
My first Yellow Application

‰ric Simenel

Since most of us are in the process of exploring the OpenStep (Yellow Box) 

framework and its development environment, it's likely that we are going to 

encounter the similar pitfalls. I thought it would be useful to describe my first 

experience at writing something more ambitious than a simple snippet, so 

that you could benefit from my trials. To make the most out of this article, 

you'll need to already have some knowledge of Yellow Box. This article is 

not a tutorial, it's more like a journal¼



First, let me give you a little background. I've been programming for the past 17 years (13 on 

Macintosh) using a lot of languages (in order of appearance: FORTRAN, 6502 asm, BASIC, 

COBOL, LISP, Pascal and Object Pascal, 68K asm, C and C++, PowerPC asm and Java), 

and a lot of environments and Operating Systems (micros, minis and mainframes).

As far as frameworks go, I've only used a very little bit of MacApp and more of ODF (the late 

OpenDoc Development Framework), but mainly I've used the Mac Toolbox when developing 

company and personal stuff. The main reason is that I've been developing with it for so long 

that it's just like an old friend; you know what you can ask it to do and what you'd better not.



Since I've been doing Object Oriented Programming for the last 6 years, I've always 

regretted a little bit that the Mac Toolbox doesn't have OO APIs. Of course, I could have used 

a framework but this adds an extra layer which you sometimes appreciate and sometimes 

don't.

Well, with Rhapsody, it's OOP from the word go, so no more excuses.

At first, the Objective-C syntax with all of its ª[ºs and ª]ºs looks really different, but I'd say that 

after a day or two, you don't even think about it anymore. And anyhow, the Developer 

Release or the Premier Release will come with the Objective-C modern syntax which will be 



more familiar to the C/C++ developer.

Although a lot of people admire Interface Builder (IB), and it's indeed a very nice tool, I, for 

one, think that the real power comes from the Yellow Box framework. When I developed my 

first Yellow application, I spent maybe 5-10% of my time in IB and the rest in Project Builder 

(PB). I must add that if IB didn't exist, we would need to spend an incredible amount of time 

writing source code to do what it does since this tool is much more than a simple graphic 

user interface designer tool, but more on that below¼

While writing my sample code, I learned quite a few things which I didn't find explicitly in the 



documentation, so I thought it might be useful to share them. I must add that I later found 

some (but not all) of this information in documents which I didn't possess at first, and since I 

believe this will be the case for most of you, and that, anyway, who reads the entire 

documentation before starting coding, it's still useful to have those points collected in a 

useful way, i.e. this article.

I guess readers of the late develop magazine will remember that I collect Comics Books, 

Comics in short, and my non-trivial sample code is the port of an existing Comics Database 

Management Macintosh application to the Yellow Box. There is an additional document ªThe 

way I collect Comicsº in the development folder, which explains why I designed the user 



interface the way it is. This article deals with the ªhowº I designed it.

The development folder containing all the source code, interface files, project files, etc. is on 

the Rhapsody Developer Release CD, and will also be on our web site, whose address is not 

known at this date but which I trust you shouldn't have too much difficulty to find. This project 

has been developed on OpenStep 4.2 prerelease for Intel, so some problems which I had 

and described below may already have been fixed in the Rhapsody Developer Release that 

you have in your hands.

This article contains extracts of the source code only when relevant, you might find it useful 



to read the entire source code along with this article.

What's in a nib (NeXT Interface Builder) file

Everything which has been created in the nib while using IB (i.e., every icon which you see in 

the ªInstancesº panel), will be instantiated when the nib opens.

That means that when your application launches, its main nib is opened, all objects which 

have an icon in the ªInstancesº panel will be instantiated, then their init method will be 

called, then the outlet connections you have established with IB will be filled with the 



appropriate value, and then their awakeFromNib method will be called.

As an example, since my Yellow application deals with one unique Comics database object, 

instead of allocating it in the source code somewhere, I just instantiated it in the nib file. The 

nib file is not just for graphic user interface elements.

This is also one of the reasons why you should use subprojects with their own nib files. You 

load these nib files with the loadNibNamed: method (in NSBundle) when needed which saves on 

memory usage and improves performance. And speaking of memory¼



Memory problems

Always when, and only when, you explicitly call the alloc class method, or the retain, copy 

or mutableCopy instance methods, you must release or autorelease the object thus allocated. All 

other objects you get through another method, you neither release nor autorelease .

That means that if you write

NSAClass *obj = [[NSAClass alloc] init];



then you must also do either [obj release] if the method where you allocated it is the only 

one using it, or [obj autorelease] if the method is returning this object to somebody else. But if 

you write, for example,

NSFileManager *nsfm = [NSFileManager defaultManager];

NSData *data = [nsfm contents AtPath:fileName];

then don't write [nsfm release]; nor [data release]; or you'll end up in trouble (I did).

Also, if you write



NSString *str = [[NSString alloc] initWithCString:myCString];

then you must write [str release]; or [str autorelease]; depending on the usage, but if you 

write

NSString *str = [NSString stringWithCString:myCString];

then don't release str, (in this case it has already been autoreleased by the class method 

stringWithCString:).



More about memory

All objects in the Yellow Box are refcounted.

The alloc class method allocates the object and sets its refcount to 1.

The retain instance method increments the refcount

The release instance method decrements the refcount and if it 



becomes 0, deallocates the object.

The autorelease instance method places the object in an autorelease 

pool. When the current event ends, or in other words, when the 

control returns to the Main Event Loop, all objects in this pool will be 

sent the release message once, and if their refcount becomes 0, they 

are deallocated.

The copy instance method will do the same thing as the retain method 

if the object is immutable. If the object is mutable, copy will create a 



new object with the same content and a brand new refcount of 1, just 

as mutableCopy does.

You should never call the dealloc method yourself.

Whoever creates an object or increments its refcount, by any of the 

provided means, is responsible for decrementing its refcount by 

calling release or autorelease . That's the reason why autorelease is 

provided. For example, when you create and return an object to your 

caller, the caller has no idea how you created the object; it could be 



an allocation, but it could also be a static or on a stack or whatever. 

Therefore the caller must not release this object, you have to. But 

your problem is that you may no longer have access to this object 

later when the moment comes. What you do, in this case, is to 

autorelease the object before you return it. If the caller wishes to keep 

it, then the caller must do a retain on it, but if the caller doesn't care, 

then the object will be automatically released at the end of the current 

event since nobody retained it.

Memory protection



Although when you mismanage memory in the Yellow Box, it's not as bad (directly) as on the 

Mac OS, you may still have some surprises.

These problems come from releasing an object too many times (see above), going outside 

the range of an NSArray object, and certainly other ways which haven't bitten me yet. In all 

those cases of memory mismanagement, if you launched your application from the 

launcher/debugger window in PB, you'll get explicit error or exception messages. You then fix 

the problem in your source code, build and test again. Afterwards, in some cases, although 

everything looks fine, you'll experience minor (but irritating) annoyances: PB won't build 



anymore (the compiler keeps sending obscure messages), PB won't index your project(s) 

anymore, IB won't save your modifications, or PB or IB will quit suddenly and then refuse to 

launch again.

Depending on the exact symptom, I found the following solutions: quit PB and IB, relaunch 

them, everything's fine (this works 50% of the time), if not, log out, log in again (takes just a 

couple of seconds), relaunch them, everything's fine (this works 45% of the time), if not, 

power off, then cold start again (this works 5% of the time). In any case, I never lost any 

data.



On a brighter side, the more I developed with this framework, the less I wrote these silly 

memory mismanagement mistakes, meaning that I have less and less trouble with the tools 

themselves. And anyway, those bugs are currently being tracked and will be fixed.

Updating window content

The updating mechanism is very different from what you are used to on Mac OS. By default 

your window is buffered (as in offscreen), it can also be retained and non-retained, but I must 

say I was rather surprised by the standard graphic objects reaction to those choices, try it 

and you'll see what I mean. It looks like some of these objects assume they are living in a 



buffered window and have their own bit cache management relying on that assumption, and 

this goes awry whenever the window is not buffered.

All the standard graphic objects call you (as a developer) to be able to redraw, such as 

drawRect: (for an NSView) or they will ask for some data as in willDisplayCell:atRow:column: (for 

NSBrowser) and then draw.

So far, so good; it's not really different from the Mac OS frameworks we know. The difference 

comes from the fact that you will not be called at all most of the time. If your window was in 

the background and comes to the foreground, chances are that the update will occur from 



the offscreen buffer and your redraw method won't be called at all (so if you put in some 

debugging display like I did at first, don't be surprised if you don't see it).

Some slightly annoying surprises

Although the APIs of NSBrowser and NSTableView are very similar, their mechanism is quite 

different. To use NSTableView, you must (among other things) implement the 

numberOfRowsInTableView: method and, as its name suggests, you must return the number of 

rows of the table. To use NSBrowser, you must (among other things) implement the 

numberOfRowsInColumn: method. The difference is that numberOfRowsInTableView: is called a zillion 



times by the NSTableView object, whereas numberOfRowsInColumn: is called only once by the 

NSBrowser object whenever you click on a cell in a column which will make the browser fill a 

new column to its right.

So your strategies as a developer must be quite different. In a browser, it is the right thing to 

do the computation of the numbers of rows of the column you're being asked for in 

numberOfRowsInColumn:, whereas, in a table, you'd better do the intensive computation only at 

awakeFromNib (or init time, depending on your situation) time, and then after only if the 

number of rows changes, save off this number of rows in a field of your controller so that you 

can just return this value when asked in numberOfRowsInTableView:.



Setting up IB and PB

The default rules for indenting text in the PB text editor are not necessarily what you'd wish 

they are. Don't hesitate to modify them in the ªPreferencesº window till the indentation is as 

you like. You'll need to set up the ªIndentationº panel criteria and the ªKey bindingsº panel 

criteria.

If you happen to close a Palette, using the ªClose Paletteº menu item of the ªPalettesº menu 

in IB, this action won't close the Palettes window, but remove the current selected palette 



icon from this window. To reinstall it, use the ªPreferencesº window of IB.

gdb

Since it is rather unlikely that we write perfect source code the first time, it is useful to follow 

what's happening in the debugger, or at least in the console. That's where gdb (gnu 

debugger) makes its entrance.

What happens to me the most, and following the works of my colleagues, I found that I am 

not the only one, is that I design my interface with IB, write my source code with PB, build 



and test and nothing happens. The stuff I just wrote just does not do what it is supposed to. 

In nearly all these cases, what's wrong is that I had forgotten to establish crucial connections 

with IB (such as a delegate or a datasource, or even an action method). Most likely you will 

experience the same problem.

So the first step is a double one: verify your connections again with IB and add some tracing 

code using NSLog (and don't forget to launch your application through the launcher/debugger 

window of PB, instead of launching it from the Workspace; if you do, however, you can still 

see your NSLog    messages in the main console window which you can display from the 

ªToolsº menu of the Workspace).



The prototype of NSLog is

(void)NSLog(format, ¼);

and you use it as you would use printf, except that NSLog has an extra format "%@", which 

enables the printing of the description of an object (very useful).

If you end up being halted in gdb because of an exception or an error, the following useful 

commands (also accessible from the graphic user interface of the launcher/debugger 



window) will help you determine the cause of the problem. There are many more commands 

of course, so read the gdb documentation or use its help command to find out more.

Table 1

Useful commands in gdb

Command Description

po <object> prints the description of an object

print * <object> prints the content of an object

print * <structure> prints the content of a structure



print expression prints the evaluated expression

bt prints the stack crawl

future-break <method> sets a breakpoint for code not loaded yet

kill terminates the process being debugged

Note: You can also evaluate and call methods from known objects such as

print * [comicsBase titles] or

print * (NSScroller *)[self verticalScroller]

Last note



Before we enter the detail of each class in my first Yellow application, I must say that I was 

pleasantly surprised by the speed of my development.

In less than 3 weeks (and that's my first Yellow application, meaning that I spent a lot of time 

in the documentation trying to understand how everything works), I reached a level 

(converting data from the Mac OS database, archiving and unarchiving data the Yellow Box 

way, displaying the database content in 4 different ways, and modifying the data in a rather 

complex user interface) which had taken me 2 or 3 months to reach in C++ with the Mac 

Toolbox on Mac OS (remember, this is a port from a Mac OS application which I've been 



using for years).

So, whenever you hear some guy speaking about Rapid Application Development (RAD) 

regarding the Yellow Box framework, that's the real untarnished truth, not just some sales 

talk.

One last thing before we go, the Yellow Box framework, like MacApp, ODF and others, is a 

Model-View-Controller kind of a framework. Very classic these days, very powerful, and very 

helpful for object reuse. When I talk later about a View (i.e. user interface), I mean it in the 

Model-View-Controller context, so don't confuse it with an NSView which is a specific class of 



the Yellow Box.

Onward with the details

ComicsObj

This is the Model part of my application. It only deals with data, not user interface.

The CComics class contains mainly an NSMutableArray of CTitles objects which contains 

mainly an NSMutableArray of CIssues objects. The important methods are initWithCoder: and 



encodeWithCoder: which are implemented in all 3 classes to allow the archiving and 

unarchiving of the database (look into the source code to see their implementation, nothing 

really difficult), sortArray:withBrand:withSeries:withKind:withState:withSort: (in CComics) which 

not only sorts but also extracts the appropriate titles depending on the criteria parameters, 

and which will be called from nearly all the controller objects of the user interface, and 

various accessor methods for each class.

Since the comics database will be accessed from nearly all the controller objects, it was 

expedient to set up a global object (of class CComics) named comicsBase declared in 

ComicsObj.h. It could also have been an outlet, paired with an accessor, in the main 



controller (see the above paragraph about nib files), and then accessed from everywhere 

with [[NSApp delegate] comicsBase]. This is mainly a style choice from the developer.

Since the comics database already existed on Mac OS and I was reluctant to reenter all the 

data (see the ªThe way I collect Comicsº document for further explanation), the init method 

of CComics can either convert the Mac OS database or load the Yellow Box database thus:

#if realLoad

   self = [NSUnarchiver unarchiveObjectWithFile:fileName];

   [self retain];



   comicsBase = self;

#else

   comicsBase = self;

   [self setTitles:[NSMutableArray array]];

   [self _convertFromMac];

   [self save:nil];

#endif

return self;

You'll note that in the first case, comicsBase must be assigned only after the unarchiving (self is 



changed), whereas in the other, it must be assigned before the call to _convertFromMac which 

uses this global object.

Since this conversion only has to occur once, unless I destroy the application or have data 

corruption, I do a special build setting realLoad to 0 to convert the database. Afterwards, 

realLoad is set back to 1.

VerifyController (the main controller)

The Controller for the ªVerifyº window which is a View.



This is a very basic use of an NSTableView. Just don't forget, in IB,    to connect both the 

dataSource and delegate outlets of the NSTableView object to this controller and implement the 2 

minimum requested methods numberOfRowsInTableView: and objectValueForTableColumn:row: and 

your table will be fine.

To be able to return appropriate content in objectValueForTableColumn:row:, you should also not 

forget to give an identifier to each column in the IB inspector window; this identifier may or 

may not be the same as the column title (your choice; in most cases, it's a good idea to give 

them the same name, it makes source code writing easier later).



Since this controller is the main controller, it also provides the appropriate action methods (to 

be connected with the appropriate menu items in IB) to deal with the objects from the 

subprojects (browser, calendar and title longevity). Furthermore, as an NSApp delegate (again 

don't forget to establish the connection in IB), it also implements the 

applicationShouldTerminate: action method which, in this case, will lead to the saving of the 

comics database if it has been modified.

Each time the user chooses a new choice in the popup buttons, the selChanged method is 

called, which returns a new array of the appropriate CTitle objects, saves the new number of 



rows (see the above section about the number of rows in an NSTableView), and calls the 

private method _update which, by calling the noteNumberOfRowsChanged and reloadData, will force a 

redisplay of the table.

Listing 1

Extract from VerifyController.m

- (void)selChanged

{

    [comicsBase sortArray:array withBrand:brand withSeries:series



                 withKind:kind  withState:state   withSort:sort];

    nbRows = [array count];

    [nbSelTitles setIntValue:nbRows];

    [self _update];

}

- (int)numberOfRowsInTableView:(NSTableView *)tableView

{

    return nbRows;

}

- (id)tableView:(NSTableView *)tv objectValueForTableColumn:(NSTableColumn *)tableColumn



                                                        row:(int)row

{

    CTitle *thisTitle = [array objectAtIndex:row];

    NSString *identifier = [tableColumn identifier];

    if ([identifier isEqualToString:@"Abb"])

        return [thisTitle abb];

    else if ([identifier isEqualToString:@"Title"])

        return [thisTitle title];

    else return [thisTitle listIssues];

}



- (void)_update

{

    [verifyView noteNumberOfRowsChanged];

    [verifyView reloadData];

}

BrowserController

The Controller for the ªBrowserº window which is a View.



This is a very basic use of an NSBrowser. Just don't forget, in IB,    to connect the delegate outlet 

of the NSBrowser object to this controller (the File's owner icon should be of custom class 

BrowserController since this is a subproject) and implement the 2 minimum requested 

methods numberOfRowsInColumn: and willDisplayCell:atRow:column:, and your browser will be 

fine.

Also remember to call [[browser window] makeKeyAndOrderFront:nil]; in the awakeFromNib method 

or else you won't see any window and lose some time understanding why.

Since the browser is defined in a subproject of the application project, we have to load its nib 



file, when the user wants to see this window. The menu item he will use is connected to the

- (void)newBrowser:(id)sender {[[BrowserController alloc] init]; }

action method in the VerifyController which is the main controller. The init method of 

BrowserController will do the nib loading (among other things):

Listing 2

Extract from BrowserController.m



- (id)init

{

    if (self = [super init])

      {

        // the browser lies in a subproject, so let's get its nib

        if (![NSBundle loadNibNamed:@"Browser" owner:self])

          {

            NSLog(@"Unable to load Browser.nib");

            [self release];

            return nil;



          }

        array = [[NSMutableArray alloc] initWithCapacity:1500];

      }

    return self;

}

- (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column

{

    short brand, series, state, kind;

    // the first 4 colummns have all only 3 cells



    if (column < 4) return 3;

    // if not, let's see what the user has currently selected in the first colums

    brand = [sender selectedRowInColumn:0];

    series = [sender selectedRowInColumn:1];

    state = [sender selectedRowInColumn:2];

    kind = [sender selectedRowInColumn:3];

    // so that we can retrieve the appropriate titles

    // (we don't care for sorting in this browser)



    [comicsBase sortArray:array withBrand:brand withSeries:series

                 withKind:kind  withState:state   withSort:0];

    return [array count];

}

- (void)browser:(NSBrowser *)sender willDisplayCell:(id)cell

                                              atRow:(int)row

                                             column:(int)column

{

    switch(column)

      {



        case 0: switch(row)

          {

            case 0: [cell setStringValue:@"All Brands"]; break;

            case 1: [cell setStringValue:@"Marvel"]; break;

            case 2: [cell setStringValue:@"DC & Others"]; break;

          }break;

        case 1: switch(row)

          {

            case 0: [cell setStringValue:@"All Series"]; break;

            case 1: [cell setStringValue:@"Long"]; break;



            case 2: [cell setStringValue:@"Mini"]; break;

          }break;

        case 2: switch(row)

          {

            case 0: [cell setStringValue:@"All States"]; break;

            case 1: [cell setStringValue:@"Dead"]; break;

            case 2: [cell setStringValue:@"Live"]; break;

          }break;

        case 3: switch(row)

          {



            case 0: [cell setStringValue:@"All Kinds"]; break;

            case 1: [cell setStringValue:@"Main"]; break;

            case 2: [cell setStringValue:@"Dual"]; break;

          }break;

        case 4:

            [cell setStringValue:[[array objectAtIndex:row] title]];

            break;

      }

  

    // the 5th column is the last



    [cell setLeaf:(column == 4)];

    // this means this cell is ready for display

    [cell setLoaded: YES];

}

TitleLongevityController and TitleLongevityView

The Controller for the ªTitle Longevityº window which is a View, and the custom view 

inheriting from NSView which implements the graph.



This is a very basic use of an NSView (NSCustomView in IB). The TitleLongevityView is just a 

graph, and the controller allows the user to change the criteria of the graph (through the 

popup menu buttons).

TitleLongevityView has to implement just 2 methods (initWithFrame: and drawRect:) to work 

fine. Each time a criteria changes, the display (of TitleLongevityView, inheriting from NSView) 

method is called, which will, at some point, calls the drawRect: method.

Never call drawRect: yourself



Before drawRect: can be called, the graphic context has to be set right 

(the Mac OS Toolbox equivalent would be a SetPort). That's what the 

Window Server does, and what you should never try to attempt 

yourself. If you want drawRect: to be called, call display instead, and 

the Window Server will do the right thing for you.

The only thing you have to pay attention to is the fact that, the origin is in the lower left corner 

of the view (this is Display Postscript), instead of the upper left as you might be used to in 

QuickDraw. To draw, you can mix C-ified Postscript calls such as PSmoveto, PSlineto, PSstroke 

and framework calls such as drawAtPoint:withAttributes: (in NSString).



Listing 3

Extract from TitleLongevityController.m

- (void)brandSelect:(id)sender

{

    [titleLongevity setBrand:[sender indexOfSelectedItem]];

    [titleLongevity display];

    [nbSelTitles setIntValue:[titleLongevity nbSelTitles]];

}



- (void)seriesSelect:(id)sender

{

    [titleLongevity setSeries:[sender indexOfSelectedItem]];

    [titleLongevity display];

    [nbSelTitles setIntValue:[titleLongevity nbSelTitles]];

}

Listing 3 bis

Extract from TitleLongevityView.m



- (void)drawRect:(NSRect)rect

{

    NSString *theString;

    short i, j, startEditMonth, lastEditMonth, tlarr[600];

    // get the right array of titles

    [comicsBase sortArray:array withBrand:brand withSeries:series

                 withKind:1     withState:0       withSort:0];

    nbSelTitles = [array count];



    startEditMonth = [comicsBase startEditMonth];

    lastEditMonth = [comicsBase lastEditMonth];

    // clear and then fill the local array to be graphed

    for(i=0; i<(lastEditMonth-startEditMonth); i++) tlarr[i] = 0;

    for(i=0; i<nbSelTitles; i++)

      {

        CTitle *thisTitle = [array objectAtIndex:i];

        NSMutableArray *theseIssues = [thisTitle issues];

        // if edited then add 1 if there is an issue for this particular edit month



        if (!editOrLong) for(j=0; j < [thisTitle nbIssues]; j++)

            tlarr[[[theseIssues objectAtIndex:j] editMonth] - startEditMonth] += 1;

        // else add 1 for all months between the first published issue to the latest

        else for(j = [[theseIssues objectAtIndex:0] editMonth];

                 j <= [[theseIssues lastObject] editMonth];

                 j++)

            tlarr[j-startEditMonth] += 1;

      }

    // draw the axes



    PSsetrgbcolor(0, 0, 0);

    PSmoveto(orx, ory-3); PSlineto(orx, 700); PSstroke();

    PSmoveto(orx-3, ory); PSlineto(700, ory); PSstroke();

    // put the labels on vertical axis

    for(i=10; i<=130; i+=10)

      {

        PSmoveto(orx-3, ory+i*5); PSlineto(700, ory+i*5); PSstroke();

        theString = [NSString stringWithCString:gnums[i]];

        [theString drawAtPoint:NSMakePoint(orx-20, ory-12+i*5) withAttributes:dictionary];

      }



    // put the labels on horizontal axis

    for(i=0; i<(lastEditMonth-startEditMonth+13); i++)

      if (((i + startEditMonth-1) % 12) == 0)

      {

        j = (i + startEditMonth-1) / 12;

        PSmoveto(orx+i, ory); PSlineto(orx+i, ory-3-((j % 2)?7:0)); PSstroke();

        theString = [NSString stringWithCString:gnums[j]];

        [theString drawAtPoint:NSMakePoint(orx+i-9, ory-21-((j % 2)?7:0))

                withAttributes:dictionary];

      }



    // draw the graph in blue

    PSsetrgbcolor(0, 0, 32767);

    for(i=0; i<(lastEditMonth-startEditMonth); i++)

      {

        PSmoveto(orx+i, ory);

        PSlineto(orx+i, ory+tlarr[i]*5);

        PSstroke();

      }

}



CalendarController and CalendarView

The Controller for the ªCalendarº window which is a View, and the custom view inheriting 

from NSView which implements the tabulated display.

This is another very basic use of an NSView. The CalendarView is just some text displayed like 

a table, and the controller allows, again, the user to change the criteria of the display. There 

is no big difference from the TitleLongevityView except for one trick. At first, I filled the 

NSString object to be displayed with the entire text data (with carriage returns), and had only a 

single drawAtPoint:withAttributes: call. The result was that the lines were reversed from 



bottom to top (which makes sense when you remember that the origin is in the lower left 

corner and that the y axis is directed towards the top). Although I could have reversed the 

text in the NSString object, it made more sense (for easy code reading purposes) to display 

the text one line at a time, correctly anchored where it should be.

Listing 4

Extract from CalendarView.m

- (void)drawRect:(NSRect)rect

{



    char strtit[] = "      OCT NOV DEC  97 FEB MAR APR MAY JUN          OCT NOV DEC  97 FEB MAR 

APR MAY JUN          OCT NOV DEC  97 FEB MAR APR MAY JUN\n", strlin[200], strstart[7];

    short i, j, k, n, lastmonth, isharr[189][9];

    // get the right array of titles

    [comicsBase sortArray:array withBrand:brand withSeries:series

                 withKind:kind  withState:2       withSort:sort];

    nbSelTitles = [array count];

    lastmonth = [comicsBase lastEditMonth];



    // fill the correct month names or year value in strtit based upon the model above

    for(i=1; i<=3; i++) for(j=1; j<=9; j++)

        strncpy(&strtit[6 + (i-1)*45 + (j-1)*4],

                (k = (lastmonth-1-9+j)%12) ? gmonths[k] : gnums[(lastmonth-1-9+j)/12], 3);

    // and draw it

    [[NSString stringWithCString:strtit] drawAtPoint:NSMakePoint(0,rect.size.height-20)

                                      withAttributes:dictionary];

    // clear and fill the local array of issue numbers to be displayed

    for(i=0; i<189; i++) for(j=0; j<9; j++) isharr[i][j] = -1;



    for(i=0; i<nbSelTitles; i++)

      {

        ... some code irrelevant to the purpose of this article,

        ... see the source code for details

      }

    // and display it

    for(i=0; i<63; i++)

      {

        strcpy(strlin, "");

        for(j=i; j < nbSelTitles; j += 63)



          {

            strcpy(strstart, [[[array objectAtIndex:j] abb] cString]);

            while (strlen(strstart) < 6) strcat(strstart, " ");

            strcat(strlin, strstart);

            for(k=0; k<9; k++)

                strcat(strcat(strlin,((n = isharr[j][k]) < 0)?"   ":(char *)gnums[n])," ");

            strcat(strlin, "   ");

          }

        [[NSString stringWithCString:strlin]

                   drawAtPoint:NSMakePoint(0,rect.size.height-11*(i+3))



                withAttributes:dictionary];

      }

}

InputController

After getting familiar with the framework by doing some basic stuff (what you read above), I 

eventually reached the level where I wanted to do more ambitious and serious stuff. This 

Controller (for the ªInputº window View) enables the user to modify the Comics Database in a 

lot of ways.



First, I started with an NSTableView, then implemented the willDisplayCell:forTableColumn:row: 

method which allowed me to control the graphical aspect (such as fonts and colors, including 

background colors) of a cell, before objectValueForTableColumn:row: is called.

Then I implemented the setObjectValue:forTableColumn:row: method which allows the user to 

type in text data in the first 2 columns (the only ones which have been set up as editable in 

IB).

Listing 5



Extract from InputController.m

- (int)numberOfRowsInTableView:(NSTableView *)tableView

{

   return nbRows;

}

- (void)tableView:(NSTableView *)tv willDisplayCell:(id)cell

                                     forTableColumn:(NSTableColumn *)tableColumn

                                                row:(int)row

{



    NSString *identifier = [tableColumn identifier];

    [cell setFont:([identifier cString][0] == 'M')?fontNonProp:fontProp];

    if ([identifier isEqualToString:@"CurIsh"]) [cell setFont:fontNonProp];

    if ([identifier isEqualToString:@"Empty"])

        if (row == [tv selectedRow])

            [cell setBackgroundColor:[NSColor redColor]];

        else

            [cell setBackgroundColor:[NSColor blackColor]];

    else if ((row == [tv editedRow]) &&

             ([tv columnWithIdentifier:identifier] == [tv editedColumn]))



        [cell setBackgroundColor:[NSColor whiteColor]];

    else

        [cell setBackgroundColor:arrCol[row % 6]];

    [cell setDrawsBackground:YES];

}

- (id)tableView:(NSTableView *)tv objectValueForTableColumn:(NSTableColumn *)tableColumn

                                                        row:(int)row

{

    CIssue *thisIssue;

    CTitle *thisTitle = [array objectAtIndex:row];



    NSString *identifier = [tableColumn identifier], *result;

    thisIssue = [[thisTitle issues] objectAtIndex:[thisTitle findIssue:curIshArray[row]]];

    if ([identifier isEqualToString:@"Abb"]) result = [thisTitle abb];

    else if ([identifier isEqualToString:@"Title"]) result = [thisTitle title];

    else if ([identifier isEqualToString:@"Brand"]) result = [thisTitle brand];

    else if ([identifier isEqualToString:@"Series"]) result = [thisTitle series];

    else if ([identifier isEqualToString:@"State"]) result = [thisTitle tstate];

    else if ([identifier isEqualToString:@"Kind"]) result = [thisTitle kind];

    else if ([identifier isEqualToString:@"CurIsh"])

        result = [NSString stringWithCString:gnums[curIshArray[row]]];



    else if ([identifier isEqualToString:@"Grade"]) result = [thisIssue grade];

    else if ([identifier isEqualToString:@"Type"]) result = [thisIssue ishtype];

    else if ([identifier isEqualToString:@"Content"]) result = [thisIssue content];

    else // column identifiers "M1" to "M6"

     {

       short k, j = -1, i = theEditMonth - 6 + [identifier cString][1] - '0';

       for(k = [thisTitle nbIssues]-1; (k >= 0) && (j == -1); k--)

           if (  ([thisIssue = [[thisTitle issues] objectAtIndex:k] editMonth] == i) &&

                !([thisIssue issueFlags] & mskMiss)  )

               j = k;



       if (j == -1) result = @"";

       else result = [NSString stringWithCString:gnums[[thisIssue issueNumber]]];

     }

    return result;

}

At this point, I had a scrolling table with rows of different background colors, and cells with 

text set up in different fonts, and we could edit textually the first 2 columns.

For the other columns, it made more sense to have popup buttons to allow the user to edit 



the criteria by choosing rather than by typing. So I implemented a doClick: action method 

which I connected with IB (this name, doClick, is purely mine, we can call this method any 

name we want, the important thing is that it must be connected as a target/action method in 

IB for the NSTableView). In this method, I set up (see the next section) the popup button 

depending on the row and column of the clicked cell, with both the InputController and 

PopupInTable classes containing outlets (puit and ic respectively) pointing at each other 

(connected with IB as usual). Since this popup button is ªkindaº floating above the 

NSTableView, extra care has to be applied to have a good user experience.

For instance, it disappears when you click elsewhere: doClick: calls releasePub before it sets 



up a new one, _update (called when the display criteria changed) also calls releasePub.

But that's not enough¼ If the popup button is displayed and the user scrolls the table, then 

the image of the popup button scrolls along, but it really still stays where it was, meaning that 

we get a ªphantomº undesirable popup button. To have the popup button disappearing when 

the user scrolls is a little bit more complex. First, in awakeFromNib, I parsed the superview 

hierarchy to get the NSScrollView. The documentation states that there is one, but nothing is 

said about other superviews, and as a matter of fact, between the NSTableView and the 

NSScrollView, there is an NSClipView; since it is undocumented, I can't rely on the fact that the 

NSScrollView is 2 levels up in the hierarchy since it could change in the future, hence the little 



loop:

for ( aView = inputView;

      ![aView isKindOfClass:[NSScrollView class]];

      aView = [aView superview] );

When I had the NSScrollView, I saved the current action method and target outlet of its 

verticalScroller, and I replaced them with the userHasScrolled: action method and self 

(respectively).

Then in userHasScrolled:, just call releasePub and sendAction: to the previously saved action 



and target of the verticalScroller (or else, our NSTableView wouldn't scroll anymore¼).

Listing 6

Extract from InputController.h

@interface InputController : NSObject

{

    ...

    NSScroller *myVerticalScroller;

    id saveVerticalScrollerTarget;



    SEL saveVerticalScrollerAction;

    ...

}

Listing 6 bis

Extract from InputController.m

- (void)awakeFromNib

{

    ...



    NSView *aView;

    // finding the NSScrollView superview...

    for ( aView = inputView;

          ![aView isKindOfClass:[NSScrollView class]];

         aView = [aView superview]);

    myVerticalScroller = [(NSScrollView *)aView verticalScroller];

    // saving the current target and action of the vertical scroller

    // to be able to call them later in userHasScrolled

    saveVerticalScrollerTarget = [myVerticalScroller target];



    saveVerticalScrollerAction = [myVerticalScroller action];

    // set the new target and action. Much more elegant than patching,

    // much more efficient than subclassing.

    [myVerticalScroller setTarget:self];

    [myVerticalScroller setAction:@selector(userHasScrolled:)];

    ...

}

- (void)userHasScrolled:(id)sender

{

    // if the user has scrolled then release the pop up button



    [puit releasePub];

    // and call back the original target and action of the vertical scroller

    // so that we actually scroll... (see below)

    [myVerticalScroller sendAction:saveVerticalScrollerAction

                                to:saveVerticalScrollerTarget];

}

The number of lines of code to achieve this interception mechanism is much less than its 

explanation, and the target/action mechanism is the real power of the Yellow Box framework. 

With this mechanism, we can add new behaviors without having to subclass (and in this 



particular case, the subclassing would not have been trivial nor easy).

PopupInTable

This is the Controller for the ªfloatingº popup menu button.

Disclaimer

This specific usage of a floating popup menu button as I'm using it, is 

strictly my own user interface. As it goes, some of my colleagues 

don't like it since they feel it doesn't respect all the proper user 



interface guidelines. Do not take this sample code as a model for 

your own user interface in your projects.

The setUpPopup method creates the appropriate menu items according to the row and column 

of the clicked cell, memorizing in a separate array the command and attribute for each menu 

item (easier than trying to extract the information later from the title of the selected menu 

item).

Since I wanted some empty separation menu items in the popup, I discovered that you can't 

add the same title twice (only one will remain), so that's why I use addItemWithTitle:@"" and 



then addItemWithTitle:@" " and then addItemWithTitle:@"  ", etc.

The pubSelect: action method modifies the comics database according to the choice selected 

by the user. The only twist is that, when the user selects the ªOther...º menu item, the cell is 

made editable and the editColumn:row:withEvent:select: method (in NSTableView) is called; then 

the user has to type in the text data which is then analyzed in the 

setObjectValue:forTableColumn:row: method (of InputController).

To prevent endless testing of an empty issues array of the CTitle object (in nearly all of the 

other controllers or CComics and CTitle objects), we forbid the user from deleting the last 



issue of any title, suggesting deletion of the title itself instead. For the same reason, when 

the user creates a new title, it comes with a first issue automatically.

Since the source code for both setUpPopup and pubSelect: is way too long for me to insert in 

these pages, I invite you, instead, to take a look at it directly.

For speed optimization, since a reloadData method call to the NSTableView object would be 

costly (there are a lot of rows and columns all with different fonts and background colors in 

our NSTableView object), and since the deselection of a currently edited row forces the 

redisplay of that row calling objectValueForTableColumn:row: for each cell of this row, I call, 



where appropriate, the sequence deselectRow:/selectRow:byExtendingSelection: to always have 

a valid display of the edited row.

CONCLUSION

You'll find out, using the Yellow Box framework, that you don't have to subclass as much as 

you would using a C++ framework. The dynamic binding, coming from Objective-C, enables 

us to rely more on the concepts of target/action, delegation and notification. This dynamic 

binding has its advantages and its drawbacks: you can inspect objects at runtime to 

determine their abilities, thus use objects that you never knew about as long as they respond 



to the appropriate messages, reuse objects much more easily, etc. On the downside, you 

can't have as much strong type checking at compilation time than you would get with C++, 

which may lead to interesting experiences at debugging time.

As far as notifications go, the Yellow Box mechanism is very simple to use. Whenever the 

content of the database changes, the InputController object will send a notification this way:

[[NSNotificationCenter defaultCenter]

                       postNotificationName: ComicsDidChange

                                     object: self];



Any other Controller (Verify, Calendar, Browser, TitleLongevity), wishing to be informed has 

just to register for this notification, in its init method, for example:

[[NSNotificationCenter defaultCenter]

                       addObserver: self

                          selector: @selector(comicsChanged:)

                              name: ComicsDidChange

                            object: nil];



then its comicsChanged: method will be called to do whatever appropriate to change the display 

of the window, whenever the InputController sends the notification. The only thing to 

remember is to unregister this notification in the Controller's dealloc method or else the 

Notification manager will try to send a notification to a released object.

What could be more simple?

Thanks

to our technical reviewers Michelle Wyner, Deborah Grits, Andy Bachorsky, Andy Belk, Alex Dosher, Tony Frey and Randy Nelson.



‰ric Simenel

is really happy he transferred in Cupertino's DTS from Paris' DTS. Aside from the fact that he got a real good welcome from his current 

colleagues, he's getting much more sun here than there, and, due to his constant location here, he has easier access to Comic Books 

Conventions where he completed many runs¼ The current mark is at 22,000 and counting.


