
Copyright Ó 1996 Don Yacktman.    All Rights Reserved.

This version adds a lot of functionality over the version in the kit right now, but I've not had
time to check the changes...so I've put it in Temp right now so that people can play with it
until I have time to fold it into the kit proper.

-Don

Conversion to OpenStep: July 1996.

Here it is... There seem to be some quirks with OpenStep bugs (mainly font setting) but
essentially it all works.
Also, a decision should be made about it using NSAttributedString for the text drawing,
etc.    I figure it's best to make it STRICT_OPENSTEP compatible though...    I should
probably add support for the Windows system colors.    Maybe I should use the
NSInterfaceStyle to have it draw those lovely Windows tabs on the OpenStep/NT?    This

is totally untested on OpenStep for Mach.

-sean
Sean.Hill@iphysiol.unil.ch

MiscTabActionCell v1.5 (Feb 4, 1995) MiscKit 1.4.1

This version adds most of the enhancements of UITabActionCell versions 1.4 and 1.5.   
The Makefile stuff was intentionally left out for uniformity with the rest of the MiscKit.

-Don Yacktman
don@misckit.com

Changes for UITabActionCell (1.4, 1.5):

I added code to check to see if the window depth can handle above two-bit gray.    If it can
it uses the .5 grayscale.    In addition cells scale to the matrix by default.

I love those autoscaling tabs!

Sean Hill
shill@iphysiol.unil.ch

PS Sorry for taking out the version and make file enhancements.... They caused more
warnings and problems in a generic development environment than I wanted to answer
questions about.

Several enhancements were added to try to make TabMatrix emulate EOF IB's StackView
more faithfully:

1.    Visual indication of a disabled tab is provided as with most NEXTSTEP UI objects:   
the tab label's text is light gray for a disabled tab and black for an enabled tab.

2.    An unselected tab is now dark gray instead of medium gray (0.5).    The use of either
dark or light gray text as an indication of a disabled tab isn't very readable on mono
systems due to the dithering required to display 0.5 gray.

3.    The fixed-resolution tab end tiffs have been replaced by device-independent pswraps
that draw the tab ends.    This eliminates the need to provide the tiffs as resources to each
app that uses TabMatrixPalette.

4.    Automatic scaling of tab sizes to accommodate different fonts is now supported.

5.    The palette view has been enhanced to provide a dark gray border across the top of
the tabs to eliminate the chopped-off appearance.

6.    Version information is recorded in the palette object files and the palette itself through
the addition of headers in each source file and a modified version of MiscKit's
buildversion.

7.    Project Makefiles have been enhanced:
a.    automatically create and install in /usr/local/lib the palette library that must be

linked into any app using the palette;
b.    automatically create Makefile.dependencies if they don't already exist (note that

this will fail when multiarchitecture binaries are being built unless the broken
Makefile.dependencies target is replaced in /NextDeveloper/Makefiles/app/common.make
by the Makefile.dependencies target included in the common.make.mods file).

Good job everyone!!

Art Isbell
(art@cubicsol.com)

MiscTabActionCell v1.3 (January 24, 1995) MiscKit 1.4.0

This version Misc-ifies the TabActionCell.    It has been added to the MiscKit with the
permission of the authors.

Enjoy-

-Don Yacktman
Don_Yacktman@byu.edu

UITabActionCell v1.3 (January 22, 1995)

This version touches up a few bugs which have been reported.    The bugs are:

1. The spacing between the characters was funny because we were using the printing font
instead of explicitly setting the screen font.    Now, if there is a screen font we use it.   
Using other fonts than Helvetica should work properly now.    Printing should no longer
give an error.

2. The lowest line of the extenders is no longer cut off.

3.    The selected cell has a white top border.

Also, it includes a nice icon drawn by Stefanie Herzer.    Thanks to all!

Enjoy-

Sean Hill
shill@iphysiol.unil.ch

UITabActionCell v1.2

As I was about to release v1.1 to the net, a colleague here found yet another bug in my
implementation. When the mouse was dragged across the matrix of cells, the highlighting
was all wrong and the action wasn't being sent. So I delved into the code and fixed this.
Because of the way NeXT implemented cells, it wasn't fun, but now it works just like the
tabs do in Interface Builder!

Have fun,

Bill Edney
bedney@firstsoft.com

UITabActionCell v1.1 (not released)

A small update to TabMatrixPalette to make it a little cleaner visually. I had originally done
the TabMatrix using a selection cell, which gave it the behavior I wanted (namely, to both
switch the cell and send its action on mouseDown instead of mouseUp). A number of folks
(including Mark Onyschuk and Sean Hill) have worked on it since then and changed from
using a subclass of SelectionCell to a subclass of ActionCell. This was cool in that things
could be hooked up in IB, but bothered me because the cell didn't switch its look (nor send
its action) on mouseDown, but mouseUp, which gave it a funny look and feel. The cell
would push in on mouseDown and only look proper when the mouse went up. So, in the
spirit of good hackware, I went back in and fixed this. This really makes the thing look and
feel much nicer!

Have fun,

Bill Edney
bedney@firstsoft.com

UITabActionCell

Here is the latest version of the Public Domain UITabCell Palette.

I touched this up a little so that the dark gray view is no longer needed and the cell itself is
a subclass of an ActionCell so that it can be used with actions and tags.    I think it makes
a more useable palette now.    What I would like to see is the edges of the tab be drawn by
postscript so that we could make really huge fat tabs.    But it's probably best like it
currently is.

I also implemented the calcSize method so that it knows the proper size of the cell.

Thanks to all who have created this before me!

Laboratoire de Neuro-Heuristique                      Work: ++41 021 692.5516
Institut de Physiologie  Fax:    ++41 021 692.5505
Rue du Bugnon, 7  Sean.Hill@iphysiol.unil.ch

CH-1005 Lausanne    SWITZERLAND

Several weeks ago, a TabView much like the one featured in EOF's new Interface Builder
was posted. Here's a palette built around the same code, compiled for both black and
white hardware.

Only one change was made to accommodate IB. TabSelectionCell adds a test for the kind
of superview it is being asked to draw in -- normally this is a Matrix but in the IB editor, the
cell is asked to draw in some other kind of View.

You can now drag a Matrix of these Cells and, in conjunction with a palette like TTools
from NeXTanswers, build a switching file-folder like UI completely within IB.

Many thanks to the original poster!

Regards,
Mark R. Onyschuk

M. Onyschuk and Associates Inc. 389 Leslie St. Toronto Canada, M4M 3E3
NEXTSTEP SOFTWARE DEVELOPMENT phone +1.416.462.3954

After seeing Jean-Marie's new addition to Interface Builder, I just couldn't help wanting
those cool tabs for my very own! Since I don't have IB source :-), I just had to figure it out
for myself.

There are two caveats (bugs?):

1) If you put these into a ScrollView, sometimes the little tab ends won't redraw
themselves properly when scrolled after being clicked on. Since you probably shouldn't be
putting a control like this into a ScrollView, this really shouldn't present a problem
(although if someone want's to send me a bug fix, that'd be appreciated).

2) The first and last tab cells are 7 pixels (half a tab image width) shorter than the rest of
the cells. This is due to a drawing issue with drawing inside the matrix. If the images on

the first and last cell aren't shifted in, they get clipped by the matrix and don't look very
good. If your cell's are relatively large, this really isn't very noticeable. The real way to fix
this is to get in there, determine how many cells there are, and distribute this difference
among all of them. Again, anyone wanting to send me this code should fell very free to do
so.

Have fun,

Bill Edney
bedney@firstsoft.com

P.S. This code is totally free from any licenses or warranties or anything. In other words,
use it however you want but don't blame me if it hoses something up!
