WebObijects 3.0 Java Extensions Copyright (C)1996 by NeXT Software, Inc. All Rights Reserved.

WebObjects 3.0 Java Extensions
Release Notes

The following release notes apply to the WebObjects Java Extensions. To access the on-
line documentation, use the link provided on the WebObjects Home Page.

Installation Note
The Java Extensions examples that use the Enterprise Objects Framework (such as
MovieDemoJava) may require a change to their EOModel files before they will operate

properly. See Bug #75466 under "Enterprise Objects Framework," below, for more
information.

New Features in WebObjects Builder

The WebObjects Java Extensions comes with a new release of WebObjects Builder. This
WebObijects Builder contains the following improvements over the version on the
WebObijects 3.0 CD-ROM:

You can now write a component's logic in Java. To do this, you must set your
language preference to Java before you create a new application. Go to the
preferences panel, and choose "Java" in the Languages display. After your
preference is set to Java, WebObijects Builder creates .java files where it used
to create .wos files (for example, Application.java, Session.java, and Main.java).
It also checks your Java syntax for you when you try to save the component.

The ClientSideComponents palette (in
NEXT_ROOT/NextDeveloper/Palettes/ClientSideComponents.wbpalette) has
been improved. The palette now displays icons for each applet that look like the
end-result applet (for example, a button applet looks like a button). In addition,
WebObijects Builder now has a WOApplet inspector that lets you directly set

attributes for your applets.

Applets are now knob-resizable directly in the HTML and will look like the actual
applet for all supported applets (those that are on the palette).

You can now choose three different fonts in the Font Preferences panel. The
first font (Document) is used to display most of the text inside of a component.
The second font (fixed pitch) is used to display any fixed-pitch text inside of a
component. The last font (Script) is used in the Script window to display your
script file or Java file.

The Font Preferences panel allows you to choose three different fonts: one for
normal text in the component, one for fixed-pitch text in the component, and one
for the script window. You can also set the tab width for the script window in this
panel.

WebObijects Builder now handles character encodings. When you use
WebObijects Builder to create a component, it stores the encoding as one of the

component's attributes. If you don't explicitly specify the encoding, the Builder
saves the component using the default character encoding. You can use the Set
Save Encoding command on the File menu to change which encoding a
component uses. You can also use the Set Save Encoding command to change
the default encoding.

If you have a component that was created or edited outside of WebObjects
Builder, WebObjects Builder might not know the correct encoding for that
component. In such cases, use Open with Encoding to open the component.
When you use this command, the first panel that appears is an open panel in
which you select the component. After you click Open in the open panel, a
separate panel appears in which you specify that component's encoding.

You can now use the double-click shortcut to bind to a dynamic element to a
method as well as to a variable. To use the shortcut, first select the dynamic
element, then double-click the method you want to bind it to. For more
information on binding dynamic elements, see the on-line book Using
WebObjects Builder.

Troubleshooting

If you're having trouble running a WebObijects application that's written in Java,
first ensure that the HelloWorld example runs (the version that ships with
WebObijects). Then, verify that the Java version, HelloWorldJava, runs. For
instructions on how to run these examples, see the WebObjects and Java
Extensions documentation.

If you're having problems with a WebObjects application that uses the
Enterprise Objects Framework, verify that you can access your database by
using EOModeler to open the model and browse the database.

Known Bugs in This Release

Java Extensions

Reference: 73519

Problem: Constructor helper function doesn't work with floats on Solairs

Description: On Solaris, it isn't possible from Objective-C to instantiate a Java class
using a constructor that contains one or more floats. This includes Java
subclasses of Objective-C classes.

Workaround: None.

Reference: 74127

Problem: Spurious error messages displayed when Java loads libraries on Solaris

Description: NextObject.loadLibrary() tries to find the correct library by prepending a

number of standard search paths to the supplied library name. For every

path that doesn't succeed, Id.so generates an error message similar to the
following, even if the loading process eventually succeeds.:

ld.so.1l: /opt/java/bin//../bin/sparc/java: fatal: JavaTest: can't
open file: errno=2 (JavaTest)

Assuming that the load process does eventually succeed, these spurious
messages can be ignored.

Workaround: None.

Reference: 74941

Problem: Session.wos and Session.class crashes the Java bridge

Description: Having both a ".wos" and a ".class" file for the same class (such as
Session.wos and Session.class) will cause your application to crash.

Workaround: Remove the ".wos" file.

Reference:

75000

Problem: You still need to know about Objective-C selectors when messaging from
Java

Description: Some of the methods in the next.util package require that you know
Objective-C selector names. The following code excerpt illustrates one
such situation:
myVector = new MutableVector();
/I fill the vector here
myVector.sortUsingMethod("compare:");

Workaround: None.

Reference: 75207

Problem: Cannot overload methods in hybrid Java subclass

Description: You cannot overload methods that are in "hybrid" Java classes (a "hybrid"

Java class is a Java subclass of an Objective-C class). Thus, for instance,

the following code will cause your app to crash when the myMethod is
invoked from Objective-C:
public class MyComponent extends Component {

public void myMethod() {...}
public void myMethod(int anint) {...}

}

Workaround: None.

Reference: 75022

Problem: Attempting to launch an uncompiled Java application can disable your
server

Description: If you attempt to launch a WebObjects Java application before it has been

compiled, it will cause errors on your web server and will leave the server
in a state from which you'll be unable to launch any other WebObjects
applications. Essentially, the WebObjects process that's trying to contact
the uncompiled application holds on to the WebObjects.autostart file and

Workaround:

waits for five minutes, to prevent another concurrent autostart.

If this happens, you'll need to kill the WebObjects process as you won't be
able to remove the WebObjects.autostart file. Note that you may have to
restart the web server in order to unlock the WebObjects.autostart file.

Reference:
Problem:

Description:

75264

You can't specify the .woa extension when invoking an app from the
command line

When starting an application from the command line, the Java Extensions
append a .woa extension to the application name you specify, whether or
not you've supplied an extension. So for instance, if you try to invoke your
app as follows:

$./Zowee -d c:/netscape/server/docs Zowee.woa

It won't start because WebObjects won't be able to find an app directory
named "Zowee.woa.woa".

Don't specify the .woa extension when starting WebObjects applications

Workaround:
from the command line.

Reference: 75467

Problem: Subclasses of next.wo.Component shouldn't be given a package name

Description: Subclasses of next.wo.Component shouldn't be given a package name,
or the pageWithName() method won't be able to find them. This is
because pageWithName() creates the page by looking up and
instantiating the component class with the same name as the page. If the
Java class is given a package name, the class lookup will fail.

Workaround: None.

Reference: 75537

Problem: Java Browser comes up empty

Description:

If you installed the latest release of the Java Extensions on top of the

prerelease, the JavaBrowser may come up empty. This is because some
old versions of the loadable bundles used by the browser will still be
present.

The JDK environment that's set up by the Java Extensions for compilation

properties file that contains the English error messages. Otherwise, javac

Workaround: Traverse to the browser resource directory
(NEXT_ROOTINextDemos/JavaBrowser.app/Resources) and remove
the Decompiler.beandle and InputSources.beandle directories.

Reference: 75691

Problem: Setting JAVA_HOME produces better error messages during compilation

Description:
needs to have JAVA_HOME set so that the compiler can find the
complains and prints an error message that's only mildly descriptive

Workaround:

Using the Windows NT System control panel, create a JAVA_ HOME
environment variable and set it to NEXT_ROOT/NextLibrary/JDK-1_0_2.

Reference: None
Problem: Control-C doesn't always kill java.exe

Description: If you use Control-C to kill a running Java application, the java.exe process
isn't always killed properly. This will cause you to have multiple Java VMs
running at the same time.

Workaround: Use the Windows NT TaskManager to ensure that the extra VM processes
have been killed off.

Enterprise Objects Framework

Reference: 75466

Problem: EOF client libraries can't be automatically loaded into Java on Solaris
systems

Description: On Solaris, the client libraries and adaptor frameworks cannot be

automatically loaded by EOF; you must explicitly load a library that is
linked against the adaptor frameworks and the client libraries in your Java
program. See the main() method and Makefile.postamble in the
DodgeDemoJava example for the recommended way to do this. Note that
some demos--such as MovieDemoJava--won't work unless this change is
made.

Workaround: None.

Examples

Reference: 75464

Problem: DodgelLiteJava may throw an exception when selecting a car color.
Description: When running the DodgeLiteJava example, if you are selecting a car color

and you click outside the active areas of the map (these areas do not
perfectly correspond to the color samples, the example will throw an

exception.
Workaround: None.

Foundation Framework

Reference: 75519
Problem: NSClassFromString() is very slow

Description: Code that makes heavy use of NSClassFromString() will run slower once
the Java extensions are installed.

Workaround: None.

Bridget

Reference: 75284
Problem: #import includes files multiple times in Bridget on Windows NT

Description: If you have a header file that imports the same file more than once using
different names, such as #import "Foo.h" and #import "d:/Headers/Foo.h",
it will be parsed by Bridget multiple times, and methods declared in the
imported files will be treated as multiple declarations. This results in
duplicate methods being emitted in the generated Java classes.

Workaround: None.

WebObjects Builder

Reference: 75485
Problem: WebObjects Builder generates "protected Object foo[]" for an array
Description: When creating a new array variable in WebObjects Builder, you get an

array of type Object instead of an ImmutabbleVector. You should get an
ImmutableVector, because an array is usually created to work with
WORepetitions.

Workaround: None.

WebObjects Framework

Reference: 74753
Problem: appendContentHTMLString: header file comments are incorrect.

Description: In the file WOResponse.h, the descriptions of appendContentString: and
appendContentHTMLString: are swapped. That is, if you have the string
@"" and you want it shown in the browser literally, you should use
appendContentHTMLString:, which converts it to <b&agt;. If you want
the string interpreted as a bold tag, use appendContentString:.

Workaround: None.

Reference: 74498

Problem: Run-time URL completion doesn't work with some dynamic elements when
the attribute namess are lowercase.

Description: At times the WebObjects Framework is unable to complete a path or URL if
you supply a relative path. This affects only a few dynamic elements and
only if the attribute names are provided in lowercase letters. See the
workarounds below for specific instances of this bug and the ways to work
around each instance.

Workaround:

WOGenericContainer/WOGenericElement:
If you use an attribute in a WOGenericContainer or WOGenericElement whose
value should be completed, the value for both the elementname attribute and the
keys for the attributes that need to be completed must be in uppercase. For
example, a WOGenericContainer representing a hyperlink should be:

WOGenericContainer {elementname="A"; HREF="foo.html"};

WOApplet:
WOApplet cannot complete the paths for the attributes code and codebase. There
are three possible solutions :

- Hard code the complete paths for both attributes.
- Use a WOGenericContainer (with uppercase elementname "APPLET"
and uppercase keys CODE and CODEBASE). If you use
WOGenericContainer, you won't be able to use the client-side component
features of WOApplet.
- Subclass WOApplet into MYWOApplet. In MYWOApplet, override the
following method as shown:
- (NSString *)elementName {

return @"APPLET";
}
and then provide the attribute names in uppercase letters (CODE and
CODEBASE).

WOIimage:
Completion works fine for WOImage's src attribute, but not for dynsrc and
usemap. If you use these dynsrc or usemap, use a WOGenericElement with the
elementname value in uppercase and the attributes keys in uppercase. For
example:
WOGenericElement {
elementname="IMG"; SRC="foo";

DYNSRC="foo1";
USEMAP="foo2"

L
Reference: 74772

Problem: WebObjects treats text inside <script></script> tags as HTML.

Description: When dynamically generating HTML, WebObjects tries to display the text
inside of a <script> tag as HTML. If you use a "<" or ">" operator in the
script, WebObjects converts the operator to < or >, respectively,
causing the script to fail on the client.

Workaround: To include script in a component, use the WOJavaScript or WOVBScript
dynamic element.

Reference: 74208

Problem: WOBrowsers and WOPopUpButtons cannot have contents with trailing
spaces.

Description: WOBrowser and WOPopUpButton do not work properly if their content
strings contain trailing spaces.

Workaround: Filter out the trailing spaces before you send the string to the dynamic
element.

