
Copyright ã1997, All Rights Reserved. 

NSColor 

Category Name: MiscExtensions
Declared In: NSColor+MiscExtensions.h

Category Description
 

This category is mainly intended to simplify the storage of colors in the defaults database.    For this task we need 
a NSPPL compliant object like an NSString.    The general representation of a color is a string which contains 
multiple parameters separated by whitespaces (blanks).    The first parameter is considered to be the name of the 
color space.    The meaning of all subsequent parameters depends on the color space.    Our format is almost 
identical with the output created by the description method of NSColor.

Since calibrated RGBA colors are the most common colors in non publishing Openstep applications they are an 
exception to the rule.    Their string representation is allowed to have no color space parameter in the string.    So 
if the color space is unknown it is considered to be a NSCalibratedRGBColorSpace.    This exception makes it 
easier to manually create, adjust, modify or reuse already stored values from the defaults database.

NSDynamicSystemColorSpace colors can be archived but will we treated as regular RGB colors.    However this 
is not really useful since colors from that space are not static but unarchiving them will create a static RGB color. 
Since this is a conceptual problem it is not clear if we can provide a fix.

The regular NSColor methods refer to CMYK as CMYB since they are more focused on the real color 
components.    Our methods are more focused on the color spaces and therefore stick to CMYK for naming.

Note: We should come up with a more general and "bulletproof" archiving for other color spaces.    Perhaps 
archiving a dictionary with a NSString type and NSData entry.    This should allow for proper reconstructuion.    
Maybe the Pasteboard mechanims could be "misused" for this purpose sicne it then would even scale to yet 
unknown color spaces.    The current solution does not really scale nicely since there is too much state 
hardcoded into this category.    We would have to make categories for private classes (like NSCachedRGBColor) 
having a stringRepresentation method which knowns about the encoding...    being nicer OO this has the 
problem of using undocumented classes.



Method Types
 

 Creating colors from string representations
+ colorWithStringRepresentation:
+ colorWithRGBColorStringRepresentation:
+ colorWithHSBColorStringRepresentation:
+ colorWithCMYKColorStringRepresentation:
+ colorWithWhiteColorStringRepresentation:
+ colorWithNamedColorStringRepresentation:

Creating colors from string representations
- stringRepresentation
- rgbColorStringRepresentation
- hsbColorStringRepresentation
- cmykColorStringRepresentation
- whiteColorStringRepresentation
- namedColorStringRepresentation

Class Methods
 

colorWithCMYKColorStringRepresentation:
+ (NSColor *)colorWithCMYKColorStringRepresentation:(NSString *)aString

Returns the NSColor instance created from the valus stored inside aString.    If the string did not contain a valid 
encoding of a NSDeviceCMYKColorSpace instance this method returns nil. 

colorWithHSBColorStringRepresentation:
+ (NSColor *)colorWithHSBColorStringRepresentation:(NSString *)aString

Returns the NSColor instance created from the valus stored inside aString.    If the string did not contain a valid 
encoding of a HSBEncoded NSDeviceRGBColorSpace or NSCalibratedRGBColorSpace instance this method 
returns nil.    This method is automatically call from colorWithRGBColorStringRepresentation if a HSB 
encoded value is encountered. 

colorWithNamedColorStringRepresentation:
+ (NSColor *)colorWithNamedColorStringRepresentation:(NSString *)aString

Returns the NSColor instance created from the valus stored inside aString.    If the string did not contain a valid 



encoding NSNamedColorSpace instance this method returns nil.

Bug: Due to a hacky parameter decoding method this will fail if catalog or color names contain whitespaces ..    
yuck. 

colorWithRGBColorStringRepresentation:
+ (NSColor *)colorWithRGBColorStringRepresentation:(NSString *)aString

Returns the NSColor instance created by colorWithDeviceRed:green:blue:alpha: based on the four values 
stored in the string.    The values must be seperated by blank.    Since RGB colors are the most common colors, 
they don't necessarily have to contain the colorspace information in the specified string parameter.    If a HSB 
encoded color is found colorWithHSBColorStringRepresentation is called. 

colorWithStringRepresentation:
+ (NSColor *)colorWithStringRepresentation:(NSString *)aString

Returns a color instance which is described by aString.    The first parameter of aString is supposed to be the 
color space name.    If no decoding method for the color space is known it is considered to be a calibrated RGB 
representation.    On failure this method returns nil. 

colorWithWhiteColorStringRepresentation:
+ (NSColor *)colorWithWhiteColorStringRepresentation:(NSString *)aString

Returns the NSColor instance created from the valus stored inside aString.    If the string did not contain a valid 
encoding NSDeviceWhiteColorSpace or NSCalibratedWhiteColorSpace instance this method returns nil. 

Instance Methods
 

cmykColorStringRepresentation
- (NSString *)cmykColorStringRepresentation

The created string contains the colorspace name and decimal number representations of the cyan, magenta, 
yellow, black and alpha components of the current color.    If the color is not from the NSDeviceCMYKColorSpace 
this method will try converting it, by using colorUsingColorSpaceName:.    Returns nil if the conversion was not 
possible. 

hsbColorStringRepresentation



- (NSString *)hsbColorStringRepresentation

The created string contains the colorspace name, a special HSBEncoding note and decimal number 
representations of the hue, saturation, brightness and alpha components of the current color.    If the color is not 
from the NSDeviceRGBColorSpace or NSCalibratedRGBColorSpace this method will try converting it, by using 
colorUsingColorSpaceName: into a color from the NSCalibratedRGBColorSpace.    Returns nil if the 
conversion was not possible.

Since "HSB colors" are colors from the RGB colorspace they are encoded with a special "HSB" remark. 

namedColorStringRepresentation
- (NSString *)namedColorStringRepresentation

The returned string contains the colorspace name and the strings for the colors catalog and color name which 
need to be properly quoted and escaped when necessary.    If the color is not from the NSNamedColorSpace this 
method returns nil.    No conversion is attempted since it is unclear which color catalog to use. 

rgbColorStringRepresentation
- (NSString *)rgbColorStringRepresentation

The created string contains the colorspace name and decimal number representations of the red, green, blue 
and alpha components of the current color.    If the color is not from the NSDeviceRGBColorSpace or 
NSCalibratedRGBColorSpace this method will try converting it, by using colorUsingColorSpaceName: into a 
color from the NSCalibratedRGBColorSpace.    Returns nil if the conversion was not possible. 

stringRepresentation
- (NSString *)stringRepresentation

Returns a string which represents the values of the color instance.    The recommended format of the string 
contains the value returned by colorSpaceName followed by a number of additional values.    All parameters 
must be separated by whitespace inside the generated string.    Subclasses should implement a proper 
stringRepresentation method since the default behavior is to encode unknown colors using the 
NSCalibratedRGBColorSpace.

This method never generates a HSB representation of a color since HSB is just an alternative encoding of RGB 
colors and are not used by default.

Note: Since we can't implement this "smoothly" for Apples private color classes we have hardcoded string 
representations for all supported color spaces. 



whiteColorStringRepresentation
- (NSString *)whiteColorStringRepresentation

The created string contains the colorspace name and decimal number representations of the white and alpha 
components.    If the color is not from the NSDeviceWhiteColorSpace or NSCalibratedWhiteColorSpace this 
method will try converting it, by using colorUsingColorSpaceName:, into a color from the 
NSCalibratedWhiteColorSpace.    Returns nil if the conversion was not possible. 


