
1

Chapter 1: Introduction

This reference manual describes the Python programming language. It is not intended as a
tutorial.

While I am trying to be as precise as possible, I have chosen to use English rather than formal
specifications for everything except syntax and lexical analysis. This should make the
document more understandable to the average reader, but will leave room for ambiguities.
Consequently, if you were coming from Mars and tried to re-implement Python from this
document alone, you might have to guess things and in fact you would probably end up
implementing quite a different language. On the other hand, if you are using Python and
wonder what the precise rules about a particular area of the language are, you should
definitely be able to find them here. If you would like to see a more formal definitition of the
language, maybe you could volunteer your time — or invent a cloning machine.

It is dangerous to add too many implementation details to a language reference document —
the implementation may change, and other implementations of the same language may work
differently. On the other hand, there is currently only one Python implementation, and its
particular quirks are sometimes worth being mentioned, especially where the implementation
imposes additional limitations. Therefore, you’ll find short “implementation notes” sprinkled
throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These
are not documented here, but in the separate Python Library Reference document. A few built-
in modules are mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This
uses the following style of definition:

name:                      lc_letter (lc_letter | "_")*
lc_letter:            "a"..."z"

The first line says that a name is an lc_letter followed by a sequence of zero or more
lc_letters and underscores. An lc_letter in turn is any of the single characters ‘a’
through ‘z’. (This rule is actually adhered to for the names used in lexical and grammar rules in
this document.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertical
bar (|) is used to separate alternatives; it is the least binding operator in this notation. A star
(*) means zero or more repetitions of the preceding item; likewise, a plus (+) means one or
more repetitions, and a phrase enclosed in square brackets ([]) means zero or one
occurrences (in other words, the enclosed phrase is optional). The * and + operators bind as
tightly as possible; parentheses are used for grouping. Literal strings are enclosed in quotes.
White space is only meaningful to separate tokens. Rules are normally contained on a single
line; rules with many alternatives may be formatted alternatively with each line after the first
beginning with a vertical bar.

2

In lexical definitions (as in the example above), two more conventions are used: Two literal
characters separated by three dots mean a choice of any single character in the given
(inclusive) range of ASCII characters. A phrase between angular brackets (<...>) gives an
informal description of the symbol defined; e.g. this could be used to describe the notion of
‘control character’ if needed.     

Even though the notation used is almost the same, there is a big difference between the
meaning of lexical and syntactic definitions: a lexical definition operates on the individual
characters of the input source, while a syntax definition operates on the stream of tokens
generated by the lexical analysis. All uses of BNF in the next chapter (“Lexical Analysis”) are
lexical definitions; uses in subsequent chapters are syntactic definitions.

3

