
2-1

CHAPTER 2
PENTIUM® PRO PROCESSOR

ARCHITECTURE OVERVIEW

The Pentium Pro processor has a decoupled, 12-stage, superpipelined implementation, trading
less work per pipestage for more stages. The Pentium Pro processor also has a pipestage time
33 percent less than the Pentium processor, which helps achieve a higer clock rate on any given
process.

The approach used by the Pentium Pro processor removes the constraint of linear instruction se-
quencing between the traditional “fetch” and “execute” phases, and opens up a wide instruction
window using an instruction pool. This approach allows the “execute” phase of the Pentium Pro
processor to have much more visibility into the program’s instruction stream so that better
scheduling may take place. It requires the instruction “fetch/decode” phase of the Pentium Pro
processor to be much more intelligent in terms of predicting program flow. Optimized schedul-
ing requires the fundamental “execute” phase to be replaced by decoupled “dispatch/execute”
and “retire” phases. This allows instructions to be started in any order but always be completed
in the original program order. The Pentium Pro processor is implemented as three independent
engines coupled with an instruction pool as shown in Figure 2-1.

.

Figure 2-1. Three Engines Communicating Using an Instruction Pool

Dispatch
/Execute

Unit

Retire
Unit

Instruction
Pool

Fetch/
Decode

Unit

ch02.fm4 Page 1 Tuesday, April 16, 1996 1:25 PM

2-2

PENTIUM® PRO PROCESSOR ARCHITECTURE OVERVIEW

2.1. FULL CORE UTILIZATION

The three independent-engine approach was taken to more fully utilize the CPU core. Consider
the code fragment in Figure 2-2:

The first instruction in this example is a load of r1 that, at run time, causes a cache miss. A tra-
ditional CPU core must wait for its bus interface unit to read this data from main memory and
return it before moving on to instruction 2. This CPU stalls while waiting for this data and is thus
being under-utilized.

To avoid this memory latency problem, the Pentium Pro processor “looks-ahead” into its instruc-
tion pool at subsequent instructions and will do useful work rather than be stalled. In the exam-
ple in Figure 2-2, instruction 2 is not executable since it depends upon the result of instruction
1; however both instructions 3 and 4 are executable. The Pentium Pro processor executes in-
structions 3 and 4 out-of-order. The results of this out-of-order execution can not be committed
to permanent machine state (i.e., the programmer-visible registers) immediately since the orig-
inal program order must be maintained. The results are instead stored back in the instruction
pool awaiting in-order retirement. The core executes instructions depending upon their readiness
to execute, and not on their original program order, and is therefore a true dataflow engine. This
approach has the side effect that instructions are typically executed out-of-order.

The cache miss on instruction 1 will take many internal clocks, so the Pentium Pro processor
core continues to look ahead for other instructions that could be speculatively executed, and is
typically looking 20 to 30 instructions in front of the instruction pointer. Within this 20 to 30
instruction window there will be, on average, five branches that the fetch/decode unit must cor-
rectly predict if the dispatch/execute unit is to do useful work. The sparse register set of an Intel
Architecture (IA) processor will create many false dependencies on registers so the dispatch/ex-
ecute unit will rename the IA registers into a larger register set to enable additional forward
progress. The retire unit owns the programmer’s IA register set and results are only committed
to permanent machine state in these registers when it removes completed instructions from the
pool in original program order.

Dynamic Execution technology can be summarized as optimally adjusting instruction execution
by predicting program flow, having the ability to speculatively execute instructions in any
order, and then analyzing the program’s dataflow graph to choose the best order to execute
the instructions.

r1 <= mem [r0] /* Instruction 1 */

r2 <= r1 + r2 /* Instruction 2 */

r5 <= r5 + 1 /* Instruction 3 */

r6 <= r6 - r3 /* Instruction 4 */

Figure 2-2. A Typical Code Fragment

ch02.fm4 Page 2 Tuesday, April 16, 1996 1:25 PM

2-3

PENTIUM® PRO PROCESSOR ARCHITECTURE OVERVIEW

2.2. THE PENTIUM® PRO PROCESSOR PIPELINE

In order to get a closer look at how the Pentium Pro processor implements Dynamic Execution,
Figure 2-3 shows a block diagram including cache and memory interfaces. The “Units” shown
in Figure 2-3 represent stages of the Pentium Pro processor pipeline.

Figure 2-3. The Three Core Engines Interface with Memory via Unified Caches

Bus Interface Unit

Fetch Load Store

L1 ICache L1 DCache

L2 CacheSystem Bus

Dispatch
/Execute

Unit

Retire
Unit

Instruction
Pool

Fetch/
Decode

Unit

ch02.fm4 Page 3 Tuesday, April 16, 1996 1:25 PM

2-4

PENTIUM® PRO PROCESSOR ARCHITECTURE OVERVIEW

• The FETCH/DECODE unit: An in-order unit that takes as input the user program
instruction stream from the instruction cache, and decodes them into a series of micro-
operations (µops) that represent the dataflow of that instruction stream. The pre-fetch is
speculative.

• The DISPATCH/EXECUTE unit: An out-of-order unit that accepts the dataflow stream,
schedules execution of the µops subject to data dependencies and resource availability and
temporarily stores the results of these speculative executions.

• The RETIRE unit: An in-order unit that knows how and when to commit (“retire”) the
temporary, speculative results to permanent architectural state.

• The BUS INTERFACE unit: A partially ordered unit responsible for connecting the three
internal units to the real world. The bus interface unit communicates directly with the L2
(second level) cache supporting up to four concurrent cache accesses. The bus interface
unit also controls a transaction bus, with MESI snooping protocol, to system memory.

2.2.1. The Fetch/Decode Unit

Figure 2-4 shows a more detailed view of the Fetch/Decode Unit.

Figure 2-4. Inside the Fetch/Decode Unit

ID
(x3)

Next_IP

BTB

MIS

RAT
Allocate

From BIU

ICache

To
Instruction
Pool (ROB)

BIU - Bus Interface Unit
ID - Instruction Decoder
BTB - Branch Target Buffer
MIS - Microcode Instruction
 Sequencer
RAT - Register Alias Table
ROB - ReOrder Buffer

ch02.fm4 Page 4 Tuesday, April 16, 1996 1:25 PM

2-5

PENTIUM® PRO PROCESSOR ARCHITECTURE OVERVIEW

The ICache is a local instruction cache. The Next_IP unit provides the ICache index, based on
inputs from the Branch Target Buffer (BTB), trap/interrupt status, and branch-misprediction in-
dications from the integer execution section.

The ICache fetches the cache line corresponding to the index from the Next_IP, and the next line,
and presents 16 aligned bytes to the decoder. The prefetched bytes are rotated so that they are
justified for the instruction decoders (ID). The beginning and end of the IA instructions are
marked.

Three parallel decoders accept this stream of marked bytes, and proceed to find and decode the
IA instructions contained therein. The decoder converts the IA instructions into triadic µops (two
logical sources, one logical destination per µop). Most IA instructions are converted directly into
single µops, some instructions are decoded into one-to-four µops and the complex instructions
require microcode (the box labeled MIS in Figure 2-4). This microcode is just a set of prepro-
grammed sequences of normal µops. The µops are queued, and sent to the Register Alias Table
(RAT) unit, where the logical IA-based register references are converted into Pentium Pro pro-
cessor physical register references, and to the Allocator stage, which adds status information to
the µops and enters them into the instruction pool. The instruction pool is implemented as an
array of Content Addressable Memory called the ReOrder Buffer (ROB).

This is the end of the in-order pipe.

2.2.2. The Dispatch/Execute Unit

The dispatch unit selects µops from the instruction pool depending upon their status. If the status
indicates that a µop has all of its operands then the dispatch unit checks to see if the execution
resource needed by that µop is also available. If both are true, the Reservation Station removes
that µop and sends it to the resource where it is executed. The results of the µop are later returned
to the pool. There are five ports on the Reservation Station, and the multiple resources are
accessed as shown in Figure 2-5.

ch02.fm4 Page 5 Tuesday, April 16, 1996 1:25 PM

2-6

PENTIUM® PRO PROCESSOR ARCHITECTURE OVERVIEW

The Pentium Pro processor can schedule at a peak rate of 5 µops per clock, one to each resource
port, but a sustained rate of 3 µops per clock is typical. The activity of this scheduling process is
the out-of-order process; µops are dispatched to the execution resources strictly according to
dataflow constraints and resource availability, without regard to the original ordering of the
program.

Note that the actual algorithm employed by this execution-scheduling process is vitally impor-
tant to performance. If only one µop per resource becomes data-ready per clock cycle, then there
is no choice. But if several are available, it must choose. The Pentium Pro processor uses a pseu-
do FIFO scheduling algorithm favoring back-to-back µops.

Note that many of the µops are branches. The Branch Target Buffer will correctly predict most
of these branches but it can’t correctly predict them all. Consider a BTB that is correctly predict-
ing the backward branch at the bottom of a loop; eventually that loop is going to terminate, and
when it does, that branch will be mispredicted. Branch µops are tagged (in the in-order pipeline)
with their fall-through address and the destination that was predicted for them. When the branch
executes, what the branch actually did is compared against what the prediction hardware said it
would do. If those coincide, then the branch eventually retires, and most of the speculatively ex-
ecuted work behind it in the instruction pool is good.

But if they do not coincide, then the Jump Execution Unit (JEU) changes the status of all of the
µops behind the branch to remove them from the instruction pool. In that case the proper branch
destination is provided to the BTB which restarts the whole pipeline from the new target address.

Figure 2-5. Inside the Dispatch/Execute Unit

FEU
IEU

JEU
IEU

AGU

AGU

Port 0

Port 1

Port 2

Port 3,4

Load

Store

RS

To/from
Instruction
Pool (ROB)

RS - Reservation Station
EU - Execution Unit
FEU - Floating Point EU
IEU - Integer EU
JEU - Jump EU
AGU - Address Generation Unit
ROB - ReOrder Buffer

ch02.fm4 Page 6 Tuesday, April 16, 1996 1:25 PM

2-7

PENTIUM® PRO PROCESSOR ARCHITECTURE OVERVIEW

2.2.3. The Retire Unit

Figure 2-6 shows a more detailed view of the Retire Unit.

The retire unit is also checking the status of µops in the instruction pool. It is looking for µops
that have executed and can be removed from the pool. Once removed, the original architectural
target of the µops is written as per the original IA instruction. The retirement unit must not only
notice which µops are complete, it must also re-impose the original program order on them. It
must also do this in the face of interrupts, traps, faults, breakpoints and mispredictions.

The retirement unit must first read the instruction pool to find the potential candidates for retire-
ment and determine which of these candidates are next in the original program order. Then it
writes the results of this cycle’s retirements to both the Instruction Pool and the Retirement Reg-
ister File (RRF). The retirement unit is capable of retiring 3 µops per clock.

2.2.4. The Bus Interface Unit

Figure 2-7 shows a more detailed view of the Bus Interface Unit.

Figure 2-6. Inside the Retire Unit

RS - Reservation Station
MIU - Memory Interface Unit
RRF - Retirement Register File

R

S

MIU

RRF

From To
Instruction Pool

To/from DCache

ch02.fm4 Page 7 Tuesday, April 16, 1996 1:25 PM

2-8

PENTIUM® PRO PROCESSOR ARCHITECTURE OVERVIEW

There are two types of memory access: loads and stores. Loads only need to specify the memory
address to be accessed, the width of the data being retrieved, and the destination register. Loads
are encoded into a single µop.

Stores need to provide a memory address, a data width, and the data to be written. Stores there-
fore require two µops, one to generate the address, and one to generate the data. These µops must
later re-combine for the store to complete.

Stores are never performed speculatively since there is no transparent way to undo them. Stores
are also never re-ordered among themselves. A store is dispatched only when both the address
and the data are available and there are no older stores awaiting dispatch.

A study of the importance of memory access reordering concluded:

• Stores must be constrained from passing other stores, for only a small impact on
performance.

• Stores can be constrained from passing loads, for an inconsequential performance loss.

• Constraining loads from passing other loads or stores has a significant impact on
performance.

The Memory Order Buffer (MOB) allows loads to pass other loads and stores by acting like a
reservation station and re-order buffer. It holds suspended loads and stores and re-dispatches
them when a blocking condition (dependency or resource) disappears.

2.3. ARCHITECTURE SUMMARY

Dynamic Execution is this combination of improved branch prediction, speculative execu-
tion and data flow analysis that enables the Pentium Pro processor to deliver its superior
performance.

Figure 2-7. Inside the Bus Interface Unit

MOB - Memory Order Buffer
AGU - Address Generation Unit
ROB - ReOrder BufferMem

I/F

MOB

DCache

From
AGU

To/from
Instruction
Pool (ROB)

Sys Mem

L2 Cache

ch02.fm4 Page 8 Tuesday, April 16, 1996 1:25 PM

