Hummingbird Basic™ Language
|

hFHummingbird““

8157-5M

Hummingbird Basic™ Language Programmer’s Guide
0710 8157-5M
8/15/01

Hummingbird Ltd.

1 Sparks Avenue, Toronto, Ontario, Canada M2H 2W1

Tel: +1-416-496-2200 Toll Free Canada/USA: 1-877-FLY-HUMM (1-877-359-4866)
Fax: +1-416-496-2207

E-mail: support@hummingbird.com or getinfo@hummingbird.com

FTP: ftp.hummingbird.com

For more information, visit www.hummingbird.com

RESTRICTED RIGHTSLEGEND. Unpublished rights reserved under the copyright laws of the United States. The SOFTWARE is provided with
restricted rights. Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (2)(ii) of The
Rightsin Technical Dataand Computer Software clause at DFARS 252.227-7013, subparagraph (c)(1) and (2) (a) (15) of the Commercial Computer
Software-Restricted Rights clause at 48 CFR 52.227-19, as applicable, similar clausesin the FAR and NASA FAR Supplement, any successor or
similar regulation.

Information in this document is subject to change without notice and does not represent a commitment on the part of Hummingbird Ltd. Not all
copyrights pertain to all products.

© 1990-2001 Hummingbird Ltd. All rights reserved.

Exceed, Exceed 3D, Exceed onDemand, Exceed PowerSuite, Exceed X Development Kit, Exceed Web, HostExplorer Print Services, HostExplorer,
HostExplorer Web, HostExplorer Deployment Wizard, Hummingbird Connectivity Security Pack, Hummingbird Basic Language,

Hummingbird CAP, CAP Server, Hummingbird e-Toolkit, JUMP, Enterprise Toolkit for JuMP, Hummingbird e-Gateway, Hummingbird FTP,
Hummingbird G2G, Hummingbird Web Server, Hummingbird SOCKS Client, NFS Maestro, NFS Maestro Gateway, NFS Maestro Server,

NFS Maestro Solo, PrintExplorer, Web Update, and XWeb are trademarks of Hummingbird Ltd. and/or its subsidiaries.

ACKNOWLEDGEMENTS Some portions of the code have been contributed by MIT. Portions copyright © Blue Sky Software Corporation. All
rights reserved.

All other copyrights, trademarks, and tradenames are the property of their respective owners.

DISCLAIMER Hummingbird Ltd. software and documentation has been tested and reviewed. Nevertheless, Hummingbird Ltd. makes no
warranty or representation, either express or implied, with respect to the software and documentation included. In no event will Hummingbird Ltd.
beliable for direct, indirect, special, incidental, or consequential damages resulting from any defect in the software or documentation included with
these products. In particular, Hummingbird Ltd. shall have no liability for any programs or data used with these products, including the cost of
recovering such programs or data.

mailto:support@hummingbird.com
mailto:support@hummingbird.com
mailto:getinfo@hummingbird.com
mailto:getinfo@hummingbird.com
ftp://ftp.hummingbird.com/
ftp://ftp.hummingbird.com/
http://www.hummingbird.com/

Contents

Chapter 1: Introducing Hummingbird Basic 1
About Hummingbird Basiccccreeriruerinirerinecineenieerincretneenieeseeb ettt seesseseseenens 3
Development TOOIS ...ccouiiiuiiiiiiiiieie ettt ettt et ettt e s e stee e an 4
Hummingbird Basic FEaturesccocevieriiiniiiiiiiiiniiiieninieeecceeetcee e 4
ACCESSIDILILY .uenveninieriieieenieictet ettt ettt sttt b ettt be et et 6
Microsoft Accessibility OPtioNS .eeeceeeereeeiieiiieiiie ettt 7
Hummingbird Information Resourcesccooeeevininininiiiicinniiicciinccccicnes 8
Documentation ReSOUIcesccocivviiiiiiiiniiiiniiiiniiiiiii e 8
Technical SUPPOTL .ooueiieiiiieee ettt et ettt et e s 9
Mailing Lists and USer GrOUPScecueevieriieriirienienieenieieete et see e senesnees 9
Chapter 2: Hummingbird Basic Scripts 13
SAMPLE SCTIPES cevevenrirenieieieteeetee ettt ettt ettt sttt b e ettt et et e b et e b et e et et eaentebans 15
Programming Terminology ..o 17
Structure of a Hummingbird Basic SCriptccvevreinererernerneernecnieeneeeseseeseeieeneenes 18
Variable SCOPE ..eoouiiiiiiee e 19
Functions and Control Statementscccoceiviiiiiiniiiniiniiiiiiccce e 19
CoNtrol STAtEIMENTS ...evuiiriiiriiiiieiecit ettt s s e 22
Variables, Constants, and Data TYPESccceeeveverrerererineeerninereneesenseenieestesenessesesseseeseeneaees 22
Variables and CONSTANTS ..ccccueerrieerieeriiieeiienieeeteentee st esieeessbeeseeesseeenmeeenne 23
DAta TYPES evrveeeeiiieiiiieeee ittt ettt e e rrrete e e et et e s st e e s e raee e e s e eeeeeas 24
Expressions and OPErators ...ttt ssssssesesenes 32
NUMETIC OPCIAtOTS .eeveeieiiiiieiiiieeiiteeretteeeitteeeete e sreeeeerree s et e s sreeessnreeesenneeesnee 32
SEIING OPETALOTS .eivviiiiiiriiiiiieiiie ittt ettt ettt e sr e s esre e sabe e saae e sanesnne s 32
COmMPATiSON OPETATOTS ..eeeieeeieeeiiieeeiieeeeeteeeeittteeeteeeesreeeeereeessbeeeesseeesaneeessansees 33

LOGICAl OPLIAtOTS oueeeeiiieiiieeiiieiieeiteertte ettt e stee et esteeeste e e bt e sbe e e bt e sbeesseesbeesanees 33

Hummingbird Basic™ Language Programmer’s Guide

Programming Tips and Coding SUZZESTIONSceueveueireriruererereiinirieiereeeneneerereeeseseenenene 34
Naming Variables and CONStantsc...cccceeeueeveerviernienieeneenieeneeeeneeseereere e 34
Global Variablescccociiiiiiiiiiiiiiiiiii 34
Declaring Variablesc...eocueeiiiiiiieiiieieenieeeee ettt et e 34
OPLION BASE ittt et s e 34
DYNAMIC ATTAY cvviiiiiiiiiiiiiiiiee ettt ettt et et e sar e b sine e saneesnnees 34
RUNTIME EITOT eviiiiiiiiiiiiiiiiccec ettt e 35
CONLIOLS ettt ettt s s s st 35
COoMPAIDILILY .eeeuiiiiiiiiiiieieee et s s s 35
Checking for the Existence of PC Filesccccevveriiiriiiiieeniieneecieeneeeeeeenn 35
Using WInN32 AP ..ottt s 36
Network Logon NAMEccocuiiiiriiiiiiiiiiicnitee ettt s 36
Always Visible Message BOX ...c.ccciiviiriiiiiiiiiiiieeieetcieeie ettt 37
Working with Windows RegiStryccccecvriiriiniiiniiiniiiiinecieeieciecreeieevennene 38
OLE FUNCHONS .uviiiiiiiiiiiiiiiiiiiiic ittt 39

Error-Handling and Debuggingccocvveviiiinininiiiccininiccecciniieecteneeeeeeeesenenene 40
EXTOr TYPES oottt e 40
Debugging Scripts for Syntax and Logic Errorscc.ccceveeeveeeneeniiennicenieeeneeenes 41
Handling RUNtime EIrors ...c.cceeeveeiieeniiiiieeeieiecee e 42
TrapPing EITOTS .eciouiiiiiiiiiiiieeeie ettt et e s emeee e eeee 42

Chapter 3: Using Development Tools to Edit Scripts 49

About Hummingbird Basic Workbenchcccoeoveivniinennnccrncncenccnceneeeenenes 51
The Workbench Interfacecccceeveeiiniiiiiiniiiiiiinieceeceeecee e 51
Creating a Script File at @ Glancecccceveeviriiiniiiniieniiniccececceece e 53

Compiling and Running a Script FIleco.coeeeivrerneineineereeeneseneeneeeseeeseneeeseeenens 55
Running a Script FIle ...oouoviiiiiiiiiiiiiiiiieiececeececece e 55

Chapter 4: Designing Dialog Boxes 57

About DIalog EQItOT ..ccovvveviiiiiiiricieeiciiieieicicctticcetiete ettt ettt 59
Dialog Editor INterfacecccceeviiveriiiniiiiiiiieiiciceeeeceeeceee e 59

Adding Controls to @ Dialog BOX ...ccceeeeivieiririerineirieerenierneeeneenieeseeieeseeseeeseeseeseenes 62

Aligning Controls in the Dialog BOX ...c.ccveirrierneiinicirresneeeneereeeeeeseereeee e 63

Contents

Setting Control PrOPEITIESc.cccceiriririrueieiinirieieicieetnteest ettt e esetnenenes 64
Dialog BOX PTOPEIrtiesccccocievieriiiieriiniiniieieene ettt s e 65
Button Control PrOPertiescccoceeeceerieeniieeniieeniienieeseeesreesieeessreesneeesseeesneeenne 66
OptionButton Control PrOPertiesccccceereerreienieerneenieenieeeeeeseeeeee e 67
Text CONtrol PrOPErties ...c.cccecueeiieriieniienieeeieerieeee ettt et et 68
TextBox (Edit) COntrol Propertiescooceereieriirriienieniceete ettt 69
CheckBox Control PrOPertiescccoceeeieeeieeriieeeieenieesieeseteesteestesetessaeessieesaees 69
ListBOX CONtIol PrOPETTIES ...eeeuviiiieeiiieiiieitte ittt ettt ettt et e e e saee e 70
StaticComboBox Control Propertiesccccceeceeerieererenieenerenieeneeeneeeneeeneeeenes 71
DropComboBox Control Propertiesccoceerveeeeeenienseenneensieeeieenieeeeee e 72
DropListBox Control Propertiescceoceeeeerriersienniensieeneenieeeieesieeeeeeseee e 73
GroupBox Control PrOPErtiescoecuieerieiriieiiiieiiienieeeteeste ettt et s 73
Picture CONtrol PrOPETtIesc.eevcuieriieriieeniienieeeiteesiteesite et e st e et e sbeesee e seeesaee s 74

Integrating a Dialog Box into YOUT SCIiPt .c.coeoevrernerinieenneireeicreneeseeeneeeeseeeseeveeeeenes 75
Defining the Dialog BOX ...ccceiviiriiniiiiiiieiiiececieiecteceeeeee e 76
Displaying the Dialog BOXccceviiiiiiiiniiiiinieiciieececeeee e 76

Dialog Statements and FUNCHONSc.ccceveerirerineerinieerinerteeeeeneesieese et seeeseeseseseeseseene 76
Writing a Dialog FUNCHON .eccviiviiiiiiiiiiiiiiiieeieiiccecceeeee et 79

Putting Tt All TOZETNEToueieiiirieiieeceetceeetercteete ettt seeee 82

Chapter 5: Hummingbird Basic Language Reference 87

Hummingbird Basic Statements and FUNCHONSc.cccvveevereeennenneirieeeeeeneeneeeeneeenenes 89
ATTAYS ovriiiiiiiiiiiciiitt e s aaa e s 89
COMPILET DITECHIVES .eeeuiiriiieiiieiieeiie ettt et ettt e et e ettt e sate e st e st e et e s sateseaeesneas 89
CONIOL FIOW ittt 90
Dates and TIMES ...cocvevuieriiiieriinieeie ettt ettt ettt e eeesene e e e saes 91
Declarationsc.cecieiiiiiiiiiiiiicii i s 92
Defining Dialog BOXEScoivuieiiiiiiieriiieiierieeete ettt sttt 93
Running Dialog BOXESceeiuieiiiiiiieiiieiieeiee ettt 94
Dynamic Data Exchange (DDE) ...cccociiiiiiiniiiiiiniiceceeeeeceeee e 95
Environment Controloccceciriiiiiiiiiiniinienieecteccre e 95
Error-Handling FUNCHONS ...cocueeiiiiiiiiiiiiniiiiecicnieecee et 96
Disk and Directory Controlccccooveeriieniiiniiinieeeeeneeeeeeeiee et 96
File CONtIol ...cocoiiiiiiiiiiiiiiiic s 97
File INPUt/OULPUL weerutiriiiiiiiiiiieeteece ettt s s e 97
Financial FUNCHONS ...ccuiiiiiiiiiiiiiiiiieiieniciececct ettt s 99
NUMETiC FUNCHIONS ..uuviiiiiiiiiiiiiiiieriteeeteiete ettt s 99
Trigonometric FUNCHIONS ...coivciiiiiiiiiiiiieenieeetie ettt e e 100
ODJECLS wveeureerurteeiteeniteet et ettt e sbee e sbt e e sbee e sttt e sbeeesaeeesbeeebeesaneesbeesbeesabeesaneesanes 100

Hummingbird Basic™ Language Programmer’s Guide

Screen INput/OULPUL cooeviiiiiiiiiiiiii e 101
Sring FUNCHIONS .eiviiiiiiiiiiiiiiiciiiente ettt 101
SriNg CONVEISIONS .eeeiririiriiiieereiieeeiiteeeteeeeetteesreeesenreeseereeesenreeessnneeesemreeesaneee 103
VAATIANTS ©oiiviiiiiiiiiiiii i 103
Calling External Functions in a .dllcccoeeieeininiiiiiinninieccctncccceeccenenenene 104
Sample Script: Calling External Functions in a .dllccccccooiiiinniinin. 104
Using Dynamic Data EXChangeccccccccevvniiieininininieccinirnecctneseeeceseeseseseseeenenes 105
DDE SamPle SCTIPT evieiiieiiiiiiieeiieeite ettt e ete sttt e et eete e st esaeesbeesaee e 106
Glossary 109
Index 113

Vi

Chapter 1

Introducing Hummingbird Basic

About Hummingbird Basic
Development Tools
Hummingbird Basic Features

Accessibility
Microsoft Accessibility Options

Hummingbird Information Resources
Documentation Resources

Technical Support

Mailing Lists and User Groups

O \© o X NN = s W

Chapter 1: Introducing Hummingbird Basic

About Hummingbird Basic

Hummingbird Basic™ is a fully functional language that includes a
Workbench for writing and compiling scripts, and a graphical drag-and-
drop Dialog Editor for creating and designing an interface. Hummingbird
Basic can be used to create scripts for the tasks you frequently perform and
want to automate. For example, scripts can be created to automate routine
tasks. The following are some common tasks that may require a
Hummingbird Basic script:

* Ifyou often edit specific files on your PC, then transfer these files to
several UNIX hosts. Create a script using the FTP API functions that
will connect to the host, transfer the designated files, and then
disconnect.

* Ifyou need to perform the same actions on several IBM 3270 or 5250
hosts at the same time. Create a script file with the HLLAPI functions.
This saves you from maintaining the same shell script on a number of
different 3270 hosts.

* Ifyou configure your computer differently depending on what you are
working on, you could write a script to change your PC configuration
back and forth. The script file would allow you to quickly and easily
change the configuration without having to manually edit the files each
time.

In addition to the Hummingbird Basic statements and functions, there is a
set of API and OLE function calls which you can use to customize the
following Hummingbird applications:

 FTP
* HostExplorer

Hummingbird Basic also supports a number of Xlib API functions. These
functions are used to create X clients for your PC.

Note: Xlib API commands are available only if you purchased the
Exceed product. Use only the applications that have OLE API
libraries with Hummingbird BASIC.

Hummingbird Basic™ Language Programmer’s Guide

Development Tools

Hummingbird Basic includes the following development tools:

Workbench A development environment to write, compile and debug
your scripts.

Dialog Editor Accessed from Workbench, this drag-and-drop dialog box
editor lets you design a dialog box without having to manually code one.
When you are finished designing, the code for the dialog box is
automatically generated and updated into your script.

Hummingbird Basic Features

If you are familiar with older versions of BASIC (those that predate
Windows), you will notice that Hummingbird Basic includes many new
features and changes from the language you have learned. Hummingbird
Basic more closely resembles other higher level languages popular today,
such as C and Pascal.

The topics below describe some of the differences you will notice between
the older versions of BASIC and Hummingbird Basic.

Line Numbers and Labels

Older versions of BASIC require numbers at the beginning of every line.
More recent versions do not support these line numbers; in fact, they will
generate error messages.

If you want to reference a line of code, you can use a label. A label can be any
combination of text and numbers. Usually, it is a single word followed by a
colon (:), which is placed at the beginning of a line of code. These labels are
used by the Got o statement.

Subroutines and Modularity of the Language

Hummingbird Basic is a modular language; code is divided into
subprocedures and functions. The subprocedures and functions you write
use the Hummingbird Basic statements and functions to perform actions.

Variable Scope

The placement of variable declarations determines their scope.

Chapter 1: Introducing Hummingbird Basic

Data Types

Modern BASIC is now a typed language. In addition to the standard data
types—numeric, string, array, and record—Hummingbird Basic also
includes variants and objects.

Variables that are defined as variants can store any type of data. For
example, the same variable can hold integers one time, and then, later in a
procedure, it can hold strings.

Objects give you the ability to manipulate complex data supplied by an
application, such as Windows, Forms, or OLE objects.

Dialog Box Handling

Hummingbird Basic contains extensive dialog box support to give you great
flexibility in creating and running your own custom dialog boxes. You
define a dialog box with dialog control statements between the Begi n

D al og. .. End D al og statements, and then display it using the Di al og
statement (or function).

Hummingbird Basic stores information about the selections the user makes
in the dialog box. When the dialog box is closed, your program can access
this information.

Hummingbird Basic also includes statements and functions to display other
types of boxes:

* Message Boxes—Notify the user of an event.

* Password Boxes—Do not echo the user’s keystrokes on the screen.

* Input Boxes—Prompt for a single line of input.

Financial Functions Hummingbird Basic includes a list of financial

functions for calculating such things as loan payments, internal rates of
return, or future values based on a company’s cash flow.

Hummingbird Basic™ Language Programmer’s Guide

Accessibility

Date and Time Functions The date and time functions have been
expanded to make it easier to compare a file’s date to today’s date, set the
current date and time, time events, and perform scheduling-type functions
(such as finding the date for next Tuesday).

Object Handling Hummingbird Basic is an OLE automation controller.
Any OLE-enabled application can be communicated with or controlled
through a Hummingbird Basic script.

The object data type permits your Hummingbird Basic code to access other
software applications by manipulating the available OLE properties and
methods of the other application.

Environment Control Hummingbird Basic includes the ability to call
another software application and send keystrokes to the application. Other
environment control features include the ability to run an executable
program, temporarily suspend processing to allow the operating system to
process messages, and return values in the operating system environment.

Hummingbird products are accessible to all users. Wherever possible, our
software was developed using Microsoft Windows interface standards and
contains a comprehensive set of accessibility features.

Keyboard shortcuts All menus have an associated keyboard shortcut. To
access any menu, press Alt and the underlined letter in the menu name as it
appears on the interface. For example, to access the File menu in any
Hummingbird application, press Alt + F.

Once you have opened a menu, you can access a menu item by pressing the
underlined letter in the menu item name, or you can use the arrow keys to
navigate the menu list. For menu items with an associated keyboard
shortcut, the shortcut is listed on the menu to the right of the item.

Directional arrows Use the directional arrows on the keyboard to
navigate through menu items or to scroll vertically and horizontally. You
can also use the directional arrows to navigate through multiple options.
For example, if you have a series of radio buttons, you can use the arrow
keys to navigate the possible selections.

Chapter 1: Introducing Hummingbird Basic

Tab key sequence To navigate through a dialog box, press the Tab key.
Selected items appear with a dotted border. You can also press Shift + Tab to
go back to a previous selection within the dialog box.

Spacebar Press the Spacebar to toggle check boxes on and off or to select
buttons in a dialog box.

Esc Press the Esc key to close a dialog box without implementing any new
settings.

Enter Press the Enter key to select the highlighted item or to close a dialog
box with the new settings. You can also press the Enter key to close all About
boxes.

ToolTips ToolTips appear for all functional icons. This feature lets users
use Screen Reviewers to make interface information available through
synthesized speech or through a refreshable Braille display.

Microsoft Accessibility Options

Microsoft Windows environments contain accessibility options that let you
change how you interact with the software. This feature can add sound,
increase the magnification, and create sticky keys.

To access the Microsoft Windows Accessibility options, open Control Panel
and click Accessibility.

If you installed the Microsoft Accessibility components for your Windows
system, you can also find other Accessibility tools on the Start menu under
Programs/Accessories/Accessibility.

To add the Accessibility components:

1 In Control Panel, double-click Add/Remove Programs.

2 On the Setup tab, select the Accessibility Options check box and click
Apply.

3 Click OK.

Hummingbird Basic™ Language Programmer’s Guide

Hummingbird Information Resources

Hummingbird provides the following sources of information regarding
your product.

Documentation Resources

Your product documentation set consists of both print and online sources.

Manuals Hummingbird manuals contain conceptual information on
your product; procedural information on installing and using the product
and related applications; and some manuals contain programming
reference, interface reference, and troubleshooting information.

All manuals are available in print and online. The online versions require
Adobe Acrobat Reader 5.0 and are installed only if you do a Complete
installation.

Online Help The online Help is a comprehensive, context-sensitive
collection of information regarding your Hummingbird product. It
contains conceptual and reference information, and detailed, step-by-step
procedures to assist you in completing your tasks.

Release Notes The release notes for each product contain descriptions of
the new features and details on release-time issues. They are available in
both print and HTML. The HTML version is automatically installed when
you install the software. Read the release notes before installing your
product.

Chapter 1: Introducing Hummingbird Basic

Technical Support

You can contact the Hummingbird Technical Support department Monday
to Friday between 8:00 a.m. and 8:00 p.m. Eastern Time.

Hummingbird Ltd.
1 Sparks Avenue, North York, Ontario, Canada M2H 2WA1

Canada and the USA International

Technical Support: | 1-800-486-0095

+1-416-496-2200
General Enquiry: | 1-877-FLY-HUMM

Main: | +1-416-496-2200

Fax: | +1-416-496-2207

E-mail: | support@hummingbird.com

FTP: | ftp.hummingbird.com

Online Request Form: | www.hummingbird.com/support/nc/request.html

Web Site: | www.humminghbird.com/about/contact.html

Mailing Lists and User Groups

For tips, additional help, and contact with other Hummingbird users on all
operating systems, subscribe to Hummingbird Exposé Online or join the user
group dedicated to your Hummingbird product.

Subscribing to Hummingbird Exposé Online

Hummingbird Exposé Online is an electronic mailing list and online
newsletter. It was created to facilitate the delivery of Hummingbird
product-related information. It also provides tips, help, and interaction
with Hummingbird users.

To subscribe to Hummingbird Exposé Online:

1 Open your web browser and type the following address:

htt p: // waw. hunm ngbi rd. coni expose/ about . ht n

mailto:support@hummingbird.com
ftp://ftp.hummingbird.com
http://www.hummingbird.com/support/nc/request.html
http://www.hummingbird.com/about/contact.html
http://www.hummingbird.com/expose/about.html

Hummingbird Basic™ Language Programmer’s Guide

10

2 In the Subscribe section, type your full name, e-mail address, and
language preference. Then click Subscribe.

Note: To discontinue your subscription, in the Unsubscribe
section, type your e-mail address then click Unsubscribe.

To subscribe to the Mailing List or User Group:
1 Open your web browser and type the following address:

htt p: / / waw. hunm ngbi r d. cond support / user gr oups. ht n

2 On the User Groups and Mailing Lists page, click a product link.
3 On the Archives page, scroll down to the Subscription Instructions.

4 In the Online Subscriptions section, type the name you want to display
on the User Group and your e-mail address.

5 Click Subscribe. The browser opens a confirmation page to tell you your
subscription was successful. You can now post messages to the User
group. See posting instructions in Joining a User Group below.

Note: To discontinue your subscription, in the Online
Unsubscriptions section, type your e-mail address then click
Unsubscribe.

To search the mailing list archives:
Go to the following web site:

htt p: / / waw. hunmm ngbi r d. cond support / user gr oups. ht n

Joining a User Group through E-mail

The user group is an unmoderated electronic mailing list that facilitates
discussion of product-related issues and UNIX issues to help users resolve
common problems and to provide tips, help, and contact with other users.

http://www.hummingbird.com/support/usergroups.html
http://www.hummingbird.com/support/usergroups.html

Chapter 1: Introducing Hummingbird Basic

To join a User Group:

1 Send an email to | i st ser v@unmmi ngbi rd. com Leave the Subject line
blank.

2 In the body of the e-mail message, type the following, depending on
which product you are programming:

subscri be exceed-users Your Nanme
subscri be hostexpl orer-users Your Nane

subscri be nfsmaestro-users Your Nane

To post a message to a User Group:

Create an e-mail and send it to the following address, depending on which
product you are programming:

exceed- user s@umm ngbi r d. com
host expl or er - user s@unm ngbi rd. com

nf smaest r o- user s@unm ngbi r d. com

11

mailto:listserv@hummingbird.com
mailto:exceed-users@hummingbird.com
mailto:hostexplorer-users@hummingbird.com
mailto:nfsmaestro-users@hummingbird.com

Chapter 2

Hummingbird Basic Scripts

Sample Scripts 15
Programming Terminology 17
Structure of a Hummingbird Basic Script 18
Variable Scope 19
Functions and Control Statements 19
Control Statements 22
Variables, Constants, and Data Types 22
Variables and Constants 23
Data Types 24
Expressions and Operators 32
Numeric Operators 32
String Operators 32
Comparison Operators 33
Logical Operators 33
Programming Tips and Coding Suggestions 34
Naming Variables and Constants 34
Global Variables 34
Declaring Variables 34
Option Base 34
Dynamic Array 34
Runtime Error 35
Controls 35
Compatibility 35
Checking for the Existence of PC Files 35

Using Win32 API 36

Network Logon Name

Always Visible Message Box
Working with Windows Registry
OLE Functions

Error-Handling and Debugging

Error Types

Debugging Scripts for Syntax and Logic Errors
Handling Runtime Errors

Trapping Errors

36
37
38
39

40
40
41
42
42

Chapter 2: Hummingbird Basic Scripts

Sample Scripts

Before starting, you may find it useful to review the provided sample scripts.
Source files (. ebs) and their associated compiled files (. ebx) are located in
the user directory under

Applications Data\ Huimm ngbi r d\ Gonnecti vi t y\ ver si on\ Accessori es\ Eb
The following sample scripts are provided:
dialog.ebs This sample script displays the various types of dialogs that

Hummingbird Basic can use. It also stores information as shown below that
you either select or press, and displays it when you press Exit.

* Input Boxes

* OK, Cancel Button
* Text Boxes

e Combo Boxes

e Drop Down Lists

e List Boxes

* Option Groups

e Push Buttons

testftp.ebs FTP automation using OLE. This sample script demonstrates
how you can use FTP OLE functions to log onto a host and download a file
automatically.

dde.ebs This sample script creates a Program Group called “XXX”.

filelist.ebs This OLE example is a Hummingbird Basic macro that
facilitates the downloading of files from a CMS or TSO account. It must be
run from the “Ready” prompt of a CMS or TSO HostExplorer session.

pastword.ebs This macro copies a screen from HostExplorer, starts
Microsoft Word and pastes the screen to Word. You need to have
HostExplorer running before you run the script.

15

Hummingbird Basic™ Language Programmer’s Guide

16

sendrecv.ebs This Hummingbird Basic macro prompts for the name of a
. bat file and executes any file transfer commands (that is Send or Receive)
found within it. It must be run from the “Ready” prompt of a CMS or TSO
HostExplorer session.

Note: This sample script is provided as is, and is intended solely
to help you create your own scripts. It is not supported by
Hummingbird Ltd.

testl.ebs This sample script lists the index of the field attribute which
contains the field at the given position. You can also simply list each row of
the screen instead. The current OIA is displayed below the list box.
(Demonstrates usage of host . r ows and host . col utms methods).

test2.ebs This script demonstrates how to access information using the
Field object. In TCP3270, you can access the screen as an entire string, row
by row, or using field objects. The advantage of the field objects is that they
are not dependent upon their position.

test3.ebs This is a demonstration of configuring TN3270 using the
appropriate method. The Cfg3270 sub-object configures the emulator.
Anything that can be configured via the user dialogs can be configured
using the Cfg3270 object.

testd.ebs This sample script demonstrates how to perform file transfers to
a host system. The file transfer is implemented in an asynchronous manner
allowing the script to continue to run while the file transfer is taking place.
The method | sXf er tests if the file transfer is complete. You can also use the
Vi t Xf er method to wait until the file transfer completes.

test5.ebs This sample script demonstrates some of the window functions.

Chapter 2: Hummingbird Basic Scripts

Programming Terminology

For more information, see
“Structure of a
Hummingbird Basic
Script” on page 18.

For more information, see
“Expressions and
Operators” on page 32.

A program or a script is a logical series of instructions. Each instruction is
based on a set of syntax rules. These rules are interpreted by the compiler. If
the syntax in your script is clean and there are no errors, the compiler
creates an . ebx file which you can run to carry out your task.

The following elements make up a Hummingbird Basic script:

Variables—Variables are place holders for values. Variables are declared,
named, and assigned a data type.

Statements—Statements define how a task in the script is carried out.
They provide the conditional logic or looping for a procedure. They
also define the state of a dialog box such as its display and
configuration.

Functions—A function is a construct which, when executed, returns a
value. Hummingbird Basic contains a variety of built-in functions you
can use in your scripts. You can also write your own functions.

Procedures—A procedure contains a set of variables and statements
which you defined for the script. There are two different types of
procedures in Hummingbird Basic: functions and subprocedures. A
Hummingbird Basic script can contain one main subprocedure. When
the script is run, the main subprocedure will be executed first.

Expressions—An expression is a collection of terms which perform a
mathematical or a logical operation. The terms are either variables or
functions that are combined with an operator to evaluate a result. There
are several types of operators.

Error Handling—Error handling is a special set of instructions that
enable your script to trap errors which may occur while your script is
running.

Additional terminology is included in the Glossary.

17

Hummingbird Basic™ Language Programmer’s Guide

Structure of a Hummingbird Basic Script

18

A Hummingbird Basic script is broken up into manageable procedures,
each performing a specific task or set of tasks.

There are two procedure types in Hummingbird Basic:

* Subprocedure—Subprocedures define parameters and do not return
values.

* Function procedure—Function procedures return values.

A subprocedure is defined with the Sub. . . End Sub statement. You invoke it,
either with the Cal | statement, or by entering it on a line by itself. If you use
the Cal | statement, enclose any arguments you are passing to the
subprocedure in parentheses. For example, the following two statements are
equivalent:

GetFTP filel,file2,file3
Call GetFTP(filel,file2file3)

A procedure must be defined in the script before it is invoked. If you don't
place your procedure above a procedure that references it, then use the
Decl ar e statement to forward declare a procedure.

All Hummingbird Basic scripts must contain a main subprocedure. The
main subprocedure is the starting point of the script. All function
procedures must eventually trace back to the main subprocedure. Since the
main subprocedure usually calls other procedures, it can be placed near the
end of the script.

Note: A Hummingbird Basic script can contain only one main
subprocedure.

Chapter 2: Hummingbird Basic Scripts

Variable Scope

The placement of variable declarations determines their scope.

Scope Definition

Local Dimensioned inside a subprocedure or function. The variable is
accessible only to the subroutine or function from which it was
dimensioned.

Module Dimensioned outside any subroutine or function. The variable is

accessible to any subprocedure or function in the same file.

Global Dimensioned outside any subroutine or function using the
d obal statement. The variable is accessible to any subroutine
or function in any module (file).

Functions and Control Statements

Functions and control statements determine the results of your script. A
function calculates and returns values as determined by its arguments. A
control statement directs the flow of logic during the execution of
commands.

Functions and Function Arguments

Functions return values. You can use arguments to pass information
required to compute a returned value. Functions may or may not have
arguments.

Arguments may or may not be enclosed within parentheses (). Whether or
not you use parentheses depends on how you want to pass the argument to
the function subprocedure. The argument can be passed either by value or
by reference.

If an argument is passed by value, it means that the variable used for that
argument retains its value when the function returns to the caller. If an
argument is passed by reference, it means that the variable's value might be
(and probably will be) changed for the calling procedure. For example,
suppose you set the value of a variable X to 5, and pass X as an argument to

19

Hummingbird Basic™ Language Programmer’s Guide

20

a subprocedure, named nysub. If you pass X by value to nysub, the value of
X will always be 5 after nysub returns. If you pass X by reference to mysub,
however, X could be 5 or any other value depending on the outcome of
nysub.

To pass an argument by value, use one of the following syntax options:

Call nysub((X))
nysub(X)

or

y=nyfunction((X))
Cal | nyfunction((X))

To pass an argument by reference, use one of the following options:

CGall nysub(X)
nysub X

or

y=nyfuncti on(X
Cal | nyfunction(X)

Externally declared subprocedures and functions (such as . dl | functions)
can take byVal arguments. In this case, those arguments are always passed
by value.

Named Arguments

When you call a function that takes arguments, you usually supply values
for those arguments by listing them in the order shown in the syntax for the
statement or function.

For example, suppose you define a function this way:

nyf unct i on(i d$, act i on% suppval ueg)

Chapter 2: Hummingbird Basic Scripts

M/f unct i on requires three arguments: i d, acti on, and val ue. When you call
this function, you supply those arguments in the order shown. If the
function contains just a few arguments, it is fairly easy to remember the
order of each of the arguments. However, if a function has several
arguments, and you want to be sure the values you supply are assigned to
the correct arguments, use named arguments.

Named arguments are identified by name rather than by their position in
the syntax. To use a named argument, use the following syntax:

nanedar g: =val ue

Using this syntax for nyf uncti on, you get:

nyfunction id: =1, action:="get", value:=0
The advantage of named arguments is that you do not need to remember
the original order in which they were listed in the syntax.
The following function call is also correct:

nyfunction action:="get", val ue: =0,id: =1
With named arguments, order is not important. The other significant
advantage to using named arguments is that when you call functions or
subroutines that have a mix of required and optional arguments, you do not
need to use commas as place holders in the syntax for the optional

arguments. You can specify just the arguments you want to use and their
values, and forget about their order in the syntax.

For example, if nyf uncti on is defined as:

nyfunction(id, action,value, Qptional counter)

You could use named arguments as follows:
nyfunction id:="1",action: ="get", val ue: ="0"
or
nyfunction val ue: ="0", counter: ="10", action;: ="get",id:="1"

Note: Although you can shift the order of named arguments, you
cannot omit required arguments.

21

Hummingbird Basic™ Language Programmer’s Guide

Control Statements

Control statements provide the flow of logic in your script. These
statements direct the script as to when, if, and how a set of commands are
performed and executed. The following control statements can be included
in your script:

If...Then... Hse
For. .. Next

Do. .. Loop

Wi l'e.. . V¢nd

Sel ect Case
O...Gto

This example shows the use of an I f. .. Then. . . B se conditional statement:

Sub Main
If nyvariable = 0 Then
nsgbox "Are you sure you want to restart?"
H se
nsgbox "Are you sure you want to quit?"
End I f
End Sub

Variables, Constants, and Data Types

22

Variables store values that are returned from statements and functions. A
variable is given a name, and then assigned a data type. Its data type
determines the kind of value that is stored by the variable.

Hummingbird Basic supports standard BASIC data types such as Numeric,
String, record, array, and Variant data types. With the exception of Variant
type variables, the variable you define can contain only data of the declared
type. In addition to this, Hummingbird Basic also supports Dialog Box
Records and Objects as data types.

Chapter 2: Hummingbird Basic Scripts

For more information on
variable scoping, see
“Structure of a
Hummingbird Basic
Script” on page 18.

Variables and Constants

The following may be defined in a script:
* Dimensioned Variables

* Defined Constants

* Global Variables

» Static Variables

Note: The name you give to a variable or constant can contain
letters, numbers, and underscores. It is generally a good idea to
give your variables meaningful names so that they can be easily
recalled and understood when debugging your script.

To declare a variable in Hummingbird Basic, use the D mstatement. When a
variable is declared, it is valid only in the commands that follow the
declaration.

Dimensioned Variables

If a variable is declared at the beginning of your script with the Di m
statement, it is available throughout the script. To reduce the scope of a
variable to a function or a subprocedure, either declare the variable in the
function, or in the body of the subprocedure. For example:

Function interact (i d$)
O mnyvariabl e as | nteger

End Function

Defined Constants

Defined constants retain the value they are assigned throughout a script,
whenever they are referenced in a function or statement.

Constant variables are declared with the Const statement. For example:

Const conPl = 3. 14159265358979

23

Hummingbird Basic™ Language Programmer’s Guide

For more information on
static variables, see
Hummingbird Basic
Language Help.

24

Global Variables

Declare a global variable only if you want to keep the same variable type for
all of your related Hummingbird Basic modules. Global data is shared
across all loaded modules. If an attempt is made to load a module that has a
global variable of a different data type than the existing global variable of
the same name, the module load will fail.

Note: It is best to limit global variable usage.

Static Variables

A Static variable retains its value when it is called from one function to
another. These variable types are generally used by advanced users.

Data Types

As you name and declare your variable, you assign it a data type. The data
type determines what kind of value is stored in the variable. The variable
can only contain data of the declared type, except when you implicitly or
explicitly declare a variable as a Variant data type.

If a variable is not explicitly defined with the O mor @ obal statements, or is
not declared a data type (implicitly declared), then it defaults to the Variant
data type.

Note: It is generally good programming practice to explicitly
declare all your variables. If variables have not been declared, it
may be impossible to track errors that arise in a long and
complicated script. To force variable declaration, use the Qot i on
Expl i cit command.

The following data types are supported by Hummingbird Basic:

e Variant

e Numeric
» String

* Object

Chapter 2: Hummingbird Basic Scripts

Another way to explicitly declare a variable and its type, without having to
type out the entire syntax, is to use data type characters. Data type
characters are appended to the end of your variable name.

For example, these two statements are equivalent:
Dmbird As String
D m bi rd$

The following data type characters can be used:

Character | Type Description
$ Dynamic String Alphanumeric
% Integer 1 byte
& Long Integer 2 bytes
? Portable integer
! Single precision floating point 1 byte
Double precision floating point 2 bytes
@ Currency exact fixed point
Variant

A Variant variable can hold any type of data. This variable changes its data
type depending on how it is assigned. To examine the type of data that a
Variant variable contains, use the Var Type function.

Values returned by this function are explained in the table below.

¥;;i:nt Name Size of Data Range

0 Empty 0 N/A

1 Null 0 N/A

2 Integer 2 bytes (short) -32768 to 32767

3 Long 4 bytes (long) -2.147E9 to 2.147E9

25

Hummingbird Basic™ Language Programmer’s Guide

VEIET Name Size of Data Range

Type

4 Single 4 bytes (float) -3.402E38 to -1.401E-45 (negative)

5 Double 8 bytes (double) | -1.797E308 to -4.94E-324 (negative)
4.94E-324 to 1.797E308 (positive)

6 Currency | 8 bytes (fixed) -9.223E14 10 9.223E14

7 Date 8 bytes (double) | January 1st, 0100 to December 31st,
9999

8 String 0to ~64kbytes | 0to ~64 characters

9 Object N/A N/A

Any newly defined Variant defaults to the Enpty type to signify that it
contains no initialized data. An empty Variant converts to zero when used
in a numeric expression, or an empty string in a string expression.

Nul | Variants have no associated data, and serve only to represent invalid or
ambiguous results. NUl | is not the same as Enpty, which indicates that a
Variant has not yet been initialized.

Numeric

If the variable you declare in your script is a number, you should define its
type. There are six Numeric types. These types are shown in the table below.

Type From To

Integer -32,768 32,767

Long -2,147,483,648 2,147,483,647

Single -3.402823e+38 -1.401298e-45,
?201 298e-45 3.402823466e+38

26

Chapter 2: Hummingbird Basic Scripts

Type From To

Double -1.797693134862315d+308 -4.94065645841247d-308,
0.0,
2.2250738585072014d-308 1.797693134862315d+308

Currency | -922,337,203,685,477.5808 922,337,203,685,477.5807

Portlnt In Windows it is the same as In Windows NT and Windows 95
Integer. environments, it is the same as Long.

Note: Hummingbird Basic has no true Boolean variables.
Hummingbird Basic considers 0 to be False and any other
numeric value to be True. Only numeric values can be used as
Booleans. Comparison operator expressions always return 0 for
False and -1 for True.

Integer constants can be expressed in decimal, octal, or hexadecimal
notation. Decimal constants are expressed by using the decimal
representation. To represent an octal value, precede the constant with &or
80. For example, &177. To represent a hexadecimal value, precede the
constant with 8Hor &. For example, &8001.

Note: Constants can also be followed by data type characters.

String

String variables contain text. String length can be either fixed or dynamic.
Fixed strings have a length specified when they are defined, and the length
cannot be changed. Fixed strings cannot be of 0 length. Dynamic strings
have no specified length. A string can vary in length from 0 to 32,767
characters. There are no restrictions on the type of characters which can be
included in a string. For example, the character whose binary value is 0 can
also be embedded in strings.

27

Hummingbird Basic™ Language Programmer’s Guide

28

Object

An object is a special data type. Objects let you communicate with another
Windows application using OLE automation. You can use Hummingbird
Basic as an automation controller to manipulate another application. An
object is a complex data type in which the elements of the data type are the
methods and properties of the other application.

Properties This determines how an object behaves. For example, width
can be a property of a range of cells in a spreadsheet; colors are a property of
graphs; and margins are a property of word processor documents.

Methods This causes the application to do something. Examples are:
Cal cul at e for a spread sheet, Snap to @i d for a graph, and Aut osave for a
document.

Note: The Hummingbird Telnet application is an OLE automation
server. Telnet contains its own object methods and properties that
you can access and manipulate with a Hummingbird Basic script.

Use the D mstatement to declare an OLE Object as follows:

O mTel net as (bj ect

Array

An Array is a predefined range or series of variables. You must specify the
data type of an array. Hummingbird Basic arrays can be any one of the
following:

¢ Numeric

» String
e Variant
¢ Record

Arrays of arrays, and dialog box records, are not supported.

Chapter 2: Hummingbird Basic Scripts

Use the following syntax for declaring an array variable:

DO mvari abl ename (SubscriptRange, ...) As datatype

where Subscri pt Range is of the format:
Start Subscript To EndSubscri pt

For example:

Dmlifespan(0 to 75) As Integer

Subscripts specify the beginning and ending index for each dimension. If
you specify only an ending index, then the beginning index depends on the
Opti on Base setting. The Qpti on Base statement specifies the lower bound
to be used for array subscripts. The lower bound can be either 0 or 1. If no
pti on Base is specified, then the default of 0 is used.

Note: The Opti on Base statement is not allowed inside a
procedure, and must precede any use of arrays in the module.
Only one Opti on Base statement is allowed per module.

Dynamic Array

If you do not know what the size of your array is going to be, then use a
dynamic array. Dynamic arrays differ from fixed arrays in that you do not
specify a subscript range for the array elements when you declare the array.
Instead, the subscript range is set using the ReDi mstatement.

For example, you might want to use an array to store a set of values entered
by a user, but you do not know in advance how many values the user will
enter. In this case, dimension the array without specifying a subscript range,
and then execute a ReDi mstatement (which reallocates memory) each time
the user enters a new value.

If the dynamic array is dimensioned with the D mstatement, then 8 is the
maximum number of dimensions it can have. To create dynamic arrays with
more dimensions (up to 60), do not D mthe array; instead, use the ReD m
statement inside your procedure.

29

Hummingbird Basic™ Language Programmer’s Guide

30

The following procedure uses a dynamic array, varray, to hold cash flow
values entered by the user:

Sub Main
Dmaprate as Single
D mvarray() as Double
D mcfl owper as Integer
D m nsgt ext
Dmx as Integer
D mnetpv as Doubl e

cfl owper = I nput Box("Enter nunber of cash flow periods")
ReD m varray(cf | owper)
For x =1 to cfl owper
varray(x) = InputBox("Enter cash flow anount for period
&x &":")
Next x

aprate = | nput Box("Enter discount rate: ")
If aprate > 1 then

aprate = aprate/ 100
End If

netpv = NPMaprate,varray())
nsgtext = "The net present val ue is:
nsgtext = nsgtext & Format(netpv, "Qurrency")
MsgBox nsgt ext

End Sub

Chapter 2: Hummingbird Basic Scripts

Record

A record, or record variable, is a data structure containing one or more
elements, each of which has a value.

Where an array defines a range of values, all of the same data type (for
example, String or Integer), a record variable references a range of values
that can be of different data types.

Note: You cannot use data type character suffixes when using
record data types.

Before defining a record element as a variable, you must assign each element
a type, using the Type statement.

The following example defines phone_nunber as a data type:

Type phone_nunber
phone as String
area_code as String
End Type

By declaring phone_nunber as a Type, you can use it to declare a variable.
The elements of each record type are referenced using dot notation. For
example:

D mJoe as phone_nunber
Joe. phone = "967-2222"

Note: Records can contain elements that are, themselves,
records.

Dialog box records are treated as record data types as well. Elements or
controls are referenced using the same di al ognare. cont r ol nane syntax. The
difference is that each element is tied to a control of a dialog box.

31

Hummingbird Basic™ Language Programmer’s Guide

Expressions and Operators

32

Expressions perform calculations, set variables, or concatenate strings.

Operators are used in expressions to combine one or more terms. The terms
are variables, constants, or functions which are combined with an operator,
evaluating to a string or numeric result.

There are several different categories of operators:

* Numeric Operators
» String Operators
* Comparison Operators

* Logical Operators

Numeric Operators

These operators are used in arithmetic expressions:

Operand Explanation

~ Exponentiation

*/ Numeric multiplication or division. For division, the result is Double.
\ Integer division. The operands can be Integer or Long.

MOD Modulus or remainder. The operands can be Integer or Long.

-+ Numeric addition and subtraction. These can also be used to

indicate whether the number is positive or negative.

String Operators

These operators are used to combine or concatenate two or more strings:

Operand Explanation
& String Concatenation
+ String Concatenation

Chapter 2: Hummingbird Basic Scripts

Comparison Operators

When using comparison operators with numbers, the operands are
widened to the type with the smallest size (Integer is preferred over Long,
which is preferred over Double). For String operators, the comparison is
case-sensitive, and is based on the collating sequence used by the language
specified in the Windows Control Panel.

Operand Explanation Returns

> Greater than 0 for False and -1 for True
< Less than 0 for False and -1 for True
= Equal to 0 for False and -1 for True
<= Less than or equal to 0 for False and -1 for True
>= Greater than or equal to | 0 for False and -1 for True
<> Not equal to 0 for False and -1 for True

Logical Operators

The logical operators perform logical evaluations on one or more
expressions. The result of logical operations is either True or False.

Operand Explanation

Not Not operands can be Integer or Long. The operation is performed
bitwise (ones complement).

And And operands can be Integer or Long. The operation is performed
bitwise.

Or Inclusive Or operands can be Integer or Long. The operation is
performed bitwise.

Xor Exclusive Or operands can be Integer or Long. The operation is
performed bitwise.

Eqv Equivalence operands can be Integer or Long. The operation is
performed bitwise. (A Eqv B) is the same as (Not (A Xor B)).

Imp Implication operands can be Integer or Long. The operation is

performed bitwise (A Imp B) and is the same as ((Not A) Or B).

33

Hummingbird Basic™ Language Programmer’s Guide

Programming Tips and Coding Suggestions

34

The following tips and suggestions are intended to help reduce the errors
returned when creating scripts with Hummingbird Basic.

Naming Variables and Constants

The name you give to a variable or to a constant can contain letters,
numbers, and underscores. It is advisable to give variables and constants
meaningful names so they can be easily recalled and understood when
debugging a script.

Global Vvariables

Limit the use of global variables to avoid a module load failure. Global data
is shared across all loaded modules, so when you attempt to load a module
which has a different data type variable than that of the existing global
variable with the same name, it results in the module failing to load.

Declaring Variables

Explicitly declare all variables, especially so that error tracking is possible in
long and complicated scripts. Use the Qption Explicit command to force
the use of variable declarations.

Option Base

The Qpti on Base statement specifies the lower bound to be used for array
subscripts. This statement is not allowed inside a procedure, and it must
precede any use of arrays in the module. Only one Qpt i on Base statement is
allowed per module.

Dynamic Array

Eight is the maximum number of dimensions for a dynamic array being
dimensioned using the D mstatement. However, to create dynamic arrays
with more dimensions (up to 60), use the ReDi mstatement instead of the D m
statement inside your procedure.

Chapter 2: Hummingbird Basic Scripts

Runtime Error

Have a routine in your script that handles runtime errors, such as if the user
tries to log onto a non-existent host, or enters text into a field where only
numbers are accepted.

Controls

Before aligning the controls for a dialog box, click the Grid toolbar button to
turn the grid on.

Compatibility

You can use a single set of source code to create applications that run on
Windows NT/95/98/Me/2000. To create an application, load the source
code into Hummingbird Basic and make an. ebx file.

Checking for the Existence of PC Files

Hummingbird Basic does not provide any built-in means of indicating
whether a particular file is on a PC. The usual BASIC technique to check if a
file exists is to use either the Dl Ror the DI RS function, as shown below. To do
this, pass the file name to the Dl Rfunction and check the return value of the
function. If the function returns nothing, then that file does not exist.

TheFile$ = Dr$ ("C\Program Fil es\ Huimm ngbi r d\ Connect i vi t y\
ver si on\ Exceed\ exceed. exe
If len(theFile$) < 1 then
nsgbox "no such file"
el se
msghox t heFi | e$
end if

To find a file on a Unix computer, use the same technique, but instead of
D R$, use the string returned by the N X |'s fi | e name command.

35

Hummingbird Basic™ Language Programmer’s Guide

Using Win32 API

You do not need the Win32 SDK to make Windows API calls from
Hummingbird Basic. Take advantage of Windows API functions to extend
the Hummingbird Basic functionality, provided they are properly declared.

Decl are function Get UserNane Lib "advapi 32.dI 1" Aias
"Get User NaneA" (ByVal |pBuffer As String, nSze AS Long) As
Long

Sub Main
strBuffer$ = String$ (255, 0)
Ret Val & = Get User Nare (strBuffer$, 255)
User Name$ = Trin$ (strBuffer$)
User Name$ = Left$ (UserNane$, Len(User Nane$) - 1)
MsgBox User Nane$, , Len(User Nare$)
End Sub

Network Logon Name

To retrieve a user's network logon name, make the following API call:

Decl are function Get UserNane Lib "advapi 32.d 1" _
Alias "Get UserNaneA' (ByVal |pBuffer As String, nSize As
Long) As Long
sub main
strBuffer$ = String$ (255, 0)
Ret Val & = Get User Nanme(st rBuf fer$, 255)
WserNane$ = Trin$ (strBuffer$)
User Nane$ = Left $(User Nane$, Len(User Name$) - 1)
msgbox User Nane$, , Len(User Nane$)
end sub

36

Chapter 2: Hummingbird Basic Scripts

Always Visible Message Box

At times, a message box that was hidden behind other windows may appear
giving the impression your application is hung. When this happens, check
the Taskbar to discover the message box. If that is problematic, then use the
MessageBox API function, instead of the MsgBox function which allows you
to call the message box with the MB_SYSTEMVCDAL flag, as shown below. This
method always displays your message box on top of all other windows.

Decl are Function MessageBox Lib "user32" Alias "MssageBoxA'
(ByVal hwnd As Long, ByVal |pText As String, ByVal |pCaption As
Siri ng, ByVal uType As Long) As Long

Const MB_| CONEXCLANATI CN = &H30&
Const MB_yesno = &H&
Const IDYES = 6

Const IDNO =7

Const text = "Please click on one of the buttons bel ow "

Const nsg_$ = "Now click on your desktop anywhere outside this
box! "

Const caption_$ = "HJUW NGBl RD Basic Ti ps"

Sub Main
di m boxCapt i on$
di m boxMsg$
boxType& = MB_SYSTEMMCDAL + MB_| CONEXCLAVATI ON + MB_YESNO
if (MessageBox (0, text, caption_$, boxType& = |DYES) then
boxCaption$ = "YES Pressed !"
boxMsg$ = nsg_$
if you click outside this message box it will stay visible
el se
boxCaption$ = "NO Pressed !"
boxMsg$ = nsg_$
end if

MsgBox boxMsg$, , boxCapti on$
End Sub

37

Hummingbird Basic™ Language Programmer’s Guide

38

Working with Windows Registry

The following example shows the usage of some of the main registry
functions, and how they have to be declared.

Decl are function RegQpenKey Lib "advapi 32.dl 1" _

Alias "RegQpenkeyA' (ByVal hkey?, ByVal SubKey$, key& As
Long
Decl are function RegSetVal ueEx Lib "advapi 32.dl 1" _

Alias "RegSet Val ueExA" (ByVal hkey& ByVal subKeyStr$,
ByVal _

fdwType&, ByVal dattype% ByVal data$, ByVal datlLen& As
Long
Decl are function Regd oseKey Lib "advapi 32.dl 1" (ByVal hkey&)
As Long

Function Set Val ue$(keynarme$, val ue$)
di m key&

i f RegpenKey (HKEY_CLASSES RQOT, "", key) <>
ERRCR _SUCCESS t hen
Set Val ue = "Cannot open key: HKEY CLASSES ROOT"
Exit Function
end if

i f RegSetVal uebx (key, keynane, REG SZ, 0, val ue,
I en(val ue)) <> ERRCR SUCCESS t hen
Set Val ue = "Cannot set val ue of key: " + keyname
end if

i f Regd oseKey (key) <> 0 then
Set Val ue = "Cannot cl ose key: " + keynane
end if
End function

Sub Main

Chapter 2: Hummingbird Basic Scripts

OLE Functions

Use OLE automation to work with FTP and Telnet using Hummingbird
Basic.

The following two examples show you how you could execute an FTP
session.

1 You have to declare an object as a data type before you can use the
object's methods.

di m Ft pEngi ne As (bj ect
di m Ft pSessi on As (bj ect
di m Ft pSessi ons As (hj ect
Mist first initialilze Ftp Engine
Set FtpEngi ne = Oreatehj ect ("Hcl Ftp. Engi ne")

"Oeate collection of sessions
on error goto FtpSessionsError
Set Ft pSessi ons = Ft pEngi ne. Sessi ons

"Qeate FTP session
on error goto FtpSessionError
Set Ft pSessi on = Ft pSessi ons. NewSessi on

Ft pSessi ons. Local DefaultDirectory = "c:\tenp"
"normal |y should be_taken via dial og

2 Make all other initializations.

Ft pSessi on. Connect ToHost
Ft pSessi on. Wser | ogi n
Ft pSessi on. Myet "hostfiles" transfer files
Ft pSessi on. D sconnect Fr onHost
"¢l ose connection and destroy objects
Set Ft pSession = Not hi ng
Set Ft pSessi ons = Not hi ng
Ft pEngi ne. Qui t
Set Ft pEngi ng = Not hi ng

39

Hummingbird Basic™ Language Programmer’s Guide

The following example shows how the start of a Telnet session can look:

if current EMPTY telnet session exists, get it as atn
object or step to the next I|ine:

Set tn = Gethject (, "Humingbird. Tel net")
"if failed to get existing object, create new tel net_ obj ect
If tnis Nothing then

Set tn = O eatej ect ("Humm ngbi rd. Tel net")
end if

| ogi nEvent = tn. LookFor St ri ng(| ogi nPronpt)
"look for the |ogin_and password pronpt
passwor dEvent = tn. LookFor St ri ng(passwor dPr onpt)

Use the methods and properties of the t n object.

Error-Handling and Debugging

Error-handling refers to a set of functions and statements that trap errors
arising during the execution of the script. Error-handling is generally one of
the most problematic processes.

Error Types

After you compile or run your script, any or all of the following types of
errors may be detected:

* Syntax errors—These are errors which occur in the script as a result of
misspelling a statement or function or using either one incorrectly, for
example, errors in language syntax and programming logic. To help you
fix syntax errors, the Hummingbird Script Editor highlights language
syntax errors in red after a script is compiled.

Note: A common syntax error is typing Endi f instead of End | f.
There is a space between the word End and the word If.

40

Chapter 2: Hummingbird Basic Scripts

Logic errors—These are errors that occur because of faulty logic, for
example, infinite loops and incorrect values returned by functions.
These types of errors generally cause unexpected results during the
execution of your script.

Runtime errors—These errors occur because the user takes an
unforeseen action. For example, the user tries to log on to a host that
does not exist, or types text into a field that accepts only numbers. You
should have a routine for these scenarios included in your script that
handles runtime errors. Runtime errors are handled through a set of
error-handling functions and statements.

Debugging Scripts for Syntax and Logic Errors

The debugger assists you in locating and correcting syntax and logic errors
in your Hummingbird Basic program. It allows you to slow down or
suspend the execution of your program so that the flow of the program and
the contents of declared variables can be examined. Debug mode is invoked
in the following ways:

Clicking the Step Into toolbar button—This causes the execution of the
Main subprocedure in the current script file. Execution is suspended
and the debugger is activated. The first line of the Main subprocedure is
highlighted.

Setting breakpoints in the current buffer—Execution is suspended
when one of the lines that contains a breakpoint is about to be executed.
The debugger is activated, and it highlights the line containing the
breakpoint.

Pressing the Pause toolbar button when a program is executing—
Execution is suspended, and the debugger is activated. The line that was
about to be executed is highlighted.

During execution, the program encounters an unhandled runtime
error—Execution is suspended, the debugger is activated, and the line
containing the error is highlighted.

41

Hummingbird Basic™ Language Programmer’s Guide

42

When in debug mode, the Call Stack Control displays all Hummingbird
Basic subprocedures and function calls that got you to the current line.
Open the Variables window to examine the contents of variables in the
currently selected call frame.

Note: Lines that contain syntax errors appear in red text. The Error
Messages and a short description of the error, if available, are
displayed in the Output window.

Handling Runtime Errors

Hummingbird Basic provides the following functions and statements to
deal with runtime errors in your script:

Function/Statement Explanation

Assert Trigger an error, if a condition is false.

Erl Return the line number where a runtime error occurred.
Er Function Return a runtime error code.

Err Satement Set the runtime error code.

Error Generate an error condition.

Error Function Return a string representing an error.

O Eror Control runtime error handling.

Resure End an error-handling subprocedure.

Trapping Errors

Hummingbird Basic provides two methods for handling errors:

On Error Resume Next Use this statement to bypass an error and
continue to execute the script. The On Error Resunme Next statement must
appear before the line that produces the error.

Chapter 2: Hummingbird Basic Scripts

On Error Goto label ~ Use this statement to direct the execution of the
script to the specified label. When this error trap is set, it remains in effect
until the procedure finishes running. You can redirect the error trap with
another On Error statement in the procedure. If you want to cancel the
existing error trap without setting up another one, use the Oh Error GoTo 0
statement.

All error handling subprocedures begin with the Oh Error statement and
end either with the Resune statement or the Got 0 statement. Unless an Cn
Error statement is used, any run-time error terminates the execution of the
script. Error-handling procedures are embedded within a subprocedure,
usually near the end of a subprocedure. If a Got 0 statement is used, the
Resune statement is expected at the end of the error-handling code.

To display a description of an error, use the Error (err) function as shown
below:

err =11
msgbox Error$(Err)

The "Division by zero" message is displayed.

Examples of Trapping General Errors

The following examples illustrate the different methods of error trapping.

Example 1

This example places error-handling code immediately following the
statement in which the error occurred. It uses the Resune Next statement to
direct the code to continue execution when an error has occurred.

Sub Main
D muserdir
inl: userdrive = Input Box("Enter Drive:",,"C")
Onh Error Resurme Next
Er =0
ChDrive userdrive
If Brr = 68 then
MsgBox "Invalid Drive. Try Again."
Goto inl
End If
End Sub

43

Hummingbird Basic™ Language Programmer’s Guide

44

The On Error statement identifies the line of code to go to if an error occurs.
In this case, the Resune Next parameter continues execution on the next line
of code after the error. In this example, the line of code that handles errors is
the | f statement. It uses the Err statement to determine which error code is
returned.

Example 2

This example places error-handling code immediately following a label.

Note: Resume is placed at the end of the error-handling code.

Sub Main
D muserdir, nsgtext

on error goto Errhdirl
i n2: userdir = InputBox("Enter Directory.")
" error generated here

Chdir userdrive & "\" & userdir

MsgBox "New Default Directory is: " &userdrive & "\" &
userdir

Exit Sub

Errhdlr1:' handle error here
Sel ect Case Err

Case 75
nsgtext = "Path is invalid"
Case 76
nsgtext = "Path not found"
Case el se
nsgtext = "Error” &err &"" & Eror$ &"
occur ed”
End Sel ect
MsgBox nsgtext & "Try Again."
Resurme in2 resune nornal execution
End Sub

The On Error statement used in Option 2 specifies a label to jump to if an
error occurs. The code segment is part of the main subprocedure, and it
uses the Err statement to determine which error code is returned. To make
sure your code does not accidentally fall through to the error handler,
precede it with an Exi t statement.

Chapter 2: Hummingbird Basic Scripts

Examples of Trapping Runtime Errors

These examples show the two ways to set and trap user-defined errors. Both
examples use the Error statement to set the user-defined error to the value
30000.

Example 1

To trap the error, the following example places error-handling code directly
before the line of code that could cause an error.

Sub Main
D mcustnane as String
On Error Resune Next

inl: Br =0
cust nane = | nput Box$(" Ent er customner nare:")
if custname = "" then

Error 30000 generate error here
Sel ect Case Err' handle error here
Case 30000
MsgBox "You nmust enter a custoner nane."
Goto inl
Case Hse
MsgBox "Undetermined Error. Try Again.”
®oto inl
End Sel ect
End if
MsgBox "The nane is: " & custnane
End Sub

45

Hummingbird Basic™ Language Programmer’s Guide

Example 2

The following example contains a labeled section of code that handles any
user-defined errors. You can also generate an error code in a subprocedure,
and then have the main procedure handle it (similar to example 1 on

page 45).

Sub Main
O mcustnane as String
on Error Goto Errhandl er
inl: Er =0
cust name = | nput Box$("Enter customer nane:")

If custname = "" then
Error 30000 generate error here
End I f
MsgBox "The name is: " &custnane
Exit Sub
Errhandl er:
Select Case Err' handle error here
Case 30000
MsgBox "You nust enter a custoner nane."
Case Hse
MsgBox "Unhdetermned Error. Try Again."
End Sel ect
Resure inl
End Sub
Trappable Errors

The following table lists the runtime errors that Hummingbird Basic
returns. These errors can be trapped by Oh Error. The Err function can be
used to query the error code, and the Error function can be used to query
the error text.

Error code Error Text

5 lllegal function call

6 Overflow

7 Out of memory

9 Subscript out of range

46

Chapter 2: Hummingbird Basic Scripts

Error code Error Text

10 Duplicate definition

11 Division by zero

13 Type mismatch

14 Out of string space

19 No resume

20 Resume without error

28 Out of stack space

35 Sub or Function not defined
48 Error in loading DLL

52 Bad file name or number
53 File not found

54 Bad file mode

55 File already open

58 File already exists

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive
75 Path/File access error

76 Path not found

91 Object variable set to Nothing

47

Hummingbird Basic™ Language Programmer’s Guide

48

Error code Error Text

93 Invalid pattern

94 lllegal use of NULL

102 Command failed

429 Object creation failed

438 No such property or method

439 Argument type mismatch

440 Obiject error

901 Input buffer would be larger than 64K
902 Operating system error

903 External procedure not found

904 Global variable type mismatch

905 User-defined type mismatch

906 External procedure interface mismatch
907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

Chapter 3

Using Development Tools to Edit
Scripts

About Hummingbird Basic Workbench 51
The Workbench Interface 51
Creating a Script File at a Glance 53
Compiling and Running a Script File 55

Running a Script File 55

Chapter 3: Using Development Tools to Edit Scripts

About Hummingbird Basic Workbench

Hummingbird Basic includes an easy-to-use development environment and
a graphical dialog box editor. This chapter describes how to use a
development tool to write, compile, and debug your scripts.

The Hummingbird Basic Workbench is a special text editor you can use to
write, edit, compile and debug your scripts. By default, Hummingbird Basic
script files are stored in your hone directory. The script source files have an
. ebs file extension. A compiled script file has an . ebx file extension.

The Hummingbird Basic Scripting Tool is similar to the Workbench, but
only one file can be opened at a time. To start Hummingbird Basic, select it
from the Windows Start menu.

The Workbench Interface

The Workbench is divided into the following areas:

" Hummingbird Basic Workbench

MEFT [aller] oL o [u]=] @[=lel1]a] 1 e m— (o o7
C:\Program Filesimaestro\eb\test.ebs

ISub Hain [+Globals

bin cchoices as string -Hain

On Error Resunf Next cchoices$:
lcchoices=""A11"+chr$(9)+ Nothing” Code
Window

Begin Dialog testdlg 286, 245, “Interactive bialog" ‘Dialog
OkButton s, 221, 40, 14, .bok

CancelButten 237, 221, 48, 14, .bcancel

End pialog ‘bialog definition ends
Din td as Testdlg ‘Dialog box defined as a variable Variables
Dialog ta "Dialog statement to display the dialog box Window

If Err=102 then
HsgBox “You pressed Gancel™
Else
HsgBox “You pressed OK."
End If
End Sub

Output =

[Compiling C:\Program Files\maestroeb\test.ebs
Successfully compiled C:\Program Files\naestro\eb\test.ebs

Output Window
Status Bar

e oeeG o0002 [

51

Hummingbird Basic™ Language Programmer’s Guide

For more information about
structuring your scripts,
see "Structure of a
Hummingbird Basic
Script" on page 18.

52

Code Window

Statements and functions are typed into the Code window. To get help on a
specific function or statement, click the right mouse button while the cursor
is on the statement or function. Alternatively, highlight the statement or
function in the Code window and press F1.

A Hummingbird Basic script must contain one main subprocedure.
Functions referenced in your main subprocedure must be declared before
the main subprocedure.

Variables Window

Select Variables on the Window menu to display the Variables window. This
window displays the variables you declared in your script. A plus sign beside
a heading in magenta text indicates there is an expandable list. Place the
cursor next to a plus sign and double-click to see all the variables.

IS[=1E3

" wariables

+Globals
-testdlg
-1b2
+(B..4):
-1b1
+(B..4):
pict$: =
evalue:
eline:
errorReturn®: -2
~main
-td (testdlg)
tb1$:
ch1%: 8
optval%: @
sch1§:
dcb$: ™
1b%: 8
dlb%: @

There are three main headings in the Variables window:
* Globals—All global variables declared in any Hummingbird Basic
module are shown under this heading.

* Name of your script—The name of the currently loaded script appears
as the heading. Variables are listed by their scope in the script.

* The name of the Current Subprocedure—This heading lists all declared
variables in the current subprocedure.

Chapter 3: Using Development Tools to Edit Scripts

Output Window

To open the Output window, either select Output window on the Window
menu or click the Output toolbar button.

The Output window provides information about your script after it has been
compiled. This window indicates whether the script has been successfully
compiled or not. If errors were detected, then they are displayed by an Error
Message. Clicking the Next or Previous toolbar button highlights each error
in the script.

Status Bar

The status bar indicates the mode in which you are currently working.
There are three modes: Edit, Debug and Run. In Edit mode, you can write
and compile your script. In Debug mode, you can check for syntax errors
and create breakpoints. To revert to Edit mode when you are in Debug
mode, click Stop on the toolbar. In Run mode the compiled script is
executing. To stop running the script and revert to Edit mode, click Pause.
The status bar also lists the number of errors in your script after it has
finished compiling.

Call Stack Control

The Call Stack control is visible only while you are in Debug mode. This
control indicates which subprocedure the script is executing. This is useful
when you are debugging your script for errors. The Call Stack control can
also be used to jump to a subprocedure in an open module by selecting one
from the drop-down list box.

Creating a Script File at a Glance

You can use Hummingbird Basic scripts for many tasks. These examples
describe situations where Hummingbird Basic scripts are beneficial:

* Repetitive tasks—Downloading a file from a remote host to a directory
on your PC while you are doing something else.

* Create a simpler interface—Connecting to a host by specifying your
login information, selecting the appropriate settings file, and then
running a frequently used program in the background while you are
doing something else.

53

Hummingbird Basic™ Language Programmer’s Guide

Refer to "Structure of a
Hummingbird Basic
Script" on page 18 for
more information on the
order of the functions and
statements. For more
information on writing
Error-Handling routines,
see "Error-Handling and
Debugging" on page 40.

54

Exchange information between applications—Create a Hummingbird
Basic script with OLE automation to transfer data from a Telnet session
to an Excel spreadsheet.

The process of creating script files is as simple or as complex as the series of
tasks you want to automate.

Creating a script can be broken down into these steps:

1

Identify the task you want to automate and divide it into a sequence of
actions.

Translate the sequence of actions into Hummingbird Basic commands,
and then type them into the Hummingbird Basic Workbench.

a) Write your script file.

b) Save your script file.

¢) Compile your script file.

d) Run and test your script file.

e) Debug your script file if there are problems.

Install a program item icon for your script file.

The following sections describe a simplified process for developing scripts.

To translate the task into a Hummingbird Basic script:

1

Plan your script by writing down an outline of tasks and end results that
you want to accomplish with a script.

Find the Hummingbird Basic functions and statements you need in the
Hummingbird Basic Language Reference Help.

Include Error Handling routines that deal with runtime errors, and any
other anticipated user actions in your script.

Chapter 3: Using Development Tools to Edit Scripts

Compiling and Running a Script File

Before you compile your script, open the Output window. Any error
messages that occur in the script appear after the script has finished
compiling. To compile your script, either click Check on the toolbar or click
Compile on the File menu.

Errors detected in the compiled script appear in red text. To view the errors
sequentially through the script, click Next Error and Previous Error on the Edit
menu.

Running a Script File

You can run the script only if it has been successfully compiled.

Note: The phrase “successfully compiled” indicates that the script
is free of syntax errors. There may be other types of errors in your
script, such as runtime or logic errors. Executing the script allows
you to test for these other types of errors.

To execute a successfully compiled script file, either click Run on the File
menu or click Execute on the toolbar.

Running a Script in Animated Mode

When a script is run in Animated mode, each line of code is highlighted in
the Code window as it is executed. This mode is useful for examining loops
and other control statements in your script. To run your script in Animated
mode, either click Animate on the toolbar or click Animate on the Debug
menu.

55

Hummingbird Basic™ Language Programmer’s Guide

The following toolbar buttons are available to help you compile and run
your script file:

Toolbar Button Explanation
I Opens the output window.
Output Window
Compiles your script. All errors will be listed in an open
Output window.
Check Script
|I| Runs a successfully compiled script.

Execute Script

IE‘ Runs a successfully compiled script in animated mode.

Run Script in
Animated Mode

56

Chapter 4

Designing Dialog Boxes

About Dialog Editor 59
Dialog Editor Interface 59
Adding Controls to a Dialog Box 62
Aligning Controls in the Dialog Box 63
Setting Control Properties 64
Dialog Box Properties 65
Button Control Properties 66
OptionButton Control Properties 67
Text Control Properties 68
TextBox (Edit) Control Properties 69
CheckBox Control Properties 69
ListBox Control Properties 70
StaticComboBox Control Properties 71
DropComboBox Control Properties 72
DropListBox Control Properties 73
GroupBox Control Properties 73
Picture Control Properties 74
Integrating a Dialog Box into Your Script 75
Defining the Dialog Box 76
Displaying the Dialog Box 76
Dialog Statements and Functions 76
Writing a Dialog Function 79

Putting It All Together 82

Chapter 4: Designing Dialog Boxes

About Dialog Editor

Hummingbird Basic provides both functions and statements, and a
graphical Dialog Editor to create dialog boxes. You can run Dialog Editor
from either the Workbench's Edit menu or click the Dialog toolbar button.

Dialog Editor lets you create and design dialog boxes by dragging and
dropping controls on to a form. As you drop the controls, code is
automatically generated and can be dynamically updated into your script as
you design the dialog box.

When you first run Dialog Editor, it provides you with a standard-sized
dialog box that contains an OK button and a Cancel button. To add a new
control, select one on the Control menu, or click the equivalent button on
the Control Palette and drag it onto the dialog box window.

Dialog Editor Interface

Dialog Editor is divided into the following areas:

sl == [: | == B | Toolbar
<<Expression> >
Dialog Box
Dialog
Tent 12,42, 42,12, "tPassword”
TestBos NoEcha 78,42, 144,12, password — Code
Text 12, B0, B0, 12, "kConnection Type:" f
DptionGiroup ppe Window
OptionButton 78, 60, 42, 12, “Active”, OptionButtond
OptionButton 126, B0, 54, 12, "Passive’, OptionButtonS
GroupBox B. 78, 288, 108, "&File Transfer Information™
Text 12,96, 54, 12, "Host Dirsctory:
TextBox 72,96, 132,12, hostDir
Text 210,150, 78,12, "e.g. Mtemp”
Test 12, 114,54, 12, "Hoo File Spec:" i Control
Palette
Status Bar

59

Hummingbird Basic™ Language Programmer’s Guide

60

Toolbar

The toolbar contains the most frequently used commands from the drop-
down menus. To get a short description of the toolbar button, place the
mouse pointer over top of a button and wait a few seconds for the ToolTip
to appear.

Dialog Box

This is the area where you create the dialog box. The dialog box you create
will appear in your running script exactly as it appears in the Dialog Box
window. By default, when the Editor is first opened there is an OK button
and a Cancel button.

Dialog Code Window

This window lets you view and edit the code for the dialog box that you are
creating. Click Update to integrate the generated code into your open
module.

Note: The Dialog Code window must be closed in order to add or
alter controls in the dialog box.

Chapter 4: Designing Dialog Boxes

Control Palette

The Control Palette contains all of the controls that can be added to a dialog
box. The following table explains what each control is and how to use it.

Control Palette
Button

Explanation

-

PushButton Control

The PushButton control is used to create standard
command buttons in the dialog box.

©

OptionButton Control

The OptionButton is used to present a set of choices.
Each option button belongs to a particular OptionGroup,
which is configurable from the OptionButton Group
drop-down combo box in the OptionButton Properties
dialog box.

%]

Text Control

The Text control is used to label other controls that do
not have a visible label. To use them as a navigation aid,
place them immediately before the control they are
labeling in the Tab Order.

124

TextBox (Edit) Control

The TextBox control accepts text input from a user. A
TextBox control is customized (size, position, and so on),
by double-clicking it and making the appropriate
settings in the TextBox Properties dialog box.

CheckBox Control

The CheckBox control is used to present the user with a
two state switch. The switch can be On/Off, Yes/No,
Enable/Disable, and so forth.

ListBox Control

The ListBox control is used to present users with a
choice from a list of strings.

DropComboBox
Control

The DropComboBox control is similar to the DropListBox
Control, except that users may type in a new string in
addition to selecting one from the list of strings.

61

Hummingbird Basic™ Language Programmer’s Guide

Control Palette

Button Explanation

,w The GroupBox control visually groups controls in a
u dialog box. In addition, they can be used to provide a

navigational hierarchy to the dialog box user.
GroupBox Control

== The DropListBox control differs from the ListBox control
in appearance only. If a string from the control is
) selected, it appears in the control. When the user clicks
DropListBox Control the down arrow, the control expands to present the list of
strings.
The Picture control is used to place bitmaps into the
L] dialog box. Picture controls get their contents from either

Picture Control the clipboard or a Windows bitmap (. brp) file.

Adding Controls to a Dialog Box

Different controls gather specific types of information from the user. An
effectively designed interface also helps the user to enter the correct data
and to navigate through your program.

There are two ways to add new controls to your dialog box:

* Select a control either on the Control Palette or on the Control menu then
drag out a rectangle in the dialog box. The control of the selected type is
created and sized to that rectangle.

* Use the drag-and-drop method to place a control of a default size into
your dialog box.

To use the drag-and-drop method:

1 On the Control Palette, click the control you want to add.

2 Press and hold the mouse button, then move the mouse into the dialog
box window. A rectangle appear indicating the placement of the control
you want to create. You can move the rectangle with the mouse.

62

Chapter 4: Designing Dialog Boxes

3 Release the mouse button to place the control.

Note: To abort creating the control, move the mouse outside of
the dialog box window, and release the button.

Aligning Controls in the Dialog Box

There are a number of commands from the Layout menu that can help you
align and lay out controls on the dialog box.

To align the controls, select one by clicking it with the mouse. To select
multiple controls, drag a rectangle across all of the controls you want
selected. Selected controls have a dotted black outline. When the controls
are selected, choose a command from the Layout menu.

The following commands are available from this menu:

* Align Controls—Allows you to move selected controls left, right, top,
bottom, vertically, or horizontally.

* Space Evenly—Allows you to space selected controls evenly, down, or
across.

* Center in Dialog—Allows you to center the selected dialog either
vertically or horizontally in the dialog box.

* Arrange Buttons—Allows you to arrange the selected button control to
the right or the bottom of the dialog box.

* Make Same Size—Causes selected controls to size exactly the same.

* Size to Content—Causes a control that accepts user input to size itself
according to its content.

You may find it useful to turn the grid on before you begin aligning the
controls. The grid is enabled by clicking the Grid toolbar button. To change
the incremental units of the grid, select Options on the Edit menu. Enabling
the Snap To Grid check box in the Option dialog box aligns the controls to the
nearest grid unit.

63

Hummingbird Basic™ Language Programmer’s Guide

Setting the Tab Order

When the tab order is set, press the tab key to shift the focus from control to
control. Setting the tab order allows you to specify the order of control focus
when the tab key is pressed.

To set the tab order:

1 On the Layout menu, click Set Tab Order. Small numbers will appear on
the left corner of each control.

2 Click each control in the order you want the focus to shift when the user
tabs through the dialog box. As you click, a new number appears on
each control.

Note: One of the controls in the dialog window will be the primary
control. It is identified by the darker black outline when selected.
The primary control is always the first in the tab order. All controls
will be set relative to the primary control.

Setting Control Properties

64

Once the controls are placed and aligned on the dialog box, you can begin
setting specific properties for each of the controls added. Control properties
are settings that affect the attributes and the behavior of the control.

Examples of control properties include position and size, and whether or
not an expression is attached to the control. Also, most of the controls have
a Control ID. The Control ID is an identifier that you use to reference and
access the control from a function in your Hummingbird Basic script.

To display the properties for a control:

* Double-click the control for which you would like to edit the
properties.

» Ifasingle control is selected, press the Enter key.

* To access Dialog Properties, double-click an empty area of the dialog
box.

Chapter 4: Designing Dialog Boxes

Dialog Box Properties

The following properties can be set for a dialog box:

DialogID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Caption Type & Caption These fields allow you to enter a title for the
dialog box. There are three caption types to choose from:

* None—If the caption type is set to None, then the application's default
caption is used, and the Caption field is disabled.

* String—Select this type to enter a title for the dialog box into the
Caption field.

* Expression—Select this type to enter a Hummingbird Expression into
the Caption field.

Macro Function Name Enter the name of the function you are using to
update fields with. The function name is appended to the Begi n D al og
statement. This field is only used in dynamic dialog boxes.

ButtonGroup ID To reference a group of related buttons through the
dialog box, enter a name for the group of buttons.

Size and Position A dialog box is positioned relative to the upper left
corner of the application. By default, dialog boxes are centered on the
application.

* Xand Y Position—To specify the position of the dialog box, enable the
Edit dialog position box and type the desired values in the X and Y fields.
Type either numeric values or Hummingbird Basic expressions into the
XandY fields. If you type a new numeric value in either of these fields,
Dialog Editor moves the dialog box accordingly. If you type an
expression (non-numeric value), the position of the control or dialog
box is interpreted when you execute the script file containing this dialog
box.

* Width and Height—These fields allow you to change the size of the
dialog box. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the dialog box accordingly.

65

Hummingbird Basic™ Language Programmer’s Guide

66

Button Control Properties

Button controls are the command buttons that you put on to your dialog
box. The following properties can be set for a button control:

Button Type There are three different kinds of push buttons you can add
to a dialog box:

* OK—This is like a normal button, except its label cannot be modified.
There can be only one OK Button in a dialog box.

* Cancel—This is like a normal button, except its label cannot be
modified. There can be only one Cancel Button in a dialog box.

¢ Normal—If the button is not an OK or a Cancel button, then use this
type. This button allows you to assign a label and an ID.

Button Label This property inserts text on to the button. If you selected
either an OK button or a Cancel button, then its label cannot be changed. If
you want to assign a shortcut key for the selected control, type an
ampersand (&) before the letter you want to use as a shortcut key. For
example, if you type the label for a help button as Hel p, users will be able to
access help by pressing Alt+E.

Button ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, you should assign IDs
using a consistent naming convention.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be calculated or interpreted when the script is executed.

Size and Position A dialog box is positioned relative to the upper-left
corner of the application. By default, dialog boxes are centered on the
application. Controls are positioned relative to the upper-left corner of the
dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. Type either numeric values or
Hummingbird Basic expressions into the X and Y fields. If you type a
new numeric value in either of these fields, Dialog Editor moves the
control accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

Chapter 4: Designing Dialog Boxes

* Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

OptionButton Control Properties

Option button controls allow a user to enable or disable a function. Option
buttons have the following property settings:

OptionButton label This property inserts text beside the button. If you
want to assign a shortcut key for the selected control, type an ampersand (&)
before the letter you want to use as a shortcut key. For example, if you type
the label for a help button as H&el p, users will be able to access help by
pressing Alt+E.

OptionButton ID The ID is a string you assign to identify the control in
your Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

OptionButton group This option allows you to enter a single string for a
group of related option buttons. When referring to the group in your
function, you can then use this string.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position A dialog box is positioned relative to the upper-left corner
of the application. By default, dialog boxes are centered on the application.
Controls are positioned relative to the upper-left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. You can type either numeric values
or Hummingbird Basic expressions into these fields. If you type a new
numeric value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

67

Hummingbird Basic™ Language Programmer’s Guide

68

Text Control Properties

Use text controls to label another control that typically does not have a
label. The following properties are available for Text Controls:

Text Label This property inserts a label for a control. If you want to assign
a shortcut key for the selected control, type an ampersand (&) before the
letter you want to use as a shortcut key. For example, if you type the label for
a help button as &l p, users will be able to access help by pressing Alt+H.

TextID The ID is a string you can assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position Hummingbird Basic places controls relative to the
upper-left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

Chapter 4: Designing Dialog Boxes

TextBox (Edit) Control Properties

The following properties can be set for TextBox controls:

TextBox ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Password\no Echo When this option is enabled, any text the user types
into the text field is echoed back as asterisks. This feature is used if the
t ext box control will accept passwords as input.

Size and Position Hummingbird Basic positions controls relative to the
upper-left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

CheckBox Control Properties

Check boxes provide the user with the ability to enable or disable a function
in the program. The following properties can be set for a CheckBox control:

CheckBox Label This property inserts a label for a control. If you want to
assign a shortcut key for the selected control, type an ampersand (&) before
the letter you want to use as a shortcut key. For example, if you type the
label for a help button as H8el p, users will be able to access help by pressing
Alt+H.

CheckBox ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

69

Hummingbird Basic™ Language Programmer’s Guide

70

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper-left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the dialog box is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

ListBox Control Properties

A ListBox provides a list of strings from which to choose. You can also add
new strings at runtime. The following properties are available for a ListBox
control:

ListBox ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

ListBox Contents This field allows you to enter the strings that will form
the contents of the ListBox.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the ListBox, enable this
check box. The contents of the ListBox will be interpreted when you execute
the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric

Chapter 4: Designing Dialog Boxes

value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

StaticComboBox Control Properties

A StaticComboBox is a text box with an attached list box. When the user
selects a value from the list box, it is placed in the text box. The following
properties can be set for a StaticComboBox control:

StaticComboBox ID The ID is a string you assign to identify the control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

StaticComboBox Contents This field allows you to enter the strings
which will make up the contents of the StaticComboBox. A user can then
select one of the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the StaticComboBox,
enable this check box. The contents of the StaticComboBox will be
interpreted when you execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
dialog control. Enter a value in pixels in the Width and Height fields.
Dialog Editor sizes the control accordingly.

71

Hummingbird Basic™ Language Programmer’s Guide

72

DropComboBox Control Properties

A DropComboBox is a text box with an attached list box. The list box
remains hidden until the user selects the arrow beside the text box to drop
down the list box. When the user selects a value from the list box, it is placed
in the text box.The following properties can be set for a DropComboBox
control:

DropComboBoxID The ID is a string you assign to identify the control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

DropComboBox Contents This field allows you to enter the strings
which will make up the contents of the DropComboBox. A user can then
select one of the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the DropComboBox,
enable this check box. The contents of the DropComboBox is interpreted
when you execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

* Xand Y Position—To specify the position of the dialog box, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

Chapter 4: Designing Dialog Boxes

DropListBox Control Properties

A DropListBox is a list box that remains closed, showing only one value,
until the user selects the arrow on the right-hand side to expand it. The
following properties can be set for a DropListBox control:

DropListBox ID The ID is a string you assign to identify the control in
your Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

DropListBox Contents This field allows you to enter the strings which
will make up the contents of the DropListBox. A user can then select one of
the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the DropListBox, then
enable this check box. The contents of the DropListBox will be interpreted
when you execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

GroupBox Control Properties

GroupBox controls are used as a design feature to group a series of related
controls together. The following properties can be set for a GroupBox
control:

GroupBox Label This is the title of the group box. The title you type here,
appears on the dialog box.

73

Hummingbird Basic™ Language Programmer’s Guide

74

GroupBox ID The ID is a string you assign to identify the GroupBox
control in your Hummingbird Basic script file. For easy recognition, assign
IDs using a consistent naming convention.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position Hummingbird Basic places controls relative to the
upper-left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

Picture Control Properties

Pictures are graphics that are used in dialog boxes and windows. The
following properties can be set for picture controls:

Picture source This property indicates the source of the bitmap to be
displayed: Clipboard or File.

Picture file name Type the name of the bitmap file to display in your
dialog box.

Picture ID The ID is a string you assign to identify the G oupBox control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

Suppress Message Enabling this check box causes the picture control not
to display the "missing picture" warning if the picture for the dialog box
cannot be located.

Chapter 4: Designing Dialog Boxes

Use file name as a macro expression If you selected File as the picture
source, enable this check box to assign a Hummingbird Basic expression
corresponding to the file name. The file name is interpreted when you
execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper-left corner of the dialog box:

* Xand Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

* Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

Integrating a Dialog Box into Your Script

A dialog box must be defined and declared before you can refer to it in your
script. Dialog boxes are defined using the Begi n O al og. . . End Di al og
statements.

To integrate a dialog box into your script follow these steps:

1 Define the dialog box with the Begin Dial og. .. End Di al og statements
and dialog box definition statements such as Text Box, CkBut t on.

2 Create a dynamic dialog function to handle dialog box interactions.

3 Display the dialog box using the Dialog Function.

75

Hummingbird Basic™ Language Programmer’s Guide

For more information, see
“Writing a Dialog
Function” on page 79.

Defining the Dialog Box

The Begi n Di al og...End Di al og statement defines a dialog box. The last
parameter to the Begi n Di al og statement is the name of a function, prefixed
by a period. This function handles interaction between the dialog box and
the user.

After defining your dialog box, you must declare a variable of this data type.
In the following example, the variable named t d refers to the dialog box
named t est dl g.

Begin Dialog testdl g 286, 245, "Interactive Dalog", .interact
<statenents that define the controls on your dial og box>

End D al og

Dmtd as testdlg

If you are writing a function to accept user input and to define what occurs
in the dialog box, then enter the function at the end of the Begi n D al og
statement. In the above example this is a function called interact.

If you use Dialog Editor, the Begin D al og.... End D al og statement is
inserted into your code. You must add the function parameter to the Begi n
D al og statement and the variable information after the End Di al og
statement.

Displaying the Dialog Box

To display the dialog box, you can use the Di al og function. In a D al og
function, the argument to display a dialog box is the variable name that you
previously declared. From the example above, this would be t d.

Dialog Statements and Functions

76

The dialog function and the dialog statement differ slightly in their use:

* The Dialog Function—This function both displays a dialog box and
returns a number when the user presses any of the command buttons.

* The Dialog Statement—This statement displays a dialog box.

Chapter 4: Designing Dialog Boxes

In most cases, use the Dialog Function. If you use a D al og statement to
display the dialog box, then you have to write an error-handling routine at
the end of your main subprocedure using the Cn Error statement.

Dynamic dialog box functions and statements can be used only while a
dialog box is displayed on the screen and is calling a dialog control function.
These functions and statements are used to get or set information about a
particular control in a dialog box.

The functions and statements in this category are:

Function

Explanation

D gGontrol Function

Returns the numeric ID of a control.

D gEnabl e Function

Returns True (-1) if the specified control is enabled,
or 0 (False) if it is not.

D gEnabl e St at enent

Enables or disables a control.

D gFocus Functi on

Returns the ID of the control having input focus.

O gFocus S at enent

Sets focus to a control.

O gLi st BoxArr ay
Functi on

Returns the contents of a list box or combo box.

O gLi st BoxArr ay
St at enent

Sets the contents of a list box or combo box.

O gText Function

Returns the text value for a control.

D gText Statenent

Sets the text for a control.

D gVal ue Functi on

Returns the value of a control.

D gVal ue S at enent

Set the value of a control.

D gVisibl e Function

Returns True (-1) if the specified control is visible, or
False (0) if it is not.

D gVisible Satement

Makes a control visible or invisible.

77

Hummingbird Basic™ Language Programmer’s Guide

Most of these functions and statements take the Control ID as the first
argument. For example, consider the following check box definition:

CheckBox 20, 30, 50, 15 "M/ checkbox", .checkl

Use the following command to disable the check box:

D gEnabl e "checkl", 0

The following function returns -1 if the check box is selected, or 0 if it is not:

D gVal ue ("checkl")

Control IDs are case-sensitive. In dynamic dialog box functions and
statements, control IDs are in quotation marks and do not include the
period that is required in control definitions (between Begi n D al og
...End D al og statements).

Dynamic dialog functions and statements can also work with numeric IDs,
which are automatically assigned in the order in which dialog controls are
defined. For example, if a check box is the first control defined in the dialog
record, D gVal ue (0) is equivalent to D gVal ue ("Checkl"). Control
numbering begins at 0. Labels are not numbered.

The example below creates a dialog box with a drop-down combo box
within it, and the three buttons: OK, Cancel, and Help. The Dialog Function
used here enables the subprocedure to trap when the user clicks any of these
buttons.

Sub Main
D mcchoi ces as String
cchoices = "All" + Chr$(9) + "Nothing"
Begin D al og WserDial og 180, 95, "Hurmmi ngbird D al og
Box"
Text 9, 3, 69, 13, "File nane:", .Textl
Butt onG oup . Butt onG oupl
ConboBox 9, 17, 111, 41, cchoices, . ConboBox1l
kButton 131, 8, 42, 13
Cancel Button 131, 27, 42, 13
PushButton 132, 48, 42, 13, "Help", .Pushl
End D al og
D mnydi al ogbox As UWserDi al og
answer = D al og(nydi al ogbox)
Sel ect Case answer

78

Chapter 4: Designing Dialog Boxes

Case -1
MsgBox "You pressed K
Case 0
MsgBox "You pressed Cancel "
Case 1
MsgBox "You pressed Hel p"
End Sel ect

End Sub

Writing a Dialog Function

A function defines the behavior of the dialog box. For example, your
function could disable a check box based on the user's action. The body of
the function uses the Hummingbird Basic statements and functions
prefixed with DO g to define dialog box actions.

To define the function itself, use the Functi on...End Functi on statement, or
declare it using the Decl ar e statement before using the Begi n D al og
statement.

The name of the function is entered in dot notation at the end of the Begi n
D al og statement. In the example below, i nt er act is appended to the end of
the Begi n Di al og statement. | nt er act is a function that determines what
occurs when a user presses a button on the dialog box.

Begin Dalog testdl g 286, 245, "Interactive Dalog", .interact
<statenents that define the controls on your dial og box>

End D al og

Dmtd as testdlg

The function receives the following three parameters from the Begi n
D al og statement:

* The Identifier parameter—The first argument, i d$, identifies the
control associated with the call to the Dialog Function. It is the same
value which appeared in the definition of the control. This is the control
ID string that identifies each of the buttons and fields in your dialog
box.

79

Hummingbird Basic™ Language Programmer’s Guide

* The Action parameter—Act i on%is an integer between 1 and 5
identifying the reason why the Dialog Function is called.

* The Suppval parameter—This parameter supplies additional
information to the dialog box function, suppval & gives more specific
information than the acti on argument.

The Dialog Function does not return until the dialog box is closed. To leave
the dialog box open after the user clicks a command button (such as the OK
button), return a non-zero suppval .

The following table explains the meaning of each value that act i on%can
contain:

Value Meaning

1 Corresponds to dialog box initialization. This value is passed before the
dialog box becomes visible.

2 Corresponds to choosing a command button or changing the value of a
dialog box control (except for typing in a text box or combo box).

3 Corresponds to a change in a text box or combo box. This value is
passed when the control loses the input focus (the user presses the Tab
key or clicks another control).

4 Corresponds to a change of control focus. | d$ is the ID of the control
gaining focus, and suppval ue& contains the numeric ID of the control
losing focus. A Dialog Function cannot display a message box or dialog
box in response to an action value 4.

5 Corresponds to an idle state. When the dialog box is initialized (action 1 is
passed), the Dialog Function will be continuously called with action 5, if
no other action occurs. If the dialog function wants to receive this
message continuously, while the dialog box is idle, it should return a non-
zero value. If O (zero) is returned, action 5 will be passed only while the
user is moving the mouse. For this action, | d$ is equal to empty string (™)
and suppval ue&is equal to the number of times action 5 was passed
before.

80

Chapter 4: Designing Dialog Boxes

When act i on%is 2 or 3, suppval & depends on the type of the control. The
following table summarizes the possible values for suppval :

Control Suppval

Li st box Number of the item selected, 0-based.

Check box 1 if selected, 0 if cleared, -1 if filled with gray.

ption button Number of the option button in the option group, 0-based.
Text box Number of characters in the text box.

Conbo box The number of the item selected (0-based) for action 2, the

number of characters in its text box for action 3.

K Button 1

Cancel Button 2

Push button An internal button ID. This is not the same as the numeric ID of
the button control.

In most cases, the return value of the Dialog Function is ignored. The
exceptions are the return values from acti on%5 (as discussed above), and
from acti on% 2. If act i on% 2 is called because the user clicked the OK
button, Cancel button, or a command button (as indicated by i d$), and the
Dialog Function returns a non-zero value, the dialog box will not be closed.
To close the dialog box when a user clicks a button, return a 0 to the
function.

You can use the information these parameters provide to change the
behavior of the dialog. For example:

Function interact%ld as String, Action as Integer, Suppval as
Long Integer)

If Id = "bcancel " and action = 2 Then interact = 0

End If

End Function

This example shows that if the user presses the Cancel button, the dialog
box closes. Id = bcancel (the button ID for cancel), Action = 2 indicates
that the user has chosen a command button. If this occurs, i nteract = 0,
which causes the dialog box to close. If the function returned 1, for example
interact = 1, then the dialog box would stay open.

81

Hummingbird Basic™ Language Programmer’s Guide

Putting It All Together

The following script shows a dialog box with a text field, a check box, and a
hide/show picture button. When you enter text into the text field, it
becomes the title for the group box. Clicking the check box enables or
disables the Bell button. When you click the Hide button, the picture is
pasted to the Windows clipboard. Note the position and order of the
dynamic dialog box functions. Comments are preceded by an apostrophe

(') and are ignored by the compiler.

option explicit' force declarations

dimpict$ name of the picture file

dimeval ue last error value

dimeline last error line

const errorReturn = -2 wuse -2, as -1 = K 0 = Cancel and
positive

' nunbers are used by other buttons

function interact%id$, action% suppval &
" start of dialog function
dims$ scratch string
dimi? scratch portint
on error goto ehandl er' error handling
sel ect case action swtch on the action type
case 1 dialog box initialization
digval ue "cbl", 1 set the checkBox 'ON
dl gFocus "tbl" force focus to text field
exit function exit

case 2 control changes, allow

case 3 text field changes, allow

case 4 change of focus
interact = 1' nake sure event continues
exit function exit

end sel ect

interact = 1 default = Don't termnate
sel ect case id switch on the control
case "thl" text field
nsgbox "Sanpl e Text Fi eld was changed", 64, "Change Cf
Focus"

82

Chapter 4: Designing Dialog Boxes

case "hide" hide control
if dgVisible("pict") =0 then check the state
digvisible "pict", 1 make picture visible
digvisible "bird", 1 make the option visible

digvisible "clipboard", 1 nake the option visible

digtext "pg", "Picture" make the text visible
digtext "hide", "H de &icture" change button

t ext
el se
digMsible "pict", 0 hide the picture
digvisible "bird", 0 hide the option
digvisible "clipboard', 0 hide the option
digtext "pg", "" set the text to Null
di gtext "hide", "Show & cture" change button
t ext

end if

case "bird" switch to bird picture
D gSetPicture "pict", pict, O

case "clipboard" switch to clipboard

DgSetPicture "pict", "", 3
case "bbel " sound the bell
beep

case "cbhl" CheckBox
dl genabl e "bbel I ", suppval' enabl e/ di sabl e bel |

case "copy" update group text
di gText "gl", D gText("tbl")

case "bok", "bcancel"
interact = 0 termnate

case "berror"
S " ab(:ll
[cint(s)' invalid conversion

end sel ect
exit function

ehandl er:' error handl er |abel
evalue = err' save the error
eline = erl' save the error line
resume postError

83

Hummingbird Basic™ Language Programmer’s Guide

post Error:
dlgend errorReturn exit as error

end function

Sub Main start of Main subprocedure
dimi? variable to hold result of dialog box
pict = honeDir' get bird picture
if right$(pict, 1) <> "\" then pict = pict + "\"
pict = pict + "Bl RDY3. BW"

Begin D alog testdl g 286, 245, "Interactive D alog",
.interact

kButton 144, 221, 40, 14, .bok

Cancel Button 237, 221, 40, 14, .bcancel

QGoupBox 7, 11, 133, 107, "Goup", .gl

Text 13, 24, 62, 8, "Sanple Text Field:"

Text Box 13, 40, 120, 13, .tbl

CheckBox 13, 66, 35, 10, "Bell ", .cbhl

Button 64, 64, 60, 14, "&Bell", .bbell
Button 13, 92, 120, 14, "&Sanple Text Field To G oup Nane",
. copy

QG oupBox 144, 11, 133, 107, "Picture", .pg
Picture 173, 25, 75, 51, pict, 0, .pict
ot i onG oup . opt val
ptionButton 171, 80, 24, 10, "Bird", .hird
ptionButton 203, 80, 42, 10, "dipboard’, .clipboard
Button 171, 97, 80, 14, "Hde &icture", .hide
Button 190, 221, 40, 14, "&&ror", .berror

End D al og

dimtd as testdlg dialog box testdl g declared as variabl e

dd | oop handl es when clicking Cancel or K
sel ect case dial og(td)
case -1
if nsgbox("Dialog termnated by (K Restart?", 36,
"TestD g") = 7 then exit do
case 0
if nsgbox("D alog termnated by Cancel. Restart?", 36,
"TestD g") = 7 then exit do
case errorReturn
i f nsgbox(error$(evalue) + "on line" + cstr(eline) +".
Restart?", 36, "TestD g") = 7 then exit do
case el se

84

Chapter 4: Designing Dialog Boxes

if megbox("Dialog termnated by a button other than CK
or Cancel. Restart?", 36, "TestD g") = 7 then exit do
end sel ect
I oop end of |oop
End Sub

85

Chapter 5

Hummingbird Basic Language
Reference

Hummingbird Basic Statements and Functions 89
Arrays 89
Compiler Directives 89
Control Flow 90
Dates and Times 91
Declarations 92
Defining Dialog Boxes 93
Running Dialog Boxes 94
Dynamic Data Exchange (DDE) 95
Environment Control 95
Error-Handling Functions 96
Disk and Directory Control 96
File Control 97
File Input/Output 97
Financial Functions 99
Numeric Functions 99
Trigonometric Functions 100
Objects 100
Screen Input/Output 101
String Functions 101
String Conversions 103
Variants 103
Calling External Functions in a .dll 104
Sample Script: Calling External Functions in a .dll 104
Using Dynamic Data Exchange 105

DDE Sample Script 106

Chapter 5: Hummingbird Basic Language Reference

This chapter provides a quick reference to the statements and functions
available in Hummingbird Basic. The functions and statements are
separated into categories by type. Each function and statement is
accompanied by a short description.

For information about the specific syntax and usage of a statement or
function, see HostExplorer Programming Help.

Hummingbird Basic Statements and Functions

Arrays

Function

Description

Erase

Re-initialize contents of an array.

LBound

Return the lower bound of an array's dimension.

ReD m

Declare dynamic arrays and reallocate memory.

WBound

Return the upper bound of an array's dimension.

Compiler Directives

Function

Description

$CStri ngs

Treat the backslash in character string as an escape
character, such as in'C'.

$I ncl ude

Tell the compiler to include statements from another file.

$NoCt ri ngs

Tell the compiler to treat a backslash as a normal
character.

Li ne Conti nuation

Continue a long statement across multiple lines.

Rem

Treat the remainder of the line as a comment.

89

Hummingbird Basic™ Language Programmer’s Guide

Control Flow

Function Description

Gl l Transfer control to a subprogram.

Do. . . Loop Control repetitive actions.

Exi t Cause the current procedure or loop structure to return.

For. .. Next Loop a fixed number of times.

Goto Send control to a line label.

If ... Then ... Branch on a conditional value.

H se

Let Assign a value to a variable.

Lset Left-align one string or a user-defined variable within
another.

M...®to Branch to one of several labels, depending upon value.

Rset Right-align one string within another.

Sel ect Case Execute one of a series of statement blocks.

Set Set an object variable to a value.

S op Stop program execution.

Wile ... VWnd Control repetitive actions.

Wth Execute a series of statements on a specified variable.

Chapter 5: Hummingbird Basic Language Reference

Dates and Times

Function

Description

Date Function

Return the current date.

Date S at enent

Set the system date.

Dat eSeri al Return the date value for year, month, and day specified.
Dat eVal ue Return the date value for string specified.

Day Return the day of month in a date-time value.

Hour Return the hour of day in a date-time value.

| sDate Determine whether a value is a legal date.

M nut e Return the minutes in a date-time value.

Mont h Return the month in a date-time value.

Now Return the current date and time.

Second Return the seconds in a date-time value.

Ti me Function

Return the current time.

Tine Statenent

Set the current time.

Ti mer Return the number of seconds since midnight.

Ti meSeri al Return the time value for the hour, minute, and second
specified.

Ti meVal ue Return the time value for the string specified.

\éekday Return the day of the week for the specified date-time
value.

Year Return the year in a date-time value.

91

Hummingbird Basic™ Language Programmer’s Guide

Declarations

Function Description

Const Declare a symbolic constant.

Decl are Forward declare a procedure in the same module or in a
dynamic link library.

Deft ype Declare the default data type for variables.

Dm Declare variables.

Function ... End Define a function.

Functi on

d obal Declare a global variable.

Qpti on Base Declare the default lower bound for array dimensions.

(pti on Conpare Declare the default case-sensitivity for string
comparisons.

Qotion Explicit Force all variables to be explicitly declared.

ReD m Declare dynamic arrays and reallocate memory.

Satic Define a static variable or subprogram.

Sub ... End Sub Define a subprogram.

Type Declare a user-defined data type.

92

Chapter 5: Hummingbird Basic Language Reference

Defining Dialog Boxes

Function Description

Begin D al og Begin a dialog box definition.

Button Define a button dialog box control.

But t onG oup Begin the definition of a group of button dialog box
controls.

Cancel Button Define a Cancel button dialog box control.

Caption Define the title of a dialog box.

CheckBox Define a check box dialog box control.

ConboBox Define a combo box dialog box control.

Dr opConboBox Define a drop-down combo box dialog box control.

Dr opLi st Box Define a drop-down list box dialog box control.

Q oupBox Define a group box in a dialog box.

Li st Box Define a list box dialog box control.

CKBut t on Define an OK button dialog box control.

Opti onBut t on Define an option button dialog box control.

Opti onG oup Begin definition of a group of option button dialog box
controls.

Picture Define a picture control.

PushBut t on Define a push-button dialog box control.

S at i cGonboBox Define a static combo box dialog box control.

Text Define a line of text in a dialog box.

Text Box Define a text box in a dialog box.

93

Hummingbird Basic™ Language Programmer’s Guide

Running Dialog Boxes

Function Description

D al og Function Display a dialog box, and return the button pressed.
D al og S at enent Display a dialog box.

D gControl I d Return the numeric ID of a dialog control.

O genabl e Function Return whether a dialog control is enabled or disabled.

O genabl e Statenment Enable or disable a dialog control.

O gend Close the active dialog box.

O gFocus Function Return the ID of the dialog control having input focus.

D gFocus & at enent Set focus to a dialog control.

D gLi st BoxArray Return the contents of a list box or combo box.
Functi on

D gLi st BoxArray Set the contents of a list box or combo box.

St at enent

D gSetPRicture Change the picture in the picture control.

D gText function Return the text associated with a dialog control.
D gText Statenent Set the text associated with a dialog control.

O gVal ue Function Return the value associated with a dialog control.

D gVal ue & at enent Set the value associated with a dialog control.

D gVisible Function Return whether a control is visible or hidden.

Dgvisible Show or hide a dialog control.
St at erent

94

Chapter 5: Hummingbird Basic Language Reference

Dynamic Data Exchange (DDE)

Function Description

DDEAppRet ur nCode Return a code from an application on a DDE channel.
DDEExecut e Send commands to an application on a DDE channel.
DDE nitiate Open a dynamic data exchange DDE channel.
DDEPoke Send data to an application on a DDE channel.
DDERequest Retrun data from an application on a DDE channel.
DDETer ni nat e Close a DDE channel.

Environment Control

Function Description
AppActivate Activate another application.
Comrand Return the command line specified when the MAIN sub

was run.

Date St at enent

Set the current date.

DoEvent s Let the operating system process messages.

Envi ron Return a string from the operating system's environment.
Randoni ze Initialize the random-number generator.

SendKeys Send keystrokes to another application.

Shel | Run an executable program.

95

Hummingbird Basic™ Language Programmer’s Guide

Error-Handling Functions

Function Description

Assert Trigger an error if a condition is false.

Erl Return the line number where a runtime error occurred.
Err Function Return a runtime error code.

Er Satenent Set the runtime error code.

Eror Generate an error condition.

Error Function Return a string representing an error.

O Eror Control runtime error-handling.

Resune End an error-handling procedure.

Disk and Directory Control

Function Description

ChDr Change the default directory for a drive.
ChDrive Change the default drive.

QrbDr Return the current directory for a drive.
Dr Return a file name that matches a pattern.
MKD r Make a directory on a disk.

RO r Remove a directory from a disk.

96

Chapter 5: Hummingbird Basic Language Reference

File Control

Function Description

FileAttr Return information about an open file.

Fi | eCopy Copy a file.

Fi | eDat eTi ne Return the modification date and time of a specified file.

Fil eLen Return the length of a specified file in bytes.

GetAttr Return the attributes of specified file, directory, or volume
label.

Kill Delete files from a disk.

Nane Rename a disk file.

SetAttr Set attribute information for a file.

File Input/Output

Function Description

d ose Close afile.

Eof Check for end of file.

FreeFile Return the next unused file number.
Get Read bytes from a file.

Input Statenent

Read data from a file or from the keyboard.

Li ne I nput Read a line from a sequential file.

Loc Return the current position of an open file.

Lock Control access to some or all of an open file by other
processes.

Lof Return the length of an open file.

Qpen Open a disk file or device for I/O.

Print Print data to a file or to the screen.

97

Hummingbird Basic™ Language Programmer’s Guide

Function Description
Put Write data to an open file.
Reset Close all open disk files.

Seek Function

Return the current position for a file.

Seek St at enent

Set the current position for a file.

Spc Send the given number of spaces for output.

Tab Move the print position to the given column.

Uhl ock Control access to some or all of an open file by other
processes.

Wdt h Set the output-line width for an open file.

Wite Write data to a sequential file.

98

Chapter 5: Hummingbird Basic Language Reference

Financial Functions

Function Description

Fv Return the future value of a cash flow stream.

| Pt Return the interest payment for a given period.

IRR Return the internal rate of return for a cash flow stream.
NPV Return a constant payment per period for an annuity.

Pt Return a constant payment per period for an annuity.
PPt Return the principal payment for a given period.

Pv Return the present value of a future stream of cash flows.
Rat e Return the interest rate per period.

Numeric Functions

Function Description

Abs Return the absolute value of a number.

Exp Return the value of e raised to a power.

I nt Return the integer part of a number.

Fi x Return the integer part of a number.

I sNuneri c Determine whether a value is a legal number.
Log Return the natural logarithm of a value.

Rnd Return a random number.

Sgn Return a value indicating the sign of a number.
Sor Return the square root of a number.

99

Hummingbird Basic™ Language Programmer’s Guide

Trigonometric Functions

Function Description

An Return the arc tangent of a number.

Qos Return the cosine of an angle.

Sn Return the sine of an angle.

Tan Return the tangent of an angle.

Objects

Function Description

Q ass List List of available classes.

d i pboard Access the Windows Clipboard.

QO eat e(oj ect Create an OLE automation object.

Get hj ect Retrieve an OLE object from a file, or get the active OLE
object for an OLE class.

I's Determine whether two object variables refer to the same
object.

M Get the current object.

New Allocate and initialize a new OLE object.

Not hi ng Set an object variable to not refer to an object.

j ect Declare an OLE automation object.

Typeof Check the class of an object.

Wth Execute statements on an object or a user-defined type.

Chapter 5: Hummingbird Basic Language Reference

Screen Input/Output

Function

Description

Beep

Produce a short beeping tone through the speaker.

I nput Function

Return a string of characters from a file.

| nput

Read data from a file or from the keyboard.

| nput Box

Display a dialog box that prompts for input.

MsgBox Function

Display a Windows message box.

MsgBox S at enent

Display a Windows message box.

Passwor dBox Display a dialog box that prompts for input. Don't echo
input.
Print Print data to a file or to the screen.

String Functions

Function Description

GetField Return a substring from a delimited source string.

Hex Return the hexadecimal representation of a number as a
string.

InSr Return the position of one string within another.

LCase Convert a string to lower case.

Left Return the left portion of a string.

Len Return the length of a string or size of a variable.

Li ke Qperat or

Compare a string against a pattern.

LTrim Remove leading spaces from a string.

Md Function Return a portion of a string.

Md S atenent Replace a portion of a string with another string.

act Return the octal representation of a number as a string.

101

Hummingbird Basic™ Language Programmer’s Guide

Function Description

R ght Return the right portion of a string.

RTrim Remove trailing spaces from a string.

SetField Replace a substring within a delimited target string.
Space Return a string of spaces.

Str Return the string representation of a number.

St rConp Compare two strings.

Sring Return a string consisting of a repeated character.
Trim Remove leading and trailing spaces from a string.
UCase Convert a string to uppercase.

102

Chapter 5: Hummingbird Basic Language Reference

String Conversions

Function Description
Asc Return an integer corresponding to a character code.
QQur Convert a value to currency.
ol Convert a value to double-precision floating point.
Chr Convert a character code to a string.
ant Convert a value to an integer by rounding.
Qng Convert a value to long by rounding.
CSng Convert a value to single-precision floating point.
CStr Convert a value to a string.
Cvar Convert a number or string to a variant.
C\Vate Convert a value to a variant date.
For mat Convert a value to a string using a picture format.
Val Convert a string to a number.

Variants
Function Description
| sEnpt y Determine whether a variant has been initialized.
I'sNull Determine whether a variant contains a NULL value.
Nul | Return a null variant.
Var Type Return the type of data stored in a variant.

103

Hummingbird Basic™ Language Programmer’s Guide

Calling External Functions in a .dll

104

The Hummingbird Basic language contains an extensive set of API
(Application Programming Interface) calls that can be used to customize
some of the applications included in the Hummingbird product line.

API refers to a set of specialized functions that allow you to communicate
directly with the Windows application layer.

The following applications contain custom API function calls:

FTP
HostExplorer

For information about using TN3270 or TN5250 API function calls, refer to
HostExplorer Programming Help, located in the HostExplorer folder.

Sample Script: Calling External Functions in a .dll

The following sample script demonstrates how to declare and call a
function from an external . dl | . The. dl| in this example is called user. dI |
and it contains a function called Get Ti ckCount &

Decl are Sub MessageBox LIB "user32" Aias "MessageBoxA' (ByVal
h% ByvVal t$, ByVal c$, ByVal u%
Decl are Function Get TickCount & LIB "kernel 32.dl 1" ()

Function CAT$ concatenates two strings with a space between
t hem
Function Cat $(a$, b$)

Ct =a &" " &b

End Function
' Subprogram Say conputes the time and di splays a message hox

Sub Say(what $)
Dmmn, sec, hrs

sec = Get TickCount () /1000
mn = sec / 60 : sec = sec nod 60
hrs =mn/ 60 : mn =nn nod 60

D meTinme as vari ant

Chapter 5: Hummingbird Basic Language Reference

eTime = Format $(hrs, "00") &":" & Format$(nmin, "00") &
":" & Format $(sec, "00")

MessageBox 0, what, "Elapsed Tine is " & eTine, 64
End Sub

Sub Main
O m nsg$
If (Command$ = "") Then nsg$ = "World" E se nsg$ =
Command$
Say Cat$("Hello", nsg$)
End Sub

Using Dynamic Data Exchange

Dynamic Data Exchange allows two applications to communicate and to
exchange data. One of these applications can be your Basic program. To talk
to another application and send it data, you need to open a connection with
the application (called a DDE channel) using the statement DDE ni ti ate.
However, if you have OLE automation available, we recommend you use it
instead of DDE, since OLE is used more.

Note: The application must already be running before you can
open a DDE channel. To start an application, use the Shel |
command.

DOE ni ti at e requires two arguments:

* The DDE Application name

* A Topic name

The DDE application name is usually the name of the . exe file used to start
the application, without the . exe extension. For example, the DDE name
for Microsoft Word is W nwor d. The topic name is usually a file name to get
or send data to, although there are some reserved DDE topic names, such as
Syst em Refer to the documentation for the application to get a list of topic
names.

105

Hummingbird Basic™ Language Programmer’s Guide

106

After opening a channel to the application, you can get text and numbers
(DDERequest), send text and numbers (DDEPoke), or send commands
(DDEExecut e). When you have finished communicating with the
application, you should close the DDE channel with the DDETer ni nat e
function.

Note: There are a limited number of channels available for you to
use at one time. Close channels as soon as you are finished using
them. You can use up to 10 channels.

The other DDE command available in Hummingbird Basic is

DDEAppRet ur nCode. This command is used for error checking. After getting
or sending text, or executing a command, use DDEAppRet ur nCode to make
sure the application performed the task as expected. If an error did occur,
your program can notify the user of the error.

DDE Sample Script

The following sample script opens the Microsoft Word application and uses
DDERequest to obtain a list of available topics:

Sub main
D mchannel as Integer
D m appnare as String
Dmtopic as String
Dmpath as string
D mnsgtext as string
Dmttext as string

appnane="Excel "

t opi c="Sheet 1"
pat h="d:\ of fi ce97\ of fi ce\"
channel = -1

ttext = "Hello, world"
x=Shel | (path & appnane & ".EXE")
channel = DDH niti ate(appnane, topic)
If channel = -1 then
nsgt ext ="Excel not found -- please place on your path."
H se
On Error Resune Next
DDEPoke channel, "R3Q2", ttext

Chapter 5: Hummingbird Basic Language Reference

DDEExecut e channel , "[SELECT(" + Chr$(34) + "RACA" +
Chr$(34) +")]"

DDETer mi nat e channel

If Err<>0 then

nsgt ext =" DDE Access failed."
End |f
End If

End sub

107

Application Programming Interface
(API)

A set of routines, protocols, and tools that
programmers use to build software
applications. Most operating systems have
an API which programmers use to write
applications that are consistent with that
operating environment. APIs ensure that
all programs using that API have a similar
interface. This makes it easier for users to
learn new programs.

Breakpoint

Alocation in a program at which execution
is halted so that a programmer can
examine the status of the program, the
contents of variables, and so on. A
breakpoint is set and cleared within a
debugger, and is usually implemented by
inserting at that point some kind of jump,
call, or trap instruction that transfers
control to the debugger.

Compiler

A program that translate all of the source
code of a program written in a high-level
language into object code prior to
execution of the program.

Glossary

Control

A control statement determines the results
of your script. It also directs the flow of
logic during the execution of commands.

DDE

Dynamic Data Exchange. DDE allows
communication and data exchange
between two applications through
connections called DDE channels.

Debug

To detect, locate, and correct logical or
syntactical errors in a program, or
malfunctions in hardware.

Dialog box

In a graphical user interface, a special
window displayed by the system or
application to solicit a response from the
user.

Emulation

The process of a computer, device, or
program imitating the function of another
computer, device, or program. Terminal
emulation drivers included in
communications software enable a PC to
emulate a terminal type. This makes it
possible for a user to logon to a
mainframe.

Hummingbird Basic™ Language Programmer’s Guide

Error

A value or condition that is not consistent
with the true, specified, or expected
condition. In computers, an error results
when an event does not occur as expected,
or when impossible or illegal maneuvers
are attempted. In data communications, an
error occurs when there is a discrepancy

between the transmitted and received data.

Error-Handling

A special set of instructions that enable
your script to trap errors that may occur
while your script is running.

Expression

A collection of terms that perform a
mathematical or a logical operation. The
terms are either variables or functions that
are combined with an operator to evaluate
a result. There are several types of
operators.

Function

A construct which, when executed,
calculates and returns a value as
determined by its arguments.
Hummingbird Basic contains a variety of
built-in functions you can use in your
scripts. You can also write your own
functions.

Interpreter

A program that translates, and then
executes, each statement in a program
written in an interpreted language.

110

Logic Error

Occurs because of incorrect coding that
causes unexpected results (such as infinite
loops or incorrect values returned by
functions) during the execution of the
script. These types of errors generally cause
unexpected results during the execution of
your script.

Object Linking and Embedding (OLE)
A compound document standard that
allows you to create objects with one
application and link or embed the objects
in a second application. Embedded objects
retain their original format and links.

Windows and Macintosh operating
systems support OLE.

Operator

A symbol or other character indicating an
operation that acts on one or more
elements.

Procedure

A procedure contains a set of variables and
statements that you defined for the script.
There are two different types of procedures
in Hummingbird Basic: functions and
subprocedures. A Hummingbird Basic
script can contain one main subprocedure.
When the script is run, the main
subprocedure is executed first.

Glossary

Runtime Error

Can be caused by an unforeseen action
taken by the user, a coding error, or the
data your script is using (the script

attempts to read a file containing no data).

Runtime errors are handled through a set
of error-handling functions and
statements.

Statement

An instruction written in a high-level
programming language that defines how a
task in the script is carried out. It provides
the conditional logic or looping for a
procedure. It also defines the state of a
dialog box, such as its display and
configuration.

Syntax Error

Usually the result of spelling a statement or
a function incorrectly. It can also be the
result of using either a statement or
function incorrectly. To help you fix syntax
errors, the Hummingbird Script Editor
highlights language syntax errors in red
after a script is compiled.

Trappable error
See Error.

Variable

Placeholders for values that are declared,
named, and assigned a data type.

111

A
accessibility features..........ccocoeeeueeeeieeeenenns 6
directional arrow keys.........coceveueerininnnee 6
Enter Key.....ovveeenneciniiccccce, 7
ESCKEY o, 7
in Microsoft Windowscccceevenuneee 7
Keyboard shortcutsc.coovveeinneccnne. 6
Spacebar ..o 7
Tab key sequencecoveveennvevccenennen 7
TOOITIPS oo 7
ACtION ATGUMENT....eeveareiinrerereicieeeeeeeeieeenens 80
action value table ..o 80
adding controls to a dialog.........cccccevvenenece. 62
Animated mode ... 55
API and OLE function calls........ccccoeeerinneeee 3
APLcalls oo 104
archives, searching mailing list...................... 10
ATGUMENTES ..o 19
byVal...oooieiccicccccecee 20
Control ID ... 78
DDEInitiate......cccoevvvvveiinnciiienenne. 105
NAMEd ..o 20
pass by value, by reference...................... 20
ATTAYS oeevieiieerieie ettt 28, 89
Dynamic......ccecevevenencninininccceen 29
B
BASIC
early Versionsceceeeeevueueeenenenieeeenenees 4
MOAEIN ..t 5

Index

Begin Dialog........ccoeeveennee. 65, 75,76, 78, 79
Button ID ..o 66
Button Label.........ccccoviiiinniiinniinne 66
Button Type, Label, IDcccccoeecenniiiinnnes 66
ButtonGroup IDcccoeiiiiiiiiiiiiis 65
byVal argument ..o, 20
C
Call Stack control........ceceeevneccinnneinnnnas 53
calling external functions...........c.cooeveenenne 104
Caption Type & Captionccccccevvvieucucucnnne 65
Check Script button.........cocevvvvvvrrrrne 56
CheckBOX....c.cueueueieieieieieieieieieieeieeeenens 78, 93
ID and Label.......ccooeionniicnniiccnn, 69
Code WINAOW ...c.ceveviiriicieiinnciccnrecceae 52
command
DDEAppReturnCode.........cccccoovurunnnee. 106
Option EXplcCit....ccoveeeennecininrieccne 24
COMPATISON OPETALOTS...c..vemeevireeereeirrenerrenens 33
compiler directives........ccoevvveveuccinniereiecnennas 89
CONSEANTS ...oviiiiiieieeee 22,23
decimalccooovveieinniiirnccecee 27
defined ... 23
INTEERT ...ttt 27
terms in OPEratorscocecevercrueueueucnnne 32
CONtrol flow......cveueveniniciiincccccce 90
Control IDccoeieiiiiicicccccceeenen 64, 78
control palette buttons..........cccccceevreccinnnnes 61

Hummingbird Basic™ Language Programmer’s Guide

control properties

BUutton ..c..oovevieieieiiiciciciciecccene 66
CheckBOX.....oveueiiieieieiieeeeee 69
DropComboBOX.....ccoorevireeeriieieeenne 72
DropListBoX ...ccooveiviiiiiiciececeee 73
GroupBOX .coveevererenenenenenereeeeceene 73
LiStBOX v 70
OptionButtonc.coccvvevveniecnrecncnnee 67
StaticComboBOX.....c.coevvieveiiniciccen 71
TEXTE oot 68
TextBox (Edit) ..c.ocovveveevieiieieceeeeene 69
control statements........ceecerevereerccnenenes 19, 22
controls
adding to a dialog boXccccceucueueunnnne 62
Call Stack ..c..oveveerciicccccce, 53
CheckBox Control button..........c.c.c....... 61
DropComboBox Control button............ 61
DropListBox Control button 62
GroupBox Control button 62
ListBox Control buttonc.cccceeenee. 61
OptionButton Control button 61
Picture Control button........c.coeeueenenee. 62
PushButton Control button................... 61
Text Control buttoncoccecevevvuccnns 61
TextBox (Edit) Control button 61
creating a dialog box
EXAMPILE ... 78
current subprocedure........c.oeeiinnicininnns 52
D
data type
assigning the variable............cccccovnennee. 24
characters.....cooeveevnevccnnnccccccne 25
ODJECE .. 28
OVETVIEW .. 22
dates and tiMeS.......cccevvveeveennierceninicccnees 91
DDE
channel.......ccooeiinniiinice 105, 106
description of functions..........c.cccevueueeee. 95
sample SCIipt.......oveveverevererieireceeee 106
USING .o 105
DDE.€DS ..ottt 15

114

Debug mode ..o 53
decimal constantsc.coevrrrrcncncncnccenne 27
declarations........cceevevevereiererenrseeesne 92
dialog box
adding controlsc.cccceeeeeeeeeenenes 62
defining ..o 76, 93
description of functions.........cccc.eueueeeee. 93
displayingcccoeevevereveninnee 76
EXAMPIE . 78
handlingcccccovveernnecinncccee, 5
integrating into SCript.........ccccceevvvrvenennaes 75
PIOPEITIES ..o 65
running, description of functions.......... 94
Size and Position..........cccccvvveveueenne 65-75
Dialog Editor ...c.covvveveveiniricciiiicccnncccene 4
aligning controls...........c.cccocceeecceennes 63
control paletteccoecevvvecinnieeenn, 61
creating the dialog box.........cccccceceeeiies 60
Dialog Code windowcccceeenennee. 60
dialog function and statement................ 76
integrating dialog box into script........... 75
INEETFACE ... 59
Layout menu commands............c.c.c...... 63
setting control properties................. 64-75
setting dialog box tab order 64
t00IbATr ... 60
dialog function......c.c.cccecceevvecinnncinnnenen, 76
PATAMELErS..c.viiuiiiiiiiiiiiiiiiciccceece 79
WITHNG oot 79
Dialog ID .o 65
Dialog.ebs ..o 15
Dim statement.........ccccoeveeeinininccininiene, 29
disk and directory controlc..ccovevueucece. 96
documentation
Help .o 8
MANUAlS ... 8
release NOteSc.ceeeueeueueueueuerererererenenes 8
DropComboBOX.......ccccuvreveinirnierienniereene 72
ID and Contents.........cocecevereveenennnenne. 72
DropListBOX ...c.coveiverieiniciicinicircecenene 73
DropListBox ID and Contents...................... 73
Dynamic Arrayccceeeevivivieiinnennns 29, 34

Index

E
EB subdirectoryccoeoevvevecrinnciccninine, 15
EBS and EBX file extension..........cccccceveueeee. 51
EBX oo 17
Edit modecocoovvvvivie 53
End Dialog......ccoeoevviecinnccinccceen 75, 76
environment cONtrolc.occceceeevrevecncne. 6, 95
error handling
defined........coovvnininnn 17
fUNCHONS. ... 96
Execute Script buttonc.cceceevvvccrinnnnee. 56
EXPIESSIONS.....vvvieiiiieiiiiercecee e 32
defined........coovvviinnn 17
F
file cONtrol.......oveiiieeiecc e 97
file INPUL/OULPUL ..o 97
FILELIST.€DS ..cveuiveiiiiiiiiiiiiiciccicicccieieinene 15
financial functionsccoceeeeerreccninecene 99
FTP AP ..ottt 3
FTP OLE
sample SCrIPt ..evvvrveueeeirireeeeeeeee 15
function
environment control..........ccccceeeeenene. 95
Procedureooooveueinnieieeeeeeee 18
FUNCHONS .. 19
ATGUIMENTS. ..o 19
compiler directives.........ccceerervrieueeenne. 89
Ccontrol flow ..o 90
dates & tiMEScovevevreeiririeeieeeeee 91
DDETerminate........ccccoveveeveereereneenennen 106
declarationscceeeenenieeecnineceee 92
defined.......ooeeiniieiieee e 17
defining dialog boxesc.c.cococvvceuaes 93
disk and directory control............c.c..... 96
dynamic dialog boX........cccoeveiiicinians 77
error handlingc.cocovvvvnnnnnccnes 96
file controlcooooeeeiiiccieee 97
file iINput/OUtPUL...ceeeee e 97
financial ... 99
Hummingbird Basic.......cccceevvvvverirenenee. 89
INEETACE . 79
NUIMETIC ettt 99

ODJECES v 100
running dialog boxes..........cccceceveeeennnes 94
screen iINPUt/Output.......ccceevvveveeerennnnen 101
SEEING vt 101
StriNg CONVErSIONS.....covevevreervrveveeererennene 103
trIGONOMELTIC. ..t 100
VATTANT coviivcieeeeeeee e 103
G
Global variablecccccoooiiiiiiniins 24
GloSSAryENtIy ...cvveeiriiciiiniieccnneccsene 109
GroupBOX....ccooveinieirieinieieecccceceiene 73
desCriptionc.oeveeeeinnieieinnneecseee 93
Label and IDccccccceuiecieiiiceccceenee 74
H
HeIpP oo 8
Hummingbird accessibility.........c.cocovririinnee 6
Hummingbird Basic
calling external functionscc.c...... 104
DDE commandcccccoeeveueeeeeenenes 106
dialog box handling..........cccocvvvvrrnenene. 5
environment controlc.cccceevvvrneene. 6
financial functions..........cccevvvvvvrnenenes 5
object handlingcccocvvvvvvnnnnnne, 6
SCIIPE StrUCTUTE. . 18-22
statements and functions reference........ 89
support of BASIC data types................... 22
UHHEES oo 4
Workbench.......cooviiiiiiiiinnn. 51-53
Hummingbird Expose Online
SUDSCIIDING. ... 9
Hummingbird Information Resources 8
documentationccccevevvvvrrrrrenene 8
Mailing listsc.eevevevvvvvviirirrrrnes 9
Technical Supportccccceeivreeencne 9
Hummingbird mailing lists
SUDSCIIDING. ... 10
Hummingbird Telnetc.cocovvnnnnncnnne. 28
Hummingbird User Group
JOINING ..t 11
POStING MESSAZES.....cvvnvveveerrreereveaereenenes 11
Hummingbird users, interacting with............. 9

Hummingbird Basic™ Language Programmer’s Guide

I
IBM 3270 01 5250....cc.ccivininininiiniinenienenee. 3
identifier
Begin Dialog statement.............c.cocoeeeee. 79
Control ID ..o 64
information resources, Hummingbird..... 8§, 10
documentationcccceeevveevecnerinnereeene 8
mailing lists......ccccceeeeennnnrne, 9,10
Technical SUPPOItc.cccueveueueueverereicrennn 9
INteZer CONSLANTS ...evevevenrevenierereienieeinreeeienan 27
interacting with Hummingbird users............... 9

J

joining Hummingbird

Mailing LSSc.ceereeeeereeeereeeeennen, 9
User GIOUPoovevvervenienieieiereieieieeenes 11
K
Keyboard shortcutsc.oeueenivincininirccene 6
L
ListBox
ID and Contents.........c.ccceeeeeeeeeeennns 70
1OGIC ITOTS. ...ttt 41
logical Operators.........cooceeeeececececcicccieienenes 33
M
macro expression
file NAME .vvvveiiieiciceccccce 75
Macro Function Name.......c.ccceceevvvvevecennnnnes 65
macro input expression
content.....ccoeeviviiiiiiinnnn, 70, 71,72, 73
label.......ccoooiireiin. 66, 67, 68, 70, 74
mailing lists, Hummingbird 9, 10
JOINING .. 9
searching archives.........cceceeevevevcrenenen 10
SUDSCIIDING.....vvviiiieicicicicecceeee 10
main subprocedurecc.oeeeenirrceeenenns 52
MANUALS .. 8
Microsoft Windows accessibility options........ 7

116

N
nUMeric functionscceevvveecennerecnennnnens 99
numeric IDs ... 78
NUMETIC OPETALOTSeovervinreiieeiiieicrieeenieneane 32
0
ODJECL i 100
object data type.....cccoveueueenireeieee 28
OLE ...ttt 5,6
AUEOMALION ..o 105
AULOMAtION SEIVETevvieereveeereierennes 28
ODJECT e 28
operators
COMPATISON .ottt 33
logical ..o 33
NUIMIETIC ettt 32
OVEIVIEW ..eoniivieniiiereieeeeereveeee e 32
SETING v 32
Option Base statementc.ccccoeveveenencnnee 29
Option Explicit command.........c.ccccceoeeninenne. 24
OptionButton
label and IDcccccevveiieiiceeenenenes 67
OptionButton groupccccceeevvveveinnenenne. 67
Output Windowcccceeeveeeeninirceieeeene 53
Output Window buttonccceeeeerriennne. 56
overview
PrOGrammMINgc.ccoovvveveernereereriererierenenes 17
P
Password-no Echo........ccoovnnnnnnncnn. 69
Pastword.ebs ... 15
picture CONtrols........cceevirieieeeeririccceeeae 74
posting to Hummingbird User Group.......... 11
Primary COntrol........coeeeveveveervvennerrsrnnen, 64
procedures
defined......coovvivvininnninr e 17
R
record variable ... 31
ReDim statement..........cccooveerveccnecnenennennne. 29
release NOES......c.evreveviirnieiecreec e 8

Index

resources, Hummingbird information8, 10
documentation.........c.ocvvverrrrssirecnnes 8
mailing listscovvevnireniiccccccaes 9,10
Technical Support........ccccoevveereninnen. 9

return value. ... 81

RUN MOAE ..o 53

Run Script in Animated Mode button.......... 56

running dialog boxesccccevuvviririririnienee. 94

FUNTIME @ITOLS..eenveviieeireeirreeieeeeeeaeeereneereneene 41

S

sample script
calling external functions..................... 104
DDE. ..o 106
DLGTEST.EBS.....cooviiiiieeeeeee 82
OVEIVIEW ... 15

screen INput/output......cccceevviviciininicnenne, 101

script
compiling and running..........c.ceeeeveeeeee 55
creating a fileooeevinncciiinnccene, 53
elements........ocoovoeeveeeieinininiee 17
EITOTS oot 55
toolbar buttons............ccceeeeviiciicenns 56
translating tasks, actionsc.c.cceeune. 54

Scripting Tool
See Workbench

searching mailing list archives....................... 10

Sendrecv.ebs ... 16

setting control propertiesc.cccovevveveeenne. 64
button controls..........ccccceeeeccicennen 66
CheckBOX ...cvcveieieiiriirecereeee e 69
dialog bOXveveeiiiciccicce 65
LiStBOX....ooviuiiiiiciciicicicciccce 70
OptionButton.........ccceeevveeneineincnnnens 67
StaticComboBOXcccceueveieieicicicee 71
teXt CONtIOlS.....coveiiieee 68

shortcuts
Keyboardcoeeernnciinicicncccn, 6

statements
Begin Dialogc.c..... 65, 75, 76, 78, 79
Call oo 18
CONS. ittt 23
CONETOL. i 22
DDEINItAte ...ocveevevieeeiieeiieecrecenes 105
definedccoeoinieee e 17
DM o 29
Dim or Global........cccceecnnieinnneeene, 24
dynamic dialog boxc.ccecevviieircnnnnee 77
End Dialog......coceovenneccinnnnee. 75,76, 78
Function...End Function.............ccco....... 79
Hummingbird Basic.....c.cococeecvrrnenenne. 89
OnN EITOT v 77
Option Basecccoeceveceneeinenincnccine 29
ReDiIm....coooiieiicinicinciceeecceee 29
Sub..End Subccoooniiiii 18
TYPC e 31
StaticComboBox
described......ccovieiinniiie 93
ID and Contents..........ccceeveeereeerieerienns 71
string
CONVETSIONS ...cunvenevireeinreeenienesieenieneas 103
fUNCHONS .. 101
OPETATOTS ..cuvieuiiiieiiciieciiere e 32
string variablescoocveovnieiinnneenen 27
subprocedurec.cccovveicirnierenene. 17, 18, 77
Call Stack controlccccoeevrerrieirinnens 53
fUNCHON .o 19
AN ot 52
subscribing
Hummingbird Expose Online 9
Hummingbird mailing lists.................... 10
SubscriptRange formatcccccovveicinnnnee 29
Suppress Message.......c.coveevveereeriecnnecnnenenns 74
suppval parameter..........c.coveveeerneecnenienen. 80
suppval value tableccocoveicnniinnnnnen 81
SYNTAX EITOTS c.eeiviiiiiiiiicciiccric e 40, 41
T
Technical SUPPOTT......c.ccceeeeueiiiiiieieieieicienenes 9
TeSt1.eDS.cueiieiiiiecccc e 16
TeSt2.€DS v 16

Hummingbird Basic™ Language Programmer’s Guide

TeSt3.€DS v 16
TeSt4.€DS v 16
TeSt5.€DS e 16
TeStETP.eDS.c.cveuiiieeeieeeee e 15
Text Labelccoovieiieeeeeceeeeees 68
TextBoX ID ...covoiiiiiiiiieiciciccicccee 69
trapping errors
OPption L. 43
OPHON 2.t 44
trapping user defined errors
OPpHioN 3. 45
OptioN 4. 46
trigonometric functions..........c.ccceceeeeucunes 100
Type statement.......c.coecevveerreirenieenecnenennee 31
u
UNIX ROSES ..o 3
User Group, Hummingbird
JOINING .ot 11
POSting Message to.....c.coveuerveuerreeenreeennene. 11
\'J
variable declarations
SCOPE weveieenrieerenieerterenre e et 4
variables.......ooooeiiiii e 22,23
ATTAY oot 28
AS TETINIS 1ttt 32
Boolean ... 27
CONSLANT .o 23
declaringcocoeeeeeeeeeeieeeeeeen 24
Delaringococeeveeeeeeecieceeeeeenenes 34
dimensionedcoooeeininrenine, 23
element of Hummingbird Basic............. 17
Global.....oooeeieeeeeee, 24, 34
global ..o 52

118

glossary definitioncccceeevevererennee 111
N procedures.........cccovvvueeenirreeeenenns 110
NAMING .ottt eeereveaeaes 34
NUMETIC TYPES ..ttt 26
TECOTd 1o 31
scope of declarations..........ccceceevrerueuenne. 19
set by eXpressions.........ceeeeeeerererenenes 32
SEAtIC .o 24
SEIINE ettt 27
SubscriptRange formatcccccovuennee. 29
terms in eXpressions........c.eceeeeeeverennnn. 110
Variables window..........cccccerveriinnnnen 52
VATTAN L. 25
Variables Windowc.ccceceenneicinnnccnenns 52
VATTANE oo 103
EmPpty oo 26
NUlL.coiicc e 26
variable ..o 25
Variant data typecccceeeueeeeeeeeeenenas 24
varray, Dynamic Arrayccceceeeeinecinecnn 30
w
Workbench.......oovviiviine 4
Workbench/Scripting Tool
Call Stack control.........cccooveecinneecne. 53
Code WIndowc.ccvvereinnnecncniennes 52
Output Windowcoeevevinininininciian. 53
Status bar ... 53
Variables window..........cccccevvevecnnnnen 52
writing a dialog functioncccccceeeueennee 79
X
Xlib API
commands and functionsc.cc.c...... 3

Notes

Notes

Notes

Notes

	Contents
	Chapter 1: Introducing Hummingbird Basic
	About Hummingbird Basic
	Development Tools
	Hummingbird Basic Features

	Accessibility
	Microsoft Accessibility Options

	Hummingbird Information Resources
	Documentation Resources
	Technical Support
	Mailing Lists and User Groups

	Chapter 2: Hummingbird Basic Scripts
	Sample Scripts
	Programming Terminology
	Structure of a Hummingbird Basic Script
	Variable Scope
	Functions and Control Statements
	Control Statements

	Variables, Constants, and Data Types
	Variables and Constants
	Data Types

	Expressions and Operators
	Numeric Operators
	String Operators
	Comparison Operators
	Logical Operators

	Programming Tips and Coding Suggestions
	Naming Variables and Constants
	Global Variables
	Declaring Variables
	Option Base
	Dynamic Array
	Runtime Error
	Controls
	Compatibility
	Checking for the Existence of PC Files
	Using Win32 API
	Network Logon Name
	Always Visible Message Box
	Working with Windows Registry
	OLE Functions

	Error-Handling and Debugging
	Error Types
	Debugging Scripts for Syntax and Logic Errors
	Handling Runtime Errors
	Trapping Errors

	Chapter 3: Using Development Tools to Edit Scripts
	About Hummingbird Basic Workbench
	The Workbench Interface
	Creating a Script File at a Glance

	Compiling and Running a Script File
	Running a Script File

	Chapter 4: Designing Dialog Boxes
	About Dialog Editor
	Dialog Editor Interface

	Adding Controls to a Dialog Box
	Aligning Controls in the Dialog Box
	Setting Control Properties
	Dialog Box Properties
	Button Control Properties
	OptionButton Control Properties
	Text Control Properties
	TextBox (Edit) Control Properties
	CheckBox Control Properties
	ListBox Control Properties
	StaticComboBox Control Properties
	DropComboBox Control Properties
	DropListBox Control Properties
	GroupBox Control Properties
	Picture Control Properties

	Integrating a Dialog Box into Your Script
	Defining the Dialog Box
	Displaying the Dialog Box

	Dialog Statements and Functions
	Writing a Dialog Function

	Putting It All Together

	Chapter 5: Hummingbird Basic Language Reference
	Hummingbird Basic Statements and Functions
	Arrays
	Compiler Directives
	Control Flow
	Dates and Times
	Declarations
	Defining Dialog Boxes
	Running Dialog Boxes
	Dynamic Data Exchange (DDE)
	Environment Control
	Error-Handling Functions
	Disk and Directory Control
	File Control
	File Input/Output
	Financial Functions
	Numeric Functions
	Trigonometric Functions
	Objects
	Screen Input/Output
	String Functions
	String Conversions
	Variants

	Calling External Functions in a .dll
	Sample Script: Calling External Functions in a .dll

	Using Dynamic Data Exchange
	DDE Sample Script

	Glossary
	Index

