
Release 1.0      Copyright ã1997 by Carl E. Lindberg.    All Rights Reserved.

NSString (MiscRegex)

Declared In: <misckit/NSString+MiscRegex.h>

Category Description

NSString+MiscRegex provides regular expression support -- with some caveats -- for the NSString class, using 
the functions in the regexpr package included in the MiscKit.    It provides similar functionality as the regular 
expression methods on the old MiscString, though most method names have changed.    There are also more 
features, such as being able to get the strings matched by subportions of an expression, better handling of zero-
length matches, ability to use the 'fastmap' option of the regexpr package for faster searching, and the ability to 
use sed-like tokens in replacement strings to represent portions of the matched text.

Problems with Unicode strings

Unfortunately, there are some problems with regular expression searching when it comes to Unicode strings 



(which NSString normally supports).      Unicode characters are 16 bits, which causes problems with traditional 
regular expression algorithms.    I believe this is due to the use of character tables, which are 256 bytes with 8-bit 
characters (256 possibilities at one byte each), but 128K with 16-bit characters (65,536 possibilities at two bytes 
each).    Composed character sequences are probably a large problem as well.    In any event, I am not aware of 
any regular expression package that can search Unicode strings.

As a result, all the methods in this category operate on the -cString of the receiving NSString instance.    This is 
not a problem with strings that have a 1-1 character mapping between itself and its cString (which should 
hopefully be most of them), but might be for strings that don't (such as those that have composed character 
sequences).    For example, since NSRanges returned by these methods are based on the cString, they may not 
match the intended range of characters in the NSString itself.    In that case, a call to -substringToIndex: using a 
returned NSRange would not return the exact substring intended -- and could even raise an exception, if that 
range was out of bounds for the Unicode string.    NSString+MiscRegex methods that return NSStrings get those 
strings from the cString itself, so they don't have this problem.    However, if any information was lost in the 
translation to the cString in the first place, then that information will also be lost in the returned NSStrings.

Regular expression syntax

The regular expression syntax used in these methods imitates that of    GNU regular expressions, which is an 
extension of standard Unix regular expressions (as defined by ed(1), sed(1), grep(1), etc).    See the 
documentation for the regexpr package for a full description.

Of particular note is the re_set_syntax() function, which sets a global syntax setting used by the regexpr 
routines.    Different values allow for modifications to the default syntax, and the setting will affect the 
NSString+MiscRegex category (as well as any other code that uses the regexpr functions).

If the regular expression passed to these methods is malformed, NSExceptions are raised. The 
exceptionReason should describe what the problem with the expression was.    Additionally, exceptions will be 
raised if there are internal errors during the actual search, but these should virtually never happen if the 



expression itself is valid.    To determine the validity of an expression, use the -isValidRegex method.

Using the Regex methods

Most of the methods are fairly straightforward.    -numOfRegex:... returns the number of occurrences of the given 
expression in the string, -stringsMatchedByRegex:.... returns all of the matches in an NSArray of NSStrings, 
and -rangesMatchedByRegex:... returns the ranges of the matches in an NSArray of NSValues (each NSValue 
encoding an NSRange).    -componentsSeparatedByRegex:... returns an NSArray of the strings between the 
matches, much like the standard -componentsSeparatedByString: method.

-rangeOfRegex:... returns the range of a particular match.    The -grep:... methods can return different pieces of 
information about a match: the matched string, the string up to the match, the string after the match, the ranges 
of all three (returned in NSValues), substrings of the matched string corresponding to marked subexpressions in 
the regex, and the ranges of those substrings.    See the section below for more information regarding these 
submatches.

The -stringByReplacingRegex:withString:... methods return a new string with the matched portion replaced 
with another string, and the -stringByReplacingEveryOccurrenceOfRegex:... methods return a new string with 
every match replaced.    There are corresponding -replaceRegex: and -replaceEveryOccurrenceOfRegex: 
methods for NSMutableString, which do the replacements in place.

Because a match of zero length is perfectly possible with regular expressions, NSString's usual indicator for not 
finding the search term (an NSRange's 'length' member being equal to 0) isn't sufficient for 
NSString+MiscRegex.    Instead, for any NSRanges returned by these methods, check if the 'location' member is 
equal to NSNotFound.

Marking subexpressions within a regular expression

Using parentheses, a part of the regular expression can be marked for later reference.    For example, in the 



expression "ab(c+)" [or "ab\(c+\)", depending on how the global syntax variable is set], the "c+" portion of the 
expression has been marked.    Using the -grep:... methods, the substrings matched by these subexpressions 
can also be retrieved.    By specifying the 'MiscSubstringsPiece', an NSArray of NSStrings is returned, which 
contains all of the substrings matched by all of the subexpressions.    The substring for the full match is the first 
item (index zero), followed by the substrings matching all of the subexpressions.    For example, if the expression 
above was used on the string "abccccdef", the array would contain two strings: "abcccc" (the entire match), and 
"cccc" (the part matched by "c+").

Marked subexpressions can also be referred to in the replace strings used in the replacement regex methods.    
See the option parameter 'MiscUseMatchSubstitutions' below.

Search options

The NSString+Regex methods take the same search options as NSStrings do (except for NSLiteralSearch), and 
add a couple of additional ones.    As with the standard NSString methods, not every option is available with 
every method.    NSCaseInsensitiveSearch and MiscFasterSearch are the only options that can be used 
anywhere.

Option Effect

NSCaseInsensitiveSearch The regular expression search ignores case distinctions between characters.

NSBackwardsSearch The occurrences of expressions found go from the end of the range towards the 
front.    Use of this option entails a speed penalty, since -numOfRegex: is used to 
determine how times the expressions occurs, then determines the correct part 
to match.    The advantage of this is that backwards searches are symmetrical 
with normal ones --    the first occurrence going backwards will be the same as 
the last occurrence going forwards.

NSAnchoredSearch Matches will only be found at the beginning or end of the range (at the end if 



used in combination with NSBackwardsSearch, at the beginning if not).    No 
match at the beginning or end means nothing is found, even if a matching 
sequence of characters occurs elsewhere in the string.

MiscFasterSearch Makes searches use the fastmap feature of the regexpr package, which does 
some additional precompilation on the expression making the ensuing search 
faster.    However, the overhead may not be worth it if the searches are done on 
small strings.

MiscUseMatchSubstitutions Turns on special processing of the replaceString parameter in the replace 
methods (-stringByReplacingRegex:, 
-stringByReplacingEveryOccurrenceOfRegex:, and the NSMutableString 
parallels).    When this is set, tokens in the replaceString will be replaced with 
portions of the string actually matched by the expression: "$0" and "&" will be 
replaced by the entire match, while "$1" through "$9" will be replaced with the 
first through ninth marked subexpressions.    For example, if the regex "ab(c+)" 
is used on the string "abccccddd", and the replaceString is "__$0__$1__", the 
end result would be "__abcccc__cccc__ddd".    The $0 is replaced by the full 
match ("abcccc"), the $1 is replaced by the match of the first subexpression 
("cccc"), and the "ddd" is the part of the string that wasn't matched (and 
therefore not replaced).    If you want the literal character "$" or "&" to appear in 
the replaced string, use the tokens "$$" and "$&" in replaceString.

Using precompiled regex structures

Part of the overhead of a regular expression search is the compilation done on the expression before the search. 
If several operations are done with the same expression, it is compiled each time, which is inefficient.    To get 
around this, every method that takes an NSString argument for the expression itself has a parallel method that 



takes a pointer to a C structure containing a precompiled expression.    This way, an expression can be compiled 
once and thereafter used in multiple operations.    Using this feature is probably not necessary under most 
circumstances, but in performance-critical code it could make a difference, especially if there are many 
operations done with the same expression.

To precompile an expression, use the MiscNewRegexStruct() function, which takes an NSString expression 
along with an options mask and returns the pointer to a newly allocated, compiled regex structure.    The options 
mask can contain NSCaseInsensitiveSearch and MiscFasterSearch, since those are the two options processed 
at this point.    Accordingly, there is no point to passing either of those options to any of the struct-taking methods.

Use the MiscFreeRegexStruct() function to deallocate the memory used by the structure.

NSString  *expression;  // assume this exists
regexp_t  pattern;

pattern = MiscNewRegexStruct(expression, MiscFasterSearch);

[someString replaceRegexStruct:pattern withString:... ];
<...other operations using pattern...>

MiscFreeRegexStruct(pattern);

For space reasons, the degenerate versions of the struct-taking methods are not detailed in the main 
documentation section; only the full versions are.    All degenerate versions of the methods exist, though (and are 
listed in the "Method Types" section). 



Functions

MiscNewRegexStruct()
regexp_t    MiscNewRegexStruct(NSString *regexString, unsigned options) 

Allocates space for a new regex structure, and compiles the regular expression regexString into it.    Returns the 
pointer to the structure.    The options mask can contain NSCaseInsensitiveSearch and MiscFasterSearch, as 
those are the two options processed by this function.    If regexString is an invalid regular expression, an 
exception is raised.

MiscFreeRegexStruct()
void MiscFreeRegexStruct(regexp_t    pattern) 

Frees the memory used by the structure pointed to by pattern, which should have been obtained by a previous 
call to MiscNewRegexStruct().

Method Types

Counting matches: - numOfRegex:
- numOfRegex:options:
- numOfRegex:range:
- numOfRegex:options:range:
- numOfRegexStruct:
- numOfRegexStruct:options:
- numOfRegexStruct:range:



- numOfRegexStruct:options:range:

Finding matches: - rangeOfRegex:
- rangeOfRegex:options:
- rangeOfRegex:occurrenceNum:
- rangeOfRegex:options:occurrenceNum:
- rangeOfRegex:range:
- rangeOfRegex:options:range:
- rangeOfRegex:occurrenceNum:range:
- rangeOfRegex:options:occurrenceNum:range:
- rangeOfRegexStruct:
- rangeOfRegexStruct:options:
- rangeOfRegexStruct:occurrenceNum:
- rangeOfRegexStruct:options:occurrenceNum:
- rangeOfRegexStruct:range:
- rangeOfRegexStructoptions:range:
- rangeOfRegexStruct:occurrenceNum:range:
- rangeOfRegexStruct:options:occurrenceNum:range:
- rangesMatchedByRegex:
- rangesMatchedByRegex:options:
- rangesMatchedByRegexStruct:
- rangesMatchedByRegexStruct:options:

Returning matched substrings: - componentsSeparatedByRegex:
- componentsSeparatedByRegex:options:
- componentsSeparatedByRegexStruct:
- componentsSeparatedByRegexStruct:options:
- grep:forPiece:



- grep:forPiece:options:
- grep:forPiece:occurrenceNum:
- grep:forPiece:options:occurrenceNum:
- grepRegexStruct:forPiece:
- grepRegexStruct:forPiece:options:
- grepRegexStruct:forPiece:occurrenceNum:
- grepRegexStruct:forPiece:options:occurrenceNum:
- grep:forPieces:
- grep:forPieces:options:
- grep:forPieces:occurrenceNum:
- grep:forPieces:options:occurrenceNum:
- grepRegexStruct:forPieces:
- grepRegexStruct:forPieces:options:
- grepRegexStruct:forPieces:occurrenceNum:
- grepRegexStruct:forPieces:options:occurrenceNum:
- stringsMatchedByRegex:
- stringsMatchedByRegex:options:
- stringsMatchedByRegexStruct:
- stringsMatchedByRegexStruct:options:

Replacing matches: - stringByReplacingEveryOccurrenceOfRegex:withString:
- stringByReplacingEveryOccurrenceOfRegex:withString:options:
- stringByReplacingEveryOccurrenceOfRegex:withString:range:
- stringByReplacingEveryOccurrenceOfRegex:withString:options:range:
- stringByReplacingEveryOccurrenceOfRegexStruct:withString:
- stringByReplacingEveryOccurrenceOfRegexStruct:withString:options:
- stringByReplacingEveryOccurrenceOfRegexStruct:withString:range:



- 
stringByReplacingEveryOccurrenceOfRegexStruct:withString:options:range:
- stringByReplacingRegex:withString:
- stringByReplacingRegex:withString:options:
- stringByReplacingRegex:withString:occurrenceNum:
- stringByReplacingRegex:withString:options:occurrenceNum:
- stringByReplacingRegex:withString:range:
- stringByReplacingRegex:withString:options:range:
- stringByReplacingRegex:withString:occurrenceNum:range:
- stringByReplacingRegex:withString:options:occurrenceNum:range:
- stringByReplacingRegexStruct:withString:
- stringByReplacingRegexStruct:withString:options:
- stringByReplacingRegexStruct:withString:occurrenceNum:
- stringByReplacingRegexStruct:withString:options:occurrenceNum:
- stringByReplacingRegexStruct:withString:range:
- stringByReplacingRegexStruct:withString:options:range:
- stringByReplacingRegexStruct:withString:occurrenceNum:range:
- stringByReplacingRegexStruct:withString:options:occurrenceNum:range:

Validating expressions: - isValidRegex

Instance Methods

componentsSeparatedByRegex:
componentsSeparatedByRegex:options:

-    componentsSeparatedByRegex:(NSString *)regex options:(unsigned)mask



componentsSeparatedByRegexStruct:options:
-    componentsSeparatedByRegexStruct:(regexp_t)pattern options:(unsigned)mask

Constructs and returns an NSArray containing substrings from the receiver that have been divided by matches of 
the expression regex (or pattern).    The strings in the array appear in the order they did in the receiver.

The rules for this method follow that of NSString's -componentsSeparatedByString:.    If the expression 
matches at the beginning of the string, the first string in the array will be ªº, since that is the string before that 
match.    The same concept holds if the expression matches at the end of the string (the last string in the array 
will be ªº), and if matches occur back to back (ªº will be inserted into the array at that point).

Be careful of using an expression that can match the empty string, since there is then a potential match between 
every character!    When this happens, the strings in the returned array will be at most one character long.

In the degenerate methods, mask defaults to 0.    Possible options: NSCaseInsensitiveSearch, 
MiscFasterSearch.

See also: -componentsSeparatedByString: (NSString class cluster), -stringsMatchedByRegex:

grep:forPiece:
grep:forPiece:options:
grep:forPiece:occurrenceNum:
grep:forPiece:options:occurrenceNum:

-    grep:(NSString *)regex forPiece:(NSString *)key options:(unsigned)mask occurrenceNum:(int)n

grepRegexStruct:forPiece:options:occurrenceNum:
-    grepRegexStruct:(regexp_t)pattern forPiece:(NSString *)key options:(unsigned)mask occurrenceNum:

(int)n



This is a single-piece version of -grep:forPieces:....    Returns the piece specified by key.

See also: -grep:ForPieces:...

grep:forPieces:
grep:forPieces:options:
grep:forPieces:occurrenceNum:
grep:forPieces:options:occurrenceNum:

-    (NSDictionary *)grep:(NSString *)regex forPieces:(NSArray *)keys options:(unsigned)mask 
occurrenceNum:(int)n

grepRegexStruct:forPieces:options:occurrenceNum:
-    (NSDictionary *)grepRegexStruct:(regexp_t)pattern forPieces:(NSArray *)keys options:(unsigned)mask 

occurrenceNum:(int)n

Returns, in a dictionary, various pieces of information about the nth occurrence of the expression regex (or 
pattern) in the receiver going from left to right (or right to left if NSBackwardsSearch is specified).    Use n=0 for 
the first occurrence.

The array of piece names keys (an NSArray of NSStrings) specifies which pieces to return in the dictionary -- 
information about keys not specified is not generated.    The information associated with a piece can be pulled 
from the returned dictionary by using the piece name as the key.

The valid piece names (defined in NSString+MiscRegex.h) are:

MiscBeforePiece The substring of the receiver up to the beginning of the match.    If the desired 
occurrence is not found, then this will be the entire text of the receiver (the idea 
being that MiscBeforePiece + MiscMiddlePiece + MiscAfterPiece will always add 



up to the original string).

MiscMiddlePiece The matched substring.    If the desired occurrence is not found, this will be a 
blank string.

MiscAfterPiece The substring of the receiver from the end of the match.    If the desired 
occurrence is not found, this will be a blank string.

MiscBeforeRangePiece The range of the receiver up to the beginning of the match.    If the desired 
occurrence is not found, this will be the entire range of the receiver.

MiscMiddleRangePiece The range of the match.    If the desired occurrence is not found, the range will 
have NSNotFound in its location field.

MiscAfterRangePiece The range of the receiver from the end of the match.    If the desired occurrence 
is not found, the range will have NSNotFound in its location field.

MiscSubstringsPiece An array of the submatched strings.    The string at index 0 will be the matched 
text, and any successive strings will be the substrings matched by portions of 
the expression marked by parentheses.    If the desired occurrence is not found, 
this will be an empty array.    The substrings will be in the same order of the 
opening (left) parentheses in the expression.    For example, with the expression 
"ab(cd(e+))", the array would have three elements: 1) the string matched by 
"abcde+" (the whole expression), 2) the string matched by "cde+" (the first 
marked subportion), and the string matched by "e+" (the second matched 
subportion).

MiscSubrangesPiece An array of the submatched ranges.    The range at index 0 will be the range 
matched by the entire expression, and any successive ranges will be the 
subranges matched by portions of the expression marked by parentheses.      If 
the desired occurrence is not found, this will be an empty array.    The subranges 



will be in the same order as the left parentheses in the expression.

Any ranges returned for the range pieces will be contained in NSValue objects.    To get the actual NSRange, use 
-getValue: on the NSValue instance

For further information on subportions of expressions, see ªMarking subexpressions within a regular 
expressionº in the category description.

In the degenerate methods, mask defaults to 0, n defaults to 0, and range defaults to the entire content of the 
receiver. Possible options: NSCaseInsensitiveSearch, NSBackwardsSearch, NSAnchoredSearch, 
MiscFasterSearch.

See also: -grep:ForPiece:...

isValidRegex
-    (BOOL)isValidRegex

Returns YES if the receiving string is a valid regular expression, NO otherwise.    This is useful for validating an 
expression before use with other methods in this category, since they will all raise exceptions on an invalid 
expression.

numOfRegex:
numOfRegex:options:
numOfRegex:range:
numOfRegex:options:range:

-    (unsigned)numOfRegex:(NSString *)regex options:(unsigned)mask range:(NSRange)range



numOfRegexStruct:options:range:
-    (unsigned)numOfRegexStruct:(regexp_t)pattern options:(unsigned)mask range:(NSRange)range

Returns the number of times the expression regex (or pattern) is found in the specified range of the receiving 
string.    In the degenerate methods, mask defaults to 0 and range defaults to the entire content of the receiver.    
Possible options: NSCaseInsensitiveSearch, MiscFasterSearch.

See also: -rangeOfRegex:...

rangeOfRegex:
rangeOfRegex:options:
rangeOfRegex:occurrenceNum:
rangeOfRegex:options:occurrenceNum:
rangeOfRegex:range:
rangeOfRegex:options:range:
rangeOfRegex:occurrenceNum:range:
rangeOfRegex:options:occurrenceNum:range:

-    (NSRange)rangeOfRegex:(NSString *)regex options:(unsigned)mask occurrenceNum:(int)n range:
(NSRange)range

rangeOfRegexStruct:options:occurrenceNum:range:
-    (NSRange)rangeOfRegexStruct:(regexp_t)pattern options:(unsigned)mask occurrenceNum:(int)n 

range:(NSRange)range

Returns the range of the nth occurrence of the expression regex (or pattern) in the receiver going from left to right 
(or right to left if NSBackwardsSearch is specified).    Use n=0 for the first occurrence.    If the nth occurrence is 
not found, the returned NSRange's location will equal NSNotFound.



In the degenerate methods, mask defaults to 0, n defaults to 0, and range defaults to the entire content of the 
receiver.    Possible options: NSCaseInsensitiveSearch, NSBackwardsSearch, NSAnchoredSearch, 
MiscFasterSearch.

See also: -numOfRegex:...

rangesMatchedByRegex:
rangesMatchedByRegex:options:

-    (NSArray *)rangesMatchedByRegex:(NSString *)regex options:(unsigned)mask

rangesMatchedByRegexStruct:options:
-    (NSArray *)rangesMatchedByRegexStruct:(regexp_t)pattern options:(unsigned)mask

Constructs and returns an NSArray containing all the ranges matched by the expression regex (or pattern).    The 
ranges in the array appear in the order they did in the receiver.

The ranges in the array are encoded with NSValue objects, so you have to use -getValue: to get the actual 
NSRange: 

NSString     *expression;   // assume this exists
NSEnumerator *rangeEnum;
NSValue      *rangeValue;
NSRange      stringRange;

rangeEnum = [[someString rangesMatchedByRegex:expression] objectEnumerator];

while (rangeValue = [rangeEnum nextObject])
{

[rangeValue getValue:&stringRange];
...



}

Be careful of using an expression that can match the empty string, since there is then a potential match between 
every character! Ranges with a length of 0 will be inserted into the returned array when this happens.

In the degenerate methods, mask defaults to 0.    Possible options: NSCaseInsensitiveSearch, 
MiscFasterSearch.

See also: -stringsMatchedByRegex:, -componentsSeparatedByRegex:

stringByReplacingEveryOccurrenceOfRegex:withString:
stringByReplacingEveryOccurrenceOfRegex:withString:options:
stringByReplacingEveryOccurrenceOfRegex:withString:range:
stringByReplacingEveryOccurrenceOfRegex:withString:options:range:

-    (NSString *)stringByReplacingEveryOccurrenceOfRegex:(NSString *)regex withString:(NSString 
*)replaceString options:(unsigned)mask range:(NSRange)range

stringByReplacingEveryOccurrenceOfRegexStruct:withString:options:range:
-    (NSString *)stringByReplacingEveryOccurrenceOfRegexStruct:(regexp_t)pattern withString:(NSString 

*)replaceString options:(unsigned)mask range:(NSRange)range

Returns a new string with every occurrence of the expression regex (or pattern) in the receiver replaced with 
replaceString.    If MiscUseMatchSubstitutions is specified, then special tokens can be used within replaceString 
to include portions of matched text (See ªSearch optionsº in the category description for more details).

In the degenerate methods, mask defaults to 0 and range defaults to the entire content of the receiver. Possible 
options: NSCaseInsensitiveSearch, MiscFasterSearch, MiscUseMatchSubstitutions.

See also: -stringByReplacingRegex:withString:...



stringByReplacingRegex:withString:
stringByReplacingRegex:withString:options:
stringByReplacingRegex:withString:occurrenceNum:
stringByReplacingRegex:withString:options:occurrenceNum:
stringByReplacingRegex:withString:range:
stringByReplacingRegex:withString:options:range:
stringByReplacingRegex:withString:occurrenceNum:range:
stringByReplacingRegex:withString:options:occurrenceNum:range:

-    (NSString *)stringByReplacingRegex:(NSString *)regex withString:(NSString *)replaceString options:
(unsigned)mask occurrenceNum:(int)n range:(NSRange)range

stringByReplacingRegexStruct:withString:options:occurrenceNum:range:
-    (NSString *)stringByReplacingRegexStruct:(regexp_t)pattern withString:(NSString *)replaceString 

options:(unsigned)mask occurrenceNum:(int)n range:(NSRange)range

Returns a new, autoreleased NSString with the portion of the receiver matched by the nth occurrence of the 
expression regex (or pattern) replaced by replaceString.    The search for the nth occurrence goes from left to 
right, unless NSBackwardsSearch is specified, in which case it goes from right to left.    Use n=0 for the first 
occurrence.    If MiscUseMatchSubstitutions is specified, then special tokens can be used within replaceString to 
include portions of matched text (See ªSearch optionsº in the category description for more details).

In the degenerate methods, mask defaults to 0, n defaults to 0, and range defaults to the entire content of the 
receiver. Possible options: NSCaseInsensitiveSearch, NSBackwardsSearch, NSAnchoredSearch, 
MiscFasterSearch, MiscUseMatchSubstitutions.

See also: -stringByReplacingEveryOccurrenceOfRegex:withString:...



stringsMatchedByRegex:
stringsMatchedByRegex:options:

-    (NSArray *)stringsMatchedByRegex:(NSString *)regex options:(unsigned)mask

stringsMatchedByRegexStruct:options:
-    (NSArray *)stringsMatchedByRegexStruct:(regexp_t)pattern options:(unsigned)mask

Constructs and returns an NSArray containing all the substrings from the receiver matched by the expression 
regex (or pattern).    The strings in the array appear in the order they did in the receiver.

Be careful of using an expression that can match the empty string, since there is then a potential match between 
every character! Empty strings will be inserted into the returned array when this happens.

In the degenerate methods, mask defaults to 0.    Possible options: NSCaseInsensitiveSearch, 
MiscFasterSearch.

See also: -rangesMatchedByRegex:, -componentsSeparatedByRegex:

NSMutableString (MiscRegex)

Declared In: <misckit/NSString+MiscRegex.h>



Category Description

NSMutableString+MiscRegex provides -replaceRegex... parallel methods for the -stringByReplacingRegex... 
methods of NSString+MiscRegex.

Method Types

Replacing matches: - replaceEveryOccurrenceOfRegex:withString:
- replaceEveryOccurrenceOfRegex:withString:options:
- replaceEveryOccurrenceOfRegex:withString:range:
- replaceEveryOccurrenceOfRegex:withString:options:range:
- replaceEveryOccurrenceOfRegexStruct:withString:
- replaceEveryOccurrenceOfRegexStruct:withString:options:
- replaceEveryOccurrenceOfRegexStruct:withString:range:
- replaceEveryOccurrenceOfRegexStruct:withString:options:range:
- replaceRegex:withString:
- replaceRegex:withString:options:
- replaceRegex:withString:occurrenceNum:
- replaceRegex:withString:options:occurrenceNum:
- replaceRegex:withString:range:
- replaceRegex:withString:options:range:
- replaceRegex:withString:occurrenceNum:range:



- replaceRegex:withString:options:occurrenceNum:range:
- replaceRegexStruct:withString:
- replaceRegexStruct:withString:options:
- replaceRegexStruct:withString:occurrenceNum:
- replaceRegexStruct:withString:options:occurrenceNum:
- replaceRegexStruct:withString:range:
- replaceRegexStruct:withString:options:range:
- replaceRegexStruct:withString:occurrenceNum:range:
- replaceRegexStruct:withString:options:occurrenceNum:range:

Instance Methods

replaceEveryOccurrenceOfRegex:
replaceEveryOccurrenceOfRegex:withString:options:
replaceEveryOccurrenceOfRegex:withString:range:
replaceEveryOccurrenceOfRegex:withString:options:range:

-    (void)replaceEveryOccurrenceOfRegex:(NSString *)regex withString:(NSString *)replaceString 
options:(unsigned)mask range:(NSRange)range

replaceEveryOccurrenceOfRegexStruct:withString:options:range:
-    (void)replaceEveryOccurrenceOfRegexStruct:(regexp_t)pattern withString:(NSString *)replaceString 

options:(unsigned)mask range:(NSRange)range

Like -stringByReplacingEveryOccurrenceOfRegex:withString:..., except that it modifies the receiver in place 
instead of returning a modified string.



replaceRegex:withString:
replaceRegex:withString:options:
replaceRegex:withString:occurrenceNum:
replaceRegex:withString:options:occurrenceNum:
replaceRegex:withString:range:
replaceRegex:withString:options:range:
replaceRegex:withString:occurrenceNum:range:
replaceRegex:withString:options:occurrenceNum:range:

-    (void)replaceRegex:(NSString *)regex withString:(NSString *)replaceString options:(unsigned)mask 
occurrenceNum:(int)n range:(NSRange)range

replaceRegexStruct:withString:options:occurrenceNum:range:
-    (void)replaceRegexStruct:(regexp_t)pattern withString:(NSString *)replaceString options:

(unsigned)mask occurrenceNum:(int)n range:(NSRange)range

Like -stringByReplacingRegex:withString:..., except that it modifies the receiver in place instead of returning a 
modified string.


