (n % 2 ==20) {
this.validationError("'" + value + "' is not a odd number.");
return;

}

// data is ok, no need to do anything, just return

}
}

3 Save the AS file as OddNumbersOnly.as.

Note: The name of the AS file must match the name of the class.

IS

Create a new Flash (FLA) document.

N

Open the Components panel (Window > Development Panels > Components).

[

Drag a NumericStepper component from the Components panel to the Stage and name
it stepper.

~

Drag a Label component to the Stage and name it textLabel.

o]

Drag a TextArea component to the Stage and name it status.

o

Select the NumericStepper component, and open the Component Inspector panel (Window >
Development Panels > Component Inspector).

126

Chapter 4: Components Dictionary

10 Select the Bindings tab in the Component Inspector panel and click the Add Binding
(+) button.

11 Select the Value property (the only one) in the Add Bindings dialog, then click OK

12 In the Component Inspector panel, double-click Bound To in the Binding Attributes pane of
the Bindings tab to open the Bound To dialog box.

13 In the Bound To dialog box, select the Label component in the Component Path pane and the
its text property in the Schema Location pane. Click OK.

14 Select the Label component on the Stage and click the Schema tab in the Component
Inspector panel.

15 In the Schema Attributes pane, select Custom from the Data Type pop-up menu.

16 Double-click the Validation Options field in the Schema Attributes pane to open the Custom
Validation Settings dialog box.

17 In the ActionScript Class text box, enter OddNumbersOnly, which is the name of the
ActionScript class you created previously. Click OK.

18 Open the Timeline (Window > Timeline) and select the first frame on Layer 1.
19 Open the Actions panel (Window > Actions).
20 Add the following code to the Actions panel:

function datalsInvalid(evt) {
if (evt.property == "text") {
status.text = evt.messages;
}
}

function datalsValid(evt) {
if (evt.property == "text") {
status.text = "0K";
}
}

textlabel.addEventListener("valid", datalsValid);
textlLabel.addEventListener("invalid", datalsInvalid);

21 Save the FLA file as OddOnly.fla to the same folder that contains OddNumbersOnly.as.
22 Test the SWF (Control > Test Movie).

Click the arrows on the NumericStepper component to change its value. Notice the message
that appears in the TextArea component when you choose even and odd numbers.

CustomValidator.validationError()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
this.validationError(errorMessage)

Note: This method can be invoked only from inside a custom validator class; the keyword this refers
to the current CustomValidator object.

Data binding classes (Flash Professional only) 127

Parameters

errorMessage A string that contains the error message to be reported.

Returns

Nothing.

Description

Method; you call this method from the validate() method of your subclass of CustomValidator
to report validation errors. If you don't call this method, then a valid event is generated when
validate() completes. If you call this method one or more times from within the validate()
method then an invalid event is generated after validate() returns.

Each message you pass to validationError() is available in the "messages" property of the
event object that passed to the invalid event handler.

Example

See the Example section for CustomValidator.validate().

EndPoint class (Flash Professional only)

ActionScript Class Name mx.data.binding.EndPoint

The EndPoint class defines the source or destination of a binding. EndPoint objects define a
constant value, component property, or a particular field of a component property, from which
you can get data, or to which you can assign data. They can also define an event, or list of events,
that a Binding object listens for; when the specified event occurs, the binding executes.

When you create a new binding with the Binding class constructor, you pass it two EndPoint
objects: one for the source and one for the destination.

new mx.data.binding.Binding(srcEndPoint, destEndPoint);
The EndPoint objects, srcEndPoint and destEndPoint, might be defined as follows:

var srckEndPoint = new mx.data.binding.EndPoint();
var destEndPoint = new mx.data.binding.EndPoint();
srcEndPoint.component = source_txt;
srcEndPoint.property = "text";

srcEndPoint.event = "focusOut";
destEndPoint.component = dest_txt;
destEndPoint.property = "text";

In English, the above code means “when the source text field loses focus, copy the value of its
text property into the text property of the destination text field”.

You can also pass generic ActionScript objects to the Binding constructor, rather than passing
explicitly constructed EndPoint objects. The only requirement is that the objects define the
required EndPoint properties, namely component and property. The following code is
equivalent to that shown above.

var srckndPoint = {component:source_txt, property:"text"};
var destEndPoint = {component:dest_txt, property:"text"};
new mx.data.binding.Binding(srcEndPoint, destEndPoint);

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

128

Chapter 4: Components Dictionary

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Property summary for the EndPoint class

Method Description

EndPoint.constant A constant value.

EndPoint.component A reference to a component instance.

EndPoint.property The name of a property of the component instance specified by
EndPoint.component.

EndPoint.location The location of a data field within the property of the component instance.

EndPoint.event The name of an event, or list of events, the component instance will emit

when the data changes.

Constructor for the EndPoint class
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
new EndPoint()

Returns

Nothing.
Description

Constructor; creates a new EndPoint object.
Example

This example creates a new EndPoint object named source_txt and assigns values to its
component and property properties.

var source_obj = new mx.data.binding.EndPoint();
source_obj.component = myTextField;
source_obj.property = "text";

EndPoint.constant
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Data binding classes (Flash Professional only) 129

Usage
endPoint_src.constant

Description

Property; a constant value assigned to an EndPoint object. This property can only be applied to
EndPoints that are the source, not the destination, of a binding between components. The value
can be any data type that is compatible with the destination of the binding. If specified, all other
EndPoint properties for the specified EndPoint object are ignored.

Example

In this example, the string constant value “hello” is assigned to an EndPoint object’s
constant property.

var sourcetndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.constant="hello";

EndPoint.component

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
endPoint0bj.component

Description
Property; a reference to a component instance.
Example

This example assigns an instance of the List component (11stBox1) as the component parameter
of a EndPoint object.

var sourcekEndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.component=1istBox1;

EndPoint.property
Availability
Flash Player 6 version 79
Edition
Flash MX Professional 2004.

Usage
endPoint0Obj.property

130 Chapter 4: Components Dictionary

Description

Property; specifies a property name of the component instance specified by
EndPoint.component that contains the bindable data.

Note: EndPoint.component and EndPoint.property must combine to form a valid ActionScript object/
property combination.

Example

This example binds the text property of one TextInput component (text_1) to the same
property in another TextInput component (text_2).
var sourceEndPoint = {component:text_1, property:"text"};

var destEndPoint = {component:text_2, property:"text"};
new Binding(sourceEndPoint, destEndPoint);

EndPoint.location

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
endPoint0Obj.location

Description

Property; specifies the location of a data field within the property of the component instance.
There are four ways to specify a location: as a string that contains either an XPath expression or an
ActionScript path, an array of strings, or an object.

XPath expressions can only be used when the data is an XML object. For a list of supported XPath
expressions, see “Supported XPath expressions” in Using Flash Help. (See Example 1 below.)

For XML and ActionScript objects you can also specify a string that contains an ActionScript
path. An ActionScript path contains the names of fields separated by dots (for example,
"a.b.c").

You can also specify an array of strings as a location. Each string in the array “drills down” another
level of nesting. You can use this technique with both XML and ActionScript data. (See Example
2 below.) When used with ActionScript data, an array of strings is equivalent to using an
ActionScript; that is, the array ["a","b","c"] is equivalent to "a.b.c".

If you specify an object as the location, the object must specify two properties: path and indices.
The path property is an array of strings, as discussed above, except that one or more of the
specified strings may be the special token "[n]". For each occurrence of this token in path, there
must be a corresponding index item in indices. As the path is being evaluated, the indices are
used to index into arrays. The index item can be any EndPoint. This type of location can be
applied to ActionScript data only—not XML. (See Example 3 below.)

Data binding classes (Flash Professional only) 131

Example

Example 1: This example uses an XPath expression to specify the location of a node named zip in
an XML object.

var sourcetEndPoint = new mx.databinding.EndPoint();
var sourcObj=new Object();

sourceObj.xml=new XML("<zip>94103</zip>");
sourceEndPoint.component=sourceObj;
sourcekndPoint.property="xml";
sourceEndPoint.location="/zip";//

Example 2: This example uses an array of string to “drill down” to a nested movie clip property.

var sourceEndPoint = new mx.data.binding.EndPoint();
//assume movieClipl.ball.position exists
ssourcekndPoint.component=movieClipl;
sourcekndPoint.property="ball";

//access movieClipl.ball.position.x
sourcekndPoint.location=["position","x"];

Example 3: This example shows how to use an object to specify the location of a data field in a

complex data structure.

var city=new Object();

city.theaters = [{theater: "t1", movies: [{name: "Good,Bad,Ugly"},
{name:"Matrix Reloaded"}]}, {theater: "t2", movies: [{name: "Gladiator"},
{name: "Catch me if you can"}]1}1;

var srckEndPoint = new EndPoint();

srcEndPoint.component=city;

srcEndPoint.property="theaters";

srcEndPoint.location = {path: ["[n]","movies","[n]","name"], indices:
[{constant:0},{constant:0}]};

EndPoint.event
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
endPoint0Obj.event

Description

Property; specifies the name of an event, or an array of event names, generated by the component
when data assigned to the bound property changes. When the event occurs, the binding executes.

The specified event only applies to components that are used as the source of a binding, or as the
destination of a two-way binding. For more information about creating two-way bindings, see
“Binding class (Flash Professional only)” on page 118.

132 Chapter 4: Components Dictionary

Example

In this example, the text property of one TextInput (src_txt) component is bound to the same
property of another TextInput component (dest_txt). The binding is executed when either the
focusOut or enter events are emitted by the src_txt component.

var source = {component:src_txt, property:"text", event:["focusOut",
"enter"1};
var dest = {component:myTextArea, property:"text"};

var newBind = new mx.data.binding.Binding(source, dest);

ComponentMixins class (Flash Professional only)
ActionScript Class Name mx.data.binding.ComponentMixins

The ComponentMixins class defines properties and methods that are automatically added to any
object that is the source or destination of a binding, or to any component that’s the target of a
ComponentMixins.initComponent () method call. These properties and methods do not affect
normal component functionality; rather, they add functionality that is useful with data binding.

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the ComponentMixins class

Method Description
ComponentMixins.getField() Returns an object for getting and setting the value of a
field at a specific location in a component property.
ComponentMixins.initComponent() Adds the ComponentMixin methods to a component.
ComponentMixins.refreshFromSources() Executes all bindings that have this component as the
destination EndPoint.
ComponentMixins.refreshDestinations() Executes all the bindings that have this object as the
source EndPoint.
ComponentMixins.validateProperty() Checks to see if the data in the indicated property
is valid.

ComponentMixins.getField()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
componentInstance.getField(propertyName, [Tocation])

Data binding classes (Flash Professional only) 133

Parameters
propertyName A string that contains the name of a property of the specified component.

lTocation (Optional) The location of a field within the component property. This is useful if
the component property specified by propertyName is a complex data structure and you are
interested in a particular field of that structure. This property can take one of the following
three forms:

® A string that contains a XPath expression. This is only valid for XML data structures. For a list
of supported XPath expressions, see “Supported XPath expressions” in Using Flash Help.

® A string that contains field names, separated by dots, for example "a.b.c". This form is
permitted for any complex data (ActionScript or XML).

® An array of strings, where each string is a field name, for example ["a", "b", "c"]. This form is
permitted for any complex data (ActionScript or XML).

Returns
A DataType object.
Description

Method; returns a DataType object whose methods you can use to get or set the data value in the
component property at the specified field location. For more information, see “DataType class
(Flash Professional only)” on page 138.

Example

This example uses the DataType.setAsString() method to set the value of a field located in a
component’s property. In this case the property (results) is a complex data structure.

import mx.data.binding.*;
var field : DataType = myComponent.getField("results", "po.address.namel");
field.setAsString("Teri Randall");

See also

DataType.setAsString()

ComponentMixins.initComponent()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
mx.data.binding.ComponentMixins.initComponent(componentinstance)

Parameters
componentInstance A reference to a component instance.
Returns

Nothing.

134 Chapter 4: Components Dictionary

Description

Method (static); adds all the ComponentMixins methods to the component specified by
componentInstance. This method is called automatically for all components involved in a data
binding. To make the ComponentMixins methods available for a component not involved in a
data binding, you must explicitly call this method for that component.

Example

The following code makes the ComponentMixins methods avaialble to a DataSet component.

mx.data.binding.ComponentMixins.initComponent(_root.myDataSet);

ComponentMixins.refreshFromSources()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
componentInstance.refreshSources()

Returns
Nothing.
Description

Method; executes all bindings for which componentInstance is the destination EndPoint object.
This method lets you execute bindings that have constant sources, or sources that do not emit any
“data changed” event.

Example

The following example executes all the bindings for which the ListBox component instance
named cityList is the destination EndPoint object.

citylList.refreshFromSources();

ComponentMixins.refreshDestinations()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
componentInstance.refreshDestinations()

Returns

Nothing.

Data binding classes (Flash Professional only) 135

Description

Method; executes all the bindings for which componentInstance is the source EndPoint. This
method lets you execute bindings whose sources do not emit a “data changed” event.

Example

The following example executes all the bindings for which the DataSet component instance
named user_data is the source EndPoint object.

user_data.refreshDestinations();

ComponentMixins.validateProperty()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
componentInstance.validateProperty(propertyName)

Parameters

propertyName A string that contains the name of a property belonging to
componentInstance.

Returns
An array, or null.

Description

Method; determines if the data in propertyName is valid based on the property’s schema settings.
The property’s schema settings are those specified on the Schema tab in the Component
Inspector panel.

The method returns nu11 if the data is valid; otherwise, returns an array of error messages
as strings.

Validation only applies to fields that have schema information available. If a field is an object that
contains other fields, then each “child” field will be validated, and so on, recursively. Each
individual field will dispatch a valid or invalid event, as necessary. For each data field
contained by propertyName, this function dispatches valid or invalid events, as follows:

® If the value of the field is nu11, and is noz required, the method returns nu11. No events
are generated.

® If the value the field is nu11, and is required, an error is returned and an invalid event
is generated.

¢ [f the value of the field is non-null and the field's schema does 7oz have a validator, the method
returns nul1; no events are generated.

® If the value is non-null and the field’s schema does define a validator, then the data is processed
by the validator object. If the data is valid, a valid event is generated and nul1 is returned;
otherwise, an invalid event is generated and an array of error strings is returned.

136 Chapter 4: Components Dictionary

Example

The following examples shows how to use validateProperty() to make sure that text entered
by a user is of a valid length. You'll determine what a valid length is by setting the Validation
Options for the String DataType in the Component Inspector panel’s Schema tab. If the user
enters a string in the text field of an invalid length, the error messages returned by the
validateProperty() method are displayed in the Output panel.

To validate text entered by a user in a Textlnput component:

1 Draga TextInput component from the Components panel (Window > Development Panels >
Components) to the Stage, and name it zipCode_txt.

2 Select the TextInput component and, in the Component Inspector panel (Window >
Development Panels > Components), click the Schema tab.

3 In the Schema Tree pane (the top pane of the Schema tab) select the text property.

4 In the Schema Attributes pane (the bottom pane of the Schema tab), select ZipCode from the
Data Type pop-up menu.

5 Open the Timeline, if not already open, by choosing Window > Timeline.

6 Click the first frame on Layer 1 in the Timeline, and open the Actions panel
(Window > Actions).

7 Add the following code to the Actions panel:

// Add ComponentMixin methods to TextInput component.
// Note that this step is only necessary if the component
// isn’t already involved in a data binding,
// either as the source or destination.
mx.data.binding.ComponentMixins.initComponent(zipCode_txt);
// Define event Tistener function for component:
validateResults = function (eventObj) {

var errors:Array = eventObj.target.validateProperty("text");

if (errors != null) {

trace(errors);

}
b
// Register Tistener function with component:
zipCode_txt.addEventListener("enter", validateResults);

8 Select Window > Other Panels > Common Libraries > Classes to open the Classes library.
9 Open your document’s library by choosing Window > Library.

10 Drag the DataBindingClasses component from the Classes library to your document’s
Library panel.
This step is required to make the data binding runtime classes available to the SWF at runtime.

For more information, see “Working with data binding and web services at runtime
(Flash Professional only)” in Using Flash Help.

11 Test the SWF by choosing Control > Test Movie.

In the TextInput component on the Stage, enter an invalid United States zip code—for
example, one that contains all letters, or one that contains less than five numbers. Notice the
error messages displayed in the Output panel.

Data binding classes (Flash Professional only) 137

DataType class (Flash Professional only)

ActionScript Class Name mx.data.binding.DataType

The DataType class provides read and write access to data fields of a component property. To get
a DataType object, you call the ComponentMixins.getField() function on a component. You
can then call methods of the DataType object to get and set the value of the field.

The difference between getting and setting field values using DataType object methods, and
getting or setting the same values directly on the component instance, is that the latter case
provides the data in its “raw” form. In contrast, when you get or set field values using methods of
the DataType class, those values are processed according to the field’s schema settings.

For example, the following code gets the value of a component’s property directly and assigns it to
a variable. The variable, propVar, contains whatever “raw” value is the current value of the
property propName.

var propVar = myComponent.propName;

The next example gets the value of the same property using the DataType.getAsString()
method. In this case, the value assigned to stringVar is the value of propName after being
processed according to its schema settings, and then returned as a string.

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var stringVar: String = dataTypeObj.getAsString();

For more information about how to specify a field’s schema settings, see “Working with schemas
in the Schema tab (Flash Professional only)” in Using Flash Help.

You can also use the methods of the DataType class to get or set fields in various data types. The
DataType class automatically converts the raw data to the requested type, if possible. For example,
in the code example above, the data that’s retrieved is converted to String type, even if the raw

data is a different type.

The ComponentMixins.getField() method is available for components that have been
included in a data binding (either as a source, destination, or an index), or that have been
initialized using the ComponentMixins.initComponent() method. For more information, see
“ComponentMixins class (Flash Professional only)” on page 133.

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the DataType class

Method Description

DataType.getAsBoolean() Fetches the current value of the field as a Boolean.
DataType.getAsNumber() Fetches the current value of the field as a Number.
DataType.getAsString() Fetches the current value of the field as a String value.

DataType.getAnyTypedValue() Fetches the current value of the field.

138

Chapter 4: Components Dictionary

Method Description

DataType.getTypedValue() Fetches the current value of the field in the form of the requested
DataType.

DataType.setAnyTypedValue() Setsa new value into the field.

DataType.setAsBoolean() Sets the field to the new value, which is given as a Boolean.
DataType.setAsNumber() Sets the field to the new value, which is given as a Number.
DataType.setAsString() Sets the field to the new value, which is given as a String.
DataType.setTypedValue() Sets a new value into the field.

Property summary for the DataType class

Property Description
DataType.encoder Provide a reference to the Encoder object associated with this field.
DataType.formatter Provides a reference to the Formatter object associated with
this field.
DataType.kind Provides a reference to the Kind object associated with this field.
DataType.encoder
Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.
Usage

dataTypeObject.encoder
Description

Property; provides a reference to the encoder object associated with this field, if one exists. You
can use this property to access any properties and methods defined by the specific encoder applied
to the field in the Schema tab of the Component Inspector panel.

If no encoder was applied to the field in question, then this property will return undefined.

For more information about the encoders provided with Flash MX Professional 2004, see
“Schema encoders (Flash Professional only)” in Using Flash Help.

Example

The following example assumes that the field being accessed (isValid) uses the Boolean encoder
(mx.data.encoders.Bool). This encoder is provided with Flash MX Professional 2004 and
contains a property named trueStrings that specifies which strings should be interpreted as
true Boolean values. The code below sets the trueStrings property for a field’s encoder to be
the strings “yes” and “si”.

var myField:mx.data.binding.DataType = dataSet.getField("isValid");
myField.encoder.trueStrings = "Yes,Oui";

Data binding classes (Flash Professional only) 139

DataType.formatter
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.formatter

Description

Property; provides a reference to the formatter object associated with this field, if one exists. You
can use this property to access any properties and methods for the formatter object applied to the
field in the Schema tab of the Component Inspector panel.

If no formatter was applied to the field in question, then this property will return undefined.

For more information about the encoders provided with Flash MX Professional 2004, see
“Schema formatters (Flash Professional only)” in Using Flash Help.

Example

This example assumes that the field being accessed is using the Number Formatter
(mx.data.formatters.NumberFormatter) provided with Flash MX Professional 2004. This
formatter contains a property named precision that specifies how many digits to display after

the decimal point. This code sets the precision property to two decimal places for a field using
this formatter.

var myField:DataType = dataGrid.getField("currentBalance");
myField.formatter.precision = 2;

DataType.getAsBoolean()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAsBoolean()

Returns
A Boolean value.
Description

Method; fetches the current value of the field as a Boolean. The value is converted to Boolean
form, if necessary.

140 Chapter 4: Components Dictionary

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a Boolean value, and assigned to a variable.

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:Boolean = dataTypeObj.getAsBoolean();

DataType.getAsNumber()
Availability
Flash Player 6.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAsNumber()

Returns
A number.
Description

Method; fetches the current value of the field as a number. The value is converted to Number
form, if necessary.

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a number, and assigned to a variable.

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:Number = dataTypeObj.getAsNumber();

See also

DataType.getAnyTypedValue()

DataType.getAsString()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAsString()

Returns

A string.

Data binding classes (Flash Professional only) 141

Description

Method; fetches the current value of the field as a string. The value is converted to String form,
if necessary.

Example

In this example, a property of a component named propName that belongs to a component
named myComponent is retrieved as a string and assigned to a variable.

var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:String = dataTypeObj.getAsString();

See also

DataType.getAnyTypedValue()

DataType.getAnyTypedValue()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getAnyTypedValue(suggestedTypes)

Parameters

suggestedTypes An array of strings that specify, in descending order of desirability, the
preferred data types youd like for the field. For more information, see the Description
section below.

Returns

The current value of the field, in the form of one of the data types specified in the
suggestedTypes array.

Description

Method; fetches the current value of the field, using the information in the field's schema to
process the value. If the field is able to provide a value as the first data type specified in the
suggestedTypes array, then the method returns the field’s value as that data type. If not, the
method attempts to extract the field’s value as the second data type specified in the
suggestedTypes array, and so on.

If you specify nu11 as one of the items in the suggestedTypes array, then the method returns the
value of the field in the data type specified in the Schema panel. Specifying nu11 will always result
in a value being returned, so only use nu11 at the end of the array.

If a value can’t be returned in the form of the one of the suggested types, then it is returned in the

type specified in the Schema panel.

142 Chapter 4: Components Dictionary

Example

This example attempts to get the value of a field (productInfo.available) inan
XMLConnector component’s results property first as a Number or, if that fails, as a String.

import mx.data.binding.DataType;

import mx.data.binding.TypedValue;

var f: DataType = myXmlConnector.getField("results", "productInfo.available");
var b: TypedValue = f.getAnyTypedValue(["Number", "String"]);

See also

ComponentMixins.getField()

DataType.getTypedValue()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.getTypedValue(requestedType)

Parameters

requestedType A string containing the name of a data type, or null.
Returns

A TypedValue object (see “TypedValue class (Flash Professional only)” on page 147)
Description

Method; returns the value of the field in the form specified by requestedType, if specified and if
the field can provide its value in that form. If the field isn’t able to provide its value in the
requested form then the method returns nu11.

If nul1 is specified as the requestedType then the method returns the value of the field in its
default type.

Example
var bool:TypedValue = field.getTypedValue("Boolean");

DataType.kind
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.kind

Data binding classes (Flash Professional only) 143

Description

Property; provides a reference to the Kind object associated with this field. You can use this to
access properties and methods of the Kind object.

DataType.setAnyTypedValue()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.setAnyTypedValue(newTypedValue)

Parameters

newValue A TypedValue object value to set into the field.

For more information about TypedValue objects, see “TypedValue class (Flash Professional only)”
on page 147.

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

® The data provided cannot be converted to the data type of this field (for example, "abc" cannot
be converted to Number).

® The data is an acceptable type but does not meet the validation criteria of the field.

® The field is read-only.

Note: The actual text of the message(s) will vary depending on the data type, formatters, and
encoders that are defined in the field's schema.

Description

Method; sets a new value into the field, using the information in the field's schema to process
g p

the field.

This method operates by first calling DataType.setTypedValue() to set the value. If that fails,
the method checks to see if the destination object is willing to accept String, Boolean, or Number
data, and if so, attempts to use the corresponding ActionScript conversion functions.

Example

This example creates a new TypedValue object (a Boolean), and then assigns that value to a
DataType object named field. Any errors that occur are assigned to the errors array.
import mx.data.binding.*;

var t:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setAnyTypedValue (t);

See also

DataType.setTypedValue()

144

Chapter 4: Components Dictionary

DataType.setAsBoolean()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.setAsBoolean(newBooleanlValue)

Parameters

newBooleanValue A Boolean value.
Returns

Nothing.
Description

Method; sets the field to the new value, which is given as a Boolean. The value is converted to,

and stored as, the data type that is appropriate for this field.

Example

var bool: Boolean = true;
field.setAsBoolean (bool);

DataType.setAsNumber()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
dataTypeObject.setAsNumber (newNumberValue)

Parameters

newNumberValue A Number.
Returns

Nothing.
Description

Method; sets the field to the new value, which is given as a Number. The value is converted to,
and stored as, the data type that is appropriate for this field.

Example

var num: Number = 32;
field.setAsNumber (num);

Data binding classes (Flash Professional only) 145

DataType.setAsString()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.
Usage

dataTypeObject.setAsString(newStringlValue)
Parameters

newStringValue A String.
Returns

Nothing.
Description

Method; sets the field to the new value, which is given as a String. The value is converted to, and
stored as, the data type that is appropriate for this field.

Example

var stringVal: String = "The new value";
field.setAsString (stringVal);

DataType.setTypedValue()

Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.
Usage
dataTypeObject.setTypedValue(newTypedValue)
Parameters
newValue A TypedValue object value to set into the field.

For more information about TypedValue objects, see “TypedValue class (Flash Professional only)”
on page 147.

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

® The data provided is not an acceptable type.

® The data provided cannot be converted to the datatype of this field (for example, "abc" cannot
be converted to Number).

146 Chapter 4: Components Dictionary

® The data is an acceptable type but does not meet the validation criteria of the field.

® The field is read-only.

Note: The actual text of the message(s) will vary depending on the data type, formatters, and
encoders that are defined in the field's schema.

Description

Method; sets a new value into the field, using the information in the field's schema to process the
field. This method behaves similarly to DataType.setAnyTypedValue(), except that it doesn’t
try as hard to convert the data to an acceptable data type. For more information, see
DataType.setAnyTypedValue().

Example

This example creates a new TypedValue object (a Boolean), and then assigns that value to a
DataType object named field. Any errors that occur are assigned to the errors array.

import mx.data.binding.*;
var bool:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setTypedValue (bool);

See also

DataType.setTypedValue()

TypedValue class (Flash Professional only)
ActionScript Class Name mx.data.binding. TypedValue

A TypedValue is an object that contains a data value, along with information about the value's
data type. TypedValue objects are provided as parameters to, and are returned from, various
methods of the DataType class. The data type information in the TypedValue object helps
DataType objects decide when and how they need to do type conversion.

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Property summary for the TypedValue class

Property Description

TypedValue.type Contains the schema associated with the TypedValue object’s value.
TypedValue.typeName Contains the name of the DataType of the TypedValue object’s value.

TypedValue.value Contains the data value of the TypedValue object.

Data binding classes (Flash Professional only) 147

Constructor for the TypedValue class

Availability
Flash Player 6 version 79.

Usage
new mx.data.binding.TypedValue(value, typeName, [typel)

Parameters
value A data value. This can be any type.
typeName A String that contains the name of the DataType of the value.
type (Optional) A Schema object that describes in more detail the schema of the data. This

field is only required in certain circumstances, such as when setting data into a DataSet
component’s dataProvider property.
Description

Constructor; creates a new TypedValue object.

TypedValue.type

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
typedValueObject.type

Description

Property; contains the schema associated with the TypedValue object’s value. It is only used in

certain circumstances.

Example

This example will display “null” in the Output panel.

var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.type);

TypedValue.typeName
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
typedValueObject.typeName

148 Chapter 4: Components Dictionary

Description
Property; contains the name of the DataType of the TypedValue object’s value.
Example

This example will display “Boolean” in the Output panel.

var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.typeName);

TypedValue.value
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
typedValueObject.value

Description
Property; contains the data value of the TypedValue object.
Example

This example will display “true” in the Output panel.

var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.value);

DataGrid component (Flash Professional only)

The DataGrid component allows you to create powerful data-enabled displays and applications.
You can use the DataGrid component to instantiate a recordset (retrieved from a database query
in ColdFusion, Java, or .Net) using Macromedia Flash Remoting and display it in columns. You
can also use data from a data set or from an array to fill a DataGrid component. The v2 DataGrid
component has been improved to include horizontal scrolling, better event support (including
event support for editable cells), enhanced sorting capabilities, and performance optimizations.

You can resize and customize characteristics such as the font, color, and borders of columns in a
grid. You can use a custom movie clip as a “cell renderer” for any column in a grid. (A cell
renderer displays the contents of a cell.) You can use scroll bars to move through data in a grid;
you can also turn off scroll bars and use the DataGrid methods to create a page view style display.

When you add the DataGrid component to an application, you can use the Accessibility panel to
make the component accessible to screen readers. First, you must add the following line of code to
enable accessibility for the DataGrid component:

mx.accessibility.DataGridAccImpl.enableAccessibility();

You enable accessibility for a component only once, no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

DataGrid component (Flash Professional only) 149

Interacting with the DataGrid component (Flash Professional only)

You can use the mouse and the keyboard to interact with a DataGrid component.

If DataGrid.sortableColumns is true and DataGridColumn.sortOnHeaderRelease is true,
clicking within a column header causes the grid to sort based on the column’s cell values.

If DataGrid.resizableColumns is true, clicking in the area between columns allows you to
resize columns.

Clicking within an editable cell sends focus to that cell; clicking a non-editable cell has no effect
on focus. An individual cell is editable when both the DataGrid.editable and
DataGridColumn.editable properties of the cell are true.

When a DataGrid instance has focus either from clicking or tabbing, you can use the following
keys to control it:

Key Description

Down arrow When a cell is being edited, the insertion point shifts to the end of the
cell’s text. If a cell is not editable, the down arrow handles selection as the
List component does.

Up arrow When a cell is being edited, the insertion point shifts to the beginning of
the cell's text. If a cell is not editable, the up arrow handles selection as the
List component does.

Right arrow When a cell is being edited, the insertion point shifts one character to the
right. If a cell is not editable, the right arrow does nothing.

Left arrow When a cell is being edited, the insertion point shifts one character to the
left. If a cell is not editable, the left arrow does nothing.

Return/Enter/Shift+Enter When a cell is editable, the change is committed, and the insertion point is
moved to the cell on the same column, next row (up or down, depending
on the shift toggle).

Shift+Tab/Tab Moves focus to the previous item. When the Tab key is pressed, focus
wraps from the last column in the grid to the first column on the next line.
When Shift+Tab is pressed, wrapping is reversed.

Using the DataGrid component (Flash Professional only)

You can use the DataGrid component as the foundation for numerous types of data-driven
applications. You can easily display a formatted tabular view of a database query (or other data),
but you can also use the cell renderer capabilities to build more sophisticated and editable user
interface pieces. The following are practical uses for the DataGrid component:

® A webmail client
® Search results pages
® Spreadsheet applications such as loan calculators and tax form applications

The DataGrid component consists of two sets of APIs: the DataGrid class and the
DataGridColumn class.

150

Chapter 4: Components Dictionary

Understanding the DataGrid component: data model and view

Conceptually, the DataGrid component is composed of a data model and a view that displays the
data. The data model consists of three main parts:

® DataProvider

This is a list of items with which to fill the data grid. Any array in the same frame as a
DataGrid component is automatically given methods (from the DataProvider API) that allow
you to manipulate data and broadcast changes to multiple views. Any object that implements
the DataProvider interface can be assigned to the DataGrid.dataProvider property
(including recordsets, data sets, and so on). The following code creates a data provider called
myDP:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});

® Jtem

This is an ActionScript object used for storing the units of information in the cells of a
column. A data grid is really a list that can display more than one column of data. A list can be
thought of as an array; each indexed space of the list is an item. For the DataGrid component,
each item consists of fields. In the following code, the contents between curly braces ({) is
an item:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});
* Field
Identifiers that indicate the names of the columns within the items. This corresponds to the
columnNames property within the columns list. In the List component, the fields are usually
Tabel and data, but in the DataGrid component the fields can be any identifier. In the
following code, the fields are name and price:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});
The view consists of three main parts:

®* Row

This is a view object responsible for rendering the items of the grid by laying out cells. Each
row is laid out horizontally below the previous one.

® Column

This consists of the view objects (instances of the DataGridColumn class) responsible for
displaying each column, for example, width, color, size, and so on.

There are three ways to add columns to a data grid: assign a DataProvider object to
DataGrid.dataProvider (this automatically generates a column for each field in the first
item), set DataGrid.columnNames to specify which fields will be displayed, or use the
constructor for the DataGridColumn class to create columns and call DataGrid.addColumn()
to add them to the grid.

To format columns, either set up style properties for the entire data grid, or define
DataGridColumn objects, set up their style formats individually, and add them to the

data grid.

DataGrid component (Flash Professional only) 151

* Cell

This is a view object responsible for rendering the individual fields of each item. To
communicate with the data grid, these components must implement the CellRenderer
interface (see “CellRenderer API” on page 77). For a basic data grid, a cell is a built-in
ActionScript TextField object.

DataGrid parameters

The following are authoring parameters that you can set for each DataGrid component instance
in the Property inspector or in the Component Inspector panel:

multipleSelection A Boolean value that indicates whether multiple items can be selected
(true) or not (false). The default value is false.

rowHeight The height of each row, in pixels. Changing the font size does not change the row
height. The default value is 20.

editable A Boolean value that indicates whether the grid is editable (true) or not (false). The
default value is false.

You can write ActionScript to control these and additional options for the DataGrid component
using its properties, methods, and events. For more information, see “DataGrid class (Flash
Professional only)” on page 154.

Creating an application with the DataGrid component

To create an application with the DataGrid component, you must first determine where your data
is coming from. The data for a grid can come from a recordset that is fed from a database query in
Macromedia ColdFusion, Java, or .Net using Flash Remoting. Data can also come from a data set
or an array. To pull the data into a grid, you set the DataGrid.dataProvider property to the
recordset, data set, or array. You can also use the methods of the DataGrid and DataGridColumn
classes to create data locally. Any Array object in the same frame as a DataGrid component copies
the methods, properties, and events of the DataProvider class.

To use Flash Remoting to add a DataGrid component to an application:

1 In Flash, select File > New and select Flash Document.

2 In the Components panel, double-click the DataGrid component to add it to the Stage.

3 In the Property inspector, enter the instance name myDataGrid.

4 In the Actions panel on Frame 1, enter the following code:
myDataGrid.dataProvider = recordSetInstance;

The Flash Remoting recordset recordSetInstance is assigned to the dataProvider property
of myDataGrid.

5 Select Control > Test Movie.

152

Chapter 4: Components Dictionary

To use a local data provider to add a DataGrid component to an application:

1 In Flash, select File > New and select Flash Document.

2 In the Components panel, double-click the DataGrid component to add it to the Stage.
3 In the Property inspector, enter the instance name myDataGrid.

4 In the Actions panel on Frame 1, enter the following code:

myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});
myDataGrid.dataProvider = myDP;

The name and price fields are used as the column headings, and their values fill the cells in
each row.

5 Select Control > Test Movie.

Customizing the DataGrid component (Flash Professional only)

You can transform a DataGrid component horizontally and vertically during authoring and
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). If there is no horizontal scroll bar, column widths adjust proportionally.
If column (and therefore, cell) size adjustment occurs, then text in the cells may be clipped.

Using styles with the DataGrid component

You can set style properties to change the appearance of a DataGrid component. The DataGrid
component inherits Halo styles from the List component. (For more information, see “Using
styles with the List component” on page 289.) The DataGrid component also supports the

following Halo styles:

Style Description

backgroundColor The background color can be set for the whole grid or for
each column.

TabelStyle The font style can be set for the whole grid or for each column.

headerStyle A CSS Style Declaration for the column header that can be
applied to a grid or column.

vGridLines A Boolean value that indicates whether to show vertical grid
lines (true) ornot (false).

hGridlLines A Boolean value that indicates whether to show horizontal grid
lines (true) ornot (false).

vGridLineColor The color of the vertical grid lines.

hGridLineColor The color of the horizontal grid lines.

headerColor The color of the column headers.

If the above table indicates that a style can be set for a column, you can use the following syntax to
set the style:

grid.getColumnAt(3).setStyle("backgroundColor", 0xff00aa)

DataGrid component (Flash Professional only) 153

Using skins with the DataGrid component

The skins that the DataGrid component uses to represent its visual states are included in the
subcomponents from which the data grid is composed (ScrollPane and RectBorder). For
information about their skins, see “Using skins with the ScrollPane component” on page 466 and
“Using skins with the List component” on page 290.

The rollover and selection underlays, however, use the ActionScript Drawing API. To skin these
portions of the data grid while authoring, modify the ActionScript code in the skin symbols in the
Flash UI Components 2/Themes/MMDefault/datagrid/ skins states folder in the library of one of
the themes FLA files. For more information, see “About skinning components” on page 30.

DataGrid class (Flash Professional only)

Inheritance mx.core.UIObject > mx.core.UIComponent > mx.core.View >
mx.core.ScrollView > mx.controls.listclasses.ScrollSelectList > mx.controls.List

ActionScript Class Name mx.controls.DataGrid

Each component class has a version property, which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:

trace(mx.controls.DataGrid.version);

Note: The following code returns undefined: trace(myDataGridInstance.version);.

Method summary for the DataGrid class

Method Description

DataGrid.addColumn() Adds a column to the data grid.

DataGrid.addColumnAt () Adds a column to the data grid at a specific location.
DataGrid.addItem() Adds an item to the data grid.

DataGrid.addItemAt() Adds an item to the data grid at a specific location.
DataGrid.editField() Replaces the cell data at a specified location.
DataGrid.getColumnAt() Gets a reference to a column at a specified location.
DataGrid.getColumnIndex() Gets the index of the column.
DataGrid.removeAllColumns() Removes all columns from a data grid.
DataGrid.removeColumnAt() Removes a column from a data grid at a specified location.
DataGrid.replaceltemAt() Replaces an item at a specified location with another item.

DataGrid.spaceColumnsEqually() Spaces all columns equally.

Inherits all properties from UIObject and UIComponent.

154

Chapter 4: Components Dictionary

Property summary for the DataGrid class

Property

Description

DataGrid.columnCount

DataGrid.columnNames

DataGrid.dataProvider

DataGrid.editable

DataGrid.focusedCell
DataGrid.headerHeight

DataGrid.hScrollPolicy

DataGrid.resizableColumns

DataGrid.selectable

DataGrid.showHeaders

DataGrid.sortableColumns

Read-only. The number of columns that are displayed.

An array of field names within each item that are displayed
as columns.

The data model for a data grid.

A Boolean value that indicates whether the data grid is editable
(true)ornot (false).

Defines the cell that has focus.
The height of the column headers, in pixels.

Indicates whether a horizontal scroll bar is present ("on"), not
present ("off"), or appears when necessary ("auto").

A Boolean value that indicates whether the columns are
resizable (true) or not (false).

A Boolean value that indicates whether the data grid is
selectable (true) or not (false).

A Boolean value that indicates whether the column headers are
visible (true) or not (false).

A Boolean value that indicates whether the columns are sortable
(true)ornot (false).

Event summary for the DataGrid class

Event

Description

DataGrid.cellEdit
DataGrid.cellFocusIn
DataGrid.cellFocusOut
DataGrid.cellPress
DataGrid.change
DataGrid.columnStretch

DataGrid.headerRelease

Broadcast when the cell value has changed.
Broadcast when a cell receives focus.
Broadcast when a cell loses focus.

Broadcast when a cell is pressed.

Broadcast when an item has been selected.
Broadcast when a column is resized by a user.

Broadcast when a user presses and releases a header.

DataGrid component (Flash Professional only) 155

DataGrid.addColumn()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.addColumn(dataGridColumn)

myDataGrid.addColumn(name)
Parameters

dataGridColumn An instance of the DataGridColumn class.

name A string that indicates the name of a new DataGridColumn object to be inserted.
Returns

A reference to the DataGridColumn object that was added.
Description

Method; adds a new column to the end of the data grid. For more information, see
“DataGridColumn class (Flash Professional only)” on page 174.

Example

The following code adds a new DataGridColumn object named Purple:

import mx.controls.gridclasses.DataGridColumn;
myGrid.addColumn(new DataGridColumn("Purple"));

DataGrid.addColumnAt()

Availability
Flash Player 6 version 79.

Edition
Flash MX Professional 2004.

Usage
Usage 1:
myDataGrid.addColumnAt(index, name)

Usage 2:
myDataGrid.addColumnAt(index, dataGridColumn)

156 Chapter 4: Components Dictionary

Parameters

index The index position at which the DataGridColumn object is added. The first
position is 0.

name A string that indicates the name of the DataGridColumn object. You must specify either
the 7ndex parameter or the dataGridColumn parameter.

dataGridColumn An instance of the DataGridColumn class.
Returns

A reference to the DataGridColumn object that was added.
Description

Method; adds a new column at the specified position. Columns are shifted to the right and their
indexes are incremented. For more information, see “DataGridColumn class (Flash Professional
only)” on page 174.

Example

The following example inserts a new DataGridColumn object called "Green" at the second and
fourth columns:

import mx.controls.gridclasses.DataGridColumn;
myGrid.addColumnAt(1l, "Green");
myGrid.addColumnAt(3, new DataGridColumn("Purple"));

DataGrid.addltem()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.addItem(7tem)

Parameters
item An instance of an object to be added to the grid.
Returns
A reference to the instance that was added.
Description
Method; adds an item to the end of the grid (after the last item index).
Note: This differs from the List.addItem() method in that an object is passed rather than a string.
Example

The following example adds a new object to the grid myGrid:

var anObject= {name:"Jim!!", age:30};
var addedObject = myGrid.addItem(anObject);

DataGrid component (Flash Professional only) 157

DataGrid.addltemAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.addItemAt(index, item)

Parameters

index The order (among the child nodes) in which the node should be added. The first

position is 0.

item A string that displays the node.
Returns

A reference to the object instance that was added.
Description

Method; adds an item to the grid at the position specified.
Example

The following example inserts an object instance to the grid at index position 4:

var anObject= {name:"Jim!!", age:30};
var addedObject = myGrid.addItemAt(4, anObject);

DataGrid.cellEdit
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellEdit = function(eventObject)
// insert your code here
}
myDataGridInstance.addEventListener("cellEdit", TistenerObject)

Description
Event; broadcast to all registered listeners when cell value has changed.

V2 components use a dispatcher/listener event model. The DataGrid component dispatches a
cel1Edit event when the value of a cell has changed, and the event is handled by a function (also
called a handler) that is attached to a listener object (77stenerobject) that you create. You call
the addEventListener() method and pass it the name of the handler as a parameter.

158 Chapter 4: Components Dictionary

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cel1Edit events
event object has four additional properties:

columnIndex A number that indicates the index of the target column.
itemIndex A number that indicates the index of the target row.
oldvalue The previous value of the cell.

type The string "cellEdit".

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myDataGridListener is defined and passed to the
myDataGrid.addEventListener() method as the second parameter. The event object is
captured by the ce11Edit handler in the eventObject parameter. When the ce11Edit event is
broadcast, a trace statement is sent to the Output panel, as follows:
myDataGridListener = new Object();
myDataGridListener.cellEdit = function(event){
var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
trace("The value of the cell at " + cell + " has changed");
}
myDataGrid.addEventListener("cellEdit", myDataGridListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellFocusin
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellFocusIn = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventlListener("cellFocusIn", IlistenerObject)

Description

Event; broadcast to all registered listeners when a particular cell receives focus. This event is
broadcast after any previously edited cell’s editCel1 and cellFocusOut events are broadcast.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
cellFocusIn event, the event is handled by a function (also called a handler) that is attached to a
listener object (17stenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

DataGrid component (Flash Professional only) 159

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cel1FocusIn events
event object has three additional properties:

columnIndex A number that indicates the index of the target column.
itemIndex A number that indicates the index of the target row.
type The string "cel1FocusIn".
For more information, see “Event Objects” on page 562.
Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventlistener() method as the second parameter. The event object is captured by the
cellFocusIn handler in the eventObject parameter. When the cellFocusIn event is
broadcast, a trace statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.cellFocusIn = function(event) f{
var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
trace("The cell at " + cell + " has gained focus");
by
grid.addEventListener("cellFocusIn", myListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellFocusOut
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellFocusOut = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventlListener("cellFocusOut", TistenerObject)

Description

Event; broadcast to all registered listeners whenever a user moves off a cell that has focus. You can
use the event object properties to isolate the cell that was left. This event is broadcast after the
cel1Edit event and before any subsequent ce11FocusIn events are broadcast by the next cell.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
cellFocusOut event, the event is handled by a function (also called a handler) that is attached to
a listener object that you create. You call the addEventListener() method and pass it the name
of the handler as a parameter.

160 Chapter 4: Components Dictionary

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cellFocusOut
events event object has three additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.
itemIndex A number that indicates the index of the target row. The first position is 0.
type The string "cel1FocusOut".
For more information, see “Event Objects” on page 562.
Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventlistener() method as the second parameter. The event object is captured by the
cellFocusOut handler in the eventObject parameter. When the cel1FocusOut event is
broadcast, a trace statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.cellFocusOut = function(event) f{
var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
trace("The cell at " + cell + " has lost focus");
by
grid.addEventListener("cellFocusOut", myListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellPress
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellPress = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventlListener("cellPress", TlistenerObject)

Description
Event; broadcast to all registered listeners when a user presses the mouse button on a cell.

V2 components use a dispatcher/listener event model. When a DataGrid component broadcasts a
cellPress event, the event is handled by a function (also called a handler) that is attached to a
listener object (17stenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

DataGrid component (Flash Professional only) 161

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cel1Press events
event object has three additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.

itemIndex A number that indicates the index of the target row. The first position is 0.

type The string "cel1Press".
For more information, see “Event Objects” on page 562.
Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
cel1Press handler in the eventObject parameter. When the ce11Press event is broadcast, a
trace statement is sent to the Output panel, as follows:

var myListener = new Object();

myListener.cellPress = function(event) {
var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
trace("The cell at " + cell + " has been clicked");

by

grid.addEventListener("cellPress", mylListener);

DataGrid.change

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();

listenerObject.change = function(eventObject){
// insert your code here

}

myDataGridInstance.addEventListener("change", listenerObject)

Description
Event; broadcast to all registered listeners when an item has been selected.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
change event, the event is handled by a function (also called a handler) that is attached to a
listener object (17stenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.change event’s event
object has one additional property, type, and its value is "change". For more information, see
“Event Objects” on page 562.

162

Chapter 4: Components Dictionary

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by
change handler in the eventObject parameter. When the change event is broadcast, a trace
statement is sent to the Output panel, as follows:

var myListener = new Object();
myListener.change = function(event) {
trace("The selection has changed to

+ event.target.selectedIndex);
by
grid.addEventListener("change", mylListener);

DataGrid.columnCount

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.columnCount

Description
Property (read-only); the number of columns displayed.
Example

The following example gets the number of displayed columns in the DataGrid instance grid:

var ¢ = grid.columnCount;

DataGrid.columnNames

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.columnNames

Description
Property; an array of field names within each item that are displayed as columns.
Example

The following example tells the grid instance to display only these three fields as columns:

grid.columnNames = ["Name", "Description", "Price"];

DataGrid component (Flash Professional only) 163

DataGrid.columnStretch

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

lTistenerObject = new Object();
listenerObject.columnStretch = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventListener("columnStretch", IistenerObject)

Description

Event; broadcast to all registered listeners when a user horizontally resizes a column.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
columnStretch event, the event is handled by a function (also called a handler) that is attached to
a listener object (17istenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.columnStretch
event’s event object has two additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.
type The string "columnStretch™.

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
columnStretch handler in the eventObject parameter. When the columnStretch event is
broadcast, a trace statement is sent to the Output panel, as follows:

var myListener = new Object();

myListener.columnStretch = function(event) f{
trace("column " + event.columnIndex + " was resized");

g%w’d .addEventListener("columnStretch", myListener);

164

Chapter 4: Components Dictionary

DataGrid.dataProvider
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.dataProvider

Description
Property; the data model for items viewed in a DataGrid component.

The data grid adds methods to the prototype of the Array class so that each Array object conforms
to the DataProvider interface (see DataProvider.as in the Classes/mx/controls/listclasses folder).
Any array that exists in the same frame or screen as a data grid automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the data model of a data grid, and can
be used to broadcast data model changes to multiple components.

In a DataGrid component you specify fields for display in the DataGrid.columnNames property.

If you don’t define the column set (by setting the DataGrid.columnNames property or by calling
the DataGrid.addColumn() method) for the data grid before the DataGrid.dataProvider
property has been set, the data grid generates columns for each field in the data provider’s first
item, once that item arrives.

Any object that implements the DataProvider interface can be used as a data provider for a data
grid (including Flash Remoting recordsets, data sets, and arrays).

Example

The following example creates an array to be used as a data provider and assigns it directly to the
dataProvider property:

grid.dataProvider = [{name:"Chris", price:"Priceless"}, {name:"Nigel",
Price:"cheap"}1;

The following example creates a new Array object that is decorated with the DataProvider class. It
uses a for loop to add 20 items to the grid:

myDP = new Array();

for (var i=0; i<20; i++)
myDP.addItem({name:"Nivesh", price:"Priceless"});

list.dataProvider = myDP

DataGrid component (Flash Professional only) 165

DataGrid.editable

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.editable

Description

Property; determines whether the data grid can be edited by a user (true) or not (false). This
property must be true in order for individual columns to be editable and for any cell to receive
focus. The default value is false.

Example

The following example sets the scroll position to the top of the display:
myDataGrid.editable = true;

DataGrid.editField()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.editField(index, colName, data)

Parameters
index The index of the target cell. This number is zero-based.
colName A string indicating the name of the column (field) that contains the target cell.
data The value to be stored in the target cell. This parameter can be of any data type.
Returns
The data that was in the cell.
Description
Method; replaces the cell data at the specified location.
Example

The following example places a value in the grid:

var prevValue = myGrid.editField(5, "Name", "Neo");

166 Chapter 4: Components Dictionary

DataGrid.focusedCell
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.focusedCell

Description

Property; in editable mode only, an object instance that defines the cell that has focus. The object
must have the fields coTumnIndex and itemIndex, which are both integers that indicate the
index of the column and item of the cell. The origin is (0,0). The default value is undefined.

Example

The following example sets the focused cell to the third column, fourth row:

grid.focusedCell = {columnIndex:2, itemIndex:3};

DataGrid.getColumnAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index)

Parameters
index The index of the DataGridColumn object to be returned. This number is zero-based.
Returns
A DartaGridColumn object.
Description
Method; gets a reference to the DataGridColumn object at the specified index.
Example

The following example gets the DataGridColumn object at index 4:
var aColumn = myGrid.getColumnAt(4);

DataGrid component (Flash Professional only) 167

DataGrid.getColumnindex()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnIndex(7index)

Parameters

index The index of the DataGridColumn object to be returned.
Returns

A DataGridColumn object.
Description

Method; gets a reference to the DataGridColumn object at the specified index.

DataGrid.headerHeight
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.headerHeight

Description
Property; the height of the header bar of the data grid. The default value is 20.
Example

The following example sets the scroll position to the top of the display:
myDataGrid.headerHeight = 30;

168 Chapter 4: Components Dictionary

DataGrid.headerRelease

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage

lTistenerObject = new Object();
listenerObject.headerRelease = function(eventObject){
// insert your code here
}
myDataGridInstance.addEventListener("headerRelease", IistenerObject)

Description

Event; broadcast to all registered listeners when a column header has been released. You can use
this event with the DataGridColumn.sortOnHeaderRelease property to prevent automatic
sorting and to allow you to sort as you like.

V2 components use a dispatcher/listener event model. When the DataGrid component
dispatches a headerRelease event, the event is handled by a function (also called a handler) that
is attached to a listener object (77stenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.headerRelease
event’s event object has two additional properties:

columnIndex A number that indicates the index of the target column.
type The string "headerRelease".

For more information, see “Event Objects” on page 562.
Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
headerRelease handler in the eventObject parameter. When the headerRelease event is
broadcast, a trace statement is sent to the Output panel, as follows:

var myListener = new Object();
myListener.headerRelease = function(event) {
trace("column " + event.columnIndex + " header was pressed");
b
grid.addEventListener("headerRelease", mylListener);

DataGrid component (Flash Professional only) 169

DataGrid.hScrollPolicy

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.hScrollPolicy

Description

Property; specifies whether the data grid has a horizontal scroll bar. This property can have one of
three values: "on", "off", and "auto". The default value is "off".

If you set hScrol1Policy to "off", columns scale proportionally to accommodate the
finite width.

Example

The following example sets horizontal scroll policy to automatic:

myDataGrid.hScrol1Policy = "auto";

DataGrid.removeAllColumns()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.removeAlT1Columns()

Parameters
None.

Returns
Nothing.

Description

Method; removes all DataGridColumn objects from the data grid. Calling this method has no
effect on the data provider.

Example

The following example removes all DataGridColumn objects from myDataGrid:

myDataGrid.removeAllColumns();

170 Chapter 4: Components Dictionary

DataGrid.removeColumnAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.removeColumnAt(7ndex)

Parameters

index The index of the column to remove.
Returns

A reference to the DataGridColumn object that was removed.
Description

Method; removes the DataGridColumn object at the specified index.
Example

The following example removes the DataGridColumn object at index 2 in myDataGrid:

myDataGrid.removeColumnAt(2);

DataGrid.replaceltemAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.replaceltemAt(index, item)

Parameters

index The index of the item to be replaced.

item An object that is the item value to use as a replacement.
Returns

The previous value.
Description

Method; replaces the item at a specified index.

DataGrid component (Flash Professional only) 171

Example

The following example replaces the item at index 4 with the item defined in aNewValue:

var aNewValue = {name:"Jim", value:"tired"};
var prevValue = myGrid.replaceltemAt(4, aNewValue);

DataGrid.resizableColumns
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.resizableColumns

Description

Property; a Boolean value that determines whether the columns of the grid can be stretched by
the viewer (true) or not (false). This property must be true for individual columns to be
resizable. The default value is true.

Example

The following example prevents users from resizing columns:

myDataGrid.resizableColumns = false;

DataGrid.selectable
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.selectable

Description

Property; a Boolean value that determines whether a user can select the data grid (true) or not
(false). The default value is true.

Example

The following example prevents the grid from being selected:

myDataGrid.selectable = false;

172 Chapter 4: Components Dictionary

DataGrid.showHeaders
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.showHeaders

Description

Property; a Boolean value that indicates whether the data grid displays the column headers (true)
or not (false). Column headers are shaded to differentiate them from the other rows in a grid.
Users can click column headers to sort the contents of the column if
DataGrid.sortableColumns is set to true. The default value is true.

Example

The following example hides the column headers:

myDataGrid.showHeaders = false;
See also

DataGrid.sortableColumns

DataGrid.sortableColumns
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.sortableColumns

Description

Property; a Boolean value that determines whether the columns of the data grid can be sorted
(true) or not (false) when a user clicks the column headers. This property must be true for
individual columns to be sortable. This property must be set to true in order to broadcast the
headerRelease event. The default value is true.

Example

The following example turns off sorting:

myDataGrid.sortableColumns = false;
See also

DataGrid.headerRelease

DataGrid component (Flash Professional only) 173

DataGrid.spaceColumnsEqually()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.spaceColumnsEqually()

Parameters
None.
Returns
Nothing.
Description
Method; respaces the columns equally.
Example

The following example respaces the columns of myGrid when any column header is pressed
and released:

myGrid.showHeaders = true

myGrid.dataProvider = [{guitar:"Flying V", name:"maggot"}, f{guitar:"SG",
name:"dreschie"}, {qguitar:"jagstang", name:"vitapup"!}1];

gridlL0 = new 0Object();

gridL0.headerRelease = function(){
myGrid.spaceColumnsEqually();

}

myGrid.addEventListener("headerRelease", gridlL0);

DataGridColumn class (Flash Professional only)

ActionScript Class Name mx.controls.gridclassesDataGridColumn

You can create and configure DataGridColumn objects to use as columns of a data grid. Many of
the methods of the DataGrid class are dedicated to managing DataGridColumn objects.
DataGridColumn objects are stored in an zero-based array in the data grid; 0 is the leftmost
column. After columns have been added or created, you can call
DataGrid.getColumnAt(index) to access them.

There are three ways to add or create columns in a grid. If you want to configure your columns, it
is best to use either the second or third way before you add data to a data grid so you don’t have to
create columns twice.

® Adding a DataProvider or an item with multiple fields to a grid that has no configured
DataGridColumn objects automatically generates columns for every field in the reverse order
of the for. .in loop.

174

Chapter 4: Components Dictionary

® DataGrid.columnNames takes in the field names of the desired item fields and generates
DataGridColumn objects, in order, for each field listed. This approach allows you to select and
order columns quickly with a minimal amount of configuration. This approach removes any

previous column information.

® The most flexible way to add columns is to prebuild them as DataGridColumn objects and
add them to the data grid using DataGrid.addColumn(). This approach is useful because it
lets you add columns with proper sizing and formatting before the columns ever reach the grid
(which reduces processor demand). For more information, see “Constructor for the
DataGridColumn class” on page 175.

Property summary for the DataGridColumn class

Property

Description

DataGridColumn.

DataGridColumn.

DataGridColumn

DataGridColumn.

DataGridColumn.
DataGridColumn.

DataGridColumn.

DataGridColumn.

DataGridColumn.

DataGridColumn.

cellRenderer

columnName

.editable

headerRenderer

headerText

labelFunction

resizable

sortable

sortOnHeaderRelease

width

The linkage identifier of a symbol to be used to display the
cells in this column.

Read-only. The name of the field associated with
the column.

A Boolean value that indicates whether a column is editable
(true)ornot (false).

The name of a class to be used to display the header of
this column.

The text for the header of this column.
A function that determines which field of an item to display.

A Boolean value that indicates whether a column is resizable
(true)ornot (false).

A Boolean value that indicates whether a column is sortable
(true)ornot (false).

A Boolean value that indicates whether a column is sorted
(true) or not (false) when a user presses a column header.

The width of a column, in pixels.

Constructor for the DataGridColumn class
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
new DataGridColumn(name)

Parameters

name A string that indicates the name of the DataGridColumn object. This parameter is the
field of each item to display.

DataGrid component (Flash Professional only) 175

Returns
Nothing.
Description

Constructor; creates a DataGridColumn object. Use this constructor to create columns to add to
a DataGrid component. After you create the DataGridColumn objects, you can add them to a
data grid by calling DataGrid.addColumn().

Example

The following example creates a DataGridColumn object called Location:

import mx.controls.gridclasses.DataGridColumn;
var column = new DataGridColumn("Location");

DataGridColumn.cellRenderer
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).cellRenderer

Description

Property; a linkage identifier for a symbol to be used to display cells in this column. Any class
used for this property must implement the CellRenderer interface (see “CellRenderer API”

on page 77.) The default value is undefined.
Example

The following example uses a linkage identifier to set a new cell renderer:

myGrid.getColumnAt(3).cellRenderer = "MyCellRenderer";

DataGridColumn.columnName
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).columnName

Description

Property (read-only); the name of the field associated with this column. The default value is the
name called in the DataGridColumn constructor.

176 Chapter 4: Components Dictionary

Example

The following example assigns the column name of the column at the third index position to the
variable name:

var name = myGrid.getColumnAt(3).columnName;
See also

Constructor for the DataGridColumn class

DataGridColumn.editable

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).editable

Description

Property; determines whether the column can be edited by a user (true) or not (false). The
DataGrid.editable property must be true in order for individual columns to be editable, even
when DataGridColumn.editable is set to true. The default value is true.

Example
The following example makes the first column in a grid uneditable:
myDataGrid.getColumnAt(0).editable = false;

See also

DataGrid.editable

DataGridColumn.headerRenderer

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).headerRenderer

Description

Property; a string that indicates a class name to be used to display the header of this column. Any
class used for this property must implement the CellRenderer interface (see “CellRenderer APT”
on page 77). The default value is undefined.

DataGrid component (Flash Professional only) 177

Example

The following example uses a linkage identifier to set a new header renderer:

myGrid.getColumnAt(3).headerRenderer = "MyHeaderRenderer";

DataGridColumn.headerText
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).headerText

Description
Property; the text in the column header. The default value is the column name.

Example

The following example sets the column header text to “The Price”:

var myColumn = new DataGridColumn("price");
myColumn.headerText = "The Price";

DataGridColumn.labelFunction
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).labelFunction

Description

Property; specifies a function to determine which field (or field combination) of each item to
display. This function receives one parameter, 7tem, which is the item being rendered, and must

return a string representing the text to display. This property can be used to create virtual columns
that have no equivalent field in the item.

Example

The following example creates a virtual column:

var myCol = myGrid.addColumn("Subtotal");
myCol.labelFunction = function(item) f{

return "$" + (item.price + (item.price * salesTax));
b

178 Chapter 4: Components Dictionary

DataGridColumn.resizable

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).resizable

Description

Property; a Boolean value that indicates whether a column can be resized by a user (true) or not
(false). The DataGrid.resizableColumns property must be set to true for this property to
take effect. The default value is true.

Example

The following example prevents the column at index 1 from being resized:

myGrid.getColumnAt(1l).resizable = false;

DataGridColumn.sortable

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(7ndex).sortable

Description

Property; a Boolean value that indicates whether a column can be sorted by a user (true) or not
(false). The DataGrid.sortableColumns property must be set to true for this property to take
effect. The default value is true.

Example

The following example prevents the column at index 1 from being sorted:

myGrid.getColumnAt(1l).sortable = false;

DataGrid component (Flash Professional only) 179

DataGridColumn.sortOnHeaderRelease
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).sortOnHeaderRelease

Description

Property; a Boolean value that indicates whether the column is sorted automatically (true) or not
(false) when a user clicks on a header. This property can be set to true only if
DataGridColumn.sortable is set to true. If DataGridColumn.sortOnHeaderRelease is set to
false, you can catch the headerRelease event and perform your own sort.

The default value is true.
Example

The following example allows you to catch the headerRelease event to perform your own sort:

myGrid.getColumnAt(7).sortOnHeaderRelease = false;

DataGridColumn.width
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDataGrid.getColumnAt(index).width

Description
Property; a number that indicates the width of the column, in pixels. The default value is 50.
Example

The following example makes a column half the size of the default value:
myGrid.getColumnAt(4).width = 25;

180 Chapter 4: Components Dictionary

DataHolder component (Flash Professional only)

The DataHolder component is a repository for data and a means of generating events when that
data has changed. Its main purpose is to hold data and act as connector between other
components using data binding.

Initially, the DataHolder component has a single bindable property named data. You can add
more properties using the Schema tab in the Component Inspector panel (Window >
Development Panels > Component Inspector). For more information on using the Schema tab,
see “Working with schemas in the Schema tab (Flash Professional only)” in Using Flash Help.

You can assign any type of data to a DataHolder property, either by creating a binding between
the data and another property, or by using your own ActionScript code. Whenever the value of
that data changes, the DataHolder component emits an event whose name is the same as the
property, and any bindings associated with that property are executed.

The DataHolder component is useful when you can’t directly bind components (such as
connectors, user interface components, or DataSet components) together. Below are some
scenarios in which you might use a DataHolder component:

® Ifa data value is generated by ActionScript, you might want to bind it to some other
components. In this case, you could have a DataHolder component that contains properties
that are bound as desired. Whenever new values are assigned to those properties (by means of
ActionScript, for example) those values will be distributed to the data-bound object.

® You might have a data value that results from a complex indexed data binding, as in the
following diagram.

Web Service Method | SIS : Ul ListBox

ResultsmovieList.selectedindex] data.movieTitle Ul TextField
title

A 4

data.movieRating

DataModel _— > Ul TextField

myDataModel rating
data.movieTimes Ul ListBox
_) -
times

In this case it is convenient to bind the data value to a DataHolder component (called
DataModel in this illustration) and then use that for bindings to the user interface.

DataHolder component (Flash Professional only) 181

Creating an application with the DataHolder component
(Flash Professional only)

In this example, you add an array property to a DataHolder component’s schema (an array) whose
value is determined by ActionScript code that you write. You then bind that array property to the
dataProvider property of a DataGrid component by using the Bindings tab in the Component
Inspector panel.

To use the DataHolder component in a simple application:
1 In Flash MX Professional 2004, create a new file.
2 Open the Components panel (Window > Development Panels > Components), drag a

DataHolder component to the Stage, and name it dataHolder.

3 Drag a DataGrid component to the Stage and name it namesGrid.

Select the DataHolder component and open the Component Inspector panel (Window >
Development Panels > Component Inspector).

5 Click the Schema tab in the Component Inspector panel.
6 Click the Add Component Property button (+) located in the top pane of the Schema tab.
7 In the bottom pane of the Schema tab, type namesArray in the Field Name field, and select

Array from the Data Type pop-up menu.

8 Click the Bindings tab in the Component Inspector panel, and add a binding between the

namesArray property of the DataHolder component and the dataProvider property of the
DataGrid component.

For more information on creating bindings with the Bindings tab, see “Working with bindings
in the Bindings tab (Flash Professional only)” in Using Flash Help.

9 In the Timeline (Window > Timeline), select the first frame on Layer 1 and open the Actions

panel (Window > Development Panels > Actions).

10 Enter the following code in the Actions panel:

dataHolder.namesArray= [{name:"Tim"}, {name:"Paul"}, {name:"Jason"}1;

This code populates the namesArray array with several objects. When this variable assignment
executes, the binding that you established previously between the DataHolder component and
the DataGrid component executes.

11 Test the file by selecting Control > Test Movie.

Property summary for the DataHolder class

Property Description

DataHolder.data Default bindable property for DataHolder component.

DataHolder.data

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

182

Chapter 4: Components Dictionary

Usage
dataHolder.data

Description

Property; the default item in a DataHolder object’s schema. This property is not a “permanent”
member of the DataHolder component. Rather, it is the default bindable property for each
instance of the component. You can add your own bindable properties, or delete the default data
property, by using the Schema tab in the Component Inspector panel.

For more information on using the Schema tab, see “Working with schemas in the Schema tab
(Flash Professional only)” in Using Flash Help.

Example

For an example of using this component, see “Creating an application with the DataHolder
component (Flash Professional only)” on page 182.

DataProvider API

ActionScript class name mx.controls.listclasses.DataProvider

The DataProvider API is a set of methods and properties that a data source needs to have in order
to have a List-based class communicate with it. Arrays, RecordSets, and the DataSet all
implement this API. You can create a DataProvider-compliant class by implementing all the
methods and properties described in this document. A List-based component could then use that
class as a data provider.

The methods of the DataProvider API allow you to query and modify the data in any component
that displays data (also called a view). The DataProvider API also broadcasts change events when
the data changes. Multiple views can use the same data provider and all receive the change events.

A data provider is a linear collection (like an array) of items. Each item is an object composed of
many fields of data. You can access these items through their index (as you can with an array),
using DataProvider.getItemAt().

The most common case for using data providers is with arrays. Data-aware components apply all
the methods of the DataProvider API to Array.prototype when an Array object is in the same

frame or screen as a data-aware component. This allows you to use any existing array as the data

for views that have a dataProvider property.

Because of the DataProvider API, the v2 components that provide views for data (DataGrid, List,
Tree, and so on) can also display Flash Remoting RecordSets and data from the DataSet
component. The DataProvider API is the language with which data-aware components
communicate with their data providers.

In the Macromedia Flash documentation, “DataProvider” is the name of the API, dataProvider
is a property of each component that acts as a view for data, and “data provider” is the generic
term for a data source.

DataProvider APl 183

Methods of the DataProvider API

Name Description

DataProvider.addItem() Adds an item at the end of the data provider.
DataProvider.addItemAt() Adds an item to the data provider at the specified position.
DataProvider.editField() Changes one field of the data provider.

DataProvider.getEditingData() Getsthe data for editing from a data provider.

DataProvider.getItemAt() Gets a reference to the item at a specified position.
DataProvider.getItemID() Returns the unique ID of the item.

DataProvider.removeAll() Removes all items from a data provider.
DataProvider.removeltemAt() Removes an item from a data provider at a specified position.

DataProvider.replaceltemAt() Replaces theitem at a specified position with another item.
DataProvider.sortItems() Sorts the items in a data provider.

DataProvider.sortItemsBy() Sorts the items in a data provider according to a specified
compare function.

Properties of the DataProvider API

Name Description

DataProvider.length The number of items in a data provider.

Events of the DataProvider API

Name Description

DataProvider.modelChanged Broadcast when the data provider is changed.

DataProvider.addltem()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDP.addItem(item)

Parameters
item An object containing data. This comprises an item in a data provider.
Returns

Nothing.

184 Chapter 4: Components Dictionary

Description

Method; adds a new item at the end of the data provider.

This method triggers the mode1Changed event with the event name addItems.
Example

The following example adds an item to the end of the data provider myDP:
myDP.addItem({ label : "this is an Item"});

DataProvider.addltemAt()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDP.addItemAt(index, item)

Parameters

index A number greater than or equal to 0. The position at which to insert the item; the index
of the new item.

item An object containing the data for the item.
Returns

Nothing.
Description

Method; adds a new item to the data provider at the specified index. Indices greater than the data
provider's length are ignored.

This method triggers the mode1Changed event with the event name addItems.
Example

The following example adds an item to the data provider myDP at the fourth position:
myDP.addItemAt(3, {label : "this is the fourth Item"});

DataProvider.editField()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDP.editField(index, fieldName, newData)

DataProvider APl 185

Parameters
index A number greater than or equal to 0. The index of the item.
fieldName A string indicating the name of the field in the item to modify.
newData The new data to put in the data provider.
Returns
Nothing.
Description
Method; changes one field of the data provider.
This method triggers the mode1Changed event with the event name updatefield.
Example

The following code modifies the 1abel field of the third item:
myDP.editField(2, "label", "mynewData");

DataProvider.getEditingData()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDP.getEditingData(index, fieldName)

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. The index of
the item to retrieve.

fieldName A string indicating the name of the field being edited.
Returns

The editable formatted data to be used.
Description

Method; retrieves data for editing from a data provider. This allows the data model to provide
different formats of data for editing and displaying.

Example

The following code gets an editable string for the price field:
trace(myDP.getEditingData(4, "price");

186 Chapter 4: Components Dictionary

DataProvider.getltemAt()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDP.getItemAt(index)

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. The index of
the item to retrieve.

Returns

A reference to the retreived item; undefined if the index is out of range.
Description

Method; retrieves a reference to the item at a specified position.
Example

The following code displays the label of the fifth item:
trace(myDP.getItemAt(4).1abel);

DataProvider.getltemID()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004 Professional.

Usage
myDP.getItemID(7ndex)

Parameters

index A number greater than or equal to 0.
Returns

A number that is the unique ID of the item.
Description

Method; returns a unique ID for the item. This method is primarily used to track selection. This
ID is used in data-aware components to keep lists of what items are selected.

DataProvider APl 187

Example

This example gets the ID of the fourth item:
var ID = myDP.getItemID(3);

DataProvider.modelChanged

Availability
Flash Player 6 version 79.

Edition

Usage

Flash MX Professional 2004.

listenerObject = new Object();
listenerObject.modelChanged = function(eventObject){

//

}

insert your code here

myMenu.addEventListener("modelChanged", TistenerObject

Description

Event; broadcast to all of its view listeners whenever the data provider is modified. A listener is
typically added to a model by assigning its dataProvider property.

V2 components use a dispatcher/listener event model. When a data provider changes in some
way, it broadcasts a modelChanged event, and data-aware components catch it to update their
displays to reflect the changes in data.

The Menu.modelChanged event’s event object has five additional properties:

® eventName The eventName property is used to subcategorize mode1Changed events.
Data-aware components use this information to avoid completely refreshing the component
instance (view) that is using the data provider. The following are the supported values of the
eventName property:

updateAll The entire view needs refreshing, excluding scroll position.

addItems A series of items have been added.

removeltems A series of items have been deleted.

updateltems A series of items need refreshing.

sort The data has been sorted.

updateField A field within an item has to be changed and needs refreshing.
updateColumn An entire field's definition within the dataProvider needs refreshing.

filterModel The model has been filtered, and the view needs refreshing
(reset scrollPosition).

schemaloaded The field’s definition of the dataProvider has been declared.

® firstItem The index of the first affected item.

® lastItem The index of the last affected item. The value equals firstItemif only one item is

affected.

® removedIDs An array of the item identifiers that were removed.

® fieldName A string indicating the name of the field that is affected.

188

Chapter 4: Components Dictionary

For more information about event objects, see “Event Objects” on page 562.
Example

In the following example, a handler called Tistener is defined and passed to the
addEventlistener() method as the second parameter. The event object is captured by the
modelChanged handler in the evt parameter. When the modelChanged event is broadcast, a
trace statement is sent to the Output panel, as follows:

listener = new Object();

listener.modelChanged = function(evt){
trace(evt.eventName);

}

myList.addEventListener("modelChanged", Tistener);

DataProvider.length
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDP.length

Description
Property (read-only); the number of items in the data provider.
Example

This example sends the number of items in the myArray data provider to the Output panel:

trace(myArray.length);
DataProvider.removeAll()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDP.removeAl1()

Parameters
None.
Returns

Nothing.

DataProvider APl 189

Description

Method; removes all items in the data provider.

This method triggers the mode1Changed event with the event name removelItenms.
Example

This example removes all the items in the data provider:

myDP.removeAll();

DataProvider.removeltemAt()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDP.removeltemAt(index)

Parameters

index A number greater than or equal to 0. The index of the item to remove.
Returns

Nothing.
Description

Method; removes the item at the specified index. The indices after the removed index collapse
by one.

This method triggers the mode1Changed event with the event name removelItenms.
Example

This example removes the item at the fourth position:

myDP.removeltemAt(3);

DataProvider.replaceltemAt()

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDP.replaceltemAt(index, item)

190 Chapter 4: Components Dictionary

Parameters

index A number greater than or equal to 0. The index of the item to change.

item An object that is the new item.

Returns

Nothing.

Description

Method; replaces the content of the item at the specified index.

This method triggers the mode1Changed event with the event name removelItenms.

Example

This example replaces the item at index 3 with the item with the label “new label”:

myDP.replaceltemAt(3, {label : "new Tlabel"});

DataProvider.sortltems()

Availability
Flash Player 7.

Edition
Flash MX Professional 2004.

Usage
myDP.sortItems([comparefunc], [optionsFlag]l)

Parameters

comparefunc A reference to a function that is used to compare two items to determine their
sort order. For details, see Array.sort() in ActionScript Dictionary Help. This parameter
is optional.

optionsFlag Allows you to perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

The following are possible values for optionsfiag:

Array.DESCENDING—sorts highest to lowest.
Array.CASEINSENSITIVE—sorts case insensitively.

Array.NUMERIC—sorts numerically if the two elements being compared are numbers. If they
aren’t numbers, use a string comparison (which may be case-insensitive if that flag is specified).

Array.UNIQUESORT—if two objects in the array are identical or have identical sort fields, this
method returns an error code (0) instead of a sorted array.

Array.RETURNINDEXEDARRAY—returns an integer index array that is the result of the sort. For
example, the following array, if sorted with the optionsFlag parameter containing the value
Array.RETURNINDEXEDARRAY, would return the second line of code and the array would
remain unchanged:

["a", "d", "c", "b"]

[0, 3, 2, 11

DataProvider APl 191

You can combine these options into one value. For example, the following code combines options

3 and 1:

array.sort (Array.NUMERIC | Array.DESCENDING)
Returns

Nothing.
Description

Method; sorts the items in the data provider according to the compare function specified by the
comparefunc parameter or according to one or more of the sort options specified by the
optionsflag parameter.

This method triggers the mode1Changed event with the event name sort.
Example

This example sorts based on uppercase labels. The items a and b are passed to the function and
contain Tabel and data fields:

myList.sortItems(upperCasefFunc);
function upperCaseFunc(a,b){

return a.label.toUpperCase() > b.label.toUpperCase();
}

DataProvider.sortltemsBy()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
myDP.sortltemsBy(fieldName, order, [optionsFlag]l)

Parameters

fieldName A string specifying the name of the field to use for sorting. This value is usually
"label" or "data".

order A string specifying whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

optionsFlag Allows you to perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

The following are possible values for optionsFiag:
® Array.DESCENDING—sorts highest to lowest.
® Array.CASEINSENSITIVE—sorts case insensitively.

® Array.NUMERIC—sorts numerically if the two elements being compared are numbers. If they
aren’t numbers, use a string comparison (which may be case-insensitive if that flag is specified).

192 Chapter 4: Components Dictionary

® Array.UNIQUESORT—if two objects in the array are identical or have identical sort fields, this
method returns an error code (0) instead of a sorted array.

® Array.RETURNINDEXEDARRAY—returns an integer index array that is the result of the sort. For
example, the following array, if sorted with the optionsFlag parameter containing the value
Array.RETURNINDEXEDARRAY, would return the second line of code and the array would
remain unchanged:
("a", "d", "c", "b"]
(o, 3, 2, 11

You can combine these options into one value. For example, the following code combines options

3and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns
Nothing.
Description

Method; sorts the items in the data provider alphabetically or numerically, in the specified order,
using the specified field name. If the 7ie7dName items are a combination of text strings and
integers, the integer items are listed first. The f7eldName parameter is usually "label” or "data",
but advanced programmers may specify any primitive value. You can optionally use the
optionsFlag parameter to specify a sorting style.

This method triggers the mode1Changed event with the event name sort.
Example

The following code sorts the items in a list in ascending order using the labels of the list items:
myDP.sortItemsBy("label", "ASC");

DataSet component (Flash Professional only)

The DataSet component lets you work with data as collections of objects that can be indexed,
sorted, searched, filtered, and modified.

The DataSet component functionality includes DataSetlterator, a set of methods for traversing
and manipulating a data collection, and DeltaPacket, a set of interfaces and classes for working
with updates to a data collection. In most cases, you don’t use these classes and interfaces directly;
you use them indirectly through methods provided by the DataSet class.

The items managed by the DataSet component are also called zransfer objects. A transfer object
exposes business data that resides on the server with public attributes or accessor methods for
reading and writing data. The DataSet component allows developers to work with sophisticated
client-side objects that mirror their server-side counterparts or, in its simplest form, a collection of
anonymous objects with public attributes representing the fields within a record of data. For
details on transfer objects, see Core J2EE Patterns Transfer Object at java.sun.com/blueprints/
corej2eepatterns/Patterns/TransferObject.html.

Note: The DataSet component requires Flash Player 7 or later.

DataSet component (Flash Professional only) 193

http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

Using the DataSet component (Flash Professional only)

You typically use the DataSet component in an application in combination with other
components to manipulate and update a data source: a Connector component for connecting to
an external data source, user interface components for displaying data from the data source, and a
Resolver component for translating updates made to the data set into the appropriate format for
sending to the external data source. You can then use data binding to bind properties of these
different components together.

For more general information about the DataSet component and how to use it with other
components, see “Data management (Flash Professional only)” in Using Flash Help.

DataSet component parameters

The following are authoring parameters that you can set for each DataSet component instance in
the Property inspector or in the Component Inspector panel:

itemClassName The name of the transfer object class that will be instantiated each time a new
item is needed.

Note: To make the specified class available at runtime, you must also make a fully qualified reference
to this class somewhere within your SWF file’s code (for example, var myItem:my.package.myltem;).

filtered If true, a filter is applied to the data set so that it contains only the objects that match
the filter criteria.

logChanges If true, the data set logs all mutations (changes to data or method calls) to its
deltaPacket property.

readOnly If true, the data set cannot be modified.

You can write ActionScript to control these and additional options for the DataSet component
using its properties, methods, and events. For more information, see “DataSet class (Flash
Professional only)” on page 196.

Creating an application with the DataSet component

Typically, you use the DataSet component with other user interface components, and often with a
Connector component such as the XMLConnector or WebServiceConnector component. The
items in the data set are populated by means of the Connector component, or raw ActionScript
data, and then bound to user interface controls (such as List or DataGrid components).

To create an application using the DataSet component:

1 In Flash MX Professional 2004, select File > New. In the Type column, select Flash Document
and click OK.

2 Open the Components panel (Window > Development Panels > Components) if it’s not
already open.

3 DragaDataSet component from the Components panel to the Stage. In the Property inspector,
name it userData.

4 Drag a DataGrid component to the Stage and name it userGrid.
5 Resize the DataGrid component to be approximately 300 pixels wide and 100 pixels tall.

Drag a Button component to the Stage and name it nextBtn.

194

Chapter 4: Components Dictionary

7 In the Timeline, select the first frame on Layer 1 and open the Actions panel (Window >
Development Panels > Actions).

8 Add the following code to the Actions panel:

var recData = [{id:0, firstName:"Mick", lastName:"Jones"},
{id:1, firstName:"Joe", lastName:"Strummer"},
{id:2, firstName:"Paul", TastName:"Simonon"}];

userData.items = recData;
This populates the DataSet object’s items property with an array of objects, each of which has
three properties: firstName, TastName, and id.

9 To bind the contents of the DataSet component to the contents of the DataGrid component,
open the Component Inspector panel (Window > Development Panels > Component
Inspector) and click the Bindings tab.

10 Select the DataGrid component (userGrid) on the Stage, and click the Add Binding (+) button
in the Component Inspector panel.

11 In the Add Binding dialog box, select “dataProvider : Array” and click OK.
12 Double-click the Bound To field in the Component Inspector panel.

13 In the Bound To dialog box that appears, select “DataSet <userData>” from the Component
Path column and then select “dataProvider : Array” from the Schema Location column.

14 To bind the selected index of the DataSet component to the selected index of the DataGrid
component, click the Add Binding (+) button again in the Component Inspector panel.

15 In the dialog box that appears, select “selectedIndex : Number”. Click OK.

16 Double-click the Bound To field in the Component Inspector panel to open the Bound To
dialog box.

17 In the Component Path field, select “DataSet <userData>” from the Component Path column
and then select “selectedIndex : Number” from the Schema Location column.

18 Select the Button component (nextBtn) and open the Actions panel (Window > Development
Panels > Actions), if it is not already open.

19 Enter the following code in the Actions panel:

on(click) A
_parent.userData.next();
}

This code uses the DataSet.next () method to navigate to the next item in the DataSet
object’s collection of items. Since you had previously bound the selectedIndex property of
the DataGrid object to the same property of the DataSet object, changing the current item in
the DataSet object will change the current (selected) item in the DataGrid object, as well.

20 Save the file, and select Control > Test Movie to test the SWF file.

The DataGrid object is populated with the specified items. Notice how clicking the button
changes the selected item in the DataGrid object.

DataSet component (Flash Professional only) 195

DataSet class (Flash Professional only)

ActionScript Class Name mx.data.components.DataSet

Method summary for the DataSet class

Method Description

DataSet.addItem() Adds the specified item to the collection.
DataSet.addSort() Creates a new sorted view of the items in the collection.
DataSet.applyUpdates() Notifies listeners that changes made to the DataSet object

DataSet.

DataSet

DataSet.
DataSet.

DataSet.

DataSet

DataSet

DataSet.

DataSet.

DataSet.

DataSet.

DataSet

DataSet

DataSet.

DataSet.

DataSet.

DataSet.

DataSet

DataSet.

DataSet.

DataSet.

DataSet

DataSet.

changesPending()
.clear()
createltem()
disableEvents()
enableEvents()
.find()

.findFirst()

findlLast()

first()
getItemId()
getIterator()

.hasNext()

.hasPrevious()

hasSort()
isEmpty()

last()

.locateById()
next()
previous()
removeAll()
.removeltem()

removeRange()

loadFromShared0bj ()

are ready.

Indicates whether there are items in the DeltaPacket object.
Clears all items from the current view of the collection.
Returns a newly initialized collection item.

Stops sending DataSet events to listeners.

Resumes sending DataSet events to listeners.

Locates an item in the current view of the collection.

Locates the first occurrence of an item in the current view of
the collection.

Locates the last occurrence of an item in the current view of
the collection.

Moves to the first item in the current view of the collection.
Returns the unique ID for the specified item.
Returns a clone of the current iterator.

Indicates whether the current iterator is at the end of its view of
the collection.

Indicates whether the current iterator is at the beginning of its view
of the collection.

Indicates whether the specified sort exists.

Indicates whether the collection contains any items.

Moves to the last item in the current view of the collection.
Retrieves the contents of a DataSet object from a shared object.
Moves the current iterator to the item with the specified ID.
Moves to the next item in the current view of the collection.
Moves to the previous item in the current view of the collection.
Removes all the items from the collection.

Removes the specified item from the collection.

Removes the current iterator’s range settings.

196

Chapter 4: Components Dictionary

Method

Description

DataSet

DataSet.

DataSet

DataSet.

DataSet.

DataSet.

.removeSort()
saveToSharedObj()
.setlterator()
setRange()

skip()

useSort()

Removes the specified sort from the DataSet object.
Saves the data in the DataSet object to a shared object.
Sets the current iterator for the DataSet object.

Sets the current iterator’s range settings.

Moves forward or backward by a specified number of items in the
current view of the collection.

Makes the specified sort the active one.

Property summary for the DataSet class

Property Description

DataSet.currentltem Returns the current item in the collection.

DataSet.dataProvider Returns the DataProvider interface.

DataSet.deltaPacket Returns changes made to the collection, or assigns changes to be
made to the collection.

DataSet.filtered Indicates whether items are filtered.

DataSet.filterFunc User-defined function for filtering items in the collection.

DataSet.items ltems in the collection.

DataSet.itemClassName Object to create when assigning items.

DataSet.length Specifies the number of items in the current view of the collection.

DataSet.logChanges Indicates whether changes made to the collection, or its items,
are recorded.

DataSet.properties Contains the properties (fields) for any transfer object within
this collection.

DataSet.readOnly Indicates whether the collection can be modified.

DataSet.schema Specifies the collection’s schema in XML format.

DataSet.selectedIndex Contains the current item’s index within the collection.

Event summary for the DataSet class

Event Description

DataSet.addItem Broadcast before an item is added to the collection.

DataSet.afterLoaded Broadcast after the items property is assigned.

DataSet.deltaPacketChanged Broadcast when the DataSet object’s delta packet has been
changed and is ready to be used.

DataSet.calcFields Broadcast when calculated fields should be updated.

DataSet.iteratorScrolled Broadcast when the iterator's position is changed.

DataSet component (Flash Professional only) 197

Event Description

DataSet.modelChanged Broadcast when items in the collection have been modified in
some way.

DataSet.newItem Broadcast when a new item is constructed by the DataSet object,
but before it is added to the collection.

DataSet.removeltem Broadcast before an item is removed.

DataSet.resolveDelta Broadcast when a DeltaPacket object is assigned to the DataSet

object that contains messages.

DataSet.addltem
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

on(addItem) {
// insert your code here
}
lTistenerObject = new Object();
listenerObject.addItem = function (event0Obj) {
// insert your code here
}
dataSet.addEventListener("addItem", IistenerObject)

Description
Event; generated just before a new transfer object is inserted into this collection.

If you set the result property of the event object to false, the add operation is canceled; if you
set it to true, the add operation is allowed.

The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.

type The string "addltem".

item A reference to the item in the collection to be added.

result A Boolean value that specifies whether the specified item should be added. By default,
this value is true.

198 Chapter 4: Components Dictionary

Example

The following on(addItem) event handler (attached to a DataSet object) cancels the addition of
the new item if a user-defined function named userHasAdminPrivs () returns false; otherwise,
the item addition is allowed.

on(addItem) {
if(globalObj.userHasAdminPrivs()) {
// Allow the item addition.
eventObj.result = true;
} else {
// Don’t allow item addition; user doesn’t have admin privileges.
eventObj.result = false;

}
See also

DataSet.removeltem

DataSet.addltem()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.addItem([obj])

Parameters

obj An object to add to this collection. This parameter is optional.
Returns

Returns true if the item was added to the collection; otherwise, returns false.
Description

Method; adds the specified transfer object to the collection for management. The newly added
item becomes the current item of the data set. If no 0bj parameter is specified, a new object is
created automatically by means of DataSet.createltem().

The location of the new item in the collection depends on whether a sort has been specified for
the current iterator. If no sort is in use, the item specified is added to the end of the collection. If
a sort is in use, the item is added to the collection according to its position in the current sort.

For more information on initialization and construction of the transfer object, see
DataSet.createltem().

Example
myDataSet.addItem(myDataSet.createltem());

See also

DataSet.createltem()

DataSet component (Flash Professional only) 199

DataSet.addSort()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.
Usage
dataSet.addSort(name, fieldlList, sortOptions)
Parameters
name A string that specifies the name of the sort.
fieldList An array of strings that specify the fields names to sort on.

sortOptions One or more of the following integer (constant) values, which indicate what

options are used for this sort. Separate multiple values using the bitwise OR operator (|). The

value(s) must be one of the following:

® DataSetlterator.Ascending Sortsitems in ascending order. This is the default sort option,
if none is specified.

® DataSetlterator.Descending Sorts items in descending order based on item
properties specified.

® DataSetlterator.Unique Prevents the sort if any fields have like values.

® DataSetlterator.Caselnsensitive Ignores case when comparing two strings during the
sort operation. By default, sorts are case sensitive when the property being sorted on is a string.

A DataSetError exception is thrown when DataSetIterator.Unique is specified as a sort
option and the data being sorted is not unique, when the specified sort name has already been
added, or when a property specified in the fieldList array does not exist in this data set.

Returns
Nothing.

Description

Method; creates a new ascending or descending sort for the current iterator based on the
properties specified by the fieldL7st parameter. The new sort is automatically assigned to the
current iterator after it is created and stored in the sorting collection for later retrieval.

Example

The following code creates a new sort named "rank" that performs a descending, case-sensitive,
unique sort on the DataSet object’s "classRank" field.

myDataSet.addSort("rank", ["classRank"], DataSetIterator.Descending |
DataSetIterator.Unique | DataSetlIterator.Caselnsensitive);

See also

DataSet.removeSort()

200 Chapter 4: Components Dictionary

DataSet.afterLoaded
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

on(afterLoaded) f{
// insert your code here
}
listenerObject = new Object();
listenerObject.afterLoaded = function (eventObj) {
// insert your code here
}
dataSet.addEventListener("afterlLoaded", TistenerObject)

Description
Event; broadcast immediately after the DataSet . items property has been assigned.
The event object (event0bj) contains the following properties:
target The DataSet object that generated the event
type The string "afterlLoaded".
Example

In this example, a form named contactForm (not shown) is made visible once the items in the
DataSet contact_ds have been assigned.

contact_ds.addEventlListener("afterlLoaded", loadlListener);
loadListener = new Object();
loadListener.afterlLoaded = function (eventObj) {
if(eventObj.target == "contact_ds") f{
contactForm.visible = true;
}
}

DataSet.applyUpdates()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.applyUpdates()

Returns

Nothing.

DataSet component (Flash Professional only) 201

Description

Method; signals that the DataSet.deltaPacket property has a value that you can access using
data binding or directly by ActionScript. Before this method is called, the DataSet.deltaPacket
property is nul1. This method has no effect if events have been disabled by means of the
DataSet.disableEvents() method.

Calling this method also creates a transaction ID for the current DataSet.deltaPacket property
and emits a deltaPacketChanged event. For more information, see DataSet.deltaPacket.

Example

The following code call the applyUpdates() method on myDataSet.
myDataSet.applyUpdates();

See also

DataSet.deltaPacket

DataSet.calcFields

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(calcFields) {
// insert your code here
}
lTistenerObject = new Object();
listenerObject.calcFields = function (eventObj) |
// insert your code here
}
dataSet.addEventListener("calcFields", TistenerObject)

Description

Event; generated when values of calculated fields for the current item in the collection need to be
determined. A calculated field is one whose Kind property is set to Calculated on the Schema tab
of the Component Inspector panel. The calcFields event listener that you create should
perform the required calculation and set the value for the calculated field.

This event is also called when the value of a noncalculated field (that is, a field with its Kind
property set to Data on the Component Inspector panel’s Schema tab) is updated.

For more information on the Kind property, see “Schema kinds (Flash Professional only)” in

Using Flash Help.

Caution: Do not change the values of any of noncalculated fields in this event, because this will result
in an “infinite loop.” Only set the values of calculated fields within the calcFields event.

202

Chapter 4: Components Dictionary

DataSet.changesPending()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.changesPending()

Returns
A Boolean value.
Description

Method; returns true if the collection, or any item within the collection, has changes pending
that have not yet been sent in a DeltaPacket object; otherwise, returns false.

Example

The following code enables a Save Changes button (not shown) if the DataSet collection, or any
items with that collection, have had modifications made to them that haven’t been committed to
a DeltaPacket object.

if(data_ds.changesPending()) {
saveChanges_btn.enabled = true;
}

DataSet.clear()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.clear()

Returns
Nothing.
Description

Method; removes the items in the current view of the collection. Which items are considered
“viewable” depends on any current filter and range settings on the current iterator. Therefore,
calling this method might not clear all of the items in the collection. To clear all of the items in
the collection regardless of the current iterator’s view, use DataSet.removeAll().

If DataSet.logChanges is set to true when you invoke this method, “remove” entries are added
to DataSet.deltaPacket for all items within the collection.

DataSet component (Flash Professional only) 203

Example

This example removes all items from the current view of the DataSet collection. Because the
TogChanges property is set to true, the removal of those items is logged.

myDataSet.logChanges= true;
myDataSet.clear();

See also

DataSet.deltaPacket, DataSet.logChanges

DataSet.createltem()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.createltem([7temDatal)

Parameters

itemData Data associated with the item. This parameter is optional.
Returns

The newly constructed item.

Description

Method; creates an item that isn’t associated with the collection. You can specify the class of object
created with the DataSet.itemClassName property. If no DataSet.itemClassName value is
specified and the 7temData parameter is omitted, an anonymous object is constructed. This
anonymous object’s properties are set to the default values based on the schema currently specified
by DataSet.schema.

When this method is invoked, any listeners for the DataSet.newItem event are notified and are
able to manipulate the item before it is returned by this method. The optional item data specified
is used to initialize the class specified with the DataSet.itemClassName property or is used as the
item if DataSet.itemClassName is blank.

A DataSetError exception is thrown when the class specified with the DataSet.itemClassName
property cannot be loaded.

Example

contact.itemClassName = "Contact";

var itemData = new XML("<contact_info><name>John Smith</
name><phone>555.555.4567</phone><zip><pre>94025</pre><post>0556</post></
zip></contact_info>");

contact.addItem(contact.createltem(itemData));

See also

DataSet.itemClassName, DataSet.newltem, DataSet.schema

204 Chapter 4: Components Dictionary

DataSet.currentltem

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.currentlitem

Description

Property (read-only); returns the current item in the DataSet collection, or nu11 if the collection
is empty or if the current iterator’s view of the collection is empty.

This property provides direct access to the item within the collection. Changes made by directly
accessing this object are not tracked (in the DataSet.deltaPacket property), nor are any of the
schema settings applied to any properties of this object.

Example

The following example displays the value of the customerName property defined in the current
item in the data set named customerData.

trace(customerData.currentlitem.customerName);

DataSet.dataProvider

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.dataProvider

Description

Property; the DataProvider interface for this data set. This property provides data to user interface
controls, such as the List and DataGrid components.

Example

The following code assigns the dataProvider property of a DataSet object to the corresponding
property of a DataGrid component.

myGrid.dataProvider = myDataSet.dataProvider;

DataSet component (Flash Professional only) 205

DataSet.deltaPacket

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.deltaPacket

Description

Property; returns a DeltaPacket object that contains all of the change operations made to the
dataSet collection and its items. This property is nu11 until DataSet.applyUpdates() is called
on dataSet.

When DataSet.applyUpdates() is called, a transaction ID is assigned to the DeltaPacket
object. This transaction ID is used to identify the DeltaPacket object on an update round trip
from the server and back to the client. Any subsequent assignment to the deTtaPacket property
by a DeltaPacket object with a matching transaction ID is assumed to be the server’s response to
the changes previously sent. A DeltaPacket object with a matching ID is used to update the
collection, and report errors specified within the packet.

Errors or server messages are reported to listeners of the DataSet.resolveDelta event. Note that
the DataSet.logChanges settings are ignored when a DeltaPacket object with a matching ID is
assigned to DataSet.deltaPacket. A DeltaPacket object without a matching transaction ID
updates the collection, as if the DataSet API were used directly. This may create additional

delta entries, depending on the current DataSet.logChanges setting of dataSet and the
DeltaPacket object.

A DataSetError exception is thrown if a DeltaPacket object is assigned with a matching
transaction ID and one of the items in the newly assigned DeltaPacket object cannot be found in
the original DeltaPacket object.

See also

DataSet.applyUpdates(), DataSet.logChanges, DataSet.resolveDelta

206

Chapter 4: Components Dictionary

DataSet.deltaPacketChanged
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

on(deltaPacketChanged) f{
// insert your code here
}
listenerObject = new Object();
listenerObject.deltaPacketChanged = function (eventObj) {
// insert your code here
}
dataSet.addEventListener("deltaPacketChanged", TistenerObject)

Description

Event; broadcast when the specified DataSet object’s deltaPacket property has been changed
and is ready to be used.

See also

DataSet.deltaPacket

DataSet.disableEvents()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.disableEvents()

Returns
Nothing.
Description

Method; disables events for the DataSet object. While events are disabled, no user interface
controls (such as a DataGrid component) are updated when changes are made to items in the
collection, or the DataSet object is scrolled to another item in the collection.

To reenable events, you must call DataSet.enableEvents(). The disableEvents() method
can be called multiple times, and enableEvents () must be called an equal number of times to
reenable the dispatching of events.

DataSet component (Flash Professional only) 207

Example

In this example, events are disabled before changes are made to items in the collection, so the
DataSet object won’t try to refresh controls and impact performance.

// Disable events for the data set
myDataSet.disableEvents();
myDataSet.last();
while(myDataSet.hasPrevious()) {
var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.previous();
}
// Tell the data set it's time to update the controls now
myDataSet.enableEvents();

See also

DataSet.enableEvents()

DataSet.enableEvents()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.enableEvents()

Returns

Nothing.

Description

Method; reenables events for the DataSet objects after events have been disabled by a call to
DataSet.disableEvents(). To reenable events for the DataSet object, the enableEvents()
method must be called an equal or greater number of times than disableEvents() was called.

Example

In this example, events are disabled before changes are made to items in the collection, so the
DataSet object won’t try to refresh controls and impact performance.

// Disable events for the data set
myDataSet.disableEvents();
myDataSet.last();
while(myDataSet.hasPrevious()) {
var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.previous();
}
// Tell the dataset it's time to update the controls now
myDataSet.enableEvents();

208

Chapter 4: Components Dictionary

See also

DataSet.disableEvents()

DataSet.filtered

Availability

Flash Player 7.
Edition

Flash MX Professional 2004.
Usage

dataSet.filtered
Description

Property; a Boolean value that indicates whether the data in the current iterator is filtered. When
set to true, the filter function specified by DataSet. filterFunc is called for each item in
the collection.

Example

In the following example, filtering is enabled on the DataSet object named employee_ds.
Suppose that each record in the DataSet collection contains a field named empType. The
following filter function returns true if the empType field in the current item is set to
"management"; otherwise, it returns false.

employee_ds.filtered = true;

employee_ds.filterFunc = function(item:0bject) {
// filter out those employees who are managers...
return(item.empType != "management");

}

See also

DataSet.filterFunc

DataSet.filterFunc
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

dataSet.filterFunc = function(item:0bject) {
// return true|false;
b

DataSet component (Flash Professional only) 209

Description

Property; specifies a function that determines which items are included in the current view of the
collection. When DataSet.filtered is set to true, the function assigned to this property is
called for each transfer object in the collection. For each item that is passed to the function, it
should return true if the item should be included in the current view, or false if the item should
not be included in the current view.

Example

In the following example, filtering is enabled on the DataSet object named employee_ds. The
specified filter function returns true if the empType field in each item is set to "management";
otherwise, it returns false.

employee_ds.filtered = true;

employee_ds.filterFunc = function(item:0bject) {
// filter out those employees who are managers...
return(item.empType != "management");

}

See also

DataSet.filtered

DataSet.find()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.find(searchValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns
Returns true if the values are found; otherwise, returns false.

Description

Method; searches the current view of the collection for an item with the field values specified by
searchValues. Which items are in the current view depends on any current filter and range
settings. If found, the found item becomes the current item in the DataSet object.

The values specified by searchValues must be in the same order as the field list specified by the
current sort (see the example below).

If the current sort is not unique, the transfer object found is nondeterministic. If you want to find
the first or last occurrence of a transfer object in a nonunique sort, use DataSet.findFirst() or
DataSet.findLast().

210 Chapter 4: Components Dictionary

Conversion of the data specified is based on the underlying field’s type, and that specified in the
array. For example, if you specify ["05-02-02"] as a search value, the underlying date field is
used to convert the value using the date’s DataType.setAsString() method. If you specify [new
Date().getTime()], the date’s DataType.setAsNumber () method is used.

Example

This example searches for an item in the current collection whose name and 1d fields contain the
values "Bobby" and 105, respectively. If found, the DataSet.getItemId() method is used to get
the unique identifier for the item in the collection, and the DataSet.locateById() method is
used to position the current iterator on that item.

var studentID:String = null;
studentData.addSort("id", ["name","id"]);
// Locate the transfer object identified by "Bobby" and 105.
// Note that the order of the search fields matches those
// specified in the addSort() method.
if(studentData.find(["Bobby", 105])) {
studentID = studentData.getltemId();
}

// Now use the locateByID() method to position the current
// iterator on the item in the collection whose ID matches studentID
if(studentID != null) {
studentData.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()

DataSet.findFirst()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.findFirst(searchValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns
Returns true if the items are found; otherwise, returns false.
Description

Method; searches the current view of the collection for the first item with the field values specified

by searchValues. Which items are in the current view depends on any current filter and
range settings.

The values specified by searchValues must be in the same order as the field list specified by the
current sort (see the example below).

DataSet component (Flash Professional only) 211

Conversion of the data specified is based on the underlying field’s type, and that specified in the
array. For example, if the search value specified is ["05-02-02"], the underlying date field is used
to convert the value using the date’s setAsString() method. If the value specified is [new
Date().getTime()], the date’s setAsNumber () method is used.

Example

This example searches for the first item in the current collection whose name and age fields
contain "Bobby" and "13". If found, DataSet.getItemId() is used to get the unique identifier
for the item in the collection, and DataSet.locateById() is used to position the current iterator
on that item.

var studentID:String = null;
studentData.addSort("nameAndAge", ["name", "age");
// Locate the first transfer object with the specified values.
// Note that the order of the search fields matches those
// specified in the addSort() method.
if(studentData.findFirst(["Bobby", "13"1)) {
studentID = studentData.getltemId();
}
// Now use the locateByID() method to position the current
// iterator on the item in the collection whose ID matches studentID
if(studentID != null) {
studentData.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()

DataSet.findLast()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.findlLast(searchlValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns
Returns true if the items are found; otherwise, returns false.
Description

Method; searches the current view of the collection for the last item with the field values specified
by searchValues. Which items are in the current view depends on any current filter and
range settings.

The values specified by searchValues must be in the same order as the field list specified by the
current sort (see the example below).

212 Chapter 4: Components Dictionary

Conversion of the data specified is based on the underlying field’s type, and that specified in the
array. For example, if the search value specified is ["05-02-02" 1, the underlying date field is used
to convert the value using the date’s setAsString() method. If the value specified is [new
Date().getTime()], the date’s setAsNumber () method is used.

Example

This example searches for the last item in the current collection whose name and age fields
contain "Bobby" and "13". If found, the DataSet.getItemId() method is used to get the
unique identifier for the item in the collection, and the DataSet.TocateById() method is used
to position the current iterator on that item.

var studentID:String = null;
studentData.addSort("nameAndAge", ["name", "age");
// Locate the last transfer object with the specified values.
// Note that the order of the search fields matches those
// specified in the addSort() method.
if(studentData.findlLast(["Bobby", "13"1)) {

studentID = studentData.getltemId();
}

// Now use the locateByID() method to position the current
// iterator on the item in the collection whose ID matches studentID.
if(studentID != null) {
studentData.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()

DataSet.first()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.first()

Returns
Nothing.
Description

Method; makes the first item in the current view of the collection the current item. Which items
are in the current view depends on any current filter and range settings.

Example

The following code positions the DataSet userData at the first item in its collection
and then displays the value of the price property contained by that item using the
DataSet.currentItem property.

inventoryData.first();
trace("The price of the first item is:" + inventoryData.currentItem.price);

DataSet component (Flash Professional only) 213

See also

DataSet.last()

DataSet.getltemld()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.getItemId([7ndex])

Parameters

index A number specifying the item in the current view of items to get the ID for. This
parameter is optional.

Returns
A string.
Description

Method; returns the identifier of the current item in the collection, or that of the item specified

by index. This identifier is unique only within this collection and is assigned automatically by
DataSet.addItem().

Example

The following code gets the unique ID for the current item in the collection and then displays it
in the Output panel.

var itemNo:String = myDataSet.getItemId();
trace("Employee id("+ itemNo+ ")");

See also

DataSet.addItem()

DataSet.getlterator()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.getIterator()

Returns

A ValueListlterator object.

214 Chapter 4: Components Dictionary

Description

Method; returns a new iterator for this collection; this iterator is a clone of the current iterator in
use, including its current position within the collection. This method is mainly for advanced users
who want access to multiple, simultaneous views of the same collection.

Example

mylterator:ValuelistIterator = myDataSet.getlterator();
mylterator.sortOn(["name"]1);
mylterator.find({name:"John Smith"}).phone = "555-1212";

DataSet.hasNext()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.hasNext()

Returns

A Boolean value.

Description

Method; returns false if the current iterator is at the end of its view of the collection; otherwise,
returns true.

Example

This example iterates over all of the items in the current view of the collection (starting at its
beginning) and performs a calculation on the price property of each item.

myDataSet.first();

while(myDataSet.hasNext()) {
var price = myDataSet.currentltem.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.currentltem.price = price;
myDataSet.next();

}

See also

DataSet.currentlItem, DataSet.first(), DataSet.next()

DataSet component (Flash Professional only) 215

DataSet.hasPrevious()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.hasPrevious()

Returns

A Boolean value.

Description

Method; returns false if the current iterator is at the beginning of its view of the collection;
otherwise, returns true.

Example

This example iterates over all of the items in the current view of the collection (starting from the
its last item) and performs a calculation on the price property of each item.

myDataSet.last();
while(myDataSet.hasPrevious()) {

}

var price = myDataSet.currentlItem.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.currentlItem.price = price;
myDataSet.previous();

See also

DataSet.currentItem, DataSet.skip(), DataSet.previous()

DataSet.hasSort()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.hasSort(sortName)

Parameters

sortName A string that contains the name of a sort created with DataSet.addSort ()

Returns

A Boolean value.

216

Chapter 4: Components Dictionary

Description
Method; returns true if the sort specified by sortName exists; otherwise, returns false.
Example

The following code tests if a sort named “customerSort” exists. If the sort already exists, it is made
the current sort by means of the DataSet.useSort () method. If a sort by that name doesnt
exist, one is created by means of the DataSet.addSort () method.

if(myDataSet.hasSort("customerSort"))
myDataSet.useSort("customerSort");

} else {
myDataSet.addSort("customerSort", ["customer"],
DataSetlIterator.Descending);

}

See also

DataSet.applyUpdates(), DataSet.useSort()

DataSet.isEmpty()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.isEmpty()

Returns
A Boolean value.
Description

Method; returns true if the specified DataSet object doesn’t contain any items (that is, if
dataSet.length == 0).

Example

The following disables a Delete Record button (not shown) if the DataSet object it applies to
is empty.

if(userData.isEmpty()){
delete_btn.enabled = false;
}

See also

DataSet.length

DataSet component (Flash Professional only) 217

DataSet.items

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
myDataSet.items

Description
Property; an array of items managed by myDataSet.
Example

This example assigns an array of objects to a DataSet object’s items property.

var recData = [{id:0, firstName:"Mick", TastName:"Jones"},
{id:1, firstName:"Joe", TastName:"Strummer"},
{id:2, firstName:"Paul", TastName:"Simonon"}];
myDataSet.items = recData;

DataSet.itemClassName

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.itemClassName

Description
Property; a string indicating the name of the class that should be created when items are added to
the collection. The class you specify must implement the TransferObject interface, shown below.

interface mx.data.to.TransferObject {

function clone():0bject;

function getPropertyData():0bject;

function setPropertyData(propData:0Object):Void;
}

You can also set this property in the Property inspector.

To make the specified class available at runtime, you must also make a fully qualified reference to
this class somewhere within your SWF file’s code, as in the following code snippet:

var mylItem:my.package.myltem;

A DataSetError exception is thrown if you try to modify the value of this property after the
DataSet.items array has been loaded.

For more information about the TransferObject interface, see “TransferObject interface”
on page 527.

218 Chapter 4: Components Dictionary

DataSet.iteratorScrolled

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

on(iteratorScrolled) f{
// insert your code here
}
listenerObject = new Object();
listenerObject.iteratorScrolled = function (eventObj) |
// insert your code here
}
dataSet.addEventListener("iteratorScrolled", TistenerObject)

Description

Event; generated immediately after the current iterator has scrolled to a new item in
the collection.

The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.
type The string "iteratorScrolled".

scrolled A number that specifies how many items the iterator scrolled; positive values indicate
that the iterator moved forward in the collection; negative values indicate that it moved backward
in the collection.

Example

In this example, the status bar of an application (not shown) is updated when the position of the
current iterator changes.

on(iteratorScrolled) f{
var dataSet:mx.data.components.DataSet = eventObj.target;
var statusBarText = dataSet.fullname+" Acct #:
"+dataSet.getField("acctnum").getAsString();
setStatusBar(statusBarText);

}

DataSet.last()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.last()

DataSet component (Flash Professional only) 219

Returns
Nothing.
Description

Method; makes the last item in the current view of the collection the current item.

Example

The following code, attached to a Button component, goes to the last item in the
DataSet collection.

function golast(eventObj:obj) {
inventoryData.last();

}

golLast_btn.addEventListener("click", golast);

See also

DataSet.first()

DataSet.length
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.length

Description

Property (read-only); specifies the number of items in the current view of the collection. The
viewable number of items is based on the current filter and range settings.

Example

The following example alerts users if they haven’t made enough entries in the data set, perhaps
using an editable DataGrid component.

if(myDataSet.length < MIN_REQUIRED) f{
alert("You need at least "+MIN_REQUIRED);
}

DataSet.loadFromSharedObj()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.loadFromSharedObj(objName, [localPath])

220 Chapter 4: Components Dictionary

Parameters

objName A string specifying the name of the shared object to retrieve. The name can include
forward slashes (for example, “work/addresses”). Spaces and the following characters are not
allowed in the specified name:

~ % &Ny K>

TocalPath An optional string parameter that specifies the full or partial path to the SWF file
that created the shared object. This string is used to determine where the object is stored on the
user’s computer. The default value is the SWF file’s full path.

Returns
Nothing.
Description

Method; loads all of the relevant data needed to restore this DataSet collection from a shared
object. To save a DataSet collection to a shared object, use DataSet.saveToShared0bj(). The
DataSet.loadFromSharedObject () method overwrites any data or pending changes that might
exist within this DataSet collection. Note that the instance name of the DataSet collection is used
to identify the data within the specified shared object.

This method throws a DataSetError exception if the specified shared object isn’t found or if
there is a problem retrieving the data from it.

Example

This example attempts to load a shared object named webapp/customerInfo associated with the
data set named myDataSet. The method is called within a try...catch code block.

try {
myDataSet.loadFromSharedObj("webapp/customerInfo");
}
catch(e:DataSetError) {
trace("Unable to load shared object.”);
}
See also

DataSet.saveToSharedObj()

DataSet.locateByld()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.locateByld(7d)

Parameters

id A string identifier for the item in the collection to be located.

DataSet component (Flash Professional only) 221

Returns
A Boolean value.

Description

Method; positions the current iterator on the collection item whose ID matches 7d. This method

returns true if the specified ID can be matched to an item in the collection; otherwise, it
returns false.

Example

This example uses DataSet.find() to search for an item in the current collection whose name
and id fields contain the values "Bobby" and 105, respectively. If found, the
DataSet.getItemId() method is used to get the unique identifier for that item, and the
DataSet.locateByld() method is used to position the current iterator at that item.

var studentID:String = null;

studentData.addSort("id", ["name","id"]);

if(studentData.find(["Bobby", 105])) {
studentID = studentData.getItemId();
studentData.locateById(studentID);

}

See also

DataSet.applyUpdates(), DataSet.find(), DataSet.getItemId()

DataSet.logChanges
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.logChanges

Description

Property; a Boolean value that specifies whether changes made to the data set, or its items, should
(true) or should not (false) be recorded in DataSet.deltaPacket.

When this property is set to true, operations performed at the collection level and item level are
logged. Collection-level changes include the addition and removal of items from the collection.

Item-level changes include property changes made to items and method calls made on items by
means of the DataSet component.

Example

The following example disables logging for the DataSet object named userData.

userData.logChanges = false;
See also

DataSet.deltaPacket

222 Chapter 4: Components Dictionary

DataSet.modelChanged

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Description

on(modelChanged) {
// insert your code here
}
listenerObject = new Object();
listenerObject.modelChanged = function (eventObj) {
// insert your code here
}
dataSet.addEventListener("modelChanged", TistenerObject)

Description

Event; broadcast when the collection changes in some way—for example, when items are
removed or added to the collection, when the value of an item’s property changes, or when the
collection is filtered or sorted.

The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.
type The string "iteratorScrolled".

firstItem The index (number) of the first item in the collection that was affected by
the change.

TastItem Theindex (number) of the last item in the collection that was affected by the change
(equals firstItem if only one item was affected).

fieldName A string that contains the name of the field being affected. This property is
undefined unless the change was made to a property of the DataSet object.

eventName A string that describes the change that took place. This can be one of the
following values:

String value Description

"addItems" A series of items has been added.

"filterModel" The model has been filtered, and the view needs refreshing (reset scroll position).
"removeltems" A series of items has been deleted.

"schemaloaded" The fields definition of the data provider has been declared.

"sort" The data has been sorted.

"updateAll" The entire view needs refreshing, excluding scroll position.
"updateColumn" An entire field’s definition within the data provider needs refreshing.
"updateField" A field within an item has been changed and needs refreshing.

"updateltems" A series of items needs refreshing.

DataSet component (Flash Professional only) 223

Example
In this example, a Delete Item button is disabled if the items have been removed from the
collection and the target DataSet object has no more items.

on(modelChanged) {
delete_btn.enabled = ((eventObj.eventName == "removeltems") &&
(eventObj.target.isEmpty()));

}

See also

DataSet.isEmpty()

DataSet.newltem
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

on(newltem) {
// insert your code here
}
listenerObject = new Object();
listenerObject.newltem = function (eventObj) f{
// insert your code here
}
dataSet.addEventListener("newltem", listenerObject)

Description

Event; broadcast when a new transfer object is constructed by means of DataSet.createltem().
A listener for this event can make modifications to the item before it is added to the collection.

The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.
type Thesmjng”ﬁteratorScro]]edﬁ
item A referenece to the item that was created.
Example

This example makes modifications to a newly created item before it's added to the collection.

function newltemEvent(evt:0bject):Void {
var employee:0bject = evt.item;
employee.name = "newGuy";
// property data happens to be XML
employee.zip =
employee.getPropertyData().firstChild.childNodes[1].attributes.zip;
}
employees_ds.addEventListener("newltem", newltemEvent);

224 Chapter 4: Components Dictionary

DataSet.next()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.next()

Returns
Nothing.
Description

Method; makes the next item in the current view of the collection the current item. Which items
are in the current view depends on any current filter and range settings.

Example

This example loops over all the items in a DataSet object, starting from the first item, and
performs a calculation on a field in each item.

myDataSet.first();

while(myDataSet.hasNext()) {
var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.next();

}

See also

DataSet.first(), DataSet.hasNext()

DataSet.previous()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.previous()

Returns
Nothing.
Description

Method; makes the previous item in the current view of the collection the current item. Which
items are in the current view depends on any current filter and range settings.

DataSet component (Flash Professional only) 225

This example loops over all the items in the current view of the collection, starting from the last
item, and performs a calculation on a field in each item.

myDataSet.last();

while(myDataSet.hasPrevious()) {
var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.previous();

}

See also

DataSet.first(), DataSet.hasNext()

DataSet.properties
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.properties

Description

Property (read-only); returns an object that contains all of the exposed properties (fields) for any
transfer object within this collection.

Example

This example displays all the names of the properties in the DataSet object named myDataSet.

for(var i in myDataSet.properties) {
trace("field '"+i+ "' has value "+ myDataSet.properties[i]);
}

DataSet.readOnly
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.readOnly

Description

Property; a Boolean value that specifies whether this collection can be modified (false) or is
read-only (true). Setting this property to true will prevent updates to the collection.

You can also set this property in the Property inspector.

226 Chapter 4: Components Dictionary

Example

The following example makes the DataSet object named myDataSet read-only, and then attempts
to change the value of a property that belongs to the current item in the collection. This will
throw an exception.

myDataSet.readOnly = true;

// This will throw an exception

myDataSet.currentItem.price = 15;
See also

DataSet.currentItem

DataSet.removeAll()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.removeAll()

Parameters
None.
Returns
Nothing.
Description
Method; removes all items in the DataSet collection.
Example

This example removes all the items in the DataSet collection contact_ds:

contact_ds.removeAll();

DataSet component (Flash Professional only) 227

DataSet.removeltem

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage

on(removeltem) {
// insert your code here
}
listenerObject = new Object();
listenerObject.removeltem = function (eventObj) {
// insert your code here
}
dataSet.addEventListener("removeltem", TistenerObject)

Description

Event; generated just before a new item is deleted from this collection.

If you set the result property of the event object to false, the delete operation is canceled; if
you set it to true, the delete operation is allowed.

The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.

type The string "removeltem".

item A reference to the item in the collection to be removed.

result A Boolean value that specifies whether the item should be removed. By defaul, this
value is true.

Example

In this example, an on(removeItem) event handler cancels the deletion of the new item if a
user-defined function named userHasAdminPrivs() returns false; otherwise, the deletion
is allowed.

on(removeltem) {
if(globalObj.userHasAdminPrivs()) {
// Allow the item deletion.
eventObj.result = true;
} else |
// Don’t allow item deletion; user doesn’t have admin priviledges.
eventObj.result = false;
}
}

See also

DataSet.addItem

228

Chapter 4: Components Dictionary

DataSet.removeltem()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.removeltem([7tem])

Parameters

item The item that should be removed. This parameter is optional.

Returns
A Boolean value. Returns true if the item was successfully removed; otherwise, returns false.
Description
Method; removes the specified item from the collection, or removes the current item if
the 7tem parameter is omitted. This operation is logged to DataSet.deltaPacket if
DataSet.logChanges is true.
Example
The following code, attached to an instance of the Button component, removes the current
item in the DataSet object named usersData that resides on the same Timeline as the
Button instance.
on(click) {
_parent.usersData.removeltem();
}
See also
DataSet.deltaPacket, DataSet.logChanges
DataSet.removeRange()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.
Usage
dataSet.removeRange()
Returns
Nothing.
DataSet component (Flash Professional only) 229

Description

Method; removes the current end point settings specified by means of DataSet.setRange() for
the current iterator.

Example

myDataSet.addSort("name_id", ["name", "id"]1);
myDataSet.setRange(["Bobby", 105],["Cathy", 1101);
while(myDataSet.hasNext()) {
myDataSet.gradelLevel ="5"; // change all of the grades in this range
myDataSet.next();
}
myDataSet.removeRange();
myDataSet.removeSort("name_id");

See also
DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(), DataSet.removeSort(),
DataSet.setRange()

DataSet.removeSort()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.removeSort(sortName)

Parameters

sortName A string that specifies the name of the sort to remove.
Returns

Nothing.
Description

Method; removes the specified sort from this DataSet object if the sort exists. If the specified sort
does not exist, this method throws a DataSetError exception.

Example

myDataSet.addSort("name_id", ["name", "id"1);
myDataSet.setRange(["Bobby", 105],["Cathy", 1101);
while(myDataSet.hasNext()) {
myDataSet.gradelevel ="5"; // change all of the grades in this range
myDataSet.next();
}
myDataSet.removeRange();
myDataSet.removeSort("name_id");

See also

DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(), DataSet.removeRange(),
DataSet.setRange()

230 Chapter 4: Components Dictionary

DataSet.resolveDelta

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(resolveDelta) {
// insert your code here
}
listenerObject = new Object();
listenerObject.resolveDelta = function (eventObj) {
// insert your code here
}

dataSet.addEventListener("resolveDelta", TistenerObject)

Description

Event; broadcast when a DeltaPacket object is assigned to DataSet.deltaPacket whose
transaction ID matches that of a DeltaPacket object previously retrieved from the DataSet object,
and that has messages associated with any of the Delta or Deltaltem objects contained by that
DeltaPacket object.

This event gives you the chance to reconcile any error returned from the server while attempting
to apply changes previously submitted. Typically, you use this event to display a “reconcile dialog
box” with the conflicting values, allowing the user to make appropriate modifications to the data
so that it can be resent.

The event object (event0bj) contains the following properties:
target The DataSet object that generated the event.
type The string "resolveDelta".

data An array of Delta and associated Deltaltem objects that have nonzero length messages.

Example

This example displays a form called reconcileForm (not shown) and calls a method on that form
object (setReconcileData()) that allows the user to reconcile any conflicting values returned by
the server.

myDataSet.addEventlListener("resolveDelta", resolveDelta);
function resolveDelta(eventObj:0bject) {
reconcileForm.visible = true;
reconcileForm.setReconcileData(eventObj.data);
}
// in the reconcileForm code
function setReconcileData(data:Array):Void {
var di:Deltaltem;
var ops:Array = ["property", "method"];
var cl:Array;
// change list
var msg:String;
for (var i = 0; i<data.length; i++) {
cl = datal[i].getChangelist();
for (var j = 0; j<cl.length; j++) {

DataSet component (Flash Professional only) 231

di = clljl;

msg = di.getMessage();

if (msg.length>0) {

trace("The following problem occurred +msg+ while performing a

""+ops[di.kind]+""' modification on/with '"+di.name+"' current server value
["+di.curValue+"], value sent ["+di.newValue+"] Please fix!");

}

}

}
}

DataSet.saveToSharedObj()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.saveToSharedObj(objName, [TocalPath])

Parameters

objName A string that specifies the name of the shared object to create. The name can include
forward slashes (for example, “work/addresses”). Spaces and the following characters are not
allowed in the specified name:

~ % &N K> f

localPath An optional string parameter that specifies the full or partial path to the SWF file
that created the shared object. This string is used to determine where the object will be stored on
the user’s computer. The default value is the SWEF file’s full pach.

Returns
Nothing.
Description

Method; saves all of the relevant data needed to restore this DataSet collection to a shared object.
This allows users to work when disconnected from the source data, if it is a network resource.
This method overwrites any data that might exist within the specified shared object for this
DataSet collection. To restore a DataSet collection from a shared object, use
DataSet.loadFromSharedObj (). Note that the instance name of the DataSet collection is used
to identify the data within the specified shared object.

If the shared object can’t be created or there is a problem flushing the data to it, this method
throws a DataSetError exception.

232 Chapter 4: Components Dictionary

Example

This example calls saveToShared0bj () ina try..catch block and displays an error if there is a
problem saving the data to the shared object.

try {

myDataSet.saveToSharedObj("webapp/customerIinfo");
}

catch(e:DataSetError) {
trace("Unable to create shared object”);
}

See also

DataSet.loadFromSharedObj()

DataSet.schema
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.schema

Description

Property; provides the XML representation of the schema for this DataSet object. The XML
assigned to this property must have the following format:
<?xml version="1.0"7>
<properties>
<{property name="propertyName">
{type name="dataTlype" />
<encoder name="dataType">
<options>
<dataFormat>format options<dataFormat/>
<options/>
<encoder/>
<kind name="datakind">
<options/>
</kind>
</property>
<property> ... </property>

</§%6pert1es>

A DataSetError exception is thrown if the XML specified does not follow the above format.
Example

myDataSet.schema =

= new XML("<properties><property name="billable"> .
properties>");

.etc.. </

DataSet component (Flash Professional only) 233

DataSet.selectedindex

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.selectedIndex

Description

Property; specifies the selected index within the collection. You can bind this property to the
selected item in a DataGrid or List component, and vice versa. For a complete example that
demonstrates this, see “Creating an application with the DataSet component” on page 194.

Example

The following example sets the selected index of a DataSet object (userData) to the selected
index in a DataGrid component (userGrid).

userData.selectedIndex = userGrid.selectedIndex;

DataSet.setlterator()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.setlterator(iterator)

Parameters

iterator An iterator object returned by a call to DataSet.getIterator().
Returns

Nothing.
Description

Method; assigns the specified iterator to this DataSet object and makes it the current iterator. The
specified iterator must come from a previous call to DataSet.getIterator() on the DataSet
object it is being assigned to; otherwise; a DataSetError exception is thrown.

Example

mylterator:ValuelListIterator = myDataSet.getlterator();
mylterator.sortOn(["name"1);
myDataSet.setIterator(mylterator);

See also

DataSet.getIterator()

234 Chapter 4: Components Dictionary

DataSet.setRange()

Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.setRange(startlValues, endValues)

Parameters
startValues An array of key values of the properties of the first transfer object in the range.
endValues An array of key values of the properties of the last transfer object in the range.
Returns
Nothing.
Description

Method; sets the end points for the current iterator. The end points define a range within which
the iterator operates. This is only valid if a valid sort has been set for the current iterator by means
of DataSet.applyUpdates().

Setting a range for the current iterator is more efficient than using a filter function if you want a
grouping of values (see DataSet.filterfFunc).

Example

myDataSet.addSort("name_id", ["name", "id"1);
myDataSet.setRange(["Bobby", 105],["Cathy", 1101);
while(myDataSet.hasNext()) {
myDataSet.gradelevel ="5"; // change all of the grades in this range
myDataSet.next();
}
myDataSet.removeRange();
myDataSet.removeSort("name_id");

See also

DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(), DataSet.removeRange(),
DataSet.removeSort()

DataSet.skip()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.skip(offSet)

DataSet component (Flash Professional only) 235

Parameters

offSet An integer specifying the number of records by which to move the iterator position.
Returns

Nothing.
Description

Method; moves the current iterator’s position forward or backward in the collection by the
amount specified by of fSet. Positive offSet values move the iterator’s position forward; negative
values move it backward.

If the specified offset is beyond the beginning (or end) of the collection, the iterator is
positioned at the beginning (or end) of the collection.

Example

This example positions the current iterator at the first item in the collection, then moves to the
next-to-last item and performs a calculation on a field belonging to that item.

myDataSet.first();

// Move to the item just before the last one

var itemsToSkip = myDataSet.length - 2;
myDataSet.skip(itemsToSkip).price = myDataSet.amount * 10;

DataSet.useSort()
Availability
Flash Player 7.
Edition
Flash MX Professional 2004.

Usage
dataSet.useSort(sortName, order)

Parameters
sortName A string that contains the name of the sort to use.

order An integer value that indicates the sort order for the sort; the value must be
DataSetIterator.Ascending or DataSetIterator.Descending.

Returns
Nothing.
Description

Method; switches the sort for the current iterator to the one specified by sortName, if it exists. If
the sort specified by sortName does not exist, a DataSetError exception is thrown.

To create a sort, use the DataSet.applyUpdates().

236 Chapter 4: Components Dictionary

Example

This code uses DataSet.hasSort() to determine if a sort named "customer" exists. If it does,
the code calls DataSet.useSort() to make "customer" the current sort. Otherwise, the code
creates a sort by that name using DataSet.addSort().
if(myDataSet.hasSort("customer")) {

myDataSet.useSort("customer");
} else {

myDataSet.addSort("customer", ["customer"], DataSetIterator.Descending);
}

See also

DataSet.applyUpdates(), DataSet.hasSort()

DateChooser component (Flash Professional only)

The DateChooser component is a calendar that allows users to select a date. It has buttons that
allow users to scroll through months and click on a date to select it. You can set parameters that
indicate the month and day names, the first day of the week, and any disabled dates, as well as
highlighting the currrent date.

A live preview of each DateChooser instance reflects the values indicated by the Property
inspector or Component Inspector panel while authoring.

Using the DateChooser component (Flash Professional only)

The DateChooser can be used anywhere you want a user to select a date. For example, you could
use a DateChooser component in a hotel reservation system with certain dates selectable and
others disabled. You could also use the DateChooser component in an application that displays
current events, such as performances or meetings, when a user chooses a date.

DateChooser parameters

The following are authoring parameters that you can set for each DateChooser component
instance in the Property inspector or in the Component Inspector panel:

monthNames sets the month names that are displayed in the heading row of the calendar. The
value is an array and the default value is ["January", "February", "March", "April", "May",

non

"June", "July", "August”, "September”, "October","November", "December"].

dayNames sets the names of the days of the week. The value is an array and the default value is
["S"’ "M"’ "T"’ "W"’ "T"’ "F"’ "S"]'
firstDayOfWeek indicates which day of the week (0-6, 0 being the first element of dayNames

array) is displayed in the first column of the DateChooser. This property changes the display
order of the day columns.

disabledDays indicates the disabled days of the week. This parameter is an array and can have
up to 7 values. The default value is [] (an empty array).

showToday indicates whether or not to highlight today’s date. The default value is true.

You can write ActionScript to control these and additional options for the DateChooser
component using its properties, methods, and events. For more information, see “DateChooser
class (Flash Professional only)” on page 239.

DateChooser component (Flash Professional only) 237

Creating an application with the DateChooser component

The following procedure explains how to add a DateChooser component to an application while
authoring. In this example, the DateChooser allows a user to pick a date for an airline reservation
system. All dates before October 15th must be disabled. Also, a range in December must be
disabled to create a holiday black-out period and Mondays must be disabled.

To create an application with the DateChooser component, do the following:
1 Double-click the DateChooser component in the Components panel to add it to the Stage.
2 In the Property inspector, enter the instance name flightCalendar.

3 In the Actions panel, enter the following code on Frame 1 of the Timeline to set the range of
selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2003, 9, 15),
rangekEnd:new Date(2003, 11, 31)!}
This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This defines an
upper and lower end of a range within which the user can select a date.

4 In the Actions panel, enter the following code on Frame 1 of the Timeline to set a range of

holiday disabled dates:

flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),
rangektnd: new Date(2003, 11, 26)1}1;

5 In the Actions panel, enter the following code on Frame 1 of the Timeline to disable Mondays:
flightCalendar.disabledDays=[1];

6 Control > Test Movie.

Customizing the DateChooser component (Flash Professional only)

You can transform a DateChooser component horizontally and vertically both while authoring
and at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

Using styles with the DateChooser component

You can set style properties to change the appearance of a date chooser instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.

A DateChooser component supports the following Halo styles:

Style Description

themeColor The glow color for the rollover and selected dates. This is the only
color style that doesn't inherit its value. Possible values are
"haloGreen", "haloBlue",and "haloOrange".

color The text of a component label.
disabledColor The disabled color for text.
fontFamily The font name for text.

238

Chapter 4: Components Dictionary

Style Description

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".
fontWeight The font weight; either "normal", or "bold".
textDecoration The text decoration: either "none", or "underline".

Using skins with the DateChooser component

The DateChooser component skins to represent its visual states. To skin the DateChooser
component while authoring, modify skin symbols in the Flash Ul Components 2/Themes/
MMDefault/DateChooser Assets/Elements/Month skins states folder in the library of one of the
themes FLA files. For more information, see “About skinning components” on page 36.

Only the month scrolling buttons can be dynamically skinned in this component. A
DateChooser component uses the following skin properties:

Property Description
falseUpSkin The up state. The default values are fwdMonthUp and backMonthUp.
falseDownSkin The down state. The default values are fwdMonthDown

and backMonthDown.

falseDisabledSkin The disabled state. The default values are fwdMonthDisabled
and backMonthDisabled.

DateChooser class (Flash Professional only)
Inheritance UIODbject > UIComponent > DateChooser
ActionScript Class Name mx.controls.DateChooser

The properties of the DateChooser class allow you to access the selected date, and the displayed
month and year. You can also set the names of the days and months, indicate disabled dates and
selectable dates, set the first day of the week, and indicate whether the current date should

be highlighted.

Setting a property of the DateChooser class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:

trace(mx.controls.DateChooser.version);

Note: The following code returns undefined: trace(myDC.version);.

DateChooser component (Flash Professional only) 239

Method summary for the DateChooser class

Inherits all methods from UIObject and UIComponent.

Property summary for the DateChooser class

Property Description

DateChooser.dayNames An array indicating the names of the days of the week.

DateChooser.disabledDays An array indicating the days of the week that are disabled for all
applicable dates in the date chooser.

DateChooser.disabledRanges A range of disabled dates or a single disabled date.

DateChooser.displayedMonth A numberindicating an elementin the monthNames array to display in
the date chooser.

DateChooser.displayedYear A numberindicating the year to display.

DateChooser.firstDayOfleek A numberindicating an element inthe dayNames array to display in
the first column of the date chooser.

DateChooser.monthNames An array of strings indicating the month names.

DateChooser.selectableRange A single selectable date or a range of selectable dates.

DateChooser.selectedDate A Date object indicating the selected date.

DateChooser.showToday A Boolean value indicating whether the current date is highlighted.

Inherits all properties from UIObject and UIComponent.

Event summary for the DateChooser class

Event Description
DateChooser.change Broadcast when a date is selected.
DateChooser.scroll Broadcast when the month buttons are pressed.

Inherits all events from UIObject and UIComponent.

DateChooser.

Availability

change

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage
Usage 1:
on(change)

}

{

240 Chapter 4: Components Dictionary

Usage 2:

lTistenerObject = new Object();
listenerObject.change = function(eventObject)

}
chooserinstance.addEventListener("change", IlistenerObject)

Description
Event; broadcast to all registered listeners when a date is selected.

The first usage example uses an on () handler and must be attached directly to a DateChooser
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date chooser
myDC, sends “_level0.myDC” to the Output panel:

on(change) {

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(chooserInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (17stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
DateChooser called myDC is changed. The first line of code creates a listener object called form.
The second line defines a function for the change event on the listener object. Inside the function
isa trace() action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event (in this example myDC). The NumericStepper.maximum
property is accessed from the event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDC and passes it the change event
and the form listener object as parameters, as in the following:

form.change = function(eventObj){
trace("date selected " + eventObj.target.selectedDate)
}

myDC.addEventlListener("change", form);

DateChooser component (Flash Professional only) 241

DateChooser.dayNames

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDC.dayNames

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at index
position 0) and the rest of the day names follow in order. The default valueis ["S", "M", "T",
wgn . T wpn wgwy,

Example

The following example changes the value of the 5th day of the week (Thursday) from “T” to “R™:
myDC.dayNames[4] = "R";

DateChooser.disabledDays
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDC.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall on
the specified day are disabled. The elements of this array can have values between 0 (Sunday)
and 6 (Saturday). The default value is [] (empty array).

Example

The following example disables Sundays and Saturdays so that users can only select weekdays:
myDC.disabledDays = [0, 61;
DateChooser.disabledRanges
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

242 Chapter 4: Components Dictionary

Usage
myDC.disabledRanges

Description

Property; disables a single day or a range of days. This property is an Array of objects. Each object
in the array must be either a Date object specifying a single day to disable, or an object containing
either or both of the properties rangeStart and rangeEnd, each of whose value must be a Date
object. The rangeStart and rangeEnd properties describe the boundaries of the date range. If
either property is omitted the range is unbounded in that direction.

The default value of disabledRanges is undefined.

Specify a full date when you define dates for the disabledRanges property. For example, new
Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the time returns as
00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that disable
the dates between May 7 and June 7:

myDC.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new
Date(2003, 5, 7)1}1;

The following example disables all dates after November 7:
myDC.disabledRanges = [{rangeStart: new Date(2003, 10, 7))} 1;
The following example disables all dates before October 7:
myDC.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)} 1;
The following example disables only December 7:

myDC.disabledRanges = [new Date(2003, 11, 7) 1;

DateChooser.displayedMonth
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDC.displayedMonth

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
myDC.displayedMonth = 11;

DateChooser component (Flash Professional only) 243

See also

DateChooser.displayedYear

DateChooser.displayedYear

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDC.displayedYear

Description

Property; a four digit number indicating which year is displayed. The default value is the
current year.

Example
The following example sets the displayed year to 2010:
myDC.displayedYear = 2010;

See also

DateChooser.displayedMonth

DateChooser.firstDayOfWeek
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDC.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of the
dayNames array) is displayed in the first column of the DateChooser component. Changing this
property changes the order of the day columns but has no effect on the order of the dayNames
property. The default value is 0 (Sunday).

Example
The following example sets the first day of the week to Monday:
myDC.firstDayOfWeek = 1;

See also

DateChooser.dayNames

244 Chapter 4: Components Dictionary

DateChooser.monthNames
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDC.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateChooser

"

component. The default value is ["January", "February", "March", "April", "May
"June", "July", "August", "September", "October", "November", "December"].
Example

The following example sets the month names for the instance myDC:

myDC.monthNames = ["Jan", "Feb","Mar","Apr", "May",

"June","July", "Aug"
"Sept","0ct", "Nov", "Dec"]:

DateChooser.scroll

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.
Usage

Usage 1:

on(scroll){

}

Usage 2:

listenerObject = new Object();
listenerObject.scroll = function(eventObject){

}
myDC.addEventListener("scroll", IlistenerObject)

DateChooser component (Flash Professional only)

245

Description

Event; broadcast to all registered listeners when a month button is pressed.

The first usage example uses an on() handler and must be attached directly to a DateChooser
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the stepper myDC,
sends “_level0.myDC” to the Output panel:

on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDC)
dispatches an event (in this case, scro11) and the event is handled by a function, also called a
handler, on a listener object (17stenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (event0Object) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. The scroll event’s event
object has an additional property, detail, that can have one of the following values: nextMonth,
previousMonth, nextYear, previousYear.

Finally, you call the UIEventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
month button is pressed on a DateChooser instance called myDC. The first line of code creates a
listener object called form. The second line defines a function for the scrol1 event on the listener
object. Inside the function is a trace action that uses the event object that is automatically passed
to the function, in this example event0bj, to generate a message. The target property of an
event object is the component that generated the event; in this example myDC. The last line calls
the UIEventDispatcher.addEventListener() method from myDC and passes it the scrol1
event and the form listener object as parameters, as in the following:

form = new Object();

form.scroll = function(eventObj){
trace(eventObj.detail);

}

myDC.addEventlListener("scroll", form);

DateChooser.selectableRange

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.selectableRange

246

Chapter 4: Components Dictionary

Description

Property; sets a single selectable date or a range of selectable dates. The user will not be able to
scroll beyond the selectable range. The value of this property is an object that consists of two Date
objects named rangeStart and rangeEnd. The rangeStart and rangeEnd properties designate
the boundaries of the selectable date range. If only rangeStart is defined, all the dates after
rangeStart are enabled. If only rangetnd is defined, all the dates before rangeEnd are enabled.
The default value is undefined.

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates. For example, new Date(2003,6,24) rather than new
Date(). If you don’t specify a full date, the time returns as 00:00:00.

The value of DateChooser.selectedDate is set to undefined if it falls outside the
selectable range.

The value of DateChooser.displayedMonth and DateChooser.displayedYear are set to the
the nearest last month in the selectable range if the current month falls outside the selectable
range. For example, if the current displayed month is August, and the selectable range is from
June, 2003 - July, 2003, the displayed month will change to July, 2003.

Example

The following example defines the selectable range to the dates between and including May 7 and
June 7:

myDC.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new
Date(2003, 5, 7)};

The following example defines the selectable range to the dates after and including May 7:
myDC.selectableRange = {rangeStart: new Date(2003, 4, 7)};

The following example defines the selectable range to the dates before and including June 7:
myDC.selectableRange = {rangekEnd: new Date(2003, 5, 7) };

The following example defines the selectable date as June 7 only:

myDC.selectableRange = new Date(2003, 5, 7);

DateChooser.selectedDate
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDC.selectedDate

DateChooser component (Flash Professional only) 247

Description

Property; a Date object that indicates the selected date if that value falls within the value of the
selectableRange property. The default value is undefined.

The selectedDate property cannot be set inside a disabledRange, outside a
selectableRange, or on a day that has been disabled. If the selectedDate property is set to one
of the previous dates, the value will be undefined.

Example

The following example sets the selected date to June 7:
myDC.selectedDate = new Date(2003, 5, 7);

DateChooser.showToday
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDC.showToday

Description

Property; this property determines whether the current date is highlighted. The default value
is true.

Example

The following example turns off the highlighting on today’s date:
myDC.showToday = false;

DateField component (Flash Professional only)

The DateField component is a nonselectable text field that displays the date with a calendar icon
on its right side. If no date has been selected, the text field is blank and the month of today's date
is displayed in the date chooser. When a user clicks anywhere inside the bounding box of the date
field, a date chooser pops up and displays the dates in the month of the selected date. When the
date chooser is open, users can use the month scroll buttons to scroll through months and years,
and select a date. When a date is selected, the date chooser closes.

The live preview of the DateField does not reflect the values indicated by the Property inspector
or Component Inspector panel while authoring because it is a pop-up component that is not
visible while authoring.

Using the DateField component (Flash Professional only)

The DateField component can be used anywhere you want a user to select a date. For example,
you could use a DateField component in a hotel reservation system with certain dates selectable
and others disabled. You could also use the DateField component in an application that displays
current events, such as performances or meetings, when a user chooses a date.

248 Chapter 4: Components Dictionary

DateField parameters

The following are authoring parameters that you can set for each DateField component instance
in the Property inspector or in the Component Inspector panel:

monthNames sets the month names that are displayed in the heading row of the calendar. The
value is an array and the default value is ["January", "February", "March", "April", "May",

non

"June", "July", "August”, "September", "October","November", "December"].

dayNames sets the names of the days of the week. The value is an array and the default value is
['S", "M", "T", "W", "T", "E", "S"].

firstDayOfWeek indicates which day of the week (0-6, 0 being the first element of dayNames

array) is displayed in the first column of the DateChooser. This property changes the display
order of the day columns.

The default value is 0, which is "S".

disabledDays indicates the disabled days of the week. This parameter is an array and can have
up to 7 values. The default value is [] (an empty array).

showToday indicates whether or not to highlight today’s date. The default value is true.

You can write ActionScript to control these and additional options for the DateField component
using its properties, methods, and events. For more information, see “DateField class (Flash
Professional only)” on page 251.

Creating an application with the DateField component

The following procedure explains how to add a DateField component to an application while
authoring. In this example, the DateField component allows a user to pick a date for an airline
reservation system. All dates before today’s date must be disabled. Also, a 15-day range in
December must be disabled to create a holiday black-out period. Also, some flights are not
available on Mondays, so all Mondays must be disabled for those flights.

To create an application with the DateField component, do the following:
1 Double-click the DateField component in the Components panel to add it to the Stage.
2 In the Property inspector, enter the instance name flightCalendar.

3 In the Actions panel, enter the following code on Frame 1 of the Timeline to set the range of
selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2001, 9, 1),

rangeEnd:new Date(2003, 11, 1)};
This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This defines an
upper and lower end of a range within which the user can select a date.

4 In the Actions panel, enter the following code on Frame 1 of the Timeline to set the ranges of
disabled dates, one during December, and one for all dates before the current date:
flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),

rangektnd: new Date(2003, 11, 31)}, {rangeEnd: new Date(2003, 6, 16)}]1;

5 In the Actions panel, enter the following code on Frame 1 of the Timeline to disable Mondays:

flightCalendar.disabledDays=[1];

6 Control > Test Movie.

DateField component (Flash Professional only) 249

Customizing the DateField component (Flash Professional only)

You can transform a DateField component horizontally both while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any
of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). Setting the width does not change the dimensions of the date chooser
within the DateField component. However, you can use the pul1Down property to access the
DateChooser component and set its dimensions.

Using styles with the DateField component

You can set style properties to change the appearance of a date field instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”

on page 27.

A DateField component supports the following Halo styles:

Style Description

themeColor The glow color for the rollover and selected dates. This is the only
color style that doesn't inherit its value. Possible values are
"haloGreen", "haloBlue",and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".
fontWeight The font weight; either "norma1", or "bol1d".
textDecoration The text decoration: either "none", or "underline".

Using skins with the DateField component

The DateField component uses skins to represent the visual states of the pop-up icon. To skin the
pop-up icon while authoring, modify skin symbols in the Flash UI Components 2/Themes/
MMDefault/DateField Elements skins states folder in the library of one of the themes FLA files.
For more information, see “About skinning components” on page 36.

Only the pop-up icon button can be skinned in this component. A DateField component uses the
following skin properties to dynamically skin the pop-up icon:

Property Description

openDatelUp The up state of the pop-up icon.
openDateDown The down state of the pop-up icon.
openDateOver The over state of the pop-up icon.
openDateDisabled The disabled state of the pop-up icon.

250

Chapter 4: Components Dictionary

DateField class (Flash Professional only)
Inheritance UIODbject > UIComponent > ComboBase > DateField
ActionScript Class Name mx.controls.DateField

The properties of the DateField class allow you to access the selected date, and the displayed
month and year. You can also set the names of the days and months, indicate disabled dates and

selectable dates, set the first day of the week, and indicate whether the current date should
be highlighted.

Setting a property of the DateField class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:

trace(mx.controls.DateField.version);

Note: The following code returns undefined: trace(myDateFieldInstance.version);.

Method summary for the DateField class

Method Description
DateField.close() Closes the pop-up date chooser subcomponent.
DateField.open() Opens the pop-up date chooser subcomponent.

Inherits all methods from UIObject and UIComponent.

Property summary for the DateField class

Property Description

DateField.dateFormatter A function that formats the date to be displayed in the text field.
DateField.dayNames An array indicating the names of the days of the week.

DateField.disabledDays An array indicating the days of the week that are disabled for all
applicable dates in the date chooser.

DateField.disabledRanges A range of disabled dates or a single disabled date.

DateField.displayedMonth A numberindicating an element in the monthNames array to display in
the date chooser.

DateField.displayedYear A number indicating the year to display.

DateField.firstDayOfWeek A numberindicating an elementin the dayNames array to display in
the first column of the date chooser.

DateField.monthNames An array of strings indicating the month names.
DateField.pullDown A reference to the DateChooser subcomponent. This property is
read-only.

DateField.selectableRange A single selectable date or a range of selectable dates.

DateField component (Flash Professional only) 251

Property Description

DateField.selectedDate A Date object indicating the selected date.

DateField.showToday A Boolean value indicating whether the current date is highlighted.

Inherits all properties from UIObject and UIComponent.

Event summary for the DateField class

Event Description

DateField.change Broadcast when a date is selected.

DateField.close Broadcast when the date chooser subcomponent closes.
DateField.open Broadcast when the date chooser subcomponent opens.
DateField.scroll Broadcast when the month buttons are pressed.

Inherits all events from UIObject and UIComponent.

DateField.change

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:

on(change){
}
Usage 2:

lTistenerObject = new Object();
listenerObject.change = function(eventObject)

}
myDF.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when a date is selected.

The first usage example uses an on () handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:

on(change){

trace(this);
}

252

Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(chooserInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (717stenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
date field called myDF is changed. The first line of code creates a listener object called form. The
second line defines a function for the change event on the listener object. Inside the function is a
trace action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myDF. The DateField.selectedDate
property is accessed from the event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDF and passes it the change event
and the form listener object as parameters, as in the following:

form.change = function(eventObj){

trace("date selected " + eventObj.target.selectedDate)
}
myDF.addEventlListener("change", form);

DateField.close()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.close()

Parameters
None.

Returns
Nothing.

Description

Method; closes the pop-up menu.

DateField component (Flash Professional only) 253

Example

The following code closes the date chooser pop-up of the myDF date field instance:
myDF.close();

DateField.close

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:

on(close){
}

Usage 2:

lTistenerObject = new Object();
listenerObject.close = function(eventObject){

}
myDF.addEventListener("close", listenerObject)

Description

Event; broadcast to all registered listeners when the DateChooser subcomponent closes after a
user clicks outside the icon or selects a date.

The first usage example uses an on () handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on () handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:

on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, c1ose) and the event is handled by a function, also called a
handler, on a listener object (17stenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (event0Object) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.

254

Chapter 4: Components Dictionary

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when the
date chooser within myDF closes. The first line of code creates a listener object called form. The
second line defines a function for the close event on the listener object. Inside the function is a
trace action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myDF. The property is accessed from the
event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDF and passes it the close event
and the form listener object as parameters, as in the following:

form.close = function(event0bj){

trace("PullDown Closed" + eventObj.target.selectedDate);
}
myDF.addEventListener("close", form);

DateField.dateFormatter
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.dateFormatter

Description

Property; a function that formats the date to be displayed in the text field. The function must
receive a Date object as parameter, and return a string in the format to be displayed.

Example

The following example sets the function to return the format of the date to be displayed:

myDF.dateFormatter = function(d:Date){
return d.getFullYear()+"/ "+(d.getMonth()+1)+"/ "+d.getDate();
bs

DateField.dayNames
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.dayNames

DateField component (Flash Professional only) 255

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at index
position 0) and rest of the day names follow in order. The default valueis ["S", "M", "T",
"Wr,otTh, "Et, "SI

Example
The following example changes the value of the 5th day of the week (Thursday) from “T” to “R™:

myDF.dayNames[4] =

DateField.disabledDays

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDF.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall on
the specified day are disabled. The elements of this array can have values between 0 (Sunday) and
6 (Saturday). The default value is [] (empty array).

Example
The following example disables Sundays and Saturdays so that users can select only weekdays:

myDF.disabledDays = [0, 61;

DateField.disabledRanges

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDF.disabledRanges

Description

Property; disables a single day or a range of days. This property is an array of objects. Each object
in the array must be either a Date object specifying a single day to disable, or an object containing
either or both of the properties rangeStart and rangeEnd, each of whose value must be a Date
object. The rangeStart and rangeEnd properties describe the boundaries of the date range. If
cither property is omitted the range is unbounded in that direction.

The default value of disabledRanges is undefined.

256 Chapter 4: Components Dictionary

Specify a full date when you define dates for the disabledRanges property. For example, new
Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the time returns as
00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that disable
the dates between May 7 and June 7:

myDF.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new
Date(2003, 5, 7)1}1;

The following example disables all dates after November 7:
myDF.disabledRanges = [{rangeStart: new Date(2003, 10, 7))} 1;
The following example disables all dates before October 7:
myDF.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)} 1;
The following example disables only December 7:

myDF.disabledRanges = [new Date(2003, 11, 7) 1;

DateField.displayedMonth
Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDF.displayedMonth

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
myDF.displayedMonth = 11;

See also

DateField.displayedYear

DateField component (Flash Professional only) 257

DateField.displayedYear

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDF.displayedYear

Description

Property; a number indicating which year is displayed. The default value is the current year.
Example

The following example sets the displayed year to 2010:

myDF.displayedYear = 2010;
See also

DateField.displayedMonth

DateField.firstDayOfWeek

Availability

Flash Player 6 version 79.
Edition

Flash MX Professional 2004.

Usage
myDF.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of dayNames
array) is displayed in the first column of the DateField component. Changing this property
changes the order of the day columns but has no effect on the order of the dayNames property.
The default value is 0 (Sunday).

Example
The following example sets the first day of the week to Monday:
myDF.firstDayOfWeek = 1;

See also

DateField.dayNames

258 Chapter 4: Components Dictionary

DateField.monthNames
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateField component.
The default value is ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"].

Example

The following example sets the month names for the instance myDF:

myDF.monthNames = ["Jan", "Feb","Mar","Apr", "May", "June","July", "Aug" ,
"Sept"."0ct", "Nov", "Dec"]:

DateField.open()
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.open()

Parameters
None.
Returns
Nothing.
Description
Method; opens the pop-up DateChooser subcomponent.
Example

The following code opens the pop-up date chooser of the df instance:

df.open();

DateField component (Flash Professional only) 259

DateField.open

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(open){
o
Usage 2:

listenerObject = new Object();
listenerObject.open = function(eventObject){

}
myDF.addEventListener("open", TlistenerObject)

Description

Event; broadcast to all registered listeners when a date chooser subcomponent opens after a user
clicks on the icon.

The first usage example uses an on () handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:

on(open){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, open) and the event is handled by a function, also called a
handler, on a listener object (17stenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (event0Object) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.

260

Chapter 4: Components Dictionary

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
stepper called myDF is opened. The first line of code creates a listener object called form. The
second line defines a function for the open event on the listener object. Inside the function is a
trace action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myDF. The DateField.selectedDate
property is accessed from the event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDF and passes it the open event and
the form listener object as parameters, as in the following:
form.open = function(event0bj){
trace("Pop-up opened and date selected is " +
eventObj.target.selectedDate)

}
myDF.addEventListener("open", form);

DateField.pullDown
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.pullDown

Description

Property (read-only); a reference to the DateChooser component contained by the DateField
component. The DateChooser subcomponent is instantiated when a user clicks on the DateField
component. However, if the pul1Down property is referenced before the user clicks on the
component, the DateChooser is instantiated and then hidden.

Example

The following example sets the visibility of the DateChooser subcomponent to false and then
sets the size of the DateChooser subcomponent to 300 pixels high and 300 pixels wide:

myDF.pullDown._visible = false;
myDF.pul1Down.setSize(300,300);

DateField component (Flash Professional only) 261

DateField.scroll

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:

on(scroll){

}
Usage 2:

listenerObject = new Object();
listenerObject.scroll = function(eventObject){

}
myDF.addEventListener("scroll", listenerObject)

Description

Event; broadcast to all registered listeners when a month button is pressed.

The first usage example uses an on () handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:

on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, scrol11) and the event is handled by a function, also called a
handler, on a listener object (17stenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (event0Object) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. The scroll event’s event
object has an additional property, detail, that can have one of the following values: nextMonth,
previousMonth, nextYear, previousYear.

Finally, you call the UTEventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

262

Chapter 4: Components Dictionary

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
month button is pressed on a DateField instance called myDE The first line of code creates a
listener object called form. The second line defines a function for the scro11 event on the listener
object. Inside the function is a trace action that uses the event object that is automatically passed
to the function, in this example event0Obj, to generate a message. The target property of an
event object is the component that generated the event, in this example myDF. The last line calls
the UTEventDispatcher.addEventListener() method from myDateField and passes it the
scroll event and the form listener object as parameters, as in the following:

form = new Object();

form.scroll = function(eventObj){
trace(eventObj.detail);

}

myDF.addEventListener("scroll", form);

DateField.selectableRange
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.selectableRange

Description

Property; sets a single selectable date or a range of selectable dates. The value of this property is an
object that consists of two Date objects named rangeStart and rangeEnd. The rangeStart and
rangeEnd properties designate the boundaries of the selectable date range. If only rangeStart is
defined, all the dates after rangeStart are enabled. If only rangeEnd is defined, all the dates
before rangeEnd are enabled. The default value is undefined.

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates. For example, new Date(2003,6,24) rather than new
Date(). If you don’t specify a full date, the time returns as 00:00:00.

The value of DateField.selectedDate is set to undefined if it falls outside the selectable range.

The value of DateField.displayedMonth and DateField.displayedYear are set to the the
nearest last month in the selectable range if the current month falls outside the selectable range.
For example, if the current displayed month is August, and the selectable range is from June,
2003 - July, 2003, the displayed month will change to July, 2003.

Example

The following example defines the selectable range to the dates between and including May 7 and
June 7:

myDF.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new
Date(2003, 5, 7)};

DateField component (Flash Professional only) 263

The following example defines the selectable range to the dates after and including May 7:
myDF.selectableRange = {rangeStart: new Date(2003, 4, 7)};

The following example defines the selectable range to the dates before and including June 7:
myDF.selectableRange = {rangekEnd: new Date(2003, 5, 7) };

The following example defines the selectable date as June 7 only:

myDF.selectableRange = new Date(2003, 5, 7);

DateField.selectedDate
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.selectedDate

Description

Property; a Date object that indicates the selected date if that value falls within the value of the
selectableRange property. The default value is undefined.

Example

The following example sets the selected date to June 7:
myDF.selectedDate = new Date(2003, 5, 7);

DateField.showToday
Availability
Flash Player 6 version 79.
Edition
Flash MX Professional 2004.

Usage
myDF.showToday

Description

Property; this property determines whether the current date is highlighted. The default value
is true.

Example

The following example turns off the highlighting on today’s date:
myDF.showToday = false;

264 Chapter 4: Components Dictionary

DepthManager class

ActionScript Class Name mx.managers.DepthManager

The DepthManager class adds functionality to the ActionScript MovieClip class that allows you
to manage the relative depth assignments of any component or movie clip, including _root. It
also allows you to manage reserved depths in a special highest-depth clip on the _root for system-
level services like the cursor or tooltips.

The following methods compose the relative depth-ordering API:
® DepthManager.createChildAtDepth()

® DepthManager.createClassChildAtDepth()

® DepthManager.setDepthAbove()

® DepthManager.setDepthBelow()

® DepthManager.setDepthTo()

The following methods compose the reserved depth space API:

® DepthManager.createClassObjectAtDepth()

® DepthManager.createObjectAtDepth()

Method summary for the DepthManager class

Method Description

DepthManager.createChildAtDepth() Creates a child of the specified symbol at the
specified depth.

DepthManager.createClassChildAtDepth() Creates an object of the specified class at that
specified depth.

DepthManager.createClassObjectAtDepth() Creates an instance of the specified class at a
specified depth in the special highest-depth clip.

DepthManager.createObjectAtDepth() Creates an object at a specified depth in the
highest-depth clip.

DepthManager.setDepthAbove() Sets the depth above the specified instance.

DepthManager.setDepthBelow() Sets the depth below the specified instance.

DepthManager.setDepthTo() Sets the depth to the specified instance in the highest-
depth clip.

DepthManager.createChildAtDepth()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004.

Usage
movieClipInstance.createChildAtDepth(linkageName, depthFlagl, init0Objl)

DepthManager class 265

Parameters
TinkageName A linkage identifier. This parameter is a string.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties of
the DepthManger class. You must either reference the DepthManager package (for example,
mx.managers.DepthManager.kTopmost), or use the import statement to import the

DepthManager package.

init0bj An initialization object. This parameter is optional.

Returns

A reference to the object created.

Description
Method; creates a child instance of the symbol specified by the 77nkageName parameter at the
depth specified by the depthfiag parameter.

Example
The following example creates a minuteHand instance of the MinuteSymbol movie clip and

places it on top of the clock:
import mx.managers.DepthManager;
minuteHand = clock.createChildAtDepth("MinuteSymbol", DepthManager.kTop);

DepthManager.createClassChildAtDepth()

Availability
Flash Player 6 version 79.
Edition
Flash MX 2004 and Flash MX Professional 2004
Usage
movieClipInstance.createClassChildAtDepth(className, depthFlagl, init0bjl)
Parameters

className A class name.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties of
the DepthManger class. You must either reference the DepthManager package (for example,
mx.managers.DepthManager.kTopmost), or use the import statement to import the

DepthManager package.

init0bj An initialization object. This parameter is optional.

Returns

A reference to the created child.

266 Chapter 4: Components Dictionary

Description

Method; creates a child of the class specified by the className parameter at the depth specified
by the depthfiag parameter.

Example

The following code draws a focus rectangle on top of all NoTopmost objects:

import mx.managers.DepthManager
this.ring = createClassChildAtDepth(mx.skins.RectBorder, DepthManager.kTop);

The following code creates an instance of the Button class and passes it a value for its Tabe
property as an 7n7t0bj parameter:

import mx.managers.DepthManager
buttonl = createClassChildAtDepth(mx.controls.Button, DepthManager.kTop,
{label: "Top Button"});

DepthManager.createClassObjectAtDepth()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004 and Flash MX Professional 2004

Usage
DepthManager.createClassObjectAtDepth(className, depthSpacel, Tnit0bj])

Parameters
className A class name.

depthSpace One of the following values: DepthManager.kCursor, DepthManager.kTooltip.
All depth flags are static properties of the DepthManger class. You must either reference the
DepthManager package (for example, mx.managers.DepthManager.kCursor), or use the
import statement to import the DepthManager package.

init0bj An initialization object. This parameter is optional.
Returns

A reference to the created object.
Description

Method; creates an object of the class specified by the c7assName parameter at the depth specified
by the depthSpace parameter. This method is used for accessing the reserved depth spaces in the
special highest-depth clip.

Example

The following example creates an object from the Button class:

import mx.managers.DepthManager
myCursorButton = createClassObjectAtDepth(mx.controls.Button,
DepthManager.kCursor, {label: "Cursor"});

DepthManager class 267

DepthManager.createObjectAtDepth()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004 and Flash MX Professional 2004

Usage
DepthManager.createObjectAtDepth(linkageName, depthSpacel, Tnit0bj])

Parameters
lTinkageName A linkage identifier.

depthSpace One of the following values: DepthManager.kCursor, DepthManager.kTooltip.
All depth flags are static properties of the DepthManger class. You must either reference the
DepthManager package (for example, mx.managers.DepthManager.kCursor), or use the
import statement to import the DepthManager package.

initObj An initialization object.
Returns
A reference to the created object.

Description

Method; creates an object at the specified depth. This method is used for accessing the reserved
depth spaces in the special highest-depth clip.

Example

The following example creates an instance of the TooltipSymbol symbol and places it at the
reserved depth for tooltips:

import mx.managers.DepthManager
myCursorTooltip = createObjectAtDepth("TooltipSymbol", DepthManager.kTooltip);

DepthManager.setDepthAbove()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004 and Flash MX Professional 2004

Usage
movieClipInstance.setDepthAbove(instance)

Parameters
instance An instance name.
Returns

Nothing.

268 Chapter 4: Components Dictionary

Description
Method; sets the depth of a movie clip or component instance above the depth of the instance

specified by the instance parameter.

DepthManager.setDepthBelow()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004 and Flash MX Professional 2004

Usage
movieClipInstance.setDepthBelow(instance)

Parameters

instance An instance name.
Returns

Nothing.
Description

Method; sets the depth of a movie clip or component instance below the depth of the instance
specified by the instance parameter.

Example

The following code sets the depth of the textInput instance below the depth of the button:
textInput.setDepthBelow(button);

DepthManager.setDepthTo()
Availability
Flash Player 6 version 79.
Edition
Flash MX 2004 and Flash MX Professional 2004

Usage
movieClipInstance.setDepthTo(depth)

Parameters
depth A depth level.
Returns

Nothing.

DepthManager class 269

Description

Method; sets the depth of movieClipInstance to the value specified by depth. This method
moves an instance to another depth to make room for another object.

Example

The following example sets the depth of the mc1 instance to a depth of 10:
mcl.setDepthTo(10);

For more information about depth and stacking order, see “Determining the next highest
available depth” in ActionScript Reference Guide Help.

FocusManager class

You can use the FocusManager to specify the order in which components receive focus when a
user presses the Tab key to navigate in an application. You can use the FocusManager API to set a
button in your document that receives keyboard input when a user presses Enter (Windows) or
Return (Macintosh). For example, when a user fills out a form, they should be able to tab between
fields and press Enter (Windows) or Return (Macintosh) to submit the form.

All components implement FocusManager support; you don’t need to write code to invoke it.
The FocusManager also interacts with the System Manager, which activates and deactivates
FocusManager instances as pop-up windows are activated or deactivated. Each modal window has
an instance of a FocusManager so the components in that window become their own tab set,
preventing the user from tabbing into components in other windows.

The FocusManager recognizes groups of radio buttons (those with a defined
RadioButton.groupName property) and sets focus to the instance in the group that has a
selected property that is set to true. When the Tab key is pressed, the Focus Manager checks to
see if the next object has the same groupName as the current object. If it does, it automatically
moves focus to the next object with a different groupName. Other sets of components that
support a groupName property can also use this feature.

The FocusManager handles focus changes due to mouse clicks. If the user clicks on a component,
that component is given focus.

The FocusManager does not automatically assign focus to a component in an application. The
main window and any pop-up windows will not have focus set on any component by default
unless you call FocusManager.setFocus() on a component.

Using the FocusManager

The FocusManager does not automatically assign focus to a component. You must write a script
that calls FocusManager.setFocus() ona component if you want a component to have focus
when an application loads.

To create focus navigation in an application, set the tabIndex property on any objects (including
buttons) that should receive focus. When a user presses the Tab key, the FocusManager looks for
an enabled object with a tabIndex property that is higher than the current value of tabIndex.
Once the FocusManager reaches the highest tabIndex property, it returns to zero. So, in the
following example, the comment object (probably a TextArea component) receives focus first, and
then the okButton object receives focus:

comment.tabIndex = 1;
okButton.tabIndex = 2;

270

Chapter 4: Components Dictionary

You can also use the Accessibility panel to assign a tab index value.

If nothing on the Stage has a tab index value, the FocusManager uses the z-order. The z-order is
set up primarily by the order components are dragged to the Stage, however, you can also use the
Modify/Arrage/Bring-to-Front/Back commands to determine the final z-order.

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of the
desired button, as in the following:

focusManager.defaultPushButton = okButton;

Note: The FocusManager is sensitive to when objects are placed on the Stage (the depth order of
objects) and not their relative positions on the stage. This is different from the way Flash Player
handles tabbing.

FocusManager parameters

There are no authoring parameters for the FocusManager. You must use the ActionScript
methods and properties of the FocusManager class in the Actions panel. For more information,
see FocusManager class.

Creating an application with the FocusManager
The following procedure creates a focus scheme in a Flash application.

1 Drag the TextInput component from the Components panel to the Stage.
2 In the Property inspector, assign it the instance name comment.

3 Drag the Button component from the Components panel to the Stage.

4

In the Property inspector, assign it the instance name okButton and set the label parameter
to OK.

5 In Frame 1 of the Actions panel, enter the following:

comment.tabIndex = 1;
okButton.tabIndex = 2;
focusManager.setFocus(comment) ;
focusManager.defaultPushButton = okButton;
1o = new Object();
lo.click = function(evt){

trace(evt.target + " was clicked");
}
okButton.addEventListener("click", 1o);

This code sets the tab ordering and specifies a default button to receive a c11ick event when a
user presses Enter (Windows) or Return (Macintosh).

Customizing the FocusManager

You can change the color of the focus ring in the Halo theme by changing the value of the
themeColor style.

The FocusManager uses a FocusRect skin for drawing focus. This skin can be replaced or
modified and subclasses can override UIComponent.drawFocus to draw custom focus indicators.

FocusManager class 271

FocusManager class
Inheritance UIObject > UIComponent > FocusManager

ActionScript Class Name mx.managers.FocusManager

Method summary for the FocusManager class

Method Description

FocusManager.getFocus() Re