
Copyright ã1996 by Uwe Hoffmann    All Rights Reserved.

MiscSortedCollection Class Cluster

Class Cluster Description
MiscSortedCollection objects manage sorted collections of objects. The cluster's two public classes, MiscSortedCollection
and MiscMutableSortedCollection, declare the programmatic interface for static and dynamic collections, respectively.

The objects you create using these classes are referred to as collection objects. Because of the nature of class clusters,
collection objects are not actual instances of the MiscSortedCollection or MiscMutableSortedCollection classes but of one
of their private subclasses. Although an collection object's class is private, its interface is public, as declared by these
abstract superclasses, MiscSortedCollection and MiscMutableSortedCollection. (See ªClass Clustersº in the introduction to
the Foundation Kit for more information on class clusters and creating subclasses within a cluster.)

Generally, you instantiate an collection object by sending one of the collection... messages to either the
MiscSortedCollection or MiscMutableSortedCollection class object.    These methods return a collection object containing
the elements you pass in as arguments.    (Note that collections can't contain the nil object.)    In general, objects that you
add to a collection aren't copied; rather, each object receives a retain message before its id is added to the collection.   
When an object is removed from a collection, it's sent a release message.

The MiscSortedCollection class adopts the NSCopying and NSMutableCopying protocols, making it convenient to convert
a collection of one type to the other.

Objects in a MiscSortedCollection are sorted    NSOrderedAscending.    Order is determined internally through object
comparison. Duplicates are allowed (more than one object NSOrderedSame).    The collections support insertion, deletion
and finding in O(log n) time.

NSNumbers and NSStrings already have comparison methods. If you instantiate a NSNumber collection or a NSString
collection you can only insert NSNumbers or respectively NSStrings in the collection. For collections with NSObjects you

have to specify the comparison method or function.

The MiscSortedCollection class cluster uses skiplists internally. SkipLists are data structures that use probalistic balancing
rather than strictly enforcing balancing. As a result, the algorithms for insertion and deletion in skip lists are much simpler
and significantly faster than algorithms for balanced trees.

Reading material about skiplist:

· Pugh W., Skip Lists: A Probalistic Alternative to Balanced Tree
Communications of the ACM, June 1990, Volume 33, Number 6, p. 668-676
· Pugh W., A skip list cookbook
Tech. Rep. CS-TR-2286.1, Dept.of Computer Science, Univ. of Maryland, College Park,MD [July 1989]

MiscSortedCollection

Inherits From: NSObject

Conforms To: NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: MiscSortedCollection.h

Class Description

The MiscSortedCollection class declares the programmatic interface to an object that manages an immutable sorted
collection of objects.    MiscSortedCollection's five primitive methodsÐcount,    objectBefore:, objectEnumerator,
smallest and allObjectsOrderedSameAs:Ðprovide the basis for all the other methods in its interface.    The count
method returns the number of elements in the collection.    objectBefore: returns the largest object which compares
NSOrderedDescending to the argument.    objectEnumerator permits sequential access of the elements of the collection.
smallest returns the smallest object in the collection. allObjectsOrderedSameAs: returns an array containing all the
objects which compare NSOrderedSame with the argument.

Instance Variables

None declared in this class.

Adopted Protocols
NSCopying - copy

- copyWithZone:

NSMutableCopying - mutableCopy
- mutableCopyWithZone:

Method Types

Allocating and initializing + allocWithZone:
+ collection
+ collectionWithCompareFunction:context:

+ collectionWithCompareSelector:
+ collectionWithNumbers:
+ collectionWithNumbers:count:
+ collectionWithObjects:
+ collectionWithObjects:compareFunction:context:
+ collectionWithObjects:compareSelector:
+ collectionWithObjects:count:
+ collectionWithObjects:count:compareFunction:context:
+ collectionWithObjects:count:compareSelector:
+ collectionWithStrings:
+ collectionWithStrings:count:
+ collectionWithStrings:count:options:
+ collectionWithStrings:count:options:range:
+ collectionWithStrings:options:
+ collectionWithStrings:options:range:
- initWithObjects:count:
- initWithObjects:count:compareFunction:context:
- initWithObjects:count:compareSelector:
+ numberCollection
+ stringCollection
+ stringCollectionOptions:
+ stringCollectionOptions:range:

Counting entries - count

Accessing objects - allObjects
- allObjectsOrderedSameAs:
- objectBefore:
- objectEnumerator
- smallest

Comparing collections - isEqualToSortedCollection:

Joining string elements - componentsJoinedByString:

Creating a description of the array
- description

- descriptionWithIndent:

Class Methods

allocWithZone:
+ allocWithZone:(NSZone *)zone

Creates and returns an uninitialized collection object in the specified zone.    If the receiver is the MiscSortedCollection
class object, an instance of an immutable private subclass is returned; otherwise, an object of the receiver's class is
returned.

Typically, you create collection objects using the collection...    class methods, not the alloc... and init... methods.    Note
that it's your responsibility to free objects created with the alloc... methods.

See also:    + collection... methods

collection
+ collection

Creates and returns an empty collection.    This    method is declared primarily for the use of mutable subclasses of
MiscSortedCollection. Objects in the collection are compared with the method compare:.

See also: + collectionWithCompareFunction:context:, + collectionWithCompareSelector:

collectionWithCompareFunction:context:
+ collectionWithCompareFunction:(int(*)(id, id, void *))comparator

context:(void *)context

Creates and returns an empty collection. Objects in the collection are compared with the comparator function. The context
is passed to the comparator.

See also:    + collection, + collectionWithCompareSelector:

collectionWithCompareSelector:
+ collectionWithCompareSelector:(SEL)comparator

Creates and returns an empty collection. Objects in the collection are compared with the comparator method.

See also:    + collection, + collectionWithCompareFunction:context:

collectionWithNumbers:
+ collectionWithNumbers:(NSArray *)numbers

Creates and returns a collection object containing the NSNumber objects from the numbers array.

See also:    + collectionWithNumbers:count:

collectionWithNumbers:count:
+ collectionWithNumbers:(NSNumber **)numbers

count:(unsigned)count

Creates and returns a collection object containing count NSNumber objects from the numbers memory buffer.

See also:    + collectionWithNumbers:

collectionWithObjects:
+ collectionWithObjects:(NSArray *)objects

Creates and returns a collection object containing the objects from the objects array. Objects in the collection are
compared with the method compare:.

See also:    + collectionWithObjects:compareFunction:context:, + collectionWithObjects:compareSelector:

collectionWithObjects:compareFunction:context:
+ collectionWithObjects:(NSArray *)objects

compareFunction:(int(*)(id, id, void *))comparator
context:(void *)context

Creates and returns a collection object containing the objects from the objects array. Objects in the collection are
compared with the comparator function. The context is passed to the comparator.

See also:    + collectionWithObjects:, + collectionWithObjects:compareSelector:

collectionWithObjects:compareSelector:
+ collectionWithObjects:(NSArray *)objects

compareSelector:(SEL)comparator

Creates and returns a collection object containing the objects from the objects array. Objects in the collection are
compared with the comparator method.

See also:    + collectionWithObjects:, + collectionWithObjects:compareFunction:context:

collectionWithObjects:count:
+ collectionWithObjects:(id *)objects

count:(unsigned)count

Creates and returns a collection object containing count objects from the objects memory buffer. Objects in the collection
are compared with the method compare:.

See also:    + collectionWithObjects:count:compareFunction:context:,

+collectionWithObjects:count:compareSelector:

collectionWithObjects:count:compareFunction:context:
+ collectionWithObjects:(id *)objects

count:(unsigned)count
compareFunction:(int(*)(id, id, void *))comparator
context:(void *)context

Creates and returns a collection object containing count objects from the objects memory buffer. Objects in the collection
are compared with the comparator function. The context is passed to the comparator.

See also:    + collectionWithObjects:count:, +collectionWithObjects:count:compareSelector:

collectionWithObjects:count:compareSelector:
+ collectionWithObjects:(id *)objects

count:(unsigned)count
compareSelector:(SEL)comparator

Creates and returns a collection object containing count objects from the objects memory buffer. Objects in the collection
are compared with the comparator method.

See also:    + collectionWithObjects:count:, + collectionWithObjects:count:compareFunction:context:

collectionWithStrings:
+ collectionWithStrings:(NSArray *)strings

Creates and returns a collection object containing count NSString objects from the strings array.

See also: +collectionWithStrings:options:, +collectionWithStrings:options:range:

collectionWithStrings:count:
+ collectionWithStrings:(NSString **)strings

count:(unsigned)count

Creates and returns a collection object containing count NSString objects from the strings memory buffer.

See also:    +collectionWithStrings:count:options:, +collectionWithStrings:count:options:range:

collectionWithStrings:count:options:
+ collectionWithStrings:(NSString **)strings

count:(unsigned)count
options:(unsigned)mask

Creates and returns a collection object containing count NSString objects from the strings memory buffer. mask is passed
to the NSString comparison method.

See also:    +collectionWithStrings:count:options:range:

collectionWithStrings:count:options:range:
+ collectionWithStrings:(NSString **)strings

count:(unsigned)count
options:(unsigned)mask
range:(NSRange)aRange

Creates and returns a collection object containing count NSString objects from the strings memory buffer. mask and
aRange are passed to the NSString comparison method.

See also:    +collectionWithStrings:count:options:

collectionWithStrings:options:
+ collectionWithStrings:(NSArray *)strings

options:(unsigned)mask

Creates and returns a collection object containing count NSString objects from the strings array. mask is passed to the
NSString comparison method.

See also:    +collectionWithStrings:options:range:

collectionWithStrings:options:range:
+ collectionWithStrings:(NSArray *)strings

options:(unsigned)mask
range:(NSRange)aRange

Creates and returns a collection object containing count NSString objects from the strings array. mask and aRange are
passed to the NSString comparison method.

See also:    +collectionWithStrings:options:

numberCollection
+ numberCollection

Creates and returns an empty NSNumber collection.    This    method is declared primarily for the use of mutable
subclasses of MiscSortedCollection.

See also:    + collectionWithNumbers:, + collectionWithNumbers:count:

stringCollection
+ stringCollection

Creates and returns an empty NSString collection.    This    method is declared primarily for the use of mutable subclasses
of MiscSortedCollection.

See also:    + stringCollectionOptions:, + stringCollectionOptions:range:

stringCollectionOptions:
+ stringCollectionOptions:(unsigned)mask

Creates and returns an empty NSString collection. mask is passed to the NSString comparison method.

See also:    + stringCollectionOptions:range:

stringCollectionOptions:range:
+ stringCollectionOptions:(unsigned)mask

range:(NSRange)aRange

Creates and returns an empty NSString collection. mask and aRange are passed to the NSString comparison method.

See also:    + stringCollectionOptions:

Instance Methods

allObjects
-    (NSArray *)allObjects

Returns an array containing all the objects in the collection. This snapshots the set of objects. Order is smallest to largest

See also: -allObjectsOrderedSameAs:, -objectEnumerator

allObjectsOrderedSameAs:
-    (NSArray *)allObjectsOrderedSameAs:anObject

Returns an array containing all the objects which compare NSOrderedSame with anObject. Order in the array is
undefined.

See also:    -allObjects, -smallest

count
-    (unsigned)count

Returns the number of objects in the collection.

description

- (NSString *)description

Returns a string object that represents the contents of the receiver. The returned object uses the PropertyList format.

See also:    - descriptionWithIndent:

descriptionWithIndent:

- (NSString *)descriptionWithIndent:(unsigned)level

Returns a string object that represents the contents of the receiver. The returned object uses the PropertyList format. level
allows you to specify a level of indent, to make the output more readable: set level to 0 for no indent, or 1 to have the
output indented four spaces.

See also:    - description

hash

@protocol NSObject
- (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For an collection object, hash
returns the number of entries in the collection. If two collection objects are equal (as determined by the isEqual: method),
they will have the same hash value.

See also:    - isEqual:

initWithObjects:count:
-    initWithObjects:(id *)objects

count:(unsigned)count

Initializes a newly allocated collection object by placing in it count objects contained in the objects memory buffer.   
Objects in the collection are compared with the method compare:. Returns self.

See also:    - initWithObjects:count:compareFunction:context:, - initWithObjects:count:compareSelector:

initWithObjects:count:compareFunction:context:
-    initWithObjects:(id *)objects

count:(unsigned)count
compareFunction:(int(*)(id, id, void *))comparator
context:(void *)context

Initializes a newly allocated collection object by placing in it count objects contained in the objects memory buffer. Objects
in the collection are compared with the function comparator in the context context. Returns self.

See also:    - initWithObjects:count:, - initWithObjects:count:compareSelector:

initWithObjects:count:compareSelector:
-    initWithObjects:(id *)objects

count:(unsigned)count
compareSelector:(SEL)comparator

Initializes a newly allocated collection object by placing in it count objects contained in the objects memory buffer. Objects
in the collection are compared with the method comparator. Returns self.

See also:    - initWithObjects:count:, - initWithObjects:count:compareFunction:context:

isEqual:

@protocol NSObject
- (BOOL)isEqual:anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates that the receiver
and anObject both inherit from MiscSortedCollection and contain the same data (as determined by the
isEqualToSortedCollection: method).

See also:    - isEqualToSortedCollection:

isEqualToSortedCollection:
-    (BOOL)isEqualToSortedCollection:(MiscSortedCollection *)otherSortedCollection

Compares the receiving collection object to otherSortedCollection.    If the contents of otherSortedCollection are equal to
the contents of the receiver, this method returns YES.    If not, it returns NO.

Two collections have equal contents if they each hold the same number of objects and objects at a given index in each
collection satisfy the isEqual: test.

See also:    - isEqual: (NSObject protocol)

objectBefore:
-    objectBefore:anObject

Returns the largest object which compares NSOrderedDescending to anObject.

See also:    -smallest

objectEnumerator
-    (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each value in the collection:

id <NSEnumerator> enumerator = [myCollection objectEnumerator];

id value;
while (value = [enumerator nextObject]) {
 /* code that acts on the collection's values */
}

When this method is used with mutable subclasses of MiscSortedCollection, your code shouldn't modify the entries during
enumeration.    If you intend to modify the entries, use the allObjects method to create a ªsnapshotº of the collection's
objects.    Work from this snapshot to modify the objects.

See also:    - allObjects, - nextObject (NSEnumerator protocol)

smallest
-    smallest

Returns the smallest object in collection.

See also:    -objectBefore:

MiscMutableSortedCollection

Inherits From: MiscSortedCollection

Conforms To: NSCoding
NSCopying
NSMutableCopying

NSObject (NSObject)

Declared In: uwkit/MiscSortedCollection.h

Class Description

The MiscMutableSortedCollection class declares the programmatic interface to objects that manage mutable collections of
sorted objects. With its three efficient primitive methodsÐinsertObject:, removeAllObjectsOrderedSameAs: and
removeAllObjectsÐthis class adds modification operations to the basic operations it inherits from MiscSortedCollection.

The other methods declared here operate by invoking one of these primitives.    The non-primitive methods provide
convenient ways of adding or removing multiple objects at a time.

When an object is removed from a mutable collection, it receives an release message.    If there are no further references
to the object, itÂs deallocated.    Note that if your program keeps a reference to such an object, the reference will become
invalid unless you remember to send the object a retain message before it's removed from the collection.

Instance Variables

None declared in this class.

Method Types

- insertObject:
- insertObjectsFromArray:
- removeAllObjects
- removeAllObjectsOrderedSameAs:

Instance Methods

insertObject:
-    (void)insertObject:anObject

Inserts anObject in collection.    If object is nil an NSInvalidArgumentException error is raised. Retain is applied to the
object inserted.

See also:    -insertObjectsFromArray:

insertObjectsFromArray:
-    (void)insertObjectsFromArray:(NSArray *)anArray

Inserts all objects from anArray.

See also:    - insertObject:

removeAllObjects
-    (void)removeAllObjects

Empties collection. Performs -release on each object removed.

removeAllObjectsOrderedSameAs:
-    (void)removeAllObjectsOrderedSameAs:anObject

Removes objects which compare NSOrderedSame with anObject. Performs -release on each object removed
 

