Release 2.0 Copyright ©1995, 1996, 1997, 1998 by Paul McCarthy and Eric Sunshine All Rights Reserved.
Paul S. McCarthy and Eric Sunshine -- March 25, 1998

MiscTableScroll

Inherits From: NSScrollView : NSView : NSResponder : NSObject
Conforms To: NSCoding (NSObject)
Declared In: MiscTableScroll.h

Class Description

This class provides a convenient and powerful user-interface object for displaying and manipulating tabular data.
The appearance and behavior is similar to NSTableView but is functionally superior. Although it inherits from
NSScrollView, the programmatic interface is similar to the NSMatrix class.

User Interface Highlights

Scrollable matrix.

Column and row titles.

Columns and rows can be resized.

Columns and rows can be dragged (rearranged).
Automatically sorts rows when columns are rearranged.



Direct user control of sort direction (ascending vs. descending).
Incremental search.

Exports contents as ASCII, ASCII-delimited, or dBASE.

Prints column and row titles.

Keyboard & mouse control.

Interacts with the Pasteboard, Font Panel, and Services.
Alt-click works in highlight mode.

Programmatic Interface Highlights

Each column and row can have its own size.
Each column can have its own cell-type.
Lazy-mode for large amounts of data.
Programmatic interface for multiple selection.
Built-in sort support.

Built-in image-dragging support.

Smart memory management.

Delegate methods for most features.

Simple indexed access to rows and columns.
Easy-to-use text-cell editing.

Full control over selection.

Similarities between Rows and Columns -- Slots and Borders

Rows and columns are treated equally wherever it is practical and desirable to do so. Almost every action and option
that is available for columns is also available for rows and vice versa. Slot is the generic term for a single column or



row. Border is the generic term for row or column orientation. Size is the generic term for width or height. Most
methods come in two flavors: a row/column specific flavor that uses row or column as part of the name; and a generic
flavor that has a border argument and (when needed) a slot argument. Here are some examples:

Generic Specific

- border:setSlotTitlesOn: - setColumnTitlesOn:
- setRowTitlesOn:

- border:setSlot:size: - setColumn:size:
- setRow:size:

Differences between Rows and Columns

There are some differences between rows and columns. This object is designed to maximize the efficiency of
displaying many rows of data. Hence, it is faster to add and remove rows than columns. You should set up all your
columns in InterfaceBuilder, or while the table is empty, then add and remove rows afterwards. Rows are cached for
re-use with the -renewRows: method. This makes it very fast to change the contents of the table on a row-oriented
basis. Despite the row-oriented bias, column-oriented operations can be performed at any time; they will just be
slower than the corresponding row-oriented operations. This behavior is intrinsic to the implementation, it cannot be
changed.

Cell-prototypes are only used for columns. This behavior can only be changed by subclassing.

Selection in the body of a table performs selection on a row-wise basis. This behavior can be changed
programmatically via the -trackBy: method.

There are numerous default settings which differ between columns and rows. Most of these options can be changed
in InterfaceBuilder; all of them can be changed programmatically. Here is a summary of the defaults which differ



between rows and columns:

Option Column Default Row Default

modifier drag NO YES

uniform size NO YES

user sizeable YES NO

user draggable YES NO

titles displayed YES NO

title mode Custom Auto-Numbered
Slot Sizing

Uniform size is the simplest sizing mode. When you set the uniform size of a border to any non-zero value, all slots
in that border will have the same (uniform) size. Setting the uniform size of a border to zero enables slots to have
individual sizes. By default, rows are uniform size, columns are not.

If uniform sizing is not set for a border, the following sizing information is maintained for each slot in the border:

target size
minimum size
maximum size
adjusted size
user-sizeable-flag
autosize-flag

Target size is the desired size for a particular slot. Minimum and maximum sizes are the lower and upper bounds for
the size of a slot. Adjusted size is the final display size of the slot after all other factors have been taken into account.



When a slot is marked as user-sizeable, the user will be able to resize the slot (subject to further conditions described
below). The adjusted size of autosize slots will be increased if needed to prevent a "gap" from appearing when the
table is smaller than the display region. The flag values are mutually independent, but user-sizeable and autosize do
not mix well. They cause bizarre, counter-intuitive behavior on narrow tables in wide views.

Users resize columns by dragging the right-hand edge of the column's title cell to the desired width. Likewise, users
resize rows by dragging the bottom edge of the row's title cell to the desired height. The cursor changes to a
horizontal or vertical resize cursor whenever the cursor is over one of the resizing areas. When users resize a slot,
they are setting the target size for the slot on non-uniform-size borders. On uniform-size borders, they are setting the
new uniform-size for the border.

All of the following conditions must be met to enable the user to resize a particular slot:

(a) The title cells must be displayed (-border:setSlotTitlesOn:YES)

(b) The border in question must allow user-sizing of slots (-border:setSizeableSlots:YES)

(c) The border must be uniform-size (-setBorder:uniformSizeSlots:) Or the slot in question must be user-
sizeable (-border:setSlot:sizeable:YES).

(d) There must be some room to grow or shrink between the slot's current adjusted size and the slot's minimum
and maximum sizes.

All of these conditions are met by default for new columns, unless you explicitly disable one of the global options for
column sizing.
Slot Dragging and Indexing -- Visual vs. Physical

Dragging and sizing are independent of each other. You can have borders that are not sizeable in any way, but are
still draggable, and vice versa. You can also have borders that are both draggable and sizeable, or neither draggable



nor sizeable.

Users drag slots by dragging the title cells until the leading edge is over the desired new location and "dropping" the
slot there. For example, the left edge of the cell shows you where the column will end up when dragging a column to
the left. Likewise, the right edge is used when the column is dragged to the right. This makes it possible to clearly
see the new location without guessing.

Dragging must be enabled for that border. By default, columns are dragged with an unmodified drag, and they are
selected with a command-drag. By default, rows are selected with an unmodified drag, and they are dragged with a
command-drag. By default, dragging is enabled for columns, but not for rows.

If slot-dragging is enabled for a border then an internal mapping vector is maintained which translates the original
physical position of the slot to its current visual position. All programmer-interface methods and all delegate call-back
methods use the original physical position of the slot so you can ignore the current visual ordering in your programs.

If you need or want to examine the current visual ordering, you can do so with the -border:slotPosition: and
-border:slotAtPosition: methods.

Keyboard Operations

MiscTableScroll provides keyboard control over almost all functions. Keyboard equivalents are available for scrolling,
selection, and performing actions (simulating double-click). This class displays a dashed rectangle around the slot
which is currently the focus of keyboard operations. Display of the cursor can be disabled and re-enabled with calls
to the methods -disableCursor and -enableCursor.

MiscTableScroll instances can be linked into the next-key-view chain just like all other Views. This can be done
directly in InterfaceBuilder™, or programmatically via -nextkeyview, -setNextKeyView:, and related functions.

The keyboard cursor can be moved with the standard arrow keys as well as the editing keys on the numeric keypad,



including the page-up, page-down, home, and end keys -- as well as the real page-up, page-down, home, and end on

keyboards which actually supply these keys.

For functions which do not normally appear on any keyboard -- such as

page-left and page-right -- modified arrow-keys can be used. Please refer to the following table:

Key(?) Action Action Modified(®)
space select slot select slot
return perform action perform action
up-arrow up page-up
down-arrow  down page-down
left-arrow left page-left
right-arrow right page-right
page-up page-up top-edge
page-down page-down bottom-edge
home top-edge left-edge

end bottom-edge right-edge
enter(*) perform action perform action
insert(*) select slot select slot

(®) These functions are recognized when generated from both the standard editing keys as well as those on the numeric keypad.

(®*) Modified actions are produced by holding down a modifier while typing the primary key. Any of Shift, Control, or Alt can be used

to produce a modified action -- and all have the same affect.

So, for instance, one can generate a page-left from any of ctrl-left-

arrow, shift-left-arrow, or alt-left-arrow.

(*) Applicable to the numeric keypad only.

Keys which perform the select-slot function simulate a single mouse-click. Keys which perform perform-action
simulate a double mouse-click. When performing a select-slot via the keyboard, one can use the same modifier keys

one uses when selecting via the mouse.

a time) with the mouse.

In other words, one can use shift-single-click to select multiple slots (one at

Likewise one can use shift-space to select multiple slots (one at a time) with the keyboard.



Selection Modes

Three selection modes are supported: List, Highlight, and Radio. Unlike NSMatrix, this class treats the different
selection modes as uniformly as possible (see Mouse Tracking below). Methods such as -selectionMode and
-setSelectionMode: allow direct control over the mode.

Methods such as -hasRowSelection, -numberOfSelectedRows, ~-rowIsSelected:, as well as the border and slot
variations allow selection querying, while methods such as -selectedRows, -selectedRowTags, -selectRows:, and
-selectRowTags: along with their variations allow batch-oriented selection modification.

Mouse Tracking

The manner in which MiscTableScroll performs mouse-tracking is different from the manner in which NSMatrix does
so. This class gives the cells the opportunity to track the mouse in all selection modes, whereas NSMatrix allows the
cells to participate in mouse-tracking in all but List mode. NSMatrix make a special case of List mode, and in addition
to the mouse-tracking difference it also modifies the cells' state variables in this mode. In all other modes NSMatrix
allows the cell's mouse-tracking methods to manipulate the state rather than doing so itself. MiscTableScroll, on the
other hand, treats all selection modes uniformly. It always highlights a cell via its highlight flag and never alters the
cell's state -- instead it leaves alteration of state to the cell's mouse-tracking methods.

Upon receipt of a -mousebown:, this class gives the cell at the mouse-down location an opportunity to track the mouse
by invoking itS -t rackMouse:inRect:ofView:untilMouseUp: method. That method normally tracks the mouse until
either a mouse-up event in which case it returns YES, or until the mouse leaves the cell-frame in which case it returns
NO. If -trackMouse:inRect:ofView:untilMouseUp: returns NO, then MiscTableScroll goes into its own modal-
responder loops, continues tracking the mouse itself, and updates the selection appropriately until a mouse-up event.
Only the cell under the mouse-down event is given a chance to participate in tracking -- after that no other cells are



offered the opportunity.

Image Dragging

MiscTableScroll has built in support for dragging images right out of cells using the standard NeXT dragging services.
Dragging is enabled by implementing a few of simple methods in the delegate or dataDelegate. Two required
methods are -tableScroll: allowDragOperationAtRow:column: and

-tableScroll:preparePasteboard: forDragOperationAtRow:column:. Each method is passed a pointer to the
MiscTableScroll and the cell's physical coordinates. The first method gives the delegate or dataDelegate a chance to
allow or veto the drag operation. The second method is responsible for declaring types and, possibly, providing data
for the pasteboard.

A third delegate method -tablesScroll:imageForDragOperationAtRow:column: IS required for non-image cells and
optional for cells which contain an image. This method allows the delegate or dataDelegate to supply an image for
dragging. If the cell from which dragging is taking place contains its own image, then this method need not be
implemented or can return 0, in which case the cell's own image is used by default.

Other methods allow the delegate or dataDelegate to respond to the standard dragging source protocol methods.

As usual, when dealing with pasteboards, keep in mind that if a non-nil owner is specified, the NSPasteboard will
retain it. Only upon the initiation of another dragging operation will the owner receive the -pasteboardChangedOwner:
message and be released. Therefore the owner needs to remain in a valid state, along with any necessary data,
even after completion of the drag operation.

Prototype Cells

Each column maintains a prototype cell which is used when new rows are created. When new rows are created, a



-copyWithZone: message is sent to the prototype cell for each column, and the new copy of the prototype cell is put
into the new row. This means that all prototype cells must implement the -copyWithZone: method appropriately.
Generally this implies performing a deep copy.

The prototype cell can be one of the built-in types (text, icon, or button), it can be supplied by the delegate, or you can
set it programmatically. If you set a prototype cell programmatically, the MiscTableScroll object will retain the
prototype cell, and will release it when it is finished with it. If the delegate provides the prototype cell, the delegate
retains ownership -- the MiscTableScroll object will neither retain nor release prototype cells provided by the delegate.

Cell Owner and Inherited Font and Color Attributes

The MiscTableScroll class implements an informal owner protocol with the cells that it manages. The MiscTableCell
class implements the other side this informal protocol. This protocol enables the cells to specify that they want to
inherit their font and color attributes from their owner. In this case, the owner is the MiscTableScroll object. This
makes it possible to propagate global default font and color attributes to all such cells easily and efficiently. At the
same time, individual cells can use custom font and color attributes which will override the global default inherited
values. Cells that use the inherited values do not need to store copies of those inherited values. Only cells that use
custom values need to remember and store their own custom values. See the documentation for the MiscTableCell
class for more details.

Cell Owner and Owner-Draw

Another feature of the informal owner protocol is a specialized notion of delegated drawing. All cells that respond
YES to the -ownerbpraw message are drawn by the MiscTableScroll rather than drawing themselves. Since the
MiscTableScroll object typically manages many cells with similar font and color attributes, the MiscTableScroll object
can eliminate large amounts of redundant font and color setting PostScript code. Likewise, contiguous cells with the
same background colors have all of their backgrounds drawn with a single PostScript operator rather than several.



The built-in drawing mechanism also eliminates a lot of very expensive clipping path operations by simply not drawing
partial characters that would be clipped. (You can force the partially visible text to be displayed with the
-setDrawClippedText:YES message.) Any object used as a cell in an instance of MiscTableScroll object can take
advantage of these facilities as long as the cell consists of plain (single font) text with a single (optional) icon, and
does not have borders or other drawing requirements. This results in a very considerable improvement in drawing
performance -- especially noticable on older, slower CPUs. <FIXME: Owner-draw is currently restricted to cells
containing 7-bit ASCII text. See OPENSTEP-BUGS.txt>

Lazy vs. Eager

In general, eager mode is much easier to use than lazy mode. In eager mode, you can usually take advantage of the
cells themselves to store the data that you are retrieving and displaying. Even complex data types can be stored by
allocating the record and a storing pointer in the cell's tag or represented-object, or the tag for a row. By contrast,
lazy mode forces you to manage all the storage yourself. In eager mode, the MiscTableScroll object allocates and
manages a dense matrix of cells, which you fill in with data as needed. In lazy mode, the MiscTableScroll object does
not manage any cells at all. You are responsible for implementing -tableScroll:cellAtRow:column: t0 provide the
MiscTableScroll object with a cell whenever it needs one. In lazy mode, you generally want to implement many of the
-tableScroll:...ValueAtRow:column: Mmethods to improve performance.

Usage Tips

For simple, flexible and maintainable access to the columns of the table scroll, you should declare an enum which
identifies the columns in the MiscTableScroll, for instance:

enum

{
PHOTO SLOT,



LAST NAME SLOT,
FIRST NAME SLOT,
AGE SLOT

}s

Then you use the enumeration identifiers whenever you need to specify a column. Using an enumeration this way
lets you add, remove and shuffle the slots just by updating the enum declaration, rather than searching through the
code to find all the places that need to be fixed. It also makes your code more readable.

There are two standard patterns for putting the data into eager (non-lazy) MiscTableScroll objects: -renewrows: and
—addRow.

-renewRows:
When you know the number of rows in advance, it is most efficient to use the -renewrows: method to tell the
MiscTableScroll object the number of rows that you will need. Your code will usually be structured as follows:

int row;
int const nrows = [dataSource count];

[tableScroll renewRows:nrows];
for (row = 0; row < nrows; Yrow++)
{
id item = [dataSource itemAtRow:row];
[tableScroll setRow:row tag: (int) [item retain]];
[[tableScroll cellAtRow:row column:LAST NAME SLOT] setStringValue:[item lastName]];
[[tableScroll cellAtRow:row column:AGE SLOT] setIntValue:[item age]];
//... and so on

}



if ([tableScroll autoSortRows])
[tableScroll sortRows];

-addRow

When you do not know the final number of rows in advance, your code will usually be structured as follows:
id item;
int row = 0;

[tableScroll empty];

while ((item = [self getNextItem]) != 0)
{
[tableScroll addRow];
[tableScroll setRow:row tag: (int) [item retain]];
[[tableScroll cellAtRow:row column:LAST NAME SLOT]
[[tableScroll cellAtRow:row column:AGE SLOT] setIntValue:[item age]];
//... and so on
row++;

}

setStringValue: [item lastName]];

[tableScroll sizeToCells];

if ([tableScroll autoSortRows])
[tableScroll sortRows];

A common programming mistake is forgetting to call -sizeTocel1ls. You must call -sizeTocel1ls after you have
finished adding rows so that the MiscTableScroll can update the frames of its various subviews. If you forget to call

-sizeToCells, the MiscTableScroll will appear to be empty when it is displayed.

Smart Memory Management



The MiscTableScroll class implements smart memory management. It does not allocate support structures until and
unless they are needed. For example, since rows are uniform-size by default, the MiscTableScroll will not allocate
the array of sizing-info structures until and unless you make the rows non-uniform size. In a complimentary fashion, if
you make the columns uniform size, the MiscTableScroll object will release the sizing-info array for the columns.
Similarly, custom titles must be stored in an array. However, no other title-mode requires this array, and the array will
only exist for borders that have custom titles. Likewise, the visual-to-physical mapping vector that supports user-
draggable slots is only created when the first slot is actually moved. Even if the draggable option is turned on, you
will not incur the memory overhead until the option is used. The net result of all this is that you only pay for the
features that you use.

On the other hand, you do pay for the features that you do use. These extra features exact a price in storage and
cpu. You should be careful about using them for rows when you expect thousands of rows.

The MiscTableScroll class is designed to provide high-quality, consistent, flexible behavior to the user while supporting
a wide range of load requirements -- from dozens of rows to hundreds of thousands of rows. Smart memory
management is an important element in achieving that goal.

Errors

The only exception currently raised by MiscTableScroll is NSinternallnconsistencyException. This exception is raised
when MiscTableScroll detects an internal inconsistency. This is typically indicative of a bug within this class.

This exception is also currently raised when an out-of-range slot index is passed as an argument to a method which
can not sensibly handle the bad index. For instance, there is no sensible value which -rowTag: can return when

given a bad index, hence it raises an exception. On the other hand no exception is raised by -selectRow: Since it
can simply ignore the bad index. <FIXME: In the future such methods will raise a more suitable exception, such as



NSRangeException.>

Method Types

Creating and destroying instances  z€initWithFrame:
+€dealloc

Delegates +€setDelgate:
+€delegate
+ setDataDelegate:
+ dataDelegate

Transmitting action +€setTarget:
+€target
+ setDoubleTarget:
+ doubleTarget
+ setAction:
+ action
+ setDoubleAction:
+ doubleAction

+ sendAction:to:forAllCells:
+ sendAction:to:

+ sendAction

+ sendDoubleAction

+ sendActionlfEnabled



Enabling and disabling

Selection

+ sendDoubleActionlfEnabled
* tracking

+ clickedSlot:
+ clickedRow
+ clickedColumn
+ clickedCell

+€setEnabled:
+€isEnabled

+ setSelectionMode:
+€selectionMode

+ border:slotlsSelected:

+ rowlsSelected:

+ columnlisSelected:

+ celllsSelectedAtRow:column:

+ selectedSlot:

+ selectedRow

+ selectedColumn

+ selectedCell

+ selectedSlotTags:

+ selectedRowTags

* selectedColumnTags
+ selectedSlots:



+ selectedRows
+ selectedColumns

+ border:selectSlot:byExtension:
* border:selectSlot:

+ selectRow:byExtension:

+ selectRow:

+ selectColumn:byExtension:

+ selectColumn:

+ border:selectSlotTags:byExtension:
+ border:selectSlotTags:

+ selectRowTags:byExtension:

+ selectRowTags:

+ selectColumnTags:byExtension:
+ selectColumnTags:

+ border:selectSlots:byExtension:
+ border:selectSlots:

+ selectRows:byExtension:

+ selectRows:

+ selectColumns:byExtension:

+ selectColumns:

+ selectAllSlots:

+ selectAllIRows

+ selectAllColumns

+ selectAll:



+€border:deselectSlot:
+€deselectRow:
+€deselectColumn:

+ border:.deselectSlotTags:
+€deselectRowTags:
+€deselectColumnTags:
+ border:deselectSlots:
+€deselectRows:
+€deselectColumns:

+ clearSlotSelection:

+ clearRowSelection

+ clearColumnSelection
+€clearSelection
+€deselectAll:

+ hasSlotSelection:

+ hasRowSelection

+ hasColumnSelection

+ hasMultipleSlotSelection:

+ hasMultipleRowSelection

+ hasMultipleColumnSelection
+ numberOfSelectedSlots:

+ numberOfSelectedRows

+ numberOfSelectedColumns

+ trackBy:



Keyboard cursor

Incremental search

Scrolling

+ trackingBy
+ selectionChanged

+ border:setCursorSlot:
+ clearCursorSlot:

+ cursorSlot:

+ hasValidCursorSlot:
+ clearCursor

+ clearCursorColumn

+ clearCursorRow

+ cursorColumn

+ cursorRow

+ disableCursor

+ enableCursor

+ hasValidCursorColumn
+ hasValidCursorRow
+ isCursorEnabled

+ setCursorColumn:

+ setCursorRow:

+ incrementalSearch:

+ doincrementalSearch:column:
+ getlSearchColumn:

+ doGetlSearchColumn:

+ scrollCellToVisibleAtRow:column:



Titles

+ scrollColumnToVisible:
+ scrollRowToVisible:
+ scrollSelectionToVisible

+ border:setFirstVisibleSlot:
+ border:setLastVisibleSlot:
+ border:slotlsVisible:

+ firstVisibleSlot:

+ lastVisibleSlot:

+ numberOfVisibleSlots:

+ columnlsVisible:

+ firstVisibleColumn

+ lastVisibleColumn

+ numberOfVisibleColumns
+ setFirstVisibleColumn:

+ setLastVisibleColumn:

+ rowlsVisible:

+ firstVisibleRow

+ lastVisibleRow

+ numberOfVisibleRows
+ setFirstVisibleRow:

+ setLastVisibleRow:

+ border:setSlotTitlesOn:
+ setColumnTitlesOn:



Sizing

+ setRowTitlesOn:
+ slotTitlesOn:

+ columnTitlesOn
+ rowTitlesOn

+ border:setSlotTitleMode:
+ setColumnTitleMode:

+ setRowTitleMode:

+ slotTitleMode:

+ columnTitleMode

+ rowTitleMode

+ border:setSlot:title:
+ setColumn:title:

+ setRow:title:

+ border:slotTitle:

+ columnTitle:

+ rowTitle:

+ cornerTitle
+ setCornerTitle:

+ border:setUniformSizeSlots:

+ border:setMinUniformSizeSlots:
+ border:setMaxUniformSizeSlots:
+ setUniformSizeColumns:

+ setMinUniformSizeColumns:



+ setMaxUniformSizeColumns:
+ setUniformSizeRows:

+ setMinUniformSizeRows:
+ setMaxUniformSizeRows:
+ uniformSizeSlots:

+ minUniformSizeSlots:

+ maxUniformSizeSlots:

+ uniformSizeColumns

+ minUniformSizeColumns
+ maxUniformSizeColumns
+ uniformSizeRows

+ minUniformSizeRows

+ maxUniformSizeRows

+ border:setSizeableSlots:
+ setSizeableColumns:

+ setSizeableRows:

+ sizeableSlots:

+ sizeableColumns:

+ sizeableRows:

+ border:setSlot:size:
+ setColumn:size:

+ setRow:size:

+ border:slotSize:

+ columnSize:



+ rowSize:

+ border:setSlot:minSize:
+ setColumn:minSize:

+ setRow:minSize:

+ border:slotMinSize:

+ columnMinSize:

+ rowMinSize:

+ border:setSlot:maxSize:
+ setColumn:maxSize:

+ setRow:maxSize:

+ border:slotMaxSize:

+ columnMaxSize:

+ rowMaxSize:

+ border:slotAdjustedSize:
+ columnAdjustedSize:
+ rowAdjustedSize:

+ border:setSlot:autosize:
+ setColumn:autosize:

+ setRow:autosize:

+ border:slotlsAutosize:

+ columnlsAutosize:

+ rowlsAutosize:

+ border:setSlot:sizeable:



Dragging

+ setColumn:sizeable:
+ setRow:sizeable:

+ border:slotlsSizeable:
+ columnlsSizeable:

+ rowlsSizeable:

+ constrainSize
+ totalSize:

+ totalHeight

+ totalWidth

+ border:slotResized:

+ border:setSlotTitlesSize:
+ slotTitlesSize:

+ setColumnTitlesHeight:
+ columnTitlesHeight

+ setRowTitlesWidth:

+ rowTitlesWidth

+ sizeToCells
+ sizeToFit

+ border:setDraggableSlots:
+ setDraggableColumns:

+ setDraggableRows:

+ draggableSlots:

+ draggableColumns



+ draggableRows

+ border:setModifierDragSlots:
+ setModifierDragColumns:

+ setModifierDragRows:

+ modifierDragSlots:

+ modifierDragColumns

+ modifierDragRows

+ border:moveSlotFrom:to:
+ moveColumnFrom:to:
+ moveRowFrom:to:

+ border:slotAtPosition:
+ columnAtPosition:
+ rowAtPosition:

+ border:slotPosition:
+ columnPosition:
+ rowPosition:

+ border:physicalToVisual:
* border:visualToPhysical:

+ border:slotDraggedFrom:to:

Inserting and deleting + numberOfSlots:
+ numberOfColumns



Cell prototypes

+ numberOfRows

+ addSlot:
+ addColumn
+ addRow

+ border:insertSlot;
+ insertColumn:
+ insertRow:

+ border:removeSlot:;
+ removeColumn:
+ removeRow:

+ empty
+ emptyAndReleaseCells
+ renewRows:

+ border:setSlot:cellType:
+ setColumn:cellType:

+ setRow:cellType:

+ border:slotCellType:

+ columnCellType:

+ rowCellType:

+ border:setSlot:cellPrototype:
+ setColumn:cellPrototype:
+ setRow:cellPrototype:



Tags

Drawing

+ border:slotCellPrototype:
+ columnCellPrototype:
+ rowCellPrototype:

* tag
* setTag:

+ border:setSlot:tag:
+ setColumn:tag:

+ setRow:tag:

+ border:slotTag:

+ columnTag:

+ rowTag:

+ tagAtRow:column:

+ drawCellAtRow:column:
+ border:drawSlot:

+ drawRow:

+ drawColumn:

+ border:drawSlotTitle:

+ drawRowTitle:

+ drawColumnTitle:

+ selectionChanged
+€cellFrameAtRow:column:
+ documentClipRect

+ drawClippedText

+ setDrawClippedText:



Editing

Data control

+ abortEditing

+ suspendEditing

+ resumeEditing

+ isEditing

+ getPreviousEditRow:column:
+ getNextEditRow:column:
+ getNext:editRow:column:
+ edit:atRow:column:

+ canEdit:atRow:column:

+ editifAble:atRow:column:
+ editCellAtRow:column:

+ textDidBeginEditing:

+ textDidChange:

+ textDIdEndEditing:

+ textShouldBeginEditing:
+ textShouldEndEditing:

+ setlLazy:

t isLazy

+ cellAtRow:column:

+ bufferCount

+ empty

+ emptyAndReleaseCells
+ sizeToCells



+ addSlot:

+ border:insertSlot:

+ border:removeSilot:
+ numberOfSlots:

+ addColumn

+ insertColumn:

+ removeColumn:

+ numberOfColumns

+ addRow

+ insertRow:

+ removeRow:

+ numberOfRows
+ renewRoOwsS:

+ doRetireCell:atRow:column:
+ doReviveCell:atRow:column:
+ retireCell:atRow:column:

+ reviveCell:atRow:column:

+ tagAtRow:column:

+ intValueAtRow:column:

+ floatValueAtRow:column:

+ doubleValueAtRow:column:
+ stringValueAtRow:column:
+ titleAtRow:column:



Sorting

+ stateAtRow:column:

+ autoSortColumns

+ autoSortRows

+ autoSortSlots:

+ border:setAutoSortSlots:
+ border:setSlot:sortDirection:
+ border:setSlot:sortFunction:
+ border:setSlot:sortType:
+ border:setSlotSortVector:
+ border:slotSortDirection:
+ border:slotSortFunction:
+ border:slotSortType:

+ border:sortSlot:

+ slotSortVector:

+ columnSortDirection:

+ columnSortFunction:

+ columnSortType:

+ columnSortVector

+ compareSlotFunction

+ rowSortDirection:

+ rowSortFunction:

* rowSortType:

+ rowSortVector

+ setAutoSortColumns:

+ setAutoSortRows:



+ setColumn:sortDirection:
+ setColumn:sortFunction:
+ setColumn:sortType:

+ setColumnSortVector:

+ setCompareSlotFunction:
+ setRow:sortDirection:

+ setRow:sortFunction:

+ setRow:sortType:

+ setRowSortVector:

+ sortColumn:

+ sortColumns

+ sortRow:

+ sortRows

+ sortSlots:

+ slotsAreSorted:

+ rowsAreSorted

+ columnsAreSorted
+ border:slotlsSorted:
+ columnlsSorted:

+ rowlsSorted:

+ border.compareSilots::

+ border.compareSlots::info:
+ compareColumns::

+ compareColumns::info:



Font

Color

Multicast

+ compareRows::
+ compareRows::info:

+ sortInfolnit:border:
+ sortinfoDone:

+ defaultFont
+ font
+ setFont:

+ backgroundColor

+ color

+ defaultBackgroundColor

+ defaultSelectedBackgroundColor
+ defaultSelectedTextColor

+ defaultTextColor

+ selectedBackgroundColor

+ selectedTextColor

+ setBackgroundColor:

+ setColor:

+ setSelectedBackgroundColor:
+ setSelectedTextColor:

+ setTextColor:

+ textColor

+ makeCellsPerformSelector:
+ makeCellsPerformSelector:selectedOnly:



+ makeCellsPerformSelector:with:

+ makeCellsPerformSelector:with:selectedOnly:

+ makeCellsPerformSelector:with:with:

+ makeCellsPerformSelector:with:with:selectedOnly:

Finding cells / tags + border:slotWithTag:
+ cellWithTag:
+ columnWithTag:
+ rowWithTag:
+ getRow:column:ofCell:
+ getRow:column:ofCellWithTag:
+€getRow:column:forPoint:

Save / restore + border:setSlotOrder:
+ border:setSlotOrderFromString:
+ slotOrder:
+ slotOrderAsString:
+ border:setSlotSizes:
+ border:setSlotSizesFromString:
* slotSizes:
* slotSizesAsString:
+ columnOrder
+ columnOrderAsString
+ columnSizes
+ columnSizesAsString
+ rowOrder



Pasteboard and services

+ rowOrderAsString

+ rowSizes

+ rowSizesAsString

+ setColumnOrder:

+ setColumnOrderFromString:
+ setColumnSizes:

+ setColumnSizesFromString:
+ setRowOrder:

+ setRowOrderFromString:

+ setRowsSizes:

+ setRowSizesFromString:

+ copy:

+ cut:

+ builtinCanWritePboardType:

+ builtinReadSelectionFromPasteboard:

* builtinRegisterServicesTypes

* builtinValidRequestorForSendType:returnType:
+ builtinStringForPboardType:

+ builtinWriteSelectionToPasteboard:types:
+ canWritePboardType:

+ readSelectionFromPasteboard:

* registerServicesTypes

+ validRequestorForSendType:returnType:
+ stringForNSStringPboardType

+ stringForNSTabularTextPBoardType



Printing
Methods implemented by delegate

+ stringForPboardType:
+ writeSelectionToPasteboard:types:

* print:

+ tableScroll:abortEditAtRow:column:

+ tableScroll:allowDragOperationAtRow:column:
+ tableScroll:backgroundColorChangedTo:

+ tableScroll:border:slotDraggedFrom:to:

+ tableScroll:border:slotPrototype:

+ tableScroll:border:slotResized:

+ tableScroll:border:slotSortReversed:

+ tableScroll:border:slotTitle:

+ tableScrollBufferCount:

+ tableScroll:canEdit:atRow:column:

+ tableScroll:canWritePboardType:

+ tableScroll:cellAtRow:column:

+ tableScroll:changeFont:to:

+ tableScroll:didEdit:atRow:column:

+ tableScrollDidPrint:

+ tableScroll:draggingSourceOperationMaskForLocal:
+ tableScroll:doubleValueAtRow:column:

+ tableScroll:floatValueAtRow:column:

+ tableScroll:fontChangedFrom:to:

+ tableScroll:getISearchColumn:

+ tableScrollignoreModifierKeysWhileDragging:



+ tableScroll:imageForDragOperationAtRow:column:
+ tableScroll:intValueAtRow:column:

+ tableScroll:preparePasteboard:forDragOperationAtRow:column:
+ tableScroll:readSelectionFromPasteboard:

+ tableScrollRegisterServicesTypes:

+ tableScroll:retireCell:atRow:column:

+ tableScroll:reviveCell:atRow:column:

+ tableScroll:selectedBackgroundColorChangedTo:
+ tableScroll:selectedTextColorChangedTo:

* tableScroll:setStringValue:atRow:column:

+ tableScroll:shouldDelayWindowOrderingForEvent:
+ tableScroll:stateAtRow:column:

+ tableScroll:stringForPboardType:

+ tableScroll:stringValueAtRow:column:

+ tableScroll:tagAtRow:column:

+ tableScroll:textColorChangedTo:

+ tableScroll:titteAtRow:column:

+ tableScroll:validRequestorForSendType:returnType:
+ tableScroll:willEditAtRow:column:
+€tableScrollWillPrint:

+ tableScroll:writeSelectionToPasteboard:types:

Methods implemented by cells + tableScroll:retireAtRow:column:
+ tableScroll:revive AtRow:column:



Class Methods

defaultBackgroundColor
+ (NSColor*)defaultBackgroundColor

Returns [NsColor lightGrayColor]. Thisis the default background color for new MiscTableScroll objects.

defaultFont
+ (NSFont*)defaultFont

Returns the user's preferred font at 12pt size. This is the default font for new MiscTableScroll objects.

defaultSelectedBackgroundColor
+ (NSColor*)defaultSelectedBackgroundColor

Returns [Nscolor whiteColor]. Thisis the default selected background color for new MiscTableScroll objects.

defaultSelectedTextColor
+ (NSColor*)defaultSelectedTextColor

Returns [NsColor blackColor]. Thisis the default selected text color for new MiscTableScroll objects.



defaultTextColor
+ (NSColor*)defaultTextColor

Returns [NSsColor blackColor]. Thisis the default text color for new MiscTableScroll objects.

Instance Methods

abortEditing
- (void)abortEditing

Abort cell editing. Does not go though the normal -control:textShouldEndEditing: validation method, nor does it
go through the -controlTextbidEndEditing: method.

action
- (SEL)action

Returns the action associated with a single click

addColumn
- (void)addColumn



Appends a new column. See Usage Tips in the introduction for a more complete discussion. Equivalent to:
-addSlot:MISC COL_BORDER.

addRow
- (void)addRow

Appends a new row to the table. If you know how many rows you will need in advance, you should use
-renewRows: instead; it will be faster. If you do not know the number of rows in advance, use this method. This
method is faster than -insertcolumn:. Internally, the table pre-allocates rows with a geometric growth pattern so
there are only a logarithmic number of allocations. See Usage Tips in the introduction for a more complete
discussion. Equivalent to: -addSlot:MISC_ROW BORDER.

This method does no drawing, nor does it update the frames of the various subviews. (This enhances performance
when adding hundreds or thousands of rows.) After you have finished adding rows, you must call -sizeToCells SO
that the MiscTableScroll can update the frames of the various subviews.

addSlot:
- (void)addSlot:(MiscBorderType)b

Appends a new row or column to the table. Appending rows is fast (geometric growth, logarithmic allocations, no
shifting). Appending columns is slower (linear growth, linear allocations, lots of shifting). See Usage Tips in the
introduction for a more complete discussion.

See also: -renewRows:



autoSortColumns
- (BOOL)autoSortColumns

Indicates whether columns will be automatically sorted when the user drags rows. Equivalent to
—autoSortSlots:MISC COL_ BORDER.

autoSortRows
- (BOOL)autoSortRows

Indicates whether rows will be automatically sorted when the user drags columns. Equivalent to
—autoSortSlots:MISC ROW BORDER.

autoSortSlots:
- (BOOL)autoSortSlots:(MiscBorderType)b

Indicates whether or not slots on the given border will be automatically sorted when the user drags (rearranges) slots
on the other border.

backgroundColor
- (NSColor*)backgroundColor



Returns the current background color for the MiscTableScroll object. The background color is used as the
background color of unselected cells in the table body as well as the exposure color for areas not covered by cells.

border:compareSilots::
- (int)border:(MiscBorderType)b compareSlots:(int)s/otl :(int)slot2

This method compares two slots. Returns a value less than zero if slot1 should sort before slot2, zero if slot1 should
sort equally with slot2, or greater than zero if slotl should sort after slot2. It calls -sortInfoInit:border: t0O compute
the sorting information, then calls -border:compareslots::info:, and finally cleans up with -slotInfobDone:.

See also: -border:compareSlots::info:, -border:slotisSorted:, -border:sortSlot:

border:compareSlots::info:
- (int)border:(MiscBorderType)b compareSlots:(int)s/otl :(int)slot2 info:(MiscSlotSortinfo*)sortinfo

This method compares two slots, given a pointer to the precomputed sorting information. If you call this method, you
are responsible for initializing sortinfo by calling -sortInfoInit:border:, and then releasing the resources by calling

-sortInfoDone:.

See also: -border:compareSlots::, -sortinfoDone:, -sortinfolnit:border:

border:deselectSlot:
- (void)border:(MiscBorderType)b deselectSlot:(MiscCoord_P)slot



Deselects the indicated slot.

border:deselectSlots:
- (void)border:(MiscBorderType)b deselectSlots:(NSArray*)slots

Deselects each slot in slots, which should be an array of NSNumber objects each containing a slot index.

border:deselectSlotTags:
- (void)border:(MiscBorderType)b deselectSlotTags:(NSArray*)tags

Deselects all slots whose tag value can be found in tags, which should be an array of NSNumber objects.

border:drawSlot:
- (void)border:(MiscBorderType)b drawSlot:(int)n

Draws a single row or column. This method locks focus on the view if needed.

See also: -drawCellAtRow:column:, -drawColumn:, -drawRow:

border:drawSlotTitle:
- (void)border:(MiscBorderType)b drawSlotTitle:(int)n



Draws the title cell for a single row or column. This method locks focus on the view if needed. You should never
need to call this method in normal use, though it might be useful for subclasses.

See also: -drawColumnTitle:, -drawRowTitle:

border:insertSlot:
- (void)border:(MiscBorderType)b insertSlot:(int)pos

Inserts a single row or column at the indicated position. Position is a zero-based index. The slot is inserted at
physical index pos, and also at visual index pos. This method performs linear allocation, and is slower than the
corresponding -addrow method when adding new rows to a table.

border:moveSlotFrom:to:
- (void)border:(MiscBorderType)b moveSlotFrom:(int)from_pos to:(int)to_pos

This is equivalent to the user dragging a slot from from_pos to to_pos. Both from_pos and to_pos are zero-based
indexes into the current visual ordering of the slots.

border:physicalToVisual:
- (NSArray*)border:(MiscBorderType)b physicalToVisual:(NSArray*)list

This method accepts an array of NSNumber objects each containing a physical (original) slot index, and returns an
array containing the corresponding visual (current) slot indexes. This is accomplished via a succession of calls to



-border:slotPosition:.

See also: -border:slotPosition:, -border:visualToPhysical:

border:removeSiot:
- (void)border:(MiscBorderType)b removeSlot:(int)pos

Removes a single row or column. All cells are released and other internal resources for the slot are deallocated
immediately. If you are just emptying the table so that you can refill it with new data, use -renewRows: O —empty
instead since these methods cache the cells for later re-use. See Usage Tips in the introduction for a more complete
discussion.

See also: -empty, -emptyAndReleaseCells, -renewRows:

border:selectSlot:byExtension:
- (void)border:(MiscBorderType)b selectSlot:(MiscCoord_P)slot byExtension:(BOOL)flag

Selects the indicated slot. If flag is YES then does not clear the previous selection, hence slot is added to the
existing selection. If flag is NO then the previous selection is cleared.

border:selectSlot:
- (void)border:(MiscBorderType)b selectSlot:(MiscCoord_P)slot

Equivalent to: -border:b selectSlot:slot byExtension:NO.



border:selectSlots:byExtension:
- (void)border:(MiscBorderType)b selectSlots:(NSArray*)slots byExtension:(BOOL)flag

Selects each slot in slots, which should be an array of NSNumber objects each containing a slot index. |If flag is YES
then does not clear the previous selection, hence slots are added to the existing selection. |If flag is NO then the
previous selection is cleared.

border:selectSlots:
- (void)border:(MiscBorderType)b selectSlots:(NSArray*)slots

Equivalent to: -border:b selectSlots:slots byExtension:NO.

border:selectSlotTags:byExtension:
- (void)border:(MiscBorderType)b selectSlotTags:(NSArray*)tags byExtension:(BOOL)flag

Selects all slots whose tag value can be found in tags, which should be an array of NSNumber objects. If flag is YES
then does not clear the previous selection, hence the slots found in tags are added to the existing selection. |If flag is

NO then the previous selection is cleared. This method is useful in conjunction with -selectedslotTags: t0 save and
restore the user's selection when you have tag values that uniquely identify the slots.



border:selectSlotTags:
- (void)border:(MiscBorderType)b selectSlotTags:(NSArray*)tags

Equivalent to: -border:b selectSlotTags:tags byExtension:NO.

border:setAutoSortSlots:
- (void)border:(MiscBorderType)b setAutoSortSlots:(BOOL)flag

Instructs the MiscTableScroll object whether or not to automatically sort the slots in border b, when the user drags a
slot from the other border. For example, when you tell the MiscTableScroll object to auto-sort rows, the rows will be
automatically sorted every time the user drags a column to a new position. AutoSort is off by default.

border:setCursorSlot:
- (void)border:(MiscBorderType)b setCursorSlot:(MiscCoord_P)slot

Sets the keyboard cursor to slot.

border:setDraggableSiots:
- (void)border:(MiscBorderType)b setDraggableSlots:(BOOL)flag

Enables or disables reordering of the slots. To let the user drag slots, the titles must be displayed, and the slots must
be draggable.

See also: -border:setModifierDragSlots:, -border:setSizeableSlots:, -border:setSlotTitlesOn:



border:setFirstVisibleSlot:
- (void)border:(MiscBorderType)b setFirstVisibleSlot:(int)n

Scrolls the table so that slot n is the first slot displayed if possible.

border:setLastVisibleSlot:
- (void)border:(MiscBorderType)b setLastVisibleSlot:(int)n

Scrolls the table so that slot n is the last slot displayed if possible.

border:setMaxUniformSizeSiots:
- (void)border:(MiscBorderType)b setMaxUniformSizeSlots:(float)size

Sets the upper bound for user-sizing of a uniform-sized border, b. See Slot Sizing in the introduction for more
details.

border:setMinUniformSizeSiots:
- (void)border:(MiscBorderType)b setMinUniformSizeSlots:(float)size

Sets the lower bound for user-sizing of a uniform-sized border, b. See Slot Sizing in the introduction for more
details.



border:setModifierDragSlots:
- (void)border:(MiscBorderType)b setModifierDragSlots:(BOOL)flag

This option controls whether an unmodified mouse-down initiates selection, or slot-dragging. When flag is YES, an
unmodified mouse-down initiates selection, and the user must hold down the command-key to drag a slot. When flag
iIs NO, an unmodified mouse-down initiates dragging, and the user must hold down the command-key to select a slot.
By default, columns are dragged with an unmodified mouse-down and selected when the command-key modifier is
used. By default, rows behave the other way; an unmodified mouse-down initiates selection, and a command-key
modifier must be used to initiate dragging.

border:setSizeableSlots:
- (void)border:(MiscBorderType)b setSizeableSlots:(BOOL)flag

Enables or disables user-sizing of the slots. Many conditions must be met to enable the user to resize a particular
slot. See Slot Sizing in the introduction for details.

border:setSlot:autosize:
- (void)border:(MiscBorderType)b setSlot:(int)n autosize:(BOOL)flag

Enables or disables autosizing for a particular slot. When YES, the slot will be adjusted proportionately with all other
autosize slots in the border to meet global minimum or maximum size restrictions for the border as a whole.
Currently, this only has effect for columns in narrow tables displayed in wide NSScrollViews. See Slot Sizing in the



introduction for more details.

border:setSlot:cellPrototype:
- (void)border:(MiscBorderType)b setSlot:(int)n cellPrototype:(id)cell

Set the cell prototype for a slot. Currently, only column cell prototypes are used. When new rows are allocated for
the table, the cell prototype from each column is sent a -copywithzone: message. The newly created cell is placed
into the newly created row. Thus all prototype cells must implement the -copywithzone: message appropriately. (In
general, this implies making a deep copy.) The MiscTableScroll retains cell when this method is invoked and
releases it when it is no longer needed.

See also: -border:setSlot:cellType:

border:setSlot:cellType:
- (void)border:(MiscBorderType)b setSlot:(int)n cellType:(MiscTableCellStyle)t

Sets the type of cell that will be used for a particular slot. Currently, only column cell types have any effect; row cell
types are ignored. The cell type, t, can be any of the following (declared in MiscTableTypes.h):

MISC_TABLE CELL TEXT
MISC TABLE CELL IMAGE
MISC TABLE CELL_ BUTTON
MISC TABLE CELL CALLBACK

When this method is called, the MiscTableScroll object will create a prototype cell for the indicated slot of the indicated



type. MISC TABLE CELL TEXT Creates a text-cell; MIsc TABLE CELL IMAGE Creates animage-cell;

MISC TABLE CELL BUTTON Ccreates a button-cell; and m1sc TABLE CELL CALLBACK instructs the MiscTableScroll object
to ask the delegate for the for the prototype cell. <FIXME: What is the interaction with setting an explicit prototype
cell? What message is sent to the delegate to get the prototype? When is the message sent? Does it ask for the
cell itself, or just a prototype? Is it sent to the delegate, or the data-delegate>

See also: -border:setSlot:cellPrototype:

border:setSlot:maxSize:
- (void)border:(MiscBorderType)b setSlot:(int)n maxSize:(float)size

Sets the maximum size for slot n. The size argument is in units of screen pixels. See Slot Sizing in the introduction
for more details.

border:setSlot:minSize:
- (void)border:(MiscBorderType)b setSlot:(int)n minSize:(float)size

Sets the minimum size for slot n. The size argument is in units of screen pixels. See Slot Sizing in the introduction
for more details.

border:setSlot:size:
- (void)border:(MiscBorderType)b setSlot:(int)n size:(float)size



Sets the target size for slot n. The size argument is in units of screen pixels. See Slot Sizing in the introduction for
more details.

border:setSlot:sizeable:
- (void)border:(MiscBorderType)b setSlot:(int)n sizeable:(BOOL)flag

Sets the user-sizeable flag for slot n. When flag is YES, the user will be able to resize the slot. When flag is NO,
the user will not be able to resize the slot. There are many conditions which must be met for a user to be able to
resize a slot. See Slot Sizing in the introduction for more details.

border:setSlot:sortDirection:
- (void)border:(MiscBorderType)b setSlot:(int)n sortDirection:(MiscSortDirection)x

Indicates whether slot n should be sorted in ascending or descending order. X must be one of the following two
values from MiscTableTypes.h:

MISC_SORT ASCENDING
MISC_SORT DESCENDING

All other values are ignored.

See also: -border:setSlot:sortType:, -border:setSlot:sortFunction:, -border:slotSortDirection:



border:setSlot:sortFunction:
- (void)border:(MiscBorderType)b setSlot:(int)n sortFunction:(MiscCompareEntryFunc)func

Makes func the cell-to-cell comparison routine for the cells in slot n. The function, func, must match the following
prototype from MiscTableTypes.h:

typedef int (*MiscCompareEntryFunc)
( int rl, int cl, int r2, int c2,
MiscEntrySortInfo const* entry info,
MiscSlotSortInfo* sort info );

The function is given the coordinates of the two cells, and two pointers to structures containing additional sorting
information. The function should return an integer that is: (a) less than zero if the cell at (r1,c1) should sort before the
cell at (r2,c2), (b) equal to zero if the two cells should sort equally, or (c) greater than zero if the cell at (r1,c1) should
sort after the cell at (r2,c2).

The sort direction (ascending or descending) is applied to the value returned by the cell-to-cell comparison function by
the slot-to-slot comparison function. So if you supply a custom cell-to-cell comparison function you should ignore the
sort direction for that slot. You should always return the ascending sort-order value.

Use this method when you need to perform custom sorting that the built-in sort-types cannot accommodate.

See also: -border:setSlot:sortDirection:, -border:setSlot:sortType:, -border:slotSortFunction:

border:setSlot:sortType:
- (void)border:(MiscBorderType)b setSlot:(int)n sortType:(MiscSortType)x



Sets the type of sorting to be used by the built-in cell-to-cell comparison function for cells in slot n. The sort type, X,
must be one of the following values from MiscTableTypes.h:

MISC SORT STRING CASE INSENSITIVE
MISC SORT STRING CASE SENSITIVE
MISC SORT INT

MISC SORT UNSIGNED INT

MISC SORT TAG

MISC SORT UNSIGNED TAG

MISC SORT FLOAT

MISC SORT DOUBLE

MISC SORT SKIP

MISC SORT TITLE CASE INSENSITIVE
MISC SORT TITLE CASE SENSITIVE
MISC SORT STATE

MISC SORT UNSIGNED STATE

All other values are ignored. Each of the types is described below.

MISC SORT STRING CASE INSENSITIVE
MISC SORT STRING CASE SENSITIVE

The cells are compared as strings. The string values are retrieved using the -stringvalueAtRow:column:
message. MISC_SORT STRING CASE INSENSITIVE IS the default sort-type.

MISC SORT INT
MISC_ SORT UNSIGNED INT

The cells are compared as integers. The integer values are retrieved using the -intvalueAtRow:column:



message.

MISC_SORT TAG
MISC_SORT UNSIGNED TAG

The cells are compared as integers. The integer values are retrieved using the -tagaAtRow:column: message.
This feature is useful for sorting that is handled "behind-the-scenes”. For example, if the slot holds date
information, you can put a numeric representation of the date (such as that obtained with - [NsDate
timeIntervalSinceReferenceDate]) into the cell's tag, and format the string value any way you wish. The slot

will sort correctly regardless of the display format. It is also useful for slots that hold keywords from an ordered
set of values, like the following enumeration:

enum Severity { Notice, Warning, Error, Fatal };

Sorting these alphabetically does not make sense, but if you put the enum value into the tag of the cell, you can
sort them correctly. This sort type also makes it possible to sort slots that hold icons.

MISC_ SORT FLOAT

The cells are compared as single-precision floating point numbers. The values are retrieved using the
-floatValueAtRow:column: MesSage.

MISC_ SORT DOUBLE

The cells are compared as double-precision floating point numbers. The values are retrieved using the
—-doubleValueAtRow:column: MesSage.

MISC SORT SKIP

The cells are not compared. All cells in slots with the mrsc_sorT sk1p sort-type are considered equal. This can



be used for slots that should not affect the sorting.

MISC SORT TITLE CASE INSENSITIVE
MISC SORT TITLE CASE SENSITIVE

The cells are compared as strings. The string values are retrieved using the -titleAtRow:column: message.
This is provided to support NSButtonCells.

MISC SORT STATE
MISC SORT UNSIGNED STATE

The cells are compared as integers. The integer values are retrieved using the -stateAtRow:column: message.
This is provided to support NSButtonCells.

See also: -border:setSlot:sortDirection:, -border:setSlot:sortFunction:, -border:slotSortType:

border:setSlot:tag:
- (void)border:(MiscBorderType)b tag:(int)tag

Sets the tag for slot n to tag.

border:setSlot:title:
- (void)border:(MiscBorderType)b setSlot:(int)n title:(NSString*)title

Sets the title for slot n to title. This method only works for borders with custom titles (that is, -border:b
setSlotTitleMode:MISC _cUSTOM TITLE). If the border does not have custom titles, the request is silently ignored.



See also: -border:setSlotTitleMode:

border:setSlotOrder:
- (BOOL)border:(MiscBorderType)b setSlotOrder:(NSArray*)list

Rearranges the slots to match the order specified by list, which is an array of NSNumber objects. The listis
organized in the physical (original) order of the slots. Each value in the list is the new visual position for the
corresponding slot. In other words, list is a physical to visual mapping. This is useful for restoring the user's slot-
order preference.

List also encodes the sort direction. Negative values set the slot sort direction to descending. Positive values set
the slot sort direction to ascending. Negative values are formed by using the 'C' bitwise complement operator (~).

When list is 0 or an empty array, the slots are "unsorted" -- they are returned to their original physical order, and are
reset to ascending sort-direction.

Returns YES on success, NO on failure.

See also: -border:setSlotOrderFromString:, -border:setSlotSizes:, -slotOrder:

border:setSlotOrderFromString:
- (BOOL)border:(MiscBorderType)b setSlotOrderFromString:(NSString*)s

This is a convenience method which invokes -border:setSlotOrder: USING an NSArray constructed from s.



See also: -border:setSlotOrder:, -border:setSlotSizes:, -slotOrder:

border:setSlotSizes:
- (BOOL)border:(MiscBorderType)b setSlotSizes:(NSArray*)list

Sets the sizes of all slots to the values in list, which is an array of NSNumber objects. List is organized in physical
(original) slot order. Each value is the size of the corresponding slot. This method is useful for restoring the user's
slot size preferences. Returns YES on success, NO on failure.

See also: -border:setSlotOrder:, -border:setSlotSizesFromString:, -slotSizes:

border:setSlotSizesFromString:
- (BOOL)border:(MiscBorderType)b setSlotSizesFromString:(NSString*)s

This is a convenience method which invokes -border:setSlotSizes: USING an NSArray constructed from s.

See also: -border:setSlotOrder:, -border:setSlotSizes:, -slotSizes:

border:setSlotSortVector:
- (void)border:(MiscBorderType)b setSlotSortVector:(NSArray*)v

Sets the order in which slots are considered when sorting. Each value in v, which is an array of NSNumber objects,
is the physical (original) position of a slot. The slots will be compared in the order that they appear in v. Use the
one's complement (bitwise negation with the tilde, "~', operator) to reverse the sort direction (ascending / descending)



of a slot. The current visual slot order is used by default; use this method to specify a different ordering. This
method turns off auto-sort for the other border. That is, setting a slotSortVector for the columns turns off auto-sort for
the rows. The auto-sort facility automatically sorts the table whenever a slot is dragged, so setting a slot sort vector
invalidates the premise on which auto-sort works.

See also: -slotSortVector

border:setSlotTitleMode:
- (void)border:(MiscBorderType)b setSlotTitleMode:(MiscTableTitleMode)x

Sets the title-mode for a border. The title-mode, x, can be any of the following (declared in MiscTableTypes.h):

MISC NO TITLE, // No titles on row/column cells.
MISC NUMBER TITLE, // Titles are sequential numbers.
MISC ALPHA TITLE, // Titles are sequential alphabetics...
MISC CUSTOM TITLE, // Titles are user-supplied strings...

MISC DELEGATE TITLE // Ask the delegate for titles.

See also: -tableScroll:border:slotTitle: (delegate method)

border:setSlotTitlesOn:
- (BOOL)border:(MiscBorderType)b setSlotTitlesOn:(BOOL)on_off

Determines whether titles will be displayed. When on_offis YES, the titles will be displayed. When on_offis NO,
the titles will not be displayed. The titles must be displayed to let the user resize and drag slots. See Slot Sizing in
the introduction for more details. Returns YES if the titles were changed, NO otherwise. For example, if this function



is called to turn on the column titles, but the column titles are already on, the function will do nothing and return NO.
The function will only return YES if the titles were actually turned on or off by the call.

border:setSlotTitlesSize:
- (void)border:(MiscBorderType)b setSlotTitlesSize:(float)size

For column titles, sets their height. For row titles, sets their width.

border:setUniformSizeSiots:
- (void)border:(MiscBorderType)b setUniformSizeSlots:(float)uniform_size

Sets or clears the uniform-size for a border. If uniform_size is zero, then each slot on that border will be able to have
individually varying sizes. If uniform_size is non-zero, then every slot on that border will have the size, uniform_size.
When the slots on a border have a uniform size, the user will not be able to resize the slots. See Slot Sizing in the
introduction for more details.

border:slotAdjustedSize:
- (float)border:(MiscBorderType)b slotAdjustedSize:(int)s/ot

Returns the current display size of slot.

border:slotAtPosition:



- (int)border:(MiscBorderType)b slotAtPosition:(int)pos

Returns the original physical position of the slot in visual position pos. This is the visual-to-physical conversion
routine.

See also: -border:moveSlotFrom:to:, -border:slotPosition:

border:slotCellPrototype:
- (id)border:(MiscBorderType)b slotCellPrototype:(int)s/ot

Returns the cell prototype for slot.

See also: -border:setSlot:cellPrototype:, -border:setSlot:cellType:

border:slotCellType:
- (MiscTableCellStyle)border:(MiscBorderType)b slotCellType:(int)slot

Returns the cell type for slot.

See also: -border:setSlot:cellPrototype:, -border:setSlot:cellType:

border:slotDraggedFrom:to:
- (void)border:(MiscBorderType)b slotDraggedFrom:(int)from_pos to:(int)to_pos

Internal method, invoked whenever the user drags a slot to a new position. Can be useful in subclasses to recognize



a user-initiated slot drag event.

border:slotisAutosize:
- (BOOL)border:(MiscBorderType)b slotlsAutosize:(int)s/ot

Returns the state of the autosize flag for slot. See Slot Sizing in the introduction for more details.

border:slotisSelected:
- (BOOL)border:(MiscBorderType)b slotlsSelected:(MiscCoord_P)slot

Returns YES if slot is selected, else NO.

border:slotisSizeable:
- (BOOL)border:(MiscBorderType)b slotlsSizeable:(int)slot

Returns the state of the user-sizeable flag for slot. See Slot Sizing in the introduction for more details.

border:slotisSorted:
- (BOOL)border:(MiscBorderType)b slotlsSorted:(int)s/ot

This method compares slot with its neighbors. It returns YES if these slots are sorted relative to each other. It
returns NO if any of these slots are out of order with respect to the others. This method can be useful for determining
whether or not the table must be resorted when you are changing values in the table.



See also: -border:sortSlot:, -slotsAreSorted:

border:slotlsVisible:
- (BOOL)border:(MiscBorderType)b slotlsVisible:(int)slot

Returns YES if any part of slot is visible in the scrolling display. Returns NO otherwise.

border:slotMaxSize:
- (float)border:(MiscBorderType)b slotMaxSize:(int)s/ot

Returns the maximum size for slot. See Slot Sizing in the introduction for more details.

border:slotMinSize:
- (float)border:(MiscBorderType)b slotMinSize:(int)slot

Returns the minimum size for slot. See Slot Sizing in the introduction for more details.

border:slotPosition:
- (int)border:(MiscBorderType)b slotPosition:(int)slot

Returns the current visual position of the slot whose original physical position was slot. This is the physical-to-visual



conversion routine.

See also: -border:moveSlotFrom:to:, -border:slotAtPosition:

border:slotResized:
- (void)border:(MiscBorderType)b slotResized:(int)n

Internal method called whenever the user resizes a slot. Can be useful in subclasses to recognize user-initiated slot
resizing.

border:slotSize:
- (float)border:(MiscBorderType)b slotSize:(int)s/ot

Returns the target size for slot. See Slot Sizing in the introduction for more details.

border:slotSortDirection:
- (MiscSortDirection)border:(MiscBorderType)b slotSortDirection:(int)n

Returns the sort direction (ascending or descending) for slot n.

border:slotSortFunction:
- (MiscCompareEntryFunc)border:(MiscBorderType)b slotSortFunction:(int)n



Returns the custom sort function for slot n, if any, otherwise it returns 0.

border:slotSortReversed:
- (void)border:(MiscBorderType)b slotSortReversed:(int)n

Internal method, invoked whenever the user reverses the sort direction of a slot. Can be useful in subclasses to
recognize a user-initiated sort reverse event.

border:slotSortType:
- (MiscSortType)border:(MiscBorderType)b slotSortType:(int)n

Returns the sort type of slot n.

border:slotTag:
- (int)border:(MiscBorderType)b slotTag:(int)s/ot

Returns the tag value associated with slot.

border:slotTitle:
- (NSString*)border:(MiscBorderType)b slotTitle:(int)s/ot

Returns the title for slot.



border:slotWithTag:
- (int)border:(MiscBorderType)b slotWithTag:(int)x

Returns the index of the first slot whose tag is x, or -1 if no match was found.

border:sortSiot:
- (BOOL)border:(MiscBorderType)b sortSlot:(int)s/ot

Re-sorts a single slot. This method can be used to restore the sort order after a single slot has been added or
changed in such a way that it might not be in the correct sort position. The results are unpredictable if the other slots
are not already sorted. Returns YES if the slot sorted to a new visual location, otherwise returns NO.

See also: -sortSlots:, -sortColumn:, -sortRow:

border:visualToPhysical:
- (NSArray*)border:(MiscBorderType)b visualToPhysical:(NSArray*)list

This method accepts an array of NSNumber objects each containing a visual (current) slot index, and returns an array
containing the corresponding physical (original) slot indexes. This is accomplished via a succession of calls to
-border:slotAtPosition:.

See also: -border:slotAtPosition:, -border:slotPosition:



bufferCount
- (int)bufferCount

This method is only meaningful for lazy tables. If the delegate or dataDelegate provide multiple buffers for
responding to -tableScroll:cellAtRow:column:, they are encouraged to respond to -tableScrollBufferCount:
with the number of buffers that they provide. If the delegate and dataDelegate do not respond, a default value of one
(1) is returned, which indicates that all values from a call to -ce11atRow:column: must be copied before making a
second call to -cel1AtRow:column:. This method is called internally during -sortInfoInit:border: t0 determine
whether copying must be performed during sorting.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -tableScrollIBufferCount: (delegate method),
-tableScroll:cellAtRow:column: (delegate method)

builtinCanWritePboardType:
- (BOOL)builtinCanWritePboardType:(NSString*)type

The built-in method for determining which data types can be placed on the pasteboard. This method returns YES for
NSStringPboardType and NSTabularTextPboardType. Override this method in your subclass if you will provide
additional pasteboard datatypes. This method is called from -canwritePboardType:.

See also: -canWritePboardType:

builtinReadSelectionFromPasteboard:



- (BOOL)builtinReadSelectionFromPasteboard:(NSPasteboard*)pboard

This method merely returns NO. The current implementation of MiscTableScroll never reads anything from the
pasteboard. Override this method in your subclass if you want to read data from the pasteboard. This method is
called from -readselectionFromPasteboard:.

See also: -readSelectionFromPasteboard:

builtinRegisterServicesTypes
- (void)builtinRegisterServicesTypes

This method sends -registerServicesMenuSendTypes:returnTypes: t0 NSApp. It registers
NSTabularTextPboardType and NSstringPboardType Send types, and no return types. Override this method in your
subclass if you want to send or return different data types. Called from -registerServicesTypes.

See also: -registerServicesTypes, -registerServicesMenuSendTypes:returnTypes: (NSApplication)

builtinValidRequestorForSendType:returnType:
- (id)builtinValidRequestorForSendType:(NSString*)t_send returnType:(NSString*)t_return

This method returns self if t_send is either NSTabularTextPboardType OF NSStringPboardType, and t_return is 0, and
there is a selection, otherwise it returns the value from a call to [super validRequestorForSendType:t send
returnType: t return]. Override this method if your subclass can handle different combinations. Called from
-validRequestorForSendType:returnType:.



See also: -validRequestorForSendType:returnType:

builtinStringForPboardType:
- (NSString*)builtinStringForPboardType:(NSString*)type

If type is NsstringPboardType, then -stringForNSStringPboardType IS called, else if type is
NSTabularTextPboardType, then -stringForNSTabularTextPBoardType IS called. Otherwise it does nothing.
Override this method in your subclass if you can write additional datatypes to the pasteboard. Called from
-writeSelectionToPasteboard:types:.

See also: -writeSelectionToPasteboard:types:

builtinWriteSelectionToPasteboard:types:
- (BOOL)builtinWriteSelectionToPasteboard:(NSPasteboard*)pboard types:(NSArray*)types

Writes all of the types that can be written to the pasteboard. Each entry in types is tested with
-canWritePboardType:. Ifthe resultis YES, and there is a selection, it is passed on to
-writeSelectionToPasteboard:types:. The data is written immediately, the MiscTableScroll object does not register
a pasteboard owner. Override this method in your subclass if you need different behavior. Called from
-writeSelectionToPasteboard:types:.

See also: -canWritePboardType:, -writeSelectionToPasteboard:types:, -writeSelectionToPasteboard:types:



canEdit:atRow:column:
- (BOOL)canEdit:(NSEvent*)event atRow:(MiscCoord_P)row column:(MiscCoord_P)col

Determines whether or not the cell at row, col can be edited. Attempts to send
-tableScroll:canEdit:atRow:column: t0 the delegate, the dataDelegate, or the cell at row, col, in that order. The
result is taken from the first of these three to respond to -tableScroll:canEdit:atRow:column: and is returned to the
caller of -canEdit:atRow:column:. If none of the three respond, then MiscTableScroll applies its own criteria to
determine if editing is allowed. If the cell is not both enabled and editable then NO is returned. If eventis NULL or
represents a double-click by the mouse then YES is returned, otherwise NO.

It is valid to specify NULL for event when editing needs to be invoked for a non-mouse-down event. (For instance,
-getNext:editRow:column: operates in this fashion.) If eventis non-NULL then it should point at a mouse-down

event.
See also: -isEditable (NSCell), -isEnabled (NSCell)

canWritePboardType:
- (BOOL)canWritePboardType:(NSString*)type

Responds to queries from -builtinWriteSelectionToPasteboard:types:. First it gives the delegate an opportunity
to answer via -tableScroll:canWritePboardType:. If the delegate does not respond to that message, it gives the
dataDelegate an opportunity to answer the same message. If neither object responds, the built-in implementation,
-builtinCanWritePboardType: IS called. Called from -builtinWriteSelectionToPasteboard:types:.

See also: -builtinCanWritePboardType:, -builtinWriteSelectionToPasteboard:types:,
-tableScroll:canWritePboardType: (delegate method)



cellAtRow:column:
- (id)cellAtRow:(int)row column:(int)col

Returns a pointer to the cell located at row,col.

cellFrameAtRow:column:
- (NSRect)cellFrameRow:(int)row column:(int)co/

Returns the frame of the cell at the specified coordinates. If row or col are out of bounds, then returns the empty
rectangle. < FIXME: Currently the returned rectangle also includes the intercell grid lines which are below and to the
right of the cell. >

celllsSelectedAtRow:column:
- (BOOL)celllsSelectedAtRow:(MiscCoord_P)row column:(MiscCoord_P)col

Returns YES if the cell at row, col is selected.

cellWithTag:
- (id)cellWithTag:(int)x

Returns the first cell in the body of the table with tag x, otherwise O.



changeFont:
- (void)changeFont:(id)sender

Changes the font of the MiscTableScroll object as well all cells which inheritit. The NSFontManager sends the
-changeFont : message whenever the user changes the font using either the NSFontPanel or the Font menu. sender
must respond to the -convertFont: message and return an NSFont which is then passed to -setFont:. This method
sends -tableScroll:changeFont:to: and -tableScroll: fontChangedFrom:to: Messages to the delegate.

See also: - setFont:, * tableScroll:changeFont:to: (delegate method), *+ tableScroll:fontChangedFrom:to:
(delegate method)

clearColumnSelection
- (void)clearColumnSelection

Equivalent to: -clearslotSelection:MISC COL BORDER.

clearCursor
- (void)clearCursor

Calls [self clearCursorColumn] and [self clearCursorRow].



clearCursorColumn
- (void)clearCursorColumn

Sets the column border's keyboard cursor slot to -1, effectively hiding it until it is next set to a valid position.

clearCursorRow
- (void)clearCursorRow

Sets the row border's keyboard cursor slot to -1, effectively hiding it until it is next set to a valid position.

clearCursorSlot:
- (void)clearCursorSlot:(MiscBorderType)b

Sets the border's keyboard cursor slot to -1, effectively hiding it until it is next set to a valid position.

clearRowSelection
- (void)clearRowSelection

Equivalent to: -clearSlotSelection:MISC ROW BORDER.

clearSelection
- (void)clearSelection



Calls [self clearRowSelection] and [self clearColumnSelection].

clearSlotSelection:
- (void)clearSlotSelection:(MiscBorderType)b

Deselects all slots that were selected in border b.

clickedCell
- (id)clickedCell

During mouse-tracking, returns the cell underneath the mouse, otherwise returns the cell which was under the mouse
when tracking ended. This method only really makes sense for eager-mode MiscTableScroll objects since a unique
cell inhabits each row & column position, whereas in lazy-mode only one cell typically exists per column.

See also: * clickedSlot:, * clickedColumn, * clickedRow, * tracking

clickedColumn
- (MiscCoord_P)clickedColumn

During mouse-tracking, returns the column underneath the mouse, otherwise returns the column which was under the
mouse when tracking ended.

See also: * clickedSlot:, * clickedCell, * clickedRow, * tracking



clickedRow
- (MiscCoord_P)clickedRow

During mouse-tracking, returns the row underneath the mouse, otherwise returns the row which was under the mouse
when tracking ended.

See also: * clickedSlot:, * clickedCell, * clickedColumn, * tracking

clickedSlot:
- (MiscCoord_P)clickedSlot:(MiscBorderType)b

During mouse-tracking, returns the slot underneath the mouse, otherwise returns the slot which was under the mouse
when tracking ended.

See also: * clickedCell, * clickedColumn, * clickedRow, * tracking

color
- (NSColor*)color

Equivalent to: -backgroundColor.



columnAdjustedSize:
- (float)columnAdjustedSize:(int)col

Returns the current display width of col. Equivalent to: -border:MISC COL BORDER slotAdjustedSize:col.

See also: -border:slotAdjustedSize:

columnAtPosition:
- (int)columnAtPosition:(int)pos

Returns the original physical position of the column at the current visual position pos. This is the visual-to-physical
conversion routine. Equivalent to: -border:MISC COL BORDER slotAtPosition:pos.

See also: -border:slotAtPosition:, -border:slotPosition:, -columnPosition:

columnCellPrototype:
- (id)columnCeliPrototype:(int)col

Returns the cell prototype for column col. Equivalent to: -border :MISC COL BORDER slotCellPrototype:col.

See also: -border:setSlot:cellPrototype:, -border:slotCellPrototype:

columnCeliType:
- (MiscTableCellStyle)columnCellType:(int)col



Returns the cell type for column col. Equivalent to: -border :MISC COL BORDER slotCellType:col.

See also: -border:setSlot:cellType:, -border:slotCellType:

columnisAutosize:
- (BOOL)columnlsAutosize:(int)col

Returns the state of the autosize flag for column col. Equivalent to: -border:MISC COL BORDER slotIsAutosize:col.

See also: -border:setSlot:autosize:, -border:slotlsAutosize:

columnisSelected:
- (BOOL)columnisSelected:(MiscCoord_P)col

Returns YES if column col is selected, else NO. Equivalent to -border:MISC COL BORDER slotIsSelected:col.

columnlsSizeable:
- (BOOL)columnlsSizeable:(int)col

Returns the state of the user-sizeable flag for column col. Equivalent to: -border:MISC COL BORDER
slotIsSizeable:col.

See also: -border:setSlot:sizeable:, -border:slotlsSizeable:



columnisSorted:
- (BOOL)columnisSorted:(int)col

Returns YES if col is sorted relative to its neighboring columns. Returns NO otherwise. Equivalent to
-border:MISC COL BORDER slotIsSorted:col.

columnlsVisible:
- (BOOL)columnlsVisible:(int)col

Returns YES if any part of col is visible in the scrolling display. Returns NO otherwise. Equivalent to
-border:MISC COL BORDER slotIsVisible:col.

columnMaxSize:
- (float)columnMaxSize:(int)col

Returns the maximum size for column col. Equivalent to: -border:MISC COL BORDER slotMaxSize:col.

See also: -border:setSlot:maxSize:, -border:slotMaxSize:

columnMinSize:
- (float)columnMinSize:(int)co/



Returns the minimum size for column col. Equivalent to: -border :MISC COL BORDER slotMinSize:col.

See also: -border:setSlot:minSize:, -border:slotMinSize:

columnOrder
- (NSArray*)columnOrder

Equivalent to -slotOrder:MISC_COL_ BORDER.

columnOrderAsString
- (NSString*)columnOrderAsString

Equivalentto slotOrderAsString:MISC COL BORDER.

columnPosition:
- (int)columnPosition:(int)co/

Returns the current visual position of the column whose original physical position is pos. This is the physical-to-visual
conversion routine. Equivalent to: -border :MISC COL BORDER slotPosition:pos.

See also: -border:moveSlotFrom:to:, -border:slotAtPosition:, -border:slotPosition:, -columnAtPosition:,
-moveColumnFrom:to:



columnsAreSorted
- (BOOL)columnsAreSorted

Returns YES if all columns are sorted. Equivalent to -slotsAreSorted:MISC COL BORDER.

See also: -columnisSorted:, -slotsAreSorted:

columnSize:
- (float)columnSize:(int)col

Returns the target size for column col. Equivalent to: -border:MISC COL BORDER slotSize:col.

See also: -border:setSlot:size:, -border:slotSize:

columnSizes
- (NSArray*)columnSizes

Equivalent to: slotSizes:MISC COL BORDER.

columnSizesAsString
- (NSString*)columnSizesAsString

Equivalent to -slotSizesAsString:MISC COL BORDER.



columnSortDirection:
- (MiscSortDirection)columnSortDirection:(int)n

Returns the sort direction (ascending or descending) of column n. Equivalent to: -border:MISC COL BORDER
slotSortDirection:n.

columnSortFunction:
- (MiscCompareEntryFunc)columnSortFunction:(int)n

Equivalent to: -border:MISC COL BORDER slotSortFunction:n.

columnSortType:
- (MiscSortType)columnSortType:(int)n

Equivalent t0 -border:MISC COL BORDER slotSortType:n.

columnSortVector
- (NSArray*)columnSortVector

Equivalent to: -slotSortvector:MISC COL BORDER.



columnTag:
- (int)columnTag:(int)col

Returns the tag for column col. Equivalent to: -border:MISC COL BORDER slotTag:col.

columnTitle:
- (NSString*)columnTitle:(int)col

Returns the title for column col. Equivalent to: -border:MISC COL BORDER slotTitle:col.

columnTitleMode
- (MiscTableTitleMode)columnTitleMode

Returns the title-mode for column col. Equivalent to: -border:MISC COL BORDER slotTitleMode:col.

columnTitlesHeight
- (float)columnTitlesHeight

Equivalent to: -slotTitlesSize:MISC COL BORDER.

columnTitlesOn



- (BOOL)columnTitlesOn

Indicates whether or not column titles are displayed. Equivalent to: -s1otTitlesOn:MISC COL_ BORDER.

columnWithTag:
- (int)columnWithTag:(int)x

Returns the index of the first column with tag x, or -1 if no columns have tag x.

compareColumns::
- (int)compareColumns:(int)col1 :(int)col2

Compares two columns. Equivalent to -border:MISC COL BORDER compareSlots:coll:col2.

compareColumns::info:
- (int)compareColumns:(int)col1 :(int)col2 info:(MiscSlotSortinfo*)sortinfo

Compares two columns. Equivalent to -border:MISC COL BORDER compareSlots:coll:col2 info:sortInfo.

compareRows::
- (int)compareRows:(int)row1 :(int)row2



Compares two columns. Equivalent t0 -border:MISC_ROW BORDER compareSlots:rowl:row2.

compareRows::info:
- (int)compareRows:(int)rowl :(int)row2 info:(MiscSlotSortinfo*)sortinfo

Compares two columns. Equivalent to -border:MISC_ROW BORDER compareSlots:rowl:row2 info:sortInfo.

compareSlotFunction
- (MiscCompareSlotFunc)compareSlotFunction

Returns the slot comparison function.

constrainSize
- (void)constrainSize

Internal method that checks and applies new slot counts and min total size constraints to update the frames of the
components of the MiscTableScroll object.

copy:
- (void)copy:(id)sender

Copies the selection to the pasteboard. Calls -writeSelectionToPasteboard:types:, With



NSTabularTextPboardType and NSstringPboardType fOr types that should be written. Override this method in your
subclass if you want to write different datatypes to the pasteboard.

See also: -writeSelectionToPasteboard:types:

cornerTitle
- (NSString*)cornerTitle

Returns the title for the corner cell.

cursorColumn
- (MiscCoord_P)cursorColumn

Returns the column that the column keyboard cursor is on. Meaningless if tracking is by rows.

cursorRow
- (MiscCoord_P)cursorRow

Returns the row that the row keyboard cursor is on. Meaningless if tracking is by columns.

cursorSiot:
- (MiscCoord_P)cursorSlot:(MiscBorderType)b



Returns the index of the slot that the keyboard cursor is currently on, or -1 if the keyboard cursor is not on any slot.

cut:
- (void)cut:(id)sender

Calls [self copy:sender]. Nothing is deleted.

dataDelegate
- (id)dataDelegate

Returns the data delegate of the MiscTableScroll object.

See also: -setDataDelegate

dealloc
- (void)dealloc

Destroys the MiscTableScroll object, reclaiming all resources allocated by it.

delegate
- (id)delegate



Returns the delegate of the MiscTableScroll object.

See also: -setDelegate

deselectAll:
- (void)deselectAll:(id)sender

Calls [self clearSelection] followed by [self sendActionIfEnabled].

deselectColumn:
- (void)deselectColumn:(MiscCoord_P)col

Equivalent to: -border:MISC COL BORDER deselectSlot:col.

deselectColumns:
- (void)deselectColumns:(NSArray*)cols

Equivalent to: -border:MISC COL BORDER deselectSlots:COIS.

deselectColumnTags:
- (void)deselectColumnTags:(NSArray*)tags



Equivalent to: -border:MISC COL BORDER deselectSlotTags:tags.

deselectRow:
- (void)deselectRow:(MiscCoord_P)row

Equivalent to: -border:MISC ROW BORDER deselectSlot:row.

deselectRows:
- (void)deselectRows:(NSArray*)rows

Equivalent to: -border:MISC_ROW BORDER deselectSlots:IOWS.

deselectRowTags:
- (void)deselectRowTags:(NSArray*)tags

Equivalent to: -border:MISC ROW BORDER deselectSlotTags:tags.

disableCursor
- (void)disableCursor

Inhibits display of the keyboard cursor. Calls to this method nest and should be balanced by calls to -enablecursor.
The keyboard cursor is a dashed rectangle drawn around a row or column indicating which slot keyboard actions will



affect. See the discussion of Keyboard Operations at the beginning of this document for further information.

See also: * isCursorEnabled, = enableCursor

documentClipRect
- (NSRect)documentClipRect

Returns the frame of the NSClipView which contains the document view.

doGetlSearchColumn:
- (BOOL)doGetlSearchColumn:(int*)col

Built-in method to choose the incremental search column. Returns YES if incremental search should be enabled and
sets *col to the physical index of the column that should be searched, otherwise returns NO. To enable incremental
search via this function, autoSortRows must be YES; the first sorting column must be string-based (stringValue or
title); and there cannot be a custom sort function for the column. This method works appropriately for normal tables,
as long as autoSortRows is turned on. Whenever the user drags a string-based column to the first position,
incremental search will be enabled. Non-sorting (skip) columns are ignored. You can override this behavior by
Implementing the -tableScroll:getISearchColumn: Method in your delegate.

See also: -incrementalSearch:, -tableScroll:getiISearchColumn: (delegate method)

dolncrementalSearch:column:



- (BOOL)dolncrementalSearch:(NSEvent*)event column:(int)co/

Built-in method that performs incremental search. Event must be the key-down event that invoked incremental
searching. Col must be the column that will be searched. The table must be sorted in col order (ascending or
descending). The sort-type for col must be string-based (stringValue or title). Col cannot have a custom sort
function. You are responsible for ensuring that the table is sorted in col order. This method runs a modal event loop,
processing keystrokes and scrolling the table appropriately. Returns YES if col was acceptable and event was
processed. Returns NO if col failed any of the tests mentioned.

See also: -incrementalSearch:, -tableScroll:getiISearchColumn: (delegate method)

doRetireCell:atRow:column:
- (id)doRetireCell:(id)cell atRow:(int)row column:(int)col

This built-in implementation tries to recover storage before the cell is idled. An attempt is made to send the following
messages to the cell in this order: -setTitle:@"", -setStringvalue:@"". If the cell responds to a message, that
message is sent, otherwise the next message is tried. Override this method in your subclass if you need to do
different processing when cells are retired to the cache. Called from: -retireCell:atRow:column:. Returns cell.

doReviveCell:atRow:column:
- (id)doRevivecCell:(id)cell atRow:(int)row column:(int)col

This method tries to reset the cell so that it will "useowner..." values for font, textColor, backgroundColor,
selectedTextColor, and selectedBackgroundColor. It tries to set the MiscTableScroll object as the owner of the cell.



Then it tries to initialize the font, textColor, backgroundColor, selectedTextColor, and selectedBackgroundColor by first
trying the "setowner..." value method, and then trying the straight "set..." method if the cell does not respond to the
"setowner..." version. Override this method in your subclass if you need different behavior when a cell is brought into
active service. Called from -reviveCell:atRow:column:. Returns cell.

doubleAction
- (SEL)doubleAction

Returns the selector message that is sent to the doubleTarget on a double-click event.

doubleTarget
- (id)doubleTarget

Returns a pointer to the object which will receive the doubleAction message on a double-click event.

doubleValueAtRow:column:
- (double)doubleValueAtRow:(int)row column:(int)col

Returns the value of sending a -doublevalue message to the cell at row, col. If the table is lazy, the delegate, and
then the dataDelegate are given the opportunity to reply to the -tableScroll:doublevalueAtRow:column: Mmessage.
This gives lazy tables an opportunity to return this information directly, without the overhead of preparing and
formatting a cell. If the table is not lazy, or the delegate and dataDelegate do not respond to the
~tableScroll:doubleValueAtRow:column: message, then the cell is retrieved via -cel1AtRow:column:. If the cell



responds to the -doublevalue message, that value is returned; otherwise, zero is returned.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -tableScroll:doubleValueAtRow:column: (delegate method)

draggableColumns
- (BOOL)draggableColumns

Indicates whether or not the user will be allowed to drag (rearrange) the columns. Equivalent to:
-draggableSlots:MISC COL BORDER.

draggableRows
- (BOOL)draggableRows

Indicates whether or not the user will be allowed to drag (rearrange) the rows. Equivalent to:
-draggableSlots:MISC ROW BORDER.

draggableSiots:
- (BOOL)draggableSlots:(MiscBorderType)b

Indicates whether or not the user will be allowed to drag (rearrange) the slots on this border. To enable the user to
drag slots, the slots must be draggable, and the titles must be displayed.



drawCellAtRow:column:
- (void)drawCellAtRow:(int)row column:(int)col

Instructs the MiscTableScroll object to redraw the cell at position row, col. This should be called whenever the
contents of a single cell are changed and the screen should be updated to reflect the new state. This method will
lock focus on the view if needed.

See also: -border:drawSlot:, -display (View), -drawColumn:, -drawRow:

drawClippedText
- (BOOL)drawClippedText

Returns YES if the MiscTableScroll object will use clipping rectangles and draw partially visible text. Returns NO if
the MiscTableScroll object will simply not draw patrtially visible text that would require clipping rectangles.

drawColumn:
- (void)drawColumn:(int)col

Instructs the MiscTableScroll object to redraw all the cells in column col. This method will lock focus on the view if
needed.

See also: -drawCellAtRow:column:

drawColumnTitle:



- (void)drawColumnTitle:(int)n

Draws the title for column col. This method will lock focus on the view if needed. You should never need to call this
method in normal use, though it might be useful for subclasses.

drawRow:
- (void)drawRow:(int)row

Instructs the MiscTableScroll object to redraw all the cells in row row. This method will lock focus on the view if
needed.

See also: -drawCellAtRow:column:

drawRowTitle:
- (void)drawRowTitle:(int)n

Draws the title for row row. This method will lock focus on the view if needed. You should never need to call this
method in normal use, though it might be useful for subclasses.

edit:atRow:column:
- (void)edit:(NSEvent*)event atRow:(int)row column:(int)col

Informs the delegate or dataDelegate that editing is commencing by sending -tableScroll:willEditAtRow:column:,
then initiates editing at row, col. Itis valid to specify NULL for event when editing needs to be invoked for a non-



mouse-down event. If event is non-NULL then it should be the mouse-down event which initiates editing.

editCellAtRow:column:
- (void)editCellAtRow:(int)row column:(int)co/

Clears the selection, then selects the row (or column, if tracking by columns) of the cell, and invokes: -edit:0

atRow: row column:col.

See also: -trackingBy

editifAble:atRow:column:
- (void)editifAble:(NSEvent*)event atRow:(int)row column:(int)col

Calls -canEdit:atRow:column:, and then calls -edit:atRow:column: if YES was returned. Returns YES if editing
was initiated, and NO if not.

empty
- (void)empty

Resets the number of rows in the MiscTableScroll to zero. Does not deallocate the rows, nor does it affect the
number of columns. The rows are retained in the cache for future use. See Usage Tips in the introduction for more
details.

See also: -addRow, -border:removeSilot:, -removeRow:, -emptyAndReleaseCells, -renewRows:



emptyAndReleaseCells
- (void)emptyAndReleaseCells

Resets the number of rows in the MiscTableScroll to zero; releases all cells stored in the cache, and deallocates all
cache resources. Does not affect the number of columns.

See also: -addRow, -border:removeSlot:, -removeRow:, -empty, -renewRows:

enableCursor
- (void)enableCursor

Re-enables display of the keyboard cursor after a call to -disablecursor. Calls to this method should be made to
balance previous calls to -disablecursor. The keyboard cursor is a dashed rectangle drawn around a row or
column indicating which slot keyboard actions will affect. See the discussion of Keyboard Operations at the
beginning of this document for further information.

See also: * disableCursor, * isCursorEnabled

finishEditing
- (BOOL)finishEditing

If cell editing is in progress, then this method attempts to finish it. This method invokes the normal edit termination
routines, and the -control:textShouldEndEditing: validation method gets an opportunity to veto the new value.



Returns YES if no cell editing was in progress to start with, or if the editing session terminated successfully. Returns
NO if the new cell value was rejected.

firstVisibleColumn
- (int)firstVisibleColumn

Equivalent to: -firstvisibleSlot:MISC_ COL_BORDER.

firstVisibleRow
- (int)firstVisibleRow

Equivalent to: -firstvisibleSlot:MISC_ROW_ BORDER.

firstVisibleSlot:
- (int)firstVisibleSlot:(MiscBorderType)b

Returns the physical coordinate of the first fully visible slot, if any. If there are two partially visible slots, it returns the
physical coordinate of the /ast slot. If there is one partially visible slot, it returns the physical coordinate of that slot.
If there are no slots (the MiscTableScroll is empty), it returns -1.

floatValueAtRow:column:



- (float)floatValueAtRow:(int)row column:(int)co/

Returns the value of sending a -f1oatvalue message to the cell at row, col. |If the table is lazy, the delegate, and
then the dataDelegate are given the opportunity to reply to the -tableScroll:floatvValueAtRow:column: Message.
This gives lazy tables an opportunity to return this information directly, without the overhead of preparing and
formatting a cell. If the table is not lazy, or the delegate and dataDelegate do not respond to the
-tableScroll:doubleValueAtRow:column: Message, then the cell is retrieved via -cel1AtRow:column:. If the cell
responds to the -fi1oatvalue message, that value is returned; otherwise, zero is returned.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -tableScroll:floatValueAtRow:column: (delegate method)

font
- (NSFont*)font

Returns the current font for the MiscTableScroll object. The current font is used to initialize new cells in the table.

getlSearchColumn:
- (BOOL)getISearchColumn:(int*)col

This method is responsible for determining whether incremental searching should be enabled, and identifying the
column on which the table is sorted. If the delegate responds t0 -tableScroll:getISearchColumn:, thenitis called,
otherwise, the dataDelegate is tried. If neither object responds, the built-in -doGetIsearchcolumn: method is called.
Returns YES if incremental searching should be enabled, otherwise NO.

See also: -doGetlSearchColumn:, -incrementalSearch:, -tableScroll:getiISearchColumn: (delegate method)



getNext:editRow:column:
- (BOOL)getNext:(BOOL)forward editRow:(int*)row column:(int*)col

When forward is YES, this method returns the coordinates of the next cell that is editable as determined by
-cankEdit:atRow:column:. When forward is NO, this method returns the coordinates of the nearest previous cell that
Is editable. The search order is based on the visual order of slots in the MiscTableScroll. Normally this method is
used by assigning the physical coordinates of the cell that is currently being edited to row and col. The method then
searches for the next/previous cell that is editable and updates the values of row and col to the coordinates of the
next/previous editable cell. This method is used in the -textDidEndEditing: method to find the next / previous cell
when the user presses TAB / SHIFT-TAB to terminate cell editing. Returns YES if a new editable cell was found.
Returns NO if there are no other editable cells.

getNextEditRow:column:
- (BOOL)getNextEditRow:(int*)row column:(int*)col

Equivalent to: -getNext:YES editRow:row column:col.

getPreviousEditRow:column:
- (BOOL)getPreviousEditRow:(int*)row column:(int*)col

Equivalent to: -getNext:NO editRow:row column:col.



getRow:column:forPoint:
- (BOOL)getRow:(int*)row column:(int*)col forPoint:(NSPoint)point

Calculates the physical slot row and column coordinates for a point, which must be in the coordinate system of the
receiving MiscTableScroll object. If point is outside and left of the MiscTableScroll, or there are no columns, then col
Is setto -1. If point is outside and right of the MiscTableScroll, col is set to the last valid column index. Out of range
values are handled similarly for row. Returns YES unless point was out of bounds, in which case NO is returned.

getRow:column:ofCell:
- (BOOL)getRow:(int*)row column:(int*)col ofCell:(NSCell*)cell

Finds the location of cell in the MiscTableScroll object. If cell is found, row and col are set to the coordinates of the
cell in the table and the method returns YES. If cell is not found, row and col are set to -1, and the method returns
NO.

getRow:column:ofCellWithTag:
- (BOOL)getRow:(int*)row column:(int*)col ofCellWithTag:(int)x

Assigns the coordinates to row and col of the first cell in the table with tag x and returns YES. If no cell in the table
has tag x, row and col are set to -1, and NO is returned.

hasColumnSelection



- (BOOL)hasColumnSelection

Returns YES if any columns are selected, otherwise NO.

hasMultipleColumnSelection
- (BOOL)hasMultipleColumnSelection

Returns YES if more than one column is selected, otherwise NO.

hasMultipleRowSelection
- (BOOL)hasMultipleRowSelection

Returns YES if more than one row is selected, otherwise NO.

hasMultipleSlotSelection:
- (BOOL)hasMultipleSlotSelection:(MiscBorderType)b

Returns YES if more than one slot is selected, otherwise NO.

hasRowSelection
- (BOOL)hasRowSelection



Returns YES if any rows are selected, otherwise NO.

hasSlotSelection:
- (BOOL)hasSlotSelection:(MiscBorderType)b

Returns YES Iif at least one slot is selected, otherwise NO.

hasValidCursorColumn
- (BOOL)hasValidCursorColumn

Returns YES if the column keyboard cursor has a valid position in the body of the table, otherwise NO.

hasValidCursorRow
- (BOOL)hasValidCursorRow

Returns YES if the row keyboard cursor has a valid position in the body of the table, otherwise NO.

hasValidCursorSilot:
- (BOOL)hasValidCursorSlot:(MiscBorderType)b

Returns YES if the keyboard cursor is positioned on a valid slot, otherwise NO.



incrementalSearch:
- (BOOL)incrementalSearch:(NSEvent*)event

Invokes incremental searching if event is an appropriate keyboard event to start incremental search, and if
-getISearchColumn: determines that incremental searching should be enabled. Returns YES if incremental
searching was invoked (and event was processed), otherwise returns NO. This method should be called from within
a -keyDown: method.

See also: -dolncrementalSearch:col, -getiISearchColumn:

initWithFrame:
- (id)initWithFrame:(NSRect)frameRect

Initializes a newly allocated MiscTableScroll object. This is the designated initializer for this class. The newly
allocated object will have the following properties set by default: <FIXME: write this.>

insertColumn:
- (void)insertColumn:(int)pos

Inserts a new column at position pos. Equivalent to: -border:MISC COL BORDER insertSlot:pos.

insertRow:



- (void)insertRow:(int)pos

Inserts a new row at position pos. Equivalent to: -border:MISC ROW BORDER insertSlot:pos.

intValueAtRow:column:
- (int)intValueAtRow:(int)row column:(int)col/

Returns the value of sending a -intvalue message to the cell at row, col. If the table is lazy, the delegate, and then
the dataDelegate are given the opportunity to reply to the -tableScroll:intvValueAtRow:column: message. This
gives lazy tables an opportunity to return this information directly, without the overhead of preparing and formatting a
cell. If the table is not lazy, or the delegate and dataDelegate do not respond to the
~tableScroll:doubleValueAtRow:column: message, then the cell is retrieved via -cel1AtRow:column:. If the cell
responds to the -intvalue message, that value is returned; otherwise, zero is returned.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -tableScroll:intValueAtRow:column: (delegate method)

isCursorEnabled
- (BOOL)isCursorEnabled

Indicates whether cursor display is enabled or disabled. See the discussion of Keyboard Operations at the
beginning of this document for further information.

See also: * disableCursor, + enableCursor



isEditing
- (BOOL)isEditing

Returns YES if a cell editing session is in progress.

isEnabled
- (BOOL)isEnabled

Indicates whether or not the MiscTableScroll object is enabled for user interaction.

isLazy
- (BOOL)isLazy

Indicates whether or not the MiscTableScroll object is using lazy-mode memory management.

lastVisibleColumn
- (int)lastVisibleColumn

Equivalent to: -1astvisibleSlot:MISC COL BORDER.

lastVisibleRow



- (int)lastVisibleRow

Equivalent to: -1astvisibleSlot:MISC ROW BORDER.

lastVisibleSlot:
- (int)lastVisibleSlot:(MiscBorderType)b

Returns the physical coordinate of the last fully visible slot, if any. If there are two partially visible slots, it returns the
physical coordinate of the first slot. If there is one partially visible slot, it returns the physical coordinate of that slot.
If there are no visible slots (the MiscTableScroll is empty), it returns -1.

makeCellsPerformSelector:
- (intymakeCellsPerformSelector:(SEL)aSel

Calls [self makeCellsPerformSelector:aSel selectedOnly:NO]J.

makeCellsPerformSelector:selectedOnly:
- (intymakeCellsPerformSelector:(SEL)aSel selectedOnly:(BOOL)flag

Calls [self makeCellsPerformSelector:aSel with:0 with:0 selectedOnly: flag].

makeCellsPerformSelector:with:



- (intymakeCellsPerformSelector:(SEL)aSel with:(id)arg1

Ca”S[self makeCellsPerformSelector:aSel with:argl selectedOnly:NO].

makeCellsPerformSelector:with:selectedOnly:
- (int)makeCellsPerformSelector:(SEL)aSel with:(id)argl selectedOnly:(BOOL)flag

Calls [self makeCellsPerformSelector:aSel with:argl with:0 selectedOnly:flag].

makeCellsPerformSelector:with:with:
- (int)makeCellsPerformSelector:(SEL)aSel with:(id)arg1 with:(id)arg2

Calls [self makeCellsPerformSelector:aSel with:argl with:arg2 selectedOnly:NO]J.

makeCellsPerformSelector:with:with:selectedOnly:
- (int)ymakeCellsPerformSelector:(SEL)aSel with:(id)arg1 with:(id)arg2 selectedOnly:(BOOL)flag

Sends the message aSel to the cells in the table. When flag is YES, the message is sent only to selected cells.
When flag is NO, the message is sent to all cells. First the cell is tested with -respondsToselector:asel. If the cell
responds to the message, then the message is sent. Then the return value from the call is inspected. If the cell
returns any non-zero value, the process continues. The first cell that returns O stops the process. The process also
terminates when all cells have been processed. This method returns the number of cells that returned non-zero
values.



maxUniformSizeColumns
- (float)maxUniformSizeColumns

Equivalent to: -maxUniformSizeSlots:MISC COL BORDER.

maxUniformSizeRows
- (float)maxUniformSizeRows

Equivalent to: -maxUniformSizeSlots:MISC ROW BORDER.

maxUniformSizeSlots:
- (floatymaxUniformSizeSlots:(MiscBorderType)b

Returns the current upper bound for user-sizing of uniform-sized border, b.

minUniformSizeColumns
- (float)minUniformSizeColumns

Equivalent to: -minUniformSizeSlots:MISC COL BORDER.



minUniformSizeRows
- (float)minUniformSizeRows

Equivalent to: -minUniformSizeSlots:MISC ROW BORDER.

minUniformSizeSlots:
- (float)yminUniformSizeSlots:(MiscBorderType)b

Returns the current lower bound for user-sizing of uniform-sized border, b.

modifierDragColumns
- (BOOL)modifierDragColumns

Indicates whether or not the command-key must be held down to drag columns. Itis NO by default. Equivalent to:
-modifierDragSlots:MISC COL BORDER.

See also: -border:setModifierDragSlots:,-modifierDragSlots:

modifierDragRows
- (BOOL)modifierDragRows

Indicates whether or not the command-key must be held down to drag rows. Itis YES by default. Equivalent to:
-modifierDragSlots:MISC ROW BORDER.



See also: -border:setModifierDragSlots:,-modifierDragSlots:

modifierDragSlots:
- (BOOL)modifierDragSlots:(MiscBorderType)b

Indicates whether or not the command-key must be held down to drag the slots on this border.

moveColumnFrom:to:
- (void)moveColumnFrom:(int)from_pos to:(int)to_pos

Moves the column at visual position from_pos to visual position to_pos. Equivalent to -border:MISC COL BORDER
moveSlotFrom: from pos to:to pos.

moveRowFrom:to:
- (void)moveRowFrom:(int)from_pos to:(int)to_pos

Moves the row at visual position from_pos to visual position to_pos. Equivalentto -border:MISC ROW BORDER
moveSlotFrom: from pos to:to pos.

numberOfColumns
- (intjnumberOfColumns



Returns the number of columns in the MiscTableScroll object. Equivalent to: -number0fSlots:MISC COL BORDER.

numberOfRows
- (int)numberOfRows

Returns the number of rows in the MiscTableScroll object. This is the number of active rows currently being
displayed. The MiscTableScroll object performs caching on a row-oriented basis. There may be additional rows
allocated, and stored in the cache. Equivalent to: -numberOfSlots:MISC ROW BORDER.

numberOfSelectedColumns
- (unsigned int)numberOfSelectedColumns

Returns the number of selected columns.

numberOfSelectedRows
- (unsigned int)numberOfSelectedRows

Returns the number of selected rows.

numberOfSelectedSlots:
- (unsigned int)numberOfSelectedSlots:(MiscBorderType)b



Returns the number of slots that are selected.

numberOfSlots:
- (int)numberOfSlots:(MiscBorderType)b

Returns the number of slots for the border b.

See also: -addSlot:, -border:removeSlot:, -border:insertSlot:, -numberOfColumns, -numberOfRows

numberOfVisibleColumns
- (int)numberOfVisibleColumns

Returns the number of columns visible in the scrolling display. A column is visible if any part of the column (even a
single pixel) appears in the scrolling display. Equivalent to: -number0OfvisibleSlots:MISC COL BORDER.

numberOfVisibleRows
- (int)numberOfVisibleRows

Returns the number of rows visible in the scrolling display. A row is visible if any part of the row (even a single pixel)
appears in the scrolling display. Equivalent to: -numberOfvisibleSlots:MISC ROW BORDER.

numberOfVisibleSlots:



- (int)numberOfVisibleSlots:(MiscBorderType)b

Returns the number of slots visible in the scrolling display. A slot is visible if any part of the slot (even a single pixel)
appears in the scrolling display.

print:
- (void)print:(id)sender

Prints the MiscTableScroll object, including row and column titles if they are turned on. This method dispatches the
delegate messages -tableScrollWillPrint: and -tableScrollDidPrint: to bracket the actual printing. You can
iImplement those methods to perform special operations before and after printing.

readSelectionFromPasteboard:
- (BOOL)readSelectionFromPasteboard:(NSPasteboard*)pboard

This method is invoked when a service returns some data. If the delegate responds to the
~-tableScroll:readSelectionFromPasteboard: message, it is sent to the delegate. If not, then the dataDelegate is
given the opportunity. If neither responds to the message, -builtinReadSelectionFromPasteboard: IS called.
Returns the results of the subroutine that was called. Override this method in your subclass if you need different
behavior.

See also: -builtinReadSelectionFromPasteboard:, -tableScroll:readSelectionFromPasteboard: (delegate
method), -readSelectionFromPasteboard: (NSServicesRequests), -writeSelectionToPasteboard:types:
(NSServicesRequests)



registerServicesTypes
- (void)registerServicesTypes

If the delegate responds to the -tablescrollRegisterServicesTypes: message, the message is sent to the delegate.
If not, the dataDelegate is tried. If neither responds to the message, -builtinRegisterServicesTypes IS called.

This method is invoked when an instance of MiscTableScroll object is initialized. Override this method in your
subclass if you need different behavior.

See also: -builtinRegisterServicesTypes, -tableScrollRegisterServicesTypes: (delegate method)

removeColumn:
- (void)removeColumn:(int)pos

Deletes column n. Equivalent to: -border:MISC COL BORDER removeSlot:n.

removeRow:
- (void)removeRow:(int)pos

Deletes row n. Equivalent to: -border:MISC_ROW BORDER removeSlot:n.

renewRows:



- (void)renewRows:(int)count

Sets the number of active rows in the MiscTableScroll object to count; does not affect the number of columns. This is
the fastest way to change the size of a MiscTableScroll object when you know the number of rows in advance. See
Usage Tips in the introduction for more details.

See also: -addRow, -addSlot:, -border:removeSlot:, -border:insertSlot:, -removeRow:, -empty,
-emptyAndReleaseCells, -insertRow:

resumeEditing:
- (void)resumeEditing

Resumes a cell editing session that was suspended by -suspendEditing.

retireCell:atRow:column:
- (id)retireCell:(id)cell atRow:(int)row column:(int)co/

Internal method called whenever a cell is being removed from active use. The method must return cell, or a suitable
replacement object to place in the cache. This method provides an opportunity to substitute a different object for cell
before it is placed in the cache. This method also provides an opportunity to reclaim storage when a cell is no longer
active. If the delegate responds to the -tableScroll:retireCell:atRow:column: message, itis sent to the
delegate. If not, the dataDelegate is tried. If the dataDelegate also does not respond to the message, the cell itself
is checked. If none of these objects responds to the message, a built-in default method,
~doRetireCell:atRow:column: IS called. Override this method in your subclass if you need different behavior.



See also: -doRetireCell:atRow:column:, -tableScroll:retireCell:atRow:column: (delegate method)

reviveCell:atRow:column:
- (id)revivecCell:(id)cell atRow:(int)row column:(int)

Internal method called whenever a cell is is being moved into active use. This method is applied to both newly
created cells returned by the -copywithzone: method of the column's cell prototype and cells retrieved from the
cache. If the delegate responds to the -tableScroll:reviveCell:atRow:column: Mmessage, it is sent to the
delegate. If not, the dataDelegate is checked. If neither the delegate nor the dataDelegate respond to the message,
the cell itself is checked. If none of these objects respond to the message, a built-in default method
-~doReviveCell:atRow:column: IS called. Override this method in your subclass if you need different behavior.

See also: -doReviveCell:atRow:column:, -tableScroll:reviveCell:atRow:column: (delegate method)

rowAdjustedSize:
- (float)rowAdjustedSize:(int)row

Returns the current display height of row. Equivalent to: -border:MISC ROW BORDER slotAdjustedSize:row.

rowAtPosition:
- (int)rowAtPosition:(int)pos

Returns the original physical position of the row at the current visual position pos. This is the visual-to-physical



conversion routine. Equivalent to: -border:MISC_ROW BORDER slotAtPosition:pos.

rowCellPrototype:
- (id)rowCellPrototype:(int)row

Returns the cell prototype for row row. Equivalent to: -border :MISC ROW BORDER slotCellPrototype: row.

rowCellType:
- (MiscTableCellStyle)rowCellType:(int)row

Returns the cell type for row row. Equivalent to: -border :MISC ROW BORDER slotCellType: row.

rowlsAutosize:
- (BOOL)rowlsAutosize:(int)row

Returns the state of the autosize flag for row row. Equivalent to: -border:MISC ROW BORDER slotIsAutosize:row.

rowlsSelected:
- (BOOL)rowilsSelected:(MiscCoord_P)row

Returns YES if row is selected, otherwise NO.



rowlsSizeable:
- (BOOL)rowlsSizeable:(int)row

Returns the state of the user-sizeable flag for row row. Equivalent to: -border:MISC ROW BORDER
slotIsSizeable:row

rowlsSorted:
- (BOOL)rowlsSorted:(int)col

Returns YES if row is sorted relative to its neighboring rows. Returns NO otherwise. Equivalent to:
-border:MISC ROW BORDER slotIsSorted:row

rowlsVisible:
- (BOOL)rowlsVisible:(int)row

Returns YES if any part of row is visible in the scrolling display. Returns NO otherwise. Equivalent to:
-border:MISC ROW BORDER slotIsVisible:row

rowMaxSize:
- (float)rowMaxSize:(int)row

Returns the maximum size for row row. Equivalent to: -border:MISC_ROW BORDER slotMaxSize:row.



rowMinSize:
- (float)rowMinSize:(int)row

Returns the minimum size for row row. Equivalent to: -border:MISC_ROW BORDER slotMinSize:row.

rowOrder
- (NSArray*)rowOrder

Equivalent to: -slotOrder:MISC ROW BORDER.

rowOrderAsString
- (NSString*)rowOrderAsString

Equivalent to: -slotOrderAsString:MISC ROW BORDER.

rowPosition:
- (int)rowPosition:(int)row

Returns the current visual position of the row whose original physical position is pos. This is the physical-to-visual
conversion routine. Equivalent to: -border:MISC ROW BORDER slotPosition:pos.



rowsAreSorted
- (BOOL)rowsAreSorted

Returns YES if all rows are sorted. Equivalentto -slotsareSorted:MISC_ROW_ BORDER.

rowSize:
- (float)rowSize:(int)row

Returns the target size for row row. For the actual current display size, use -rowAdjustedSize:. Equivalent to:
-border:MISC ROW BORDER slotSize:row.

rowSizes
- (NSArray*)rowSizes

Equivalent to: -s1otSizes:MISC ROW BORDER.

rowSizesAsString
- (NSString*)rowSizesAsString

Equivalent to: -slotSizesAsString:MISC ROW BORDER.



rowSortDirection:
- (MiscSortDirection)rowSortDirection:(int)n

Equivalent to: -border:MISC ROW BORDER slotSortDirection:n.

rowSortFunction:
- (MiscCompareEntryFunc)rowSortFunction:(int)n

Equivalent to: -border:MISC ROW BORDER slotSortFunction:n,

rowSortType:
- (MiscSortType)rowSortType:(int)n

Equivalent to: -border :MISC ROW BORDER slotSortType:n.

rowSortVector
- (NSArray*)rowSortVector

Equivalent to: -slotSortvector:MISC ROW BORDER.

rowTag:
- (int)rowTag:(int)row



Returns the tag for row row. Equivalent to: -border:MISC_ROW BORDER slotTag:row.

rowTitle:
- (NSString*)rowTitle:(int)row

Returns the title for row row. Equivalent to: -border:MISC ROW BORDER slotTitle:row.

rowTitleMode
- (MiscTableTitleMode)rowTitleMode

Returns the title-mode for row row. Equivalent to: -border:MISC_ROW BORDER slotTitleMode: row.

rowTitlesOn
- (BOOL)rowTitlesOn

Indicates whether or not row titles are displayed. Equivalent to: -s1otTitlesOn:MISC_ROW BORDER.

rowTitlesWidth
- (float)rowTitlesWidth

Equivalent to: -slotTitlesSize:MISC ROW BORDER.



rowWithTag:
- (int)rowWithTag:(int)x

Returns the index of the first row with tag x, or -1 if no row has tag x.

scrollCellToVisibleAtRow:column:
- (void)scrollCellToVisibleAtRow:(int)row column:(int)col

Scrolls the display as necessary until the cell at position row, col is visible.

scrollColumnToVisible:
- (void)scrollColumnToVisible:(int)co/

Scrolls the display as necessary until col is visible.

scrollRowToVisible:
- (void)scrollRowToVisible:(int)row

Scrolls the display as necessary until row is visible.



scrollSelectionToVisible
- (void)scrollSelectionToVisible

Scrolls the display as necessary until the selection is visible.

selectAll:
- (void)selectAll:(id)sender

Calls [self selectAllRows] followed by [self sendActionIfEnabled].

selectAllIColumns
- (void)selectAllColumns

Equivalent to: -selectAllSlots:MISC_COL_ BORDER.

selectAllIRows
- (void)selectAllRows

Equivalent to: -selectAllSlots:MISC_ROW BORDER.

selectAllSlots:
- (void)selectAllSlots:(MiscBorderType)b



Selects all the slots in border b. Does not send the action to the target.

See also: -selectAll:

selectColumn:byExtension:
- (void)selectColumn:(MiscCoord_P)col byExtension:(BOOL)flag

Equivalent to: -border:MISC COL BORDER selectSlot:col byExtension:flag.

selectColumn:
- (void)selectColumn:(MiscCoord_P)col

Equivalent to: -selectColumn: col byExtension:NO.

selectColumns:byExtension:
- (void)selectColumns:(NSArray*)cols byExtension:(BOOL)flag

Equivalent to: -border:MISC COL BORDER selectSlots:COIS byExtension: flag.

selectColumns:
- (void)selectColumns:(NSArray*)cols



Equivalent to: -selectColumns:COIS byExtension:NO,

selectColumnTags:byExtension:
- (void)selectColumnTags:(NSArray*)tags byExtension:(BOOL)flag

Equivalent to: -border:MISC COL BORDER selectSlotTags:tags byExtension: flag.

selectColumnTags:
- (void)selectColumnTags:(NSArray*)tags

Equivalent to: -selectColumnTags: tags byExtension:NO.

selectedBackgroundColor
- (NSColor*)selectedBackgroundColor

Returns the current selectedBackgroundColor.

selectedCell
- (id)selectedCell

Returns the cell at the intersection of -selectedColumn and -selectedrow Or nil if there is no selected cell. This
method really only has meaning in eager-mode, though it can be used in lazy-mode as well.



selectedColumn
- (MiscCoord_P)selectedColumn

Equivalent to: -selectedSlot:MISC COL_ BORDER.

selectedColumns
- (NSArray*)selectedColumns

Equivalent to: -selectedSlots:MISC COL BORDER.

selectedColumnTags
- (NSArray*)selectedColumnTags

Equivalent to: -selectedSlotTags:MISC COL BORDER.

selectedRow
- (MiscCoord_P)selectedRow

Equivalent to: -selectedSlot:MISC ROW BORDER.



selectedRows
- (NSArray*)selectedRows

Equivalent to: -selectedSlots:MISC ROW BORDER.

selectedRowTags
- (NSArray*)selectedRowTags

Equivalent to: -selectedSlotTags:MISC ROW BORDER.

selectedSlot:
- (MiscCoord_P)selectedSlot:(MiscBorderType)b

Returns the index of the currently selected slot, or -1 if no slots are selected.

selectedSlots:
- (NSArray*)selectedSlots:(MiscBorderType)b

Returns an array of NSNumber objects containing indexes of all currently selected slots.

selectedSlotTags:
- (NSArray*)selectedSlotTags:(MiscBorderType)b



Returns an array of NSNumber objects containing the tags of all currently selected slots. This method is useful in
conjunction with -border:selectSlotTags: t0 save and restore the user's selection when you have tags that uniquely

identify the slots.

selectedTextColor
- (NSColor*)selectedTextColor

Returns the current selectedTextColor.

selectionChanged
- (void)selectionChanged

Invalidates those portions of the display which need to be redrawn in order to reflect the current selection. When the
selection is modified programmatically or via user-interaction this method is called automatically to reflect the new
selection. You need never call this method directly, but subclasses may want to override it.

selectionMode
- (MiscSelectionMode)selectionMode

Returns the current setting of the selection mode.



selectRow:byExtension:
- (void)selectRow:(MiscCoord_P)row byExtension:(BOOL)flag

Equivalent to: -border:MISC ROW BORDER selectSlot:row byExtension:flag.

selectRow:
- (void)selectRow:(MiscCoord_P)row

Equivalent to: -selectRow: row byExtension:NO.

selectRows:byExtension:
- (void)selectRows:(NSArray*)rows byExtension:(BOOL)flag

Equivalent to: -border:MISC ROW BORDER selectSlots:lOWS byExtension:flag.

selectRows:
- (void)selectRows:(NSArray*)rows

Equivalent to: -selectRows:fOWS byExtension:NO.

See also: *bhorder:selectSlots:, +selectColumns:, *selectRows:byExtension:



selectRowTags:byExtension:
- (void)selectRowTags:(NSArray*)tags byExtension:(BOOL)flag

Equivalent to: -border:MISC ROW BORDER selectSlotTags:tags byExtension: flag.

See also: *border:selectSlotTags:, +selectColumnTags:, *selectRowTags:

selectRowTags:
- (void)selectRowTags:(NSArray*)tags

Equivalent to: -selectRowTags: tags byExtension:NO.

See also: *border:selectSlotTags:, +selectColumnTags:, *selectRowTags:byExtension:

sendAction
- (BOOL)sendAction

Sends the action message to the target object. Implemented via -sendaction:to:. Returns YES if the action is
successfully sent, otherwise returns NO.

sendAction:to:
- (BOOL)sendAction:(SEL)theAction to:(id)theTarget

Uses the NSApplication class's -sendaction:to:from: method to send the message theAction to the object theTarget



from the MiscTableScroll object itself. Returns YES if the action is successfully sent, otherwise returns NO.

sendAction:to:forAllCells:
- (void)sendAction:(SEL)aSelector to:(id)anObject forAllCells:(BOOL)flag

Sends the message aSelector to anObject for each cell in the table.

sendActionlfEnabled
- (BOOL)sendActionlfEnabled

If [self isEnabled] returns YES then [self sendaction] is called. Returns YES if the action is successfully sent,
otherwise returns NO.

sendDoubleAction
- (BOOL)sendDoubleAction

Sends the doubleAction message to the doubleTarget object. Returns YES if the action is successfully sent,
otherwise returns NO.

sendDoubleActionlfEnabled
- (id)sendDoubleActionifEnabled



If [self isEnabled] returns YES then [self sendDoubleAction] iS called. Returns YES if the action is successfully
sent, otherwise returns NO.

setAction:
- (void)setAction:(SEL)new_sel

Sets the action method to new_sel. The action message is sent to the target upon a single mouse click. The
argument of an action method is the table scroll.

setAutoSortColumns:
- (void)setAutoSortColumns:(BOOL)flag

Equivalent to: -border:MISC COL BORDER setAutoSortSlots:flag.

setAutoSortRows:
- (void)setAutoSortRows:(BOOL)flag

Equivalent to: -border:MISC ROW BORDER setAutoSortSlots:flag.

setBackgroundColor:
- (void)setBackgroundColor:(NSColor*)value



Sets the backgroundColor. The backgroundColor is used to initialize new cells, and also to paint the background of
areas that are not covered by cells of the table. By default, this is the value returned by +defaultBackgroundColor.

See also: +defaultBackgroundColor

setColor:
- (void)setColor:(NSColor*)value

Equivalent to: -setBackgroundColor: value.

setColumn:autosize:
- (void)setColumn:(int)col autosize:(BOOL)flag

Sets the autosize flag for column col. Equivalent to: -border:MISC COL BORDER setSlot:col autosize:flag.

setColumn:cellPrototype:
- (void)setColumn:(int)col cellPrototype:(id)cell

Sets the cell prototype for column col to cell. Equivalent to: -border:MISC COL BORDER setSlot:col
cellPrototype:cell.

setColumn:cellType:



- (void)setColumn:(int)col cellType:(MiscTableCellStyle)type

Sets the cell type for column col to type. Equivalent to: -border:MISC_COL BORDER setSlot:col cellType:type.

setColumn:maxSize:
- (void)setColumn:(int)col maxSize:(float)size

Sets the maximum size of column col to size. Equivalent to: -border:MISC COL BORDER setSlot:col maxSize:size.

setColumn:minSize:
- (void)setColumn:(int)col minSize:(float)size

Sets the minimum size of column col to size. Equivalent to: -border:MISC COL BORDER setSlot:col minSize:size.

setColumn:size:
- (void)setColumn:(int)col size:(float)size

Sets the target size of column col to size. Equivalent t0: -border:MISC_COL BORDER setSlot:col size:size.

setColumn:sizeable:
- (void)setColumn:(int)col sizeable:(BOOL)flag



Sets the user-sizeable flag for column col to flag. Equivalent to: -border:MISC COL BORDER setSlot:col
sizeable: flagq.

setColumn:sortDirection:
- (void)setColumn:(int)n sortDirection:(MiscSortDirection)x

Equivalent to: -border:MISC COL BORDER setSlot:n sortDirection:x.

setColumn:sortFunction:
- (void)setColumn:(int)n sortFunction:(MiscCompareEntryFunc)x

Equivalent to: -border:MISC COL BORDER setSlot:n sortFunction:x.

setColumn:sortType:
- (void)setColumn:(int)n sortType:(MiscSortType)x

Equivalent to: -border:MISC COL BORDER setSlot:n sortType:x.

setColumn:tag:
- (void)setColumn:(int)col tag:(int)tag

Sets the tag for column col to tag. Equivalent to: -border :MISC COL BORDER setSlot:col tag:tag.



setColumn:title:
- (void)setColumn:(int)col title:(NSString*)title

Sets the title for column col to title. Equivalent to: -border:MISC COL BORDER setSlot:col title:title.

setColumnOrder:
- (BOOL)setColumnOrder:(NSArray*)list

Equivalent to: -border:MISC COL BORDER setSlotOrder:list

setColumnOrderFromsString:
- (BOOL)setColumnOrderFromString:(NSString*)s

Equivalent to: -border:MISC COL BORDER setSlotOrderFromString:s.

setColumnSizes:
- (BOOL)setColumnSizes:(NSArray*)list

Equivalent to: -border:MISC COL BORDER setSlotSizes:list.



setColumnSizesFromsString:
- (BOOL)setColumnSizesFromString:(NSString*)s

Equivalent to: -border:MISC COL BORDER setSlotSizesFromString:s.

setColumnSortVector:
- (void)setColumnSortVector:(NSArray*)v

Equivalent to: -border:MISC COL BORDER setSlotSortVector:v

setColumnTitleMode:
- (void)setColumnTitleMode:(MiscTableTitleMode)x

Sets the title-mode for column col to x. Equivalent to: -border:MISC COL BORDER setSlot:col titleMode:x.

setColumnTitlesHeight:
- (void)setColumnTitlesHeight:(float)height

Equivalent to: -border:MISC COL BORDER setSlotTitlesSize:size.

setColumnTitlesOn:
- (BOOL)setColumnTitlesOn:(BOOL)on_off



Turns the column titles on or off. When on_offis YES, column titles will be displayed. When on_off is NO, column
titles will not be displayed. Column titles are displayed by default. Equivalent to: -border:MISC COL BORDER
setSlotTitlesOn:on off

setCompareSlotFunction:
- (void)setCompareSlotFunction:(MiscCompareSlotFunc)f

Makes f the slot comparison function to be used for sorting. It must conform to the following prototype from
MiscTableTypes.h:

typedef int (*MiscCompareSlotFunc) ( int slotl, int slot2, MiscSlotSortInfo* );

The function must return an integer value which is: (a) less than zero if slot1 should come before slot2, or (b) equal to
zero if slotl should sort equally with slot2, or (c) greater than zero if slotl should come after s/lot2. This function is
responsible for comparing the cells of the two slots in the order defined by the slotSortVector, or visual order if no
explicit slotSortVector has been set. This function is also responsible for applying the sort direction to the individual
cell-wise comparisons. This function is also responsible for calling user-installed custom slot sorting functions, or
interpreting and applying the sort-type for slots that do not have a custom function. The default, built-in
Implementation of this function is MiscbefaultCompareSlotFunc.

See also: -border:setSlot:sortDirection:, -border:setSlot:sortFunction:, -border:setSlot:sortType:,
-border:setSlotSortVector:, -compareSlotFunction, -sortinfoDone:, -sortinfolnit:border:



setCornerTitle:
- (void)setCornerTitle:(NSString*)s

Sets the title for the corner cell.

setCursorColumn:
- (void)setCursorColumn:(MiscCoord_P)col

Equivalent to: -border:MISC COL BORDER setCursorSlot:col.

setCursorRow:
- (void)setCursorRow:(MiscCoord_P)row

Equivalent to: -border:MISC ROW BORDER setCursorSlot:row.

setDataDelegate:
- (void)setDataDelegate:(id)obj

Makes obj the data delegate for the MiscTableScroll object. Does not retain oby.

See also: -setDelegate:, -setLazy:



setDelegate:
- (void)setDelegate:(id)obj

Makes obj the delegate for the MiscTableScroll object. Does not retain obj.

See also: -setDataDelegate:

setDoubleAction:
- (void)setDoubleAction:(SEL)new_sel

Sets the double-action method to new_sel. The double-action message is sent to the doubleTarget upon a double
mouse click. The argument of an action method is the table scroll.

setDoubleTarget:
- (void)setDoubleTarget:(id)obj

Makes obj the doubleTarget of the MiscTableScroll object. Does not retain oby.

setDraggableColumns:
- (void)setDraggableColumns:(BOOL)flag

Enables or disables user-dragging of columns. When flag is YES, columns will be user-draggable. When flag is NO,
columns will not be user-draggable. The column titles must be displayed to enable the user to drag columns.
Equivalent to: -border:MISC COL BORDER setDraggableSlots: flag.



setDraggableRows:
- (void)setDraggableRows:(BOOL)flag

Enables or disables user-dragging of rows. When flag is YES, rows will be user-draggable. When flag is NO, rows
will not be user-draggable. The row titles must be displayed to enable the user to drag rows. Equivalent to:
-border:MISC ROW BORDER setDraggableSlots: flag.

setDrawClippedText:
- (void)setDrawClippedText:(BOOL)flag

When flag is YES, the MiscTableScroll object will use clipping rectangles to draw partially visible text in cells that
respond YES to the -ownerbraw message. When flag is NO, the MiscTableScroll object will simply not draw
partially visible text that would require clipping rectangles for cells that respond YES to the -ownerbDraw message.

This is a drawing performance optimization. The clipping rectangles are quite slow (especially noticable on older,
slower CPUs). Drawing clipped text is disabled by default. You must send this message with flag equal to YES to
enable partially visible text to be drawn. If the new setting is different than the existing setting, [self
setNeedsDisplay:YES] IS called.

setEnabled:
- (void)setEnabled:(BOOL)flag

Enables or disables user-interaction with the MiscTableScroll object. The only feature affected by this flag is the



dispatch of the action and doubleAction. When flag is YES, action and doubleAction are sent as appropriate. When
flag is NO, neither messsage is sent. All other operations are unaffected and remain available. These include,
pasteboard and service operations, selection, column reordering & sizing, etc.

setFirstVisibleColumn:
- (void)setFirstVisibleColumn:(int)col

Equivalent to: -border:MISC COL BORDER setFirstVisibleSlot:col.

setFirstVisibleRow:
- (void)setFirstVisibleRow:(int)row

Equivalent to: -border:MISC ROW BORDER setFirstVisibleSlot:row.

setFont:
- (void)setFont:(NSFont*)newFont

Sets the font for the MiscTableScroll object. The font is used to initialize new cells in the table. If rows are uniformly
sized, the uniform row size is adjusted proportionately based on the sizes of the old font and the new font. Then all
the cells are updated. If the cells respond to the -setownerFont: message, that message is sent. Otherwise the
-setFont: message is tried. Then the -tablescroll:fontChangedFrom:to: message is sent to the delegate if the
delegate responds to it. Finally, the display is invalidated.

See also: -tableScroll:fontChangedFrom:to: (delegate method), -setOwnerFont: (MiscTableCell), -setFont:



(NSCell, MiscTableCell)

setLastVisibleColumn:
- (void)setLastVisibleColumn:(int)col

Equivalent to: -border:MISC COL BORDER setLastVisibleSlot:col.

setLastVisibleRow:
- (void)setLastVisibleRow:(int)row

Equivalent to: -border:MISC ROW BORDER setLastVisibleSlot:row.

setLazy:
- (void)setLazy:(BOOL)flag

Enables or disables lazy-mode memory management. When flag is YES, the MiscTableScroll object will use lazy-
mode memory management, asking the delegate, and then if necessary the dataDelegate to provide the cells in the
body of the table. When flag is NO, the MiscTableScroll object will use eager-mode memory management,
maintaining a dense, 2-D array of cell pointers, one pointer for each cell in the table, and caching cells on a row-wise
basis. MiscTableScroll uses eager-mode memory management by default. See Usage Tips, and Lazy vs. Eager,
in the introduction for more details.

See also: -dataDelegate, -isLazy, -setDataDelegate:



setMaxUniformSizeColumns:
- (void)setMaxUniformSizeColumns:(float)size

Equivalent to: -border:MISC COL BORDER setMaxUniformSizeSlots:

setMaxUniformSizeRows:
- (void)setMaxUniformSizeRows:(float)size

Equivalent to: -border:MISC ROW BORDER setMaxUniformSizeSlots:

setMinUniformSizeColumns:
- (void)setMinUniformSizeColumns:(float)size

Equivalent to: -border:MISC COL BORDER setMinUniformSizeSlots:

setMinUniformSizeRows:
- (void)setMinUniformSizeRows:(float)size

Equivalent to: -border:MISC ROW BORDER setMinUniformSizeSlots:

setModifierDragColumns:

size.

size.

size.

size.



- (void)setModifierDragColumns:(BOOL)flag

Sets whether or not the command-key must be held down to drag columns. By default, columns require the
command-key to perform selection. Equivalent to -border:MISC COL BORDER setModifierDragSlots: flag.

setModifierDragRows:
- (void)setModifierDragRows:(BOOL)flag

Sets whether or not the command-key must be held down to drag rows. By default, rows do not require the
command-key to perform selection. Equivalent to -border:MISC ROW BORDER setModifierDragSlots:flag.

setRow:autosize:
- (void)setRow:(int)row autosize:(BOOL)flag

Sets the autosize flag for row row. Equivalent to: -border:MISC_ROW BORDER setSlot:row autosize:flag.

setRow:cellPrototype:
- (void)setRow:(int)row cellPrototype:(id)cell

Sets the cell prototype for row row to cell. Currently, only column cell prototypes are used. Equivalent to:
-border:MISC ROW BORDER setSlot:row cellPrototype:cell.



setRow:cellType:
- (void)setRow:(int)row cellType:(MiscTableCellStyle)type

Sets the cell type for row row to type. Equivalent to: -border:MISC ROW BORDER setSlot:row cellType:type.

setRow:maxSize:
- (void)setRow:(int)row maxSize:(float)size

Sets the maximum size of row row to size. Equivalent to: -border:MISC_ROW BORDER setSlot:row maxSize:size.

setRow:minSize:
- (void)setRow:(int)row minSize:(float)size

Sets the minimum size of row row to size. Equivalent to: -border :MISC ROW BORDER setSlot:row minSize:size.

setRow:size:
- (void)setRow:(int)row size:(float)size

Sets the target size of row row to size. Equivalent to: -border:MISC ROW BORDER setSlot:row size:size.

setRow:sizeable:
- (void)setRow:(int)row sizeable:(BOOL)flag



Sets the user-sizeable flag for row row to flag. Equivalent to: -border:MISC ROW BORDER setSlot:row
sizeable: flag.

setRow:sortDirection:
- (void)setRow:(int)n sortDirection:(MiscSortDirection)x

Equivalent to: -border:MISC ROW BORDER setSlot:n sortDirection:x.

setRow:sortFunction:
- (void)setRow:(int)n sortFunction:(MiscCompareEntryFunc)x

Equivalent to: -border:MISC ROW BORDER setSlot:n sortFunction:x.

setRow:sortType:
- (void)setRow:(int)n sortType:(MiscSortType)x

Equivalent to: -border:MISC ROW BORDER setSlot:n sortType:x.

setRow:tag:
- (void)setRow:(int)row tag:(int)tag



Sets the tag for row row to tag. Equivalent t0: -border:MISC ROW BORDER setSlot:row tag:tag.

setRow:title:
- (void)setRow:(int)row title:(NSString*)title

Sets the title for row row to title. Equivalent to: -border:MISC ROW BORDER setSlot:row title:title.

setRowOrder:
- (BOOL)setRowOrder:(NSArray*)list

Equivalent to: -border:MISC ROW BORDER setSlotOrder:list.

setRowOrderFromString:
- (BOOL)setRowOrderFromString:(NSString*)s

Equivalent to: -border:MISC ROW BORDER setSlotOrderFromString:s.

setRowSizes:
- (BOOL)setRowsSizes:(NSArray*)list

Equivalent to: -border:MISC ROW BORDER setSlotSizes:list.



setRowSizesFromsString:
- (BOOL)setRowSizesFromString:(NSString*)s

Equivalent to: -border:MISC ROW BORDER setSlotSizesFromString:s.

setRowSortVector:
- (void)setRowSortVector:(int const*)v

Equivalent to: -border:MISC ROW BORDER setSlotSortVector:v

setRowTitleMode:
- (void)setRowTitleMode:(MiscTableTitleMode)x

Sets the title-mode for row row to x. Equivalent to: -border:MISC ROW BORDER setSlot:row titleMode:x.

setRowTitlesOn:
- (BOOL)setRowTitlesOn:(BOOL)on_off

Turns the row titles on or off. When on_off is YES, row titles will be displayed. When on_off is NO, row titles will not
be displayed. Row titles are not displayed by default. Equivalent to: -border:MISC_ROW BORDER
setSlotTitlesOn:on off.



setRowTitlesWidth:
- (void)setRowTitlesWidth:(float)size

Equivalent to: -border:MISC ROW BORDER setSlotTitlesSize:size.

setSelectedBackgroundColor:
- (void)setSelectedBackgroundColor:(NSColor*)value

Sets the selectedBackgroundColor for the MiscTableScroll object. The selectedBackgroundColor is used to initialize
new cells added to the table. This information is propagated to the cells of the table as follows. If the cells respond
to the -setownerselectedBackgroundColor: message, that message is sent, else if the cells respond to the
-setSelectedBackgroundColor: message, that message is sent instead. If the cells do not respond to either of
these messages, no message is sent to the cell. Finally, the display is invalidated.

See also: -setSelectedBackgroundColor: (MiscTableCell), -setOwnerSelectedBackgroundColor: (MiscTableCell)

setSelectedTextColor:
- (void)setSelectedTextColor:(NSColor*)value

Sets the selectedTextColor for the MiscTableScroll object. The selectedTextColor is used to initialize new cells added
to the table. This message is also propagated to the existing cells of the table as follows. If the cells respond to the
-setOwnerSelectedTextColor: message, that message is sent, else if the cells respond to the
-setSelectedTextColor: message, that message is sent. If the cells do not respond to either of these messages, no



message is sent to the cell. Finally, the display is invalidated.

See also: -setSelectedTextColor: (MiscTableCell), -setOwnerSelectedTextColor: (MiscTableCell)

setSelectionMode:
- (void)setSelectionMode:(MiscSelectionMode)x

Sets the selection mode for the MiscTableScroll object. The selection mode, x, can be any of the following:

MISC LIST MODE,
MISC RADIO MODE,
MISC_HIGHLIGHT MODE

The modes each correspond to the similarly named selection modes declared in the NSMatrix class. The
MiscTableScroll object extends the highlight mode selection by implementing the Alternate-key modifier in the same
fashion that it works in list mode.

setSizeableColumns:
- (void)setSizeableColumns:(BOOL)flag

Enables or disables user-sizing of columns. Equivalent to: -border:MISC COL BORDER setSizeableSlots:flag.

setSizeableRows:
- (void)setSizeableRows:(BOOL)flag



Enables or disables user-sizing of rows. Equivalent to: -border:MISC_ROW BORDER setSizeableSlots:flag.

setTag:
- (void)setTag:(int)x

Sets the tag of the MiscTableScroll object to x.

See also: -border:setSlot:tag:, -setColumn:tag:, -setRow:tag:, -tag

setTarget:
- (void)setTarget:(id)obj

Makes obj the object which will receive the action message whenever there is a single mouse-click on the body of the
table. Does not retain obyj.

setTextColor:
- (void)setTextColor:(NSColor*)value

Sets the textColor for the MiscTableScroll object. The textColor is used to initialize new cells added to the table.

The message is propagated to existing cells as follows. If the cell responds to the -setOwnerTextColor: message,
that message is sent, else if the cell responds to the -setTextColor: message, that message is sent. If the cell does
not respond to either of these messages, no message is sent to the cell. Finally, the display is invalidated.



See also: -setOwnerTextColor: (MiscTableCell), -setTextColor: (NSCell, MiscTableCell)

setUniformSizeColumns:
- (void)setUniformSizeColumns:(float)uniform_size

Sets or clears the uniform-size property for columns. When uniform_size is a non-zero value, all columns will have
the same, fixed (uniform) size. When uniform_size is zero, each column can be assigned sizes individually. By
default, columns are not uniformly sized. Equivalent to: -border:MISC_COL BORDER

setUniformSizeSlots:uniform size.

setUniformSizeRows:
- (void)setUniformSizeRows:(float)uniform_size

Sets or clears the uniform-size property for rows. When uniform_size is a non-zero value, all rows will have the
same, fixed (uniform) size. When uniform_size is zero, each row can be assigned sizes individually. By default, row
are uniformly sized. Equivalent to: -border:MISC_ROW BORDER setUniformSizeSlots:uniform size.

sizeableColumns
- (BOOL)sizeableColumns

Indicates whether or not columns can be resized by the user. Equivalent to: -sizeableSlots:MISC COL BORDER.



sizeableRows
- (BOOL)sizeableRows

Indicates whether or not rows can be resized by the user. Equivalent to: -sizeableSlots:MISC_ROW BORDER.

sizeableSlots:
- (BOOL)sizeableSlots:(MiscBorderType)b

Indicates whether or not the user can resize the slots on border b.

sizeToCells
- (void)sizeToCells

Instructs the MiscTableScroll object to adjust the frames of its subviews.

See also: -addRow

sizeToFit
- (void)sizeToFit

Calculates the size of every cell in the MiscTableScroll object using -cel11size:. Then uses the maximum size for
each slot to set the size of the slot. For uniform-size borders, the size is set to the maximum size of all slots. Finally,
this method calls -sizeTocel1s to finish the process of updating the frames of all the subviews.



slotsAreSorted:
- (BOOL)slotsAreSorted:(MiscBorderType)b

Returns YES if the slots are sorted, NO otherwise.

See also: -border:slotilsSorted:, -border:sortSlot:, -sortSlots:

slotOrder:
- (NSArray*)slotOrder:(MiscBorderType)b

Returns an array of NSNumber objects containing the current slot order. The list is organized in physical (original)
slot order. Each value in the list is the current visual position of the corresponding slot. In other words, returns the
physical to visual mapping. This method is useful for saving the user's slot order preference.

List also encodes the sort direction. Negative values indicate slots that are sorted in descending order. The
negative value is computed by using the 'C' bitwise complement operator (~).

See also: -border:setSlotOrder:, -border:setSlotSizes:, -slotOrderAsString:

slotOrderAsString:
- (NSString*)slotOrderAsString:(MiscBorderType)b

Returns a string representation of the array returned by -s1otorder:. This is useful for saving and restoring user slot



order preferences.

See also: -border:setSlotOrder:, -slotOrder:

slotSizes:
- (NSArray*)slotSizes:(MiscBorderType)b

Returns an array of NSNumber objects containing the sizes of all slots. The list is organized in physical (original) slot
order. The values are the sizes of the correspond slot. This method is useful for saving the user's slot size
preferences.

See also: -border:setSlotSizes:, -slotOrder:, -slotSizesAsString:

slotSizesAsString:
- (NSString*)slotSizesAsString:(MiscBorderType)b

Returns a string representation of the array returned by -siotsizes:. This is useful for saving and restoring user slot
size preferences.

See also: -slotSizes:

slotSortVector
- (NSArray*)slotSortVector:(MiscBorderType)b



Returns the current slotSortVector for border b, which is an array of NSNumber objects.

See also: -border:setSlotSortVector:

slotTitleMode:
- (MiscTableTitleMode)slotTitleMode:(MiscBorderType)b

Returns the title-mode for slot.

slotTitlesOn:
- (BOOL)slotTitlesOn:(MiscBorderType)b

Indicates whether or not the titles for border b are displayed.

slotTitlesSize:
- (float)slotTitlesSize:(MiscBorderType)b

Returns either the height of column titles or the width of row titles, based upon b.

sortColumn:
- (void)sortColumn:(int)n



Re-sorts a single column. Equivalent to: -border:MISC COL BORDER sortSlot:n.

See also: -border:sortSlot:, -sortSlots:

sortColumns
- (void)sortColumns

Equivalent to: -sortSlots:MISC COL BORDER.

See also: -sortSlots:

sortinfoDone:
- (void)sortinfoDone:(MiscSlotSortinfo*)sortinfo

This method reclaims temporary storage held in the sortinfo structure. You must call this method whenever you are
finished using a sortinfo object.

See also: -sortinfolnit:border:

sortinfolnit:border:
- (void)sortinfolnit:(MiscSlotSortinfo*)sortinfo border:(MiscBorderType)b

This method precomputes the sorting information needed by the sorting methods. If you call any of the sorting
methods that accept an info: argument, you must initialize the sortinfo structure by calling this method first. After



you have finished using the sortinfo structure, you must reclaim the storage by passing the sortinfo structure to
-sortInfobone:. NOTE: The sortinfo structure stores the current sorting information for the table. Any changes
made to the sorting environment after the sortinfo structure has been initialized will not affect the contents of the
sortinfo structure, and therefore will not affect comparisons made using the sortinfo structure. Actions that affect the
sorting environment include: rearranging columns/rows, installing a slotSortVector, installing a custom slot comparison
function, changing the sort-type or sort-direction of a slot. Actions which alter the structure of the "other" border (like
removing columns/rows) can potentially cause catastrophic failures.

See also: -border:compareSlots::info:

sortRow:
- (void)sortRow:(int)n

Re-sorts a single row. Equivalent to: -border:MISC ROW BORDER sortSlot:n.

See also: -border:sortSlot:, -sortSlots:

sortRows
- (void)sortRows

Equivalent to: -sortSlots:MISC_ROW BORDER.

See also: -sortSlots:



sortSlots:
- (void)sortSlots:(MiscBorderType)b

Sorts the slots in border b.

See also: -border:setSlot:sortDirection:, -border:setSlot:sortFunction:, -border:setSlot:sortType:,
-border:setSlotSortVector:, -setCompareSlotFunction:

stateAtRow:column:
- (int)stateAtRow:(int)row column:(int)col

Returns the value of sending a -state message to the cell at row, col. If the table is lazy, the delegate, and then the
dataDelegate are given the opportunity to reply to the -tableScroll:stateAtRow:column: message. This gives lazy
tables an opportunity to return this information directly, without the overhead of preparing and formatting a cell. If the
table is not lazy, or the delegate and dataDelegate do not respond to the -tableScroll:doubleValueAtRow:column:
message, then the cell is retrieved via -cel1atRow:column:. [f the cell responds to the -state message, that value is
returned; otherwise, zero is returned.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -state (NSButtonCell), -tableScroll:stateAtRow:column:
(delegate method)

stringForNSStringPboardType
- (NSString*)stringForNSStringPboardType

Returns a string of the selected cells as ASCII text. Columns are separated by tab characters (ASCII decimal 9).



Rows are terminated with newline characters (ASCII decimal 10). The text is retrieved from the cells by first trying
the -tit1e message. If the cell does not respond to the -tit1e message, then the -stringvalue message is tried.
Each tab character in the text retrieved from the cell is replaced with a single space character (ASCII decimal 32)
before the text is written to string. The selection is written in the current (visual) ordering. Called from
~builtinStringForPboardType:, and -stringForNSTabularTextPBoardType. Override this method in your subclass
if you want different behavior.

See also: -builtinStringForPboardType:, -stringForNSTabularTextPBoardType

stringForNSTabularTextPBoardType
- (NSString*)stringForNSTabularTextPBoardType

Calls [self stringForNSStringPboardType]. Called from -builtinStringForPboardType:. Override this method
in your subclass if you want different behavior.

See also: -builtinStringForPboardType:, -stringForNSStringPboardType

stringValueAtRow:column:
- (NSString*)stringValueAtRow:(int)row column:(int)col

Returns the value of sending a -stringvalue message to the cell at row, col. If the table is lazy, the delegate, and
then the dataDelegate are given the opportunity to reply to the -tableScroll:stringvalueAtRow:column: Message.
This gives lazy tables an opportunity to return this information directly, without the overhead of preparing and
formatting a cell. If the table is not lazy, or the delegate and dataDelegate do not respond to the



~tableScroll:doublevValueAtRow:column: message, then the cell is retrieved via -cel1AtRow:column:. [f the cell
responds to the -stringvalue message, that value is returned; otherwise, zero (a NULL pointer) is returned. NOTE:
If you are using NSButtonCells, you probably want -tit1eatRow:column:, not this method.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -tableScroll:stringValueAtRow:column: (delegate method),
-titleAtRow:column:

suspendEditing
- (void)suspendEditing

Internal method that temporarily suspends the current cell editing session (if any), while slots are being resized or
rearranged. The editing session is resumed by -resumeEditing. These calls nest. These methods do nothing if

cell editing is not in progress.

tag
- (int)tag

Returns the tag of the MiscTableScroll object.

See also: -border:slotTag:, -columnTag:, -rowTag:, -setTag:

tagAtRow:column:
- (int)tagAtRow:(int)row column:(int)co/



Returns the value of sending a -tag message to the cell at row, col. If the table is lazy, the delegate, and then the
dataDelegate are given the opportunity to reply to the -tablescroll:tagAtRow:column: message. This gives lazy
tables an opportunity to return this information directly, without the overhead of preparing and formatting a cell. If the
table is not lazy, or the delegate and dataDelegate do not respond to the -tableScroll:doublevValueAtRow:column:
message, then the cell is retrieved via -cel1atRow:column:. [f the cell responds to the -tag message, that value is
returned; otherwise, zero is returned.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -tableScroll:tagAtRow:column: (delegate method)

target
- (id)target

Returns a pointer to the object which receives the action message on a single mouse-click event.

textColor
- (NSColor*)textColor

Returns the current textColor.

textDidBeginEditing:
- (void)textDidBeginEditing:(NSNotification*)notification

Sends the notification NscontrolTextDidBeginEditingNotification Which the delegates are automatically registered



to receive.

See also: * NSControlTextDidBeginEditing (NSControl notification)

textDidChange:
- (void)textDidChange:(NSNotification*)notification

Sends the notification NscontrolTextDidChangeNotification Which the delegates are automatically registered to
receive.

See also: * NSControlTextDidChangeNotification (NSControl notification)

textDidEndEditing:
- (void)textDidEndEditing:(NSNotification*)notification

Invoked by the NSText object, when text editing ends. If the text changed then attempts to set the cell's new value by
sending -tableScroll:setStringValue:atRow:column: tO the delegate or dataDelegate. If neither responds, then
sends -setstringvalue: to the cell instead. It then sends the delegate notification
~tableScroll:didEdit:atRow:column:, SOrts the data if auto-sorting is enabled, and finally sends the notification
NSControlTextDidEndEditingNotification, Which the delegate is automatically registered to receive. Lastly, it
checks to see if one of return, tab, or shift-tab caused the editing to end. If the cause was return, then the action is
sent to the target, else if it was tab or shift-tab, then -getNext:editRow:column: IS invoked to determine which cell
should be edited next and editing is initiated for that cell using -editcellatRow:column:. If no cellis eligible for
editing, then -selectNextKeyView: Of -selectPreviousKeyView: IS Sent to the window as appropriate.



You should never need to call this method manually, though subclasses may want to override it.

See also: * NSControlTextDidEndEditingNotification (NSControl notification)

textShouldBeginEditing:
- (BOOL)textShouldBeingEditing:(NSText*)sender

Invoked automatically during editing to determine if it is okay to edit the cell. Sends
-control:textShouldBeginEditing: t0 the delegate or dataDelegate. If neither responds then returns YES.

See also: * control:textShouldBeginEditing: (NSControl delegate), * textShouldBeginEditing: (NSText delegate)

textShouldEndEditing:
- (BOOL)textShouldEndEditing:(NSText*)sender

Invoked automatically during editing to determine if it is okay to end editing. Sends
-control:textShouldEndEditing: to the delegate or dataDelegate. If neither responds then returns YES.

See also: * control:textShouldEndEditing: (NSControl delegate), * textShouldEndEditing: (NSText delegate)

titleAtRow:column:
- (NSString®)titleAtRow:(int)row column:(int)co/

Returns the value of sending a -title message to the cell at row, col. If the table is lazy, the delegate, and then the



dataDelegate are given the opportunity to reply to the -tableScroll:titleAtRow:column: message. This gives lazy
tables an opportunity to return this information directly, without the overhead of preparing and formatting a cell. If the
table is not lazy, or the delegate and dataDelegate do not respond to the -tableScroll:titleAtRow:column:
message, then the cell is retrieved via -cel11atRow:column:. If the cell responds to the -tit1le message, that value is
returned; otherwise, zero (a NULL pointer) is returned. NOTE: NSButtonCell implements the -stringvalue message
by formatting the integer value of its state as a string. To retrieve the text label displayed on the button, you must use
the -tit1e method.

See also: -cellAtRow:column:, -isLazy, -setLazy:, -tableScroll:titleAtRow:column: (delegate method), -title
(NSButtonCell)

totalHeight
- (float)totalHeight

Equivalent to: -totalSize:MISC ROW BORDER.

totalSize:
- (float)totalSize:(MiscBorderType)b

Returns the total display size. The sum of -border:b slotAdjustedsize: for all slots on the border.

See also: -border:slotAdjustedSize:



totalWidth
- (float)totalWidth

Equivalent to: -totalSize:MISC COL BORDER.

trackBy:
- (void)trackBy:(MiscBorderType)b

Sets the orientation by which the mouse is tracked for selection. If bis MISC_ROW_BORDER then selection is
performed on a row-wise basis. If bis MISC_COL_BORDER then selection is performed on a column-wise basis.

See also: * trackingBy

tracking
- (BOOL)tracking

Returns YES if the mouse is currently being tracked by a cell, else NO. Technically, this method returns YES after the
cell which will track the mouse has been highlighted, and NO after it has been unhighlighted. The cell which is
tracking the mouse can be accessed via -clickedCell, -clickedColumn, Of -clickedRow. Although setting a Cell's
highlight flag is sufficient during mouse tracking in eager-mode, it is not sufficient in lazy-mode. Therefore
MiscTableScroll uses this method in lazy-mode to determine when a cell should be drawn highlighted. You should
rarely need to call this method, though it might be useful in subclasses.

See also: * clickedCell, £ clickedColumn, * clickedRow, * clickedSlot:



trackingBy
- (MiscBorderType)trackingBy

Returns the current orientation of keyboard tracking.

See also: * trackBy:

uniformSizeColumns
- (float)uniformSizeColumns

Returns the uniform size for columns. If columns are not being sized uniformly, this method will return zero. Any
non-zero value indicates the size that all columns have the same size as the value returned by this method. By
default, columns are not uniformly sized. Equivalent to: -uniformSizeSlots:MISC COL BORDER.

uniformSizeRows
- (float)uniformSizeRows

Returns the uniform size for rows. If rows are not being sized uniformly, this method will return zero. Any non-zero
value indicates the size that all rows have the same size as the value returned by this method. Rows are uniformly
sized by default. Equivalent to: -uniformSizeSlots:MISC ROW BORDER.

uniformSizeSlots:



- (float)uniformSizeSlots:(MiscBorderType)b

Returns the uniform size for slots in border b. If slots are not being sized uniformly, this method will return zero. Any
non-zero value indicates the size that all slots have the same size as the value returned by this method.

validRequestorForSendType:returnType:
- (id)validRequestorForSendType:(NSString*)t_send returnType:(NSString*)t_return

This method is called by the services system to update the services menu. If the delegate responds to the
~tableScroll:validRequestorForSendType:returnType: Message, it is sent to the delegate. If not, the
dataDelegate is checked. If neither object responds, -builtinvalidRequestorForSendType:returnType: IS called.
Override this method in your subclass if you need different behavior. Returns the result of the called method.

See also: -builtinValidRequestorForSendType:returnType:,
-tableScroll:validRequestorForSendType:returnType: (delegate method)

writeSelectionToPasteboard:types:
- (void)writeSelectionToPasteboard:(NSPasteboard*)pboard type:(NSString*)type

This method is responsible for writing data to the pasteboard. If the delegate responds to
-tableScroll:writeSelectionToPasteboard:types:, the message is sent to the delegate. If not, the dataDelegate
Is tried. If neither object responds to the message, the default method, -builtinStringForPboardType:, IS called.
Called from -builtinWriteSelectionToPasteboard:types:. QOverride this method in your subclass if you want
different behavior.



See also: -builtinStringForPboardType:, -builtinWriteSelectionToPasteboard:types:,
-tableScroll:writeSelectionToPasteboard:types: (delegate method), -readSelectionFromPasteboard:
(NSServicesRequests), -writeSelectionToPasteboard:types: (NSServicesRequests)

Methods Implemented by Cell Subclasses

tableScroll:retireAtRow:column:
- (id)tableScroll:(MiscTableScroll*)scroll retireAtRow:(int)row column:(int)col

If neither the delegate nor the dataDelegate respond tO -tableScroll:retireCell:atRow:column: then the
MiscTableScroll tries sending this message to the cell itself to give it the opportunity to perform special handling when
it is being retired from active use and returned to the cache. Must return self, or a suitable replacement object for
storage in the cache.

See also: -retireCell:atRow:column:, -tableScroll:retireCell:atRow:column: (delegate method)

tableScroll:reviveAtRow:column:
- (id)tableScroll:(MiscTableScroll*)scroll reviveAtRow:(int)row column:(int)col

If neither the delegate nor the dataDelegate respond to -tableScroll:reviveCell:atRow:column: then the
MiscTableScroll tries sending this message to the cell itself to give it the opportunity to perform special handling when
it is being brought into use for the first time, or is being retrieved from the cache for reuse.

See also: -reviveCell:AtRow:column:, -tableScroll:reviveCell:atRow:column: (delegate method)



Methods Implemented by the Delegate

tableScroll:abortEditAtRow:column:
- (void)tableScroll:(MiscTableScroll*)scroll abortEditAtRow:(int)row column:(int)col

Notifies the delegate that a cell editing session has been aborted. This means that the normal
-control:textShouldEndEditing: validation did not take place.

See also: Cell Editing (Introduction)

tableScroll:backgroundColorChangedTo:
- (void)tableScroll:(MiscTableScroll*)scroll backgroundColorChangedTo:(NSColor*)newColor

This message is sent to the delegate and then the dataDelegate when the MiscTableScroll receives a
-setBackgroundColor: message that actually changes the background color.

tableScroll:border:slotDraggedFrom:to:

- (void)tableScroll:(MiscTableScroll*)scroll border:(MiscBorderType)b slotDraggedFrom:(int)from_pos to:
(int)to_pos

Notifies the delegate whenever the user drags a slot to a new position.



tableScroll:border:slotPrototype:
- (void)tableScroll:(MiscTableScroll*)scroll border:(MiscBorderType)b slotPrototype:(int)s/ot

Sent to the delegate whenever the MiscTableScroll object needs the prototype cell for a column which has the
MISC TABLE CELL CALLBACK cell type. If the delegate does not respond to the message, the dataDelegate is tried.

See also: -border:setSlot:cellType:

tableScroll:border:slotResized:
- (void)tableScroll:(MiscTableScroll*)scroll border:(MiscBorderType)b slotResized:(int)n

Notifies the delegate whenever the user resizes a slot.

tableScroll:border:slotSortReversed:
- (void)tableScroll:(MiscTableScroll*)scroll border:(MiscBorderType)b slotSortReversed:(int)n

Notifies the delegate whenever the user reverses the sort direction of a slot.

tableScroll:border:slotTitle:
- (NSString*)tableScroll:(MiscTableScroll*)scroll border:(MiscBorderType)b slotTitle:(int)s/ot

Sent to the delegate whenever the MiscTableScroll object needs a title for a border which has the
MISC DELEGATE TITLE title mode. If the delegate does not respond to the message, the dataDelegate is tried.



See also: -border:setSlotTitleMode:

tableScrollBufferCount:
- (int)tableScrollBufferCount:(MiscTableScroll*)scroll

Gives the delegate and dataDelegate of a lazy-mode MiscTableScroll the opportunity to report the number of buffers
used for each slot. This information can be used to optimize-away string copying during sorting. This is a micro-
optimization for sorting lazy-mode tables based on string values.

Sorting retrieves the values of two cells from the same slot to compare them. In eager mode, it is sufficient to
perform the comparison in a manner similar to this:

[[celll stringValue] isEqualToString:[cell2 stringValue]]

However, it is common for lazy-mode delegates to simply recycle a single cell to handle the
-tableScroll:cellAtRow:column: message. In that case, the first value is no longer valid when the second value is
retrieved, so the MiscTableScroll object needs to copy the first value before retrieving the second value. By default,
the MiscTableScroll object makes the pessimistic (but safe) assumption that it needs to copy the first string value
before retrieving the second string value. Sophisticated delegates can eliminate this copy operation if they provide at
least two buffers for each slot, or if they implement the string retrieval methods (-
tableScroll:stringValueAtRow:column: and/or -tableScroll:titleAtRow:column:) iN a way that makes it possible
to retrieve a second string value from the same slot without invalidating the previous string value retrieved from that
slot.

If the value returned is greater than or equal to two (2), the string values will not be copied.



See also: -bufferCount

tableScroll:canEdit:atRow:column:
- (BOOL)tableScroll:(MiscTableScroll*)scroll canEdit:(NSEvent*)event atRow:(int)row column:(int)co/

Gives the delegate the opportunity to decide whether or not an editing session should be started for the cell at row,
col. This method is invoked from both a -mouseDown: event, in which case event is the mouse-down event itself, and
also from keyboard events in which case eventis 0. This message is sent both on single-click events and multi-click
events. It is the responsibility of the delegate to decide whether or not editing should begin. If the delegate returns
YES, an editing session will begin for the cell. If the delegate returns NO, no editing session will begin. This
message is tested with the delegate, dataDelegate and the cell itself. The first object that responds to the message
decides the outcome. If none of those objects respond to the message, the default behavior will allow editing only on
a double-click or keyboard event, and only if the cell is both editable and enabled.

See also: Cell Editing (Introduction)

tableScroll:canWritePboardType:
- (BOOL)tableScroll:(MiscTableScroll*)scroll canWritePboardType:(NSString*)type

If the delegate responds to this message, the delegate has the opportunity to select which datatypes will be written to
the pasteboard. If the delegate does not respond, the dataDelegate is given the opportunity.

See also: -canWritePboardType:



tableScroll:cellAtRow:column:
- (id)tableScroll:(MiscTableScroll*)scroll cellAtRow:(int)row column:(int)col

If the table scroll is in lazy mode this message is sent first to the delegate and then to the dataDelegate (if delegate
does not respond) whenever the cell at row, col is needed. You must implement this method in either the delegate or
the dataDelegate whenever you use a MiscTableScroll in lazy mode. The table scroll does not manage the cells for
itself in lazy mode; the delegate or the dataDelegate must.

See also: * setlLazy:, * isLazy

tableScroll:changeFont:to:
- (void)tableScroll:(MiscTableScroll*)scroll changeFont:(NSFont*)oldFont to:(NSFont*)newFont

This message is sent to the delegate and then the dataDelegate whenever a -changeFont: message is received and the
new font is different than the current font. The NSFontManager sends the -changeFont: message whenever the user
changes the font using either the Font Panel or the Font menu. This is distinguished from programmatic changes via
the -setFont: method so that you can record user preferences. This notification message is sent after the font change
has been applied, but before the new font is displayed.

See also: -changeFont:, -setFont:, -tableScroll:fontChangedFrom:to: (delegate method)

tableScroll:didEdit:atRow:column:
- (void)tableScroll:(MiscTableScroll*)scroll didEdit:(BOOL)changed atRow:(int)row column:(int)co/



Notifies the delegate that a cell-editing session terminated, and whether or not the value in the cell changed. Thisis
a notification-only message. The delegate is not given any veto power at this point. Veto power is available in the
-control:textShouldEndEditing: (NSControl) delegate message. This message is sent immediately after the
-tableScroll:abortEdit:atRow:column: MeESSages and the -tableScroll:setStringVvalue:atRow:column: messages, so this message IS always
sent in all cases when a cell editing session terminates.

See also: -tableScroll:willEditAtRow:column: (delegate method), Cell Editing (Introduction)

tableScrollDidPrint:
- (void)tableScrolIDidPrint:(MiscTableScroll*)scroll

Notifies the delegate that a printing session terminated. This method is called from -print: after printing has
completed. This gives the delegate the opportunity to peform post-print cleanup, such as restoring global
NSPrintinfo values.

See also: -tableScrollWillPrint: (delegate method)

tableScroll:doubleValueAtRow:column:
- (double)tableScroll:(MiscTableScroll*)scroll doubleValueAtRow:(int)row column:(int)co/

Lazy tables send this message to the delegate and then the dataDelegate to retrieve the value for
-doubleValueAtRow:column:.  If the delegate or dataDelegate respond to this message, that value is returned. If neither
responds to the message, or if the table is not lazy, the cell is retrieved via -cellatRow:column:.  If the cell responds to the
-doubleValue message, that value is returned; otherwise zero is returned. This method gives lazy tables the opportunity



to provide the information content of cells without the overhead of preparing and formatting a cell. You should
implement this method in your delegate or dataDelegate if you have any slots that contain double values.

See also: -cellAtRow:column:, -doubleValueAtRow:column:, -isLazy, -setLazy:

tableScroll:floatValueAtRow:column:
- (float)tableScroll:(MiscTableScroll*)scroll floatValueAtRow:(int)row column:(int)col

Lazy tables send this message to the delegate and then the dataDelegate to retrieve the value for -floatvalueAtRow:column:.
If the delegate or dataDelegate respond to this message, that value is returned. If neither responds to the message,
or if the table is not lazy, the cell is retrieved via -cellatRow:column:.  If the cell responds to the -floatvalue message, that
value is returned; otherwise zero is returned. This method gives lazy tables the opportunity to provide the information
content of cells without the overhead of preparing and formatting a cell. You should implement this method in your
delegate or dataDelegate if you have any slots that contain f1o0at values.

See also: -cellAtRow:column:, -floatValueAtRow:column:, -isLazy, -setLazy:

tableScroll:fontChangedFrom:to:
- (void)tableScroll:(MiscTableScroll*)scroll fontChangedFrom:(NSFont*)oldFont to:(NSFont*)newfFont

This message is sent to the delegate and then the dataDelegate whenever a -setFont: message is received and the new
font is different than the current font. This notification message is sent after all font changes, both user-initiated and
programmatic. This message is sent after the font change has been applied, but before the new font is displayed.

See also: -changeFont:, -setFont:, -tableScroll:changeFont:to: (delegate method)



tableScroll:getlSearchColumn:
- (BOOL)tableScroll:(MiscTableScroll*)scroll getISearchColumn:(int*)co/

First the delegate and then the dataDelegate is tested for response to this message whenever a keystroke is received
that could start incremental searching. If the delegate responds, the message is sent to the delegate. Otherwise, if
the dataDelegate responds, the message is sent to the dataDelegate. Return YES if incremental searching should
be enabled, and set *col to the physical index of the column that the table is sorted on, otherwise return NO. The
delegates have the opportunity to decide whether or not incremental searching should be enabled, and indicate which
column the table is sorted on. If you want to enable incremental searching and you do not use the auto-sort facilities,
then you must implement this method to tell the MiscTableScroll object which column the table is sorted on. The
table must be sorted in col order (ascending or descending). -doincrementalSearch:column: calls [self
border:MISC COL BORDER slotSortType:col] to determine the sort-type. The sort-type for col must be one of the
string-based sort-types: MISC_SORT STRING CASE INSENSITIVE, MISC SORT STRING CASE SENSITIVE,

MISC SORT TITLE CASE INSENSITIVE Of MISC SORT TITLE CASE SENSITIVE. Col must not have a custom sort
function. You are responsible for ensuring that the table is sorted in col order. -doincrementalSearch:column: calls [self
border:MISC COL BORDER slotSortDirection:col] to determine the sort-direction. If the table is sorted in the other
direction, use the complement of the column's physical index (~col).

See also: -doGetlSearchColumn:, -doincrementalSearch:column:, -getiISearchColumn:, -incrementalSearch:

tableScroll:intValueAtRow:column:
- (int)tableScroll:(MiscTableScroll*)scroll intValue AtRow:(int)row column:(int)col



Lazy tables send this message to the delegate and then the dataDelegate to retrieve the value for -intvalueAtRow:column:.
If the delegate or dataDelegate respond to this message, that value is returned. If neither responds to the message,
or if the table is not lazy, the cell is retrieved via -cellatRow:column:.  If the cell responds to the -intvaiue message, that value
Is returned; otherwise zero is returned. This method gives lazy tables the opportunity to provide the information
content of cells without the overhead of preparing and formatting a cell. You should implement this method in your
delegate or dataDelegate if you have any slots that contain int values.

See also: -cellAtRow:column:, -intValueAtRow:column:, -isLazy, -setLazy:

tableScroll:readSelectionFromPasteboard:
- (BOOL)tableScroll:(MiscTableScroll*)scroll readSelectionFromPasteboard:(id)pboard

If the delegate responds to this message, the delegate has the opportunity to take over the process of reading data
from the pasteboard. If the delegate does not respond to this message, the dataDelegate is tried. The delegate
should return YES if the data was successfully read from the pasteboard, else it should return NO.

See also: -readSelectionFromPasteboard:

tableScrollRegisterServicesTypes:
- (void)tableScrollRegisterServicesTypes:(MiscTableScroll*)scroll

If the delegate responds to this message, the delegate has the opportunity to register different datatypes with the
services system. If the delegate does not respond, the dataDelegate is tried.

See also: -registerServicesTypes:



tableScroll:retireCell:atRow:column:
- (id)tableScroll:(MiscTableScroll*)scroll retireCell:(id)cell atRow:(int)row column:(int)col/

If the delegate responds to this message, the delegate has the opportunity to perform special handling of cells that are
being retired to the cache. If the delegate does not respond, the dataDelegate is tried. If the dataDelegate does not
respond either, the cell itself is tried (with -tableScroll:retireAtRow:column:).  Must return cell, or a suitable replacement object
for storage in the cache.

See also: -retireCell:atRow:column:

tableScroll:reviveCell:atRow:column:
- (id)tableScroll:(MiscTableScroll*)scroll reviveCell:(id)cell atRow:(int)row column:(int)col

If the delegate responds to this message, the delegate has the opportunity to perform special handling of cells that are
being brought into use for the first time, or are being retrieved from the cache for reuse. If the delegate does not
respond, the dataDelegate is tried. If the dataDelegate does not respond either, the cell itself is tried (with
—tableScroII:reviveAtRow:cqumn:).

See also: -reviveCell:atRow:column:

tableScroll:selectedBackgroundColorChangedTo:
- (void)tableScroll:(MiscTableScroll*)scroll selectedBackgroundColorChangedTo:(NSColor*)newColor



This message is sent to the delegate and then the dataDelegate when the MiscTableScroll receives a
-setSelectedBackgroundColor: message that actually changes the background color.

tableScroll:selectedTextColorChangedTo:
- (void)tableScroll:(MiscTableScroll*)scroll selectedTextColorChangedTo:(NSColor*)newColor

This message is sent to the delegate and then the dataDelegate when the MiscTableScroll receives a -setSelectedTextColor:
message that actually changes the background color.

tableScroll:setStringValue:atRow:column:
- (BOOL)tableScroll:(MiscTableScroll*)scroll setStringValue:(NSString*)s atRow:(int)row column:(int)co/

This message is sent from within -textbidendEditing: When a cell editing session has successfully finished (not aborted)
and the string value for the cell was actually changed. This method provides the delegate with an after-the-fact veto
option. If the delegate returns NO, then the MiscTableScroll object assumes that the change was rejected, and that
the cell retains its previous contents. If the delegate returns YES, then the MiscTableScroll object assumes that the
delegate stored the new string value into the appropriate cell, and that slot needs to have its sort position reevaluated.
This method is optional for delegates of eager MiscTableScroll objects. This method is mandatory for delegates of
lazy MiscTableScroll objects that allow cell editing. If the delegate implements this method, the delegate is
responsible for setting the string value in the appropriate cell in the MiscTableScroll object.

See also: Cell Editing (Introduction)



tableScroll:stateAtRow:column:
- (int)tableScroll:(MiscTableScroll*)scroll stateAtRow:(int)row column:(int)co/

Lazy tables send this message to the delegate and then the dataDelegate to retrieve the value for -stateAtRow:column:.  If
the delegate or dataDelegate respond to this message, that value is returned. If neither responds to the message, or
if the table is not lazy, the cell is retrieved via -cellatRow:column:.  If the cell responds to the -state message, that value is
returned,; otherwise zero is returned. This method gives lazy tables the opportunity to provide the information content
of cells without the overhead of preparing and formatting a cell. You should implement this method in your delegate
or dataDelegate if you have any slots that contain state values.

See also: -cellAtRow:column:, -stateAtRow:column:, -isLazy, -setLazy:, -state (NSButtonCell)

tableScroll:stringValueAtRow:column:
- (NSString*)tableScroll:(MiscTableScroll*)scroll stringValueAtRow:(int)row column:(int)co/

Lazy tables send this message to the delegate and then the dataDelegate to retrieve the value for -stringvalueAtRow:column:.
If the delegate or dataDelegate respond to this message, that value is returned. If neither responds to the message,
or if the table is not lazy, the cell is retrieved via -cellatRow:column:.  If the cell responds to the -stringvalue message, that
value is returned; otherwise zero is returned. This method gives lazy tables the opportunity to provide the information
content of cells without the overhead of preparing and formatting a cell. You should implement this method in your
delegate or dataDelegate if you have any slots that contain string values.

See also: -cellAtRow:column:, -stringValueAtRow:column:, -isLazy, -setLazy:



tableScroll:tagAtRow:column:
- (int)tableScroll:(MiscTableScroll*)scroll tagAtRow:(int)row column:(int)col

Lazy tables send this message to the delegate and then the dataDelegate to retrieve the value for -tagAtRow:column:.  If
the delegate or dataDelegate respond to this message, that value is returned. If neither responds to the message, or
if the table is not lazy, the cell is retrieved via -cellatRow:column:.  If the cell responds to the -tag message, that value is
returned,; otherwise zero is returned. This method gives lazy tables the opportunity to provide the information content
of cells without the overhead of preparing and formatting a cell. You should implement this method in your delegate
or dataDelegate if you have any slots that contain tag values.

See also: -cellAtRow:column:, -tagAtRow:column:, -isLazy, -setLazy:

tableScroll:textColorChangedTo:
- (void)tableScroll:(MiscTableScroll*)scroll textColorChangedTo:(NSColor*)newColor

This message is sent to the delegate and then the dataDelegate when the MiscTableScroll receives a -setTextColor:
message that actually changes the background color.

tableScroll:titleAtRow:column:
- (NSString*)tableScroll:(MiscTableScroll*)scroll titleAtRow: (int)row column:(int)col

Lazy tables send this message to the delegate and then the dataDelegate to retrieve the value for -titleAtRow:column:.  |f
the delegate or dataDelegate respond to this message, that value is returned. If neither responds to the message, or
if the table is not lazy, the cell is retrieved via -celatRow:column:.  If the cell responds to the -itle message, that value is



returned; otherwise zero is returned. This method gives lazy tables the opportunity to provide the information content
of cells without the overhead of preparing and formatting a cell. You should implement this method in your delegate
or dataDelegate if you have any slots that contain tit1le values.

See also: -cellAtRow:column:, -stringValueAtRow:column:, -isLazy, -setLazy:, -title (NSButtonCell)

tableScroll:validRequestorForSendType:returnType:
- (id)tableScroll:(MiscTableScroll*)scroll validRequestorForSendType:(NSString*)t_send returnType:
(NSString®)t_return

If the delegate responds to this message, the delegate has the opportunity to interact with the services system using
different combinations of send and return types than the MiscTableScroll object alone normally does. If the delegate
does not respond, the dataDelegate is tried.

See also: -validRequestorForSendType:returnType:

tableScroll:willEditAtRow:column:
- (void)tableScroll:(MiscTableScroll*)scroll willEditAtRow:(int)row column:(int)col

Notifies the delegate that a cell editing session is about to start. This is a notification-only message. There is no
veto option associated with this message. A veto option is provided with the -tableScroll:canEdit:atRow:column: message.
This message, and its counterpart, -tableScroll:didEdit:atRow:column:, bracket cell editing sessions for delegates that want to
perform extra operations before and after cell editing sessions without interfering with any of the begin/end decisions.
This message is offered to the delegate, and then the dataDelegate if the delegate does not respond.



See also: -tableScroll:didEdit:atRow:column:, Cell Editing (Introduction)

tableScrollWillPrint:
- (void)tableScrollWillPrint:(MiscTableScroll*)scroll

Notifies the delegate that a printing session is about to start. This is a notification-only message. There is no veto
option associated with this message. This message is sent from -print: before the NSPrintPanel is presented to the
user. This message, and its counterpart, -tablescroliDidPrint;, bracket printing sessions for delegates that want to perform
extra operations before and after printing sessions. This method is useful for pre-print setup operations like
overriding global NSPrintinfo settings. This message is offered to the delegate, and then the dataDelegate if the
delegate does not respond.

See also: -tableScrollDidPrint: (delegate method)

tableScroll:writeSelectionToPasteboard:types:
- (BOOL)tableScroll:(MiscTableScroll*)scroll writeSelectionToPasteboard:(NSPasteboard*)pboard types:
(NSArray*)types

If the delegate responds to this message, the delegate has the opportunity to completely take over the writing of data
to the pasteboard. If the delegate does not respond, the dataDelegate is tried.

See also: -writeSelectionToPasteboard:types:



Delegate Methods For Dragging Source Operations

tableScroll:allowDragOperationAtRow:column:
- (BOOL)tableScroll:(MiscTableScroll*)scroll allowDragOperationAtRow:(int)row column:(int)col

This message is sent to the delegate or the dataDelegate if necessary by the MiscTableScroll to determine whether or
not dragging an image from a cell should be allowed. The appropriate delegate should return YES if dragging the
image from the cell at row and col is allowed, or NO if it is not.

tableScroll:draggingSourceOperationMaskForLocal:
- (NSDraggingOperation)tableScroll:(MiscTableScroll*)scroll draggingSourceOperationMaskForLocal:
(BOOL)isLocal

This message is sent to the delegate or the dataDelegate if necessary in order to give the delegate a chance to
respond to NSDraggingSource's -draggingSourceOperationMaskForLocal: method. If the delegate does not implement this
method, then MiscTableScroll returns NsbragOperationGeneric by default.

tableScrolllgnoreModifierKeysWhileDragging:
- (BOOL)tableScrollignoreModifierKeysWhileDragging:(MiscTableScroll*)scroll

This message is sent to the delegate or the dataDelegate if necessary in order to give the delegate a chance to
respond to NSDraggingSource's -ignoreModifierkeyswhileDragging method. If the delegate does not implement this method,
then MiscTableScroll returns YES by default.



tableScroll:imageForDragOperationAtRow:column:
- (NSImage*)tableScroll:(MiscTableScroll*)scroll imageForDragOperationAtRow:(int)row column:(int)col

This message is sent to the delegate or the dataDelegate if necessary to give the delegate a chance to provide the
image used for the dragging operation. This method is required for non-image cells. It is optional for image cells,
in which case, if the delegate does not implement it or if it returns O, then the image stored in the cell is used for
dragging instead.

tableScroll:preparePasteboard:forDragOperationAtRow:column:
- (void)tableScroll:(MiscTableScroll*)scroll preparePasteboard:(NSPasteboard*)pb forDragOperationAtRow:
(int)row column:(int)col

This message is sent to the delegate or the dataDelegate if necessary in order to have the NSPasteboard pb
prepared for the dragging operation. The appropriate delegate must send a -declareTypes:num:owner: message to the
NSPasteboard followed by appropriate -set...:forType: Or -write... messages if needed. Extra precaution should be taken
when declaring a non-null pasteboard owner as discussed in the Image Dragging section of this document.

tableScroll:shouldDelayWindowOrderingForEvent:
- (BOOL)tableScroll:(MiscTableScroll*)scroll shouldDelayWindowOrderingForEvent:(NSEvent*)event

This message is sent to the delegate or the dataDelegate if necessary in order to give the delegate a chance to
respond to NSView's -shouldDelaywindowOrderingForEvent: method. This method is only invoked if the delegate's
-tableScroll:allowDragOperationAtRow:column: method indicates that the cell under the mouse is a potential a dragging source. If
the delegate does not implement this method, then this method returns YES by default.



Constants and Defined Types

typedef int MiscPixels;

typedef int MiscCoord V; // Visual coordinate.
typedef int MiscCoord P; // Physical coordinate.

#define MISC MIN PIXELS SIZE ((MiscPixels) 10)

#define MISC MAX PIXELS SIZE ((MiscPixels)

typedef enum
{
MISC COL_BORDER,
MISC ROW BORDER
} MiscBorderType;

#define MISC MAX BORDER MISC ROW BORDER

#defineMISC_OTHER BORDER (B) \

(B == MISC ROW BORDER ? MISC COL BORDER

typedef struct
{
NSSize page size; //
NSRect print rect; //
MiscCoord V first print row;//
MiscCoord V last print row; //
MiscCoord V first print col;//

0x7FFF0000)

MISC_ROW BORDER)

[NSPrintInfo paperSize]

MiscTableView
one's comp if
one's comp if
one's comp if

rect.
started on prev page.
ends on later page.
started on prev page.



MiscCoord V last print col; // one's comp if ends on later page.

int print page; // 1 <= print page <= num print pages
int print row; // 1 <= print row <= num print rows
int print col; // 1 <= print col <= num print cols
int num print pages;

int num print rows;

int num print cols;

double scale factor;

BOOL is scaled;

} MiscTablePrintInfo;

typedef enum
{

MISC NO TITLE, // No titles on row/col cells.

MISC NUMBER TITLE, // Titles are sequential numbers.

MISC ALPHA TITLE, // Titles are sequential alphabetics...
MISC CUSTOM TITLE, // Titles are user-supplied strings...
MISC DELEGATE TITLE // Ask the delegate for titles.

} MiscTableTitleMode;

#define MISC MAX TITLE MISC DELEGATE TITLE

typedef enum
{
MISC_LIST_MODE,
MISC RADIO MODE,
MISC_HIGHLIGHT_MODE
} MiscSelectionMode;



#define MISC MAX MODE MISC_HIGHLIGHT MODE

typedef enum
{
MISC TABLE CELL TEXT,
MISC TABLE CELL IMAGE,
MISC TABLE CELL BUTTON,
MISC TABLE CELL CALLBACK
} MiscTableCellStyle;

#define MISC TABLE CELL MAXMISC TABLE CELL CALLBACK

#define MISC SIZING SPRINGY BIT (1 << 0) // Adjusts for global limits.
#define MISC SIZING USER BIT (1 << 1) // User can resize.

typedef enum

{
MISC NUSER NSPRINGY SIZING,

MISC NUSER SPRINGY SIZING,
MISC USER NSPRINGY SIZING,
MISC USER SPRINGY SIZING,
} MiscTableSizing;

#define MISC MAX SIZING MISC USER SPRINGY SIZING



typedef enum
{
MISC SORT ASCENDING,
MISC SORT DESCENDING
} MiscSortDirection;

#define MISC SORT DIR MAX MISC SORT DESCENDING
#defineMISC OTHER DIRECTION (D) \

((D) == MISC SORT DESCENDING ? \

MISC SORT ASCENDING : MISC_SORT DESCENDING)

typedef enum // Selector used to get data:

{
MISC SORT STRING CASE INSENSITIVE, // -stringValue

MISC SORT STRING CASE SENSITIVE, // -stringValue
MISC_SORT INT, // -intValue
MISC SORT UNSIGNED INT, // -intValue
MISC_SORT TAG, // -tag

MISC SORT UNSIGNED TAG, // -tag
MISC_SORT FLOAT, // -floatValue
MISC_SORT DOUBLE, // -doubleValue
MISC SORT SKIP, // Don't compare cells in this slot.
MISC_SORT TITLE CASE INSENSITIVE, // -title

MISC SORT TITLE CASE SENSITIVE, // -title

MISC SORT STATE, // -state

MISC SORT UNSIGNED STATE, // -state

} MiscSortType;

#define MISC SORT TYPE MAX MISC SORT UNSIGNED STATE



#define MISC SORT CUSTOM ((MiscSortType) (int (MISC SORT TYPE MAX) + 1))

@class MiscTableScroll;

typedef struct MiscEntrySortInfo MiscEntrySortInfo;
typedef struct MiscSlotSortInfo MiscSlotSortInfo;

typedef int (*MiscCompareEntryFunc)
( int rl, int c¢l, int r2, int c2,
MiscEntrySortInfo const* entry info,
MiscSlotSortInfo* sort info );

typedef int (*MiscCompareSlotFunc)
( int slotl, int slot2, MiscSlotSortInfo* );

extern int MiscDefaultCompareSlotFunc
( int slotl, int slot2, MiscSlotSortInfo* );

#define MISC TS TYPE AT( TYPE, NAME ) \

typedef TYPE (*MISC TS ##NAME## AT) (id,SEL,id,int r,int c, ...);
MISC TS TYPE AT( int, INT ) // MISC_TS INT AT
MISC TS TYPE AT( float, FLOAT ) // MISC_TS_ FLOAT AT
MISC TS TYPE AT( double, DOUBLE ) // MISC_TS DOUBLE AT
(

MISC TS TYPE AT( char const*, STRING ) // MISC TS STRING AT

typedef union

{
MISC TS INT AT i;



MISC TS FLOAT AT £;
MISC TS DOUBLE AT  d;
MISC TS STRING AT  s;
} MISC TS VAL AT FUNC;

#define MISC TS TYPE VAL( TYPE, NAME ) \
typedef TYPE (*MISC TS ##NAME## VAL) (id, SEL);

MISC TS TYPE VAL( int, INT ) // MISC_ TS INT VAL

MISC TS TYPE VAL( float, FLOAT ) // MISC TS FLOAT VAL

MISC TS TYPE VAL( double, DOUBLE ) // MISC_TS DOUBLE VAL
(

MISC TS TYPE VAL( char const*, STRING ) // MISC TS STRING VAL
typedef union

{

MISC TS INT VAL i;

MISC TS FLOAT VAL  f;

MISC TS DOUBLE VAL d;

MISC TS STRING VAL s;

} MISC TS VAL FUNC;

// *** WARNING ***
// The sizes of these structures are likely to change between versions.
// *** WARNING ***

struct MiscEntrySortInfo
{

int slot;
int ascending;



MISC TS VAL AT FUNC value func;

id wvalue target;

SEL value_ sel;

id value obj;

IMP cell at func;

id cell class;

SEL cell sel;

MISC TS VAL FUNC cell func;
MiscSortType sort type;
MiscCompareEntryFunc compare func;

}i

struct MiscSlotSortInfo
{
MiscTableScroll* table scroll;
NSZone* zone;
MiscBorderType border type;
int num entries;
MiscEntrySortInfo const* entry info;
BOOL need copy;
i



