

The Tutorials – Your First
Steps in the IDE
Copyright © 1997-2000 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, CA 94303, U.S.A.
All rights reserved. This software is distributed under licenses restricting its use, copying,
distribution, and decompilation. No part of this software may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any. Third party software,
including font technology, is copyrighted and licensed from Sun suppliers. Sun, Sun Microsystems,
the Sun logo, Solaris, Java, JDK, JavaBeans, Forte, and NetBeans are registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd. Federal Acquisitions:
Commercial Software – Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES,INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

The Tutorials – Your First Steps in the IDE

2

Introduction

These tutorials will get you down to work with Forte for Java Community Edition, quickly and
easily. We'll walk you through building several simple applications, step by step, to familiarize you
with the IDE interface and operation.

Tutorial One: The Clock. Presented in three steps, this first builds a simple, functional clock,
making use of the built in TimerBean. Steps two and three then extend the functionality of the clock,
adding the ability to set the time, and date format.

Tutorial Two: The Color Picker. In part one of this tutorial, we will use Forte for Java’s special
bean support to generate a JavaBean with three properties – red, green and blue. In Step 2 we will
build a form incorporating this bean and use RGB sliders to set the background color.

Tutorial Three: The Image Viewer. In this tutorial we build a simple image viewer.

Tutorial Four: The Debugger. A brief introduction to Forte for Java’s Debugging subsystem.

Tutorial One: The Clock
For this tutorial, we will start with a simple clock form, making use of the built-in TimerBean. Once
we have this clock compiled and running successfully, we will then extend its functionality, adding the
ability to set the time, and change the time and date format.

Part One
Startup:

1 Click the New from Template... icon on the Main Window. The New From Template wizard will
open, displaying a tree view of templates grouped into several categories. Expand the SwingForms
node, select JFrame, and click Next.

Tutorial One: The Clock

4

2 The Target Location page of the wizard will appear to prompt you to set a name and package for
your new class. The tree view shows all directories that you have mounted as file systems in the
Explorer. Expand the directory structure and choose
$FORTE4J_HOME/Development/examples as the location, (where $FORTE4J_HOME is
your Forte For Java installation directory) and type ClockFrame in the Object Name field. Click
Finish when done.

Tutorial One: The Clock

5

Note:A dialog box may then appear and prompt you whether to make the class part of the
current project. For the purposes of these tutorials, it does not matter whether you include
them in the project or not.

3 You should see the status line of the Main Window read Opening Form: ClockFrame.
Several windows will open – the source Editor, the Form Editor window and the Component
Inspector. Note there are sections of the source in the Editor which have a colored background –
these sections are those regenerated by the Form Editor and may not be modified.

The Component Inspector lists all components currently in the Form Editor and their properties.
Initially there are no components except for the default layout (BorderLayout) and a heading for
Non-Visible components – currently empty.

Add a component:

1 We will use a standard JLabel for our clock display. Flip to the Swing tab of the Component
Palette. You will see a grouping of common Swing components. Position your mouse cursor over
each icon to see a tooltip identification.

Tutorial One: The Clock

6

2 Select JLabel by single clicking on its icon. The icon will appear clicked, indicating it has been
selected and is the active component.

3 Place it on the Center panel of the Form Editor surface by clicking once. You will see the
generated code appear in the Editor and a new component listed in the Component Inspector.
Note the currently selected component is marked with blue corner anchor marks. The item
highlighted in the Component Inspector listing also indicates the selected component.

Modify the component's properties:

1 Now we will modify the properties of the JLabel. Make sure the JLabel is selected, either by
clicking it in the Component Inspector or by clicking it in the Form Editor window. Flip to the
Code Generation tab of the JLabel in the Component Inspector – you will see Variable Name
property and its value listed.

2 Click on the Variable Name field. The cursor will appear in the variable value field, ready to
accept keyboard input. Type jlblCurrentTime. Once you press ENTER or click elsewhere in
the IDE, the new variable name will be assigned.

Tutorial One: The Clock

7

3 Next, find the text property on the Properties tab. Depending on the size of your Component
Inspector widow, you may need to scroll down to see all available properties. Click on the
property's value (currently set to a default of jLabel1) and enter the text to appear on the Label
– type 00:00:00.

4 This JLabel will be the main display of our clock, so let's change the default font properties. Click
the font property in the Component Inspector and select the "..." browse button which appears.
A font properties dialog box will open. Change the font face to Serif, Bold, 36 pt. Click OK to
confirm the selection. You should see the default text (00:00:00) on the Form Editor window
reflect your changes.

5 Lastly, we will center the time display. Change the horizontalAlignment property from its
default value (LEFT) to CENTER.

This completes the visual aspect of the first stage of this tutorial. Now we will add functionality to
this form by adding the TimerBean and some code.

Functionality – Adding Code:

Tutorial One: The Clock

8

1 First, we will add some imports to the code. Switch to the source Editor, and scroll to the top of
the code. This form will require the standard date and time imports. Copy the following code,
and paste it into the Editor directly under the line reading package examples;. When you
paste your code into the Editor, it may not stay correctly indented. To indent a block of code,
select the block and press TAB or SHIFT+TAB to correctly align the block.

import java.util.Date;
import java.util.GregorianCalendar;
import java.util.Calendar;
import java.text.SimpleDateFormat;

We will also use the standard JOptionPane for error messages:

import javax.swing.JOptionPane;

2 Add the following three lines below the Variables Declaration block towards the end of
the code (below the protected Form Editor code marked with a shaded background).

private GregorianCalendar gCal = new GregorianCalendar();
private String timeFormat = "hh:mm:ss";
private SimpleDateFormat formatter = new

SimpleDateFormat(timeFormat);

Add the TimerBean, and set an event handler:

1 Choose the Beans tab of the Component Palette and select Timer. Place it anywhere on the Form
work surface. The TimerBean is a non-visual component, so you will not see anything appear on
the Form Editor window. However, you will see the TimerBean listed in the Component
Inspector under the NonVisual Components heading.

2 Select the TimerBean in the Inspector, and change its variable name to tmrSeconds.

3 Flip to the Events panel of the TimerBean's properties in the Inspector. Set the onTime event to
tmrSecondsOnTime. You will see the Editor window generate the new method. If you scroll
back up through the code, you will see that the listener which invokes this method has also been

Tutorial One: The Clock

9

generated.

4 Now we will add the code for this new method in the Editor. Add the following code under the
// Add your handling code here line:

gCal.add(Calendar.SECOND,1);
String timeTxt = formatter.format(gCal.getTime());
if (jlblCurrentTime != null)
 jlblCurrentTime.setText(timeTxt);

Compiling and Executing the form:

1 The basic clock is now complete. Select the Execute icon from the Main Window. Watch the
status bar of the Main Window – you will see the progress of the operation. Your form and code
are first saved and then compiled.

2 Assuming there are no errors and compilation is completed successfully, Forte For Java will
switch to the Running Workspace and the form will open. Note that the Execution View, also
open on the Running Workspace, displays the ClockFrame as a currently running process.

That's it!

Again, assuming there are no errors, your clock should be displayed, showing the correct current
time, with the seconds incrementing normally.

You've just built your first form!

To close the form, right-click on it in the Execution View, and choose Terminate Process. Note that
while you can also terminate this form by closing the form window, this relies on the WindowClosing
event being set. The JFrame Template we used to build this form has this event set to close the
application as a default setting. Without it, closing the window would not actually terminate the
process.

This concludes Part One of the Tutorial. In Tutorial One: Part Two, we will extend the functionality
of this clock, adding the ability to set the current time.

Tutorial One: Part Two
Adding a Set Time panel

In Part One of this tutorial, we built a basic functional clock. We will now add the ability to set the
time to our form.

First of all, since you have just executed the Clock form, Forte For Java has switched to the Running
Workspace, where the source Editor, Form Editor and Component Inspector are not displayed (by
default). Use the Workspace tabs on the Main Window to flip back to the GUI Editing Workspace,
where all your editing tools are displayed.

Adding a panel and setting the Layout:

1 First add a new JPanel for our new components. Flip to the Swing tab of the Component Palette,
and select JPanel. Place it on the North panel of the Form Editor surface. You will see the new
item in the Component Inspector.

2 Expand this new JPanel in the Component Inspector – you will see the default FlowLayout listed
below this JPanel. For this example we will not use this default layout – in the Component
Palette, flip to the Layout tab. Position your mouse over each of the icons in this group to see the
tool-tip identifiers. Select GridLayout by single-clicking its icon, and assign this layout to our new
JPanel by clicking once on the JPanel in the North part of the Form Editor. You will see the new
layout replace FlowLayout in the Component Inspector and a grid appear on the Form Editor
surface.

3 The default GridLayout includes 3 columns and 2 rows. In fact, we only need 1 row – select the
GridLayout in the Component Inspector, and change the Rows property from the default of 2 to
1. The grid displayed in the Form Editor window will change accordingly.

Adding new components:

1 Next we will add some visual Swing components to the new panel. Flip to the Swing panel of the
Component Palette, select JLabel, and place it anywhere on the new panel.

2 Now select JTextField from the Swing panel, and place it on the panel by clicking anywhere on the

Tutorial One: Part Two

11

JPanel in the Form Editor window. Using this layout, visual components are ordered left to right
in the order that you add them.

3 Lastly, select JButton from the Swing panel of the Component Palette, and place it on the JPanel
– you should now see the three components, equally sized, across the top of the Form.

Changing properties:

1 Now we will modify the properties of these new components. Select the JLabel component,
either by clicking on it in the Form Editor window or by clicking on it in the Component
Inspector. Flip to the Code Generation tab in the Component Inspector.

2 First change the variable name to jlblNewTime.

3 Next change its text property on the Properties tab to New Time:. You will see the text appear
on the Label in the Form Editor.

4 Find the horizontalAlignment property, and select the new alignment - CENTER.

5 Click the JTextField component in the Component Inspector, change its variable name property
to jtfNewTime, and set the text property to a default time of 00:00:00

6 Select the JButton in the Component Inspector. Change the variable name of the JButton to
jbtnNewTime. Change its text value to Set New Time.

Adding functionality:

1 Select the JButton you have just added in the Component Inspector, and flip to its Events panel.
Set the actionPerformed event to jbtnSetNewTimeClicked. You will see the new event
handler generated in the Editor.

2 Add the following code to this new handler:

try {

String timeStr = jtfNewTime.getText();

gCal.setTime(formatter.parse(timeStr));
} catch (java.text.ParseException e) {

Tutorial One: Part Two

12

 JOptionPane.showMessageDialog(this,

"Invalid date format",

"I don't understand your date format.",
 JOptionPane.ERROR_MESSAGE);
}

Compiling and executing:

1 Press CTRL+F9 to execute the new form. Again you will see the status bar of the Main Window
indicating the progress of the execution. Once compiled and running, try setting a new time by
clicking the Set Time button. If you enter a time not in the default "hh:mm:ss" format, an error
dialog box will open.

2 Once you have verified your Clock is working, again terminate the process using the context
menu in the Execution View window.

3 This concludes Part Two of the Tutorial. In Tutorial One: Part Three, we will add a panel
allowing the date and time format to be modified.

Tutorial One: Part Three
Adding a Set Format panel

In this final section we will add the option of setting the time format.

Adding a panel and setting the layout:

1 Switch back to the GUI Editing Workspace to see your editing windows – the Explorer, Form
Editor window, Component Inspector, and Editor.

2 Add a new JPanel to the East panel of the Form Editor window surface. Select the new JPanel
item in the Component Inspector, and flip to its Layout tab. You will see the Direction property is
set to East, where you just placed the JPanel. In fact we want this new panel on the South part of
the Form – click the direction, and select South from the drop-down list. You will see the JPanel
repositioned in the new location.

3 We will again change the Layout of this new JPanel – select GridLayout from the Layout tab of the
Component Palette, and drop it onto the new JPanel. Select the GridLayout in the Component
Inspector, and change the Rows property from the default of 2 to 1.

Add some components:

1 Position a JLabel from the Swing tab of the Component Palette on the new JPanel. Also add a
JTextField, and lastly, a JButton. The components will appear in the order you place them, across
the South panel of the Form.

Setting the properties:

1 Again we will modify the default properties of these new components. Set the JLabel's
variable name to jlblNewFormat, and its text property to Time Format. Change its
horizontalAlignment property to CENTER.

2 Set the JTextField variable name to jtfNewTimeFormat, and change the default text
to hh:mm:ss.

3 Set the JButton variable name to jbtnNewTimeFormat. Set the text to read Set new

Tutorial One: Part Three

14

time format.

Adding functionality:

1 Select the jbtnNewTimeFormat button in the Component Inspector, and flip to its Events
panel. Set the actionPerformed event to jbtnNewTimeFormatClicked. You will see the
new event handler generated in the code.

2 Add the following to the handler generated:

String timeFormat = jtfNewTimeFormat.getText();
formatter = new SimpleDateFormat(timeFormat);

Compiling and executing:

1 Execute the completed code from the Build menu of the Main Window.

You can now set the time format using the SimpleDateFormat syntax (described in the JDK
documentation – $JDK_HOME/docs/api/java/text/SimpleDateFormat.html, where
$JDK_HOME is the directory where the JDK installed)

For example, try the entering following in your New Format text panel:EEEE, d MMMM,
hh:mm:ss a .

Tutorial One: Part Three

15

This concludes Tutorial One. On the Running Workspace, right-click on the ClockFrame item
appearing in the Execution Window, and select Terminate Process. This will close the currently
running ClockFrame.

In Tutorial Two: Part Two, we will use Forte for Java’s beans support to build a JavaBeans
component, and then we will build a form using that bean to set the background color using RGB
sliders.

Tutorial Two: The Color
Picker
In this tutorial we will first use the Bean Patterns feature to build a JavaBeans component with three
properties – red, green, and blue – which are used to set the background color. In Part Two, we will
create a form incorporating this bean, which uses sliders to set these RGB values and display the
resulting color.

Part One – Building a JavaBeans component

If you have not already done so, switch back to the GUI Editing Workspace. If you have just
completed Tutorial One, you probably still have the Clock Form and Editor open – close these
windows.

We will now create a new class from template and a package for that class at the same time.

Creating the class from template:

1 If you don't have one open, open an Explorer window from the Explorer icon on the Main
Window.

2 Right-click on the Examples directory, and select New From Template | Classes | Class from the
context menu. Call your new package colorpicker.

3 The Target Location dialog box will appear with ClassName as the default name for the class
and examples as the default package. Type ColorPreview as the class name. For the Package
name, place the cursor after examples and add .colorpicker so that the package name reads
examples.colorpicker.

4 Click Finish to create the class.

We will use Bean Patterns to create a JavaBeans component. The bean will have three properties –

Tutorial Two: The Color Picker

17

red, green and blue – and display these values as a background.

The Bean Patterns:

1 Expand the ColorPreview class node under the ColorPreview node. (The Bean Patterns node
will appear.)

2 Since ColorPreview extends JPanel, you need to open the property sheet of the class
ColorPreview node by choosing Properties from its popup menu and changing the Extends
property from java.lang.Object to javax.swing.JPanel .

3 Right-click on the Bean Patterns node and select New | Property from the popup menu. The New
Property Pattern dialog will appear.

4 Now you will generate the property red. Enter red in the Name field and select int as the Type
and Read/Write as the Mode of the property. Also check the Bound, Generate Field, Generate
Return Statement, Generate Set Statement, and Generate Property Change Support options. Finally,
click OK to confirm your selections.

Tutorial Two: The Color Picker

18

Repeat these steps for the green and blue properties.

We will now need to manually add some code to the set methods of the color properties.

Adding code:

1 In the Editor window, find the setRed method. Immediately under the line reading:

propertyChangeSupport.firePropertyChange("red", new
Integer(oldRed), new Integer(red));

add the following lines:

setBackground (new java.awt.Color(red,green,blue));
repaint();

2 Copy and paste this same code to each of the other methods – both setGreen and setBlue.

We would like to assign an icon to the ColorPreview bean. So we will need to generate its BeanInfo
and in it specify the location of the icon.

The icon is already in the tutorial/colorpicker package, so we will copy it from there. Expand
tutorial/colorpicker, right-click on the third node in the hierarchy (like the node above it, it
is named ColorPreview), and choose Copy from its context menu. Then right-click on the
examples/colorpicker node and choose Paste | Copy to put a copy of the icon into the package.

Tutorial Two: The Color Picker

19

Generating BeanInfo

1 Right-click on the Bean Patterns node of the ColorPreview bean and select Generate BeanInfo
from the popup menu. The Generate BeanInfo Dialog will appear.

2 Select the Bean Info node on the left tab and its properties will appear on the right tab

3 Set the Icon 16x16 Color property to ColorPreview.gif. Please note that the
ColorPreview.gif must be presented in the colorpicker folder. So you should copy the
tutorial/colorpicker/ColorPreview.gif to your Examples/colorpicker folder.

4 The ColorPreviewBeanInfo node will appear in the Explorer under the
Examples/colorpicker folder.

5 Save and compile the ColorPreviewBeanInfo

Compiling your bean:

◊ Right-click on the colorpicker package in the Explorer, and select Compile from the context
menu to compile all out-of-date classes in this package. Assuming there are no errors, you can
close the Editor window.

◊ Once you have seen the bean in action click Cancel on the Customize dialog to close it.

Tutorial Two: The Color Picker

20

We will now add our new bean to the Component Palette, where it will be available for use just like
any standard component.

Add the new bean to the Component Palette:

1 Right-click on ColorPreview in the Explorer window, and select Tools | Add To Component Palette
from the context menu.The Palette Category dialog will appear.

2 Select the Beans item from the Palette Category and confirm the selection.

Flip to the Beans tab of the Component Palette on the Main Window, and you will see your new
bean installed and ready for use.

This concludes Part One of the Color Picker tutorial. In Tutorial Two: Part Two, we will build a
Form which uses this bean and allows background color to be set via sliders.

Tutorial Two: Part Two
The Color Picker Form

Startup:

1 Right-click on the colorpicker package in the Explorer, and select New From Template | Swing
Forms | JFrame.

2 Give your new JFrame the name ColorPicker, and click Finish. The JFrame template will open
in the Editor window, and the Form Editor and Component Inspector windows will open.

Adding Components:

1 We will now add some components to the JFrame. On the Component Palette, flip to the Swing
Tab, and select JPanel. Click on the Center panel of the Form Editor surface to add the JPanel to
the form. You will see the new JPanel (named JPanel1) appear in the Component Inspector.

2 Rename this JPanel colorPreviewPanel, either by changing the variable name in the
properties listed, or by in-place renaming of the item in the component listing at the top of the
Component Inspector

3 We will not use the default layout for this JPanel. Right-click on the colorPreviewPanel
node and choose Set Layout | BorderLayout from the context menu.

4 Now we will add the JavaBeans component created in Part One. Flip to the Beans tab of the
Component Palette, select the ColorPreview bean, and click once on the center panel of the
colorPreviewPanel JPanel to position the bean there.

5 Next we will add the three sliders which will be used to set the color.

Add a new JPanel to the North panel of the Form Editor surface: flip to the Swing tab of the
Component Palette, select JPanel, and click on the north panel of the form surface.

6 Flip to the Layouts tab of the Component Palette, select the BoxLayout icon, and place it on the
new (north) JPanel.

7 Flip to the Swing (Other) tab of the Component Palette, and select JSlider. Place a JSlider on the

Tutorial Two: Part Two

22

new JPanel.

8 We will need a slider for each color property (red, green and blue). Select JSlider again: this time
hold down the SHIFT key as you click on the form surface (on the same north JPanel where the
first JSlider is). This will allow you to add multiple components without needing to reselect them
from the Component Palette. Add two more JSliders, so that you have a total of three.

9 Name each of your new sliders – set the variable name property in the Component Inspector
to redSlider, greenSlider, and blueSlider, for the first, second, and third sliders in the
component listing, respectively.

10 Now we must set the maximum allowed value of each slider. Select the red slider on the form
surface by clicking on it, and then by holding down CTRL, select both of the other sliders. You
should see the anchor marks indicating the component is selected appear around each slider on
the form. In addition, the components will be highlighted in the Component Inspector listing.
Change the Maximum property in the property listing to 255, and press ENTER. This changes
that property for all three sliders.

Adding Borders:

1 Next we will add a border to each of the sliders. Flip to the Borders tab of the Component
Palette, and select TitledBorder. Again, hold down the SHIFT key to add multiple borders, and
add one to each JSlider. Click directly on each JSlider on the form surface – you should see the
borders appear around each.

2 Now we will set the text of the slider borders.

3 In the Component Inspector, select the red slider and click on its border property and then the
"..." icon to open the Border Properties dialog. Change the Title property of this border to
Red. Remember to press ENTER to set this new property, and click OK.

4 Repeat this procedure for both of the other sliders and title them Green and Blue, respectively.

5 We will also add a border to the colorPreviewPanel panel. Select Titled Border from the

Tutorial Two: Part Two

23

Borders tab of the Component Palette, and place it anywhere on the colorPreviewPanel
JPanel, except for the center panel, where the ColorPreview bean is located.

6 Select ColorPreviewPanel in the component listing, and open its Border Property dialog by
clicking its border property and then "...". Set its title to Color Preview, press ENTER, and
click OK.

Finally, we will use the Connection Wizard to connect the sliders to the bean.

The Connection Wizard:

1 Click the Connection Mode icon, which appears on the Main Window immediately to the left of
the Component Palette. The icon will appear “clicked”, indicating Connection Mode is active.

Tutorial Two: Part Two

24

2 Click first on the Red JSlider on the Form Editor surface, and then the center panel of the Color
Preview panel, where the colorPreview1 bean is located. The Connection Wizard dialog will
open.

3 Expand the “change” node, and select stateChanged. Click Next to continue.

4 With the Set Property radio button checked, select the red property, and click Next.
5 In the final Connection Wizard dialog, click the Property radio button, and select "..." to browse.

Select value from the list, and click OK. Lastly, click Finish to dismiss the Connection Wizard.

6 Repeat the previous three steps for each of the other JSliders, selecting the green and blue
properties respectively in step 2.

Repositioning the sliders

◊ Lastly, we will reposition the Sliders. In the Component Inspector, select the BoxLayout of the
JPanel1 component. Double-click on the Axis property to toggle to the Y Axis value. This is a
more convenient display of the JSliders in this example.

That's it! Save your form via the File | Save menu item or using the Save icon on the Main Window,
and compile from the Build | Compile menu item. Execute it via the Build | Execute menu item, or by
pressing CTRL+F9.

Forte For Java will switch to the Running Workspace and display the running Color Picker form.
Adjust the sliders and check the displayed color changes accordingly.

To close the Color Picker, use the Execution View, which is also displayed on the Running
Workspace. Right-click on the ColorPicker item listed in the Execution View, and select
Terminate process from the context menu.

Tutorial Two: Part Two

25

This concludes Tutorial Two.

Tutorial Three: The Image
Viewer
In this tutorial, we build a simple image viewer.

Part One
Startup:

1 If Forte For Java is still on the Running Workspace from the previous tutorial, terminate any
currently executing processes (via the Execution View listing), and switch back to the GUI
Editing workspace. If you have any Forms or Editor windows open from previous tutorials, save
your work if necessary, and close them.

2 In the Explorer, click the Filesystems tab and navigate to the examples directory. Right-click the
examples directory, and select New Package – call it imageviewer. You will see the new
package appear in the Explorer.

3 Right-click the new package, select New From Template | Swing Forms | JFrame. Name the new
JFrame ImageViewer. Click Finish – the Editor, Form Editor and Component Inspector
windows will open.

4 Select ImageViewer node in the Component Inspector and set its title property to Image
Viewer and press ENTER.

Adding Components:

1 First we will add a menu to the JFrame. Flip to the Swing tab of the Component Palette, and
select JMenuBar. Click anywhere on the Form Editor surface to add the menu bar. You will see a
menu appear on the form surface. In the component listing in the Component Inspector, you will
see a menu bar. If you expand its node, you will see a menu listed. Initially the menu has no item.

2 We will add some elements to this menu, using the Menu Editor. Right-click on the menu

Tutorial Three: The Image Viewer

27

(JMenu1) in the Component Inspector and choose New | JMenuItem. You will see JMenuItem
appear below JMenu1.

3 Right-click on JMenu1 again and choose New | Separator. You will see the separator appear below
the first menu item.

4 Next we will add a second menu item. Again right-click on JMenu1 and select New | JMenuItem. It
will appear below the separator in the menu listing.

5 With the JMenu selected in the Component Inspector, scroll through the list of its properties to
the text property; set this to File. Press ENTER to set the new value. Change its variable
name from jMenu1 to fileMenu.

6 Select the first menu item in the Component Inspector, change its text to Open, and its
variable name to openMenuItem.

7 Similarly for the second menu item, change its text to Exit, and its variable name to
exitMenuItem.

Tutorial Three: The Image Viewer

28

8 Next we will add a JDesktop to the frame, where the images will be displayed. Select JDesktopPane
from the Swing (Other) tab of the Component Palette, and place it on the center panel of the Form
Editor surface. Set its variable name in the Component Inspector property listing to
desktop.

Adding the Code:

Now we need to generate the event handlers for the menu items. There are several ways of doing this.
We will demonstrate two of them here.

Adding the event handler:

1 Firstly, for the Open menu item, simply double-click the item in the component list in the
Component Inspector. You will see the Editor jump towards the bottom of the code, and the
new handler generated.

2 For the Exit menu item, this time actually select Exit from the Menu on the Form Editor surface.
You will again see the new handler generated in the Editor window.

We will now add some code to these event handlers.

Adding code for the event handlers:

1 Firstly, for the File | Exit Menu item: find the exitMenuItemActionPerformed handler.
There will be a line immediately following reading // Add your handling code here.
Add the following line immediately below this:

System.exit(0);

2 Next, for the File | Open menu item: find the openMenuItemActionPerformed handler – this
should be just below the Exit menu handler – and copy the following code immediately below the

Tutorial Three: The Image Viewer

29

// Add your handling code here comment line.

java.awt.FileDialog fd = new java.awt.FileDialog (this);
fd.show ();
if (fd.getFile () == null) return;

This code simply displays the standard File | Open dialog, and returns if the Cancel button is
clicked.

3 Add the following four lines immediately below this (making sure that any lines that wrap below
do not wrap when you paste them to the Editor):

ImageFrame ifr = new ImageFrame (fd.getDirectory () + fd.getFile
());

desktop.add (ifr, javax.swing.JLayeredPane.DEFAULT_LAYER);
ifr.setSize (200, 200);
ifr.setLocation (0, 0);

This is the code that handles the display of the images. We will create ImageFrame in Part Two.

Save the form from the File menu, and close the Form Editor.

In Tutorial Three: Part Two, we will build the ImageFrame.

Tutorial Three: Part Two
ImageFrame

To build the ImageFrame, follow these steps:

1 Right-click on the imageviewer package in the Explorer, and select New From Template | Swing
Forms | JInternalFrame. Name the new form ImageFrame. Click OK. The Form Editor will open,
and the source will open (assuming your Editor window is still open from Part One) as a new tab
in the Editor window.

2 From the Swing tab of the Component Palette, select JScrollPane, and place it on the center panel
of the new form. Again from the Swing tab, select JLabel, and place it on the JScrollPane.

3 Change the JLabel variable name to imageLabel in the Component Inspector. Set the text to
an empty string, by removing the default text (jLabel1) in the Component inspector listing.

4 Select the top level node of the Component Inspector – ImageFrame. Scroll through the list of
properties, and double-click on each of the following items to toggle the property's value from
False to True:

• closable
• iconifiable
• resizable

This will allow us to close, iconify and resize any images we have open in the Image Viewer.

5 Lastly, we will add some code to the Editor. In the code marked /** Initializes the
Form */ towards the top of the source, modify the declaration reading public
ImageFrame() and add parameters so that the line reads

public ImageFrame(String imageName) {

Under the initComponents (); line in this same block, add the following:

Tutorial Three: Part Two

31

setTitle (imageName);
imageLabel.setIcon (new javax.swing.ImageIcon (imageName));

The Image Viewer is now complete. Right-click on the imageviewer package in the Explorer, and
select Compile All. Watch the status bar of the Main Window to see the progress of the compilation.
Once completed, select the ImageViewer object in the Explorer, and execute it using the Execute icon
on the Main Window.

Use the File menu to open any GIF or JPG images you have on your local drive(s). If you don't have
any images handy, browse to $FORTE4J_HOME/docs/Tutorial/images/, where
$FORTE4J_HOME is your Forte For Java installation directory, and select any file.

You can open multiple images, resize them, iconify them, and close them.

This concludes Tutorial Three.

Tutorial Four: The
Debugger
In this tutorial we will demonstrate use of the debugging subsystem of Forte For Java. We will use the
completed code for one of the earlier tutorials – part three of Tutorial One, the advanced version of
the Clock. The completed code for this tutorial (and all other tutorials) is included with Forte For
Java, and can be found under Development/tutorial/ in the Forte For Java Explorer.

The Debugger allows you to set and remove breakpoints, watch variables, track the state of threads,
and more. All of this can be done within the simple and intuitive graphical user interface.

Preliminary Setup:

◊ At a later stage in this tutorial we will need to access the included TimerBean source. To make
this source accessible to the IDE, we need to mount it as a new file system. From the Tools menu
in the Main Window, select Add Directory. A standard Browse dialog will open. Navigate to your
Forte For Java installation directory, and select the sources subdirectory. Click Add, and you
will see a new file system appear in under the Filesystems tab in the Explorer.

Tutorial Four: The Debugger

33

Working with Breakpoints

1 Close any sources and forms you may have open, and terminate any running processes. Flip to
the Editing Workspace, open an Explorer window, and expand the
Development\tutorial\clock hierarchy. We will use the final stage of this tutorial – in the
part3 subdirectory. Double-click on ClockFrame to open this object in the Editor, Form
Editor, and Component Inspector.

2 Click the Compile icon in the Main Window, or use the keyboard shortcut F9, to compile this
source. You should see the Main Window status line indicating the progress of this command. (If
you get a warning about a deprecated API, ignore it – it is harmless in this case.)

3 In the Editor window, find the main method, and position the cursor on the first line of the body.
We will add a breakpoint to this line. Right-click on the line and choose Add/Remove Breakpoint
from the contextual menu or press CTRL+F8. You will see the line highlighted in blue, indicating
a breakpoint is set on that line. (Note that putting a breakpoint on the previous line, the one
declaring the method, will not work for main() – Java calls the body of main methods in a
special way for the debugger, and you cannot trace into it.)

Tutorial Four: The Debugger

34

The debugging session

1 Let's start the debugging session. From the Debug menu in the Main Window, choose Start
Debugging, or press F5. HotSpot users must set the Classic property to True on the property
sheet for Debugger Types / Standard Debugging/ Standard Debugging in Project
Settings (choose Project | Settings... from the main menu to open the Project Settings window).
Forte For Java will switch to the Debugging Workspace, and two new windows will open – the
Debugger window and the Output window.

The Output window is split vertically, the left panel displaying the output of the debugged
program and the right panel showing messages from the debugger itself.

The Debugger window is used to manipulate breakpoints and watch program variables and the
state of threads. These are each displayed under a separate tab. Currently under the Breakpoints
tab you will see the breakpoint we have just set, listed by source name and line number.

Tutorial Four: The Debugger

35

You will see several messages from the debugger in the Output window, and then the debugger
will halt at the breakpoint in the main method. The blue-highlighted line in the Editor will change
to pink to indicate where execution has halted.

2 At this point you can continue (ALT+F5), Trace Over the current line (F8), or Trace Into the
function called on the current line (F7). We wish to step into ClockFrame, so push F7, or select
Trace Into from the Debug menu in the Main Window and then push CTRL+F7 and F7 again.

You will see another line of output from the Debugger in the Output Window, and the Editor
window will jump to the constructor of the ClockFrame class and again halt. You should see a
pink highlighted line where the debugger is currently stopped.

3 You will next break at the first of the three variable declarations manually entered when creating
the tutorial (private GregorianCalendar gCal ...). Push F8 to trace over this; trace over both others
by pushing F8 twice more.

4 The pink line highlighting the current point in the code should now be at the line reading
initComponents ();. Push F7 to trace into this. You are halted on the line where the
instance of com.netbeans.timerbean.Timer is created. Press F7, then CTRL+F7, and
then F7 again to step in. Assuming you have mounted the sources directory as a file system as
described in the Preliminary Setup section, the Timer source will open in the Editor window, and
the Debugger session will now step into it. The pink highlighted line indicates the point in the
source where the Debugger is stopped.

Tutorial Four: The Debugger

36

5 Press ALT+F5 to continue. The ClockFrame will open and run.

6 Find the tmrSecondsOnTime() method in the ClockFrame source, and set a breakpoint
(CTRL+F8) on the line declaring the method. The next time the program flow goes through this
point, execution will halt, and the blue breakpoint line will turn pink.

Watching Variables

1 Flip to the Watches tab of the Debugger window. Here you can monitor the values of individual
variables during execution. To add a new watch, you can select Debug | Add Watch from the Main
Window or right-click on the root item of the Watches tree on the Watches tab of the Debugger
window, and select Add Watch. You can also right-click on the variable in the editor and select Add
Watch. Now go to the tmrSecondsOnTime() method, right-click on the variable timeTxt,
and press OK in the Add New Watch dialog box. timeTxt will appear in the Watches tree in
the Debugger Window.

2 Push ALT+F5 to continue the debugging session. After one second of execution,
tmrSecondsOnTime() will be called again, and execution will again halt. The value of
timeTxt displayed in the Debugger window will update when debugger moves over it (an
increment of one second).

Tutorial Four: The Debugger

37

It is possible to watch multiple variables simultaneously – simply add a watch as before. All
watched variables are listed in the Debugger Window. You can delete watched variables by
selecting them in the Watches tree and pressing the DELETE key, or by selecting Delete from
the popup menu. If a variable is not in the current scope, it does not display any value.

As you use ALT+F5, F7, and F8 to continue, step into, and step over the code, respectively, you
can monitor the values of the watched variables at each stage.

Threads

Under the threads tab of the Debugger window, the current state of all threads of the program are
listed.

Ending the debugging session

To end a debugging session, select Debug | Finish Debugging from the Main Window, or use the
keyboard shortcut SHIFT+F5.

Tutorial Four: The Debugger

38

Other Features

• The state of the debugging session, including breakpoint locations and watched variables, is
preserved across sessions. It is not necessary to explicitly save the session.

• You can customize the Debugging subsystem from the Debugger Types node in the Project
Settings window and the Debugger Settings node in the Global Options window. For
more information, see the User’s Guide to Forte for Java, Community Edition.

