
Release 3.1 (February 1998)

Writing Solitaire Games

Introduction

This document describes the tools provided by the Solitaire Kit for writing new solitaire-style card games.    The 
kit consists of the program Solitaire.app (which provides dynamic loading services for game modules), the 
Solitaire framework, and a sample game module named Template.solitaire (from which all new games will 
evolve).

The restriction that new games be written within the same direcotry structure as the Solitiare source code has 
now been removed with the addition of the Solitaire framework.    You'll likely want to copy the Template project 
and build from there, but as long as you've built and installed the framework you can build your new game 
wherever you'd like.    Just make sure to set the Framework search path so Solitaire.framework will be found.    
The default is $(HOME)/Library/Frameworks. 

See the section Writing a New Solitaire Module below for step-by-step details on beginning a new game 
project.



Solitaire.app
Solitaire.app and Solitaire.framework provides several classes and informal protocols for game writers:

· The CardSet classes, for displaying and manipulating piles of playing cards.    These are contained in 
CardSet.subproj, with the header file CardSet.h.    This subproject can be extracted from Solitaire for building 
card games outside the Solitaire framework.    Full class documentation is located in 
Solitaire/Documentation/CardSet.    Understanding these classes is essential for writing new games.

· An object of the Solitaire class (referred to as the Solitaire object) acts as the program controller, and vends 
access to general preferences.    Call [NSApp delegate] to message the Solitaire object (this used to be 
through the SolEngine(void) function).    The following messages can then be sent:

± (CardSize)cardSize
± (CardBack)cardBack
± (NXColor)backgroundColor

These methods are rarely used in game module programming, as card size, card back, and background 
settings are handled automatically by the GameModule class.

Solitaire includes the generic undo/redo code from Draw.app, and the Solitaire class is a subclass of 
ChangeManager, allowing future games to implement undo/redo.

· The GameModule class is the abstract superclass from which all game controller classes must inherit.    It 
hides the details of game loading, CardSet preference setting, and provides methods for controlling generic 
aspects of game play such as starting a new game, displaying the rules, displaying the game inspector, 
remembering the location of game windows, and loading the game NIBS.    Class documentation is provided in 
Documentation/GameModule.rtf.    Use the code provided in Template.[hm] (in the Template project) as the 
starting point for writing a custom GameModule subclass.

· The GamePref class is the abstract superclass from which all game-specific preferences controllers must 



inherit.    It contains one method (± registerPrefs) which must be overridden if the game has preferences to 
register.

Template.solitaire and Game Modules
The Template project (which builds into Template.solitaire) provides a starting point for new games.    The 
components of this (and every game) are:

· A GameModule subclass, whose class name matches the game name.    A single instance of this class 
(referred to as the game controller object) is allocated the first time the game is selected in Solitaire.app; it is 
never freed.    Access to the current game's controller object is always available through the 
[GameModuleClass sharedInstance] class method (as long as you define it... see any of the other game 
modules for an example) (This used to be accessed through the SolGameController(void) function).    All 
messages sent from Solitaire.app to the game are sent to the game controller object.

See the class documentation for GameModule for more details.    Use the sample subclass Template.[hm] as 
the starting point for a new game.

· A GamePref subclass, in which the ± registerPrefs method has been overridden.

· A localstrings.h file in which localization of user-visible strings is performed.    This should be compile into the 
file Localizable.strings using genstrings at the end of module development.

· Engine.nib, which is loaded once by (and owned by) the game controller object.    This nib must contain a 
game inspector view, and an object of the custom GamePref subclass.    Delegates of the card piles should 
also be in this nib file.

· LargeGame.nib and SmallGame.nib contain the "playing field" for the game, using the two different card 



sizes.    These nibs are loaded and freed as the active game and the card size preference is changed.    They 
are owned by the game controller.

· Rules.nib contains a single panel in which the rules of the game are displayed.

Writing a New Solitaire Module

Preliminaries

First, select a name for the new game.    It must be a single word (no spaces), and must be UNIQUE AMONG 
ALL EXISTING SOLITAIRE MODULES.    Contact one of the game authors to informally register your name to 
prevent name clashes.    For the purposes of this discussion, the name MyGame will be used.

Follow these (tedious) steps to create a new game project.    Make sure you save all changes after each step. 
(Note that these instructions were not updated for PB 4.x)

· open the PB.project in the Template project, do a make clean, close the project

· make    a copy of the Template project

· rename the directory to the name of your game (i.e. MyGame)

· rename Template.h and Template.m to MyGame.h and MyGame.m

· rename TemplatePrefs.h and TemplatePrefs.m to MyGamePrefs.h and MyGamePrefs.m



· in MyGame, open PB.project, go to Attributes, change the name from Template to MyGame

· go to Files, remove the greyed out class entries for Template.m and TemplatePrefs.m

· add MyGame.m and MyGamePrefs.m

· edit MyGame.h, change comments and name of class from Template to MyGame

· edit MyGame.m, change #import "Template.h" to #import "MyGame.h"; change classname to MyGame

· edit MyGamePrefs.h, change comments and name of class from TemplatePrefs to MyGamePrefs

· edit MyGamePrefs.m, change #import "TemplatePrefs.h" to #import "MyGamePrefs.h"; change 
classname to MyGamePrefs

· edit localstrings.h, change first string in LOCALIZED_GAME_NAME to MyGame; if you want the name 
displayed in the game selection list to be something different than the internal game name, replace the NULL 
with that string (this string can contain spaces, unlike the internal game name)

· in a Terminal, change into the English.lproj directory and run the following commands:

rm Localizable.strings
genstrings ../*.[hcm] > Localizable.strings

· open Engine.nib and make these changes:

· drag MyGame.h and MyGamePrefs.h into the classes suitcase
· go to Objects, change the class of TemplatePrefs object to MyGamePrefs; change the comment label
· change the class of the File's Owner from Template to MyGame
· go to Classes, delete the Object/GameModule/Template and Object/GamePref/TemplatePrefs classes
· in the "inspector" panel, change the comment label to reflect the game name



· open LargeGame.nib and make these changes:

· drag MyGame.h into the classes suitcase
· go to Objects, change the class of File's Owner from Template to MyGame
· go to Classes, delete the Object/GameModule/Template class
· open the game window, change the title to match your game

· repeat the above steps for SmallGame.nib and Rules.nib (has a rules panel, not a game window)

· build the project

· if everything worked, you will have MyGame.solitaire; double-click it to try it out (assuming Solitaire.app is in 
your search path)

Coding a Game

The best way to understand how games work is to examine the source code for the existing games.    An 
understanding of the CardSet classes and the GameModule class are crucial.    In a nutshell, you lay out 
CardPileViews in SmallGame.nib and LargeGame.nib, and create delegate objects for these views.    The 
delegates handle most aspects of game play.

Each game module is given a unique memory zone, so use the allocFromZone: style of memory allocation.

IMPORTANT:    All class names, whether they are compiled into Solitaire.app, or loaded dynamically from 
a game module, must be unique.    This includes the delegate classes created to handle game play.    To 
reduce the chances of a name clash, preface all internal class names with the game name (or a 
reasonable subset).    Neither Klondike.solitaire nor Pyramid.solitaire follow this rule(the luxury of being 
first).




