
Version 1.0    NEXTSTEP 3.3    Copyright ã1997 by Chris Roehrig.

CJRLock

Inherits From: Object

Conforms To: CJRLock

Declared In: CJRLock.h

Requires: ThreadedApp

Class Description
A CJRLock is used to protect shared pieces of data or regions of code in a multi-threaded Application that uses 
the ThreadedApp class.      It provides similar functionality to NeXT's NXLock (NS3.3) and NSLock (OpenStep), 
except that it detects if it being called from the main AppKit thread.      If it is, it does not block waiting for a lock, 
but rather starts a modal event loop looking for EV_UNLOCK events (NX_APPDEFINED events).      This keeps 
the AppKit thread alive and responsive to events.

CJRLocks are used in the same way as NXLocks and NSLocks.    However, they cannot be used from fast 
callback methods (see ThreadedApp).

Instance Variables
None declared in this class.

Method Types
Acquire or release a lock - lock

- unlock



Instance Methods
lock

- lock

Waits until a lock isn't in use and acquires it using mutex_lock().    If called from the main AppKit thread, another 
strategy is used to acquire the lock to avoid blocking the main thread's event handling.    First, mutex_try_lock() 
attempts to acquire the lock.    If it fails, a modal event loop is started and waits for EV_UNLOCK events.    When 
one is received, mutex_try_lock() attempts to acquire the lock again.    This repeats until a lock is acquired.          
This behaves like a blocking lock, but method callbacks are permitted to continue (see ThreadedApp).        Other 
events remain on the queue during the "block".

unlock

- unlock

Releases the lock, using mutex_unlock().      If the main thread is waiting for EV_UNLOCK events, post an 
EV_UNLOCK event to the application's event queue.


