Release 1.2 Copyright ©1994 by Don Yacktman. All Rights Reserved.

MiscSubprocess
Inherits From: NSObiject
Declared In: <misckit/MiscSubprocess.h>

Class Description

MiscSubprocess facilitates the management of UNIX processes within a NEXTSTEP application. Methods are
provided for the creation, pausing, termination, and communication with the underlying UNIX process.

The subprocess can be run synchronously, meaning that the method call to start the subprocess will not return
until the subprocess exits, or asynchronously, in which case the method call returns immediately.

The UNIX subprocess communicates with its parent application through delegation. Six delegate methods
provide notification of pending output, standard error output, termination, and errors from the UNIX
subprocess. It is the responsibility of the MiscSubprocess instantiator to implement any desired delegate
methods and decide what to do with the resulting data.



In addition to providing a controlled interface to standard UNIX utilities (i.e., 1s, find, man, rdist), the
MiscSubprocess can also provide, on request, the environment necessary for UNIX processes requiring pseudo
terminal (or pty) support. Some UNIX applications that require pty support include ftp, gdb, sh, csh, kermit,
and tip.

NOTE: This MiscSubprocess is only usable with NEXTSTEP, as the asynchronous operations are still
implemented with DPS functions.

Instance Variables

id delegate;
NSMutableDictionary *environment;
FILE *fpToChild;

FILE *fpFromChild;
int stdoutFromChild,;
int stderrFromcChild;
int childPid;

BOOL paused,;

BOOL running;

BOOL usePtys;
BOOL asynchronous;
BOOL stdoutisDone;
BOOL stderrisDone;

delegate MiscSubprocess' delegate object.

environment NSMutableDictionary that holds the child's environment.



fpToChild Pipe for sending data to the child process' stdin.

fpFromChild Pipe for receiving data from the child process' stdout.

stdoutFromChild File descriptor of pipe for receiving data from the child process' stdout.
stderrFromChild File descriptor of pipe for receiving data from the child process' stderr.

childPid PID of the child process.

paused True if child process is paused.

running True if the child process is running.

usePtys True if pty support should be used by degenerate execute: methods.
asynchronous True if degenerate execute: methods should run an asynchronous subprocess.
stdoutlsDone True if standard output has finished.

stderrisDone True if standard error has finished.

Method Types

Initializing a MiscSubprocess: - init
- init:
- init:asynchronously:
- init:withPtys:
- init:withPtys:asynchronously:
- init:keepEnvironment:
- init:keepEnvironment:asynchronously:



Sending Data to Child:

Obtaining Information About Child:

Controlling Child Process:

Delegate methods:

- init:keepEnvironment:withPtys:

- init:keepEnvironment:withPtys:asynchronously:

- init:withDelegate:

- init:withDelegate:asynchronously:

- init:withDelegate:withPtys:

- init:withDelegate:withPtys:asynchronously:

- init:withDelegate:keepEnvironment:

- init:withDelegate:keepEnvironment:asynchronously:

- init:withDelegate:keepEnvironment:withPtys:

- init:withDelegate:keepEnvironment:withPtys:asynchronously:

- send:
- send:withNewline:
- terminatelnput

- environment

- isPaused

- iIsRunning

- pid

- execChild:

- execute:

- execute:asynchronously:
- execute:withPtys:

- execute:withPtys:asynchronously:
- pause:

- resume:

- terminate:

- delegate
- setDelegate:



- subprocess:done::

- subprocess:error:

- subprocess:output:

- subprocess:outputData:

- subprocess:stderrOutput:

- subprocess:stderrOutputData:

Instance Methods

delegate
- delegate

Returns the MiscSubprocess' delegate object, the object responsible for handling errors and receiving output
from the child process.

See also: *setDelegate: and the delegate methods at the end of this document.

environment
- (NSMutableDictionary *)environment

Returns an NSMutableDictionary object which contains the environment that will be set up for the child process
when it is started. If you wish to alter the environment, add to or modify the NSMutableDictionary returned by
this method.

See also: * execute:withPtys:asynchronously:

execChild:



- execChild:(NSString *)aString

This is used internally by MiscSubprocess to actually start the child process, using the UNIX execle(). If you
wish to override how a child process is started, you should override this method and not texecute:.

See also: *environment and xexecute:withPtys:asynchronously:

execute:
execute:withPtys:
execute:asynchronously:
execute:withPtys:asynchronously:
- execute:(NSString *)aString withPtys:(BOOL)ptyFlag asynchronously:(BOOL)async

Sets up pipes to a child process and starts it executing the command in aString. If async is NO then this
method will not return until the process finishes running. The ptyFlag parameter turns PTY support on and off.
Returns self. The degenerate methods use the instance variables usePtys for ptyFlag and asynchronous for
async.

See also: *environment, rexecChild:, tpause:, fresume:, and *terminate:

init
- init
Initializes a new, asynchronous instance of MiscSubprocess which will not use PTYs. The environment is

initialized to be a copy of the current environment, and no delegate is assigned. No process is run initially.
Returns self.

See also: *init:withDelegate:keepEnvironment:withPtys:asynchronously:



init:
init:asynchronously:
init:withPtys:
init:withPtys:asynchronously:
init:keepEnvironment:
init:keepEnvironment:asynchronously:
init:keepEnvironment:withPtys:
init:keepEnvironment:withPtys:asynchronously:
init:withDelegate:
init:withDelegate:asynchronously:
init:withDelegate:withPtys:
init:withDelegate:withPtys:asynchronously:
init:withDelegate:keepEnvironment:
init:withDelegate:keepEnvironment:asynchronously:
init:withDelegate:keepEnvironment:withPtys:
init:withDelegate:keepEnvironment:withPtys:asynchronously:
- Init:(NSString *)aString
withDelegate:theDelegate
keepEnvironment:(BOOL)envFlag
withPtys:(BOOL)ptyFlag
asynchronously:(BOOL)async

This is the designated initializer for the MiscSubprocess class. Initializes a new instance of MiscSubprocess
and runs the command in aString with theDelegate as the delegate object. If aString is nil, then no command is
run; the instance variables will be set up as specified and then texecute: should be called for anything to
happen. If envFlag is YES, then the environment is initialized to be a copy of the current environment. If
envFlag is NO, then the environment starts out empty, which could cause strange things to happen unless you
know exactly what you are doing. Use tenvironment to access and modify the NSMutableDictionary which
contains the environment used by the MiscSubprocess. The parameters ptyFlag and async are used to set up



the instance variables usePtys and asynchronous, respectively. (They are used by the degenerate texecute:
methods.) Returns self. In the degenerate methods, aString defaults to nil, theDelegate defaults to nil,
envFlag defaults to YES, ptyFlag defaults to NO, and async defaults to YES.

See also: *execute:withPtys:asynchronously:, *init

isPaused
- (BOOL)isPaused

Returns YES is the child process is paused. Returns NO otherwise.

See also: z*isRunning, *pause:, and tresume:

isRunning
- (BOOL)isRunning

Returns YES if the child process is running, NO otherwise.

See also: z*isPaused, *pause:, and *resume:

pause:
- pause:sender

Pause the child process by sending it a SIGSTOP signal. Returns self.

See also: z*isPaused, xisRunning, xresume:, and *terminate:



pid
- (int)pid

Returns the process ID (pid) of the child process, if it exists. If there is no child process running, the return value
Is undefined and invalid.

resume:
- resume:sender

Resumes a paused child process by sending a SIGCONT signal. Returns self.

See also: z*isPaused, xisRunning, £pause:, and *terminate:

send:
send:withNewline:
- send:(NSString *)string withNewline:(BOOL)wantNewline

Sends string to the child process. If wantNewLine is true, an additional newline character ("\n’) is sent to the
child process. In the degenerate method, wantNewline defaults to YES. Returns self.

See also: *send: and *terminatelnput

setDelegate:
- setDelegate:anObject

Sets the delegate object. See the delegate methods below for a description of what information is sent to the
delegate. Returns self.

See also: *delegate



setExecArgs:::
- setExecArgs:(NSString *)a0 :(NSString *)al :(NSString *)a2

Changes the command that will be used to run the child process. This allows you to choose the shell to execute
the child, for example. The path to the shell should be in a0. The values of al and a2 will be used as argv|[0]
and argv[1], respectively. The default arguments are &/bin/sh®, 2sh°, 8-c®. Returns self.

See also: *delegate

terminate:
- terminate:sender

Sends a SIGKILL to the child process, terminating it's execution. Returns self.

See also: *pause:, *rresume:, and tterminate:

terminatelnput
- terminatelnput

Terminate the data being sent to the child process. This will send an EOF to the child's stdin. Returns self.

See also: *send:withNewLine:

Delegate Methods

subprocess:done::



- subprocess:sender done:(int)status :(MiscSubprocesseEndCode)code

Sent to the delegate when the child process completes. The exit code code is the reason for the process'
termination, and is one of Misc_Exited, Misc_Stopped, Misc_Signaled, or Misc_UnknownEndCode. If the
process exited normally, the exit code is returned in status. If the process was stopped, then status contains the
number of the signal that caused the process to stop. If the process was signaled, then status contains the
number of the signal that caused the process to terminate.

subprocess:output:
- subprocess:sender output:(NSString *)output

Sent whenever there is data on the process' standard output pipe. The data is passed in output.

See also: z*subprocess:stderrOutput:

subprocess:outputData:
- subprocess:sender outputData:(NSData *)output

Sent whenever there is data on the process' standard output pipe. The data is passed in output. This will be
sent before tsubprocess:output:, and is slightly more efficient since there is one fewer copy of the data done.
If both £subprocess:output: and zsubprocess:outputData: are implemented, then both will be called.

See also: *subprocess:stderrOutput:

subprocess:stderrOutput:
- subprocess:sender stderrOutput:(NSString *)output

Sent whenever there is data on the process' standard error pipe. The data is passed in output.



See also: *subprocess:output:

subprocess:stderrOutputData:
- subprocess:sender stderrOutputData:(NSData *)output

Sent whenever there is data on the process' standard error pipe. The data is passed in output. This will be sent
before tsubprocess:stderrOutput:, and is slightly more efficient since there is one fewer copy of the data done.
If both £subprocess:stderrOutput: and zsubprocess:stderrOutputData: are implemented, then both will be
called.

See also: *subprocess:output:

subprocess:error:
- subprocess:sender error:(NSString *)errorString

Sent if an error occurs when dealing with the child process. Maost errors will occur when trying to start the
process.



