
Version 1.0    NEXTSTEP 3.3      Copyright ã1997 by Chris Roehrig

CJRConditionLock

Inherits From: Object

Conforms To: CJRLock

Declared In: CJRLock.h

Requires: ThreadedApp

Class Description
CJRConditionLock is similar to NeXT's NXConditionLock (NS3.3) and NSConditionLock (OpenStep), except that 
it detects if it being called from the main AppKit thread.      If it is, it does not block waiting for a lock, but rather 
starts a modal event loop looking for EV_UNLOCK events.      This keeps the AppKit thread alive and responsive 
to events.

CJRConditionLocks are used in the same way as NXConditionLocks and NSConditionLocks.    However, they 
cannot be used from fast callback methods (see ThreadedApp).

If they are called from the main thread, the lock methods use the same event-loop strategy as described in 
CJRLock, except they also check if the lock's condition matches the desired condition.    The unlock methods 
send the required EV_UNLOCK events.

Instance Variables
None declared in this class.



Method Types
Initializing an instance - init

- initWithCondition:

Get the condition of the lock - condition

Acquire or release the lock - lock
- lockWhenCondition:
- unlock
- unlockWithCondition:

Instance Methods
condition

- (int)condition

Returns the lock's current condition.    This condition can be set with the initWithCondition: or 
unlockWithCondition: methods.

init

- init

Initializes a newly allocated CJRConditionLock instance and sets its condition to 0.

initWithCondition:

- initWithCondition:(int)condition

Initializes a newly allocated CJRConditionLock instance and sets its condition to condition.    This message 
should not be sent to an instance that has already been initialized.



lock

- lock

Waits until the lock isn't in use, then grabs the lock.    The lock can subsequently be released with either unlock 
or unlockWithCondition:.

lockWhenCondition:

- lockWhenCondition:(int)condition

Waits until the lock isn't in use and the lock's condition matches condition, then grabs the lock.    The lock's 
condition can be set by initWithCondition: or unlockWithCondition:.    The lock can subsequently be released 
with either unlock or unlockWithCondition:.

unlock

- unlock

Releases the lock but doesn't change its condition.

See also:    - unlockWithCondition:

unlockWithCondition:

- unlockWithCondition:(int)condition

Sets the lock's condition to condition and releases the lock.

See also:    - unlock


