
Using Components

Trademarks

Add Life to the Web, Afterburner, Aftershock, Andromedia, Allaire, Animation PowerPack, Aria, Attain, Authorware,
Authorware Star, Backstage, Bright Tiger, Clustercats, ColdFusion, Contribute, Design In Motion, Director, Dream Templates,
Dreamweaver, Drumbeat 2000, EDJE, EJIPT, Extreme 3D, Fireworks, Flash, Fontographer, FreeHand, Generator, HomeSite,
JFusion, JRun, Kawa, Know Your Site, Knowledge Objects, Knowledge Stream, Knowledge Track, LikeMinds, Lingo, Live
Effects, MacRecorder Logo and Design, Macromedia, Macromedia Action!, Macromedia Flash, Macromedia M Logo and
Design, Macromedia Spectra, Macromedia xRes Logo and Design, MacroModel, Made with Macromedia, Made with
Macromedia Logo and Design, MAGIC Logo and Design, Mediamaker, Movie Critic, Open Sesame!, Roundtrip, Roundtrip
HTML, Shockwave, Sitespring, SoundEdit, Titlemaker, UltraDev, Web Design 101, what the web can be, and Xtra are either
registered trademarks or trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions
including internationally. Other product names, logos, designs, titles, words, or phrases mentioned within this publication may
be trademarks, service marks, or trade names of Macromedia, Inc. or other entities and may be registered in certain jurisdictions
including internationally.

Third-Party Information

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not
responsible for the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your
own risk. Macromedia provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia
endorses or accepts any responsibility for the content on those third-party sites.

Speech compression and decompression technology licensed from Nellymoser, Inc. (www.nellymoser.com).

Sorenson™ Spark™ video compression and decompression technology licensed from
Sorenson Media, Inc.

Opera ® browser Copyright © 1995-2002 Opera Software ASA and its suppliers. All rights reserved.

Apple Disclaimer

APPLE COMPUTER, INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, REGARDING THE
ENCLOSED COMPUTER SOFTWARE PACKAGE, ITS MERCHANTABILITY OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE. THE EXCLUSION OF IMPLIED WARRANTIES IS NOT PERMITTED BY SOME STATES.
THE ABOVE EXCLUSION MAY NOT APPLY TO YOU. THIS WARRANTY PROVIDES YOU WITH SPECIFIC
LEGAL RIGHTS. THERE MAY BE OTHER RIGHTS THAT YOU MAY HAVE WHICH VARY FROM STATE TO
STATE.

Copyright © 2003 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced,
translated, or converted to any electronic or machine-readable form in whole or in part without prior written approval of
Macromedia, Inc. Part Number ZFL70M500

Acknowledgments

Director: Erick Vera

Project Management: Stephanie Gowin, Barbara Nelson

Writing: Jody Bleyle, Mary Burger, Kim Diezel, Stephanie Gowin, Dan Harris, Barbara Herbert, Barbara Nelson, Shirley Ong,
Tim Statler

Managing Editor: Rosana Francescato

Editing: Mary Ferguson, Mary Kraemer, Noreen Maher, Antonio Padial, Lisa Stanziano, Anne Szabla

Production Management: Patrice O’Neill

Media Design and Production: Adam Barnett, Christopher Basmajian, Aaron Begley, John Francis, Jeff Harmon

First Edition: October 2003

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
INTRODUCTION: Getting Started with Components . 7

Intended audience . 7
System requirements . 8
Installing components . 8
About the documentation . 9
Typographical conventions . 9
Terms used in this manual . 10
Additional resources . 10

CHAPTER 1: About Components. 11

Benefits of v2 components . 12
Categories of components . 12
Component architecture . 12
What’s new in v2 components. 13
About compiled clips and SWC files . 14
Accessibility and components . 14

CHAPTER 2: Working with Components . 15

The Components panel. 15
Components in the Library panel . 16
Components in the Component Inspector panel and Property inspector. 16
Components in Live Preview. 17
Working with SWC files and compiled clips . 18
Adding components to Flash documents . 18
Setting component parameters . 21
Deleting components from Flash documents. 21
Using code hints . 21
About component events. 22
Creating custom focus navigation . 24
Managing component depth in a document . 25
About using a preloader with components. 25
Upgrading version 1 components to version 2 architecture 25
3

CHAPTER 3: Customizing Components . 27

Using styles to customize component color and text . 27
About themes . 34
About skinning components . 36

CHAPTER 4: Components Dictionary. 43

User interface (UI) components . 43
Data components . 44
Media components . 45
Managers. 45
Screens . 45
Accordion component (Flash Professional only) . 45
Alert component (Flash Professional only) . 58
Button component . 66
CellRenderer API . 77
CheckBox component . 83
ComboBox component . 91
Data binding classes (Flash Professional only) . 118
DataGrid component (Flash Professional only) . 149
DataHolder component (Flash Professional only) . 181
DataProvider API . 183
DataSet component (Flash Professional only) . 193
DateChooser component (Flash Professional only) . 237
DateField component (Flash Professional only) . 248
DepthManager class . 265
FocusManager class . 270
Form class (Flash Professional only). 277
Label component. 282
List component . 287
Loader component . 314
Media components (Flash Professional only) . 325
Menu component (Flash Professional only) . 365
MenuBar component (Flash Professional only) . 392
NumericStepper component . 402
PopUpManager class . 411
ProgressBar component . 413
RadioButton component. 427
RDBMSResolver component (Flash Professional only) . 436
Remote Procedure Call (RPC) Component API . 447
Screen class (Flash Professional only) . 452
ScrollPane component . 464
Slide class (Flash Professional only) . 479
StyleManager class. 502
TextArea component . 504
TextInput component . 516
TransferObject interface . 527
Tree component (Flash Professional only) . 530
TreeDataProvider interface (Flash Professional only) . 548
UIComponent . 553
4 Contents

UIEventDispatcher . 560
UIObject. 562
Web service classes (Flash Professional only) . 581
WebServiceConnector (Flash Professional only) . 604
Window component . 613
XMLConnector component (Flash Professional only) . 624
XUpdateResolver component (Flash Professional only) . 632

CHAPTER 5: Creating Components . 639

What’s new . 639
Working in the Flash environment . 639
Creating components . 642
Writing the component’s ActionScript. 644
Importing classes . 645
Selecting a parent class. 646
Writing the constructor . 647
Versioning . 647
Class, symbol, and owner names . 647
Defining getters and setters . 648
Component metadata . 648
Defining component parameters . 654
Implementing core methods . 655
Handling events . 655
Skinning . 659
Adding styles . 659
Making components accessible . 660
Exporting the component . 660
Making the component easier to use . 662
Best practices when designing a component . 663

INDEX . 665
Contents 5

6 Contents

INTRODUCTION
Getting Started with Components
Macromedia Flash MX 2004 and Macromedia Flash MX Professional 2004 are the professional
standard authoring tools for producing high-impact web experiences. Components are the
building blocks for the Rich Internet Applications that provide those experiences. A component is
a movie clip with parameters that are set while authoring in Macromedia Flash, and ActionScript
APIs that allow you to customize the component at runtime. Components are designed to allow
developers to reuse and share code, and to encapsulate complex functionality that designers can
use and customize without using ActionScript.

Components are built on version 2 (v2) of the Macromedia Component Architecture, which
allows you to easily and quickly build robust applications with a consistent appearance and
behavior. This book describes how to build applications with v2 components and describes each
component’s application programming interface (API). It includes usage scenarios and procedural
samples for using the Flash MX 2004 or Flash MX Professional 2004 v2 components, as well as
descriptions of the component APIs, in alphabetical order.

You can use components created by Macromedia, download components created by other
developers, or create your own components.

Intended audience

This book is for developers who are building Flash MX 2004 or Flash MX Professional 2004
applications and want to use components to speed development. You should already be familiar
with developing applications in Macromedia Flash, writing ActionScript, and Macromedia
Flash Player.

This book assumes that you already have Flash MX 2004 or Flash MX Professional 2004 installed
and know how to use it. Before using components, you should complete the lesson “Create a
user interface with components” (select Help > How Do I > Quick Tasks > Create a user interface
with components).

If you want to write as little ActionScript as possible, you can drag components into a document,
set their parameters in the Property inspector or in the Components Inspector panel, and attach
an on() handler directly to a component in the Actions panel to handle component events.

If you are a programmer who wants to create more robust applications, you can create
components dynamically, use their APIs to set properties and call methods at runtime, and use
the listener event model to handle events.

For more information, see Chapter 2, “Working with Components,” on page 15.
7

System requirements

Macromedia components do not have any system requirements in addition to Flash MX 2004 or
Flash MX Professional 2004.

Installing components

A set of Macromedia components is already installed when you launch Flash MX 2004 or Flash
MX Professional 2004 for the first time. You can view them in the Components panel.

Flash MX 2004 includes the following components:

• Button component
• CheckBox component
• ComboBox component
• Label component
• List component
• Loader component
• NumericStepper component
• ProgressBar component
• RadioButton component
• ScrollPane component
• TextArea component
• TextInput component
• Window component

Flash MX Professional 2004 includes the Flash MX 2004 components and the following
additional components and classes:

• Accordion component (Flash Professional only)
• Alert component (Flash Professional only)
• Data binding classes (Flash Professional only)
• DateField component (Flash Professional only)
• DataGrid component (Flash Professional only)
• DataHolder component (Flash Professional only)
• DataSet component (Flash Professional only)
• DateChooser component (Flash Professional only)
• Form class (Flash Professional only)
• Media components (Flash Professional only)
• Menu component (Flash Professional only)
• MenuBar component (Flash Professional only)
• RDBMSResolver component (Flash Professional only)
• Screen class (Flash Professional only)
• Slide class (Flash Professional only)
• Tree component (Flash Professional only)
8 Introduction: Getting Started with Components

• WebServiceConnector class (Flash Professional only)
• XMLConnector component (Flash Professional only)
• XUpdateResolver component (Flash Professional only)

To verify installation of the Flash MX 2004 or Flash MX Professional 2004 components:

1 Start Flash.
2 Select Window > Development Panels > Components to open the Components panel if it isn’t

already open.
3 Select UI Components to expand the tree and view the installed components.
You can also download components from the Macromedia Exchange. To install components
downloaded from the Exchange, download and install the Macromedia Extension Manager.

Any component, whether it’s a SWC file or a FLA file (see “About compiled clips and SWC files”
on page 14), can appear in the Components panel in Flash. Follow these steps to install
components on either a Windows or Macintosh computer.

To install components on a Windows-based or a Macintosh computer:

1 Quit Flash.
2 Place the SWC or FLA file containing the component in the following folder on your hard disk:

■ \Program Files\Macromedia\Flash MX 2004\<language>\First Run\Components
(Windows)

■ HD/Applications/Macromedia Flash MX 2004/First Run/Components (Macintosh)
3 Open Flash.
4 Select Window > Development Panels > Components to view the component in the

Components panel if it isn’t already open.

About the documentation

This document explains the details of using components to develop Flash applications. It assumes
the reader has general knowledge of Macromedia Flash and ActionScript. Specific documentation
is available separately about Flash and related products.

• For information about Macromedia Flash, see Getting Started with Flash (or Getting
Started Help), Using Flash Help, ActionScript Reference Guide Help, and ActionScript
Dictionary Help.

• For information about accessing web services with Flash applications, see Using Flash Remoting.

Typographical conventions

The following typographical conventions are used in this book:

• Italic font indicates a value that should be replaced (for example, in a folder path).
• Code font indicates ActionScript code.
• Code font italic indicates an ActionScript parameter.
• Bold font indicates a verbatim entry.

Note: Bold font is not the same as the font used for run-in headings. Run-in heading font is used
as an alternative to a bullet.
Typographical conventions 9

http://www.macromedia.com/exchange
http://www.macromedia.com/exchange/em_download/

Terms used in this manual

The following terms are used in this book:

at runtime When the code is running in Flash Player.

while authoring While working in the Flash authoring environment.

Additional resources

For the latest information on Flash, plus advice from expert users, advanced topics, examples,
tips, and other updates, see the Macromedia DevNet website, which is updated regularly. Check
the website often for the latest news on Flash and how to get the most out of the program.

For TechNotes, documentation updates, and links to additional resources in the Flash
Community, see the Macromedia Flash Support Center at www.macromedia.com/support/flash.

For detailed information on ActionScript terms, syntax, and usage, see ActionScript Reference
Guide Help and ActionScript Dictionary Help.

For an introduction to using components, see the Macromedia On Demand Seminar, Flash MX
2004 Family: Using UI Components at www.macromedia.com/macromedia/events/online/
ondemand/index.html.
10 Introduction: Getting Started with Components

http://www.macromedia.com/devnet
http://www.macromedia.com/support/flash
http://www.macromedia.com/macromedia/events/online/ondemand/index.html
http://www.macromedia.com/macromedia/events/online/ondemand/index.html

CHAPTER 1
About Components
Components are movie clips with parameters that allow you to modify their appearance and
behavior. A component can provide any functionality that its creator can imagine. A component
can be a simple user interface control, such as a radio button or a check box, or it can contain
content, such as a scroll pane; a component can also be non-visual, like the FocusManager that
allows you to control which object receives focus in an application.

Components enable anyone to build complex Macromedia Flash MX 2004 and Macromedia
Flash MX Professional 2004 applications, even if they don’t have an advanced understanding of
ActionScript. Rather than creating custom buttons, combo boxes, and lists, you can drag these
components from the Components panel to add functionality to your applications. You can also
easily customize the look and feel of components to suit your design needs.

Components are built on version 2 (v2) of the Macromedia Component Architecture, which
allows you to easily and quickly build robust applications with a consistent appearance and
behavior. The v2 architecture includes classes on which all components are based, styles and skins
mechanisms that allow you to customize component appearance, a broadcaster/listener event
model, depth and focus management, accessibility implementation, and more.

Each component has predefined parameters that you can set while authoring in Flash. Each
component also has a unique set of ActionScript methods, properties, and events, also called an
API (application programming interface), that allows you to set parameters and additional
options at runtime.

Flash MX 2004 and Flash MX Professional 2004 include many new Flash components and
several new versions of components that were included in Flash MX. For a complete list of
components included with Flash MX 2004 and Flash MX Professional 2004, see “Installing
components” on page 8. You can also download components built by members of the Flash
community at the Macromedia Exchange.
11

http://www.macromedia.com/cfusion/exchange/index.cfm

Benefits of v2 components

Components enable the separation of coding and design. They also allow you to reuse code,
either in components you create, or by downloading and installing components created by
other developers.

Components allow coders to create functionality that designers can use in applications.
Developers can encapsulate frequently used functionality into components and designers can
customize the look and behavior of components by changing parameters in the Property inspector
or the Component Inspector panel.

Members of the Flash community can use the Macromedia Exchange to exchange components.
By using components, you no longer need to build each element in a complex web application
from scratch. You can find the components you need and put them together in a Flash document
to create a new application.

Components that are based on the v2 component architecture share core functionality such as
styles, event handling, skinning, focus management, and depth management. When you add the
first v2 component to an application, there is approximately 25K added to the document that
provides this core functionality. When you add additional components, that same 25K is reused
for them as well, resulting in a smaller increase in size to your document than you may expect. For
information about upgrading v1 components to v2 components, see “Upgrading version 1
components to version 2 architecture” on page 25.

Categories of components

Components included with Flash MX 2004 and Flash MX Professional 2004 fall into five
categories: user interface components, data components, media components, managers, and
screens. User interface components allow you to interact with an application; for example, the
RadioButton, CheckBox, and TextInput components are user interface controls. Data
components allow you to load and manipulate information from data sources; the
WebServiceConnector and XMLConnector components are data components. Media
components allow you to play back and control streaming media; MediaController,
MediaPlayback, and MediaDisplay are the media components. Managers are nonvisual
components that allow you to manage a feature, such as focus or depth, in an application; the
FocusManager, DepthManager, PopUpManager, and StyleManager are the manager components
included with Flash MX 2004 and Flash MX Professional 2004. The screens category includes
the ActionScript classes that allow you to control forms and slides in Flash MX Professional 2004.
For a complete list of each category, see Chapter 4, “Components Dictionary,” on page 43.

Component architecture

You can use the Property inspector or the Component Inspector panel to change component
parameters to make use of the basic functionality of components. However, if you want greater
control over components, you need to use their APIs and understand a little bit about the way
they were built.
12 Chapter 1: About Components

http://www.macromedia.com/go/exchange

Flash MX 2004 and Flash MX Professional 2004 components are built using version 2 (v2) of the
Macromedia Component Architecture. Version 2 components are supported by Flash Player 6
and Flash Player 7. These components are not always compatible with components built using
version 1 (v1) architecture (all components released before Flash MX 2004). Also, v1 components
are not supported by Flash Player 7. For more information, see “Upgrading version 1 components
to version 2 architecture” on page 25.

V2 components are included in the Components panel as compiled clip (SWC) symbols. A
compiled clip is a component movie clip whose code has been compiled. Compiled clips have
built-in live previews and cannot be edited, but you can change their parameters in the Property
inspector and Component Inspector panel, just as you would with any component. For more
information, see “About compiled clips and SWC files” on page 14.

V2 components are written in ActionScript 2.0. Each component is a class and each class is in an
ActionScript package. For example, a radio button component is an instance of the RadioButton
class whose package name is mx.controls. For more information about packages, see “Using
packages” in ActionScript Reference Guide Help.

All components built with version 2 of the Macromedia Component Architecture are subclasses
of the UIObject and UIComponent classes and inherit all properties, methods, and events from
those classes. Many components are also subclasses of other components. The inheritance path of
each component is indicated in its entry in Chapter 4, “Components Dictionary,” on page 43.

All components also use the same event model, CSS-based styles, and built-in skinning
mechanism. For more information on styles and skinning, see Chapter 3, “Customizing
Components,” on page 27. For more information on event handling, see Chapter 2, “Working
with Components,” on page 15.

What’s new in v2 components

Component Inspector panel allows you to change component parameters while authoring in
both Macromedia Flash and Macromedia Dreamweaver. (See “Components in the Component
Inspector panel and Property inspector” on page 16.)

Listener event model allows listener objects of functions to handle events. (See “About
component events” on page 22.)

Skin properties allow you to load states only when needed. (See “About skinning components”
on page 36.)

CSS-based styles allow you to create a consistent look and feel across applications. (See “Using
styles to customize component color and text” on page 27.)

Themes allow you to drag a new look onto a set of components. (See “About themes”
on page 34.)

Halo theme provides a ready-made, responsive, and flexible user interface for applications.

Manager classes provide an easy way to handle focus and depth in a application. (See “Creating
custom focus navigation” on page 24 and “Managing component depth in a document”
on page 25.)

Base classes UIObject and UIComponent provide core functionality to all components.
(See “UIComponent” on page 553 and “UIObject” on page 562.)
What’s new in v2 components 13

Packaging as a SWC file allows easy distribution and concealable code. See Chapter 5,
“Creating Components,” on page 639.

Built-in data binding is available through the Component Inspector panel. For more information
about this feature, press the Help Update button.

Easily extendable class hierarchy using ActionScript 2.0 allows you to create unique
namespaces, import classes as needed, and subclass easily to extend components. See Chapter 5,
“Creating Components,” on page 639 and ActionScript Reference Guide Help.

About compiled clips and SWC files

A compiled clip is used to pre-compile complex symbols in a Flash document. For example, a
movie clip with a lot of ActionScript code that doesn't change often could be turned into a
compiled clip. As a result, both Test Movie and Publish would require less time to execute.

A SWC file is the file type for saving and distributing components. When you place a SWC file in
the First Run\Components folder, the component appears in the Components panel. When you
add a component to the Stage from the Components panel, a compiled clip symbol is added to
the library.

For more information about SWC files, see Chapter 5, “Creating Components,” on page 639.

Accessibility and components

A growing requirement for web content is that it should be accessible; that is, usable for people
with a variety of disabilities. Visual content in Flash applications can be made accessible to the
visually impaired with the use of screen reader software, which provides a spoken audio
description of the contents of the screen.

When a component is created, the author can write ActionScript that enables communication
between the component and a screen reader. Then, when a developer uses components to
build an application in Flash, the developer uses the Accessibility panel to configure each
component instance.

Most components built by Macromedia are designed for accessibility. To find out whether a
component is accessible, see its entry in Chapter 4, “Components Dictionary,” on page 43. When
you’re building an application in Flash, you’ll need to add one line of code for each component
(mx.accessibility.ComponentNameAccImpl.enableAccessibility();), and set the
accessibility parameters in the Accessibility panel. Accessibility for components works the same
way as it works for all Flash movie clips. For more information, see “Creating Accessible Content”
in Using Flash Help.

Most components built by Macromedia are also navigable by the keyboard. Each component’s
entry in Chapter 4, “Components Dictionary,” on page 43 indicates whether or not you can
control the component with the keyboard.
14 Chapter 1: About Components

CHAPTER 2
Working with Components
There are various ways to work with components in Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004. You use the Components panel to view components
and add them to a document during authoring. Once a component has been added to a
document, you can view its properties in the Property inspector or in the Component Inspector
panel. Components can communicate with other components by listening to their events and
handling them with ActionScript. You can also manage the component depth in a document and
control when a component receives focus.

The Components panel

All components are stored in the Components panel. When you install Flash MX 2004 or Flash
MX Professional 2004 and launch it for the first time, the components in the Macromedia\
Flash 2004\en\First Run\Components (Windows) or Macromedia Flash 2004/en/First Run/
Components (Macintosh) folder are displayed in the Components panel.

To display the Components panel:

• Select Window > Development Panels > Components.
15

Components in the Library panel

When you add a component to a document, it is displayed as a compiled clip (SWC file) symbol
in the Library panel.

A ComboBox component in the Library panel.

You can add more instances of a component by dragging the component icon from the library to
the Stage.

For more information about compiled clips, see “Working with SWC files and compiled clips”
on page 18.

Components in the Component Inspector panel and
Property inspector

After you add an instance of a component to a Flash document, you use the Property inspector to
set and view information for the instance. You create an instance of a component by dragging it
from the Components panel onto the Stage; then you name the instance in the Property inspector
and specify the parameters for the instance using the fields on the Parameters tab. You can also set
parameters for a component instance using the Component Inspector panel. It doesn’t matter
which panel you use to set parameters; it’s simply a matter of personal preference. For more
information about setting parameters, see “Setting component parameters” on page 21.

To view information for a component instance in the Property inspector:

1 Select Window > Properties.
2 Select an instance of a component on the Stage.
3 To view parameters, click the Parameters tab.
16 Chapter 2: Working with Components

To view parameters for a component instance in the Component Inspector panel:

1 Select Window > Development Panels > Component Inspector.
2 Select an instance of a component on the Stage.
3 To view parameters, click the Parameters tab.

Components in Live Preview

The Live Preview feature, enabled by default, lets you view components on the Stage as they will
appear in the published Flash content, including their approximate size. The live preview reflects
different parameters for different components. For information about which component
parameters are reflected in the Live Preview, see each component entry in Chapter 4,
“Components Dictionary,” on page 43. Components in Live Preview are not functional. To test
component functionality, you can use the Control > Test Movie command.

A Button component with Live Preview enabled

A Button component with Live Preview disabled

To turn Live Preview on or off:

• Select Control > Enable Live Preview. A check mark next to the option indicates that it
is enabled.

For more information, see Chapter 5, “Creating Components,” on page 639.
Components in Live Preview 17

Working with SWC files and compiled clips

Components included with Flash MX 2004 or Flash MX Professional 2004 are not FLA files—
they are SWC files. SWC is the Macromedia file format for components. When you add a
component to the Stage from the Components panel, a compiled clip symbol is added to the
library. A SWC is a compiled clip that has been exported for distribution.

A movie clip can also be “compiled” in Flash and converted into a compiled clip symbol. The
compiled clip symbol behaves just like the movie clip symbol from which it was compiled, but
compiled clips display and publish much faster than regular movie clip symbols. Compiled clips
can’t be edited, but they do have properties that appear in the Property inspector and in the
Component Inspector panel and they include a live preview.

The components included with Flash MX 2004 or Flash MX Professional 2004 have already been
turned into compiled clips. If you create a component, you may choose to export it as a SWC for
distribution. For more information, see Chapter 5, “Creating Components,” on page 639.

To compile a movie clip symbol:

• Select the movie clip in the library and right-click (Windows) or Control-click (Macintosh),
and then select Convert to Compiled Clip.

To export a SWC:

• Select the movie clip in the library and right-click (Windows) or control-click (Macintosh),
and then select Export SWC File.

Note: Flash MX 2004 and Flash MX Professional 2004 continue to support FLA components.

Adding components to Flash documents

When you drag a component from the Components panel to the Stage, a compiled clip symbol is
added to the Library panel. Once a compiled clip symbol is in the library, you can also add that
component to a document/ at runtime by using the UIObject.createClassObject()
ActionScript method.

• Beginning Flash users can use the Components panel to add components to Flash documents,
specify basic parameters using the Property inspector or the Parameters tab in the Component
Inspector panel, and use the on() event handler to control components.

• Intermediate Flash users can use the Components panel to add components to Flash
documents and then use the Property inspector, ActionScript methods, or a combination of
the two to specify parameters. They can use the on() event handler, or event listeners to handle
component events.

• Advanced Flash programmers can use a combination of the Components panel and
ActionScript to add components and specify properties, or choose to implement
component instances at runtime using only ActionScript. They can use event listeners to
control components.

If you edit the skins of a component and then add another version of the component, or a
component that shares the same skins, you can choose to use the edited skins or replace the edited
skins with a new set of default skins. If you replace the edited skins, all components using those
skins are updated with default versions of the skins. For more information on how to edit skins,
see Chapter 3, “Customizing Components,” on page 27.
18 Chapter 2: Working with Components

Adding components using the Components panel

After you add a component to a document using the Components panel, you can add additional
instances of the component to the document by dragging the component from the Library panel
to the Stage. You can set properties for additional instances in the Parameters tab of the Property
inspector or in the Parameters tab in the Component Inspector panel.

To add a component to a Flash document using the Components panel:

1 Select Window > Development Panels > Components.
2 Do one of the following:

■ Drag a component from the Components panel to the Stage.
■ Double-click a component in the Components panel.

3 If the component is a FLA (all installed v2 components are SWCs) and if you have edited skins
for another instance of the same component, or for a component that shares skins with the
component you are adding, do one of the following:
■ Select Don’t Replace Existing Items to preserve the edited skins and apply the edited skins to

the new component.
■ Select Replace Existing Items to replace all the skins with default skins. The new component

and all previous versions of the component, or of components that share its skins, will use
the default skins.

4 Select the component on the Stage.
5 Select Window > Properties.
6 In the Property inspector, enter an instance name for the component instance.
7 Click the Parameters tab and specify parameters for the instance.

For more information, see “Setting component parameters” on page 21.
8 Change the size of the component as desired.

For more information on sizing specific component types, see the individual component
entries in Chapter 4, “Components Dictionary,” on page 43.

9 Change the color and text formatting of a component as desired, by doing one or more of
the following:
■ Set or change a specific style property value for a component instance using the

setStyle() method available to all components. For more information, see
UIObject.setStyle().

■ Edit multiple properties in the _global style declaration assigned to all v2 components.
■ If desired, create a custom style declaration for specific component instances.

For more information, see “Using styles to customize component color and text”
on page 27.

10 Customize the appearance of the component if desired, by doing one of the following:
■ Apply a theme (see “About themes” on page 34).
■ Edit a component’s skins (see “About skinning components” on page 36).
Adding components to Flash documents 19

Adding components using ActionScript

To add a component to a document using ActionScript, you must first add it to the library.

You can use ActionScript methods to set additional parameters for dynamically added
components. For more information, see Chapter 4, “Components Dictionary,” on page 43.
Note: The instructions in this section assume an intermediate or advanced knowledge
of ActionScript.

To add a component to your Flash document using ActionScript:

1 Drag a component from the Components panel to the Stage and delete it.
This adds the component to the library.

2 Select the frame in the Timeline where you want to place the component.
3 Open the Actions panel if it isn’t already open.
4 Call the createClassObject() method to create the component instance at runtime.

This method can be called on its own, or from any component instance. It takes a component
class name, an instance name for the new instance, a depth, and an optional initialization
object as its parameters. You can specify the class package in the className parameter, as in
the following:
createClassObject(mx.controls.CheckBox, "cb", 5, {label:"Check Me"});

Or you can import the class package, as in the following:
import mx.controls.CheckBox;
createClassObject(CheckBox, "cb", 5, {label:"Check Me"});

For more information, see UIObject.createClassObject().
5 Use the ActionScript methods and properties of the component to specify additional options or

override parameters set during authoring.
For detailed information on the ActionScript methods and properties available to each
component, see their entries in Chapter 4, “Components Dictionary,” on page 43.

About component label size and component width and height

If a component instance that has been added to a document is not large enough to display its
label, the label text is clipped. If a component instance is larger than the text, the hit area extends
beyond the label.

Use the Free Transform tool or the setSize() method to resize component instances. You can
call the setSize() method from any component instance (see UIObject.setSize()). If you use
the ActionScript _width and _height properties to adjust the width and height of a component,
the component is resized but the layout of the content remains the same. This may cause the
component to be distorted in movie playback. For more information about sizing components,
see their individual entries in Chapter 4, “Components Dictionary,” on page 43.
20 Chapter 2: Working with Components

Setting component parameters

Each component has parameters that you can set to change its appearance and behavior. A
parameter is a property or method that appears in the Property inspector and Component
Inspector panel. The most commonly used properties and methods appear as authoring
parameters; others must be set using ActionScript. All parameters that can be set while authoring
can also be set with ActionScript. Setting a parameter with ActionScript overrides any value set
while authoring.

All v2 components inherit properties and methods from the UIObject class and the
UIComponent class; these are the properties and methods that all components use, such as
UIObject.setSize(), UIObject.setStyle(), UIObject.x, and UIObject.y. Each
component also has unique properties and methods, some of which are available as authoring
parameters. For example, the ProgressBar component has a percentComplete property
(ProgressBar.percentComplete), while the NumericStepper component has nextValue and
previousValue properties (NumericStepper.nextValue, NumericStepper.previousValue).

Deleting components from Flash documents

To delete a component's instances from a Flash document, you delete the component from the
library by deleting the compiled clip icon.

To delete a component from a document:

1 In the Library panel, select the compiled clip (SWC) symbol.
2 Click the Delete button at the bottom of the Library panel, or select Delete from the Library

panel options menu.
3 In the Delete dialog box, click Delete to confirm the deletion.

Using code hints

When you are using ActionScript 2, you can strictly type a variable that is based on a built-in
class, including component classes. If you do so, the ActionScript editor displays code hints for
the variable. For example, suppose you type the following:
import mx.controls.CheckBox;
var myCheckBox:CheckBox;
myCheckBox.

As soon as you type the period, Flash displays a list of methods and properties available for
CheckBox components, because you have typed the variable as a CheckBox. For more
information on data typing, see “Strict data typing” in ActionScript Reference Guide Help. For
information on using code hints when they appear, see “Using code hints” in ActionScript
Reference Guide Help.
Using code hints 21

About component events

All components have events that are broadcast when the user interacts with a component or when
something significant happens to the component. To handle an event, you write ActionScript
code that executes when the event is triggered.

You can handle component events in the following ways:

• Use the on() component event handler.
• Use event listeners.

Using the on() event handler

The easiest way to handle a component event is to use the on() component event handler. You
can assign the on() event handler to a component instance, just as you would assign a handler to
a button or movie clip.

When you use an on() event handler, an event object, eventObj, is automatically generated
when the event is triggered and passed to the handler. The event object has properties that
contain information about the event. The event object that is passed to the on() handler is always
eventObj. For more information, see “UIEventDispatcher” on page 560.

The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the Button component
instance myButtonComponent, sends “_level0.myButtonComponent” to the Output panel:
on(click){

trace(this);
}

To use the on() event handler:

1 Drag a CheckBox component to the Stage from the Components panel.
2 Select the component and select Window > Actions.
3 In the Actions panel, enter the following code:

on(click){
trace("The " + eventObj.type + " event was broadcast");

}

You can enter any code you wish between the curly braces({}).
4 Select Control > Test Movie and select the check box to see the trace in the Output panel.

For more information, see each event entry in Chapter 4, “Components Dictionary,”
on page 43.

Using component event listeners

The most powerful way to handle component events is to use listeners. Events are broadcast by
components and any object that is registered to the event broadcaster (component instance) as a
listener can be notified of the event. The listener is assigned a function that handles the event. You
can register multiple listeners to one component instance. You can also register one listener to
multiple component instances.
22 Chapter 2: Working with Components

To use the event listener model, you create a listener object with a property that is the name of the
event. The property is assigned to a callback function. Then you call the
UIEventDispatcher.addEventListener() method on the component instance that’s
broadcasting the event and pass it the name of the event and the name of the listener object.
Calling the UIEventDispatcher.addEventListener() method is called “registering” or
“subscribing” a listener, as in the following:
listenerObject.eventName = function(evtObj){

// your code here
};
componentInstance.addEventListener("eventName", listenerObject);

In the above code, the keyword this, if used in the callback function, is scoped to the
listenerObject.

The evtObj parameter is an event object that is automatically generated when an event is
triggered and passed to the listener object callback function. The event object has properties that
contain information about the event. For more information, see “UIEventDispatcher”
on page 560.

For information about the events a component broadcasts, see each component’s entry in
Chapter 4, “Components Dictionary,” on page 43.

To register an event listener, do the following:

1 Drag a Button component to the Stage from the Components panel.
2 In the Property inspector, enter the instance name button.
3 Drag a TextInput component to the Stage from the Components panel.
4 In the Property inspector, enter the instance name myText.
5 Select Frame 1 in the Timeline.
6 Select Window > Actions.
7 In the Actions panel, enter the following code:

form = new Object();
form.click = function(evt){

myText.text = evt.target;
}
button.addEventListener("click", form);

The target property of the event object is a reference to the instance broadcasting the event.
This code displays the value of the target property in the text input field.

Additional event syntax

In addition to using a listener object, you can use a function as a listener. A listener is a function if
it does not belong to an object. For example, the following code creates the listener function
myHandler and registers it to buttonInstance:
function myHandler(eventObj){

if (eventObj.type == "click"){
// your code here

}
}
buttonInstance.addEventListener("click", myHandler);

Note: In a function listener, the this keyword is buttonInstance, not the Timeline on which the
function is defined.
About component events 23

You can also use listener objects that support a handleEvent method. Regardless of the name of
the event, the listener object's handleEvent method is called. You must use an if else or a
switch statement to handle multiple events, which makes this syntax clumsy. For example, the
following code uses an if else statement to handle the click and enter events:
myObj.handleEvent = function(o){

if (o.type == "click"){
// your code here

} else if (o.type == "enter"){
// your code here

}
}
target.addEventListener("click", myObj);
target2.addEventListener("enter", myObj);

There is one additional event syntax style, which should be used only when you are authoring a
component and know that a particular object is the only listener for an event. In such a situation,
you can take advantage of the fact that the v2 event model always calls a method on the
component instance that is the event name plus “Handler”. For example, if you want to handle
the click event, you would write the following code:
componentInstance.clickHandler = function(o){

// insert your code here
}

In the above code, the keyword this, if used in the callback function, is scoped to
componentInstance.

For more information, see Chapter 5, “Creating Components,” on page 639.

Creating custom focus navigation

When a user presses the Tab key to navigate in a Flash application or clicks in an application, the
FocusManager class determines which component receives focus. You don’t need to add a
FocusManager instance to an application or write any code to activate the FocusManager.

If a RadioButton object receives focus, the FocusManager examines that object and all objects
with the same groupName value and sets focus on the object with the selected property set
to true.

Each modal Window component contains an instance of the FocusManager so the controls on
that window become their own tab set, which prevents a user from inadvertently getting into
components in other windows by pressing the Tab key.

To create focus navigation in an application, set the tabIndex property on any components
(including buttons) that should receive focus. When a user presses the Tab key, the FocusManager
class looks for an enabled object with a tabIndex property that is higher than the current value of
tabIndex. Once the FocusManager class reaches the highest tabIndex property, it returns to
zero. For example, in the following, the comment object (probably a TextArea component)
receives focus first, and then the okButton object receives focus:
comment.tabIndex = 1;
okButton.tabIndex = 2;

You can also use the Accessibility panel to assign a tab index value.
24 Chapter 2: Working with Components

If nothing on the Stage has a tab index value, the FocusManager uses the z-order. The z-order is
set up primarily by the order components are dragged to the Stage, however, you can also use the
Modify/Arrage/Bring-to-Front/Back commands to determine the final z-order.

To give focus to a component in an application, call FocusManager.setFocus().

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of the
desired button, as in the following:
FocusManager.defaultPushButton = okButton;

The FocusManager class overrides the default Flash Player focus rectangle and draws a custom
focus rectangle with rounded corners.

Managing component depth in a document

If you want to position a component above or below another object in an application, you must
use the DepthManager class. The DepthManager application programming interface (API) allows
you to place user interface components in an appropriate z-order (for example, a combo box
drops down in front of other components, insertion points appear in front of everything, dialog
windows float over content, and so on).

The DepthManager has two main purposes: to manage the relative depth assignments within any
document, and to manage reserved depths on the root Timeline for system-level services such as
the cursor and tooltips.

To use the DepthManager, call its methods (see “DepthManager class” on page 265).

The following code places the component instance loader below the button component:
loader.setDepthBelow(button);

About using a preloader with components

Components are set to Export in first frame by default. This causes the components to
load before the first frame of an application is rendered. If you want to create a preloader for
an application, you should deselect Export in first frame for any compiled clip symbols in
your library.
Note: If you’re using the ProgressBar component to display loading progress, leave Export in first
frame selected for the ProgressBar.

Upgrading version 1 components to version 2 architecture

The v2 components were written to comply with several web standards (regarding events, styles,
getter/setter policies, and so on) and are very different from their v1 counterparts that were
released with Macromedia Flash MX and in the DRKs that were released before Macromedia
Flash MX 2004. V2 components have different APIs and were written in ActionScript 2.0.
Therefore, using v1 and v2 components together in an application can cause unpredictable
behavior. For information about upgrading v1 components to use version 2 event handling,
styles, and getter/setter access to the properties instead of methods, see Chapter 5, “Creating
Components,” on page 639.
Upgrading version 1 components to version 2 architecture 25

http://www.w3.org/TR/DOM-Level-3-Events/events.html

Flash applications that contain v1 components work properly in Flash Player 6 and Flash
Player 7, when published for Flash Player 6 or Flash Player 6 release 65. If you would like to
update your applications to work when published for Flash Player 7, you must convert your code
to use strict data-typing. For more information, see “Creating Classes with ActionScript 2.0” in
ActionScript Reference Guide Help.
26 Chapter 2: Working with Components

CHAPTER 3
Customizing Components
You might want to change the appearance of components as you use them in different
applications. There are three ways to accomplish this in Macromedia Flash MX 2004 and
Macromedia Flash MX Professional 2004:

• Use the Styles API.
• Apply a theme.
• Modify or replace a component’s skins.

The Styles API (application programming interface) has methods and properties that allow you to
change the color and text formatting of a component.

A theme is a collection of styles and skins that make up a component’s appearance.

Skins are symbols used to display components. Skinning is the process of changing the appearance
of a component by modifying or replacing its source graphics. A skin can be a small piece, like a
border’s edge or corner, or a composite piece like the entire picture of a button in its up state (the
state in which it hasn’t been pressed). A skin can also be a symbol without a graphic, which
contains code that draws a piece of the component.

Using styles to customize component color and text

Every component instance has style properties and setStyle() and getStyle() (see
UIObject.setStyle() and UIObject.getStyle()) methods that you can use to modify and
access style properties. You can use styles to customize a component in the following ways:

• Set styles on a component instance.
You can change color and text properties of a single component instance. This is effective in
some situations, but it can be time consuming if you need to set individual properties on all
the components in a document.

• Use the _global style declaration that sets styles for all components in a document.
If you want to apply a consistent look to an entire document, you can create styles on the
_global style declaration.

• Create custom style declarations and apply them to specific component instances.
You may also want to have groups of components in a document share a style. To do this, you
can create custom style declarations to apply to specific components.
27

• Create default class style declarations.
You can also define a default class style declaration so that every instance of a class shares a
default appearance.

Changes made to style properties are not displayed when viewing components on the Stage using
the Live Preview feature. For more information, see “Components in Live Preview” on page 17.

Setting styles on a component instance

You can write ActionScript code to set and get style properties on any component instance.
The UIObject.setStyle() and UIObject.getStyle() methods can be called directly from
any component. For example, the following code sets the text color on a Button instance
called myButton:
myButton.setStyle("color", "0xFF00FF");

Even though you can access the styles directly as properties (for example, myButton.color =
0xFF00FF), it’s best to use the setStyle() and getStyle() methods so that the styles work
correctly. For more information, see “Setting style property values” on page 32.
Note: You should not call the UIObject.setStyle() method multiple times to set more than one
property. If you want to change multiple properties, or change properties for multiple component
instances, you should create a custom style format. For more information, see “Setting styles for
specific components” on page 29.

To set or change a property for a single component instance:

1 Select the component instance on the Stage.
2 In the Property inspector, give it the instance name myComp.
3 Open the Actions panel and select Scene 1, then select Layer 1: Frame 1.
4 Enter the following code to change the instance to blue:

myComp.setStyle("themeColor", "haloBlue");

The following syntax specifies a property and value for a component instance:
instanceName.setStyle("property", value);

5 Select Control > Test Movie to view the changes.
For a list of supported styles, see “Supported styles” on page 33.

Setting global styles

The _global style declaration is assigned to all Flash components built with version 2 of the
Macromedia Component Architecture (v2 components). The _global object has a property called
style (_global.style) that is an instance of CSSStyleDeclaration. This style property acts as
the _global style declaration. If you change a property’s value on the _global style declaration, the
change is applied to all components in your Flash document.

Some styles are set on a component class’s CSSStyleDeclaration (for example, the
backgroundColor style of the TextArea and TextInput components). Because the class style
declaration takes precedence over the _global style declaration when determining style values,
setting backgroundColor on the _global style declaration would have no effect on TextArea and
TextInput. For more information, see “Using global, custom, and class styles in the same
document” on page 30.
28 Chapter 3: Customizing Components

To change one or more properties in the global style declaration:

1 Make sure the document contains at least one component instance.
For more information, see “Adding components to Flash documents” on page 18.

2 Create a new layer in the Timeline and give it a name.
3 Select a frame in the new layer on which (or before) the component appears.
4 Open the Actions panel.
5 Use the following syntax to change any properties on the _global style declaration. You only

need to list the properties whose values you want to change, as in the following:
_global.style.setStyle("color", 0xCC6699);
_global.style.setStyle("themeColor", "haloBlue")
_global.style.setStyle("fontSize",16);
_global.style.setStyle("fontFamily" , "_serif");

For a list of styles, see “Supported styles” on page 33.
6 Select Control > Test Movie to see the changes.

Setting styles for specific components

You can create custom style declarations to specify a unique set of properties for specific
components in your Flash document. You create a new instance of the CSSStyleDeclaration
object, create a custom style name and place it on the _global.styles list
(_global.styles.newStyle), specify the properties and values for the style, and assign the style
to an instance. The CSSStyleDeclaration object is accessible if you have placed at least one
component instance on the Stage.

You make changes to a custom style format in the same way that you edit the properties in the
_global style declaration. Instead of the _global style declaration name, use the
CSSStyleDeclaration instance. For more information on the _global style declaration, see “Setting
global styles” on page 28.

For information about the properties of the CSSStyleDeclaration object, see “Supported styles”
on page 33. For a list of which styles each component supports, see their individual entries in
Chapter 4, “Components Dictionary,” on page 43.

To create a custom style declaration for specific components:

1 Make sure the document contains at least one component instance.
For more information, see “Adding components to Flash documents” on page 18.
This example uses three button components with the instance names a, b, and c. If you use
different components, give them instance names in the Property inspector and use those
instance names in step 9.

2 Create a new layer in the Timeline and give it a name.
3 Select a frame in the new layer on which (or before) the component appears.
4 Open the Actions panel in expert mode.
5 Use the following syntax to create an instance of the CSSStyleDeclaration object to define the

new custom style format:
var styleObj = new mx.styles.CSSStyleDeclaration;

6 Set the styleName property of the style declaration to name the style:
styleObj.styleName = "newStyle";
Using styles to customize component color and text 29

7 Place the style on the global style list:
_global.styles.newStyle = styleObj;

Note: You can also create a CSSStyleDeclaration object and assign it to a new style declaration
by using the following syntax:

var styleObj = _global.styles.newStyle = new
mx.styles.CSSStyleDeclaration();

8 Use the following syntax to specify the properties you want to define for the myStyle
style declaration:
styleObj.fontFamily = "_sans";
styleObj.fontSize = 14;
styleObj.fontWeight = "bold";
styleObj.textDecoration = "underline";
styleObj.color = 0x336699;
styleObj.setStyle("themeColor", "haloBlue");

9 In the same Script pane, use the following syntax to set the styleName property of two specific
components to the custom style declaration:
a.setStyle("styleName", "newStyle");
b.setStyle("styleName", "newStyle");

You can also access styles on a custom style declaration using the setStyle() and getStyle()
methods. The following code sets the backgroundColor style on the newStyle style declaration:
_global.styles.newStyle.setStyle("backgroundColor", "0xFFCCFF");

Setting styles for a component class

You can define a class style declaration for any class of component (Button, CheckBox, and so on)
that sets default styles for each instance of that class. You must create the style declaration before
you create the instances. Some components, like TextArea and TextInput, have class style
declarations predefined by default because their borderStyle and backgroundColor properties
must be customized.

The following code creates a class style declaration for CheckBox and sets the check box color
to blue:
var o = _global.styles.CheckBox = new mx.styles.CSSStyleDeclaration();
o.color = 0x0000FF;

You can also access styles on a class style declaration using the setStyle() and getStyle()
methods. The following code sets the color style on the RadioButton style declaration:
_global.styles.RadioButton.setStyle("color", "blue");

For more information on supported styles, see “Supported styles” on page 33.

Using global, custom, and class styles in the same document

If you define a style in only one place in a document, Flash uses that definition when it needs to
know a property’s value. However, one Flash document can have a _global style declaration,
custom style declarations, style properties set directly on component instances, and default class
style declarations. In such a situation, Flash determines the value of a property by looking for its
definition in all these places in a specific order.
30 Chapter 3: Customizing Components

First, Flash looks for a style property on the component instance. If the style isn’t set directly on
the instance, Flash looks at the styleName property of the instance to see if a style declaration is
assigned to it.

If the styleName property hasn’t been assigned to a style declaration, Flash looks for the property
on a default class style declaration. If there isn’t a class style declaration, and the property doesn’t
inherit its value, the _global style declaration is checked. If the property is not defined on the
_global style declaration, the property is undefined.

If there isn’t a class style declaration, and the property does inherit its value, Flash looks for the
property on the instance’s parent. If the property isn’t defined on the parent, Flash checks the
parent’s styleName property; if that isn’t defined, Flash continues to look at parent instances until
it reaches the _global level. If the property is not defined on the _global style declaration, the
property is undefined.

The StyleManager tells Flash if a style inherits its value or not. For more information, see
“StyleManager class” on page 502.
Note: The CSS inherit value is not supported.

About color style properties

Color style properties behave differently than non-color properties. All color properties have a
name that ends in “Color”, for example, backgroundColor, disabledColor, and color. When
color style properties are changed, the color is immediately changed on the instance and in all of
the appropriate child instances. All other style property changes simply mark the object as
needing to be redrawn and changes don’t occur until the next frame.

The value of a color style property can be a number, a string, or an object. If it is a number, it
represents the RGB value of the color as a hexadecimal number (0xRRGGBB). If the value is a
string, it must be a color name.

Color names are strings that map to commonly used colors. New color names can be added by
using the StyleManager (see “StyleManager class” on page 502). The following table lists the
default color names:

Note: If the color name is not defined, the component may not draw correctly.

Color name Value

black 0x000000

white 0xFFFFFF

red 0xFF0000

green 0x00FF00

blue 0x0000FF

magenta 0xFF00FF

yellow 0xFFFF00

cyan 0x00FFFF
Using styles to customize component color and text 31

You can use any legal ActionScript identifier to create your own color names (for example,
"WindowText" or "ButtonText"). Use the StyleManager to define new colors, as in
the following:
mx.styles.StyleManager.registerColorName("special_blue", 0x0066ff);

Most components cannot handle an object as a color style property value. However, certain
components can handle color objects that represent gradients or other color combinations. For
more information see the “Using styles” section of each component’s entry in Chapter 4,
“Components Dictionary,” on page 43.

You can use class style declarations and color names to easily control the colors of text and
symbols on the screen. For example, if you want to provide a display configuration screen that
looks like Microsoft Windows, you would define color names like ButtonText and WindowText
and class style declarations like Button, CheckBox, and Window. By setting the color style
properties in the style declarations to ButtonText and WindowText and providing a user interface
so the user can change the values of ButtonText and WindowText you can provide the same color
schemes as Micosoft Windows, the Mac OS, or any operating system.

Setting style property values

You use the UIObject.setStyle() method to set a style property on a component instance, the
global style declaration, a custom style declaration, or a class style declaration. The following code
sets the color style of a radio button instance to red:
myRadioButton.setStyle("color", "red");

The following code sets the color style of the custom style declaration CheckBox:
_global.styles.CheckBox.setStyle("color", "white");

The UIObject.setStyle() method knows if a style is inheriting and notifies children of that
instance if their style changes. It also notifies the component instance that it must redraw itself to
reflect the new style. Therefore, you should use setStyle() to set or change styles. However, as
an optimization when creating style declarations, you can directly set the properties on an object.
For more information, see “Setting global styles” on page 28, “Setting styles for specific
components” on page 29, and “Setting styles for a component class” on page 30.

You use the UIObject.getStyle() method to retrieve a style from a component instance, the
global style declaration, a custom style declaration, or a class style declaration. The following code
gets the value of the color property and assigns it to the variable o:
var o = myRadioButton.getStyle("color");

The following code gets the value of a style property defined on the _global style declaration:
var r = _global.style.getValue("marginRight");

If the style isn’t defined, getStyle() may return the value undefined. However, getStyle()
understands how style properties inherit. So, even though styles are properties, you should use
UIObject.getStyle() to access them so you don't need to know whether the style is inheriting.

For more information, see UIObject.getStyle() and UIObject.setStyle().
32 Chapter 3: Customizing Components

Supported styles

Flash MX 2004 and Flash MX Professional 2004 come with two themes: Halo (HaloTheme.fla)
and Sample (SampleTheme.fla). Each theme supports a different set of styles. The Sample theme
uses all the styles of the v2 styles mechanism and is provided so that you can see a sample of those
styles in a document. The Halo theme supports a subset of the Sample theme styles.

The following style properties are supported by most v2 components in the Sample style. For
information about which Halo styles are supported by individual components, see Chapter 4,
“Components Dictionary,” on page 43.

If any values other than allowed values are entered, the default value is used. This is important if
you are re-using CSS style declarations that use values outside the Macromedia subset of values.

Components can support the following styles:

Style Description

backgroundColor The background of a component. This is the only color style that
doesn’t inherit its value. The default value is transparent.

borderColor The black section of a three-dimensional border or the color
section of a two-dimensional border. The default value is
0x000000 (black).

borderStyle The component border: either “none”, “inset”, “outset”, or
“solid”. This style does not inherit its value. The default value
is "solid".

buttonColor The face of a button and a section of the three-dimensional
border. The default value is 0xEFEEEF (light gray).

color The text of a component label. The default value is 0x000000
(black).

disabledColor The disabled color for text. The default color is 0x848384
(dark gray).

fontFamily The font name for text. The default value is _sans.

fontSize The point size for the font. The default value is 10.

fontStyle The font style: either “normal” or “italic”. The default value
is "normal".

fontWeight The font weight: either “normal” or “bold”. The default value
is "normal".

highlightColor A section of the three-dimensional border. The default value is
0xFFFFFF (white).

marginLeft A number indicating the left margin for text. The default value
is 0.

marginRight A number indicating the right margin for text. The default value
is 0.

scrollTrackColor The scroll track for a scroll bar. The default value is 0xEFEEEF
(light gray).
Using styles to customize component color and text 33

About themes

Themes are collections of styles and skins. The default theme for Flash MX 2004 and Flash MX
Professional 2004 is called Halo (HaloTheme.fla). The Halo theme was developed to let you
provide a responsive, expressive experience for your users. Flash MX 2004 and Flash MX
Professional 2004 include one additional theme called Sample (SampleTheme.fla). The Sample
theme allows you to experiment with the full set of styles available to v2 components. (The
Halo theme uses only a subset of the available styles.) The theme files are located in the
following folders:

• First Run\ComponentFLA (Windows)
• First Run/ComponentFLA (Macintosh)

You can create new themes and apply them to an application to change the look and feel
of all the components. For example, you could create a two-dimensional theme and a
three-dimensional theme.

The v2 components use skins (graphic or movie clip symbols) to display their visual appearances.
The .as file that defines each component contains code that loads specific skins for the
component. You can easily create a new theme by making a copy of the Halo or Sample theme
and altering the graphics in the skins.

A theme can also contain a new set of styles. You must write ActionScript code to create a global
style declaration and any additional style declarations. For more information, see “Using styles to
customize component color and text” on page 27.

shadowColor A section of the three-dimensional border. The default value is
0x848384 (dark gray).

symbolBackgroundColor The background color of check boxes and radio buttons. The
default value is 0xFFFFFF (white).

symbolBackgroundDisabledColor The background color of check boxes and radio buttons when
disabled. The default value is 0xEFEEEF (light gray).

symbolBackgroundPressedColor The background color of check boxes and radio buttons when
pressed. The default value is 0xFFFFFF (white).

symbolColor The check mark of a check box or the dot of a radio button. The
default value is 0x000000 (black).

symbolDisabledColor The disabled check mark or radio button dot color. The default
value is 0x848384 (dark gray).

textAlign The text alignment: either “left”, “right”, or “center”. The default
value is "left".

textDecoration The text decoration: either “none” or “underline”. The default
value is "none".

textIndent A number indicating the text indent. The default value is 0.

Style Description
34 Chapter 3: Customizing Components

Applying a theme to a document

To apply a new theme to a document, open a theme FLA as an external library, and drag the
theme folder from the external library to the document library. The following steps explain the
process in detail.

To apply a theme to a document:

1 Select File > Open and open the document that uses v2 components in Flash, or select
File > New and create a new document that uses v2 components.

2 Select File > Save and choose a unique name such as ThemeApply.fla.
3 Select File > Import > Open External Library and select the FLA file of the theme you want to

apply to your document.
If you haven’t created a new theme, you can use the Sample theme, located in the Flash 2004/
en/Configuration/SampleFLA folder.

4 In the theme’s Library panel, select Flash UI Components 2 > Themes > MMDefault and drag
the Assets folder of any component(s) in your document to the ThemeApply.fla library.
If you’re unsure about which components are in the documents, you can drag the entire
Themes folder to the Stage. The skins inside the Themes folder in the library are automatically
assigned to components in the document.
Note: The Live Preview of the components on the Stage will not reflect the new theme.

5 Select Control > Test Movie to see the document with the new theme applied.

Creating a new theme

If you don’t want to use the Halo theme or the Sample theme you can modify one of them to
create a new theme.

Some skins in the themes have a fixed size. You can make them larger or smaller and the
components will automatically resize to match them. Other skins are composed of multiple
pieces, some static and some that stretch.

Some skins (for example, RectBorder and ButtonSkin) use the ActionScript Drawing API to draw
their graphics because it is more efficient in terms of size and performance. You can use the
ActionScript code in those skins as a template to adjust the skins to your needs.

To create a new theme:

1 Select the theme FLA file that you want to use as a template and make a copy.
Give the copy a unique name like MyTheme.fla.

2 Select File > Open MyTheme.fla in Flash.
3 Select Window > Library to open the library if it isn’t open already.
4 Double-click any skin symbol you want to modify to open it in symbol-editing mode.

The skins are located in the Themes > MMDefault > Component Assets folder (in this example,
Themes > MMDefault > RadioButton Assets).

5 Modify the symbol or delete the graphics and create new graphics.
You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).
About themes 35

6 When you have finished editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

7 Repeat steps 4 - 6 until you’ve edited all the skins you want to change.
8 Apply MyTheme.fla to a document by following the steps in the previous section, “Applying a

theme to a document” on page 35.

About skinning components

Skins are symbols a component uses to display its appearance. Skins can either be graphic symbols
or movie clip symbols. Most skins contain shapes that represent the component’s appearance.
Some skins contain only ActionScript code that draws the component in the document.

Macromedia v2 components are compiled clips—you cannot see their assets in the library.
However, FLA files are installed with Flash that contain all the component skins. These FLA files
are called themes. Each theme has a different appearance and behavior, but contains skins with the
same symbol names and linkage identifiers. This allows you to drag a theme onto the Stage in a
document to change its appearance. For more information about themes, see “About themes”
on page 34. You also use the theme FLA files to edit component skins. The skins are located in
the Themes folder in the Library panel of each theme FLA.

Each component is composed of many skins. For example, the down arrow of the ScrollBar
subcomponent is made up of three skins: ScrollDownArrowDisabled, ScrollDownArrowUp, and
ScrollDownArrowDown. Some components share skins. Components that use scroll bars—
including ComboBox, List, and ScrollPane—share the skins in the ScrollBar Skins folder. You can
edit existing skins and create new skins to change the appearance of a component.

The .as file that defines each component class contains code that loads specific skins for the
component. Each component skin has a skin property that is assigned to a skin symbol’s Linkage
Identifier. For example, the pressed (down) state of the down arrow of the ScrollBar has the skin
property name downArrowDownName. The default value of the downArrowDownName property is
"ScrollDownArrowDown", which is the Linkage Identifier of the skin symbol. You can edit skins
and apply them to a component by using these skin properties. You do not need to edit the
component’s .as file to change its skin properties, you can pass skin property values to the
component’s constructor function when the component is created in your document.

Choose one of the following ways to skin a component based on what you want to do:

• To replace all the skins in a document with a new set (with each kind of component sharing
the same appearance), apply a theme (see “About themes” on page 34).
Note: This method of skinning is recommended for beginners because it doesn’t require
any scripting.

• To use different skins for multiple instances of the same component, edit the existing skins and
set skin properties (see the next section, “Editing component skins” on page 37, and “Applying
an edited skin to a component” on page 38).

• To change skins in a subcomponent (such as a scroll bar in a List component), subclass the
component (see “Applying an edited skin to a subcomponent” on page 39).

• To change skins of a subcomponent that aren’t directly accessible from the main component
(such as a List component in a ComboBox component), replace skin properties in the
prototype (see “Changing skin properties in the prototype” on page 41).

Note: The above methods are listed from top to bottom according to ease of use.
36 Chapter 3: Customizing Components

Editing component skins

If you want to use a particular skin for one instance of a component, but another skin for another
instance of the component, you must open a Theme FLA file and create a new skin symbol.
Components are designed to make it easy to use different skins for different instances.

To edit a skin, do the following:

1 Select File > Open and open the Theme FLA file that you want to use as a template.
2 Select File > Save As and select a unique name such as MyTheme.fla.
3 Select the skin or skins that you want to edit (in this example, RadioTrueUp).

The skins are located in the Themes > MMDefault > Component Assets folder (in this example,
Themes > MMDefault > RadioButton Assets > States).

4 Select Duplicate from the Library Options menu (or by right-clicking on the symbol), and give
the symbol a unique name like MyRadioTrueUp.

5 Select the Advanced button in the Symbol Properties dialog and select Export for ActionScript.
A Linkage Identifier that matches the symbol name is entered automatically.

6 Double-click the new skin in the library to open it in symbol-editing mode.
7 Modify the movie clip or delete it and create a new one.

You may need to select View > Zoom In to increase the magnification. When you edit a skin,
you must maintain the registration point in order for the skin to be displayed correctly. The
upper left corner of all edited symbols must be at (0,0).

8 When you have finished editing the skin symbol, click the Back button at the left side of the
information bar at the top of the Stage to return to document-editing mode.

9 Select File > Save but don’t close MyTheme.fla. Now you must create a new document in which
to apply the edited skin to a component.
For more information, see the next section, “Applying an edited skin to a component”
on page 38, “Applying an edited skin to a subcomponent” on page 39, or “Changing skin
properties in the prototype” on page 41. For information about how to apply a new skin, see
“About skinning components” on page 36.

Note: Changes made to component skins are not displayed when viewing components on the Stage
using Live Preview.
About skinning components 37

Applying an edited skin to a component

Once you have edited a skin, you must apply it to a component in a document. You can either use
the createClassObject() method to dynamically create the component instances, or you can
manually place the component instances on the Stage. There are two different ways to apply skins
to component instances, depending on how you add the components to a document.

To dynamically create a component and apply an edited skin, do the following:

1 Select File > New to create a new Flash document.
2 Select File > Save and give it a unique name such as DynamicSkinning.fla.
3 Drag any components from the Components panel to the Stage, including the component

whose skin you edited (in this example, RadioButton), and delete them.
This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

4 Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage
of DynamicSkinning.fla and delete them.
This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

5 Open the Actions panel and enter the following on Frame 1:
import mx.controls.RadioButton
createClassObject(RadioButton, "myRadio", 0, {trueUpIcon:"MyRadioTrueUp",

label: "My Radio Button"});

6 Select Control > Test Movie.

To manually add a component to the Stage and apply an edited skin, do the following:

1 Select File > New to create a new Flash document.
2 Select File > Save and give it a unique name such as ManualSkinning.fla.
3 Drag components from the Components panel to the Stage, including the component whose

skin you edited (in this example, RadioButton).
4 Drag MyRadioTrueUp and any other symbols you customized from MyTheme.fla to the Stage

of ManualSkinning.fla and delete them.
This adds the symbols to the document’s library, but doesn’t make them visible in
the document.

5 Select the RadioButton component on the Stage and open the Actions panel.
6 Attach the following code to the RadioButton instance:

onClipEvent(initialize){
trueUpIcon = "MyRadioTrueUp";

}

7 Select Control > Test Movie.
38 Chapter 3: Customizing Components

Applying an edited skin to a subcomponent

In certain situations you may want to modify the skins of a subcomponent in a component, but
the skin properties are not directly available (for example, there is no direct way to alter the skins
of the scroll bar in a List component). The following code allows you to access the scroll bar skins.
All the scroll bars that are created after this code runs will also have the new skins.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in Chapter 4, “Components Dictionary,” on page 43.

To apply a new skin to a subcomponent, do the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin.
For this example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New to create a new Flash document.
3 Select File > Save and give it a unique name such as SubcomponentProject.fla.
4 Double-click the List component in the Components panel to add it to the Stage and press

Backspace to delete it from the Stage.
This adds the component to the Library panel, but doesn’t make the component visible in
the document.

5 Drag MyScrollDownArrowDown and any other symbols you edited from MyTheme.fla to the
Stage of SubcomponentProject.fla and delete them.
This adds the component to the Library panel, but doesn’t make the component visible in
the document.

6 Do one of the following:
■ If you want to change all scroll bars in a document, enter the following code in the Actions

panel on Frame 1 of the Timeline:
import mx.controls.List
import mx.controls.scrollClasses.ScrollBar
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

You can then either enter the following code on Frame 1 to create a list dynamically:
createClassObject(List, "myListBox", 0, {dataProvider: ["AL","AR","AZ",

"CA","HI","ID", "KA","LA","MA"]});

Or, you can drag a List component from the library to the Stage.
■ If you want to change a specific scroll bar in a document, enter the following code in the

Actions panel on Frame 1 of the Timeline:
import mx.controls.List
import mx.controls.scrollClasses.ScrollBar
var oldName = ScrollBar.prototype.downArrowDownName;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
createClassObject(List, "myList1", 0, {dataProvider: ["AL","AR","AZ",

"CA","HI","ID", "KA","LA","MA"]});
myList1.redraw(true);
ScrollBar.prototype.downArrowDownName = oldName;

Note: You must set enough data to have the scroll bars show up, or set the vScrollPolicy
property to true.

7 Select Control > Test Movie.
About skinning components 39

You can also set subcomponent skins for all components in a document by setting the skin
property on the subcomponent’s prototype object in the #initclip section of a skin symbol.
For more information about the prototype object, see Function.prototype in ActionScript
Dictionary Help.

To use #initclip to apply an edited skin to all components in a document, do the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a new Flash document. Save it with a unique name such as
SkinsInitExample.fla.

3 Select the MyScrollDownArrowDown symbol from the library of the edited theme library
example, drag it to the Stage of SkinsInitExample.fla, and delete it.
This adds the symbol to the library without making it visible on the Stage.

4 Select MyScrollDownArrowDown in the SkinsInitExample.fla library and select Linkage from
the Options menu.

5 Select the Export for ActionScript check box. Click OK.
Export in First Frame is automatically selected.

6 Double-click MyScrollDownArrowDown in the library to open it in symbol-editing mode.
7 Enter the following code on Frame 1 of the MyScrollDownArrowDown symbol:

#initclip 10
import mx.controls.scrollClasses.ScrollBar;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";

#endinitclip

8 Do one of the following to add a List component to the document:
■ Drag a List component from the Components panel to the Stage. Enter enough label

parameters so that the vertical scroll bar will appear.
■ Drag a List component from the Components panel to the Stage and delete it. Enter the

following code on Frame 1 of the main Timeline of SkinsInitExample.fla:
createClassObject(mx.controls.List, "myListBox1", 0, {dataProvider:

["AL","AR","AZ", "CA","HI","ID", "KA","LA","MA"]});

Note: Add enough data so that the vertical scroll bar appears, or set vScrollPolicy to true.

The following example explains how to skin something that’s already on the stage. This example
skins only Lists; any TextArea or ScrollPane scroll bars would not be skinned.

To use #initclip to apply an edited skin to specific components in a document, do
the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a Flash document.
3 Select File > Save and give the file a unique name, such as MyVScrollTest.fla.
4 Drag MyScrollDownArrowDown from the theme library to the MyVScrollTest.fla library.
5 Select Insert > New Symbol and give it a unique name like MyVScrollBar.
6 Select the Export for ActionScript check box. Click OK.

Export in First Frame is automatically selected.
40 Chapter 3: Customizing Components

7 Enter the following code on Frame 1 of the MyVScrollBar symbol:
#initclip 10

import MyVScrollBar
Object.registerClass("VScrollBar", MyVScrollBar);

#endinitclip

8 Drag a List component from the Components panel to the Stage.
9 In the Property inspector, enter as many Label parameters as it takes for the vertical scroll bar

to appear.
10 Select File > Save.
11 Select File > New and create a new ActionScript file.
12 Enter the following code:

import mx.controls.VScrollBar
import mx.controls.List
class MyVScrollBar extends VScrollBar{

function init():Void{
if (_parent instanceof List){

downArrowDownName = "MyScrollDownArrowDown";
}
super.init();

}
}

13 Select File > Save and save this file as MyVScrollBar.as.
14 Click a blank area on the Stage and, in the Property inspector, select the Publish

Settings button.
15 Select the ActionScript version Settings button.
16 Click the Plus (+) button to add a new classpath, and select the Target button to browse to the

location of the MyComboBox.as file on your hard drive.
17 Select Control > Test Movie.

Changing skin properties in the prototype

If a component does not directly support skin variables, you can subclass the component and
replace its skins. For example, the ComboBox component doesn’t directly support skinning its
drop-down list because the ComboBox uses a List component as its drop-down list.

If a component is composed of subcomponents, the subcomponents are identified in the
component’s entry in Chapter 4, “Components Dictionary,” on page 43.

To skin a subcomponent, do the following:

1 Follow the steps in “Editing component skins” on page 37, but edit a scroll bar skin. For this
example, edit the ScrollDownArrowDown skin and give it the new name
MyScrollDownArrowDown.

2 Select File > New and create a Flash document.
3 Select File > Save and give the file a unique name, such as MyComboTest.fla.
4 Drag MyScrollDownArrowDown from the theme library above to the Stage of

MyComboTest.fla and delete it.
This adds the symbol to the library, but doesn’t make it visible on the Stage.

5 Select Insert > New Symbol and give it a unique name, such as MyComboBox.
About skinning components 41

6 Select the Export for ActionScript check box and click OK.
Export in First Frame is automatically selected.

7 Enter the following code in the Actions panel on Frame 1 actions of MyComboBox:
#initclip 10

import MyComboBox
Object.registerClass("ComboBox", MyComboBox);

#endinitclip

8 Drag a ComboBox component to the Stage.
9 In the Property inspector, enter as many Label parameters as it takes for the vertical scroll bar

to appear.
10 Select File > Save.
11 Select File > New and create a new ActionScript file (Flash Professional only).
12 Enter the following code:

import mx.controls.ComboBox
import mx.controls.scrollClasses.ScrollBar
class MyComboBox extends ComboBox{

function getDropdown():Object{
var oldName = ScrollBar.prototype.downArrowDownName;
ScrollBar.prototype.downArrowDownName = "MyScrollDownArrowDown";
var r = super.getDropdown();
ScrollBar.prototype.downArrowDownName = oldName;
return r;

}
}

13 Select File > Save and save this file as MyComboBox.as.
14 Click a blank area on the Stage and, in the Property inspector, select the Publish

Settings button.
15 Select the ActionScript version Settings button.
16 Click the Plus (+) button to add a new classpath, and select the Target button to browse to the

location of the MyComboBox.as file on your hard drive.
17 Select Control > Test Movie.
42 Chapter 3: Customizing Components

CHAPTER 4
Components Dictionary
This reference chapter describes each component and each component’s application
programming interface (API).

Each component description contains information about the following:

• Keyboard interaction
• Live preview
• Accessibility
• Setting the component parameters
• Using the component in an application
• Customizing the component with styles and skins
• ActionScript methods, properties, and events

Components are presented alphabetically. You can also find components arranged by category in
the following tables:

User interface (UI) components

Component Description

Accordion component (Flash
Professional only)

A set of vertical overlapping views with buttons along the top that
allow users to switch views.

Alert component (Flash
Professional only)

A window that presents the user with a question and buttons to
capture their response.

Button component A resizable button that can be customized with a custom icon.

CheckBox component Allows users to make a Boolean (true or false) choice.

ComboBox component Allows users to select one option from a scrolling list of choices.
This component can have an selectable text field at the top of the
list that allows users to search the list.

DateChooser component
(Flash Professional only)

Allows users to select a date or dates from a calendar.

DateField component (Flash
Professional only)

A unselectable text field with a calendar icon. When a user clicks
anywhere inside the bounding box of the component, a
DateChooser component is displayed.
43

Data components

DataGrid component (Flash
Professional only)

Allows users to display and manipulate multiple columns of data.

Label component A non-editable, single-line text field.

List component Allows users to select one or more options from a scrolling list.

Loader component A container that holds a loaded SWF or JPEG file.

Menu component (Flash
Professional only)

Allows users to select one command from a list; a standard
desktop application menu.

MenuBar component (Flash
Professional only)

A horizontal bar of menus.

NumericStepper component Clickable arrows that raise and lower the value of an number.

ProgressBar component Displays the progress of a process, usually loading.

RadioButton component Allows users to select between mutually exclusive options.

ScrollPane component Displays movies, bitmaps, and SWF files in a limited area using
automatic scroll bars.

TextArea component An optionally editable, multiline text field.

TextInput component An optionally editable, single-line text input field.

Tree component (Flash
Professional only)

Allows a user to manipulate hierarchical information.

Window component A draggable window with a title bar, caption, border, and Close
button that display content to the user.

Component Description

Data binding classes (Flash
Professional only)

These classes implement the Flash runtime data
binding functionality.

DataHolder component (Flash
Professional only)

Holds data and can be used as a connector between components.

DataProvider API This component is the model for linear-access lists of data. This
model provides simple array-manipulation capabilities that
broadcast their changes.

DataSet component (Flash
Professional only)

A building block for creating data-driven applications.

RDBMSResolver component
(Flash Professional only)

Allows you to save data back to any supported data source. This
resolver component translates the XML that can be received and
parsed by a web service, JavaBean, servlet, or ASP page.

Web service classes (Flash
Professional only)

These classes allow access to web services that use Simple Object
Access Protocol (SOPAP) found in the mx.services package.

WebServiceConnector class
(Flash Professional only)

Provides scriptless access to web service method calls.

Component Description
44 Chapter 4: Components Dictionary

Media components

For more information on these components, see “Media components (Flash Professional only)”
on page 325.

Managers

Screens

Accordion component (Flash Professional only)

The Accordion component is a navigator that contains a sequence of children that it displays one
at a time. The children must be a subclass of the UIObject class (which includes all components
and screens built using version 2 of the Macromedia Component Architecture), but most
commonly children are a subclass of the View class. This includes movie clips assigned to the class
mx.core.View. To maintain tabbing order in an accordion’s children, the children must also be
instances of the View class.

XMLConnector component
(Flash Professional only)

Reads and writes XML documents using the HTTP GET and
POST methods.

XUpdateResolver component
(Flash Professional only)

Allows you to save data back to any supported data source. This
resolver component translates the DeltaPacket into XUpdate.

Component Description

MediaController component Controls streaming media playback in an application.

MediaDisplay component Displays streaming media in an application

MediaPlayback component A combination of the MediaDisplay and
MediaController components.

Component Description

DepthManager class Manages the stacking depths of objects.

FocusManager class Handles Tab key navigation between components on the screen.
Also handles focus changes as users click in the application.

PopUpManager class Allows you to create and delete pop-up windows.

StyleManager class Allows you to register styles and manages inherited styles.

Component Description

Form class (Flash Professional
only)

Allows you to manipulate form application screens at runtime.

Screen class (Flash
Professional only)

Base class for the Slide and Form classes.

Slide class (Flash Professional
only)

Allows you to manipulate slide presentation screens at runtime.

Component Description
Accordion component (Flash Professional only) 45

An accordion creates and manages header buttons that a user can press to navigate between the
accordion’s children. An accordion has a vertical layout with header buttons that span the width
of the component. There is one header associated with each child, and each header belongs to the
accordion—not to the child. When a user clicks a header, the associated child is displayed below
that header. The transition to the new child uses a transition animation.

An accordion with children accepts focus, and changes the appearance of its headers to display
focus. When a user tabs into an accordion, the selected header displays the focus indicator. An
accordion with no children does not accept focus. Clicking components that can take focus
within the selected child gives them focus. When an Accordion instance has focus, you can use
the following keys to control it:

The Accordion component cannot be made accessible to screen readers.

Using the Accordion component (Flash Professional only)

The Accordion component can be used to present multi-part forms. For example, a three-child
accordion might present forms where the user fills out her shipping address, billing address, and
payment information for an e-commerce transaction. Using an accordion instead of multiple web
pages minimizes server traffic and allows the user to maintain a better sense of progress and
context in an application.

Accordion parameters

The following are authoring parameters that you can set for each Accordion component instance
in the Property inspector or in the Component Inspector panel:

childSymbols An array specifying the linkage identifiers of the library symbols to be used to
create the accordion's children. The default value is [] (empty array).

Key Description

Down arrow, Right arrow Moves focus to the next child header. Focus wraps from last to first
without changing the selected child.

Up arrow, Left arrow Moves focus to the previous child header. Focus wraps from first to last
without changing the selected child.

End Selects the last child.

Enter/Space Selects the child associated with the header that has focus.

Home Selects the first child.

Page Down Selects the next child. Selection wraps from the last child to the first child.

Page Up Selects the previous child. Selection wraps from the first child to the
last child.

Shift +Tab Moves focus to the previous component. This component may be inside
the selected child, or outside the accordion; it will never be another
header in the same accordion.

Tab Moves focus to the next component. This component may be inside the
selected child, or outside the accordion; it will never be another header in
the same accordion.
46 Chapter 4: Components Dictionary

childNames An array specifying the instance names of the accordion’s children. The default
value is [] (empty array).

childLabels An array specifying the text labels to use on the accordion’s headers. The default
value is [] (empty array).

childIcons An array specifying the linkage identifiers of the library symbols to be used as the
icons on the accordion's headers. The default value is [] (empty array).

You can write ActionScript to control these and additional options for the Accordion component
using its properties, methods, and events. For more information, see “Accordion class (Flash
Professional only)” on page 50.

Creating an application with the Accordion component

In this example, an application developer is building the checkout section of an online store. The
design calls for an accordion with three forms in which users enter their shipping address, billing
address, and payment information. The shipping address and billing address forms are identical.

To use screens to add an Accordion component to an application:

1 In Flash, select File > New and select Flash Form Application.
2 Double-click the text Form1 and enter the name addressForm.

Although it doesn't show up in the library, the addressForm screen is a symbol of the Screen
class (which is a subclass of the View class), which an accordion can use as a child.

3 With the form selected, in the Property inspector, set its visible property to false.
This hides the contents of the form in the application; the form only appears in the Accordion.

4 Drag components such as Label and TextInput from the Components panel onto the form to
create a mock address form; arrange them, and set their properties in the Parameters pane of the
Component Inspector panel.
Position the form elements in the upper left corner of the form. The upper left corner of the
form is placed in the upper left corner of the Accordion.

5 Repeat steps 2-4 to create a screen named checkoutForm.
6 Create a new form named accordionForm.
7 Drag an Accordion component from the Components panel to the accordionForm form and

name it myAccordion.
8 With myAccordion selected, in the Property inspector, do the following:

■ For the childSymbols property, enter addressForm, addressForm, and checkoutForm.
These strings specify the names of the screens used to create the accordion's children.
Note: The first two children are instances of the same screen, because the shipping address
form and the billing address form have identical components.

■ For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion's children.

■ For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

9 Select Control > Test Movie.
Accordion component (Flash Professional only) 47

To add an Accordion component to an application, do the following:

1 Select File > New and create a new Flash Document.
2 Select Insert > New Symbol and name it AddressForm.
3 In the Create New Symbol dialog, click the Advanced button and select Export for

ActionScript. In the AS 2.0 class field, enter mx.core.View.
To maintain tabbing order in an accordion’s children, the children must also be instances of the
View class.

4 Drag components such as Label and TextInput from the Components panel onto the Stage to
create a mock address form; arrange them, and set their properties in the Parameters pane of the
Component Inspector panel.
Position the form elements in relation to 0, 0 (the middle) on the Stage. The 0, 0 coordinate of
the movie clip is placed in the upper left corner of the Accordion.

5 Select Edit > Edit Document to return to the main Timeline.
6 Repeat steps 2-5 to create a movie clip named CheckoutForm.
7 Drag an Accordion component from the Components panel to add it to the Stage on the

main Timeline.
8 In the Property inspector, do the following:

■ Enter the instance name myAccordion.
■ For the childSymbols property, enter AddressForm, AddressForm, and CheckoutForm.

These strings specify the names of the movie clips used to create the accordion's children.
Note: The first two children are instances of the same movie clip, because the shipping address
form and the billing address form are identical.

■ For the childNames property, enter shippingAddress, billingAddress, and checkout.
These strings are the ActionScript names of the accordion's children.

■ For the childLabels property, enter Shipping Address, Billing Address, and Checkout.
These strings are the text labels on the accordion headers.

■ For the childIcons property, enter AddressIcon, AddressIcon, and CheckoutIcon.
These strings specify the linkage identifiers of the movie clip symbols that are used as the
icons on the accordion headers. You must create these movie clip symbols if you want icons
in the headers.

9 Select Control > Test Movie.

To use ActionScript to add children to an Accordion component, do the following:

1 Select File > New and create a Flash Document.
2 Drag an Accordion component from the Components panel to the Stage.
3 In the Property inspector, enter the instance name myAccordion.
4 Drag a TextInput component to the Stage and delete it.

This adds it to the Library so that you can dynamically instantiate it in step 6.
48 Chapter 4: Components Dictionary

5 In the Actions panel on Frame 1 of the Timeline, enter the following:
myAccordion.createChild("View", "shippingAddress", { label: "Shipping

Address" });
myAccordion.createChild("View", "billingAddress", { label: "Billing Address"

});
myAccordion.createChild("View", "payment", { label: "Payment" });

This code calls the createChild() method to create its child views.
6 In the Actions panel on Frame 1, below the code you entered in step 4, enter the following code:

var o = myAccordion.shippingAddress.createChild("TextInput", "firstName");
o.move(20, 38);
o.setSize(116, 20);
o = myAccordion.shippingAddress.createChild("TextInput", "lastName");
o.move(175, 38);
o.setSize(145, 20);

This code adds component instances (two TextInput components) to the accordion’s children.

Customizing the Accordion component (Flash Professional only)

You can transform an Accordion component horizontally and vertically both while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

The setSize() method and the Transform tool only change the width of the accordion's headers
and the width and height of its content area. The height of the headers and the width and height
of the children are not affected. Calling the setSize() method is the only way to change the
bounding rectangle of an accordion.

If the headers are too small to contain their label text, the labels are clipped. If the content area of
an accordion is smaller than a child, the child is clipped.

Using styles with the Accordion component

You can set style properties to change the appearance of the border and background of an
Accordion component.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than non-color style properties. For more information, see “Using styles to customize component
color and text” on page 27.

An Accordion component supports the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

backgroundColor The background color.

borderColor The border color.

borderStyle The border style; possible values are "none", "solid", "inset", "outset",
"default", "alert". The "default" value is the look of the Window component’s
border and the "alert" value is the look of the Alert component’s border.
Accordion component (Flash Professional only) 49

Using skins with the Accordion component

The Accordion component uses skins to represent the visual states of its header buttons. To skin
the buttons and title bar while authoring, modify skin symbols in the Flash UI Components 2/
Themes/MMDefault/Accordion Assets skins states folder in the library of one of the themes FLA
files. For more information, see “About skinning components” on page 36.

An Accordion component is composed of its border and background, its header buttons, and its
children. The border and background are styleable, but not skinnable. The headers are skinnable,
but not styleable, using the subset of skins inherited from button listed below. An Accordion
component uses the following skin properties to dynamically skin the header buttons:

Accordion class (Flash Professional only)

Inheritance UIObject > UIComponent > View > Accordion

ActionScript Class Name mx.containers.Accordion

An Accordion is a component that contains children that are displayed one at a time. Each child
has a corresponding header button that is created when the child is created. A child must be an
instance of UIObject.

A movie clip symbol automatically becomes an instance of the UIObject class when it becomes a
child of an accordion. However, to maintain tabbing order in an accordion’s children, the children
must also be instances of the View class. If you use a movie clip symbol as a child, set its AS 2.0
class field to mx.core.View so that it inherits from the View class.

headerHeight The height of the header buttons in pixels.

color The header text color.

disabledColor The color of a disabled accordion.

fontFamily The font name for the header labels.

fontSize The point size for the font of the header labels.

fontStyle The font style for the header labels; either "normal", or "italic".

fontWeight The font weight for the header labels; either "normal", or "bold".

textDecoration The text decoration; either "none", or "underline".

openDuration The duration, in milliseconds, of the transition animation.

openEasing The tweening function used by the animation.

Property Description Default value

falseUpSkin The up state. accordionHeaderSkin

falseDownSkin The pressed state. accordionHeaderSkin

falseOverSkin The rolled-over state. accordionHeaderSkin

trueUpSkin The toggled state. accordionHeaderSkin

Style Description
50 Chapter 4: Components Dictionary

Setting a property of the Accordion class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.Accordion.version);

Note: The following code returns undefined: trace(myAccordionInstance.version);.

Method summary for the Accordion class

Inherits all methods from UIObject, UIComponent and mx.core.View.

Property summary for the Accordion class

Inherits all properties from UIObject, UIComponent and mx.core.View.

Event summary for the Accordion class

Inherits all events from UIObject, UIComponent and mx.core.View.

Method Description

Accordion.createChild() Creates a child for an accordion instance.

Accordion.createSegment() Creates a child for an accordion instance. The parameters for this
method are different from those of the createChild() method.

Accordion.destroyChildAt() Destroys a child at a specified index position.

Accordion.getChildAt() Gets a reference to a child at a specified index position.

Property Description

Accordion.numChildren The number of children of an accordion instance.

Accordion.selectedChild A reference to the selected child.

Accordion.selectedIndex The index position of the selected child.

Event Description

Accordion.change Broadcast to all registered listeners when the selectedIndex and
selectedChild properties of an accordion change due to a user’s
mouse click or key press.
Accordion component (Flash Professional only) 51

Accordion.change

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject){

// insert your code here
}
myAccordionInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the selectedIndex and selectedChild
properties of an accordion change. This event is broadcast only when a user’s mouse click or key
press changes the value selectedChild or selectedIndex—not when the value is changed with
ActionScript. This event is broadcast before the transition animation occurs.

V2 components use a dispatcher/listener event model. The Accordion component dispatches a
change event when one of its buttons is pressed and the event is handled by a function (also
called a handler) on a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it a reference to the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. For more information about event
objects, see “Event Objects” on page 562.

Example

In the following example, a handler called myAccordionListener is defined and passed to the
myAccordion.addEventListener() method as the second parameter. The event object is
captured by change handler in the evtObject parameter. When the change event is broadcast, a
trace statement is sent to the Output panel, as follows:
myAccordionListener = new Object();
myAccordionListener.change = function(){

trace("Changed to different view");
}
myAccordion.addEventListener("change", myAccordionListener);

Accordion.createChild()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myAccordion.createChild(classOrSymbolName, instanceName[, initialProperties])
52 Chapter 4: Components Dictionary

Parameters

classOrSymbolName This parameter can either be the constructor function for the class of the
UIObject to be instantiated, or the linkage name, a reference to the symbol to be instantiated.
The class must be UIObject or a subclass of UIObject, but most often it is a View or a subclass
of View.

instanceName The instance name of the new instance.

initialProperties An optional parameter that specifies initial properties for the new
instance. You can use the following properties:

• label This string specifies the text label that the new child instance uses on its header.
• icon This string specifies the linkage identifier of the library symbol that the child uses for

the icon on its header.

Returns

A reference to an instance of the UIObject that is the newly created child.

Description

Method (inherited from View); creates a child for the Accordion. The newly created child is
added to the end of the list of children owned by the Accordion. Use this method to place views
inside the accordion. The created child is an instance of the class or movie clip symbol specified in
the classOrSymbolName parameter. You can use the label and icon properties to specify a text
label and an icon for the associated accordion header for each child in the initialProperties
parameter.

When each child is created, it is assigned an index number in the order of creation and the
numChildren property is increased by 1.

Example

The following code creates an instance of the movie clip symbol PaymentForm named payment
as the last child of myAccordion:
var child = myAccordion.createChild("PaymentForm", "payment", { label:

"Payment", Icon: "payIcon" });
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:
var child = myAccordion.createChild(mx.core.View, "payment", { label:

"Payment", Icon: "payIcon" });
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:
import mx.core.View
var child = myAccordion.createChild(View, "payment", { label: "Payment", Icon:

"payIcon" });
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";
Accordion component (Flash Professional only) 53

Accordion.createSegment()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.
myAccordion.createSegment(classOrSymbolName, instanceName[, label[, icon]])

Parameters

classOrSymbolName This parameter can be either a reference to the constructor function for
the class of the UIObject to be instantiated, or the linkage name of the symbol to be instantiated.
The class must be UIObject or a subclass of UIObject, but most often it is a View or a subclass
of View.

instanceName The instance name of the new instance.

label This string specifies the text label that the new child instance uses on its header. This
parameter is optional.

icon This string is a reference to the linkage identifier of the library symbol that the child uses
for the icon on its header. This parameter is optional.

Returns

A reference to the newly created UIObject instance.

Description

Method; creates a child for the Accordion. The newly created child is added to the end of the list
of children owned by the Accordion. Use this method to place views inside the accordion. The
created child is an instance of the class or movie clip symbol specified in the classOrSymbolName
parameter. You can use the label and icon parameters to specify a text label and an icon for the
associated accordion header for each child.

The createSegment() method differs from the createChild() method in that label and icon
are passed directly as parameters, not as properties of an initalProperties parameter.

When each child is created, it is assigned an index number in the order of creation and the
numChildren property is increased by 1.

Example

The following example creates an instance of the PaymentForm movie clip symbol named
payment as the last child of myAccordion:
var child = myAccordion.createSegment("PaymentForm", "payment", "Payment",

"payIcon");
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

The following code creates a child that is an instance of the View class:
var child = myAccordion.createSegment(mx.core.View, "payment", { label:

"Payment", Icon: "payIcon" });
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";
54 Chapter 4: Components Dictionary

The following code also creates a child that is an instance of the View class, but it uses import to
reference the constructor for the View class:
import mx.core.View
var child = myAccordion.createSegment(View, "payment", { label: "Payment",

Icon: "payIcon" });
child.cardType.text = "Visa";
child.cardNumber.text = "1234567887654321";

Accordion.destroyChildAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myAccordion.destroyChildAt(index)

Parameters

index The index number of the accordion child to destroy. Each child of an accordion is
assigned a zero-based index number in the order that it was created.

Returns

Nothing.

Description

Method (inherited from View); destroys one of the accordion's children. The child to be
destroyed is specified by its index, which is passed to the method in the index parameter. Calling
this method destroys the corresponding header as well.

If the destroyed child is selected, a new selected child is chosen. If there is a next child, it is
selected. If there is no next child, the previous child is selected. If there is no previous child, the
selection is undefined.
Note: Calling the destroyChildAt() method decreases the numChildren property by 1.

Example

The following code destroys the last child of myAccordion:
myAccordion.destroyChildAt(myAccordion.numChildren - 1);

See also

Accordion.createChild()
Accordion component (Flash Professional only) 55

Accordion.getChildAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myAccordion.getChildAt(index)

Parameters

index The index number of an accordion child. Each child of an accordion is assigned a
zero-based index in the order that it was created.

Returns

A reference to the instance of the UIObject at the specified index.

Description

Method; returns a reference to the child at the specified index. Each accordion child is given an
index number for its position. This index number is zero-based, so the first child is 0, the second
child is 1, and so on.

Example

The following code gets a reference to the last child of myAccordion:
var lastChild:UIObject = myAccordion.getChildAt(myAccordion.numChildren - 1);

Accordion.numChildren

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myAccordion.numChildren

Description

Property (inherited from View); indicates the number of children (child UIObjects) in an
accordion instance. Headers are not counted as children.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The code myAccordion.numChild - 1
always refers to the last child added to an accordion. For example, if there were 7 children in an
accordion, the last child would have the index 6. The numChildren property is not zero-based so
the value of myAccordion.numChildren would be 7. The result of 7 - 1 is 6 which is the index
number of the last child.
56 Chapter 4: Components Dictionary

Example

The following example selects the last child:
myAccordion.selectedIndex = myAccordion.numChildren - 1;

Accordion.selectedChild

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myAccordion.selectedChild

Description

Property; the selected child if one or more children exist; undefined if no children exist. This
property is either of type UIObject, or undefined.

If the accordion has children, the code myAccordion.selectedChild is equivalent to the code
myAccordion.getChildAt(myAccordion.selectedIndex).

Setting this property to a child causes the accordion to begin the transition animation to display
the specified child.

Changing the value of selectedChild also changes the value of selectedIndex.

The default value is myAccordion.getChildAt(0) if the accordion has children. If the accordion
doesn’t have children, the default value is undefined.

Example

The following example gets the label of the selected child view:
var selectedLabel = myAccordion.selectedChild.label;

The following example sets the payment form to be the selected child view:
myAccordion.selectedChild = myAccordion.payment;

See also

Accordion.selectedIndex

Accordion.selectedIndex

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myAccordion.selectedIndex
Accordion component (Flash Professional only) 57

Description

Property; the zero-based index of the selected child in an accordion with one or more children.
For an accordion with no child views, the only valid value is undefined.

Each accordion child is given an index number for its position. This index number is zero-based,
so the first child is 0, the second child is 1, and so on. The valid values of selectedIndex are 0,
1, 2, ... , n - 1, where n is the number of children.

Setting this property to a child causes the accordion to begin the transition animation to display
the specified child.

Changing the value of selectedIndex also changes the value of selectedChild.

Example

The following example remembers the index of the selected child:
var oldSelectedIndex = myAccordion.selectedIndex;

The following example selects the last child:
myAccordion.selectedIndex = myAccordion.numChildren - 1;

See also

Accordion.selectedChild, Accordion.numChildren

Alert component (Flash Professional only)

The Alert component allows you to pop up a window that presents the user with a message and
response buttons. The Alert window has a title bar that you can fill with text, a message that you
can customize, and buttons whose labels you can change. An Alert window can have any
combination of the following buttons: Yes, No, OK, and Cancel. You can change the text labels
on the buttons by using the following properties: Alert.yesLabel, Alert.noLabel,
Alert.okLabel, and Alert.cancelLabel. You cannot change the order of the buttons in an
Alert window; the button order is always OK, Yes, No, Cancel.

To pop up an Alert window, you must call the Alert.show() method. In order to call the
method successfully, the Alert component must be in the library. You must drag the Alert
component from the Components panel to the Stage and then delete the Alert component from
the Stage. This adds the component to the Library but doesn’t make it visible in the document.

The live preview for the Alert component is an empty window.

The text and buttons of an Alert window can be made accessible to screen readers. When you add
the Alert component to an application, you can use the Accessibility panel to make it accessible to
screen readers. First, you must add the following line of code to enable accessibility:
mx.accessibility.AlertAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the Alert component (Flash Professional only)

The Alert can be used whenever you want to announce something to a user. For example, you
could pop up an Alert when a user doesn’t fill out a form properly, or when a stock hits a certain
price, or when a user quits an application without saving his session.
58 Chapter 4: Components Dictionary

Alert parameters

There are no authoring parameters for the Alert component. You must call the ActionScript
Alert.show() method to pop up an Alert window. You can use other ActionScript properties to
modify the Alert window in an application. For more information, see “Alert class (Flash
Professional only)” on page 61.

Creating an application with the Alert component

The following procedure explains how to add a Alert component to an application while
authoring. In this example, the Alert component pops up when a stock hits a certain price.

To create an application with the Alert component, do the following:

1 Double-click the Alert component in the Components panel to add it to the Stage.
2 Press Backspace (Windows) or Delete (Macintosh) to delete the component from the Stage.

This adds the component to the library, but doesn’t make it visible in the application.
3 In the Actions panel, enter the following code on Frame 1 of the Timeline to define an event

handler for the click event:
import mx.controls.Alert
myClickHandler = function (evt){

if (evt.detail == Alert.OK){
trace("start stock app");
// startStockApplication();

}
}
Alert.show("Launch Stock Application?", "Stock Price Alert", Alert.OK |

Alert.CANCEL, this, myClickHandler, "stockIcon", Alert.OK);

This code creates an Alert window with OK and Cancel buttons. When either button is
pressed, the myClickHandler function is called. But when the OK button is pressed, the
startStockApplication() method is called.

4 Control > Test Movie.

Customizing the Alert component (Flash Professional only)

The Alert positions itself in the center of the component that was passed as its parent parameter.
The parent must be a UIComponent. If it is a movie clip, you can register the clip as
mx.core.View so that it inherits from UIComponent.

The Alert window automatically stretches horizontally to fit the message text or any buttons that
are displayed. If you want to display large amounts of text, include line breaks in the text.

The Alert does not respond to the setSize() method.

Using styles with the Alert component

You can set style properties to change the appearance of an Alert component. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.
Alert component (Flash Professional only) 59

An Alert component supports the following Halo styles:

Using skins with the Alert component

The Alert component uses the Window skins to represent the visual states of its buttons and title
bar. To skin the buttons and title bar while authoring, modify skin symbols in the Flash UI
Components 2/Themes/MMDefault/Window Assets skins states folder in the library of one of
the themes FLA files. For more information, see “About skinning components” on page 36.

There is ActionScript code in the RectBorder.as class that the Alert component uses to draw its
borders. You can use RectBorder styles to modify an Alert component as follows:
var myAlert = Alert.show("This is a test of errors", "Error", Alert.OK |

Alert.CANCEL, this);
myAlert.setStyle("borderStyle", "inset");

For information about RectBorder styles, see “Using skins with the List component”
on page 290.

An Alert component uses the following skin properties to dynamically skin the buttons and
title bar:

Style Description

themeColor The background of a component. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal", or "bold".

textDecoration The text decoration; either "none", or "underline".

buttonStyleDeclaration A class (static) CSSStyleDeclaration for the button’s text styles.

messageStyleDeclaration A class (static) CSSStyleDeclaration for the message’s text, border,
and background styles.

titleStyleDeclaration A class (static) CSSStyleDeclaration for the title's text styles.

Property Description Default value

buttonUp The up state of the button. ButtonSkin

buttonDown The pressed state of the button. ButtonSkin

buttonOver The rolled-over state of button. ButtonSkin

titleBackground The window title bar. TitleBackground
60 Chapter 4: Components Dictionary

Alert class (Flash Professional only)

Inheritance UIObject > UIComponent > View > ScrollView > Window > Alert

ActionScript Class Name mx.controls.Alert

To use the Alert component, you drag an Alert component to the Stage and delete it so that the
component is in the document library but not visible in the application. Then you call
Alert.show() to pop up an Alert window. You can pass parameters to Alert.show() that add a
message, a title bar, and buttons to the Alert window.

Because ActionScript is asynchronous, the Alert component is not blocking, which means that
the lines of ActionScript code after the call to Alert.show() run right away. You must add
listeners to handle the click events that are broadcast when a user presses a button and then
continue your code after the event is broadcast.
Note: In operating environments that are blocking (for example, Microsoft Windows), a call to
Alert.show() would not return until the user has taken an action, such as pushing a button.

Method summary for the Alert class

Inherits all methods from UIObject and UIComponent.

Property summary for the Alert class

Inherits all properties from UIObject and UIComponent.

Event summary for the Alert class

Inherits all events from UIObject and UIComponent.

Event Description

Alert.show() Creates an Alert window with optional parameters.

Property Description

Alert.buttonHeight The height of each button in pixels. The default value is 22.

Alert.buttonWidth The width of each button in pixels. The default value is 100.

Alert.cancelLabel The label text for the Cancel button.

Alert.noLabel The label text for the No button.

Alert.okLabel The label text for the OK button.

Alert.yesLabel The label text for the Yes button.

Event Description

Alert.click Broadcast when a button in an Alert window is clicked.
Alert component (Flash Professional only) 61

Alert.buttonHeight

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Alert.buttonHeight

Description

Property (class); a class property (static) that changes the height of the buttons.

See also

Alert.buttonWidth

Alert.buttonWidth

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Alert.buttonWidth

Description

Property (class); a class property (static) that changes the width of the buttons.

See also

Alert.buttonHeight

Alert.click

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

clickHandler = function(eventObject){
// insert code here

}
Alert.show(message[, title[, flags[, parent[, clickHandler[, icon[,

defaultButton]]]]]])
62 Chapter 4: Components Dictionary

Description

Event; broadcast to the registered listener when the OK, Yes, No, or Cancel button is clicked.

V2 components use a dispatcher/listener event model. The Alert component dispatches a click
event when one of its buttons is clicked and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You call the Alert.show()
method and pass it the name of the handler as a parameter. When a button in the Alert window is
clicked, the listener is called.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Alert.click event’s event
object has an additional detail property whose value is one of the following depending on which
button was clicked: Alert.OK, Alert.CANCEL, Alert.YES, Alert.NO. For more information
about event objects, see “Event Objects” on page 562.

Example

In the following example, a handler called myClickHandler is defined and passed to the
Alert.show() method as the 5th parameter. The event object is captured by myClickHandler in
the evt parameter. The detail property of the event object is then used within a trace
statement to send the name of the button that was clicked (Alert.OK or Alert.CANCEL) to the
Output panel, as follows:
myClickHandler = function(evt){

if(evt.detail == Alert.OK){
trace(Alert.okLabel);

}else if (evt.detail == Alert.CANCEL){
trace(Alert.cancelLabel);

}
}
Alert.show("This is a test of errors", "Error", Alert.OK | Alert.CANCEL, this,

myClickHandler);

Alert.cancelLabel

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Alert.cancelLabel

Description

Property (class); a class property (static) that indicates the label text on the Cancel button.

Example

The following example sets the Cancel button’s label to “cancellation”:
Alert.cancelLabel = "cancellation";
Alert component (Flash Professional only) 63

Alert.noLabel

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Alert.noLabel

Description

Property (class); a class property (static) that indicates the label text on the No button.

Example

The following example sets the No button’s label to “nyet”:
Alert.noLabel = "nyet";

Alert.okLabel

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Alert.okLabel

Description

Property (class); a class property (static) that indicates the label text on the OK button.

Example

The following example sets the OK button’s label to “okay”:
Alert.okLabel = "okay";

Alert.show()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Alert.show(message[, title[, flags[, parent[, clickHandler[, icon[,
defaultButton]]]]]])
64 Chapter 4: Components Dictionary

Parameters

message The message to display.

title The text in the Alert title bar. This parameter is optional. If the title parameter is not
specified, the title bar is blank.

flags An optional parameter that indicates the button or buttons to display in the Alert
window. The default value is Alert.OK, which displays an “OK” button. When you use
more than one value, separate the values with a | character. The value can be one or more of
the following:

• Alert.OK
• Alert.CANCEL
• Alert.YES
• Alert.NO

You can also use Alert.NONMODAL to indicate that the Alert window is non-modal. A non-modal
window allows a user to interact with other windows in the application.

parent The parent window for the Alert component. The Alert window centers itself in the
parent window. Use the value null or undefined to specify the _root Timeline. The parent
window must inherit from the UIComponent class. You can register the parent window with
mx.core.View to cause it to inherit from UIComponent. This parameter is optional.

clickHandler A handler for the click events broadcast when the buttons are clicked. In
addition to the standard click event object properties, there is an additional detail property,
which contains the value of the button flag that was clicked (Alert.OK, Alert.CANCEL,
Alert.YES, Alert.NO). This handler may be a function or an object. For more information, see
Chapter 2, “Using component event listeners,” on page 22.

icon A string that is the linkage identifier of a symbol in the library to use as an icon that is
displayed to the left of the text. This parameter is optional.

defaultButton Indicates which button is clicked when a user presses Enter (Windows) or
Return (Macintosh). This parameter can be one of the following values:

• Alert.OK
• Alert.CANCEL
• Alert.YES
• Alert.NO

Returns

The instance of the Alert class that is created.

Description

Method (class); a class (static) method that displays an Alert window with a message, an optional
title, optional buttons, and an optional icon. The title of the Alert appears at the top of the
window and is aligned to the left. The icon appears to the left of the message text. The buttons
appear centered below the message text and the icon.
Alert component (Flash Professional only) 65

Example

The following code is a simple example of a modal Alert window with an OK button:
Alert.show("Hello, world!");

The following code defines a click handler that sends a message to the Output panel about which
button was clicked:
myClickHandler = function(evt){

trace (evt.detail + "was clicked");
}
Alert.show("This is a test of errors", "Error", Alert.OK | Alert.CANCEL, this,

myClickHandler);

Note: The event object’s detail property returns a number to represent each button. The OK buttons
is 4, the cancel button is 8, the yes button is 1, and the no button is 2.

Alert.yesLabel

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Alert.yesLabel

Description

Property (class); a class property (static) that indicates the label text on the Yes button.

Example

The following example sets the OK button’s label to “da”:
Alert.yesLabel = "da";

Button component

The Button component is a resizable rectangular user interface button. You can add a custom
icon to a button. You can also change the behavior of a button from push to toggle. A toggle
button stays pressed when clicked and returns to its up state when clicked again.

A button can be enabled or disabled in an application. In the disabled state, a button doesn’t
receive mouse or keyboard input. An enabled button receives focus if you click it or tab to it.
When a Button instance has focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

Key Description

Shift + Tab Moves focus to the previous object.

Spacebar Presses or releases the component and triggers the click event.

Tab Moves focus to the next object.
66 Chapter 4: Components Dictionary

A live preview of each Button instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. However, in the live preview a custom
icon is represented on the Stage by a gray square.

When you add the Button component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to enable
accessibility for the Button component:
mx.accessibility.ButtonAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the Button component

A button is a fundamental part of any form or web application. You can use buttons wherever you
want a user to initiate an event. For example, most forms have a “Submit” button. You could also
add “Previous” and “Next” buttons to a presentation.

To add an icon to a button, you need to select or create a movie clip or graphic symbol to use as
the icon. The symbol should be registered at 0, 0 for appropriate layout on the button. Select the
icon symbol in the Library panel, open the Linkage dialog from the Options menu, and enter a
linkage identifier. This is the value to enter for the icon parameter in the Property inspector
or Component Inspector panel. You can also enter this value for the Button.icon
ActionScript property.
Note: If an icon is larger than the button it will extend beyond the button’s borders.

Button parameters

The following are authoring parameters that you can set for each Button component instance in
the Property inspector or in the Component Inspector panel:

label sets the value of the text on the button; the default value is Button.

icon adds a custom icon to the button. The value is the linkage identifier of a movie clip or
graphic symbol in the library; there is no default value.

toggle turns the button into a toggle switch. If true, the button remains in the down state when
pressed and returns to the up state when pressed again. If false, the button behaves like a normal
push button; the default value is false.

selected if the toggle parameter is true, this parameter specifies whether the button is pressed
(true) or released (false). The default value is false.

labelPlacement orients the label text on the button in relation to the icon. This parameter can be
one of four values: left, right, top, or bottom; the default value is right. For more information, see
Button.labelPlacement.

You can write ActionScript to control these and additional options for Button components using
its properties, methods, and events. For more information, see Button class.

Creating an application with the Button component

The following procedure explains how to add a Button component to an application while
authoring. In this example, the button is a Help button with a custom icon that will open a Help
system when a user presses it.
Button component 67

To create an application with the Button component, do the following:

1 Drag a Button component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name helpBtn.
3 In the Property inspector, do the following:

■ Enter Help for the label parameter.
■ Enter HelpIcon for the icon parameter.

To use an icon, there must be a movie clip or graphic symbol in the library with a linkage
identifier to use as the icon parameter. In this example, the linkage identifier is HelpIcon.

■ Set the toggle property to true.
4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

clippyListener = new Object();
clippyListener.click = function (evt){

clippyHelper.enabled = evt.target.selected;
}
helpBtn.addEventListener("click", clippyListener);

The last line of code adds a click event handler to the helpBtn instance. The handler enables
and disables the clippyHelper instance, which could be a Help panel of some sort.

Customizing the Button component

You can transform a Button component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the Button class (see Button
class). Resizing the button does not change the size of the icon or label.

The bounding box of a Button instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label clips to fit.

If an icon is larger than the button it will extend beyond the button’s borders.

Using styles with the Button component

You can set style properties to change the appearance of a button instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”
on page 27.

A Button component supports the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that doesn’t inherit its
value. Possible values are "haloGreen", "haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.
68 Chapter 4: Components Dictionary

Using skins with the Button component

The Button component uses the ActionScript drawing API to draw the button states. To skin the
Button component while authoring, modify the ActionScript code within the ButtonSkin.as file
located in the First Run\Classes\mx\skins\halo folder.

If you use the UIObject.createClassObject() method to create a Button component instance
dynamically (at runtime), you can skin it dynamically. To skin a component at runtime, set the
skin properties of the initObject parameter that is passed to the createClassObject()
method. These skin properties set the names of the symbols to use as the button’s states, both with
and without an icon.

If you set the icon parameter while authoring or the icon ActionScript property at runtime, the
same linkage identifier is assigned to three icon states: falseUpIcon, falseDownIcon, and
trueUpIcon. If you want to designate a unique icon for any of the eight icon states (if, for
example, you want a different icon to appear when a user presses a button) you must set
properties of the initObject parameter that is passed to the createClassObject() method.

The following code creates an object called initObject to use as the initObject parameter and
sets skin properties to new symbol linkage identifiers. The last line of code calls the
createClassObject() method to create a new instance of the Button class with the properties
passed in the initObject parameter, as follows:
var initObject = new Object();
initObject.falseUpIcon = "MyFalseUpIcon";
initObject.falseDownIcon = "MyFalseDownIcon";
initObject.trueUpIcon = "MyTrueUpIcon";
createClassObject(mx.controls.Button, "ButtonInstance", 0, initObject);

For more information, see “About skinning components” on page 36, and
UIObject.createClassObject().

If a button is enabled, it displays its over state when the pointer moves over it. The button receives
input focus and displays its down state when it’s clicked. The button returns to its over state when
the mouse is released. If the pointer moves off the button while the mouse is pressed, the button
returns to its original state and it retains input focus. If the toggle parameter is set to true, the state
of the button does not change until the mouse is released over it.

If a button is disabled it displays its disabled state, regardless of user interaction.

A Button component uses the following skin properties:

fontStyle The font style: either "normal", or "italic".

fontWeight The font weight: either "normal", or "bold".

Property Description

falseUpSkin The up state. The default value is RectBorder.

falseDownSkin The pressed state. The default value is RectBorder.

falseOverSkin The over state. The default value is RectBorder.

falseDisabledSkin The disabled state. The default value is RectBorder.

Style Description
Button component 69

Button class

Inheritance UIObject > UIComponent > SimpleButton > Button

ActionScript Class Name mx.controls.Button

The properties of the Button class allow you to add an icon to a button, create a text label, or
indicate whether the button acts as a push button, or a toggle switch at runtime.

Setting a property of the Button class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component Inspector panel.

The Button component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.Button.version);

Note: The following code returns undefined: trace(myButtonInstance.version);.

The Button component class is different from the ActionScript built-in Button object.

Method summary for the Button class

Inherits all methods from UIObject and UIComponent.

trueUpSkin The toggled state. The default value is RectBorder.

trueDownSkin The pressed-toggled state. The default value is RectBorder.

trueOverSkin The over-toggled state. The default value is RectBorder.

trueDisabledSkin The disabled-toggled state. The default value is RectBorder.

falseUpIcon The icon up state. The default value is undefined.

falseDownIcon The icon pressed state. The default value is undefined.

falseOverIcon The icon over state. The default value is undefined.

falseDisabledIcon The icon disabled state. The default value is undefined.

trueUpIcon The icon toggled state. The default value is undefined.

trueOverIcon The icon over-toggled state. The default value is undefined.

trueDownIcon The icon pressed-toggled state. The default value is undefined.

trueDisabledIcon The icon disabled-toggled state. The default value is undefined.

Property Description
70 Chapter 4: Components Dictionary

Property summary for the Button class

Inherits all properties from UIObject and UIComponent.

Event summary for the Button class

Inherits all events from UIObject and UIComponent.

Button.click

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
buttonInstance.addEventListener("click", listenerObject)

Method Description

SimpleButton.emphasized Indicates whether a button has the look of a default
push button.

SimpleButton.emphasizedStyleDeclaration The style declaration when the emphasized property
is set to true.

Button.icon Specifies an icon for a button instance.

Button.label Specifies the text that appears within a button.

Button.labelPlacement Specifies the orientation of the label text in relation to
an icon.

Button.selected When the toggle property is true, specifies whether
the button is pressed (true) or not (false).

Button.toggle Indicates whether the button behaves as a
toggle switch.

Method Description

Button.click Broadcast when the mouse is pressed over a button
instance or when the Spacebar is pressed.
Button component 71

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the button or
if the button has focus and the Spacebar is pressed.

The first usage example uses an on() handler and must be attached directly to a Button
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Button
component instance myButtonComponent, sends “_level0.myButtonComponent” to the
Output panel:
on(click){

trace(this);
}

Please note that this differs from the behavior of this when used inside an on() handler attached
to a regular Flash button symbol. When this is used inside an on() handler attached to a button
symbol, it refers to the Timeline that contains the button. For example, the following code,
attached to the button symbol instance myButton, sends “_level0” to the Output panel:
on(release){

trace(this);
}

Note: The built-in ActionScript Button object doesn’t have a click event; the closest event
is release.

The second usage example uses a dispatcher/listener event model. A component instance
(buttonInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener() method (See
UIEventDispatcher.addEventListener()) on the component instance that broadcasts the
event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called buttonInstance is clicked. The first line of code labels the button. The second line
specifies that the button act like a toggle switch. The third line creates a listener object called
form. The fourth line defines a function for the click event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function (in
this example, eventObj), to generate a message. The target property of an event object is the
component that generated the event (in this example, buttonInstance). The Button.selected
property is accessed from the event object’s target property. The last line calls the
addEventListener() method from buttonInstance and passes it the click event and the
form listener object as parameters, as in the following:
buttonInstance.label = "Click Test"
buttonInstance.toggle = true;
form = new Object();
72 Chapter 4: Components Dictionary

form.click = function(eventObj){
trace("The selected property has changed to " + eventObj.target.selected);

}
buttonInstance.addEventListener("click", form);

The following code also sends a message to the Output panel when buttonInstance is clicked.
The on() handler must be attached directly to buttonInstance, as in the following:
on(click){

trace("button component was clicked");
}

See also

UIEventDispatcher.addEventListener()

SimpleButton.emphasized

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

buttonInstance.emphasized

Description

Property; indicates whether the button is in an emphasized state (true) or not (false). The
emphasized state is equivalent to the looks if a default push button. In general, use the
FocusManager.defaultPushButton property instead of setting the emphasized property
directly. The default value is false.

The emphasized property is a static property of the SimpleButton class. Therefore, you must
access it directly from SimpleButton, as in the following:
SimpleButton.emphasizedStyleDeclaration = "foo";

If you aren’t using FocusManager.defaultPushButton, you might just want to set a button to
the emphasized state, or use the emphasized state to change text from one color to another. The
following example, sets the emphasized property for the button instance, myButton:
_global.styles.foo = new CSSStyleDeclaration();
_global.styles.foo.color = 0xFF0000;
SimpleButton.emphasizedStyleDeclaration = "foo";
myButton.emphasized = true;

See also

SimpleButton.emphasizedStyleDeclaration
Button component 73

SimpleButton.emphasizedStyleDeclaration

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

buttonInstance.emphasizedStyleDeclataion

Description

Property; a string indicating the style declaration that formats a button when the emphasized
property is set to true.

See also

SimpleButton.emphasized

Button.icon

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

buttonInstance.icon

Description

Property; A string that specifies the linkage identifier of a symbol in the library to be used as an
icon for a button instance. The icon can be a movie clip symbol or a graphic symbol with an
upper left registration point. You must resize the button if the icon is too large to fit; neither the
button nor the icon will resize automatically. If an icon is larger than a button, the icon will
extend over the borders of the button.

To create a custom icon, create a movie clip or graphic symbol. Select the symbol on the Stage in
symbol-editing mode and enter 0 in both the X and Y boxes in the Property inspector. In the
Library panel, select the movie clip and select Linkage from the Options menu. Select Export for
ActionScript, and enter an identifier in the Identifier text box.

The default value is an empty string (""), which indicates that there is no icon.

Use the labelPlacement property to set the position of the icon in relation to the button.

Example

The following code assigns the movie clip from the Library panel with the linkage identifier
happiness to the Button instance as an icon:
myButton.icon = "happiness"
74 Chapter 4: Components Dictionary

See also

Button.labelPlacement

Button.label

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

buttonInstance.label

Description

Property; specifies the text label for a button instance. By default, the label appears centered on
the button. Calling this method overrides the label authoring parameter specified in the Property
inspector or the Component Inspector panel. The default value is "Button".

Example

The following code sets the label to “Remove from list”:
buttonInstance.label = "Remove from list";

See also

Button.labelPlacement

Button.labelPlacement

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

buttonInstance.labelPlacement

Description

Property; sets the position of the label in relation to the icon. The default value is "right". The
following are the four possible values, the icon and label are always centered vertically and
horizontally within the bounding area of the button:

• "right" The label is set to the right of the icon.
• "left" The label is set to the left of the icon.
• "bottom" The label is set below the icon.
• "top" The label is placed below the icon.
Button component 75

Example

The following code sets the label to the left of the icon. The second line of the code sends the
value of the labelPlacement property to the Output panel:
iconInstance.labelPlacement = "left";
trace(iconInstance.labelPlacement);

Button.selected

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

buttonInstance.selected

Description

Property; a Boolean value specifying whether a button is pressed (true) or not (false). The value
of the toggle property must be true to set the selected property to true. If the toggle
property is false, assigning a value of true to the selected property has no effect. The default
value is false.

The click event is not triggered when the value of the selected property changes with
ActionScript. It is triggered when a user interacts with the button.

Example

In the following example, the toggle property is set to true and the selected property is set to
true which puts the button in a pressed state. The trace action sends the value true to the
Output panel:
ButtonInstance.toggle = true; // toggle needs to be true in order to set the

selected property
ButtonInstance.selected = true; //displays the toggled state of the button
trace(ButtonInstance.selected); //traces- true

See also

Button.toggle

Button.toggle

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

buttonInstance.toggle
76 Chapter 4: Components Dictionary

Description

Property; a Boolean value specifying whether a button acts like a toggle switch (true) or a push
button (false); the default value is false. When a toggle switch is pressed, it stays in a pressed
state until it’s clicked again.

Example

The following code sets the toggle property to true, which makes the myButton instance behave
like a toggle switch:
myButton.toggle = true;

CellRenderer API

The CellRenderer API is a set of properties and methods that the List-based components (List,
DataGrid, Tree, and Menu) use to manipulate and display custom cell content for each of their
rows. This customized cell can contain a prebuilt component, such as a CheckBox, or any class
you create.

Understanding the List class

To use the CellRenderer API it is important to have an advanced understanding of the List class.
The DataGrid, Tree, and Menu components are extension of the List class, so understanding the
List class allows you to understand them as well.
Note: A component is a class but a class isn’t necessarily a component.

About the composition of the List class

List classes are composed of rows. These rows display rollover and selection highlights, are used as
hit states for row selection, and play a vital part in scrolling. Aside from selection highlights and
icons (such as the node icons and expander arrows of a Tree component), a row consists of one
cell (or, in the case of the DataGrid, many cells). In the default case, these cells are TextField
objects that implement the CellRenderer API. However, you can tell a List to use a different class
of component as the cell for each row. The only requirement is that the class must implement the
CellRenderer API, which the List uses for communicating with the cell.

The stacking order of a row in a List or DataGrid component.

Note: If a cell has button event handlers (onPress and so on) the background hit area may not
receive input necessary to trigger the events.
CellRenderer API 77

About the scrolling behavior of the List class

List classes use a fairly complex algorithm to scroll. A list only lays out as many rows as it can
display at once; items beyond the value of the rowCount property don't get rows at all. When the
list scrolls, it moves all the rows up or down (depending on the scrolling direction). The list then
recycles the rows that are scrolled out of view; it reinitializes them and uses them for the new rows
being scrolled into view by setting the value of the old row to the new item in the view and
moving the old row to where the new item is scrolled into view.

Because of this scrolling behavior, you cannot expect a cell to be used for only one value. Because
rows are recycled, it is the responsibility of the cell renderer to know how to completely reset its
state when it is set to a new value. For example, if your cell renderer creates an icon to display one
item, it might need to remove that icon when another item is rendered with it. Assume your cell
renderer is a container that will be filled with numerous item values over time, and it has to know
how to completely change itself from displaying one value to displaying another. In fact, your cell
should even know how to properly render undefined items, which might mean removing all old
content in the cell.

Using the CellRenderer API

You must write a class with four methods (CellRenderer.getPreferredHeight(),
CellRenderer.getPreferredWidth(), CellRenderer.setSize(),
CellRenderer.setValue()) that the List-based component uses to communicate with the cell.

There are two methods and a property (CellRenderer.getCellIndex(),
CellRenderer.getDataLabel(), and CellRenderer.listOwner) that are given automatically
to a cell to allow it to communicate with the List-based component. For example, say a cell has a
check box within it that causes a row to be selected when it’s clicked. The cell renderer needs a
reference to the List-based component that contains it in order to call the selectedIndex
property of the List-based component. Also, the cell needs to know which item index it is
currently rendering so that it can set selectedIndex to the correct number; the cell can use
CellRenderer.listOwner and CellRenderer.getCellIndex() to do so. You do not need to
implement these APIs; the cell receives them automatically when it is placed inside the
List-based component.

Methods to implement for the CellRenderer API

You must write a class with the following methods so that the List, DataGrid, Tree, or Menu, can
communicate with the cell:

Name Description

CellRenderer.getPreferredHeight() Returns the preferred height of a cell.

CellRenderer.getPreferredWidth() Returns the preferred width of a cell.

CellRenderer.setSize() Sets the width and height of a cell.

CellRenderer.setValue() Sets the content to be displayed in the cell.
78 Chapter 4: Components Dictionary

Methods provided by the CellRenderer API

The following are the methods that the List, DataGrid, Tree, and Menu give to the cell when it is
created within the component. You do not need to implement these methods.

Properties provided by the CellRenderer API

The following is the property that the List, DataGrid, Tree, and Menu give to the cell when it is
created within the component. You do not need to implement this property.

CellRenderer.getDataLabel()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.getDataLabel()

Parameters

None.

Returns

A string.

Description

Method; returns a string containing the name of the cell renderer’s data field.

Example

The following code helps the cell discover that it’s rendering the data field "Price". The variable
p is now equal to "Price":
var p = getDataLabel();

Name Description

CellRenderer.getDataLabel() Returns a string containing the name of the cell renderer’s
data field.

CellRenderer.getCellIndex() Returns an object with two fields, columnIndex and rowIndex,
that indicate the position of the cell.

Name Description

CellRenderer.listOwner A reference to the List that contains the cell.
CellRenderer API 79

CellRenderer.getCellIndex()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.getCellIndex()

Parameters

None.

Returns

An object with two fields: columnIndex and itemIndex.

Description

Method; returns an object with two fields, columnIndex and itemIndex, that locate the cell in
the grid. Each field is an integer that indicates a cell’s column position and item position. For any
components other than the DataGrid, the value of columnIndex is always 0.

Example

This example edits a DataGrid’s dataProvider from within a cell:
var index = getCellIndex();
var colName = listOwner.getColumnAt(index.columnIndex).columnName;
listOwner.dataProvider.editField(index.itemIndex, colName, someVal);

CellRenderer.getPreferredHeight()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.getPreferredHeight()

Parameters

None.

Returns

The correct height for the cell.

Description

Method; the preferred height of a cell. This is especially important for getting the right height of
text within the cell. If you set this value higher than the rowHeight property of the component,
cells will bleed above and below the rows.
80 Chapter 4: Components Dictionary

Example

This example returns the value 20, which indicates that the cell wants to be 20 pixels high:
function getPreferredHeight(Void) :Number
{
 return 20;
}

CellRenderer.getPreferredWidth()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.getPreferredWidth()

Parameters

None.

Returns

Nothing.

Description

Method; the preferred width of a cell. If you specify more width than the component has, the cell
may be cut off.

Example

This example returns the value 3, which indicates that the cell wants to be three times as big as the
length of the string it is rendering:
function getPreferredHeight(Void) : Number
{
 return myString.length*3;
}

CellRenderer.listOwner

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.listOwnner

Description

Property; a reference to the list that owns the cell. That list can be a DataGrid, Tree, or List.
CellRenderer API 81

Example

This example finds the list’s selected item in a cell:
var s = listOwner.selectedItem;

CellRenderer.setSize()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.setSize(width, height)

Parameters

width A number that indicates the width at which to lay out the component.

height A number that indicates the height at which to lay out the component.

Returns

Nothing.

Description

Method; allows the list to tell its cells at what size they should lay themselves out. The
CellRenderer should do layout so that it fits within the area described, or visual display from the
cell may bleed into other parts of the list and appear broken.

Example

This example sizes an image within the cell to fit within the bounds specified by the list:
function setSize(w:Number, h:Number) : Void
{
 image._width = w-2;
 image._height = w-2;
 image._x = image._y = 1;
}

CellRenderer.setValue()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.setValue(suggested, item, selected)
82 Chapter 4: Components Dictionary

Parameters

suggested A value to be used for the cell renderer’s text, if any is needed.

item An object that is the entire item to be rendered. The cell renderer can use any properties of
this object it wants for rendering.

selected A Boolean value that indicates whether the row the cell is on is selected (true) or
not (false).

Returns

Nothing.

Description

Method; takes the values given and creates a representation of them within the cell. This clears up
any difference in what was displayed in the cell and what needs to be displayed in the cell for the
new item. It is important to remember that any cell could display many values during its time in
the list. This is the most important method in any cell renderer.

Example

This example loads an image in a loader component within the cell, depending on the
value passed:
function setValue(suggested, item, selected) : Void
{
 //clear the loader
 loader.contentPath = undefined;
 // the list has URLs for different images in its data provider
 if (suggested!=undefined)
 loader.contentPath = suggested;
}

CheckBox component

A check box is a square box that can be either selected or deselected. When it is selected, a check
appears in the box. You can add a text label to a check box and place it to the left, right, top,
or bottom.

A check box can be enabled or disabled in an application. If a check box is enabled and a user
clicks it or its label, the check box receives input focus and displays its pressed appearance. If a
user moves the pointer outside the bounding area of a check box or its label while pressing the
mouse button, the component’s appearance returns to its original state and it retains input focus.
The state of a check box does not change until the mouse is released over the component.
Additionally, the checkbox has two disabled states, selected and deselected, which do not allow
mouse or keyboard interaction.

If a check box is disabled it displays its disabled appearance, regardless of user interaction. In the
disabled state, a button doesn’t receive mouse or keyboard input.
CheckBox component 83

A CheckBox instance receives focus if a user clicks it or tabs to it. When a CheckBox instance has
focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

A live preview of each CheckBox instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring.

When you add the CheckBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.CheckBoxAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the CheckBox component

A check box is a fundamental part of any form or web application. You can use check boxes
wherever you need to gather a set of true or false values that aren’t mutually exclusive. For
example, a form collecting personal information about a customer could have a list of hobbies for
the customer to select; each hobby would have a check box beside it.

CheckBox parameters

The following are authoring parameters that you can set for each CheckBox component instance
in the Property inspector or in the Component Inspector panel:

label sets the value of the text on the check box; the default value is defaultValue.

selected sets the initial value of the check box to checked (true) or unchecked (false).

labelPlacement orients the label text on the check box. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
CheckBox.labelPlacement.

You can write ActionScript to control these and additional options for CheckBox components
using its properties, methods, and events. For more information, see CheckBox class.

Creating an application with the CheckBox component

The following procedure explains how to add a CheckBox component to an application while
authoring. The following example is a form for an online dating application. The form is a query
that searches for possible dating matches for the customer. The query form must have a check box
labeled "Restrict Age" permitting the customer to restrict his or her search to a specified age
group. When the "Restrict Age" check box is selected, the customer can then enter the minimum
and maximum ages into two text fields that are enabled only when "Restrict Age" is selected.

Key Description

Shift + Tab Moves focus to the previous element.

Spacebar Selects or deselects the component and triggers the click event.

Tab Moves focus to the next element.
84 Chapter 4: Components Dictionary

To create an application with the CheckBox component, do the following:

1 Drag two TextInput components from the Components panel to the Stage.
2 In the Property inspector, enter the instance names minimumAge and maximumAge.
3 Drag a CheckBox component from the Components panel to the Stage.
4 In the Property inspector, do the following:

■ Enter restrictAge for the instance name.
■ Enter Restrict Age for the label parameter.

5 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
restrictAgeListener = new Object();
restrictAgeListener.click = function (evt){

minimumAge.enabled = evt.target.selected;
maximumAge.enabled = evt.target.selected;

}
restrictAge.addEventListener("click", restrictAgeListener);

This code creates a click event handler that enables and disables the minimumAge and
maximumAge text field components, that have already been placed on Stage. For more
information about the click event, see CheckBox.click. For more information about the
TextInput component, see “TextInput component” on page 516.

Customizing the CheckBox component

You can transform a CheckBox component horizontally and vertically both while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method
(UIObject.setSize()) or any applicable properties and methods of the CheckBox class (see
CheckBox class). Resizing the check box does not change the size of the label or the check box
icon; it only changes the size of the bounding box.

The bounding box of a CheckBox instance is invisible and also designates the hit area for the
instance. If you increase the size of the instance, you also increase the size of the hit area. If the
bounding box is too small to fit the label, the label clips to fit.

Using styles with the CheckBox component

You can set style properties to change the appearance of a CheckBox instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.

A CheckBox component supports the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.
CheckBox component 85

Using skins with the CheckBox component

The CheckBox component uses symbols in the Library panel to represent the button states. To
skin the CheckBox component while authoring, modify symbols in the Library panel. The
CheckBox component skins are located in the Flash UI Components 2/Themes/MMDefault/
CheckBox Assets/states folder in the library of either the HaloTheme.fla file or the
SampleTheme.fla file. For more information, see “About skinning components” on page 36.

A CheckBox component uses the following skin properties:

CheckBox class

Inheritance UIObject > UIComponent > SimpleButton > Button > CheckBox

ActionScript Class Name mx.controls.CheckBox

The properties of the CheckBox class allow you to create a text label and position it to the left,
right, top, or bottom of a check box at runtime.

Setting a property of the CheckBox class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The CheckBox component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.CheckBox.version);

Note: The following code returns undefined: trace(myCheckBoxInstance.version);.

fontSize The point size for the font.

fontStyle The font style: either "normal", or "italic".

fontWeight The font weight: either "normal", or "bold".

textDecoration The text decoration: either "none", or "underline".

Property Description

falseUpSkin The up state. Default is RectBorder.

falseDownSkin The pressed state. Default is RectBorder.

falseOverSkin The over state. Default is RectBorder.

falseDisabledSkin The disabled state. Default is RectBorder.

trueUpSkin The toggled state. Default is RectBorder.

trueDownSkin The pressed-toggled state. Default is RectBorder.

trueOverSkin The over-toggled state. Default is RectBorder.

trueDisabledSkin The disabled-toggled state. Default is RectBorder.

Style Description
86 Chapter 4: Components Dictionary

Method summary for the CheckBox class

Inherits all methods from UIObject and UIComponent.

Property summary for the CheckBox class

Inherits all properties from UIObject and UIComponent.

Event summary for the CheckBox class

Inherits all events from UIObject and UIComponent.

CheckBox.click

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
checkBoxInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the check box
or if the check box has focus and the Spacebar is pressed.

Property Description

CheckBox.label Specifies the text that appears next to a check box.

CheckBox.labelPlacement Specifies the orientation of the label text in relation to a check box.

CheckBox.selected Specifies whether the check box is selected (true) or deselected (false).

Event Description

CheckBox.click Triggered when the mouse is pressed over a button instance.
CheckBox component 87

The first usage example uses an on() handler and must be attached directly to a CheckBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the check box
myCheckBox, sends “_level0.myCheckBox” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(checkBoxInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener() method (see
UIEventDispatcher.addEventListener()) on the component instance that broadcasts the
event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
button called checkBoxInstance is clicked. The first line of code creates a listener object called
form. The second line defines a function for the click event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function
(in this example, eventObj) to generate a message. The target property of an event object is the
component that generated the event (in this example, checkBoxInstance). The
CheckBox.selected property is accessed from the event object’s target property. The last line
calls the addEventListener() method from checkBoxInstance and passes it the click event
and the form listener object as parameters, as in the following:
form = new Object();
form.click = function(eventObj){

trace("The selected property has changed to " + eventObj.target.selected);
}
checkBoxInstance.addEventListener("click", form);

The following code also sends a message to the Output panel when checkBoxInstance is
clicked. The on() handler must be attached directly to checkBoxInstance, as in the following:
on(click){

trace("check box component was clicked");
}

See also

UIEventDispatcher.addEventListener()
88 Chapter 4: Components Dictionary

CheckBox.label

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

checkBoxInstance.label

Description

Property; indicates the text label for the check box. By default, the label appears to the right
of the check box. Setting this property overrides the label parameter specified in the clip
parameters panel.

Example

The following code sets the text that appears beside the CheckBox component and sends the
value to the Output panel:
checkBox.label = "Remove from list";
trace(checkBox.label)

See also

CheckBox.labelPlacement

CheckBox.labelPlacement

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

checkBoxInstance.labelPlacement

Description

Property; a string that indicates the position of the label in relation to the check box. The
following are the four possible values (the dotted lines represent the bounding area of the
component; they are invisible in a document):

• "right" The check box is pinned to the upper left corner of the bounding area. The label is
set to the right of the check box. This is the default value.

• "left" The check box is pinned to the top right corner of the bounding area. The label is set
to the left of the check box.
CheckBox component 89

• "bottom" The label is set below the check box. The check box and label grouping are
centered horizontally and vertically.

• "top" The label is placed below the check box. The check box and label grouping are
centered horizontally and vertically.

You can change the bounding area of component while authoring by using the Transform
command or at runtime using the UIObject.setSize() property. For more information, see
“Customizing the CheckBox component” on page 85.

Example

The following example sets the placement of the label to the left of the check box:
checkBox_mc.labelPlacement = "left";

See also

CheckBox.label

CheckBox.selected

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

checkBoxInstance.selected

Description

Property; a Boolean value that selects (true) or deselects (false) the check box.

Example

The following example selects the instance checkbox1:
checkbox1.selected = true;
90 Chapter 4: Components Dictionary

ComboBox component

A combo box can be static or editable. A static combo box allows a user to make a single selection
from a drop-down list. An editable combo box allows a user to enter text directly into a text field
at the top of the list, as well as selecting an item from a drop-down list. If the drop-down list hits
the bottom of the document, it opens up instead of down. The combo box is composed of three
subcomponents: a Button component, a TextInput component, and a List component.

When a selection is made in the list, the label of the selection is copied to the text field at the top
of the combo box. It doesn’t matter if the selection is made with the mouse or the keyboard.

A ComboBox component receives focus if you click the text box or the button. When a
ComboBox component has focus and is editable, all keystrokes go to the text box and are handled
according to the rules of the TextInput component (see “TextInput component” on page 516),
with the exception of the following keys:

When a ComboBox component has focus and is static, alphanumeric keystrokes move the
selection up and down the drop-down list to the next item with the same first character. You can
also use the following keys to control a static combo box:

Key Description

Control+Down Opens the drop-down list and gives it focus.

Shift +Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Key Description

Control+Down Opens the drop-down list and gives it focus.

Control+Up Closes the drop-down list, if open in the Stand alone and Browser versions of
the Flash Player.

Down Selection moves down one item.

End Selection moves to the bottom of the list.

Escape Closes the drop-down list and returns focus to the combo box in Test Movie
mode.

Enter Closes the drop-down list and returns focus to the combo box.

Home Selection moves to the top of the list.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Shift +Tab Moves focus to the previous object.

Tab Moves focus to the next object.
ComboBox component 91

When the drop-down list of a combo box has focus, alphanumeric keystrokes move the selection
up and down the drop-down list to the next item with the same first character. You can also use
the following keys to control a drop-down list:

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items 0-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

A live preview of each ComboBox component instance on the Stage reflects changes made to
parameters in the Property inspector or Component Inspector panel while authoring. However,
the drop-down list does not open in the live preview and the first item displays as the
selected item.

When you add the ComboBox component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.ComboBoxAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Key Description

Control+Up If the drop-down list is open, focus returns to the text box and the drop-down list
closes in the Stand alone and Browser versions of the Flash Player.

Down Selection moves down one item.

End The insertion point moves to the end of the text box.

Enter If the drop-down list is open, focus returns to the text box and the drop-down list
closes.

Escape If the drop-down list is open, focus returns to the text box and the drop-down list
closes in Test Movie mode.

Home The insertion point moves to the beginning of the text box.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Tab Moves focus to the next object.

Shift-End Selects the text from the insertion point to the End position.

Shift-Home Selects the text from the insertion point to the Home position.

Shift-Tab Moves focus to the previous object.

Up Selection moves up one item.
92 Chapter 4: Components Dictionary

Using the ComboBox component

You can use a ComboBox component in any form or application that requires a single choice
from a list. For example, you could provide a drop-down list of states in a customer address form.
You can use an editable combo box for more complex scenarios. For example, in a driving
directions application you could use an editable combo box for a user to enter her origin and
destination addresses. The drop-down list would contain her previously entered addresses.

ComboBox parameters

The following are authoring parameters that you can set for each ComboBox component instance
in the Property inspector or in the Component Inspector panel:

editable determines if the ComboBox component is editable (true) or only selectable (false). The
default value is false.

labels populates the ComboBox component with an array of text values.

data associates a data value with each item in the ComboBox component. The data parameter is
an array.

rowCount sets the maximum number of items that can be displayed at one time without using a
scroll bar. The default value is 5.

You can write ActionScript to set additional options for ComboBox instances using the methods,
properties, and events of the ComboBox class. For more information, see ComboBox class.

Creating an application with the ComboBox component

The following procedure explains how to add a ComboBox component to an application
while authoring. In this example, the combo box presents a list of cities to select from in its
drop-down list.

To create an application with the ComboBox component, do the following:

1 Drag a ComboBox component from the Components panel to the Stage.
2 Select the Transform tool and resize the component on the Stage.

The combo box can only be resized on the Stage while authoring. Typically, you would only
change the width of a combo box to fit its entries.

3 Select the combo box and, in the Property inspector, enter the instance name comboBox.
4 In the Component Inspector panel or the Property inspector, do the following:

■ Enter Minneapolis, Portland, and Keene for the label parameter. Double-click the label
parameter field to open the Values dialog. Then click the plus sign to add items.

■ Enter MN.swf, OR.swf, and NH.swf for the data parameter.
These are imaginary SWF files that, for example, you could load when a user selects a city
from the combo box.

5 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
form = new Object();
form.change = function (evt){

trace(evt.target.selectedItem.label);
}
comboBox.addEventListener("change", form);

The last line of code adds a change event handler to the ComboBox instance. For more
information, see ComboBox.change.
ComboBox component 93

Customizing the ComboBox component

You can transform a ComboBox component horizontally and vertically while authoring. While
authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands.

If text is too long to fit in the combo box, the text clips to fit. You must resize the combo box
while authoring to fit the label text.

In editable combo boxes, only the button is the hit area—not the text box. For static combo
boxes, the button and the text box constitute the hit area.

Using styles with the ComboBox component

You can set style properties to change the appearance of a ComboBox component. If the name of
a style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.

The combo box has two unique styles. Other styles are passed to the button, text box, and
drop-down list of the combo box through those individual components, as follows:

• The button is a Button instance and uses its styles. (See “Using styles with the Button
component” on page 68.)

• The text is a TextInput instance and uses its styles. (See “Using styles with the TextInput
component” on page 518.)

• The drop-down list is an List instance and uses its styles. (See “Using styles with the List
component” on page 289.)

A ComboBox component uses the following Halo styles:

Style Description

themeColor The background of a component. This is the only color style that
doesn’t inherit its value. Possible values are "haloGreen", "haloBlue",
and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style: either "normal", or "italic".

fontWeight The font weight: either "normal", or "bold".

textDecoration The text decoration: either "none", or "underline".

openDuration The number of milliseconds to open the drop-down list. The default
value is 250.

openEasing A reference to a tweening function that controls the drop-down list
animation. Defaults to sine in/out. For more equations, download a
list from Robert Penner’s website at www.robertpenner.com/easing/.
94 Chapter 4: Components Dictionary

http://www.robertpenner.com/easing/

Using skins with the ComboBox component

The ComboBox component uses symbols in the Library panel to represent the button states. The
ComboBox has skin variables for the down arrow. Other than that, it uses scroll bar and list skins.
To skin the ComboBox component while authoring, modify symbols in the Library panel and re-
export the component as a SWC. The CheckBox component skins are located in the Flash UI
Components 2/Themes/MMDefault/ComboBox Assets/states folder in the library of either the
HaloTheme.fla file or the SampleTheme.fla file. For more information, see “About skinning
components” on page 36.

A ComboBox component uses the following skin properties:

ComboBox class

Inheritance UIObject > UIComponent > ComboBase > ComboBox

ActionScript Class Name mx.controls.ComboBox

The ComboBox component combines three separate subcomponents: Button, TextInput, and
List. Most of the APIs of each subcomponent are available directly from ComboBox component
and are listed in the Method, Property, and Event tables for the ComboBox class.

The drop-down list in a combo box is provided either as an Array or as a DataProvider object. If
you use a DataProvider object, the list changes at runtime. The source of the ComboBox data can
be changed dynamically by switching to a new Array or DataProvider object.

Items in a combo box list are indexed by position, starting with the number 0. An item can be one
of the following:

• A primitive data type.
• An object that contains a label property and a data property.

Note: An object may use the ComboBox.labelFunction or ComboBox.labelField property to
determine the label property.

If the item is a primitive data type other than string, it is converted to a string. If an item is an
object, the label property must be a string and the data property can be any ActionScript value.

ComboBox component methods to which you supply items have two parameters, label and data,
that refer to the properties above. Methods that return an item return it as an Object.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.ComboBox.version);

Note: The following code returns undefined: trace(myComboBoxInstance.version);.

Property Description

ComboDownArrowDisabledName The down arrow’s disabled state. Default is RectBorder.

ComboDownArrowDownName The down arrow’s down state. Default is RectBorder.

ComboDownArrowUpName The down arrow’s up state. Default is RectBorder.

ComboDownArrowOverName The down arrow’s over state. Default is RectBorder.
ComboBox component 95

Method summary for the ComboBox class

Inherits all methods from UIObject and UIComponent.

Property summary for the ComboBox class

Inherits all properties from UIObject and UIComponent.

Property Description

ComboBox.addItem() Adds an item to the end of the list.

ComboBox.addItemAt() Adds an item to the end of the list at the specified index.

ComboBox.close() Closes the drop-down list.

ComboBox.getItemAt() Returns the item at the specified index.

ComboBox.open() Opens the drop-down list.

ComboBox.removeAll() Removes all items in the list.

ComboBox.removeItemAt() Removes an item from the list at the specified location.

ComboBox.replaceItemAt() Replaces an item in the list with another specified item.

Property Description

ComboBox.dataProvider The data model for the items in the list.

ComboBox.dropdown Returns a reference to the List component contained by the
combo box.

ComboBox.dropdownWidth The width of the drop-down list, in pixels.

ComboBox.editable Indicates whether or not a combo box is editable.

ComboBox.labelField Indicates which data field to use as the label for the drop-down list.

ComboBox.labelFunction Specifies a function to compute the label field for the drop-down list.

ComboBox.length Read-only. The length of the drop-down list.

ComboBox.rowCount The maximum number of list items to display at one time.

ComboBox.selectedIndex The index of the selected item in the drop-down list.

ComboBox.selectedItem The value of the selected item in the drop-down list.

ComboBox.text The string of the text in the text box.

ComboBox.textField A reference to the TextInput component in the combo box.

ComboBox.value The value of the text box (editable) or drop-down list (static).
96 Chapter 4: Components Dictionary

Event summary for the ComboBox class

Inherits all events from UIObject and UIComponent.

ComboBox.addItem()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
comboBoxInstance.addItem(label[, data])

Usage 2:
comboBoxInstance.addItem({label:label[, data:data]})

Usage 3:
comboBoxInstance.addItem(obj);

Parameters

label A string that indicates the label for the new item.

data The data for the item; can be of any data type. This parameter is optional.

obj An object with a label property and an optional data property.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

Event Description

ComboBox.change Broadcast when the value of the combo box changes as a result of
user interaction.

ComboBox.close Broadcast when the drop-down list begins to close.

ComboBox.enter Broadcast when the Enter key is pressed.

ComboBox.itemRollOut Broadcast when the pointer rolls off a drop-down list item.

ComboBox.itemRollOver Broadcast when a drop-down list item is rolled over.

ComboBox.open Broadcast when the drop-down list begins to open.

ComboBox.scroll Broadcast when the drop-down list is scrolled.
ComboBox component 97

Example

The following code adds an item to the myComboBox instance:
myComboBox.addItem("this is an Item");

ComboBox.addItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

comboBoxInstance.addItemAt(index, label[, data])

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

label A string that indicates the label for the new item.

data The data for the item; can be any data type. This parameter is optional.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list at the index specified by the index parameter.
Indices greater than ComboBox.length are ignored.

Example

The following code inserts an item at index 3, which is the fourth position in the combo box list
(0 is the first position):
myBox.addItemAt(3, "this is the fourth Item");

ComboBox.change

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

// your code here
}

98 Chapter 4: Components Dictionary

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the value of the combo box changes as a result of
user interaction.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener() method (see
UIEventDispatcher.addEventListener()) on the component instance that broadcasts the
event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.change = function(eventObj){

trace("Value changed to " + eventObj.target.value);
}
myCombo.addEventListener("change", form);

See also

UIEventDispatcher.addEventListener()
ComboBox component 99

ComboBox.close()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.close()

Parameters

None.

Returns

Nothing.

Description

Method; closes the drop-down list.

Example

The following example closes the drop-down list of the myBox combo box:
myBox.close();

See also

ComboBox.open()

ComboBox.close

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(close){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.close = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("close", listenerObject)
100 Chapter 4: Components Dictionary

Description

Event; broadcast to all registered listeners when the list of the combo box begins to retract.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, close) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example sends a message to the Output panel when the drop-down list begins to
close:
form.close = function(){

trace("The combo box has closed");
}
myCombo.addEventListener("close", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.dataProvider

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

comboBoxInstance.dataProvider

Description

Property; the data model for items viewed in a list. The value of this property can be an array
or any object that implements the DataProvider interface. The default value is []. This is a
property of the List component but can be accessed directly from an instance of the
ComboBox component.
ComboBox component 101

The List component, and other data-aware components, add methods to the Array object’s
prototype so that they conform to the DataProvider interface (see DataProvider.as for details).
Therefore, any array that exists at the same time as a list automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the model of a list, and can be used to
broadcast model changes to multiple components.

If the array contains objects, the labelField or labelFunction properties are accessed to
determine what parts of the item to display. The default value is "label", so if such a field exists,
it is chosen for display; if not, a comma separated list of all fields is displayed.
Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will lose the selection.

Any instance that implements the DataProvider interface is eligible as a data provider for a List.
This includes Flash Remoting RecordSets, Firefly DataSets, and so on.

Example

This example uses an array of strings to populate the drop-down list:
comboBox.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];

This example creates a data provider array and assigns it to the dataProvider property, as in the
following:
myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
 // these changes to the DataProvider will be broadcast to the list
 myDP.addItem({ label: accounts[i].name,
 data: accounts[i].accountID });
}

ComboBox.dropdown

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.dropdown

Description

Property (read-only); returns a reference to the List component contained by the combo box. The
List subcomponent isn’t instantiated in the combo box until it needs to be displayed. However,
when you access the dropdown property, the list is created.

See also

ComboBox.dropdownWidth
102 Chapter 4: Components Dictionary

ComboBox.dropdownWidth

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.change

Description

Property; the width limit in pixels of the drop-down list. The default value is the width of the
ComboBox component (the TextInput instance plus the SimpleButton instance).

Example

The following code sets the dropdownWidth to 150 pixels:
myComboBox.dropdownWidth = 150;

See also

ComboBox.dropdown

ComboBox.editable

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.editable

Description

Property; indicates whether the combo box is editable (true) or not (false). An editable combo
box can have values entered into the text box that do not show up in the drop-down list. If a
combo box is not editable, only values listed in the drop-down list can be entered into the text
box. The default value is false.

Setting a combo box to editable clears the combo box text field. It also sets the selected index (and
item) to undefined. To make a combo box editable and still retain the selected item, use the
following code:
var ix = myComboBox.selectedIndex;
myComboBox.editable = true; // clears the text field.
myComboBox.selectedIndex = ix; // copies the label back into the text field.

Example

The following code makes myComboBox editable:
myComboBox.editable = true;
ComboBox component 103

ComboBox.enter

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(enter){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.enter = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("enter", listenerObject)

Description

Event; broadcast to all registered listeners when the Enter key has been pressed in the text box.
This event is only broadcast from editable combo boxes. This is a TextInput event that is
broadcast from a combo box. For more information, see TextInput.enter.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(enter){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, enter) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
104 Chapter 4: Components Dictionary

Example

The following example sends a message to the Output panel when the drop-down list begins
to close:
form.enter = function(){

trace("The combo box enter event was triggered");
}
myCombo.addEventListener("enter", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.getItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

comboBoxInstance.getItemAt(index)

Parameters

index A number greater than or equal to 0, and less than ComboBox.length. The index of the
item to retrieve.

Returns

The indexed item object or value. The value is undefined if the index is out of range.

Description

Method; retrieves the item at a specified index.

Example

The following code displays the item at index position 4:
trace(myBox.getItemAt(4).label);
ComboBox component 105

ComboBox.itemRollOut

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOut){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOut = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("itemRollOut", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOut event has an
additional property: index. The index is the number of the item that was rolled out.

Description

Event; broadcast to all registered listeners when the pointer rolls out of drop-down list items.
This is a List event that is broadcast from a combo box. For more information, see
List.itemRollOut.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(itemRollOut){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRollOut) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.
106 Chapter 4: Components Dictionary

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled off of:
form.itemRollOut = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled out of.");
}
myCombo.addEventListener("itemRollOut", form);

See also

ComboBox.itemRollOver, UIEventDispatcher.addEventListener()

ComboBox.itemRollOver

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOver){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOver = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("itemRollOver", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOver event has an
additional property: index. The index is the number of the item that was rolled over.

Description

Event; broadcast to all registered listeners when the drop-down list items are rolled over. This is a
List event that is broadcast from a combo box. For more information, see List.itemRollOver.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(itemRollOver){

trace(this);
}

ComboBox component 107

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, itemRollOver) and the event is handled
by a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOver = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled over.");
}
myCombo.addEventListener("itemRollOver", form);

See also

ComboBox.itemRollOut, UIEventDispatcher.addEventListener()

ComboBox.labelField

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.labelField

Description

Property; the name of the field in dataProvider array objects to use as the label field. This is a
property of the List component that is available from a ComboBox component instance. For
more information, see List.labelField.

The default value is undefined.

Example

The following example sets the dataProvider property to an array of strings and sets the
labelField property to indicate that the name field should be used as the label for the
drop-down list:
myComboBox.dataProvider = [
 {name:"Gary", gender:"male"},
 {name:"Susan", gender:"female"}];

myComboBox.labelField = "name";
108 Chapter 4: Components Dictionary

See also

List.labelFunction

ComboBox.labelFunction

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.labelFunction

Description

Property; a function that computes the label of a dataProvider item. You must define the
function. The default value is undefined.

Example

The following example creates a data provider and then defines a function to specify what to use
as the label in the drop-down list:
myComboBox.dataProvider = [
 {firstName:"Nigel", lastName:"Pegg", age:"really young"},
 {firstName:"Gary", lastName:"Grossman", age:"young"},
 {firstName:"Chris", lastName:"Walcott", age:"old"},
 {firstName:"Greg", lastName:"Yachuk", age:"really old"}];

myComboBox.labelFunction = function(itemObj){
return (itemObj.lastName + ", " + itemObj.firstName);

}

See also

List.labelField

ComboBox.length

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.length

Description

Property (read-only); the length of the drop-down list. This is a property of the List component
that is available from an instance of ComboBox. For more information, see List.length. The
default value is 0.
ComboBox component 109

Example

The following example stores the value of length to a variable:
dropdownItemCount = myBox.length;

ComboBox.open()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.open()

Parameters

None.

Returns

Nothing.

Description

Property; opens the drop-down list.

Example

The following code opens the drop-down list for the combo1 instance:
combo1.open();

See also

ComboBox.close()

ComboBox.open

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(open){

// your code here
}

110 Chapter 4: Components Dictionary

Usage 2:
listenerObject = new Object();
listenerObject.open = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("open", listenerObject)

Description

Event; broadcast to all registered listeners when the drop-down list begins to appear.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(open){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, open) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled out:
form.open = function () {
 trace("The combo box has opened with text " + myBox.text);
}
myBox.addEventListener("open", form);

See also

ComboBox.close, UIEventDispatcher.addEventListener()

ComboBox.removeAll()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

comboBoxInstance.removeAll()
ComboBox component 111

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the list. This is a method of the List component that is available
from an instance of the ComboBox component.

Example

The following code clears the list:
myCombo.removeAll();

See also

ComboBox.removeItemAt(), ComboBox.replaceItemAt()

ComboBox.removeItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.removeItemAt(index)

Parameters

index A number that indicates the position of the item to remove. This value is zero-based.

Returns

An object; the removed item (undefined if no item exists).

Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the index parameter collapse by one. This is a method of the List component that is
available from an instance of the ComboBox component.

Example

The following code removes the item at index position 3:
myCombo.removeItemAt(3);

See also

ComboBox.removeAll(), ComboBox.replaceItemAt()
112 Chapter 4: Components Dictionary

ComboBox.replaceItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

comboBoxInstance.replaceItemAt(index, label[, data])

Parameters

index A number 0 or greater that indicates the position at which to insert the item (the index
of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional.

Returns

Nothing.

Description

Method; replaces the content of the item at the index specified by the index parameter. This is a
method of the List component that is available from the ComboBox component.

Example

The following example changes the third index position:
myCombo.replaceItemAt(3, "new label");

See also

ComboBox.removeAll(), ComboBox.removeItemAt()

ComboBox.rowCount

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.rowCount

Description

Property; the maximum number of rows visible in the drop-down list. The default value is 5.

If the number of items in the drop-down list is greater than or equal to the rowCount property, it
resizes and a scroll bar is displayed if necessary. If the drop-down list contains fewer items than the
rowCount property, it resizes to the number of items in the list.
ComboBox component 113

This behavior differs from the List component, which always shows the number of rows specified
by its rowCount property, even if some empty space is shown.

If the value is negative or fractional, the behavior is undefined.

Example

The following example specifies that the combo box should have 20 or fewer rows visible:
myComboBox.rowCount = 20;

ComboBox.scroll

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

// your code here
}
comboBoxInstance.addEventListener("scroll", listenerObject)

Event Object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values "horizontal" or "vertical". For a
ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when the drop-down list is scrolled. This is a List
component event that is available to the ComboBox.

The first usage example uses an on() handler and must be attached directly to a ComboBox
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ComboBox
component instance myBox, sends “_level0.myBox” to the Output panel:
on(scroll){

trace(this);
}

114 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(comboBoxInstance) dispatches an event (in this case, scroll) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. For more information about event objects, see “Event Objects” on page 562.

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends a message to the Output panel that indicates which item index
number has been scrolled to:
form.scroll = function (eventObj) {
 trace("The list had been scrolled to item # " + eventObj.target.vPosition);
}
myCombo.addEventListener("scroll", form);

See also

UIEventDispatcher.addEventListener()

ComboBox.selectedIndex

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.selectedIndex

Description

Property; the index (number) of the selected item in the drop-down list. The default value is 0.
Assigning this property clears the current selection, selects the indicated item, and displays that
label of the indicated item in the combo box's text box.

Assigning a selectedIndex that is out of range is ignored. Entering text into the text field of an
editable combo box sets selectedIndex to undefined.

Example

The following selects the last item in the list:
myComboBox.selectedIndex = myComboBox.length-1;

See also

ComboBox.selectedItem
ComboBox component 115

ComboBox.selectedItem

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.selectedItem

Description

Property; the value of the selected item in the drop-down list.

If the combo box is editable selectedItem returns undefined if you enter any text in the text
box. It will only have a value if you select an item from the drop-down list, or the value is set via
ActionScript. If the combo box is static, the value of selectedItem is always valid.

Example

The following example shows selectedItem if the data provider contains primitive types:
var item = myComboBox.selectedItem;
trace("You selected the item " + item);

The following example shows selectedItem if the data provider contains objects with label and
data properties:
var obj = myComboBox.selectedItem;
trace("You have selected the color named: " + obj.label);
trace("The hex value of this color is: " + obj.data);

See also

ComboBox.dataProvider, ComboBox.selectedIndex

ComboBox.text

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.text

Description

Property; the text of the text box. You can get and set this value for editable combo boxes. For
static combo boxes, the value is read-only.

Example

The following example sets the current text value of an editable combo box:
myComboBox.text = "California";
116 Chapter 4: Components Dictionary

ComboBox.textField

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.textField

Description

Property (read-only); a reference to the TextInput component contained by the ComboBox.

This property allows you to access the underlying TextInput component so that you can to
manipulate it. For example, you might want to change the selection of the text box or restrict the
characters that can be entered into it.

Example

The following code restricts the text box of myComboBox to only accept numbers:
myComboBox.textField.restrict = "0-9";

ComboBox.value

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

myComboBox.value

Description

Property (read-only); if the combo box is editable, value returns the value of the text box. If the
combo box is static, value returns the value of the drop-down list. The value of the drop-down
list is the data field, or, if the data field doesn’t exist, the label field.

Example

The following example puts the data into the combo box by setting the dataProvider property.
It then displays the value in the Output panel. Finally, it selects "California" and displays it in
the text box, as follows:
cb.dataProvider = [
 {label:"Alaska", data:"AZ"},
 {label:"California", data:"CA"},
 {label:"Washington", data:"WA"}];
cb.editable = true;
cb.selectedIndex = 1;
trace('Editable value is "California": '+ cb.value);
cb.editable = false;
cb.selectedIndex = 1;
trace('Non-editable value is "CA": '+ cb.value);
ComboBox component 117

Data binding classes (Flash Professional only)

The data binding classes provide the runtime functionality for the data binding feature in Flash
MX Professional 2004. You can visually create and configure data bindings in the Flash authoring
environment using the Bindings tab in the Component Inspector panel, or you can
programmatically create and configure bindings using the classes in the mx.data.binding package.

For an overview of data binding, and how to visually create data bindings in the Flash authoring
tool, see “Data binding (Flash Professional only)” in Using Flash Help.

Making data binding classes available at runtime (Flash Professional only)

In order to make the data binding service classes available at runtime, the DataBindingClasses
component must be in your FLA file’s library. When you visually create bindings in the Flash
authoring environment, this component is automatically added to your document’s library. But if
you’re only using ActionScript to create bindings at runtime, then you have to add this
component manually to your document’s library. For information on how to add this
component to your document, see “Working with data binding and web services at runtime
(Flash Professional only)” in Using Flash Help.

Classes in the mx.data.binding package (Flash Professional only)

The following table lists the classes in the mx.data.binding package.

Binding class (Flash Professional only)

ActionScript Class Name mx.data.binding.Binding

The Binding class defines an association between two endpoints, a source and a destination.
It listens for changes to the source endpoint and copies the changed data to the destination
endpoint each time the source changes.

Class Description

Binding class (Flash
Professional only)

Creates a binding between two endpoints.

ComponentMixins class (Flash
Professional only)

Adds data binding-specific functionality to components.

CustomFormatter class (Flash
Professional only)

Base class for creating custom formatter classes.

CustomValidator class (Flash
Professional only)

Base class for creating custom validator classes.

DataType class (Flash
Professional only)

Provides read and write access to data fields of a
component property.

EndPoint class (Flash
Professional only)

Defines the source or destination of a binding.

TypedValue class (Flash
Professional only)

Contains a data value and information about the value's data type.
118 Chapter 4: Components Dictionary

You can write custom bindings using the Binding class (and supporting classes), or use the
Bindings tab in the Component Inspector panel (Window > Development Panels >
Component Inspector).
Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the Binding class

Constructor for the Binding class

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

new Binding(source, destination, [format], [isTwoWay])

Parameters

source A source endpoint of the binding. This parameter is nominally of type
mx.data.binding.EndPoint, but can be any ActionScript object that has the required Endpoint
fields (see EndPoint class (Flash Professional only)).

destination The destination endpoint of the binding. This parameter is nominally of type
mx.data.binding.EndPoint, but can be any ActionScript object that has the required Endpoint
fields (see EndPoint class (Flash Professional only)).

format (Optional) An object that contains formatting information. The object must have the
following properties:

• cls An ActionScript class that extends the class mx.data.binding.DataAccessor.
• settings An object whose properties provide optional settings for the formatter class

specified by cls.

isTwoWay (Optional) A Boolean value that specifies whether the new Binding object is
bidirectional (true) or not (false). The default value is false.

Returns

Nothing.

Method Description

Binding.execute() Fetches the data from the source component, formats it, and
assigns it to the destination component.
Data binding classes (Flash Professional only) 119

Description

Constructor; creates a new Binding object. You can bind data to any ActionScript object that has
properties and emits events including, but not limited to, components.

A binding object exists as long as the inner-most movie clip contains both the source and
destination components. For example, if movie clip named “A” contains components “X” and
“Y”, and there is a binding between “X” and “Y”, then the binding is in effect as long as movie
clip A exists.
Note: It’s not necessary to retain a reference to the new Binding object, although you can. As soon as
the Binding object is created it immediately begins listening for "changed" events emitted by either
EndPoint. In some cases, however, you might want to save a reference to the new Binding object, so
that you can call its execute() method at a later time (see Binding.execute()).

Example

Example #1: In this example, the text property of a TextInput component (src_txt) is bound to
the text property of another TextInput component (dest_txt). When the src_txt text field
loses focus (that is, when the focusOut event is generated), the value of its text property is
copied into dest_txt.text.
import mx.data.binding.*;
var src = new EndPoint();
src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest= new EndPoint();
dest.component = dest_txt;
dest.property = "text";

new Binding(src, dest);

Example #2: This example demonstrates how to create a Binding object that uses a custom
formatter class. For more information on creating custom formatter classes, see
“CustomFormatter class (Flash Professional only)” on page 121.
import mx.data.binding.*;
var src = new EndPoint();
src.component = src_txt;
src.property = "text";
src.event = "focusOut";

var dest= new EndPoint();
dest.component = text_dest;
dest.property = "text";

new Binding(src, dest, {cls: mx.data.formatters.Custom, settings: {classname:
"com.mycompany.SpecialFormatter"}});

Binding.execute()

Availability

Flash Player 6.

Edition

Flash MX Professional 2004.
120 Chapter 4: Components Dictionary

Usage

myBinding.execute([reverse])

Parameters

reverse A Boolean value that specifies whether the binding should also be executed from the
destination to the source (true), or only from the source to the destination (false). By default,
this value is false.

Returns

A null value if the binding executed successfully; otherwise, returns an array of error messages
(strings) that describe the error, or errors, that prevented the binding from executing.

Description

Method; fetches the data from the source component and assigns it to the destination
component. If the binding uses a formatter, then the data is formatted before being assigned to
the destination.

This method also validates the data and causes either a valid or invalid event to be emitted by
the destination and source components. Data is assigned to the destination even if it’s invalid,
unless the destination is read-only.

If the reverse parameter is set to true, and the binding is two-way, then the binding is executed
in reverse (from the destination to the source).

Example

The following code, attached to a Button component instance, executes the binding in reverse
(from the destination component to the source component) when the button is clicked.
on(click) {

_root.myBinding.execute(true);
}

CustomFormatter class (Flash Professional only)

ActionScript Class Name mx.data.binding.CustomFormatter

The CustomFormatter class defines two methods, format() and unformat(), that provide the
ability to transform data values from a specific data type to String, and vice versa. By default, these
methods do nothing; you must implement them in a subclass of
mx.data.binding.CustomFormatter.

To create your own custom formatter, you first create a subclass of CustomFormatter that
implements format() and unformat() methods. You can then assign that class to a binding
between components either by creating a new Binding object with ActionScript (see “Binding
class (Flash Professional only)” on page 118), or by using the Bindings tab in the Component
Inspector panel. For information on assigning a formatter class using the Component Inspector,
see “Schema formatters (Flash Professional only)” in Using Flash Help.

You can also assign a formatter class to a component property on the Component Inspector
panel’s Schema tab. However, in that case, the formatter will only get used when the data is
needed in the form of a string. In contrast, formatters assigned using the Bindings panel, or
created with ActionScript, are used whenever when the binding is executed.
Data binding classes (Flash Professional only) 121

For an example of writing and assigning a custom formatter using ActionScript, see “Sample
custom formatter” on page 122.
Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Sample custom formatter

The following example demonstrates how to create a custom formatter class and then apply it to a
binding between two components using ActionScript. In this example, the current value of a
NumericStepper component (its value property) is bound to the current value of a TextInput
component (its text property). The custom formatter class formats the current numeric value of
the NumericStepper component (for example, 1, 2, or 3) as its English word equivalent (for
example, “one”, “two”, or “three”) before assigning it to the TextInput component.

To create and use a custom formatter:

1 In Flash MX Professional 2004, create a new ActionScript file.
2 Add the following code to the file:

// NumberFormatter.as
class NumberFormatter extends mx.data.binding.CustomFormatter {

// Format a Number, return a String
function format(rawValue) {

var returnValue;
var strArray = new Array('one', 'two', 'three');
var numArray = new Array(1, 2, 3);
returnValue = 0;
for (var i = 0; i<strArray.length; i++) {

if (rawValue == numArray[i]) {
returnValue = strArray[i];
break;

}
}
return returnValue;

} // convert a formatted value, returns a raw value
function unformat(formattedValue) {

var returnValue;
var strArray = new Array('one', 'two', 'three');
var numArray = new Array(1, 2, 3);
returnValue = "invalid";
for (var i = 0; i<strArray.length; i++) {

if (formattedValue == strArray[i]) {
returnValue = numArray[i];
break;

}
}
return returnValue;

}
}

3 Save the ActionScript file as NumberFormatter.as.
4 Create a new Flash (FLA) document.
5 Open the Components panel (Window > Development Panels > Components).
122 Chapter 4: Components Dictionary

6 Drag a TextInput component to the Stage and name it textInput.
7 Drag a NumericStepper component to the Stage and name it stepper.
8 Open the Timeline (Window > Timeline) and select the first frame on Layer 1.
9 Open the Actions panel (Window > Development Panels > Actions).
10 Add the following code to the Actions panel:

import mx.data.binding.*;
var x:NumberFormatter;
var customBinding = new Binding({component:stepper, property:"value",

event:"change"}, {component:textInput, property:"text",
event:"enter,change"}, {cls:mx.data.formatters.Custom,
settings:{classname:"NumberFormatter"}});

The second line of code (var x:NumberFormatter) ensures that the byte code for your custom
formatter class is included in the compiled SWF file.

11 Select Window > Panels > Other Panels > Classes to open the Classes library.
12 Open your document’s library by selecting Window > Library.
13 Drag the DataBindingClasses component from the Classes library to your document’s library.

This makes the data binding runtime classes available for your document. .For more
information, see “Working with data binding and web services at runtime (Flash Professional
only)” in Using Flash Help.

14 Save the FLA file to the same folder that contains NumberFormatter.as.
15 Test the file (Control > Test Movie).

Click the buttons on the NumericStepper component and watch the contents of the TextInput
component update.

Method summary for the CustomFormatter class

CustomFormatter.format()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

This method is called automatically; you don’t invoke it directly.

Parameters

rawData The data to be formatted.

Method Description

CustomFormatter.format() Converts from a raw datatype to a text string.

CustomFormatter.unformat() Converts from a text string to a raw datatype.
Data binding classes (Flash Professional only) 123

Returns

A formatted value.

Description

Method; converts from a raw data type to a new object.

This method is not implemented by default. You must define this method in your subclass of
mx.data.binding.CustomFormatter.

Example

See “Sample custom formatter” on page 122.

CustomFormatter.unformat()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

This method is called automatically; you don’t invoke it directly.

Parameters

formattedData The formatted data to convert back to the raw data type.

Returns

An unformatted value.

Description

Method; converts from a string, or other data type, to the raw data type. This transformation
should perform the exact inverse transformation of the CustomFormatter.format().

This method is not implemented by default. You must define this method in your subclass of
mx.data.binding.CustomFormatter.

For more information, see “Sample custom formatter” on page 122.

CustomValidator class (Flash Professional only)

ActionScript Class Name mx.data.binding.CustomValidator

You use the CustomValidator class when you want to perform custom validation of a data field
contained by a component.

To create a custom validation class, you first create a subclass of
mx.data.binding.CustomValidator that implements a method named validate(). This method
is automatically passed a value to be validated. For more information about how to implement
this method, see CustomValidator.validate().
124 Chapter 4: Components Dictionary

Next, you assign your custom validator class to a field of a component using the Component
Inspector panel's Schema tab. For an example of creating and using a custom validator class, see
the Example section in the entry for CustomValidator.validate().

To assign a custom validator, do the following:

1 In the Component Inspector panel (Window > Component Inspector), select the Schema tab.
2 Select the field you want to validate, and then select Custom from the Data Type pop-up menu.
3 Select the Validation Options field (at the bottom of the Schema tab), and click the magnifying

glass icon to open the Custom Validation Settings dialog box.
4 In the ActionScript Class text box enter the name of the custom validation class you created.

In order for the class you specify to be included in the published SWF, it must be in
the classpath.

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the CustomValidator class

CustomValidator.validate()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

This method is called automatically; you don’t invoke it directly.

Parameters

value The data to be validated; it can be of any type.

Returns

Nothing.

Description

Method; called automatically to validate the data contained by the value parameter. You must
implement this method in your subclass of CustomValidator; the default implementation
does nothing.

Method Description

CustomValidator.validate() Performs validation on data.

CustomValidator.validationError() Reports validation errors.
Data binding classes (Flash Professional only) 125

You can use any ActionScript code you like to examine and validate the data. If the data is not
valid, this method should call this.validationError() with an appropriate message. You can
call this.validationError() more than once if there are several validation problems with
the data.

Since the validate() method might be called repeatedly, you should avoid adding code to this
method that takes a long time to complete. Your implementation of this method should only
check for validity, and then report any errors using CustomValidator.validationError().
Similarly, your implementation should not take any action as a result of the validation test, such
as alerting the end user. Instead, create event listeners for valid and invalid events and alert the
end user from those event listeners (see example below).

Example

The following procedure demonstrates how to create and use a custom validation class. The
validate() method of the CustomValidator class, OddNumbersOnly.as, determines as invalid
any value that not an odd number. The validation occurs whenever the value of a
NumericStepper component changes, which is bound to the text property of a
Label component.

To create and use a custom validator class:

1 In Flash MX Professional 2004, create a new ActionScript (AS) file.
2 Add the following code to the AS file:

class OddNumbersOnly extends mx.data.binding.CustomValidator
{

public function validate(value) {
// make sure the value is a Number
var n = Number(value);
if (String(n) == "NaN") {

this.validationError("'" + value + "' is not a number.");
return;

}
// make sure the number is odd
if (n % 2 == 0) {

this.validationError("'" + value + "' is not a odd number.");
return;

}
// data is ok, no need to do anything, just return

}
}

3 Save the AS file as OddNumbersOnly.as.
Note: The name of the AS file must match the name of the class.

4 Create a new Flash (FLA) document.
5 Open the Components panel (Window > Development Panels > Components).
6 Drag a NumericStepper component from the Components panel to the Stage and name

it stepper.
7 Drag a Label component to the Stage and name it textLabel.
8 Drag a TextArea component to the Stage and name it status.
9 Select the NumericStepper component, and open the Component Inspector panel (Window >

Development Panels > Component Inspector).
126 Chapter 4: Components Dictionary

10 Select the Bindings tab in the Component Inspector panel and click the Add Binding
(+) button.

11 Select the Value property (the only one) in the Add Bindings dialog, then click OK
12 In the Component Inspector panel, double-click Bound To in the Binding Attributes pane of

the Bindings tab to open the Bound To dialog box.
13 In the Bound To dialog box, select the Label component in the Component Path pane and the

its text property in the Schema Location pane. Click OK.
14 Select the Label component on the Stage and click the Schema tab in the Component

Inspector panel.
15 In the Schema Attributes pane, select Custom from the Data Type pop-up menu.
16 Double-click the Validation Options field in the Schema Attributes pane to open the Custom

Validation Settings dialog box.
17 In the ActionScript Class text box, enter OddNumbersOnly, which is the name of the

ActionScript class you created previously. Click OK.
18 Open the Timeline (Window > Timeline) and select the first frame on Layer 1.
19 Open the Actions panel (Window > Actions).
20 Add the following code to the Actions panel:

function dataIsInvalid(evt) {
if (evt.property == "text") {

status.text = evt.messages;
}

}

function dataIsValid(evt) {
if (evt.property == "text") {

status.text = "OK";
}

}

textLabel.addEventListener("valid", dataIsValid);
textLabel.addEventListener("invalid", dataIsInvalid);

21 Save the FLA file as OddOnly.fla to the same folder that contains OddNumbersOnly.as.
22 Test the SWF (Control > Test Movie).

Click the arrows on the NumericStepper component to change its value. Notice the message
that appears in the TextArea component when you choose even and odd numbers.

CustomValidator.validationError()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

this.validationError(errorMessage)

Note: This method can be invoked only from inside a custom validator class; the keyword this refers
to the current CustomValidator object.
Data binding classes (Flash Professional only) 127

Parameters

errorMessage A string that contains the error message to be reported.

Returns

Nothing.

Description

Method; you call this method from the validate() method of your subclass of CustomValidator
to report validation errors. If you don't call this method, then a valid event is generated when
validate() completes. If you call this method one or more times from within the validate()
method then an invalid event is generated after validate() returns.

Each message you pass to validationError() is available in the "messages" property of the
event object that passed to the invalid event handler.

Example

See the Example section for CustomValidator.validate().

EndPoint class (Flash Professional only)

ActionScript Class Name mx.data.binding.EndPoint

The EndPoint class defines the source or destination of a binding. EndPoint objects define a
constant value, component property, or a particular field of a component property, from which
you can get data, or to which you can assign data. They can also define an event, or list of events,
that a Binding object listens for; when the specified event occurs, the binding executes.

When you create a new binding with the Binding class constructor, you pass it two EndPoint
objects: one for the source and one for the destination.
new mx.data.binding.Binding(srcEndPoint, destEndPoint);

The EndPoint objects, srcEndPoint and destEndPoint, might be defined as follows:
var srcEndPoint = new mx.data.binding.EndPoint();
var destEndPoint = new mx.data.binding.EndPoint();
srcEndPoint.component = source_txt;
srcEndPoint.property = "text";
srcEndPoint.event = "focusOut";
destEndPoint.component = dest_txt;
destEndPoint.property = "text";

In English, the above code means “when the source text field loses focus, copy the value of its
text property into the text property of the destination text field”.

You can also pass generic ActionScript objects to the Binding constructor, rather than passing
explicitly constructed EndPoint objects. The only requirement is that the objects define the
required EndPoint properties, namely component and property. The following code is
equivalent to that shown above.
var srcEndPoint = {component:source_txt, property:"text"};
var destEndPoint = {component:dest_txt, property:"text"};
new mx.data.binding.Binding(srcEndPoint, destEndPoint);

Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.
128 Chapter 4: Components Dictionary

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Property summary for the EndPoint class

Constructor for the EndPoint class

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

new EndPoint()

Returns

 Nothing.

Description

Constructor; creates a new EndPoint object.

Example

This example creates a new EndPoint object named source_txt and assigns values to its
component and property properties.
var source_obj = new mx.data.binding.EndPoint();
source_obj.component = myTextField;
source_obj.property = "text";

EndPoint.constant

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Method Description

EndPoint.constant A constant value.

EndPoint.component A reference to a component instance.

EndPoint.property The name of a property of the component instance specified by
EndPoint.component.

EndPoint.location The location of a data field within the property of the component instance.

EndPoint.event The name of an event, or list of events, the component instance will emit
when the data changes.
Data binding classes (Flash Professional only) 129

Usage

endPoint_src.constant

Description

Property; a constant value assigned to an EndPoint object. This property can only be applied to
EndPoints that are the source, not the destination, of a binding between components. The value
can be any data type that is compatible with the destination of the binding. If specified, all other
EndPoint properties for the specified EndPoint object are ignored.

Example

In this example, the string constant value “hello” is assigned to an EndPoint object’s
constant property.
var sourceEndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.constant="hello";

EndPoint.component

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

endPointObj.component

Description

Property; a reference to a component instance.

Example

This example assigns an instance of the List component (listBox1) as the component parameter
of a EndPoint object.
var sourceEndPoint = new mx.data.binding.EndPoint();
sourceEndPoint.component=listBox1;

EndPoint.property

Availability

Flash Player 6 version 79

Edition

Flash MX Professional 2004.

Usage

endPointObj.property
130 Chapter 4: Components Dictionary

Description

Property; specifies a property name of the component instance specified by
EndPoint.component that contains the bindable data.
Note: EndPoint.component and EndPoint.property must combine to form a valid ActionScript object/
property combination.

Example

This example binds the text property of one TextInput component (text_1) to the same
property in another TextInput component (text_2).
var sourceEndPoint = {component:text_1, property:"text"};
var destEndPoint = {component:text_2, property:"text"};
new Binding(sourceEndPoint, destEndPoint);

EndPoint.location

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

endPointObj.location

Description

Property; specifies the location of a data field within the property of the component instance.
There are four ways to specify a location: as a string that contains either an XPath expression or an
ActionScript path, an array of strings, or an object.

XPath expressions can only be used when the data is an XML object. For a list of supported XPath
expressions, see “Supported XPath expressions” in Using Flash Help. (See Example 1 below.)

For XML and ActionScript objects you can also specify a string that contains an ActionScript
path. An ActionScript path contains the names of fields separated by dots (for example,
"a.b.c").

You can also specify an array of strings as a location. Each string in the array “drills down” another
level of nesting. You can use this technique with both XML and ActionScript data. (See Example
2 below.) When used with ActionScript data, an array of strings is equivalent to using an
ActionScript; that is, the array ["a","b","c"] is equivalent to "a.b.c".

If you specify an object as the location, the object must specify two properties: path and indices.
The path property is an array of strings, as discussed above, except that one or more of the
specified strings may be the special token "[n]". For each occurrence of this token in path, there
must be a corresponding index item in indices. As the path is being evaluated, the indices are
used to index into arrays. The index item can be any EndPoint. This type of location can be
applied to ActionScript data only—not XML. (See Example 3 below.)
Data binding classes (Flash Professional only) 131

Example

Example 1: This example uses an XPath expression to specify the location of a node named zip in
an XML object.
var sourceEndPoint = new mx.databinding.EndPoint();
var sourcObj=new Object();
sourceObj.xml=new XML("<zip>94103</zip>");
sourceEndPoint.component=sourceObj;
sourceEndPoint.property="xml";
sourceEndPoint.location="/zip";//

Example 2: This example uses an array of string to “drill down” to a nested movie clip property.
var sourceEndPoint = new mx.data.binding.EndPoint();
//assume movieClip1.ball.position exists
ssourceEndPoint.component=movieClip1;
sourceEndPoint.property="ball";
//access movieClip1.ball.position.x
sourceEndPoint.location=["position","x"];

Example 3: This example shows how to use an object to specify the location of a data field in a
complex data structure.
var city=new Object();
city.theaters = [{theater: "t1", movies: [{name: "Good,Bad,Ugly"},

{name:"Matrix Reloaded"}]}, {theater: "t2", movies: [{name: "Gladiator"},
{name: "Catch me if you can"}]}];

var srcEndPoint = new EndPoint();
srcEndPoint.component=city;
srcEndPoint.property="theaters";
srcEndPoint.location = {path: ["[n]","movies","[n]","name"], indices:

[{constant:0},{constant:0}]};

EndPoint.event

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

endPointObj.event

Description

Property; specifies the name of an event, or an array of event names, generated by the component
when data assigned to the bound property changes. When the event occurs, the binding executes.

The specified event only applies to components that are used as the source of a binding, or as the
destination of a two-way binding. For more information about creating two-way bindings, see
“Binding class (Flash Professional only)” on page 118.
132 Chapter 4: Components Dictionary

Example

In this example, the text property of one TextInput (src_txt) component is bound to the same
property of another TextInput component (dest_txt). The binding is executed when either the
focusOut or enter events are emitted by the src_txt component.
var source = {component:src_txt, property:"text", event:["focusOut",

"enter"]};
var dest = {component:myTextArea, property:"text"};
var newBind = new mx.data.binding.Binding(source, dest);

ComponentMixins class (Flash Professional only)

ActionScript Class Name mx.data.binding.ComponentMixins

The ComponentMixins class defines properties and methods that are automatically added to any
object that is the source or destination of a binding, or to any component that’s the target of a
ComponentMixins.initComponent() method call. These properties and methods do not affect
normal component functionality; rather, they add functionality that is useful with data binding.
Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the ComponentMixins class

ComponentMixins.getField()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.getField(propertyName, [location])

Method Description

ComponentMixins.getField() Returns an object for getting and setting the value of a
field at a specific location in a component property.

ComponentMixins.initComponent() Adds the ComponentMixin methods to a component.

ComponentMixins.refreshFromSources() Executes all bindings that have this component as the
destination EndPoint.

ComponentMixins.refreshDestinations() Executes all the bindings that have this object as the
source EndPoint.

ComponentMixins.validateProperty() Checks to see if the data in the indicated property
is valid.
Data binding classes (Flash Professional only) 133

Parameters

propertyName A string that contains the name of a property of the specified component.

location (Optional) The location of a field within the component property. This is useful if
the component property specified by propertyName is a complex data structure and you are
interested in a particular field of that structure. This property can take one of the following
three forms:

• A string that contains a XPath expression. This is only valid for XML data structures. For a list
of supported XPath expressions, see “Supported XPath expressions” in Using Flash Help.

• A string that contains field names, separated by dots, for example "a.b.c". This form is
permitted for any complex data (ActionScript or XML).

• An array of strings, where each string is a field name, for example ["a", "b", "c"]. This form is
permitted for any complex data (ActionScript or XML).

Returns

A DataType object.

Description

Method; returns a DataType object whose methods you can use to get or set the data value in the
component property at the specified field location. For more information, see “DataType class
(Flash Professional only)” on page 138.

Example

This example uses the DataType.setAsString() method to set the value of a field located in a
component’s property. In this case the property (results) is a complex data structure.
import mx.data.binding.*;
var field : DataType = myComponent.getField("results", "po.address.name1");
field.setAsString("Teri Randall");

See also

DataType.setAsString()

ComponentMixins.initComponent()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mx.data.binding.ComponentMixins.initComponent(componentInstance)

Parameters

componentInstance A reference to a component instance.

Returns

Nothing.
134 Chapter 4: Components Dictionary

Description

Method (static); adds all the ComponentMixins methods to the component specified by
componentInstance. This method is called automatically for all components involved in a data
binding. To make the ComponentMixins methods available for a component not involved in a
data binding, you must explicitly call this method for that component.

Example

The following code makes the ComponentMixins methods avaialble to a DataSet component.
mx.data.binding.ComponentMixins.initComponent(_root.myDataSet);

ComponentMixins.refreshFromSources()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.refreshSources()

Returns

Nothing.

Description

Method; executes all bindings for which componentInstance is the destination EndPoint object.
This method lets you execute bindings that have constant sources, or sources that do not emit any
“data changed” event.

Example

The following example executes all the bindings for which the ListBox component instance
named cityList is the destination EndPoint object.
cityList.refreshFromSources();

ComponentMixins.refreshDestinations()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.refreshDestinations()

Returns

Nothing.
Data binding classes (Flash Professional only) 135

Description

Method; executes all the bindings for which componentInstance is the source EndPoint. This
method lets you execute bindings whose sources do not emit a “data changed” event.

Example

The following example executes all the bindings for which the DataSet component instance
named user_data is the source EndPoint object.
user_data.refreshDestinations();

ComponentMixins.validateProperty()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.validateProperty(propertyName)

Parameters

propertyName A string that contains the name of a property belonging to
componentInstance.

Returns

An array, or null.

Description

Method; determines if the data in propertyName is valid based on the property’s schema settings.
The property’s schema settings are those specified on the Schema tab in the Component
Inspector panel.

The method returns null if the data is valid; otherwise, returns an array of error messages
as strings.

Validation only applies to fields that have schema information available. If a field is an object that
contains other fields, then each “child” field will be validated, and so on, recursively. Each
individual field will dispatch a valid or invalid event, as necessary. For each data field
contained by propertyName, this function dispatches valid or invalid events, as follows:

• If the value of the field is null, and is not required, the method returns null. No events
are generated.

• If the value the field is null, and is required, an error is returned and an invalid event
is generated.

• If the value of the field is non-null and the field's schema does not have a validator, the method
returns null; no events are generated.

• If the value is non-null and the field’s schema does define a validator, then the data is processed
by the validator object. If the data is valid, a valid event is generated and null is returned;
otherwise, an invalid event is generated and an array of error strings is returned.
136 Chapter 4: Components Dictionary

Example

The following examples shows how to use validateProperty() to make sure that text entered
by a user is of a valid length. You’ll determine what a valid length is by setting the Validation
Options for the String DataType in the Component Inspector panel’s Schema tab. If the user
enters a string in the text field of an invalid length, the error messages returned by the
validateProperty() method are displayed in the Output panel.

To validate text entered by a user in a TextInput component:

1 Drag a TextInput component from the Components panel (Window > Development Panels >
Components) to the Stage, and name it zipCode_txt.

2 Select the TextInput component and, in the Component Inspector panel (Window >
Development Panels > Components), click the Schema tab.

3 In the Schema Tree pane (the top pane of the Schema tab) select the text property.
4 In the Schema Attributes pane (the bottom pane of the Schema tab), select ZipCode from the

Data Type pop-up menu.
5 Open the Timeline, if not already open, by choosing Window > Timeline.
6 Click the first frame on Layer 1 in the Timeline, and open the Actions panel

(Window > Actions).
7 Add the following code to the Actions panel:

// Add ComponentMixin methods to TextInput component.
// Note that this step is only necessary if the component
// isn’t already involved in a data binding,
// either as the source or destination.
mx.data.binding.ComponentMixins.initComponent(zipCode_txt);
// Define event listener function for component:
validateResults = function (eventObj) {

var errors:Array = eventObj.target.validateProperty("text");
if (errors != null) {

trace(errors);
}

};
// Register listener function with component:
zipCode_txt.addEventListener("enter", validateResults);

8 Select Window > Other Panels > Common Libraries > Classes to open the Classes library.
9 Open your document’s library by choosing Window > Library.
10 Drag the DataBindingClasses component from the Classes library to your document’s

Library panel.
This step is required to make the data binding runtime classes available to the SWF at runtime.
For more information, see “Working with data binding and web services at runtime
(Flash Professional only)” in Using Flash Help.

11 Test the SWF by choosing Control > Test Movie.
In the TextInput component on the Stage, enter an invalid United States zip code—for
example, one that contains all letters, or one that contains less than five numbers. Notice the
error messages displayed in the Output panel.
Data binding classes (Flash Professional only) 137

DataType class (Flash Professional only)

ActionScript Class Name mx.data.binding.DataType

The DataType class provides read and write access to data fields of a component property. To get
a DataType object, you call the ComponentMixins.getField() function on a component. You
can then call methods of the DataType object to get and set the value of the field.

The difference between getting and setting field values using DataType object methods, and
getting or setting the same values directly on the component instance, is that the latter case
provides the data in its “raw” form. In contrast, when you get or set field values using methods of
the DataType class, those values are processed according to the field’s schema settings.

For example, the following code gets the value of a component’s property directly and assigns it to
a variable. The variable, propVar, contains whatever “raw” value is the current value of the
property propName.
var propVar = myComponent.propName;

The next example gets the value of the same property using the DataType.getAsString()
method. In this case, the value assigned to stringVar is the value of propName after being
processed according to its schema settings, and then returned as a string.
var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var stringVar: String = dataTypeObj.getAsString();

For more information about how to specify a field’s schema settings, see “Working with schemas
in the Schema tab (Flash Professional only)” in Using Flash Help.

You can also use the methods of the DataType class to get or set fields in various data types. The
DataType class automatically converts the raw data to the requested type, if possible. For example,
in the code example above, the data that’s retrieved is converted to String type, even if the raw
data is a different type.

The ComponentMixins.getField() method is available for components that have been
included in a data binding (either as a source, destination, or an index), or that have been
initialized using the ComponentMixins.initComponent() method. For more information, see
“ComponentMixins class (Flash Professional only)” on page 133.
Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Method summary for the DataType class

Method Description

DataType.getAsBoolean() Fetches the current value of the field as a Boolean.

DataType.getAsNumber() Fetches the current value of the field as a Number.

DataType.getAsString() Fetches the current value of the field as a String value.

DataType.getAnyTypedValue() Fetches the current value of the field.
138 Chapter 4: Components Dictionary

Property summary for the DataType class

DataType.encoder

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.encoder

Description

Property; provides a reference to the encoder object associated with this field, if one exists. You
can use this property to access any properties and methods defined by the specific encoder applied
to the field in the Schema tab of the Component Inspector panel.

If no encoder was applied to the field in question, then this property will return undefined.

For more information about the encoders provided with Flash MX Professional 2004, see
“Schema encoders (Flash Professional only)” in Using Flash Help.

Example

The following example assumes that the field being accessed (isValid) uses the Boolean encoder
(mx.data.encoders.Bool). This encoder is provided with Flash MX Professional 2004 and
contains a property named trueStrings that specifies which strings should be interpreted as
true Boolean values. The code below sets the trueStrings property for a field’s encoder to be
the strings “yes” and “si”.
var myField:mx.data.binding.DataType = dataSet.getField("isValid");
myField.encoder.trueStrings = "Yes,Oui";

DataType.getTypedValue() Fetches the current value of the field in the form of the requested
DataType.

DataType.setAnyTypedValue() Sets a new value into the field.

DataType.setAsBoolean() Sets the field to the new value, which is given as a Boolean.

DataType.setAsNumber() Sets the field to the new value, which is given as a Number.

DataType.setAsString() Sets the field to the new value, which is given as a String.

DataType.setTypedValue() Sets a new value into the field.

Property Description

DataType.encoder Provide a reference to the Encoder object associated with this field.

DataType.formatter Provides a reference to the Formatter object associated with
this field.

DataType.kind Provides a reference to the Kind object associated with this field.

Method Description
Data binding classes (Flash Professional only) 139

DataType.formatter

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.formatter

Description

Property; provides a reference to the formatter object associated with this field, if one exists. You
can use this property to access any properties and methods for the formatter object applied to the
field in the Schema tab of the Component Inspector panel.

If no formatter was applied to the field in question, then this property will return undefined.

For more information about the encoders provided with Flash MX Professional 2004, see
“Schema formatters (Flash Professional only)” in Using Flash Help.

Example

This example assumes that the field being accessed is using the Number Formatter
(mx.data.formatters.NumberFormatter) provided with Flash MX Professional 2004. This
formatter contains a property named precision that specifies how many digits to display after
the decimal point. This code sets the precision property to two decimal places for a field using
this formatter.
var myField:DataType = dataGrid.getField("currentBalance");
myField.formatter.precision = 2;

DataType.getAsBoolean()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.getAsBoolean()

Returns

A Boolean value.

Description

Method; fetches the current value of the field as a Boolean. The value is converted to Boolean
form, if necessary.
140 Chapter 4: Components Dictionary

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a Boolean value, and assigned to a variable.
var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:Boolean = dataTypeObj.getAsBoolean();

DataType.getAsNumber()

Availability

Flash Player 6.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.getAsNumber()

Returns

A number.

Description

Method; fetches the current value of the field as a number. The value is converted to Number
form, if necessary.

Example

In this example, a field named propName that belongs to a component named myComponent is
retrieved as a number, and assigned to a variable.
var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:Number = dataTypeObj.getAsNumber();

See also

DataType.getAnyTypedValue()

DataType.getAsString()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.getAsString()

Returns

A string.
Data binding classes (Flash Professional only) 141

Description

Method; fetches the current value of the field as a string. The value is converted to String form,
if necessary.

Example

In this example, a property of a component named propName that belongs to a component
named myComponent is retrieved as a string and assigned to a variable.
var dataTypeObj:mx.data.binding.DataType = myComponent.getField("propName");
var propValue:String = dataTypeObj.getAsString();

See also

DataType.getAnyTypedValue()

DataType.getAnyTypedValue()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.getAnyTypedValue(suggestedTypes)

Parameters

suggestedTypes An array of strings that specify, in descending order of desirability, the
preferred data types you’d like for the field. For more information, see the Description
section below.

Returns

The current value of the field, in the form of one of the data types specified in the
suggestedTypes array.

Description

Method; fetches the current value of the field, using the information in the field's schema to
process the value. If the field is able to provide a value as the first data type specified in the
suggestedTypes array, then the method returns the field’s value as that data type. If not, the
method attempts to extract the field’s value as the second data type specified in the
suggestedTypes array, and so on.

If you specify null as one of the items in the suggestedTypes array, then the method returns the
value of the field in the data type specified in the Schema panel. Specifying null will always result
in a value being returned, so only use null at the end of the array.

If a value can’t be returned in the form of the one of the suggested types, then it is returned in the
type specified in the Schema panel.
142 Chapter 4: Components Dictionary

Example

This example attempts to get the value of a field (productInfo.available) in an
XMLConnector component’s results property first as a Number or, if that fails, as a String.
import mx.data.binding.DataType;
import mx.data.binding.TypedValue;
var f: DataType = myXmlConnector.getField("results", "productInfo.available");
var b: TypedValue = f.getAnyTypedValue(["Number", "String"]);

See also

ComponentMixins.getField()

DataType.getTypedValue()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.getTypedValue(requestedType)

Parameters

requestedType A string containing the name of a data type, or null.

Returns

A TypedValue object (see “TypedValue class (Flash Professional only)” on page 147)

Description

Method; returns the value of the field in the form specified by requestedType, if specified and if
the field can provide its value in that form. If the field isn’t able to provide its value in the
requested form then the method returns null.

If null is specified as the requestedType then the method returns the value of the field in its
default type.

Example

var bool:TypedValue = field.getTypedValue("Boolean");

DataType.kind

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.kind
Data binding classes (Flash Professional only) 143

Description

Property; provides a reference to the Kind object associated with this field. You can use this to
access properties and methods of the Kind object.

DataType.setAnyTypedValue()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.setAnyTypedValue(newTypedValue)

Parameters

newValue A TypedValue object value to set into the field.

For more information about TypedValue objects, see “TypedValue class (Flash Professional only)”
on page 147.

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

• The data provided cannot be converted to the data type of this field (for example, "abc" cannot
be converted to Number).

• The data is an acceptable type but does not meet the validation criteria of the field.
• The field is read-only.
Note: The actual text of the message(s) will vary depending on the data type, formatters, and
encoders that are defined in the field's schema.

Description

Method; sets a new value into the field, using the information in the field's schema to process
the field.

This method operates by first calling DataType.setTypedValue() to set the value. If that fails,
the method checks to see if the destination object is willing to accept String, Boolean, or Number
data, and if so, attempts to use the corresponding ActionScript conversion functions.

Example

This example creates a new TypedValue object (a Boolean), and then assigns that value to a
DataType object named field. Any errors that occur are assigned to the errors array.
import mx.data.binding.*;
var t:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setAnyTypedValue (t);

See also

DataType.setTypedValue()
144 Chapter 4: Components Dictionary

DataType.setAsBoolean()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.setAsBoolean(newBooleanValue)

Parameters

newBooleanValue A Boolean value.

Returns

Nothing.

Description

Method; sets the field to the new value, which is given as a Boolean. The value is converted to,
and stored as, the data type that is appropriate for this field.

Example

var bool: Boolean = true;
field.setAsBoolean (bool);

DataType.setAsNumber()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.setAsNumber(newNumberValue)

Parameters

newNumberValue A Number.

Returns

Nothing.

Description

Method; sets the field to the new value, which is given as a Number. The value is converted to,
and stored as, the data type that is appropriate for this field.

Example

var num: Number = 32;
field.setAsNumber (num);
Data binding classes (Flash Professional only) 145

DataType.setAsString()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.setAsString(newStringValue)

Parameters

newStringValue A String.

Returns

Nothing.

Description

Method; sets the field to the new value, which is given as a String. The value is converted to, and
stored as, the data type that is appropriate for this field.

Example

var stringVal: String = "The new value";
field.setAsString (stringVal);

DataType.setTypedValue()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

dataTypeObject.setTypedValue(newTypedValue)

Parameters

newValue A TypedValue object value to set into the field.

For more information about TypedValue objects, see “TypedValue class (Flash Professional only)”
on page 147.

Returns

An array of strings describing any errors that occurred while attempting to set the new value.
Errors can occur under any of the following conditions:

• The data provided is not an acceptable type.
• The data provided cannot be converted to the datatype of this field (for example, "abc" cannot

be converted to Number).
146 Chapter 4: Components Dictionary

• The data is an acceptable type but does not meet the validation criteria of the field.
• The field is read-only.
Note: The actual text of the message(s) will vary depending on the data type, formatters, and
encoders that are defined in the field's schema.

Description

Method; sets a new value into the field, using the information in the field's schema to process the
field. This method behaves similarly to DataType.setAnyTypedValue(), except that it doesn’t
try as hard to convert the data to an acceptable data type. For more information, see
DataType.setAnyTypedValue().

Example

This example creates a new TypedValue object (a Boolean), and then assigns that value to a
DataType object named field. Any errors that occur are assigned to the errors array.
import mx.data.binding.*;
var bool:TypedValue = new TypedValue (true, "Boolean");
var errors: Array = field.setTypedValue (bool);

See also

DataType.setTypedValue()

TypedValue class (Flash Professional only)

ActionScript Class Name mx.data.binding.TypedValue

A TypedValue is an object that contains a data value, along with information about the value's
data type. TypedValue objects are provided as parameters to, and are returned from, various
methods of the DataType class. The data type information in the TypedValue object helps
DataType objects decide when and how they need to do type conversion.
Note: To make this class available at runtime, you must include the DataBindingClasses component
in your FLA document. For more information, see “Working with data binding and web services at
runtime (Flash Professional only)” in Using Flash Help.

For an overview of the classes in the mx.data.binding package, see “Data binding classes (Flash
Professional only)” on page 118.

Property summary for the TypedValue class

Property Description

TypedValue.type Contains the schema associated with the TypedValue object’s value.

TypedValue.typeName Contains the name of the DataType of the TypedValue object’s value.

TypedValue.value Contains the data value of the TypedValue object.
Data binding classes (Flash Professional only) 147

Constructor for the TypedValue class

Availability

Flash Player 6 version 79.

Usage

new mx.data.binding.TypedValue(value, typeName, [type])

Parameters

value A data value. This can be any type.

typeName A String that contains the name of the DataType of the value.

type (Optional) A Schema object that describes in more detail the schema of the data. This
field is only required in certain circumstances, such as when setting data into a DataSet
component’s dataProvider property.

Description

Constructor; creates a new TypedValue object.

TypedValue.type

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

typedValueObject.type

Description

Property; contains the schema associated with the TypedValue object’s value. It is only used in
certain circumstances.

Example

This example will display “null” in the Output panel.
var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.type);

TypedValue.typeName

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

typedValueObject.typeName
148 Chapter 4: Components Dictionary

Description

Property; contains the name of the DataType of the TypedValue object’s value.

Example

This example will display “Boolean” in the Output panel.
var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.typeName);

TypedValue.value

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

typedValueObject.value

Description

Property; contains the data value of the TypedValue object.

Example

This example will display “true” in the Output panel.
var t: TypedValue = new TypedValue (true, "Boolean", null);
trace(t.value);

DataGrid component (Flash Professional only)

The DataGrid component allows you to create powerful data-enabled displays and applications.
You can use the DataGrid component to instantiate a recordset (retrieved from a database query
in ColdFusion, Java, or .Net) using Macromedia Flash Remoting and display it in columns. You
can also use data from a data set or from an array to fill a DataGrid component. The v2 DataGrid
component has been improved to include horizontal scrolling, better event support (including
event support for editable cells), enhanced sorting capabilities, and performance optimizations.

You can resize and customize characteristics such as the font, color, and borders of columns in a
grid. You can use a custom movie clip as a “cell renderer” for any column in a grid. (A cell
renderer displays the contents of a cell.) You can use scroll bars to move through data in a grid;
you can also turn off scroll bars and use the DataGrid methods to create a page view style display.

When you add the DataGrid component to an application, you can use the Accessibility panel to
make the component accessible to screen readers. First, you must add the following line of code to
enable accessibility for the DataGrid component:
mx.accessibility.DataGridAccImpl.enableAccessibility();

You enable accessibility for a component only once, no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.
DataGrid component (Flash Professional only) 149

Interacting with the DataGrid component (Flash Professional only)

You can use the mouse and the keyboard to interact with a DataGrid component.

If DataGrid.sortableColumns is true and DataGridColumn.sortOnHeaderRelease is true,
clicking within a column header causes the grid to sort based on the column’s cell values.

If DataGrid.resizableColumns is true, clicking in the area between columns allows you to
resize columns.

Clicking within an editable cell sends focus to that cell; clicking a non-editable cell has no effect
on focus. An individual cell is editable when both the DataGrid.editable and
DataGridColumn.editable properties of the cell are true.

When a DataGrid instance has focus either from clicking or tabbing, you can use the following
keys to control it:

Using the DataGrid component (Flash Professional only)

You can use the DataGrid component as the foundation for numerous types of data-driven
applications. You can easily display a formatted tabular view of a database query (or other data),
but you can also use the cell renderer capabilities to build more sophisticated and editable user
interface pieces. The following are practical uses for the DataGrid component:

• A webmail client
• Search results pages
• Spreadsheet applications such as loan calculators and tax form applications

The DataGrid component consists of two sets of APIs: the DataGrid class and the
DataGridColumn class.

Key Description

Down arrow When a cell is being edited, the insertion point shifts to the end of the
cell’s text. If a cell is not editable, the down arrow handles selection as the
List component does.

Up arrow When a cell is being edited, the insertion point shifts to the beginning of
the cell's text. If a cell is not editable, the up arrow handles selection as the
List component does.

Right arrow When a cell is being edited, the insertion point shifts one character to the
right. If a cell is not editable, the right arrow does nothing.

Left arrow When a cell is being edited, the insertion point shifts one character to the
left. If a cell is not editable, the left arrow does nothing.

Return/Enter/Shift+Enter When a cell is editable, the change is committed, and the insertion point is
moved to the cell on the same column, next row (up or down, depending
on the shift toggle).

Shift+Tab/Tab Moves focus to the previous item. When the Tab key is pressed, focus
wraps from the last column in the grid to the first column on the next line.
When Shift+Tab is pressed, wrapping is reversed.
150 Chapter 4: Components Dictionary

Understanding the DataGrid component: data model and view

Conceptually, the DataGrid component is composed of a data model and a view that displays the
data. The data model consists of three main parts:

• DataProvider
This is a list of items with which to fill the data grid. Any array in the same frame as a
DataGrid component is automatically given methods (from the DataProvider API) that allow
you to manipulate data and broadcast changes to multiple views. Any object that implements
the DataProvider interface can be assigned to the DataGrid.dataProvider property
(including recordsets, data sets, and so on). The following code creates a data provider called
myDP:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

• Item
This is an ActionScript object used for storing the units of information in the cells of a
column. A data grid is really a list that can display more than one column of data. A list can be
thought of as an array; each indexed space of the list is an item. For the DataGrid component,
each item consists of fields. In the following code, the contents between curly braces ({}) is
an item:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

• Field
Identifiers that indicate the names of the columns within the items. This corresponds to the
columnNames property within the columns list. In the List component, the fields are usually
label and data, but in the DataGrid component the fields can be any identifier. In the
following code, the fields are name and price:
myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",

price:"Cheap"});

The view consists of three main parts:

• Row
This is a view object responsible for rendering the items of the grid by laying out cells. Each
row is laid out horizontally below the previous one.

• Column
This consists of the view objects (instances of the DataGridColumn class) responsible for
displaying each column, for example, width, color, size, and so on.
There are three ways to add columns to a data grid: assign a DataProvider object to
DataGrid.dataProvider (this automatically generates a column for each field in the first
item), set DataGrid.columnNames to specify which fields will be displayed, or use the
constructor for the DataGridColumn class to create columns and call DataGrid.addColumn()
to add them to the grid.
To format columns, either set up style properties for the entire data grid, or define
DataGridColumn objects, set up their style formats individually, and add them to the
data grid.
DataGrid component (Flash Professional only) 151

• Cell
This is a view object responsible for rendering the individual fields of each item. To
communicate with the data grid, these components must implement the CellRenderer
interface (see “CellRenderer API” on page 77). For a basic data grid, a cell is a built-in
ActionScript TextField object.

DataGrid parameters

The following are authoring parameters that you can set for each DataGrid component instance
in the Property inspector or in the Component Inspector panel:

multipleSelection A Boolean value that indicates whether multiple items can be selected
(true) or not (false). The default value is false.

rowHeight The height of each row, in pixels. Changing the font size does not change the row
height. The default value is 20.

editable A Boolean value that indicates whether the grid is editable (true) or not (false). The
default value is false.

You can write ActionScript to control these and additional options for the DataGrid component
using its properties, methods, and events. For more information, see “DataGrid class (Flash
Professional only)” on page 154.

Creating an application with the DataGrid component

To create an application with the DataGrid component, you must first determine where your data
is coming from. The data for a grid can come from a recordset that is fed from a database query in
Macromedia ColdFusion, Java, or .Net using Flash Remoting. Data can also come from a data set
or an array. To pull the data into a grid, you set the DataGrid.dataProvider property to the
recordset, data set, or array. You can also use the methods of the DataGrid and DataGridColumn
classes to create data locally. Any Array object in the same frame as a DataGrid component copies
the methods, properties, and events of the DataProvider class.

To use Flash Remoting to add a DataGrid component to an application:

1 In Flash, select File > New and select Flash Document.
2 In the Components panel, double-click the DataGrid component to add it to the Stage.
3 In the Property inspector, enter the instance name myDataGrid.
4 In the Actions panel on Frame 1, enter the following code:

myDataGrid.dataProvider = recordSetInstance;

The Flash Remoting recordset recordSetInstance is assigned to the dataProvider property
of myDataGrid.

5 Select Control > Test Movie.
152 Chapter 4: Components Dictionary

To use a local data provider to add a DataGrid component to an application:

1 In Flash, select File > New and select Flash Document.
2 In the Components panel, double-click the DataGrid component to add it to the Stage.
3 In the Property inspector, enter the instance name myDataGrid.
4 In the Actions panel on Frame 1, enter the following code:

myDP = new Array({name:"Chris", price:"Priceless"}, {name:"Nigel",
price:"Cheap"});

myDataGrid.dataProvider = myDP;

The name and price fields are used as the column headings, and their values fill the cells in
each row.

5 Select Control > Test Movie.

Customizing the DataGrid component (Flash Professional only)

You can transform a DataGrid component horizontally and vertically during authoring and
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). If there is no horizontal scroll bar, column widths adjust proportionally.
If column (and therefore, cell) size adjustment occurs, then text in the cells may be clipped.

Using styles with the DataGrid component

You can set style properties to change the appearance of a DataGrid component. The DataGrid
component inherits Halo styles from the List component. (For more information, see “Using
styles with the List component” on page 289.) The DataGrid component also supports the
following Halo styles:

If the above table indicates that a style can be set for a column, you can use the following syntax to
set the style:
grid.getColumnAt(3).setStyle("backgroundColor", 0xff00aa)

Style Description

backgroundColor The background color can be set for the whole grid or for
each column.

labelStyle The font style can be set for the whole grid or for each column.

headerStyle A CSS Style Declaration for the column header that can be
applied to a grid or column.

vGridLines A Boolean value that indicates whether to show vertical grid
lines (true) or not (false).

hGridLines A Boolean value that indicates whether to show horizontal grid
lines (true) or not (false).

vGridLineColor The color of the vertical grid lines.

hGridLineColor The color of the horizontal grid lines.

headerColor The color of the column headers.
DataGrid component (Flash Professional only) 153

Using skins with the DataGrid component

The skins that the DataGrid component uses to represent its visual states are included in the
subcomponents from which the data grid is composed (ScrollPane and RectBorder). For
information about their skins, see “Using skins with the ScrollPane component” on page 466 and
“Using skins with the List component” on page 290.

The rollover and selection underlays, however, use the ActionScript Drawing API. To skin these
portions of the data grid while authoring, modify the ActionScript code in the skin symbols in the
Flash UI Components 2/Themes/MMDefault/datagrid/ skins states folder in the library of one of
the themes FLA files. For more information, see “About skinning components” on page 36.

DataGrid class (Flash Professional only)

Inheritance mx.core.UIObject > mx.core.UIComponent > mx.core.View >
mx.core.ScrollView > mx.controls.listclasses.ScrollSelectList > mx.controls.List

ActionScript Class Name mx.controls.DataGrid

Each component class has a version property, which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.DataGrid.version);

Note: The following code returns undefined: trace(myDataGridInstance.version);.

Method summary for the DataGrid class

Inherits all properties from UIObject and UIComponent.

Method Description

DataGrid.addColumn() Adds a column to the data grid.

DataGrid.addColumnAt() Adds a column to the data grid at a specific location.

DataGrid.addItem() Adds an item to the data grid.

DataGrid.addItemAt() Adds an item to the data grid at a specific location.

DataGrid.editField() Replaces the cell data at a specified location.

DataGrid.getColumnAt() Gets a reference to a column at a specified location.

DataGrid.getColumnIndex() Gets the index of the column.

DataGrid.removeAllColumns() Removes all columns from a data grid.

DataGrid.removeColumnAt() Removes a column from a data grid at a specified location.

DataGrid.replaceItemAt() Replaces an item at a specified location with another item.

DataGrid.spaceColumnsEqually() Spaces all columns equally.
154 Chapter 4: Components Dictionary

Property summary for the DataGrid class

Event summary for the DataGrid class

Property Description

DataGrid.columnCount Read-only. The number of columns that are displayed.

DataGrid.columnNames An array of field names within each item that are displayed
as columns.

DataGrid.dataProvider The data model for a data grid.

DataGrid.editable A Boolean value that indicates whether the data grid is editable
(true) or not (false).

DataGrid.focusedCell Defines the cell that has focus.

DataGrid.headerHeight The height of the column headers, in pixels.

DataGrid.hScrollPolicy Indicates whether a horizontal scroll bar is present ("on"), not
present ("off"), or appears when necessary ("auto").

DataGrid.resizableColumns A Boolean value that indicates whether the columns are
resizable (true) or not (false).

DataGrid.selectable A Boolean value that indicates whether the data grid is
selectable (true) or not (false).

DataGrid.showHeaders A Boolean value that indicates whether the column headers are
visible (true) or not (false).

DataGrid.sortableColumns A Boolean value that indicates whether the columns are sortable
(true) or not (false).

Event Description

DataGrid.cellEdit Broadcast when the cell value has changed.

DataGrid.cellFocusIn Broadcast when a cell receives focus.

DataGrid.cellFocusOut Broadcast when a cell loses focus.

DataGrid.cellPress Broadcast when a cell is pressed.

DataGrid.change Broadcast when an item has been selected.

DataGrid.columnStretch Broadcast when a column is resized by a user.

DataGrid.headerRelease Broadcast when a user presses and releases a header.
DataGrid component (Flash Professional only) 155

DataGrid.addColumn()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.addColumn(dataGridColumn)

myDataGrid.addColumn(name)

Parameters

dataGridColumn An instance of the DataGridColumn class.

name A string that indicates the name of a new DataGridColumn object to be inserted.

Returns

A reference to the DataGridColumn object that was added.

Description

Method; adds a new column to the end of the data grid. For more information, see
“DataGridColumn class (Flash Professional only)” on page 174.

Example

The following code adds a new DataGridColumn object named Purple:
import mx.controls.gridclasses.DataGridColumn;
myGrid.addColumn(new DataGridColumn("Purple"));

DataGrid.addColumnAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myDataGrid.addColumnAt(index, name)

Usage 2:
myDataGrid.addColumnAt(index, dataGridColumn)
156 Chapter 4: Components Dictionary

Parameters

index The index position at which the DataGridColumn object is added. The first
position is 0.

name A string that indicates the name of the DataGridColumn object. You must specify either
the index parameter or the dataGridColumn parameter.

dataGridColumn An instance of the DataGridColumn class.

Returns

A reference to the DataGridColumn object that was added.

Description

Method; adds a new column at the specified position. Columns are shifted to the right and their
indexes are incremented. For more information, see “DataGridColumn class (Flash Professional
only)” on page 174.

Example

The following example inserts a new DataGridColumn object called "Green" at the second and
fourth columns:
import mx.controls.gridclasses.DataGridColumn;
myGrid.addColumnAt(1, "Green");
myGrid.addColumnAt(3, new DataGridColumn("Purple"));

DataGrid.addItem()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.addItem(item)

Parameters

item An instance of an object to be added to the grid.

Returns

A reference to the instance that was added.

Description

Method; adds an item to the end of the grid (after the last item index).
Note: This differs from the List.addItem() method in that an object is passed rather than a string.

Example

The following example adds a new object to the grid myGrid:
var anObject= {name:"Jim!!", age:30};
var addedObject = myGrid.addItem(anObject);
DataGrid component (Flash Professional only) 157

DataGrid.addItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.addItemAt(index, item)

Parameters

index The order (among the child nodes) in which the node should be added. The first
position is 0.

item A string that displays the node.

Returns

A reference to the object instance that was added.

Description

Method; adds an item to the grid at the position specified.

Example

The following example inserts an object instance to the grid at index position 4:
var anObject= {name:"Jim!!", age:30};
var addedObject = myGrid.addItemAt(4, anObject);

DataGrid.cellEdit

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellEdit = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellEdit", listenerObject)

Description

Event; broadcast to all registered listeners when cell value has changed.

V2 components use a dispatcher/listener event model. The DataGrid component dispatches a
cellEdit event when the value of a cell has changed, and the event is handled by a function (also
called a handler) that is attached to a listener object (listenerObject) that you create. You call
the addEventListener() method and pass it the name of the handler as a parameter.
158 Chapter 4: Components Dictionary

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cellEdit event’s
event object has four additional properties:

columnIndex A number that indicates the index of the target column.

itemIndex A number that indicates the index of the target row.

oldValue The previous value of the cell.

type The string "cellEdit".

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myDataGridListener is defined and passed to the
myDataGrid.addEventListener() method as the second parameter. The event object is
captured by the cellEdit handler in the eventObject parameter. When the cellEdit event is
broadcast, a trace statement is sent to the Output panel, as follows:
myDataGridListener = new Object();
myDataGridListener.cellEdit = function(event){

var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
trace("The value of the cell at " + cell + " has changed");

}
myDataGrid.addEventListener("cellEdit", myDataGridListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellFocusIn

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellFocusIn = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellFocusIn", listenerObject)

Description

Event; broadcast to all registered listeners when a particular cell receives focus. This event is
broadcast after any previously edited cell’s editCell and cellFocusOut events are broadcast.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
cellFocusIn event, the event is handled by a function (also called a handler) that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.
DataGrid component (Flash Professional only) 159

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cellFocusIn event’s
event object has three additional properties:

columnIndex A number that indicates the index of the target column.

itemIndex A number that indicates the index of the target row.

type The string "cellFocusIn".

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
cellFocusIn handler in the eventObject parameter. When the cellFocusIn event is
broadcast, a trace statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.cellFocusIn = function(event) {
 var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
 trace("The cell at " + cell + " has gained focus");
};
grid.addEventListener("cellFocusIn", myListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellFocusOut

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellFocusOut = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellFocusOut", listenerObject)

Description

Event; broadcast to all registered listeners whenever a user moves off a cell that has focus. You can
use the event object properties to isolate the cell that was left. This event is broadcast after the
cellEdit event and before any subsequent cellFocusIn events are broadcast by the next cell.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
cellFocusOut event, the event is handled by a function (also called a handler) that is attached to
a listener object that you create. You call the addEventListener() method and pass it the name
of the handler as a parameter.
160 Chapter 4: Components Dictionary

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cellFocusOut
event’s event object has three additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.

itemIndex A number that indicates the index of the target row. The first position is 0.

type The string "cellFocusOut".

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
cellFocusOut handler in the eventObject parameter. When the cellFocusOut event is
broadcast, a trace statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.cellFocusOut = function(event) {
 var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
 trace("The cell at " + cell + " has lost focus");
};
grid.addEventListener("cellFocusOut", myListener);

Note: The grid must be editable for the above code to work.

DataGrid.cellPress

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cellPress = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("cellPress", listenerObject)

Description

Event; broadcast to all registered listeners when a user presses the mouse button on a cell.

V2 components use a dispatcher/listener event model. When a DataGrid component broadcasts a
cellPress event, the event is handled by a function (also called a handler) that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.
DataGrid component (Flash Professional only) 161

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.cellPress event’s
event object has three additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.

itemIndex A number that indicates the index of the target row. The first position is 0.

type The string "cellPress".

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
cellPress handler in the eventObject parameter. When the cellPress event is broadcast, a
trace statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.cellPress = function(event) {
 var cell = "(" + event.columnIndex + ", " + event.itemIndex + ")";
 trace("The cell at " + cell + " has been clicked");
};
grid.addEventListener("cellPress", myListener);

DataGrid.change

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when an item has been selected.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
change event, the event is handled by a function (also called a handler) that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.change event’s event
object has one additional property, type, and its value is "change". For more information, see
“Event Objects” on page 562.
162 Chapter 4: Components Dictionary

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by
change handler in the eventObject parameter. When the change event is broadcast, a trace
statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.change = function(event) {
 trace("The selection has changed to " + event.target.selectedIndex);
};
grid.addEventListener("change", myListener);

DataGrid.columnCount

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.columnCount

Description

Property (read-only); the number of columns displayed.

Example

The following example gets the number of displayed columns in the DataGrid instance grid:
var c = grid.columnCount;

DataGrid.columnNames

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.columnNames

Description

Property; an array of field names within each item that are displayed as columns.

Example

The following example tells the grid instance to display only these three fields as columns:
grid.columnNames = ["Name", "Description", "Price"];
DataGrid component (Flash Professional only) 163

DataGrid.columnStretch

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.columnStretch = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("columnStretch", listenerObject)

Description

Event; broadcast to all registered listeners when a user horizontally resizes a column.

V2 components use a dispatcher/listener event model. When a DataGrid component dispatches a
columnStretch event, the event is handled by a function (also called a handler) that is attached to
a listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.columnStretch
event’s event object has two additional properties:

columnIndex A number that indicates the index of the target column. The first position is 0.

type The string "columnStretch".

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
columnStretch handler in the eventObject parameter. When the columnStretch event is
broadcast, a trace statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.columnStretch = function(event) {
 trace("column " + event.columnIndex + " was resized");
};
grid.addEventListener("columnStretch", myListener);
164 Chapter 4: Components Dictionary

DataGrid.dataProvider

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.dataProvider

Description

Property; the data model for items viewed in a DataGrid component.

The data grid adds methods to the prototype of the Array class so that each Array object conforms
to the DataProvider interface (see DataProvider.as in the Classes/mx/controls/listclasses folder).
Any array that exists in the same frame or screen as a data grid automatically has all the methods
(addItem(), getItemAt(), and so on) needed for it to be the data model of a data grid, and can
be used to broadcast data model changes to multiple components.

In a DataGrid component you specify fields for display in the DataGrid.columnNames property.

If you don’t define the column set (by setting the DataGrid.columnNames property or by calling
the DataGrid.addColumn() method) for the data grid before the DataGrid.dataProvider
property has been set, the data grid generates columns for each field in the data provider’s first
item, once that item arrives.

Any object that implements the DataProvider interface can be used as a data provider for a data
grid (including Flash Remoting recordsets, data sets, and arrays).

Example

The following example creates an array to be used as a data provider and assigns it directly to the
dataProvider property:
grid.dataProvider = [{name:"Chris", price:"Priceless"}, {name:"Nigel",

Price:"cheap"}];

The following example creates a new Array object that is decorated with the DataProvider class. It
uses a for loop to add 20 items to the grid:
myDP = new Array();
for (var i=0; i<20; i++)
 myDP.addItem({name:"Nivesh", price:"Priceless"});
list.dataProvider = myDP
DataGrid component (Flash Professional only) 165

DataGrid.editable

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.editable

Description

Property; determines whether the data grid can be edited by a user (true) or not (false). This
property must be true in order for individual columns to be editable and for any cell to receive
focus. The default value is false.

Example

The following example sets the scroll position to the top of the display:
myDataGrid.editable = true;

DataGrid.editField()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.editField(index, colName, data)

Parameters

index The index of the target cell. This number is zero-based.

colName A string indicating the name of the column (field) that contains the target cell.

data The value to be stored in the target cell. This parameter can be of any data type.

Returns

The data that was in the cell.

Description

Method; replaces the cell data at the specified location.

Example

The following example places a value in the grid:
var prevValue = myGrid.editField(5, "Name", "Neo");
166 Chapter 4: Components Dictionary

DataGrid.focusedCell

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.focusedCell

Description

Property; in editable mode only, an object instance that defines the cell that has focus. The object
must have the fields columnIndex and itemIndex, which are both integers that indicate the
index of the column and item of the cell. The origin is (0,0). The default value is undefined.

Example

The following example sets the focused cell to the third column, fourth row:
grid.focusedCell = {columnIndex:2, itemIndex:3};

DataGrid.getColumnAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index)

Parameters

index The index of the DataGridColumn object to be returned. This number is zero-based.

Returns

A DataGridColumn object.

Description

Method; gets a reference to the DataGridColumn object at the specified index.

Example

The following example gets the DataGridColumn object at index 4:
var aColumn = myGrid.getColumnAt(4);
DataGrid component (Flash Professional only) 167

DataGrid.getColumnIndex()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnIndex(index)

Parameters

index The index of the DataGridColumn object to be returned.

Returns

A DataGridColumn object.

Description

Method; gets a reference to the DataGridColumn object at the specified index.

DataGrid.headerHeight

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.headerHeight

Description

Property; the height of the header bar of the data grid. The default value is 20.

Example

The following example sets the scroll position to the top of the display:
myDataGrid.headerHeight = 30;
168 Chapter 4: Components Dictionary

DataGrid.headerRelease

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.headerRelease = function(eventObject){

// insert your code here
}
myDataGridInstance.addEventListener("headerRelease", listenerObject)

Description

Event; broadcast to all registered listeners when a column header has been released. You can use
this event with the DataGridColumn.sortOnHeaderRelease property to prevent automatic
sorting and to allow you to sort as you like.

V2 components use a dispatcher/listener event model. When the DataGrid component
dispatches a headerRelease event, the event is handled by a function (also called a handler) that
is attached to a listener object (listenerObject) that you create. You call the
addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The DataGrid.headerRelease
event’s event object has two additional properties:

columnIndex A number that indicates the index of the target column.

type The string "headerRelease".

For more information, see “Event Objects” on page 562.

Example

In the following example, a handler called myListener is defined and passed to the
grid.addEventListener() method as the second parameter. The event object is captured by the
headerRelease handler in the eventObject parameter. When the headerRelease event is
broadcast, a trace statement is sent to the Output panel, as follows:
var myListener = new Object();
myListener.headerRelease = function(event) {
 trace("column " + event.columnIndex + " header was pressed");
};
grid.addEventListener("headerRelease", myListener);
DataGrid component (Flash Professional only) 169

DataGrid.hScrollPolicy

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.hScrollPolicy

Description

Property; specifies whether the data grid has a horizontal scroll bar. This property can have one of
three values: "on", "off", and "auto". The default value is "off".

If you set hScrollPolicy to "off", columns scale proportionally to accommodate the
finite width.

Example

The following example sets horizontal scroll policy to automatic:
myDataGrid.hScrollPolicy = "auto";

DataGrid.removeAllColumns()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.removeAllColumns()

Parameters

None.

Returns

Nothing.

Description

Method; removes all DataGridColumn objects from the data grid. Calling this method has no
effect on the data provider.

Example

The following example removes all DataGridColumn objects from myDataGrid:
myDataGrid.removeAllColumns();
170 Chapter 4: Components Dictionary

DataGrid.removeColumnAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.removeColumnAt(index)

Parameters

index The index of the column to remove.

Returns

A reference to the DataGridColumn object that was removed.

Description

Method; removes the DataGridColumn object at the specified index.

Example

The following example removes the DataGridColumn object at index 2 in myDataGrid:
myDataGrid.removeColumnAt(2);

DataGrid.replaceItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.replaceItemAt(index, item)

Parameters

index The index of the item to be replaced.

item An object that is the item value to use as a replacement.

Returns

The previous value.

Description

Method; replaces the item at a specified index.
DataGrid component (Flash Professional only) 171

Example

The following example replaces the item at index 4 with the item defined in aNewValue:
var aNewValue = {name:"Jim", value:"tired"};
var prevValue = myGrid.replaceItemAt(4, aNewValue);

DataGrid.resizableColumns

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.resizableColumns

Description

Property; a Boolean value that determines whether the columns of the grid can be stretched by
the viewer (true) or not (false). This property must be true for individual columns to be
resizable. The default value is true.

Example

The following example prevents users from resizing columns:
myDataGrid.resizableColumns = false;

DataGrid.selectable

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.selectable

Description

Property; a Boolean value that determines whether a user can select the data grid (true) or not
(false). The default value is true.

Example

The following example prevents the grid from being selected:
myDataGrid.selectable = false;
172 Chapter 4: Components Dictionary

DataGrid.showHeaders

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.showHeaders

Description

Property; a Boolean value that indicates whether the data grid displays the column headers (true)
or not (false). Column headers are shaded to differentiate them from the other rows in a grid.
Users can click column headers to sort the contents of the column if
DataGrid.sortableColumns is set to true. The default value is true.

Example

The following example hides the column headers:
myDataGrid.showHeaders = false;

See also

DataGrid.sortableColumns

DataGrid.sortableColumns

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.sortableColumns

Description

Property; a Boolean value that determines whether the columns of the data grid can be sorted
(true) or not (false) when a user clicks the column headers. This property must be true for
individual columns to be sortable. This property must be set to true in order to broadcast the
headerRelease event. The default value is true.

Example

The following example turns off sorting:
myDataGrid.sortableColumns = false;

See also

DataGrid.headerRelease
DataGrid component (Flash Professional only) 173

DataGrid.spaceColumnsEqually()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.spaceColumnsEqually()

Parameters

None.

Returns

Nothing.

Description

Method; respaces the columns equally.

Example

The following example respaces the columns of myGrid when any column header is pressed
and released:
myGrid.showHeaders = true
myGrid.dataProvider = [{guitar:"Flying V", name:"maggot"}, {guitar:"SG",

name:"dreschie"}, {guitar:"jagstang", name:"vitapup"}];
gridLO = new Object();
gridLO.headerRelease = function(){

myGrid.spaceColumnsEqually();
}
myGrid.addEventListener("headerRelease", gridLO);

DataGridColumn class (Flash Professional only)

ActionScript Class Name mx.controls.gridclassesDataGridColumn

You can create and configure DataGridColumn objects to use as columns of a data grid. Many of
the methods of the DataGrid class are dedicated to managing DataGridColumn objects.
DataGridColumn objects are stored in an zero-based array in the data grid; 0 is the leftmost
column. After columns have been added or created, you can call
DataGrid.getColumnAt(index) to access them.

There are three ways to add or create columns in a grid. If you want to configure your columns, it
is best to use either the second or third way before you add data to a data grid so you don’t have to
create columns twice.

• Adding a DataProvider or an item with multiple fields to a grid that has no configured
DataGridColumn objects automatically generates columns for every field in the reverse order
of the for..in loop.
174 Chapter 4: Components Dictionary

• DataGrid.columnNames takes in the field names of the desired item fields and generates
DataGridColumn objects, in order, for each field listed. This approach allows you to select and
order columns quickly with a minimal amount of configuration. This approach removes any
previous column information.

• The most flexible way to add columns is to prebuild them as DataGridColumn objects and
add them to the data grid using DataGrid.addColumn(). This approach is useful because it
lets you add columns with proper sizing and formatting before the columns ever reach the grid
(which reduces processor demand). For more information, see “Constructor for the
DataGridColumn class” on page 175.

Property summary for the DataGridColumn class

Constructor for the DataGridColumn class

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

new DataGridColumn(name)

Parameters

name A string that indicates the name of the DataGridColumn object. This parameter is the
field of each item to display.

Property Description

DataGridColumn.cellRenderer The linkage identifier of a symbol to be used to display the
cells in this column.

DataGridColumn.columnName Read-only. The name of the field associated with
the column.

DataGridColumn.editable A Boolean value that indicates whether a column is editable
(true) or not (false).

DataGridColumn.headerRenderer The name of a class to be used to display the header of
this column.

DataGridColumn.headerText The text for the header of this column.

DataGridColumn.labelFunction A function that determines which field of an item to display.

DataGridColumn.resizable A Boolean value that indicates whether a column is resizable
(true) or not (false).

DataGridColumn.sortable A Boolean value that indicates whether a column is sortable
(true) or not (false).

DataGridColumn.sortOnHeaderRelease A Boolean value that indicates whether a column is sorted
(true) or not (false) when a user presses a column header.

DataGridColumn.width The width of a column, in pixels.
DataGrid component (Flash Professional only) 175

Returns

Nothing.

Description

Constructor; creates a DataGridColumn object. Use this constructor to create columns to add to
a DataGrid component. After you create the DataGridColumn objects, you can add them to a
data grid by calling DataGrid.addColumn().

 Example

The following example creates a DataGridColumn object called Location:
import mx.controls.gridclasses.DataGridColumn;
var column = new DataGridColumn("Location");

DataGridColumn.cellRenderer

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).cellRenderer

Description

Property; a linkage identifier for a symbol to be used to display cells in this column. Any class
used for this property must implement the CellRenderer interface (see “CellRenderer API”
on page 77.) The default value is undefined.

Example

The following example uses a linkage identifier to set a new cell renderer:
myGrid.getColumnAt(3).cellRenderer = "MyCellRenderer";

DataGridColumn.columnName

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).columnName

Description

Property (read-only); the name of the field associated with this column. The default value is the
name called in the DataGridColumn constructor.
176 Chapter 4: Components Dictionary

Example

The following example assigns the column name of the column at the third index position to the
variable name:
var name = myGrid.getColumnAt(3).columnName;

See also

Constructor for the DataGridColumn class

DataGridColumn.editable

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).editable

Description

Property; determines whether the column can be edited by a user (true) or not (false). The
DataGrid.editable property must be true in order for individual columns to be editable, even
when DataGridColumn.editable is set to true. The default value is true.

Example

The following example makes the first column in a grid uneditable:
myDataGrid.getColumnAt(0).editable = false;

See also

DataGrid.editable

DataGridColumn.headerRenderer

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).headerRenderer

Description

Property; a string that indicates a class name to be used to display the header of this column. Any
class used for this property must implement the CellRenderer interface (see “CellRenderer API”
on page 77). The default value is undefined.
DataGrid component (Flash Professional only) 177

Example

The following example uses a linkage identifier to set a new header renderer:
myGrid.getColumnAt(3).headerRenderer = "MyHeaderRenderer";

DataGridColumn.headerText

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).headerText

Description

Property; the text in the column header. The default value is the column name.

Example

The following example sets the column header text to “The Price”:
var myColumn = new DataGridColumn("price");
myColumn.headerText = "The Price";

DataGridColumn.labelFunction

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).labelFunction

Description

Property; specifies a function to determine which field (or field combination) of each item to
display. This function receives one parameter, item, which is the item being rendered, and must
return a string representing the text to display. This property can be used to create virtual columns
that have no equivalent field in the item.

Example

The following example creates a virtual column:
var myCol = myGrid.addColumn("Subtotal");
myCol.labelFunction = function(item) {

return "$" + (item.price + (item.price * salesTax));
};
178 Chapter 4: Components Dictionary

DataGridColumn.resizable

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).resizable

Description

Property; a Boolean value that indicates whether a column can be resized by a user (true) or not
(false). The DataGrid.resizableColumns property must be set to true for this property to
take effect. The default value is true.

Example

The following example prevents the column at index 1 from being resized:
myGrid.getColumnAt(1).resizable = false;

DataGridColumn.sortable

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).sortable

Description

Property; a Boolean value that indicates whether a column can be sorted by a user (true) or not
(false). The DataGrid.sortableColumns property must be set to true for this property to take
effect. The default value is true.

Example

The following example prevents the column at index 1 from being sorted:
myGrid.getColumnAt(1).sortable = false;
DataGrid component (Flash Professional only) 179

DataGridColumn.sortOnHeaderRelease

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).sortOnHeaderRelease

Description

Property; a Boolean value that indicates whether the column is sorted automatically (true) or not
(false) when a user clicks on a header. This property can be set to true only if
DataGridColumn.sortable is set to true. If DataGridColumn.sortOnHeaderRelease is set to
false, you can catch the headerRelease event and perform your own sort.

The default value is true.

Example

The following example allows you to catch the headerRelease event to perform your own sort:
myGrid.getColumnAt(7).sortOnHeaderRelease = false;

DataGridColumn.width

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDataGrid.getColumnAt(index).width

Description

Property; a number that indicates the width of the column, in pixels. The default value is 50.

Example

The following example makes a column half the size of the default value:
myGrid.getColumnAt(4).width = 25;
180 Chapter 4: Components Dictionary

DataHolder component (Flash Professional only)

The DataHolder component is a repository for data and a means of generating events when that
data has changed. Its main purpose is to hold data and act as connector between other
components using data binding.

Initially, the DataHolder component has a single bindable property named data. You can add
more properties using the Schema tab in the Component Inspector panel (Window >
Development Panels > Component Inspector). For more information on using the Schema tab,
see “Working with schemas in the Schema tab (Flash Professional only)” in Using Flash Help.

You can assign any type of data to a DataHolder property, either by creating a binding between
the data and another property, or by using your own ActionScript code. Whenever the value of
that data changes, the DataHolder component emits an event whose name is the same as the
property, and any bindings associated with that property are executed.

The DataHolder component is useful when you can’t directly bind components (such as
connectors, user interface components, or DataSet components) together. Below are some
scenarios in which you might use a DataHolder component:

• If a data value is generated by ActionScript, you might want to bind it to some other
components. In this case, you could have a DataHolder component that contains properties
that are bound as desired. Whenever new values are assigned to those properties (by means of
ActionScript, for example) those values will be distributed to the data-bound object.

• You might have a data value that results from a complex indexed data binding, as in the
following diagram.

In this case it is convenient to bind the data value to a DataHolder component (called
DataModel in this illustration) and then use that for bindings to the user interface.

Web Service Method
getMovies

DataModel
myDataModel

UI ListBox
movieList

Results

data.movieTitle

data.movieRating

data.movieTimes

UI TextField
title

UI TextField
rating

UI ListBox
times

Results[movieList.selectedIndex]
DataHolder component (Flash Professional only) 181

Creating an application with the DataHolder component
(Flash Professional only)

In this example, you add an array property to a DataHolder component’s schema (an array) whose
value is determined by ActionScript code that you write. You then bind that array property to the
dataProvider property of a DataGrid component by using the Bindings tab in the Component
Inspector panel.

To use the DataHolder component in a simple application:

1 In Flash MX Professional 2004, create a new file.
2 Open the Components panel (Window > Development Panels > Components), drag a

DataHolder component to the Stage, and name it dataHolder.
3 Drag a DataGrid component to the Stage and name it namesGrid.
4 Select the DataHolder component and open the Component Inspector panel (Window >

Development Panels > Component Inspector).
5 Click the Schema tab in the Component Inspector panel.
6 Click the Add Component Property button (+) located in the top pane of the Schema tab.
7 In the bottom pane of the Schema tab, type namesArray in the Field Name field, and select

Array from the Data Type pop-up menu.
8 Click the Bindings tab in the Component Inspector panel, and add a binding between the

namesArray property of the DataHolder component and the dataProvider property of the
DataGrid component.
For more information on creating bindings with the Bindings tab, see “Working with bindings
in the Bindings tab (Flash Professional only)” in Using Flash Help.

9 In the Timeline (Window > Timeline), select the first frame on Layer 1 and open the Actions
panel (Window > Development Panels > Actions).

10 Enter the following code in the Actions panel:
dataHolder.namesArray= [{name:"Tim"},{name:"Paul"},{name:"Jason"}];

This code populates the namesArray array with several objects. When this variable assignment
executes, the binding that you established previously between the DataHolder component and
the DataGrid component executes.

11 Test the file by selecting Control > Test Movie.

Property summary for the DataHolder class

DataHolder.data

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Property Description

DataHolder.data Default bindable property for DataHolder component.
182 Chapter 4: Components Dictionary

Usage

dataHolder.data

Description

Property; the default item in a DataHolder object’s schema. This property is not a “permanent”
member of the DataHolder component. Rather, it is the default bindable property for each
instance of the component. You can add your own bindable properties, or delete the default data
property, by using the Schema tab in the Component Inspector panel.

For more information on using the Schema tab, see “Working with schemas in the Schema tab
(Flash Professional only)” in Using Flash Help.

Example

For an example of using this component, see “Creating an application with the DataHolder
component (Flash Professional only)” on page 182.

DataProvider API

ActionScript class name mx.controls.listclasses.DataProvider

The DataProvider API is a set of methods and properties that a data source needs to have in order
to have a List-based class communicate with it. Arrays, RecordSets, and the DataSet all
implement this API. You can create a DataProvider-compliant class by implementing all the
methods and properties described in this document. A List-based component could then use that
class as a data provider.

The methods of the DataProvider API allow you to query and modify the data in any component
that displays data (also called a view). The DataProvider API also broadcasts change events when
the data changes. Multiple views can use the same data provider and all receive the change events.

A data provider is a linear collection (like an array) of items. Each item is an object composed of
many fields of data. You can access these items through their index (as you can with an array),
using DataProvider.getItemAt().

The most common case for using data providers is with arrays. Data-aware components apply all
the methods of the DataProvider API to Array.prototype when an Array object is in the same
frame or screen as a data-aware component. This allows you to use any existing array as the data
for views that have a dataProvider property.

Because of the DataProvider API, the v2 components that provide views for data (DataGrid, List,
Tree, and so on) can also display Flash Remoting RecordSets and data from the DataSet
component. The DataProvider API is the language with which data-aware components
communicate with their data providers.

In the Macromedia Flash documentation, “DataProvider” is the name of the API, dataProvider
is a property of each component that acts as a view for data, and “data provider” is the generic
term for a data source.
DataProvider API 183

Methods of the DataProvider API

Properties of the DataProvider API

Events of the DataProvider API

DataProvider.addItem()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.addItem(item)

Parameters

item An object containing data. This comprises an item in a data provider.

Returns

Nothing.

Name Description

DataProvider.addItem() Adds an item at the end of the data provider.

DataProvider.addItemAt() Adds an item to the data provider at the specified position.

DataProvider.editField() Changes one field of the data provider.

DataProvider.getEditingData() Gets the data for editing from a data provider.

DataProvider.getItemAt() Gets a reference to the item at a specified position.

DataProvider.getItemID() Returns the unique ID of the item.

DataProvider.removeAll() Removes all items from a data provider.

DataProvider.removeItemAt() Removes an item from a data provider at a specified position.

DataProvider.replaceItemAt() Replaces the item at a specified position with another item.

DataProvider.sortItems() Sorts the items in a data provider.

DataProvider.sortItemsBy() Sorts the items in a data provider according to a specified
compare function.

Name Description

DataProvider.length The number of items in a data provider.

Name Description

DataProvider.modelChanged Broadcast when the data provider is changed.
184 Chapter 4: Components Dictionary

Description

Method; adds a new item at the end of the data provider.

This method triggers the modelChanged event with the event name addItems.

Example

The following example adds an item to the end of the data provider myDP:
myDP.addItem({ label : "this is an Item"});

DataProvider.addItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.addItemAt(index, item)

Parameters

index A number greater than or equal to 0. The position at which to insert the item; the index
of the new item.

item An object containing the data for the item.

Returns

Nothing.

Description

Method; adds a new item to the data provider at the specified index. Indices greater than the data
provider's length are ignored.

This method triggers the modelChanged event with the event name addItems.

Example

The following example adds an item to the data provider myDP at the fourth position:
myDP.addItemAt(3, {label : "this is the fourth Item"});

DataProvider.editField()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.editField(index, fieldName, newData)
DataProvider API 185

Parameters

index A number greater than or equal to 0. The index of the item.

fieldName A string indicating the name of the field in the item to modify.

newData The new data to put in the data provider.

Returns

Nothing.

Description

Method; changes one field of the data provider.

This method triggers the modelChanged event with the event name updateField.

Example

The following code modifies the label field of the third item:
myDP.editField(2, "label", "mynewData");

DataProvider.getEditingData()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.getEditingData(index, fieldName)

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. The index of
the item to retrieve.

fieldName A string indicating the name of the field being edited.

Returns

The editable formatted data to be used.

Description

Method; retrieves data for editing from a data provider. This allows the data model to provide
different formats of data for editing and displaying.

Example

The following code gets an editable string for the price field:
trace(myDP.getEditingData(4, "price");
186 Chapter 4: Components Dictionary

DataProvider.getItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.getItemAt(index)

Parameters

index A number greater than or equal to 0 and less than DataProvider.length. The index of
the item to retrieve.

Returns

A reference to the retreived item; undefined if the index is out of range.

Description

Method; retrieves a reference to the item at a specified position.

Example

The following code displays the label of the fifth item:
trace(myDP.getItemAt(4).label);

DataProvider.getItemID()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 Professional.

Usage

myDP.getItemID(index)

Parameters

index A number greater than or equal to 0.

Returns

A number that is the unique ID of the item.

Description

Method; returns a unique ID for the item. This method is primarily used to track selection. This
ID is used in data-aware components to keep lists of what items are selected.
DataProvider API 187

Example

This example gets the ID of the fourth item:
var ID = myDP.getItemID(3);

DataProvider.modelChanged

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.modelChanged = function(eventObject){

// insert your code here
}
myMenu.addEventListener("modelChanged", listenerObject

Description

Event; broadcast to all of its view listeners whenever the data provider is modified. A listener is
typically added to a model by assigning its dataProvider property.

V2 components use a dispatcher/listener event model. When a data provider changes in some
way, it broadcasts a modelChanged event, and data-aware components catch it to update their
displays to reflect the changes in data.

The Menu.modelChanged event’s event object has five additional properties:

• eventName The eventName property is used to subcategorize modelChanged events.
Data-aware components use this information to avoid completely refreshing the component
instance (view) that is using the data provider. The following are the supported values of the
eventName property:
■ updateAll The entire view needs refreshing, excluding scroll position.
■ addItems A series of items have been added.
■ removeItems A series of items have been deleted.
■ updateItems A series of items need refreshing.
■ sort The data has been sorted.
■ updateField A field within an item has to be changed and needs refreshing.
■ updateColumn An entire field's definition within the dataProvider needs refreshing.
■ filterModel The model has been filtered, and the view needs refreshing

(reset scrollPosition).
■ schemaLoaded The field’s definition of the dataProvider has been declared.

• firstItem The index of the first affected item.
• lastItem The index of the last affected item. The value equals firstItem if only one item is

affected.
• removedIDs An array of the item identifiers that were removed.
• fieldName A string indicating the name of the field that is affected.
188 Chapter 4: Components Dictionary

For more information about event objects, see “Event Objects” on page 562.

Example

In the following example, a handler called listener is defined and passed to the
addEventListener() method as the second parameter. The event object is captured by the
modelChanged handler in the evt parameter. When the modelChanged event is broadcast, a
trace statement is sent to the Output panel, as follows:
listener = new Object();
listener.modelChanged = function(evt){
 trace(evt.eventName);
}
myList.addEventListener("modelChanged", listener);

DataProvider.length

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.length

Description

Property (read-only); the number of items in the data provider.
Example

This example sends the number of items in the myArray data provider to the Output panel:
trace(myArray.length);

DataProvider.removeAll()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.removeAll()

Parameters

None.

Returns

Nothing.
DataProvider API 189

Description

Method; removes all items in the data provider.

This method triggers the modelChanged event with the event name removeItems.

Example

This example removes all the items in the data provider:
myDP.removeAll();

DataProvider.removeItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.removeItemAt(index)

Parameters

index A number greater than or equal to 0. The index of the item to remove.

Returns

Nothing.

Description

Method; removes the item at the specified index. The indices after the removed index collapse
by one.

This method triggers the modelChanged event with the event name removeItems.

Example

This example removes the item at the fourth position:
myDP.removeItemAt(3);

DataProvider.replaceItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDP.replaceItemAt(index, item)
190 Chapter 4: Components Dictionary

Parameters

index A number greater than or equal to 0. The index of the item to change.

item An object that is the new item.

Returns

Nothing.

Description

Method; replaces the content of the item at the specified index.

This method triggers the modelChanged event with the event name removeItems.

Example

This example replaces the item at index 3 with the item with the label “new label”:
myDP.replaceItemAt(3, {label : "new label"});

DataProvider.sortItems()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myDP.sortItems([compareFunc], [optionsFlag])

Parameters

compareFunc A reference to a function that is used to compare two items to determine their
sort order. For details, see Array.sort() in ActionScript Dictionary Help. This parameter
is optional.

optionsFlag Allows you to perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

The following are possible values for optionsFlag:

• Array.DESCENDING—sorts highest to lowest.
• Array.CASEINSENSITIVE—sorts case insensitively.
• Array.NUMERIC—sorts numerically if the two elements being compared are numbers. If they

aren’t numbers, use a string comparison (which may be case-insensitive if that flag is specified).
• Array.UNIQUESORT—if two objects in the array are identical or have identical sort fields, this

method returns an error code (0) instead of a sorted array.
• Array.RETURNINDEXEDARRAY—returns an integer index array that is the result of the sort. For

example, the following array, if sorted with the optionsFlag parameter containing the value
Array.RETURNINDEXEDARRAY, would return the second line of code and the array would
remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]
DataProvider API 191

You can combine these options into one value. For example, the following code combines options
3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.

Description

Method; sorts the items in the data provider according to the compare function specified by the
compareFunc parameter or according to one or more of the sort options specified by the
optionsFlag parameter.

This method triggers the modelChanged event with the event name sort.

Example

This example sorts based on uppercase labels. The items a and b are passed to the function and
contain label and data fields:
myList.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){
 return a.label.toUpperCase() > b.label.toUpperCase();
}

DataProvider.sortItemsBy()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myDP.sortItemsBy(fieldName, order, [optionsFlag])

Parameters

fieldName A string specifying the name of the field to use for sorting. This value is usually
"label" or "data".

order A string specifying whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

optionsFlag Allows you to perform multiple, different types of sorts on a single array without
having to replicate the entire array or resort it repeatedly. This parameter is optional.

The following are possible values for optionsFlag:

• Array.DESCENDING—sorts highest to lowest.
• Array.CASEINSENSITIVE—sorts case insensitively.
• Array.NUMERIC—sorts numerically if the two elements being compared are numbers. If they

aren’t numbers, use a string comparison (which may be case-insensitive if that flag is specified).
192 Chapter 4: Components Dictionary

• Array.UNIQUESORT—if two objects in the array are identical or have identical sort fields, this
method returns an error code (0) instead of a sorted array.

• Array.RETURNINDEXEDARRAY—returns an integer index array that is the result of the sort. For
example, the following array, if sorted with the optionsFlag parameter containing the value
Array.RETURNINDEXEDARRAY, would return the second line of code and the array would
remain unchanged:
["a", "d", "c", "b"]
[0, 3, 2, 1]

You can combine these options into one value. For example, the following code combines options
3 and 1:
array.sort (Array.NUMERIC | Array.DESCENDING)

Returns

Nothing.

Description

Method; sorts the items in the data provider alphabetically or numerically, in the specified order,
using the specified field name. If the fieldName items are a combination of text strings and
integers, the integer items are listed first. The fieldName parameter is usually "label" or "data",
but advanced programmers may specify any primitive value. You can optionally use the
optionsFlag parameter to specify a sorting style.

This method triggers the modelChanged event with the event name sort.

Example

The following code sorts the items in a list in ascending order using the labels of the list items:
myDP.sortItemsBy("label", "ASC");

DataSet component (Flash Professional only)

The DataSet component lets you work with data as collections of objects that can be indexed,
sorted, searched, filtered, and modified.

The DataSet component functionality includes DataSetIterator, a set of methods for traversing
and manipulating a data collection, and DeltaPacket, a set of interfaces and classes for working
with updates to a data collection. In most cases, you don’t use these classes and interfaces directly;
you use them indirectly through methods provided by the DataSet class.

The items managed by the DataSet component are also called transfer objects. A transfer object
exposes business data that resides on the server with public attributes or accessor methods for
reading and writing data. The DataSet component allows developers to work with sophisticated
client-side objects that mirror their server-side counterparts or, in its simplest form, a collection of
anonymous objects with public attributes representing the fields within a record of data. For
details on transfer objects, see Core J2EE Patterns Transfer Object at java.sun.com/blueprints/
corej2eepatterns/Patterns/TransferObject.html.
Note: The DataSet component requires Flash Player 7 or later.
DataSet component (Flash Professional only) 193

http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html
http://java.sun.com/blueprints/corej2eepatterns/Patterns/TransferObject.html

Using the DataSet component (Flash Professional only)

You typically use the DataSet component in an application in combination with other
components to manipulate and update a data source: a Connector component for connecting to
an external data source, user interface components for displaying data from the data source, and a
Resolver component for translating updates made to the data set into the appropriate format for
sending to the external data source. You can then use data binding to bind properties of these
different components together.

For more general information about the DataSet component and how to use it with other
components, see “Data management (Flash Professional only)” in Using Flash Help.

DataSet component parameters

The following are authoring parameters that you can set for each DataSet component instance in
the Property inspector or in the Component Inspector panel:

itemClassName The name of the transfer object class that will be instantiated each time a new
item is needed.
Note: To make the specified class available at runtime, you must also make a fully qualified reference
to this class somewhere within your SWF file’s code (for example, var myItem:my.package.myItem;).

filtered If true, a filter is applied to the data set so that it contains only the objects that match
the filter criteria.

logChanges If true, the data set logs all mutations (changes to data or method calls) to its
deltaPacket property.

readOnly If true, the data set cannot be modified.

You can write ActionScript to control these and additional options for the DataSet component
using its properties, methods, and events. For more information, see “DataSet class (Flash
Professional only)” on page 196.

Creating an application with the DataSet component

Typically, you use the DataSet component with other user interface components, and often with a
Connector component such as the XMLConnector or WebServiceConnector component. The
items in the data set are populated by means of the Connector component, or raw ActionScript
data, and then bound to user interface controls (such as List or DataGrid components).

To create an application using the DataSet component:

1 In Flash MX Professional 2004, select File > New. In the Type column, select Flash Document
and click OK.

2 Open the Components panel (Window > Development Panels > Components) if it’s not
already open.

3 Drag a DataSet component from the Components panel to the Stage. In the Property inspector,
name it userData.

4 Drag a DataGrid component to the Stage and name it userGrid.
5 Resize the DataGrid component to be approximately 300 pixels wide and 100 pixels tall.
6 Drag a Button component to the Stage and name it nextBtn.
194 Chapter 4: Components Dictionary

7 In the Timeline, select the first frame on Layer 1 and open the Actions panel (Window >
Development Panels > Actions).

8 Add the following code to the Actions panel:
var recData = [{id:0, firstName:"Mick", lastName:"Jones"},
 {id:1, firstName:"Joe", lastName:"Strummer"},
 {id:2, firstName:"Paul", lastName:"Simonon"}];
userData.items = recData;

This populates the DataSet object’s items property with an array of objects, each of which has
three properties: firstName, lastName, and id.

9 To bind the contents of the DataSet component to the contents of the DataGrid component,
open the Component Inspector panel (Window > Development Panels > Component
Inspector) and click the Bindings tab.

10 Select the DataGrid component (userGrid) on the Stage, and click the Add Binding (+) button
in the Component Inspector panel.

11 In the Add Binding dialog box, select “dataProvider : Array” and click OK.
12 Double-click the Bound To field in the Component Inspector panel.
13 In the Bound To dialog box that appears, select “DataSet <userData>” from the Component

Path column and then select “dataProvider : Array” from the Schema Location column.
14 To bind the selected index of the DataSet component to the selected index of the DataGrid

component, click the Add Binding (+) button again in the Component Inspector panel.
15 In the dialog box that appears, select “selectedIndex : Number”. Click OK.
16 Double-click the Bound To field in the Component Inspector panel to open the Bound To

dialog box.
17 In the Component Path field, select “DataSet <userData>” from the Component Path column

and then select “selectedIndex : Number” from the Schema Location column.
18 Select the Button component (nextBtn) and open the Actions panel (Window > Development

Panels > Actions), if it is not already open.
19 Enter the following code in the Actions panel:

on(click) {
_parent.userData.next();

}

This code uses the DataSet.next() method to navigate to the next item in the DataSet
object’s collection of items. Since you had previously bound the selectedIndex property of
the DataGrid object to the same property of the DataSet object, changing the current item in
the DataSet object will change the current (selected) item in the DataGrid object, as well.

20 Save the file, and select Control > Test Movie to test the SWF file.
The DataGrid object is populated with the specified items. Notice how clicking the button
changes the selected item in the DataGrid object.
DataSet component (Flash Professional only) 195

DataSet class (Flash Professional only)

ActionScript Class Name mx.data.components.DataSet

Method summary for the DataSet class

Method Description

DataSet.addItem() Adds the specified item to the collection.

DataSet.addSort() Creates a new sorted view of the items in the collection.

DataSet.applyUpdates() Notifies listeners that changes made to the DataSet object
are ready.

DataSet.changesPending() Indicates whether there are items in the DeltaPacket object.

DataSet.clear() Clears all items from the current view of the collection.

DataSet.createItem() Returns a newly initialized collection item.

DataSet.disableEvents() Stops sending DataSet events to listeners.

DataSet.enableEvents() Resumes sending DataSet events to listeners.

DataSet.find() Locates an item in the current view of the collection.

DataSet.findFirst() Locates the first occurrence of an item in the current view of
the collection.

DataSet.findLast() Locates the last occurrence of an item in the current view of
the collection.

DataSet.first() Moves to the first item in the current view of the collection.

DataSet.getItemId() Returns the unique ID for the specified item.

DataSet.getIterator() Returns a clone of the current iterator.

DataSet.hasNext() Indicates whether the current iterator is at the end of its view of
the collection.

DataSet.hasPrevious() Indicates whether the current iterator is at the beginning of its view
of the collection.

DataSet.hasSort() Indicates whether the specified sort exists.

DataSet.isEmpty() Indicates whether the collection contains any items.

DataSet.last() Moves to the last item in the current view of the collection.

DataSet.loadFromSharedObj() Retrieves the contents of a DataSet object from a shared object.

DataSet.locateById() Moves the current iterator to the item with the specified ID.

DataSet.next() Moves to the next item in the current view of the collection.

DataSet.previous() Moves to the previous item in the current view of the collection.

DataSet.removeAll() Removes all the items from the collection.

DataSet.removeItem() Removes the specified item from the collection.

DataSet.removeRange() Removes the current iterator’s range settings.
196 Chapter 4: Components Dictionary

Property summary for the DataSet class

Event summary for the DataSet class

DataSet.removeSort() Removes the specified sort from the DataSet object.

DataSet.saveToSharedObj() Saves the data in the DataSet object to a shared object.

DataSet.setIterator() Sets the current iterator for the DataSet object.

DataSet.setRange() Sets the current iterator’s range settings.

DataSet.skip() Moves forward or backward by a specified number of items in the
current view of the collection.

DataSet.useSort() Makes the specified sort the active one.

Property Description

DataSet.currentItem Returns the current item in the collection.

DataSet.dataProvider Returns the DataProvider interface.

DataSet.deltaPacket Returns changes made to the collection, or assigns changes to be
made to the collection.

DataSet.filtered Indicates whether items are filtered.

DataSet.filterFunc User-defined function for filtering items in the collection.

DataSet.items Items in the collection.

DataSet.itemClassName Object to create when assigning items.

DataSet.length Specifies the number of items in the current view of the collection.

DataSet.logChanges Indicates whether changes made to the collection, or its items,
are recorded.

DataSet.properties Contains the properties (fields) for any transfer object within
this collection.

DataSet.readOnly Indicates whether the collection can be modified.

DataSet.schema Specifies the collection’s schema in XML format.

DataSet.selectedIndex Contains the current item’s index within the collection.

Event Description

DataSet.addItem Broadcast before an item is added to the collection.

DataSet.afterLoaded Broadcast after the items property is assigned.

DataSet.deltaPacketChanged Broadcast when the DataSet object’s delta packet has been
changed and is ready to be used.

DataSet.calcFields Broadcast when calculated fields should be updated.

DataSet.iteratorScrolled Broadcast when the iterator's position is changed.

Method Description
DataSet component (Flash Professional only) 197

DataSet.addItem

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(addItem) {
// insert your code here

}
listenerObject = new Object();
listenerObject.addItem = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("addItem", listenerObject)

Description

Event; generated just before a new transfer object is inserted into this collection.

If you set the result property of the event object to false, the add operation is canceled; if you
set it to true, the add operation is allowed.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "addItem".

item A reference to the item in the collection to be added.

result A Boolean value that specifies whether the specified item should be added. By default,
this value is true.

DataSet.modelChanged Broadcast when items in the collection have been modified in
some way.

DataSet.newItem Broadcast when a new item is constructed by the DataSet object,
but before it is added to the collection.

DataSet.removeItem Broadcast before an item is removed.

DataSet.resolveDelta Broadcast when a DeltaPacket object is assigned to the DataSet
object that contains messages.

Event Description
198 Chapter 4: Components Dictionary

Example

The following on(addItem) event handler (attached to a DataSet object) cancels the addition of
the new item if a user-defined function named userHasAdminPrivs() returns false; otherwise,
the item addition is allowed.
on(addItem) {

if(globalObj.userHasAdminPrivs()) {
// Allow the item addition.
eventObj.result = true;

} else {
// Don’t allow item addition; user doesn’t have admin privileges.
eventObj.result = false;

}
}

See also

DataSet.removeItem

DataSet.addItem()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.addItem([obj])

Parameters

obj An object to add to this collection. This parameter is optional.

Returns

Returns true if the item was added to the collection; otherwise, returns false.

Description

Method; adds the specified transfer object to the collection for management. The newly added
item becomes the current item of the data set. If no obj parameter is specified, a new object is
created automatically by means of DataSet.createItem().

The location of the new item in the collection depends on whether a sort has been specified for
the current iterator. If no sort is in use, the item specified is added to the end of the collection. If
a sort is in use, the item is added to the collection according to its position in the current sort.

For more information on initialization and construction of the transfer object, see
DataSet.createItem().

Example

myDataSet.addItem(myDataSet.createItem());

See also

DataSet.createItem()
DataSet component (Flash Professional only) 199

DataSet.addSort()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.addSort(name, fieldList, sortOptions)

Parameters

name A string that specifies the name of the sort.

fieldList An array of strings that specify the fields names to sort on.

sortOptions One or more of the following integer (constant) values, which indicate what
options are used for this sort. Separate multiple values using the bitwise OR operator (|). The
value(s) must be one of the following:

• DataSetIterator.Ascending Sorts items in ascending order. This is the default sort option,
if none is specified.

• DataSetIterator.Descending Sorts items in descending order based on item
properties specified.

• DataSetIterator.Unique Prevents the sort if any fields have like values.
• DataSetIterator.CaseInsensitive Ignores case when comparing two strings during the

sort operation. By default, sorts are case sensitive when the property being sorted on is a string.

A DataSetError exception is thrown when DataSetIterator.Unique is specified as a sort
option and the data being sorted is not unique, when the specified sort name has already been
added, or when a property specified in the fieldList array does not exist in this data set.

Returns

Nothing.

Description

Method; creates a new ascending or descending sort for the current iterator based on the
properties specified by the fieldList parameter. The new sort is automatically assigned to the
current iterator after it is created and stored in the sorting collection for later retrieval.

Example

The following code creates a new sort named "rank" that performs a descending, case-sensitive,
unique sort on the DataSet object’s "classRank" field.
myDataSet.addSort("rank", ["classRank"], DataSetIterator.Descending |

DataSetIterator.Unique | DataSetIterator.CaseInsensitive);

See also

DataSet.removeSort()
200 Chapter 4: Components Dictionary

DataSet.afterLoaded

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(afterLoaded) {
// insert your code here

}
listenerObject = new Object();
listenerObject.afterLoaded = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("afterLoaded", listenerObject)

Description

Event; broadcast immediately after the DataSet.items property has been assigned.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event

type The string "afterLoaded".

Example

In this example, a form named contactForm (not shown) is made visible once the items in the
DataSet contact_ds have been assigned.
contact_ds.addEventListener("afterLoaded", loadListener);
loadListener = new Object();
loadListener.afterLoaded = function (eventObj) {

if(eventObj.target == "contact_ds") {
contactForm.visible = true;

}
}

DataSet.applyUpdates()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.applyUpdates()

Returns

Nothing.
DataSet component (Flash Professional only) 201

Description

Method; signals that the DataSet.deltaPacket property has a value that you can access using
data binding or directly by ActionScript. Before this method is called, the DataSet.deltaPacket
property is null. This method has no effect if events have been disabled by means of the
DataSet.disableEvents() method.

Calling this method also creates a transaction ID for the current DataSet.deltaPacket property
and emits a deltaPacketChanged event. For more information, see DataSet.deltaPacket.

Example

The following code call the applyUpdates() method on myDataSet.
myDataSet.applyUpdates();

See also

DataSet.deltaPacket

DataSet.calcFields

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(calcFields) {
// insert your code here

}
listenerObject = new Object();
listenerObject.calcFields = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("calcFields", listenerObject)

Description

Event; generated when values of calculated fields for the current item in the collection need to be
determined. A calculated field is one whose Kind property is set to Calculated on the Schema tab
of the Component Inspector panel. The calcFields event listener that you create should
perform the required calculation and set the value for the calculated field.

This event is also called when the value of a noncalculated field (that is, a field with its Kind
property set to Data on the Component Inspector panel’s Schema tab) is updated.

For more information on the Kind property, see “Schema kinds (Flash Professional only)” in
Using Flash Help.
Caution: Do not change the values of any of noncalculated fields in this event, because this will result
in an “infinite loop.” Only set the values of calculated fields within the calcFields event.
202 Chapter 4: Components Dictionary

DataSet.changesPending()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.changesPending()

Returns

A Boolean value.

Description

Method; returns true if the collection, or any item within the collection, has changes pending
that have not yet been sent in a DeltaPacket object; otherwise, returns false.

Example

The following code enables a Save Changes button (not shown) if the DataSet collection, or any
items with that collection, have had modifications made to them that haven’t been committed to
a DeltaPacket object.
if(data_ds.changesPending()) {

saveChanges_btn.enabled = true;
}

DataSet.clear()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.clear()

Returns

Nothing.

Description

Method; removes the items in the current view of the collection. Which items are considered
“viewable” depends on any current filter and range settings on the current iterator. Therefore,
calling this method might not clear all of the items in the collection. To clear all of the items in
the collection regardless of the current iterator’s view, use DataSet.removeAll().

If DataSet.logChanges is set to true when you invoke this method, “remove” entries are added
to DataSet.deltaPacket for all items within the collection.
DataSet component (Flash Professional only) 203

Example

This example removes all items from the current view of the DataSet collection. Because the
logChanges property is set to true, the removal of those items is logged.
myDataSet.logChanges= true;
myDataSet.clear();

See also

DataSet.deltaPacket, DataSet.logChanges

DataSet.createItem()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.createItem([itemData])

Parameters

itemData Data associated with the item. This parameter is optional.

Returns

The newly constructed item.

Description

Method; creates an item that isn’t associated with the collection. You can specify the class of object
created with the DataSet.itemClassName property. If no DataSet.itemClassName value is
specified and the itemData parameter is omitted, an anonymous object is constructed. This
anonymous object’s properties are set to the default values based on the schema currently specified
by DataSet.schema.

When this method is invoked, any listeners for the DataSet.newItem event are notified and are
able to manipulate the item before it is returned by this method. The optional item data specified
is used to initialize the class specified with the DataSet.itemClassName property or is used as the
item if DataSet.itemClassName is blank.

A DataSetError exception is thrown when the class specified with the DataSet.itemClassName
property cannot be loaded.

Example

contact.itemClassName = "Contact";
var itemData = new XML("<contact_info><name>John Smith</

name><phone>555.555.4567</phone><zip><pre>94025</pre><post>0556</post></
zip></contact_info>");

contact.addItem(contact.createItem(itemData));

See also

DataSet.itemClassName, DataSet.newItem, DataSet.schema
204 Chapter 4: Components Dictionary

DataSet.currentItem

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.currentItem

Description

Property (read-only); returns the current item in the DataSet collection, or null if the collection
is empty or if the current iterator’s view of the collection is empty.

This property provides direct access to the item within the collection. Changes made by directly
accessing this object are not tracked (in the DataSet.deltaPacket property), nor are any of the
schema settings applied to any properties of this object.

Example

The following example displays the value of the customerName property defined in the current
item in the data set named customerData.
trace(customerData.currentItem.customerName);

DataSet.dataProvider

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.dataProvider

Description

Property; the DataProvider interface for this data set. This property provides data to user interface
controls, such as the List and DataGrid components.

Example

The following code assigns the dataProvider property of a DataSet object to the corresponding
property of a DataGrid component.
myGrid.dataProvider = myDataSet.dataProvider;
DataSet component (Flash Professional only) 205

DataSet.deltaPacket

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.deltaPacket

Description

Property; returns a DeltaPacket object that contains all of the change operations made to the
dataSet collection and its items. This property is null until DataSet.applyUpdates() is called
on dataSet.

When DataSet.applyUpdates() is called, a transaction ID is assigned to the DeltaPacket
object. This transaction ID is used to identify the DeltaPacket object on an update round trip
from the server and back to the client. Any subsequent assignment to the deltaPacket property
by a DeltaPacket object with a matching transaction ID is assumed to be the server’s response to
the changes previously sent. A DeltaPacket object with a matching ID is used to update the
collection, and report errors specified within the packet.

Errors or server messages are reported to listeners of the DataSet.resolveDelta event. Note that
the DataSet.logChanges settings are ignored when a DeltaPacket object with a matching ID is
assigned to DataSet.deltaPacket. A DeltaPacket object without a matching transaction ID
updates the collection, as if the DataSet API were used directly. This may create additional
delta entries, depending on the current DataSet.logChanges setting of dataSet and the
DeltaPacket object.

A DataSetError exception is thrown if a DeltaPacket object is assigned with a matching
transaction ID and one of the items in the newly assigned DeltaPacket object cannot be found in
the original DeltaPacket object.

See also

DataSet.applyUpdates(), DataSet.logChanges, DataSet.resolveDelta
206 Chapter 4: Components Dictionary

DataSet.deltaPacketChanged

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(deltaPacketChanged) {
// insert your code here

}
listenerObject = new Object();
listenerObject.deltaPacketChanged = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("deltaPacketChanged", listenerObject)

Description

Event; broadcast when the specified DataSet object’s deltaPacket property has been changed
and is ready to be used.

See also

DataSet.deltaPacket

DataSet.disableEvents()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.disableEvents()

Returns

Nothing.

Description

Method; disables events for the DataSet object. While events are disabled, no user interface
controls (such as a DataGrid component) are updated when changes are made to items in the
collection, or the DataSet object is scrolled to another item in the collection.

To reenable events, you must call DataSet.enableEvents(). The disableEvents() method
can be called multiple times, and enableEvents() must be called an equal number of times to
reenable the dispatching of events.
DataSet component (Flash Professional only) 207

Example

In this example, events are disabled before changes are made to items in the collection, so the
DataSet object won’t try to refresh controls and impact performance.
// Disable events for the data set
myDataSet.disableEvents();
myDataSet.last();
while(myDataSet.hasPrevious()) {

var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.previous();

}
// Tell the data set it's time to update the controls now
myDataSet.enableEvents();

See also

DataSet.enableEvents()

DataSet.enableEvents()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.enableEvents()

Returns

Nothing.

Description

Method; reenables events for the DataSet objects after events have been disabled by a call to
DataSet.disableEvents(). To reenable events for the DataSet object, the enableEvents()
method must be called an equal or greater number of times than disableEvents() was called.

Example

In this example, events are disabled before changes are made to items in the collection, so the
DataSet object won’t try to refresh controls and impact performance.
// Disable events for the data set
myDataSet.disableEvents();
myDataSet.last();
while(myDataSet.hasPrevious()) {

var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.previous();

}
// Tell the dataset it's time to update the controls now
myDataSet.enableEvents();
208 Chapter 4: Components Dictionary

See also

DataSet.disableEvents()

DataSet.filtered

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.filtered

Description

Property; a Boolean value that indicates whether the data in the current iterator is filtered. When
set to true, the filter function specified by DataSet.filterFunc is called for each item in
the collection.

Example

In the following example, filtering is enabled on the DataSet object named employee_ds.
Suppose that each record in the DataSet collection contains a field named empType. The
following filter function returns true if the empType field in the current item is set to
"management"; otherwise, it returns false.
employee_ds.filtered = true;
employee_ds.filterFunc = function(item:Object) {

// filter out those employees who are managers...
return(item.empType != "management");

}

See also

DataSet.filterFunc

DataSet.filterFunc

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.filterFunc = function(item:Object) {
// return true|false;

};
DataSet component (Flash Professional only) 209

Description

Property; specifies a function that determines which items are included in the current view of the
collection. When DataSet.filtered is set to true, the function assigned to this property is
called for each transfer object in the collection. For each item that is passed to the function, it
should return true if the item should be included in the current view, or false if the item should
not be included in the current view.

Example

In the following example, filtering is enabled on the DataSet object named employee_ds. The
specified filter function returns true if the empType field in each item is set to "management";
otherwise, it returns false.
employee_ds.filtered = true;
employee_ds.filterFunc = function(item:Object) {

// filter out those employees who are managers...
return(item.empType != "management");

}

See also

DataSet.filtered

DataSet.find()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.find(searchValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns

Returns true if the values are found; otherwise, returns false.

Description

Method; searches the current view of the collection for an item with the field values specified by
searchValues. Which items are in the current view depends on any current filter and range
settings. If found, the found item becomes the current item in the DataSet object.

The values specified by searchValues must be in the same order as the field list specified by the
current sort (see the example below).

If the current sort is not unique, the transfer object found is nondeterministic. If you want to find
the first or last occurrence of a transfer object in a nonunique sort, use DataSet.findFirst() or
DataSet.findLast().
210 Chapter 4: Components Dictionary

Conversion of the data specified is based on the underlying field’s type, and that specified in the
array. For example, if you specify ["05-02-02"] as a search value, the underlying date field is
used to convert the value using the date’s DataType.setAsString() method. If you specify [new
Date().getTime()], the date’s DataType.setAsNumber() method is used.

Example

This example searches for an item in the current collection whose name and id fields contain the
values "Bobby" and 105, respectively. If found, the DataSet.getItemId() method is used to get
the unique identifier for the item in the collection, and the DataSet.locateById() method is
used to position the current iterator on that item.
var studentID:String = null;
studentData.addSort("id", ["name","id"]);
// Locate the transfer object identified by "Bobby" and 105.
// Note that the order of the search fields matches those
// specified in the addSort() method.
if(studentData.find(["Bobby", 105])) {

studentID = studentData.getItemId();
}
// Now use the locateByID() method to position the current
// iterator on the item in the collection whose ID matches studentID
if(studentID != null) {

studentData.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()

DataSet.findFirst()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.findFirst(searchValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns

Returns true if the items are found; otherwise, returns false.

Description

Method; searches the current view of the collection for the first item with the field values specified
by searchValues. Which items are in the current view depends on any current filter and
range settings.

The values specified by searchValues must be in the same order as the field list specified by the
current sort (see the example below).
DataSet component (Flash Professional only) 211

Conversion of the data specified is based on the underlying field’s type, and that specified in the
array. For example, if the search value specified is ["05-02-02"], the underlying date field is used
to convert the value using the date’s setAsString() method. If the value specified is [new
Date().getTime()], the date’s setAsNumber() method is used.

Example

This example searches for the first item in the current collection whose name and age fields
contain "Bobby" and "13". If found, DataSet.getItemId() is used to get the unique identifier
for the item in the collection, and DataSet.locateById() is used to position the current iterator
on that item.
var studentID:String = null;
studentData.addSort("nameAndAge", ["name", "age");
// Locate the first transfer object with the specified values.
// Note that the order of the search fields matches those
// specified in the addSort() method.
if(studentData.findFirst(["Bobby", "13"])) {

studentID = studentData.getItemId();
}
// Now use the locateByID() method to position the current
// iterator on the item in the collection whose ID matches studentID
if(studentID != null) {

studentData.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()

DataSet.findLast()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.findLast(searchValues)

Parameters

searchValues An array that contains one or more field values to be found within the
current sort.

Returns

Returns true if the items are found; otherwise, returns false.

Description

Method; searches the current view of the collection for the last item with the field values specified
by searchValues. Which items are in the current view depends on any current filter and
range settings.

The values specified by searchValues must be in the same order as the field list specified by the
current sort (see the example below).
212 Chapter 4: Components Dictionary

Conversion of the data specified is based on the underlying field’s type, and that specified in the
array. For example, if the search value specified is ["05-02-02"], the underlying date field is used
to convert the value using the date’s setAsString() method. If the value specified is [new
Date().getTime()], the date’s setAsNumber() method is used.

Example

This example searches for the last item in the current collection whose name and age fields
contain "Bobby" and "13". If found, the DataSet.getItemId() method is used to get the
unique identifier for the item in the collection, and the DataSet.locateById() method is used
to position the current iterator on that item.
var studentID:String = null;
studentData.addSort("nameAndAge", ["name", "age");
// Locate the last transfer object with the specified values.
// Note that the order of the search fields matches those
// specified in the addSort() method.
if(studentData.findLast(["Bobby", "13"])) {

studentID = studentData.getItemId();
}
// Now use the locateByID() method to position the current
// iterator on the item in the collection whose ID matches studentID.
if(studentID != null) {

studentData.locateById(studentID);
}

See also

DataSet.applyUpdates(), DataSet.getItemId(), DataSet.locateById()

DataSet.first()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.first()

Returns

Nothing.

Description

Method; makes the first item in the current view of the collection the current item. Which items
are in the current view depends on any current filter and range settings.

Example

The following code positions the DataSet userData at the first item in its collection
and then displays the value of the price property contained by that item using the
DataSet.currentItem property.
inventoryData.first();
trace("The price of the first item is:" + inventoryData.currentItem.price);
DataSet component (Flash Professional only) 213

See also

DataSet.last()

DataSet.getItemId()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.getItemId([index])

Parameters

index A number specifying the item in the current view of items to get the ID for. This
parameter is optional.

Returns

A string.

Description

Method; returns the identifier of the current item in the collection, or that of the item specified
by index. This identifier is unique only within this collection and is assigned automatically by
DataSet.addItem().

Example

The following code gets the unique ID for the current item in the collection and then displays it
in the Output panel.
var itemNo:String = myDataSet.getItemId();
trace("Employee id("+ itemNo+ ")");

See also

DataSet.addItem()

DataSet.getIterator()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.getIterator()

Returns

A ValueListIterator object.
214 Chapter 4: Components Dictionary

Description

Method; returns a new iterator for this collection; this iterator is a clone of the current iterator in
use, including its current position within the collection. This method is mainly for advanced users
who want access to multiple, simultaneous views of the same collection.

Example

myIterator:ValueListIterator = myDataSet.getIterator();
myIterator.sortOn(["name"]);
myIterator.find({name:"John Smith"}).phone = "555-1212";

DataSet.hasNext()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.hasNext()

Returns

A Boolean value.

Description

Method; returns false if the current iterator is at the end of its view of the collection; otherwise,
returns true.

Example

This example iterates over all of the items in the current view of the collection (starting at its
beginning) and performs a calculation on the price property of each item.
myDataSet.first();
while(myDataSet.hasNext()) {

var price = myDataSet.currentItem.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.currentItem.price = price;
myDataSet.next();

}

See also

DataSet.currentItem, DataSet.first(), DataSet.next()
DataSet component (Flash Professional only) 215

DataSet.hasPrevious()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.hasPrevious()

Returns

A Boolean value.

Description

Method; returns false if the current iterator is at the beginning of its view of the collection;
otherwise, returns true.

Example

This example iterates over all of the items in the current view of the collection (starting from the
its last item) and performs a calculation on the price property of each item.
myDataSet.last();
while(myDataSet.hasPrevious()) {

var price = myDataSet.currentItem.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.currentItem.price = price;
myDataSet.previous();

}

See also

DataSet.currentItem, DataSet.skip(), DataSet.previous()

DataSet.hasSort()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.hasSort(sortName)

Parameters

sortName A string that contains the name of a sort created with DataSet.addSort()

Returns

A Boolean value.
216 Chapter 4: Components Dictionary

Description

Method; returns true if the sort specified by sortName exists; otherwise, returns false.

Example

The following code tests if a sort named “customerSort” exists. If the sort already exists, it is made
the current sort by means of the DataSet.useSort() method. If a sort by that name doesn’t
exist, one is created by means of the DataSet.addSort() method.
if(myDataSet.hasSort("customerSort"))

myDataSet.useSort("customerSort");
} else {

myDataSet.addSort("customerSort", ["customer"],
DataSetIterator.Descending);

}

See also

DataSet.applyUpdates(), DataSet.useSort()

DataSet.isEmpty()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.isEmpty()

Returns

A Boolean value.

Description

Method; returns true if the specified DataSet object doesn’t contain any items (that is, if
dataSet.length == 0).

Example

The following disables a Delete Record button (not shown) if the DataSet object it applies to
is empty.
if(userData.isEmpty()){

delete_btn.enabled = false;
}

See also

DataSet.length
DataSet component (Flash Professional only) 217

DataSet.items

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myDataSet.items

Description

Property; an array of items managed by myDataSet.

Example

This example assigns an array of objects to a DataSet object’s items property.
var recData = [{id:0, firstName:"Mick", lastName:"Jones"},
 {id:1, firstName:"Joe", lastName:"Strummer"},
 {id:2, firstName:"Paul", lastName:"Simonon"}];
myDataSet.items = recData;

DataSet.itemClassName

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.itemClassName

Description

Property; a string indicating the name of the class that should be created when items are added to
the collection. The class you specify must implement the TransferObject interface, shown below.
interface mx.data.to.TransferObject {

function clone():Object;
function getPropertyData():Object;
function setPropertyData(propData:Object):Void;

}

You can also set this property in the Property inspector.

To make the specified class available at runtime, you must also make a fully qualified reference to
this class somewhere within your SWF file’s code, as in the following code snippet:
var myItem:my.package.myItem;

A DataSetError exception is thrown if you try to modify the value of this property after the
DataSet.items array has been loaded.

For more information about the TransferObject interface, see “TransferObject interface”
on page 527.
218 Chapter 4: Components Dictionary

DataSet.iteratorScrolled

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(iteratorScrolled) {
// insert your code here

}
listenerObject = new Object();
listenerObject.iteratorScrolled = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("iteratorScrolled", listenerObject)

Description

Event; generated immediately after the current iterator has scrolled to a new item in
the collection.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "iteratorScrolled".

scrolled A number that specifies how many items the iterator scrolled; positive values indicate
that the iterator moved forward in the collection; negative values indicate that it moved backward
in the collection.

Example

In this example, the status bar of an application (not shown) is updated when the position of the
current iterator changes.
on(iteratorScrolled) {

var dataSet:mx.data.components.DataSet = eventObj.target;
var statusBarText = dataSet.fullname+" Acct #:
"+dataSet.getField("acctnum").getAsString();
setStatusBar(statusBarText);

}

DataSet.last()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.last()
DataSet component (Flash Professional only) 219

Returns

Nothing.

Description

Method; makes the last item in the current view of the collection the current item.

Example

The following code, attached to a Button component, goes to the last item in the
DataSet collection.
function goLast(eventObj:obj) {

inventoryData.last();
}
goLast_btn.addEventListener("click", goLast);

See also

DataSet.first()

DataSet.length

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.length

Description

Property (read-only); specifies the number of items in the current view of the collection. The
viewable number of items is based on the current filter and range settings.

Example

The following example alerts users if they haven’t made enough entries in the data set, perhaps
using an editable DataGrid component.
if(myDataSet.length < MIN_REQUIRED) {

alert("You need at least "+MIN_REQUIRED);
}

DataSet.loadFromSharedObj()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.loadFromSharedObj(objName, [localPath])
220 Chapter 4: Components Dictionary

Parameters

objName A string specifying the name of the shared object to retrieve. The name can include
forward slashes (for example, “work/addresses”). Spaces and the following characters are not
allowed in the specified name:
~ % & \ ; : " ' , < > ? #

localPath An optional string parameter that specifies the full or partial path to the SWF file
that created the shared object. This string is used to determine where the object is stored on the
user’s computer. The default value is the SWF file’s full path.

Returns

Nothing.

Description

Method; loads all of the relevant data needed to restore this DataSet collection from a shared
object. To save a DataSet collection to a shared object, use DataSet.saveToSharedObj(). The
DataSet.loadFromSharedObject() method overwrites any data or pending changes that might
exist within this DataSet collection. Note that the instance name of the DataSet collection is used
to identify the data within the specified shared object.

This method throws a DataSetError exception if the specified shared object isn’t found or if
there is a problem retrieving the data from it.

Example

This example attempts to load a shared object named webapp/customerInfo associated with the
data set named myDataSet. The method is called within a try...catch code block.
try {

myDataSet.loadFromSharedObj("webapp/customerInfo");
}
catch(e:DataSetError) {

trace("Unable to load shared object.”);
}

See also

DataSet.saveToSharedObj()

DataSet.locateById()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.locateById(id)

Parameters

id A string identifier for the item in the collection to be located.
DataSet component (Flash Professional only) 221

Returns

A Boolean value.

Description

Method; positions the current iterator on the collection item whose ID matches id. This method
returns true if the specified ID can be matched to an item in the collection; otherwise, it
returns false.

Example

This example uses DataSet.find() to search for an item in the current collection whose name
and id fields contain the values "Bobby" and 105, respectively. If found, the
DataSet.getItemId() method is used to get the unique identifier for that item, and the
DataSet.locateById() method is used to position the current iterator at that item.
var studentID:String = null;
studentData.addSort("id", ["name","id"]);
if(studentData.find(["Bobby", 105])) {

studentID = studentData.getItemId();
studentData.locateById(studentID);

}

See also

DataSet.applyUpdates(), DataSet.find(), DataSet.getItemId()

DataSet.logChanges

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.logChanges

Description

Property; a Boolean value that specifies whether changes made to the data set, or its items, should
(true) or should not (false) be recorded in DataSet.deltaPacket.

When this property is set to true, operations performed at the collection level and item level are
logged. Collection-level changes include the addition and removal of items from the collection.
Item-level changes include property changes made to items and method calls made on items by
means of the DataSet component.

Example

The following example disables logging for the DataSet object named userData.
userData.logChanges = false;

See also

DataSet.deltaPacket
222 Chapter 4: Components Dictionary

DataSet.modelChanged

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Description

on(modelChanged) {
// insert your code here

}
listenerObject = new Object();
listenerObject.modelChanged = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("modelChanged", listenerObject)

Description

Event; broadcast when the collection changes in some way—for example, when items are
removed or added to the collection, when the value of an item’s property changes, or when the
collection is filtered or sorted.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "iteratorScrolled".

firstItem The index (number) of the first item in the collection that was affected by
the change.

lastItem The index (number) of the last item in the collection that was affected by the change
(equals firstItem if only one item was affected).

fieldName A string that contains the name of the field being affected. This property is
undefined unless the change was made to a property of the DataSet object.

eventName A string that describes the change that took place. This can be one of the
following values:

String value Description

"addItems" A series of items has been added.

"filterModel" The model has been filtered, and the view needs refreshing (reset scroll position).

"removeItems" A series of items has been deleted.

"schemaLoaded" The fields definition of the data provider has been declared.

"sort" The data has been sorted.

"updateAll" The entire view needs refreshing, excluding scroll position.

"updateColumn" An entire field’s definition within the data provider needs refreshing.

"updateField" A field within an item has been changed and needs refreshing.

"updateItems" A series of items needs refreshing.
DataSet component (Flash Professional only) 223

Example

In this example, a Delete Item button is disabled if the items have been removed from the
collection and the target DataSet object has no more items.
on(modelChanged) {
 delete_btn.enabled = ((eventObj.eventName == "removeItems") &&

(eventObj.target.isEmpty()));
}

See also

DataSet.isEmpty()

DataSet.newItem

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(newItem) {
// insert your code here

}
listenerObject = new Object();
listenerObject.newItem = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("newItem", listenerObject)

Description

Event; broadcast when a new transfer object is constructed by means of DataSet.createItem().
A listener for this event can make modifications to the item before it is added to the collection.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "iteratorScrolled".

item A referenece to the item that was created.

Example

This example makes modifications to a newly created item before it’s added to the collection.
function newItemEvent(evt:Object):Void {

var employee:Object = evt.item;
employee.name = "newGuy";
// property data happens to be XML
employee.zip =
employee.getPropertyData().firstChild.childNodes[1].attributes.zip;

}
employees_ds.addEventListener("newItem", newItemEvent);
224 Chapter 4: Components Dictionary

DataSet.next()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.next()

Returns

Nothing.

Description

Method; makes the next item in the current view of the collection the current item. Which items
are in the current view depends on any current filter and range settings.

Example

This example loops over all the items in a DataSet object, starting from the first item, and
performs a calculation on a field in each item.
myDataSet.first();
while(myDataSet.hasNext()) {

var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.next();

}

See also

DataSet.first(), DataSet.hasNext()

DataSet.previous()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.previous()

Returns

Nothing.

Description

Method; makes the previous item in the current view of the collection the current item. Which
items are in the current view depends on any current filter and range settings.
DataSet component (Flash Professional only) 225

This example loops over all the items in the current view of the collection, starting from the last
item, and performs a calculation on a field in each item.
myDataSet.last();
while(myDataSet.hasPrevious()) {

var price = myDataSet.price;
price = price * 0.5; // Everything's 50% off!
myDataSet.price = price;
myDataSet.previous();

}

See also

DataSet.first(), DataSet.hasNext()

DataSet.properties

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.properties

Description

Property (read-only); returns an object that contains all of the exposed properties (fields) for any
transfer object within this collection.

Example

This example displays all the names of the properties in the DataSet object named myDataSet.
for(var i in myDataSet.properties) {

trace("field '"+i+ "' has value "+ myDataSet.properties[i]);
}

DataSet.readOnly

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.readOnly

Description

Property; a Boolean value that specifies whether this collection can be modified (false) or is
read-only (true). Setting this property to true will prevent updates to the collection.

You can also set this property in the Property inspector.
226 Chapter 4: Components Dictionary

Example

The following example makes the DataSet object named myDataSet read-only, and then attempts
to change the value of a property that belongs to the current item in the collection. This will
throw an exception.
myDataSet.readOnly = true;
// This will throw an exception
myDataSet.currentItem.price = 15;

See also

DataSet.currentItem

DataSet.removeAll()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the DataSet collection.
Example

This example removes all the items in the DataSet collection contact_ds:
contact_ds.removeAll();
DataSet component (Flash Professional only) 227

DataSet.removeItem

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(removeItem) {
// insert your code here

}
listenerObject = new Object();
listenerObject.removeItem = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("removeItem", listenerObject)

Description

Event; generated just before a new item is deleted from this collection.

If you set the result property of the event object to false, the delete operation is canceled; if
you set it to true, the delete operation is allowed.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "removeItem".

item A reference to the item in the collection to be removed.

result A Boolean value that specifies whether the item should be removed. By default, this
value is true.

Example

In this example, an on(removeItem) event handler cancels the deletion of the new item if a
user-defined function named userHasAdminPrivs() returns false; otherwise, the deletion
is allowed.
on(removeItem) {

if(globalObj.userHasAdminPrivs()) {
// Allow the item deletion.
eventObj.result = true;

} else {
// Don’t allow item deletion; user doesn’t have admin priviledges.
eventObj.result = false;

}
}

See also

DataSet.addItem
228 Chapter 4: Components Dictionary

DataSet.removeItem()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.removeItem([item])

Parameters

item The item that should be removed. This parameter is optional.

Returns

A Boolean value. Returns true if the item was successfully removed; otherwise, returns false.

Description

Method; removes the specified item from the collection, or removes the current item if
the item parameter is omitted. This operation is logged to DataSet.deltaPacket if
DataSet.logChanges is true.

Example

The following code, attached to an instance of the Button component, removes the current
item in the DataSet object named usersData that resides on the same Timeline as the
Button instance.
on(click) {

_parent.usersData.removeItem();
}

See also

DataSet.deltaPacket, DataSet.logChanges

DataSet.removeRange()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.removeRange()

Returns

Nothing.
DataSet component (Flash Professional only) 229

Description

Method; removes the current end point settings specified by means of DataSet.setRange() for
the current iterator.

Example

myDataSet.addSort("name_id", ["name", "id"]);
myDataSet.setRange(["Bobby", 105],["Cathy", 110]);
while(myDataSet.hasNext()) {

myDataSet.gradeLevel ="5"; // change all of the grades in this range
myDataSet.next();

}
myDataSet.removeRange();
myDataSet.removeSort("name_id");

See also

DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(), DataSet.removeSort(),
DataSet.setRange()

DataSet.removeSort()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.removeSort(sortName)

Parameters

sortName A string that specifies the name of the sort to remove.

Returns

Nothing.

Description

Method; removes the specified sort from this DataSet object if the sort exists. If the specified sort
does not exist, this method throws a DataSetError exception.

Example

myDataSet.addSort("name_id", ["name", "id"]);
myDataSet.setRange(["Bobby", 105],["Cathy", 110]);
while(myDataSet.hasNext()) {

myDataSet.gradeLevel ="5"; // change all of the grades in this range
myDataSet.next();

}
myDataSet.removeRange();
myDataSet.removeSort("name_id");

See also

DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(), DataSet.removeRange(),
DataSet.setRange()
230 Chapter 4: Components Dictionary

DataSet.resolveDelta

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

on(resolveDelta) {
// insert your code here

}
listenerObject = new Object();
listenerObject.resolveDelta = function (eventObj) {

// insert your code here
}
dataSet.addEventListener("resolveDelta", listenerObject)

Description

Event; broadcast when a DeltaPacket object is assigned to DataSet.deltaPacket whose
transaction ID matches that of a DeltaPacket object previously retrieved from the DataSet object,
and that has messages associated with any of the Delta or DeltaItem objects contained by that
DeltaPacket object.

This event gives you the chance to reconcile any error returned from the server while attempting
to apply changes previously submitted. Typically, you use this event to display a “reconcile dialog
box” with the conflicting values, allowing the user to make appropriate modifications to the data
so that it can be resent.

The event object (eventObj) contains the following properties:

target The DataSet object that generated the event.

type The string "resolveDelta".

data An array of Delta and associated DeltaItem objects that have nonzero length messages.

Example

This example displays a form called reconcileForm (not shown) and calls a method on that form
object (setReconcileData()) that allows the user to reconcile any conflicting values returned by
the server.
myDataSet.addEventListener("resolveDelta", resolveDelta);
function resolveDelta(eventObj:Object) {

reconcileForm.visible = true;
reconcileForm.setReconcileData(eventObj.data);

}
// in the reconcileForm code
function setReconcileData(data:Array):Void {

var di:DeltaItem;
var ops:Array = ["property", "method"];
var cl:Array;
// change list
var msg:String;
for (var i = 0; i<data.length; i++) {

cl = data[i].getChangeList();
for (var j = 0; j<cl.length; j++) {
DataSet component (Flash Professional only) 231

di = cl[j];
msg = di.getMessage();
if (msg.length>0) {

trace("The following problem occurred '"+msg+"' while performing a
'"+ops[di.kind]+"' modification on/with '"+di.name+"' current server value
["+di.curValue+"], value sent ["+di.newValue+"] Please fix!");

}
}

}
}

DataSet.saveToSharedObj()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.saveToSharedObj(objName, [localPath])

Parameters

objName A string that specifies the name of the shared object to create. The name can include
forward slashes (for example, “work/addresses”). Spaces and the following characters are not
allowed in the specified name:
~ % & \ ; : " ' , < > ? #

localPath An optional string parameter that specifies the full or partial path to the SWF file
that created the shared object. This string is used to determine where the object will be stored on
the user’s computer. The default value is the SWF file’s full path.

Returns

Nothing.

Description

Method; saves all of the relevant data needed to restore this DataSet collection to a shared object.
This allows users to work when disconnected from the source data, if it is a network resource.
This method overwrites any data that might exist within the specified shared object for this
DataSet collection. To restore a DataSet collection from a shared object, use
DataSet.loadFromSharedObj(). Note that the instance name of the DataSet collection is used
to identify the data within the specified shared object.

If the shared object can’t be created or there is a problem flushing the data to it, this method
throws a DataSetError exception.
232 Chapter 4: Components Dictionary

Example

This example calls saveToSharedObj() in a try..catch block and displays an error if there is a
problem saving the data to the shared object.
try {

myDataSet.saveToSharedObj("webapp/customerInfo");
}
catch(e:DataSetError) {

trace("Unable to create shared object”);
}

See also

DataSet.loadFromSharedObj()

DataSet.schema

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.schema

Description

Property; provides the XML representation of the schema for this DataSet object. The XML
assigned to this property must have the following format:
<?xml version="1.0"?>
<properties>

<property name="propertyName">
<type name="dataType" />
<encoder name="dataType">

<options>
<dataFormat>format options<dataFormat/>

<options/>
<encoder/>
<kind name="dataKind">

<options/>
</kind>

</property>
<property> ... </property>
...

</properties>

A DataSetError exception is thrown if the XML specified does not follow the above format.

Example

myDataSet.schema = new XML("<properties><property name="billable"> ..etc.. </
properties>");
DataSet component (Flash Professional only) 233

DataSet.selectedIndex

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.selectedIndex

Description

Property; specifies the selected index within the collection. You can bind this property to the
selected item in a DataGrid or List component, and vice versa. For a complete example that
demonstrates this, see “Creating an application with the DataSet component” on page 194.

Example

The following example sets the selected index of a DataSet object (userData) to the selected
index in a DataGrid component (userGrid).
userData.selectedIndex = userGrid.selectedIndex;

DataSet.setIterator()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.setIterator(iterator)

Parameters

iterator An iterator object returned by a call to DataSet.getIterator().

Returns

Nothing.

Description

Method; assigns the specified iterator to this DataSet object and makes it the current iterator. The
specified iterator must come from a previous call to DataSet.getIterator() on the DataSet
object it is being assigned to; otherwise; a DataSetError exception is thrown.

Example

myIterator:ValueListIterator = myDataSet.getIterator();
myIterator.sortOn(["name"]);
myDataSet.setIterator(myIterator);

See also

DataSet.getIterator()
234 Chapter 4: Components Dictionary

DataSet.setRange()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.setRange(startValues, endValues)

Parameters

startValues An array of key values of the properties of the first transfer object in the range.

endValues An array of key values of the properties of the last transfer object in the range.

Returns

Nothing.

Description

Method; sets the end points for the current iterator. The end points define a range within which
the iterator operates. This is only valid if a valid sort has been set for the current iterator by means
of DataSet.applyUpdates().

Setting a range for the current iterator is more efficient than using a filter function if you want a
grouping of values (see DataSet.filterFunc).

Example

myDataSet.addSort("name_id", ["name", "id"]);
myDataSet.setRange(["Bobby", 105],["Cathy", 110]);
while(myDataSet.hasNext()) {

myDataSet.gradeLevel ="5"; // change all of the grades in this range
myDataSet.next();

}
myDataSet.removeRange();
myDataSet.removeSort("name_id");

See also

DataSet.applyUpdates(), DataSet.hasNext(), DataSet.next(), DataSet.removeRange(),
DataSet.removeSort()

DataSet.skip()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.skip(offSet)
DataSet component (Flash Professional only) 235

Parameters

offSet An integer specifying the number of records by which to move the iterator position.

Returns

Nothing.

Description

Method; moves the current iterator’s position forward or backward in the collection by the
amount specified by offSet. Positive offSet values move the iterator’s position forward; negative
values move it backward.

If the specified offset is beyond the beginning (or end) of the collection, the iterator is
positioned at the beginning (or end) of the collection.

Example

This example positions the current iterator at the first item in the collection, then moves to the
next-to-last item and performs a calculation on a field belonging to that item.
myDataSet.first();
// Move to the item just before the last one
var itemsToSkip = myDataSet.length - 2;
myDataSet.skip(itemsToSkip).price = myDataSet.amount * 10;

DataSet.useSort()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

dataSet.useSort(sortName, order)

Parameters

sortName A string that contains the name of the sort to use.

order An integer value that indicates the sort order for the sort; the value must be
DataSetIterator.Ascending or DataSetIterator.Descending.

Returns

Nothing.

Description

Method; switches the sort for the current iterator to the one specified by sortName, if it exists. If
the sort specified by sortName does not exist, a DataSetError exception is thrown.

To create a sort, use the DataSet.applyUpdates().
236 Chapter 4: Components Dictionary

Example

This code uses DataSet.hasSort() to determine if a sort named "customer" exists. If it does,
the code calls DataSet.useSort() to make "customer" the current sort. Otherwise, the code
creates a sort by that name using DataSet.addSort().
if(myDataSet.hasSort("customer")) {

myDataSet.useSort("customer");
} else {

myDataSet.addSort("customer", ["customer"], DataSetIterator.Descending);
}

See also

DataSet.applyUpdates(), DataSet.hasSort()

DateChooser component (Flash Professional only)

The DateChooser component is a calendar that allows users to select a date. It has buttons that
allow users to scroll through months and click on a date to select it. You can set parameters that
indicate the month and day names, the first day of the week, and any disabled dates, as well as
highlighting the currrent date.

A live preview of each DateChooser instance reflects the values indicated by the Property
inspector or Component Inspector panel while authoring.

Using the DateChooser component (Flash Professional only)

The DateChooser can be used anywhere you want a user to select a date. For example, you could
use a DateChooser component in a hotel reservation system with certain dates selectable and
others disabled. You could also use the DateChooser component in an application that displays
current events, such as performances or meetings, when a user chooses a date.

DateChooser parameters

The following are authoring parameters that you can set for each DateChooser component
instance in the Property inspector or in the Component Inspector panel:

monthNames sets the month names that are displayed in the heading row of the calendar. The
value is an array and the default value is ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October","November", "December"].

dayNames sets the names of the days of the week. The value is an array and the default value is
["S", "M", "T", "W", "T", "F", "S"].

firstDayOfWeek indicates which day of the week (0-6, 0 being the first element of dayNames
array) is displayed in the first column of the DateChooser. This property changes the display
order of the day columns.

disabledDays indicates the disabled days of the week. This parameter is an array and can have
up to 7 values. The default value is [] (an empty array).

showToday indicates whether or not to highlight today’s date. The default value is true.

You can write ActionScript to control these and additional options for the DateChooser
component using its properties, methods, and events. For more information, see “DateChooser
class (Flash Professional only)” on page 239.
DateChooser component (Flash Professional only) 237

Creating an application with the DateChooser component

The following procedure explains how to add a DateChooser component to an application while
authoring. In this example, the DateChooser allows a user to pick a date for an airline reservation
system. All dates before October 15th must be disabled. Also, a range in December must be
disabled to create a holiday black-out period and Mondays must be disabled.

To create an application with the DateChooser component, do the following:

1 Double-click the DateChooser component in the Components panel to add it to the Stage.
2 In the Property inspector, enter the instance name flightCalendar.
3 In the Actions panel, enter the following code on Frame 1 of the Timeline to set the range of

selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2003, 9, 15),

rangeEnd:new Date(2003, 11, 31)}

This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This defines an
upper and lower end of a range within which the user can select a date.

4 In the Actions panel, enter the following code on Frame 1 of the Timeline to set a range of
holiday disabled dates:
flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),

rangeEnd: new Date(2003, 11, 26)}];

5 In the Actions panel, enter the following code on Frame 1 of the Timeline to disable Mondays:
flightCalendar.disabledDays=[1];

6 Control > Test Movie.

Customizing the DateChooser component (Flash Professional only)

You can transform a DateChooser component horizontally and vertically both while authoring
and at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).

Using styles with the DateChooser component

You can set style properties to change the appearance of a date chooser instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.

A DateChooser component supports the following Halo styles:

Style Description

themeColor The glow color for the rollover and selected dates. This is the only
color style that doesn't inherit its value. Possible values are
"haloGreen", "haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.
238 Chapter 4: Components Dictionary

Using skins with the DateChooser component

The DateChooser component skins to represent its visual states. To skin the DateChooser
component while authoring, modify skin symbols in the Flash UI Components 2/Themes/
MMDefault/DateChooser Assets/Elements/Month skins states folder in the library of one of the
themes FLA files. For more information, see “About skinning components” on page 36.

Only the month scrolling buttons can be dynamically skinned in this component. A
DateChooser component uses the following skin properties:

DateChooser class (Flash Professional only)

Inheritance UIObject > UIComponent > DateChooser

ActionScript Class Name mx.controls.DateChooser

The properties of the DateChooser class allow you to access the selected date, and the displayed
month and year. You can also set the names of the days and months, indicate disabled dates and
selectable dates, set the first day of the week, and indicate whether the current date should
be highlighted.

Setting a property of the DateChooser class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.DateChooser.version);

Note: The following code returns undefined: trace(myDC.version);.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal", or "bold".

textDecoration The text decoration: either "none", or "underline".

Property Description

falseUpSkin The up state. The default values are fwdMonthUp and backMonthUp.

falseDownSkin The down state. The default values are fwdMonthDown
and backMonthDown.

falseDisabledSkin The disabled state. The default values are fwdMonthDisabled
and backMonthDisabled.

Style Description
DateChooser component (Flash Professional only) 239

Method summary for the DateChooser class

Inherits all methods from UIObject and UIComponent.

Property summary for the DateChooser class

Inherits all properties from UIObject and UIComponent.

Event summary for the DateChooser class

Inherits all events from UIObject and UIComponent.

DateChooser.change

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(change){

...
}

Property Description

DateChooser.dayNames An array indicating the names of the days of the week.

DateChooser.disabledDays An array indicating the days of the week that are disabled for all
applicable dates in the date chooser.

DateChooser.disabledRanges A range of disabled dates or a single disabled date.

DateChooser.displayedMonth A number indicating an element in the monthNames array to display in
the date chooser.

DateChooser.displayedYear A number indicating the year to display.

DateChooser.firstDayOfWeek A number indicating an element in the dayNames array to display in
the first column of the date chooser.

DateChooser.monthNames An array of strings indicating the month names.

DateChooser.selectableRange A single selectable date or a range of selectable dates.

DateChooser.selectedDate A Date object indicating the selected date.

DateChooser.showToday A Boolean value indicating whether the current date is highlighted.

Event Description

DateChooser.change Broadcast when a date is selected.

DateChooser.scroll Broadcast when the month buttons are pressed.
240 Chapter 4: Components Dictionary

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
chooserInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when a date is selected.

The first usage example uses an on() handler and must be attached directly to a DateChooser
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date chooser
myDC, sends “_level0.myDC” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(chooserInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
DateChooser called myDC is changed. The first line of code creates a listener object called form.
The second line defines a function for the change event on the listener object. Inside the function
is a trace() action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event (in this example myDC). The NumericStepper.maximum
property is accessed from the event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDC and passes it the change event
and the form listener object as parameters, as in the following:
form.change = function(eventObj){
 trace("date selected " + eventObj.target.selectedDate) ;
}
myDC.addEventListener("change", form);
DateChooser component (Flash Professional only) 241

DateChooser.dayNames

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.dayNames

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at index
position 0) and the rest of the day names follow in order. The default value is ["S", "M", "T",
"W", "T", "F", "S"].

Example

The following example changes the value of the 5th day of the week (Thursday) from “T” to “R”:
myDC.dayNames[4] = "R";

DateChooser.disabledDays

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall on
the specified day are disabled. The elements of this array can have values between 0 (Sunday)
and 6 (Saturday). The default value is [] (empty array).

Example

The following example disables Sundays and Saturdays so that users can only select weekdays:
myDC.disabledDays = [0, 6];

DateChooser.disabledRanges

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.
242 Chapter 4: Components Dictionary

Usage

myDC.disabledRanges

Description

Property; disables a single day or a range of days. This property is an Array of objects. Each object
in the array must be either a Date object specifying a single day to disable, or an object containing
either or both of the properties rangeStart and rangeEnd, each of whose value must be a Date
object. The rangeStart and rangeEnd properties describe the boundaries of the date range. If
either property is omitted the range is unbounded in that direction.

The default value of disabledRanges is undefined.

Specify a full date when you define dates for the disabledRanges property. For example, new
Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the time returns as
00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that disable
the dates between May 7 and June 7:
myDC.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new

Date(2003, 5, 7)}];

The following example disables all dates after November 7:
myDC.disabledRanges = [{rangeStart: new Date(2003, 10, 7)}];

The following example disables all dates before October 7:
myDC.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)}];

The following example disables only December 7:
myDC.disabledRanges = [new Date(2003, 11, 7)];

DateChooser.displayedMonth

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.displayedMonth

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
myDC.displayedMonth = 11;
DateChooser component (Flash Professional only) 243

See also

DateChooser.displayedYear

DateChooser.displayedYear

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.displayedYear

Description

Property; a four digit number indicating which year is displayed. The default value is the
current year.

Example

The following example sets the displayed year to 2010:
myDC.displayedYear = 2010;

See also

DateChooser.displayedMonth

DateChooser.firstDayOfWeek

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of the
dayNames array) is displayed in the first column of the DateChooser component. Changing this
property changes the order of the day columns but has no effect on the order of the dayNames
property. The default value is 0 (Sunday).

Example

The following example sets the first day of the week to Monday:
myDC.firstDayOfWeek = 1;

See also

DateChooser.dayNames
244 Chapter 4: Components Dictionary

DateChooser.monthNames

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateChooser
component. The default value is ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October", "November", "December"].

Example

The following example sets the month names for the instance myDC:
 myDC.monthNames = ["Jan", "Feb","Mar","Apr", "May", "June","July", "Aug" ,

"Sept","Oct", "Nov", "Dec"];

DateChooser.scroll

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
myDC.addEventListener("scroll", listenerObject)
DateChooser component (Flash Professional only) 245

Description

Event; broadcast to all registered listeners when a month button is pressed.

The first usage example uses an on() handler and must be attached directly to a DateChooser
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the stepper myDC,
sends “_level0.myDC” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDC)
dispatches an event (in this case, scroll) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. The scroll event’s event
object has an additional property, detail, that can have one of the following values: nextMonth,
previousMonth, nextYear, previousYear.

Finally, you call the UIEventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
month button is pressed on a DateChooser instance called myDC. The first line of code creates a
listener object called form. The second line defines a function for the scroll event on the listener
object. Inside the function is a trace action that uses the event object that is automatically passed
to the function, in this example eventObj, to generate a message. The target property of an
event object is the component that generated the event; in this example myDC. The last line calls
the UIEventDispatcher.addEventListener() method from myDC and passes it the scroll
event and the form listener object as parameters, as in the following:
form = new Object();
form.scroll = function(eventObj){
 trace(eventObj.detail);
}
myDC.addEventListener("scroll", form);

DateChooser.selectableRange

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.selectableRange
246 Chapter 4: Components Dictionary

Description

Property; sets a single selectable date or a range of selectable dates. The user will not be able to
scroll beyond the selectable range. The value of this property is an object that consists of two Date
objects named rangeStart and rangeEnd. The rangeStart and rangeEnd properties designate
the boundaries of the selectable date range. If only rangeStart is defined, all the dates after
rangeStart are enabled. If only rangeEnd is defined, all the dates before rangeEnd are enabled.
The default value is undefined.

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates. For example, new Date(2003,6,24) rather than new
Date(). If you don’t specify a full date, the time returns as 00:00:00.

The value of DateChooser.selectedDate is set to undefined if it falls outside the
selectable range.

The value of DateChooser.displayedMonth and DateChooser.displayedYear are set to the
the nearest last month in the selectable range if the current month falls outside the selectable
range. For example, if the current displayed month is August, and the selectable range is from
June, 2003 - July, 2003, the displayed month will change to July, 2003.

Example

The following example defines the selectable range to the dates between and including May 7 and
June 7:
myDC.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new

Date(2003, 5, 7)};

The following example defines the selectable range to the dates after and including May 7:
myDC.selectableRange = {rangeStart: new Date(2003, 4, 7)};

The following example defines the selectable range to the dates before and including June 7:
myDC.selectableRange = {rangeEnd: new Date(2003, 5, 7) };

The following example defines the selectable date as June 7 only:
myDC.selectableRange = new Date(2003, 5, 7);

DateChooser.selectedDate

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.selectedDate
DateChooser component (Flash Professional only) 247

Description

Property; a Date object that indicates the selected date if that value falls within the value of the
selectableRange property. The default value is undefined.

The selectedDate property cannot be set inside a disabledRange, outside a
selectableRange, or on a day that has been disabled. If the selectedDate property is set to one
of the previous dates, the value will be undefined.

Example

The following example sets the selected date to June 7:
myDC.selectedDate = new Date(2003, 5, 7);

DateChooser.showToday

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDC.showToday

Description

Property; this property determines whether the current date is highlighted. The default value
is true.

Example

The following example turns off the highlighting on today’s date:
myDC.showToday = false;

DateField component (Flash Professional only)

The DateField component is a nonselectable text field that displays the date with a calendar icon
on its right side. If no date has been selected, the text field is blank and the month of today's date
is displayed in the date chooser. When a user clicks anywhere inside the bounding box of the date
field, a date chooser pops up and displays the dates in the month of the selected date. When the
date chooser is open, users can use the month scroll buttons to scroll through months and years,
and select a date. When a date is selected, the date chooser closes.

The live preview of the DateField does not reflect the values indicated by the Property inspector
or Component Inspector panel while authoring because it is a pop-up component that is not
visible while authoring.

Using the DateField component (Flash Professional only)

The DateField component can be used anywhere you want a user to select a date. For example,
you could use a DateField component in a hotel reservation system with certain dates selectable
and others disabled. You could also use the DateField component in an application that displays
current events, such as performances or meetings, when a user chooses a date.
248 Chapter 4: Components Dictionary

DateField parameters

The following are authoring parameters that you can set for each DateField component instance
in the Property inspector or in the Component Inspector panel:

monthNames sets the month names that are displayed in the heading row of the calendar. The
value is an array and the default value is ["January", "February", "March", "April", "May",
"June", "July", "August", "September", "October","November", "December"].

dayNames sets the names of the days of the week. The value is an array and the default value is
["S", "M", "T", "W", "T", "F", "S"].

firstDayOfWeek indicates which day of the week (0-6, 0 being the first element of dayNames
array) is displayed in the first column of the DateChooser. This property changes the display
order of the day columns.

The default value is 0, which is "S".

disabledDays indicates the disabled days of the week. This parameter is an array and can have
up to 7 values. The default value is [] (an empty array).

showToday indicates whether or not to highlight today’s date. The default value is true.

You can write ActionScript to control these and additional options for the DateField component
using its properties, methods, and events. For more information, see “DateField class (Flash
Professional only)” on page 251.

Creating an application with the DateField component

The following procedure explains how to add a DateField component to an application while
authoring. In this example, the DateField component allows a user to pick a date for an airline
reservation system. All dates before today’s date must be disabled. Also, a 15-day range in
December must be disabled to create a holiday black-out period. Also, some flights are not
available on Mondays, so all Mondays must be disabled for those flights.

To create an application with the DateField component, do the following:

1 Double-click the DateField component in the Components panel to add it to the Stage.
2 In the Property inspector, enter the instance name flightCalendar.
3 In the Actions panel, enter the following code on Frame 1 of the Timeline to set the range of

selectable dates:
flightCalendar.selectableRange = {rangeStart:new Date(2001, 9, 1),

rangeEnd:new Date(2003, 11, 1)};

This code assigns a value to the selectableRange property in an ActionScript object that
contains two Date objects with the variable names rangeStart and rangeEnd. This defines an
upper and lower end of a range within which the user can select a date.

4 In the Actions panel, enter the following code on Frame 1 of the Timeline to set the ranges of
disabled dates, one during December, and one for all dates before the current date:
flightCalendar.disabledRanges = [{rangeStart: new Date(2003, 11, 15),

rangeEnd: new Date(2003, 11, 31)}, {rangeEnd: new Date(2003, 6, 16)}];

5 In the Actions panel, enter the following code on Frame 1 of the Timeline to disable Mondays:
flightCalendar.disabledDays=[1];

6 Control > Test Movie.
DateField component (Flash Professional only) 249

Customizing the DateField component (Flash Professional only)

You can transform a DateField component horizontally both while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any
of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). Setting the width does not change the dimensions of the date chooser
within the DateField component. However, you can use the pullDown property to access the
DateChooser component and set its dimensions.

Using styles with the DateField component

You can set style properties to change the appearance of a date field instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”
on page 27.

A DateField component supports the following Halo styles:

Using skins with the DateField component

The DateField component uses skins to represent the visual states of the pop-up icon. To skin the
pop-up icon while authoring, modify skin symbols in the Flash UI Components 2/Themes/
MMDefault/DateField Elements skins states folder in the library of one of the themes FLA files.
For more information, see “About skinning components” on page 36.

Only the pop-up icon button can be skinned in this component. A DateField component uses the
following skin properties to dynamically skin the pop-up icon:

Style Description

themeColor The glow color for the rollover and selected dates. This is the only
color style that doesn't inherit its value. Possible values are
"haloGreen", "haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal", or "bold".

textDecoration The text decoration: either "none", or "underline".

Property Description

openDateUp The up state of the pop-up icon.

openDateDown The down state of the pop-up icon.

openDateOver The over state of the pop-up icon.

openDateDisabled The disabled state of the pop-up icon.
250 Chapter 4: Components Dictionary

DateField class (Flash Professional only)

Inheritance UIObject > UIComponent > ComboBase > DateField

ActionScript Class Name mx.controls.DateField

The properties of the DateField class allow you to access the selected date, and the displayed
month and year. You can also set the names of the days and months, indicate disabled dates and
selectable dates, set the first day of the week, and indicate whether the current date should
be highlighted.

Setting a property of the DateField class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.DateField.version);

Note: The following code returns undefined: trace(myDateFieldInstance.version);.

Method summary for the DateField class

Inherits all methods from UIObject and UIComponent.

Property summary for the DateField class

Method Description

DateField.close() Closes the pop-up date chooser subcomponent.

DateField.open() Opens the pop-up date chooser subcomponent.

Property Description

DateField.dateFormatter A function that formats the date to be displayed in the text field.

DateField.dayNames An array indicating the names of the days of the week.

DateField.disabledDays An array indicating the days of the week that are disabled for all
applicable dates in the date chooser.

DateField.disabledRanges A range of disabled dates or a single disabled date.

DateField.displayedMonth A number indicating an element in the monthNames array to display in
the date chooser.

DateField.displayedYear A number indicating the year to display.

DateField.firstDayOfWeek A number indicating an element in the dayNames array to display in
the first column of the date chooser.

DateField.monthNames An array of strings indicating the month names.

DateField.pullDown A reference to the DateChooser subcomponent. This property is
read-only.

DateField.selectableRange A single selectable date or a range of selectable dates.
DateField component (Flash Professional only) 251

Inherits all properties from UIObject and UIComponent.

Event summary for the DateField class

Inherits all events from UIObject and UIComponent.

DateField.change

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
myDF.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when a date is selected.

The first usage example uses an on() handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:
on(change){

trace(this);
}

DateField.selectedDate A Date object indicating the selected date.

DateField.showToday A Boolean value indicating whether the current date is highlighted.

Event Description

DateField.change Broadcast when a date is selected.

DateField.close Broadcast when the date chooser subcomponent closes.

DateField.open Broadcast when the date chooser subcomponent opens.

DateField.scroll Broadcast when the month buttons are pressed.

Property Description
252 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(chooserInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
date field called myDF is changed. The first line of code creates a listener object called form. The
second line defines a function for the change event on the listener object. Inside the function is a
trace action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myDF. The DateField.selectedDate
property is accessed from the event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDF and passes it the change event
and the form listener object as parameters, as in the following:
form.change = function(eventObj){
 trace("date selected " + eventObj.target.selectedDate) ;
}
myDF.addEventListener("change", form);

DateField.close()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.close()

Parameters

None.

Returns

Nothing.

Description

Method; closes the pop-up menu.
DateField component (Flash Professional only) 253

Example

The following code closes the date chooser pop-up of the myDF date field instance:
myDF.close();

DateField.close

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(close){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.close = function(eventObject){

...
}
myDF.addEventListener("close", listenerObject)

Description

Event; broadcast to all registered listeners when the DateChooser subcomponent closes after a
user clicks outside the icon or selects a date.

The first usage example uses an on() handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:
on(close){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, close) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.
254 Chapter 4: Components Dictionary

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when the
date chooser within myDF closes. The first line of code creates a listener object called form. The
second line defines a function for the close event on the listener object. Inside the function is a
trace action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myDF. The property is accessed from the
event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDF and passes it the close event
and the form listener object as parameters, as in the following:
form.close = function(eventObj){

trace("PullDown Closed" + eventObj.target.selectedDate);
}
myDF.addEventListener("close", form);

DateField.dateFormatter

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.dateFormatter

Description

Property; a function that formats the date to be displayed in the text field. The function must
receive a Date object as parameter, and return a string in the format to be displayed.

Example

The following example sets the function to return the format of the date to be displayed:
myDF.dateFormatter = function(d:Date){

return d.getFullYear()+"/ "+(d.getMonth()+1)+"/ "+d.getDate();
};

DateField.dayNames

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.dayNames
DateField component (Flash Professional only) 255

Description

Property; an array containing the names of the days of the week. Sunday is the first day (at index
position 0) and rest of the day names follow in order. The default value is ["S", "M", "T",
"W", "T", "F", "S"].

Example

The following example changes the value of the 5th day of the week (Thursday) from “T” to “R”:
myDF.dayNames[4] = "R";

DateField.disabledDays

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.disabledDays

Description

Property; an array indicating the disabled days of the week. All the dates in a month that fall on
the specified day are disabled. The elements of this array can have values between 0 (Sunday) and
6 (Saturday). The default value is [] (empty array).

Example

The following example disables Sundays and Saturdays so that users can select only weekdays:
myDF.disabledDays = [0, 6];

DateField.disabledRanges

Availability

Flash Player 6 version 79.

Edition

 Flash MX Professional 2004.

Usage

myDF.disabledRanges

Description

Property; disables a single day or a range of days. This property is an array of objects. Each object
in the array must be either a Date object specifying a single day to disable, or an object containing
either or both of the properties rangeStart and rangeEnd, each of whose value must be a Date
object. The rangeStart and rangeEnd properties describe the boundaries of the date range. If
either property is omitted the range is unbounded in that direction.

The default value of disabledRanges is undefined.
256 Chapter 4: Components Dictionary

Specify a full date when you define dates for the disabledRanges property. For example, new
Date(2003,6,24) rather than new Date(). If you don’t specify a full date, the time returns as
00:00:00.

Example

The following example defines an array with rangeStart and rangeEnd Date objects that disable
the dates between May 7 and June 7:
myDF.disabledRanges = [{rangeStart: new Date(2003, 4, 7), rangeEnd: new

Date(2003, 5, 7)}];

The following example disables all dates after November 7:
myDF.disabledRanges = [{rangeStart: new Date(2003, 10, 7)}];

The following example disables all dates before October 7:
myDF.disabledRanges = [{rangeEnd: new Date(2002, 9, 7)}];

The following example disables only December 7:
myDF.disabledRanges = [new Date(2003, 11, 7)];

DateField.displayedMonth

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.displayedMonth

Description

Property; a number indicating which month is displayed. The number indicates an element in
the monthNames array, with 0 being the first month. The default value is the month of the
current date.

Example

The following example sets the displayed month to December:
myDF.displayedMonth = 11;

See also

DateField.displayedYear
DateField component (Flash Professional only) 257

DateField.displayedYear

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.displayedYear

Description

Property; a number indicating which year is displayed. The default value is the current year.

Example

The following example sets the displayed year to 2010:
myDF.displayedYear = 2010;

See also

DateField.displayedMonth

DateField.firstDayOfWeek

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.firstDayOfWeek

Description

Property; a number indicating which day of the week (0-6, 0 being the first element of dayNames
array) is displayed in the first column of the DateField component. Changing this property
changes the order of the day columns but has no effect on the order of the dayNames property.
The default value is 0 (Sunday).

Example

The following example sets the first day of the week to Monday:
myDF.firstDayOfWeek = 1;

See also

DateField.dayNames
258 Chapter 4: Components Dictionary

DateField.monthNames

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.monthNames

Description

Property; an array of strings indicating the month names at the top of the DateField component.
The default value is ["January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December"].

Example

The following example sets the month names for the instance myDF:
myDF.monthNames = ["Jan", "Feb","Mar","Apr", "May", "June","July", "Aug" ,

"Sept","Oct", "Nov", "Dec"];

DateField.open()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.open()

Parameters

None.

Returns

Nothing.

Description

Method; opens the pop-up DateChooser subcomponent.

Example

The following code opens the pop-up date chooser of the df instance:
df.open();
DateField component (Flash Professional only) 259

DateField.open

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(open){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.open = function(eventObject){

...
}
myDF.addEventListener("open", listenerObject)

Description

Event; broadcast to all registered listeners when a date chooser subcomponent opens after a user
clicks on the icon.

The first usage example uses an on() handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:
on(open){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, open) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.
260 Chapter 4: Components Dictionary

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
stepper called myDF is opened. The first line of code creates a listener object called form. The
second line defines a function for the open event on the listener object. Inside the function is a
trace action that uses the event object that is automatically passed to the function, in this
example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myDF. The DateField.selectedDate
property is accessed from the event object’s target property. The last line calls the
UIEventDispatcher.addEventListener() method from myDF and passes it the open event and
the form listener object as parameters, as in the following:
form.open = function(eventObj){
 trace("Pop-up opened and date selected is " +

eventObj.target.selectedDate) ;
}
myDF.addEventListener("open", form);

DateField.pullDown

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.pullDown

Description

Property (read-only); a reference to the DateChooser component contained by the DateField
component. The DateChooser subcomponent is instantiated when a user clicks on the DateField
component. However, if the pullDown property is referenced before the user clicks on the
component, the DateChooser is instantiated and then hidden.

Example

The following example sets the visibility of the DateChooser subcomponent to false and then
sets the size of the DateChooser subcomponent to 300 pixels high and 300 pixels wide:
myDF.pullDown._visible = false;
myDF.pullDown.setSize(300,300);
DateField component (Flash Professional only) 261

DateField.scroll

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
myDF.addEventListener("scroll", listenerObject)

Description

Event; broadcast to all registered listeners when a month button is pressed.

The first usage example uses an on() handler and must be attached directly to a DateField
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the date field
myDF, sends “_level0.myDF” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance (myDF)
dispatches an event (in this case, scroll) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. The scroll event’s event
object has an additional property, detail, that can have one of the following values: nextMonth,
previousMonth, nextYear, previousYear.

Finally, you call the UIEventDispatcher.addEventListener() method on the component
instance that broadcasts the event to register the listener with the instance. When the instance
dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
262 Chapter 4: Components Dictionary

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
month button is pressed on a DateField instance called myDF. The first line of code creates a
listener object called form. The second line defines a function for the scroll event on the listener
object. Inside the function is a trace action that uses the event object that is automatically passed
to the function, in this example eventObj, to generate a message. The target property of an
event object is the component that generated the event, in this example myDF. The last line calls
the UIEventDispatcher.addEventListener() method from myDateField and passes it the
scroll event and the form listener object as parameters, as in the following:
form = new Object();
form.scroll = function(eventObj){
 trace(eventObj.detail);
}
myDF.addEventListener("scroll", form);

DateField.selectableRange

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.selectableRange

Description

Property; sets a single selectable date or a range of selectable dates. The value of this property is an
object that consists of two Date objects named rangeStart and rangeEnd. The rangeStart and
rangeEnd properties designate the boundaries of the selectable date range. If only rangeStart is
defined, all the dates after rangeStart are enabled. If only rangeEnd is defined, all the dates
before rangeEnd are enabled. The default value is undefined.

If you want to enable only a single day, you can use a single Date object as the value of
selectableRange.

Specify a full date when you define dates. For example, new Date(2003,6,24) rather than new
Date(). If you don’t specify a full date, the time returns as 00:00:00.

The value of DateField.selectedDate is set to undefined if it falls outside the selectable range.

The value of DateField.displayedMonth and DateField.displayedYear are set to the the
nearest last month in the selectable range if the current month falls outside the selectable range.
For example, if the current displayed month is August, and the selectable range is from June,
2003 - July, 2003, the displayed month will change to July, 2003.

Example

The following example defines the selectable range to the dates between and including May 7 and
June 7:
myDF.selectableRange = {rangeStart: new Date(2001, 4, 7), rangeEnd: new

Date(2003, 5, 7)};
DateField component (Flash Professional only) 263

The following example defines the selectable range to the dates after and including May 7:
myDF.selectableRange = {rangeStart: new Date(2003, 4, 7)};

The following example defines the selectable range to the dates before and including June 7:
myDF.selectableRange = {rangeEnd: new Date(2003, 5, 7) };

The following example defines the selectable date as June 7 only:
myDF.selectableRange = new Date(2003, 5, 7);

DateField.selectedDate

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.selectedDate

Description

Property; a Date object that indicates the selected date if that value falls within the value of the
selectableRange property. The default value is undefined.

Example

The following example sets the selected date to June 7:
myDF.selectedDate = new Date(2003, 5, 7);

DateField.showToday

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myDF.showToday

Description

Property; this property determines whether the current date is highlighted. The default value
is true.

Example

The following example turns off the highlighting on today’s date:
myDF.showToday = false;
264 Chapter 4: Components Dictionary

DepthManager class

ActionScript Class Name mx.managers.DepthManager

The DepthManager class adds functionality to the ActionScript MovieClip class that allows you
to manage the relative depth assignments of any component or movie clip, including _root. It
also allows you to manage reserved depths in a special highest-depth clip on the _root for system-
level services like the cursor or tooltips.

The following methods compose the relative depth-ordering API:

• DepthManager.createChildAtDepth()

• DepthManager.createClassChildAtDepth()

• DepthManager.setDepthAbove()

• DepthManager.setDepthBelow()

• DepthManager.setDepthTo()

The following methods compose the reserved depth space API:

• DepthManager.createClassObjectAtDepth()

• DepthManager.createObjectAtDepth()

Method summary for the DepthManager class

DepthManager.createChildAtDepth()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

movieClipInstance.createChildAtDepth(linkageName, depthFlag[, initObj])

Method Description

DepthManager.createChildAtDepth() Creates a child of the specified symbol at the
specified depth.

DepthManager.createClassChildAtDepth() Creates an object of the specified class at that
specified depth.

DepthManager.createClassObjectAtDepth() Creates an instance of the specified class at a
specified depth in the special highest-depth clip.

DepthManager.createObjectAtDepth() Creates an object at a specified depth in the
highest-depth clip.

DepthManager.setDepthAbove() Sets the depth above the specified instance.

DepthManager.setDepthBelow() Sets the depth below the specified instance.

DepthManager.setDepthTo() Sets the depth to the specified instance in the highest-
depth clip.
DepthManager class 265

Parameters

linkageName A linkage identifier. This parameter is a string.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties of
the DepthManger class. You must either reference the DepthManager package (for example,
mx.managers.DepthManager.kTopmost), or use the import statement to import the
DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the object created.

Description

Method; creates a child instance of the symbol specified by the linkageName parameter at the
depth specified by the depthFlag parameter.

Example

The following example creates a minuteHand instance of the MinuteSymbol movie clip and
places it on top of the clock:
import mx.managers.DepthManager;
minuteHand = clock.createChildAtDepth("MinuteSymbol", DepthManager.kTop);

DepthManager.createClassChildAtDepth()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.createClassChildAtDepth(className, depthFlag[, initObj])

Parameters

className A class name.

depthFlag One of the following values: DepthManager.kTop, DepthManager.kBottom,
DepthManager.kTopmost, DepthManager.kNotopmost. All depth flags are static properties of
the DepthManger class. You must either reference the DepthManager package (for example,
mx.managers.DepthManager.kTopmost), or use the import statement to import the
DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the created child.
266 Chapter 4: Components Dictionary

Description

Method; creates a child of the class specified by the className parameter at the depth specified
by the depthFlag parameter.

Example

The following code draws a focus rectangle on top of all NoTopmost objects:
import mx.managers.DepthManager
this.ring = createClassChildAtDepth(mx.skins.RectBorder, DepthManager.kTop);

The following code creates an instance of the Button class and passes it a value for its label
property as an initObj parameter:
import mx.managers.DepthManager
button1 = createClassChildAtDepth(mx.controls.Button, DepthManager.kTop,

{label: "Top Button"});

DepthManager.createClassObjectAtDepth()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

DepthManager.createClassObjectAtDepth(className, depthSpace[, initObj])

Parameters

className A class name.

depthSpace One of the following values: DepthManager.kCursor, DepthManager.kTooltip.
All depth flags are static properties of the DepthManger class. You must either reference the
DepthManager package (for example, mx.managers.DepthManager.kCursor), or use the
import statement to import the DepthManager package.

initObj An initialization object. This parameter is optional.

Returns

A reference to the created object.

Description

Method; creates an object of the class specified by the className parameter at the depth specified
by the depthSpace parameter. This method is used for accessing the reserved depth spaces in the
special highest-depth clip.

Example

The following example creates an object from the Button class:
import mx.managers.DepthManager
myCursorButton = createClassObjectAtDepth(mx.controls.Button,

DepthManager.kCursor, {label: "Cursor"});
DepthManager class 267

DepthManager.createObjectAtDepth()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

DepthManager.createObjectAtDepth(linkageName, depthSpace[, initObj])

Parameters

linkageName A linkage identifier.

depthSpace One of the following values: DepthManager.kCursor, DepthManager.kTooltip.
All depth flags are static properties of the DepthManger class. You must either reference the
DepthManager package (for example, mx.managers.DepthManager.kCursor), or use the
import statement to import the DepthManager package.

initObj An initialization object.

Returns

A reference to the created object.

Description

Method; creates an object at the specified depth. This method is used for accessing the reserved
depth spaces in the special highest-depth clip.

Example

The following example creates an instance of the TooltipSymbol symbol and places it at the
reserved depth for tooltips:
import mx.managers.DepthManager
myCursorTooltip = createObjectAtDepth("TooltipSymbol", DepthManager.kTooltip);

DepthManager.setDepthAbove()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.setDepthAbove(instance)

Parameters

instance An instance name.

Returns

Nothing.
268 Chapter 4: Components Dictionary

Description

Method; sets the depth of a movie clip or component instance above the depth of the instance
specified by the instance parameter.

DepthManager.setDepthBelow()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.setDepthBelow(instance)

Parameters

instance An instance name.

Returns

Nothing.

Description

Method; sets the depth of a movie clip or component instance below the depth of the instance
specified by the instance parameter.

Example

The following code sets the depth of the textInput instance below the depth of the button:
textInput.setDepthBelow(button);

DepthManager.setDepthTo()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

movieClipInstance.setDepthTo(depth)

Parameters

depth A depth level.

Returns

Nothing.
DepthManager class 269

Description

Method; sets the depth of movieClipInstance to the value specified by depth. This method
moves an instance to another depth to make room for another object.

Example

The following example sets the depth of the mc1 instance to a depth of 10:
mc1.setDepthTo(10);

For more information about depth and stacking order, see “Determining the next highest
available depth” in ActionScript Reference Guide Help.

FocusManager class

You can use the FocusManager to specify the order in which components receive focus when a
user presses the Tab key to navigate in an application. You can use the FocusManager API to set a
button in your document that receives keyboard input when a user presses Enter (Windows) or
Return (Macintosh). For example, when a user fills out a form, they should be able to tab between
fields and press Enter (Windows) or Return (Macintosh) to submit the form.

All components implement FocusManager support; you don’t need to write code to invoke it.
The FocusManager also interacts with the System Manager, which activates and deactivates
FocusManager instances as pop-up windows are activated or deactivated. Each modal window has
an instance of a FocusManager so the components in that window become their own tab set,
preventing the user from tabbing into components in other windows.

The FocusManager recognizes groups of radio buttons (those with a defined
RadioButton.groupName property) and sets focus to the instance in the group that has a
selected property that is set to true. When the Tab key is pressed, the Focus Manager checks to
see if the next object has the same groupName as the current object. If it does, it automatically
moves focus to the next object with a different groupName. Other sets of components that
support a groupName property can also use this feature.

The FocusManager handles focus changes due to mouse clicks. If the user clicks on a component,
that component is given focus.

The FocusManager does not automatically assign focus to a component in an application. The
main window and any pop-up windows will not have focus set on any component by default
unless you call FocusManager.setFocus() on a component.

Using the FocusManager

The FocusManager does not automatically assign focus to a component. You must write a script
that calls FocusManager.setFocus() on a component if you want a component to have focus
when an application loads.

To create focus navigation in an application, set the tabIndex property on any objects (including
buttons) that should receive focus. When a user presses the Tab key, the FocusManager looks for
an enabled object with a tabIndex property that is higher than the current value of tabIndex.
Once the FocusManager reaches the highest tabIndex property, it returns to zero. So, in the
following example, the comment object (probably a TextArea component) receives focus first, and
then the okButton object receives focus:
comment.tabIndex = 1;
okButton.tabIndex = 2;
270 Chapter 4: Components Dictionary

You can also use the Accessibility panel to assign a tab index value.

If nothing on the Stage has a tab index value, the FocusManager uses the z-order. The z-order is
set up primarily by the order components are dragged to the Stage, however, you can also use the
Modify/Arrage/Bring-to-Front/Back commands to determine the final z-order.

To create a button that receives focus when a user presses Enter (Windows) or Return
(Macintosh), set the FocusManager.defaultPushButton property to the instance name of the
desired button, as in the following:
focusManager.defaultPushButton = okButton;

Note: The FocusManager is sensitive to when objects are placed on the Stage (the depth order of
objects) and not their relative positions on the stage. This is different from the way Flash Player
handles tabbing.

FocusManager parameters

There are no authoring parameters for the FocusManager. You must use the ActionScript
methods and properties of the FocusManager class in the Actions panel. For more information,
see FocusManager class.

Creating an application with the FocusManager

The following procedure creates a focus scheme in a Flash application.

1 Drag the TextInput component from the Components panel to the Stage.
2 In the Property inspector, assign it the instance name comment.
3 Drag the Button component from the Components panel to the Stage.
4 In the Property inspector, assign it the instance name okButton and set the label parameter

to OK.
5 In Frame 1 of the Actions panel, enter the following:

comment.tabIndex = 1;
okButton.tabIndex = 2;
focusManager.setFocus(comment);
focusManager.defaultPushButton = okButton;
lo = new Object();
lo.click = function(evt){

trace(evt.target + " was clicked");
}
okButton.addEventListener("click", lo);

This code sets the tab ordering and specifies a default button to receive a click event when a
user presses Enter (Windows) or Return (Macintosh).

Customizing the FocusManager

You can change the color of the focus ring in the Halo theme by changing the value of the
themeColor style.

The FocusManager uses a FocusRect skin for drawing focus. This skin can be replaced or
modified and subclasses can override UIComponent.drawFocus to draw custom focus indicators.
FocusManager class 271

FocusManager class

Inheritance UIObject > UIComponent > FocusManager

ActionScript Class Name mx.managers.FocusManager

Method summary for the FocusManager class

Property summary for the FocusManager class

FocusManager.defaultPushButton

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

focusManager.defaultPushButton

Description

Property; specifies the default push button for an application. When the user presses the Enter
key (Windows) or Return key (Macintosh), the listeners of the default push button receive a
click event. The default value is undefined and the data type of this property is object.

The FocusManager uses the emphasized style declaration of the SimpleButton class to visually
indicate the current default push button.

Method Description

FocusManager.getFocus() Returns a reference to the object that has focus.

FocusManager.sendDefaultPushButtonEvent() Sends a click event to listener objects registered to
the default push button.

FocusManager.setFocus() Sets focus to the specified object.

Method Description

FocusManager.defaultPushButton The object that receives a click event when a user
presses the Return or Enter key.

FocusManager.defaultPushButtonEnabled Indicates whether keyboard handling for the default
push button is turned on (true) or off (false). The
default value is true.

FocusManager.enabled Indicates whether tab handling is turned on (true) or
off (false). The default value is true.

FocusManager.nextTabIndex The next value of the tabIndex property.
272 Chapter 4: Components Dictionary

The value of the defaultPushButton property is always the button that has focus. Setting the
defaultPushButton property does not give initial focus to the default push button. If there are
several buttons in an application, the button that is currently focused receives the click event
when Enter or Return is pressed. If some other component has focus when Enter or Return is
pressed, the defaultPushButton property is reset to its original value.

Example

The following code sets the default push button to the OKButton instance:
FocusManager.defaultPushButton = OKButton;

See also

FocusManager.defaultPushButtonEnabled,
FocusManager.sendDefaultPushButtonEvent()

FocusManager.defaultPushButtonEnabled

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

focusManager.defaultPushButtonEnabled

Description

Property; a Boolean value that determines if keyboard handling of the default push button is
turned on (true), or not (false). Setting defaultPushButtonEnabled to false allows a
component to receive the Return or Enter key and handle it internally.You must re-enable default
push button handling by watching the component’s onKillFocus() method (see
MovieClip.onKillFocus in ActionScript Dictionary Help) or focusOut event. The default
value is true.

Example

The following code disables default push button handling:
focusManager.defaultPushButtonEnabled = false;

FocusManager.enabled

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

focusManager.enabled
FocusManager class 273

Description

Property; a Boolean value that determines if tab handling is turned on (true), or not (false) for
a particular group of focus objects. (For example, another pop-up window could have its own
FocusManager.) Setting enabled to false allows a component to receive the tab handling keys
and handle them internally. You must re-enable the FocusManager handling by watching the
component’s onKillFocus() method (see MovieClip.onKillFocus in ActionScript Dictionary
Help) or focusOut event. The default value is true.

Example

The following code disables tabbing:
focusManager.enabled = false;

FocusManager.getFocus()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

focusManager.getFocus()

Parameters

None.

Returns

A reference to the object that has focus.

Description

Method; returns a reference to the object that currently has focus.

Example

The following code sets the focus to myOKButton if the currently focused object is myInputText:
if (focusManager.getFocus() == myInputText)
{

focusManager.setFocus(myOKButton);
}

See also

FocusManager.setFocus()

FocusManager.nextTabIndex

Availability

Flash Player 6 version 79.
274 Chapter 4: Components Dictionary

Edition

Flash MX 2004.

Usage

FocusManager.nextTabIndex

Description

Property; the next available tab index number. Use this property to dynamically set an object’s
tabIndex property.

Example

The following code gives the mycheckbox instance the next highest tabIndex value:
mycheckbox.tabIndex = focusManager.nextTabIndex;

See also

UIComponent.tabIndex

FocusManager.sendDefaultPushButtonEvent()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

focusManager.sendDefaultPushButtonEvent()

Parameters

None.

Returns

Nothing.

Description

Method; sends a click event to listener objects registered to the default push button. Use this
method to programmatically send a click event.

Example

The following code triggers the default push button click event and fills in the user name and
password fields when a user selects the CheckBox instance chb (the check box would be labeled
“Automatic Login”):
name_txt.tabIndex = 1;
password_txt.tabIndex = 2;
chb.tabIndex = 3;
submit_ib.tabIndex = 4;

focusManager.defaultPushButton = submit_ib;

chbObj = new Object();
FocusManager class 275

chbObj.click = function(o){
if (chb.selected == true){

name_txt.text = "Jody";
password_txt.text = "foobar";
focusManager.sendDefaultPushButtonEvent();

} else {
name_txt.text = "";
password_txt.text = "";

}
}
chb.addEventListener("click", chbObj);

submitObj = new Object();
submitObj.click = function(o){

if (password_txt.text != "foobar"){
trace("error on submit");

} else {
trace("Yeah! sendDefaultPushButtonEvent worked!");

}
}
submit_ib.addEventListener("click", submitObj);

See also

FocusManager.defaultPushButton, FocusManager.sendDefaultPushButtonEvent()

FocusManager.setFocus()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

focusManager.setFocus(object)

Parameters

object A reference to the object to receive focus.

Returns

Nothing.

Description

Method; sets focus to the specified object.

Example

The following code sets focus to myOKButton:
focusManager.setFocus(myOKButton);

See also

FocusManager.getFocus()
276 Chapter 4: Components Dictionary

Form class (Flash Professional only)

Inheritance UIObject > UIComponent > View > Loader > Screen > Form

ActionScript Class Name mx.screens.Form

The Form class provides the runtime behavior of forms you create in the Screen Outline pane in
Flash MX Professional 2004. For an overview of working with screens, see “Working with Screens
(Flash Professional Only)” in Using Flash Help.

Using the Form class (Flash Professional only)

Forms function as both containers for graphic objects—user interface elements in an application,
for example—as well as application states. You can use the Screen Outline pane to visualize the
different states of an application that you’re creating, where each form is a different application
state. For example, the following illustration shows the Screen Outline pane for an example
application designed using forms.

Screen Outline view of sample form application

This illustration shows the outline for a sample application called “Employee Directory”, which
consists of several forms. The form named “entryForm” (selected in the above illustration)
contains several user interface objects, including input text fields, labels, and a push button. The
developer can easily present this form to the user by toggling its visibility (using the
Form.visible property), while simultaneously toggling the visibility of other forms, as well.

Using the Behaviors panel (Window > Development Panels > Behaviors) you can also attach
behaviors and controls to forms. For more information about adding transitions and controls to
screens, see “Creating controls and transitions for screens with behaviors (Flash Professional
only)” in Using Flash Help.
Form class (Flash Professional only) 277

Because the Form class extends the Loader class, you can easily load external content (either a
SWF or JPEG) into a form. For example, the contents of a form could be a separate SWF, which
itself might contain forms. In this way, you can modularize your form applications, which makes
maintaining the applications easier, and also reduces initial download time. For more
information, see “Loading external content into screens (Flash Professional only)” on page 452.

Form object parameters

The following are authoring parameters that you can set for each Form object instance in the
Property inspector or in the Component Inspector panel:

autoload Indicates whether the content specified by the contentPath parameter should load
automatically (true), or wait to load until the Loader.load() method is called (false). The
default value is true.

contentPath Specifies the contents of the form. This can be the linkage identifier of a movie
clip or an absolute or relative URL for a SWF or JPG file to load into the slide. By default, loaded
content clips to fit the slide.

visible Specifies whether the form is visible (true) or not (false) when it first loads.

Method summary for the Form class

Inherits all methods from UIObject, UIComponent, View, Loader component, and Screen class
(Flash Professional only).

Property summary for the Form class

Inherits all properties from UIObject, UIComponent, View, Loader component, and Screen class
(Flash Professional only).

Method Description

Form.getChildForm() Returns the child form at a specified index.

Property Description

Form.currentFocusedForm Returns the "leafmost" form that contains the global
current focus.

Form.indexInParentForm Returns the index (zero-based) of this form in its parent's
list of subforms.

Form.visible Specifies whether the form is visible when its parent form,
slide, movie clip, or SWF is visible.

Form.numChildForms Returns the number of child forms that this form contains.

Form.parentIsForm Returns whether or not the parent object of this form is also
a form.

Form.rootForm Returns the root of the form tree, or subtree, that contains
the form.
278 Chapter 4: Components Dictionary

Form.currentFocusedForm

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mx.screens.Form.currentFocusedForm

Description

Property (read-only); returns the Form object that contains the global current focus. The actual
focus may be on the form itself, or on a movie clip, text object, or component inside that form.
May be null if there is no current focus.

Example

The following code, attached to a button (not shown), displays the name of the form with the
current focus.
trace("The form with the current focus is: " +

mx.screens.Form.currentFocusedForm);

Form.getChildForm()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myForm.getChildForm(childIndex)

Parameters

childIndex A number that indicates the index (zero-based) of the child form to return.

Returns

A Form object.

Description

Method; returns the child Form of myForm whose index is childIndex.

Example

The following example displays in the Output panel the names of all the child Form objects
belonging to the root Form object named Application.
for (var i:Number = 0; i < _root.Application.numChildForms; i++) {
 var childForm:mx.screens.Form = _root.Application.getChildForm(i);
 trace(childForm._name);
}

Form class (Flash Professional only) 279

See also

Form.numChildForms

Form.indexInParentForm

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myForm.indexInParentForm

Description

Property (read-only); contains the index (zero-based) of myForm in its parent's list of child forms.
If the parent object of myForm is a screen but not a form (for example, it is a slide), then
indexInParentForm is always 0.

Example

var myIndex:Number = myForm.indexInParent;
if (myForm == myForm._parent.getChildForm(myIndex)) {

trace("I'm where I should be");
}

See also

Form.getChildForm()

Form.numChildForms

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myForm.numChildForms

Description

Property (read-only); returns the number of child forms contained by myForm. This property does
not includes any slides that are contained my myForm, only forms.
280 Chapter 4: Components Dictionary

Example

The following code iterates over all the child forms contained my myForm and displays their
names in the Output panel.
var howManyKids:Number = myForm.numChildForms;
for(i=0; i<howManyKids; i++) {

var childForm = myForm.getChildForm(i);
trace(childForm._name);

}

See also

Form.getChildForm()

Form.parentIsForm

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myForm.parentIsForm

Description

Property (read-only): returns a Boolean (true or false) value indicating whether the specified
form’s parent object is also a form (true), or not (false). If false, then myForm is at the root of its
form hierarchy.

Example

if (myForm.parentIsForm) {
trace("I have "+myForm._parent.numChildScreens+" sibling screens");

} else {
trace("I am the root form and have no siblings");

}

Form.rootForm

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myForm.rootForm

Description

Property (read-only); returns the form at the top of the form hierarchy that contains myForm. If
myForm is contained by an object that is not a form (that is, a slide), then this property returns
myForm.
Form class (Flash Professional only) 281

Example

In the following example, a reference to the root form of myForm is placed into a variable named
root. If the value assigned to root refers to myForm, then myForm is at the top of its form tree.
var root:my.screens.Form = myForm.rootForm;
if(rootForm == myForm) {

trace("myForm is the top form in its tree");
}

Form.visible

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myForm.visible

Description

Property; determines whether myForm is visible when its parent form, slide, movie clip, or
movie is visible. You can also set this property using the Property inspector in the Flash
authoring environment.

When this property is set to true, myForm receives a reveal event; when set to false, myForm
receives a hide event. You can attach transitions to forms that execute when a form receives one of
these events. For more information on adding transitions to screens, see “Creating controls and
transitions for screens with behaviors (Flash Professional only)” in Using Flash Help.

Example

The following code, attached to an instance of the Button component, sets to false the visible
property of the form that contains the button.
on(click) {

_parent.visible = true;
}

Label component

A label component is a single line of text. You can specify that a label be formatted with HTML.
You can also control alignment and sizing of a label. Label components don’t have borders, cannot
be focused, and don’t broadcast any events.

A live preview of each Label instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. The Label doesn't have a border, so the
only way to see its live preview is to set its text parameter. The autoSize parameter is not
supported in live preview.

When you add the Label component to an application, you can use the Accessibility panel
to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.LabelAccImpl.enableAccessibility();
282 Chapter 4: Components Dictionary

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the label component

Use a Label component to create a text label for another component in a form, such as a “Name:”
label to the left of a TextInput field that accepts a user's name. If you’re building an application
using components based on version 2 (v2) of the Macromedia Component Architecture, it’s a
good idea to use a Label component instead of a plain text field because you can use styles to
maintain a consistent look and feel.

Label parameters

The following are authoring parameters that you can set for each Label component instance in
the Property inspector or in the Component Inspector panel:

text indicates the text of the label; the default value is Label.

html indicates whether the label is formatted with HTML (true) or not (false). If the html
parameter is set to true, a Label cannot be formatted with styles. The default value is false.

autoSize indicates how the label sizes and aligns to fit the text. The default value is none. The
parameter can be any of the following four values:

• none—the label doesn’t resize or align to fit the text.
• left—the right and bottom sides of the label resize to fit the text. The left and top sides

don’t resize.
• center—the bottom side of the label resizes to fit the text. The horizontal center of the label

stays anchored at the its original horizontal center position.
• right—the left and bottom sides of the label resize to fit the text. The top and right side

don’t resize.
Note: The Label component autoSize property is different from the built-in ActionScript TextField
object’s autoSize property.

You can write ActionScript to set additional options for Label instances using its methods,
properties, and events. For more information, see Label class.

Creating an application with the Label component

The following procedure explains how to add a Label component to an application while
authoring. In this example, the label is beside a combo box with dates in a shopping
cart application.

To create an application with the Label component, do the following:

1 Drag a Label component from the Components panel to the Stage.
2 In the Component Inspector panel, enter Expiration Date for the label parameter.
Label component 283

Customizing the label component

You can transform a Label component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. You can also set the autoSize authoring parameter;
setting this parameter doesn’t change the bounding box in the Live Preview, but the label does
resize. For more information, see “Label parameters” on page 283. At runtime, use the
setSize() method (see UIObject.setSize()) or Label.autoSize.

Using styles with the Label component

You can set style properties to change the appearance of a label instance. All text in a Label
component instance must share the same style. For example, you can’t set the color style to
"blue" for one word in a label and to "red" for the second word in the same label.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than non-color style properties.

For more information about styles, see “Using styles to customize component color and text”
on page 27.

A Label component supports the following styles:

Using skins with the Label component

The Label component is not skinnable.

For more information about skinning a component, see “About skinning components”
on page 36.

Label class

Inheritance UIObject > Label

ActionScript Class Name mx.controls.Label

The properties of the Label class allow you at runtime to specify text for the label, indicate
whether the text can be formatted with HTML, and indicate whether the label auto-sizes to fit
the text.

Style Description

color The default color for text.

embedFonts The fonts to embed in the document.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style, either "normal",or "italic".

fontWeight The font weight, either "normal" or "bold".

textAlign The text alignment: either "left", "right", or "center".

textDecoration The text decoration, either "none" or "underline".
284 Chapter 4: Components Dictionary

Setting a property of the Label class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.Label.version);

Note: The following code returns undefined: trace(myLabelInstance.version);.

Method summary for the Label class

Inherits all methods from UIObject.

Property summary for the Label class

Inherits all properties from UIObject.

Event summary for the Label class

Inherits all events from UIObject.

Label.autoSize

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

labelInstance.autoSize

Description

Property; a string that indicates how a label sizes and aligns to fit the value of its text property.
There are four possible values: "none", "left", "center", and "right". The default value
is "none".

• none—the label doesn’t resize or align to fit the text.
• left—the right and bottom sides of the label resize to fit the text. The left and top sides

don’t resize.

Property Description

Label.autoSize A string that indicates how a label sizes and aligns to fit the value of its text
property. There are four possible values: "none", "left", "center", and "right".
The default value is "none".

Label.html A Boolean value that indicates whether a label can be formatted with HTML (true)
or not (false).

Label.text The text on the label.
Label component 285

• center—the bottom side of the label resizes to fit the text. The horizontal center of the label
stays anchored at the its original horizontal center position.

• right—the left and bottom sides of the label resize to fit the text. The top and right side
don’t resize.

Note: The Label component autoSize property is different from the built-in ActionScript TextField
object’s autoSize property.

Label.html

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

labelInstance.html

Description

Property; a Boolean value that indicates whether the label can be formatted with HTML (true)
or not (false). The default value is false. Label components with the html property set to true
cannot be formatted with styles.

You cannot use the HTML tag with the Label component even when Label.html
is set to true. For example, in the following example, the text “Hello” displays black, not red as it
would if were supported:
lbl.html = true;
lbl.text = "Hello World";

In order to retrieve plain text from HTML formatted text, set the HTML property to false and
then access the text property. This will remove the HTML formatting, so you may want to copy
the label text to an off-screen Label or TextArea component before you retrieve the plain text.

Example

The following example sets the html property to true so the label can be formatted with HTML.
The text property is then set to a string that includes HTML formatting, as follows:
labelControl.html = true;
labelControl.text = "The Royal Nonesuch";

The word “Royal” displays in bold.

Label.text

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.
286 Chapter 4: Components Dictionary

Usage

labelInstance.text

Description

Property; the text of a label. The default value is "Label".

Example

The following code sets the text property of the Label instance labelControl and sends the
value to the Output panel:
labelControl.text = "The Royal Nonesuch";
trace(labelControl.text);

List component

The List component is a scrollable single- or multiple-selection list box. A list can also display
graphics, including other components. You add the items displayed in the List using the Values
dialog box that appears when you click in the labels or data parameter fields. You can also use the
List.addItem() and List.addItemAt() methods to add items to the list.

The List component uses a zero-based index, where the item with index 0 is the top item
displayed. When adding, removing, or replacing list items using the List class methods and
properties, you may need to specify the index of the list item.

The List receives focus when you click it or tab to it, and you can then use the following keys to
control it:

Note: The page size used by the Page Up and Page Down keys is one less than the number of items
that fit in the display. For example, paging down through a ten-line drop-down list will show items 0-
9, 9-18, 18-27, and so on, with one item overlapping per page.

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

A live preview of each List instance on the Stage reflects changes made to parameters in the
Property inspector or Component Inspector panel while authoring.

Key Description

Alphanumerical keys Jump to the next item with Key.getAscii() as the first character in its label.

Control Toggle key. Allows multiple non-contiguous selects and deselects.

Down Selection moves down one item.

Home Selection moves to the top of the list.

Page Down Selection moves down one page.

Page Up Selection moves up one page.

Shift Contiguous selection key. Allows for contiguous selection.

Up Selection moves up one item.
List component 287

When you add the List component to an application, you can use the Accessibility panel to
make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.ListAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the List component

You can set up a list so that users can make either single or multiple selections. For example, a user
visiting an e-commerce website needs to select which item to buy. There are 30 items, and the
user scrolls through a list and selects one by clicking it.

You can also design a list that uses custom movie clips as rows so you can display more
information to the user. For example, in an e-mail application, each mailbox could be a List
component and each row could have icons to indicate priority and status.

List component parameters

The following are authoring parameters that you can set for each List component instance in the
Property inspector or in the Component Inspector panel:

data An array of values that populate the data of the list. The default value is [] (an empty
array). There is no equivalent runtime property.

labels An array of text values that populate the label values of list. The default value is [] (an
empty array). There is no equivalent runtime property.

multipleSelection A Boolean value that indicates whether you can select multiple values (true)
or not (false). The default value is false.

rowHeight This indicates the height, in pixels, of each row. The default value is 20. Setting a
font does not change the height of a row.

You can write ActionScript to set additional options for List instances using its methods,
properties, and events. For more information, see List class.

Creating an application with the List component

The following procedure explains how to add a List component to an application while
authoring. In this example, the list is a sample with three items.

To add a simple List component to an application, do the following:

1 Drag a List component from the Components panel to the Stage.
2 Select the list and select Modify > Transform to resize it to fit your application.
3 In the Property inspector, do the following:

■ Enter the instance name myList.
■ Enter Item1, Item2, and Item3 for the labels parameter.
■ Enter item1.html, item2.html, item3.html for the data parameter.

4 Select Control > Test Movie to see the list with its items.
You could use the data property values in your application to open HTML files.
288 Chapter 4: Components Dictionary

The following procedure explains how to add a List component to an application while
authoring. In this example, the list is a sample with three items.

To add a List component to an application, do the following:

1 Drag a List component from the Components panel to the Stage.
2 Select the list and select Modify > Transform to resize it to fit your application.
3 In the Actions panel, enter the instance name myList
4 Select Frame 1 of the Timeline and, in the Actions panel, enter the following:

myList.dataProvider = myDP;

If you have defined a data provider named myDP, the list will fill with data. For more
information about data providers, see List.dataProvider.

5 Select Control > Test Movie to see the list with its items.

Customizing the List component

You can transform a List component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the List.setSize() method (see
UIObject.setSize()).

When a list is resized, the rows of the list shrink horizontally, clipping any text within them.
Vertically, the list adds or removes rows as needed. Scroll bars position themselves automatically.
For more information about scroll bars, see “ScrollPane component” on page 464.

Using styles with the List component

You can set style properties to change the appearance of a List component.

A List component uses the following Halo styles:

Style Description

alternatingRowColors Specifies colors for rows in an alternating pattern. The value can be an
array of two or more colors, for example, 0xFF00FF, 0xCC6699, and
0x996699.

backgroundColor The background color of the list. This style is defined on a class style
declaration, ScrollSelectList.

borderColor The black section of a three-dimensional border or the color section of a
two-dimensional border.

borderStyle The bounding box style. The possible values are: "none", "solid", "inset"
and "outset". This style is defined on a class style declaration,
ScrollSelectList.

defaultIcon Name of the default icon to use for list rows. The default value is
undefined.

rollOverColor The color of a rolled over row.

selectionColor The color of a selected row.

selectionEasing A reference to an easing equation (function) used for controlling
programmatic tweening.
List component 289

A List component also uses the style properties of the Label component (see “Using styles with
the Label component” on page 284), the ScrollPane component (see “ScrollPane component”
on page 464), and RectBorder.

Using skins with the List component

All the skins in the List component are included in the subcomponents from which the list is
composed (ScrollPane component and RectBorder). For more information, see “ScrollPane
component” on page 464. You can use the setStyle() method (see UIObject.setStyle()) to
change the following RectBorder style properties:

The style properties set the following positions on the border:

disabledColor The disabled color for text.

textRollOverColor The color of text when the pointer rolls over it.

textSelectedColor The color of text when selected.

selectionDisabledColor The color of a row if it has been selected and disabled.

selectionDuration The length of any transitions when selecting items.

useRollOver Determines whether rolling over a row activates highlighting.

RectBorder styles Border position

borderColor a

highlightColor b

borderColor c

shadowColor d

borderCapColor e

shadowCapColor f

shadowCapColor g

borderCapColor h

Style Description
290 Chapter 4: Components Dictionary

List class

Inheritance UIObject > UIComponent > View > ScrollView > ScrollSelectList > List

ActionScript Class Name mx.controls.List

The List component is composed of three parts:

• Items
• Rows
• A data provider

An item is an ActionScript object used for storing the units of information in the list. A list can be
thought of as an array; each indexed space of the array is an item. An item is an object that
typically has a label property that is displayed and a data property that is used for storing data.

A row is a component that is used to display an item. Rows are either supplied by default by the
list (the SelectableRow class is used), or you can supply them, usually as a subclass of the
SelectableRow class. The SelectableRow class implements the CellRenderer interface, which is the
set of properties and methods that allow the list to manipulate each row and send data and state
information (for example, size, selected, and so on) to the row for display.

A data provider is a data model of the list of items in a list. Any array in the same frame as a list is
automatically given methods that allow you to manipulate data and broadcast changes to multiple
views. You can build an Array instance or get one from a server and use it as a data model for
multiple Lists, ComboBoxes, DataGrids, and so on. The List component has a set of methods
that proxy to its data provider (for example, addItem() and removeItem()). If no external data
provider is provided to the list, these methods create a data provider instance automatically, which
is exposed through List.dataProvider.

To add a List component to the tab order of an application, set its tabIndex property (see
UIComponent.tabIndex). The List component uses the FocusManager to override the default
Flash Player focus rectangle and draw a custom focus rectangle with rounded corners. For more
information, see “Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.List.version);

Note: The following code returns undefined: trace(myListInstance.version);.

Method summary for the List class

Method Description

List.addItem() Adds an item to the end of the list.

List.addItemAt() Adds an item to the list at the specified index.

List.getItemAt() Returns the item at the specified index.

List.removeAll() Removes all items from the list.

List.removeItemAt() Removes the item at the specified index.

List.replaceItemAt() Replaces the item at the specified index with another item.
List component 291

Inherits all methods from UIObject and UIComponent.

Property summary for the List class

Inherits all properties from UIObject and UIComponent.

List.setPropertiesAt() Applies the specified properties to the specified item.

List.sortItems() Sorts the items in the list according to the specified compare function.

List.sortItemsBy() Sorts the items in the list according to a specified property.

Property Description

List.cellRenderer Assigns the class or symbol to use to display each row of the list.

List.dataProvider The source of the list items.

List.hPosition The horizontal position of the list.

List.hScrollPolicy Indicates whether the horizontal scroll bar is displayed ("on") or
not ("off").

List.iconField A field within each item to be used to specify icons.

List.iconFunction A function that determines which icon to use.

List.labelField Specifies a field of each item to be used as label text.

List.labelFunction A function that determines which fields of each item to use for the
label text.

List.length The length of the list in items. This property is read-only.

List.maxHPosition Specifies the number of pixels the list can scroll to the right, when
List.hScrollPolicy is set to "on".

List.multipleSelection Indicates whether multiple selection is allowed in the list (true) or
not (false).

List.rowCount The number of rows that are at least partially visible in the list.

List.rowHeight The pixel height of every row in the list.

List.selectable Indicates whether the list is selectable (true) or not (false).

List.selectedIndex The index of a selection in a single-selection list.

List.selectedIndices An array of the selected items in a multiple-selection list.

List.selectedItem The selected item in a single-selection list. This property is read-only.

List.selectedItems The selected item objects in a multiple-selection list. This property is
read-only.

List.vPosition Scrolls the list so the topmost visible item is the number assigned.

List.vScrollPolicy Indicates whether the vertical scroll bar is displayed ("on"), not displayed
("off"), or displayed when needed ("auto").

Method Description
292 Chapter 4: Components Dictionary

Event summary for the List class

Inherits all events from UIObject and UIComponent.

List.addItem()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.addItem(label[, data])

listInstance.addItem(itemObject)

Parameters

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be any data type.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the end of the list.

In the first usage example, an item object is always created with the specified label property, and,
if specified, the data property.

The second usage example adds the specified item object.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

Both of the following lines of code add an item to the myList instance. To try this code, drag a
List to the Stage and give it the instance name myList. Add the following code to Frame 1 in the
Timeline:
myList.addItem("this is an Item");
myList.addItem({label:"Gordon",age:"very old",data:123});

Event Description

List.change Broadcast whenever the selection changes due to user interaction.

List.itemRollOut Broadcast when list items are rolled over and then off by the pointer.

List.itemRollOver Broadcast when list items are rolled over by the pointer.

List.scroll Broadcast when a list is scrolled.
List component 293

List.addItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.addItemAt(index, label[, data])

listInstance.addItemAt(index, itemObject)

Parameters

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be any data type.

index A number greater than or equal to zero that indicates the position of the item.

itemObject An item object that usually has label and data properties.

Returns

The index at which the item was added.

Description

Method; adds a new item to the position specified by the index parameter.

In the first usage example, an item object is always created with the specified label property, and,
if specified, the data property.

The second usage example adds the specified item object.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following line of code adds an item to the third index position, which is the fourth item in
the list:
myList.addItemAt(3,{label:'Red',data:0xFF0000});

List.cellRenderer

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.cellRenderer
294 Chapter 4: Components Dictionary

Description

Property; assigns the cell renderer to use for each row of the list. This property must be a class
object reference, or a symbol linkage identifier. Any class used for this property must implement
the “CellRenderer API” on page 77.

Example

The following example uses a linkage identifier to set a new cell renderer:
myList.cellRenderer = "ComboBoxCell";

List.change

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

// your code here
}
listInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the selected index of the list changes as a result of
user interaction.

The first usage example uses an on() handler and must be attached directly to a list component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the list component instance
myBox, sends “_level0.myBox” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, change) and the event is handled by a function,
also called a handler, on a listener object (listenerObject) that you create. You define a method
with the same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject) to
the listener object method. Each event object has a set of properties that contains information
about the event. You can use these properties to write code that handles the event. For more
information about event objects, see “Event Objects” on page 562.
List component 295

Finally, you call the addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.change = function(eventObj){

trace("Value changed to " + eventObj.target.value);
}
myList.addEventListener("change", form);

See also

UIEventDispatcher.addEventListener()

List.dataProvider

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listnstance.dataProvider

Description

Property; the data model for items viewed in a list. The value of this property can be an array or
any object that implements the DataProvider interface. The default value is []. For more
information about the DataProvider interface, see “DataProvider API” on page 183.

The List component, and other data-aware components, add methods to the Array object’s
prototype so that they conform to the DataProvider interface. Therefore, any array that exists at
the same time as a list automatically has all the methods (addItem(), getItemAt(), and so on)
it needs to be the data model for the list, and can be used to broadcast model changes to
multiple components.

If the array contains objects, the List.labelField or List.labelFunction properties are
accessed to determine what parts of the item to display. The default value is "label", so if a
label field exists, it is chosen for display, if is doesn’t exist, a comma-separated list of all fields
is displayed.
Note: If the array contains strings at each index, and not objects, the list is not able to sort the items
and maintain the selection state. Any sorting will lose the selection.

Any instance that implements the DataProvider interface can be a data provider for a List
component. This includes Flash Remoting RecordSets, Firefly DataSets, and so on.

Example

This example uses an array of strings to populate the list:
list.dataProvider = ["Ground Shipping","2nd Day Air","Next Day Air"];
296 Chapter 4: Components Dictionary

This example creates a data provider array and assigns it to the dataProvider property, as in
the following:
myDP = new Array();
list.dataProvider = myDP;

for (var i=0; i<accounts.length; i++) {
 // these changes to the DataProvider will be broadcast to the list
 myDP.addItem({ label: accounts[i].name,
 data: accounts[i].accountID });
}

List.getItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.getItemAt(index)

Parameters

index A number greater than or equal to 0, and less than List.length. The index of the item
to retrieve.

Returns

The indexed item object. Undefined if index is out of range.

Description

Method; retrieves the item at a specified index.

Example

The following code displays the label of the item at index position 4:
trace(myList.getItemAt(4).label);

List.hPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.hPosition

Description

Property; scrolls the list horizontally to the number of pixels specified. You can’t set hPosition
unless the value of hScrollPolicy is "on" and the list has a maxHPosition that is greater than 0.
List component 297

Example

The following example gets the horizontal scroll position of myList:
var scrollPos = myList.hPosition;

The following example sets the horizontal scroll position all the way to the left:
myList.hPosition = 0;

List.hScrollPolicy

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.hScrollPolicy

Description

Property; a string that determines whether or not the horizontal scroll bar is displayed; the value
can be "on" or "off". The default value is "off". The horizontal scroll bar does not measure
text, you must set a maximum horizontal scroll position, see List.maxHPosition.
Note: The value "auto" is not supported for List.hScrollPolicy.

Example

The following code enables the list to scroll horizontally up to 200 pixels:
myList.hScrollPolicy = "on";
myList.Box.maxHPosition = 200;

See also

List.hPosition, List.maxHPosition

List.iconField

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.iconField

Description

Property; specifies the name of a field to be used as an icon identifier. If the field has a value of
undefined, the default icon specified by the defaultIcon style is used. If the defaultIcon style
is undefined, no icon is used.
298 Chapter 4: Components Dictionary

Example

The following example sets the iconField property to the icon property of each item:
list.iconField = "icon"

See also

List.iconFunction

List.iconFunction

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.iconFunction

Description

Property; specifies a function to be used to determine which icon each row will use to display its
item. This function receives a parameter, item, which is the item being rendered, and must return
a string representing the icon’s symbol identifier.

Example

The following example adds icons that indicate whether a file is an image or a text document. If
the data.fileExtension field contains a value of "jpg" or "gif", the icon used will be
"pictureIcon", and so on:
list.iconFunction = function(item){

var type = item.data.fileExtension;
if (type=="jpg" || type=="gif") {

return "pictureIcon";
} else if (type=="doc" || type=="txt") {

return "docIcon";
}

}

List.itemRollOut

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOut){

// your code here
}

List component 299

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOut = function(eventObject){

// your code here
}
listInstance.addEventListener("itemRollOut", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOut event has an
additional property: index. The index is the number of the item that was rolled out.

Description

Event; broadcast to all registered listeners when the list items are rolled out.

The first usage example uses an on() handler and must be attached directly to a List component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(itemRollOut){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOut) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOut = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled out.");
}
myList.addEventListener("itemRollOut", form);

See also

List.itemRollOver
300 Chapter 4: Components Dictionary

List.itemRollOver

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(itemRollOver){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.itemRollOver = function(eventObject){

// your code here
}
listInstance.addEventListener("itemRollOver", listenerObject)

Event Object

In addition to the standard properties of the event object, the itemRollOver event has an
additional property: index. The index is the number of the item that was rolled over.

Description

Event; broadcast to all registered listeners when the list items are rolled over.

The first usage example uses an on() handler and must be attached directly to a List component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(itemRollOver){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, itemRollOver) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
List component 301

Example

The following example sends a message to the Output panel that indicates which item index
number has been rolled over:
form.itemRollOver = function (eventObj) {
 trace("Item #" + eventObj.index + " has been rolled over.");
}
myList.addEventListener("itemRollOver", form);

See also

List.itemRollOut

List.labelField

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.labelField

Description

Property; specifies a field within each item to be used as display text. This property takes the value
of the field and uses it as the label. The default value is "label".

Example

The following example sets the labelField property to be the "name" field of each item. “Nina”
would display as the label for the item added in the second line of code:
list.labelField = "name";
list.addItem({name: "Nina", age: 25});

See also

List.labelFunction

List.labelFunction

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.labelFunction
302 Chapter 4: Components Dictionary

Description

Property; specifies a function to be used to decide which field (or field combination) to display of
each item. This function receives one parameter, item, which is the item being rendered, and
must return a string representing the text to display.

Example

The following example makes the label display some formatted details of the items:
list.labelFunction = function(item){

return "The price of product " + item.productID + ", " + item.productName +
" is $"

+ item.price;
}

See also

List.labelField

List.length

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.length

Description

Property (read-only); the number of items in the list.

Example

The following example places the value of length in a variable:
var len = myList.length;

List.maxHPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.maxHPosition
List component 303

Description

Property; specifies the number of pixels the list can scroll when List.hScrollPolicy is set to
"on". The list doesn’t precisely measure the width of text that it contains. You must set
maxHPosition to indicate the amount of scrolling that the list requires. The list will not scroll
horizontally if this property is not set.

Example

The following example creates a list with 400 pixels of horizontal scrolling:
myList.hScrollPolicy = "on";
myList.maxHPosition = 400;

See also

List.hScrollPolicy

List.multipleSelection

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.multipleSelection

Description

Property; indicates whether multiple selections are allowed (true) or only single selections are
allowed (false). The default value is false.

Example

The following example tests to determine whether multiple items may be selected:
if (myList.multipleSelection){

// your code here
}

The following example allows the list to take multiple selections:
myList.selectMultiple = true;

List.removeAll()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.removeAll()
304 Chapter 4: Components Dictionary

Parameters

None.

Returns

Nothing.

Description

Method; removes all items in the list.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following code clears the list:
myList.removeAll();

List.removeItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.removeItemAt(index)

Parameters

index A string that indicates the label for the new item. A value greater than zero and less than
List.length.

Returns

An object; the removed item (undefined if no item exists).

Description

Method; removes the item at the specified index position. The list indices after the index
indicated by the index parameter collapse by one.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following code removes the item at index position 3:
myList.removeItemAt(3);
List component 305

List.replaceItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.replaceItemAt(index, label[, data])
listInstance.replaceItemAt(index, itemObject)

Parameters

index A number greater than zero and less than List.length that indicates the position at
which to insert the item (the index of the new item).

label A string that indicates the label for the new item.

data The data for the item. This parameter is optional and can be of any type.

itemObject. An object to use as the item, usually containing label and data properties.

Returns

Nothing.

Description

Method; replaces the content of the item at the index specified by the index parameter.

Calling this method modifies the data provider of the List component. If the data provider is
shared with other components, those components will update as well.

Example

The following example changes the fourth index position:
myList.replaceItemAt(3, "new label");

List.rowCount

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.rowCount

Description

Property; the number of rows that are at least partially visible in the list. This is useful if you've
scaled a list by pixel and need to count its rows. Conversely, setting the number of rows
guarantees an exact number of rows will be displayed, without a partial row at the bottom.
306 Chapter 4: Components Dictionary

The code myList.rowCount = num is equivalent to the code
myList.setSize(myList.width, h) (where h is the height required to display num items).

The default value is based on the height of the list as set while authoring, or set by the
list.setSize() method (see UIObject.setSize()).

Example

The following example discovers the number of visible items in a list:
var rowCount = myList.rowCount;

The following example makes the list display four items:
myList.rowCount = 4;

This example removes a partial row at the bottom of a list, if there is one:
myList.rowCount = myList.rowCount;

This example sets a list to the smallest number of rows it can fully display:
myList.rowCount = 1;
trace("myList has "+myList.rowCount+" rows");

List.rowHeight

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.rowHeight

Description

Property; the height, in pixels, of every row in the list. The font settings do not make the rows
grow to fit, so setting the rowHeight property is the best way to make sure items are fully
displayed. The default value is 20.

Example

The following example sets each row to 30 pixels:
myList.rowHeight = 30;
List component 307

List.scroll

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

// your code here
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

// your code here
}
listInstance.addEventListener("scroll", listenerObject)

Event Object

Along with the standard event object properties, the scroll event has one additional property,
direction. It is a string with two possible values "horizontal" or "vertical". For a
ComboBox scroll event, the value is always "vertical".

Description

Event; broadcast to all registered listeners when a list scrolls.

The first usage example uses an on() handler and must be attached directly to a List component
instance. The keyword this, used inside an on() handler attached to a component, refers to the
component instance. For example, the following code, attached to the List instance myList, sends
“_level0.myList” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(listInstance) dispatches an event (in this case, scroll) and the event is handled by a function,
also called a handler, on a listener object (listenerObject) that you create. You define a method
with the same name as the event on the listener object; the method is called when the event is
triggered. When the event is triggered, it automatically passes an event object (eventObject) to
the listener object method. Each event object has a set of properties that contains information
about the event. You can use these properties to write code that handles the event. Finally, you call
the UIEventDispatcher.addEventListener() method on the component instance that
broadcasts the event to register the listener with the instance. When the instance dispatches the
event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
308 Chapter 4: Components Dictionary

Example

The following example sends the instance name of the component that generated the change
event to the Output panel:
form.scroll = function(eventObj){

trace("list scrolled");
}
myList.addEventListener("scroll", form);

List.selectable

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.selectable

Description

Property; a Boolean value that indicates whether the list is selectable (true) or not (false). The
default value is true.

List.selectedIndex

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.selectedIndex

Description

Property; the selected index of a single-selection list. The value is undefined if nothing is selected;
the value is equal to the last item selected if there are multiple selections. If you assign a value to
selectedIndex, any current selection is cleared and the indicated item is selected.

Example

This example selects the item after the currently selected item. If nothing is selected, item 0 is
selected, as follows:
var selIndex = myList.selectedIndex;
myList.selectedIndex = (selIndex==undefined ? 0 : selIndex+1);

See also

List.selectedIndices, List.selectedItem, List.selectedItems
List component 309

List.selectedIndices

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.selectedIndices

Description

Property; an array of indices of the selected items. Assigning this property replaces the current
selection. Setting selectedIndices to a 0-length array (or undefined) clears the current
selection. The value is undefined if nothing is selected.

The selectedIndices property is listed in the order that items were selected. If you click the
second item, then the third item, and then the first item, selectedIndices returns [1,2,0].

Example

The following example gets the selected indices:
var selIndices = myList.selectedIndices;

The following example selects four items:
var myArray = new Array (1,4,5,7);
myList.selectedIndices = myArray;

See also

List.selectedIndex, List.selectedItem, List.selectedItems

List.selectedItem

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.selectedItem

Description

Property (read-only); an item object in a single-selection list. (In a multiple-selection list with
multiple items selected, selectedItem returns the item that was most recently selected.) If there
is no selection, the value is undefined.

Example

This example displays the selected label:
trace(myList.selectedItem.label);
310 Chapter 4: Components Dictionary

See also

List.selectedIndex, List.selectedIndices, List.selectedItems

List.selectedItems

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.selectedItems

Description

Property (read-only); an array of the selected item objects. In a multiple-selection list,
selectedItems allows you to access the set of items selected as item objects.

Example

The following example gets an array of selected item objects:
var myObjArray = myList.selectedItems;

See also

List.selectedIndex, List.selectedItem, List.selectedIndices

List.setPropertiesAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.setPropertiesAt(index, styleObj)

Parameters

index A number greater than zero or less than List.length indicating the index of the item
to change.

styleObj An object that enumerates the properties and values to set.

Returns

Nothing.

Description

Method; applies the properties specified by the styleObj parameter to the item specified by the
index parameter. The supported properties are icon and backgroundColor.
List component 311

Example

The following example changes the fourth item to black and gives it an icon:
myList.setPropertiesAt(3, {backgroundColor:0x000000, icon: "file"});

List.sortItems()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.sortItems(compareFunc)

Parameters

compareFunc A reference to a function. This function is used to compare two items to
determine their sort order.

For more information, see Array.sort() in ActionScript Dictionary Help.

Returns

The index at which the item was added.

Description

Method; sorts the items in the list according to the compareFunc parameter.

Example

The following example sorts the items based on uppercase labels. Note that the a and b
parameters that are passed to the function are items that have label and data properties:
myList.sortItems(upperCaseFunc);
function upperCaseFunc(a,b){
 return a.label.toUpperCase() > b.label.toUpperCase();
}

See also

List.sortItemsBy()

List.sortItemsBy()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.sortItemsBy(fieldName, order)
312 Chapter 4: Components Dictionary

Parameters

fieldName A string that specifies the name of the property to be used for sorting. Typically, this
value is "label" or "data".

order A string that specifies whether to sort the items in ascending order ("ASC") or descending
order ("DESC").

Returns

Nothing.

Description

Method; sorts the items in the list alphabetically or numerically, in the specified order, using the
fieldName specified. If the fieldName items are a combination of text strings and integers, the
integer items are listed first. The fieldName parameter is usually "label" or "data", but you can
specify any primitive data value.

Example

The following code sorts the items in the list surnameMenu in ascending order using the labels of
the list items:
surnameMenu.sortItemsBy("label", "ASC");

See also

List.sortItems()

List.vPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.vPosition

Description

Property; scrolls the list so that index is the topmost visible item. If index is out of bounds, goes to
the nearest in-bounds index. The default value is 0.

Example

The following example sets the position of the list to the first index item:
myList.vPosition = 0;
List component 313

List.vScrollPolicy

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

listInstance.vScrollPolicy

Description

Property; a string that determines whether or not the list supports vertical scrolling. This property
can be one of the following values: "on", "off" or "auto". The value "auto" causes a scroll bar
to appear when its needed.

Example

The following example disables the scroll bar:
myList.vScrollPolicy = "off";

You can still create scrolling by using List.vPosition.

See also

List.vPosition

Loader component

The Loader component is a container that can display a SWF or a JPEG. You can scale the
contents of the loader, or resize the loader itself to accommodate the size of the contents. By
default, the contents are scaled to fit the Loader. You can also load content at runtime, and
monitor loading progress.

A Loader component can’t receive focus. However, content loaded into the Loader component
can accept focus and have its own focus interactions. For more information about controlling
focus, see “Creating custom focus navigation” on page 24 or “FocusManager class” on page 270.

A live preview of each Loader instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring.

Content that is loaded into a Loader component may be enabled for accessibility. If so, you can
use the Accessibility panel to make it accessible to screen readers. For more information, see
“Creating Accessible Content” in Using Flash Help.
314 Chapter 4: Components Dictionary

Using the Loader component

You can use a loader whenever you need to grab content from a remote location and pull it into a
Flash application. For example, you could use a loader to add a company logo (JPEG file) to a
form. You could also use a loader to leverage Flash work that has already been completed. For
example, if you had already built a Flash application and wanted to expand it, you could use the
loader to pull the old application into a new application, perhaps as a section of a tab interface. In
another example, you could use the loader component in an application that displays photos. Use
Loader.load(), Loader.percentLoaded, and Loader.complete to control the timing of the
image loads and display progress bars to the user during loading.

Loader component parameters

The following are authoring parameters that you can set for each Loader component instance in
the Property inspector or in the Component Inspector panel:

autoload indicates whether the content should load automatically (true), or wait to load until the
Loader.load() method is called (false). The default value is true.

contentPath an absolute or relative URL indicating the file to load into the loader. A relative
path must be relative to the SWF loading the content. The URL must be in the same subdomain
as the URL where the Flash content currently resides. For use in Flash Player or for testing in test-
movie mode, all SWF files must be stored in the same folder, and the filenames cannot include
folder or disk drive specifications. The default value is undefined until the load had started.

scaleContent indicates whether the content scales to fit the Loader (true), or the Loader scales to
fit the content (false). The default value is true.

You can write ActionScript to set additional options for Loader instances using its methods,
properties, and events. For more information, see Loader class.

Creating an application with the Loader component

The following procedure explains how to add a Loader component to an application while
authoring. In this example, the loader loads a logo JPEG from an imaginary URL.

To create an application with the Loader component, do the following:

1 Drag a Loader component from the Components panel to the Stage.
2 Select the loader on the Stage and use the Free Transform tool to size it to the dimensions of

the corporate logo.
3 In the Property inspector, enter the instance name logo.
4 Select the loader on the Stage and in the Component Inspector panel and enter http://

corp.com/websites/logo/corplogo.jpg for the contentPath parameter.

Customizing the Loader component

You can transform a Loader component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()).
Loader component 315

The sizing behavior of the Loader component is controlled by the scaleContent property. When
scaleContent = true, the content is scaled to fit within the bounds of the loader (and is
rescaled when UIObject.setSize() is called). When the property is scaleContent = false,
the size of the component is fixed to the size of the content and the UIObject.setSize()
method has no effect.

Using styles with the Loader component

The Loader component doesn’t use styles.

Using skins with the Loader component

The Loader component uses RectBorder which uses the ActionScript Drawing API. You can
use the setStyle() method (see UIObject.setStyle()) to change the following RectBorder
style properties:

The style properties set the following positions on the border:

Loader class

Inheritance UIObject > UIComponent > View > Loader

ActionScript Class Name mx.controls.Loader

The properties of the Loader class allow you to set content to load and monitor its loading
progress at runtime.

Setting a property of the Loader class with ActionScript overrides the parameter of the same name
set in the Property inspector or Component Inspector panel.

For more information, see “Creating custom focus navigation” on page 24.

RectBorder styles Letter

borderColor a

highlightColor b

borderColor c

shadowColor d

borderCapColor e

shadowCapColor f

shadowCapColor g

borderCapColor h
316 Chapter 4: Components Dictionary

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.Loader.version);

Note: The following code returns undefined: trace(myLoaderInstance.version);.

Method summary for the Loader class

Inherits all methods from UIObject and UIComponent.

Property summary for the Loader class

Inherits all properties from UIObject and UIComponent.

Event summary for the Loader class

Inherits all properties from UIObject and UIComponent

Method Description

Loader.load() Loads the content specified by the contentPath property.

Property Description

Loader.autoLoad A Boolean value that indicates whether the content loads automatically
(true) or if you must call Loader.load() (false).

Loader.bytesLoaded A read-only property that indicates the number of bytes that have
been loaded.

Loader.bytesTotal A read-only property that indicates the total number of bytes in
the content.

Loader.content A reference to the content specified by the Loader.contentPath property.
This property is read-only.

Loader.contentPath A string that indicates the URL of the content to be loaded.

Loader.percentLoaded A number that indicates the percentage of loaded content. This property
is read-only.

Loader.scaleContent A Boolean value that indicates whether the content scales to fit the
Loader (true), or the Loader scales to fit the content (false).

Event Description

Loader.complete Triggered when the content finished loading.

Loader.progress Triggered while content is loading.
Loader component 317

Loader.autoLoad

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.autoLoad

Description

Property; a Boolean value that indicates whether to automatically load the content (true), or wait
until Loader.load() is called (false). The default value is true.

Example

The following code sets up the loader component to wait for a Loader.load() call:
loader.autoload = false;

Loader.bytesLoaded

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.bytesLoaded

Description

Property (read-only); the number of bytes of content that have been loaded. The default value is 0
until content begins loading.

Example

The following code creates a ProgressBar and a Loader component. It then creates a listener object
with a progress event handler that shows the progress of the load. The listener is registered with
the loader instance, as follows:
createClassObject(mx.controls.ProgressBar, "pBar", 0);
createClassObject(mx.controls.Loader, "loader", 1);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component which generated the change event,
// i.e., the Loader.
pBar.setProgress(loader.bytesLoaded, loader.bytesTotal); // show progress

}
loader.addEventListener("progress", loadListener);
loader.content = "logo.swf";
318 Chapter 4: Components Dictionary

When you create an instance with the createClassObject() method, you have to position it on
Stage with the move() and setSize() methods. See UIObject.move() and
UIObject.setSize().

See also

Loader.bytesTotal, UIObject.createClassObject()

Loader.bytesTotal

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.bytesTotal

Description

Property (read-only); the size of the content in bytes. The default value is 0 until content
begins loading.

Example

The following code creates a ProgressBar and a Loader component. It then creates a load listener
object with a progress event handler that shows the progress of the load. The listener is registered
with the loader instance, as follows:
createClassObject(mx.controls.ProgressBar, "pBar", 0);
createClassObject(mx.controls.Loader, "loader", 1);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component which generated the change event,
// i.e., the Loader.
pBar.setProgress(loader.bytesLoaded, loader.bytesTotal); // show progress

}
loader.addEventListener("progress", loadListener);
loader.content = "logo.swf";

See also

Loader.bytesLoaded
Loader component 319

Loader.complete

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
loaderInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when the content has finished loading.

The first usage example uses an on() handler and must be attached directly to a Loader
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Loader
component instance myLoaderComponent, sends “_level0.myLoaderComponent” to the
Output panel:
on(complete){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, complete) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
320 Chapter 4: Components Dictionary

Example

The following example creates a Loader component and then defines a listener object with a
complete event handler that sets the loader’s visible property to true:
createClassObject(mx.controls.Loader, "loader", 0);
loadListener = new Object();
loadListener.complete = function(eventObj){

loader.visible = true;
}
loader.addEventListener("complete", loadListener);S
loader.contentPath = "logo.swf";

Loader.content

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.content

Description

Property (read-only); a reference to the content of the loader. The value is undefined until the
load begins.

See also

Loader.contentPath

Loader.contentPath

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the file to load into the loader. A
relative path must be relative to the SWF that loads the content. The URL must be in the same
subdomain as the URL as the loading SWF.

If you are using Flash Player or test-movie mode in Flash, all SWF files must be stored in the same
folder, and the filenames cannot include folder or disk drive information.
Loader component 321

Example

The following example tells the loader instance to display the contents of the “logo.swf” file:
loader.contentPath = "logo.swf";

Loader.load()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.load(path)

Parameters

path An optional parameter that specifies the value for the contentPath property before the
load begins. If a value is not specified, the current value of contentPath is used as is.

Returns

Nothing.

Description

Method; tells the loader to begin loading its content.

Example

The following code creates a Loader instance and sets the autoload property to false so that the
loader must wait for a call for the load() method to begin loading content. It then calls load()
and indicates the content to load:
createClassObject(mx.controls.Loader, "loader", 0);
loader.autoload = false;
loader.load("logo.swf");

Loader.percentLoaded

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.percentLoaded
322 Chapter 4: Components Dictionary

Description

Property (read-only); a number indicating what percent of the content has loaded. Typically, this
property is used to present the progress to the user in a easily readable form. Use the following
code to round the figure to the nearest integer:
Math.round(bytesLoaded/bytesTotal*100))

Example

The following example creates a Loader instance and then creates a listener object with a progress
handler that traces the percent loaded and sends it to the Output panel:
createClassObject(Loader, "loader", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Loader.
 trace("logo.swf is " + loader.percentLoaded + "% loaded."); // track loading

progress
}
loader.addEventListener("complete", loadListener);
loader.content = "logo.swf";

Loader.progress

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
loaderInstance.addEventListener("progress", listenerObject)

Description

Event; broadcast to all registered listeners while content is loading. This event is triggered when
the load is triggered by the autoload parameter or by a call to Loader.load(). The progress event
is not always broadcast. The complete event may be broadcast without any progress events
being dispatched. This can happen especially if the loaded content is a local file.
Loader component 323

The first usage example uses an on() handler and must be attached directly to a Loader
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Loader
component instance myLoaderComponent, sends “_level0.myLoaderComponent” to the
Output panel:
on(progress){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(loaderInstance) dispatches an event (in this case, progress) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following code creates a Loader instance and then creates a listener object with an event
handler for the progress event that sends a message to the Output panel about what percent of the
content has loaded:
createClassObject(mx.controls.Loader, "loader", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Loader.
 trace("logo.swf is " + loader.percentLoaded + "% loaded."); // track loading

progress
}
loader.addEventListener("progress", loadListener);
loader.contentPath = "logo.swf";

Loader.scaleContent

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

loaderInstance.scaleContent

Description

Property; indicates whether the content scales to fit the Loader (true), or the Loader scales to fit
the content (false). The default value is true.
324 Chapter 4: Components Dictionary

Example

The following code tells the Loader to resize itself to match the size of its content:
loader.strechContent = false;

Media components (Flash Professional only)

The streaming media components make it easy to incorporate streaming media into Flash
presentations. These components allow you to present your media in a variety of ways.

The following are the three media components available to you:

• The MediaDisplay component allows media to be streamed into your Flash content without a
supporting user interface. This component can be used with video and audio data. The user of
your application will have no control over the media when the MediaDisplay component is
used by itself.

• The MediaController component compliments the MediaDisplay component by providing a
user interface that controls media playback using standard controls (play, pause, and so on).
Media is never loaded into or played by the MediaController; it is used only for controlling
playback in a MediaPlayback or MediaDisplay instance. The MediaController component
features a “drawer,” which exposes the contents of the playback controls when the mouse is
positioned over the component.

• The MediaPlayback component is a combination of the MediaDisplay and MediaController
components; it provides methods to stream your media content.

Bear in mind these points about media components:

• The media components require Flash Player 7 or later.
• Scan forward and scan backward functionality is not supported by the media components.

However, you can achieve this functionality by moving the playback slider.
• Only component size and controller policy are reflected in Live Preview.
• The media components do not support accessibility.
Media components (Flash Professional only) 325

Interacting with media components (Flash Professional only)

The streaming MediaPlayback and MediaController components respond to both mouse and
keyboard activity. The MediaDisplay component does not respond to keyboard or mouse events.
The following table summarizes the actions for the MediaPlayback and MediaController
components upon receiving focus:.

Target Navigation Description

Playback controls of
a given controller

Mouse over Button is highlighted.

Playback controls of
a given controller

Single click of left
mouse button

Users can manipulate the playback of audio and video
media through the playback controls for a given
controller by clicking the playback controls to trigger
their corresponding effects.
The Pause/Play and Go to Beginning/Go to End buttons
follow the standard button behaviors. When the mouse
button is pressed, the onscreen button highlights in its
pressed state, and when the mouse button is released,
the onscreen button reverts to its unselected
appearance.
The Go to End button is disabled when FLV media files
are playing.

Slider controls of a
given controller

Move slider back
and forth

The playback slider indicates the user’s position within
the media content; the display handle moves horizontally
(by default) to indicate the playback from beginning (left)
to end (right). The playback slider moves from bottom to
top when the controls are oriented vertically. As the
indicator handle moves from left to right, it highlights the
previous display space to indicate that this content has
been played back or selected. Display space ahead of
the indicator handle remains unhighlighted until the
indicator passes. Users can drag the indicator handle to
affect the media content’s playback position. Media
begins automatic playback from the point at which the
mouse is released if media is playing. If the media is
paused, the slider can be moved and released and the
media will remain paused.
There is also a volume slider, which can be moved from
left (muted) to right (maximum volume) in both the
horizontal and vertical layouts.
326 Chapter 4: Components Dictionary

Understanding media components (Flash Professional only)

Before you start using media components, it is a good idea to understand how they work. This
section provides an overview of how the media components work. Most of the properties listed in
this section can be directly set with the Component Inspector panel. See “Using the Component
Inspector panel with media components” on page 332.

Apart from the layout properties discussed later in this section, the following properties can be set
for the MediaDisplay and MediaPlayback components:

• The media type, which can be set to MP3 or FLV (see Media.mediaType and
Media.setMedia()).

• The relative or absolute content path, which holds the media file to be streamed (see
Media.contentPath).

• Cue point objects, along with their name, time, and player properties (see
Media.addCuePoint() and Media.cuePoints). The name of the cue point is arbitrary and
should be set such that its name has meaning when using listener and trace events. A cue point
broadcasts a cuePoint event when the value of its time property is equal to that of the
playhead location of the MediaPlayback or MediaDisplay component with which it is
associated. The player property is a reference to the MediaPlayback instance with which it is
associated. Cue points can be subsequently removed by means of Media.removeCuePoint()
and Media.removeAllCuePoints().

The streaming media components broadcast a number of related events. The following broadcast
events can be used to set other items in motion:

• A change event is broadcast continuously by the MediaDisplay and MediaPlayback
components while media is playing. (See Media.change.)

• A progress event is continuously broadcast by the MediaDisplay and MediaPlayback
components while media is loading. (See Media.progress.)

• A click event is broadcast by the MediaController and MediaPlayback components whenever
the Pause/Play button is clicked. In this case, the detail property of the event object provides
information on which button was clicked. (See Media.click.)

Playback controller
navigation

Tab, Shift+Tab Moves the focus from button to button within the
controller component, where the focused element will
become highlighted. This navigation works with the
Pause/Play, Go to Beginning, Go to End, Volume Mute,
and Volume Max controls. The focus moves from left to
right and top to bottom as users tab through the
elements. Shift+Tab moves focus from right to left and
bottom to top. Upon receiving focus via the Tab key, the
control immediately passes focus to the Play/Pause
button. When focus is on the Volume Max button, and
then Tab is pressed, the control provides focus to the
next control in the tab index on the Stage.

A given control
button

Space or Enter/
Return

Selects the element in focus. On press, the button
appears in its pressed state. On release, the button
reverts back to its focused, mouse-over state.

Target Navigation Description
Media components (Flash Professional only) 327

• A volume event is broadcast by the MediaController and MediaPlayback components when
the volume controls are adjusted by the user. (See Media.volume.)

• A playheadChange event is broadcast by the MediaController and MediaPlayback
components when the playback slider is moved by the user. (See Media.playheadChange.)

The MediaDisplay component works in conjunction with the MediaController component.
Combined, the components behave in a manner similar to the MediaPlayback component, yet
allow more flexibility with respect to layout. Therefore, if you require a flexible look and feel
when presenting your media, use the MediaDisplay and MediaController components.
Otherwise, the MediaPlayback component is the best choice.

Understanding the MediaDisplay component

When you place a MediaDisplay component on the Stage, it is drawn with no visible user
interface. It is simply a container to hold and play media. The appearance of any video media
playing in a MediaDisplay component is affected by the following properties:

• Media.aspectRatio

• Media.autoSize

• Height
• Width
Note: The user will not be able to see anything unless some media is playing.

The Media.aspectRatio property takes precedence over the other properties. When
Media.aspectRatio is set to true (the default), the component will always readjust the size of
the playing media after the component size has been set to ensure that the aspect ratio of the
media is maintained.

For FLV files, when Media.autoSize is set to true, the media to be played will be displayed at its
preferred size, regardless of the size of the component. This implies that, unless the MediaDisplay
instance size is the same as the size of the media, the media will either spill out of the instance
boundaries or not fill the instance size. When Media.autoSize is set to false, the instance size
will be used as much as possible, while honoring the aspect ratio. If both Media.autoSize and
Media.aspectRatio are set to false, the exact size of the component will be used.
Note: Since there is no image to show with MP3 files, setting Media.autoSize would have no effect.
For MP3 files, the minimum usable size is 60 pixels high by 256 pixels wide in the default orientation.

The MediaDisplay component also supports the Media.volume property. This property takes on
integer values from 0 to 100, with 0 being mute and 100 being the maximum volume. The
default setting is 75.
328 Chapter 4: Components Dictionary

Understanding the MediaController component

The interface for the MediaController component depends on its Media.controllerPolicy and
Media.backgroundStyle properties. The Media.controllerPolicy property determines if the
media control set is always visible, collapsed, or only visible when the mouse is hovering over the
control portion of the component. When collapsed, the controller draws a modified progress bar,
which is a combination of the loadbar and the playbar. It shows the progress of the bytes being
loaded at the bottom of the bar, and the progress of the playhead just above it. The expanded state
draws an enhanced version of the playbar/loadbar, which contains the following items:

• Text labels on the left that indicate the playback state (streaming or paused), and on the right
that indicate playhead location in seconds

• Playhead location indicator
• A slider, which users can drag to navigate around the media

The following items are also provided with the MediaController component:

• A Play/Pause state button
• A group of two buttons: Go to Beginning and Go to End, which navigate to the beginning and

end of the media, respectively
• A volume control that consists of a slider, a mute, and a maximum volume button

Both the collapsed and expanded states of the MediaController component use the
Media.backgroundStyle property. This property determines whether the controller draws a
chrome background (the default) or allows the movie background to display from behind
the controls.

The MediaController component has an orientation setting, Media.horizontal, which can be
used to draw the component with a horizontal orientation (the default) or a vertical one. With a
horizontal orientation, the playbar tracks playing media from left to right. With a vertical
orientation, the playbar tracks the media from bottom to top.

The MediaDisplay and MediaController components can be associated with each other through
the Media.associateDisplay() and Media.associateController() methods. When called,
these methods allow the MediaController instance to update its controls based on events
broadcast from the MediaDisplay instance, and allow the MediaDisplay component to react to
the setting made by the user from the MediaController.

Understanding the MediaPlayback component

The MediaPlayback component is a combination of the MediaController and MediaDisplay
controls. Both subcomponents are contained within MediaPlayback. The MediaController
and MediaDisplay portions always scale to fit the size of the overall MediaPlayback
component instance.

The MediaPlayback component uses Media.controlPlacement to determine the layout of the
controls. Possible control placement include top, bottom, left, and right, indicating where the
controls will be drawn in relation to the display. For example, a value of right would give a
control a vertical orientation and position it on the right of the display.
Media components (Flash Professional only) 329

Using media components (Flash Professional only)

With the sharp increase in the use of media to provide information to web users, there is generally
a desire to provide users a method to stream the media and then control it. The following are
example usage scenarios for media components:

• Showing media that introduces a company
• Streaming movies or movie previews
• Streaming songs or song snippets
• Providing learning material in the form of media

Using the MediaPlayback component

Suppose you must develop a website for your clients that allows website users to preview DVDs
and CDs that you sell in a rich media environment. The example below shows the steps to
accomplish this and assumes your website is ready for inserting streaming components.

To create a Flash document that displays a CD or DVD preview:

1 In Flash, select File > New; then select Flash Document.
2 Open the Components panel (Window > Development Panels > Components) and

double-click the MediaPlayback component, which places an instance of the component on
the Stage.

3 Select the MediaPlayback component instance and enter the instance name myMedia in the
Property inspector.

4 In the Component Inspector panel (Window > Development Panels > Component Inspector),
set your media type according to the type of media that will be streaming (MP3 or FLV).

5 If you selected FLV, enter the duration of the video in the Video Length text boxes; use the
format HH:MM:SS.

6 Enter the location of your preview video in the URL text box. For example, you might enter
http://my.web.com/videopreviews/AMovieName.flv.

7 Set the desired options for the Automatically Play, Use Preferred Media Size, and Respect
Aspect Ratio check boxes.

8 Set the control placement to the desired side of the MediaPlayback component.
9 Add a cue point toward the end of the media that will be used in conjunction with a listener to

open a pop-up window that informs the user that the movie is on sale. Give the cue point the
name cuePointName and set the cue point time such that it is toward the end of the clip (within
a few seconds). To accomplish this, take the following steps:
a Double-click a Window component to make it appear on the Stage.
b Delete the Window component. This places an item called Window in your library.
c Create a text box and write some text informing the user that the movie is on sale.
d Convert this text box to a movie clip by selecting Modify > Convert to Symbol, and give it

the name mySale_mc.
e Right-click the mySale_mc movie clip in the library, select Linkage, and select the Export for

ActionScript option. This places the movie clip in your runtime library.
330 Chapter 4: Components Dictionary

10 Add the following ActionScript to Frame 1. This code creates a listener to open a pop-up
window informing the user that the movie is on sale.
// Import the classes necessary to create the pop-up window dynamically

import mx.containers.Window;
import mx.managers.PopUpManager;

// Create a listener object to fire off sale pop-up
var saleListener = new Object();

saleListener.cuePoint = function(evt){

var saleWin = PopUpManager.createPopUp(_root, Window, false, {closeButton:
true, title: "Movie Sale ", contentPath: "mySale_mc"});

// Enlarge the window so that the content fits

saleWin.setSize(80, 80);
var delSaleWin = new Object();
delSaleWin.click = function(evt){
saleWin.deletePopUp();
}
saleWin.addEventListener("click", delSaleWin);

}

myMedia.addEventListener("cuePoint", saleListener);

Using the MediaDisplay and MediaController components

Suppose you decide that you want more control over the look and feel of your media display. For
this reason, you need to use the MediaDisplay and MediaController together to provide the
desired experience. The following example shows the equivalent steps from the previous example
that will create a Flash application that displays your CD and DVD preview media.

To create a Flash document that displays a CD or DVD preview:

1 In Flash, select File > New; then select Flash Document.
2 In the Components panel (Window > Development Panels > Components), double-click the

MediaController and MediaDisplay components, which places an instance of each component
on the Stage.

3 Select the MediaDisplay instance and enter the instance name myDisplay in the
Property inspector.

4 Select the MediaController instance and enter the instance name myController in the
Property inspector.

5 Launch the Component Inspector panel from the Property inspector and set your media type
according to the type of media that will be streaming (MP3 or FLV).

6 If you selected FLV, enter the duration of the video in the Video Length text boxes in using the
format HH:MM:SS.

7 Enter the location of your preview video in the URL text box. For example, you might enter
http://my.web.com/videopreviews/AMovieName.flv.

8 Set the desired options for the Automatically Play, Use Preferred Media Size, and Respect
Aspect Ratio check boxes.
Media components (Flash Professional only) 331

9 Select the MediaController instance and, in the Component Inspector panel, set your
orientation to vertical by setting the horizontal property to false.

10 In the Component Inspector panel, set backgroundStyle to None.
This specifies that the MediaController instance should not draw a background but should
instead fill the media between the controls.

11 Use a behavior to associate the MediaController and MediaDisplay instances so that the
MediaController instance accurately reflects the playhead movement and other settings in the
MediaDisplay instance, and so that the MediaDisplay instance responds to user clicks:
a Select the MediaDisplay instance and, in the Property inspector, enter the instance name

myMediaDisplay.
b Select the MediaController instance that will trigger the behavior.
c In the Behaviors panel (Window > Development Panels > Behaviors), click the Add (+)

button and select Media > Associate Display.
d In the Associate Display window, select myMediaDisplay under _root and click OK.

For more information on using behaviors with media components, see “Controlling media
components by using behaviors” on page 333.

Using the Component Inspector panel with media components

The Component Inspector panel makes it easy to set media component parameters, properties,
and so on. To use this panel, click the desired component on the Stage and, with the Property
inspector open, click Launch Component Inspector. The Component Inspector panel can be
used for the following purposes:

• To automatically play the media (see Media.activePlayControl and Media.autoPlay)
• To keep or ignore the media’s aspect ratio (see Media.aspectRatio)
• To determine if the media will be automatically sized to fit the component instance (see

Media.autoSize)
• To enable or disable the chrome background (see Media.backgroundStyle)
• To specify the path to your media in the form of a URL (see Media.contentPath)
• To specify the visibility of the playback controls (see Media.controllerPolicy)
• To add cue point objects (see Media.addCuePoint())
• To delete cue point objects (see Media.removeCuePoint())
• To set the orientation of MediaController instances (see Media.horizontal)
• To set the type of media being played (see Media.setMedia())
• To set the play time of the FLV media (see Media.totalTime)
• To set the last few digits of the time display to indicate milliseconds or frames per second (fps)

It is important to understand a few concepts when working with the Component Inspector panel:

• The video time control is removed when an MP3 video type is selected, because this
information is automatically read in when MP3 files are used. For FLV files, you must input
the total time of the media (Media.totalTime) in order for the playbar of the MediaPlayback
component (or any listening MediaController component) to accurately reflect play progress.
332 Chapter 4: Components Dictionary

• With the file type set to FLV, you’ll notice a Milliseconds option and (if Milliseconds is
unselected) a Frames Per Second (FPS) pop-up menu. When the Milliseconds option is
selected, the FPS control is not visible. In this mode, the time displayed in the playbar at
runtime is formatted as HH:MM:SS.mmm (H = hours, M = minutes, S = seconds, m =
milliseconds), and cue points are set in seconds. When Milliseconds is unselected, the FPS
control is enabled and the playbar time is formatted as HH:MM:SS.FF (F = frames per
second), while cue points are set in frames.
Note: You can only set the FPS property by using the Component Inspector panel. Setting an fps
value by using ActionScript has no effect and will be ignored.

Controlling media components by using behaviors

Behaviors are prewritten ActionScript scripts that you add to an object instance, such as a
MediaDisplay component, to control that object. Behaviors allow you to add the power, control,
and flexibility of ActionScript coding to your document without having to create the
ActionScript code yourself.

To control a media component with a behavior, you use the Behaviors panel to apply the behavior
to a given media component instance. You specify the event that will trigger the behavior (such as
reaching a specified cue point), select a target object (the media components that will be affected
by the behavior), and, if necessary, select settings for the behavior (such as the movie clip within
the media to navigate to).

The following behaviors are packaged with Flash MX Professional 2004 and are used to control
embedded media components.

To associate a MediaDisplay component with a MediaController component:

1 Place a MediaDisplay instance and a MediaController instance on the Stage.
2 Select the MediaDisplay instance and, using the Property inspector, enter the instance name

myMediaDisplay.
3 Select the MediaController instance that will trigger the behavior.
4 In the Behaviors panel (Window > Development Panels > Behaviors), click the Add (+) button

and select Media > Associate Display.
5 In the Associate Display window, select myMediaDisplay under _root and click OK.
Note: If you have associated the MediaDisplay component to the MediaController component, you
do not need to associate the MediaController component to the MediaDisplay component.

Behavior Purpose Parameters

Associate Controller Associates a MediaController component
with a MediaDisplay component

Instance name of target
MediaController components

Associate Display Associates a MediaDisplay component
with a MediaController component

Instance name of target
MediaController components

Labeled Frame
CuePoint Navigation

Places an action on a MediaDisplay or
MediaPlayback instance that tells an
indicated movie clip to navigate to a frame
with the same name as a given cue point

Name of frame and name of cue
point (the names should be equal)

Slide CuePoint
Navigation

Makes a slide-based Flash document
navigate to a slide with the same name as
a given cue point

Name of slide and name of cue
point (the names should be equal)
Media components (Flash Professional only) 333

To associate a MediaController component with a MediaDisplay component:

1 Place a MediaDisplay instance and a MediaController instance on the Stage.
2 Select the MediaController instance and, using the Property inspector, enter the instance name

myMediaController.
3 Select the MediaDisplay instance that will trigger the behavior.
4 In the Behaviors panel (Window > Development Panels > Behaviors), click the Add (+) button

and select Media > Associate Controller.
5 In the Associate Controller window, select myMediaController under _root and click OK.

To use a Labeled Frame CuePoint Navigation behavior:

1 Place a MediaDisplay or MediaPlayback component instance on the Stage.
2 Select the desired frame that you want the media to navigate to and, using the Property

inspector, enter the frame name myLabeledFrame.
3 Select your MediaDisplay or MediaPlayback instance.
4 In the Component Inspector panel, click the Add (+) button and enter the cue point time in

the format HH:MM:SS:mmm or HH:MM:SS:FF, and give the cue point the name
myLabeledFrame.
The cue point indicates the amount of time that should elapse before you navigate to the
selected frame. For example, if you want to jump to myLabeledFrame 5 seconds into the
movie, enter 5 in the SS text box and enter myLabeledFrame in the Name text box.

5 In the Behaviors panel (Window > Development Panels > Behaviors), click the Add (+) button
and select Media > Labeled Frame CuePoint Navigation.

6 In the Labeled Frame CuePoint Navigation window, select the _root clip and click OK.

To use a Slide CuePoint Navigation behavior:

1 Open your new document as a Flash slide presentation.
2 Place a MediaDisplay or MediaPlayback component instance on the Stage.
3 In the Screen Outline pane to the left of the Stage, click the Insert Screen (+) button to add a

second slide; then select the second slide and rename it mySlide.
4 Select your MediaDisplay or MediaController instance.
5 In the Component Inspector panel, click the Add (+) button and enter the cue point time in

the format HH:MM:SS:mmm or HH:MM:SS:FF, and give the cue point the name MySlide.
The cue point indicates the amount of time that should elapse before you navigate to the
selected slide. For example, if you want to jump to mySlide 5 seconds into the movie, enter 5
in the SS text box and enter mySlide in the Name text box.

6 In the Behaviors panel (Window > Development Panels > Behaviors), click the Add (+) button
and select Media > Slide CuePoint Navigation.

7 In the Slide CuePoint Navigation window, select Presentation under the _root clip and
click OK.
334 Chapter 4: Components Dictionary

Media component parameters (Flash Professional only)

The following tables list authoring parameters that you can set for a given media component
instance in the Property inspector:

MediaDisplay component parameters

MediaController component parameters

Name Type Default value Description

Automatically Play
(Media.autoPlay)

Boolean Selected Determines if the media plays as soon as it
has loaded.

Use Preferred Media Size
(Media.autoSize)

Boolean Selected Determines whether the media associated
with the MediaDisplay instance conforms to
the component size or simply uses its
default size.

FPS Integer 30 Indicates the number of frames per second.
When the Milliseconds option is selected,
this control is disabled.

Cue Points
(Media.cuePoints)

Array Undefined An array of cue point objects, each with a
name and position in time in a valid
HH:MM:SS:FF (Milliseconds option
selected) or HH:MM:SS:mmm format.

FLV or MP3
(Media.mediaType)

“FLV” or
“MP3”

“FLV” Designates the type of media to be played.

Milliseconds Boolean Unselected Determines whether the playbar uses frames
or milliseconds, and whether the cue points
use seconds or frames. When this option is
selected, the FPS control is not visible.

URL (Media.contentPath) String Undefined A string that holds the path and filename of
the media to be played.

Video Length
(Media.totalTime)

Integer Undefined The total time needed to play the FLV media.
This setting is required in order for the
playbar to work correctly. This control is only
visible when the media type is set to FLV.

Name Type Default value Description

activePlayControl
(Media.activePlayControl)

String:
“pause”
or “play”

“pause” Determines whether the playbar is in play or
pause mode upon instantiation.

backgroundStyle
(Media.backgroundStyle)

string:
“default”
or
“none”

“default” Determines whether the chrome
background will be drawn for the
MediaController instance.

controllerPolicy
(Media.controllerPolicy)

“auto”,
“on”, or
“off”

“auto” Determines whether the controller opens or
closes based on mouse position, or is locked
in the open or closed state.
Media components (Flash Professional only) 335

MediaPlayback component parameters

horizontal
(Media.horizontal)

Boolean true Determines whether the controller portion of
the instance is vertically or horizontally
oriented. A true value indicates that the
component will have a horizontal orientation.

enabled Boolean true Determines whether this control can be
modified by the user. A true value indicates
that the control can be modified.

visible Boolean true Determines whether this control is viewable
by the user. A true value indicates that the
control is viewable.

minHeight Integer 0 Minimum height allowable for this instance,
in pixels.

minWidth Integer 0 Minimum width allowable for this instance,
in pixels.

Name Type Default value Description

Control Placement
(Media.controlPlacement)

“top”,
“bottom
”, “left”,
“right”

“bottom” Position of the controller. The value is related
to orientation.

Media.controllerPolicy Boolean true Determines whether the controller opens or
closes based on mouse position.

Automatically Play
(Media.autoPlay)

Boolean Selected Determines if the media plays as soon as it
has loaded.

Use Preferred Media Size
(Media.autoSize)

Boolean Selected Determines whether the MediaController
instance sizes to fits the media or uses
other settings.

FPS Integer 30 Number of frames per second. When the
Milliseconds option is selected, this control
is disabled.

Cue Points
(Media.cuePoints)

Array Undefined An array of cue point objects, each with a
name and position in time in a valid
HH:MM:SS:mmm (Milliseconds option
selected) or HH:MM:SS:FF format.

FLV or MP3
(Media.mediaType)

“FLV” or
“MP3”

“FLV” Designates the type of media to be played.

Milliseconds Boolean Unselected Determines whether the playbar uses frames
or milliseconds, and whether the cue points
use seconds or frames. When this option is
selected, the FPS control is disabled.

Name Type Default value Description
336 Chapter 4: Components Dictionary

Creating applications with media components (Flash Professional only)

Creating Flash content by using media components is quite simple and often requires only a
few steps.

This example shows how to create an application to play a small, publicly available media file.

To add a media component to an application:

1 In Flash, select File > New; then select Flash Document.
2 In the Components panel (Window > Development Panels > Components), double-click the

MediaPlayback component to add it to the Stage.
3 In the Property inspector, enter the instance name myMedia.
4 In the Property inspector, click Launch Component Inspector.
5 In the Component Inspector panel, enter http://www.cathphoto.com/c.flv in the URL

text box.
6 Select Control > Test Movie to see the media play.

Customizing media components (Flash Professional only)

If you want to change the appearance of your media components, you can use skinning. For a
complete guide to component customization, see Chapter 3, “Customizing Components,”
on page 27.

Using styles with media components

Styles are not supported with media components.

Using skins with media components

The media components do not support dynamic skinning, although you can open the media
components source document and change their assets to achieve the desired look. It is best to
make a copy of this file and work from the copy, so that you will always have the installed source
to go back to. You can find the media component source document at the following locations:

• Windows: C:\Documents and Settings\user\Local Settings\Application Data\Macromedia\
Flash MX 2004\language\Configuration\ComponentFLA.fla

• Macintosh: HD Drive:Users:Username:Library:Application Support:Macromedia:Flash MX
2004:language:Configuration:ComponentFLA.fla

For more information on component skins, see “About skinning components” on page 36.

URL (Media.contentPath) String Undefined A string that holds the path and filename of
the media to be played.

Video Length
(Media.totalTime)

Integer Undefined The total time needed to play the FLV media.
This setting is required in order for the
playbar to work correctly.

Name Type Default value Description
Media components (Flash Professional only) 337

Media class (Flash Professional only)

Inheritance mx.core.UIComponent

ActionScript Class Names mx.controls.MediaController, mx.controls.MediaDisplay,
mx.controls.MediaPlayback

Each component class has a version property, which is a class property. Class properties are
available only for the class itself. The version property returns a string that indicates the version
of the component. To access the version property, use the following code:
trace(mx.controls.MediaPlayback.version);

Note: The code trace(myMediaInstance.version); returns undefined.

Method summary for the Media class

Method Components Description

Media.addCuePoint() MediaDisplay,
MediaPlayback

Adds a cue point object to the
component instance.

Media.associateController() MediaDisplay Associates a MediaDisplay instance with a
MediaController instance.

Media.associateDisplay() MediaController Associates a MediaController instance with a
MediaDisplay instance.

Media.displayFull() MediaPlayback Converts the component instance to full-screen
playback mode.

Media.displayNormal() MediaPlayback Converts the component instance back to its
original screen size.

Media.getCuePoint() MediaDisplay,
MediaPlayback

Returns a cue point object.

Media.play() MediaDisplay,
MediaPlayback

Plays the media associated with the component
instance at a given starting point.

Media.pause() MediaDisplay,
MediaPlayback

Pauses the playhead at its current location in the
media Timeline.

Media.removeAllCuePoints() MediaDisplay,
MediaPlayback

Deletes all cue point objects associated with a
given component instance.

Media.removeCuePoint() MediaDisplay,
MediaPlayback

Deletes a specified cue point associated with a
given component instance.

Media.setMedia() MediaDisplay,
MediaPlayback

Sets the media type and path to the specified
media type.

Media.stop() MediaDisplay,
MediaPlayback

Stops the playhead and moves it to position 0,
which is the beginning of the media.
338 Chapter 4: Components Dictionary

Property summary for the Media class

Property Components Description

Media.activePlayControl MediaController Determines the component state when loaded
at runtime.

Media.aspectRatio MediaDisplay,
MediaPlayback

Determines if the component instance maintains
its video aspect ratio.

Media.autoPlay MediaDisplay,
MediaPlayback

Determines if the component instance
immediately starts to buffer and play.

Media.autoSize MediaDisplay,
MediaPlayback

Determines how the media-viewing portion of the
MediaDisplay or MediaPlayback component
sizes itself.

Media.backgroundStyle MediaController Determines if the component instance draws its
chrome background.

Media.bytesLoaded MediaDisplay,
MediaPlayback

The number of bytes loaded that are available
for playing.

Media.bytesTotal MediaDisplay,
MediaPlayback

The number of bytes to be loaded into the
component instance.

Media.contentPath MediaDisplay,
MediaPlayback

A string that holds the relative path and filename
of the media to be streamed and played.

Media.controllerPolicy MediaController,
MediaPlayback

Determines whether the controls within the
component are hidden during playback and only
shown when a mouse-over event is triggered,
or whether the controls are visible or hidden at
all times.

Media.controlPlacement MediaPlayback Determines where the controls for the component
are positioned in relation to the component.

Media.cuePoints MediaDisplay,
MediaPlayback

An array of cue point objects that have been
assigned to a given component instance.

Media.horizontal MediaController Determines the orientation of the
component instance.

Media.mediaType MediaDisplay,
MediaPlayback

Determines the type of media to be played.

Media.playheadTime MediaDisplay,
MediaPlayback

Holds the current position of the playhead (in
seconds) for the media Timeline that is playing.

Media.playing MediaDisplay,
MediaPlayback

Returns a Boolean value to indicate whether a
given component instance is playing media.

Media.preferredHeight MediaDisplay,
MediaPlayback

The default value of the height of a FLV media file.

Media.preferredWidth MediaDisplay,
MediaPlayback

The default value of the width of a FLV media file.
Media components (Flash Professional only) 339

Event summary for the Media class

Media.activePlayControl

Applies to

MediaController

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.activePlayControl

Description

Property; a Boolean value that determines what state the MediaController component is in when
it is loaded at runtime. A true value indicates that the MediaController component should be in
a play state at runtime, and a false value indicates that it is in a paused state at runtime. This
property should be set in conjunction with the autoPlay property, such that both are either
paused or playing at runtime. The default value is true.

Media.totalTime MediaDisplay,
MediaPlayback

An integer that indicates the total length of the
media, in seconds.

Media.volume MediaDisplay,
MediaPlayback

An integer from 0 (minimum) to 100 (maximum)
that represents the volume level.

Event Components Description

Media.change MediaDisplay,
MediaPlayback

Broadcast continuously while media is playing.

Media.click MediaController,
MediaPlayback

Broadcast when the user clicks the Play/Pause
button.

Media.complete MediaDisplay,
MediaPlayback

Notification that the playhead has reached the
end of the media.

Media.cuePoint MediaDisplay,
MediaPlayback

Notification that the playhead has reached a given
cue point.

Media.playheadChange MediaController,
MediaPlayback

Broadcast by the component instance when a
user moves the playback slider or clicks the Go to
Beginning or Go to End button.

Media.progress MediaDisplay,
MediaPlayback

Is generated continuously until the media has
downloaded completely.

Media.volume MediaController,
MediaPlayback

Broadcast when the user adjusts the volume.

Property Components Description
340 Chapter 4: Components Dictionary

Example

The following example indicates that the control will be paused when first loaded at runtime:
myMedia.activePlayControl = false;

See also

Media.autoPlay

Media.addCuePoint()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.addCuePoint(cuePointName, cuePointTime)

Parameters

cuePointName A string that can be used to name the cue point.

cuePointTime A number, expressed in seconds, which indicates when a cuePoint event
is broadcast.

Returns

Nothing.

Description

Method; adds a cue point object to a MediaPlayback or MediaDisplay component instance.
When the playhead time equals a cue point time, a cuePoint event is broadcast.

Example

The following code adds a cue point called Homerun to myMedia at time = 16 seconds.
myMedia.addCuePoint("Homerun", 16);

See also

Media.cuePoint, Media.cuePoints, Media.getCuePoint(), Media.removeAllCuePoints(),
Media.removeCuePoint()
Media components (Flash Professional only) 341

Media.aspectRatio

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.aspectRatio

Description

Property; a Boolean value that determines whether a MediaDisplay or MediaPlayback instance
maintains its video aspect ratio during playback. A true value indicates that the aspect ratio
should be maintained; a false value indicates that the aspect ratio can change during playback.
The default value is true.

Example

The following example indicates that the aspect ratio can change during playback:
myMedia.aspectRatio = false;

Media.associateController()

Applies to

MediaDisplay

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.associateController(instanceName)

Parameters

instanceName A string that indicates the instance name of the MediaController component
to associate.

Returns

Nothing.
342 Chapter 4: Components Dictionary

Description

Method; associates a MediaDisplay component instance with a given MediaController instance.

If you have associated a MediaController instance with a MediaDisplay instance by using
Media.associateDisplay(), you do not need to use Media.associateController().

Example

The following code associates myMedia with myController:
myMedia.associateController(myController);

See also

Media.associateDisplay()

Media.associateDisplay()

Applies to

MediaController

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.associateDisplay(instanceName)

Parameters

instanceName A string that indicates the instance name of the MediaDisplay component
to associate.

Returns

Nothing.

Description

Method; associates a MediaController component instance with a given MediaDisplay instance.

If you have associated a MediaDisplay instance with a MediaController instance by using
Media.associateController(), you do not need to use Media.associateDisplay().

Example

The following code associates myMedia with myDisplay:
myMedia.associateDisplay(myDisplay);

See also

Media.associateController()
Media components (Flash Professional only) 343

Media.autoPlay

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.autoPlay

Description

Property; a Boolean value that determines whether the MediaPlayback or MediaDisplay instance
will immediately start attempting to buffer and play. A true value indicates that the control will
buffer and play at runtime; a false value indicates the control will be stopped at runtime. This
property depends on the contentPath and mediaType properties. If contentPath and
mediaType are not set, no playback will occur at runtime. The default value is true.

Example

The following example indicates that the control will not be started when first loaded at runtime:
myMedia.autoPlay = false;

See also

Media.contentPath, Media.mediaType

Media.autoSize

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.autoSize
344 Chapter 4: Components Dictionary

Description

Property; a Boolean value that determines how the media-viewing portion of the MediaDisplay or
MediaPlayback component sizes itself.

For the MediaDisplay component, the property behaves as follows:

• If you set this property to true, Flash will display the media at its preferred size, regardless of
the size of the component. This implies that, unless the MediaDisplay instance size is the same
as the size of the media, the media will either spill out of the instance boundaries or not fill the
instance size.

• If you set this property to false, Flash will use the instance size as much as possible, while
honoring the aspect ratio. If both Media.autoSize and Media.aspectRatio are set to false,
the exact size of the component will be used.

For the MediaPlayback component, the property behaves as follows:

• If you set this property to true, Flash will display the media at its preferred size unless the
playback media area is smaller than the preferred size. If this is the case, Flash will shrink the
media to fit inside the instance and respect the aspect ratio. If the preferred size is smaller than
the media area of the instance, part of the media area will go unused.

• If you set this property to false, Flash will use the instance size as much as possible, while
honoring the aspect ratio. If both Media.autoSize and Media.aspectRatio are set to false,
the media area of the component will be filled. This area is defined as the area above the
controls (in the default layout), with an 8-pixel margin around it that makes up the edges of
the component.

The default value is true.

Example

The following example indicates that the control will not be played back according to its
media size:
myMedia.autoSize = false;

See also

Media.aspectRatio

Media.backgroundStyle

Applies to

MediaController

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.backgroundStyle
Media components (Flash Professional only) 345

Description

Property; a value of "default" indicates that the chrome background will be drawn for the
MediaController instance, while a value of "none" indicates that no chrome background will be
drawn. The default value is "default".

This is not a style property and therefore will not be affected by style settings.

Example

The following example indicates that the chrome background will not be drawn for the control:
myMedia.backgroundStyle = "none";

Media.bytesLoaded

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.bytesLoaded

Description

Read-only property; the number of bytes already loaded into the component that are available for
playing. The default value is undefined.

Example

The following code creates a variable called PlaybackLoad that will be set with the number of
bytes loaded in the for loop.
// create variable that holds how many bytes are loaded
var PlaybackLoad = myMedia.bytesLoaded;
// perform some function until playback ready
for (PlaybackLoad < 150) {

someFunction();
}

Media.bytesTotal

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.
346 Chapter 4: Components Dictionary

Usage

myMedia.bytesTotal

Description

Property; the number of bytes to be loaded into the MediaPlayback or MediaDisplay component.
The default value is undefined.

Example

The following example tells the user the size of the media to be streamed:
myTextField.text = myMedia.bytesTotal;

Media.change

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject){

// insert your code here
}
myMedia.addEventListener("change", listenerObject)

Description

Event; broadcast by the MediaDisplay and MediaPlayback components while the media is
playing. The percentage complete can be retrieved from the component instance. See the
example below.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Media.change event’s event
object has two additional properties:

target A reference to the broadcasting object.

type The string "change", which indicates the type of event.

For more information about event objects, see “Event Objects” on page 562.
Media components (Flash Professional only) 347

Example

The following example uses an object listener to determine the playhead position
(Media.playheadTime), from which the percentage complete can be calculated:
var myPlayerListener = new Object();
myPlayerListener.change = function(eventObject){

var myPosition = myPlayer.playheadTime;
var myPercentPosition = (myPosition/totalTime);

}
myPlayer.addEventListener("change", myPlayerListener);

See also

Media.playing, Media.pause()

Media.click

Applies to

MediaController, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

var myMediaListener = new Object()
myMediaListener.click = function(){

// insert your code here
}
myPlayer.addEventListener("click", myMediaListener);

Description

Event; broadcast when the user clicks the Play/Pause button. The detail field should be used to
determine which button was clicked. The Media.click event object has the following properties:

detail The string "pause" or "play".

target A reference to the MediaController or MediaPlayback component instance.

type The string "click".

Example

The following example opens a pop-up window when the user clicks Play:
var myMediaListener = new Object()
myMediaListener.click = function(){

PopUpManager.createPopup(_root, mx.containers.Window, false, {contentPath:
movieSale});

}
myMedia.addEventListener("click", myMediaListener);
348 Chapter 4: Components Dictionary

Media.complete

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.complete = function(eventObject){

// insert your code here
}
myMedia.addEventListener("complete", listenerObject)

Description

Event; notification that the playhead has reached the end of the media. The Media.complete
event object has the following properties:

target A reference to the MediaDisplay or MediaPlayback component instance.

type The string "complete".

Example

The following example uses an object listener to determine when the media has finished playing:
var myListener = new Object();
myListener.complete = function(eventObject) {
 trace("media is Finished");
};
myMedia.addEventListener("complete", myListener);

Media.contentPath

Applies to

MediaController

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.contentPath
Media components (Flash Professional only) 349

Description

Property; a string that holds the relative path and filename of the media to be streamed and/or
played. The Media.setMedia() method is the only supported way of setting this property
through ActionScript. The default value is undefined.

Example

The following example displays the name of the movie playing in a text box:
myTextField.text = myMedia.contentPath;

See also

Media.setMedia()

Media.controllerPolicy

Applies to

MediaController, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.controllerPolicy

Description

Property; determines whether the MediaController component (or the controller subcomponent
within the MediaPlayback component) is hidden when instantiated and only displays itself when
the user moves the mouse over the controller’s collapsed state.

The possible values for this property are as follows:

• "on" indicates that the controls are always expanded.
• "off" indicates that the controls are always collapsed.
• "auto" indicates that the control will remain in the collapsed state until the user mouses over

the hit area. The hit area matches the area in which the collapsed control is drawn. The control
remains expanded until the mouse leaves the hit area.

Note: The hit area expands and contracts with the controller.

Example

The following example will keep the controller open at all times:
myMedia.controllerPolicy = "on";
350 Chapter 4: Components Dictionary

Media.controlPlacement

Applies to

MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.controlPlacement

Description

Property; determines where the controller portion of the MediaPlayback component is positioned
in relation to its display. The possible values are "top", "bottom", "left", and "right". The
default value is "bottom".

Example

For the following example, the controller portion of the MediaPlayback component will be on the
right side:
myMedia.controlPlacement = "right";

Media.cuePoint

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.cuePoint = function(eventObject){

// insert your code here
}
myMedia.addEventListener("cuePoint", listenerObject)

Description

Event; notification that the playhead has reached the cue point. The Media.cuePoint event
object has the following properties:

name A string that indicates the name of the cue point.

time A number, expressed in frames or seconds, that indicates when the cue point was reached.
Media components (Flash Professional only) 351

target A reference to the cue point object.

type The string "cuePoint".

Example

The following example uses an object listener to determine when a cue point has been reached:
var myCuePointListener = new Object();
myCuePointListener.cuePoint = function(eventObject){

trace("heard " + eventObject.type + ", " + eventObject.target);
}
myPlayback.addEventListener("cuePoint", myCuePointListener);

See also

Media.addCuePoint(), Media.cuePoints, Media.getCuePoint()

Media.cuePoints

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.cuePoints[N]

Description

Property; an array of cue point objects that have been assigned to a MediaPlayback or
MediaDisplay component instance. Within the array, each cue point object can have a name, a
time in seconds or frames, and a player property (which is the instance name of the component it
is associated with). The default value is an empty array [].

Example

The following example deletes the third cue point if playing an action preview:
if(myVariable == actionPreview) {

myMedia.removeCuePoint(myMedia.cuePoints[2]);
}

See also

Media.addCuePoint(), Media.getCuePoint(), Media.removeCuePoint()
352 Chapter 4: Components Dictionary

Media.displayFull()

Applies to

MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.displayFull()

Parameters

None.

Returns

Nothing.

Description

Method; sets the MediaPlayback component instance to full-screen mode. In other words, the
component expands to fill the entire Stage. To return the component to its normal size, use
Media.displayNormal().

Example

The following code forces the component to expand to fit the Stage:
myMedia.displayFull();

See also

Media.displayNormal()

Media.displayNormal()

Applies to

MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.displayNormal()

Parameters

None.
Media components (Flash Professional only) 353

Returns

Nothing.

Description

Method; sets the MediaPlayback instance back to its normal size after a Media.displayFull()
method has been used.

Example

The following code returns a MediaPlayback component to its original size:
myMedia.displayNormal();

See also

Media.displayFull()

Media.getCuePoint()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.getCuePoint(cuePointName)

Parameters

None.

Returns

cuePointName The string that was provided when Media.addCuePoint() was used.

Description

Method; returns a cue point object based on its cue point name.

Example

The following code retrieves a cue point named myCuePointName.
myMedia.removeCuePoint(myMedia.getCuePoint("myCuePointName"));

See also

Media.addCuePoint(), Media.cuePoint, Media.cuePoints, Media.removeCuePoint()
354 Chapter 4: Components Dictionary

Media.horizontal

Applies to

MediaController

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.horizontal

Description

Property; determines whether the MediaController component will display itself in a vertical or
horizontal orientation. A true value indicates that the component will be displayed in a
horizontal orientation; a false value indicates a vertical orientation. When set to false, the
playhead and load progress indicator move from bottom to top. The default value is true.

Example

The following example will display the MediaController component in a vertical orientation:
myMedia.horizontal = false;

Media.mediaType

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.mediaType

Description

Property; holds the value of the type of media to be played. The two choices are the FLV and
MP3 formats. The default value is "FLV". See “Importing Macromedia Flash Video (FLV) files”
in Using Flash Help.

Example

The following example determines the current media type being played:
var currentMedia = myMedia.mediaType;

See also

Media.setMedia()
Media components (Flash Professional only) 355

Media.pause()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.pause()

Parameters

None.

Returns

Nothing,

Description

Method; pauses the playhead at the current location.

Example

The following code pauses the playback.
myMedia.pause();

Media.play()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.play(startingPoint)

Parameters

startingPoint A non-negative integer value that indicates the starting point (in seconds) at
which the media should begin playing.

Returns

Nothing.
356 Chapter 4: Components Dictionary

Description

Method; plays the media associated with the component instance at the given starting point. The
default value is the current value of playheadTime.

Example

The following code indicates that the media component should start playing at 120 seconds:
myMedia.play(120);

See also

Media.pause()

Media.playheadChange

Applies to

MediaController, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.playheadChange = function(eventObject){

// insert your code here
}
myMedia.addEventListener("playheadChange", listenerObject)

Description

Event; broadcast by the MediaController or MediaPlayback component when the user moves the
playback slider or clicks the Go to Beginning or Go to End button. The Media.playheadChange
event object has the following properties:

detail A number that indicates the percentage of the media that has played.

type The string "playheadChange".

Example

The following example sends the percentage played to the Output panel when the user stops
dragging the playhead:
var controlListen = new Object();
controlListen.playheadChange = function(eventObject){

trace(eventObject.detail);
}
myMedia.addEventListener("playheadChange", controlListen);
Media components (Flash Professional only) 357

Media.playheadTime

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.playheadTime

Description

Property; holds the current position of the playhead (in seconds) for the media Timeline that is
playing. The default value is set to the location of the playhead.

Example

The following example sets a variable to the location of the playhead, which is indicated in
seconds:
var myPlayhead = myMedia.playheadTime;

Media.playing

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.playing

Description

Read-only property; returns a Boolean value that indicates whether the media is playing. A value
of true indicates that the media is playing; false indicates that the media is paused by the user.

Example

The following code determines if the media is playing or paused:
if(myMedia.playing == true){
 some function;
}

See also

Media.change
358 Chapter 4: Components Dictionary

Media.preferredHeight

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.preferredHeight

Description

Property; set according to a FLV’s default height value. This property applies only to FLV media,
because the height is fixed for MP3 files. This property can be used to set the height and width
parameters (plus some margin for the component itself). The default value is undefined if no
FLV media is set.

Example

The following example sizes a MediaPlayback instance according to the instance it is playing and
accounts for the pixel margin needed for the component instance:
if(myPlayback.contentPath = !undefined){

var mediaHeight = myPlayback.preferredHeight;
var mediaWidth = myPlayback.preferredWidth;
myPlayback.setSize((mediaWidth + 20), (mediaHeight + 70));
}

Media.preferredWidth

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.preferredWidth

Description

Property; set according to a FLV’s default width value. The default value is undefined.

Example

The following example sets the desired width of the variable mediaWidth:
var mediaWidth = myMedia.preferredWidth;
Media components (Flash Professional only) 359

Media.progress

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.progress = function(eventObject){

// insert your code here
}
myMedia.addEventListener("progress", listenerObject)

Description

Event; is generated continuously until media has completely downloaded. The Media.progress
event object has the following properties:

target A reference to the MediaDisplay or MediaPlayback component instance.

type The string "progress".

Example

The following example listens for progress:
var myProgressListener = new Object();
myProgressListener.progress = function(){

// Make lightMovieClip blink while progress is occurring
var lightVisible = lightMovieClip.visible;
lightMovieClip.visible = !lightVisible;

}

Media.removeAllCuePoints()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.removeAllCuePoints()

Parameters

None.
360 Chapter 4: Components Dictionary

Returns

Nothing.

Description

Method; deletes all cue point objects associated with a component instance.

Example

The following code deletes all cue point objects:
myMedia.removeAllCuePoints();

See also

Media.addCuePoint(), Media.cuePoints, Media.removeCuePoint()

Media.removeCuePoint()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.removeCuePoint(cuePoint)

Parameters

cuePoint A reference to a cue point object that has been assigned previously by means of
Media.addCuePoint().

Returns

Nothing.

Description

Method; deletes a specific cue point associated with a component instance.

Example

The following code deletes a cue point named myCuePoint:
myMedia.removeCuePoint(getCuePoint("myCuePoint"));

See also

Media.addCuePoint(), Media.cuePoints, Media.removeAllCuePoints()
Media components (Flash Professional only) 361

Media.setMedia()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.setMedia(contentPath, mediaType)

Parameters

contentPath A string that indicates the path and filename of the media to be played.

mediaType A string used to set the media type to either FLV or MP3. This parameter
is optional.

Returns

Nothing.

Description

Method; sets the media type and path to the specified media type using a URL argument. The
default value for contentPath is undefined.

This method provides the only supported way of setting the content path and media type for the
MediaPlayback and MediaDisplay components.

Example

The following code provides new media for a component instance to play.
myMedia.setMedia("http://www.RogerMoore.com/moonraker.flv", "FLV");

Media.stop()

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.stop()

Parameters

None.
362 Chapter 4: Components Dictionary

Returns

Nothing.

Description

Method; stops the playhead and moves it to position 0, which is the beginning of the media.

Example

The following code stops the playhead and moves it to time = 0.
myMedia.stop()

Media.totalTime

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

myMedia.totalTime

Description

Property; the total length of the media, in seconds. Since the FLV file format does not provide its
play time to a media component until it is completely loaded, it is necessary to input
Media.totalTime manually so that the playback slider can accurately reflect the actual play time
of the media. The default value for MP3 files is the play time of the media. For FLV files, the
default value is undefined.

This property cannot be set for MP3 files, because the information is contained in the
Sound object.

Example

The following example sets the play time in seconds for the FLV media:

myMedia.totalTime = 151;

Media.volume

Applies to

MediaDisplay, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.
Media components (Flash Professional only) 363

Usage

myMedia.volume

Description

Property; stores the volume setting integer value, which can range from 0 to 100. The default
value for this property is 75.

Example

The following example sets the maximum volume for the media playback:

myMedia.volume = 100;

See also

Media.volume, Media.pause()

Media.volume

Applies to

MediaController, MediaPlayback

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.volume = function(eventObject){

// insert your code here
}
myMedia.addEventListener("volume", listenerObject)

Description

Event; broadcast when the volume value is adjusted by the user. The Media.volume event object
has the following properties:

detail An integer value between 0 and 100 that represents the volume level.

type The string "volume".

Example

The following example will inform the user that the volume is being adjusted:
var myVolListener = new Object();
myVolListener.volume = function(){
 mytextfield.text = "Volume adjusted!";
}
myMedia.addEventListener("volume", myVolListener);

See also

Media.volume
364 Chapter 4: Components Dictionary

Menu component (Flash Professional only)

The Menu component lets a user select an item from a pop-up menu, much like the File or Edit
menu of most software applications.

A Menu usually opens in an application when a user rolls over or clicks a button-like menu
activator. You can also script a menu component to open when a user presses a certain key.

Menu components are always created dynamically at runtime. You must add the component to
the document from the Components panel, and delete it to add it to the library. Then, use the
following code to create a menu with ActionScript:
var myMenu = mx.controls.Menu.createMenu(parent, menuDataProvider);

Use the following code to open a menu in an application:
myMenu.show(x, y);

A menuShow event is broadcast to all of the Menu instance’s listeners immediately before the menu
is rendered, so you can update the state of the menu items. Similarly, immediately after a Menu
instance is hidden, a menuHide event is broadcast.

The items in a menu are described by XML. For more information, see “Understanding the
Menu component: view and data” on page 366.

You cannot make the Menu component accessible to screen readers.

Interacting with the Menu component (Flash Professional only)

You can use the mouse and the keyboard to interact with a Menu component.

After a Menu is opened, it remains visible until it is closed by a script or until the user clicks the
mouse outside the menu or inside an enabled item.

Clicking selects a menu item, except with the following types of menu items:

• Disabled items or separators Rollovers and clicks have no effect (the menu remains visible).
• Anchors for a submenu Rollovers activate the submenu; clicks have no effect; rolling onto

any item other than those of the submenu closes the submenu.

When an item is selected, a Menu.change event is sent to all of the menu’s listeners, the menu is
hidden, and the following actions occur, depending on item type:

• check The item’s selected attribute is toggled.
• radio The item becomes the current selection of its radio group.

Moving the mouse triggers Menu.rollOut and Menu.rollOver events.

Pressing the mouse outside of the menu closes the menu and triggers a Menu.menuHide event.

Releasing the mouse in an enabled item affects item types in the following ways:

• check The item’s selected attribute is toggled.
• radio The item’s selected attribute is set to true, and the previously selected item’s

selected attribute in the radio group is set to false. The selection property of the
corresponding radio group object is set to refer to the selected menu item.

• undefined and the parent of a hierarchical menu The visibility of the hierarchical menu
is toggled.
Menu component (Flash Professional only) 365

When a Menu instance has focus either from clicking or tabbing, you can use the following keys
to control it:

Note: If a menu is opened, you can press the tab key to move out of the menu. You must either make
a selection or dismiss the menu by pressing Escape.

Using the Menu component (Flash Professional only)

You can use the Menu component to create menus of individually selectable choices like the File
or Edit menu of most software applications. You can also use the Menu component to create
context-sensitive menus that appear when a user presses a hotspot or a modifier key. Use the
Menu component with the MenuBar component to create a horizontal menu bar with menus
that extend under each menu bar item.

Like standard desktop menus, the Menu component supports menu items whose functions fall
into the following general categories:

Command activators These items trigger events; you write code to handle those events.

Submenu anchors These items are anchors that open submenus.

Radio buttons These items operate in groups; you can select only one item at a time.

Check box items These items represent a Boolean (true or false) value.

Separators These items provide a simple horizontal line that divides the items in a menu into
different visual groups.

Understanding the Menu component: view and data

Conceptually, the Menu component is composed of a data model and a view that displays the
data. The Menu class is the view and contains the visual configuration methods. The
MenuDataProvider class adds methods to the global XML prototype object (much like the
DataProvider class does to the Array object); these methods let you externally construct data
providers and add them to multiple menu instances. The data provider broadcasts any changes to
all of its client views. (See “MenuDataProvider class” on page 388.)

A Menu instance is a hierarchical collection of XML elements that correspond to individual menu
items. The attributes define the behavior and appearance of the corresponding menu item on the
screen. The collection is easily translated to and from XML, which is used to describe menus (the
menu tag) and items (the menuitem tag). The built-in ActionScript XML class is the basis for the
model underlying the Menu component.

Key Description

Down arrow
Up arrow

Moves the selection down and up the rows of the menu. The selection loops at
the top or bottom row.

Right arrow Opens a submenu, or moves selection to the next menu in a menu bar (if a menu
bar exists).

Left arrow Closes a submenu and returns focus to the parent menu (if a parent menu exists),
or moves selection to the previous menu in a menu bar (if the menu bar exists).

Enter Opens a submenu, or clicks and releases on a row if a submenu does not exist.
366 Chapter 4: Components Dictionary

A simple menu with two items can be described in XML with two menu item subelements:
<menu>

<menuitem label="Up" />
<menuitem label="Down" />

</menu>

Note: The tag names of the XML nodes (menu and menuitem) are not important; the attributes and
their nesting relationships are used in the menu.

About hierarchical menus

To create hierarchical menus, embed XML elements within a parent XML element, as follows:
<menu>
 <menuitem label="MenuItem A" >
 <menuitem label="SubMenuItem 1-A" />
 <menuitem label="SubMenuItem 2-A" />
 </menuitem>
 <menuitem label="MenuItem B" >
 <menuitem label="SubMenuItem 1-B" />
 <menuitem label="SubMenuItem 2-B" />
 </menuitem>
</menu>

Note: This converts the parent menu item into a pop-up menu anchor, so it does not generate events
when selected.

About menu item XML attributes

The attributes of a menu item XML element determine what is displayed, how the menu item
behaves, and how it is exposed to ActionScript. The following table describes the attributes of an
XML menu item:

Attribute
name

Type Default Description

label String undefined The text that is displayed to represent a menu item.
This attribute is required for all item types, except
separator.

type separator,
check, radio,
normal, or
undefined

undefined The type of menu item: separator, check box, radio
button, or normal (a command or submenu
activator). If this attribute does not exist, the default
value is normal.

icon String undefined The linkage identifier of an image asset. This
attribute is not required. This attribute is not
available for the check, radio, or separator types.

instanceName String undefined An identifier that you can use to reference the menu
item instance from the root menu instance. For
example, a menu item named yellow can be
referenced as myMenu.yellow. This attribute is
not required.
Menu component (Flash Professional only) 367

About menu item types

There are four kinds of menu items, specified by the type attribute:
<menu>
 <menuitem label="Normal Item" />
 <menuitem type="separator" />
 <menuitem label="Checkbox Item" type="check" instanceName="check_1"/>
 <menuitem label="RadioButton Item" type="radio" groupName="radioGroup_1" /

>
</menu>

Normal menu items

The Normal Item menu item doesn’t have a type attribute, which means that the type attribute
defaults to normal. Normal items can be command activators or submenu activators, depending
on whether they has nested subitems.

Separator menu items

Menu items whose type attribute is set to separator act as visual dividers in a menu.
The following XML creates three menu items, Top, Middle, and Bottom, with separators
between them:
<menu>
 <menuitem label="Top" />
 <menuitem type="separator" />
 <menuitem label="Middle" />
 <menuitem type="separator" />
 <menuitem label="Bottom" />
</menu>

All separator items are disabled. Clicking on or rolling over a separator has no effect.

groupName String undefined An identifier that you can use to associate several
radio button items in a radio group, and to expose
the state of a radio group from the root menu
instance. For example, a radio group named colors
can be referenced as myMenu.colors. This attribute
is only required for the type radio.

selected false, true, or
false or true
(a String or
Boolean
value)

false A Boolean value indicating whether a check or
radio item is on (true) or off (false). This attribute
is not required.

enabled false, true, or
false or true
(a String or
Boolean
value)

true A Boolean value indicating whether this menu item
can be selected (true) or not (false). This attribute
is not required.

Attribute
name

Type Default Description
368 Chapter 4: Components Dictionary

Check box menu items

Menu items whose type attribute is set to check act as check box items within the menu; when
the selected attribute is set to true, a checkmark appears beside the menu item’s label. When a
check box item is selected, its state automatically toggles, and a change event is broadcast to all
listeners on the root menu. The following example defines three check box menu items:
<menu>
 <menuitem label="Apples" type="check" instanceName="buyApples"

selected="true" />
 <menuitem label="Oranges" type="check" instanceName="buyOranges"

selected="false" />
 <menuitem label="Bananas" type="check" instanceName="buyBananas"

selected="false" />
</menu>

You can use the instance names in ActionScript to access the menu items directly from the menu
itself, as in the following example:
myMenu.setMenuItemSelected(myMenu.buyapples, true);
myMenu.setMenuItemSelected(myMenu.buyoranges, false);

Note: The selected attribute should be modified only using the setMenuItemSelected(item, b)
method. You can directly examine the selected attribute, but it returns a String value of true or false.

Radio button menu items

Menu items whose type attribute is set to radio can be grouped together so that only one of the
items can be selected at a time. A radio group is created by giving the menu items the same value
for their groupName attribute, as in the following example:
<menu>
 <menuitem label="Center" type="radio" groupName="alignment_group"

instanceName="center_item"/>
 <menuitem type="separator" />
 <menuitem label="Top" type="radio" groupName="alignment_group" />
 <menuitem label="Bottom" type="radio" groupName="alignment_group" />
 <menuitem label="Right" type="radio" groupName="alignment_group" />
 <menuitem label="Left" type="radio" groupName="alignment_group" />
</menu>

When the user selects one of the items, the current selection automatically changes, and a change
event is broadcast to all listeners on the root menu. The currently selected item in a radio group is
available in ActionScript using the selection property, as follows:
var selectedMenuItem = myMenu.alignment_group.selection;
myMenu.alignment_group = myMenu.center_item;

Each groupName value must be unique within the scope of the root menu instance.
Note: The selected attribute should be modified only using the setMenuItemSelected(item, b)
method. You can directly examine the selected attribute, but it returns a String value of true
or false.
Menu component (Flash Professional only) 369

Exposing menu items to ActionScript

You can assign each menu item a unique identifier in the instanceName attribute, which makes
the menu item accessible directly from the root menu. For example, the following XML code
provides instanceName attributes for each menu item:
<menu>
 <menuitem label="Item 1" instanceName="item_1" />
 <menuitem label="Item 2" instanceName="item_2" >
 <menuitem label="SubItem A" instanceName="sub_item_A" />
 <menuitem label="SubItem B" instanceName="sub_item_B" />
 </menuitem>
</menu>

You can use ActionScript to access the corresponding object instances and their attributes directly
from the menu component, as follows:
var aMenuItem = myMenu.item_1;
myMenu.setMenuItemEnabled(item_2, true);
var aLabel = myMenu.sub_item_A.label;

Note: Each instanceName must be unique within the scope of the root menu component instance
(including all of the submenus of root).

About initialization object properties

The initObject (initialization object) parameter is a fundamental concept in creating the layout
for the Menu component. The initObject parameter is an object with properties. Each property
represents one of the possible the XML attributes of a menu item. (For a description of the
properties allowed in the initObject parameter, see “About menu item XML attributes”
on page 367.)

The initObject parameter is used in the following methods:

• Menu.addMenuItem()

• Menu.addMenuItemAt()

• MenuDataProvider.addMenuItem()

• MenuDataProvider.addMenuItemAt()

The following example creates an initObject parameter with two properties, label and
instanceName:
var i = myMenu.addMenuItem({label:"myMenuItem", instanceName:"myFirstItem"});

Several of the properties work together to create a particular type of menu item. You assign
specific properties to create certain types of menu items (normal, separator, check box, or
radio button).

For example, you can initialize a normal menu item with the following initObject parameter:
myMenu.addMenuItem({label:"myMenuItem", enabled:true, icon:"myIcon",

instanceName:"myFirstItem"});

You can initialize a separator menu item with the following initObject parameter:
myMenu.addMenuItem({type:"separator"});

You can initialize a check box menu item with the following initObject parameter:
myMenu.addMenuItem({type:"check", label:"myMenuCheck", enabled:false,

selected:true, instanceName:"myFirstCheckItem"})
370 Chapter 4: Components Dictionary

You can initialize a radio button menu item with the following initObject parameter:
myMenu.addMenuItem({type:"radio", label:"myMenuRadio1", enabled:true,

selected:false, groupName:"myRadioGroup" instanceName:"myFirstRadioItem"})

Is it important to note that you should treat the instanceName, groupName, and type attributes
of a menu item as read-only. You should set them only while creating an item (for example,
in a call to addMenuItem()). Modifying these attributes after creation may produce
unpredictable results.

Menu component parameters

There are no authoring parameters for the Menu component.

You can write ActionScript to control the Menu component using its properties, methods, and
events. For more information, see “Menu class (Flash Professional only)” on page 374.

Creating an application with the Menu component

In the following example an application developer is building an application and uses the Menu
component to expose some of the commands that users can issue, such as Open, Close, Save, and
so on.

To create an application with the Menu component:

1 Select File > New and create a Flash document.
2 Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically using ActionScript.

3 Drag a Button component from the Components panel to the Stage.
Clicking button activates the menu.

4 In the Property inspector, give the button the instance name commandBtn, and change its text
property to Commands.

5 In the Actions panel on the first frame, enter the following code to add an event listener to listen
for click events on the commandBtn instance:
var listener = new Object();
listener.click = function(evtObj) {
 var button = evtObj.target;

if(button.menu == undefined) {
 // Create a Menu instance and add some items
 button.menu = mx.controls.Menu.createMenu();
 button.menu.addMenuItem("Open");
 button.menu.addMenuItem("Close");
 button.menu.addMenuItem("Save");
 button.menu.addMenuItem("Revert");
 // Add a change-listener to catch item selections
 var changeListener = new Object();
 changeListener.change = function(event) {

var item = event.menuItem;
trace("Item selected: " + item.attributes.label);

 }
 button.menu.addEventListener("change", changeListener);
 }

button.menu.show(button.x, button.y + button.height);
}
commandBtn.addEventListener("click", listener);
Menu component (Flash Professional only) 371

6 Select Control > Test Movie.
Click the Commands button to see the menu appear. Select menu items to see the trace
actions reporting which item was selected in the Output window.

To use XML data from a server to create and populate a menu:

1 Select File > New and create a Flash document.
2 Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically using ActionScript.

3 In the Actions panel, add the following code to the first frame to create a menu and add
some items:
var myMenu = mx.controls.Menu.createMenu();
// Import an XML file
var loader = new XML();
loader.menu = myMenu;
loader.ignoreWhite = true;
loader.onLoad = function(success) {

// When the data arrives, pass it to the menu
if(success) {

this.menu.dataProvider = this.firstChild;
}

};
loader.load(url);

Note: The menu items are described by the children of the XML document’s first child.

4 Select Control > Test Movie.

To use a well-formed XML string to create and populate a menu:

1 Select File > New and create a Flash document.
2 Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically using ActionScript.

3 In the Actions panel, add the following code to the first frame to create a menu and add
some items:
// Create an XML string containing an menu definition
var s = "";
s += "<menu>";
s += "<menuitem label='Undo' />";
s += "<menuitem type='separator' />";
s += "<menuitem label='Cut' />";
s += "<menuitem label='Copy' />";
s += "<menuitem label='Paste' />";
s += "<menuitem label='Clear' />";
s += "<menuitem type='separator' />";
s += "<menuitem label='Select All' />";
s += "</menu>";
// Create an XML object from the String
var xml = new XML(s);
xml.ignoreWhite = true;
// Create a Menu from the XML object's firstChild
var myMenu = mx.controls.Menu.createMenu(_root, xml.firstChild);

4 Select Control > Test Movie.
372 Chapter 4: Components Dictionary

To use the MenuDataProvider class to create and populate a menu:

1 Select File > New and create a Flash document.
2 Drag the Menu component from the Components panel to the Stage and delete it.

This adds the Menu component to the library without adding it to the application. Menus are
created dynamically using ActionScript.

3 In the Actions panel, add the following code to the first frame to create a menu and add
some items:

// Create an XML object to act as a factory
var xml = new XML();

// The item created next will not appear in the menu.
// The 'createMenu' method call (below) expects to
// receive a root element whose children will become
// the items. This is just a simple way to create that
// root element and give it a convenient name along
// the way.
var theMenuElement = xml.addMenuItem("Edit");

// Add the menu items
theMenuElement.addMenuItem({label:"Undo"});
theMenuElement.addMenuItem({type:"separator"});
theMenuElement.addMenuItem({label:"Cut"});
theMenuElement.addMenuItem({label:"Copy"});
theMenuElement.addMenuItem({label:"Paste"});
theMenuElement.addMenuItem({label:"Clear", enabled:"false"});
theMenuElement.addMenuItem({type:"separator"});
theMenuElement.addMenuItem({label:"Select All"});
// Create the Menu object
var theMenuControl = mx.controls.Menu.createMenu(_root, theMenuElement);

4 Select Control > Test Movie.

Customizing the Menu component

The menu sizes itself to fit horizontally to fit its widest text. You can also call the setSize()
method to size the component. Icons should be sized to a maximum of 16 pixels by 16 pixels.

Using styles with the Menu component

You can call the setStyle() method to change the style of the menu, its items, and its
submenus. A Menu component supports the following Halo styles:

Style Description

themeColor The menu background color. This is the only color style that doesn’t
inherit its value.

color The color of the text label of a menu item.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either normal, or italic.
Menu component (Flash Professional only) 373

Using skins with the Menu component

For the latest information about this feature, click the Update button at the top of the Help tab.

Menu class (Flash Professional only)

Inheritance UIObject > UIComponent > View > ScrollView > ScrollSelectList > Menu

ActionScript Class Name mx.controls.Menu

Method summary for the Menu class

Inherits all methods from UIObject, UIComponent, ScrollView, and ScrollSelectList.

fontWeight The font weight; either normal, or bold.

rollOverColor The rollover color of menu items.

selectionColor Selected items and items that contain submenus.

selectionDisabledColor Selected items and items that contain submenus and are disabled.

textRollOverColor The color of text when you roll over an item.

textDecoration The text decoration; either none, or underline.

textDisabledColor The color of disabled text.

textSelectedColor The color of text os a selected menu item.

popupDuration The duration of the transition as a menu opens. The value 0 specifies
no transition.

Method Description

Menu.addMenuItem() Adds a menu item to the Menu.

Menu.addMenuItemAt() Adds a menu item to the Menu at a specific location.

Menu.createMenu() Creates an instance of the Menu class. This is a static method.

Menu.getMenuItemAt() Gets a reference to a menu item at a specified location.

Menu.hide() Closes a menu.

Menu.indexOf() Returns the index of a given menu item.

Menu.removeAll() Removes all items from a menu.

Menu.removeMenuItemAt() Removes a menu item from a Menu at a specified location

Menu.setMenuItemEnabled() Indicates whether a menu item is enabled (true) or not (false).

Menu.setMenuItemSelected() Indicates whether a menu item is selected (true) or not (false).

Menu.show() Opens a menu at a specific location or at its previous location.

Style Description
374 Chapter 4: Components Dictionary

Property summary for the Menu class

Inherits all properties from UIObject, UIComponent, ScrollView, and ScrollSelectList.

Event summary for the Menu class

Inherits all events from UIObject, UIComponent, ScrollView, and ScrollSelectList

Menu.addMenuItem()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenu.addMenu(initObject)

Usage 2:
myMenu.addMenu(childMenuItem)

Parameters

initObject An object containing properties that initialize a menu item's attributes. See “About
menu item XML attributes” on page 367.

childMenuItem An XML node object.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a menu item at the end of the menu. The menu item is constructed from
the values supplied in the initObject parameter. Usage 2 adds a menu item that is a prebuilt
XML node (in the form of an XML object) at the end of the menu. Adding a preexisting node
removes the node from its previous location.

Property Description

Menu.dataProvider The data source for a menu.

Event Description

Menu.change Broadcast when a user selects an item.

Menu.menuHide Broadcast when a menu closes.

Menu.menuShow Broadcast when a menu opens.

Menu.rollOut Broadcast when the pointer rolls off an item.

Menu.rollOver Broadcast when the pointer rolls over an item.
Menu component (Flash Professional only) 375

Example

Usage 1: The following example appends a menu item to a menu:
myMenu.addMenuItem({ label:"Item 1", type:"radio", selected:false,

enabled:true, instanceName:"radioItem1", groupName:"myRadioGroup" });

Usage 2: The following example moves a node from one menu to the root of another menu:
myMenu.addMenuItem(mySecondMenu.getMenuItemAt(mySecondMenu, 3));

Menu.addMenuItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenu.addMenuItemAt(index, initObject)

Usage 2:
myMenu.addMenuItemAt(index, childMenuItem)

Parameters

index An integer indicating the order (among the child nodes) at which the item is added.

initObject An object containing properties that initialize a menu item’s attributes. See “About
menu item XML attributes” on page 367.

childMenuItem An XML node object.

Returns

A reference to the added XML node.

Description

Method; Usage 1 adds a menu item (child node) at the specified location in the menu. The menu
item is constructed from the values supplied in the initObject parameter. Usage 2 adds a menu
item that is a prebuilt XML node (in the form of an XML object) at a specified location in the
menu. Adding a preexisting node removes the node from its previous location.

Example

Usage 1: The following example adds a new node as the second child of the root of the menu:
myMenu.addMenuItemAt(1, { label:"Item 1", instanceName:"radioItem1",

type:"radio", selected:false, enabled:true, groupName:"myRadioGroup" });

Usage 2: The following example moves a node from one menu to fourth child of the root of
another menu:
myMenu.addMenuItemAt(3, mySecondMenu.getMenuItemAt(mySecondMenu, 3));
376 Chapter 4: Components Dictionary

Menu.change

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.change = function(eventObject){

// insert your code here
}
myMenu.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners whenever a user causes a change in the menu.

V2 components use a dispatcher-listener event model. When a Menu component broadcasts a
change event, the event is handled by a function (also called a handler), that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Menu.change event’s event
object has the following additional properties:

• menuBar A reference to the MenuBar instance that is the parent of the target Menu. When
the target Menu does not belong to a Menu this value is undefined.

• menu A reference to the Menu instance where the target item is located.
• menuItem An XML node that is the menu item that was selected.
• groupName A string indicating the name of the radio button group to which the item

belongs. If the item is not in a radio button group this value is undefined.

For more information about event objects, see “Event Objects” on page 562.

Example

In the following example, a handler called listener is defined and passed to the
myMenu.addEventListener() method as the second parameter. The event object is captured by
the change handler in the event parameter. When the change event is broadcast, a trace
statement is sent to the Output panel, as follows:
listener = new Object();
listener.change = function(evt){
 trace("Menu item chosen: "+evt.menuItem.attributes.label);
}
myMenu.addEventListener("change", listener);
Menu component (Flash Professional only) 377

Menu.createMenu()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Menu.createMenu(parent, mdp)

Parameters

parent A MovieClip instance. The movie clip is the parent component that contains the new
Menu instance. This parameter is optional.

mdp The MenuDataProvider instance that describes this Menu instance. This parameter
is optional.

Returns

A reference to the new menu instance.

Description

Method (static); instantiates a Menu instance, and optionally attaches it to the specified parent,
with the specified MenuDataProvider as the data source for the menu items.

If the parent argument is omitted or null, the Menu is attached to the _root Timeline.

If the mdp argument is omitted or null, the menu does not have any items; you must call the
addMenu() or setDataProvider() methods to populate the menu.

Example

In the following example, line 1 creates a MenuDataProvider which is an XML object decorated
with the methods of the MenuDataProvider class. The next line adds a menu item (New) with a
submenu (File, Project, and Resource). The next block of code adds more items to the main
menu. The third clock of code creates an empty menu attached to myParentClip, fills it with the
data source myMDP, and opens it at the coordinates 100, 20, as follows:
var myMDP = new XML();

var newItem = myMDP.addMenuItem({label:"New"});
 newItem.addMenuItem({label:"File..."});
 newItem.addMenuItem({label:"Project..."});
 newItem.addMenuItem({label:"Resource..."});

myMDP.addMenuItem({label:"Open", instanceName:"miOpen"});
myMDP.addMenuItem({label:"Save", instanceName:"miSave"});
myMDP.addMenuItem({type:"separator"});
myMDP.addMenuItem({label:"Quit", instanceName:"miQuit"});

var myMenu = mx.controls.Menu.createMenu(myParentClip, myMDP);

myMenu.show(100, 20);
378 Chapter 4: Components Dictionary

To test this code, place it in the Actions panel on Frame 1 of the main Timeline. Drag a Menu
component from the Components panel to the Stage and delete it. This adds it to the Library
without placing it in the document.

Menu.dataProvider

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.dataProvider

Description

Property; the data source for items in a Menu component.

The Menu.dataProvider is an XML node object. Setting this property replaces the existing data
source of the Menu.

The default value is undefined.
Note: All XML or XMLNode instances are automatically given the methods and properties of the
MenuDataProvider API when they are used with the Menu component.

Example

The following example imports an XML file and assigns it to the Menu.dataProvider property:
var myMenuDP = new XML();
myMenuDP.load("http://myServer.myDomain.com/source.xml");
myMenuDP.onLoad = function(){

myMenuControl.dataProvider = myMenuDP;
}

Menu.getMenuItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.getMenuItemAt(index)

Parameters

index An integer indicating the index of the node in the menu.

Returns

A reference to the specified node.
Menu component (Flash Professional only) 379

Description

Method; returns a reference to the specified child node of the menu.

Example

The following example gets a reference to the second child node in myMenu and copies the value
into the variable myItem:
var myItem = myMenu.getMenuItemAt(1);

Menu.hide()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.hide()

Parameters

index The index of the Menu item.

Returns

Nothing.

Description

Method; closes a menu with optional transition effects.

Example

The following example retracts an extended menu:
myMenu.hide();

See also

Menu.show()

Menu.indexOf()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.indexOf(item)

Parameters

item A reference to an XML node that describes a menu item.
380 Chapter 4: Components Dictionary

Returns

The index of the specified menu item, or undefined if the item does not belong to this menu.

Description

Method; returns the index of the specified menu item within this menu instance.

Example

The following example adds a menu item to a parent item and then gets the item’s index within
its parent:
var myItem = myMenu.addMenuItem({label:"That item"});
var myIndex = myMenu.indexOf(myItem);

Menu.menuHide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.menuHide = function(eventObject){

// insert your code here
}
myMenu.addEventListener("menuHide", listenerObject)

Description

Event; broadcast to all registered listeners whenever a menu closes.

V2 components use a dispatcher-listener event model. When a Menu component dispatches a
menuHide event, the event is handled by a function (also called a handler), that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler and the name of the listener object as parameters.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Menu.menuHide event’s event
object has two additional properties:

• menuBar A reference to the MenuBar instance that is the parent of the target Menu. When the
target Menu does not belong to a MenuBar, this value is undefined.

• menu A reference to the Menu instance that is hidden.

For more information about event objects, see “Event Objects” on page 562.
Menu component (Flash Professional only) 381

Example

In the following example, a handler called form is defined and passed to the
myMenu.addEventListener() method as the second parameter. The event object is captured by
menuHide handler in the event parameter. When the menuHide event is broadcast, a trace
statement is sent to the Output panel, as follows:
form = new Object();
form.menuHide = function(evt){
 trace("Menu closed: "+evt.menu);
}
myMenu.addEventListener("menuHide", form);

See also

Menu.menuShow

Menu.menuShow

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.menuShow = function(eventObject){

// insert your code here
}
myMenu.addEventListener("menuShow", listenerObject)

Description

Event; broadcast to all registered listeners whenever a menu opens. All parent nodes open menus
to show their children.

V2 components use a dispatcher-listener event model. When a Menu component dispatches a
menuShow event, the event is handled by a function (also called a handler), that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler and listener object as parameters.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Menu.menuShow event’s event
object has two additional properties:

• menuBar A reference to the MenuBar instance that is the parent of the target Menu. When
the target Menu does not belong to a Menu, this value is undefined.

• menu A reference to the Menu instance that is shown.

For more information about event objects, see “Event Objects” on page 562.
382 Chapter 4: Components Dictionary

Example

In the following example, a handler called form is defined and passed to the
myMenu.addEventListener() method as the second parameter. The event object is captured by
menuShow handler in the evtObject parameter. When the menuShow event is broadcast, a trace
statement is sent to the Output panel, as follows:
form = new Object();
form.menuShow = function(evt){
 trace("Menu opened: "+evt.menu);
}
myMenu.addEventListener("menuShow", form);

See also

Menu.menuHide

Menu.removeAll()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all items and refreshes the menu.

Example

The following example removes all nodes from the menu:
myMenu.removeAll();

Menu.removeMenuItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.removeMenuItemAt(index)
Menu component (Flash Professional only) 383

Parameters

index The index of the menu item to remove.

Returns

A reference to the returned menu item (XML node). This value is undefined if no item exists in
that position.

Description

Method; removes the menu item and all its children at the specified index. If there is no menu
item at that index, calling this method has no effect.

Example

The following example removes a menu item at index 3:
var item = myMenu.removeMenuItemAt(3);

Menu.rollOut

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.rollOut = function(eventObject){

// insert your code here
}
myMenu.addEventListener("rollOut", listenerObject)

Description

Event; broadcast to all registered listeners when the pointer rolls off a menu item.

V2 components use a dispatcher-listener event model. When a Menu component broadcasts a
rollOut event, the event is handled by a function (also called a handler), that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Menu.rollOut event’s event
object has one additional property:

• menuItem A reference to the menu item (XML node) that the pointer rolled off.

For more information about event objects, see “Event Objects” on page 562.
384 Chapter 4: Components Dictionary

Example

In the following example, a handler called form is defined and passed to the
myMenu.addEventListener() method as the second parameter. The event object is captured by
the rollOut handler in the event parameter. When the rollOut event is broadcast, a trace
statement is sent to the Output panel, as follows:
form = new Object();
form.rollOut = function(evt){
 trace("Menu rollOut: "+evt.menuItem.attributes.label);
}
myMenu.addEventListener("rollOut", form);

Menu.rollOver

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.rollOver = function(eventObject){

// insert your code here
}
myMenu.addEventListener("rollOver", listenerObject)

Description

Event; broadcast to all registered listeners when the pointer rolls over a menu item.

V2 components use a dispatcher-listener event model. When a Menu component broadcasts a
change event, the event is handled by a function (also called a handler), that is attached to a
listener object (listenerObject) that you create. You call the addEventListener() method
and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Menu.rollOver event’s event
object has one additional property:

menuItem A reference to the menu item (XML node) that the pointer rolled over.

For more information about event objects, see “Event Objects” on page 562.

Example

In the following example, a handler called form is defined and passed to the
myMenu.addEventListener() method as the second parameter. The event object is captured by
the rollOver handler in the event parameter. When the rollOver event is broadcast, a trace
statement is sent to the Output panel, as follows:
form = new Object();
form.rollOver = function(evt){
 trace("Menu rollOver: "+evt.menuItem.attributes.label);
}
myMenu.addEventListener("rollOver", form);
Menu component (Flash Professional only) 385

Menu.setMenuItemEnabled()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.setMenuItemEnabled(item, enable)

Parameters

item An XML node. The target menu item's node within the data provider.

enable A Boolean value indicating whether item is enabled (true) or not (false).

Returns

Nothing.

Description

Method; changes the target item's enabled attribute to the state given by the enable parameter.
If this call results in a change of state, the item is redrawn with the new state.

Example

The following example disables the second child of myMenu:
var myItem = myMenu.getMenuItemAt(1);
myMenu.setMenuItemEnabled(myItem, false);

See also

Menu.setMenuItemSelected()

Menu.setMenuItemSelected()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.setMenuItemSelected(item, select)

Parameters

item An XML node. The target menu item's node within the data provider.

select A Boolean value indicating whether item is selected (true) or not (false). If the item
is a check box, its check box is visible or not visible. If the item is a radio button, the item
becomes the current selection in the radio group.
386 Chapter 4: Components Dictionary

Returns

Nothing.

Description

Method; changes the selected attribute of the item to the state specified by the select
parameter. If this call results in a change of state, the item is redrawn with the new state. This is
only meaningful for items whose type attribute is set to "radio" or "check", because it causes
their dot or check to appear or disappear. If you call this method on an item whose type is
"normal" or "separator", it has no effect.

Example

The following example deselects the second child of myMenu:
var myItem = myMenu.getMenuItemAt(1);
myMenu.setMenuItemSelected(myItem, false);

Menu.show()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.show(x, y)

Parameters

x The x coordinate.

y The y coordinate.

Returns

Nothing.

Description

Method; opens a menu at a specific location. The menu is automatically resized so that all of its
top-level items are visible, and the upper left corner is placed at the given location within the
coordinate system provided by the component’s parent.

If the x and y parameters are omitted, the menu is shown at its previous location.

Example

The following example extends a menu:
myMenu.show(10, 10);

See also

Menu.hide()
Menu component (Flash Professional only) 387

MenuDataProvider class

The MenuDataProvider class is a decorator (mix-in) API that adds functionality to the
XMLNode global class. This functionality lets XML instances assigned to a Menu dataProvider
property manipulate their own data as well as the associated Menu views through the
MenuDataProvider API.

Key concepts:

• The MenuDataProvider is a decorator (mix-in) API. It does not need to be instantiated to
be used.

• Menus natively accept XML as a dataProvider property.
• If a Menu class is instantiated, all XML instances in the SWF file are decorated by the

MenuDataProvider API.
• Only MenuDataProvider API methods broadcast events to the Menu controls. You can still use

Native XML methods, but they are not broadcast events that refresh the Menu views.
■ Use MenuDataProvider API methods to control the data model.
■ Use XML methods for read-only operations like moving through the Menu hierarchy.

• All items in the Menu are XML objects decorated with the MenuDataProvider API.
• Changes to item attributes are not be reflected in the onscreen menu until a repaint occurs.

Method summary for the MenuDataProvider class

MenuDataProvider.addMenuItem()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenu.addMenuItem(initObject)

Usage 2:
myMenu.addMenuItem(childMenuItem)

Method Description

MenuDataProvider.addMenuItem() Adds a child item.

MenuDataProvider.addMenuItemAt() Adds a child item at a specific location.

MenuDataProvider.getMenuItemAt() Gets a reference to a menu item at a specified location.

MenuDataProvider.indexOf() Returns the index of a specified menu item.

MenuDataProvider.removeMenuItem() Removes a menu item.

MenuDataProvider.removeMenuItemAt() Removes a menu item at a specified location.
388 Chapter 4: Components Dictionary

Parameters

initObject An object containing the specific attributes that initialize a Menu item’s attributes.
For more information, see “About menu item XML attributes” on page 367.

childMenuItem An XML node.

Returns

A reference to an XMLNode object.

Description

Method; Usage 1 adds a child item to the end of a parent menu item (which could be the menu
itself). The menu item is constructed from the values passed in the initObject parameter.
Usage 2 adds a child item that is defined in the specified XML childMenuItem parameter to the
end of a parent menu item.

Example

The following example adds a new node to a specified node in the menu:
myMenuDP.firstChild.addMenuItem("Inbox", { label:"Item 1",

icon:"radioItemIcon", type:"radio", selected:false, enabled:true,
instanceName:"radioItem1", groupName:"myRadioGroup" });

MenuDataProvider.addMenuItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenu.addMenuItemAt(index, initObject)

Usage 2:
myMenu.addMenuItemAt(index, childMenuItem)

Parameters

index An integer.

initObject An object containing the specific attributes that initialize a Menu item’s attributes.
For more information, see “About menu item XML attributes” on page 367.

childMenuItem An XML node.

Returns

A reference to the added XML node.
Menu component (Flash Professional only) 389

Description

Method; Usage 1 adds a child item at the specified index position in the parent menu item (which
could be the menu itself). The menu item is constructed from the values passed in the
initObject parameter. Usage 2 adds a child item that is defined in the specified XML
childMenuItem parameter to the specified index of a parent menu item.

Example

Usage 1: The following example adds a new node as the second child of the root of the menu:
myMenu.addMenuItemAt(1, { label:"Item 1", type:"radio", selected:false,

enabled:true, instanceName:"radioItem1", groupName:"myRadioGroup" });

MenuDataProvider.getMenuItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.getMenuItemAt(index)

Parameters

index An integer indicating the position of the menu.

Returns

A reference to the specified XML node.

Description

Method; returns a reference to the specified child menu item of the current menu item.

Example

The following example finds the node you want to get, and then gets the second child of
myMenuItem:
var myMenuItem = myMenuDP.firstChild.firstChild;
myMenuItem.getMenuItemAt(1);

MenuDataProvider.indexOf()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.indexOf(item)
390 Chapter 4: Components Dictionary

Parameters

item A reference to the XML node that describes the menu item.

Returns

The index of the specified menu item; returns undefined if the item does not belong to
this menu.

Description

Method; returns the index of the specified menu item within this parent menu item.

Example

The following example adds a menu item to a parent item and gets the item’s index:
var myItem = myParentItem.addMenuItem({label:"That item"});
var myIndex = myParentItem.indexOf(myItem);

MenuDataProvider.removeMenuItem()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.removeMenuItem()

Parameters

None.

Returns

A reference to the removed Menu item (XML node); undefined if an error occurs.

Description

Method; removes the target item and any child nodes.

Example

The following example removes myMenuItem from its parent:
myMenuItem.removeMenuItem();
Menu component (Flash Professional only) 391

MenuDataProvider.removeMenuItemAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenu.removeMenuItemAt(index)

Parameters

index The index of the Menu item.

Returns

A reference to the removed menu item. This value is undefined if no item exists in that position.

Description

Method; removes the child item of the menu item specified by the index parameter. If there is no
menu item at that index, calling this method has no effect.

Example

The following example removes the fourth item:
myMenuDP.removeMenuItemAt(3);

MenuBar component (Flash Professional only)

The MenuBar component lets you create a horizontal menu bar with pop-up menus and
commands, just like the File and Edit menu bars in most common software applications (such as
Macromedia Flash). The menu bar complements the Menu component by providing a clickable
interface to show and hide menus that behave as a group for mouse and keyboard interactivity.

The menu bar lets you create an application menu in a few steps. To build a menu bar, you can
either assign an XML data provider to the menu bar that describes a series of menus, or use the
MenuBar.addMenu() method to add menu instances one at a time.

Each menu within the menu bar is composed of two parts: the menu and the button that causes
the menu to open (called the menu activator). These clickable menu activators appear in the
menu bar as a text label with inset and outset border highlight states that react to interaction from
the mouse and keyboard.

When an menu activator is pressed, the corresponding menu opens below it. The menu stays
active until the activator is pressed again, or until a menu item is selected or a click occurs outside
the menu area.

In addition to creating menu activators that show and hide menus, the menu bar creates group
behavior among a series of menus. This lets a user scan a large number of command choices by
rolling over the series of activators or by using the arrow keys to move through the lists. Both
mouse and keyboard interactivity work together to let the user jump from menu to menu within
the MenuBar component.
392 Chapter 4: Components Dictionary

A user cannot scroll through menus on a menu bar. If menus exceed the width of the menu bar,
they are masked.

You cannot make the MenuBar component accessible to screen readers.

Interacting with the MenuBar component (Flash Professional only)

You can use the mouse and the keyboard to interact with a MenuBar component.

Rolling over a menu activator displays an outset border highlight around the activator label.

When a MenuBar instance has focus either from clicking or tabbing, you can use the following
keys to control it:

Note: If a menu is open, you can't press the Tab key to close it. You must either make a selection or
close the menu by pressing Escape.

Using the MenuBar component (Flash Professional only)

You can use the MenuBar component to add a set of menus (for example, File, Edit, Special,
Window, and so on) to the top edge of an application.

MenuBar component parameters

The following are authoring parameters that you can set for each MenuBar component instance
in the Property inspector or in the Component Inspector panel:

labels An array that adds menu activators to the MenuBar with the given labels. The default
value is [] (empty array).

You can write ActionScript to control these and additional options for the MenuBar component
using its properties, methods, and events. For more information, see “MenuBar class”
on page 395.

Creating an application with the MenuBar component

In this example, you drag a MenuBar component to the Stage, add code to fill the instance with
menus, and attach listeners to the menus to respond to menu item selection.

To use a MenuBar component in an application:

1 Select File > New to create a new Flash Document.
2 Drag the MenuBar component from the Components panel to the Stage.
3 Position the menu at the top of the Stage for a standard layout.
4 Select the MenuBar, and in the Property inspector, enter the instance name myMenuBar.

Key Description

Down arrow Moves the selection down a menu row.

Up arrow Moves the selection up a menu row.

Right arrow Moves the selection to the next button.

Left arrow Moves the selection to the previous button.

Enter/Escape Closes an open menu.
MenuBar component (Flash Professional only) 393

5 In the Actions panel on Frame 1, enter the following code:
var menu = myMenuBar.addMenu("File");
menu.addMenuItem({label:"New", instanceName:"newInstance"});
menu.addMenuItem({label:"Open", instanceName:"openInstance"});
menu.addMenuItem({label:"Close", instanceName:"closeInstance"});

This code adds a File menu to the menu bar instance. It then uses the Menu API to add three
menu items: New, Open, and Close.

6 In the Actions panel on Frame 1, enter the following code:
var listen = new Object();
listen.change = function(evt){

var menu = evt.menu;
var item = evt.menuItem
if (item == menu.newInstance){

myNew();
trace(item);

}else if (item == menu.openInstance){
myOpen()
trace(item);

}
}
menu.addEventListener("change",listen);

This code creates a listener object, listen, that uses the event object, evt, to catch menu
item selections.
Note: You must call the addEventListener method to register the listener with the menu
instance, not with the menu bar instance.

7 Select Control > Test Movie to test the MenuBar component.

Customizing the MenuBar component (Flash Professional only)

This component sizes itself based on the activator labels that are supplied through the
dataProvider property or the methods of the MenuBar class. When an activator button is in a
menu bar, it remains a fixed size that is dependent on the font styles and the text length.

Using styles with the MenuBar component

The MenuBar creates an activator label for each menu within a group. You can use styles
to change the look of the activator labels. A MenuBar component supports the following
Halo styles:

Style Description

themeColor The selection highlight color. This is the only color style that doesn’t
inherit its value. Possible values are "haloGreen", "haloBlue", and
"haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".
394 Chapter 4: Components Dictionary

The MenuBar component also uses the RectBorder class to draw inset and outset highlights
around the label when a user interacts with it. You can use the setStyle() method (see
UIObject.setStyle()) to change the following RectBorder style properties:

The style properties set the following positions on the border:

Using skins with the MenuBar component

The MenuBar component uses the skins of the Menu component to represent its visual states. For
information about the Menu component skins, see “Using skins with the Menu component”
on page 374.

MenuBar class

Inheritance UIObject > UIComponent > MenuBar

ActionScript Class Name mx.controls.MenuBar

fontWeight The font weight; either "normal", or "bold".

textDecoration The text decoration; either "none", or "underline".

popupDuration The amount of time in milliseconds that it takes a menu to pop up. The
default value is 0.

RectBorder styles Border position

borderColor a

highlightColor b

borderColor c

shadowColor d

borderCapColor e

shadowCapColor f

shadowCapColor g

borderCapColor h

Style Description
MenuBar component (Flash Professional only) 395

Method summary for the MenuBar class

Inherits all methods from UIObject and UIComponent.

Property summary for the MenuBar class

Inherits all methods from UIObject and UIComponent.

MenuBar.addMenu()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuBar.addMenu(label)

Usage 2:
myMenuBar.addMenu(label, menuDataProvider)

Parameters

label A string indicating the label of the new menu.

menuDataProvider An XML or XMLNode instance that describes the menu and its items. If
the value is an XML instance, the instance’s firstChild is used.

Method Description

MenuBar.addMenu() Adds a menu to the menu bar.

MenuBar.addMenuAt() Adds a menu to the menu bar at a specific location.

MenuBar.getMenuAt() Gets a reference to a menu at a specified location.

MenuBar.getMenuEnabledAt() Returns a Boolean value indicating whether a menu is enabled (true)
or not (false).

MenuBar.removeMenuAt() Removes a menu from a menu bar at a specified location.

MenuBar.setMenuEnabledAt() A Boolean value indicating whether a menu is enabled (true) or
not (false).

Property Description

MenuBar.dataProvider The data model for a menu bar.

MenuBar.labelField A string that determines which attribute of each XMLNode to use as
the label text of the menu bar item.

MenuBar.labelFunction A function that determines what to display as the label of each menu
bar item.
396 Chapter 4: Components Dictionary

Returns

A reference to the new Menu object.

Description

Method; Usage 1 adds a single menu and menu activator at the end of the menu bar with the
value specified in the label parameter. Usage 2 adds a single menu and menu activator that are
defined in the specified XML menuDataProvider parameter.

Example

Usage 1: The following example adds a File menu and then uses the Menu.addMenuItem()
method to add the menu items New and Open:
menu = myMenuBar.addMenu("File");
menu.addMenuItem({label:"New", instanceName:newInstance"});
menu.addMenuItem("{label:"Open", instanceName:"openInstance"}");

Usage 2: The following example adds a Font menu with the menu items Bold and Italic that are
defined in the menuDataProvider myMenuDP2:
var myMenuDP2 = new XML();
myMenuDP2.addMenuItem({type:"check", label:"Bold", instanceName:"check1"});
myMenuDP2.addMenuItem({type:"check", label:"Italic", instanceName:"check2"});
menu = myMenuBar.addMenu("Font",myMenuDP2);

MenuBar.addMenuAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myMenuBar.addMenuAt(index, label)

Usage 2:
myMenuBar.addMenuAt(index, label, menuDataProvider)

Parameters

index An integer indicating the position where the menu should be inserted. The first position
is 0. To append to the end of the menu, call MenuBar.addMenu(label).

label A string indicating the label of the new menu.

menuDataProvider An XML or XMLNode instance that describes the menu. If the value is an
XML instance, the instance’s firstChild is used.

Returns

A reference to the new Menu object.
MenuBar component (Flash Professional only) 397

Description

Method; Usage 1 adds a single menu and menu activator at the specified index with the value
specified in the label parameter. Usage 2 adds a single menu and a labeled menu activator at the
specified index. The content for the menu is defined in the menuDataProvider parameter.

Example

Usage 1: The following example places a menu to the left of all MenuBar menus:
menu = myMenuBar.addMenuAt(0,"Toreador");
menu.addMenuItem("About Macromedia Flash", instanceName:"aboutInst");
menu.addMenuItem("Preferences", instanceName:"PrefInst");

Usage 2: The following example adds an Edit menu with the menu items Undo, Redo, Cut, and
Copy, which are defined in the menuDataProvider myMenuDP:
var myMenuDP = new XML();
myMenuDP.addMenuItem({label:"Undo", instanceName:"undoInst"});
myMenuDP.addMenuItem({label:"Redo", instanceName:"redoInst"});
myMenuDP.addMenuItem({type:"separator"});
myMenuDP.addMenuItem({label:"Cut", instanceName:"cutInst"});
myMenuDP.addMenuItem({label:"Copy", instanceName:"copyInst"});

myMenuBar.addMenuAt(0,"Edit",myMenuDP);

MenuBar.dataProvider

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenuBar.dataProvider

Description

Property; the data model for items in a MenuBar component.

The menuBar.dataProvider is an XML node object. Setting this property replaces the existing
data model of the MenuBar component. Whatever child nodes the data provider might have are
used as the items for the menu bar itself; any subnodes of these child nodes are used as the items
for their respective menus.

The default value is undefined.
Note: All XML or XMLNode instances are automatically given the methods and properties of the
MenuDataProvider API when they are used with the MenuBar component.
398 Chapter 4: Components Dictionary

Example

The following example imports an XML file and assigns it to the
MenuBar.dataProvider property:
var myMenuBarDP = new XML();
myMenuBarDP.load("http://myServer.myDomain.com/source.xml");
myMenuBarDP.onLoad = function(success){

if(success){
myMenuBar.dataProvider = myMenuBarDP;

} else {
trace("error loading XML file");
}

}

MenuBar.getMenuAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenuBar.getMenuAt(index)

Parameters

index An integer indicating the position of the menu.

Returns

A reference to the menu at the specified index. This value is undefined if there is no menu at
that position.

Description

Method; returns a reference to the menu at the specified index.

Example

Because the getMenuAt() method returns an instance, it is possible to add items to a menu at the
specified index. In the following example, after using the Label authoring parameter to create the
menu activators File, Edit, and View, the following code adds New and Open items to the File
menu at runtime:
menu = myMenuBar.getMenuAt(0);
menu.addMenuItem({label:"New",instanceName:"newInst"});
menu.addMenuItem({label:"Open",instanceName:"openInst"});
MenuBar component (Flash Professional only) 399

MenuBar.getMenuEnabledAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenuBar.getMenuEnabledAt(index)

Parameters

index The index of the MenuBar item.

Returns

A Boolean value that indicates whether this menu can be chosen (true) or not (false).

Description

Method; returns a Boolean value that indicates whether this menu can be chosen (true) or
not (false).

Example

The following example calls the method on the menu in the first position of myMenuBar:
myMenuBar.getMenuEnabledAt(0);

MenuBar.labelField

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenuBar.labelField

Description

Property; a string that determines which attribute of each XML node to use as the label text of the
menu. This property is also passed to any menus that are created from the menu bar. The default
value is "label".

After the dataProvider property is set, this property is read-only.

Example

The following example uses the name attribute of each node as the label text:
myMenuBar.labelField = "name";
400 Chapter 4: Components Dictionary

MenuBar.labelFunction

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenuBar.labelFunction

Description

Property; a function that determines what to display in each menu’s label text. The function
accepts the XML node associated with an item as a parameter and returns a string to be used as
label text. This property is passed to any menus created from the menu bar. The default value
is undefined.

After the dataProvider property is set, this property is read-only.

 Example

The following example builds a custom label from the node attributes:
myMenuBar.labelFunction = function(node){
var a = node.attributes;
return "The Price for " + a.name + " is " + a.price;
};

MenuBar.removeMenuAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenuBar.removeMenuAt(index)

Parameters

index The index of the MenuBar item.

Returns

A reference to the returned MenuBar item. This value is undefined if no item exists in
that position.

Description

Method; removes the menu at the specified index. If there is no menu item at that index, calling
this method has no effect.
MenuBar component (Flash Professional only) 401

Example

The following example removes the menu at index 4:
myMenuBar.removeMenuAt(4);

MenuBar.setMenuEnabledAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myMenuBar.setMenuEnabledAt(index, boolean)

Parameters

index The index of the MenuBar item to set.

boolean A Boolean value indicating whether the menu item at the specified index is enabled
(true) or not (false).

Returns

Nothing.

Description

Method; enables the menu at the given index. If there is no menu at that index, calling this
method has no effect.

Example

The following example gets the MenuBarColumn object at index 3:
myMenuBar.setMenuEnabledAt(3);

NumericStepper component

The NumericStepper component allows a user to step through an ordered set of numbers. The
component consists of a number displayed beside small up and down arrow buttons. When a user
pushes the buttons, the number is raised or lowered incrementally. If the user clicks either of the
arrow buttons, the number increases or decreases, based on the value of the stepSize parameter,
until the user releases the mouse or until the maximum or minimum value is reached.

The NumericStepper only handles numeric data. Also, you must resize the stepper while
authoring to display more than two numeric places (for example, the numbers 5246 or 1.34).
402 Chapter 4: Components Dictionary

A stepper can be enabled or disabled in an application. In the disabled state, a stepper doesn’t
receive mouse or keyboard input. An enabled stepper receives focus if you click it or tab to it and
its internal focus is set to the text box. When a NumericStepper instance has focus, you can use
the following keys control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

A live preview of each stepper instance reflects the value of the value parameter indicated by the
Property inspector or Component Inspector panel while authoring. However, there is no mouse
or keyboard interaction with the stepper buttons in the live preview.

When you add the NumericStepper component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.NumericStepperAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the NumericStepper component

The NumericStepper can be used anywhere you want a user to select a numeric value. For
example, you could use a NumericStepper component in a form to allow a user to set their credit
card expiration date. In another example, you could use a NumericStepper to allow a user to
increase or decrease a font size.

NumericStepper parameters

The following are authoring parameters that you can set for each NumericStepper component
instance in the Property inspector or in the Component Inspector panel:

value sets the value of the current step. The default value is 0.

minimum sets the minimum value of the step. The default value is 0.

maximum sets the maximum value of the step. The default value is 10.

stepSize sets the unit of change for the step. The default value is 1.

You can write ActionScript to control these and additional options for NumericStepper
components using its properties, methods, and events. For more information, see
NumericStepper class.

Key Description

Down Value changes by one unit.

Left Moves the insertion point to the left within the text box.

Right Moves the insertion point to the right within the text box.

Shift + Tab Moves focus to the previous object.

Tab Moves focus to the next object.

Up Value changes by one unit.
NumericStepper component 403

Creating an application with the NumericStepper component

The following procedure explains how to add a NumericStepper component to an application
while authoring. In this example, the stepper allows a user to pick a movie rating from 0 to 5 stars
with half-star increments.

To create an application with the Button component, do the following:

1 Drag a NumericStepper component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name starStepper.
3 In the Property inspector, do the following:

■ Enter 0 for the minimum parameter.
■ Enter 5 for the maximum parameter.
■ Enter .5 for the stepSize parameter.
■ Enter 0 for the value parameter.

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
movieRate = new Object();
movieRate.change = function (eventObject){

starChart.value = eventObject.target.value;
}
starStepper.addEventListener("change", movieRate);

The last line of code adds a change event handler to the starStepper instance. The handler
sets the starChart movie clip to display the amount of stars indicated by the starStepper
instance. (To see this code work, you must create a starChart movie clip with a value
property that displays the stars.)

Customizing the NumericStepper component

You can transform a NumericStepper component horizontally and vertically both while authoring
and at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the NumericStepper class.
See NumericStepper class.

Resizing the NumericStepper component does not change the size of the down and up arrow
buttons. If the stepper is resized greater than the default height, the stepper buttons are pinned to
the top and the bottom of the component. The stepper buttons always appear to the right of the
text box.

Using styles with the NumericStepper component

You can set style properties to change the appearance of a stepper instance. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”
on page 27.
404 Chapter 4: Components Dictionary

A NumericStepper component supports the following Halo styles:

Using skins with the NumericStepper component

The NumericStepper component skins to represent its visual states. To skin the NumericStepper
component while authoring, modify skin symbols in the library and re-export the component as a
SWC. The skin symbols are located in the Flash UI Components 2/Themes/MMDefault/Stepper
Elements/states folder in the library. For more information, see “About skinning components”
on page 36.

If a stepper is enabled, the down and up buttons display their over states when the pointer moves
over them. The buttons display their down state when clicked. The buttons return to their over
state when the mouse is released. If the pointer moves off the buttons while the mouse is pressed,
the buttons return to their original state.

If a stepper is disabled it displays its disabled state, regardless of user interaction.

A NumericStepper component uses the following skin properties:

Style Description

themeColor The background of a component. This is the only color style that
doesn’t inherit its value. Possible values are "haloGreen",
"haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal", or "bold".

textDecoration The text decoration; either "none", or "underline".

textAlign The text alignment; either "left", "right", or "center".

Property Description

upArrowUp The up arrow’s up state. The default value is StepUpArrowUp.

upArrowDown The up arrow’s pressed state. The default value is StepUpArrowDown.

upArrowOver The up arrow’s over state. The default value is StepUpArrowOver.

upArrowDisabled The up arrow’s disabled state. The default value is
StepUpArrowDisabled.

downArrowUp The down arrow’s up state. The default value is StepDownArrowUp.

downArrowDown The down arrow’s down state. The default value is
StepDownArrowDown.
NumericStepper component 405

NumericStepper class

Inheritance UIObject > UIComponent > NumericStepper

ActionScript Class Name mx.controls.NumericStepper

The properties of the NumericStepper class allow you to add indicate the minimum and
maximum step values, the unit amount for each step, and the current value of the step at runtime.

Setting a property of the NumericStepper class with ActionScript overrides the parameter of the
same name set in the Property inspector or Component Inspector panel.

The NumericStepper component uses the FocusManager to override the default Flash Player
focus rectangle and draw a custom focus rectangle with rounded corners. For more information,
see “Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.NumericStepper.version);

Note: The following code returns undefined: trace(myNumericStepperInstance.version);.

Method summary for the NumericStepper class

Inherits all methods from UIObject and UIComponent.

Property summary for the NumericStepper class

Inherits all properties from UIObject and UIComponent.

downArrowOver The down arrow’s over state. The default value is
StepDownArrowOver.

downArrowDisabled The down arrow’s disabled state. The default value is
StepDownArrowDisabled.

Property Description

NumericStepper.maximum A number indicating the maximum range value.

NumericStepper.minimum A number indicating the minimum range value.

NumericStepper.nextValue A number indicating the next sequential value. This property is
read-only.

NumericStepper.previousValue A number indicating the previous sequential value. This property is
read-only.

NumericStepper.stepSize A number indicating the unit of change for each step.

NumericStepper.value A number indicating the current value of the stepper.

Property Description
406 Chapter 4: Components Dictionary

Event summary for the NumericStepper class

Inherits all events from UIObject and UIComponent.

NumericStepper.change

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
stepperInstance.addEventListener("change", listenerObject)

Description

Event; broadcast to all registered listeners when the value of the stepper is changed.

The first usage example uses an on() handler and must be attached directly to a NumericStepper
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the stepper
myStepper, sends “_level0.myStepper” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(stepperInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Event Description

NumericStepper.change Triggered when the value of the step changes.
NumericStepper component 407

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
stepper called myNumericStepper is changed. The first line of code creates a listener object called
form. The second line defines a function for the change event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function,
in this example eventObj, to generate a message. The target property of an event object is the
component that generated the event, in this example myNumericStepper. The
NumericStepper.value property is accessed from the event object’s target property. The last
line calls the UIEventDispatcher.addEventListener() method from myNumericStepper and
passes it the change event and the form listener object as parameters, as in the following:
form = new Object();
form.change = function(eventObj){

// eventObj.target is the component which generated the change event,
// i.e., the Numeric Stepper.
trace("Value changed to " + eventObj.target.value);

}
myNumericStepper.addEventListener("change", form);

NumericStepper.maximum

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

stepperInstance.maximum

Description

Property; the maximum range value of the stepper. This property can contain a number with up
to three decimal places. The default value is 10.

Example

The following example sets the maximum value of the stepper range to 20:
myStepper.maximum = 20;

See also

NumericStepper.minimum
408 Chapter 4: Components Dictionary

NumericStepper.minimum

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

stepperInstance.minimum

Description

Property; the minimum range value of the stepper. This property can contain a number with up
to three decimal places. The default value is 0.

Example

The following example sets the minimum value of the stepper range to 100:
myStepper.minimum = 100;

See also

NumericStepper.maximum

NumericStepper.nextValue

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

stepperInstance.nextValue

Description

Property (read-only); the next sequential value. This property can contain a number with up to
three decimal places.

Example

The following example sets the stepSize property to 1 and the starting value to 4, which would
make the value of nextValue 5:
myStepper.stepSize = 1;
myStepper.value = 4;
trace(myStepper.nextValue);

See also

NumericStepper.previousValue
NumericStepper component 409

NumericStepper.previousValue

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

stepperInstance.previousValue

Description

Property (read-only); the previous sequential value. This property can contain a number with up
to three decimal places.

Example

The following example sets the stepSize property to 1 and the starting value to 4, which would
make the value of nextValue 3:
myStepper.stepSize = 1;
myStepper.value = 4;
trace(myStepper.previousValue);

See also

NumericStepper.nextValue

NumericStepper.stepSize

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

stepperInstance.stepSize

Description

Property; the unit amount to change from the current value. The default value is 1. This value
cannot be 0. This property can contain a number with up to three decimal places.

Example

The following example sets the current value to 2 and the stepSize unit to 2. The value of
nextValue is 4:
myStepper.value = 2;
myStepper.stepSize = 2;
trace(myStepper.nextValue);
410 Chapter 4: Components Dictionary

NumericStepper.value

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

stepperInstance.value

Description

Property; the current value displayed in the text area of the stepper. The value will not be assigned
if it does not correspond to the stepper's range and step increment as defined in the stepSize
property. This property can contain a number with up to three decimal places

Example

The following example sets the current value of the stepper to 10 and sends the value to the
Output panel:
myStepper.value = 10;
trace(myStepper.value);

PopUpManager class

ActionScript Class Name mx.managers.PopUpManager

The PopUpManager class allows you to create overlapping windows that can be modal or non-
modal. (A modal window doesn’t allow interaction with other windows while it’s active.) You can
call PopUpManager.createPopUp() to create an overlapping window, and call
PopUpManager.deletePopUp() on the window instance to destroy a pop-up window.

Method summary for the PopUpManager class

PopUpManager.createPopUp()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

PopUpManager.createPopUp(parent, class, modal [, initobj, outsideEvents])

Event Description

PopUpManager.createPopUp() Creates a pop-up window.

PopUpManager.deletePopUp() Deletes a pop-up window created by a call to
PopUpManager.createPopUp().
PopUpManager class 411

Parameters

parent A reference to a window to pop-up over.

class A reference to the class of object you want to create.

modal A Boolean value indicating whether the window is modal (true) or not (false).

initobj An object containing initialization properties. This parameter is optional.

outsideEvents A Boolean value indicating whether an event is triggered if the user clicks outside
the window (true) or not (false). This parameter is optional.

Returns

A reference to the window that was created.

Description

Method; if modal, a call to createPopUp() finds the topmost parent window starting with parent
and creates an instance of class. If non-modal, a call to createPopUp() creates an instance of the
class as a child of the parent window.

Example

The following code creates a modal window when the button is clicked:
lo = new Object();
lo.click = function(){

mx.managers.PopUpManager.createPopUp(_root, mx.containers.Window, true);
}
button.addEventListener("click", lo);

PopUpManager.deletePopUp()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004

Usage

windowInstance.deletePopUp();

Parameters

None.

Returns

Nothing.

Description

Method; deletes a pop-up window and removes the modal state. It is the responsibility of the
overlapped window to call PopUpManager.deletePopUp() when the window is being destroyed.
412 Chapter 4: Components Dictionary

Example

The following code creates and a modal window named win with a close button, and deletes the
window when the close button is clicked:
import mx.managers.PopUpManager
import mx.containers.Window
win = PopUpManager.createPopUp(_root, Window, true, {closeButton:true});
lo = new Object();
lo.click = function(){

win.deletePopUp();
}
win.addEventListener("click", lo);

ProgressBar component

The ProgressBar component displays the loading progress while a user waits for the content to
load. The loading process can be determinate or indeterminate. A determinate progress bar is a
linear representation of the progress of a task over time and is used when the amount of content
to load is known. An indeterminate progress bar is used when the amount of content to load is
unknown. You can add a label to display the progress of the loading content.

Components are set to export in first frame by default. This means that components are loaded
into an application before the first frame is rendered. If you want to create a preloader for an
application, you will need to deselect Export in first frame in each component’s Linkage
Properties dialog (Library panel options > Linkage). The ProgressBar, however, should be set to
Export in first frame, because it must display first while other content streams into Flash Player.

A live preview of each ProgressBar instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. The following parameters are reflected
in the live preview: conversion, direction, label, labelPlacement, mode, and source.

Using the ProgressBar component

A progress bar allows you to display the progress of content as it loads. This is essential feedback
for users as they interact with an application.

There are several modes in which to use the ProgressBar component; you set the mode with the
mode parameter. The most commonly used modes are “event” and “polled”. These modes use the
source parameter to specify a loading process that either emits progress and complete events
(event mode), or exposes getBytesLoaded and getsBytesTotal methods (polled mode). You
can also use the ProgressBar component in manual mode by manually setting the maximum,
minimum, and indeterminate properties along with calls to the ProgressBar.setProgress()
method.

ProgressBar parameters

The following are authoring parameters that you can set for each ProgressBar component instance
in the Property inspector or in the Component Inspector panel:

mode The mode in which the progress bar operates. This value can be one of the following:
event, polled, or manual. The default value is event.

source A string to be converted into an object representing the instance name of the source.
ProgressBar component 413

direction The direction toward which the progress bar fills. This value can be right or left; the
default value is right.

label The text indicating the loading progress. This parameter is a string in the format "%1 out
of %2 loaded (%3%%)"; %1 is a placeholder for the current bytes loaded, %2 is a placeholder for
the total bytes loaded, and %3 is a placeholder for the percent of content loaded. The characters
“%%” are a placeholder for the “%” character. If a value for %2 is unknown, it is replaced by “??”.
If a value is undefined, the label doesn’t display.

labelPlacement The position of the label in relation to the progress bar. This parameter can be
one of the following values: top, bottom, left, right, center. The default value is bottom.

conversion A number to divide the %1 and %2 values in the label string before they are
displayed. The default value is 1.

You can write ActionScript to control these and additional options for ProgressBar components
using its properties, methods, and events. For more information, see ProgressBar class.

Creating an application with the ProgressBar component

The following procedure explains how to add a ProgressBar component to an application while
authoring. In this example, progress bar is used in event mode. In event mode, the loading
content must emit progress and complete events that the progress bar uses to display progress.
The Loader component emits these events. For more information, see “Loader component”
on page 314.

To create an application with the ProgressBar component in event mode, do the following:

1 Drag a ProgressBar component from the Components panel to the Stage.
2 In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select event for the mode parameter.

3 Drag a Loader component from the Components panel to the Stage.
4 In the Property inspector, enter the instance name loader.
5 Select the progress bar on the Stage and, in the Property inspector, enter loader for the

source parameter.
6 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code that loads

a JPEG file into the Loader component:
loader.autoLoad = false;
loader.contentPath = "http://imagecache2.allposters.com/images/86/

017_PP0240.jpg";
pBar.source = loader;
// loading does not start until the load method is invoked
loader.load();

In the following example, the progress bar is used in polled mode. In polled mode, the
ProgressBar uses the getBytesLoaded and getBytesTotal methods of the source object to
display its progress.
414 Chapter 4: Components Dictionary

To create an application with the ProgressBar component in polled mode, do the following:

1 Drag a ProgressBar component from the Components panel to the Stage.
2 In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select polled for the mode parameter.
■ Enter loader for the source parameter.

3 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code that
creates a Sound object called loader and calls the loadSound() method to load a sound into
the Sound object:
var loader:Object = new Sound();
loader.loadSound("http://soundamerica.com/sounds/sound_fx/A-E/air.wav",

true);

In the following example, the progress bar is used in manual mode. In manual mode, you must set
the maximum, minimum, and indeterminate properties in conjunction with the setProgress()
method to display progress. You do not set the source property in manual mode.

To create an application with the ProgressBar component in manual mode, do the following:

1 Drag a ProgressBar component from the Components panel to the Stage.
2 In the Property inspector, do the following:

■ Enter the instance name pBar.
■ Select manual for the mode parameter.

3 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code that
updates the progress bar manually on every file download using calls to the setProgress()
method:
for(var:Number i=1; i <= total; i++){

// insert code to load file
// insert code to load file

pBar.setProgress(i, total);
}

Customizing the ProgressBar component

You can transform a ProgressBar component horizontally both while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use UIObject.setSize().

The left cap and right cap of the progress bar and track graphic are a fixed size. When you resize a
progress bar, the middle part of the progress bar resized to fit between them. If a progress bar is
too small, it may not render correctly.

Using styles with the ProgressBar component

You can set style properties to change the appearance of a progress bar instance. If the name of a
style property ends in “Color”, it is a color style property and behaves differently than non-color
style properties. For more information, see “Using styles to customize component color and text”
on page 27.
ProgressBar component 415

A ProgressBar component supports the following Halo styles:

Using skins with the ProgressBar component

The ProgressBar component uses the following movie clip symbols to display its states:
TrackMiddle, TrackLeftCap, TrackRightCap and BarMiddle, BarLeftCap, BarRightCap and
IndBar. The IndBar symbol is used for an indeterminate progress bar. To skin the ProgressBar
component while authoring, modify symbols in the library and re-export the component as a
SWC. The symbols are located in the Flash UI Components 2/Themes/MMDefault/ProgressBar
Elements folder in the library of the HaloTheme.fla file or the SampleTheme.fla file. For more
information, see “About skinning components” on page 36.

If you use the UIObject.createClassObject() method to create a ProgressBar component
instance dynamically (at runtime), you can also skin it dynamically. To skin a component at
runtime, set the skin properties of the initObject parameter that is passed to the
createClassObject() method. The skin properties set the names of the symbols to use as the
states of the progress bar.

A ProgressBar component uses the following skin properties:

Style Description

themeColor The background of a component. This is the only color style that
doesn’t inherit its value. Possible values are "haloGreen",
"haloBlue", and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either “normal” or “italic”.

fontWeight The font weight; either “normal” or “bold”.

textDecoration The text decoration; either “none” or “underline”.

Property Description

progTrackMiddleName The expandable middle of the track. The default value is
ProgTrackMiddle.

progTrackLeftName The fixed-size left cap. The default value is ProgTrackLeft.

progTrackRightName The fixed-size right cap. The default value is ProgTrackRight.

progBarMiddleName The expandable middle bar graphic. The default value is
ProgBarMiddle.

progBarLeftName The fixed-size left bar cap. The default value is ProgBarLeft.

progBarRightName The fixed-size right bar cap. The default value is ProgBarRight.

progIndBarName The indeterminate bar graphic. The default value is ProgIndBar.
416 Chapter 4: Components Dictionary

ProgressBar class

Inheritance UIObject > ProgressBar

ActionScript Class Name mx.controls.ProgressBar

Setting a property of the ProgressBar class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.ProgressBar.version);

Note: The following code returns undefined: trace(myProgressBarInstance.version);.

Method summary for the ProgressBar class

Inherits all methods from UIObject.

Property summary for the ProgressBar class

Inherits all properties from UIObject.

Method Description

ProgressBar.setProgress() Sets the progress of the bar in manual mode.

Property Description

ProgressBar.conversion A number used to convert the current bytes loaded value and the
total bytes loaded values.

ProgressBar.direction The direction that the progress bar fills.

ProgressBar.indeterminate Indicates that the total bytes of the source is unknown.

ProgressBar.label The text the accompanies the progress bar.

ProgressBar.labelPlacement The location of the label in relation to the progress bar.

ProgressBar.maximum The maximum value of the progress bar in manual mode.

ProgressBar.minimum The minimum value of the progress bar in manual mode.

ProgressBar.mode The mode in which the progress bar loads content.

ProgressBar.percentComplete A number indicating the percent loaded.

ProgressBar.source The content to load whose progress is monitored by the
progress bar.

ProgressBar.value Indicates the amount of progress that has been made. This property
is read-only.
ProgressBar component 417

Event summary for the ProgressBar class

Inherits all events from UIObject.

ProgressBar.complete

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
pBar.addEventListener("complete", listenerObject)

Event Object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.complete event: current (the loaded value equals total), and total (the
total value).

Description

Event; broadcast to all registered listeners when the loading progress has completed.

The first usage example uses an on() handler and must be attached directly to a ProgressBar
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance pBar,
sends “_level0.pBar” to the Output panel:
on(complete){

trace(this);
}

Event Description

ProgressBar.complete Triggered when loading is complete.

ProgressBar.progress Triggered as content loads in event or polled mode.
418 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance (pBar)
dispatches an event (in this case, complete) and the event is handled by a function, also called a
handler, on a listener object (listenerObject) that you create. You define a method with the
same name as the event on the listener object; the method is called when the event is triggered.
When the event is triggered, it automatically passes an event object (eventObject) to the listener
object method. Each event object has a set of properties that contains information about the
event. You can use these properties to write code that handles the event. Finally, you call the
UIEventDispatcher.addEventListener() method on the component instance that broadcasts
the event to register the listener with the instance. When the instance dispatches the event, the
listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example creates a form listener object with a complete callback function that sends a
message to the Output panel with the value of the pBar instance, as in the following:
form.complete = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Progress Bar.
 trace("Value changed to " + eventObj.target.value);
}
pBar.addEventListener("complete", form);

See also

UIEventDispatcher.addEventListener()

ProgressBar.conversion

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.conversion

Description

Property; a number that sets a conversion value for the incoming values. It divides the current and
total values, floors them, and displays the converted value in the label property. The default
value is 1.

Example

The following code displays the value of the loading progress in kilobytes:
pBar.conversion = 1024;
ProgressBar component 419

ProgressBar.direction

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.direction

Description

Property; indicates the fill direction for the progress bar. The default value is "right".

Example

The following code sets makes the progress bar fill from right to left:
pBar.direction = "left";

ProgressBar.indeterminate

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.indeterminate

Description

Property; a Boolean value that indicates whether the progress bar has a candy-cane striped fill
and a loading source of unknown size (true), or a solid fill and a loading source of a known
size (false).

Example

The following code creates a determinate progress bar with a solid fill that moves from left
to right:
pBar.direction = "right";
pBar.indeterminate = false;
420 Chapter 4: Components Dictionary

ProgressBar.label

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.label

Description

Property; text that indicates the loading progress. This property is a string in the format "%1 out
of %2 loaded (%3%%)"; %1 is a placeholder for the current bytes loaded, %2 is a placeholder for
the total bytes loaded, and %3 is a placeholder for the percent of content loaded. The characters
“%%” are a placeholder for the “%” character. If a value for %2 is unknown, it is replaced by “??”.
If a value is undefined, the label doesn’t display. The default value is "LOADING %3%%"

Example

The following code sets the text that appears beside the progress bar to the format "4 files loaded":
pBar.label = "%1 files loaded";

See also

ProgressBar.labelPlacement

ProgressBar.labelPlacement

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.labelPlacement

Description

Property; sets the placement of the label in relation to the progress bar. The possible values are
"left", "right", "top", "bottom", and "center".

Example

The following code sets label to display above the progress bar:
pBar.label = "%1 out of %2 loaded (%3%%)";
pBar.labelPlacement = "top";

See also

ProgressBar.label
ProgressBar component 421

ProgressBar.maximum

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.maximum

Description

Property; the largest value for the progress bar when the ProgressBar.mode property is set
to "manual".

Example

The following code sets the maximum property to the total frames of a Flash application
that’s loading:
pBar.maximum = _totalframes;

See also

ProgressBar.minimum, ProgressBar.mode

ProgressBar.minimum

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.minimum

Description

Property; the smallest progress value for the progress bar when the ProgressBar.mode property is
set to "manual".

Example

The following code sets the minimum value for the progress bar:
pBar.minimum = 0;

See also

ProgressBar.maximum, ProgressBar.mode
422 Chapter 4: Components Dictionary

ProgressBar.mode

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.mode

Description

Property; the mode in which the progress bar loads content. This value can be one of the
following: "event", "polled", or "manual". The most commonly used modes are "event" and
"polled". These modes use the source parameter to specify a loading process that either emits
progress and complete events, like a Loader component (event mode), or exposes
getBytesLoaded and getsBytesTotal methods, like a MovieClip object (polled mode). You
can also use the ProgressBar component in manual mode by manually setting the maximum,
minimum, and indeterminate properties along with calls to the ProgressBar.setProgress()
method.

A Loader object should be used as the source in event mode. Any object that exposes
getBytesLoaded() and getBytesTotal() methods can be used as a source in polled mode.
(Including a custom object or the _root object)

Example

The following code sets the progress bar to event mode:
pBar.mode = "event";

ProgressBar.percentComplete

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.percentComplete

Description

Property (read-only); returns the percentage of completion of the process. This value is floored.
The following is the formula used to calculate the percentage:
100*(value-minimum)/(maximum-minimum)

Example

The following code sends the value of the percentComplete property to the Output panel:
trace("percent complete = " + pBar.percentComplete);
ProgressBar component 423

ProgressBar.progress

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
pBarInstance.addEventListener("progress", listenerObject)

Event Object

In addition to the standard event object properties, there are two additional properties defined
for the ProgressBar.progress event: current (the loaded value equals total), and total (the
total value).

Description

Event; broadcast to all registered listeners whenever the value of a progress bar changes. This event
is only broadcast when ProgressBar.mode is set to "manual" or "polled".

The first usage example uses an on() handler and must be attached directly to a ProgressBar
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myPBar, sends “_level0.myPBar” to the Output panel:
on(progress){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(pBarInstance) dispatches an event (in this case, progress) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
424 Chapter 4: Components Dictionary

Example

This example creates a listener object, form, and defines a progress event handler on it. The
form listener is registered to the pBar instance in the last line of code. When the progress event
is triggered, pBar broadcasts the event to the form listener which calls the progress callback
function, as follows:
var form:Object = new Object();
form.progress = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Progress Bar.
 trace("Value changed to " + eventObj.target.value);
}
pBar.addEventListener("progress", form);

See also

UIEventDispatcher.addEventListener()

ProgressBar.setProgress()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.setProgress(completed, total)

Parameters

completed a number indicating the amount of progress that has been made. You can use the
ProgressBar.label and ProgressBar.conversion properties to display the number in
percentage form or any units you choose, depending on the source of the progress bar.

total a number indicating the total progress that must be made to reach 100 percent.

Returns

A number indicating the amount of progress that has been made.

Description

Method; sets the state of the bar to reflect the amount of progress made when the
ProgressBar.mode property is set to "manual". You can call this method to make the bar reflect
the state of a process other than loading. The argument completed is assigned to value property
and argument total is assigned to the maximum property. The minimum property is not altered.

Example

The following code calls the setProgress() method based on the progress of a Flash
application’s Timeline:
pBar.setProgress(_currentFrame, _totalFrames);
ProgressBar component 425

ProgressBar.source

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.source

Description

Property; a reference to the instance to be loaded whose loading process will be displayed. The
loading content should emit a progress event from which the current and total values are
retrieved. This property is used only when ProgressBar.mode is set to "event" or "polled".
The default value is undefined.

The ProgressBar can be used with contents within an application, including _root.

Example

This example sets the pBar instance to display the loading progress of a loader component with
the instance name loader:
pBar.source = loader;

See also

ProgressBar.mode

ProgressBar.value

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

pBarInstance.value

Description

Property (read-only); indicates the amount of progress that has been made. This property is a
number between the value of ProgressBar.minimum and ProgressBar.maximum. The default
value is 0.
426 Chapter 4: Components Dictionary

RadioButton component

The RadioButton component allows you to force a user to make a single choice within a set of
choices. The RadioButton component must be used in a group of at least two RadioButton
instances. Only one member of the group can be selected at any given time. Selecting one radio
button in a group deselects the currently selected radio button in the group. You can set the
groupName parameter to indicate which group a radio button belongs to.

A radio button can be enabled or disabled. When a user tabs into a radio button group, only the
selected radio button receives focus. A user can press the arrow keys to change focus within the
group. In the disabled state, a radio button doesn’t receive mouse or keyboard input.

A RadioButton component group receives focus if you click it or tab to it. When a RadioButton
group has focus, you can use the following keys control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

A live preview of each RadioButton instance on the Stage reflects changes made to parameters in
the Property inspector or Component Inspector panel while authoring. However, the mutual
exclusion of selection does not display in the live preview. If you set the selected parameter to true
for two radio buttons in the same group, they both appear selected even though only the last
instance created will appear selected at runtime. For more information, see “RadioButton
parameters” on page 427.

When you add the RadioButton component to an application, you can use the Accessibility
panel to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.RadioButtonAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the RadioButton component

A radio button is a fundamental part of any form or web application. You can use radio buttons
wherever you want a user to make one choice from a group of options. For example, you would
use radio buttons in a form to ask which credit card a customer is using to pay.

RadioButton parameters

The following are authoring parameters that you can set for each RadioButton component
instance in the Property inspector or in the Component Inspector panel:

label sets the value of the text on the button; the default value is Radio Button.

data is the value associated with the radio button. There is no default value.

Key Description

Up/Right The selection moves to the previous radio button within the radio button group.

Down/Left The selection moves to the next radio button within the radio button group.

Tab Moves focus from the radio button group to the next component.
RadioButton component 427

groupName is the group name of the radio button. The default value is radioGroup.

selected sets the initial value of the radio button to selected (true) or unselected (false). A selected
radio button displays a dot inside it. Only one radio button within a group can have a selected
value of true. If more than one radio button within a group is set to true, the radio button that is
instantiated last is selected. The default value is false.

labelPlacement orients the label text on the button. This parameter can be one of four values:
left, right, top, or bottom; the default value is right. For more information, see
RadioButton.labelPlacement.

You can write ActionScript to set additional options for RadioButton instances using the
methods, properties, and events of the RadioButton class. For more information, see
RadioButton class.

Creating an application with the RadioButton component

The following procedure explains how to add RadioButton components to an application while
authoring. In this example, the radio buttons are used to present a yes or no question, “Are you a
Flashist?”. The data from the radio group is displayed in a TextArea component with the instance
name theVerdict.

To create an application with the RadioButton component, do the following:

1 Drag two RadioButton components from the Components panel to the Stage.
2 Select one of the radio buttons and in the Component Inspector panel do the following:

■ Enter Yes for the label parameter.
■ Enter Flashist for the data parameter.

3 Select the other radio button and in the Component Inspector panel do the following:
■ Enter No for the label parameter.
■ Enter Anti-Flashist for the data parameter.

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
flashistListener = new Object();
flashistListener.click = function (evt){

theVerdict.text = evt.target.selection.data
}
radioGroup.addEventListener("click", flashistListener);

The last line of code adds a click event handler to the radioGroup radio button group. The
handler sets the text property of the TextArea component instance theVerdict to the value
of the data property of the selected radio button in the radioGroup radio button group. For
more information, see RadioButton.click.

Customizing the RadioButton component

You can transform a RadioButton component horizontally and vertically both while authoring
and at runtime. While authoring, select the component on the Stage and use the Free Transform
tool or any of the Modify > Transform commands. At runtime, use the setSize() method (see
“UIObject.setSize()” on page 576).

The bounding box of a RadioButton component is invisible and also designates the hit area for
the component. If you increase the size of the component, you also increase the size of the
hit area.
428 Chapter 4: Components Dictionary

If the component’s bounding box is too small to fit the component label, the label clips to fit.

Using styles with the RadioButton component

You can set style properties to change the appearance of a RadioButton. If the name of a style
property ends in “Color”, it is a color style property and behaves differently than non-color style
properties. For more information, see “Using styles to customize component color and text”
on page 27.

A RadioButton component uses the following Halo styles:l

Using skins with the RadioButton component

The RadioButton component can be skinned while authoring by modifying the component’s
symbols in the library. The skins for the RadioButton component are located in the following
folder in the library of HaloTheme.fla or SampleTheme.fla: Flash UI Components 2/Themes/
MMDefault/RadioButton Assets/States. See “About skinning components” on page 36.

If a radio button is enabled and unselected, it displays its roll-over state when a user moves the
pointer over it. When a user clicks an unselected radio button, the radio button receives input
focus and displays its false pressed state. When a user releases the mouse, the radio button displays
its true state and the previously selected radio button within the group returns to its false state.
If a user moves the pointer off a radio button while pressing the mouse, the radio button’s
appearance returns to its false state and it retains input focus.

If a radio button or radio button group is disabled it displays its disabled state, regardless of
user interaction.

If you use the UIObject.createClassObject() method to create a RadioButton component
instance dynamically, you can also skin the component dynamically. To skin a RadioButton
component dynamically, pass skin properties to the UIObject.createClassObject() method.
For more information, see “About skinning components” on page 36. The skin properties
indicate which symbol to use to display a component.

Style Description

themeColor The background of a component. This is the only color style that
doesn’t inherit its value. Possible values are "haloGreen", "haloBlue",
and "haloOrange".

color The text of a component label.

disabledColor The disabled color for text.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style; either "normal", or "italic".

fontWeight The font weight; either "normal", or "bold".
RadioButton component 429

A RadioButton component uses the following skin properties:

RadioButton class

Inheritance UIObject > UIComponent > SimpleButton > Button > RadioButton

ActionScript Package Name mx.controls.RadioButton

The properties of the RadioButton class allow you at runtime to create a text label and position it
in relation to the radio button. You can also assign data values to radio buttons, assign them to
groups, and select them based on data value or instance name.

Setting a property of the RadioButton class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The RadioButton component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For information about
creating focus navigation, see “Creating custom focus navigation” on page 24.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.RadioButton.version);

Note: The following code returns undefined: trace(myRadioButtonInstance.version);.

Method summary for the RadioButton class

Inherits all methods from UIObject, UIComponent, SimpleButton, and Button class.

Property summary for the RadioButton class

Name Description

falseUpIcon The unchecked state. The default value is radioButtonFalseUp.

falseDownIcon The pressed-unchecked state. The default value is
radioButtonFalseDown.

falseOverIcon The over-unchecked state. The default value is
radioButtonFalseOver.

falseDisabledIcon The disabled-unchecked state. The default value is
radioButtonFalseDisabled.

trueUpIcon The checked state. The default value is radioButtonTrueUp.

trueDisabledIcon The disabled-checked state. The default value is
radioButtonTrueDisabled.

Property Description

RadioButton.data The value associated with a radio button instance.

RadioButton.groupName The group name for a radio button group or radio button instance.

RadioButton.label The text that appears next to a radio button.

RadioButton.labelPlacement The orientation of the label text in relation to a radio button.
430 Chapter 4: Components Dictionary

Inherits all properties from UIObject, UIComponent, SimpleButton, and the Button class

Event summary for the RadioButton class

Inherits all events from UIObject, UIComponent, SimpleButton, and Button class

RadioButton.click

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
radioButtonGroup.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (pressed and released) over
the radio button or if the radio button is selected by using the arrow keys. The event is also
broadcast if the Spacebar or arrow keys are pressed when a radio button group has focus, but none
of the radio buttons in the group are selected.

RadioButton.selected Sets the state of the radio button instance to selected and deselects
the previously selected radio button.

RadioButton.selectedData Selects the radio button in a radio button group with the specified
data value.

RadioButton.selection A reference to the currently selected radio button in a radio
button group.

Event Description

RadioButton.click Triggered when the mouse is pressed over a button instance.

Property Description
RadioButton component 431

The first usage example uses an on() handler and must be attached directly to a RadioButton
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the radio button
myRadioButton, sends “_level0.myRadioButton” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(radioButtonInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example, written on a frame of the Timeline, sends a message to the Output panel when a
radio button in the radioGroup is clicked. The first line of code creates a listener object called
form. The second line defines a function for the click event on the listener object. Inside the
function is a trace action that uses the event object that is automatically passed to the function,
in this example eventObj, to generate a message. The target property of an event object is the
component that generated the event. You can access instance properties from the target property
(in this example, the RadioButton.selection property is accessed) The last line calls the
UIEventDispatcher.addEventListener() method from radioGroup and passes it the click
event and the form listener object as parameters, as in the following:
form = new Object();
form.click = function(eventObj){

trace("The selected radio instance is " + eventObj.target.selection);
}
radioGroup.addEventListener("click", form);

The following code also sends a message to the Output panel when radioButtonInstance
is clicked. The on() handler must be attached directly to radioButtonInstance, as in
the following:
on(click){

trace("radio button component was clicked");
}

432 Chapter 4: Components Dictionary

RadioButton.data

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

radioButtonInstance.data

Description

Property; specifies the data to associate with a radio button instance. Setting this property
overrides the data parameter value set while authoring in the Property inspector or in the
Component Inspector panel. The data property can be any data type.

Example

The following example assigns the data value "#FF00FF" to the radioOne radio button instance:
radioOne.data = "#FF00FF";

RadioButton.groupName

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

radioButtonInstance.groupName
radioButtonGroup.groupName

Description

Property; sets the group name for a radio button instance or group. You can use this property to
get or set a group name for a radio button instance or a group name for a radio button group.
Calling this method overrides the groupName parameter value set while authoring. The default
value is "radioGroup".

Example

The following example sets the group name of a radio button instance to “colorChoice” and
then changes the group name to “sizeChoice”. To test this example, place a radio button on the
Stage with the instance name myRadioButton and enter the following code on Frame 1:
myRadioButton.groupName = "colorChoice";
trace(myRadioButton.groupName);
colorChoice.groupName = "sizeChoice";
trace(colorChoice.groupName);
RadioButton component 433

RadioButton.label

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

radioButtonInstance.label

Description

Property; specifies the text label for the radio button. By default, the label appears to the right of
the radio button. Calling this method overrides the label parameter specified while authoring. If
the label text is too long to fit within the bounding box of the component, the text clips.

Example

The following example sets the label property of the instance radioButton:
radioButton.label = "Remove from list";

RadioButton.labelPlacement

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

radioButtonInstance.labelPlacement
radioButtonGroup.labelPlacement

Description

Property; a string that indicates the position of the label in relation to a radio button. You can set
this property for an individual instance, or for a radio button group. If you set the property for a
group, the label is placed in the appropriate position for each radio button in the group.

The following are the four possible values:

• "right" The radio button is pinned to the upper left corner of the bounding area. The label
is set to the right of the radio button.

• "left" The radio button is pinned to the upper right corner of the bounding area. The label
is set to the left of the radio button.

• "bottom" The label is placed below the radio button. The radio button and label grouping
are centered horizontally and vertically. If the bounding box of the radio button isn’t large
enough, the label will clip.

• "top" The label is placed above the radio button. The radio button and label grouping are
centered horizontally and vertically. If the bounding box of the radio button isn’t large enough,
the label will clip.
434 Chapter 4: Components Dictionary

Example

The following code places the label to the left of each radio button in the radioGroup:
radioGroup.labelPlacement = "left";

RadioButton.selected

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

radioButtonInstance.selected
radioButtonGroup.selected

Description

Property; a Boolean value that sets the state of the radio button to selected (true) and deselects
the previously selected radio button, or sets the radio button to deselected (false).

Example

The first line of code sets the mcButton instance to true. The second line of code returns the
value of the selected property, as follows:
mcButton.selected = true;
trace(mcButton.selected);

RadioButton.selectedData

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

radioButtonGroup.selectedData

Description

Property; selects the radio button with the specified data value and deselects the previously
selected radio button. If the data property is not specified for a selected instance, the label value
of the selected instance is selected and returned. The selectedData property can be of any
data type.

Example

The following example selects the radio button with the value "#FF00FF" from the radio group
colorGroup and sends the value to the Output panel:
colorGroup.selectedData = "#FF00FF";
trace(colorGroup.selectedData);
RadioButton component 435

RadioButton.selection

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

radioButtonInstance.selection
radioButtonGroup.selection

Description

Property; behaves differently if you get or set the property. If you get the property, it returns the
object reference of the currently selected radio button in a radio button group. If you set the
property, it selects the specified radio button (passed as an object reference) in a radio button
group and deselects the previously selected radio button.

Example

The following example selects the radio button with the instance name color1 and sends its
instance name to the Output panel:
colorGroup.selection = color1;
trace(colorGroup.selection._name)

RDBMSResolver component (Flash Professional only)

You use resolver components in combination with the DataSet component (part of the data
management functionality in the Macromedia Flash data architecture). The resolver components
enable you to convert changes made to the data within your application into a format that is
appropriate for the external data source that you are updating. These components have no visual
appearance at runtime.

If you use a DataSet component in your application it generates an optimized set of instructions
(DeltaPacket) that describes the changes made to the data at runtime. This set of instructions is
converted to the appropriate format (update packet) by the resolver components. When an
update is sent to the server, the server sends a response (result packet) containing additional
updates or errors that result from the update operation. The resolver components can convert this
information back into a DeltaPacket that can be applied to the DataSet component to keep it in
sync with the external data source. Resolver components enable you to keep your application and
an external data source in sync without writing additional ActionScript code.

The RDBMSResolver component translates XML that can be received and parsed by a web
service, a JavaBean, a servlet, or an ASP page. The XML contains the necessary information and
formatting for updating any standard SQL relational database. A parallel resolver component,
XUpdateResolver (see “XUpdateResolver component (Flash Professional only)” on page 632),
exists for returning data to an XML-based server. For more information about DataSet
components, see “DataSet component (Flash Professional only)” on page 193. For more
information about connectors, see “WebServiceConnector (Flash Professional only)” on page 604
and “XMLConnector component (Flash Professional only)” on page 624. For more information
about the Flash data architecture, see “Resolver components (Flash Professional only)” in Using
Flash Help.
436 Chapter 4: Components Dictionary

The RDBMSResolver component converts changes made to the data in your application into an
XML packet that can be sent to an external data source.
Note: You can use the RDBMSResolver to send data updates to any external data source that can
parse XML and generate SQL statements against a database; for example, an ASP page, a Java
servlet, or a ColdFusion component.

The updates from the RDBMSResolver component are sent in the form of an XML update
packet communicated to the database through a connector object. The resolver component is
connected to a DataSet component’s DeltaPacket property, sends its own update packet to a
connector, receives server errors back from the connector, and communicates them back to the
DataSet component—all using bindable properties.

Using the RDBMSResolver component (Flash Professional only)
Use this RDBMSResolver component only when your Flash application contains a DataSet
component and must send an update back to the data source. This component resolves data that
you want to return to a relational database.

For more information on working with the RDBMSResolver component, see “Resolver
components (Flash Professional only)” in Using Flash Help.

RDBMSResolver component parameters

TableName String representing the table name in the XML for the database table to be
updated. This should be the same value as the input value for the Resolver.fieldInfo item to
be updated. If no updates to this field exist, this value should be blank, which is the default value.

UpdateMode Enumerator that determines the way key fields are identified during the
generation of the XML update packet. The default value is umUsingKey. Possible values are
as follows:

• umUsingAll Uses the old values of all of the fields modified to identify the record to be
updated. This is the safest value to use for updating, because it guarantees that another user has
not modified the record since you retrieved it. However, this approach is time consuming and
generates a larger update packet.

• umUsingModified Uses the old values of all of the fields modified to identify the record to
be updated. This value guarantees that another user has not modified the same fields in the
record since you retrieved it.

• umUsingKey This is the default value for this property. This setting uses the old value of the
key fields. This implies an “optimistic concurrency” model, which most database systems today
employ, and guarantees that you are modifying the same record that you retrieved from the
database. Your changes overwrites any other user’s changes to the same data.

NullValue String representing a null field value. This is customizable to prevent it from being
confused with an empty string ("") or another valid value. The default value is {_NULL_}.

FieldInfo Collection representing one or more key fields that uniquely identify the records. If
your data source is a database table, then it should have one or more fields that uniquely key the
records within it. Additionally, some fields may have been calculated or joined from other tables.
Those fields must be identified so that the key fields can be set within the XML update packet,
and so that any fields that should not be updated are omitted from the XML update packet.
RDBMSResolver component (Flash Professional only) 437

The RDBMSResolver component contains a FieldInfo property for this purpose. This collection
property lets you define an unlimited number of fields with properties that identify fields that
require special handling. Each FieldInfo item in the collection contains three properties:

• FieldName Name of a field. This should map to a field in the DataSet component.
• OwnerName Optional value used to identify fields not “owned” by the same table defined in

the resolver component’s TableName parameter. If this value is the same value as the
TableName parameter or is blank, usually the field is included in the XML update packet. If it
is a different value, this field is excluded from the update packet.

• IsKey Boolean property that you should set to true so that all key fields for the table
are updated.

The following example shows FieldInfo items that are created to update fields in the Customer
table. You must identify the key fields in the customer table. The customer table has a single key
field, id; therefore, you should create a field item with the following values:
FieldName = "id"
OwnerName = <--! leave this value blank -->
IsKey = "true"

Also, the custType field is added using a join in the query. This field should be excluded from the
update, so you create a field item with the following values:
FieldName = "custType"
OwnerName = "JoinedField"
IsKey = "false"

When the field items are defined, Flash Player can use them to automatically generate the
complete XML, which is used to update a table.

Property summary for the RDBMSResolver component

Property Description

RDBMSResolver.deltaPacket A copy of the DataSet component’s DeltaPacket property.

RDBMSResolver.fieldInfo An unlimited number of fields with properties that identify
DataSet fields requiring special handling as either a key field or
a nonupdatable field.

RDBMSResolver.nullValue Indicator that a field’s value is null.

RDBMSResolver.tableName The table name put in the XML for the database table to
be updated.

RDBMSResolver.updateMode The value that determines how key fields are identified when
the XML update packet is being generated.

RDBMSResolver.updatePacket A copy of the connector updatePacket property containing the
latest XML-formatted data for return from the connector to the
DataSet component after the server has received this
application’s request to update.

RDBMSResolver.updateResults A copy of the connector's Results property, which returns any
XML-formatted errors or updates for the DataSet component.
438 Chapter 4: Components Dictionary

Method summary for the RDBMSResolver component

Event summary for the RDBMSResolver component

RDBMSResolver.addFieldInfo()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.addFieldInfo("fieldName", "ownerName", "isKey")

Parameters

fieldName String; provides the name of the field this information object describes.

ownerName String; provides the name of the table that owns this field. May be left blank ("") if
it is the same as the resolver instance’s tablename property.

isKey Boolean; indicates whether this field is a key field.

Returns

None.

Description

Method; adds a new item to the XML fieldInfo collection in the update Packet. Use this
method if you must set up a resolver component dynamically at runtime, rather than using the
Component inspector in the authoring environment.

Method Description

RDBMSResolver.addFieldInfo() Adds a new item to the fieldInfo collection, used for setting
up a resolver component dynamically at runtime, rather than
using the Component inspector in the authoring environment.

Event Description

RDBMSResolver.beforeApplyUpdates Defined in your application; called by the resolver component
to make custom modifications to the XML of the updatePacket
property before it is bound to the connector.

RDBMSResolver.reconcileResults Defined in your application; called by the resolver component
to reconcile the updates between the updatePacket property
sent to the server and the updatePacket property returned from
the server.

RDBMSResolver.reconcileUpdates Defined in your application; called by the resolver component
to reconcile the update received by the server and the
pending update.
RDBMSResolver component (Flash Professional only) 439

Example

The following example creates a resolver component and provides the name of the table, the
name of the key field, and prevents the personTypeName field from being updated:
var myResolver:RDBMSResolver = new RDBMSResolver();
myResolver.tableName = "Customers";
// Sets up the id field as a key field
// and the personTypeName field so it won't be updated.
myResolver.addFieldInfo("id", "", true);
myResolver.addFieldInfo("personTypeName", "JoinedField", false);
// Sets up the data bindings
//...

RDBMSResolver.beforeApplyUpdates

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.beforeApplyUpdates(eventObject)

Parameters

eventObject Resolver event object; describes the customizations to the XML packet before the
update is sent though the connector to the database. This resolver event object should contain the
following properties:

Returns

None.

Description

Property; property of type deltaPacket that receives a deltaPacket to be translated into an
xupdatePacket, and outputs a deltaPacket from any server results placed into the
updateResults property. This event handler provides a way for you to make custom
modifications to the XML before sending the updated data to a connector.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the deltaPacket again so it can be resent the next time the deltaPacket is
sent to the server. You must write code that handles deltas that have messages so that the messages
are presented to the user and modified before being added to the next deltaPacket.

Property Description

target Object; resolver firing this event.

type String; name of the event.

updatePacket XML object; XML object about to be applied.
440 Chapter 4: Components Dictionary

Example

The following example adds the user authentication data to the XML packet:
on (beforeApplyUpdates) {

 // add user authentication data
 var userInfo = new XML(""+getUserId()+ ""+getPassword()+"");
 updatePacket.firstChild.appendChild(userInfo);

}

RDBMSResolver.deltaPacket

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.deltaPacket

Description

Property; property of type deltaPacket that receives a deltaPacket to be translated into an
updatePacket, and outputs a deltaPacket from any server results placed into the
updateResults property.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the deltaPacket again so it can be resent the next time the deltaPacket is
sent to the server. You must write code that handles deltas that have messages so that the messages
are presented to the user and modified before being added to the next deltaPacket.

RDBMSResolver.fieldInfo

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.fieldInfo
RDBMSResolver component (Flash Professional only) 441

Description

Property; property of type Collection specifies a collection of an unlimited number of fields
with properties that identify DataSet fields that require special handling, either because the field
is a key field or a nonupdatable field. Each FieldInfo item in the collection contains
three properties:

RDBMSResolver.nullValue

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.deltaPacket

Description

Property; property of type String used to provide a null value for a field’s value. This is
customizable to prevent it from being confused with an empty string ("") or another valid value.
The default string is {_NULL_}.

RDBMSResolver.reconcileResults

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.reconcileResults(eventObject)

Property Description

FieldName Name of the special-case field. This field name should map to
a field name in the DataSet.

OwnerName This optional property is the name of the owner of this field if
this field is not “owned” by the same table defined in the
component TableName parameter. If this is filled in with the
same value as that parameter or left blank, usually the field is
included in the XML update packet. If filled in differently, this
field is excluded from the update packet.

IsKey Boolean value set to true for all key fields for the table to
be updated.
442 Chapter 4: Components Dictionary

Parameters

eventObject Resolver event object; describes the event object used to compare two
updatePackets This resolver event object should contain the following properties:

Returns

None.

Description

Event; called by the resolver component to compare two packets after results have been received
from the server and have been applied to the deltaPacket.

A single updateResults packet can contain both results of operations that were in the
deltaPacket, and information about updates performed by other clients. When a new
updatePacket is received, the operation results and database updates are split into two
updatePackets and placed separately into the deltaPacket property. The reconcileResults
event is fired just before the deltaPacket containing the operation results is sent using
data binding.

Example

The following example reconciles two updatePackets and returns and clears the updates on
success:
on (reconcileResults) {

 // examine results
 if(examine(updateResults))
 myDataSet.purgeUpdates();
 else
 displayErrors(results);

}

RDBMSResolver.reconcileUpdates

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.reconcileUpdates(eventObject)

Property Description

target Object; resolver firing this event.

type String; name of the event.
RDBMSResolver component (Flash Professional only) 443

Parameters

eventObject Resolver event object; describes the customizations to the XML packet before the
update is sent through the connector to the database. This resolver event object should contain
the following properties:

Returns

None.

Description

Event; called by the resolver component when results have been received from the server after
applying the updates from a deltaPacket. A single updateResults packet can contain both
results of operations that were in the deltaPacket, and information about updates that were
performed by other clients. When a new updatePacket is received, the operation results and
database updates are split into two deltaPackets, which are placed separately into the
deltaPacket property. The reconcileUpdates event is fired just before the deltaPacket
containing any database updates is sent using data binding

Example

The following example reconciles two results and clears the updates on success:
on (reconcileUpdates) {

 // examine results
 if(examine(updateResults))
 myDataSet.purgeUpdates();
 else
 displayErrors(results);

RDBMSResolver.tableName

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.deltaPacket

Property Description

target Object; resolver firing this event.

type String; name of the event.
444 Chapter 4: Components Dictionary

Description

Property; property of type String used to represent the table name in the XML for the database
table to be updated. This also determines which fields to send in the updatePacket. To make this
determination, the resolver compoent compares the value of this property to the value provided
for the fieldInfo.ownerName property. If a field has no entry in the fieldInfo collection
property, the field is placed into the updatePacket. If a field has an entry in the fieldInfo
collection property, and the ownerName property value is blank or identical to the resolver
component’s tableName property, the field is placed into the updatePacket. If a field has an
entry in the fieldInfo collection property, and the ownerName property value is not blank and is
different from the resolver component’s tableName property, the field is not placed into the
updatePacket.

RDBMSResolver.updateMode

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.deltaPacket

Description

Property; property containing several values that determine how key fields are identified when the
XML update packet is being generated. The following three strings are values for this property:

Value Description

umUsingAll Uses the old values of all of the fields modified to identify the
record to be updated. This is the safest value to use for
updating, because it guarantees that another user has not
modified the all of the record since you retrieved it. However,
this approach is more time consuming and generates a larger
update packet.

umUsingModified Uses the old values of all of the fields modified to identify the
record to be updated. This value guarantees that another user
has not modified the same fields in the record since you
retrieved it.

umUsingKey This is the default value for this property. Uses the old value of
the key fields. This implies an “optimistic concurrency” model,
which most database systems today employ and guarantees
that you are modifying the same record that you retrieved from
the database. Your changes will overwrite any other user’s
changes to the same data.
RDBMSResolver component (Flash Professional only) 445

RDBMSResolver.updatePacket

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.deltaPacket

Description

Description

Property; property of type XML used to bind to a connector property that transmits the translated
update packet of changes back to the server so the source of the data can be updated. This is an
XML document containing the packet of DataSet changes.

RDBMSResolver.updateResults

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.deltaPacket

Description

Property; property of type deltaPacket that contains the results of an update returned from the
server through a connector. Use this property to transmit errors and updated data from the server
to a DataSet; for example, when the server assigns new IDs for an auto-assigned field. Bind this
property to a connector’s Results property so that it can receive the results of an update and
transmit the results back to the DataSet.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the deltaPacket again so it can be resent the next time the deltaPacket is
sent to the server. You must write code that handles deltas that have messages so that the messages
are presented to the user and modified before being added to the next deltaPacket.
446 Chapter 4: Components Dictionary

Remote Procedure Call (RPC) Component API

ActionScript Class Name mx.data.components.RPC

The Remote Procedure Call (RPC) Component API is an interface (a set of methods, properties,
and events) that can be implemented by a Flash MX 2004 v2 component. The RPC Component
API defines an easy way to send parameters to, and receive results from, an external resource such
as a web service.

Components that implement the RPC API include the WebServiceConnector and
XMLConnector components. These components act as connectors between an external data
source, such as a web service or XML file, and a UI component in your application.

An RPC component has the ability to call a single external function, pass in parameters, and
receive results. The component can call that same function multiple times. To call multiple
functions, you must use multiple components.

Property summary for the RPC Component class

Method summary for the RPC Component class

Event summary for the RPC Component class

Property Description

RPC.multipleSimultaneousAllowed Indicates whether multiple calls can take place at the
same time.

RPC.params Specifies data that will be sent to the server when the next
trigger() operation is executed.

RPC.results Identifies data that was received from the server as a result of
the a trigger() operation.

RPC.suppressInvalidCalls Indicates whether to suppress a call if parameters are invalid.

Method Description

RPC.trigger() Initiates a remote procedure call.

Event Description

RPC.result Broadcast when a Remote Procedure Call
completes successfully.

RPC.send Broadcast when the trigger() function is in process, after the
parameter data has been gathered but before the data is
validated and the Remote Call is initiated.

RPC.status Broadcast when a Remote Procedure Call is initiated, to
inform the user of the status of the operation.
Remote Procedure Call (RPC) Component API 447

RPC.multipleSimultaneousAllowed

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.multipleSimultaneousAllowed;

Description

Property; indicates whether multiple calls can take place at the same time. If false, then the
trigger() function will perform a call if another call is already in progress. A status event will
be emitted, with the code CallAlreadyInProgress. If true, then the call will take place.

When multiple calls are simultaneously in progress, there is no guarantee that they will complete
in the same order as they were triggered. Also, Flash Player may place limits on the number of
simultaneous network operations. This limit varies by version and platform.

RPC.params

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.params;

Description

Property; specifies data that will be sent to the server when the next trigger() operation is
executed. Each RPC component defines how this data is used, and what the valid types are.

RPC.result

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("result", myListenerObject);
448 Chapter 4: Components Dictionary

Description

Event; broadcasts when an Remote Procedure Call operation successfully completes.

The parameter to the event handler is an object with the following fields:

• type: the string "result"
• target: a reference to the object that emitted the event, for example a WebServiceConnector

component

You can retrieve the actual result value using the results property.

RPC.results

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.results;

Description

Property; identifies data that was received from the server as a result of a trigger() operation.
Each RPC component defines how this data is fetched, and what the valid types are. This data
appears when the RPC operation has successfully completed, as signalled by the result event. It
is available until the component is unloaded, or until the next RPC operation.

It is possible for the returned data to be very large. You can manage this in 2 ways:

• Select an appropriate movie clip, Timeline, or screen as the parent for the RPC component.
The component's storage will become available for garbage collection when the parent
goes away.

• In ActionScript, you can assign null to this property at any time.

RPC.send

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("send", myListenerObject);

Description

Event; broadcasts during the processing of a trigger() operation, after the parameter data has
been gathered but before the data is validated and the Remote Procedure Call is initiated. This is
a good place to put code that will modify the parameter data before the call.
Remote Procedure Call (RPC) Component API 449

The parameter to the event handler is an object with the following fields:

• type: the string "send"
• target: a reference to the object that emitted the event, for example a

WebServiceConnector component

You can retrieve or modify the actual parameter values using the params property.

RPC.status

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("status", myListenerObject);

Description

Event; broadcasts when a Remote Procedure Call is initiated, to inform the user of the status of
the operation.

The parameter to the event handler is an object with the following fields:

• type: the string "status"
• target: a reference to the object that emitted the event; for example, a

WebServiceConnector component
• code: a string giving the name of the specific condition that occurred.
• data: an object whose contents depend on the code.

The following are the codes and associated data available for the status event:

Code Data Description

StatusChange {callsInProgress:nnn} This event is emitted whenever a web service call
starts or finishes. The item "nnn" gives the number of
calls currently in progress.

CallAlreadyInProgress no data This event is emitted if (a) the trigger() function is
called, and (b) multipleSimultaneousAllowed is false,
and (c) a call is already in progress. After this event
occurs, the attempted call is considered complete,
and there will be no "result" or "send" event.

InvalidParams no data This event is emitted if the trigger() function found
that the "params" property did not contain valid data.
If the "suppressInvalidCalls" property is true, then the
attempted call is considered complete, and there will
be no "result" or "send" event.
450 Chapter 4: Components Dictionary

RPC.suppressInvalidCalls

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.suppressInvalidCalls;

Description

Property; indicates whether to suppress a call if parameters are invalid. If true, then the
trigger() function will not perform a call if the bound parameters fail the validation. A "status"
event will be emitted, with the code InvalidParams. If false, then the call will take place, using
the invalid data as required.

RPC.trigger()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

componentInstance.trigger();

Description

Method; initiates an Remote Procedure Call. Each RPC component defines exactly what this
involves. If the operation is successful, the results of the operation will appear in the RPC
component's results property.

The trigger() method performs the following steps:

1 If any data is bound to the params property, the method execute all the bindings to ensure that
up-to-date data is available. This also causes data validation to occur.

2 If the data is not valid and suppressInvalidCalls is set to true, the operation is discontinued.
3 If the operation continues, the send event is emitted.
4 The actual remote call is initiated via the connection method indicated (for example, HTTP).
Remote Procedure Call (RPC) Component API 451

Screen class (Flash Professional only)

Inheritance UIObject > UIComponent > View > Loader > Screen

ActionScript Class Name mx.screens.Screen

The Screen class is the base class for screens you create in the Screen Outline pane in Flash MX
Professional 2004. Screens are high-level containers for creating applications and presentations.
For an overview of working with screens, see “Working with Screens (Flash Professional Only)” in
Using Flash Help.

The Screen class has two primary subclasses: Slide and Form.

The Slide class provides the runtime behavior for slide presentations. The Slide class contains
built-in navigation and sequencing capabilities, as well as the ability to easily attach transitions
between slide using Behaviors. Slide objects maintain a notion of "state", and allow the user to
advance to the next or previous slide/state: when the next slide is shown, the previous slide is
hidden. For more information about using the Slide class to control slide presentations, see “Slide
class (Flash Professional only)” on page 479.

The Form class provides the runtime environment for form applications. Forms have the ability
to overlay and be containers for, or be contained by, other components. Unlike slides, forms don’t
provide any sequencing or navigation capabilities. For more information on using the Form class,
see “Form class (Flash Professional only)” on page 277.

The Screen class provides functionality common to both slides and forms.

Screens know how to manage their children Every screen comes with a built-in property that
is a collection of screens as children. This collection is determined by the layout of the screen
hierarchy in the Screens Pane. Screens can have any number of children (including zero), which
themselves can have children.

Screens can hide/show their children Because screens are, essentially, a collection of nested
movie clips, a screen can control the visibility of its children. For form applications, all of a
screen's children are visible by default at the same time; for slide presentations, individual screens
are typically shown one-at-a-time.

Screens broadcast events For example, you can trigger a sound to play, or start playing some
video, when a particular screen becomes visible.

Loading external content into screens (Flash Professional only)

The Screen class extends the Loader class (see “Loader component” on page 314), which provides
the ability to easily manage and load external SWFs (and JPEGs). The Loader class contains a
property called contentPath which specifies the URL of an external SWF or JPEG, or the
linkage identifier of a movie clip in the Library.

Using this feature, you can load external screen tree (or any external SWF) as a child of any screen
node. This provides a useful way of modularizing your screens-based movies and dividing them
into multiple, separate SWFs.

For example, suppose you had a slide presentation in which three people were each contributing a
single section. You could ask each presenter to each create a separate slide presentation (SWF).
You would then create a "master slide presentation" that contained three placeholder slides, one
for each slide presentation being created by the presenters. For each placeholder slide, you could
point its contentPath property to each of the SWFs.
452 Chapter 4: Components Dictionary

For example, the “master” slide presentation could be arranged as shown in the
following illustration:

“Master” SWF slide presentation structure

Suppose that presenters have provided you with three SWFs, speaker_1.swf, speaker_2.swf, and
speaker_3.swf. You could easily assemble the overall presentation by pointing contentPath
property for each placeholder slide, either using ActionScript, or by setting the Property
inspector’s contentPath property for each slide.
Speaker_1.contentPath = speaker_1.swf;
Speaker_2.contentPath = speaker_2.swf;
Speaker_3.contentPath = speaker_3.swf;

You can also set the contentPath property for each slide using the Property inspector. Note that,
by default, when you set a slide’s contentPath in the Property inspector (or with code, as shown
above), the specified SWF will load as soon as the “master presentation” SWF has loaded. To
reduce initial load time, consider setting the contentPath property within an on(reveal) handler
attached to each slide.
// Attached to Speaker_1 slide
on(reveal) {

this.contentPath="speaker_1.swf";
}

Alternatively, you could set to false the slide’s autoLoad property (inherited from the Loader
class), and then call the load() method on the slide (also inherited from the Loader class) when
the slide has been revealed.
// Attached to Speaker_1 slide
on(reveal) {

this.load();
}

Referencing loaded screens with ActionScript

The Loader class creates an internal movie clip named contentNode into which it loads the SWF
or JPEG specified by the contentPath property. This movie clip, in effect, adds an extra screen
node between the “placeholder” slide (that you created in the “master” presentation above) and
the first slide in the loaded slide presentation.

Opening
statement slide

Presenter
placeholder slides
Screen class (Flash Professional only) 453

For example, suppose that the SWF created for the Speaker_1 slide placeholder (see above
illustration) had the following structure, as shown in the Screen Outline pane:

“Speaker 1” SWF slide presentation structure

At runtime, when the Speaker 1 SWF is loaded into the placeholder slide, the overall slide
presentation would now have the following structure:

Structure of “master” and “speaker” presentation (runtime)

The properties and methods of the Screen, Slide and Form classes "ignore" this contentHolder
node, as much as possible. That is, referring to the illustration above, the slide named
MyPresentation (and its subslides) is part of the contiguous slide tree rooted at the Presentation
slide, and is not treated as a separate subtree.

Method summary for the Screen class

Inherits all methods from UIObject, UIComponent, View, and Loader component.

Method Description

Screen.getChildScreen() Returns the child screen of this screen at a particular index.

Inserted at runtime
by Loader class
454 Chapter 4: Components Dictionary

Property summary for the Screen class

Inherits all properties from UIObject, UIComponent, View, and Loader component.

Event summary for the Screen class

Inherits all events from UIObject, UIComponent, View, and Loader component.

Screen.allTransitionsInDone

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Property Description

Screen.currentFocusedScreen Returns the screen that contains the global current focus.

Screen.indexInParent Returns the screen’s index (zero-based) in its parent screen’s list
of child screens.

Screen.numChildScreens Returns the number of child screens contained by the screen.

Screen.parentIsScreen Returns a Boolean (true or false) value that indicates whether the
screen’s parent object is itself a screen.

Screen.rootScreen Returns the root screen of the (sub)-tree that contains the screen.

Event Description

Screen.allTransitionsInDone Broadcast when all “in” transitions applied to a screen
have finished.

Screen.allTransitionsOutDone Broadcast when all “out” transitions applied to a screen
have finished.

Screen.mouseDown Broadcast when the mouse button was pressed over an object
(shape or movie clip) directly owned by the screen.

Screen.mouseDownSomewhere Broadcast when the mouse button was pressed somewhere on the
Stage, but not necessarily on an object owned by this screen.

Screen.mouseMove Broadcast when the mouse is moved while over a screen.

Screen.mouseOut Broadcast when the mouse is moved from inside the screen to
outside it.

Screen.mouseOver Broadcast when the mouse is moved from outside this screen to
inside it.

Screen.mouseUp Broadcast when the mouse button was released over an object
(shape or movie clip) directly owned by the screen.

Screen.mouseUpSomewhere Broadcast when the mouse button was released somewhere on
the Stage, but not necessarily over an object owned by this screen.
Screen class (Flash Professional only) 455

Usage

on(allTransitionsInDone) {
// your code here

}
listenerObject = new Object();
listenerObject.allTransitionsInDone = function(eventObject){

// insert your code here
}
screenObj.addEventListener("allTransitionsInDone", listenerObject)

Description

Event; broadcast when all “in” transitions applied to this screen have finished. The
allTransitionsInDone event is broadcast by the transition manager associated with myScreen.

Example

In the following example, a button (nextSlide_btn) that’s contained by the slide named
mySlide is made visible once all the “in” transitions applied to mySlide have completed.
// Attached to mySlide:
on(allTransitionsInDone) {

this.nextSlide_btn._visible = true;
}

See also

Screen.allTransitionsOutDone

Screen.allTransitionsOutDone

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(allTransitionsOutDone) {
// your code here

}
listenerObject = new Object();
listenerObject.allTransitionsOutDone = function(eventObject){

// insert your code here
}
screenObj.addEventListener("allTransitionsOutDone", listenerObject)

Description

Event; broadcast when all “out” transitions applied to the screen have finished. The
allTransitionsOutDone event is broadcast by the transition manager associated with myScreen.

See also

Screen.currentFocusedScreen
456 Chapter 4: Components Dictionary

Screen.currentFocusedScreen

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mx.screens.Screen.currentFocusedScreen

Description

Static property (read-only); returns a reference to the "leafmost" Screen object that contains the
global current focus. The focus may be on the screen itself, or on a movie clip, text object, or
component inside that screen. Defaults to null if there is no current focus.

Example

The following example displays the name of the currently focused screen in the Output panel.
var currentFocus:mx.screens.Screen = mx.screens.Screen.currentFocusedScreen;
trace("Current screen is: " + currentFocus._name);

Screen.getChildScreen()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myScreen.getChildScreen(index)

Parameters

childIndex A number that indicates the index (zero-based) of the child screen to return.

Returns

A Screen object.

Description

Method; returns the child Screen object of myScreen whose index is childIndex.

Example

The following example displays in the Output panel the names of all the child screens belonging
to the root screen named Presentation.
for (var i:Number = 0; i < _root.Presentation.numChildScreens; i++) {
 var childScreen:mx.screens.Screen = _root.Presentation.getChildScreen(i);
 trace(childScreen._name);
}

Screen class (Flash Professional only) 457

Screen.indexInParent

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myScreen.indexInParent

Description

Property (read-only); contains the index (zero-based) of myScreen in its parent's list
of subscreens.

Example

The following example displays the relative position of the screen myScreen in its parent screen’s
list of child screens.
var numChildren:Number = myScreen._parent.numChildScreens;
var myIndex:Number = myScreen.indexInParent;
trace("I’m child slide # " + myIndex + " out of " + numChildren + " screens.");

Screen.mouseDown

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(mouseDown) {
// your code here

}
listenerObject = new Object();
listenerObject.mouseDown = function(eventObj){

// insert your code here
}
screenObj.addEventListener("mouseDown", listenerObject)

Description

Event; broadcast when the mouse button was pressed over an object (for example, a shape or a
movie clip) directly owned by the screen.

When the event is triggered, it automatically passes an event object (eventObj) to the handler.
Each event object has a set of properties that contain information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 562.
458 Chapter 4: Components Dictionary

Example

The following code displays the name of the screen that captured the mouse event in the Output
panel.
on(mouseDown) {

trace("Mouse down event on: " + eventObj.target._name);
}

Screen.mouseDownSomewhere

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(mouseDown) {
// your code here

}
listenerObject = new Object();
listenerObject.mouseDownSomewhere = function(eventObject){

// insert your code here
}
screenObj.addEventListener("mouseDownSomewhere", listenerObject)

Description

Event; broadcast when the mouse button is pressed, but not necessarily over the specified screen.

When the event is triggered, it automatically passes an event object (eventObj) to the handler.
Each event object has a set of properties that contain information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 562.

Screen.mouseMove

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(mouseDown) {
// your code here

}
listenerObject = new Object();
listenerObject.mouseMove = function(eventObject){

// insert your code here
}
screenObj.addEventListener("mouseMove", listenerObject)
Screen class (Flash Professional only) 459

Description

Event; broadcast when the mouse moves while over the screen. This event is only sent when the
mouse is over the bounding box of this screen.

When the event is triggered, it automatically passes an event object (eventObj) to the handler.
Each event object has a set of properties that contain information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 562.
Note: Use of this event may impact system performance and should be used judiciously.

Screen.mouseOut

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(mouseOut) {
// your code here

}
listenerObject = new Object();
listenerObject.mouseOut = function(eventObject){

// insert your code here
}
screenObj.addEventListener("mouseOut", listenerObject)

Description

Event; broadcast when the mouse moves from inside the screen’s bounding box to outside its
bounding box.

When the event is triggered, it automatically passes an event object (eventObj) to the handler.
Each event object has a set of properties that contain information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 562.
Note: Use of this event may impact system performance and should be used judiciously.
460 Chapter 4: Components Dictionary

Screen.mouseOver

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(mouseDown) {
// your code here

}
listenerObject = new Object();
listenerObject.mouseOver = function(eventObject){

// insert your code here
}
screenObj.addEventListener("mouseOver", listenerObject)

Description

Event; broadcast when the mouse moves from outside the screen’s bounding to inside its
bounding box.

When the event is triggered, it automatically passes an event object (eventObj) to the handler.
Each event object has a set of properties that contain information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 562.
Note: Use of this event may impact system performance and should be used judiciously.

Screen.mouseUp

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(mouseUp) {
// your code here

}
listenerObject = new Object();
listenerObject.mouseUP = function(eventObject){

// insert your code here
}
screenObj.addEventListener("mouseUp", listenerObject)

Description

Event; broadcast when the mouse is released over the screen.

When the event is triggered, it automatically passes an event object (eventObj) to the handler.
Each event object has a set of properties that contain information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 562.
Screen class (Flash Professional only) 461

Screen.mouseUpSomewhere

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(mouseUpSomewhere) {
// your code here

}
listenerObject = new Object();
listenerObject.mouseUpSomewhere = function(eventObject){

// insert your code here
}
screenObj.addEventListener("mouseUpSomewhere", listenerObject)

Description

Event; broadcast when the mouse button is pressed, but not necessarily over the specified screen

When the event is triggered, it automatically passes an event object (eventObj) to the handler.
Each event object has a set of properties that contain information about the event. You can use
these properties to write code that handles the event. For more information about event objects,
see “Event Objects” on page 562.

Screen.numChildScreens

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myScreen.numChildScreens

Description

Property (read-only); returns the number of child screens contained by myScreen.

Example

The following example displays the names of all the child screens belonging to myScreen.
var howManyKids:Number = myScreen.numChildScreens;
for(i=0; i<howManyKids; i++) {

var childScreen = myScreen.getChildScreen(i);
trace(childScreen._name);

}

See also

Screen.getChildScreen()
462 Chapter 4: Components Dictionary

Screen.parentIsScreen

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myScreen.parentIsScreen

Description

Property (read-only): returns a Boolean (true or false) value indicating whether the specified
screen’s parent object is also a screen (true), or not (false). If false, then myScreen is at the root
of its screen hierarchy.

Example

The following code determines if the parent object of the screen myScreen is also a screen. If so,
it’s assumed that myScreen is the root, or master, slide in the presentation and therefore has no
sibling slides. Otherwise, if myScreen.parentIsScreen is true, then the number of myScreen’s
sibling slides is displayed in the Output panel.
if (myScreen.parentIsScreen) {

trace("I have "+myScreen._parent.numChildScreens+" sibling screens");
} else {

trace("I am the root screen and have no siblings");
}

Screen.rootScreen

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myScreen.rootScreen

Description

Property (read-only); returns the screen at the top of the screen hierarchy that contains myScreen.

Example

The following example displays the name of
var myRoot:mx.screens.Screen = myScreen.rootScreen;
Screen class (Flash Professional only) 463

ScrollPane component

The Scroll Pane component displays movie clips, JPEG files, and SWF files in a scrollable area.
You can enable scroll bars to display images in a limited area. You can display content that is
loaded from a local location, or from over the internet. You can set the content for the scroll pane
both while authoring and at runtime using ActionScript.

Once the scroll pane has focus, if the content of the scroll pane has valid tab stops, those markers
will receive focus. After the last tab stop in the content, focus shifts to the next component. The
vertical and horizontal scroll bars in the scroll pane never receive focus.

A ScrollPane instance receives focus if a user clicks it or tabs to it. When a ScrollPane instance has
focus, you can use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

A live preview of each ScrollPane instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring.

Using the ScrollPane component

You can use a scroll pane to display any content that is too large for the area into which it is
loaded. For example, if you have a large image and only a small space for it in an application, you
could load it into a scroll pane.

You can set up a scroll pane to allow users to drag the content within the pane by setting the
scrollDrag parameter to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue broadcasting
until the button is released. If the contents of a scroll pane have valid tab stops, you must
set scrollDrag to false otherwise each mouse interaction with the contents will invoke
scroll dragging.

Key Description

Down Content moves up one vertical line scroll.

End Content moves to the bottom of the scroll pane.

Left Content moves right one horizontal line scroll

Home Content moves to the top of the scroll pane.

Page Down Content moves up one vertical page scroll.

Page Up Content moves down one vertical page scroll.

Right Content moves left one horizontal line scroll

Up Content moves down one vertical line scroll.
464 Chapter 4: Components Dictionary

ScrollPane parameters

The following are authoring parameters that you can set for each ScrollPane component instance
in the Property inspector or in the Component Inspector panel:
contentPath indicates the content to load into the scroll pane. This value can be a relative path to
a local SWF or JPEG file, or a relative or absolute path to a file on the internet. It can also be the
linkage identifier of a movie clip symbol in the library that is set to Export for ActionScript.
hLineScrollSize indicates the number of units a horizontal scroll bar moves each time an arrow
button is pressed. The default value is 5.
hPageScrollSize indicates the number of units a horizontal scroll bar moves each time the track
is pressed. The default value is 20.
hScrollPolicy displays the horizontal scroll bars. The value can be "on", "off", or "auto". The
default value is "auto".
scrollDrag is a Boolean value that allows a user to scroll the content within the scroll pane (true)
or not (false). The default value is false.

vLineScrollSize indicates the number of units a vertical scroll bar moves each time an arrow
button is pressed. The default value is 5.

vPageScrollSize indicates the number of units a vertical scroll bar moves each time the track is
pressed. The default value is 20.

vScrollPolicy displays the vertical scroll bars. The value can be "on", "off", or "auto". The
default value is "auto".

You can write ActionScript to control these and additional options for ScrollPane components
using its properties, methods, and events. For more information, see ScrollPane class.

Creating an application with the ScrollPane component

The following procedure explains how to add a ScrollPane component to an application while
authoring. In this example, the scroll pane loads a SWF file that contains a logo.

To create an application with the ScrollPane component, do the following:

1 Drag a ScrollPane component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name myScrollPane.
3 In the Property inspector, enter logo.swf for the contentPath parameter.
4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:

scrollListener = new Object();
scrollListener.scroll = function (evt){

txtPosition.text = myScrollPane.vPosition;
}
myScrollPane.addEventListener("scroll", scrollListener);
completeListener = new Object;
completeListener.complete = function() {

trace("logo.swf has completed loading.");
}
myScrollPane.addEventListener("complete", completeListener);

The first block of code is a scroll event handler on the myScrollPane instance that displays
the value of the vPosition property in a TextField instance called txtPosition, that has
already been placed on Stage. The second block of code creates an event handler for the
complete event that sends a message to the Output panel.
ScrollPane component 465

Customizing the ScrollPane component

You can transform a ScrollPane component horizontally and vertically both while authoring and
at runtime. While authoring, select the component on the Stage and use the Free Transform tool
or any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()) or any applicable properties and methods of the ScrollPane class. See
ScrollPane class. If the ScrollPane is too small, the content may not display correctly.

The ScrollPane places the registration point of its content in the upper left corner of the pane.

When the horizontal scroll bar is turned off, the vertical scroll bar is displayed from top to bottom
along the right side of the scroll pane. When the vertical scroll bar is turned off, the horizontal
scroll bar is displayed from left to right along the bottom of the scroll pane. You can also turn off
both scroll bars.

When the scroll pane is resized, the buttons remain the same size and the scroll track and thumb
expand or contract, and their hit areas are resized.

Using styles with the ScrollPane component

The ScrollPane doesn’t support styles, but the scroll bars that it uses do.

Using skins with the ScrollPane component

The ScrollPane component doesn’t have any skins of its own, but the scroll bars that it uses do
have skins.

ScrollPane class

Inheritance UIObject > UIComponent > View > ScrollView > ScrollPane

ActionScript Class Name mx.containers.ScrollPane

The properties of the ScrollPane class allow you to set the content, monitor the loading progress,
and adjust the scroll amount at runtime.

Setting a property of the ScrollPane class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

You can set up a scroll pane to allow users to drag the content within the pane by setting the
scrollDrag property to true; a pointing hand appears on the content. Unlike most other
components, events are broadcast when the mouse button is pressed and continue broadcasting
until the button is released. If the contents of a scroll pane have valid tab stops, you must set
scrollDrag to false otherwise each mouse interaction with the contents will invoke
scroll dragging.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.containers.ScrollPane.version);

Note: The following code returns undefined: trace(myScrollPaneInstance.version);.
466 Chapter 4: Components Dictionary

Method summary for the ScrollPane class

Inherits all methods from UIObject and UIComponent.

Property summary for the ScrollPane class

Inherits all properties from UIObject and UIComponent.

Method Description

ScrollPane.getBytesLoaded() Returns the number of bytes of content loaded.

ScrollPane.getBytesTotal() Returns the total number of content bytes to be loaded.

ScrollPane.refreshPane() Reloads the contents of the scroll pane.

Method Description

ScrollPane.content A reference to the content loaded into the scroll pane.

ScrollPane.contentPath An absolute or relative URL of the SWF or JPEG file to load into
the scroll pane

ScrollPane.hLineScrollSize The amount of content to scroll horizontally when an arrow button
is pressed.

ScrollPane.hPageScrollSize The amount of content to scroll horizontally when the track
is pressed.

ScrollPane.hPosition The horizontal pixel position of the scroll pane.

ScrollPane.hScrollPolicy The status of the horizontal scroll bar. It can be always on ("on"),
always off ("off"), or on when needed ("auto"). The default value
is "auto".

ScrollPane.scrollDrag Indicates whether there is scrolling when a user presses and drags
within the ScrollPane (true) or not (false). The default value
is false.

ScrollPane.vLineScrollSize The amount of content to scroll vertically when an arrow button
is pressed.

ScrollPane.vPageScrollSize The amount of content to scroll vertically when the track is pressed.

ScrollPane.vPosition The vertical pixel position of the scroll pane.

ScrollPane.vScrollPolicy The status of the vertical scroll bar. It can be always on ("on"),
always off ("off"), or on when needed ("auto"). The default value
is "auto".
ScrollPane component 467

Event summary for the ScrollPane class

Inherits all events from UIObject and UIComponent.

ScrollPane.complete

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(complete){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.complete = function(eventObject){

...
}
scrollPaneInstance.addEventListener("complete", listenerObject)

Description

Event; broadcast to all registered listeners when the content has finished loading.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ScrollPane
component instance myScrollPaneComponent, sends “_level0.myScrollPaneComponent” to the
Output panel:
on(complete){

trace(this);
}

Method Description

ScrollPane.complete Broadcast when the scroll pane content is loaded.

ScrollPane.progress Broadcast while the scroll bar content is loading.

ScrollPane.scroll Broadcast when the scroll bar is pressed.
468 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, complete) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example creates a listener object with a complete event handler for the
scrollPane instance:
form.complete = function(eventObj){

// insert code to handle the event
}
scrollPane.addEventListener("complete",form);

ScrollPane.content

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.content

Description

Property (read-only); a reference to the content of the scroll pane. The value is undefined until
the load begins.

Example

This example sets the mcLoaded variable to the value of the content property:
var mcLoaded = scrollPane.content;

See also

ScrollPane.contentPath
ScrollPane component 469

ScrollPane.contentPath

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.contentPath

Description

Property; a string that indicates an absolute or relative URL of the SWF or JPEG file to load into
the scroll pane. A relative path must be relative to the SWF that loads the content.

If you load content using a relative URL, the loaded content must be relative to the location of
the SWF that contains the scroll pane. For example, an application using a ScrollPane component
that resides in the directory /scrollpane/nav/example.swf could load contents from the directory /
scrollpane/content/flash/logo.swf with the following contentPath property: "../content/
flash/logo.swf"

Example

The following example tells the scroll pane to display the contents of an image from the internet:
scrollPane.contentPath ="http://imagecache2.allposters.com/images/43/

033_302.jpg";

The following example tells the scroll pane to display the contents of a symbol from the library:
scrollPane.contentPath ="movieClip_Name";

The following example tells the scroll pane to display the contents of the local file “logo.swf”:
scrollPane.contentPath ="logo.swf";

See also

ScrollPane.content

ScrollPane.getBytesLoaded()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.getBytesLoaded()

Parameters

None.
470 Chapter 4: Components Dictionary

Returns

The number of bytes loaded in the scroll pane.

Description

Method; returns the number of bytes loaded in the ScrollPane instance. You can call this method
at regular intervals while loading content to check its progress.

Example

This example creates an instance of the ScrollPane class called scrollPane. It then defines a
listener object called loadListener with a progress event handler that calls the
getBytesLoaded() method to help determine the progress of the load:
createClassObject(mx.containers.ScrollPane, "scrollPane", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the change event
var bytesLoaded = scrollPane.getBytesLoaded();
var bytesTotal = scrollPane.getBytesTotal();
var percentComplete = Math.floor(bytesLoaded/bytesTotal);

if (percentComplete < 5) // loading just commences
{

trace(" Starting loading contents from internet");
}
else if(percentComplete = 50) //50% complete
{

trace(" 50% contents downloaded ");
}

}
scrollPane.addEventListener("progress", loadListener);
scrollPane.contentPath = "http://www.geocities.com/hcls_matrix/Images/

homeview5.jpg";

ScrollPane.getBytesTotal()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.getBytesTotal()

Parameters

None.

Returns

A number.

Description

Method; returns the total number of bytes to be loaded into the ScrollPane instance.
ScrollPane component 471

See also

ScrollPane.getBytesLoaded()

ScrollPane.hLineScrollSize

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hLineScrollSize

Description

Property; the number of pixels to move the content when the left or right arrow in the horizontal
scroll bar is pressed. The default value is 5.

Example

This example increases the horizontal scroll unit to 10:
scrollPane.hLineScrollSize = 10;

ScrollPane.hPageScrollSize

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hPageScrollSize

Description

Property; the number of pixels to move the content when the track in the horizontal scroll bar is
pressed. The default value is 20.

Example

This example increases the horizontal page scroll unit to 30:
scrollPane.hPageScrollSize = 30;
472 Chapter 4: Components Dictionary

ScrollPane.hPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hPosition

Description

Property; the pixel position of the horizontal scroll bar. The 0 position is to the left of the bar.

Example

This example sets the scroll bar to 20:
scrollPane.hPosition = 20;

ScrollPane.hScrollPolicy

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the image ("auto"). The default value
is "auto".

Example

The following code turns scroll bars on all the time:
scrollPane.hScrollPolicy = "on";
ScrollPane component 473

ScrollPane.progress

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(progress){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.progress = function(eventObject){

...
}
scrollPaneInstance.addEventListener("progress", listenerObject)

Description

Event; broadcast to all registered listeners while content is loading. The progress event is not
always broadcast; the complete event may be broadcast without any progress events being
dispatched. This can happen especially if the loaded content is a local file. This event is triggered
when the content starts loading by setting the value of contentPath property.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the ScrollPane
component instance mySPComponent, sends “_level0.mySPComponent” to the Output panel:
on(progress){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, progress) and the event is handled by
a function, also called a handler, on a listener object (listenerObject) that you create. You
define a method with the same name as the event on the listener object; the method is called
when the event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
474 Chapter 4: Components Dictionary

Example

The following code creates a ScrollPane instance called scrollPane and then creates a listener
object with an event handler for the progress event that sends a message to the Output panel
about what number of bytes of the content has loaded:
createClassObject(mx.containers.ScrollPane, "scrollPane", 0);
loadListener = new Object();
loadListener.progress = function(eventObj){

// eventObj.target is the component that generated the progress event
// in this case, scrollPane
trace("logo.swf has loaded " + scrollPane.getBytesLoaded() + " Bytes.");
// track loading progress

}
scrollPane.addEventListener("complete", loadListener);
scrollPane.contentPath = "logo.swf";

ScrollPane.refreshPane()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.refreshPane()

Parameters

None.

Returns

Nothing.

Description

Method; refreshes the scroll pane after content is loaded. This method reloads the contents. You
could use this method if, for example, you’ve loaded a form into a ScrollPane and an input
property (for example, in a text field) has been changed using ActionScript. Call refreshPane()
to reload the same form with the new values for the input properties.

Example

The following example refreshes the scroll pane instance sp:
sp.refreshPane();
ScrollPane component 475

ScrollPane.scroll

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(scroll){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.scroll = function(eventObject){

...
}
scrollPaneInstance.addEventListener("scroll", listenerObject)

Event Object

In addition to the standard event object properties, there is a type property defined for the
scroll event, the value is "scroll". There is also a direction property with the possible values
"vertical" and "horizontal".

Description

Event; broadcast to all registered listeners when a user presses the scroll bar buttons, thumb, or
track. Unlike other events, the scroll event is broadcast when a user presses on the scroll bar and
continues broadcasting until the scroll bar is released.

The first usage example uses an on() handler and must be attached directly to a ScrollPane
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance sp,
sends “_level0.sp” to the Output panel:
on(scroll){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(scrollPaneInstance) dispatches an event (in this case, scroll) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
476 Chapter 4: Components Dictionary

Example

This example creates a form listener object with a scroll callback function that’s registered to the
spInstance instance. You must fill spInstance with content, as in the following:
spInstance.contentPath = "mouse3.jpg";
form = new Object();
form.scroll = function(eventObj){

trace("ScrollPane scrolled");
}
spInstance.addEventListener("scroll", form);

See also

UIEventDispatcher.addEventListener()

ScrollPane.scrollDrag

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.scrollDrag

Description

Property; a Boolean value that indicates whether there is scrolling when a user presses and drags
within the ScrollPane (true) or not (false). The default value is false.

Example

This example enables mouse scrolling within the scroll pane:
scrollPane.scrollDrag = true;

ScrollPane.vLineScrollSize

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vLineScrollSize

Description

Property; the number of pixels to move the display area when the up or down arrow button in a
vertical scroll bar is pressed. The default value is 5.
ScrollPane component 477

Example

This code increases the amount that the display area moves when the vertical scroll bar arrow
buttons are pressed to 10:
scrollPane.vLineScrollSize = 10;

ScrollPane.vPageScrollSize

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.
scrollPaneInstance.vPageScrollSize

Description

Property; the number of pixels to move the display area when the track in a vertical scroll bar is
pressed. The default value is 20.

Example

This code increases the amount that the display area moves when the vertical scroll bar arrow
buttons are pressed to 30:
scrollPane.vPageScrollSize = 30;

ScrollPane.vPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vPosition

Description

Property; the pixel position of the vertical scroll bar. The default value is 0.

ScrollPane.vScrollPolicy

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

scrollPaneInstance.vScrollPolicy
478 Chapter 4: Components Dictionary

Description

Property; determines whether the vertical scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the image ("auto"). The default value
is "auto".

Example

The following code turns vertical scroll bars on all the time:
scrollPane.vScrollPolicy = "on";

Slide class (Flash Professional only)

Inheritance UIObject > UIComponent > View > Loader > Screen > Slide

ActionScript Class Name mx.screens.Slide

The Slide class corresponds to a node in a hierarchical slide presentation. In Flash MX
Professional 2004, you can create slide presentations using the Screen Outline pane. For an
overview of working with screens, see “Working with Screens (Flash Professional Only)” in Using
Flash Help.

The Slide class extends the Screen class (see “Screen class (Flash Professional only)” on page 452),
and provides built-in navigation and sequencing capabilities between slides, as well as the ability
to easily attach transitions between slides using Behaviors. Slides maintain a notion of “state”, so
the user can advance to the next or previous slide in a presentation and when the next slide in a
presentation is shown, the previous slide is hidden.

Note that you can only navigate to (or “stop on”) slides that don’t contain any child slides, or
“leaf” slides. For example, the following illustration shows the contents of the Screen Outline
pane for a sample slide presentation.

When this presentation starts, it will, by default, “stop” on the slide named Finance, which is the
first slide in the presentation that doesn’t contain any child slides.

Also note that child slides “inherit” the visual appearance (graphics and other content) of their
parent slides. For example, in the above illustration, in addition to the content on the Finance
slide, the user would also see any content on the Intro and Presentation slides.
Slide class (Flash Professional only) 479

Note: The Slide class inherits from the Loader class (see “Loader class” on page 316), which lets you
easily load external SWFs (or JPEGs) into a given slide. This provides a way to modularize your slide
presentations, and reduce initial download time. For more information, see “Loading external content
into screens (Flash Professional only)” on page 452.

Using the Slide class (Flash Professional only)

You use the methods and properties of the Slide class to control Slide Presentations you create
using the Screen Outline pane (Window > Screen the get information about a slide presentation
(for example, to determine the number of child slides contained by parent slide), or to navigate
between slides in a slide presentation (for example, to create “Next slide” and “Previous
slide” buttons).

You can also use one of the built-in behaviors for controlling slide presentations that are available
in the Behaviors panel (Window > Development Panels > Behaviors). For more information on
using behaviors with slides, see “Adding controls to screens using behaviors (Flash Professional
only)” in Using Flash Help.

Slide parameters

The following are authoring parameters that you can set for each slide in the Property inspector or
in the Component Inspector panel:

autoKeyNav determines how, or if, the slide responds to the default keyboard navigation. For
more information, see Slide.autoKeyNav.

autoload indicates whether the content specified by the contentPath parameter should load
automatically (true), or wait to load until the Loader.load() method is called (false). The
default value is true.

contentPath specifies the contents of the slide. This can be the linkage identifier of a movie clip
or an absolute or relative URL for a SWF or JPG file to load into the slide. By default, loaded
content clips to fit the slide.

overlayChildren specifies whether the slide’s child slides remain visible when you navigate from
one child slide to the next (true), or not (false).

playHidden specifies whether the slide continues to play when hidden (true) or not (false).

Using the Slide class to create a Slide Presentation

You use the methods and properties of the Slide class to control slide presentations you create in
the Screen Outline pane (Window > Screen) in the Flash authoring environment. Note that the
Behavior panel (Window > Development Panels > Behaviors) contains several behaviors for
creating slide navigation. In this example, you write your own ActionScript to create Next and
Previous buttons for a slide presentations.
480 Chapter 4: Components Dictionary

To create a slide presentation with navigation:

1 In Flash, select File > New.
2 Click the General tab and select Flash Slide Presentation under Type.
3 In the Screen Outline pane, click the Insert Screen button (+) twice to create two new slides

beneath the Presentation slide.
The Screen Outline pane should look like the following:

4 Select Slide1 in the Screen Outline pane and, using the Text tool, add a text field that reads
“This is slide one”.

5 Repeat the previous step for Slide2 and Slide3, creating text fields on each slide that read “This
is slide two” and “This is slide three”, respectively.

6 Select the Presentation slide and open the Components panel (Window > Development
Panels > Components).

7 Drag a Button component from the Components panel to the bottom of the Stage.
8 In the Property inspector (Window > Properties) type “Next Slide” for the Button component’s

Label property.
9 Open the Actions panel, if it’s not already open, by selecting Window > Development

Panels > Actions.
10 Type the following code in the Actions panel:

on(click) {
_parent.currentSlide.gotoNextSlide();

}

11 Test the SWF (Control > Test Movie) and click the Next Slide button to advance to the
next slide.

Method summary for the Slide class

Inherits all methods from UIObject, UIComponent, View, Loader component, and Screen class
(Flash Professional only).

Property Description

Slide.getChildSlide() Returns the child slide of this slide at a given index.

Slide.gotoFirstSlide() Navigates to the first leaf node in the slide’s hierarchy of subslides.

Slide.gotoLastSlide() Navigates to the last leaf node in the slide’s hierarchy of subslides.

Slide.gotoNextSlide() Navigates to the next slide.

Slide.gotoPreviousSlide() Navigates to the next slide.

Slide.gotoSlide() Navigates to an arbitrary slide.
Slide class (Flash Professional only) 481

Property summary for the Slide class

Inherits all properties from UIObject, UIComponent, View, Loader component, and Screen class
(Flash Professional only).

Event summary for the Slide class

Inherits all events from UIObject, UIComponent, View, Loader component, and Screen class
(Flash Professional only).

Property Description

Slide.autoKeyNav Determines whether or not the slide uses default keyboard handling
to navigate to the next/previous slide.

Slide.currentSlide Returns the immediate child of the slide that contains the currently
active slide.

Slide.currentSlide Returns the currently active slide.

Slide.currentFocusedSlide Returns the "leafmost" slide that contains the global current focus.

Slide.defaultKeydownHandler Callback handler that overrides the default keypress slide navigation
(left and right arrow).

Slide.firstSlide Returns the slide’s first child slide that has no children.

Slide.getChildSlide() Returns the child slide at a specified index.

Slide.indexInParentSlide Returns the slide’s index (zero-based) in its parent's list of subslides.

Slide.lastSlide Returns the slide’s last child slide that has no children.

Slide.nextSlide Returns the next leaf node slide.

Slide.numChildSlides Returns the number of child slides the slide contains.

Slide.overlayChildren Determines whether the slide’s child slides are visible when control
flows from one child slide to the next.

Slide.parentIsSlide Returns a Boolean value indicating whether the parent object of the
slide is also a slide (true) or not (false).

Slide.playHidden Determines whether or not the slide continues to play when hidden.

Slide.previousSlide Returns the previous leaf node slide.

Slide.revealChild Returns the root of the slide tree that contains the slide.

Event Description

Slide.hideChild Broadcast when all children of a slide changes from visible
to invisible.

Slide.revealChild Broadcast when all children of a slide changes from invisible
to visible.
482 Chapter 4: Components Dictionary

Slide.autoKeyNav

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.autoKeyNav

Description

Property; determines whether or not the slide uses default keyboard handling to navigate to the
next/previous slide when mySlide has focus. This property accepts one of the following string
values: "true", "false", or "inherit". You can also override this default keyboard handling
behavior using the Slide.defaultKeydownHandler property.

You can also set this property using the Property inspector.

When set to "true", pressing the right arrow (Key.RIGHT) or the Spacebar (Key.SPACE) when
mySlide has focus advances to the next slide; pressing the left arrow (Key.Left) moves to the
previous slide.

When set to "false", no default keyboard handling takes place when mySlide has focus.

When set to "inherit", mySlide checks the autoKeyNav property of its parent slide. If the
parent of mySlide is also set to "inherit", then mySlide’s parent's parent is examined, and so
on, until a parent slide is found whose autoKeyNav property is set to "true" or "false".

If mySlide has no parent slide (that is, if (mySlide.parentIsSlide == false) is true) then it
behaves as if autoKeyNav had been set to true.

Example

This example turns off automatic keyboard navigation for the slide named loginSlide.
_root.Presentation.loginSlide.autoKeyNav = "false";

See also

Slide.defaultKeydownHandler

Slide.currentSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.currentSlide
Slide class (Flash Professional only) 483

Description

Property (read-only); returns the currently active slide. This is always a "leaf" slide—that is, a
slide that contains no child slides.

Example

The following code, attached to a button on the root Presentation slide, advances the slide
presentation to the next slide each time the button is pressed.
// Attached to button instance contained by Presentation slide:
on(press) {

_parent.currentSlide.gotoNextSlide();
}

See also

Slide.gotoNextSlide()

Slide.currentChildSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.currentChildSlide

Description

Property (read-only); returns the immediate child of mySlide that contains the currently active
slide; returns null if no child slide contained by mySlide has the current focus.

Example

Consider the following screen outline:
Presentation
 Slide_1
 Bullet1_1
 SubBullet1_1_1
 Bullet1_2
 SubBullet1_2_1
 Slide_2

Assuming that SubBullet1_1_1 is the current slide, then the following statements are all true:
Presentation.currentChildSlide == Slide_1;
Slide_1.currentChildSlide == Bullet_1_1;
SubBullet_1_1_1.currentChildSlide == null;
Slide_2.currentChildSlide == null;

See also

Slide.currentSlide
484 Chapter 4: Components Dictionary

Slide.currentFocusedSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mx.screens.Slide.currentFocusedSlide

Description

Property (read-only); returns “leaf-most” slide that contains the current global focus. The actual
focus may be on the slide itself, or on a movie clip, text object, or component inside that slide;
returns null if there is no current focus.

Example

var focusedSlide = mx.screens.Slide.currentFocusedSlide;

Slide.defaultKeydownHandler

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.defaultKeyDownHandler = function (eventObj) {
// your code here

}

Parameters

eventObj An event object with the following properties:

• type A string indicating the type of event. Possible values are "keyUp" and "keyDown
• ascii An integer that represents the ASCII value of the last key pressed; corresponds to the

value returned by Key.getAscii().
• code An integer that represents the key code of the last key pressed; corresponds to the the

value returned by Key.getCode().
• shiftKey A Boolean (true or false) value indicating if the Shift key is currently being pressed

(true) or not (false).
• ctrlKey A Boolean (true or false) value indicating if the Control key is currently being

pressed (true) or not (false).

Returns

Nothing.
Slide class (Flash Professional only) 485

Description

Callback handler; lets you override the default key board navigation with a custom keyboard
handler that you create. For example, instead of having the Left and Right arrow keys navigate to
the previous and next slides in a presentation, respectively, you could have the Up and Down
arrow keys perform those functions. For a discussion of the default keyboard handling behavior
see Slide.autoKeyNav.

Automatic keyboard handling is enabled when the current slide’s Slide.autoKeyNav property is
set to "true", or if it set to "inherit" and the most immediate ancestor of the current slide that is
not "inherit" is either the root slide of the presentation, or whose autoKeyNav value is set to
“true”.

If automatic keyboard handling is enabled for the current slide,

Example

In that example, the default keyboard handling is altered for child slides of the slide to which the
on(load) handler is attached. This handler uses the up/down arrow for navigation instead of left/
right arrow.
on (load) {

this.defaultKeyDownHandler = function(eventObj:Object) {
switch (eventObj.code) {
case Key.DOWN :

this.currentSlide.gotoNextSlide();
break;

case Key.UP :
this.currentSlide.gotoPreviousSlide();
break;

default :
break;

}
};

}

See also

Slide.autoKeyNav

Slide.firstSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.firstSlide

Description

Property (read-only); returns the first child slide of mySlide that has no child slides.
486 Chapter 4: Components Dictionary

Example

For example, in the hierarchy of slides shown below, the following statements are all true:
Presentation.Intro.firstSlide == Intro_bullet_1_1;
Presentation.Intro_bullet_1.firstSlide == Intro_bullet_1-1;

Slide.getChildSlide()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.getChildSlide(childIndex)

Parameters

childIndex The zero-based index of the child slide to return.

Returns

A slide object.

Description

Method; returns the child slide of mySlide whose index is childIndex. This method is useful,
for example, to iterate over a set of child slides whose indices are known, as the following
example shows.
Slide class (Flash Professional only) 487

Example

This example displays in the Output panel the names of all the child slides of the root
Presentation slide.
var numSlides = _root.Presentation.numChildSlides;
for(var slideIndex=0; slideIndex < numSlides; slideIndex++) {

var childSlide = _root.Presentation.getChildSlide(slideIndex);
trace(childSlide._name);

}

See also

Slide.numChildSlides

Slide.gotoSlide()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.gotoSlide(newSlide)

Parameters

newSlide The slide to navigate to.

Returns

A Boolean value (true or false) indicating if the navigation succeeded (true), or not (false).

Description

Method; navigates to the slide specified by newSlide. For the navigation to succeed, the
following must be true:

• The current slide must be a child slide of mySlide.
• The slide specified by newSlide and the current slide must share a common ancestor slide—

that is, the current slide and newSlide must reside in the same slide subtree.

If either of these conditions isn’t met, the navigation fails and the method returns false;
otherwise, the method navigates to the specified slide and returns true.

For example, consider the following slide hierarchy:
Presentation
 Slide1
 Slide1_1
 Slide1_2
 Slide2
 Slide2_1
 Slide2_2

If the current slide is Slide1_2, then the following gotoSlide() method call will fail, since the
current slide is not a descendant of Slide2:
Slide2.gotoSlide(Slide2_1);
488 Chapter 4: Components Dictionary

Also consider the following screen hierarchy, where a form object is the parent screen of two
separate slide trees.
Form_1

Slide1
Slide1_1
Slide1_2

Slide2
Slide2_1
Slide2_2

If the current slide is Slide1_2, then the following method call will also fail because Slide1 and
Slide2 are in different slide subtrees.
Slide1_2.gotoSlide(Slide2_2);

Example

The following code, attached to a Button component, uses the Slide.currentSlide property
and gotoSlide() method to send the presentation to the next slide in the presentation.
on(click) {

_parent.gotoSlide(_parent.currentSlide.nextSlide);
}

Note that this is equivalent to the following code, which uses the Slide.gotoNextSlide()
method.
on(click) {

_parent.currentSlide.gotoNextSlide();
}

See also

Slide.currentSlide, Slide.gotoNextSlide()

Slide.gotoFirstSlide()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.gotoFirstSlide()

Returns

Nothing.

Description

Method; navigates to the first leaf slide in the tree of child slides beneath mySlide. This method is
ignored when called from within a slide’s on(hide) or on(reveal) event handler if that event
was a result of a slide navigation.

To go to the first slide in a presentation, call mySlide.rootSlide.gotoFirstSlide(). For more
information on rootSlide, see Slide.revealChild
Slide class (Flash Professional only) 489

Example

In the slide hierarchy illustrated below, the following method calls would all navigate to the slide
named Intro_bullet_1_1.
Presentation.gotoFirstSlide();
Presenation.Intro.gotoFirstSlide();
Presentation.Intro.Intro_bullet_1.gotoFirstSlide();

This method call would navigate to the slide named Intro_bullet_2_1.
Presentation.Intro.Intro_bullet_2.gotoFirstSlide();

See also

Slide.firstSlide, Slide.revealChild

Slide.gotoLastSlide()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.gotoLastSlide()

Returns

Nothing.

Description

Method; navigates to the last leaf slide in the tree of child slides beneath mySlide. This method is
ignored when called from within a slide’s on(hide) or on(reveal) event handler if that event
was a result of another slide navigation.
490 Chapter 4: Components Dictionary

Example

In the slide hierarchy illustrated below, the following method calls would navigate to the slide
named Intro_bullet_1_2.
Presenation.Intro.gotoLastSlide();
Presentation.Intro.Intro_bullet_1.gotoLastSlide();

These method calls would navigate to the slide named Intro_bullet_2_1.
Presentation.gotoLastSlide();
Presentation.Intro.gotoLastSlide();

See also

Slide.gotoSlide(), Slide.lastSlide

Slide.gotoNextSlide()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.gotoNextSlide()

Returns

A Boolean (true or false) value, or null; returns true if the method successfully navigated to
the next slide; returns false if the presentation is already at the last slide when the method is
invoked (that is, if currentSlide.nextSlide is null); returns null if invoked on a slide that
doesn’t contain the current slide.
Slide class (Flash Professional only) 491

Description

Method; navigates to the next slide in the slide presentation. As control passes from one slide to
the next, the outgoing slide is hidden and the incoming slide is revealed. If the outgoing and
incoming slides are in different slide subtrees, then all ancestor slides, starting with the outgoing
slide and up to the common ancestor of the incoming and outgoing slides, are hidden and receive
a hide event. Immediately following, all ancestor slides of the incoming slide, up to the common
ancestor of the outgoing and incoming slide, are made visible and receive a reveal event.

Typically, gotoNextSlide() is called on the leaf node that represents the current slide. If called
on a non-leaf node, someNode, then someNode.gotoNextSlide() advances to the first leaf node
in the next slide or "section". For more information, see the example below.

This method has no effect when invoked on a slide that does not contain the current slide (see
example below).

Also, this method has no effect when called from within an on(hide) or on(reveal) event
handler attached to a slide, if that handler was invoked as a result of slide navigation.

Example

Suppose that, in the following slide hierarchy, the slide named Intro_bullet_1_1 is the current
slide being viewed (that is, _root.Presentation.currentSlide._name ==
Intro_bullet_1_1).

In this case, calling Intro_bullet_1_1.gotoNextSlide() would navigate to
Intro_bullet_1_2, which is a sibling slide of Intro_bullet_1_1.

However, invoking Intro_bullet_1.gotoNextSlide() would navigate to Intro_bullet_2_1,
the first leaf slide contained by Intro_bullet_2, which is the next sibling slide of
Intro_bullet_1. Similarly, calling Intro.gotoNextSlide() would navigate to
Results_bullet_1, the first leaf slide contained by the Results slide.
492 Chapter 4: Components Dictionary

Also, still assuming that the current slide is Intro_bullet_1_1, calling
Results.gotoNextSlide() will have no effect, since Results does not contain the current slide
(that is, Results.currentSlide is null).

See also

Slide.currentSlide, Slide.gotoPreviousSlide(), Slide.nextSlide

Slide.gotoPreviousSlide()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.gotoPreviousSlide()

Returns

A Boolean (true or false) value, or null; returns true if the method successfully navigated to
the previous slide; returns false if the presentation is at the first slide when the method is
invoked (that is, if currentSlide.nextSlide is null); returns null if invoked on a slide that
doesn’t contain the current slide.

Description

Method; navigates to the previous slide in the slide presentation. As control passes from one slide
to the previous, the outgoing slide is hidden and the incoming slide is revealed. If the outgoing
and incoming slides are in different slide subtrees, then all ancestor slides, starting with the
outgoing slide and up to the common ancestor of the incoming and outgoing slides, are hidden
and receive a hide event. Immediately following, all ancestors slides of the incoming slide, up to
the common ancestor of the outgoing and incoming slide, are made visible and receive a
reveal event.

Typically, gotoPreviousSlide() is called on the leaf node that represents the current slide. If
called on a non-leaf node, someNode, then someNode.gotoPreviousSlide() advances to the
first leaf node in the next slide or "section". For more information, see the example below.

This method has no effect when invoked on a slide that does not contain the current slide (see
example below).

Also note that this method has no effect when called from within an on(hide) or on(reveal)
event handler attached to a slide, if that handler was invoked as a result of slide naviagation.
Slide class (Flash Professional only) 493

Example

Suppose that, in the following slide hierarchy, the slide named Intro_bullet_1_2 is the current
slide being viewed (that is, _root.Presentation.currentSlide._name ==
Intro_bullet_1_2).

In this case, calling Intro_bullet_1_2.gotoPreviousSlide() would navigate to
Intro_bullet_1_1, which is the previous sibling slide of Intro_bullet_1_2.

However, invoking Intro_bullet_2.gotoPreviousSlide() would navigate to
Intro_bullet_1_1, the first leaf slide contained by Intro_bullet_1, which is the previous
sibling slide of Intro_bullet_2. Similarly, calling Results.gotoPreviousSlide() would
navigate to Intro_bullet_1_1, the first leaf slide contained by the Intro slide.

Also, if the current slide is Intro_bullet_1_1, then calling Results.gotoPreviousSlide()
will have no effect, since Results does not contain the current slide (that is,
Results.currentSlide is null).

See also

Slide.currentSlide, Slide.gotoNextSlide(), Slide.previousSlide
494 Chapter 4: Components Dictionary

Slide.hideChild

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(hideChild) {
// your code here

}

Description

Event; broadcasted each time a child of a slide object changes visible to non-visible. This event is
only broadcasted by slide objects, not Form objects. The main use of the hideChild event is to
apply “out” transitions to all the children of a given slide.

Example

When attached to the root slide (for example, the Presentation slide), this code will display the
name of each child slide belonging to the root slide, as it appears.
on(revealChild) {

var child = eventObj.target._name;
trace(child + " has just appeared");

}

See also

Slide.revealChild

Slide.indexInParentSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.indexInParent

Description

Property (read-only); returns the index (zero-based) of mySlide in its parent's list of child slides.
Slide class (Flash Professional only) 495

Example

The following code uses the indexInParent and Slide.numChildSlides properties to display
the index of the current slide being viewed and the total number of slides contained by its parent
slide. To use this code, attach it to a parent slide that contains one or more child slides.
on (revealChild) {

trace("Displaying "+(currentSlide.indexInParentSlide+1)+" of
"+currentSlide._parent.numChildSlides);

}

Note that because this property is a zero-based index, its value is incremented by one
(currentSlide.indexInParent+1) to display more meaningful values.

See also

Slide.numChildSlides, Slide.revealChild

Slide.lastSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.lastSlide

Description

Property (read-only); returns the last child slide of mySlide that has no child slides.

Example

The following statements are all true concerning the slide hierarchy shown below:
Presentation.lastSlide._name == Results_bullet_1;
Intro.lastSlide._name == Intro_bullet_1_2;
496 Chapter 4: Components Dictionary

Intro_bullet_1.lastSlide._name == Intro_bullet_1_2;
Results.lastSlide._name = Results_bullet_1;

Slide.nextSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.nextSlide

Description

Property (read-only); returns the slide you would reach if you called mySlide.gotoNextSlide(),
but does not actually navigate to that slide. For example, you can use this property to display the
name of the next slide in a presentation and let users select whether they want to navigate to
that slide.

Example

In this example, the label of a Button component named nextButton displays the name of the
next slide in the presentation. If there is no next slide—that is, if myslide.nextSlide is null—
then the button’s label is updated to indicate that the user is at the end of this slide presentation.
if (mySlide.nextSlide != null) {

nextButton.label = "Next slide: " + mySlide.nextSlide._name + " > ";
} else {

nextButton.label = "End of this slide presentation.";
}

Slide class (Flash Professional only) 497

See also

Slide.gotoNextSlide(), Slide.previousSlide

Slide.numChildSlides

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.numChildSlides

Description

Property (read-only); returns the number of child slides that mySlide contains. Note that a slide
can contain either forms or other slides. If mySlide contains both slides and forms, this property
only returns the number of slides, and does not count forms.

Example

This example uses Slide.numChildSlide and the Slide.getChildSlide() method to iterate over
all the child slides of the root Presentation slide and displays their names in the Output panel.
var numSlides = _root.Presentation.numChildSlides;
for(var slideIndex=0; slideIndex < numSlides; slideIndex++) {

var childSlide = _root.Presentation.getChildSlide(slideIndex);
trace(childSlide._name);

}

See also

Slide.getChildSlide()

Slide.overlayChildren

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.overlayChildren

Description

Property; determines whether or not child slides of mySlide remain visible when navigating from
one child slide to the next. When set to true, the previous slide remains visible when control
passes to its next sibling slide; when set to false, the previous slide is invisible when control
passes to its next sibling slide.
498 Chapter 4: Components Dictionary

Setting this property to true is useful, for example, when a given slide contains several child
“bullet point” slides that are revealed separately (using transitions, perhaps), but all need to
remain visible as new bullet points appear.
Note: This property applies only to the immediate descendants of mySlide, not to all (nested)
child slides.

Example

For example, the Intro_bullets slide in the following illustration contains three child slides
(Finance, Human resources, and Operations) that each display a separate bullet point. By setting
Intro_bullets.overlayChildren to true, each bullet slide will remain on the Stage as the other
bullets points appear.

Slide.parentIsSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.parentIsSlide

Description

Property (read-only); a Boolean (true or false) value indicating whether the parent object of
mySlide is also a Slide. If the parent object of mySlide is a Slide, or a subclass of Slide, then this
property will return true; otherwise, it returns false.

If mySlide is the root slide in a presentation then this property will return false since the
Presentation slide’s parent is the main Timeline (_level0), not a slide. This property will also
return false if a form is the parent of mySlide.
Slide class (Flash Professional only) 499

Example

The following code determines if the parent object of the slide mySlide is itself a slide. If so, it’s
assumed that mySlide is the root, or master, slide in the presentation and therefore has no sibling
slides. Otherwise, if mySlide.parentIsSlide is true, and the number of mySlide’s sibling
slides is displayed in the Output panel.
if (mySlide.parentIsSlide) {

trace("I have " + mySlide._parent.numChildSlides+" sibling slides");
} else {

trace("I am the root slide and have no siblings");
}

See also

Slide.numChildSlides

Slide.playHidden

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.playHidden

Description

Property; a Boolean value that specifies whether mySlide should continue to play when it is
hidden. When this property is true, mySlide will continue to play when hidden. When set to
false, mySlide is stopped upon being hidden; upon being revealed play restarts at Frame 1
of mySlide.

You can also set this property in the Property inspector of the Flash authoring environment.

Slide.previousSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.previousSlide

Description

Property (read-only); returns the slide you would reach if you called
mySlide.gotoPreviousSlide(), but does not actually navigate to that slide. For example, you
can use this property to display the name of the previous slide in a presentation and let users select
whether they want to navigate to that slide.
500 Chapter 4: Components Dictionary

Example

In this example, the label of a Button component named previousButton displays the name of
the previous slide in the presentation. If there is no previous slide—that is, if
mySlide.previousSlide is null—then the button’s label is updated to indicate that the user is
at the beginning of this slide presentation.
if (mySlide.previousSlide != null) {

previousButton.label = "Previous slide: " + mySlide.previous._name + " >
";

} else {
previousButton.label = "You’re at the beginning of this slide
presentation.";

See also

Slide.gotoPreviousSlide(), Slide.nextSlide

Slide.revealChild

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

on(revealChild) {
// your code here

}

Description

Event; broadcasted each time a child slide of a slide object changes non-visible to visible. This
event is used primarily to attach “in” transitions to all the child slides of a given slide.

Example

When attached to the root slide (for example, the Presentation slide), this code will display the
name of each child slide as it appears.
on(revealChild) {

var child = eventObj.target._name;
trace(child + " has just appeared");

}

See also

Slide.hideChild
Slide class (Flash Professional only) 501

Slide.rootSlide

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

mySlide.rootSlide

Description

Property (read-only); returns the root slide of the slide tree, or slide subtree, that contains
mySlide.

Example

Suppose you have a movie clip on a slide that, when clicked, goes to the first slide in the
presentation. To accomplish this you would attach the following code to the movie clip:
on(press) {

_parent.rootSlide.gotoFirstSlide();
}

In this case, _parent refers to the slide that contains the movie clip object.

StyleManager class

ActionScript Class Name mx.styles.StyleManager

The StyleManager class keeps track of known inheriting styles and colors. You only need to use
this class if you are creating components and want to add a new inheriting style or color.

To determine which styles are inheriting, please refer to the W3C web site.

Method summary for the StyleManager class

StyleManager.registerColorName()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

StyleManager.registerColorName(colorName, value)

Method Description

StyleManager.registerColorName() Registers a new color name with the StyleManager.

StyleManager.registerColorStyle() Registers a new color style with the StyleManager.

StyleManager.registerInheritingSyle() Registers a new inheriting style with the StyleManager.
502 Chapter 4: Components Dictionary

http://www.w3.org/Style/CSS/

Parameters

colorName A string indicating the name of the color (for example, "gray", "darkGrey", and
so on).

value A hexadecimal number indicating the color (for example, 0x808080, 0x404040, and
so on).

Returns

Nothing.

Description

Method; associates a color name with a hexadecimal value and registers it with the StyleManager.

Example

The following example registers "gray" as the color name for the color represented by the
hexadecimal value 0x808080:
StyleManager.registerColorName("gray", 0x808080);

StyleManager.registerColorStyle()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

StyleManager.registerColorStyle(colorStyle)

Parameters

colorStyle A string indicating the name of the color (for example, "highlightColor",
"shadowColor", "disabledColor", and so on).

Returns

Nothing.

Description

Method; adds a new color style to the StyleManager.

Example

The following example registers "highlightColor" as a color style:
StyleManager.registerColorStyle("highlightColor");
StyleManager class 503

StyleManager.registerInheritingSyle()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

StyleManager.registerInheritingStyle(propertyName)

Parameters

propertyName A string indicating the name of the style property (for example, "newProp1",
"newProp2", and so on).

Returns

Nothing.

Description

Method; marks this style property as inheriting. Use this method to register style properties that
aren’t listed in the CSS specification. Do not use this method to change non-inheriting styles
properties to inheriting.

Example

The following example registers newProp1 as an inheriting style:
StyleManager.registerInheritingStyle("newProp1");

TextArea component

The TextArea component wraps the native ActionScript TextField object. You can use styles to
customize the TextArea component; when an instance is disabled its contents display in a color
represented by the “disabledColor” style. A TextArea component can also be formatted with
HTML, or as a password field that disguises the text.

A TextArea component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection, and
navigation rules as an ActionScript TextField object. When a TextArea instance has focus, you can
use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

Key Description

Arrow keys Moves the insertion point one line up, down, left, or right.

Page Down Moves one screen down.

Page Up Moves one screen up.

Shift + Tab Moves focus to the previous object.

Tab Moves focus to the next object.
504 Chapter 4: Components Dictionary

A live preview of each TextArea instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. If a scroll bar is needed, it appears in
the live preview, but it does not function. Text is not selectable in the live preview and you cannot
enter text into the component instance on the Stage.

When you add the TextArea component to an application, you can use the Accessibility panel to
make it accessible to screen readers.

Using the TextArea component

You can use a TextArea component wherever you need a multiline text field. If you need a single-
line text field, use the “TextInput component” on page 516. For example, you could use a
TextArea component as a comment field in a form. You could set up a listener that checks if field
is empty when a user tabs out of the field. That listener could display an error message indicating
that a comment must be entered in the field.

TextArea component parameters

The following are authoring parameters that you can set for each TextArea component instance in
the Property inspector or in the Component Inspector panel:

text indicates the contents of the TextArea. You cannot enter carriage returns in the Property
inspector or Component Inspector panel. The default value is "" (empty string).

html indicates whether the text is formatted with HTML (true) or not (false). The default value
is false.

editable indicates whether the TextArea component is editable (true) or not (false). The default
value is true.

wordWrap indicates whether the text wraps (true) or not (false). The default value is true.

You can write ActionScript to control these and additional options for TextArea components
using its properties, methods, and events. For more information, see TextArea class.

Creating an application with the TextArea component

The following procedure explains how to add a TextArea component to an application while
authoring. In this example, the component is a Comment field with an event listener that
determines if a user has entered text.

To create an application with the TextArea component, do the following:

1 Drag a TextArea component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name comment.
3 In the Property inspector, set parameters as you wish. However, leave the text parameter blank,

the editable parameter set to true, and the password parameter set to false.
TextArea component 505

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
textListener = new Object();
textListener.handleEvent = function (evt){

if (comment.length < 1) {
Alert(_root, "Error", "You must enter at least a comment in this field",
mxModal | mxOK);
}

}
comment.addEventListener("focusOut", textListener);

This code sets up a focusOut event handler on the TextArea comment instance that verifies
that the user typed in something in the text field.

5 Once text is entered in the comment instance, you can get its value as follows:
var login = comment.text;

Customizing the TextArea component

You can transform a TextArea component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use UIObject.setSize() or any
applicable properties and methods of the TextArea class.

When a TextArea component is resized, the border is resized to the new bounding box. The scroll
bars are placed on the bottom and right edges if they are required. The text field is then resized
within the remaining area; there are no fixed-size elements in a TextArea component. If the
TextArea component is too small to display the text, the text is clipped.

Using styles with the TextArea component

The TextArea component supports one set of component styles for all text in the field. However,
you can also display HTML compatible with Flash Player HTML rendering. To display HTML
text, set TextArea.html to true.

The TextArea component has its backgroundColor and borderStyle style properties defined on
a class style declaration. Class styles override _global styles; therefore, if you want to set the
backgroundColor and borderStyle style properties, you must create a different custom style
declaration on the instance.

If the name of a style property ends in “Color”, it is a color style property and behaves differently
than non-color style properties. For more information, see “Using styles to customize component
color and text” on page 27.

A TextArea component supports the following styles:

Style Description

color The default color for text.

embedFonts The fonts to embed in the document.

fontFamily The font name for text.

fontSize The point size for the font.

fontStyle The font style, either "normal",or "italic".

fontWeight The font weight, either "normal" or "bold".
506 Chapter 4: Components Dictionary

Using skins with the TextArea component

The TextArea component uses the RectBorder class to draw its border. You can use the
setStyle() method (see UIObject.setStyle()) to change the following RectBorder
style properties:

The style properties set the following positions on the border:

TextArea class

Inheritance UIObject > UIComponent > View > ScrollView > TextArea

ActionScript Class Name mx.controls.TextArea

The properties of the TextArea class allow you to set the text content, formatting, and horizontal
and vertical position at runtime. You can also indicate whether the field is editable, and whether it
is a “password” field. You can also restrict the characters that a user can enter.

Setting a property of the TextArea class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The TextArea component overrides the default Flash Player focus rectangle and draws a custom
focus rectangle with rounded corners.

The TextArea component supports CSS styles and any additional HTML styles supported by
Flash Player.

textAlign The text alignment: either "left", "right", or "center".

textDecoration The text decoration, either "none" or "underline".

RectBorder styles Letter

borderColor a

highlightColor b

borderColor c

shadowColor d

borderCapColor e

shadowCapColor f

shadowCapColor g

borderCapColor h

Style Description
TextArea component 507

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.TextArea.version);

Note: The following code returns undefined: trace(myTextAreaInstance.version);.

Property summary for the TextArea class

Event summary for the TextArea class

Property Description

TextArea.editable A Boolean value indicating whether the field is editable (true) or
not (false).

TextArea.hPosition Defines the horizontal position of the text within the scroll pane.

TextArea.hScrollPolicy Indicates whether the horizontal scroll bar is always on ("on"), never on
("off"), or turns on when needed ("auto").S

TextArea.html A flag that indicates whether the text field can be formatted with HTML.

TextArea.length The number of characters in the text field. This property is read-only.

TextArea.maxChars The maximum number of characters that the text field can contain.

TextArea.maxHPosition The maximum value of TextArea.hPosition.

TextArea.maxVPosition The maximum value of TextArea.vPosition.

TextArea.password A Boolean value indicating whether the field is a password field (true) or
not (false).

TextArea.restrict The set of characters that a user can enter into the text field.

TextArea.text The text contents of a TextArea component.

TextArea.vPosition A number indicating the vertical scrolling position

TextArea.vScrollPolicy Indicates whether the vertical scroll bar is always on ("on"), never on
("off"), or turns on when needed ("auto").S

TextArea.wordWrap A Boolean value indicating whether the text wraps (true) or not (false).

Event Description

TextArea.change Notifies listeners that text has changed.
508 Chapter 4: Components Dictionary

TextArea.change

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
textAreaInstance.addEventListener("change", listenerObject)

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has changed.
This event cannot be used prevent certain characters from being added to the component's text
field; instead, use TextArea.restrict.

The first usage example uses an on() handler and must be attached directly to a TextArea
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myTextArea, sends “_level0.myTextArea” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textAreaInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
TextArea component 509

Example

This example traces the total of number of times the text field has changed:
myTextArea.changeHandler = function(obj) {

this.changeCount++;
trace(obj.target);
trace("text has changed " + this.changeCount + " times now! it now contains
" +

this.text);
}

See also

UIEventDispatcher.addEventListener()

TextArea.editable

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

TextArea.hPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.hPosition

Description

Property; defines the horizontal position of the text within the field. The default value is 0.

Example

The following code displays the left-most characters in the field:
myTextArea.hPosition = 0;
510 Chapter 4: Components Dictionary

TextArea.hScrollPolicy

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.hScrollPolicy

Description

Property; determines whether the horizontal scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the field ("auto"). The default value
is "auto".

Example

The following code turns horizontal scroll bars on all the time:
text.hScrollPolicy = "on";

TextArea.html

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.html

Description

Property; a Boolean value that indicates whether the text field is formatted with HTML (true) or
not (false). If the html property is true, the text field is an HTML text field. If html is false,
the text field is a non-HTML text field. The default value is false.

Example

The following example makes the myTextArea field an HTML text field and then formats the
text with HTML tags:
myTextArea.html = true;
myTextArea.text = "The Royal Nonesuch"; // displays "The Royal

Nonesuch"
TextArea component 511

TextArea.length

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.length

Description

Property (read-only); indicates the number of characters in a text field. This property returns the
same value as the ActionScript text.length property, but is faster. A character such as tab ("\t")
counts as one character. The default value is 0.

Example

The following example gets the length of the text field and copies it to the length variable:
var length = myTextArea.length; // find out how long the text string is

TextArea.maxChars

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.maxChars

Description

Property; the maximum number of characters that the text field can contain. A script may insert
more text than the maxChars property allows; the maxChars property only indicates how much
text a user can enter. If the value of this property is null, there is no limit to the amount of text a
user can enter. The default value is null.

Example

The following example limits the number of characters a user can enter to 255:
myTextArea.maxChars = 255;
512 Chapter 4: Components Dictionary

TextArea.maxHPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.maxHPosition

Description

Property (read-only); the maximum value of TextArea.hPosition. The default value is 0.

Example

The following code scrolls the text to the far right:
myTextArea.hPosition = myTextArea.maxHPosition;

See also

TextArea.vPosition

TextArea.maxVPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.maxVPosition

Description

Property (read-only); indicates the maximum value of TextArea.vPosition. The default value
is 0.

Example

The following code scrolls the text to the bottom of the component:
myTextArea.vPosition = myTextArea.maxVPosition;

See also

TextArea.hPosition
TextArea component 513

TextArea.password

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.password

Description

Property; a Boolean value indicating whether the text field is a password field (true) or not
(false). If the value of password is true, the text field is a password text field and hides the
input characters. If false, the text field is not a password text field. The default value is false.

Example

The following code makes the text field a password field that displays all characters as asterisks (*):
myTextArea.password = true;

TextArea.restrict

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.restrict

Description

Property; indicates the set of characters that a user may enter into the text field. The default value
is undefined. If the value of the restrict property is null, a user can enter any character. If the value
of the restrict property is an empty string, no characters may be entered. If the value of the
restrict property is a string of characters, you can enter only characters in the string into the
text field; the string is scanned from left to right. A range may be specified using the dash (-).

The restrict property only restricts user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

If the string begins with “^”, all characters are initially accepted and succeeding characters in the
string are excluded from the set of accepted characters. If the string does not begin with “^”, no
characters are initially accepted and succeeding characters in the string are included in the set of
accepted characters.
514 Chapter 4: Components Dictionary

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_txt.restrict = "A-Z 0-9"; // limit control to uppercase letters, numbers,

and spaces
my_txt.restrict = "^a-z"; // allow all characters, except lowercase letters

TextArea.text

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.text

Description

Property; the text contents of a TextArea component. The default value is "" (empty string).

Example

The following code places a string in the myTextArea instance then traces that string to the
Output panel:
myTextArea.text = "The Royal Nonesuch";
trace(myTextArea.text); // traces "The Royal Nonesuch"

TextArea.vPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.vPosition

Description

Property; defines the vertical position of text in a text field. The scroll property is useful for
directing users to a specific paragraph in a long passage, or creating scrolling text fields. You can
get and set this property. The default value is 0.

Example

The following code makes the topmost characters in a field display:
myTextArea.vPosition = 0;
TextArea component 515

TextArea.vScrollPolicy

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.vScrollPolicy

Description

Property; determines whether the vertical scroll bar is always present ("on"), never present
("off"), or appears automatically according to the size of the field ("auto"). The default value
is "auto".

Example

The following code turns vertical scroll bars off all the time:
text.vScrollPolicy = "off";

TextArea.wordWrap

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textAreaInstance.wordWrap

Description

Property; a Boolean value that indicates whether the text wraps (true) or not (false). The
default value is true.

TextInput component

The TextInput is a single-line component that wraps the native ActionScript TextField object.
You can use styles to customize the TextInput component; when an instance is disabled its
contents display in a color represented by the “disabledColor” style. A TextInput component can
also be formatted with HTML, or as a password field that disguises the text.
516 Chapter 4: Components Dictionary

A TextInput component can be enabled or disabled in an application. In the disabled state, it
doesn’t receive mouse or keyboard input. When enabled, it follows the same focus, selection, and
navigation rules as an ActionScript TextField object. When a TextInput instance has focus, you
can also use the following keys to control it:

For more information about controlling focus, see “Creating custom focus navigation”
on page 24 or “FocusManager class” on page 270.

A live preview of each TextInput instance reflects changes made to parameters in the Property
inspector or Component Inspector panel while authoring. Text is not selectable in the live
preview and you cannot enter text into the component instance on the Stage.

When you add the TextInput component to an application, you can use the Accessibility panel to
make it accessible to screen readers.

Using the TextInput component

You can use a TextInput component wherever you need a single-line text field. If you need a
multiline text field, use the “TextArea component” on page 504. For example, you could use a
TextInput component as a password field in a form. You could set up a listener that checks if field
has enough characters when a user tabs out of the field. That listener could display an error
message indicating that the proper number of characters must be entered.

TextInput component parameters

The following are authoring parameters that you can set for each TextInput component instance
in the Property inspector or in the Component Inspector panel:

text specified the contents of the TextInput. You cannot enter carriage returns in the Property
inspector or Component Inspector panel. The default value is "" (empty string).

editable indicates whether the TextInput component is editable (true) or not (false). The default
value is true.

password indicates whether the field is a password field (true) or not (false). The default value
is false.

You can write ActionScript to control these and additional options for TextInput components
using its properties, methods, and events. For more information, see TextInput class.

Creating an application with the TextInput component

The following procedure explains how to add a TextInput component to an application while
authoring. In this example, the component is a password field with an event listener that
determines if the proper number of characters have been entered.

Key Description

Arrow keys Moves character one character left and right.

Shift + Tab Moves focus to the previous object.

Tab Moves focus to the next object.
TextInput component 517

To create an application with the TextInput component, do the following:

1 Drag a TextInput component from the Components panel to the Stage.
2 In the Property inspector, enter the instance name passwordField.
3 In the Property inspector, do the following:

■ Leave the text parameter blank.
■ Set the editable parameter to true.
■ Set the password parameter to true.

4 Select Frame 1 in the Timeline, open the Actions panel, and enter the following code:
textListener = new Object();
textListener.handleEvent = function (evt){

if (evt.type == "enter"){
trace("You must enter at least 8 characters");

}
}
passwordField.addEventListener("enter", textListener);

This code sets up an enter event handler on the TextInput passwordField instance that
verifies that the user entered the proper number of characters.

5 Once text is entered in the passwordField instance, you can get its value as follows:
var login = passwordField.text;

Customizing the TextInput component

You can transform a TextInput component horizontally both while authoring and at runtime.
While authoring, select the component on the Stage and use the Free Transform tool or any of the
Modify > Transform commands. At runtime, use UIObject.setSize() or any applicable
properties and methods of the TextInput class.

When a TextInput component is resized, the border is resized to the new bounding box. The
TextInput component doesn’t use scroll bars, but the insertion point scrolls automatically as the
user interacts with the text. The text field is then resized within the remaining area; there are no
fixed-size elements in a TextInput component. If the TextInput component is too small to display
the text, the text is clipped.

Using styles with the TextInput component

The TextInput component has its backgroundColor and borderStyle style properties defined
on a class style declaration. Class styles override _global styles, therefore, if you want to set the
backgroundColor and borderStyle style properties, you must create a different custom style
declaration or on the instance.

A TextInput component supports the following styles:

Style Description

color The default color for text.

embedFonts The fonts to embed in the document.

fontFamily The font name for text.

fontSize The point size for the font.
518 Chapter 4: Components Dictionary

Using skins with the TextInput component

The TextArea component uses the RectBorder class to draw its border. You can use the
setStyle() method (see UIObject.setStyle()) to change the following RectBorder
style properties:

The style properties set the following positions on the border:

TextInput class

Inheritance UIObject > UIComponent > TextInput

ActionScript Class Name mx.controls.TextInput

The properties of the TextInput class allow you to set the text content, formatting, and horizontal
position at runtime. You can also indicate whether the field is editable, and whether it is a
“password” field. You can also restrict the characters that a user can enter.

Setting a property of the TextInput class with ActionScript overrides the parameter of the same
name set in the Property inspector or Component Inspector panel.

The TextInput component uses the FocusManager to override the default Flash Player focus
rectangle and draw a custom focus rectangle with rounded corners. For more information, see
“FocusManager class” on page 270.

fontStyle The font style, either "normal",or "italic".

fontWeight The font weight, either "normal" or "bold".

textAlign The text alignment: either "left", "right", or "center".

textDecoration The text decoration, either "none" or "underline".

RectBorder styles Letter

borderColor a

highlightColor b

borderColor c

shadowColor d

borderCapColor e

shadowCapColor f

shadowCapColor g

borderCapColor h

Style Description
TextInput component 519

The TextInput component supports CSS styles and any additional HTML styles supported by
Flash Player. For information about CSS support, see the W3C specification.

You can manipulate the text string by using the string returned by the text object.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.controls.TextInput.version);

Note: The following code returns undefined: trace(myTextInputInstance.version);.

Method summary for the TextInput class

Inherits all methods from UIObject and UIComponent.

Property summary for the TextInput class

Inherits all methods from UIObject and UIComponent.

Event summary for the TextInput class

Inherits all methods from UIObject and UIComponent.

Property Description

TextInput.editable A Boolean value indicating whether the field is editable (true) or
not (false).

TextInput.hPosition The horizontal scrolling position of the text field.

TextInput.length The number of characters in a TextInput text field. This property is
read only.

TextInput.maxChars The maximum number of characters that a user can enter in a TextInput
text field.

TextInput.maxHPosition The maximum possible value for TextField.hPosition. This property is
read-only.

TextInput.password A Boolean value that indicates whether or not the input text field is a
password field that hides the entered characters.

TextInput.restrict Indicates which characters a user can enter in a text field.

TextInput.text Sets the text content of a TextInput text field.

Event Description

TextInput.change Broadcast when the Input field changes.

TextInput.enter Broadcast when the enter key is pressed.
520 Chapter 4: Components Dictionary

http://www.w3.org/TR/REC-CSS2/

TextInput.change

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(change){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.change = function(eventObject){

...
}
textInputInstance.addEventListener("change", listenerObject)

Description

Event; notifies listeners that text has changed. This event is broadcast after the text has changed.
This event cannot be used prevent certain characters from being added to the component's text
field; instead, use TextInput.restrict. This event is only triggered by user input, not by
programmatic change.

The first usage example uses an on() handler and must be attached directly to a TextInput
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myTextInput, sends “_level0.myTextInput” to the Output panel:
on(change){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, change) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
TextInput component 521

Example

This example sets a flag in the application that indicates if contents in the TextInput field have
changed:
form.change = function(eventObj){
 // eventObj.target is the component which generated the change event,
 // i.e., the Input component.
 myFormChanged.visible = true; // set a change indicator if the contents

changed;
}
myInput.addEventListener("change", form);

See also

UIEventDispatcher.addEventListener()

TextInput.editable

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textInputInstance.editable

Description

Property; a Boolean value that indicates whether the component is editable (true) or not
(false). The default value is true.

TextInput.enter

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(enter){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.enter = function(eventObject){

...
}
textInputInstance.addEventListener("enter", listenerObject)
522 Chapter 4: Components Dictionary

Description

Event; notifies listeners that the enter key has been pressed.

The first usage example uses an on() handler and must be attached directly to a TextInput
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the instance
myTextInput, sends “_level0.myTextInput” to the Output panel:
on(enter){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(textInputInstance) dispatches an event (in this case, enter) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

This example sets a flag in the application that indicates if contents in the TextInput field
have changed:
form.enter = function(eventObj){
 // eventObj.target is the component which generated the enter event,
 // i.e., the Input component.
 myFormChanged.visible = true;
// set a change indicator if the user presses enter;
}
myInput.addEventListener("enter", form);

See also

UIEventDispatcher.addEventListener()

TextInput.hPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textInputInstance.hPosition

Description

Property; defines the horizontal position of the text within the field. The default value is 0.
TextInput component 523

Example

The following code displays the leftmost characters in the field:
myTextInput.hPosition = 0;

TextInput.length

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

inputInstance.length

Description

Property (read-only); a number that indicates the number of characters in a TextInput
component. A character such as tab ("\t") counts as one character. The default value is 0.

Example

The following code determines the number of characters in the myTextInput string and copies it
to the length variable:
var length = myTextInput.length;

TextInput.maxChars

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textInputInstance.maxChars

Description

Property; the maximum number of characters that the text field can contain. A script may insert
more text than the maxChars property allows; the maxChars property only indicates how much
text a user can enter. If the value of this property is null, there is no limit to the amount of text a
user can enter. The default value is null.

Example

The following example limits the number of characters a user can enter to 255:
myTextInput.maxChars = 255;
524 Chapter 4: Components Dictionary

TextInput.maxHPosition

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textInputInstance.maxHPosition

Description

Property (read-only); indicates the maximum value of TextInput.hPosition. The default value
is 0.

Example

The following code scrolls to the far right:
myTextInput.hPosition = myTextInput.maxHPosition;

TextInput.password

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textInputInstance.password

Description

Property; a Boolean value indicating whether the text field is a password field (true) or not
(false). If the value of password is true, the text field is a password text field and hides the
input characters. If false, the text field is not a password text field. The default value is false.

Example

The following code makes the text field a password field that displays all characters as asterisks (*):
myTextInput.password = true;

TextInput.restrict

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textInputInstance.restrict
TextInput component 525

Description

Property; indicates the set of characters that a user may enter into the text field. The default value
is undefined. If the value of the restrict property is null or empty string (""), a user can enter any
character. If the value of the restrict property is a string of characters, you can enter only
characters in the string into the text field; the string is scanned from left to right. A range may be
specified using the dash (-).

The restrict property only restricts user interaction; a script may put any text into the text
field. This property does not synchronize with the Embed Font Outlines check boxes in the
Property inspector.

If the string begins with “^”, all characters are initially accepted and succeeding characters in the
string are excluded from the set of accepted characters. If the string does not begin with “^”, no
characters are initially accepted and succeeding characters in the string are included in the set of
accepted characters.

The backslash character may be used to enter the characters “-”, “^”, and “\”, as in the following:
\^
\-
\\

When you enter the \ character in the Actions panel within "" (double quotes), it has a
special meaning for the Actions panel's double quotes interpreter. It signifies that the character
following the \ should be treated as is. For example, the following code is used to enter a single
quotation mark:
var leftQuote = "\"";

The Actions panel’s .restrict interpreter also uses \ as an escape character. Therefore, you may
think that the following should work:
myText.restrict = "0-9\-\^\\";

However, since this expression is contained within double quotes, the following value is sent to
the .restrict interpreter: 0-9-^\, and the .restrict interpreter doesn't understand this value.

Because you must enter this expression within double quotes, you must not only provide the
expression for the .restrict interpreter, but you must also escape the Actions panel's built-in
interpreter for double quotes. To send the value 0-9\-\^\\ to the .restrict interpreter, you must
enter the following code:
myText.restrict = "0-9\\-\\^\\\\";

Example

In the following example, the first line of code limits the text field to uppercase letters, numbers,
and spaces. The second line of code allows all characters except lowercase letters.
my_txt.restrict = "A-Z 0-9";
my_txt.restrict = "^a-z";

The following code allows a user to enter the characters “0 1 2 3 4 5 6 7 8 9 - ^ \” in the instance
myText. You must use a double backslash to escape the characters “-, ^, and \”. The first “\”
escapes the “ ”, the second “\” tells the interpreter that the next character should not be treated as
a special character, as in the following:
myText.restrict = "0-9\\-\\^\\\\";
526 Chapter 4: Components Dictionary

TextInput.text

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

textInputInstance.text

Description

Property; the text contents of a TextInput component. The default value is "" (empty string).

Example

The following code places a string in the myTextInput instance then traces that string to the
Output panel:
myTextInput.text = "The Royal Nonesuch";
trace(myTextInput.text); // traces "The Royal Nonesuch"

TransferObject interface

ActionScript Class Name mx.data.to.TransferObject

The TransferObject interface defines a set of methods that items managed by the DataSet
component must implement. The DataSet.itemClassName property specifies the name of the
transfer object class that will be instantiated each time a new item is needed. You can also specify
this property for a selected DataSet component using the Property inspector.

Method summary for TransferObject interface

Method Description

TransferObject.clone() Creates a new instance of the transfer object.

TransferObject.getPropertyData() Returns the data for this transfer object.

TransferObject.setPropertyData() Sets the data for this transfer object.
TransferObject interface 527

TransferObject.clone()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

class itemClass implements mx.data.to.TransferObject
function clone() {

// your code here
}

}

Returns

A copy of the transfer object.

Description

Method; creates an instance of the transfer object. The implementation of this method creates a
copy of the existing transfer object and its properties and then returns that object.

Example

class itemClass implements mx.data.to.TransferObject {
function clone():Object {

var b:ContactClass = new ContactClass();
for (var p in this) {

b[p] = this[p];
}
return b;

}
}

TransferObject.getPropertyData()

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

class itemClass implements mx.data.to.TransferObject {
function getPropertyData() {
// your code here
}

}

Returns

An object.
528 Chapter 4: Components Dictionary

Description

Method; returns the data for this transfer object. The implementation of this method can return
an anonymous ActionScript object with properties and corresponding values.

Example

class Contact implements mx.data.to.TransferObject {
function getPropertyData():Object {

var internalData:Object = { name:name, readOnly:_readOnly, phone:phone,
zip:zip.zipPlus4 };
return(internalData);

}

TransferObject.setPropertyData()

Availability

Flash Player 7.

Edition

Flash MX 2004.

Usage

class yourClass implements TransferObject {
function setPropertyData(propData) {
// your code here
}

}

Parameters

propData An object that contains the data assigned to this transfer object.

Returns

Nothing.

Description

Method; sets the data for this transfer object. The propData parameter is an object whose fields
contain the data assigned by the DataSet component to this transfer object.

Example

class Contact implements mx.data.to.TransferObject {

function setPropertyData(data: Object):Void {
_readOnly = data.readOnly;
phone = data.phone;
zip = new mx.data.types.ZipCode(data.zip);

}

public var name:String;
public var phone:String;
public var zip:ZipCode;
private var _readOnly:Boolean; // indicates if immutable

}

TransferObject interface 529

Tree component (Flash Professional only)

The Tree component allows a user to view hierarchical data. The tree appears within a box like the
List component, but each item in a tree is called a node and can be either a leaf or a branch. By
default, a leaf is represented by a text label beside a file icon and a branch is represented by a text
label beside a folder icon with a disclosure triangle that a user can open to expose children. The
children of a branch can either be leaves or branches themselves.

The data of a tree component must be provided from an XML data source. For more
information, see the next section.

When a Tree instance has focus either from clicking or tabbing, you can use the following keys to
control it:

The Tree component cannot be made accessible to screen readers.

Using the Tree component (Flash Professional only)

The Tree component can be used to represent hierarchical data such as e-mail client folders, file
browser panes, or category browsing systems for inventory. Most often, the data for a tree is
retrieved from a server in the form of XML, but it can also be well-formed XML that is created
while authoring in Flash. The best way to create XML for the tree is to use the TreeDataProvider
interface (Flash Professional only). You can also use the ActionScript XML class or build an XML
string. After you create an XML data source (or load one from an external source) you assign it to
Tree.dataProvider.

The Tree component is composed of two sets of APIs: the Tree class and the TreeDataProvider
interface. The Tree class contains the visual configuration methods and properties. The
TreeDataProvider interface allows you to construct XML and add it to multiple tree instances. A
TreeDataProvider object broadcasts changes to any trees that use it. As well, any XML or
XMLNode object that exists on the same frame as a tree or a menu is automatically given the
TreeDataProvider methods and properties. For more information, see “TreeDataProvider
interface (Flash Professional only)” on page 548.

Key Description

Down arrow Moves selection down one.

Up arrow Moves selection up one.

Right arrow Opens a selected branch node. If a branch is already open, moves to first child node.

Left arrow Closes a selected branch node. If on a leaf node of a closed branch node, moves to
parent node.

Space Opens or closes a selected branch node.

End Moves selection to the bottom of the list.

Home Moves selection to the top of the list.

Page Down Moves selection down one page.

Page Up Moves selection up one page.

Control Allows multiple noncontiguous selections.

Shift Allows multiple contiguous selections.
530 Chapter 4: Components Dictionary

Formatting XML for the Tree component

The Tree component is designed to display hierarchical data structures. XML is the data model
for the Tree component. It is important to understand the relationship of the XML data source to
the Tree component.

Consider the following XML data source sample:
<node>
 <node label="Mail">
 <node label="INBOX"/>
 <node label="Personal Folder">
 <node label="Business" isBranch="true" />
 <node label="Demo" isBranch="true" />
 <node label="Personal" isBranch="true" />
 <node label="Saved Mail" isBranch="true" />
 <node label="bar" isBranch="true" />
 </node>
 <node label="Sent" isBranch="true" />
 <node label="Trash"/>
 </node>
</node>

Note: The isBranch attribute is read-only; you cannot set it directly. To set it, call the
Tree.setIsBranch() method.

Nodes in the XML data source can have any name. Notice in the sample above that each node is
named with the generic name “node”. The tree reads through the XML and builds the display
hierarchy based on the nested relationship of the nodes.

Each XML node can be displayed as one of two types in the Tree: branch or leaf. Branch nodes
can contain multiple child nodes and appear as a folder icon with a disclosure triangle that allows
users to open and close the folder. Leaf nodes appear as a file icon and cannot contain child nodes.
Both leaves and branches can be roots; root nodes appear at the top level of the tree and have no
parent. The icons are customizable; for more information, see “Using skins with the Tree
component” on page 535.

There are many ways to structure XML. The Tree component is not designed to use all types of
XML structures, so it's important to use XML that the Tree component can interpret. Do not
nest node attributes in a child node; each node should contain all its necessary attributes. Also,
the attributes of each node should be consistent to be useful. For example, to describe a mailbox
structure with a Tree component, use the same attributes on each node (message, data, time,
attachments, and so on). This allows the tree to know what it expects to render, and allows you to
loop through the hierarchy to compare data.

When a Tree displays a node it uses the label attribute of the node by default as the text label.
If any other attributes exist, they become additional properties of the node’s attributes within
the Tree.

The actual root node is interpreted as the Tree component itself. This means that the firstChild
(in the sample, <node label="Mail">), is rendered as the root node in the Tree view. This means
that a tree can have multiple root folders. In this sample, there is only one root folder displayed in
the tree: “Mail”. However, if you were to add sibling nodes at that level in the XML, multiple root
nodes would be displayed in the Tree.
Tree component (Flash Professional only) 531

Tree parameters

The following are authoring parameters that you can set for each Tree component instance in the
Property inspector or in the Component Inspector panel:

multipleSelection A Boolean value that indicates whether a user can select multiple items
(true) or not (false). The default value is false.

rowHeight The height of each row in pixels. The default value is 20.

You can write ActionScript to control these and additional options for the Tree component using
its properties, methods, and events. For more information, see “Tree class (Flash Professional
only)” on page 535.

You cannot enter data parameters in the Property inspector or in the Component Inspector panel
for the Tree component like you can with other components. For more information, see “Using
the Tree component (Flash Professional only)” on page 530 and “Creating an application with the
Tree component” on page 532.

Creating an application with the Tree component

In this example, a developer is creating an e-mail application and chooses to use a Tree
component to display the mailboxes.

You cannot enter data parameters in the Property inspector or in the Component Inspector panel
like you can with other components. Because the data structure is more complex for Tree
components, you must either import an XML object at runtime or build one in Flash while
authoring. To create XML in Flash, you can use the TreeDataProvider, use the ActionScript XML
object, or build an XML string. Each of these options is explained in the following procedures.

To add a Tree component to an application:

1 In Flash, select File > New and select Flash Document.
2 In the Components panel, double-click the Tree component to add it to the Stage.
3 In the Property inspector, enter the instance name myTree.
4 In the Actions panel on Frame 1, enter the following code that creates a change event handler:

listenerObject = new Object();
listenerObject.change = function(evtObject){

trace(evtObject.target.selectedItem.attributes.label + " was selected");
}
myTree.addEventListener("change", listenerObject);

The trace action inside the handler sends a message to the Output panel every time an item in
the tree is selected.

5 Complete one of the following procedures to load or create an XML data source for the tree.
532 Chapter 4: Components Dictionary

To load XML from an external file, do the following:

1 Follow the steps above to add a Tree component to an application and create a change
event handler.

2 In the Actions panel on Frame 1, enter the following code:
myTreeDP = new XML();
myTreeDP.ignoreWhite = true;
myTreeDP.load("http://myServer.myDomain.com/source.xml");
myTreeDP.onLoad = function(){

myTree.dataProvider = myTreeDP;
}

This code creates an ActionScript XML object called myTreeDP and calls the XML.load()
method to load an XML data source. The code then defines an onLoad event handler that
sets the dataProvider property of the myTree instance to the new XML object when the
XML loads. For more information about the XML object, see its entry in ActionScript
Dictionary Help.

3 Select Control > Test Movie.
In the SWF file, you can see the XML structure displayed in the Tree. Click items in the Tree
to see the trace actions in the change event handler send the data values to the Output panel.

To use the TreeDataProvider class to create XML in Flash while authoring, do the following:

1 Follow the steps in the first procedure above to add a Tree component to an application and
create a change event handler.

2 In the Actions panel on Frame 1, enter the following code:
var myTreeDP = new XML();
myTreeDP.addTreeNode("Local Folders", 0);

// Use XML.firstChild to nest child nodes below Local Folders
var myTreeNode = myTreeDP.firstChild;
myTreeNode.addTreeNode("Inbox", 1);
myTreeNode.addTreeNode("Outbox", 2);
myTreeNode.addTreeNode("Sent Items", 3);
myTreeNode.addTreeNode("Deleted Items", 4);

// Assign the myTreeDP data source with the myTree component
myTree.dataProvider = myTreeDP;

// Set each of the 4 child nodes to be branches
for(var i=0; i<myTreeNode.childNodes.length; i++){
 var node = myTreeNode.getTreeNodeAt(i);
 myTree.setIsBranch(node, true);
}

This code creates an XML object called myTreeDP. Any XML object on the same frame as a
Tree component automatically receives all the properties and methods of the TreeDataProvider
API. The second line of code creates a single root node called Local Folders. For detailed
information about the rest of the code, see the comments (lines preceded with //) throughout
the code.

3 Select Control > Test Movie.
In the SWF file, you can see the XML structure displayed in the Tree. Click items in the Tree
to see the trace actions in the change event handler send the data values to the Output panel.
Tree component (Flash Professional only) 533

To use the ActionScript XML class to create XML, do the following:

1 Follow the steps in the first procedure above to add a Tree component to an application and
create a change event handler.

2 In the Actions panel on Frame 1, enter the following code:
// Create an XML object
var myTreeDP = new XML();
// Create node values
var myNode0 = myTreeDP.createElement("node");
myNode0.attributes.label = "Local Folders";
myNode0.attributes.data = 0;

var myNode1 = myTreeDP.createElement("node");
myNode1.attributes.label = "Inbox";
myNode1.attributes.data = 1;

var myNode2 = myTreeDP.createElement("node");
myNode2.attributes.label = "Outbox";
myNode2.attributes.data = 2;

var myNode3 = myTreeDP.createElement("node");
myNode3.attributes.label = "Sent Items";
myNode3.attributes.data = 3;

var myNode4 = myTreeDP.createElement("node");
myNode4.attributes.label = "Deleted Items";
myNode4.attributes.data = 4;
// Assign nodes to the hierarchy in the XML tree
myTreeDP.appendChild(myNode0);
myTreeDP.firstChild.appendChild(myNode1);
myTreeDP.firstChild.appendChild(myNode2);
myTreeDP.firstChild.appendChild(myNode3);
myTreeDP.firstChild.appendChild(myNode4);
// Assign the myTreeDP data source with the Tree control
myTree.dataProvider = myTreeDP;

Please read the comments in the code (lines that begin with //) for a description of the code.
For more information about the XML object, see its entry in ActionScript Dictionary Help.

3 Select Control > Test Movie.
In the SWF file, you can see the XML structure displayed in the Tree. Click items in the Tree
to see the trace actions in the change event handler send the data values to the Output panel.

To use a well-formed string to create XML in Flash while authoring, do the following:

1 Follow the steps in the first procedure above to add a Tree component to an application and
create a change event handler.

2 In the Actions panel on Frame 1, enter the following code:
myTreeDP = new XML("<node label='Local Folders'><node label='Inbox'

data='0'/><node label='Outbox' data='1'/></node>");
myTree.dataProvider = myTreeDP;

The code above creates an XML object myTreeDP and assigns it to the dataProvider property
of myTree.

3 Select Control > Test Movie.
In the SWF file, you can see the XML structure displayed in the Tree. Click items in the Tree
to see the trace actions in the change event handler send the data values to the Output panel.
534 Chapter 4: Components Dictionary

Customizing the Tree component (Flash Professional only)

You can transform a Tree component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use the setSize() method (see
UIObject.setSize()). When a tree isn’t wide enough to display the text of the nodes, the
text clips.

Using styles with the Tree component

For the latest information about this feature, click the Update button at the top of the Help tab.

Using skins with the Tree component

For the latest information about this feature, click the Update button at the top of the Help tab.

Tree class (Flash Professional only)

Inheritance UIObject > UIComponent > View > ScrollView > ScrollSelectList > List > Tree

ActionScript Class Name mx.controls.Tree

Method summary for the Tree class

Inherits all methods from UIComponent, UIObject, View, ScrollView, ScrollSelectList, and List.

Method Description

Tree.addTreeNode() Adds a node to a tree instance.

Tree.addTreeNodeAt() Adds a node at a specific location in a tree instance.

Tree.getDisplayIndex() Returns the display index of a given node.

Tree.getIsBranch() Specifies whether the folder is a branch (has a folder icon and an
expander arrow).

Tree.getIsOpen() Indicates whether a branch is open or closed.

Tree.getNodeDisplayedAt() Returns the display index of a given node.

Tree.getTreeNodeAt() Returns a node on the root of the tree.

Tree.removeAll() Removes all nodes from a tree instance and refreshes the tree.

Tree.removeTreeNodeAt() Removes a node at a specified position and refreshes the tree.

Tree.setIsBranch() Indicates whether a node is a branch (receives folder icon and
expander arrow).

Tree.setIcon() Specifies whether a node is open or closed.

Tree.setIsOpen() Specifies a symbol to be used as an icon for a node.
Tree component (Flash Professional only) 535

Property summary for the Tree class

Inherits all properties from UIComponent, UIObject, View, ScrollView, ScrollSelectList,
and List.

Event summary for the Tree class

Inherits all events from UIComponent, UIObject, View, ScrollView, ScrollSelectList, and List.

Tree.addTreeNode()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myTree.addTreeNode(label [, data])

Usage 2:
myTree.addTreeNode(child)

Parameters

label A string that displays the node, or an object with a “label” field (or whatever label field
name is specified by the labelField property).

data An object of any type that is associated with the node. This parameter is optional.

child Any XMLNode object.

Returns

The added XML node.

Property Description

Tree.dataProvider Specifies an XML data source.

Tree.firstVisibleNode Specifies the first node at the top of the display.

Tree.selectedNode Specifies the selected node in a tree instance.

Tree.selectedNodes Specifies the selected nodes in a tree instance.

Event Description

Tree.nodeClose Broadcast when a node is closed by a user.

Tree.nodeOpen Broadcast when a node is opened by a user.
536 Chapter 4: Components Dictionary

Description

Method; adds a child node to the tree. The node is either constructed from the information
supplied in the label and data parameters (Usage 1), or from the prebuilt child node which
is an XMLNode object (Usage 2). Adding a preexisting node removes the node from its
previous location.
Note: Calling this method refreshes the view.

Example

The following code adds a new node to the root of myTree. The second line of code moves a node
from the root of mySecondTree to the root of myTree:
myTree.addTreeNode("Inbox", 3);
myTree.addTreeNode(mySecondTree.getTreeNodeAt(3));

Tree.addTreeNodeAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
myTree.addTreeNodeAt(index, label [, data])

Usage 2:
myTree.addTreeNodeAt(index, child)

Parameters

index The order (among the child nodes) in which the node should be added.

label A string that displays the node.

data An object of any type that is associated with the node. This parameter is optional.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a node at the specified location in the tree. The node is either constructed from the
information supplied in the label and data parameters (Usage 1), or from the prebuilt XMLNode
object (Usage 2). Adding a preexisting node removes the node from its previous location.
Note: Calling this method refreshes the view.
Tree component (Flash Professional only) 537

Example

The following example adds a new node as the second child of the root of myTree. The second
line moves a node from mySecondTree to become the fourth child of the root of myTree:
myTree.addTreeNodeAt(1, "Inbox", 3);
myTree.addTreeNodeAt(3,mySecondTree.getTreeNodeAt(3));

Tree.dataProvider

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.dataProvider

Description

Property; the dataProvider property can be either XML or a string. If the dataProvider is an
XML object, it is added directly to the tree. If the dataProvider is a string, it must contain valid
XML that is read by the tree and converted to an XML object.

You can either load XML from an external source at runtime or create it in Flash while authoring.
To create XML, you can use either the TreeDataProvider methods, or the built-in ActionScript
XML class methods and properties. You can also create a string that contains XML.

XML objects that are on the same frame as a Tree component automatically contain the
TreeDataProvider methods and properties. You can use the ActionScript XML or
XMLNode objects.

Example

The following example imports an XML file and assigns it to the myTree instance of the
Tree component:
myTreeDP = new XML();
myTreeDP.ignoreWhite = true;
myTreeDP.load("http://myServer.myDomain.com/source.xml");
myTreeDP.onLoad = function(){
 myTree.dataProvider = myTreeDP;
}

Note: Most XML files contain white space and Flash does not ignore that white space unless you set
the ignoreWhite property to true.
538 Chapter 4: Components Dictionary

Tree.firstVisibleNode

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.firstVisibleNode

Description

Property; the first node at the top of the display. If the node is under a node that hasn’t been
expanded, setting firstVisibleNode has no effect. The default value is the first visible node or
undefined if there is no visible node. This value of this property is an XMLNode object.
Note: Setting this property is analogous to setting List.vPosition.

Example

The following example sets the scroll position to the top of the display:
myTree.firstVisibleNode = myTree.getTreeNodeAt(0);

Tree.getIsBranch()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.getIsBranch(node)

Parameters

node An XMLNode object.

Returns

A Boolean value that indicates whether the node is a branch (true) or not (false).

Description

Method; indicates whether the specified node has a folder icon and expander arrow (is a branch).
This is set automatically when children are added to the node. You only need to call
setIsBranch() to create empty folders. For more information, see Tree.setIsBranch().

Example

The following code assigns the node state to a variable:
var open = myTree.getIsBranch(myTree.getTreeNodeAt(1));
Tree component (Flash Professional only) 539

See also

Tree.setIsBranch()

Tree.getIsOpen()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.getIsOpen(node)

Parameters

node An XMLNode object.

Returns

A Boolean value that indicates whether the tree is open (true) or not (false).

Description

Method; indicates whether the specified node is open or closed.

Example

The following code assigns the state of the node to a variable:
var open = myTree.getIsOpen(myTree.getTreeNodeAt(1));

Tree.getDisplayIndex()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.getDisplayIndex(node)

Parameters

node An XMLNode object.

Returns

The index of the node specified, or undefined if the node is not currently displayed.

Description

Method; returns the display index of the node specified in the node parameter.
540 Chapter 4: Components Dictionary

The display index is an array of items that can be viewed in the tree window. For example, any
children of a closed not are not in the display index. The display index starts with 0 and proceeds
through the visible items regardless of parent. In other words, the display index is the row
number, starting with 0, of the displayed rows.

Example

The following code gets the display index of myNode:
var x = myTree.getDisplayIndex(myNode);

Tree.getNodeDisplayedAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.getNodeDisplayedAt(index)

Parameters

index An integer representing the display position in the viewable area of the tree. This number
is zero-based; the node at the first position is 0, second position is 1, and so on.

Returns

The specified XMLNode object.

Description

Method; maps a display index of the tree onto the node that is displayed there. For example, if the
fifth row of the tree showed a node that is eight levels deep into the hierarchy, that node would be
returned by checking getNodeDisplayedAt(4).

The display index is an array of items that can be viewed in the tree window. For example, any
children of a closed not are not in the display index. The display index starts with 0 and proceeds
through the visible items regardless of parent. In other words, the display index is the row
number, starting with 0, of the displayed rows.
Note: Display indices change every time nodes open and close.

Example

The following code gets a reference to the XML node that is the second row displayed in myTree:
myTree.getNodeDisplayedAt(1);
Tree component (Flash Professional only) 541

Tree.getTreeNodeAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.getTreeNodeAt(index)

Parameters

index The index number of a tree.

Returns

An XMLNode object.

Description

Method; returns the specified node on the root of myTree.

Example

The following code gets the second node on the first level in the tree myTree:
myTree.getTreeNodeAt(1);

Tree.nodeClose

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.nodeClose = function(eventObject){

// insert your code here
}
myTreeInstance.addEventListener("nodeClose", listenerObject)

Description

Event; broadcast to all registered listeners when the nodes of a Tree component are closed
by a user.

V2 components use a dispatcher/listener event model. The Tree component broadcasts a
nodeClose event when one of its nodes is clicked closed and the event is handled by a function,
also called a handler, that is attached to a listener object (listenerObject) that you create.
542 Chapter 4: Components Dictionary

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Tree.nodeClose event’s event
object has one additional property: node (the XML node that closed). For more information
about event objects, see “Event Objects” on page 562.

Example

In the following example, a handler called myTreeListener is defined and passed to the
myTree.addEventListener() method as the second parameter. The event object is captured by
the nodeClose handler in the evtObject parameter. When the nodeClose event is broadcast, a
trace statement is sent to the Output panel, as follows:
myTreeListener = new Object();
myTreeListener.nodeClose = function(evtObject){

trace(evtObject.node + " node was closed");
}
myTree.addEventListener("nodeClose", myTreeListener);

Tree.nodeOpen

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

listenerObject = new Object();
listenerObject.nodeOpen = function(eventObject){

// insert your code here
}
myTreeInstance.addEventListener("nodeOpen", listenerObject)

Description

Event; broadcast to all registered listeners when a user opens a node on a Tree component.

V2 components use a dispatcher/listener event model. The Tree component dispatches a
nodeOpen event when a node is clicked open by a user and the event is handled by a function, also
called a handler, that is attached to a listener object (listenerObject) that you create. You call
the addEventListener() method and pass it the name of the handler as a parameter.

When the event is triggered, it automatically passes an event object (eventObject) to the
handler. Each event object has a set of properties that contain information about the event. You
can use these properties to write code that handles the event. The Tree.nodeOpen event’s event
object has one additional property: node (the XML node that was opened). For more information
about event objects, see “Event Objects” on page 562.
Tree component (Flash Professional only) 543

Example

In the following example, a handler called myTreeListener is defined and passed to the
myTree.addEventListener() method as the second parameter. The event object is captured by
nodeOpen handler in the evtObject parameter. When the nodeOpen event is broadcast, a trace
statement is sent to the Output panel, as follows:
myTreeListener = new Object();
myTreeListener.nodeOpen = function(evtObject){

trace(evtObject.node + " node was opened");
}
myTree.addEventListener("nodeOpen", myTreeListener);

Tree.removeAll()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.removeAll()

Parameters

None.

Returns

Nothing.

Description

Method; removes all nodes and refreshes the tree.

Example

The following code empties myTree:
myTree.removeAll();

Tree.removeTreeNodeAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.removeTreeNodeAt(index)

Parameters

index The index number of a tree child. Each child of a tree is assigned a zero-based index in
the order that is was created.
544 Chapter 4: Components Dictionary

Returns

An XMLNode object, or undefined if there is an error.

Description

Method; removes a node (specified by its index position) on the root of the tree and refreshes the
tree.

Example

The following code removes the fourth child of the root of the tree myTree:
myTree.removeTreeNodeAt(3);

Tree.setIsBranch()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.setIsBranch(node, isBranch)

Parameters

node An XML node.

isBranch A Boolean value indicating whether the node is a branch (true), or not (false).

Returns

Nothing.

Description

Method; specifies whether the node has a folder icon and expander arrow and either has children
or can have children. A node is automatically set as a branch when it has children; you only need
to call setIsBranch() when you want create an empty folder. You may want to create branches
that don’t yet have children if, for example, you only want child nodes to load when a user opens
a folder.

Calling the setIsBranch() method refreshes any views.

Example

The following code makes a node of myTree a branch;
myTree.setIsBranch(myTree.getTreeNodeAt(1), true);
Tree component (Flash Professional only) 545

Tree.setIcon()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.setIcon(node, linkID[, linkID2])

Parameters

node An XML node.

linkID The linkage identifier of a symbol to be used as an icon beside the node. This parameter
is used for leaf nodes and for the closed state of branch nodes.

linkID2 The linkage identifier of a symbol to be used as an icon beside the node. This
parameter is used for the icon that represents the open state of branch nodes.

Returns

Nothing.

Description

Method; specifies an icon for the specified node. This method takes one parameter (linkID) for
leaf nodes and two parameters (linkID and linkID2) for branches (the closed and open icons).
The second parameter is ignored for leaf (non-branch) nodes, and if only one parameter is
specified for a branch node, the icon is used for both the closed and open states.

Example

The following code specifies that a symbol with the linkage identifier “imageIcon” be used beside
the second node of myTree:
myTree.setIcon(myTree.getTreeNodeAt(1), "imageIcon");

Tree.setIsOpen()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.setIsOpen(node, isOpen[, noEvent])

Parameters

node An XML node.

isOpen A Boolean value that opens a node (true) or closes it (false).
546 Chapter 4: Components Dictionary

noEvent A Boolean value that animates the opening transition (true) or not (false). This
parameter is optional.

Returns

Nothing.

Description

Method; opens or closes a node.

Example

The following code opens a node of myTree:
myTree.setIsOpen(myTree.getTreeNodeAt(1), true);

Tree.selectedNode

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.selectedNode

Description

Property; specifies the selected node in a tree instance.

Example

The following example specifies the first child node in myTree:
myTree.selectedNode = myTree.getTreeNodeAt(0);

See also

Tree.selectedNodes

Tree.selectedNodes

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myTree.selectedNodes

Description

Property; specifies the selected nodes in a tree instance.
Tree component (Flash Professional only) 547

Example

The following example selects the first and third child nodes in myTree:
myTree.selectedNodes = [myTree.getTreeNodeAt(0), myTree.getTreeNodeAt(2)];

See also

Tree.selectedNode

TreeDataProvider interface (Flash Professional only)

The TreeDataProvider is an interface; it does not need to be instantiated to be used. If a Tree class
is packaged in a SWF, all XML instances in the SWF contain the TreeDataProvider API. All
nodes in a Tree are XML objects that contain the TreeDataProvider API.

It’s best to use the TreeDataProvider API methods to create XML for the Tree.dataProvider
property because only TreeDataProvider broadcasts events to Tree components that refresh the
tree’s display. Built-in XML class methods can be used to create XML, but they don’t broadcast
events that will refresh the display.

You can use the TreeDataProvider API methods to control the data model and the data display.
You can use built-in XML class methods for read-only tasks like traversing through the
tree hierarchy.

The property that holds the text to be displayed can be selected by specifying a labelField or a
labelFunction property. For example, the code myTree.labelField = "fred"; results in the
value of the property myTreeDP.attributes.fred being queried for the display text.

Method summary for the TreeDataProvider interface

Property summary for the TreeDataProvider interface

Event Description

TreeDataProvider.addTreeNode() Adds a child node at the end of a parent node.

TreeDataProvider.addTreeNodeAt() Adds a child node at a specified location on the
parent node.

TreeDataProvider.getTreeNodeAt() Returns the specified child of a node.

TreeDataProvider.removeTreeNode() Removes a node and all the node’s descendents from the
node’s parent.

TreeDataProvider.removeTreeNodeAt() Removes a node and all the node’s descendents from the
index position of the child node.

Property Description

TreeDataProvider.attributes.data Specifies the data to associate with a node.

TreeDataProvider.attributes.label Specifies the text to be displayed next to a node.
548 Chapter 4: Components Dictionary

TreeDataProvider.addTreeNode()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

Usage 1:
someNode.addTreeNode(label, data)

Usage 2:
someNode.addTreeNode(child)

Parameters

label A string that displays the node.

data An object of any type that is associated with the node.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a child node at the root of the tree. The node is either constructed from the
information supplied in the label and data parameters (Usage 1), or from the prebuilt child node,
which is an XMLNode object (Usage 2). Adding a preexisting node removes the node from its
previous location.

Calling this method refreshes the display of the tree instance.

Example

The first line of code in the following example locates the node to which to add a child. The
second line adds a new node to a specified node, as follows:
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.addTreeNode("Inbox", 3);

The following code moves a node from one tree to the root of another tree:
myTreeNode.addTreeNode(mySecondTree.getTreeNodeAt(3));

TreeDataProvider.addTreeNodeAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.
TreeDataProvider interface (Flash Professional only) 549

Usage

Usage 1:
someNode.addTreeNodeAt(index, label, data)

Usage 2:
someNode.addTreeNodeAt(index, child)

Parameters

index An integer that indicates the index position among the child nodes to which the node
should be added.

label A string that displays the node.

data An object of any type that is associated with the node.

child Any XMLNode object.

Returns

The added XML node.

Description

Method; adds a child node at the specified location in the parent node. The node is either
constructed from the information supplied in the label and data parameters (Usage 1), or from
the prebuilt child node, which is an XMLNode object (Usage 2). Adding a preexisting node
removes the node from its previous location.

Calling this method refreshes the display of the tree instance.

Example

The following code locates the node to which you will add a node and adds a new node as the
second child of the root:
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.addTreeNodeAt(1, "Inbox", 3);

The following code moves a node from one tree to become the fourth child of the root of
another tree:
myTreeNode.addTreeNodeAt(3, mySecondTree.getTreeNodeAt(3));

TreeDataProvider.attributes.data

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

someNode.attributes.data
550 Chapter 4: Components Dictionary

Description

Property; specifies the data to associate with the node. This adds the value as an attribute within
the XML node object. Setting this property does not refresh any tree displays. This property can
be of any data type.

Example

The following code locates the node to adjust and sets its data property:
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.attributes.data = "hi"; // results in <node data = "hi">;

See also

TreeDataProvider.attributes.label

TreeDataProvider.attributes.label

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

someNode.attributes.label

Description

Property; a string that specifies the text displayed for the node. This is written to an attribute of
the XML node object. Setting this property does not refresh the displays of any tree.

Example

The following code locates the node to adjust and sets its label property. The result of the
following code is “<node label="Mail">”:

var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.attributes.label = "Mail";

See also

TreeDataProvider.attributes.data

TreeDataProvider.getTreeNodeAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

someNode.getTreeNodeAt(index)
TreeDataProvider interface (Flash Professional only) 551

Parameters

index An integer representing the position of the child node in the current node.

Returns

The specified node.

Description

Method; returns the specified child node of the node.

Example

The following code locates a node and then gets the second child of myTreeNode:
var myTreeNode = myTreeDP.firstChild.firstChild;
myTreeNode.getTreeNodeAt(1);

TreeDataProvider.removeTreeNode()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

someNode.removeTreeNode()

Parameters

None.

Returns

The removed XML node, or undefined if an error occurs.

Description

Method; removes the specified node, and any descendents, from its parent.

Example

The following code removes a node:
myTreeDP.firstChild.removeTreeNode();

TreeDataProvider.removeTreeNodeAt()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

someNode.removeTreeNodeAt(index)
552 Chapter 4: Components Dictionary

Parameters

index An integer indicating the position of the node to be removed.

Returns

The removed XML node, or undefined if an error occurs.

Description

Method; removes a node (and all descendents) specified by the current node and index position of
the child node. Calling this method refreshes the view.

Example

The following code removes the fourth child of a given node:
myTreeDP.firstChild.removeTreeNodeAt(3);

UIComponent

Inheritance UIObject > UIComponent

ActionScript Class Name mx.core.UIComponent

All v2 components extend UIComponent; it is not a visual component. The UIComponent class
contains functions and properties that allow Macromedia components to share some common
behavior. The UIComponent class allows you to do the following:

• Receive focus and keyboard input
• Enable and disable components
• Resize by layout

To use the methods and properties of the UIComponent, you call them directly from whichever
component you are using. For example, to call the UIComponent.setFocus() method from the
RadioButton component, you would write the following code:
myRadioButton.setFocus();

You only need to create an instance of UIComponent if you are using the Macromedia
Component V2 Architecture to create a new component. Even in that case, UIComponent is
often created implicitly by other subclasses like Button. If you do need to create an instance of
UIComponent, use the following code:
class MyComponent extends UIComponent;

Method summary for the UIComponent class

Inherits all methods from the UIObject class.

Method Description

UIComponent.getFocus() Returns a reference to the object that has focus.

UIComponent.setFocus() Sets focus to the component instance.
UIComponent 553

Property summary for the UIComponent class

Inherits all properties from the UIObject class.

Event summary for the UIComponent class

Inherits all events from the UIObject class.

UIComponent.focusIn

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

on(focusIn){
...

}
listenerObject = new Object();
listenerObject.focusIn = function(eventObject){

...
}
componentInstance.addEventListener("focusIn", listenerObject)

Description

Event; notifies listeners that the object has received keyboard focus.

The first usage example uses an on() handler and must be attached directly to a
component instance.

Property Description

UIComponent.enabled Indicates whether the component can receive focus and input.

UIComponent.tabIndex A number indicating the tab order for a component in a document.

Event Description

UIComponent.focusIn Broadcast when an object receives focus.

UIComponent.focusOut Broadcast when an object loses focus.

UIComponent.keyDown Broadcast when a key is pressed.

UIComponent.keyUp Broadcast when a key is released.
554 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusIn) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following code disables a button while a user types in the text field txt:
txtListener.handleEvent = function(eventObj) {

form.button.enabled = false;
}
txt.addEventListener("focusIn", txtListener);

See also

UIEventDispatcher.addEventListener()

UIComponent.focusOut

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

on(focusOut){
...

}
listenerObject = new Object();
listenerObject.focusOut = function(eventObject){

...
}
componentInstance.addEventListener("focusOut", listenerObject)

Description

Event; notifies listeners that the object has lost keyboard focus.

The first usage example uses an on() handler and must be attached directly to a
component instance.
UIComponent 555

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, focusOut) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following code enables a button when a user leaves the text field txt:
txtListener.handleEvent = function(eventObj){

if (eventObj.type == focusOut){
 form.button.enabled = true;

}
}
txt.addEventListener("focusOut", txtListener);

See also

UIEventDispatcher.addEventListener()

UIComponent.enabled

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.enabled

Description

Property; indicates whether the component can accept focus and mouse input. If the value is
true, it can receive focus and input; if the value is false, it can’t. The default value is true.

Example

The following example sets the enabled property of a CheckBox component to false:
checkBoxInstance.enabled = false;
556 Chapter 4: Components Dictionary

UIComponent.getFocus()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.getFocus();

Parameters

None.

Returns

A reference to the object that currently has focus.

Description

Method; returns a reference to the object that has keyboard focus.

Example

The following code returns a reference to the object that has focus and assigns it to the
tmp variable:
var tmp = checkbox.getFocus();

UIComponent.keyDown

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

on(keyDown){
...

}
listenerObject = new Object();
listenerObject.keyDown = function(eventObject){

...
}
componentInstance.addEventListener("keyDown", listenerObject)

Description

Event; notifies listeners when a key is pressed. This is a very low-level event that should not be
used unless necessary because it can impact system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.
UIComponent 557

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyDown) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following code makes an icon blink when a key is pressed:
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyDown", formListener);

UIComponent.keyUp

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

on(keyUp){
...

}
listenerObject = new Object();
listenerObject.keyUp = function(eventObject){

...
}
componentInstance.addEventListener("keyUp", listenerObject)

Description

Event; notifies listeners when a key is released. This is a very low-level event that should not be
used unless necessary because it can impact system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.
558 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, keyUp) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following code makes an icon blink when a key is released:
formListener.handleEvent = function(eventObj)
{

form.icon.visible = !form.icon.visible;
}
form.addEventListener("keyUp", formListener);

UIComponent.setFocus()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.setFocus();

Parameters

None.

Returns

Nothing.

Description

Method; sets the focus to this component instance. The instance with focus receives all
keyboard input.

Example

The following code sets focus to the checkbox instance:
checkbox.setFocus();
UIComponent 559

UIComponent.tabIndex

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

instance.tabIndex

Description

Property; a number indicating the tabbing order for a component in a document.

Example

The following code sets the value of tmp to the tabIndex property of the checkbox instance:
var tmp = checkbox.tabIndex;

UIEventDispatcher

ActionScript Class Name mx.events.EventDispatcher; mx.events.UIEventDispatcher

Events allow you to know when the user has interacted with a component, and also to know when
important changes have happened in the appearance or life cycle of a component, such as the
creation or destruction of a component or if its size changes.

Each component broadcasts different events and those events are listed in each component entry.
There are several ways to use component events in ActionScript code. For more information, see
“About component events” on page 22.

Use the UIEventDispatcher.addEventListener() to register a listener with a component
instance. The listener is invoked when a component’s event is triggered.

UIEventDispatcher.addEventListener()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004 and Flash MX Professional 2004.

Usage

componentInstance.addEventListener(event, listener)

Parameters

event A string that is the name of the event.

listener A reference to a listener object or function.

Returns

Nothing.
560 Chapter 4: Components Dictionary

Description

Method; registers a listener object with a component instance that is broadcasting an event. When
the event is triggered, the listener object or function is notified. You can call this method from any
component instance. For example, the following code registers a listener to the component
instance myButton:
myButton.addEventListener("click", myListener);

You must define the listener as either an object or a function before you call
addEventListener() to register the listener with the component instance. If the listener is an
object, it must have a callback function defined that is invoked when the event is triggered.
Usually, that callback function has the same name as the event with which the listener is
registered. If the listener is a function, the function is invoked when the event is triggered. For
more information, see “Using component event listeners” on page 22.

You can register multiple listeners to a single component instance, but you must use a separate call
to addEventListener() for each listener. Also, you can register one listener to multiple
component instances, but you must use a separate call to addEventListener() for each instance.
For example, the following code defines one listener object and assigns it to two Button
component instances:
lo = new Object();
lo.click = function(evt){

if (evt.target == button1){
trace("button 1 clicked");

} else if (evt.target == button2){
trace("button 2 clicked");

}
}
button1.addEventListener("click", lo);
button2.addEventListener("click", lo);

Execution order is not guaranteed. You cannot expect one listener to be called before another.

An event object is passed to the listener as a parameter. The event object has properties that
contain information about the event that occurred. You can use the event object inside the
listener callback function to access information about the type of event that occurred and which
instance broadcast the event. In the example above, the event object is evt (you can use any
identifier as the event object name) and it is used within the if statements to determine which
button instance was clicked. For more information, see “Event Objects” on page 562.

Example

The following example defines a listener object, myListener, and defines the callback function
click. It then calls addEventListener() to register the myListener listener object with the
component instance myButton. To test this code, place a button component on the Stage with the
instance name myButton, and place the following code in Frame 1:
myListener = new Object();
myListener.click = function(evt){

trace(evt.type + " triggered");
}
myButton.addEventListener("click", myListener);
UIEventDispatcher 561

Event Objects

An event object is passed to a listener as a parameter. The event object is an ActionScript object
that has properties that contain information about the event that occurred. You can use the event
object inside the listener callback function to access the name of the event that was broadcast, or
the instance name of the component that broadcast the event. For example, the following code
uses the target property of the evtObj event object to access the label property of the
myButton instance and send the value to the Output panel:
listener = new Object();
listener.click = function(evtObj){

trace("The " + evtObj.target.label + " button was clicked");
}
myButton.addEventListener("click", listener);

Some event object properties are defined in the W3C specification but aren’t implemented in
version 2 (v2) of the Macromedia Component Architecture. Every v2 event object has the
properties listed in the table below. Some events have additional properties defined, and if so, the
properties are listed in the event’s entry.

Properties of the event object

UIObject

Inheritance MovieClip > UIObject

ActionScript Class Name mx.core.UIObject

UIObject is the base class for all v2 components; it is not a visual component. The UIObject class
wraps the ActionScript MovieClip object and contains functions and properties that allow
Macromedia v2 components to share some common behavior. Wrapping the MovieClip class
allows Macromedia to add new events and extend functionality in the future without breaking
content. Wrapping the MovieClip class also allows users who aren’t familiar with the traditional
Flash concepts of “movie” and “frame” to use the API to create component-based applications
without learning those concepts.

The UIObject class implements the following:

• Styles
• Events
• Resize by scaling

To use the methods and properties of the UIObject, you call them directly from whichever
component you are using. For example, to call the UIObject.setSize() method from the
RadioButton component, you would write the following code:
myRadioButton.setSize(30, 30);

Property Description

type A String indicating the name of the event.

target A reference to the component instance broadcasting the event.
562 Chapter 4: Components Dictionary

http://www.w3.org/TR/DOM-Level-3-Events/events.html

You only need to create an instance of UIObject if you are using the Macromedia Component v2
Architecture to create a new component. Even in that case, UIObject is often created implicitly
by other subclasses like Button. If you do need to create an instance of UIObject, use the
following code:
class MyComponent extends UIObject;

Method summary for the UIObject class

Property summary for the UIObject class

Method Description

UIObject.createObject() Creates a subobject on an object.

UIObject.createClassObject() Creates an object on the specified class.

UIObject.destroyObject() Destroys a component instance.

UIObject.invalidate() Marks the object so it will be redrawn on the next frame interval.

UIObject.move() Moves the object to the requested position.

UIObject.redraw() Forces validation of the object so it draws in the current frame.

UIObject.setSize() Resizes the object to the requested size.

UIObject.setSkin() Sets a skin in the object.

Property Description

UIObject.bottom The position of the bottom edge of the object relative to the bottom
edge of its parent. Read-only.

UIObject.height The height of the object in pixels. Read-only.

UIObject.left The left position of the object in pixels. Read-only.

UIObject.right The position of the right edge of the object relative to the right edge
of its parent. Read-only.

UIObject.scaleX A number indicating the scaling factor in the x direction of the
object relative to its parent.

UIObject.scaleY A number indicating the scaling factor in the y direction of the
object relative to its parent.

UIObject.top The position of the top edge of the object relative to its parent.
Read-only.

UIObject.visible A Boolean value indicating whether the object is visible (true) or
not (false).

UIObject.width The width of the object in pixels. Read-only.

UIObject.x The left position of the object in pixels. Read-only.

UIObject.y Returns the position of the top edge of the object relative to
its parent. Read-only.
UIObject 563

Event summary for the UIObject class

UIObject.bottom

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.bottom

Description

Property (read-only); a number indicating the bottom position of the object in pixels relative to
its parent’s bottom. To set this property, call the UIObject.move() method.

Example

This example moves the check box so it aligns under the bottom edge of the listbox:
myCheckbox.move(myCheckbox.x, form.height - listbox.bottom);

UIObject.createObject()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.createObject(linkageName, instanceName, depth, initObject)

Parameters

linkageName A string indicating the linkage identifier of a symbol in the Library panel.

instanceName A string indicating the instance name of the new instance.

Event Description

UIObject.draw Broadcast when an object is about to draw its graphics.

UIObject.hide Broadcast when an object’s state changes from visible to invisible.

UIObject.load Broadcast when subobjects are being created.

UIObject.move Broadcast when the object has moved.

UIObject.resize Broadcast when the subobjects are being unloaded.

UIObject.reveal Broadcast when an object’s state changes from invisible to visible.

UIObject.unload Broadcast when the subobjects are being unloaded.
564 Chapter 4: Components Dictionary

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject that is an instance of the symbol.

Description

Method; creates a subobject on an object. Generally only used by component or
advanced developers.

Example

The following example creates a CheckBox instance on the form object:
form.createObject("CheckBox", "sym1", 0);

UIObject.createClassObject()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.createClassObject(className, instanceName, depth,
initObject)

Parameters

className An object indicating the class of the new instance.

instanceName A string indicating the instance name of the new instance.

depth A number indicating the depth of the new instance.

initObject An object containing initialization properties for the new instance.

Returns

A UIObject that is an instance of the specified class.

Description

Method; creates a subobject of an object. Generally only used by component or advanced
developers. This method allows you to create components at runtime.

You need to specify the class package name. Do one of the following:
import mx.controls.Button;
createClassObject(Button,"button2",5,{label:"Test Button"});

or
createClassObject(mx.controls.Button,"button2",5,{label:"Test Button"});
UIObject 565

Example

The following example creates a CheckBox object:
form.createClassObject(CheckBox, "cb", 0, {label:"Check this"});

UIObject.destroyObject()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.destroyObject(instanceName)

Parameters

instanceName A string indicating the instance name of the object to be destroyed.

Returns

Nothing.

Description

Method; destroys a component instance.

UIObject.draw

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

on(draw){
...

}
listenerObject = new Object();
listenerObject.draw = function(eventObject){

...
}
componentInstance.addEventListener("draw", listenerObject)

Description

Event; notifies listeners that the object is about to draw its graphics. This is a very low-level event
that should not be used unless necessary because it can affect system performance.

The first usage example uses an on() handler and must be attached directly to a
component instance.
566 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, draw) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following code redraws the object form2 when the form object is drawn:
formListener.draw = function(eventObj){

form2.redraw(true);
}
form.addEventListener("draw", formListener);

See also

UIEventDispatcher.addEventListener()

UIObject.height

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.height

Description

Property (read-only); a number indicating the height of the object in pixels. To change the
height property, call the UIObject.setSize() property.

Example

The following example makes the check box taller:

myCheckbox.setSize(myCheckbox.width, myCheckbox.height + 10);
UIObject 567

UIObject.hide

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

on(hide){
...

}
listenerObject = new Object();
listenerObject.hide = function(eventObject){

...
}
componentInstance.addEventListener("hide", listenerObject)

Description

Event; broadcast when the object’s visible property is changed from true to false.

Example

The following handler displays a message in the Output panel when the object it’s attached to
becomes invisible.
on(hide) {

trace("I’ve become invisible.");
}

See also

UIObject.reveal

UIObject.getStyle()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.getStyle(propertyName)

Parameters

propertyName A string indicating the name of the style property (for example, "fontWeight",
"borderStyle", and so on).

Returns

The value of the style property. The value can be of any data type.
568 Chapter 4: Components Dictionary

Description

Method; gets the style property from the styleDeclaration or object. If the style property is an
inheriting style, the parents of the object may be the source of the style value.

For a list of the styles supported by each component, see their individual entries.

Example

The following code sets the ib instance’s fontWeight style property to bold if the cb instance’s
fontWeight style property is bold:
if (cb.getStyle("fontWeight") == "bold")
{
 ib.setStyle("fontWeight", "bold");
};

UIObject.invalidate()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.invalidate()

Parameters

None.

Returns

Nothing.

Description

Method; marks the object so it will be redrawn on the next frame interval.

Example

The following example marks the ProgressBar instance pBar for redraw:
pBar.invalidate();

UIObject.left

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.left
UIObject 569

Description

Property (read-only); a number indicating the left edge of the object in pixels relative to its parent.
To set this property, call the UIObject.move() method.

UIObject.load

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(load){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.load = function(eventObject){

...
}
componentInstance.addEventListener("load", listenerObject)

Description

Event; notifies listeners that the subobject for this object is being created.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, load) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example creates an instance of MySymbol once the form instance is loaded:
formListener.handleEvent = function(eventObj)
{

form.createObject("MySymbol", "sym1", 0);
}
form.addEventListener("load", formListener);
570 Chapter 4: Components Dictionary

UIObject.move

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(move){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.move = function(eventObject){

...
}
componentInstance.addEventListener("move", listenerObject)

Description

Event; notifies listeners that the object has moved.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, move) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example calls the move() method to keep form2 100 pixels down and to the right
of form1:
formListener.handleEvent = function(){

form2.move(form1.x + 100, form1.y + 100);
}
form1.addEventListener("move", formListener);
UIObject 571

UIObject.move()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.move(x, y)

Parameters

x A number that indicates the position of the object’s upper left corner relative to its parent.

y A number that indicates the position of the object’s upper left corner relative to its parent.

Returns

Nothing.

Description

Method; moves the object to the requested position. You should only pass integral values to the
UIObject.move() or the component may appear fuzzy.

Example

This example move the checkbox to the right 10 pixels:
myCheckbox.move(myCheckbox.x + 10, myCheckbox.y);

UIObject.redraw()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.redraw(always)

Parameters

always A Boolean value. If true, draws the object even if invalidate() wasn't called. If
false, draws the object only if invalidate() was called.

Returns

Nothing.

Description

Method; forces validation of the object so it draws in the current frame
572 Chapter 4: Components Dictionary

Example

The following example creates a check box and a button and draws them because other scripts are
not expected to modify the form:
form.createClassObject(mx.controls.CheckBox, "cb", 0);
form.createClassObject(mx.controls.Button, "b", 1);
form.redraw(true)

UIObject.resize

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(resize){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.resize = function(eventObject){

...
}
componentInstance.addEventListener("resize", listenerObject)

Description

Event; notifies listeners that object has been resized.

The first usage example uses an on() handler and must be attached directly to a
component instance.

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, resize) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.
UIObject 573

Example

The following example calls the setSize() method to make sym1 half the width and a fourth of
the height when form is moved:
formListener.handleEvent = function(eventObj){

form.sym1.setSize(sym1.width / 2, sym1.height / 4);
}
form.addEventListener("resize", formListener);

UIObject.reveal

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

on(reveal){
...

}
listenerObject = new Object();
listenerObject.reveal = function(eventObject){

...
}
componentInstance.addEventListener("reveal", listenerObject)

Description

Event; broadcast when the object’s visible property changes from false to true.

Example

The following handler displays a message in the Output panel when the object it’s attached to
becomes visible.
on(reveal) {

trace("I’ve become visible.");
}

See also

UIObject.hide

UIObject.right

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.right
574 Chapter 4: Components Dictionary

Description

Property (read-only); a number indicating the right position of the object in pixels relative to its
parent’s right side. To set this property, call the UIObject.move() method.

Example

The following example moves the check box so it aligns under the right edge of the listbox:
myCheckbox.move(form.width - listbox.right, myCheckbox.y);

UIObject.scaleX

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.scaleX

Description

Property; a number indicating the scaling factor in the x direction of the object relative to
its parent.

Example

The following example makes the check box twice as wide and sets the tmp variable to the
horizontal scale factor:
checkbox.scaleX = 200;
var tmp = checkbox.scaleX;

UIObject.scaleY

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.scaleY

Description

Property; a number indicating the scaling factor in the y direction of the object relative to
its parent.
UIObject 575

Example

The following example makes the check box twice as high and sets the tmp variable to the vertical
scale factor:
checkbox.scaleY = 200;
var tmp = checkbox.scaleY;

UIObject.setSize()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.setSize(width, height)

Parameters

width A number that indicates the width of the object in pixels.

height A number that indicates the height of the object in pixels.

Returns

Nothing.

Description

Method; resizes the object to the requested size. You should only pass integral values to the
UIObject.setSize() or the component may appear fuzzy. This method (and all methods and
properties of UIObject) is available from any component instance.

When you call this method on an instance of the ComboBox, the combo box is resized and the
rowHeight property of the contained list is also changed.

Example

This example resizes the pBar component instance to 100 pixels wide and 100 pixels high:
pBar.setSize(100, 100);

UIObject.setSkin()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.setSkin(id, linkageName)
576 Chapter 4: Components Dictionary

Parameters

id A number indicating the variable. This value is usually a constant defined in the class
definition.

linkageName A string indicating an asset in the library.

Returns

Nothing.

Description

Method; sets a skin in the component instance. Use this method when you are developing
components. You cannot use this method to set a component’s skins at runtime.

Example

This example sets a skin in the checkbox instance:
checkbox.setSkin(CheckBox.skinIDCheckMark, "MyCustomCheckMark");

UIObject.setStyle()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.setStyle(propertyName, value)

Parameters

propertyName A string indicating the name of the style property (for example, "fontWeight",
"borderStyle", and so on).

value The value of the property.

Returns

A UIObject that is an instance of the specified class.

Description

Method; sets the style property on the style declaration or object. If the style property is an
inheriting style, the children of the object are notified of the new value.

For a list of the styles supported by each component, see their individual entries.

Example

The following code sets the fontWeight style property of the check box instance cb to bold:
cb.setStyle("fontWeight", "bold");
UIObject 577

UIObject.top

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.top

Description

Property (read-only); a number indicating the top edge of the object in pixels relative to its
parent. To set this property, call the UIObject.move() method.

UIObject.unload

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(unload){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.unload = function(eventObject){

...
}
componentInstance.addEventListener("unload", listenerObject)

Description

Event; notifies listeners that the subobjects of this object are being unloaded.

The first usage example uses an on() handler and must be attached directly to a
component instance.
578 Chapter 4: Components Dictionary

The second usage example uses a dispatcher/listener event model. A component instance
(componentInstance) dispatches an event (in this case, unload) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. Each event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example deletes sym1 when the unload event is triggered:
formListener.handleEvent = function(eventObj){
 // eventObj.target is the component which generated the change event,
 form.destroyObject(sym1);
}
form.addEventListener("unload", formListener);

UIObject.visible

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.visible

Description

Property; a Boolean value indicating whether the object is visible (true) or not (false).

Example

The following example makes the myLoader loader instance visible:
myLoader.visible = true;

UIObject.width

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.width
UIObject 579

Description

Property (read-only); a number indicating the width of the object in pixels. To change the width,
call the UIObject.setSize() method.

Example

The following example makes the check box wider:

myCheckbox.setSize(myCheckbox.width + 10, myCheckbox.height);

UIObject.x

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.x

Description

Property (read-only); a number indicating the left edge of the object in pixels. To set this property,
call the UIObject.move() method.

Example

The following example moves the check box to the right 10 pixels:

myCheckbox.move(myCheckbox.x + 10, myCheckbox.y);

UIObject.y

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

componentInstance.y

Description

Property (read-only); a number indicating the top edge of the object in pixels. To set this
property, call the UIObject.move() method.

Example

The following example moves the check box down 10 pixels:

myCheckbox.move(myCheckbox.x, myCheckbox.y + 10);
580 Chapter 4: Components Dictionary

Web service classes (Flash Professional only)

The classes found in the mx.services package consist of classes for accessing web services that use
Simle Object Access Protocol (SOAP). This WebService API is not the same as the
WebServiceConnector component API. The former is a set of classes that can you use only in
ActionScript code, and is common with various Macromedia products. The latter is an API
unique to Flash MX 2004, and provides an ActionScript interface to the visual authoring tool for
the WebServiceConnector component.

Making web service classes available at runtime (Flash Professional only)

In order to make the web service classes available at runtime, the WebServiceClasses component
must be in your FLA file’s library. This component contains the runtime classes that let you work
with web services. For details on adding these classes to your FLA, see “Working with data
binding and web services at runtime (Flash Professional only)” in Using Flash Help.
Note: These classes are automatically made available to your Flash document when you add a
WebServiceConnector component to your FLA.

Classes in the mx.services package (Flash Professional only)

The following table lists the classes in the mx.services package. These classes are closely integrated,
so when first learning about this package, you may want to read the information in the order the
classes are listed in the table.

Log class (Flash Professional only)

The Log class is part of the mx.services package and is intended to be used with the WebService
class (see “WebService class (Flash Professional only)” on page 596). For an overview of the classes
in the mx.data.services package, see “Web service classes (Flash Professional only)” on page 581.

You can create a new Log object to record activity related to a WebService object. To execute code
when messages are sent to a Log object, use the Log.onLog() callback function. There is no log
file; the logging mechanism is whatever you have used in the onLog() callback, such as sending
the log messages to a trace command.

The constructor for this object creates a Log object that can be passed as an optional argument to
the WebService constructor (see “WebService class (Flash Professional only)” on page 596).

ActionScript Class Name mx.services.Log

Class Description

WebService class (Flash
Professional only)

Using a WSDL file that defines the web service, constructs a new
WebService object for calling web service methods and handling
callbacks from the web service.

PendingCall class (Flash
Professional only)

Object returned from a web service method call that you implement to
handle the results and faults of the call.

Log class (Flash
Professional only)

Optional object used to record activity related to a WebService object.

SOAPCall class (Flash
Professional only)

Advanced class that contains information about the web service
operation, and provides control over certain behaviors.
Web service classes (Flash Professional only) 581

Callback summary for the Log object

Constructor for the Log class

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myWebSrvcLog = new Log([logLevel] [, logName]);

Parameters

logLevel Log level to indicate the types of information you want to record in the log. In the
web services code, the log messages are broken down into categories or levels. The logLevel
parameter of the Log object constructor relates to these categories. Three logLevels are available:

• Log.BRIEF: The log records primary life-cycle event and error notifications.
• Log.VERBOSE: The log records all life-cycle event and error notifications.
• Log.DEBUG: The log records metrics and fine-grained events and errors.

The default logLevel is log.BRIEF.

logName Optional name that is included with each log message. If you are using multiple log
objects, you can use the logName to determine which log recorded a given message.

Returns

Nothing.

Description

Constructor; creates a Log object. Use this constructor to create a log. After you create the Log
object, you can pass this object to a web service to get messages.

 Example

You can call on the new Log constructor which returns a log object to pass to your web service:
// creates a new log object
myWebSrvcLog = new Log();
myWebSrvcLog.onLog = function(txt)
{

myTrace(txt)
}

You then pass this Log object as a parameter to the WebService constructor:
myWebSrvc = new WebService("http://www.myco.com/info.wsdl", myWebSrvcLog);

Callback Description

Log.onLog() Sends a log message to a log object.
582 Chapter 4: Components Dictionary

As the web services code executes and messages are sent to the log object, the onLog() function of
your Log object is called. This is the only place to put code that displays the log messages if you
want to see them in real time.

The following are examples of log messages:
7/30 15:22:43 [INFO] SOAP: Decoding PendingCall response
7/30 15:22:43 [DEBUG] SOAP: Decoding SOAP response envelope
7/30 15:22:43 [DEBUG] SOAP: Decoding SOAP response body
7/30 15:22:44 [INFO] SOAP: Decoded SOAP response into result [16 millis]
7/30 15:22:46 [INFO] SOAP: Received SOAP response from network [6469 millis]
7/30 15:22:46 [INFO] SOAP: Parsed SOAP response XML [15 millis]
7/30 15:22:46 [INFO] SOAP: Decoding PendingCall response
7/30 15:22:46 [DEBUG] SOAP: Decoding SOAP response envelope
7/30 15:22:46 [DEBUG] SOAP: Decoding SOAP response body
7/30 15:22:46 [INFO] SOAP: Decoded SOAP response into result [16 millis]

Log.onLog()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myWebSrvcLog.onLog = function(message)

Parameters

message The log message passed to the handler. For more information about log messages, see
“Log class (Flash Professional only)” on page 581.

Returns

None.

Description

Log callback function; Flash Player calls this function when a log message is sent to a log file. This
handler is a good place to put code that records or displays the log messages, such as a trace
command. The Log construction is described in “Log class (Flash Professional only)”
on page 581.

Example

The following example creates a new log object, passes it to a new WebService object and handles
the logging messages.
// creates a new log object
myWebSrvcLog = new Log();
// passes the log object to the web service
myWebService = new WebService(wsdlURI, myWebSrvcLog);
// handles in-coming log messages
myWebSrvcLog.onLog = function(message)
{

mytrace("Log Event:\r myWebSrvcLog.message="+message+);
}

Web service classes (Flash Professional only) 583

PendingCall class (Flash Professional only)

The PendingCall class is part of the mx.services package and is intended to be used with the
WebService class (see “WebService class (Flash Professional only)” on page 596). For an overview
of the classes in the mx.data.services package, see “Web service classes (Flash Professional only)”
on page 581.

When you call a method on a WebService object, the WebService object returns a PendingCall
object. The PendingCall object is not constructed by the developer. You use the onResult and
onFault callbacks of the PendingCall object to handle the asynchronous response from the web
service method. If the web service method returns a fault, Flash Player calls the
PendingCall.onFault callback and passes a SOAPFault object that represents the XML SOAP
fault returned by the server/web service. If the web service invocation is successful, Flash Player
calls the PendingCall.onResult callback and passes a result object. The result object is the XML
response from the web service decoded or deserialized into ActionScript. For more information
about the WebService object, see “WebService class (Flash Professional only)” on page 596.

The PendingCall object also offers you access to output parameters when there are more than one.
Many web services return only a single result, but some web services return more than one result.
The “return value” referred to in this API is simply the first (or only) result. The
PendingCall.getOuptutXXX functions give you access to all of the results, not just the first. So
while the “return value” is handed to you in the argument to the onResult() callback, if there are
other output parameters you want to access, use getOutputValues() (returns an Array) and
getOutputValue(index) (returns an individual one) to get the ActionScript decoded values.

You can also access the SOAPParameter object directly. The SOAPParameter object is an
ActionScript object with two properties: value contains the ActionScript value of an output
parameter, and element contains the XML value of the output parameter. The following
functions return a SOAPParameter object, or an array of SOAPParameter objects, which contains
the value (param.value) as well as the XML element (param.element):
getOutputParameters(), getOutputParameterByName(name), and
getOutputParameter(index).

ActionScript Class Name mx.services.PendingCall

Function summary for the PendingCall object

Function Description

PendingCall.getOutputParameter() Gets a SOAPParameter object based on the index
passed in.

PendingCall.getOutputParameterByName() Gets a SOAPParameter object based on the localName
passed in.

PendingCall.getOutputParameters() Gets an array of SOAPParameter objects.

PendingCall.getOutputValue() Gets the output value based on the index passed in.

PendingCall.getOutputValues() Gets an array of all the output values.
584 Chapter 4: Components Dictionary

Property summary for the PendingCall object

Callback summary for the PendingCall object

Constructor for the PendingCall class

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Description

The PendingCall object is not constructed by the developer. Instead, when you call a function on
a WebService object, the WebService object returns a PendingCall object.

PendingCall.getOutputParameter()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myPendingCall.getOutputParameter(var index)

Parameters

index The index of the parameter.

Property Description

PendingCall.myCall The SOAPCall operation descriptor for the PendingCall
operation.

PendingCall.request The SOAP request in raw XML format.

PendingCall.response The SOAP response in raw XML format.

Callback Description

PendingCall.onFault() Called by a web service when the method fails.

PendingCall.onResult() Called when a method has succeeded and returned
a result.
Web service classes (Flash Professional only) 585

Returns

SOAPParameter object with the following elements:

Description

Function; gets an additional output parameter of the SOAPParameter object, which contains the
value and the XML element. SOAP RPC calls may return multiple output parameters. The first
(or only) return value is always handed to you in the results argument of the onResult()
callback, but to get access to the others you need to use functions such as this one or
getOutputValue(). The getOutputParameter() function returns the nth output parameter as
a SOAPParameter object.

See also PendingCall.getOutputValue(), PendingCall.getOutputValues(),
PendingCall.getOutputParameterByName() and PendingCall.getOutputParameters().

Example

Given the SOAP descriptor file below, getOutputParameter(1) would return a SOAPParameter
object with value="Hi there!" and element=the <outParam2> XMLNode.
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

PendingCall.getOutputParameterByName()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myPendingCall.getOutputParameterByName(var localName)

Parameters

localName The local name of the parameter. In other words, the name of an XML element,
stripped of any namespace information. For example, the local name of both of the following
elements is bob:
<bob abc="123">
<xsd:bob def="ghi">

Element Description

value The ActionScript value of the parameter.

element The raw XML of the parameter in the SOAP envelope.
586 Chapter 4: Components Dictionary

Returns

SOAPParameter object with the following elements:

Description

Function; gets any output parameter as a SOAPParameter object, which contains the value and
the XML element. SOAP RPC calls may return multiple output parameters. The first (or only)
return value is always handed to you in the results argument of the onResult() callback, but to
get access to the others you need to use APIs such as this one. The
getOutputParameterByName() call returns the output parameter with the name localName.

See also PendingCall.getOutputValue(), PendingCall.getOutputValues(),
PendingCall.getOutputParameter() and PendingCall.getOutputParameters().

Example

Given the SOAP descriptor file below, getOutputParameterByName("outParam2") would
return a SOAPParameter object with value="Hi there!" and element=the <outParam2>
XMLNode.
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

PendingCall.getOutputParameters()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myPendingCall.getOutputParameterByName()

Parameters

None.

Element Description

value The ActionScript value of the parameter.

element The raw XML of the parameter in the SOAP envelope.
Web service classes (Flash Professional only) 587

Returns

Array of SOAPParameter objects with the following elements:

Description

Function; gets additional output parameters of the SOAPParameter object, which contains the
values and the XML elements. SOAP RPC calls may return multiple output parameters. The first
(or only) return value is always handed to you in the results argument of the onResult()
callback, but to get access to the others you need to use APIs such as this one or
getOutputValues().

See also PendingCall.getOutputValue(), PendingCall.getOutputValues(),
PendingCall.getOutputParameterByName() and PendingCall.getOutputParameter().

PendingCall.getOutputValue()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myPendingCall.getOutputValue(var index)

Parameters

index The index of an output parameter. The first parameter is index 0.

Returns

The nth output parameter.

Description

Function; gets the decoded ActionScript value of an individual output parameter. SOAP RPC
calls may return multiple output parameters. The first (or only) return value is always handed to
you in the results argument of the onResult() callback, but to get access to the others you need
to use APIs such as this one or getOutputParameter(). The getOutputValue() call returns the
nth output parameter.

See also PendingCall.getOutputParameter(), PendingCall.getOutputValues(),
PendingCall.getOutputParameterByName() and PendingCall.getOutputParameters().

Element Description

value The ActionScript value of the parameter.

element The raw XML of the parameter in the SOAP envelope.
588 Chapter 4: Components Dictionary

Example

Given the SOAP descriptor file below, getOutputValue(2) would return true.
...
<SOAP:Body>
 <rpcResponse>
 <outParam1 xsi:type="xsd:int">54</outParam1>
 <outParam2 xsi:type="xsd:string">Hi there!</outParam2>
 <outParam3 xsi:type="xsd:boolean">true</outParam3>
 </rpcResponse>
</SOAP:Body>
...

PendingCall.getOutputValues()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myPendingCall.getOutputValues()

Parameters

None.

Returns

Array of all output parameters’ decoded values.

Description

Function; gets the decoded ActionScript value of all output parameters. SOAP RPC calls can
return multiple output parameters. The first (or only) return value is always handed to you in the
results argument of the onResult() callback, but to get access to the others you need to use APIs
such as this one or getOutputParameters().

See also PendingCall.getOutputValue(), PendingCall.getOutputParameter(),
PendingCall.getOutputParameterByName() and PendingCall.getOutputParameters().

PendingCall.myCall

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

PendingCall.myCall
Web service classes (Flash Professional only) 589

Description

Property; the SOAPCall object corresponding to the PendingCall’s operation. The SOAPCall
object contains information about the web service operation, and provides control over certain
behaviors. For more information, see “SOAPCall class (Flash Professional only)” on page 593.

Example

The following onResult callback traces the name of the SOAPCall operation.
callback.onResult = function(result)
{

// Check my operation name
trace("My operation name is " + this.myCall.name);

}

PendingCall.onFault()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myPendingCallObj.onFault = function(fault)
{

// handles any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support

}

Parameters

fault Decoded ActionScript object version of the error with properties. If the error information
came from a server in the form of XML, then the SOAPFault object will be the decoded
ActionScript version of that XML.

The type of error object returned to PendingCall.onfault() is a SOAPFault object. It is not
constructed directly by developers, but returned as the result of a failure. This object is an
ActionScript mapping of the SOAP Fault XML type.

Returns

Nothing.

SOAPFault property Description

faultcode String; a short string describing the error.

faultstring String; the human-readable description of the error.

detail String; the application-specific information associated with the error, such
as a stack trace or other information returned by the web service engine.

element XML; the XML object representing the XML version of the fault.

faultactor String; the source of the fault (optional if an intermediary is not involved).
590 Chapter 4: Components Dictionary

Description

PendingCall object callback function; you provide this handler that Flash Player calls when a web
service method has failed and returned an error. The fault parameter is an ActionScript
SOAPFault object.

Example

The following example handles errors returned from the web service method.
// handles any error returned from the use of a web service method
myPendingCallObj = myWebService.methodName(params)
myPendingCallObj.onFault = function(fault)
{

// catches the SOAP fault
DebugOutputField.text = fault.faultstring;

// add code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support

}

PendingCall.onResult()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myPendingCallObj.onResult = function(result)
{

// catches the result and handles it for this application

}

Parameters

result Decoded ActionScript object version of the XML result returned by a web service method
called with myPendingCallObj = myWebService.methodName(params).

Returns

None.

Description

PendingCall callback function; you provide this handler that Flash Player calls when a web service
method succeeds and returns a result. The result is a decoded ActionScript object version of the
XML returned by the operation. To get the raw XML returned instead of the decoded result,
access the PendingCall.response property (see PendingCall.response).
Web service classes (Flash Professional only) 591

Example

The following example handles results returned from the web service method.
// handles results returned from the use of a web service method
myPendingCallObj = myWebService.methodName(params)
myPendingCallObj.onResult = function(result)
{

// catch the result and handle it for this application
ResultOutputField.text = result;

}

PendingCall.request

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

rawXML = myPendingCallback.request;

Description

PendingCall property; contains the raw XML form of the current request sent with
myPendingCallback = myWebService.methodName(). Normally, you would not have any use
for PendingCall.request, but you can use it if you are interested in the SOAP that gets sent
over the wire. Use this property to access the raw XML of the request. Use
myPendingCallback.onResult() to get the ActionScript version of the results of the request.

PendingCall.response

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

rawXML = myPendingCallback.response;

Description

PendingCall property; contains the raw XML form of the response to the most recent web service
method call sent with myPendingCallback = myWebService.methodName(). Normally, you
would not have any use for PendingCall.response, but you can use it if you are interested in
the SOAP that gets sent over the wire. Use myPendingCallback.onResult() to get the corresponding
ActionScript version of the results of the request.
592 Chapter 4: Components Dictionary

SOAPCall class (Flash Professional only)

The SOAPCall class is part of the mx.services package and is intended as an advanced feature to
be used with the WebService class (see “WebService class (Flash Professional only)” on page 596).
For an overview of the classes in the mx.data.services package, see “Web service classes (Flash
Professional only)” on page 581.

When you create a new WebService object, it contains the methods corresponding to operations
in the WSDL URL you pass in. Behind the scenes, a SOAPCall object is created for each
operation in the WSDL as well. The SOAPCall is the descriptor of the operation, and as such
contains all the information about that particular operation (how the XML should look on the
wire, the operation style, and so on). It also provides control over certain behaviors. You can get
the SOAPCall for a given operation by using the getCall(operationName) function. There is a
single SOAPCall for each operation, shared by all active calls to that operation. Once you have
the SOAPCall, you can customize the descriptor, by doing the following:

• Turn on/off decoding of the XML response.
• Turn on/off the delay of converting SOAP arrays into ActionScript objects.
• Change the concurrency configuration for a given operation.
• Add a header to the SOAPCall object.

ActionScript Class Name mx.services.SOAPCall

Function summary for the SOAPCall object

Property summary for the SOAPCall object

Constructor for the SOAPCall class

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Description

The SOAPCall object is not constructed by the developer. Instead, when you call a method on a
WebService object, the WebService object returns a PendingCall object. To access the associated
SOAPCall object, use myPendingCall.myCall.

Function Description

SOAPCall.addHeader() Adds a header to the SOAPCall object.

Property Description

SOAPCall.concurrency Changes the concurrency configuration for a given operation.

SOAPCall.doDecoding Turns on/off decoding of the XML response.

SOAPCall.doLazyDecoding Turns on/off the delay of turning SOAP arrays into ActionScript objects.
Web service classes (Flash Professional only) 593

SOAPCall.addHeader()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

SOAPCall.addHeader(var header)

Parameters

header Header to be added.

Returns

None.

Description

Function; adds a header to the SOAPCall object.

Example

The following example creates a new SOAP header and attaches it to the SOAPCall. The
following code:
import mx.services.QName;

var qname = new QName("bar", "http://foo");
var value = "hi there!";
var header = new SOAPHeader(qname, value);
soapCall.addHeader(header);

creates the following SOAP header:
...
<SOAP:Header>

<ns1:bar
xmlns:ns1="http://foo"
xsi:type="xsd:string">hi there!</ns1:bar>

</SOAP:Header>
...

SOAPCall.concurrency

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

SOAPCall.concurrency
594 Chapter 4: Components Dictionary

Description

Property; number of concurrent requests. Possible values are listed in the table below:

SOAPCall.doDecoding

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

SOAPCall.doDecoding

Description

Property; turns on/off decoding of the XML response—by default the XML response is converted
(decoded) into ActionScript objects. If you just want the XML, you can set
SOAPCall.doDecoding = false.

SOAPCall.doLazyDecoding

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

SOAPCall.doLazyDecoding

Description

Property; turns on/off “lazy decoding” of arrays. By default we use a “lazy” decoding algorithm to
delay turning SOAP arrays into ActionScript objects until the last moment—this makes
operations return a lot faster when large data sets are returned. This means any arrays you get back
from the remote end are ArrayProxy objects. Then when you access a particular index (foo[5])
that element is automatically decoded if necessary. This behavior can be turned off (which will
cause all arrays to be fully decoded) by setting SOAPCall.doLazyDecoding = false.

Value Description

SOAPCall.MULTIPLE_CONCURRENCY Allow multiple active calls.

SOAPCall.SINGLE_CONCURRENCY Allow only one call at a time by faulting after one is active.

SOAPCall.LAST_CONCURRENCY Allow only one call by cancelling previous ones.
Web service classes (Flash Professional only) 595

WebService class (Flash Professional only)

The WebService class is part of the mx.services package and is intended to be used with the
following classes:

• Log class (Flash Professional only)
• PendingCall class (Flash Professional only)
• SOAPCall class (Flash Professional only)
Note: This WebService API is not the same as the WebServiceConnector component API. The
former is a set of classes that can you use only in ActionScript code, and is common with various
Macromedia products. The latter is an API unique to Flash MX 2004, and provides an ActionScript
interface to the visual authoring tool for the WebServiceConnector component.

For an overview of the classes in the mx.services package, see “Web service classes (Flash
Professional only)” on page 581.

The WebServices object acts as a local reference to a remote web service. When you create a new
WebService object, the WSDL file that defines the web service gets downloaded, parsed, and
placed in the object. You can then call the methods of the web service directly on the WebService
object, and handle any callbacks from the web service. When the WSDL has been successfully
processed and the WebService object is ready, the onLoad() callback is invoked. If there is a
problem loading the WSDL, the onFault() callback is invoked.

When you call a method on a WebService object, the return value is a callback object. The object
type of the callback returned from all web service method invocations is PendingCall. These
objects are normally not constructed by developers, but instead are constructed automatically as a
result of the webServiceObject.webServiceMethodName() command. These objects are not
the result of the WebService call, which comes later. Instead, the PendingCall object represents
the call in progress. When the WebService operation completes (usually several seconds after a
method call is made), the various PendingCall data fields are filled in, and the onResult or
onFault callback you provide is called. For more information about the PendingCall object, see
“PendingCall class (Flash Professional only)” on page 584.

The Player queues up any calls you make before the WSDL is parsed, and attempts to execute
them after parsing the WSDL. This is because the WSDL contains information that is necessary
to correctly encode and send a SOAP request. Function calls that you make after the WSDL has
been parsed do not need to be queued; they happen immediately. If a queued call doesn't match
the name of any of the operations defined in the WSDL, Flash Player returns a fault to the
callback object you were given when you originally made the call.

ActionScript Class Name mx.services.WebService

Using the WebServices API

The WebServices API, included under the mx.services package, consists of the WebService class,
the Log class, the PendingCall class, and the PendingCall class.

Supported types

The WebService feature supports a subset of XML Schema types as defined in the tables below.

Complex types and the SOAP-Encoded Array type are also supported, and these may be
composed of other complex types, arrays, or built-in XML Schema types:
596 Chapter 4: Components Dictionary

Numeric Simple types

Date and Time Simple types

XML Schema type ActionScript Binding

decimal Number

integer Number

negativeInteger Number

nonNegativeInteger Number

positiveInteger Number

long Number

int Number

short Number

byte Number

unsignedLong Number

unsignedShort Number

unsignedInt Number

unsignedByte Number

float Number

double Number

XML Schema type ActionScript Binding

date Date object

datetime Date object

duration Date object

gDay Date object

gMonth Date object

gMonthDay Date object

gYear Date object

gYearMonth Date object

time Date object
Web service classes (Flash Professional only) 597

Name and String Simple types

Boolean type

Object types

Supported XML schema object elements

schema
 complexType
 complexContent
 restriction
 sequence | simpleContent
 restriction
 element
 complexType | simpleType

WebService security

The WebService API conforms to the Flash Player security model.

User Authentication and Authorization

The authentication and authorization rules are the same for the WebService API as they are for
any XML network operation from Flash. SOAP itself does not specify any means of
authentication and authorization. For example, when the underlying HTTP transport returns an
HTTP BASIC response in the HTTP Headers, the browser responds by presenting a dialog for
the user and subsequently attaching the user’s input to the HTTP Headers in subsequent
messages. This mechanism exists at a level lower than SOAP and is part of the Flash HTTP
authentication design.

XML Schema type ActionScript Binding

string ActionScript String

normalizedString ActionScript String

QName mx.services.Qname object

XML Schema type ActionScript Binding

Boolean Boolean

XML Schema type ActionScript Binding

Any XML object

Complex Type ActionScript object composed of properties of any supported type

Array ActionScript array composed of any supported object or type
598 Chapter 4: Components Dictionary

Message Integrity

Message-level security involves the encryption of the SOAP messages themselves, at a conceptual
layer above the network packets on which the SOAP messages are delivered.

Transport Security The underlying network transport for Flash Player SOAP web services is
always HTTP POST. Therefore, any means of security that can be applied at the Flash HTTP
transport layer—such as SSL—is supported through web services invocations from Flash. SSL/
HTTPS provides the most common form of transport security for SOAP messaging, and use of
HTTP BASIC authentication, coupled with SSL at the transport layer, is the most common form
of security for websites today.

Function summary for the WebService object

Callback summary for the WebService object

Constructor for the WebService class

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myWebServiceObject = new WebService(wsdlURI [, logObject]);

Parameters

The constructor parameters are as follows:

wsdlURI URL of the web service WSDL file.

logObject Optional parameter specifying the name of the Log object for this web service (see
“Log class (Flash Professional only)” on page 581).

Returns

None.

Function Description

WebService.myMethodName() Invokes a specific web service operation defined by the WSDL.

WebService.getCall() Gets the SOAPCall for a given operation

Callback Description

WebService.onLoad() Called when the web service has successfully loaded and parsed its
WSDL file.

WebService.onFault() Called when an error occurred during WSDL parsing.
Web service classes (Flash Professional only) 599

Description

To create a WebService object, you call new WebService() and provide a WSDL URL. Flash
Player returns a WebService object. The WebService object constructor can optionally accept a
Log object and a proxy URL:
myWebServiceObject = new WebService(wsdlURI [, logObject]);

If you want to, you can utilize two callbacks for the WebService object. Flash Player calls the
webServiceObject.onLoad(WSDLDocument) function when it finishes parsing the WSDL file
and the object is complete. This is a good place to put code you want to execute only after the
WSDL file has been completely parsed. For example, you might choose to put your first web
service method call in this function.

Flash Player calls the webServiceObject.onFault(fault) when an error occurs in finding or
parsing the WSDL file. This is a good place to put debugging code and code that tells the user
that the server is unavailable, that they should try again later, or similar information. For more
information, see the individual entries for these functions.

Invoking a web service operation: You invoke a web service operation as a method directly
available on the web service. For example, if your web service has the method
getCompanyInfo(tickerSymbol), then invoke the method in the following manner:
myPendingCallObject = myWebServiceObject.getCompanyInfo(tickerSymbol);

In the previous example, the callback object is named myPendingCallObject. All method
invocations are asynchronous, and return a callback object of type PendingCal. Asynchronous
means that the results of the web service call are not available immediately.

When you make the call
x = stockService.getQuote("macr");

the object x is not the results of getQuote (it’s a PendingCall object). The actual results are only
available later on (usually several seconds later), when the web service operation completes. Your
ActionScript code is notified by a call to the onResult callback function.

Handling the PendingCall object: This callback object is a PendingCall object that you use for
handling the results and errors from the web service method that was called (see “PendingCall
class (Flash Professional only)” on page 584). For example:
MyPendingCallObject = myWebServiceObject.myMethodName(param1, ..., paramN);
MyPendingCallObject.onResult = function(result)
{

OutputField.text = result
}
MyPendingCallObject.onFault = function(fault)
{

DebugField.text = fault.faultCode + "," + fault.faultstring;

// add code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support

}

600 Chapter 4: Components Dictionary

WebService.getCall()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

getCall(var operationName)

Parameters

operationName The web service operation of the corresponding SOAPCall that you want
to retrieve.

Returns

SOAPCall object.

Description

When you create a new WebService object, it contains the methods corresponding to operations
in the WSDL URL you pass in. Behind the scenes, a SOAPCall object is created for each
operation in the WSDL as well. The SOAPCall is the descriptor of the operation, and as such
contains all the information about that particular operation (how the XML should look on the
wire, the operation style, and so on). It also provides control over certain behaviors. You can get
the SOAPCall for a given operation by using the getCall(operationName) method. There is a
single SOAPCall for each operation, shared by all active calls to that operation. Once you have
the SOAPCall, you can change the operator descriptor by using the SOAPCall API. For more
information, see “SOAPCall class (Flash Professional only)” on page 593.

Example

For an example on using this call, see “SOAPCall class (Flash Professional only)” on page 593.

WebService.onFault()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

MyWebServiceObject.onFault

Parameters

fault Decoded ActionScript object version of the error with properties. If the error information
came from a server in the form of XML, then the SOAPFault object will be the decoded
ActionScript version of that XML.
Web service classes (Flash Professional only) 601

The type of error object returned to webservice.onFault() methods is a SOAPFault object. It
is not constructed directly by developers, but returned as the result of a failure. This object is an
ActionScript mapping of the SOAP Fault XML type.

Returns

Nothing.

Description

WebService callback function; Flash Player calls this function when the new
webService(WSDLUrl) method has failed and returned an error. This can happen when the
WSDL file cannot be parsed or the file cannot be found. The fault parameter is a ActionScript
SOAPFault object.

Example

The following example handles any error returned from the creation of the WebService object.
MyWebServiceObject.onFault = function(fault)
{

// captures the fault
DebugOutputField.text = fault.faultstring;

// add code to handle any faults, for example, by telling the
// user that the server isn’t available or to contact technical
// support

}

WebService.onLoad()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

myService.onLoad

Parameters

wsdlDocument WSDL XML document.

SOAPFault property Description

faultcode String; the short standard QName describing the error.

faultstring String; the human-readable description of the error.

detail String; the application-specific information associated with the error, such
as a stack trace or other information returned by the web service engine.

element XML; the XML object representing the XML version of the fault.

faultactor String; the source of the fault, optional if an intermediary is not involved.
602 Chapter 4: Components Dictionary

Returns

None.

Description

Webservice callback function; Flash Player calls this callback when the WebService object has
successfully loaded and parsed its WSDL file. Operations can be invoked in an application before
this event occurs, but when this happens they will be queued internally and not actually
transmitted until the WSDL has loaded.

Example

The following example specifies the WSDL URL, creates a new web service object, and receives
the WSDL document after loading.
// specify the WSDL URL
var wsdlURI = "http://www.flash-db.com/services/ws/companyInfo.wsdl";

// creates a new web service object
stockService = new WebService(wsdlURI);

// receives the WSDL document after loading
stockService.onLoad = function(wsdlDocument);
{

// code to execute when the WSDL loading is complete and the
// object has been created

}

WebService.myMethodName()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

callbackObj = myWebServiceObject.myMethodName(param1, ... paramN);

Parameters

Parameters required depend on the web service method being called.
Web service classes (Flash Professional only) 603

Returns

callbackObj PendingCall object to which you can attach function for handling results and
errors on the invocation. For more information, see “PendingCall class (Flash Professional only)”
on page 584.

The callback invoked when the response comes back from the WebService method is
PendingCall.onResult(), or onFault(). By uniquely identifying your callback objects, you
can manage multiple onResult callbacks, as in the following example:
myWebService = new WebService("http://www.myCompany.com/myService.wsdl");
callback1 = myWebService.getWeather("02451");
callback1.onResult = function(result)
{

//do something
}
callback2 = myWebService.getDetailedWeather("02451");
callback2.onResult = function(result)
{

//do something else
}

Description

To invoke a web service operation, invoke it as a method directly available on the web service. For
example, if your web service has the method getCompanyInfo(tickerSymbol), then call:
myCallbackObject.myservice.getCompanyInfo(tickerSymbol);

All invocations are asynchronous, and return a callback object, of the object type PendingCall.

WebServiceConnector (Flash Professional only)

The WebServiceConnector component enables you to access remote methods exposed by a server
using the industry-standard SOAP (Simple Object Access Protocol) protocol. A web service may
accept parameters and return a result. Using the Flash MX Professional 2004 authoring tool and
the WebServiceConnector component you can introspect, access and bind data between a remote
web service and your Flash application. A single instance of a WebServiceConnector component
can be used to make multiple calls to the same operation. You need to use a different instance of a
WebServiceConnector for each different operation you want to call.

A web service defines the methods (sometimes referred to as operations) that are available for
consumption through an XML file using the Web Service Description Language (WSDL) format.
The WSDL file specifies a list of operations, parameters and results (referred to as a schema) that
are exposed by the web service.

WSDL files are accessible using a URL. In Flash MX Professional 2004, you can view the schema
of any web service by entering the URL for its WSDL file using the Web Services panel. Once
you identify a WSDL file, the web service is available to any application you create.

Only the WSDL file author can change the WSDL file or operation parameter. Whenever the
author changes the WSDL file, the params and results schemas are updated. These changes will
overwrite any edits the developer has made to the schema. To get an updated WSDL file, you can
select Refresh Web Services from the Web Service panel menu.

The WebServiceConnector component and the XMLConnector component implement the RPC
(Remote Procedure Call) Component API, a set of methods, properties, and events that define an
easy way to send parameters to, and receive results from, an external data source.
604 Chapter 4: Components Dictionary

A single instance of WebServiceConnector component can be used to make multiple calls to the
same operation. You need to use a different instance of WebServiceConnector for each different
operation you want to call.

A developer can edit the schema to customize it for use in an application (for example, to provide
additional formatting or validation settings). See “Working with schemas in the Schema tab
(Flash Professional only)” in Using Flash Help.

Using the WebServiceConnector (Flash Professional only)

You can use the WebServiceConnector to connect to a web service and make the properties of the
web service available for binding to properties of UI components in your application. To connect
to a web service, you must first enter the web service URL for the web service. The
WebServiceConnector appears on the Stage during application authoring, but has no visual
appearance in the runtime application.

You can enter the URL for a web service in the Component Inspector panel or the Web Services
panel. See “The WebServiceConnector component” in Using Flash Help.

For more information on working with the WebServiceConnector component, see “Data binding
(Flash Professional only)” in Using Flash Help.

WebServiceConnector parameters

The following are authoring parameters that you can set for each WebServiceConnector
component instance, in the Component Inspector panel Parameters tab:

multipleSimultaneousAllowed (Boolean type) indicates whether multiple calls can take place
at the same time; the default value is false. If false, then the trigger() function will not perform
a call if a call is already in progress. A status event will be emitted, with the code
CallAlreadyInProgress. If true, then the call will take place.

operation (String type) is the name of an operation that appears within the SOAP port in a
WSDL file.

suppressInvalidCalls (Boolean type) indicates whether to suppress a call if parameters are
invalid; the default value is false. If true, then the trigger() function will not perform a call if
the databound parameters fail the validation. A status event will be emitted, with the code
InvalidParams. If false, then the call will take place, using the invalid data as required.

WSDLURL (String type) is the URL of the WSDL file that defines the web service operation. When
you set this URL during authoring, the WSDL file is immediately fetched and parsed. The
resulting parameters and results information can be seen in the Schema tab of the Component
Inspector panel. The service description is also added to the Web Service panel. For example, see
www.xmethods.net/sd/2001/TemperatureService.wsdl.

WebServiceConnector class (Flash Professional only)

Inheritance RPC > WebServiceConnector

ActionScript Class Name mx.data.components.WebServiceConnector
WebServiceConnector (Flash Professional only) 605

http://www.xmethods.net/sd/2001/TemperatureService.wsdl

Property summary for the WebServiceConnector class

Method summary for the WebServiceConnector class

Event summary for the WebServiceConnector class

WebServiceConnector.multipleSimultaneousAllowed

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Property Description

WebServiceConnector.multipleSimultaneousAllowed Indicates whether multiple calls can take
place at the same time.

WebServiceConnector.multipleSimultaneousAllowed Indicates the name of an operation that
appears within the SOAP port in a WSDL file.

WebServiceConnector.params Specifies data that will be sent to the
server when the next trigger() operation
is executed.

WebServiceConnector.results Identifies data that was received from the
server as a result of the trigger() operation.

WebServiceConnector.suppressInvalidCalls Indicates whether to suppress a call if
parameters are invalid.

WebServiceConnector.timeout Specifies a time period (in seconds) within
which the web service connection will fail if
results do not come back.

WebServiceConnector.WSDLURL Specifies the URL of the WSDL file that
defines the web service operation.

Method Description

WebServiceConnector.trigger() Initiates a remote procedure call.

Event Description

WebServiceConnector.result Broadcast when a call to a web service
completes successfully.

WebServiceConnector.send Broadcast when the trigger() function is in
process, after the parameter data has been
gathered but before the data is validated and
the call to the web service is initiated.

WebServiceConnector.status Broadcast when a call to a web service is
initiated, to inform the user of the status of
the operation.
606 Chapter 4: Components Dictionary

Usage

componentInstance.multipleSimultaneousAllowed;

Description

Property; indicates whether multiple calls can take place at the same time. If false, then the
trigger() function will perform a call if another call is already in progress. A status event will
be emitted, with the code CallAlreadyInProgress. If true, then the call will take place.

When multiple calls are simultaneously in progress, there is no guarantee that they will complete
in the same order as they were triggered. Also, Flash Player may place limits on the number of
simultaneous network operations. This limit varies by version and platform.

Example

The following example enables multiple simultaneous calls to myXmlUrl take place:
myXmlUrl.multipleSimultaneousAllowed = true;

WebServiceConnector.operation

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.operation;

Description

Property; the name of an operation that appears within the SOAP port in a WSDL file.

WebServiceConnector.params

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.params;

Description

Property; specifies data that will be sent to the server when the next trigger() operation is
executed. The data type is determined by the WSDL description of the web service.

When you call web service methods, the data type of the params property must be an
ActionScript object or array as follows:

If the web service is in document format, then the data type of params is an XML document of
some kind.
WebServiceConnector (Flash Professional only) 607

If you use the Property Inspector or Component Inspector panel to set the WSDLURL and
operation at during authoring, you can provide params as an array of parameters in the same
order as required by the web service method, such as [1, "hello", 2432].

Example

The following example sets the params property for a web service component named wsc:
wsc.params = [param_txt.text];

WebServiceConnector.result

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("result", myListenerObject);

Description

Event; broadcasts when a Remote Procedure Call operation successfully completes.

The parameter to the event handler is an object with the following fields:

• type: the string "result"
• target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve the actual result value using the results property.

Example

The following example defines a function res for the result event and assigns the function to
the addEventListener event handler:
var res = function (ev) {
trace(ev.target.results);
};
wsc.addEventListener("result", res);

WebServiceConnector.results

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.results;
608 Chapter 4: Components Dictionary

Description

Property; identifies data that was received from the server as a result of a trigger() operation.
Each RPC component defines how this data is fetched, and what the valid types are. This data
appears when the RPC operation has successfully completed, as signaled by the result event. It is
available until the component is unloaded, or until the next RPC operation.

It is possible for the returned data to be very large. You can manage this in two ways:

• Select an appropriate movie clip, Timeline, or screen as the parent for the RPC component.
The component's storage will become available for garbage collection when the parent
goes away.

• In ActionScript, you can assign null to this property at any time.

WebServiceConnector.send

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("send", myListenerObject);

Description

Event; broadcasts during the processing of a trigger() operation, after the parameter data has
been gathered but before the data is validated and the Remote Procedure Call is initiated. This is
a good place to put code that will modify the parameter data before the call.

The parameter to the event handler is an object with the following fields:

• type: the string "send"
• target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve or modify the actual parameter values using the params property.

Example

The following example defines a function sendFunction for the send event and assigns the
function to the addEventListener event handler:
var sendFunction = function (sendEnv) {
sendEnv.target.params = [newParam_txt.text];
};
wsc.addEventListener("send", sendFunction);
WebServiceConnector (Flash Professional only) 609

WebServiceConnector.status

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("status", myListenerObject);

Description

Event; broadcasts when a Remote Procedure Call is initiated, to inform the user of the status of
the operation.

The parameter to the event handler is an object with the following fields:

• type: the string "status"
• target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)
• code: a string giving the name of the specific condition that occurred.
• data: an object whose contents depend on the code.

The following are the codes and associated data available for the status event:

Here are the possible web service faults:

Code Data Description

StatusChange {callsInProgress:nnn} This event is emitted whenever a web service call
starts or finishes. The item "nnn" gives the number
of calls currently in progress.

CallAlreadyInProgress no data This event is emitted if (a) the trigger() function
is called, and (b) multipleSimultaneousAllowed is
false, and (c) a call is already in progress. After
this event occurs, the attempted call is considered
complete, and there will be no "result" or "send"
event.

InvalidParams no data This event is emitted if the trigger() function
found that the "params" property did not contain
valid data. If the "suppressInvalidCalls" property is
true, then the attempted call is considered
complete, and there will be no "result" or "send"
event.

faultcode faultstring detail

Timeout Timeout while calling method
xxx

þ

MustUnderstand No callback for header xxx þ
610 Chapter 4: Components Dictionary

Server.Connection Unable to connect to
endpoint: xxx

þ

VersionMismatch Request implements version:
xxx Response implements
version yyy

þ

Client.Disconnected Could not load WSDL Unable to load WSDL, if
currently online, please verify
the URI and/or format of the
WSDL xxx

Server Faulty WSDL format Definitions must be the first
element in a WSDL
document

Server.NoServicesInWSDL Could not load WSDL No elements found in WSDL
at xxx

WSDL.UnrecognizedNamespace The WSDL parser had no
registered document for the
namespace xxxx

þ

WSDL.UnrecognizedBindingName The WSDL parser couldn't
find a binding named xxx in
namespace yyy

þ

WSDL.UnrecognizedPortTypeName The WSDL parser couldn't
find a portType named xxx in
namespace yyy

þ

WSDL.UnrecognizedMessageName The WSDL parser couldn't
find a message named xxx in
namespace yyy

þ

WSDL.BadElement Element xxx not resolvable þ

WSDL.BadType Type xxx not resolvable þ

Client.NoSuchMethod Couldn't find method 'xxx' in
service

þ

yyy yyy - errors reported from
server, this depends on which
server you talk to

þ

No.WSDLURL.Defined the WebServiceConnector
component had no WSDL
URL defined

þ

Unknown.Call.Failure WebService invocation failed
for unknown reasons

þ

Client.Disconnected Could not load imported
schema

Unable to load schema; if
currently online, please verify
the URI and/or format of the
schema at (XXXX))

faultcode faultstring detail
WebServiceConnector (Flash Professional only) 611

Example

The following example defines a function statusFunction for the status event and assigns the
function to the addEventListener event handler:
var statusFunction = function (stat) {
trace(stat.code);
trace(stat.data.faultcode);
trace(stat.data.faultstring);
};
wsc.addEventListener("status", statusFunction);

WebServiceConnector.suppressInvalidCalls

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.suppressInvalidCalls;

Description

Property; indicates whether to suppress a call if parameters are invalid. If true, then the
trigger() function will not perform a call if the bound parameters fail the validation. A "status"
event will be emitted, with the code InvalidParams. If false, then the call will take place, using
the invalid data as required.

WebServiceConnector.timeout

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.timeout;

Description

Property; a time period in seconds within which the web service connection will fail if results do
not come back. A status event (inherited from the RPC component) is emitted, with the code
WebServiceFault, faultcode Timeout.
612 Chapter 4: Components Dictionary

WebServiceConnector.trigger()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.trigger();

Description

Method; initiates a call to a web service. Each web servicedefines exactly what this involves. If the
operation is successful, the results of the operation will appear in the results property for the
web service.

The trigger() method performs the following steps:

1 If any data is bound to the params property, the method executes all the bindings to ensure that
up-to-date data is available. This also causes data validation to occur.

2 If the data is not valid and suppressInvalidCalls is set to true, the operation is
discontinued.

3 If the operation continues, the send event is emitted.
4 The actual remote call is initiated using the connection method indicated (for example, HTTP).

WebServiceConnector.WSDLURL

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.WSDLURL;

Description

Property; the URL of the WSDL file that defines the web service operation. When you set this
URL during authoring, the WSDL file is immediately fetched and parsed. The resulting
parameters and results appear in the Schema tab of the Component Inspector panel. The service
description also appears in the Web Service panel.

Window component

A Window component displays the contents of a movie clip inside a window with a title bar, a
border, and an optional close button.

A Window component can be modal or non-modal. A modal window prevents mouse and
keyboard input from going to other components outside the window. The Window component
also supports dragging; a user can click the title bar and drag the window and its contents to
another location. Dragging the borders doesn’t resize the window.
Window component 613

A live preview of each Window instance reflects changes made to all parameters except
contentPath in the Property inspector or Component Inspector panel while authoring.

When you add the Window component to an application, you can use the Accessibility panel
to make it accessible to screen readers. First, you must add the following line of code to
enable accessibility:
mx.accessibility.WindowAccImpl.enableAccessibility();

You only enable accessibility for a component once no matter how many instances you have of
the component. For more information, see “Creating Accessible Content” in Using Flash Help.

Using the Window component

You can use a window in an application whenever you need to present a user with information or
a choice that takes precedence over anything else in the application. For example, you might need
a user to fill out a login window, or a window that changes and confirms a new password.

There are several ways to add a window to an application. You can drag a window from the
Components panel to the Stage. You can also call createClassObject() (see
UIObject.createClassObject()) to add a window to an application. The third way of adding
a window to an application is to use the PopUpManager class. Use the PopUpManager to create
modal windows that overlap other objects on the Stage. For more information, see Window class.

If you use the PopUpManager to add a Window component to a document, the Window
instance will have its own FocusManager, distinct from the rest of the document. If you don’t use
the PopUpManager, the window’s contents participate focus ordering with the other components
in the document. For more information about controlling focus, see “Creating custom focus
navigation” on page 24 or “FocusManager class” on page 270.

Window component parameters

The following are authoring parameters that you can set for each Window component instance in
the Property inspector or in the Component Inspector panel:

contentPath specifies the contents of the window. This can be the linkage identifier of the movie
clip or the symbol name of a screen, form, or slide that contains the contents of the window. This
can also be an absolute or relative URL for a SWF or JPG file to load into the window. The
default value is "". Loaded content clips to fit the Window.

title indicates the title of the window.

closeButton indicates whether a close button is displayed (true) or not (false). Clicking the close
button broadcasts a click event, but doesn’t close the window. You must write a handler that calls
Window.deletePopUp() to explicitly close the window. For more information about the click
event, see Window.click.

You can write ActionScript to control these and additional options for Window components
using its properties, methods, and events. For more information, see Window class.

Creating an application with the Window component

The following procedure explains how to add a Window component to an application. In this
example, the window asks a user to change her password and confirm the new password.
614 Chapter 4: Components Dictionary

To create an application with the Window component, do the following:

1 Create a new movie clip that contains password and password confirmation fields, and OK and
Cancel buttons. Name the movie clip PasswordForm.
This is the content that will fill the Window. The content should be aligned at 0,0 because it is
positioned in the upper left corner of the Window.

2 In the library, select the PasswordForm movie clip and select Linkage from the Options menu.
3 Check Export for ActionScript.

 The linkage identifier PasswordForm is automatically entered in the Identifier box.
4 Enter mx.core.View in the class field and click OK.
5 Drag a Window component from the Components panel to the Stage and delete the

component from the Stage. This adds the component to the library.
6 In the library, select the Window SWC and select Linkage from the Options menu.
7 Check Export for ActionScript if it isn’t already.
8 Drag a button component from the Components panel to the Stage and in the Property

inspector, give it the instance name button.
9 Open the Actions panel, and enter the following click handler on Frame 1:

buttonListener = new Object();
buttonListener.click = function(){

myWindow = mx.managers.PopUpManager.createPopUp(_root,
mx.containers.Window, true, { title:"Change Password",
contentPath:"PasswordForm"});
myWindow.setSize(240,110);

}
button.addEventListener("click", buttonListener);

This handler calls PopUpManager.createPopUp() to instantiate a Window component with
the title bar “Change Password” that displays the contents of the PasswordForm movie clip
when the button is clicked. To close the Window when the OK or Cancel button is clicked,
you will have to write another handler.

Customizing the Window component

You can transform a Window component horizontally and vertically both while authoring and at
runtime. While authoring, select the component on the Stage and use the Free Transform tool or
any of the Modify > Transform commands. At runtime, use UIObject.setSize().

Resizing the window does not change the size of the close button or title caption. The title
caption is aligned to the left and the close bar to the right.

Using styles with the Window component

The style declaration of the title bar of a Window component is indicated by the
Window.titleStyleDeclaration property.

A Window component supports the following Halo styles:

Style Description

borderStyle The component border; either "none", "inset", "outset", or "solid".
This style does not inherit its value.
Window component 615

Using skins with the Window component

The Window component uses the RectBorder class which uses the ActionScript drawing API to
draw its borders. You can use the setStyle() method (see UIObject.setStyle()) to change the
following RectBorder style properties:

The style properties set the following positions on the border:

If you use UIObject.createClassObject() or PopUpManager.createPopUp() to create a
Window instance dynamically (at runtime), you can also skin it dynamically. To skin a
component at runtime, set the skin properties of the initObject parameter that is passed to the
createClassObject() method. These skin properties set the names of the symbols to use as the
button’s states, both with and without an icon. For more information, see
UIObject.createClassObject(), and PopUpManager.createPopUp().

A Window component uses the following skin properties:

RectBorder styles Letter

borderColor a

highlightColor b

borderColor c

shadowColor d

borderCapColor e

shadowCapColor f

shadowCapColor g

borderCapColor h

Property Description

skinTitleBackgroud The title bar. The default value is TitleBackground.

skinCloseUp The close button. The default value is CloseButtonUp.

skinCloseDown The close button it its down state. The default value is
CloseButtonDown.

skinCloseDisabled The close button in its disabled state. The default value is
CloseButtonDisabled.

skinCloseOver The close button in its over state. The default value is
CloseButtonOver.
616 Chapter 4: Components Dictionary

Window class

Inheritance UIObject > UIComponent > View > ScrollView > Window

ActionScript Class Name mx.containers.Window

The properties of the Window class allow you to set the title caption, add a close button, and
set the display content at runtime. Setting a property of the Window class with ActionScript
overrides the parameter of the same name set in the Property inspector or Component
Inspector panel.

The best way to instantiate a window is to call PopUpManager.createPopUp(). This method
creates a window that can be modal (overlapping and disabling existing objects in an application)
or non-modal. For example, the following code creates a modal Window instance (the last
parameter indicates modality):
var newWindow = PopUpManager.createPopUp(this, Window, true);

Modality is simulated by creating a large transparent window underneath the Window
component. Due to the way transparent windows are rendered, you may notice a slight dimming
of the objects under the transparent window. The effective transparency can be set by changing
the _global.style.modalTransparency value from 0 (fully transparent) to 100 (opaque). If
you make the window partially transparent, you can also set the color of the window by changing
the Modal skin in the default theme.

If you use PopUpManager.createPopUp() to create a modal Window, you must call
Window.deletePopUp() to remove it to so that the transparent window is also removed. For
example, if you use the closeButton on the window you would write the following code:
obj.click = function(evt){
 this.deletePopUp();
}
window.addEventListener("click", obj);

Note: Code does not stop executing when a modal window is created. In other environments (for
example Microsoft Windows), if you create a modal window, the lines of code that follow the creation
of the window do not run until the window is closed. In Flash, the lines of code are run after the
window is created and before it is closed.

Each component class has a version property which is a class property. Class properties are only
available on the class itself. The version property returns a string that indicates the version of the
component. To access the version property, use the following code:
trace(mx.containers.Window.version);

Note: The following code returns undefined: trace(myWindowInstance.version);.

Method summary for the Window class

Inherits all methods from UIObject, UIComponent, and View.

Method Description

Window.deletePopUp() Removes a window instance created by
PopUpManager.createPopUp().
Window component 617

Property summary for the Window class

Inherits all properties from UIObject, UIComponent, and ScrollView.

Event summary for the Window class

Inherits all events from UIObject, UIComponent, View, and ScrollView.

Window.click

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

Usage 1:
on(click){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.click = function(eventObject){

...
}
windowInstance.addEventListener("click", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) over the close
button.

Property Description

Window.closeButton Indicates whether a close button is included on the title bar (true)
or not (false).

Window.content A reference to the content specified in the contentPath property.

Window.contentPath A path to the content that is displayed in the window.

Window.title The text that displays in the title bar.

Window.titleStyleDeclaration The style declaration that formats the text in the title bar.

Event Description

Window.click Broadcast when the close button is released.

Window.mouseDownOutside Broadcast when the mouse is pressed outside the modal window.
618 Chapter 4: Components Dictionary

The first usage example uses an on() handler and must be attached directly to a Window
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Window
component instance myWindow, sends “_level0.myWindow” to the Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, click) and the event is handled by a
function, also called a handler, on a listener object (listenerObject) that you create. You define
a method with the same name as the event on the listener object; the method is called when the
event is triggered. When the event is triggered, it automatically passes an event object
(eventObject) to the listener object method. The event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example creates a modal window and then defines a click handler that deletes the
window. You must add a Window component to the Stage and then delete it to add the
component to the document library, then add the following code to Frame 1:
import mx.managers.PopUpManager
import mx.containers.Window
var myTW = PopUpManager.createPopUp(_root, Window, true, {closeButton: true,

title:"My Window"});
windowListener = new Object();
windowListener.click = function(evt){

_root.myTW.deletePopUp();
}
myTW.addEventListener("click", windowListener);

See also

UIEventDispatcher.addEventListener(), Window.closeButton

Window.closeButton

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

windowInstance.closeButton
Window component 619

Description

Property; a Boolean value that indicates whether the title bar should have a close button (true) or
not (false). This property must be set in the initObject parameter of the
PopUpManager.createPopUp() method. The default value is false.

Example

The following code creates a window that displays the content in the movie clip “LoginForm” and
has a close button on the title bar:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm", closeButton:true});

See also

Window.click, PopUpManager.createPopUp()

Window.content

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

windowInstance.content

Description

Property; a reference to the content (root movie clip) of the window. This property returns a
MovieClip object. When you attach a symbol from the library, the default value is an instance of
the attached symbol. When you load content from a URL, the default value is undefined until the
load operation has started.

Example

Set the value of the text property within the content inside the window component:
loginForm.content.password.text = "secret";

Window.contentPath

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

windowInstance.contentPath
620 Chapter 4: Components Dictionary

Description

Property; sets the name of the content to display in the window. This value can be the linkage
identifier of a movie clip in the library or the absolute or relative URL of a SWF or JPG file to
load. The default value is "" (empty string).

Example

The following code creates a Window instance that displays the movie clip with the linkage
identifier “LoginForm”:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm"});

Window.deletePopUp()

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

windowInstance.deletePopUp();

Parameters

None.

Returns

Nothing.

Description

Method; deletes the window instance and removes the modal state. This method can only be
called on window instances that were created by PopUpManager.createPopUp().

Example

The following code creates a modal window, then creates a listener that deletes the window with
the close button is clicked:
var myTW = PopUpManager.createPopUp(_root, Window, true);
twListener = new Object();
twListener.click = function(){

myTW.deletePopUp();
}
myTW.addEventListener("click", twListener);

Window.mouseDownOutside

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.
Window component 621

Usage

Usage 1:
on(mouseDownOutside){

...
}

Usage 2:
listenerObject = new Object();
listenerObject.mouseDownOutside = function(eventObject){

...
}
windowInstance.addEventListener("mouseDownOutside", listenerObject)

Description

Event; broadcast to all registered listeners when the mouse is clicked (released) outside the modal
window. This event is rarely used, but you can use it to dismiss a window if the user tries to
interact with something outside of it.

The first usage example uses an on() handler and must be attached directly to a Window
component instance. The keyword this, used inside an on() handler attached to a component,
refers to the component instance. For example, the following code, attached to the Window
component instance myWindowComponent, sends “_level0.myWindowComponent” to the
Output panel:
on(click){

trace(this);
}

The second usage example uses a dispatcher/listener event model. A component instance
(windowInstance) dispatches an event (in this case, mouseDownOutside) and the event is
handled by a function, also called a handler, on a listener object (listenerObject) that you
create. You define a method with the same name as the event on the listener object; the method is
called when the event is triggered. When the event is triggered, it automatically passes an event
object (eventObject) to the listener object method. The event object has a set of properties that
contains information about the event. You can use these properties to write code that handles the
event. Finally, you call the UIEventDispatcher.addEventListener() method on the
component instance that broadcasts the event to register the listener with the instance. When the
instance dispatches the event, the listener is called.

For more information about event objects, see “Event Objects” on page 562.

Example

The following example creates a window instance and defines a mouseDownOutside handler that
calls a beep() method if the user clicks outside the window:
var myTW = PopUpManager.createPopUp(_root, Window, true, undefined, true);
// create a listener
twListener = new Object();
twListener.mouseDownOutside = function()
{
 beep(); // make a noise if user clicks outside
}
myTW.addEventListener("mouseDownOutside", twListener);
622 Chapter 4: Components Dictionary

See also

UIEventDispatcher.addEventListener()

Window.title

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

windowInstance.title

Description

Property; a string indicating the caption of the title bar. The default value is "" (empty string).

Example

The following code sets the title of the window to “Hello World”:
myTW.title = "Hello World";

Window.titleStyleDeclaration

Availability

Flash Player 6 version 79.

Edition

Flash MX 2004.

Usage

windowInstance.titleStyleDeclaration

Description

Property; a string indicating the style declaration that formats the title bar of a window. The
default value is undefined which indicates bold, white text.

Example

The following code creates a window that displays the content of the movie clip with the linkage
identifier “ChangePassword” and uses the CSSStyleDeclaration “MyTWStyles”:
var myTW = PopUpManager.createPopUp(_root, Window, true,

{contentPath:"LoginForm",
 titleStyleDeclaration:"MyTWStyles"});

For more information about styles, see “Using styles to customize component color and text”
on page 27.
Window component 623

XMLConnector component (Flash Professional only)

The XMLConnector component is a Flash MX 2004 v2 component whose purpose is to read or
write XML documents using HTTP get operations or post operations. It acts as a connector
between other components and external XML data sources. The XMLConnector communicates
with components in your application using either data binding features in the Flash MX
Professional 2004 authoring environment, or ActionScript code. The XMLConnector
component has properties, methods, and events but it has no runtime visual appearance.

The XMLConnector component and the WebServiceConnector component implement the RPC
(Remote Procedure Call) Component API, a set of methods, properties, and events that define an
easy way to send parameters to, and receive results from, an external data source.

Using the XMLConnector component (Flash Professional only)

The XMLConnector component provides your application with access to any external data
source that returns or receives XML through HTTP. The easiest way to connect with an external
XML data source and use the parameters and results of that data source for your application is to
specify a schema, the structure of the XML document that identifies the data elements in the
document to which you can bind.

The schema appears in the Schema tab in the Component Inspector panel. The schema identifies
the fields in the XML document that you can bind to user interface component properties in your
application. You can manually create the schema through the Component Inspector panel or use
the authoring environment to create one automatically.
Note: The authoring environment will accept a copy of the external XML document you are
connecting to as a model for the schema. If you are familiar with XML scripting, you can create a
sample XML file that can be used to generate a schema.

Although the XMLConnector component has properties and events (like other components), it
has no runtime visual appearance. For more information on working with the XMLConnector
component, see “The XMLConnector component (Flash Professional only)” in Using Flash
Help.

XMLConnector component parameters

The following are authoring parameters that you can set for each XMLConnector component
instance, in the Component Inspector panel Parameters tab:

direction (Enumeration) indicates whether data is being sent, received, or both.

ignoreWhite (Boolean type) when set to true, ignores white space when the XML is retrieved.

multipleSimultaneousAllowed (Boolean type) indicates whether multiple calls can take place
at the same time; the default value is false.

suppressInvalidCalls (Boolean type) indicates whether to suppress a call if parameters are
invalid; the default value is false.

URL (String type) is the URL of the external XML document, used in HTTP operations.

XMLConnector class (Flash Professional only)

Inheritance RPC > XMLConnector

ActionScript Class Name mx.data.components.XMLConnector
624 Chapter 4: Components Dictionary

Property summary for the XMLConnector class

Method summary for the XMLConnector class

Event summary for the XMLConnector class

XMLConnector.direction

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.direction;

Property Description

XMLConnector.direction Indicates whether data is being sent, received,
or both.

XMLConnector.multipleSimultaneousAllowed Indicates whether multiple calls can take place at the
same time.

XMLConnector.params Specifies data that will be sent to the server when the
next trigger() operation is executed.

XMLConnector.results Identifies data that was received from the server as a
result of the trigger() operation.

XMLConnector.suppressInvalidCalls Indicates whether to suppress a call if parameters
are invalid.

XMLConnector.URL The URL used by the component in HTTP
operations.

Method Description

XMLConnector.trigger() Initiates a remote procedure call.

Event Description

XMLConnector.result Broadcast when a Remote Procedure Call
completes successfully.

XMLConnector.send Broadcast when the trigger() function is in process,
after the parameter data has been gathered but
before the data is validated and the Remote Call
is initiated.

XMLConnector.status Broadcast when a Remote Procedure Call is initiated,
to inform the user of the status of the operation.
XMLConnector component (Flash Professional only) 625

Description

Property; indicates whether data is being sent, received, or both. The values are the following:

• send XML data for the params property is sent via HTTP POST to the URL for the XML
document. Any data that is returned is ignored. The results property is not set to anything,
and there is no result event (
Note: The params and results property and the result event are inherited from the RPC
component API.

• receive No params data is sent to the URL. The URL for the XML document is accessed via
HTTP GET, and valid XML data is expected from the URL.

• send/receive Params data is sent to the URL and valid XML data is expected from the URL.

Example

The following example sets the direction to receive for the document mysettings.xml:
myXMLConnector.direction = "receive";
myXMLConnector.URL = "mysettings.xml";
myXMLConnector.trigger();

XMLConnector.multipleSimultaneousAllowed

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.multipleSimultaneousAllowed;

Description

Property; indicates whether multiple calls can take place at the same time. If false, then the
trigger() function will perform a call if another call is already in progress. A status event will
be emitted, with the code CallAlreadyInProgress. If true, then the call will take place.

When multiple calls are simultaneously in progress, there is no guarantee that they will complete
in the same order as they were triggered. Also, Flash Player may place limits on the number of
simultaneous network operations. This limit varies by version and platform.

XMLConnector.params

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.params;
626 Chapter 4: Components Dictionary

Description

Property; specifies data that will be sent to the server when the next trigger() operation is
executed. Each RPC component defines how this data is used, and what the valid types are.

Example

The following example defines name and city params for myXMLConnector:
myXMLConnector.params = new XML("<mydoc><name>Bob</name><city>Oakland</city></

mydoc>");

XMLConnector.result

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("result", myListenerObject);

Description

Event; broadcasts when an Remote Procedure Call operation successfully completes.

The parameter to the event handler is an object with the following fields:

• type: the string "result"
• target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve the actual result value using the results property.

Example

The following example defines a function res for the result event and assigns the function to
the addEventListener event handler:
var res = function (ev) {
trace(ev.target.results);
};
xcon.addEventListener("result", res);

XMLConnector.results

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.results;
XMLConnector component (Flash Professional only) 627

Description

Property; identifies data that was received from the server as a result of a trigger() operation.
Each RPC component defines how this data is fetched, and what the valid types are. This data
appears when the RPC operation has successfully completed, as signaled by the result event. It is
available until the component is unloaded, or until the next RPC operation.

It is possible for the returned data to be very large. You can manage this in two ways:

• Select an appropriate movie clip, Timeline, or screen as the parent for the RPC component.
The component's storage will become available for garbage collection when the parent
goes away.

• In ActionScript, you can assign null to this property at any time.

Example

The following example traces the results property for myXMLConnector:
trace(myXMLConnector.results);

XMLConnector.send

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("send", myListenerObject);

Description

Event; broadcasts during the processing of a trigger() operation, after the parameter data has
been gathered but before the data is validated and the Remote Procedure Call is initiated. This is
a good place to put code that will modify the parameter data before the call.

The parameter to the event handler is an object with the following fields:

• type: the string "send"
• target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)

You can retrieve or modify the actual parameter values using the params property.

Example

The following example defines a function sendFunction for the send event and assigns the
function to the addEventListener event handler:
var sendFunction = function (sendEnv) {
sendEnv.target.params = [newParam_txt.text];
};
xcon.addEventListener("send", sendFunction);
628 Chapter 4: Components Dictionary

XMLConnector.status

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.addEventListener("status", myListenerObject);

Description

Event; broadcasts when a Remote Procedure Call is initiated, to inform the user of the status of
the operation.

The parameter to the event handler is an object with the following fields:

• type: the string "status"
• target: a reference to the object that emitted the event (for example, a

WebServiceConnector component)
• code: a string giving the name of the specific condition that occurred.
• data: an object whose contents depend on the code.

The code field for the status event is set to Fault if problems occur with the call, as follows:

The following are the faults that can occur with the status event:

Code Data Description

Fault {faultcode: code,
faultstring: string,
detail: detail,
element: element,
faultactor: actor}

This event is emitted if other
problems occur during the
processing of the call. The data is a
SOAPFault object. After this event
occurs, the attempted call is
considered complete, and there will
be no "result" or "send" event.

FaultCode FaultString Notes

XMLConnector.Not.XML params is not an XML
object

The params must be an actionscript
XML object.

XMLConnector.Parse.Error params had XML
parsing error NN.

The "status" property of the params
XML object had a non-zero value
NN. See the Flash Help information
for XML.status to see the possible
errors NN.
XMLConnector component (Flash Professional only) 629

Example

The following example defines a function statusFunction for the status event and assigns the
function to the addEventListener event handler:
var statusFunction = function (stat) {
trace(stat.code);
trace(stat.data.faultcode);
trace(stat.data.faultstring);
};
xcon.addEventListener("status", statusFunction);

XMLConnector.suppressInvalidCalls

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.suppressInvalidCalls;

XMLConnector.No.Data.Received no data was received
from the server

RESTRICTION: due to various
browser limitations, this message
can either mean (a) the server URL
was invalid, not responding, or
returned an HTTP error code; or (b)
the server request succeeded but the
response happened to be 0 bytes of
data. The recommended
workaround is: design your
application so that the server will
NEVER return 0 bytes of data. If
you get
"XMLConnector.No.Data.Received"
, you will know for sure that there was
a server error, and can inform the
end-user accordingly.

XMLConnector.Results.Parse.Error received data had an
XML parsing error NN

The received XML was not valid, as
determined by the Flash Player built-
in XML parser. See Flash Help
information on XML.status to see the
possible errors NN.

XMLConnector.Params.Missing Direction is 'send' or
'send/receive', but
params are null.

þ

FaultCode FaultString Notes
630 Chapter 4: Components Dictionary

Description

Property; indicates whether to suppress a call if parameters are invalid. If true, then the
trigger() function will not perform a call if the bound parameters fail the validation. A "status"
event will be emitted, with the code InvalidParams. If false, then the call will take place, using
the invalid data as required.

XMLConnector.trigger()

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.trigger();

Description

Method; initiates a Remote Procedure Call. Each RPC component defines exactly what this
involves. If the operation is successful, the results of the operation will appear in the RPC
component's results property.

The trigger() method performs the following steps:

1 If any data is bound to the params property, the method executes all the bindings to ensure that
up-to-date data is available. This also causes data validation to occur.

2 If the data is not valid and suppressInvalidCalls is set to true, the operation
is discontinued.

3 If the operation continues, the send event is emitted.
4 The actual remote call is initiated using the connection method indicated (for example, HTTP).

XMLConnector.URL

Availability

Flash Player 6 version 79.

Edition

Flash MX Professional 2004.

Usage

componentInstance.URL;

Description

Property; the URL that this component uses when doing HTTP operations. This URL may
be either an absolute or relative URL. The URL is subject to all the standard Flash Player
security protections.
XMLConnector component (Flash Professional only) 631

XUpdateResolver component (Flash Professional only)

You use resolver components in combination with the DataSet component (part of the data
management functionality in the Macromedia Flash data architecture). The resolver components
enable you to convert changes made to the data within your application into a format that is
appropriate for the external data source that you are updating. These components have no visual
appearance at runtime.

If you use a DataSet component in your application, it generates an optimized set of instructions
(DeltaPacket) that describes the changes made to the data at runtime. This set of instructions that
is converted to the appropriate format (update packet) by the resolver components. When an
update is sent to the server, the server sends a response (result packet) containing additional
updates or errors that result from the update operation. The resolver components can convert this
information back into a DeltaPacket that can be applied to the DataSet component to keep it in
sync with the external data source. Resolver components enable you to keep your application and
an external data source in sync without writing additional ActionScript code.

XUpdate is a standard for describing changes that are made to an XML document and is
supported by a variety of XML databases, such as Xindice or XHive. The XUpdateResolver
component translates the DeltaPacket into XUpdate statements. An external data source can
process these XUpdates statements. The XML document contains the necessary information and
formatting for updating any standard XUpdate database.

For information about the working draft of the XUpdate language specification, see
www.xmldb.org/xupdate/xupdate-wd.html. A parallel resolver component, RDBMSResolver (see
“RDBMSResolver component (Flash Professional only)” on page 436), exists for returning data
to an XML-based server. For more information about DataSet components, see “DataSet
component (Flash Professional only)” on page 193. For more information about connectors, see
“WebServiceConnector (Flash Professional only)” on page 604 and “XMLConnector component
(Flash Professional only)” on page 624. For more information about the Flash data architecture,
see “Resolver components (Flash Professional only)” in Using Flash Help.
Note: You can also use the XUpdateResolver component to send data updates to any external data
source that can parse the XUpdate language; for example, an ASP page, a Java servlet, or a
ColdFusion component.

The updates from the XUpdateResolver component are sent in the form of an XUpdate data
packet, which is communicated to the database or server through a connection object. The
XUpdate packet consists of an optimized set of instructions that describe the inserts, edits, and
deletes performed on the DataSet component. The resolver component gets a DeltaPacket from a
DataSet component, sends its own XUpdate packet to a connector, receives server errors back
from the connection, and communicates them back to the DataSet component—all using
bindable properties.

Using the XUpdateResolver component (Flash Professional only)
Use this XUpdateResolver component only when your Flash application contains a DataSet
component and must send an update back to the data source. This component resolves data that
you want to return to a XML-formatted data source.

For more information on working with the XUpdateResolver component, see “Resolver
components (Flash Professional only)” in Using Flash Help.
632 Chapter 4: Components Dictionary

http://www.xmldb.org/xupdate/xupdate-wd.html

XUpdateResolver component parameters

includeDeltaPacketInfo Boolean; if true, causes the XUpdate to include additional
information from the deltaPacket in attributes on the XUpdate nodes. This information
includes the transaction ID and operation ID.

The following example shows how the update packet is constructed when the Boolean value for
this property is set to false:
<xupdate:modifications

version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate">

<xupdate:remove select="/datapacket/row[@id='100']"/>

</xupdate:modifications>

The following example shows how the update packet is constructed when the Boolean value for
this property is set to true:
<xupdate:modifications

version="1.0"
xmlns:xupdate="http://www.xmldb.org/xupdate"
transId="46386292065:Wed Jun 25 15:52:34 GMT-0700 2003">

<xupdate:remove select="/datapacket/row[@id='100']" opId="0123456789"/>

</xupdate:modifications>

Property summary for the XUpdateResolver component

Event summary for the XUpdateResolver component

Property Description

XUpdateResolver.deltaPacket Contains a description of the changes to the
DataSet component.

XUpdateResolver.includeDeltaPacketInfo Includes additional information from the deltaPacket in
attributes on the XUpdate nodes.

XUpdateResolver.updateResults Describes results of update.

XUpdateResolver.xupdatePacket Contains the XUpdate translation of the changes to the
DataSet component.

Event Description

XUpdateResolver.beforeApplyUpdates Called by the resolver component to make custom
modifications immediately after the XML packet has
been created and immediately prior to that packet
being sent.

XUpdateResolver.reconcileResults Called by the resolver component to compare
two packets.
XUpdateResolver component (Flash Professional only) 633

XUpdateResolver.beforeApplyUpdates

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.beforeApplyUpdates(eventObject)

Parameters

eventObject Resolver event object; describes the customizations to the XML packet before the
update is sent through the connector to the database. This resolver event object should contain
the following properties:

Returns

None.

Description

Event; called by the resolver component to make custom modifications immediately after the
XML packet has been created for a new deltaPacket, and immediately prior to that packet
being sent out using data binding. You can use this event handler to make custom modifications
to the XML before sending the updated data to a connector.

Example

The following example adds the user authentication data to the XML packet:
on (beforeApplyUpdates) {

 // add user authentication data
 var userInfo = new XML(""+getUserId()+" "+getPassword()+"");
 xupdatePacket.firstChild.appendChild(userInfo);

}

XUpdateResolver.deltaPacket

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.deltaPacket

Property Description

target Object; resolver firing this event.

type String; name of the event.

updatePacket XML object; XML object about to be applied.
634 Chapter 4: Components Dictionary

Description

Property; property of type deltaPacket that receives a deltaPacket to be translated into an
xupdatePacket, and outputs a deltaPacket from any server results placed into the
updateResults property. This event handler provides a way for you to make custom
modifications to the XML before sending the updated data to a connector.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the deltaPacket again so it can be resent the next time the deltaPacket is
sent to the server. You must write code that handles deltas that have messages so that the messages
are presented to the user and modified before being added to the next deltaPacket.

XUpdateResolver.includeDeltaPacketInfo

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.includeDeltaPacketInfo

Description

Property; property of type Boolean that, if true, includes additional information from the
deltaPacket in attributes on the XUpdate nodes. This information will includes the transaction
ID and operation ID.

For an example of the resulting XML, see “XUpdateResolver component parameters”
on page 633.

XUpdateResolver.reconcileResults

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.reconcileResults(eventObject)

Parameters

eventObject ResolverEvent object; describes the event object used to compare two
updatePackets. This resolver event object should contain the following properties:

Property Description

target Object; resolver firing this event.

type String; name of the event.
XUpdateResolver component (Flash Professional only) 635

Returns

None.

Description

Event; use this callback to insert any code after the results have been received from the server and
immediately prior to the transmission, through data binding, of the deltaPacket containing
operation results. This is a good place to put code that handles messages from the server.

Example

The following example reconciles two updatePackets and clears the updates on success:
on (reconcileResults) {

 // examine results
 if(examine(updateResults))
 myDataSet.purgeUpdates();
 else
 displayErrors(results);

}

XUpdateResolver.updateResults

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.updateResults

Description

Property; property of type deltaPacket that contains the results of an update returned from the
server using a connector. Use this property to transmit errors and updated data from the server to
a DataSet component; for example, when the server assigns new IDs for an auto-assigned field.
Bind this property to a connector’s Results property so that it can receive the results of an update
and transmit the results back to the DataSet component.

Messages in the updateResults property are treated as errors. This means that a delta with
messages is added to the deltaPacket again so it can be resent the next time the deltaPacket is
sent to the server. You must write code that handles deltas that have messages so that the messages
are presented to the user and modified before being added to the next deltaPacket.
636 Chapter 4: Components Dictionary

XUpdateResolver.xupdatePacket

Availability

Flash Player 7.

Edition

Flash MX Professional 2004.

Usage

resolveData.xupdatePacket

Description

Property; property of type xml contains the XUpdate translation of the changes to the DataSet
component. Bind this to the connector component’s property that transmits the translated update
packet of changes back to the DataSet component.
XUpdateResolver component (Flash Professional only) 637

638 Chapter 4: Components Dictionary

CHAPTER 5
Creating Components
This chapter describes how to create your own components, make them usable by other
developers, and package them for deployment.

What’s new

The current version (version 2) of the Macromedia Component Architecture is very different
from the Macromedia Flash MX version (version 1). Macromedia made changes to improve
scalability, performance, and extensibility of components for developers. The following list
provides an overview of some of the changes:

• Component Inspector panel that recognizes ActionScript metadata
• Managers and base classes you can extend
• Built-in Live Preview
• Improved compiler messages
• New event model
• Focus management
• CSS-based styles

Working in the Flash environment

The Macromedia Flash MX 2004 and Flash MX Professional 2004 environment is set up to make
the structure of classes and components logical. This section describes where you should store
your component files.

FLA file assets

When creating a component, you start with a FLA file and add skins, graphics, and other assets.
You can store these assets anywhere in the FLA file, because Flash component users need only a
compiled component file and not the source assets.

You use two-frame, two-layer SWF files when creating components in Flash. The first layer is an
actions layer, which points to the component’s ActionScript class file. The second layer is an assets
layer, which contains graphics, symbols, and other assets used by the component.
639

Class files

The FLA file includes a reference to the ActionScript class file for the component. This is known
as binding the component to the class file.

The ActionScript code specifies the properties and methods for the component, and defines
which, if any, classes your component inherits from. You must use the *.as file naming convention
for ActionScript source code and name the source code file after the component itself. For
example, MyComponent.as contains the source code for the MyComponent component.

The Flash MX 2004 core class .as files reside within a single folder called Classes/mx/Core. Other
ActionScript class files are organized by package names in their own folders under /Classes.

For a custom component, create a new directory under /Classes and store the ActionScript class
file there.

The classpath

This section describes the Flash classpath.

Understanding the classpath

The classpath is an ordered list of directories in which Flash searches for class files during
component export or SWF file generation. The order of the classpath entries is important because
Flash uses the classes on a first-come, first-served basis. At export time, classes found on the
classpath that match linkage identifiers in the FLA file are imported into the FLA file and
registered with their symbols.

A global classpath refers to all FLA files generated with Flash. A local classpath applies only to the
current FLA file.

The default local classpath is empty. The default global classpath consists of the following
two paths:

• $(UserConfig)/Classes (Macintosh); $(LocalData)/Classes (Windows)
• .

The dot (.) indicates the current working directory. Flash searches the FLA file’s current directory
for ActionScript classes.

The $(UserConfig)/Classes and $(LocalData)/Classes paths indicate the per-user configuration
directory. This directory points to the following locations:

• In Windows, this directory is c:\Documents and Settings\username\Application Data\
Macromedia\Flash MX 2004\en\Configuration.

• On the Macintosh, this directory is volume:Users:username:Library:Application Support:
Macromedia:Flash MX 2004:en:configuration.

The UserConfig and LocalData directories mirror the directories located in Flash_root/en/
Configuration. However, the classpath does not directly include those directories, and it is relative
to the UserConfig or LocalData directory.

Changing the classpath

You can change the classpath for an individual FLA file (local classpath) or for all FLA files you
work with in Flash (global classpath).
640 Chapter 5: Creating Components

To change the global classpath:

1 Select Edit > Preferences.
The Preferences dialog box appears.

2 Select the ActionScript tab.
3 Click the ActionScript 2.0 Settings button.

The ActionScript Settings dialog box appears.
4 Add, remove, or edit entries in the Classpath box.
5 Save your changes.

To change the local classpath:

1 Select File > Publish Settings.
The Publish Settings dialog box appears.

2 Select the Flash tab.
3 Click the Settings button.

The ActionScript Settings dialog box appears.
4 Add, remove, or edit entries in the Classpath box.
5 Save your changes.

Locating component source files

When developing a component, you can store the source files in any directory. However, you
must include that directory in the Flash MX 2004 classpath settings to ensure that Flash finds the
necessary class files when exporting the component. In addition, to test the component, you must
store the component in the Flash Components directory. For more information on storing SWC
files, see “Using SWC files” on page 661.

Editing symbols

Each symbol has its own Timeline. You can add frames, keyframes, and layers to a symbol
Timeline, just as you can to the main Timeline.

When creating components, you start with a symbol. Flash provides the following three ways for
you to edit symbols:

• Edit the symbol in the context of the other objects on the Stage by using the Edit in Place
command. Other objects are dimmed to distinguish them from the symbol you are editing.
The name of the symbol you are editing is displayed in an edit bar at the top of the Stage, to
the right of the current scene name.

• Edit a symbol in a separate window by using the Edit in New Window command. Editing a
symbol in a separate window lets you see the symbol and the main Timeline at the same time.
The name of the symbol you are editing is displayed in the edit bar at the top of the Stage.

• Edit the symbol by changing the window from the Stage view to a view of only the symbol,
using symbol-editing mode. The name of the symbol you are editing is displayed in the edit
bar at the top of the Stage, to the right of the current scene name.
Working in the Flash environment 641

Examples of component code

Flash MX 2004 and Flash MX Professional 2004 include the following component source files to
help you develop your own components:

• FLA file source code: Flash MX 2004_install_dir/en/First Run/ComponentFLA/
StandardComponents.fla

• ActionScript class files: Flash MX 2004_install_dir/en/First Run/Classes/mx

Creating components

This section describes how to create a component that subclasses an existing Flash MX 2004 class.
Subsequent sections describe how to write the component’s ActionScript class file and edit the
component for usability and quality.

Creating a new component symbol

All components are MovieClip objects, which are a type of symbol. To create a new component,
you must first insert a new symbol into a new FLA file.

To add a new component symbol:

1 In Flash, create a blank Flash document.
2 Select Insert > New Symbol.

The Create New Symbol dialog box appears.
3 Enter a symbol name. Name the component by capitalizing the first letter of each word in the

component (for example, MyComponent).
4 Select the Movie Clip radio button for the behavior.

A MovieClip object has its own multiframe Timeline that plays independently of the
main Timeline.

5 Click the Advanced button.
The advanced settings appear in the dialog box.

6 Select Export for ActionScript. This tells Flash to package the component by default with any
Flash content that uses the component.

7 Enter a linkage identifier.
This identifier is used as symbol name, linkage name, and as the associated class name.

8 In the AS 2.0 Class text box, enter the fully qualified path to the ActionScript 2.0 class, relative
to your classpath settings.
Note: Do not include the filename’s extension; the AS 2.0 Class text box points to the packaged
location of the class and not the file system’s name for the file.

If the ActionScript file is in a package, you must include the package name. This field’s value
can be relative to the classpath or can be an absolute package path (for example,
myPackage.MyComponent).
For more information on setting the Flash MX 2004 classpath, see “Understanding the
classpath” on page 640.

9 In most cases, you should deselect Export in First Frame (it is selected by default). For more
information, see “Best practices when designing a component” on page 663.

10 Click OK.
642 Chapter 5: Creating Components

Flash adds the symbol to the library and switches to symbol-editing mode. In this mode, the
name of the symbol appears above the upper left corner of the Stage, and a cross hair indicates
the symbol’s registration point.
You can now edit this symbol and add it to your component’s FLA file.

Editing symbol layers

Once you have created the new symbol and defined the linkages for it, you can define the
component’s assets in the symbol’s Timeline.

A component’s symbol should have two layers. This section describes what layers to insert and
what to add to those layers.

For information on how to edit symbols, see “Editing symbols” on page 641.

To edit symbol layers:

1 Enter symbol-editing mode.
2 Rename an empty layer, or create a layer called Actions.
3 In the Actions panel, add a single line that imports the component’s fully qualified ActionScript

class file.
This statement relies on the Flash MX 2004 classpath settings. (For more information, see
“Understanding the classpath” on page 640.) The following example imports the
MyComponent.as file that is in the package myPackage:
import myPackage.MyComponent;

Note: Use the import statement and not the include statement when importing an ActionScript
class file. Do not surround the class name or package with quotation marks.

4 Rename an empty layer, or create a layer called Assets.
The Assets layer includes all the assets used by this component.

5 In the first frame, add a stop() action in the Actions panel, as the following example shows:
stop();

Do not add any graphical assets to this frame. Flash Player will stop before the second frame, in
which you can add the assets.

6 If you are extending an existing component, locate that component and any other base classes
that you use, and place an instance of that symbol in your layer’s second frame. To do this, select
the symbol from the Components panel and drag it onto the Stage in the second frame of your
component’s Assets layer.
Any asset a component uses (whether it’s another component or media such as bitmaps) should
have an instance placed inside the component.

7 Add any graphical assets used by this component on the second frame of your component’s
Assets layer. For example, if you are creating a custom button, add the graphics that represent
the button’s states (up, down, and so on).

8 When you have finished creating the symbol content, do one of the following to return to
document-editing mode:
■ Click the Back button at the left side of the edit bar above the Stage.
■ Select Edit > Edit Document.
■ Click the scene name in the edit bar above the Stage.
Creating components 643

Adding parameters

The next step in component development is to define the component parameters. Parameters are
the primary method by which users modify instances of the components you create.

In previous editions of Flash, you defined the parameters using the Component Inspector panel.
In Flash MX 2004 and Flash MX Professional 2004, you define parameters in the ActionScript
class file, and the Component Inspector panel discovers which ones are public and displays them
to users.

The next section deals with writing the component’s external ActionScript file, which includes
information on adding component parameters.

Writing the component’s ActionScript

Most components include some kind of ActionScript code. The type of component determines
where you will write your ActionScript and how much ActionScript to write. There are two basic
approaches to component development:

• Creating new components with no parent classes
• Extending existing component classes

This section focuses on extending existing components. If you are creating a component that
derives from another component’s class file, you should write an external ActionScript class file as
described in this section.

Extending existing component classes

When creating a component symbol that derives from a parent class, you link it to an external
ActionScript 2.0 class file. (For information on defining this file, see “Creating a new component
symbol” on page 642.)

The external ActionScript class extends another class, adds methods, adds getters and setters, and
defines event handlers for the component. To edit ActionScript class files, you can use Flash, any
text editor, or any Integrated Development Environment (IDE).

You can inherit from only one class. ActionScript 2.0 does not allow multiple inheritance.

Simple example of a class file

The following is a simple example of a class file called MyComponent.as. This example contains a
minimal set of imports, methods, and declarations for a component that inherits from the
UIObject class.
import mx.core.UIObject;

class myPackage.MyComponent extends UIObject {
static var symbolName:String = "MyComponent";
static var symbolOwner:Object = Object(myPackage.MyComponent);
var className:String = "MyComponent";
#include "../core/ComponentVersion.as"
function MyComponent() {
}
function init(Void):Void {

super.init();
}
function size(Void):Void {
644 Chapter 5: Creating Components

super.size();
}

}

General process for writing a class file

Use the following general process when writing the ActionScript for a component. Some steps
may be optional, depending on the type of component you create.

This process is covered in more detail in the rest of this chapter.

To write the ActionScript file for a component:

1 Import all necessary classes.
2 Define the class using the class keyword; extend a parent class, if necessary.
3 Define the symbolName and symbolOwner variables; these are the symbol name of your

ActionScript class and the fully qualified package name of the class, respectively.
4 Define your class name as the className variable.
5 Add versioning information.
6 Enter your default member variables.
7 Create variables for every skin element/linkage used in the component. This lets users set a

different skin element by changing a parameter in the component.
8 Add class constants.
9 Add a metadata keyword and declaration for every variable that has a getter/setter.
10 Define uninitialized member variables.
11 Define getters and setters.
12 Write a constructor. It should generally be empty.
13 Add an initialization method. This method is called when the class is created.
14 Add a size method.
15 Add custom methods or override inherited methods.

Importing classes

The first line of your external ActionScript class file should import necessary class files that your
class uses. This includes classes that provide functionality, as well as the superclass your class
extends, if any.

You import the fully qualified class name, rather than the filename of the class, when using the
import statement, as the following example shows:
import mx.core.UIObject;
import mx.core.ScrollView;
import mx.core.ext.UIObjectExtensions;

You can also use the wildcard character (*) to import all the classes in a given package. For
example, the following statement imports all classes in the mx.core package:
import mx.core.*;

If an imported class is not used in a script, the class is not included in the resulting SWF file’s
bytecode. As a result, importing an entire package with a wildcard does not create an
unnecessarily large SWF file.
Importing classes 645

Selecting a parent class

Most components have some common behavior and functionality. Flash includes two base classes
to supply this commonality. By subclassing these classes, your components begin with a basic set
of methods, properties, and events.

The following table briefly describes the two base classes:

Understanding the UIObject class

Components based on version 2 of the Macromedia Component Architecture descend from the
UIObject class, which wraps the MovieClip class. The MovieClip class is the base class for all
classes in Flash that can draw on the screen. Many MovieClip properties and methods are related
to the Timeline, which is an unfamiliar tool to developers who are new to Flash. The UIObject
class was created to abstract many of those details. Subclasses of MovieClip do not document
unnecessary MovieClip properties and methods. However, you can access these properties and
methods if you want.

UIObject tries to hide the mouse handling and frame handling in MovieClip. It posts events to its
listeners just before drawing (the equivalent of onEnterFrame), when loading and unloading, and
when its layout changes (move, resize).

UIObject provides alternate read-only variables for determining the position and size of the movie
clip. You can use the move() and setSize() methods to alter the position and size of an object.

Understanding the UIComponent class

The UIComponent class is a child of UIObject. It is the base class of all components that have
user interaction (mouse and keyboard input).

Extending other classes

To make component construction easier, you can subclass any class; you are not required to
extend the UIObject or UIComponent class directly. If you extend any other component’s class,
you extend these classes by default. Any component class listed in the Component dictionary can
be extended to create a new component class.

Full class Extends Description

mx.core.UIObject MovieClip UIObject is the base class for all graphical objects. It can have
shape, draw itself, and be invisible.
UIObject provides the following functionality:
• Editing styles
• Event handling
• Resizing by scaling

mx.core.UIComponent UIObject UIComponent is the base class for all components. It can
participate in tabbing, accept low-level events such as keyboard
and mouse input, and be disabled so it does not receive mouse
and keyboard input.
UIComponent provides the following functionality:
• Creating focus navigation
• Enabling and disable components
• Resizing components
646 Chapter 5: Creating Components

Flash includes a group of classes that draw on the screen and inherit from UIObject. For example,
the Border class draws borders around other objects. Another example is RectBorder, which is a
subclass of Border and knows how to resize its visual elements appropriately. All components that
support borders should use one of the border classes or one of the border subclasses. For a detailed
description of these classes, see Chapter 4, “Components Dictionary,” on page 43.

For example, if you want to create a component that behaves almost exactly the same as a Button
component does, you can extend the Button class instead of recreating all the functionality of the
Button class from the base classes.

Writing the constructor

Constructors are methods that have a unique purpose: to set properties and perform other tasks
when a new instance of a component is instantiated. You can recognize a constructor because it
has the same name as the component class itself. For example, the following code shows the
ScrollBar subcomponent’s constructor:
function ScrollBar() {
}

In this case, when a new scroll bar is instantiated, the ScrollBar() constructor is called.

Generally, component constructors should be empty so that the object can be customized with its
properties interface. In addition, setting properties in constructors can sometimes lead to
overwriting default values, depending on the ordering of initialization calls.

A class can contain only one constructor function; overloaded constructor functions are not
allowed in ActionScript 2.0.

Versioning

When releasing components, you should define a version number. This lets developers know
whether they should upgrade, and helps with technical support issues. When setting a
component’s version number, use the static variable version, as the following example shows:
static var version:String = "1.0.0.42";

If you create many components as part of a component package, you can include the version
number in an external file. Thus, you update the version number in only one place. For example,
the following code imports the contents of an external file that stores the version number in
one place:
#include "../myPackage/ComponentVersion.as"

The contents of the ComponentVersion.as file are identical to the above variable declaration, as
the following example shows:
static var version:String = "1.0.0.42";

Class, symbol, and owner names

To help Flash find the proper ActionScript classes and packages and to preserve the component’s
naming, you must set the symbolName, symbolOwner, and className properties in your
component’s ActionScript class file.
Class, symbol, and owner names 647

The following table describes these variables:

The following example shows a custom component’s naming:
static var symbolName:String = "MyComponent";
static var symbolOwner:Object = custom.MyComponent;
var className:String = "MyComponent";

Defining getters and setters

Getters and setters provide visibility to component properties and control access to those
properties by other objects.

The convention for defining getter and setter methods is to precede the method name with get or
set, followed by a space and the property name. It’s a good idea to use initial capital letters for
each word that follows the get or set.

The variable that stores the property’s value cannot have the same name as the getter or setter. By
convention, precede the name of the getter and setter variables with two underscores.

The following example shows the declaration of initialColor, and getter and setter methods
that get and set the value of this property:
...
public var __initialColor:Color = 42;
...
public function get initialColor():Number {

return __initialColor;
}
public function set initialColor(newColor:Number) {

__initialColor = newColor;
}

Getters and setters are commonly used in conjunction with metadata keywords to define
properties that are visible, are bindable, and have other properties.

Component metadata

Flash recognizes component metadata statements in your external ActionScript class files. The
metadata tags can define component attributes, data binding properties, and events. Flash
interprets these statements and updates the development environment accordingly. This
allows you to define these members once, rather than in the ActionScript code and the
development panels.

The metadata tags can only be used in external ActionScript class files. You cannot use metadata
tags in the action frames of your FLA files.

Variable Description

symbolName Symbol name for the object. This variable is static and of type String.

symbolOwner Class used in the internal call to the createClassObject() method. This value
should be the fully qualified class name, which includes the package’s path. This
variable is static and of type Object.

className Name of the component class. This variable is also used in calculating style
values. If _global.styles[className] exists, it sets defaults for a component. This
variable is of type String.
648 Chapter 5: Creating Components

Using metadata keywords

Metadata is associated with a class declaration or an individual data field. If the value of an
attribute is of type String, you must enclose that attribute in quotation marks.

Metadata statements are bound to the next line of the ActionScript file. When defining a
component property, add the metadata tag on the line before the property declaration. When
defining component events, add the metadata tag outside the class definition so that the event is
bound to the entire class.

In the following example, the Inspectable metadata keywords apply to the flavorStr, colorStr,
and shapeStr parameters:
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;
[Inspectable(defaultValue="blue")]
public var colorStr:String;
[Inspectable(defaultValue="circular")]
public var shapeStr:String;

In the Property inspector and the Parameters tab of the Component Inspector panel, Flash
displays all of these parameters as type String.

Metadata tags

The following table describes the metadata tags you can use in ActionScript class files:

The following sections describe the component metadata tags in more detail.

Inspectable

You specify the user-editable (or “inspectable”) parameters of a component in the class definition
for the component, and these parameters appear in the Component Inspector panel. This lets you
maintain the inspectable properties and the underlying ActionScript code in the same place. To
see the component properties, drag an instance of the component onto the Stage and select the
Parameters tab in the Component Inspector panel.

Tag Description

Inspectable Defines an attribute exposed to component users in the Component
Inspector panel. See “Inspectable” on page 649.

InspectableList Identifies which subset of inspectable parameters should be listed in the
Property inspector. If you don't add an InspectableList attribute to your
component's class, all inspectable parameters appear in the Property
inspector. See “InspectableList” on page 651.

Event Defines component events. See “Event” on page 652.

Bindable Reveals a property in the Bindings tab of the Component Inspector panel.
See “Bindable” on page 652.

ChangeEvent Identifies events that cause data binding to occur. See “ChangeEvent”
on page 653.

IconFile The filename for the icon that represents this component in the Flash
Components panel. See “Adding an icon” on page 662.
Component metadata 649

The following figure shows the Parameters tab in the Component Inspector panel for the Text
Area control:

Alternatively, you can view a subset of the component properties on the Property inspector
Parameters tab, as the following figure shows:

When determining which parameters to reveal in the authoring environment, Flash uses the
Inspectable metadata keyword. The syntax for this keyword is as follows:
[Inspectable(value_type=value[,attribute=value,...])]
property_declaration name:type;

The following example defines the enabled parameter as inspectable:
[Inspectable(defaultValue=true, verbose=1, category="Other")]
var enabled:Boolean;

The Inspectable keyword also supports loosely typed attributes like this:
[Inspectable("danger", 1, true, maybe)]

The metadata statement must immediately precede the property’s variable declaration to be
bound to that property.
650 Chapter 5: Creating Components

The following table describes the attributes of the Inspectable metadata keyword:

InspectableList

Use the InspectableList metadata keyword to specify exactly which subset of inspectable
parameters should appear in the Property inspector. Use InspectableList in combination with
Inspectable so that you can hide inherited attributes for subclassed components. If you do not add
an InspectableList metadata keyword to your component’s class, all inspectable parameters,
including those of the component’s parent classes, appear in the Property inspector.

The InspectableList syntax is as follows:
[InspectableList("attribute1"[,...])]
// class definition

The InspectableList keyword must immediately precede the class definition because it applies to
the entire class.

Attribute Type Description

name String (Optional) A display name for the property. For example, "Font
Width". If not specified, use the property’s name, such as
"_fontWidth".

type String (Optional) A type specifier. If omitted, use the property’s type. The
following values are acceptable:
• Array
• Object
• List
• String
• Number
• Boolean
• Font Name
• Color

defaultValue String or
Number

(Required) A default value for the inspectable property.

enumeration String (Optional) Specifies a comma-delimited list of legal values for
the property.

verbose Number (Optional) Indicates that this inspectable property should be
displayed only when the user indicates that verbose properties
should be included. If this attribute is not specified, Flash assumes
that the property should be displayed.

category String (Optional) Groups the property into a specific subcategory in the
Property inspector.

listOffset Number (Optional) Added for backward compatibility with Flash MX
components. Used as the default index into a List value.

variable String (Optional) Added for backward compatibility with Flash MX
components. Used to specify the variable that this parameter is
bound to.
Component metadata 651

The following example allows the flavorStr and colorStr properties to be displayed in the
Property inspector, but excludes other inspectable properties from the DotParent class:
[InspectableList("flavorStr","colorStr")]
class BlackDot extends DotParent {

[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;
[Inspectable(defaultValue="blue")]
public var colorStr:String;
...

}

Event

Use the Event metadata keyword to define events that this component emits.

The syntax for this keyword is as follows:
[Event("event_name")]

For example, the following code defines a click event:
[Event("click")]

Add the Event statements outside the class definition in the ActionScript file so that they are
bound to the class and not a particular member of the class.

The following example shows the Event metadata for the UIObject class, which handles the
resize, move, and draw events:
...
import mx.events.UIEvent;
[Event("resize")]
[Event("move")]
[Event("draw")]
class mx.core.UIObject extends MovieClip {

...
}

Bindable

Data binding connects components to each other. You achieve visual data binding through the
Bindings tab of the Component Inspector panel. From there, you add, view, and remove bindings
for a component.

Although data binding works with any component, its main purpose is to connect user interface
components to external data sources such as web services and XML documents. These data
sources are available as components with properties, which you can bind to other component
properties. The Component Inspector panel is the main tool used in Flash MX Professional 2004
to do data binding.

Use the Bindable metadata keyword to make properties and getter/setter functions in your
ActionScript classes appear in the Bindings tab in the Component Inspector panel.

The Bindable metadata keyword has the following syntax:
[Bindable[readonly|writeonly[,type="datatype"]]]

The Bindable keyword must precede a property, getter/setter function, or other metadata
keyword that precedes a property or getter/setter function.
652 Chapter 5: Creating Components

The following example defines the variable flavorStr as a public, inspectable variable that is also
accessible on the Bindings tab of the Component Inspector panel:
[Bindable]
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String = "strawberry";

The Bindable metadata keyword takes three options that specify the type of access to the property,
as well as the data type of that property. The following table describes these options:

You can combine the access option and the data type option, as the following example shows:
[Bindable(param1="writeonly",type="DataProvider")]

The Bindable keyword is required when you use the ChangeEvent metadata keyword. For more
information, see “ChangeEvent” on page 653.

For information on creating data binding in the Flash authoring environment, see “Data binding
(Flash Professional only)” in Using Flash Help.

ChangeEvent

Use the ChangeEvent metadata keyword to generate one or more component events when
changes are made to bindable properties.

The syntax for this keyword is as follows:
[Bindable]
[ChangeEvent("event"[,...)]
property_declaration or get/set function

Like Bindable, this keyword can be used only with variable declarations or getter and setter
functions.

In the following example, the component generates the change event when the value of the
bindable property flavorStr changes:
[Bindable]
[ChangeEvent("change")]
public var flavorStr:String;

Option Description

readonly Instructs Flash to allow the property to be only the source of a binding, as shown
in this example:
[Bindable("readonly")]

writeonly Instructs Flash to allow the property to be only the destination of a binding, as
shown in this example:
[Bindable("writeonly")]

type="datatype" Specifies the data type of the property that is being bound.
If you do not specify this option, data binding uses the property’s data type as
declared in the ActionScript code.
If datatype is a registered data type, you can use the functionality in the Schema
tab’s Data Type pop-up menu.
The following example sets the data type of the property to String:
[Bindable(type="String")]
Component metadata 653

When the event specified in the metadata occurs, Flash informs whatever is bound to the
property that the property has changed.

You can also instruct your component to generate an event when a getter or setter function is
called, as the following example shows:
[Bindable]
[ChangeEvent("change")]
function get selectedDate():Date

...

In most cases, you set the change event on the getter, and dispatch the event on the setter.

You can register multiple change events in the metadata, as the following example shows:
[ChangeEvent("change1", "change2", "change3")]

Any one of those events indicates a change to the variable. They do not all have to occur to
indicate a change.

Defining component parameters

When building a component, you can add parameters that define its appearance and behavior.
The most commonly used properties appear as authoring parameters in the Component
Inspector panel. You define these properties by using the Inspectable keyword (see “Inspectable”
on page 649). You can also set all inspectable parameters with ActionScript. Setting a parameter
with ActionScript overrides any value set during authoring.

The following example sets several component parameters in the JellyBean class file, and exposes
them with the Inspectable metadata keyword in the Component Inspector panel:
class JellyBean{

// a string parameter
[Inspectable(defaultValue="strawberry")]
public var flavorStr:String;
// a string list parameter
[Inspectable(enumeration="sour,sweet,juicy,rotten",defaultValue="sweet")]
public var flavorType:String;
// an array parameter
[Inspectable(name="Flavors", defaultValue="strawberry,grape,orange",
verbose=1, category="Fruits")]
var flavorList:Array;
// an object parameter
[Inspectable(defaultValue="belly:flop,jelly:drop")]
public var jellyObject:Object;
// a color parameter
[Inspectable(defaultValue="#ffffff")]
public var jellyColor:Color;

}

Parameters can be any of the following supported types:

• Array
• Object
• List
• String
• Number
• Boolean
654 Chapter 5: Creating Components

• Font Name
• Color

Implementing core methods

There are two core methods that must be implemented by all components: the size and
initialization methods. If you do not override these two methods in a custom component, Flash
Player might produce an error.

Implementing the initialization method

Flash calls the initialization method when the class is created. At a minimum, the initialization
method should call the superclass’s initialization method. The width, height, and clip
parameters are not properly set until after this method is called.

The following sample initialization method from the Button class calls the superclass’s
initialization method, sets the scale and other default property values, and gets the value for the
color attribute from the UIObject object:
function init(Void):Void {

super.init();
labelField.selectable = false;
labelField.styleName = this;
useHandCursor = false;
// mark as using color "color"
_color = UIObject.textColorList;

}

Implementing the size method

Flash calls the component’s size method from the setSize() method to lay out the contents of
the component. At a minimum, the size method should call the superclass’s size method, as the
following example shows:
function size(Void):Void {

super.size();
}

Handling events

Events allow a component to know when the user has interacted with the interface, and also to
know when important changes have occurred in the appearance or life cycle of a component, such
as the creation or destruction of a component or its resizing.

The event model is a dispatcher/listener model based on the XML Events specification. You write
code that registers listeners with the target object so that when the target object dispatches an
event the listeners are called.

Listeners are either functions or objects, but not methods. The listener receives a single event
object as its parameter that contains the name of the event and includes all relevant information
about the event.

Components generate and dispatch events and consume (listen to) other events. An object that
wants to know about another object’s events registers with that object. When an event occurs, the
object dispatches the event to all registered listeners by calling a function requested during
registration. To receive multiple events from the same object, you must register for each event.
Handling events 655

Flash MX 2004 extends the ActionScript on() handler to support component events. Any
component that declares events in its class file and implements the addEventListener() method
is supported.

Common events

Following is a list of common events broadcast by various classes. Every component should try to
broadcast these events if they make sense for that component. This is not a complete list of events
for all components, just ones that are likely to be reused by other components. Even though some
events specify no parameters, all events have an implicit parameter: a reference to the object
broadcasting the event.

In addition, because of inheritance from UIComponent, all components broadcast the
following events:

The following table describes common key events:

Event Parameters Use

click None Used by Button, or whenever a mouse
click has no other meaning.

scroll Scrollbar.lineUp, lineDown, pageUp, pageDown,
thumbTrack, thumbPosition, endScroll, toTop,
toBottom, lineLeft, lineRight, pageLeft,
pageRight, toLeft, toRight

Used by ScrollBar and by other controls
that cause scrolling (scroll “bumpers” on a
scrolling pop-up menu).

change None Used by List, ComboBox, and other text
entry components.

maxChars None Used when user tries to enter too many
characters in text entry components.

UIComponent
event

Description

load The component is creating or loading its subobjects.

unload The component is unloading its subobjects.

focusIn The component now has the input focus. Some HTML-equivalent components
(ListBox, ComboBox, Button, Text) might also emit focus, but all emit
DOMFocusIn

focusOut The component has lost the input focus.

move The component has been moved to a new location.

resize The component has been resized.

Key events Description

keyDown A key has been pressed. The code property contains the key code and the ascii
property contains the ASCII code of the key pressed. Do not check with the low-
level Key object, because the event might not have been generated by the Key
object.

keyUp A key has been released.
656 Chapter 5: Creating Components

Using the event object

An event object is passed to a listener as a parameter. The event object is an ActionScript object
whose properties contain information about the event that occurred. You can use the event object
in the listener callback function to access the name of the event that was broadcast, or the instance
name of the component that broadcast the event.

For example, the following code uses the target property of the evtObj event object to access
the label property of the myButton instance and trace the value:
listener = new Object();
listener.click = function(evtObj){

trace("The " + evtObj.target.label + " button was clicked");
}
myButton.addEventListener("click", listener);

The following table lists the properties that are common to every event object:

The most common events, such as click and change, have no required properties other
than type.

You can explicitly build an event object before dispatching the event, as the following
example shows:
var eventObj = new Object();
eventObj.type = "myEvent";
eventObj.target = this;
dispatchEvent(eventObj);

You can also use a shortcut syntax that sets the value of the type property and dispatches the
event in a single line:
ancestorSlide.dispatchEvent({type:"revealChild", target:this});

In the preceding example, setting the target property is optional, since it is implicit.

The description of each event in the Flash MX 2004 documentation lists the event properties that
are optional and required. For example, the ScrollBar.scroll event takes a detail property in
addition to the type and target properties. For more information, see the event descriptions in
Chapter 4, “Components Dictionary,” on page 43.

Dispatching events

In the body of your component’s ActionScript class file, you broadcast events using the
dispatchEvent() method. The signature for the dispatchEvent() method is as follows:
dispatchEvent(eventObj)

The eventObj parameter is the event object that describes the event (see “Using the event object”
on page 657.)

Property Description

type A string that indicates the name of the event. This property is required.

target A reference to the component instance that is broadcasting the event. In general,
you are not required to describe this reference object explicitly.
Handling events 657

Identifying event handlers

You define the event handler object or event handler function that listens for your component’s
events in your application’s ActionScript.

The following example creates a listener object, handles a click event, and adds it as an event
listener to myButton:
listener = new Object();
listener.click = function(evtObj){

trace("The " + evtObj.target.label + " button was clicked");
}
myButton.addEventListener("click", listener);

In addition to using a listener object, you can use a function as a listener. A listener is a function if
it does not belong to an object. For example, the following code creates the listener function
myHandler() and registers it to myButton:
function myHandler(eventObj){

if (eventObj.type == "click"){
// your code here

}
}
myButton.addEventListener("click", myHandler);

For more information on using the addEventListener() method, see “Using component event
listeners” on page 22.

When you know that a particular object is the only listener for an event, you can take advantage
of the fact that the new event model always calls a method on the component instance. This
method is the event name plus the word Handler. For example, to handle the click event, write
the following code:
myComponentInstance.clickHandler = function(o){

// insert your code here
}

In the above code, the keyword this, if used in the callback function, is scoped to
myComponentInstance.

You can also use listener objects that support a handleEvent() method. Regardless of the name
of the event, the listener object’s handleEvent() method is called. You must use an if...else or
a switch statement to handle multiple events, which makes this syntax clumsy. For example, the
following code uses an if...else statement to handle the click and enter events:
myObj.handleEvent = function(o){

if (o.type == "click"){
// your code here

} else if (o.type == "enter"){
// your code here

}
}
target.addEventListener("click", myObj);
target2.addEventListener("enter", myObj);

Using the Event metadata

Add Event metadata in your ActionScript class file for each event listener. The value of the Event
keyword becomes the first argument in calls to the addEventListener() method, as the
following example shows:
658 Chapter 5: Creating Components

[Event("click")] // event declaration
...
class FCheckBox{

function addEventListener(eventName:String, eventHandler:Object) {
... //eventName is String

}
}

For more information on the Event metadata keyword, see “Event” on page 652.

Skinning

A user interface (UI) control is composed entirely of attached movie clips. This means that all
assets for a UI control can be external to the UI control movie clip, so they can be used by other
components. For example, if your component needs button functionality, you can reuse the
existing Button component assets.

The Button component uses a separate movie clip to represent each of its states (FalseDown,
FalseUp, Disabled, Selected, and so on). However, you can associate your custom movie clips—
called skins—with these states. At runtime, the old and new movie clips are exported in the SWF
file. The old states simply become invisible to give way to the new movie clips. This ability to
change skins during authoring as well as runtime is called skinning.

To use skinning in components, create a variable for every skin element/linkage used in the
component. This lets someone set a different skin element just by changing a parameter in the
component, as the following example shows:
var falseUpSkin = "mySkin";

The name “mySkin” is subsequently used as the linkage name of the MovieClip symbol to display
the false up skin.

The following example shows the skin variables for the various states of the Button component:
var falseUpSkin:String = "ButtonSkin";
var falseDownSkin:String = "ButtonSkin";
var falseOverSkin:String = "ButtonSkin"
var falseDisabledSkin:String = "ButtonSkin";
var trueUpSkin:String = "ButtonSkin";
var trueDownSkin:String = "ButtonSkin";
var trueOverSkin:String = "ButtonSkin";
var trueDisabledSkin:String = "ButtonSkin";
var falseUpIcon:String = "";
var falseDownIcon:String = "";
var falseOverIcon:String = "";
var falseDisabledIcon:String = "";
var trueUpIcon:String = "";
var trueDownIcon:String = "";
var trueOverIcon:String = "";
var trueDisabledIcon:String = "";

Adding styles

Adding styles is the process of registering all the graphic elements in your component with a class
and letting that class control the color schemes of graphics at runtime. No special code is
necessary in the component implementations to support styles. Styles are implemented entirely in
the base classes and skins.
Adding styles 659

For more information about styles, see “Using styles to customize component color and text”
on page 27.

Making components accessible

A growing requirement for web content is that it should be accessible to people who have
disabilities. Visually impaired people can use visual content in Flash applications by means of
screen reader software, which provides an audio description of the material on the screen.

Flash MX 2004 includes the following accessibility features:

• Custom focus navigation
• Custom keyboard shortcuts
• Screen-based documents and the screen authoring environment
• The Accessibility class

When you create a component, you can include ActionScript that enables the component and a
screen reader to communicate. Then, when developers use your component to build an
application in Flash, they use the Accessibility panel to configure each component instance.

Add the following line to your component’s FLA file, in the same layer that you add other
ActionScript calls:
mx.accessibility.ComponentName.enableAccessibility();

For example, the following line enables accessibility for the MyButton component:
mx.accessibility.MyButton.enableAccessibility();

When developers add the MyButton component to an application, they can use the Accessibility
panel to make it accessible to screen readers.

For information on the Accessibility panel and other accessibility features of Flash, see “Creating
Accessible Content” in Using Flash Help.

Exporting the component

Flash MX 2004 exports components as component packages (SWC files). When you distribute a
component, you only need to give your users the SWC file. This file contains all the code, SWF
files, images, and metadata associated with the component so that users can easily drop it into
their Flash environment.

This section describes a SWC file and explains how to import and export SWC files in Flash.

Understanding SWC files

A SWC file is a zip-like file (packaged and expanded by means of the PKZip archive format)
generated by the Flash authoring tool.
660 Chapter 5: Creating Components

The following table describes the contents of a SWC file.

To view the contents of a SWC file, you can open it using any compression utility that supports
PKZip format (including WinZip).

You can optionally include other files in the SWC file, once you have generated it from the Flash
environment. For example, you might want to include a Read Me file, or the FLA file if you want
users to have access to the component’s source code.

Multiple SWC files are expanded into a single directory, so each component must have a unique
filename to prevent conflicts.

Using SWC files

This section describes how to create and import SWC files. You should give instructions for
importing SWC files to your component users.

Creating SWC files

Flash MX 2004 and Flash MX Professional 2004 provide the ability to create SWC files by
exporting a movie clip as a SWC file. When creating a SWC file, Flash reports compile-time
errors as if you were testing a Flash application.

File Description

catalog.xml (Required) Lists the contents of the component package and its individual
components, and serves as a directory to the other files in the SWC file.

Source code If the component is created with Flash MX 2004, the source code is one or more
ActionScript files that contain a class declaration for the component.
The source code is used only for type checking when subclassing components and is
not compiled by the authoring tool since the compiled bytecode is already in the
implementing SWF file.
The source code may contain intrinsic class definitions that contain no function
bodies and are provided purely for type checking.

Implementing
SWF files

(Required) SWF files that implement the components. One or more components
can be defined in a single SWF file. If the component is created with Flash MX 2004,
only one component is exported per SWF file.

Live Preview
SWF files

(Optional) If specified, these SWF files are used for Live Preview in the authoring
tool. If omitted, the implementing SWF files are used for Live Preview instead. The
Live Preview SWF file can be omitted in nearly all cases; it should be included only if
the component’s appearance depends on dynamic data (for example, a text field that
shows the result of a web service call).

Debug info (Optional) A SWD file corresponding to the implementing SWF file. The filename is
always the same as that of the SWF file, but with the extension .swd. If it is included in
the SWC file, debugging of the component is allowed.

Icon (Optional) A PNG file containing the 18 x 18, 8-bit-per-pixel icon used to display a
component in the authoring tool user interface(s). If no icon is supplied, a default icon
is displayed. (See “Adding an icon” on page 662.)

Property
inspector

(Optional) If specified, this SWF file is used as a custom Property inspector in the
authoring tool. If omitted, the default Property inspector is displayed to the user.
Exporting the component 661

To export a SWC file:

1 Select an item in the Flash library.
2 Right-click (Windows) or Control-click (Macintosh) the item and select Export SWC File.
3 Save the SWC file.

Importing component SWC files into Flash

When you distribute your components to other developers, you can include the following
instructions so that they can install and use them immediately.

To use a SWC file in the Flash authoring environment:

1 Close the Flash authoring environment.
2 Copy the SWC file into the flash_root/en/First Run/Components directory.
3 Start the Flash authoring environment or reload the Components panel.

The component’s icon should appear in the Components panel.

Making the component easier to use

Once you have created the component and prepared it for packaging, you can make it easier for
your users to use. This section describes some techniques for adding usability to your component.

Adding an icon

You can add an icon that represents your component in the Components panel of the Flash
authoring environment.

To add an icon for your component:

1 Create a new image.
The image must measure 18 pixels square and be saved in PNG format. It must be 8-bit with
alpha transparency, and the upper left pixel must be transparent to support masking.

2 Add the following definition to your component’s ActionScript class file before the
class definition:
[IconFile("component_name.png")]

3 Add the image to the same directory as the FLA file. When you export the SWC file, Flash
includes the image at the root level of the archive.

Using Live Preview

The Live Preview feature, enabled by default, lets you view components on the Stage as they will
appear in the published Flash content, at their approximate size.

Adding a Live Preview is no longer necessary when creating components using the v2
architecture. Component SWC files include the implementing SWF file, and the component uses
that SWF file on the Flash Stage.
662 Chapter 5: Creating Components

Adding tooltips

Tooltips appear when a user rolls the mouse over your component name or icon in the
Components panel of the Flash authoring environment.

To add tooltips to your component, use the tiptext keyword outside the class definition in the
component’s ActionScript class file. You must comment out this keyword using an asterisk (*) and
precede it with an @ symbol for the compiler to recognize it properly.

The following example shows the tooltip for the CheckBox component:
* @tiptext Basic CheckBox component. Extends Button.

Best practices when designing a component

Use the following practices when designing a component:

• Keep the file size as small as possible.
• Make your component as reusable as possible by generalizing functionality.
• Use the new event model rather than the on(event) syntax.
• Use the Border class rather than graphical elements to draw borders around objects.
• Use tag-based skinning.
• Use the symbolName property.
• Assume an initial state. Because style properties are now on the object, you can set initial

settings for styles and properties so your initialization code does not have to set them when the
object is constructed, unless the user overrides the default state.

• When defining the symbol, do not select the Export in First Frame option unless absolutely
necessary. Flash loads the component just before it is used in your Flash application, so if you
select this option, Flash preloads the component in the first frame of its parent. The reason you
typically do not preload the component in the first frame is for considerations on the web: the
component loads before your preloader begins, defeating the purpose of the preloader.
Best practices when designing a component 663

664 Chapter 5: Creating Components

INDEX
A
accessibility

and components 14
authoring for 14
for custom components 660

Accordion component 45
Accordion class 50
creating an application with 47
customizing 49
parameters 46
using 46
using skins with 50
using styles with 49

ActionScript
workflow for writing for a new component 645
writing for a new component 644

addEventListener 657
adding components using ActionScript 20
Alert class

methods 61
properties 61

Alert component 58
Alert class 61
creating an application with 59
customizing 59
events 61
parameters 59
using 58
using skins with 60
using styles with 59

B
behaviors

video, controlling video playback 333
Binding class 118

Button component 66
Button class 70
creating an application with 67
customizing 68
events 71
methods 70
parameters 67, 480
properties 71
using 67
using skins with 69
using styles with 68

C
categories

data 44
managers 45
media 45
screens 45
UI controls 43

CellRenderer
methods of 78, 79
propeties of 79
using 78

CellRenderer API 77
CellRenderer component 77
CheckBox component 83

CheckBox class 86
creating an application with 84
events 87
methods 87
parameters 84
properties 87
using 84
using skins with 86
using styles with 85
665

class
files, storing for components 640
name, for custom component 647
style sheets 27

classes
Accordion 50
Alert 61
and component inheritance 13
Binding 118
Button 70
CheckBox 86
ComboBox 95
ComponentMixins 133
CustomFormatter 121
CustomValidator 124
DataGrid 154
DataGridColumn 174
DataSet 196
DataType 138
DateChooser 239
DateField 251
EndPoint 128
extending 644, 646
FocusManager 272
importing 645
Label 284
List 291
Loader 316
Log 581
Media 338
Menu 374
MenuBar 395
numeric stepper 535
NumericStepper 406
PendingCall 584
ProgressBar 417
RadioButton 430
ScrollPane 466
selecting a parent class 646
SOAPCall 593
subclassing 646
TextArea 507
TextInput 519
UIComponent 646
UIObject 646
WebService 596

className 647
classpath

and UserConfig directory 640
changing 640

global 640
local 640
understanding 640

clickHandler 24
code hints, triggering 21
code samples for developing components 642
colors

setting style properties for 31
ComboBox component 91

ComboBox class 95
creating an application with 93
methods 96
parameters 93
properties 96
using 93
using skins with 95
using styles with 94

ComboBox events 97
compiled clips 14

in Library panel 16
working with 18

component class file code sample 644
component files, storing 641
Component Inspector panel 16
component source files 642
component symbol, creating 642
component types

Accordion 45
Alert 58
Button 66
CellRenderer 77
CheckBox 83
ComboBox 91
data 44
DataGrid 149
DataHolder 181
DataProvider 183
DataSet 193
DateChooser 237
DateField 248
Flash Professional 436, 632
Label 282
List 287
Loader 314
Managers 45
media 45
Menu 365
MenuBar 392
numeric stepper 365
NumericStepper 58, 237, 248, 402
666 Index

PopUpManager class 411
ProgressBar 413
RadioButton 427
RDBMSResolver 436
Remote Procedure Call 447
ScrollPane 464
StyleManager class 502
TextArea 504
TextInput 516
TransferObject 527
Tree 530
UI controls 43
WebServiceConnector 604
XMLConnector 624
XUpdateResolver 632

ComponentMixins class 133
components

adding dynamically 20
adding to Flash documents 18
architecture 12
available in Flash MX 2004 8
available in Flash MX Professional 2004 8
categories 43
categories, described 12
DateField 248
deleting 21
DepthManager 265
Flash Player support 13
FocusManager class 270
inheritance 13
installing 15
media 325
resizing 20

Components panel 15
constructor, writing for a new component 647
creating a component

adding an icon 662
adding parameters 644
code sample for class file 644
component symbol 642
defining a version number 647
editing symbol layers 643
extending a component class 644
process for writing ActionScript 645
selecting a parent class 646
subclassing a class 646
UIComponent class defined 646
UIObject class defined 646
writing a constructor 647
writing ActionScript 644

creating components
accessibility 660
adding events 657
adding tip text 663
common events 656
creating SWC files 661
defining parameters 654
event metadata 658
exporting 660
handling events 655
implementing core methods 655
importing SWC files 662
live preview with SWC file 662
selecting a class name 647
selecting a symbol name 647
selecting a symbol owner 647
skinning 659
styles 659
using metadata statements 648

CSSStyleDeclaration 28, 29
custom style sheets 27
CustomFormatter class 121
customizing

color 27
text 27

CustomValidator class 124

D
Data Binding classes 118
Data components 44
data model

Menu component 366
DataGrid class

methods 154
properties 155

DataGrid component 149
class 154
creating an application with 152
customizing 153
data model 151
interacting with 150
parameters 152
understanding 151
using 150
using skins with 154
using styles with 153
view 151

DataGridColumn class 174
methods 175

DataHolder component 181
Index 667

DataProvider API 183
events 184
properties 184

DataProvider class
methods 184

DataSet class 196
DataSet component 193
DataType class 138
DateChooser class

methods 240
properties 240

DateChooser component 237
creating an application with 238
customizing 238
DateChooser class 239
events 240
parameters 237
using 237
using skins 239
using styles 238

DateField class, methods 251
DateField component 248

creating an application with 249
DateField class 251
events 252
parameters 249
properties 251
using 248
using skins with 250
using styles with 250

defaultPushButton 25
DeltaPacket

about 632
use with components 632

depth, managing 25
DepthManager 25

class 265
methods 265

detail 590, 602
documentation

guide to terminology 10
overview 9

E
editing symbols, for components 641
element 590, 602
EndPoint class 128
event

listeners 22
metadata 652, 658
objects 22

events 22
adding 657
broadcasting 22
common events 656
handling 655

exporting custom components 660
extending classes 646

F
faultactor 590, 602
faultcode 590, 602
faultstring 590, 602
FLA file assets, storing for component files 639
Flash MX 2004, components available 8
Flash MX Professional 2004, components available 8
Flash Player

and components 13
support 25

Flash Professional
component types 436
RDBMSResolver component 436
XUpdateResolver component

Flash Professional
component types 632

focus 24
focus navigation, creating 24
FocusManager 24
FocusManager class 270
FocusManager component

creating an application with 271
customizing 271
FocusManager class 272
parameters 271
using 270

Form class 277

G
getters, defining for properties 648
global

classpath 640
668 Index

H
Halo theme 34
handle event 23
handleEvent method 23

I
icon for custom component 662
importing classes 645
inheritance

in version 2 components 13
init method, implementing 655
inspectable properties in metadata statements 649
installation

instructions 9
verifying 9

installing components 8
instance styles 27
instances

setting styles on 28
instances, setting styles on 28
interface

TreeDataProvider 548
interfaces

TransferObject 527

L
Label class 284
Label component 282

creating an application with 283
customizing 284
events 285
Label class 284
methods 285
parameters 283
properties 285
using 283
using styles with 284

labels 20
Library panel 16
linkage identifiers for skins 36
List class 291

composition of 77
scrolling 78

List component 287
creating an application with 288
customizing 289
events 293
List class 291
methods 291

parameters 288
properties 292
understanding 77
using 288
using styles with 289

listener
functions 23

listeners 22
Live Preview 17

for custom component 662
Loader component 314

creating an application with 315
customizing 315
events 317
Loader class 316
methods 317
parameters 315
properties 317
using 315

local classpath 640
Log class 581

M
Macromedia DevNet 10
Macromedia Flash Support Center 10
Media

components
using behaviors with 333

Media class 338
events 340
methods 338
properties 339

Media Components
interacting with 326

Media components
behaviors, associating MediaController and

MediaDisplay 334
behaviors, associating MediaDisplay and

MediaController 333
behaviors, using a Labeled Frame Cue Point

Navigation 334
behaviors, using a Slide Cue Point Navigation 334
creating applications with 337
customizing 337
parameters 335
understanding 327
using 330
using skins with 337
using styles with 337
using the Component Inspector with 332
Index 669

media components 45, 325
MediaController component

parameters 335
understanding 329
using 331

MediaDisplay component
parameters 335
understanding 328
using 331

MediaPlayback component
parameters 336
understanding 329
using 330

menu activators 392
Menu class 374

methods 374
properties 375

Menu component 365
about XML attributes 367
adding hierarchical menus 367
class 374
creating an application with 371
customizing 373
exposing items to ActionScript 370
initialization object properties 370
interacting with 365
menu item types 368
parameters 371
using 366
using skins with 374
using styles with 373

MenuBar class
methods 396
properties 396

MenuBar component 392
class 395
creating an application with 393
customizing 394
interacting with 393
parameters 393
using 393
using skins with 395
using styles with 394

metadata 648–??
event 652, 658
explained 648
inspectable properties 649
syntax 649
tags 649

methods
defining getters and setters 648
implementing 655
init, implementing 655
size, implementing 655

N
name

class 647
symbol, for custom component 647

numeric stepper class
methods 388
properties 375

numeric stepper component
creating an application with 532
events 154, 175, 374, 388, 396

NumericStepper class
methods 51, 406
properties 51, 251, 406

NumericStepper component 237, 402
creating an application with 238, 404
customizing 238, 404
events 51, 61, 251, 407
NumericStepper class 406
parameters 237, 403
using 237, 403
using skins with 239, 405
using styles with 49, 238, 404

O
on() 22
onFault 591, 592, 602

P
packages 13
parameters

adding to a new component 644
defining 654
inspectable, in metadata statements 649
setting 16, 21
viewing 16

parent class, selecting for a new component 646
PendingCall class 584
PopUpManager class 411
PopUpManager class, methods 411
previewing components 17
ProgressBar component 413

creating an application with 414
customizing 415
670 Index

events 418
methods 417
parameters 413
ProgressBar class 417
properties 417
using 413
using skins with 416
using styles with 415

Property inspector 16
prototype 41

R
RadioButton component 427

creating an application with 428
customizing 428
events 431
methods 430
parameters 427
properties 430
RadioButton class 430
using 427
using skins with 429
using styles with 429

RDBMSResolver component 436
events 439
methods 439
parameters 437
properties 438
using 437

Remote Procedure Call (RPC), for
WebServiceConnector 604

Remote Procedure Call component 447
resizing components 20
resources, additional 10
RPC component API

and XMLConnector 624
for WebServiceConnector 604

S
Sample theme 34
Screen API 45
screen readers, accessbility 14
ScrollPane component 464

creating an application with 465
customizing 466
events 468
methods 467
parameters 465
properties 467

ScrollPane class 466
using 464
using skins with 466
using styles with 466

separator 368
setSize() 20
setters, defining for properties 648
size method, implementing 655
skin properties

changing in the prototype 41
setting 36

skinning 36
for custom components 659

skins 36
applying 38
applying to subcomponents 39
editing 37

SOAPCall class 593
SOAPFault 590, 602
style declarations

creating custom 29
default class 30
global 28
setting class 30

style properties
color 31
getting 32
setting 32

StyleManager class 502
StyleManager class, methods 502
styles 27

determing precedence 30
for custom components 659
inheritance, tracking 502
setting 27, 32
setting custom 29
setting global 28
setting on instance 28
supported 33

subclasses, using to replace skins 41
subcomponents, applying skins 39
SWC files 14

and compiled clips 14
creating 661
file format explained 660
importing 662
working with 18

symbol
name, for custom component 647
owner, for custom component 647
Index 671

symbol layers, editing for a new component 643
symbols editing, for components 641
syntax, for metadata statements 649
system requirements 8

T
tab order, for components 270
tabIndex 24
tags for metadata 649
terminology in documentation 10
TextArea component 504

creating an application with 505
customizing 506
events 508
parameters 505
properties 508
TextArea class 507
using skins with 507
using styles with 506

TextInput component 516
creating an application with 517
customizing 518
events 520
methods 520
parameters 517
properties 520
TextInput class 519
using 517
using styles with 518

themes 34
applying 35
creating 35

tip text, for custom component 663
TransferObject component 527

methods 527
Tree class

properties 536
Tree component 530

class 535
creating an application with 532
customizing 535
parameters 532
using 530
using skins with 535
using styles with 535
XML formatting 531

TreeDataProvider interface
methods 548
properties 548

typographical conventions, in components
documentation 9

U
UIComponent class

and component inheritance 13
defined 646

UIObject class, defined 646
user interface (UI) controls 43

V
version 1 component architecture, differences from

version 2 639
version 1 components 25

upgrading 25
version 2 component architecture

changes from version 1 639
using SWC file for live preview 662

version 2 components
and the Flash Player 13
benefits and description 12

version numbers for components 647
view

Menu component 366

W
Web service classes

classes
Web service 581

web service, WSDL file 604
WebService class 596
WebServiceConnector

event summary 606
method summary 606
multipleSimultaneousAllowed parameter 605
operation parameter 605
parameters 605
property summary 606
suppressInvalidCalls parameter 605
using 605
WSDLURL parameter 605

WebServiceConnector component 604
WSDL file

for web service 604
getting an update for 604
672 Index

X
XML

formatting for the Tree component 531
XML attributes 367
XMLConnector

and schemas 624
class 624
event summary 625
method summary 625
parameters 624
property summary 625

XMLConnector component 624
XUpdate 632
XUpdateResolver component 632

events 633
parameters 633
properties 633
using 632
Index 673

674 Index

	Contents
	Getting Started with Components
	Intended audience
	System requirements
	Installing components
	About the documentation
	Typographical conventions
	Terms used in this manual
	Additional resources

	About Components
	Benefits of v2 components
	Categories of components
	Component architecture
	What’s new in v2 components
	About compiled clips and SWC files
	Accessibility and components

	Working with Components
	The Components panel
	Components in the Library panel
	Components in the Component Inspector panel and Property inspector
	Components in Live Preview
	Working with SWC files and compiled clips
	Adding components to Flash documents
	Adding components using the Components panel
	Adding components using ActionScript
	About component label size and component width and height

	Setting component parameters
	Deleting components from Flash documents
	Using code hints
	About component events
	Using the on() event handler
	Using component event listeners
	Additional event syntax

	Creating custom focus navigation
	Managing component depth in a document
	About using a preloader with components
	Upgrading version 1 components to version 2 architecture

	Customizing Components
	Using styles to customize component color and text
	Setting styles on a component instance
	Setting global styles
	Setting styles for specific components
	Setting styles for a component class
	Using global, custom, and class styles in the same document
	About color style properties
	Setting style property values
	Supported styles

	About themes
	Applying a theme to a document
	Creating a new theme

	About skinning components
	Editing component skins
	Applying an edited skin to a component
	Applying an edited skin to a subcomponent
	Changing skin properties in the prototype

	Components Dictionary
	User interface (UI) components
	Data components
	Media components
	Managers
	Screens
	Accordion component (Flash Professional only)
	Using the Accordion component (Flash Professional only)
	Accordion parameters
	Creating an application with the Accordion component

	Customizing the Accordion component (Flash Professional only)
	Using styles with the Accordion component
	Using skins with the Accordion component

	Accordion class (Flash Professional only)
	Method summary for the Accordion class
	Property summary for the Accordion class
	Event summary for the Accordion class

	Accordion.change
	Accordion.createChild()
	Accordion.createSegment()
	Accordion.destroyChildAt()
	Accordion.getChildAt()
	Accordion.numChildren
	Accordion.selectedChild
	Accordion.selectedIndex

	Alert component (Flash Professional only)
	Using the Alert component (Flash Professional only)
	Alert parameters
	Creating an application with the Alert component

	Customizing the Alert component (Flash Professional only)
	Using styles with the Alert component
	Using skins with the Alert component

	Alert class (Flash Professional only)
	Method summary for the Alert class
	Property summary for the Alert class
	Event summary for the Alert class

	Alert.buttonHeight
	Alert.buttonWidth
	Alert.click
	Alert.cancelLabel
	Alert.noLabel
	Alert.okLabel
	Alert.show()
	Alert.yesLabel

	Button component
	Using the Button component
	Button parameters
	Creating an application with the Button component

	Customizing the Button component
	Using styles with the Button component
	Using skins with the Button component

	Button class
	Method summary for the Button class
	Property summary for the Button class
	Event summary for the Button class

	Button.click
	SimpleButton.emphasized
	SimpleButton.emphasizedStyleDeclaration
	Button.icon
	Button.label
	Button.labelPlacement
	Button.selected
	Button.toggle

	CellRenderer API
	Understanding the List class
	About the composition of the List class
	About the scrolling behavior of the List class

	Using the CellRenderer API
	Methods to implement for the CellRenderer API
	Methods provided by the CellRenderer API
	Properties provided by the CellRenderer API

	CellRenderer.getDataLabel()
	CellRenderer.getCellIndex()
	CellRenderer.getPreferredHeight()
	CellRenderer.getPreferredWidth()
	CellRenderer.listOwner
	CellRenderer.setSize()
	CellRenderer.setValue()

	CheckBox component
	Using the CheckBox component
	CheckBox parameters
	Creating an application with the CheckBox component

	Customizing the CheckBox component
	Using styles with the CheckBox component
	Using skins with the CheckBox component

	CheckBox class
	Method summary for the CheckBox class
	Property summary for the CheckBox class
	Event summary for the CheckBox class

	CheckBox.click
	CheckBox.label
	CheckBox.labelPlacement
	CheckBox.selected

	ComboBox component
	Using the ComboBox component
	ComboBox parameters
	Creating an application with the ComboBox component

	Customizing the ComboBox component
	Using styles with the ComboBox component
	Using skins with the ComboBox component

	ComboBox class
	Method summary for the ComboBox class
	Property summary for the ComboBox class
	Event summary for the ComboBox class

	ComboBox.addItem()
	ComboBox.addItemAt()
	ComboBox.change
	ComboBox.close()
	ComboBox.close
	ComboBox.dataProvider
	ComboBox.dropdown
	ComboBox.dropdownWidth
	ComboBox.editable
	ComboBox.enter
	ComboBox.getItemAt()
	ComboBox.itemRollOut
	ComboBox.itemRollOver
	ComboBox.labelField
	ComboBox.labelFunction
	ComboBox.length
	ComboBox.open()
	ComboBox.open
	ComboBox.removeAll()
	ComboBox.removeItemAt()
	ComboBox.replaceItemAt()
	ComboBox.rowCount
	ComboBox.scroll
	ComboBox.selectedIndex
	ComboBox.selectedItem
	ComboBox.text
	ComboBox.textField
	ComboBox.value

	Data binding classes (Flash Professional only)
	Making data binding classes available at runtime (Flash Professional only)
	Classes in the mx.data.binding package (Flash Professional only)
	Binding class (Flash Professional only)
	Method summary for the Binding class

	Constructor for the Binding class
	Binding.execute()
	CustomFormatter class (Flash Professional only)
	Sample custom formatter
	Method summary for the CustomFormatter class

	CustomFormatter.format()
	CustomFormatter.unformat()
	CustomValidator class (Flash Professional only)
	Method summary for the CustomValidator class

	CustomValidator.validate()
	CustomValidator.validationError()
	EndPoint class (Flash Professional only)
	Property summary for the EndPoint class

	Constructor for the EndPoint class
	EndPoint.constant
	EndPoint.component
	EndPoint.property
	EndPoint.location
	EndPoint.event
	ComponentMixins class (Flash Professional only)
	Method summary for the ComponentMixins class

	ComponentMixins.getField()
	ComponentMixins.initComponent()
	ComponentMixins.refreshFromSources()
	ComponentMixins.refreshDestinations()
	ComponentMixins.validateProperty()
	DataType class (Flash Professional only)
	Method summary for the DataType class
	Property summary for the DataType class

	DataType.encoder
	DataType.formatter
	DataType.getAsBoolean()
	DataType.getAsNumber()
	DataType.getAsString()
	DataType.getAnyTypedValue()
	DataType.getTypedValue()
	DataType.kind
	DataType.setAnyTypedValue()
	DataType.setAsBoolean()
	DataType.setAsNumber()
	DataType.setAsString()
	DataType.setTypedValue()
	TypedValue class (Flash Professional only)
	Property summary for the TypedValue class

	Constructor for the TypedValue class
	TypedValue.type
	TypedValue.typeName
	TypedValue.value

	DataGrid component (Flash Professional only)
	Interacting with the DataGrid component (Flash Professional only)
	Using the DataGrid component (Flash Professional only)
	Understanding the DataGrid component: data model and view
	DataGrid parameters
	Creating an application with the DataGrid component

	Customizing the DataGrid component (Flash Professional only)
	Using styles with the DataGrid component
	Using skins with the DataGrid component

	DataGrid class (Flash Professional only)
	Method summary for the DataGrid class
	Property summary for the DataGrid class
	Event summary for the DataGrid class

	DataGrid.addColumn()
	DataGrid.addColumnAt()
	DataGrid.addItem()
	DataGrid.addItemAt()
	DataGrid.cellEdit
	DataGrid.cellFocusIn
	DataGrid.cellFocusOut
	DataGrid.cellPress
	DataGrid.change
	DataGrid.columnCount
	DataGrid.columnNames
	DataGrid.columnStretch
	DataGrid.dataProvider
	DataGrid.editable
	DataGrid.editField()
	DataGrid.focusedCell
	DataGrid.getColumnAt()
	DataGrid.getColumnIndex()
	DataGrid.headerHeight
	DataGrid.headerRelease
	DataGrid.hScrollPolicy
	DataGrid.removeAllColumns()
	DataGrid.removeColumnAt()
	DataGrid.replaceItemAt()
	DataGrid.resizableColumns
	DataGrid.selectable
	DataGrid.showHeaders
	DataGrid.sortableColumns
	DataGrid.spaceColumnsEqually()
	DataGridColumn class (Flash Professional only)
	Property summary for the DataGridColumn class

	Constructor for the DataGridColumn class
	DataGridColumn.cellRenderer
	DataGridColumn.columnName
	DataGridColumn.editable
	DataGridColumn.headerRenderer
	DataGridColumn.headerText
	DataGridColumn.labelFunction
	DataGridColumn.resizable
	DataGridColumn.sortable
	DataGridColumn.sortOnHeaderRelease
	DataGridColumn.width

	DataHolder component (Flash Professional only)
	Creating an application with the DataHolder component (Flash Professional only)
	Property summary for the DataHolder class

	DataHolder.data

	DataProvider API
	Methods of the DataProvider API
	Properties of the DataProvider API
	Events of the DataProvider API
	DataProvider.addItem()
	DataProvider.addItemAt()
	DataProvider.editField()
	DataProvider.getEditingData()
	DataProvider.getItemAt()
	DataProvider.getItemID()
	DataProvider.modelChanged
	DataProvider.length
	DataProvider.removeAll()
	DataProvider.removeItemAt()
	DataProvider.replaceItemAt()
	DataProvider.sortItems()
	DataProvider.sortItemsBy()

	DataSet component (Flash Professional only)
	Using the DataSet component (Flash Professional only)
	DataSet component parameters
	Creating an application with the DataSet component

	DataSet class (Flash Professional only)
	Method summary for the DataSet class
	Property summary for the DataSet class
	Event summary for the DataSet class

	DataSet.addItem
	DataSet.addItem()
	DataSet.addSort()
	DataSet.afterLoaded
	DataSet.applyUpdates()
	DataSet.calcFields
	DataSet.changesPending()
	DataSet.clear()
	DataSet.createItem()
	DataSet.currentItem
	DataSet.dataProvider
	DataSet.deltaPacket
	DataSet.deltaPacketChanged
	DataSet.disableEvents()
	DataSet.enableEvents()
	DataSet.filtered
	DataSet.filterFunc
	DataSet.find()
	DataSet.findFirst()
	DataSet.findLast()
	DataSet.first()
	DataSet.getItemId()
	DataSet.getIterator()
	DataSet.hasNext()
	DataSet.hasPrevious()
	DataSet.hasSort()
	DataSet.isEmpty()
	DataSet.items
	DataSet.itemClassName
	DataSet.iteratorScrolled
	DataSet.last()
	DataSet.length
	DataSet.loadFromSharedObj()
	DataSet.locateById()
	DataSet.logChanges
	DataSet.modelChanged
	DataSet.newItem
	DataSet.next()
	DataSet.previous()
	DataSet.properties
	DataSet.readOnly
	DataSet.removeAll()
	DataSet.removeItem
	DataSet.removeItem()
	DataSet.removeRange()
	DataSet.removeSort()
	DataSet.resolveDelta
	DataSet.saveToSharedObj()
	DataSet.schema
	DataSet.selectedIndex
	DataSet.setIterator()
	DataSet.setRange()
	DataSet.skip()
	DataSet.useSort()

	DateChooser component (Flash Professional only)
	Using the DateChooser component (Flash Professional only)
	DateChooser parameters
	Creating an application with the DateChooser component

	Customizing the DateChooser component (Flash Professional only)
	Using styles with the DateChooser component
	Using skins with the DateChooser component

	DateChooser class (Flash Professional only)
	Method summary for the DateChooser class
	Property summary for the DateChooser class
	Event summary for the DateChooser class

	DateChooser.change
	DateChooser.dayNames
	DateChooser.disabledDays
	DateChooser.disabledRanges
	DateChooser.displayedMonth
	DateChooser.displayedYear
	DateChooser.firstDayOfWeek
	DateChooser.monthNames
	DateChooser.scroll
	DateChooser.selectableRange
	DateChooser.selectedDate
	DateChooser.showToday

	DateField component (Flash Professional only)
	Using the DateField component (Flash Professional only)
	DateField parameters
	Creating an application with the DateField component

	Customizing the DateField component (Flash Professional only)
	Using styles with the DateField component
	Using skins with the DateField component

	DateField class (Flash Professional only)
	Method summary for the DateField class
	Property summary for the DateField class
	Event summary for the DateField class

	DateField.change
	DateField.close()
	DateField.close
	DateField.dateFormatter
	DateField.dayNames
	DateField.disabledDays
	DateField.disabledRanges
	DateField.displayedMonth
	DateField.displayedYear
	DateField.firstDayOfWeek
	DateField.monthNames
	DateField.open()
	DateField.open
	DateField.pullDown
	DateField.scroll
	DateField.selectableRange
	DateField.selectedDate
	DateField.showToday

	DepthManager class
	Method summary for the DepthManager class
	DepthManager.createChildAtDepth()
	DepthManager.createClassChildAtDepth()
	DepthManager.createClassObjectAtDepth()
	DepthManager.createObjectAtDepth()
	DepthManager.setDepthAbove()
	DepthManager.setDepthBelow()
	DepthManager.setDepthTo()

	FocusManager class
	Using the FocusManager
	FocusManager parameters
	Creating an application with the FocusManager

	Customizing the FocusManager
	FocusManager class
	Method summary for the FocusManager class
	Property summary for the FocusManager class

	FocusManager.defaultPushButton
	FocusManager.defaultPushButtonEnabled
	FocusManager.enabled
	FocusManager.getFocus()
	FocusManager.nextTabIndex
	FocusManager.sendDefaultPushButtonEvent()
	FocusManager.setFocus()

	Form class (Flash Professional only)
	Using the Form class (Flash Professional only)
	Form object parameters
	Method summary for the Form class
	Property summary for the Form class

	Form.currentFocusedForm
	Form.getChildForm()
	Form.indexInParentForm
	Form.numChildForms
	Form.parentIsForm
	Form.rootForm
	Form.visible

	Label component
	Using the label component
	Label parameters
	Creating an application with the Label component

	Customizing the label component
	Using styles with the Label component
	Using skins with the Label component

	Label class
	Method summary for the Label class
	Property summary for the Label class
	Event summary for the Label class

	Label.autoSize
	Label.html
	Label.text

	List component
	Using the List component
	List component parameters
	Creating an application with the List component

	Customizing the List component
	Using styles with the List component
	Using skins with the List component

	List class
	Method summary for the List class
	Property summary for the List class
	Event summary for the List class

	List.addItem()
	List.addItemAt()
	List.cellRenderer
	List.change
	List.dataProvider
	List.getItemAt()
	List.hPosition
	List.hScrollPolicy
	List.iconField
	List.iconFunction
	List.itemRollOut
	List.itemRollOver
	List.labelField
	List.labelFunction
	List.length
	List.maxHPosition
	List.multipleSelection
	List.removeAll()
	List.removeItemAt()
	List.replaceItemAt()
	List.rowCount
	List.rowHeight
	List.scroll
	List.selectable
	List.selectedIndex
	List.selectedIndices
	List.selectedItem
	List.selectedItems
	List.setPropertiesAt()
	List.sortItems()
	List.sortItemsBy()
	List.vPosition
	List.vScrollPolicy

	Loader component
	Using the Loader component
	Loader component parameters
	Creating an application with the Loader component

	Customizing the Loader component
	Using styles with the Loader component
	Using skins with the Loader component

	Loader class
	Method summary for the Loader class
	Property summary for the Loader class
	Event summary for the Loader class

	Loader.autoLoad
	Loader.bytesLoaded
	Loader.bytesTotal
	Loader.complete
	Loader.content
	Loader.contentPath
	Loader.load()
	Loader.percentLoaded
	Loader.progress
	Loader.scaleContent

	Media components (Flash Professional only)
	Interacting with media components (Flash Professional only)
	Understanding media components (Flash Professional only)
	Understanding the MediaDisplay component
	Understanding the MediaController component
	Understanding the MediaPlayback component

	Using media components (Flash Professional only)
	Using the MediaPlayback component
	Using the MediaDisplay and MediaController components
	Using the Component Inspector panel with media components
	Controlling media components by using behaviors

	Media component parameters (Flash Professional only)
	MediaDisplay component parameters
	MediaController component parameters
	MediaPlayback component parameters

	Creating applications with media components (Flash Professional only)
	Customizing media components (Flash Professional only)
	Using styles with media components
	Using skins with media components

	Media class (Flash Professional only)
	Method summary for the Media class
	Property summary for the Media class
	Event summary for the Media class

	Media.activePlayControl
	Media.addCuePoint()
	Media.aspectRatio
	Media.associateController()
	Media.associateDisplay()
	Media.autoPlay
	Media.autoSize
	Media.backgroundStyle
	Media.bytesLoaded
	Media.bytesTotal
	Media.change
	Media.click
	Media.complete
	Media.contentPath
	Media.controllerPolicy
	Media.controlPlacement
	Media.cuePoint
	Media.cuePoints
	Media.displayFull()
	Media.displayNormal()
	Media.getCuePoint()
	Media.horizontal
	Media.mediaType
	Media.pause()
	Media.play()
	Media.playheadChange
	Media.playheadTime
	Media.playing
	Media.preferredHeight
	Media.preferredWidth
	Media.progress
	Media.removeAllCuePoints()
	Media.removeCuePoint()
	Media.setMedia()
	Media.stop()
	Media.totalTime
	Media.volume
	Media.volume

	Menu component (Flash Professional only)
	Interacting with the Menu component (Flash Professional only)
	Using the Menu component (Flash Professional only)
	Understanding the Menu component: view and data
	About hierarchical menus
	About menu item XML attributes

	About menu item types
	Normal menu items
	Separator menu items
	Check box menu items
	Radio button menu items
	Exposing menu items to ActionScript

	About initialization object properties
	Menu component parameters
	Creating an application with the Menu component
	Customizing the Menu component
	Using styles with the Menu component
	Using skins with the Menu component

	Menu class (Flash Professional only)
	Method summary for the Menu class
	Property summary for the Menu class
	Event summary for the Menu class

	Menu.addMenuItem()
	Menu.addMenuItemAt()
	Menu.change
	Menu.createMenu()
	Menu.dataProvider
	Menu.getMenuItemAt()
	Menu.hide()
	Menu.indexOf()
	Menu.menuHide
	Menu.menuShow
	Menu.removeAll()
	Menu.removeMenuItemAt()
	Menu.rollOut
	Menu.rollOver
	Menu.setMenuItemEnabled()
	Menu.setMenuItemSelected()
	Menu.show()
	MenuDataProvider class
	Method summary for the MenuDataProvider class

	MenuDataProvider.addMenuItem()
	MenuDataProvider.addMenuItemAt()
	MenuDataProvider.getMenuItemAt()
	MenuDataProvider.indexOf()
	MenuDataProvider.removeMenuItem()
	MenuDataProvider.removeMenuItemAt()

	MenuBar component (Flash Professional only)
	Interacting with the MenuBar component (Flash Professional only)
	Using the MenuBar component (Flash Professional only)
	MenuBar component parameters
	Creating an application with the MenuBar component

	Customizing the MenuBar component (Flash Professional only)
	Using styles with the MenuBar component
	Using skins with the MenuBar component

	MenuBar class
	Method summary for the MenuBar class
	Property summary for the MenuBar class

	MenuBar.addMenu()
	MenuBar.addMenuAt()
	MenuBar.dataProvider
	MenuBar.getMenuAt()
	MenuBar.getMenuEnabledAt()
	MenuBar.labelField
	MenuBar.labelFunction
	MenuBar.removeMenuAt()
	MenuBar.setMenuEnabledAt()

	NumericStepper component
	Using the NumericStepper component
	NumericStepper parameters
	Creating an application with the NumericStepper component

	Customizing the NumericStepper component
	Using styles with the NumericStepper component
	Using skins with the NumericStepper component

	NumericStepper class
	Method summary for the NumericStepper class
	Property summary for the NumericStepper class
	Event summary for the NumericStepper class

	NumericStepper.change
	NumericStepper.maximum
	NumericStepper.minimum
	NumericStepper.nextValue
	NumericStepper.previousValue
	NumericStepper.stepSize
	NumericStepper.value

	PopUpManager class
	Method summary for the PopUpManager class
	PopUpManager.createPopUp()
	PopUpManager.deletePopUp()

	ProgressBar component
	Using the ProgressBar component
	ProgressBar parameters
	Creating an application with the ProgressBar component

	Customizing the ProgressBar component
	Using styles with the ProgressBar component
	Using skins with the ProgressBar component

	ProgressBar class
	Method summary for the ProgressBar class
	Property summary for the ProgressBar class
	Event summary for the ProgressBar class

	ProgressBar.complete
	ProgressBar.conversion
	ProgressBar.direction
	ProgressBar.indeterminate
	ProgressBar.label
	ProgressBar.labelPlacement
	ProgressBar.maximum
	ProgressBar.minimum
	ProgressBar.mode
	ProgressBar.percentComplete
	ProgressBar.progress
	ProgressBar.setProgress()
	ProgressBar.source
	ProgressBar.value

	RadioButton component
	Using the RadioButton component
	RadioButton parameters
	Creating an application with the RadioButton component

	Customizing the RadioButton component
	Using styles with the RadioButton component
	Using skins with the RadioButton component

	RadioButton class
	Method summary for the RadioButton class
	Property summary for the RadioButton class
	Event summary for the RadioButton class

	RadioButton.click
	RadioButton.data
	RadioButton.groupName
	RadioButton.label
	RadioButton.labelPlacement
	RadioButton.selected
	RadioButton.selectedData
	RadioButton.selection

	RDBMSResolver component (Flash Professional only)
	Using the RDBMSResolver component (Flash Professional only)
	RDBMSResolver component parameters
	Property summary for the RDBMSResolver component
	Method summary for the RDBMSResolver component
	Event summary for the RDBMSResolver component

	RDBMSResolver.addFieldInfo()
	RDBMSResolver.beforeApplyUpdates
	RDBMSResolver.deltaPacket
	RDBMSResolver.fieldInfo
	RDBMSResolver.nullValue
	RDBMSResolver.reconcileResults
	RDBMSResolver.reconcileUpdates
	RDBMSResolver.tableName
	RDBMSResolver.updateMode
	RDBMSResolver.updatePacket
	RDBMSResolver.updateResults

	Remote Procedure Call (RPC) Component API
	Property summary for the RPC Component class
	Method summary for the RPC Component class
	Event summary for the RPC Component class
	RPC.multipleSimultaneousAllowed
	RPC.params
	RPC.result
	RPC.results
	RPC.send
	RPC.status
	RPC.suppressInvalidCalls
	RPC.trigger()

	Screen class (Flash Professional only)
	Loading external content into screens (Flash Professional only)
	Referencing loaded screens with ActionScript
	Method summary for the Screen class
	Property summary for the Screen class
	Event summary for the Screen class

	Screen.allTransitionsInDone
	Screen.allTransitionsOutDone
	Screen.currentFocusedScreen
	Screen.getChildScreen()
	Screen.indexInParent
	Screen.mouseDown
	Screen.mouseDownSomewhere
	Screen.mouseMove
	Screen.mouseOut
	Screen.mouseOver
	Screen.mouseUp
	Screen.mouseUpSomewhere
	Screen.numChildScreens
	Screen.parentIsScreen
	Screen.rootScreen

	ScrollPane component
	Using the ScrollPane component
	ScrollPane parameters
	Creating an application with the ScrollPane component

	Customizing the ScrollPane component
	Using styles with the ScrollPane component
	Using skins with the ScrollPane component

	ScrollPane class
	Method summary for the ScrollPane class
	Property summary for the ScrollPane class
	Event summary for the ScrollPane class

	ScrollPane.complete
	ScrollPane.content
	ScrollPane.contentPath
	ScrollPane.getBytesLoaded()
	ScrollPane.getBytesTotal()
	ScrollPane.hLineScrollSize
	ScrollPane.hPageScrollSize
	ScrollPane.hPosition
	ScrollPane.hScrollPolicy
	ScrollPane.progress
	ScrollPane.refreshPane()
	ScrollPane.scroll
	ScrollPane.scrollDrag
	ScrollPane.vLineScrollSize
	ScrollPane.vPageScrollSize
	ScrollPane.vPosition
	ScrollPane.vScrollPolicy

	Slide class (Flash Professional only)
	Using the Slide class (Flash Professional only)
	Slide parameters
	Using the Slide class to create a Slide Presentation
	Method summary for the Slide class
	Property summary for the Slide class
	Event summary for the Slide class

	Slide.autoKeyNav
	Slide.currentSlide
	Slide.currentChildSlide
	Slide.currentFocusedSlide
	Slide.defaultKeydownHandler
	Slide.firstSlide
	Slide.getChildSlide()
	Slide.gotoSlide()
	Slide.gotoFirstSlide()
	Slide.gotoLastSlide()
	Slide.gotoNextSlide()
	Slide.gotoPreviousSlide()
	Slide.hideChild
	Slide.indexInParentSlide
	Slide.lastSlide
	Slide.nextSlide
	Slide.numChildSlides
	Slide.overlayChildren
	Slide.parentIsSlide
	Slide.playHidden
	Slide.previousSlide
	Slide.revealChild
	Slide.rootSlide

	StyleManager class
	Method summary for the StyleManager class
	StyleManager.registerColorName()
	StyleManager.registerColorStyle()
	StyleManager.registerInheritingSyle()

	TextArea component
	Using the TextArea component
	TextArea component parameters
	Creating an application with the TextArea component

	Customizing the TextArea component
	Using styles with the TextArea component
	Using skins with the TextArea component

	TextArea class
	Property summary for the TextArea class
	Event summary for the TextArea class

	TextArea.change
	TextArea.editable
	TextArea.hPosition
	TextArea.hScrollPolicy
	TextArea.html
	TextArea.length
	TextArea.maxChars
	TextArea.maxHPosition
	TextArea.maxVPosition
	TextArea.password
	TextArea.restrict
	TextArea.text
	TextArea.vPosition
	TextArea.vScrollPolicy
	TextArea.wordWrap

	TextInput component
	Using the TextInput component
	TextInput component parameters
	Creating an application with the TextInput component

	Customizing the TextInput component
	Using styles with the TextInput component
	Using skins with the TextInput component

	TextInput class
	Method summary for the TextInput class
	Property summary for the TextInput class
	Event summary for the TextInput class

	TextInput.change
	TextInput.editable
	TextInput.enter
	TextInput.hPosition
	TextInput.length
	TextInput.maxChars
	TextInput.maxHPosition
	TextInput.password
	TextInput.restrict
	TextInput.text

	TransferObject interface
	Method summary for TransferObject interface
	TransferObject.clone()
	TransferObject.getPropertyData()
	TransferObject.setPropertyData()

	Tree component (Flash Professional only)
	Using the Tree component (Flash Professional only)
	Formatting XML for the Tree component
	Tree parameters
	Creating an application with the Tree component

	Customizing the Tree component (Flash Professional only)
	Using styles with the Tree component
	Using skins with the Tree component

	Tree class (Flash Professional only)
	Method summary for the Tree class
	Property summary for the Tree class
	Event summary for the Tree class

	Tree.addTreeNode()
	Tree.addTreeNodeAt()
	Tree.dataProvider
	Tree.firstVisibleNode
	Tree.getIsBranch()
	Tree.getIsOpen()
	Tree.getDisplayIndex()
	Tree.getNodeDisplayedAt()
	Tree.getTreeNodeAt()
	Tree.nodeClose
	Tree.nodeOpen
	Tree.removeAll()
	Tree.removeTreeNodeAt()
	Tree.setIsBranch()
	Tree.setIcon()
	Tree.setIsOpen()
	Tree.selectedNode
	Tree.selectedNodes

	TreeDataProvider interface (Flash Professional only)
	Method summary for the TreeDataProvider interface
	Property summary for the TreeDataProvider interface
	TreeDataProvider.addTreeNode()
	TreeDataProvider.addTreeNodeAt()
	TreeDataProvider.attributes.data
	TreeDataProvider.attributes.label
	TreeDataProvider.getTreeNodeAt()
	TreeDataProvider.removeTreeNode()
	TreeDataProvider.removeTreeNodeAt()

	UIComponent
	Method summary for the UIComponent class
	Property summary for the UIComponent class
	Event summary for the UIComponent class
	UIComponent.focusIn
	UIComponent.focusOut
	UIComponent.enabled
	UIComponent.getFocus()
	UIComponent.keyDown
	UIComponent.keyUp
	UIComponent.setFocus()
	UIComponent.tabIndex

	UIEventDispatcher
	UIEventDispatcher.addEventListener()
	Event Objects
	Properties of the event object

	UIObject
	Method summary for the UIObject class
	Property summary for the UIObject class
	Event summary for the UIObject class
	UIObject.bottom
	UIObject.createObject()
	UIObject.createClassObject()
	UIObject.destroyObject()
	UIObject.draw
	UIObject.height
	UIObject.hide
	UIObject.getStyle()
	UIObject.invalidate()
	UIObject.left
	UIObject.load
	UIObject.move
	UIObject.move()
	UIObject.redraw()
	UIObject.resize
	UIObject.reveal
	UIObject.right
	UIObject.scaleX
	UIObject.scaleY
	UIObject.setSize()
	UIObject.setSkin()
	UIObject.setStyle()
	UIObject.top
	UIObject.unload
	UIObject.visible
	UIObject.width
	UIObject.x
	UIObject.y

	Web service classes (Flash Professional only)
	Making web service classes available at runtime (Flash Professional only)
	Classes in the mx.services package (Flash Professional only)
	Log class (Flash Professional only)
	Callback summary for the Log object

	Constructor for the Log class
	Log.onLog()
	PendingCall class (Flash Professional only)
	Function summary for the PendingCall object
	Property summary for the PendingCall object
	Callback summary for the PendingCall object

	Constructor for the PendingCall class
	PendingCall.getOutputParameter()
	PendingCall.getOutputParameterByName()
	PendingCall.getOutputParameters()
	PendingCall.getOutputValue()
	PendingCall.getOutputValues()
	PendingCall.myCall
	PendingCall.onFault()
	PendingCall.onResult()
	PendingCall.request
	PendingCall.response
	SOAPCall class (Flash Professional only)
	Function summary for the SOAPCall object
	Property summary for the SOAPCall object

	Constructor for the SOAPCall class
	SOAPCall.addHeader()
	SOAPCall.concurrency
	SOAPCall.doDecoding
	SOAPCall.doLazyDecoding
	WebService class (Flash Professional only)
	Using the WebServices API
	Supported types
	Numeric Simple types
	Date and Time Simple types
	Name and String Simple types
	Boolean type
	Object types
	Supported XML schema object elements

	WebService security
	User Authentication and Authorization
	Message Integrity
	Function summary for the WebService object
	Callback summary for the WebService object

	Constructor for the WebService class
	WebService.getCall()
	WebService.onFault()
	WebService.onLoad()
	WebService.myMethodName()

	WebServiceConnector (Flash Professional only)
	Using the WebServiceConnector (Flash Professional only)
	WebServiceConnector parameters

	WebServiceConnector class (Flash Professional only)
	Property summary for the WebServiceConnector class
	Method summary for the WebServiceConnector class
	Event summary for the WebServiceConnector class

	WebServiceConnector.multipleSimultaneousAllowed
	WebServiceConnector.operation
	WebServiceConnector.params
	WebServiceConnector.result
	WebServiceConnector.results
	WebServiceConnector.send
	WebServiceConnector.status
	WebServiceConnector.suppressInvalidCalls
	WebServiceConnector.timeout
	WebServiceConnector.trigger()
	WebServiceConnector.WSDLURL

	Window component
	Using the Window component
	Window component parameters
	Creating an application with the Window component

	Customizing the Window component
	Using styles with the Window component
	Using skins with the Window component

	Window class
	Method summary for the Window class
	Property summary for the Window class
	Event summary for the Window class

	Window.click
	Window.closeButton
	Window.content
	Window.contentPath
	Window.deletePopUp()
	Window.mouseDownOutside
	Window.title
	Window.titleStyleDeclaration

	XMLConnector component (Flash Professional only)
	Using the XMLConnector component (Flash Professional only)
	XMLConnector component parameters

	XMLConnector class (Flash Professional only)
	Property summary for the XMLConnector class
	Method summary for the XMLConnector class
	Event summary for the XMLConnector class

	XMLConnector.direction
	XMLConnector.multipleSimultaneousAllowed
	XMLConnector.params
	XMLConnector.result
	XMLConnector.results
	XMLConnector.send
	XMLConnector.status
	XMLConnector.suppressInvalidCalls
	XMLConnector.trigger()
	XMLConnector.URL

	XUpdateResolver component (Flash Professional only)
	Using the XUpdateResolver component (Flash Professional only)
	XUpdateResolver component parameters
	Property summary for the XUpdateResolver component
	Event summary for the XUpdateResolver component

	XUpdateResolver.beforeApplyUpdates
	XUpdateResolver.deltaPacket
	XUpdateResolver.includeDeltaPacketInfo
	XUpdateResolver.reconcileResults
	XUpdateResolver.updateResults
	XUpdateResolver.xupdatePacket

	Creating Components
	What’s new
	Working in the Flash environment
	FLA file assets
	Class files
	The classpath
	Understanding the classpath
	Changing the classpath

	Locating component source files
	Editing symbols
	Examples of component code

	Creating components
	Creating a new component symbol
	Editing symbol layers
	Adding parameters

	Writing the component’s ActionScript
	Extending existing component classes
	Simple example of a class file
	General process for writing a class file

	Importing classes
	Selecting a parent class
	Understanding the UIObject class
	Understanding the UIComponent class
	Extending other classes

	Writing the constructor
	Versioning
	Class, symbol, and owner names
	Defining getters and setters
	Component metadata
	Using metadata keywords
	Metadata tags
	Inspectable
	InspectableList
	Event
	Bindable
	ChangeEvent

	Defining component parameters
	Implementing core methods
	Implementing the initialization method
	Implementing the size method

	Handling events
	Common events
	Using the event object
	Dispatching events
	Identifying event handlers
	Using the Event metadata

	Skinning
	Adding styles
	Making components accessible
	Exporting the component
	Understanding SWC files
	Using SWC files
	Creating SWC files
	Importing component SWC files into Flash

	Making the component easier to use
	Adding an icon
	Using Live Preview
	Adding tooltips

	Best practices when designing a component

	Index

