
Version 1.4 Copyright ã 1996 by Todd Thomas All Rights Reserved. 

MiscDragCell

Inherits From: NSActionCell
Declared In: MiscAppKit/MiscDragCell.h

Class Description

MiscDragCell is an abstract class that lays the groundwork for draggable cells to be used within some kind of 
drag view (either a MiscDragView or MiscDragMatrix subclass).    For an example of a concrete subclass see 
MiscFileDragCell, which implements dragging using the NSFilenamePboardType. 

Instance Variables

@private NSImage* _acceptingImage;
NSCell* _imageCell;
NSImage* _image;
NSCell* _textCell;
NSString* _title;
NSBorderType _borderType;
NSColor* _backgroundColor;
BOOL _allowSourceDragging;
BOOL _allowDestinationDragging;
BOOL _shadowIncoming;
BOOL _displaysTitle;
BOOL _titleEditable;
BOOL _titleMultiline; 

_acceptingImage Image to display when accepting a drag.

_imageCell Cell that'll draw our image.



_image Image we'll display (usually).

_textCell Cell that'll draw our title (if enabled)

_title Title we'll display (if enabled)

_borderType Border (same as NSBox)

_backgroundColor Background color (if drawn)

_allowSourceDragging Allow us to start a drag?

_allowDestinationDragging Allow us to receive a drag?

_shadowIncoming Dim the incoming source image?

_displaysTitle Do we display a title?

_titleEditable Can our title be edited?

_titleMultiline Can the title span many lines?

Method Types

Class initialization + initialize

Drag support + destinationDragCell
+ setDestinationDragCell:
+ sourceDragCell
+ setSourceDragCell:
+ dimmedSourceImage
+ setDimmedSourceImage:
+ dimmedDestinationImage
+ setDimmedDestinationImage:

Initialization/deallocation - init
- dealloc

NSCell overrides - acceptsFirstResponder
- isOpaque



Cell accessors - textCell
- setTextCell:
- imageCell
- setImageCell:

Our images - acceptingImage
- setAcceptingImage:
- setImage:

Title manipulation - title
- setTitle:
- displaysTitle
- setDisplaysTitle:
- isTitleEditable
- setTitleEditable:
- isTitleMultiline
- setTitleMultiline:

Dragging options - allowsSourceDragging
- setAllowsSourceDragging:
- allowsDestinationDragging
- setAllowsDestinationDragging:
- acceptsForeignDrag
- acceptsLocalDrag
- acceptsSelfDrag
- retainsData
- shadowsIncoming
- setShadowsIncoming:
- shadowColor
- dragImageSlidesBack

Destination dragging - acceptingPasteboardTypes
- cleanupAfterDestinationDrag

Dragging pasteboard - draggingPasteboard

Source dragging - prepareForSourceDrag
- trackMouse:inRect:ofView:untilMouseUp:
- calculateDragPoint:andOffset:



Drags in progress - isSourceDragInProgress
- isDestinationDragInProgress

Sizing ourselves - calcDrawInfo:
- cellSize
- cellSizeForBounds:
- drawingRectForBounds:
- imageRectForBounds:
- titleRectForBounds:

Display options - backgroundColor
- setBackgroundColor:
- isBezeled
- setBezeled:
- isBordered
- setBordered:
- borderType
- setBorderType:
- imageToDisplay
- titleToDisplay
- imageToDrag

Dimmed image creation - createDimmedSourceImage
- createDimmedDestinationImageUsingImage:

Display hooks - prepareTextCellForDisplay

Drawing - drawWithFrame:inView:
- drawInteriorWithFrame:inView:

Copying - copyWithZone:

Archiving - initWithCoder:
- encodeWithCoder:

Class Methods

destinationDragCell



+ (MiscDragCell*)destinationDragCell

Returns the drag cell that's currently acting as the drag destination, or nil either if there's no drag going on or the 
destination is some other object.    If instances want to know if they are the current drag destination they should 
use our isDestinationDragInProgress instance method. 

dimmedDestinationImage

+ (NSImage*)dimmedDestinationImage

Used internally.    Returns our dimmed destination image.    Since only a single drag can be taking place at any 
time I decided to use a class variable to hold the image. 

dimmedSourceImage

+ (NSImage*)dimmedSourceImage

Used internally.    Returns our dimmed source image.    Since only a single drag can be taking place at any time I 
decided to use a class variable to hold the image. 

initialize

+ (void)initialize

Our class initializer.    Sets our class version for use with archiving. 

setDestinationDragCell:

+ (void)setDestinationDragCell:(MiscDragCell*)currentSource

Sets newDest as the current drag destination.    When the destination drag ends this method should be called 
with a nil argument. 

setDimmedDestinationImage:

+ (void)setDimmedDestinationImage:(NSImage*)newImage

Used internally.    Sets our current dimmed image for the destination drag cell. 



setDimmedSourceImage:

+ (void)setDimmedSourceImage:(NSImage*)newImage

Sets our dimmed source image to newImage. 

setSourceDragCell:

+ (void)setSourceDragCell:(MiscDragCell*)currentDest

Sets newSource as the current drag source.    When the source drag ends this method should be called with a nil 
argument. 

sourceDragCell

+ (MiscDragCell*)sourceDragCell

Returns the drag cell that's currently acting as the drag source, or nil either if there's no drag going on or the 
source is some other object (that is not a subclass of MiscDragCell).    If instances want to know if they are the 
current drag source they should use our isSourceDragInProgress instance method. 

Instance Methods

acceptingImage

- (NSImage*)acceptingImage

Returns the image that's dislayed when we are accepting an image, or nil if there is no accepting image.    This 
method overrides any value returned by our shadowsIncoming method. 

acceptingPasteboardTypes

- (NSArray*)acceptingPasteboardTypes

This method is for subclasses to override to return the pasteboard types that it will accept (as the destination of a 
drag).    In contrast, for a source drag you don't have to define what you will drag.    You can put data of any type 
on the pasteboard in our prepareForSourceDrag method.    Our implementation returns nil. 

acceptsFirstResponder



- (BOOL)acceptsFirstResponder

Drag Views and Cells cannot be manipulated by anything other than the mouse so they don't accept first 
responder. 

acceptsForeignDrag

- (BOOL)acceptsForeignDrag

Returns YES if we accept drags that don't originate from within our own application.    The default is YES.    
Subclasses can override this to change this behavior. 

acceptsLocalDrag

- (BOOL)acceptsLocalDrag

Returns YES if we accept drags that originate from within our own application.    The default is YES.    Subclasses 
can override this to change this behavior. 

acceptsSelfDrag

- (BOOL)acceptsSelfDrag

Returns YES if we accept drags that originated from our own drag cell.    The default is YES.    You see this 
behavior in the Workspace shelf.    If you drag a file from one of the cells you are still able to put it back in the 
same cell.    If this method returns YES then acceptsLocalDrag should also return YES.    Subclasses can 
override this to change this behavior. 

allowsDestinationDragging

- (BOOL)allowsDestinationDragging

Returns YES if we are allowed to accept a drag.    The default is YES. 

allowsSourceDragging

- (BOOL)allowsSourceDragging

Returns YES if we can be the source of a dragging session, or NO if we cannot. 



backgroundColor

- (NSColor*)backgroundColor

Returns the background color we use if happen to draw our background (which we only do if we have a border). 
Otherwise we are non-opaque and our view behind us will end up drawing our background.    By default our 
background color is light gray. 

borderType

- (NSBorderType)borderType

Returns our border type, which will be one of NSNoBorder (the default), NSBezelBorder, NSLineBorder, or 
NSGrooveBorder. 

calcDrawInfo:

- (void)calcDrawInfo:(NSRect)rect

Doesn't do anything yet. 

calculateDragPoint:andOffset:

- (void)calculateDragPoint:(NSPoint *)dragPoint
 andOffset:(NSPoint *)offset

This method should be overridden if you want to have some control on where the dragged image is first placed, 
and how far it is offset from the original mousedown (dragPoint).    Making the dragPoint be the middle of the 
image is the default, 

cellSize

- (NSSize)cellSize

Returns our current cell size. 

cellSizeForBounds:

- (NSSize)cellSizeForBounds:(NSRect)bounds



This method hasn't been implemented correctly yet.    It just returns the size from our cellSize method. 

cleanupAfterDestinationDrag

- (void)cleanupAfterDestinationDrag

Internally used.    This is called after a destination drag whether it was a success or failure. 

copyWithZone:

- (id)copyWithZone:(NSZone*)zone

Returns a copy of the receiver. 

createDimmedDestinationImageUsingImage:

- (void)createDimmedDestinationImageUsingImage:(NSImage*)origImage

Creates our dimmed destination image by copying origImage and compositing our shadow color over it.    This 
copy can be retrieved by calling [[self class] dimmedDestinationImage]. 

createDimmedSourceImage

- (void)createDimmedSourceImage

Creates our dimmed source image by copying our image and compositing our shadow color over it.    This copy 
can be retrieved by calling [[self class] dimmedSourceImage]. 

dealloc

- (void)dealloc

Releases our resources. 

displaysTitle

- (BOOL)displaysTitle

Returns YES if we display our title under our image. 



dragImageSlidesBack

- (BOOL)dragImageSlidesBack

Returns YES if the dragging image should slide back to it's destination when it isn't deposited in another view.    
The default is to slide back only if we retain our data (retainsData returns YES). 

draggingPasteboard

- (NSPasteboard*)draggingPasteboard

Override this if you would like to use a different pasteboard for dragging.    The default is the NSDragPboard. 

drawInteriorWithFrame:inView:

- (void)drawInteriorWithFrame:(NSRect)frame
 inView:(NSView*)controlView

Draws our background if we have a border (using our background color).    We then draw our image and title (if 
displaysTitle returns YES) if we have one. 

drawWithFrame:inView:

- (void)drawWithFrame:(NSRect)frame
 inView:(NSView*)controlView

Draws the border if there is one, then offsets the NSRect and passes it to drawInteriorWithFrame:inView:. 

drawingRectForBounds:

- (NSRect)drawingRectForBounds:(NSRect)bounds

This method hasn't been implemented correctly yet. 

encodeWithCoder:

- (void)encodeWithCoder:(NSCoder*)aCoder

Archives an instance of MiscDragCell. 



imageCell

- (NSCell*)imageCell

Returns the cell we use to draw our image.    You shouldn't need to use this method unless you create a subclass 
and want to use a custom cell. 

imageRectForBounds:

- (NSRect)imageRectForBounds:(NSRect)bounds

This method hasn't been implemented correctly yet. 

imageToDisplay

- (NSImage*)imageToDisplay

Returns the image we should be displaying in our cell.    This is checked every time we are asked to draw 
ourselves.    If we are not the middle of a drag then we just display our image (as returned by [self image]).    
Otherwise if we are the destination drag cell we can either return our accepting image (if we have one) or a 
dimmed destination image (if shadowsIncoming returns YES).    If we are the current source drag cell then we'll 
either return our own image, or a dimmed source image (if we don't retain our data). 

imageToDrag

- (NSImage*)imageToDrag

By default we just return [self image].    Subclasses can alter this to return a different image.    For instance, a 
subclass that drags TIFF images could override this method to return the standard TIFF icon. 

init

- (id)init

Our designated initializer.    Since initTextCell: and initImageCell: don't seem to make much sense for a drag 
cell you have to use this method.    Calling either of the other two more common NSCell initializer methods will 
result in a run-time error. 



initWithCoder:

- (id)initWithCoder:(NSCoder*)aDecoder

Unarchives an instance of MiscDragCell. 

isBezeled

- (BOOL)isBezeled

Overridden from NSCell since we are using the NSBox-like methods setBorderType:/borderType to determine 
our border.    We return YES if our border type is NSBezelBorder. 

isBordered

- (BOOL)isBordered

Overridden from NSCell since we are using the NSBox-like methods setBorderType:/borderType to determine 
our border.    We return YES if our border type is NSLineBorder. 

isDestinationDragInProgress

- (BOOL)isDestinationDragInProgress

Returns YES if we are currently the destination of a drag.    This is most often used so we can draw shadowed 
images, etc.    in our drawing methods. 

isOpaque

- (BOOL)isOpaque

If we have a border then we cover our entire area (and return YES).    If we don't, we won't (returns NO). 

isSourceDragInProgress

- (BOOL)isSourceDragInProgress

Returns YES if we are currently the source of a drag.    This is most often used so we can draw shadowed 
images, etc.    in our drawing methods. 



isTitleEditable

- (BOOL)isTitleEditable

Titles aren't currently editable so the return value doesn't really matter. 

isTitleMultiline

- (BOOL)isTitleMultiline

Not implemented yet. 

prepareForSourceDrag

- (BOOL)prepareForSourceDrag

This method is meant to be overridden in subclasses to allow you to put the data you want to send on the 
dragging pasteboard.    Our implementation returns NO. 

prepareTextCellForDisplay

- (void)prepareTextCellForDisplay

This method is called just before the text is drawn.    We currently just set the cell's string value to the title we are 
displaying (whether we really display it or not depends on the value returned by displaysTitle).    If you extend 
this method make sure and do a [super prepareTextCellForDisplay]. 

retainsData

- (BOOL)retainsData

Returns YES if when we drag that we leave a copy of ourselves behind.    If you were to emulate the Workspace 
shelf then this would return NO.    The default is NO.    Subclasses can override this to change this behavior. 

setAcceptingImage:

- (void)setAcceptingImage:(NSImage*)anImage

Sets the image that's displayed when we are the destination of a drag.    This would be useful for instance if we 
were trying to write a folder subclass that showed the open folder when it accepts the drag. 



setAllowsDestinationDragging:

- (void)setAllowsDestinationDragging:(BOOL)aBool

Sets whether we are allowed to accept a drag.    The default is YES. 

setAllowsSourceDragging:

- (void)setAllowsSourceDragging:(BOOL)aBool

Sets whether we can be the source of a dragging session. 

setBackgroundColor:

- (void)setBackgroundColor:(NSColor*)newColor

Sets our background color.    By default it is light gray.    See our backgroundColor method to see when we use 
our background color. 

setBezeled:

- (void)setBezeled:(BOOL)nowBezeled

If nowBezeled is YES we will draw an NSBezelBorder.    If nowBezeled is NO we set our border type to 
NSNoBorder. 

setBorderType:

- (void)setBorderType:(NSBorderType)aType

Sets our border type.    aType should be one of NSNoBorder, NSBezelBorder, NSLineBorder or 
NSGrooveBorder. 

setBordered:

- (void)setBordered:(BOOL)nowBordered

If nowBordered is YES we will draw an NSLineBorder.    If nowBordered is NO we set our border type to 
NSNoBorder. 



setDisplaysTitle:

- (void)setDisplaysTitle:(BOOL)displays

Sets whether we display a title. 

setImage:

- (void)setImage:(NSImage*)anImage

Sets the image we display.    If newImage is nil we set our title to be the empty string. 

setImageCell:

- (void)setImageCell:(NSCell*)newImageCell

Sets the image cell we use to draw our image.    The default is just an NSCell initialized with initImageCell:. 

setShadowsIncoming:

- (void)setShadowsIncoming:(BOOL)aBool

Sets whether we show a dimmed image when there is an incoming drag.    The default is YES. 

setTextCell:

- (void)setTextCell:(NSCell*)newTextCell

Sets the cell we use to draw our title.    By default it is an instance of MiscAbbreviatedTextCell, which takes care 
of putting ".." at the end of titles that are too long to display. 

setTitle:

- (void)setTitle:(NSString*)newTitle

Sets our title.    This may or may not be displayed under our image depending on what our displaysTitle method 
returns.    returns YES. 



setTitleEditable:

- (void)setTitleEditable:(BOOL)isEditable

Not implemented yet. 

setTitleMultiline:

- (void)setTitleMultiline:(BOOL)isMultiline

Not implemented yet. 

shadowColor

- (NSColor*)shadowColor

Returns the color used to created a dimmed appearance for a destination image.    The default is to return a 
partially transparent gray.    If you want a different appearance for shadowing, you can override this method. 

shadowsIncoming

- (BOOL)shadowsIncoming

Returns YES if we show a dimmed image when there is an incoming drag.    This assumes that we are currently 
accepting drags.    The default is YES. 

textCell

- (NSCell*)textCell

Returns the cell we use to draw our title.    You shouldn't need to use this method except in other methods like 
prepareTextCellForDisplay. 

title

- (NSString*)title

Returns our current title.    This may or may not be displayed, depending upon what displaysTitle returns. 

titleRectForBounds:



- (NSRect)titleRectForBounds:(NSRect)bounds

This method hasn't been implemented correctly yet. 

titleToDisplay

- (NSString*)titleToDisplay

Returns the title that'll be displayed along with our image as long as displaysTitle returns YES.    By default we 
just return [self title] but subclasses can easily modify this method. 

trackMouse:inRect:ofView:untilMouseUp:

- (BOOL)trackMouse:(NSEvent*)theEvent
 inRect:(NSRect)rect
 ofView:(NSView*)controlView
 untilMouseUp:(BOOL)untilMouseUp

We take care of starting a source drag, as long as the following conditions are met: (1) We allow source 
dragging, (2) our image is not nil, (3) prepareForSourceDrag returns YES, and the mouse is moved at least 5 
pixels from where the original mouse down occured.    Returns YES no matter what happens, though I'm not sure 
if that's correct. 


