
8157-5M

Hummingbird Basic™ Language
Programmer’s Guide

Hummingbird Basic™ Language Programmer’s Guide
0710 8157-5M
8/15/01

Hummingbird Ltd.
1 Sparks Avenue, Toronto, Ontario, Canada M2H 2W1
Tel: +1-416-496-2200 Toll Free Canada/USA: 1-877-FLY-HUMM (1-877-359-4866)
Fax: +1-416-496-2207
E-mail: support@hummingbird.com or getinfo@hummingbird.com
FTP: ftp.hummingbird.com
For more information, visit www.hummingbird.com

RESTRICTED RIGHTS LEGEND. Unpublished rights reserved under the copyright laws of the United States. The SOFTWARE is provided with
restricted rights. Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of The
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (c)(1) and (2) (a) (15) of the Commercial Computer
Software-Restricted Rights clause at 48 CFR 52.227-19, as applicable, similar clauses in the FAR and NASA FAR Supplement, any successor or
similar regulation.

Information in this document is subject to change without notice and does not represent a commitment on the part of Hummingbird Ltd. Not all
copyrights pertain to all products.

© 1990–2001 Hummingbird Ltd. All rights reserved.

Exceed, Exceed 3D, Exceed onDemand, Exceed PowerSuite, Exceed X Development Kit, Exceed Web, HostExplorer Print Services, HostExplorer,
HostExplorer Web, HostExplorer Deployment Wizard, Hummingbird Connectivity Security Pack, Hummingbird Basic Language,
Hummingbird CAP, CAP Server, Hummingbird e-Toolkit, JuMP, Enterprise Toolkit for JuMP, Hummingbird e-Gateway, Hummingbird FTP,
Hummingbird G2G, Hummingbird Web Server, Hummingbird SOCKS Client, NFS Maestro, NFS Maestro Gateway, NFS Maestro Server,
NFS Maestro Solo, PrintExplorer, Web Update, and XWeb are trademarks of Hummingbird Ltd. and/or its subsidiaries.

ACKNOWLEDGEMENTS Some portions of the code have been contributed by MIT. Portions copyright © Blue Sky Software Corporation. All
rights reserved.

All other copyrights, trademarks, and tradenames are the property of their respective owners.

DISCLAIMER Hummingbird Ltd. software and documentation has been tested and reviewed. Nevertheless, Hummingbird Ltd. makes no
warranty or representation, either express or implied, with respect to the software and documentation included. In no event will Hummingbird Ltd.
be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect in the software or documentation included with
these products. In particular, Hummingbird Ltd. shall have no liability for any programs or data used with these products, including the cost of
recovering such programs or data.

mailto:support@hummingbird.com
mailto:support@hummingbird.com
mailto:getinfo@hummingbird.com
mailto:getinfo@hummingbird.com
ftp://ftp.hummingbird.com/
ftp://ftp.hummingbird.com/
http://www.hummingbird.com/

Contents
Chapter 1: Introducing Hummingbird Basic 1

About Hummingbird Basic ... 3
Development Tools .. 4
Hummingbird Basic Features ... 4

Accessibility .. 6
Microsoft Accessibility Options ... 7

Hummingbird Information Resources .. 8
Documentation Resources ... 8
Technical Support .. 9
Mailing Lists and User Groups ... 9

Chapter 2: Hummingbird Basic Scripts 13

Sample Scripts .. 15

Programming Terminology .. 17

Structure of a Hummingbird Basic Script .. 18
Variable Scope .. 19
Functions and Control Statements .. 19
Control Statements ... 22

Variables, Constants, and Data Types .. 22
Variables and Constants ... 23
Data Types .. 24

Expressions and Operators ... 32
Numeric Operators .. 32
String Operators ... 32
Comparison Operators ... 33
Logical Operators ... 33

Hummingbird Basic™ Language Programmer’s Guide
Programming Tips and Coding Suggestions ... 34
Naming Variables and Constants ... 34
Global Variables .. 34
Declaring Variables ... 34
Option Base .. 34
Dynamic Array .. 34
Runtime Error .. 35
Controls .. 35
Compatibility .. 35
Checking for the Existence of PC Files ... 35
Using Win32 API .. 36
Network Logon Name .. 36
Always Visible Message Box ... 37
Working with Windows Registry ... 38
OLE Functions .. 39

Error-Handling and Debugging ... 40
Error Types ... 40
Debugging Scripts for Syntax and Logic Errors ... 41
Handling Runtime Errors ... 42
Trapping Errors .. 42

Chapter 3: Using Development Tools to Edit Scripts 49

About Hummingbird Basic Workbench .. 51
The Workbench Interface ... 51
Creating a Script File at a Glance ... 53

Compiling and Running a Script File ... 55
Running a Script File .. 55

Chapter 4: Designing Dialog Boxes 57

About Dialog Editor .. 59
Dialog Editor Interface ... 59

Adding Controls to a Dialog Box ... 62

Aligning Controls in the Dialog Box .. 63
iv

Contents
Setting Control Properties .. 64
Dialog Box Properties ... 65
Button Control Properties ... 66
OptionButton Control Properties .. 67
Text Control Properties .. 68
TextBox (Edit) Control Properties ... 69
CheckBox Control Properties .. 69
ListBox Control Properties ... 70
StaticComboBox Control Properties ... 71
DropComboBox Control Properties .. 72
DropListBox Control Properties .. 73
GroupBox Control Properties .. 73
Picture Control Properties ... 74

Integrating a Dialog Box into Your Script ... 75
Defining the Dialog Box ... 76
Displaying the Dialog Box .. 76

Dialog Statements and Functions ... 76
Writing a Dialog Function ... 79

Putting It All Together .. 82

Chapter 5: Hummingbird Basic Language Reference 87

Hummingbird Basic Statements and Functions .. 89
Arrays ... 89
Compiler Directives ... 89
Control Flow .. 90
Dates and Times ... 91
Declarations .. 92
Defining Dialog Boxes .. 93
Running Dialog Boxes .. 94
Dynamic Data Exchange (DDE) .. 95
Environment Control ... 95
Error-Handling Functions ... 96
Disk and Directory Control ... 96
File Control .. 97
File Input/Output ... 97
Financial Functions .. 99
Numeric Functions ... 99
Trigonometric Functions ..100
Objects ...100
v

Hummingbird Basic™ Language Programmer’s Guide
Screen Input/Output .. 101
String Functions ... 101
String Conversions ... 103
Variants ... 103

Calling External Functions in a .dll .. 104
Sample Script: Calling External Functions in a .dll .. 104

Using Dynamic Data Exchange .. 105
DDE Sample Script ... 106

Glossary 109

Index 113
vi

Chapter 1

Introducing Hummingbird Basic

About Hummingbird Basic 3
Development Tools 4
Hummingbird Basic Features 4

Accessibility 6
Microsoft Accessibility Options 7

Hummingbird Information Resources 8
Documentation Resources 8
Technical Support 9
Mailing Lists and User Groups 9

Chapter 1: Introducing Hummingbird Basic
About Hummingbird Basic

Hummingbird Basic™ is a fully functional language that includes a
Workbench for writing and compiling scripts, and a graphical drag-and-
drop Dialog Editor for creating and designing an interface. Hummingbird
Basic can be used to create scripts for the tasks you frequently perform and
want to automate. For example, scripts can be created to automate routine
tasks. The following are some common tasks that may require a
Hummingbird Basic script:

• If you often edit specific files on your PC, then transfer these files to
several UNIX hosts. Create a script using the FTP API functions that
will connect to the host, transfer the designated files, and then
disconnect.

• If you need to perform the same actions on several IBM 3270 or 5250
hosts at the same time. Create a script file with the HLLAPI functions.
This saves you from maintaining the same shell script on a number of
different 3270 hosts.

• If you configure your computer differently depending on what you are
working on, you could write a script to change your PC configuration
back and forth. The script file would allow you to quickly and easily
change the configuration without having to manually edit the files each
time.

In addition to the Hummingbird Basic statements and functions, there is a
set of API and OLE function calls which you can use to customize the
following Hummingbird applications:

• FTP

• HostExplorer

Hummingbird Basic also supports a number of Xlib API functions. These
functions are used to create X clients for your PC.

Note: Xlib API commands are available only if you purchased the
Exceed product. Use only the applications that have OLE API
libraries with Hummingbird BASIC.
3

Hummingbird Basic™ Language Programmer’s Guide
Development Tools
Hummingbird Basic includes the following development tools:

Workbench A development environment to write, compile and debug
your scripts.

Dialog Editor Accessed from Workbench, this drag-and-drop dialog box
editor lets you design a dialog box without having to manually code one.
When you are finished designing, the code for the dialog box is
automatically generated and updated into your script.

Hummingbird Basic Features
If you are familiar with older versions of BASIC (those that predate
Windows), you will notice that Hummingbird Basic includes many new
features and changes from the language you have learned. Hummingbird
Basic more closely resembles other higher level languages popular today,
such as C and Pascal.

The topics below describe some of the differences you will notice between
the older versions of BASIC and Hummingbird Basic.

Line Numbers and Labels
Older versions of BASIC require numbers at the beginning of every line.
More recent versions do not support these line numbers; in fact, they will
generate error messages.

If you want to reference a line of code, you can use a label. A label can be any
combination of text and numbers. Usually, it is a single word followed by a
colon (:), which is placed at the beginning of a line of code. These labels are
used by the Goto statement.

Subroutines and Modularity of the Language
Hummingbird Basic is a modular language; code is divided into
subprocedures and functions. The subprocedures and functions you write
use the Hummingbird Basic statements and functions to perform actions.

Variable Scope
The placement of variable declarations determines their scope.
4

Chapter 1: Introducing Hummingbird Basic
Data Types
Modern BASIC is now a typed language. In addition to the standard data
types—numeric, string, array, and record—Hummingbird Basic also
includes variants and objects.

Variables that are defined as variants can store any type of data. For
example, the same variable can hold integers one time, and then, later in a
procedure, it can hold strings.

Objects give you the ability to manipulate complex data supplied by an
application, such as Windows, Forms, or OLE objects.

Dialog Box Handling
Hummingbird Basic contains extensive dialog box support to give you great
flexibility in creating and running your own custom dialog boxes. You
define a dialog box with dialog control statements between the Begin
Dialog...End Dialog statements, and then display it using the Dialog
statement (or function).

Hummingbird Basic stores information about the selections the user makes
in the dialog box. When the dialog box is closed, your program can access
this information.

Hummingbird Basic also includes statements and functions to display other
types of boxes:

• Message Boxes—Notify the user of an event.

• Password Boxes—Do not echo the user’s keystrokes on the screen.

• Input Boxes—Prompt for a single line of input.

Financial Functions Hummingbird Basic includes a list of financial
functions for calculating such things as loan payments, internal rates of
return, or future values based on a company’s cash flow.
5

Hummingbird Basic™ Language Programmer’s Guide
Date and Time Functions The date and time functions have been
expanded to make it easier to compare a file’s date to today’s date, set the
current date and time, time events, and perform scheduling-type functions
(such as finding the date for next Tuesday).

Object Handling Hummingbird Basic is an OLE automation controller.
Any OLE-enabled application can be communicated with or controlled
through a Hummingbird Basic script.

The object data type permits your Hummingbird Basic code to access other
software applications by manipulating the available OLE properties and
methods of the other application.

Environment Control Hummingbird Basic includes the ability to call
another software application and send keystrokes to the application. Other
environment control features include the ability to run an executable
program, temporarily suspend processing to allow the operating system to
process messages, and return values in the operating system environment.

Accessibility

Hummingbird products are accessible to all users. Wherever possible, our
software was developed using Microsoft Windows interface standards and
contains a comprehensive set of accessibility features.

Keyboard shortcuts All menus have an associated keyboard shortcut. To
access any menu, press Alt and the underlined letter in the menu name as it
appears on the interface. For example, to access the File menu in any
Hummingbird application, press Alt + F.

Once you have opened a menu, you can access a menu item by pressing the
underlined letter in the menu item name, or you can use the arrow keys to
navigate the menu list. For menu items with an associated keyboard
shortcut, the shortcut is listed on the menu to the right of the item.

Directional arrows Use the directional arrows on the keyboard to
navigate through menu items or to scroll vertically and horizontally. You
can also use the directional arrows to navigate through multiple options.
For example, if you have a series of radio buttons, you can use the arrow
keys to navigate the possible selections.
6

Chapter 1: Introducing Hummingbird Basic
Tab key sequence To navigate through a dialog box, press the Tab key.
Selected items appear with a dotted border. You can also press Shift + Tab to
go back to a previous selection within the dialog box.

Spacebar Press the Spacebar to toggle check boxes on and off or to select
buttons in a dialog box.

Esc Press the Esc key to close a dialog box without implementing any new
settings.

Enter Press the Enter key to select the highlighted item or to close a dialog
box with the new settings. You can also press the Enter key to close all About
boxes.

ToolTips ToolTips appear for all functional icons. This feature lets users
use Screen Reviewers to make interface information available through
synthesized speech or through a refreshable Braille display.

Microsoft Accessibility Options
Microsoft Windows environments contain accessibility options that let you
change how you interact with the software. This feature can add sound,
increase the magnification, and create sticky keys.

To access the Microsoft Windows Accessibility options, open Control Panel
and click Accessibility.

If you installed the Microsoft Accessibility components for your Windows
system, you can also find other Accessibility tools on the Start menu under
Programs/Accessories/Accessibility.

To add the Accessibility components:

1 In Control Panel, double-click Add/Remove Programs.

2 On the Setup tab, select the Accessibility Options check box and click
Apply.

3 Click OK.
7

Hummingbird Basic™ Language Programmer’s Guide
Hummingbird Information Resources

Hummingbird provides the following sources of information regarding
your product.

Documentation Resources
Your product documentation set consists of both print and online sources.

Manuals Hummingbird manuals contain conceptual information on
your product; procedural information on installing and using the product
and related applications; and some manuals contain programming
reference, interface reference, and troubleshooting information.

All manuals are available in print and online. The online versions require
Adobe Acrobat Reader 5.0 and are installed only if you do a Complete
installation.

Online Help The online Help is a comprehensive, context-sensitive
collection of information regarding your Hummingbird product. It
contains conceptual and reference information, and detailed, step-by-step
procedures to assist you in completing your tasks.

Release Notes The release notes for each product contain descriptions of
the new features and details on release-time issues. They are available in
both print and HTML. The HTML version is automatically installed when
you install the software. Read the release notes before installing your
product.
8

Chapter 1: Introducing Hummingbird Basic
Technical Support
You can contact the Hummingbird Technical Support department Monday
to Friday between 8:00 a.m. and 8:00 p.m. Eastern Time.

Mailing Lists and User Groups
For tips, additional help, and contact with other Hummingbird users on all
operating systems, subscribe to Hummingbird Exposé Online or join the user
group dedicated to your Hummingbird product.

Subscribing to Hummingbird Exposé Online
Hummingbird Exposé Online is an electronic mailing list and online
newsletter. It was created to facilitate the delivery of Hummingbird
product-related information. It also provides tips, help, and interaction
with Hummingbird users.

To subscribe to Hummingbird Exposé Online:

1 Open your web browser and type the following address:

http://www.hummingbird.com/expose/about.html

Hummingbird Ltd.
1 Sparks Avenue, North York, Ontario, Canada M2H 2W1

Canada and the USA International

Technical Support: 1-800-486-0095
+1-416-496-2200

General Enquiry: 1-877-FLY-HUMM

Main: +1-416-496-2200

Fax: +1-416-496-2207

E-mail: support@hummingbird.com

FTP: ftp.hummingbird.com

Online Request Form: www.hummingbird.com/support/nc/request.html

Web Site: www.hummingbird.com/about/contact.html
9

mailto:support@hummingbird.com
ftp://ftp.hummingbird.com
http://www.hummingbird.com/support/nc/request.html
http://www.hummingbird.com/about/contact.html
http://www.hummingbird.com/expose/about.html

Hummingbird Basic™ Language Programmer’s Guide
2 In the Subscribe section, type your full name, e-mail address, and
language preference. Then click Subscribe.

To subscribe to the Mailing List or User Group:

1 Open your web browser and type the following address:

http://www.hummingbird.com/support/usergroups.html

2 On the User Groups and Mailing Lists page, click a product link.

3 On the Archives page, scroll down to the Subscription Instructions.

4 In the Online Subscriptions section, type the name you want to display
on the User Group and your e-mail address.

5 Click Subscribe. The browser opens a confirmation page to tell you your
subscription was successful. You can now post messages to the User
group. See posting instructions in Joining a User Group below.

To search the mailing list archives:

Go to the following web site:

http://www.hummingbird.com/support/usergroups.html

Joining a User Group through E-mail
The user group is an unmoderated electronic mailing list that facilitates
discussion of product-related issues and UNIX issues to help users resolve
common problems and to provide tips, help, and contact with other users.

Note: To discontinue your subscription, in the Unsubscribe
section, type your e-mail address then click Unsubscribe.

Note: To discontinue your subscription, in the Online
Unsubscriptions section, type your e-mail address then click
Unsubscribe.
10

http://www.hummingbird.com/support/usergroups.html
http://www.hummingbird.com/support/usergroups.html

Chapter 1: Introducing Hummingbird Basic
To join a User Group:

1 Send an email to listserv@hummingbird.com. Leave the Subject line
blank.

2 In the body of the e-mail message, type the following, depending on
which product you are programming:

subscribe exceed-users Your Name

subscribe hostexplorer-users Your Name

subscribe nfsmaestro-users Your Name

To post a message to a User Group:

Create an e-mail and send it to the following address, depending on which
product you are programming:

exceed-users@hummingbird.com

hostexplorer-users@hummingbird.com

nfsmaestro-users@hummingbird.com
11

mailto:listserv@hummingbird.com
mailto:exceed-users@hummingbird.com
mailto:hostexplorer-users@hummingbird.com
mailto:nfsmaestro-users@hummingbird.com

Chapter 2

Hummingbird Basic Scripts

Sample Scripts 15

Programming Terminology 17

Structure of a Hummingbird Basic Script 18
Variable Scope 19
Functions and Control Statements 19
Control Statements 22

Variables, Constants, and Data Types 22
Variables and Constants 23
Data Types 24

Expressions and Operators 32
Numeric Operators 32
String Operators 32
Comparison Operators 33
Logical Operators 33

Programming Tips and Coding Suggestions 34
Naming Variables and Constants 34
Global Variables 34
Declaring Variables 34
Option Base 34
Dynamic Array 34
Runtime Error 35
Controls 35
Compatibility 35
Checking for the Existence of PC Files 35
Using Win32 API 36

Network Logon Name 36
Always Visible Message Box 37
Working with Windows Registry 38
OLE Functions 39

Error-Handling and Debugging 40
Error Types 40
Debugging Scripts for Syntax and Logic Errors 41
Handling Runtime Errors 42
Trapping Errors 42

Chapter 2: Hummingbird Basic Scripts
Sample Scripts

Before starting, you may find it useful to review the provided sample scripts.
Source files (.ebs) and their associated compiled files (.ebx) are located in
the user directory under

Applications Data\Hummingbird\Connectivity\version\Accessories\Eb

The following sample scripts are provided:

dialog.ebs This sample script displays the various types of dialogs that
Hummingbird Basic can use. It also stores information as shown below that
you either select or press, and displays it when you press Exit.

• Input Boxes

• OK, Cancel Button

• Text Boxes

• Combo Boxes

• Drop Down Lists

• List Boxes

• Option Groups

• Push Buttons

testftp.ebs FTP automation using OLE. This sample script demonstrates
how you can use FTP OLE functions to log onto a host and download a file
automatically.

dde.ebs This sample script creates a Program Group called “XXX”.

filelist.ebs This OLE example is a Hummingbird Basic macro that
facilitates the downloading of files from a CMS or TSO account. It must be
run from the “Ready” prompt of a CMS or TSO HostExplorer session.

pastword.ebs This macro copies a screen from HostExplorer, starts
Microsoft Word and pastes the screen to Word. You need to have
HostExplorer running before you run the script.
15

Hummingbird Basic™ Language Programmer’s Guide
sendrecv.ebs This Hummingbird Basic macro prompts for the name of a
.bat file and executes any file transfer commands (that is Send or Receive)
found within it. It must be run from the “Ready” prompt of a CMS or TSO
HostExplorer session.

test1.ebs This sample script lists the index of the field attribute which
contains the field at the given position. You can also simply list each row of
the screen instead. The current OIA is displayed below the list box.
(Demonstrates usage of host.rows and host.columns methods).

test2.ebs This script demonstrates how to access information using the
Field object. In TCP3270, you can access the screen as an entire string, row
by row, or using field objects. The advantage of the field objects is that they
are not dependent upon their position.

test3.ebs This is a demonstration of configuring TN3270 using the
appropriate method. The Cfg3270 sub-object configures the emulator.
Anything that can be configured via the user dialogs can be configured
using the Cfg3270 object.

test4.ebs This sample script demonstrates how to perform file transfers to
a host system. The file transfer is implemented in an asynchronous manner
allowing the script to continue to run while the file transfer is taking place.
The method IsXfer tests if the file transfer is complete. You can also use the
WaitXfer method to wait until the file transfer completes.

test5.ebs This sample script demonstrates some of the window functions.

Note: This sample script is provided as is, and is intended solely
to help you create your own scripts. It is not supported by
Hummingbird Ltd.
16

Chapter 2: Hummingbird Basic Scripts
Programming Terminology

A program or a script is a logical series of instructions. Each instruction is
based on a set of syntax rules. These rules are interpreted by the compiler. If
the syntax in your script is clean and there are no errors, the compiler
creates an .ebx file which you can run to carry out your task.

The following elements make up a Hummingbird Basic script:

• Variables—Variables are place holders for values. Variables are declared,
named, and assigned a data type.

• Statements—Statements define how a task in the script is carried out.
They provide the conditional logic or looping for a procedure. They
also define the state of a dialog box such as its display and
configuration.

• Functions—A function is a construct which, when executed, returns a
value. Hummingbird Basic contains a variety of built-in functions you
can use in your scripts. You can also write your own functions.

For more information, see
“Structure of a
Hummingbird Basic
Script” on page 18.

• Procedures—A procedure contains a set of variables and statements
which you defined for the script. There are two different types of
procedures in Hummingbird Basic: functions and subprocedures. A
Hummingbird Basic script can contain one main subprocedure. When
the script is run, the main subprocedure will be executed first.

For more information, see
“Expressions and
Operators” on page 32.

• Expressions—An expression is a collection of terms which perform a
mathematical or a logical operation. The terms are either variables or
functions that are combined with an operator to evaluate a result. There
are several types of operators.

• Error Handling—Error handling is a special set of instructions that
enable your script to trap errors which may occur while your script is
running.

Additional terminology is included in the Glossary.
17

Hummingbird Basic™ Language Programmer’s Guide
Structure of a Hummingbird Basic Script

A Hummingbird Basic script is broken up into manageable procedures,
each performing a specific task or set of tasks.

There are two procedure types in Hummingbird Basic:

• Subprocedure—Subprocedures define parameters and do not return
values.

• Function procedure—Function procedures return values.

A subprocedure is defined with the Sub...End Sub statement. You invoke it,
either with the Call statement, or by entering it on a line by itself. If you use
the Call statement, enclose any arguments you are passing to the
subprocedure in parentheses. For example, the following two statements are
equivalent:

GetFTP file1,file2,file3

Call GetFTP(file1,file2,file3)

A procedure must be defined in the script before it is invoked. If you don't
place your procedure above a procedure that references it, then use the
Declare statement to forward declare a procedure.

All Hummingbird Basic scripts must contain a main subprocedure. The
main subprocedure is the starting point of the script. All function
procedures must eventually trace back to the main subprocedure. Since the
main subprocedure usually calls other procedures, it can be placed near the
end of the script.

Note: A Hummingbird Basic script can contain only one main
subprocedure.
18

Chapter 2: Hummingbird Basic Scripts
Variable Scope
The placement of variable declarations determines their scope.

Functions and Control Statements
Functions and control statements determine the results of your script. A
function calculates and returns values as determined by its arguments. A
control statement directs the flow of logic during the execution of
commands.

Functions and Function Arguments
Functions return values. You can use arguments to pass information
required to compute a returned value. Functions may or may not have
arguments.

Arguments may or may not be enclosed within parentheses (). Whether or
not you use parentheses depends on how you want to pass the argument to
the function subprocedure. The argument can be passed either by value or
by reference.

If an argument is passed by value, it means that the variable used for that
argument retains its value when the function returns to the caller. If an
argument is passed by reference, it means that the variable's value might be
(and probably will be) changed for the calling procedure. For example,
suppose you set the value of a variable X to 5, and pass X as an argument to

Scope Definition

Local Dimensioned inside a subprocedure or function. The variable is
accessible only to the subroutine or function from which it was
dimensioned.

Module Dimensioned outside any subroutine or function. The variable is
accessible to any subprocedure or function in the same file.

Global Dimensioned outside any subroutine or function using the
Global statement. The variable is accessible to any subroutine
or function in any module (file).
19

Hummingbird Basic™ Language Programmer’s Guide
a subprocedure, named mysub. If you pass X by value to mysub, the value of
X will always be 5 after mysub returns. If you pass X by reference to mysub,
however, X could be 5 or any other value depending on the outcome of
mysub.

To pass an argument by value, use one of the following syntax options:

Call mysub((X))
mysub(X)

or

y=myfunction((X))
Call myfunction((X))

To pass an argument by reference, use one of the following options:

Call mysub(X)
mysub X

or

y=myfunction(X)
Call myfunction(X)

Externally declared subprocedures and functions (such as .dll functions)
can take byVal arguments. In this case, those arguments are always passed
by value.

Named Arguments
When you call a function that takes arguments, you usually supply values
for those arguments by listing them in the order shown in the syntax for the
statement or function.

For example, suppose you define a function this way:

myfunction(id$,action%,suppvalue&)
20

Chapter 2: Hummingbird Basic Scripts
Myfunction requires three arguments: id, action, and value. When you call
this function, you supply those arguments in the order shown. If the
function contains just a few arguments, it is fairly easy to remember the
order of each of the arguments. However, if a function has several
arguments, and you want to be sure the values you supply are assigned to
the correct arguments, use named arguments.

Named arguments are identified by name rather than by their position in
the syntax. To use a named argument, use the following syntax:

namedarg:=value

Using this syntax for myfunction, you get:

myfunction id:=1, action:="get", value:=0

The advantage of named arguments is that you do not need to remember
the original order in which they were listed in the syntax.

The following function call is also correct:

myfunction action:="get",value:=0,id:=1

With named arguments, order is not important. The other significant
advantage to using named arguments is that when you call functions or
subroutines that have a mix of required and optional arguments, you do not
need to use commas as place holders in the syntax for the optional
arguments. You can specify just the arguments you want to use and their
values, and forget about their order in the syntax.

For example, if myfunction is defined as:

myfunction(id,action,value, Optional counter)

You could use named arguments as follows:

myfunction id:="1",action:="get",value:="0"

or

myfunction value:="0",counter:="10",action:="get",id:="1"

Note: Although you can shift the order of named arguments, you
cannot omit required arguments.
21

Hummingbird Basic™ Language Programmer’s Guide
Control Statements
Control statements provide the flow of logic in your script. These
statements direct the script as to when, if, and how a set of commands are
performed and executed. The following control statements can be included
in your script:

If...Then... Else

For...Next

Do...Loop

While...Wend

Select Case

On...Goto

This example shows the use of an If...Then...Else conditional statement:

Sub Main
If myvariable = 0 Then
msgbox "Are you sure you want to restart?"

Else
msgbox "Are you sure you want to quit?"

End If
End Sub

Variables, Constants, and Data Types

Variables store values that are returned from statements and functions. A
variable is given a name, and then assigned a data type. Its data type
determines the kind of value that is stored by the variable.

Hummingbird Basic supports standard BASIC data types such as Numeric,
String, record, array, and Variant data types. With the exception of Variant
type variables, the variable you define can contain only data of the declared
type. In addition to this, Hummingbird Basic also supports Dialog Box
Records and Objects as data types.
22

Chapter 2: Hummingbird Basic Scripts
Variables and Constants
The following may be defined in a script:

• Dimensioned Variables

• Defined Constants

• Global Variables

• Static Variables

To declare a variable in Hummingbird Basic, use the Dim statement. When a
variable is declared, it is valid only in the commands that follow the
declaration.

Dimensioned Variables
For more information on
variable scoping, see
“Structure of a
Hummingbird Basic
Script” on page 18.

If a variable is declared at the beginning of your script with the Dim
statement, it is available throughout the script. To reduce the scope of a
variable to a function or a subprocedure, either declare the variable in the
function, or in the body of the subprocedure. For example:

Function interact(id$)

Dim myvariable as Integer

End Function

Defined Constants
Defined constants retain the value they are assigned throughout a script,
whenever they are referenced in a function or statement.

Constant variables are declared with the Const statement. For example:

Const conPI= 3.14159265358979

Note: The name you give to a variable or constant can contain
letters, numbers, and underscores. It is generally a good idea to
give your variables meaningful names so that they can be easily
recalled and understood when debugging your script.
23

Hummingbird Basic™ Language Programmer’s Guide
Global Variables
Declare a global variable only if you want to keep the same variable type for
all of your related Hummingbird Basic modules. Global data is shared
across all loaded modules. If an attempt is made to load a module that has a
global variable of a different data type than the existing global variable of
the same name, the module load will fail.

Static Variables
For more information on
static variables, see
Hummingbird Basic
Language Help.

A Static variable retains its value when it is called from one function to
another. These variable types are generally used by advanced users.

Data Types
As you name and declare your variable, you assign it a data type. The data
type determines what kind of value is stored in the variable. The variable
can only contain data of the declared type, except when you implicitly or
explicitly declare a variable as a Variant data type.

If a variable is not explicitly defined with the Dim or Global statements, or is
not declared a data type (implicitly declared), then it defaults to the Variant
data type.

The following data types are supported by Hummingbird Basic:

• Variant

• Numeric

• String

• Object

Note: It is best to limit global variable usage.

Note: It is generally good programming practice to explicitly
declare all your variables. If variables have not been declared, it
may be impossible to track errors that arise in a long and
complicated script. To force variable declaration, use the Option
Explicit command.
24

Chapter 2: Hummingbird Basic Scripts
Another way to explicitly declare a variable and its type, without having to
type out the entire syntax, is to use data type characters. Data type
characters are appended to the end of your variable name.

For example, these two statements are equivalent:

Dim bird As String

Dim bird$

The following data type characters can be used:

Variant
A Variant variable can hold any type of data. This variable changes its data
type depending on how it is assigned. To examine the type of data that a
Variant variable contains, use the VarType function.

Values returned by this function are explained in the table below.

Character Type Description

$ Dynamic String Alphanumeric

% Integer 1 byte

& Long Integer 2 bytes

? Portable integer

! Single precision floating point 1 byte

Double precision floating point 2 bytes

@ Currency exact fixed point

Variant
Type

Name Size of Data Range

0 Empty 0 N/A

1 Null 0 N/A

2 Integer 2 bytes (short) -32768 to 32767

3 Long 4 bytes (long) -2.147E9 to 2.147E9
25

Hummingbird Basic™ Language Programmer’s Guide
Any newly defined Variant defaults to the Empty type to signify that it
contains no initialized data. An empty Variant converts to zero when used
in a numeric expression, or an empty string in a string expression.

Null Variants have no associated data, and serve only to represent invalid or
ambiguous results. Null is not the same as Empty, which indicates that a
Variant has not yet been initialized.

Numeric
If the variable you declare in your script is a number, you should define its
type. There are six Numeric types. These types are shown in the table below.

4 Single 4 bytes (float) -3.402E38 to -1.401E-45 (negative)

5 Double 8 bytes (double) -1.797E308 to -4.94E-324 (negative)
4.94E-324 to 1.797E308 (positive)

6 Currency 8 bytes (fixed) -9.223E14 to 9.223E14

7 Date 8 bytes (double) January 1st, 0100 to December 31st,
9999

8 String 0 to ~64kbytes 0 to ~64 characters

9 Object N/A N/A

Variant
Type

Name Size of Data Range

Type From To

Integer -32,768 32,767

Long -2,147,483,648 2,147,483,647

Single -3.402823e+38
0.0,
1.401298e-45

-1.401298e-45,

3.402823466e+38
26

Chapter 2: Hummingbird Basic Scripts
Integer constants can be expressed in decimal, octal, or hexadecimal
notation. Decimal constants are expressed by using the decimal
representation. To represent an octal value, precede the constant with &O or
&o. For example, &o177. To represent a hexadecimal value, precede the
constant with &H or &h. For example, &H8001.

String
String variables contain text. String length can be either fixed or dynamic.
Fixed strings have a length specified when they are defined, and the length
cannot be changed. Fixed strings cannot be of 0 length. Dynamic strings
have no specified length. A string can vary in length from 0 to 32,767
characters. There are no restrictions on the type of characters which can be
included in a string. For example, the character whose binary value is 0 can
also be embedded in strings.

Double -1.797693134862315d+308
0.0,
2.2250738585072014d-308

-4.94065645841247d-308,

1.797693134862315d+308

Currency -922,337,203,685,477.5808 922,337,203,685,477.5807

PortInt In Windows it is the same as
Integer.

In Windows NT and Windows 95
environments, it is the same as Long.

Note: Hummingbird Basic has no true Boolean variables.
Hummingbird Basic considers 0 to be False and any other
numeric value to be True. Only numeric values can be used as
Booleans. Comparison operator expressions always return 0 for
False and -1 for True.

Note: Constants can also be followed by data type characters.

Type From To
27

Hummingbird Basic™ Language Programmer’s Guide
Object
An object is a special data type. Objects let you communicate with another
Windows application using OLE automation. You can use Hummingbird
Basic as an automation controller to manipulate another application. An
object is a complex data type in which the elements of the data type are the
methods and properties of the other application.

Properties This determines how an object behaves. For example, width
can be a property of a range of cells in a spreadsheet; colors are a property of
graphs; and margins are a property of word processor documents.

Methods This causes the application to do something. Examples are:
Calculate for a spread sheet, Snap to Grid for a graph, and Autosave for a
document.

Use the Dim statement to declare an OLE Object as follows:

Dim Telnet as Object

Array
An Array is a predefined range or series of variables. You must specify the
data type of an array. Hummingbird Basic arrays can be any one of the
following:

• Numeric

• String

• Variant

• Record

Arrays of arrays, and dialog box records, are not supported.

Note: The Hummingbird Telnet application is an OLE automation
server. Telnet contains its own object methods and properties that
you can access and manipulate with a Hummingbird Basic script.
28

Chapter 2: Hummingbird Basic Scripts
Use the following syntax for declaring an array variable:

Dim variablename (SubscriptRange, ...) As datatype

where SubscriptRange is of the format:

StartSubscript To EndSubscript

For example:

Dim lifespan(0 to 75) As Integer

Subscripts specify the beginning and ending index for each dimension. If
you specify only an ending index, then the beginning index depends on the
Option Base setting. The Option Base statement specifies the lower bound
to be used for array subscripts. The lower bound can be either 0 or 1. If no
Option Base is specified, then the default of 0 is used.

Dynamic Array
If you do not know what the size of your array is going to be, then use a
dynamic array. Dynamic arrays differ from fixed arrays in that you do not
specify a subscript range for the array elements when you declare the array.
Instead, the subscript range is set using the ReDim statement.

For example, you might want to use an array to store a set of values entered
by a user, but you do not know in advance how many values the user will
enter. In this case, dimension the array without specifying a subscript range,
and then execute a ReDim statement (which reallocates memory) each time
the user enters a new value.

If the dynamic array is dimensioned with the Dim statement, then 8 is the
maximum number of dimensions it can have. To create dynamic arrays with
more dimensions (up to 60), do not Dim the array; instead, use the ReDim
statement inside your procedure.

Note: The Option Base statement is not allowed inside a
procedure, and must precede any use of arrays in the module.
Only one Option Base statement is allowed per module.
29

Hummingbird Basic™ Language Programmer’s Guide
The following procedure uses a dynamic array, varray, to hold cash flow
values entered by the user:

Sub Main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim msgtext
Dim x as Integer
Dim netpv as Double

cflowper = InputBox("Enter number of cash flow periods")
ReDim varray(cflowper)
For x = 1 to cflowper

varray(x) = InputBox("Enter cash flow amount for period
#" & x & ":")

Next x

aprate = InputBox("Enter discount rate: ")
If aprate > 1 then

aprate = aprate/100
End If

netpv = NPV(aprate,varray())
msgtext = "The net present value is: "
msgtext = msgtext & Format(netpv, "Currency")
MsgBox msgtext

End Sub
30

Chapter 2: Hummingbird Basic Scripts
Record
A record, or record variable, is a data structure containing one or more
elements, each of which has a value.

Where an array defines a range of values, all of the same data type (for
example, String or Integer), a record variable references a range of values
that can be of different data types.

Before defining a record element as a variable, you must assign each element
a type, using the Type statement.

The following example defines phone_number as a data type:

Type phone_number
phone as String
area_code as String
End Type

By declaring phone_number as a Type, you can use it to declare a variable.
The elements of each record type are referenced using dot notation. For
example:

Dim Joe as phone_number
Joe.phone = "967-2222"

Dialog box records are treated as record data types as well. Elements or
controls are referenced using the same dialogname.controlname syntax. The
difference is that each element is tied to a control of a dialog box.

Note: You cannot use data type character suffixes when using
record data types.

Note: Records can contain elements that are, themselves,
records.
31

Hummingbird Basic™ Language Programmer’s Guide
Expressions and Operators

Expressions perform calculations, set variables, or concatenate strings.

Operators are used in expressions to combine one or more terms. The terms
are variables, constants, or functions which are combined with an operator,
evaluating to a string or numeric result.

There are several different categories of operators:

• Numeric Operators

• String Operators

• Comparison Operators

• Logical Operators

Numeric Operators
These operators are used in arithmetic expressions:

String Operators
These operators are used to combine or concatenate two or more strings:

Operand Explanation

^ Exponentiation

*,/ Numeric multiplication or division. For division, the result is Double.

\ Integer division. The operands can be Integer or Long.

MOD Modulus or remainder. The operands can be Integer or Long.

-,+ Numeric addition and subtraction. These can also be used to
indicate whether the number is positive or negative.

Operand Explanation

& String Concatenation

+ String Concatenation
32

Chapter 2: Hummingbird Basic Scripts
Comparison Operators
When using comparison operators with numbers, the operands are
widened to the type with the smallest size (Integer is preferred over Long,
which is preferred over Double). For String operators, the comparison is
case-sensitive, and is based on the collating sequence used by the language
specified in the Windows Control Panel.

Logical Operators
The logical operators perform logical evaluations on one or more
expressions. The result of logical operations is either True or False.

Operand Explanation Returns

> Greater than 0 for False and -1 for True

< Less than 0 for False and -1 for True

= Equal to 0 for False and -1 for True

<= Less than or equal to 0 for False and -1 for True

>= Greater than or equal to 0 for False and -1 for True

<> Not equal to 0 for False and -1 for True

Operand Explanation

Not Not operands can be Integer or Long. The operation is performed
bitwise (ones complement).

And And operands can be Integer or Long. The operation is performed
bitwise.

Or Inclusive Or operands can be Integer or Long. The operation is
performed bitwise.

Xor Exclusive Or operands can be Integer or Long. The operation is
performed bitwise.

Eqv Equivalence operands can be Integer or Long. The operation is
performed bitwise. (A Eqv B) is the same as (Not (A Xor B)).

Imp Implication operands can be Integer or Long. The operation is
performed bitwise (A Imp B) and is the same as ((Not A) Or B).
33

Hummingbird Basic™ Language Programmer’s Guide
Programming Tips and Coding Suggestions

The following tips and suggestions are intended to help reduce the errors
returned when creating scripts with Hummingbird Basic.

Naming Variables and Constants
The name you give to a variable or to a constant can contain letters,
numbers, and underscores. It is advisable to give variables and constants
meaningful names so they can be easily recalled and understood when
debugging a script.

Global Variables
Limit the use of global variables to avoid a module load failure. Global data
is shared across all loaded modules, so when you attempt to load a module
which has a different data type variable than that of the existing global
variable with the same name, it results in the module failing to load.

Declaring Variables
Explicitly declare all variables, especially so that error tracking is possible in
long and complicated scripts. Use the Option Explicit command to force
the use of variable declarations.

Option Base
The Option Base statement specifies the lower bound to be used for array
subscripts. This statement is not allowed inside a procedure, and it must
precede any use of arrays in the module. Only one Option Base statement is
allowed per module.

Dynamic Array
Eight is the maximum number of dimensions for a dynamic array being
dimensioned using the Dim statement. However, to create dynamic arrays
with more dimensions (up to 60), use the ReDim statement instead of the Dim
statement inside your procedure.
34

Chapter 2: Hummingbird Basic Scripts
Runtime Error
Have a routine in your script that handles runtime errors, such as if the user
tries to log onto a non-existent host, or enters text into a field where only
numbers are accepted.

Controls
Before aligning the controls for a dialog box, click the Grid toolbar button to
turn the grid on.

Compatibility
You can use a single set of source code to create applications that run on
Windows NT/95/98/Me/2000. To create an application, load the source
code into Hummingbird Basic and make an.ebx file.

Checking for the Existence of PC Files
Hummingbird Basic does not provide any built-in means of indicating
whether a particular file is on a PC. The usual BASIC technique to check if a
file exists is to use either the DIR or the DIR$ function, as shown below. To do
this, pass the file name to the DIR function and check the return value of the
function. If the function returns nothing, then that file does not exist.

TheFile$ = Dir$ ("C:\Program Files\Hummingbird\Connectivity\
version\Exceed\exceed.exe
If len(theFile$) < 1 then
msgbox "no such file"

else
msgbox theFile$

end if

To find a file on a Unix computer, use the same technique, but instead of
DIR$, use the string returned by the UNIX ls file name command.
35

Hummingbird Basic™ Language Programmer’s Guide
Using Win32 API
You do not need the Win32 SDK to make Windows API calls from
Hummingbird Basic. Take advantage of Windows API functions to extend
the Hummingbird Basic functionality, provided they are properly declared.

Declare function GetUserName Lib "advapi32.dll" Alias
"GetUserNameA" (ByVal lpBuffer As String, nSize AS Long) As
Long

Sub Main
strBuffer$ = String$ (255, 0)
RetVal& = GetUserName (strBuffer$, 255)
UserName$ = Trim$ (strBuffer$)
UserName$ = Left$ (UserName$, Len(UserName$) - 1)
MsgBox UserName$, , Len(UserName$)

End Sub

Network Logon Name
To retrieve a user's network logon name, make the following API call:

Declare function GetUserName Lib "advapi32.dll" _
Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As

Long) As Long
sub main
strBuffer$ = String$ (255, 0)
RetVal& = GetUserName(strBuffer$, 255)
UserName$ = Trim$ (strBuffer$)
UserName$ = Left$(UserName$, Len(UserName$) - 1)
msgbox UserName$, ,Len(UserName$)

end sub
36

Chapter 2: Hummingbird Basic Scripts
Always Visible Message Box
At times, a message box that was hidden behind other windows may appear
giving the impression your application is hung. When this happens, check
the Taskbar to discover the message box. If that is problematic, then use the
MessageBox API function, instead of the MsgBox function which allows you
to call the message box with the MB_SYSTEMMODAL flag, as shown below. This
method always displays your message box on top of all other windows.

Declare Function MessageBox Lib "user32" Alias "MessageBoxA" _
(ByVal hwnd As Long, ByVal lpText As String, ByVal lpCaption As
_
String, ByVal uType As Long) As Long

Const MB_ICONEXCLAMATION = &H30&
Const MB_yesno = &H4&
Const IDYES = 6
Const IDNO = 7
Const text = "Please click on one of the buttons below."
Const msg_$ = "Now click on your desktop anywhere outside this
box!"
Const caption_$ = "HUMMINGBIRD Basic Tips"

Sub Main
dim boxCaption$
dim boxMsg$
boxType& = MB_SYSTEMMODAL + MB_ICONEXCLAMATION + MB_YESNO
if (MessageBox (0, text, caption_$, boxType&) = IDYES) then

boxCaption$ = "YES Pressed !"
boxMsg$ = msg_$

' if you click outside this message box it will stay visible
else

boxCaption$ = "NO Pressed !"
boxMsg$ = msg_$

end if

MsgBox boxMsg$, ,boxCaption$
End Sub
37

Hummingbird Basic™ Language Programmer’s Guide
Working with Windows Registry
The following example shows the usage of some of the main registry
functions, and how they have to be declared.

Declare function RegOpenKey Lib "advapi32.dll" _
Alias "RegOpenKeyA" (ByVal hkey?, ByVal SubKey$, key&) As

Long
Declare function RegSetValueEx Lib "advapi32.dll" _

Alias "RegSetValueExA" (ByVal hkey&, ByVal subKeyStr$,
ByVal _

fdwType&, ByVal dattype%, ByVal data$, ByVal datLen&) As
Long
Declare function RegCloseKey Lib "advapi32.dll" (ByVal hkey&)
As Long

Function SetValue$(keyname$, value$)
dim key&

if RegOpenKey (HKEY_CLASSES_ROOT, "", key) <>
ERROR_SUCCESS then

SetValue = "Cannot open key: HKEY_CLASSES_ROOT"
Exit Function

end if

if RegSetValueEx (key, keyname, REG_SZ, 0, value,
len(value)) <> ERROR_SUCCESS then

SetValue = "Cannot set value of key: " + keyname
end if

if RegCloseKey (key) <> 0 then
SetValue = "Cannot close key: " + keyname

end if
End function

Sub Main
38

Chapter 2: Hummingbird Basic Scripts
OLE Functions
Use OLE automation to work with FTP and Telnet using Hummingbird
Basic.

The following two examples show you how you could execute an FTP
session.

1 You have to declare an object as a data type before you can use the
object's methods.

dim FtpEngine As Object
dim FtpSession As Object
dim FtpSessions As Object

' Must first initialilze Ftp Engine
Set FtpEngine = CreateObject ("HclFtp.Engine")

'Create collection of sessions
on error goto FtpSessionsError
Set FtpSessions = FtpEngine.Sessions

'Create FTP session
on error goto FtpSessionError
SetFtpSession = FtpSessions.NewSession

FtpSessions.LocalDefaultDirectory = "c:\temp"
'normally should be_ taken via dialog

2 Make all other initializations.

FtpSession.ConnectToHost
FtpSession.Userlogin
FtpSession.Mget "hostfiles"'transfer files
FtpSession.DisconnectFromHost

'close connection and destroy objects
Set FtpSession = Nothing
SetFtpSessions = Nothing
FtpEngine.Quit
Set FtpEnging = Nothing
39

Hummingbird Basic™ Language Programmer’s Guide
The following example shows how the start of a Telnet session can look:

' if current EMPTY telnet session exists, get it as a tn
object or step to the next line:

Set tn = GetObject (, "Hummingbird.Telnet")
'if failed to get existing object, create new telnet_ object

If tn is Nothing then
Set tn = CreateObject("Hummingbird.Telnet")

end if

loginEvent = tn.LookForString(loginPrompt)
'look for the login_ and password prompt

passwordEvent = tn.LookForString(passwordPrompt)

Use the methods and properties of the tn object.

Error-Handling and Debugging

Error-handling refers to a set of functions and statements that trap errors
arising during the execution of the script. Error-handling is generally one of
the most problematic processes.

Error Types
After you compile or run your script, any or all of the following types of
errors may be detected:

• Syntax errors—These are errors which occur in the script as a result of
misspelling a statement or function or using either one incorrectly, for
example, errors in language syntax and programming logic. To help you
fix syntax errors, the Hummingbird Script Editor highlights language
syntax errors in red after a script is compiled.

Note: A common syntax error is typing Endif instead of End If.
There is a space between the word End and the word If.
40

Chapter 2: Hummingbird Basic Scripts
• Logic errors—These are errors that occur because of faulty logic, for
example, infinite loops and incorrect values returned by functions.
These types of errors generally cause unexpected results during the
execution of your script.

• Runtime errors—These errors occur because the user takes an
unforeseen action. For example, the user tries to log on to a host that
does not exist, or types text into a field that accepts only numbers. You
should have a routine for these scenarios included in your script that
handles runtime errors. Runtime errors are handled through a set of
error-handling functions and statements.

Debugging Scripts for Syntax and Logic Errors
The debugger assists you in locating and correcting syntax and logic errors
in your Hummingbird Basic program. It allows you to slow down or
suspend the execution of your program so that the flow of the program and
the contents of declared variables can be examined. Debug mode is invoked
in the following ways:

• Clicking the Step Into toolbar button—This causes the execution of the
Main subprocedure in the current script file. Execution is suspended
and the debugger is activated. The first line of the Main subprocedure is
highlighted.

• Setting breakpoints in the current buffer—Execution is suspended
when one of the lines that contains a breakpoint is about to be executed.
The debugger is activated, and it highlights the line containing the
breakpoint.

• Pressing the Pause toolbar button when a program is executing—
Execution is suspended, and the debugger is activated. The line that was
about to be executed is highlighted.

• During execution, the program encounters an unhandled runtime
error—Execution is suspended, the debugger is activated, and the line
containing the error is highlighted.
41

Hummingbird Basic™ Language Programmer’s Guide
When in debug mode, the Call Stack Control displays all Hummingbird
Basic subprocedures and function calls that got you to the current line.
Open the Variables window to examine the contents of variables in the
currently selected call frame.

Handling Runtime Errors
Hummingbird Basic provides the following functions and statements to
deal with runtime errors in your script:

Trapping Errors
Hummingbird Basic provides two methods for handling errors:

On Error Resume Next Use this statement to bypass an error and
continue to execute the script. The On Error Resume Next statement must
appear before the line that produces the error.

Note: Lines that contain syntax errors appear in red text. The Error
Messages and a short description of the error, if available, are
displayed in the Output window.

Function/Statement Explanation

Assert Trigger an error, if a condition is false.

Erl Return the line number where a runtime error occurred.

Err Function Return a runtime error code.

Err Statement Set the runtime error code.

Error Generate an error condition.

Error Function Return a string representing an error.

On Error Control runtime error handling.

Resume End an error-handling subprocedure.
42

Chapter 2: Hummingbird Basic Scripts
On Error Goto label Use this statement to direct the execution of the
script to the specified label. When this error trap is set, it remains in effect
until the procedure finishes running. You can redirect the error trap with
another On Error statement in the procedure. If you want to cancel the
existing error trap without setting up another one, use the On Error GoTo 0
statement.

All error handling subprocedures begin with the On Error statement and
end either with the Resume statement or the Goto statement. Unless an On
Error statement is used, any run-time error terminates the execution of the
script. Error-handling procedures are embedded within a subprocedure,
usually near the end of a subprocedure. If a Goto statement is used, the
Resume statement is expected at the end of the error-handling code.

To display a description of an error, use the Error(err) function as shown
below:

err = 11
msgbox Error$(Err)

The "Division by zero" message is displayed.

Examples of Trapping General Errors
The following examples illustrate the different methods of error trapping.

Example 1

This example places error-handling code immediately following the
statement in which the error occurred. It uses the Resume Next statement to
direct the code to continue execution when an error has occurred.

Sub Main
Dim userdir

in1: userdrive = InputBox("Enter Drive:",,"C:")
On Error Resume Next
Err = 0
ChDrive userdrive
If Err = 68 then

MsgBox "Invalid Drive. Try Again."
Goto in1

End If
End Sub
43

Hummingbird Basic™ Language Programmer’s Guide
The On Error statement identifies the line of code to go to if an error occurs.
In this case, the Resume Next parameter continues execution on the next line
of code after the error. In this example, the line of code that handles errors is
the If statement. It uses the Err statement to determine which error code is
returned.

Example 2

This example places error-handling code immediately following a label.

Sub Main
Dim userdir, msgtext

on error goto Errhdlr1
in2: userdir = InputBox("Enter Directory.")
' error generated here

Chdir userdrive & "\" & userdir
MsgBox "New Default Directory is: " & userdrive & "\" &

userdir
Exit Sub

Errhdlr1:' handle error here
Select Case Err

Case 75
msgtext = "Path is invalid"

Case 76
msgtext = "Path not found"

Case else
msgtext = "Error" & err & "" & Error$ & "

occured"
End Select
MsgBox msgtext & "Try Again."
Resume in2' resume normal execution

End Sub

The On Error statement used in Option 2 specifies a label to jump to if an
error occurs. The code segment is part of the main subprocedure, and it
uses the Err statement to determine which error code is returned. To make
sure your code does not accidentally fall through to the error handler,
precede it with an Exit statement.

Note: Resume is placed at the end of the error-handling code.
44

Chapter 2: Hummingbird Basic Scripts
Examples of Trapping Runtime Errors
These examples show the two ways to set and trap user-defined errors. Both
examples use the Error statement to set the user-defined error to the value
30000.

Example 1

To trap the error, the following example places error-handling code directly
before the line of code that could cause an error.

Sub Main
Dim custname as String
On Error Resume Next

in1: Err = 0
custname = InputBox$("Enter customer name:")
if custname = "" then

Error 30000' generate error here
Select Case Err' handle error here

Case 30000
MsgBox "You must enter a customer name."
Goto in1

Case Else
MsgBox "Undetermined Error. Try Again."
Goto in1

End Select
End if
MsgBox "The name is: " & custname

End Sub
45

Hummingbird Basic™ Language Programmer’s Guide
Example 2

The following example contains a labeled section of code that handles any
user-defined errors. You can also generate an error code in a subprocedure,
and then have the main procedure handle it (similar to example 1 on
page 45).

Sub Main
Dim custname as String
on Error Goto Errhandler

in1: Err = 0
custname = InputBox$("Enter customer name:")

If custname = "" then
Error 30000' generate error here

End If
MsgBox "The name is: " &custname
Exit Sub

Errhandler:
Select Case Err' handle error here

Case 30000
MsgBox "You must enter a customer name."

Case Else
MsgBox "Undetermined Error. Try Again."

End Select
Resume in1

End Sub

Trappable Errors
The following table lists the runtime errors that Hummingbird Basic
returns. These errors can be trapped by On Error. The Err function can be
used to query the error code, and the Error function can be used to query
the error text.

Error code Error Text

5 Illegal function call

6 Overflow

7 Out of memory

9 Subscript out of range
46

Chapter 2: Hummingbird Basic Scripts
10 Duplicate definition

11 Division by zero

13 Type mismatch

14 Out of string space

19 No resume

20 Resume without error

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

58 File already exists

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable set to Nothing

Error code Error Text
47

Hummingbird Basic™ Language Programmer’s Guide
93 Invalid pattern

94 Illegal use of NULL

102 Command failed

429 Object creation failed

438 No such property or method

439 Argument type mismatch

440 Object error

901 Input buffer would be larger than 64K

902 Operating system error

903 External procedure not found

904 Global variable type mismatch

905 User-defined type mismatch

906 External procedure interface mismatch

907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

Error code Error Text
48

Chapter 3

Using Development Tools to Edit
Scripts

About Hummingbird Basic Workbench 51
The Workbench Interface 51
Creating a Script File at a Glance 53

Compiling and Running a Script File 55
Running a Script File 55

Chapter 3: Using Development Tools to Edit Scripts
About Hummingbird Basic Workbench

Hummingbird Basic includes an easy-to-use development environment and
a graphical dialog box editor. This chapter describes how to use a
development tool to write, compile, and debug your scripts.

The Hummingbird Basic Workbench is a special text editor you can use to
write, edit, compile and debug your scripts. By default, Hummingbird Basic
script files are stored in your home directory. The script source files have an
.ebs file extension. A compiled script file has an .ebx file extension.

The Hummingbird Basic Scripting Tool is similar to the Workbench, but
only one file can be opened at a time. To start Hummingbird Basic, select it
from the Windows Start menu.

The Workbench Interface
The Workbench is divided into the following areas:

Output

Status Bar

Variables

Code

Toolbar

Window

Window

Window
51

Hummingbird Basic™ Language Programmer’s Guide
Code Window
Statements and functions are typed into the Code window. To get help on a
specific function or statement, click the right mouse button while the cursor
is on the statement or function. Alternatively, highlight the statement or
function in the Code window and press F1.

For more information about
structuring your scripts,
see "Structure of a
Hummingbird Basic
Script" on page 18.

A Hummingbird Basic script must contain one main subprocedure.
Functions referenced in your main subprocedure must be declared before
the main subprocedure.

Variables Window
Select Variables on the Window menu to display the Variables window. This
window displays the variables you declared in your script. A plus sign beside
a heading in magenta text indicates there is an expandable list. Place the
cursor next to a plus sign and double-click to see all the variables.

There are three main headings in the Variables window:

• Globals—All global variables declared in any Hummingbird Basic
module are shown under this heading.

• Name of your script—The name of the currently loaded script appears
as the heading. Variables are listed by their scope in the script.

• The name of the Current Subprocedure—This heading lists all declared
variables in the current subprocedure.
52

Chapter 3: Using Development Tools to Edit Scripts
Output Window
To open the Output window, either select Output window on the Window
menu or click the Output toolbar button.

The Output window provides information about your script after it has been
compiled. This window indicates whether the script has been successfully
compiled or not. If errors were detected, then they are displayed by an Error
Message. Clicking the Next or Previous toolbar button highlights each error
in the script.

Status Bar
The status bar indicates the mode in which you are currently working.
There are three modes: Edit, Debug and Run. In Edit mode, you can write
and compile your script. In Debug mode, you can check for syntax errors
and create breakpoints. To revert to Edit mode when you are in Debug
mode, click Stop on the toolbar. In Run mode the compiled script is
executing. To stop running the script and revert to Edit mode, click Pause.
The status bar also lists the number of errors in your script after it has
finished compiling.

Call Stack Control
The Call Stack control is visible only while you are in Debug mode. This
control indicates which subprocedure the script is executing. This is useful
when you are debugging your script for errors. The Call Stack control can
also be used to jump to a subprocedure in an open module by selecting one
from the drop-down list box.

Creating a Script File at a Glance
You can use Hummingbird Basic scripts for many tasks. These examples
describe situations where Hummingbird Basic scripts are beneficial:

• Repetitive tasks—Downloading a file from a remote host to a directory
on your PC while you are doing something else.

• Create a simpler interface—Connecting to a host by specifying your
login information, selecting the appropriate settings file, and then
running a frequently used program in the background while you are
doing something else.
53

Hummingbird Basic™ Language Programmer’s Guide
• Exchange information between applications—Create a Hummingbird
Basic script with OLE automation to transfer data from a Telnet session
to an Excel spreadsheet.

The process of creating script files is as simple or as complex as the series of
tasks you want to automate.

Creating a script can be broken down into these steps:

1 Identify the task you want to automate and divide it into a sequence of
actions.

2 Translate the sequence of actions into Hummingbird Basic commands,
and then type them into the Hummingbird Basic Workbench.

a) Write your script file.

b) Save your script file.

c) Compile your script file.

d) Run and test your script file.

e) Debug your script file if there are problems.

3 Install a program item icon for your script file.

The following sections describe a simplified process for developing scripts.

To translate the task into a Hummingbird Basic script:

Refer to "Structure of a
Hummingbird Basic
Script" on page 18 for
more information on the
order of the functions and
statements. For more
information on writing
Error-Handling routines,
see "Error-Handling and
Debugging" on page 40.

1 Plan your script by writing down an outline of tasks and end results that
you want to accomplish with a script.

2 Find the Hummingbird Basic functions and statements you need in the
Hummingbird Basic Language Reference Help.

3 Include Error Handling routines that deal with runtime errors, and any
other anticipated user actions in your script.
54

Chapter 3: Using Development Tools to Edit Scripts
Compiling and Running a Script File

Before you compile your script, open the Output window. Any error
messages that occur in the script appear after the script has finished
compiling. To compile your script, either click Check on the toolbar or click
Compile on the File menu.

Errors detected in the compiled script appear in red text. To view the errors
sequentially through the script, click Next Error and Previous Error on the Edit
menu.

Running a Script File
You can run the script only if it has been successfully compiled.

To execute a successfully compiled script file, either click Run on the File
menu or click Execute on the toolbar.

Running a Script in Animated Mode
When a script is run in Animated mode, each line of code is highlighted in
the Code window as it is executed. This mode is useful for examining loops
and other control statements in your script. To run your script in Animated
mode, either click Animate on the toolbar or click Animate on the Debug
menu.

Note: The phrase “successfully compiled” indicates that the script
is free of syntax errors. There may be other types of errors in your
script, such as runtime or logic errors. Executing the script allows
you to test for these other types of errors.
55

Hummingbird Basic™ Language Programmer’s Guide
The following toolbar buttons are available to help you compile and run
your script file:

Toolbar Button Explanation

Output Window

Opens the output window.

Check Script

Compiles your script. All errors will be listed in an open
Output window.

Execute Script

Runs a successfully compiled script.

Run Script in
Animated Mode

Runs a successfully compiled script in animated mode.
56

Chapter 4

Designing Dialog Boxes

About Dialog Editor 59
Dialog Editor Interface 59

Adding Controls to a Dialog Box 62

Aligning Controls in the Dialog Box 63

Setting Control Properties 64
Dialog Box Properties 65
Button Control Properties 66
OptionButton Control Properties 67
Text Control Properties 68
TextBox (Edit) Control Properties 69
CheckBox Control Properties 69
ListBox Control Properties 70
StaticComboBox Control Properties 71
DropComboBox Control Properties 72
DropListBox Control Properties 73
GroupBox Control Properties 73
Picture Control Properties 74

Integrating a Dialog Box into Your Script 75
Defining the Dialog Box 76
Displaying the Dialog Box 76

Dialog Statements and Functions 76
Writing a Dialog Function 79

Putting It All Together 82

Chapter 4: Designing Dialog Boxes
About Dialog Editor

Hummingbird Basic provides both functions and statements, and a
graphical Dialog Editor to create dialog boxes. You can run Dialog Editor
from either the Workbench's Edit menu or click the Dialog toolbar button.

Dialog Editor lets you create and design dialog boxes by dragging and
dropping controls on to a form. As you drop the controls, code is
automatically generated and can be dynamically updated into your script as
you design the dialog box.

When you first run Dialog Editor, it provides you with a standard-sized
dialog box that contains an OK button and a Cancel button. To add a new
control, select one on the Control menu, or click the equivalent button on
the Control Palette and drag it onto the dialog box window.

Dialog Editor Interface
Dialog Editor is divided into the following areas:

Toolbar

Dialog Box

Control

Status Bar

Dialog
Code
Window

Palette
59

Hummingbird Basic™ Language Programmer’s Guide
Toolbar
The toolbar contains the most frequently used commands from the drop-
down menus. To get a short description of the toolbar button, place the
mouse pointer over top of a button and wait a few seconds for the ToolTip
to appear.

Dialog Box
This is the area where you create the dialog box. The dialog box you create
will appear in your running script exactly as it appears in the Dialog Box
window. By default, when the Editor is first opened there is an OK button
and a Cancel button.

Dialog Code Window
This window lets you view and edit the code for the dialog box that you are
creating. Click Update to integrate the generated code into your open
module.

Note: The Dialog Code window must be closed in order to add or
alter controls in the dialog box.
60

Chapter 4: Designing Dialog Boxes
Control Palette
The Control Palette contains all of the controls that can be added to a dialog
box. The following table explains what each control is and how to use it.

Control Palette
Button

Explanation

PushButton Control

The PushButton control is used to create standard
command buttons in the dialog box.

OptionButton Control

The OptionButton is used to present a set of choices.
Each option button belongs to a particular OptionGroup,
which is configurable from the OptionButton Group
drop-down combo box in the OptionButton Properties
dialog box.

Text Control

The Text control is used to label other controls that do
not have a visible label. To use them as a navigation aid,
place them immediately before the control they are
labeling in the Tab Order.

TextBox (Edit) Control

The TextBox control accepts text input from a user. A
TextBox control is customized (size, position, and so on),
by double-clicking it and making the appropriate
settings in the TextBox Properties dialog box.

CheckBox Control

The CheckBox control is used to present the user with a
two state switch. The switch can be On/Off, Yes/No,
Enable/Disable, and so forth.

ListBox Control

The ListBox control is used to present users with a
choice from a list of strings.

DropComboBox
Control

The DropComboBox control is similar to the DropListBox
Control, except that users may type in a new string in
addition to selecting one from the list of strings.
61

Hummingbird Basic™ Language Programmer’s Guide
Adding Controls to a Dialog Box

Different controls gather specific types of information from the user. An
effectively designed interface also helps the user to enter the correct data
and to navigate through your program.

There are two ways to add new controls to your dialog box:

• Select a control either on the Control Palette or on the Control menu then
drag out a rectangle in the dialog box. The control of the selected type is
created and sized to that rectangle.

• Use the drag-and-drop method to place a control of a default size into
your dialog box.

To use the drag-and-drop method:

1 On the Control Palette, click the control you want to add.

2 Press and hold the mouse button, then move the mouse into the dialog
box window. A rectangle appear indicating the placement of the control
you want to create. You can move the rectangle with the mouse.

GroupBox Control

The GroupBox control visually groups controls in a
dialog box. In addition, they can be used to provide a
navigational hierarchy to the dialog box user.

DropListBox Control

The DropListBox control differs from the ListBox control
in appearance only. If a string from the control is
selected, it appears in the control. When the user clicks
the down arrow, the control expands to present the list of
strings.

Picture Control

The Picture control is used to place bitmaps into the
dialog box. Picture controls get their contents from either
the clipboard or a Windows bitmap (.bmp) file.

Control Palette
Button

Explanation
62

Chapter 4: Designing Dialog Boxes
3 Release the mouse button to place the control.

Aligning Controls in the Dialog Box

There are a number of commands from the Layout menu that can help you
align and lay out controls on the dialog box.

To align the controls, select one by clicking it with the mouse. To select
multiple controls, drag a rectangle across all of the controls you want
selected. Selected controls have a dotted black outline. When the controls
are selected, choose a command from the Layout menu.

The following commands are available from this menu:

• Align Controls—Allows you to move selected controls left, right, top,
bottom, vertically, or horizontally.

• Space Evenly—Allows you to space selected controls evenly, down, or
across.

• Center in Dialog—Allows you to center the selected dialog either
vertically or horizontally in the dialog box.

• Arrange Buttons—Allows you to arrange the selected button control to
the right or the bottom of the dialog box.

• Make Same Size—Causes selected controls to size exactly the same.

• Size to Content—Causes a control that accepts user input to size itself
according to its content.

You may find it useful to turn the grid on before you begin aligning the
controls. The grid is enabled by clicking the Grid toolbar button. To change
the incremental units of the grid, select Options on the Edit menu. Enabling
the Snap To Grid check box in the Option dialog box aligns the controls to the
nearest grid unit.

Note: To abort creating the control, move the mouse outside of
the dialog box window, and release the button.
63

Hummingbird Basic™ Language Programmer’s Guide
Setting the Tab Order
When the tab order is set, press the tab key to shift the focus from control to
control. Setting the tab order allows you to specify the order of control focus
when the tab key is pressed.

To set the tab order:

1 On the Layout menu, click Set Tab Order. Small numbers will appear on
the left corner of each control.

2 Click each control in the order you want the focus to shift when the user
tabs through the dialog box. As you click, a new number appears on
each control.

Setting Control Properties

Once the controls are placed and aligned on the dialog box, you can begin
setting specific properties for each of the controls added. Control properties
are settings that affect the attributes and the behavior of the control.

Examples of control properties include position and size, and whether or
not an expression is attached to the control. Also, most of the controls have
a Control ID. The Control ID is an identifier that you use to reference and
access the control from a function in your Hummingbird Basic script.

To display the properties for a control:

• Double-click the control for which you would like to edit the
properties.

• If a single control is selected, press the Enter key.

• To access Dialog Properties, double-click an empty area of the dialog
box.

Note: One of the controls in the dialog window will be the primary
control. It is identified by the darker black outline when selected.
The primary control is always the first in the tab order. All controls
will be set relative to the primary control.
64

Chapter 4: Designing Dialog Boxes
Dialog Box Properties
The following properties can be set for a dialog box:

Dialog ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Caption Type & Caption These fields allow you to enter a title for the
dialog box. There are three caption types to choose from:

• None—If the caption type is set to None, then the application's default
caption is used, and the Caption field is disabled.

• String—Select this type to enter a title for the dialog box into the
Caption field.

• Expression—Select this type to enter a Hummingbird Expression into
the Caption field.

Macro Function Name Enter the name of the function you are using to
update fields with. The function name is appended to the Begin Dialog
statement. This field is only used in dynamic dialog boxes.

ButtonGroup ID To reference a group of related buttons through the
dialog box, enter a name for the group of buttons.

Size and Position A dialog box is positioned relative to the upper left
corner of the application. By default, dialog boxes are centered on the
application.

• X and Y Position—To specify the position of the dialog box, enable the
Edit dialog position box and type the desired values in the X and Y fields.
Type either numeric values or Hummingbird Basic expressions into the
X and Y fields. If you type a new numeric value in either of these fields,
Dialog Editor moves the dialog box accordingly. If you type an
expression (non-numeric value), the position of the control or dialog
box is interpreted when you execute the script file containing this dialog
box.

• Width and Height—These fields allow you to change the size of the
dialog box. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the dialog box accordingly.
65

Hummingbird Basic™ Language Programmer’s Guide
Button Control Properties
Button controls are the command buttons that you put on to your dialog
box. The following properties can be set for a button control:

Button Type There are three different kinds of push buttons you can add
to a dialog box:

• OK—This is like a normal button, except its label cannot be modified.
There can be only one OK Button in a dialog box.

• Cancel—This is like a normal button, except its label cannot be
modified. There can be only one Cancel Button in a dialog box.

• Normal—If the button is not an OK or a Cancel button, then use this
type. This button allows you to assign a label and an ID.

Button Label This property inserts text on to the button. If you selected
either an OK button or a Cancel button, then its label cannot be changed. If
you want to assign a shortcut key for the selected control, type an
ampersand (&) before the letter you want to use as a shortcut key. For
example, if you type the label for a help button as H&elp, users will be able to
access help by pressing Alt+E.

Button ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, you should assign IDs
using a consistent naming convention.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be calculated or interpreted when the script is executed.

Size and Position A dialog box is positioned relative to the upper-left
corner of the application. By default, dialog boxes are centered on the
application. Controls are positioned relative to the upper-left corner of the
dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. Type either numeric values or
Hummingbird Basic expressions into the X and Y fields. If you type a
new numeric value in either of these fields, Dialog Editor moves the
control accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.
66

Chapter 4: Designing Dialog Boxes
• Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

OptionButton Control Properties
Option button controls allow a user to enable or disable a function. Option
buttons have the following property settings:

OptionButton label This property inserts text beside the button. If you
want to assign a shortcut key for the selected control, type an ampersand (&)
before the letter you want to use as a shortcut key. For example, if you type
the label for a help button as H&elp, users will be able to access help by
pressing Alt+E.

OptionButton ID The ID is a string you assign to identify the control in
your Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

OptionButton group This option allows you to enter a single string for a
group of related option buttons. When referring to the group in your
function, you can then use this string.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position A dialog box is positioned relative to the upper-left corner
of the application. By default, dialog boxes are centered on the application.
Controls are positioned relative to the upper-left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. You can type either numeric values
or Hummingbird Basic expressions into these fields. If you type a new
numeric value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.
67

Hummingbird Basic™ Language Programmer’s Guide
Text Control Properties
Use text controls to label another control that typically does not have a
label. The following properties are available for Text Controls:

Text Label This property inserts a label for a control. If you want to assign
a shortcut key for the selected control, type an ampersand (&) before the
letter you want to use as a shortcut key. For example, if you type the label for
a help button as &Help, users will be able to access help by pressing Alt+H.

Text ID The ID is a string you can assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position Hummingbird Basic places controls relative to the
upper-left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.
68

Chapter 4: Designing Dialog Boxes
TextBox (Edit) Control Properties
The following properties can be set for TextBox controls:

TextBox ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Password\no Echo When this option is enabled, any text the user types
into the text field is echoed back as asterisks. This feature is used if the
textbox control will accept passwords as input.

Size and Position Hummingbird Basic positions controls relative to the
upper-left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

CheckBox Control Properties
Check boxes provide the user with the ability to enable or disable a function
in the program. The following properties can be set for a CheckBox control:

CheckBox Label This property inserts a label for a control. If you want to
assign a shortcut key for the selected control, type an ampersand (&) before
the letter you want to use as a shortcut key. For example, if you type the
label for a help button as H&elp, users will be able to access help by pressing
Alt+H.

CheckBox ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.
69

Hummingbird Basic™ Language Programmer’s Guide
Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper-left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the dialog box is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

ListBox Control Properties
A ListBox provides a list of strings from which to choose. You can also add
new strings at runtime. The following properties are available for a ListBox
control:

ListBox ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

ListBox Contents This field allows you to enter the strings that will form
the contents of the ListBox.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the ListBox, enable this
check box. The contents of the ListBox will be interpreted when you execute
the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
70

Chapter 4: Designing Dialog Boxes
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

StaticComboBox Control Properties
A StaticComboBox is a text box with an attached list box. When the user
selects a value from the list box, it is placed in the text box. The following
properties can be set for a StaticComboBox control:

StaticComboBox ID The ID is a string you assign to identify the control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

StaticComboBox Contents This field allows you to enter the strings
which will make up the contents of the StaticComboBox. A user can then
select one of the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the StaticComboBox,
enable this check box. The contents of the StaticComboBox will be
interpreted when you execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
dialog control. Enter a value in pixels in the Width and Height fields.
Dialog Editor sizes the control accordingly.
71

Hummingbird Basic™ Language Programmer’s Guide
DropComboBox Control Properties
A DropComboBox is a text box with an attached list box. The list box
remains hidden until the user selects the arrow beside the text box to drop
down the list box. When the user selects a value from the list box, it is placed
in the text box.The following properties can be set for a DropComboBox
control:

DropComboBox ID The ID is a string you assign to identify the control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

DropComboBox Contents This field allows you to enter the strings
which will make up the contents of the DropComboBox. A user can then
select one of the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the DropComboBox,
enable this check box. The contents of the DropComboBox is interpreted
when you execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

• X and Y Position—To specify the position of the dialog box, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.
72

Chapter 4: Designing Dialog Boxes
DropListBox Control Properties
A DropListBox is a list box that remains closed, showing only one value,
until the user selects the arrow on the right-hand side to expand it. The
following properties can be set for a DropListBox control:

DropListBox ID The ID is a string you assign to identify the control in
your Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

DropListBox Contents This field allows you to enter the strings which
will make up the contents of the DropListBox. A user can then select one of
the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the DropListBox, then
enable this check box. The contents of the DropListBox will be interpreted
when you execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

GroupBox Control Properties
GroupBox controls are used as a design feature to group a series of related
controls together. The following properties can be set for a GroupBox
control:

GroupBox Label This is the title of the group box. The title you type here,
appears on the dialog box.
73

Hummingbird Basic™ Language Programmer’s Guide
GroupBox ID The ID is a string you assign to identify the GroupBox
control in your Hummingbird Basic script file. For easy recognition, assign
IDs using a consistent naming convention.

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be interpreted when you execute the script containing this
dialog box.

Size and Position Hummingbird Basic places controls relative to the
upper-left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

Picture Control Properties
Pictures are graphics that are used in dialog boxes and windows. The
following properties can be set for picture controls:

Picture source This property indicates the source of the bitmap to be
displayed: Clipboard or File.

Picture file name Type the name of the bitmap file to display in your
dialog box.

Picture ID The ID is a string you assign to identify the GroupBox control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

Suppress Message Enabling this check box causes the picture control not
to display the "missing picture" warning if the picture for the dialog box
cannot be located.
74

Chapter 4: Designing Dialog Boxes
Use file name as a macro expression If you selected File as the picture
source, enable this check box to assign a Hummingbird Basic expression
corresponding to the file name. The file name is interpreted when you
execute the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper-left corner of the dialog box:

• X and Y Position—To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height—These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

Integrating a Dialog Box into Your Script

A dialog box must be defined and declared before you can refer to it in your
script. Dialog boxes are defined using the Begin Dialog...End Dialog
statements.

To integrate a dialog box into your script follow these steps:

1 Define the dialog box with the Begin Dialog...End Dialog statements
and dialog box definition statements such as TextBox, OkButton.

2 Create a dynamic dialog function to handle dialog box interactions.

3 Display the dialog box using the Dialog Function.
75

Hummingbird Basic™ Language Programmer’s Guide
Defining the Dialog Box
The Begin Dialog...End Dialog statement defines a dialog box. The last
parameter to the Begin Dialog statement is the name of a function, prefixed
by a period. This function handles interaction between the dialog box and
the user.

After defining your dialog box, you must declare a variable of this data type.
In the following example, the variable named td refers to the dialog box
named testdlg.

Begin Dialog testdlg 286, 245, "Interactive Dialog", .interact
<statements that define the controls on your dialog box>
End Dialog
Dim td as testdlg

For more information, see
“Writing a Dialog
Function” on page 79.

If you are writing a function to accept user input and to define what occurs
in the dialog box, then enter the function at the end of the Begin Dialog
statement. In the above example this is a function called interact.

If you use Dialog Editor, the Begin Dialog…. End Dialog statement is
inserted into your code. You must add the function parameter to the Begin
Dialog statement and the variable information after the End Dialog
statement.

Displaying the Dialog Box
To display the dialog box, you can use the Dialog function. In a Dialog
function, the argument to display a dialog box is the variable name that you
previously declared. From the example above, this would be td.

Dialog Statements and Functions

The dialog function and the dialog statement differ slightly in their use:

• The Dialog Function—This function both displays a dialog box and
returns a number when the user presses any of the command buttons.

• The Dialog Statement—This statement displays a dialog box.
76

Chapter 4: Designing Dialog Boxes
In most cases, use the Dialog Function. If you use a Dialog statement to
display the dialog box, then you have to write an error-handling routine at
the end of your main subprocedure using the On Error statement.

Dynamic dialog box functions and statements can be used only while a
dialog box is displayed on the screen and is calling a dialog control function.
These functions and statements are used to get or set information about a
particular control in a dialog box.

The functions and statements in this category are:

Function Explanation

DlgControl Function Returns the numeric ID of a control.

DlgEnable Function Returns True (-1) if the specified control is enabled,
or 0 (False) if it is not.

DlgEnable Statement Enables or disables a control.

DlgFocus Function Returns the ID of the control having input focus.

DlgFocus Statement Sets focus to a control.

DlgListBoxArray
Function

Returns the contents of a list box or combo box.

DlgListBoxArray
Statement

Sets the contents of a list box or combo box.

DlgText Function Returns the text value for a control.

DlgText Statement Sets the text for a control.

DlgValue Function Returns the value of a control.

DlgValue Statement Set the value of a control.

DlgVisible Function Returns True (-1) if the specified control is visible, or
False (0) if it is not.

DlgVisible Statement Makes a control visible or invisible.
77

Hummingbird Basic™ Language Programmer’s Guide
Most of these functions and statements take the Control ID as the first
argument. For example, consider the following check box definition:

CheckBox 20, 30, 50, 15 "My checkbox", .check1

Use the following command to disable the check box:

DlgEnable "check1", 0

The following function returns -1 if the check box is selected, or 0 if it is not:

DlgValue ("check1")

Control IDs are case-sensitive. In dynamic dialog box functions and
statements, control IDs are in quotation marks and do not include the
period that is required in control definitions (between Begin Dialog
...End Dialog statements).

Dynamic dialog functions and statements can also work with numeric IDs,
which are automatically assigned in the order in which dialog controls are
defined. For example, if a check box is the first control defined in the dialog
record, DlgValue (0) is equivalent to DlgValue ("Check1"). Control
numbering begins at 0. Labels are not numbered.

The example below creates a dialog box with a drop-down combo box
within it, and the three buttons: OK, Cancel, and Help. The Dialog Function
used here enables the subprocedure to trap when the user clicks any of these
buttons.

Sub Main
Dim cchoices as String
cchoices = "All" + Chr$(9) + "Nothing"

Begin Dialog UserDialog 180, 95, "Hummingbird Dialog
Box"

Text 9, 3, 69, 13, "File name:", .Text1
ButtonGroup .ButtonGroup1
ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
PushButton 132, 48, 42, 13, "Help", .Push1

End Dialog
Dim mydialogbox As UserDialog
answer = Dialog(mydialogbox)

Select Case answer
78

Chapter 4: Designing Dialog Boxes
Case -1
MsgBox "You pressed OK"

Case 0
MsgBox "You pressed Cancel"

Case 1
MsgBox "You pressed Help"

End Select
End Sub

Writing a Dialog Function
A function defines the behavior of the dialog box. For example, your
function could disable a check box based on the user's action. The body of
the function uses the Hummingbird Basic statements and functions
prefixed with Dlg to define dialog box actions.

To define the function itself, use the Function...End Function statement, or
declare it using the Declare statement before using the Begin Dialog
statement.

The name of the function is entered in dot notation at the end of the Begin
Dialog statement. In the example below, interact is appended to the end of
the Begin Dialog statement. Interact is a function that determines what
occurs when a user presses a button on the dialog box.

Begin Dialog testdlg 286, 245, "Interactive Dialog", .interact
<statements that define the controls on your dialog box>
End Dialog
Dim td as testdlg

The function receives the following three parameters from the Begin
Dialog statement:

• The Identifier parameter—The first argument, id$, identifies the
control associated with the call to the Dialog Function. It is the same
value which appeared in the definition of the control. This is the control
ID string that identifies each of the buttons and fields in your dialog
box.
79

Hummingbird Basic™ Language Programmer’s Guide
• The Action parameter—Action% is an integer between 1 and 5
identifying the reason why the Dialog Function is called.

• The Suppval parameter—This parameter supplies additional
information to the dialog box function, suppval& gives more specific
information than the action argument.

The Dialog Function does not return until the dialog box is closed. To leave
the dialog box open after the user clicks a command button (such as the OK
button), return a non-zero suppval.

The following table explains the meaning of each value that action% can
contain:

Value Meaning

1 Corresponds to dialog box initialization. This value is passed before the
dialog box becomes visible.

2 Corresponds to choosing a command button or changing the value of a
dialog box control (except for typing in a text box or combo box).

3 Corresponds to a change in a text box or combo box. This value is
passed when the control loses the input focus (the user presses the Tab
key or clicks another control).

4 Corresponds to a change of control focus. Id$ is the ID of the control
gaining focus, and suppvalue& contains the numeric ID of the control
losing focus. A Dialog Function cannot display a message box or dialog
box in response to an action value 4.

5 Corresponds to an idle state. When the dialog box is initialized (action 1 is
passed), the Dialog Function will be continuously called with action 5, if
no other action occurs. If the dialog function wants to receive this
message continuously, while the dialog box is idle, it should return a non-
zero value. If 0 (zero) is returned, action 5 will be passed only while the
user is moving the mouse. For this action, Id$ is equal to empty string ("")
and suppvalue& is equal to the number of times action 5 was passed
before.
80

Chapter 4: Designing Dialog Boxes
When action% is 2 or 3, suppval& depends on the type of the control. The
following table summarizes the possible values for suppval:

In most cases, the return value of the Dialog Function is ignored. The
exceptions are the return values from action% 5 (as discussed above), and
from action% 2. If action% 2 is called because the user clicked the OK
button, Cancel button, or a command button (as indicated by id$), and the
Dialog Function returns a non-zero value, the dialog box will not be closed.
To close the dialog box when a user clicks a button, return a 0 to the
function.

You can use the information these parameters provide to change the
behavior of the dialog. For example:

Function interact%(Id as String, Action as Integer, Suppval as
Long Integer)
If Id = "bcancel" and action = 2 Then interact = 0
End If
End Function

This example shows that if the user presses the Cancel button, the dialog
box closes. Id = bcancel (the button ID for cancel), Action = 2 indicates
that the user has chosen a command button. If this occurs, interact = 0,
which causes the dialog box to close. If the function returned 1, for example
interact = 1, then the dialog box would stay open.

Control Suppval

List box Number of the item selected, 0-based.

Check box 1 if selected, 0 if cleared, -1 if filled with gray.

Option button Number of the option button in the option group, 0-based.

Text box Number of characters in the text box.

Combo box The number of the item selected (0-based) for action 2, the
number of characters in its text box for action 3.

OK Button 1

Cancel Button 2

Push button An internal button ID. This is not the same as the numeric ID of
the button control.
81

Hummingbird Basic™ Language Programmer’s Guide
Putting It All Together

The following script shows a dialog box with a text field, a check box, and a
hide/show picture button. When you enter text into the text field, it
becomes the title for the group box. Clicking the check box enables or
disables the Bell button. When you click the Hide button, the picture is
pasted to the Windows clipboard. Note the position and order of the
dynamic dialog box functions. Comments are preceded by an apostrophe
(') and are ignored by the compiler.

option explicit' force declarations
dim pict$' name of the picture file
dim evalue' last error value
dim eline' last error line
const errorReturn = -2' use -2, as -1 = OK, 0 = Cancel and
positive
' numbers are used by other buttons

function interact%(id$, action%, suppval&)
' start of dialog function

dim s$' scratch string
dim i?' scratch portint
on error goto ehandler' error handling
select case action' switch on the action type
case 1' dialog box initialization

dlgValue "cb1", 1' set the checkBox 'ON'
dlgFocus "tb1"' force focus to text field
exit function' exit

case 2' control changes, allow
case 3' text field changes, allow
case 4' change of focus

interact = 1' make sure event continues
exit function' exit

end select

interact = 1' default = Don't terminate
select case id' switch on the control
case "tb1"' text field

msgbox "Sample Text Field was changed", 64, "Change Of
Focus"
82

Chapter 4: Designing Dialog Boxes
case "hide"' hide control
if dlgVisible("pict") = 0 then' check the state

dlgVisible "pict", 1' make picture visible
dlgVisible "bird", 1' make the option visible
dlgVisible "clipboard", 1' make the option visible
dlgtext "pg", "Picture"' make the text visible
dlgtext "hide", "Hide &Picture"' change button

text
else

dlgVisible "pict", 0' hide the picture
dlgVisible "bird", 0' hide the option
dlgVisible "clipboard", 0' hide the option
dlgtext "pg", ""' set the text to Null
dlgtext "hide", "Show &Picture"' change button

text
end if

case "bird"' switch to bird picture
DlgSetPicture "pict", pict, 0

case "clipboard"' switch to clipboard
DlgSetPicture "pict", "", 3

case "bbell"' sound the bell
beep

case "cb1"' CheckBox
dlgEnable "bbell", suppval' enable/disable bell

case "copy"' update group text
dlgText "g1", DlgText("tb1")

case "bok", "bcancel"
interact = 0' terminate

case "berror"
s = "abc"
i = cint(s)' invalid conversion

end select
exit function

ehandler:' error handler label
evalue = err' save the error
eline = erl' save the error line
resume postError
83

Hummingbird Basic™ Language Programmer’s Guide
postError:
dlgend errorReturn' exit as error

end function

Sub Main' start of Main subprocedure
dim i?' variable to hold result of dialog box
pict = homeDir' get bird picture
if right$(pict, 1) <> "\" then pict = pict + "\"
pict = pict + "BIRDY3.BMP"

Begin Dialog testdlg 286, 245, "Interactive Dialog",
.interact

OKButton 144, 221, 40, 14, .bok
CancelButton 237, 221, 40, 14, .bcancel
GroupBox 7, 11, 133, 107, "Group", .g1
Text 13, 24, 62, 8, "Sample Text Field:"
TextBox 13, 40, 120, 13, .tb1
CheckBox 13, 66, 35, 10, "Bell On", .cb1
Button 64, 64, 60, 14, "&Bell", .bbell
Button 13, 92, 120, 14, "&Sample Text Field To Group Name",

.copy
GroupBox 144, 11, 133, 107, "Picture", .pg
Picture 173, 25, 75, 51, pict, 0, .pict
OptionGroup .optval
OptionButton 171, 80, 24, 10, "Bird", .bird
OptionButton 203, 80, 42, 10, "Clipboard", .clipboard
Button 171, 97, 80, 14, "Hide &Picture", .hide
Button 190, 221, 40, 14, "&Error", .berror

End Dialog

dim td as testdlg' dialog box testdlg declared as variable

do' loop handles when clicking Cancel or OK
select case dialog(td)
case -1

if msgbox("Dialog terminated by OK. Restart?", 36,
"TestDlg") = 7 then exit do

case 0
if msgbox("Dialog terminated by Cancel. Restart?", 36,

"TestDlg") = 7 then exit do
case errorReturn

if msgbox(error$(evalue) + "on line" + cstr(eline) + ".
Restart?", 36, "TestDlg") = 7 then exit do

case else
84

Chapter 4: Designing Dialog Boxes
if msgbox("Dialog terminated by a button other than OK
or Cancel. Restart?", 36, "TestDlg") = 7 then exit do

end select
loop' end of loop
End Sub
85

Chapter 5

Hummingbird Basic Language
Reference

Hummingbird Basic Statements and Functions 89
Arrays 89
Compiler Directives 89
Control Flow 90
Dates and Times 91
Declarations 92
Defining Dialog Boxes 93
Running Dialog Boxes 94
Dynamic Data Exchange (DDE) 95
Environment Control 95
Error-Handling Functions 96
Disk and Directory Control 96
File Control 97
File Input/Output 97
Financial Functions 99
Numeric Functions 99
Trigonometric Functions 100
Objects 100
Screen Input/Output 101
String Functions 101
String Conversions 103
Variants 103

Calling External Functions in a .dll 104
Sample Script: Calling External Functions in a .dll 104

Using Dynamic Data Exchange 105
DDE Sample Script 106

Chapter 5: Hummingbird Basic Language Reference
This chapter provides a quick reference to the statements and functions
available in Hummingbird Basic. The functions and statements are
separated into categories by type. Each function and statement is
accompanied by a short description.

For information about the specific syntax and usage of a statement or
function, see HostExplorer Programming Help.

Hummingbird Basic Statements and Functions

Arrays

Compiler Directives

Function Description

Erase Re-initialize contents of an array.

LBound Return the lower bound of an array's dimension.

ReDim Declare dynamic arrays and reallocate memory.

UBound Return the upper bound of an array's dimension.

Function Description

$CStrings Treat the backslash in character string as an escape
character, such as in 'C'.

$Include Tell the compiler to include statements from another file.

$NoCStrings Tell the compiler to treat a backslash as a normal
character.

Line Continuation Continue a long statement across multiple lines.

Rem Treat the remainder of the line as a comment.
89

Hummingbird Basic™ Language Programmer’s Guide
Control Flow

Function Description

Call Transfer control to a subprogram.

Do...Loop Control repetitive actions.

Exit Cause the current procedure or loop structure to return.

For...Next Loop a fixed number of times.

Goto Send control to a line label.

If ... Then ...
Else

Branch on a conditional value.

Let Assign a value to a variable.

Lset Left-align one string or a user-defined variable within
another.

On...Goto Branch to one of several labels, depending upon value.

Rset Right-align one string within another.

Select Case Execute one of a series of statement blocks.

Set Set an object variable to a value.

Stop Stop program execution.

While ... Wend Control repetitive actions.

With Execute a series of statements on a specified variable.
90

Chapter 5: Hummingbird Basic Language Reference
Dates and Times

Function Description

Date Function Return the current date.

Date Statement Set the system date.

DateSerial Return the date value for year, month, and day specified.

DateValue Return the date value for string specified.

Day Return the day of month in a date-time value.

Hour Return the hour of day in a date-time value.

IsDate Determine whether a value is a legal date.

Minute Return the minutes in a date-time value.

Month Return the month in a date-time value.

Now Return the current date and time.

Second Return the seconds in a date-time value.

Time Function Return the current time.

Time Statement Set the current time.

Timer Return the number of seconds since midnight.

TimeSerial Return the time value for the hour, minute, and second
specified.

TimeValue Return the time value for the string specified.

Weekday Return the day of the week for the specified date-time
value.

Year Return the year in a date-time value.
91

Hummingbird Basic™ Language Programmer’s Guide
Declarations

Function Description

Const Declare a symbolic constant.

Declare Forward declare a procedure in the same module or in a
dynamic link library.

Deftype Declare the default data type for variables.

Dim Declare variables.

Function ... End
Function

Define a function.

Global Declare a global variable.

Option Base Declare the default lower bound for array dimensions.

Option Compare Declare the default case-sensitivity for string
comparisons.

Option Explicit Force all variables to be explicitly declared.

ReDim Declare dynamic arrays and reallocate memory.

Static Define a static variable or subprogram.

Sub ... End Sub Define a subprogram.

Type Declare a user-defined data type.
92

Chapter 5: Hummingbird Basic Language Reference
Defining Dialog Boxes

Function Description

Begin Dialog Begin a dialog box definition.

Button Define a button dialog box control.

ButtonGroup Begin the definition of a group of button dialog box
controls.

CancelButton Define a Cancel button dialog box control.

Caption Define the title of a dialog box.

CheckBox Define a check box dialog box control.

ComboBox Define a combo box dialog box control.

DropComboBox Define a drop-down combo box dialog box control.

DropListBox Define a drop-down list box dialog box control.

GroupBox Define a group box in a dialog box.

ListBox Define a list box dialog box control.

OKButton Define an OK button dialog box control.

OptionButton Define an option button dialog box control.

OptionGroup Begin definition of a group of option button dialog box
controls.

Picture Define a picture control.

PushButton Define a push-button dialog box control.

StaticComboBox Define a static combo box dialog box control.

Text Define a line of text in a dialog box.

TextBox Define a text box in a dialog box.
93

Hummingbird Basic™ Language Programmer’s Guide
Running Dialog Boxes

Function Description

Dialog Function Display a dialog box, and return the button pressed.

Dialog Statement Display a dialog box.

DlgControlId Return the numeric ID of a dialog control.

DlgEnable Function Return whether a dialog control is enabled or disabled.

DlgEnable Statement Enable or disable a dialog control.

DlgEnd Close the active dialog box.

DlgFocus Function Return the ID of the dialog control having input focus.

DlgFocus Statement Set focus to a dialog control.

DlgListBoxArray
Function

Return the contents of a list box or combo box.

DlgListBoxArray
Statement

Set the contents of a list box or combo box.

DlgSetPicture Change the picture in the picture control.

DlgText function Return the text associated with a dialog control.

DlgText Statement Set the text associated with a dialog control.

DlgValue Function Return the value associated with a dialog control.

DlgValue Statement Set the value associated with a dialog control.

DlgVisible Function Return whether a control is visible or hidden.

DlgVisible
Statement

Show or hide a dialog control.
94

Chapter 5: Hummingbird Basic Language Reference
Dynamic Data Exchange (DDE)

Environment Control

Function Description

DDEAppReturnCode Return a code from an application on a DDE channel.

DDEExecute Send commands to an application on a DDE channel.

DDEInitiate Open a dynamic data exchange DDE channel.

DDEPoke Send data to an application on a DDE channel.

DDERequest Retrun data from an application on a DDE channel.

DDETerminate Close a DDE channel.

Function Description

AppActivate Activate another application.

Command Return the command line specified when the MAIN sub
was run.

Date Statement Set the current date.

DoEvents Let the operating system process messages.

Environ Return a string from the operating system's environment.

Randomize Initialize the random-number generator.

SendKeys Send keystrokes to another application.

Shell Run an executable program.
95

Hummingbird Basic™ Language Programmer’s Guide
Error-Handling Functions

Disk and Directory Control

Function Description

Assert Trigger an error if a condition is false.

Erl Return the line number where a runtime error occurred.

Err Function Return a runtime error code.

Err Statement Set the runtime error code.

Error Generate an error condition.

Error Function Return a string representing an error.

On Error Control runtime error-handling.

Resume End an error-handling procedure.

Function Description

ChDir Change the default directory for a drive.

ChDrive Change the default drive.

CurDir Return the current directory for a drive.

Dir Return a file name that matches a pattern.

MkDir Make a directory on a disk.

RmDir Remove a directory from a disk.
96

Chapter 5: Hummingbird Basic Language Reference
File Control

File Input/Output

Function Description

FileAttr Return information about an open file.

FileCopy Copy a file.

FileDateTime Return the modification date and time of a specified file.

FileLen Return the length of a specified file in bytes.

GetAttr Return the attributes of specified file, directory, or volume
label.

Kill Delete files from a disk.

Name Rename a disk file.

SetAttr Set attribute information for a file.

Function Description

Close Close a file.

Eof Check for end of file.

FreeFile Return the next unused file number.

Get Read bytes from a file.

Input Statement Read data from a file or from the keyboard.

Line Input Read a line from a sequential file.

Loc Return the current position of an open file.

Lock Control access to some or all of an open file by other
processes.

Lof Return the length of an open file.

Open Open a disk file or device for I/O.

Print Print data to a file or to the screen.
97

Hummingbird Basic™ Language Programmer’s Guide
Put Write data to an open file.

Reset Close all open disk files.

Seek Function Return the current position for a file.

Seek Statement Set the current position for a file.

Spc Send the given number of spaces for output.

Tab Move the print position to the given column.

Unlock Control access to some or all of an open file by other
processes.

Width Set the output-line width for an open file.

Write Write data to a sequential file.

Function Description
98

Chapter 5: Hummingbird Basic Language Reference
Financial Functions

Numeric Functions

Function Description

FV Return the future value of a cash flow stream.

IPmt Return the interest payment for a given period.

IRR Return the internal rate of return for a cash flow stream.

NPV Return a constant payment per period for an annuity.

Pmt Return a constant payment per period for an annuity.

PPmt Return the principal payment for a given period.

PV Return the present value of a future stream of cash flows.

Rate Return the interest rate per period.

Function Description

Abs Return the absolute value of a number.

Exp Return the value of e raised to a power.

Int Return the integer part of a number.

Fix Return the integer part of a number.

IsNumeric Determine whether a value is a legal number.

Log Return the natural logarithm of a value.

Rnd Return a random number.

Sgn Return a value indicating the sign of a number.

Sqr Return the square root of a number.
99

Hummingbird Basic™ Language Programmer’s Guide
Trigonometric Functions

Objects

Function Description

Atn Return the arc tangent of a number.

Cos Return the cosine of an angle.

Sin Return the sine of an angle.

Tan Return the tangent of an angle.

Function Description

Class List List of available classes.

Clipboard Access the Windows Clipboard.

CreateObject Create an OLE automation object.

GetObject Retrieve an OLE object from a file, or get the active OLE
object for an OLE class.

Is Determine whether two object variables refer to the same
object.

Me Get the current object.

New Allocate and initialize a new OLE object.

Nothing Set an object variable to not refer to an object.

Object Declare an OLE automation object.

Typeof Check the class of an object.

With Execute statements on an object or a user-defined type.
100

Chapter 5: Hummingbird Basic Language Reference
Screen Input/Output

String Functions

Function Description

Beep Produce a short beeping tone through the speaker.

Input Function Return a string of characters from a file.

Input Read data from a file or from the keyboard.

InputBox Display a dialog box that prompts for input.

MsgBox Function Display a Windows message box.

MsgBox Statement Display a Windows message box.

PasswordBox Display a dialog box that prompts for input. Don't echo
input.

Print Print data to a file or to the screen.

Function Description

GetField Return a substring from a delimited source string.

Hex Return the hexadecimal representation of a number as a
string.

InStr Return the position of one string within another.

LCase Convert a string to lower case.

Left Return the left portion of a string.

Len Return the length of a string or size of a variable.

Like Operator Compare a string against a pattern.

LTrim Remove leading spaces from a string.

Mid Function Return a portion of a string.

Mid Statement Replace a portion of a string with another string.

Oct Return the octal representation of a number as a string.
101

Hummingbird Basic™ Language Programmer’s Guide
Right Return the right portion of a string.

RTrim Remove trailing spaces from a string.

SetField Replace a substring within a delimited target string.

Space Return a string of spaces.

Str Return the string representation of a number.

StrComp Compare two strings.

String Return a string consisting of a repeated character.

Trim Remove leading and trailing spaces from a string.

UCase Convert a string to uppercase.

Function Description
102

Chapter 5: Hummingbird Basic Language Reference
String Conversions

Variants

Function Description

Asc Return an integer corresponding to a character code.

CCur Convert a value to currency.

CDbl Convert a value to double-precision floating point.

Chr Convert a character code to a string.

CInt Convert a value to an integer by rounding.

CLng Convert a value to long by rounding.

CSng Convert a value to single-precision floating point.

CStr Convert a value to a string.

CVar Convert a number or string to a variant.

CVDate Convert a value to a variant date.

Format Convert a value to a string using a picture format.

Val Convert a string to a number.

Function Description

IsEmpty Determine whether a variant has been initialized.

IsNull Determine whether a variant contains a NULL value.

Null Return a null variant.

VarType Return the type of data stored in a variant.
103

Hummingbird Basic™ Language Programmer’s Guide
Calling External Functions in a .dll

The Hummingbird Basic language contains an extensive set of API
(Application Programming Interface) calls that can be used to customize
some of the applications included in the Hummingbird product line.

API refers to a set of specialized functions that allow you to communicate
directly with the Windows application layer.

The following applications contain custom API function calls:

• FTP

• HostExplorer

For information about using TN3270 or TN5250 API function calls, refer to
HostExplorer Programming Help, located in the HostExplorer folder.

Sample Script: Calling External Functions in a .dll
The following sample script demonstrates how to declare and call a
function from an external .dll. The .dll in this example is called user.dll
and it contains a function called GetTickCount&.

Declare Sub MessageBox LIB "user32" Alias "MessageBoxA" (ByVal
h%, ByVal t$, ByVal c$, ByVal u%)
Declare Function GetTickCount& LIB "kernel32.dll" ()
' Function CAT$ concatenates two strings with a space between
them
Function Cat$(a$, b$)

Cat = a & " " & b
End Function
' Subprogram Say computes the time and displays a message box

Sub Say(what$)
Dim min, sec, hrs

sec = GetTickCount () /1000
min = sec / 60 : sec = sec mod 60
hrs = min / 60 : min = min mod 60

Dim eTime as variant
104

Chapter 5: Hummingbird Basic Language Reference
eTime = Format$(hrs, "00") & ":" & Format$(min, "00") &
":" & Format$(sec, "00")

MessageBox 0, what, "Elapsed Time is " & eTime, 64
End Sub

Sub Main
Dim msg$

If (Command$ = "") Then msg$ = "World" Else msg$ =
Command$

Say Cat$("Hello", msg$)
End Sub

Using Dynamic Data Exchange

Dynamic Data Exchange allows two applications to communicate and to
exchange data. One of these applications can be your Basic program. To talk
to another application and send it data, you need to open a connection with
the application (called a DDE channel) using the statement DDEInitiate.
However, if you have OLE automation available, we recommend you use it
instead of DDE, since OLE is used more.

DDEInitiate requires two arguments:

• The DDE Application name

• A Topic name

The DDE application name is usually the name of the .exe file used to start
the application, without the .exe extension. For example, the DDE name
for Microsoft Word is Winword. The topic name is usually a file name to get
or send data to, although there are some reserved DDE topic names, such as
System. Refer to the documentation for the application to get a list of topic
names.

Note: The application must already be running before you can
open a DDE channel. To start an application, use the Shell
command.
105

Hummingbird Basic™ Language Programmer’s Guide
After opening a channel to the application, you can get text and numbers
(DDERequest), send text and numbers (DDEPoke), or send commands
(DDEExecute). When you have finished communicating with the
application, you should close the DDE channel with the DDETerminate
function.

The other DDE command available in Hummingbird Basic is
DDEAppReturnCode. This command is used for error checking. After getting
or sending text, or executing a command, use DDEAppReturnCode to make
sure the application performed the task as expected. If an error did occur,
your program can notify the user of the error.

DDE Sample Script
The following sample script opens the Microsoft Word application and uses
DDERequest to obtain a list of available topics:

Sub main
Dim channel as Integer
Dim appname as String
Dim topic as String
Dim path as string
Dim msgtext as string
Dim ttext as string

appname="Excel"
topic="Sheet1"
path="d:\office97\office\"
channel = -1
ttext = "Hello, world"
x=Shell(path & appname & ".EXE")
channel = DDEInitiate(appname, topic)
If channel= -1 then

msgtext="Excel not found -- please place on your path."
Else

On Error Resume Next
DDEPoke channel, "R3C2", ttext

Note: There are a limited number of channels available for you to
use at one time. Close channels as soon as you are finished using
them. You can use up to 10 channels.
106

Chapter 5: Hummingbird Basic Language Reference
DDEExecute channel, "[SELECT(" + Chr$(34) + "R4C4" +
Chr$(34) + ")]"

DDETerminate channel
If Err<>0 then

msgtext="DDE Access failed."
End If

End If
End sub
107

Glossary
Application Programming Interface
(API)
A set of routines, protocols, and tools that
programmers use to build software
applications. Most operating systems have
an API which programmers use to write
applications that are consistent with that
operating environment. APIs ensure that
all programs using that API have a similar
interface. This makes it easier for users to
learn new programs.

Breakpoint
A location in a program at which execution
is halted so that a programmer can
examine the status of the program, the
contents of variables, and so on. A
breakpoint is set and cleared within a
debugger, and is usually implemented by
inserting at that point some kind of jump,
call, or trap instruction that transfers
control to the debugger.

Compiler
A program that translate all of the source
code of a program written in a high-level
language into object code prior to
execution of the program.

Control
A control statement determines the results
of your script. It also directs the flow of
logic during the execution of commands.

DDE
Dynamic Data Exchange. DDE allows
communication and data exchange
between two applications through
connections called DDE channels.

Debug
To detect, locate, and correct logical or
syntactical errors in a program, or
malfunctions in hardware.

Dialog box
In a graphical user interface, a special
window displayed by the system or
application to solicit a response from the
user.

Emulation
The process of a computer, device, or
program imitating the function of another
computer, device, or program. Terminal
emulation drivers included in
communications software enable a PC to
emulate a terminal type. This makes it
possible for a user to log on to a
mainframe.

Hummingbird Basic™ Language Programmer’s Guide
Error
A value or condition that is not consistent
with the true, specified, or expected
condition. In computers, an error results
when an event does not occur as expected,
or when impossible or illegal maneuvers
are attempted. In data communications, an
error occurs when there is a discrepancy
between the transmitted and received data.

Error-Handling
A special set of instructions that enable
your script to trap errors that may occur
while your script is running.

Expression
A collection of terms that perform a
mathematical or a logical operation. The
terms are either variables or functions that
are combined with an operator to evaluate
a result. There are several types of
operators.

Function
A construct which, when executed,
calculates and returns a value as
determined by its arguments.
Hummingbird Basic contains a variety of
built-in functions you can use in your
scripts. You can also write your own
functions.

Interpreter
A program that translates, and then
executes, each statement in a program
written in an interpreted language.

Logic Error
Occurs because of incorrect coding that
causes unexpected results (such as infinite
loops or incorrect values returned by
functions) during the execution of the
script. These types of errors generally cause
unexpected results during the execution of
your script.

Object Linking and Embedding (OLE)
A compound document standard that
allows you to create objects with one
application and link or embed the objects
in a second application. Embedded objects
retain their original format and links.

Windows and Macintosh operating
systems support OLE.

Operator
A symbol or other character indicating an
operation that acts on one or more
elements.

Procedure
A procedure contains a set of variables and
statements that you defined for the script.
There are two different types of procedures
in Hummingbird Basic: functions and
subprocedures. A Hummingbird Basic
script can contain one main subprocedure.
When the script is run, the main
subprocedure is executed first.
110

Glossary
Runtime Error
Can be caused by an unforeseen action
taken by the user, a coding error, or the
data your script is using (the script
attempts to read a file containing no data).
Runtime errors are handled through a set
of error-handling functions and
statements.

Statement
An instruction written in a high-level
programming language that defines how a
task in the script is carried out. It provides
the conditional logic or looping for a
procedure. It also defines the state of a
dialog box, such as its display and
configuration.

Syntax Error
Usually the result of spelling a statement or
a function incorrectly. It can also be the
result of using either a statement or
function incorrectly. To help you fix syntax
errors, the Hummingbird Script Editor
highlights language syntax errors in red
after a script is compiled.

Trappable error
See Error.

Variable
Placeholders for values that are declared,
named, and assigned a data type.
111

Index
A
accessibility features... 6

directional arrow keys 6
Enter key... 7
Esc key .. 7
in Microsoft Windows 7
Keyboard shortcuts 6
Spacebar ... 7
Tab key sequence 7
ToolTips ... 7

action argument... 80
action value table ... 80
adding controls to a dialog 62
Animated mode... 55
API and OLE function calls............................. 3
API calls ... 104
archives, searching mailing list 10
arguments .. 19

byVal... 20
Control ID.. 78
DDEInitiate .. 105
named... 20
pass by value, by reference 20

arrays..28, 89
Dynamic ... 29

B
BASIC

early versions .. 4
modern... 5
support of data types.............................. 22

Begin Dialog..........................65, 75, 76, 78, 79
Button ID ...66
Button Label... 66
Button Type, Label, ID 66
ButtonGroup ID .. 65
byVal argument ... 20

C
Call Stack control... 53
calling external functions............................. 104
Caption Type & Caption 65
Check Script button....................................... 56
CheckBox...78, 93

ID and Label ... 69
Code window ... 52
command

DDEAppReturnCode........................... 106
Option Explicit 24

comparison operators.................................... 33
compiler directives... 89
constants ..22, 23

decimal ... 27
defined ..23
integer...27
terms in operators 32

control flow..90
Control ID ...64, 78
control palette buttons................................... 61

Hummingbird Basic™ Language Programmer’s Guide
control properties
Button ...66
CheckBox..69
DropComboBox.....................................72
DropListBox ...73
GroupBox ...73
ListBox ..70
OptionButton ...67
StaticComboBox.....................................71
text ..68
TextBox (Edit) ..69

control statements................................... 19, 22
controls

adding to a dialog box62
Call Stack ..53
CheckBox Control button......................61
DropComboBox Control button61
DropListBox Control button62
GroupBox Control button62
ListBox Control button61
OptionButton Control button61
Picture Control button...........................62
PushButton Control button61
Text Control button61
TextBox (Edit) Control button61

creating a dialog box
example...78

current subprocedure.....................................52

D
data type

assigning the variable..............................24
characters ..25
object...28
overview ..22

dates and times...91
DDE

channel... 105, 106
description of functions..........................95
sample script ...106
using..105

DDE.ebs ...15

Debug mode .. 53
decimal constants .. 27
declarations.. 92
dialog box

adding controls 62
defining ..76, 93
description of functions 93
displaying ... 76
example .. 78
handling ... 5
integrating into script............................. 75
properties ... 65
running, description of functions.......... 94
Size and Position.............................. 65–75

Dialog Editor ... 4
aligning controls..................................... 63
control palette .. 61
creating the dialog box........................... 60
Dialog Code window 60
dialog function and statement 76
integrating dialog box into script........... 75
interface.. 59
Layout menu commands 63
setting control properties................. 64–75
setting dialog box tab order 64
toolbar .. 60

dialog function... 76
parameters.. 79
writing .. 79

Dialog ID ... 65
Dialog.ebs .. 15
Dim statement ... 29
disk and directory control 96
documentation

Help.. 8
manuals .. 8
release notes ... 8

DropComboBox.. 72
ID and Contents..................................... 72

DropListBox .. 73
DropListBox ID and Contents 73
Dynamic Array ..29, 34
114

Index
E
EB subdirectory ... 15
EBS and EBX file extension 51
EBX .. 17
Edit mode .. 53
End Dialog ...75, 76
environment control6, 95
error handling

defined.. 17
functions... 96

Execute Script button 56
expressions... 32

defined.. 17

F
file control.. 97
file input/output .. 97
FILELIST.ebs ... 15
financial functions ... 99
FTP API ... 3
FTP OLE

sample script .. 15
function

environment control 95
procedure ... 18

functions .. 19
arguments... 19
compiler directives 89
control flow .. 90
dates & times .. 91
DDETerminate..................................... 106
declarations .. 92
defined.. 17
defining dialog boxes 93
disk and directory control...................... 96
dynamic dialog box................................ 77
error handling .. 96
file control .. 97
file input/output..................................... 97
financial .. 99
Hummingbird Basic............................... 89
interact.. 79
numeric .. 99

objects ...100
running dialog boxes94
screen input/output..............................101
string ...101
string conversions.................................103
trigonometric..100
variant ...103

G
Global variable ...24
GlossaryEntry ...109
GroupBox...73

description ..93
Label and ID ...74

H
Help..8
Hummingbird accessibility..............................6
Hummingbird Basic

calling external functions104
DDE command106
dialog box handling5
environment control6
financial functions5
object handling ...6
script structure..................................18–22
statements and functions reference........89
support of BASIC data types22
utilities ..4
Workbench.......................................51–53

Hummingbird Expose Online
subscribing..9

Hummingbird Information Resources8
documentation ...8
mailing lists ...9
Technical Support9

Hummingbird mailing lists
subscribing..10

Hummingbird Telnet28
Hummingbird User Group

joining...11
posting messages.....................................11

Hummingbird users, interacting with9
115

Hummingbird Basic™ Language Programmer’s Guide
I
IBM 3270 or 5250...3
identifier

Begin Dialog statement...........................79
Control ID ..64

information resources, Hummingbird..... 8, 10
documentation ...8
mailing lists .. 9, 10
Technical Support9

integer constants ..27
interacting with Hummingbird users9

J
joining Hummingbird

mailing lists ...9
User Group ...11

K
Keyboard shortcuts ..6

L
ListBox

ID and Contents70
logic errors..41
logical operators ...33

M
macro expression

file name ...75
Macro Function Name...................................65
macro input expression

content70, 71, 72, 73
label 66, 67, 68, 70, 74

mailing lists, Hummingbird 9, 10
joining...9
searching archives...................................10
subscribing..10

main subprocedure ..52
manuals ..8
Microsoft Windows accessibility options7

N
numeric functions ... 99
numeric IDs... 78
numeric operators ... 32

O
object.. 100
object data type.. 28
OLE..5, 6

automation... 105
automation server 28
object .. 28

operators
comparison .. 33
logical ... 33
numeric .. 32
overview ... 32
string... 32

Option Base statement 29
Option Explicit command............................. 24
OptionButton

label and ID.. 67
OptionButton group 67
Output window ... 53
Output Window button 56
overview

programming ... 17

P
Password-no Echo... 69
Pastword.ebs.. 15
picture controls.. 74
posting to Hummingbird User Group.......... 11
primary control.. 64
procedures

defined.. 17

R
record variable ... 31
ReDim statement... 29
release notes ... 8
116

Index
resources, Hummingbird information8, 10
documentation... 8
mailing lists ..9, 10
Technical Support.................................... 9

return value.. 81
Run mode .. 53
Run Script in Animated Mode button.......... 56
running dialog boxes 94
runtime errors.. 41

S
sample script

calling external functions 104
DDE.. 106
DLGTEST.EBS....................................... 82
overview ... 15

screen input/output..................................... 101
script

compiling and running 55
creating a file .. 53
elements.. 17
errors .. 55
toolbar buttons....................................... 56
translating tasks, actions 54

Scripting Tool
See Workbench

searching mailing list archives....................... 10
Sendrecv.ebs .. 16
setting control properties 64

button controls....................................... 66
CheckBox ... 69
dialog box... 65
ListBox.. 70
OptionButton... 67
StaticComboBox 71
text controls.. 68

shortcuts
Keyboard .. 6

statements
Begin Dialog 65, 75, 76, 78, 79
Call ..18
Const...23
control...22
DDEInitiate ..105
defined ..17
Dim ...29
Dim or Global...24
dynamic dialog box77
End Dialog 75, 76, 78
Function...End Function79
Hummingbird Basic89
On Error ...77
Option Base ..29
ReDim...29
Sub...End Sub ...18
Type ..31

StaticComboBox
described...93
ID and Contents71

string
conversions ...103
functions ...101
operators ...32

string variables ...27
subprocedure 17, 18, 77

Call Stack control53
function ..19
main ..52

subscribing
Hummingbird Expose Online9
Hummingbird mailing lists....................10

SubscriptRange format29
Suppress Message...74
suppval parameter..80
suppval value table ...81
syntax errors .. 40, 41

T
Technical Support..9
Test1.ebs...16
Test2.ebs...16
117

Hummingbird Basic™ Language Programmer’s Guide
Test3.ebs...16
Test4.ebs...16
Test5.ebs...16
TestFTP.ebs..15
Text Label ...68
TextBox ID...69
trapping errors

Option 1..43
Option 2..44

trapping user defined errors
Option 3..45
Option 4..46

trigonometric functions100
Type statement ...31

U
UNIX hosts ..3
User Group, Hummingbird

joining...11
posting message to..................................11

V
variable declarations

scope ...4
variables... 22, 23

array ..28
as terms ...32
Boolean ...27
constant ..23
declaring ...24
Delaring ..34
dimensioned ...23
element of Hummingbird Basic17
Global... 24, 34
global...52

glossary definition 111
in procedures.. 110
naming ... 34
numeric types... 26
record ... 31
scope of declarations.............................. 19
set by expressions 32
Static ... 24
string... 27
SubscriptRange format 29
terms in expressions............................. 110
Variables window................................... 52
variant... 25

Variables window .. 52
variant .. 103

Empty ... 26
Null... 26
variable ... 25

Variant data type ... 24
varray, Dynamic Array 30

W
Workbench .. 4
Workbench/Scripting Tool

Call Stack control 53
Code window ... 52
Output window...................................... 53
status bar .. 53
Variables window................................... 52

writing a dialog function 79

X
Xlib API

commands and functions 3
118

Notes

Notes

Notes

Notes

	Contents
	Chapter 1: Introducing Hummingbird Basic
	About Hummingbird Basic
	Development Tools
	Hummingbird Basic Features

	Accessibility
	Microsoft Accessibility Options

	Hummingbird Information Resources
	Documentation Resources
	Technical Support
	Mailing Lists and User Groups

	Chapter 2: Hummingbird Basic Scripts
	Sample Scripts
	Programming Terminology
	Structure of a Hummingbird Basic Script
	Variable Scope
	Functions and Control Statements
	Control Statements

	Variables, Constants, and Data Types
	Variables and Constants
	Data Types

	Expressions and Operators
	Numeric Operators
	String Operators
	Comparison Operators
	Logical Operators

	Programming Tips and Coding Suggestions
	Naming Variables and Constants
	Global Variables
	Declaring Variables
	Option Base
	Dynamic Array
	Runtime Error
	Controls
	Compatibility
	Checking for the Existence of PC Files
	Using Win32 API
	Network Logon Name
	Always Visible Message Box
	Working with Windows Registry
	OLE Functions

	Error-Handling and Debugging
	Error Types
	Debugging Scripts for Syntax and Logic Errors
	Handling Runtime Errors
	Trapping Errors

	Chapter 3: Using Development Tools to Edit Scripts
	About Hummingbird Basic Workbench
	The Workbench Interface
	Creating a Script File at a Glance

	Compiling and Running a Script File
	Running a Script File

	Chapter 4: Designing Dialog Boxes
	About Dialog Editor
	Dialog Editor Interface

	Adding Controls to a Dialog Box
	Aligning Controls in the Dialog Box
	Setting Control Properties
	Dialog Box Properties
	Button Control Properties
	OptionButton Control Properties
	Text Control Properties
	TextBox (Edit) Control Properties
	CheckBox Control Properties
	ListBox Control Properties
	StaticComboBox Control Properties
	DropComboBox Control Properties
	DropListBox Control Properties
	GroupBox Control Properties
	Picture Control Properties

	Integrating a Dialog Box into Your Script
	Defining the Dialog Box
	Displaying the Dialog Box

	Dialog Statements and Functions
	Writing a Dialog Function

	Putting It All Together

	Chapter 5: Hummingbird Basic Language Reference
	Hummingbird Basic Statements and Functions
	Arrays
	Compiler Directives
	Control Flow
	Dates and Times
	Declarations
	Defining Dialog Boxes
	Running Dialog Boxes
	Dynamic Data Exchange (DDE)
	Environment Control
	Error-Handling Functions
	Disk and Directory Control
	File Control
	File Input/Output
	Financial Functions
	Numeric Functions
	Trigonometric Functions
	Objects
	Screen Input/Output
	String Functions
	String Conversions
	Variants

	Calling External Functions in a .dll
	Sample Script: Calling External Functions in a .dll

	Using Dynamic Data Exchange
	DDE Sample Script

	Glossary
	Index

