
PersonalJavaTM 1.0 Draft Specification

DRAFT - Version 0.9.2 - DRAFT

 Sun Microsystems, Inc.

Copyright 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable,
perpetual, worldwide limited license (without the right to sublicense) under SUN’s intellectual property
rights that are essential to practice this specification. This license allows and is limited to the creation
and distribution of clean room implementations of this specification that (i) include a complete
implementation of the current version of this specification without subsetting or supersetting, (ii)
implement all the interfaces and functionality of the standard java.* packages as defined by SUN,
without subsetting or supersetting, (iii) do not add any additional packages, classes or methods to the
java.* packages (iv) pass all test suites relating to the most recent published version of this
specification that are available from SUN six (6) months prior to any beta release of the clean room
implementation or upgrade thereto, (v) do not derive from SUN source code or binary materials, and (vi)
do not include any SUN binary materials without an appropriate and separate license from SUN.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR
52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-1(a).

This software and documentation is the confidential and proprietary information of Sun Microsystems,
Inc. ("Confidential Information"). You shall not disclose such Confidential Information and shall use it
only in accordance with the terms of the license agreement you entered into with Sun. SUN MAKES
NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE SOFTWARE,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT. SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY
LICENSEE AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR
ITS DERIVATIVES.

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, JavaSoft, JavaBeans, JDK, Java, HotJava, HotJava Views, Visual
Java, Solaris, NEO, Joe, Netra, NFS, ONC, ONC+, OpenWindows, PC-NFS, EmbeddedJava,
PersonalJava, SNM, SunNet Manager, Solaris sunburst design, Solstice, SunCore, SolarNet, SunWeb,

Sun Workstation, The Network Is The Computer, ToolTalk, Ultra, Ultracomputing, Ultraserver, Where
The Network Is Going, Sun WorkShop, XView, Java WorkShop, the Java Coffee Cup logo, and Visual
Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through
X/Open Company, Ltd. OPEN LOOK® is a registered trademark of Novell, Inc.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the United States and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and Sun(TM) Graphical User Interfaces were developed by Sun Microsystems, Inc.
for its users and licensees. Sun acknowledges the pioneering efforts of Xerox in researching and
developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers
Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license
agreements.

X Window System is a trademark of the X Consortium, Inc.

OpenStep is a trademark owned by NeXT and is used under license.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

The attached draft specification of the Personal Java Application Programming Interface (the
"Specification") is made available for your review and comment. The Specification will be posted on
this web site for at least 60 days. During that time your comments are encouraged. During this period the
specification may be revised and reposted in new draft versions. Please submit any comments to the
following email address:

personaljava-comments@java.sun.com

Due to the tremendous interest in PersonalJava, Sun may not be able to respond to each submission

received on the personaljava-comments@java.sun.com alias.

Sun reserves the right to include or exclude any comments received during this licensee review. Upon
completion of the review process we will post the specification on the JavaSoft public web site on a
non-confidential basis.

You agree that any comments received from you by Sun during this review will be free for Sun to
include in the final published version of the Specification on a non-confidential basis.

For further information on Intellectual Property matters contact Sun Legal Department:

Trademarks, Jan O’Dell at 415-786-8191
Patents at 415-336-0069

Introduction

This document provides the specification for PersonalJava 1.0. PersonalJava is a JavaTM API and Java
Application Environment for networked applications running on personal consumer devices. Because
PersonalJava is targeted for platforms such as set-top boxes and smart phones rather than for desktop
computers, the PersonalJava API is much smaller than the JDK 1.1 API. This makes PersonalJava
highly scalable and configurable while using minimal memory.

This document is intended as a guide to the facilities Personal Java provides to applications, applet, and
their developers.

PersonalJava is designed to meet the following goals:

Applets written to the PersonalJava specification should run in a JDK 1.1 applet environment.
PersonalJava applets should be link-compatible with the JDK 1.1 packages that PersonalJava
supports. Authors should be able to write applets for PersonalJava that can use JDK 1.1 applet
features when running in a JDK 1.1 applet environment.
Products that are based on PersonalJava should be usable by people with no computer experience.
PersonalJava should provide flexibility for dealing with the many input and output formats found
in the consumer electronics market, such as remote controls, television output, and touch screens.
PersonalJava should require less memory than JDK 1.1, in terms of the Java system itself and of
runtime requirements. We intend that the Personal Java virtual machine and class libraries fit
comfortably in 2 megabytes of ROM, and execute in 1-2 megabytes of RAM.
PersonalJava should run a large proportion of the applets written for JDK 1.0.2 and JDK 1.1.

Items still under investigation/work in progress may be found here.

Changes to the specification since the previous version may be found here.

The PersonalJava 1.0 API

The PersonalJava 1.0 API is a subset of the JDK 1.1 API, supplemented by a small number of new APIs
designed to meet the needs of networked embedded applications. Java APIs introduced after JDK 1.1
will not automatically become a part of the PersonalJava API. New APIs will be reviewed and evaluated
for appropriateness before being added to PersonalJava.

The JDK 1.1 packages included in PersonalJava are:

java.applet
java.awt
java.awt.datatransfer
java.awt.event
java.awt.image
java.awt.peer
java.beans
java.io
java.lang
java.lang.reflect
java.net
java.util
java.util.zip

These packages provide the core capabilities of Java, as reflected in the many books on Java
programming, as observed in our samples of current applet and application usage, and as reflects the
capabilities of "small" devices and their users (insofar as it is possible to make generalizations about
either).

Some of the functionality provided by the java.awt, java.io, and java.util packages is not
appropriate for inclusion in PersonalJava, however. Examples of such inappropriate functionality are
top-level windows and some features of internationalization. PersonalJava does not require support for
these features. Unsupported and optional features are detailed below and in the documentation for the
individual packages.

Definitions:

An unsupported class is one that has all of its methods present (which is required for
link-compatibility), but these methods will typically throw
java.lang.UnsupportedOperationException, as documented.

An unsupported method is one that is present, has the same signature as its equivalent in the full
JDK, but which usually throws java.lang.UnsupportedOperationException, as documented.

An optional class is one that is not required to be present, and which applets should not assume to
be present, but which particular implementations might include to provide additional capabilities
to built-in applications or special downloaded applets.

An optional package is a Java package consisting entirely of optional classes.

The following table lists the classes that are optional in PersonalJava along with their dependencies. The
classes are grouped in subsets that must be implemented together.

Package/Class Dependencies

java.math

java.security
java.security.interfaces Mutual, plus java.math

java.awt.CheckboxMenuItem
java.awt.Dialog (non-modal)
java.awt.Frame
java.awt.Menu
java.awt.MenuBar
java.awt.MenuShortcut
java.awt.Window

Mutual; if implemented, must be as a group.

java.awt.FileDialog

java.awt.PopupMenu (nested)

java.net.ServerSocket

java.util (unsupported classes)

java.util.zip (unsupported classes)

Note that java.util and java.util.zip "unsupported classes" function as optional classes because
they may be implemented as long as they conform to JDK 1.1 standards. Unlike the java.awt classes
listed above, they are not grouped into subsets that must be implemented together.

The JDK 1.1 packages not included in the PersonalJava API are:

java.rmi
java.rmi.dgc
java.rmi.registry
java.rmi.server
java.security.acl
java.sql
java.text
java.text.resources

These packages provide capabilities that are more likely to be required by "enterprise", applications than
small consumer devices, which are not yet widely used, which require amounts of ROM beyond what
most consumer devices are able to accomodate, or some or all of the above.

The remainder of this specification consists of descriptions of the packages contained in the
PersonalJava API. The description for each package contains a table that lists the classes and interfaces
for that package. In the tables, classes are marked as required, modified, unsupported, or optional.
Required classes are fully implemented as in the JDK 1.1 specification. A class is marked as modified if
any of its methods are not supported or are modified in the PersonalJava API. Descriptions for any
optional or modified methods are provided following the class and interface tables for each package.

If a class is marked as unsupported, calling its constructor or calling any of its static methods will result
in a java.lang.UnsupportedOperationException. Any instances of unsupported classes that are
normally held in static class variables will instead hold null.

Unsupported methods will throw a java.lang.UnsupportedOperationException when called.

PersonalJava has added new APIs to the java.awt, java.lang, and java.util packages. These
additional APIs are described in the documentation for those packages.

 java.applet

PersonalJava supports the full JDK 1.1 API for the java.applet package.

Class and Interface List

Name Status

Applet Required

AppletContext Required

AppletStub Required

AudioClip Required

The APPLET HTML tag

The APPLET tag embeds a PersonalJava applet within a Web page. It conforms to the following SGML
Document Type Definition (DTD):

 <!ENTITY % Length "CDATA" -- nn for pixels or nn% for percentage length -->
 <!ENTITY % Pixels "CDATA" -- integer representing length in pixels -->
 <!ENTITY % IAlign "(top|middle|bottom|left|right)" -- alignment -->
 <!ENTITY % URL "CDATA" -- a Uniform Resource Locator -->

 <!ELEMENT APPLET - - (%text)* +(PARAM)>

 <!ATTLIST APPLET
 codebase %URL #IMPLIED -- code base --
 code CDATA #IMPLIED -- class file --
 alt CDATA #IMPLIED -- text for display in place of applet --
 name CDATA #IMPLIED -- applet name --
 archive CDATA #IMPLIED -- archive attribute for JAR files --
 object CDATA #IMPLIED -- name of the file containing a
 serialized representation of an
 applet, which will be deserialized.
 One of CODE or OBJECT must be
 present. See the JDK 1.1 APPLET tag
 documentation for details. --
 width %Length #REQUIRED -- suggested width in pixels or as percentage of screen width --
 height %Length #REQUIRED -- suggested height in pixels or as percentage of screen height --
 align %IAlign baseline -- vertical or horizontal alignment --
 hspace %Pixels #IMPLIED -- suggested horizontal gutter --
 vspace %Pixels #IMPLIED -- suggested vertical gutter --
 >

The WIDTH and HEIGHT attributes of the applet tag provide only rough indications of the applet’s

dimensions. The display area of consumer devices is often smaller than that of desktop computer
systems. An applet viewer or browser may need to shrink the applet to enable it to fit in a device’s
display area.

java.awt

PersonalJava does not require that a platform implement the full functionality of the JDK 1.1 java.awt
package. The following is a description of the subset of the JDK 1.1 java.awt package that is the
baseline specification for the PersonalJava AWT functionality. Licensees may implement additional
features of the JDK 1.1 java.awt package as needed (that is, implement those items marked as optional
or unsupported below), provided that the additional features conform fully to the JDK 1.1 java.awt
package specification.

Further, implementing some of the features may require implementing others, to provide consistency.
The dependencies are explained below.

PersonalJava also provides new APIs for AWT functionality not found in the JDK 1.1 API.

Class and Interface List

Name Required Optional Modified Unsupported

AWTError

AWTEvent

AWTEventMulticaster

AWTException

Adjustable

BorderLayout

Button

Canvas

CardLayout

Checkbox

CheckboxGroup

CheckboxMenuItem

Choice

Color

Component

Container

Cursor

Dialog

Dimension

Event

EventQueue

FileDialog

FlowLayout

Font

FontMetrics

Frame

Graphics

GridBagConstraints

GridBagLayout

GridLayout

IllegalComponentStateException

Image

Insets

ItemSelectable

Label

LayoutManager

LayoutManager2

List (see Cautions)

MediaTracker

Menu

MenuBar

MenuComponent

MenuContainer

MenuItem

MenuShortcut

Panel

Point

Polygon

PopupMenu

PrintGraphics (see Toolkit)

PrintJob (see Toolkit)

Rectangle

ScrollPane

Scrollbar

Shape

SystemColor

TextArea

TextComponent

TextField

Toolkit

Window

Modified, Optional, and Unsupported Class Details

Method Status Comments

CheckboxMenuItem() Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if the Menu constructor does not
throw
java.lang.UnsupportedOperationException,
this one may not either, and vice-versa.

CheckboxMenuItem(String) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if the Menu constructor does not
throw
java.lang.UnsupportedOperationException,
this one may not either, and vice-versa.

CheckboxMenuItem(String,
boolean) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if the Menu constructor does not
throw
java.lang.UnsupportedOperationException,
this one may not either, and vice-versa.

Component.setCursor(Cursor) Modified

The specified cursor may be ignored. Some
platforms may not support cursors, while others
may limit the types of cursors displayed for
usability reasons.

Dialog(Frame) Modified

This constructor normally creates a modeless
Dialog. However, if a given implementation of
PersonalJava does not allow the creation of
Frames, it cannot allow the creation of modeless
Dialogs, and vice-versa. In that case, this
constructor will throw
java.lang.UnsupportedOperationException if
called.

Dialog(Frame, boolean) Modified

This constructor can create a modal or modeless
Dialog, subject to the value of its boolean
argument. There are restrictions on the
circumstances under which modeless Dialogs may
be created; see above for those. An implementation
is permitted to allow only one modal dialog to be
visible at a time; in this case, if an applet tries to
display a dialog when one is already visible, the
visible dialog may be hidden. However, when the
new modal dialog disappears, the original dialog
should become visible again.

Dialog(Frame, String) Modified
This constructor creates a modeless Dialog; see
above for a description of the restrictions
PersonalJava imposes.

Dialog(Frame, String,
boolean) Modified

PersonalJava imposes restrictions on modeless
Dialogs; see above. An implementation is
permitted to allow only one modal dialog to be
visible at a time; in this case, if an applet tries to
display a dialog when one is already visible, the
visible dialog may be hidden. However, when the
new modal dialog disappears, the original dialog
should become visible again. The String passed
as the title may be ignored.

Dialog.setResizable(boolean) Modified The specified value may be ignored.

FileDialog(Frame) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. Assuming normal applet security
restrictions are in force, applets are forbidden to
access the local file system, making FileDialog
useless to them. If a given implementation includes
a filesystem that is intended to be visible to the
user, this constructor must not throw
java.lang.UnsupportedOperationException,
and should operate normally.

FileDialog(Frame, String) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. (See note above.)

FileDialog(Frame, String,
int) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. (See note above.)

Frame() Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if a given implementation gives
the user control over the placement of overlapping
windows (Frames), this constructor must operate
normally. (See also the description of class
Window.) Note that every implementation of
PersonalJava must provide a Frame instance as the
root of any component hierarchy; programs will
need to use this instance as an argument to the
several AWT methods and constructors that expect
one.

Frame(String) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. (See note above.)

Graphics.setXORMode() Modified

Some displays, notably anti-aliased ones, are not
capable of drawing in exclusive-or mode.
Implementations in which this is the case will
throw
java.lang.UnsupportedOperationException
when this method is called.

Menu() Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if a given platform implements
the Frame constructor such that it does not throw
java.lang.UnsupportedOperationException, it
must implement Menu likewise, and vice-versa.

Menu(String) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. (See note above.)

Menu(String, boolean) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. (See note above.)

MenuBar() Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if a given platform implements
the Frame constructor such that it does not throw
java.lang.UnsupportedOperationException, it
must implement MenuBar likewise, and vice-versa.

MenuShortcut(int) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if a given platform implements
the MenuBar constructor such that it does not throw
java.lang.UnsupportedOperationException, it
must implement MenuShortcut likewise, and
vice-versa.

MenuShortcut(int, boolean) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. (See note above.)

PopupMenu.add(MenuItem) Modified

If an argument other than an instance of MenuItem,
excluding subclasses, is passed to this method, a
UnsupportedOperationException may result
when PopupMenu.show is called.

Scrollbar() Unsupported
This constructor is not supported, and will throw
java.lang.UnsupportedOperationException if
called.

Scrollbar(int) Unsupported
This constructor is not supported, and will throw
java.lang.UnsupportedOperationException if
called.

Scrollbar(int, int, int,
int, int) Unsupported

This constructor is not supported, and will throw
java.lang.UnsupportedOperationException if
called.

ScrollPane() Modified
The scrollbar display policy may be interpreted
specially. A platform may substitute other scrolling
mechanisms in place of scrollbars. See note.

ScrollPane(int) Modified
The scrollbar display policy may be ignored. A
platform may substitute other scrolling
mechanisms in place of scrollbars. See note.

TextArea() Modified
The scrollbar display policy may be ignored. A
platform may substitute other scrolling
mechanisms in place of scrollbars. See note.

TextArea(String) Modified
The scrollbar display policy may be ignored. A
platform may substitute other scrolling
mechanisms in place of scrollbars. See note.

TextArea(int, int) Modified
The scrollbar display policy may be ignored. A
platform may substitute other scrolling
mechanisms in place of scrollbars. See note.

TextArea(String, int, int) Modified
The scrollbar display policy may be ignored. A
platform may substitute other scrolling
mechanisms in place of scrollbars. See note.

TextArea(String, int, int,
int) Modified

The scrollbar display policy may be ignored. A
platform may substitute other scrolling
mechanisms in place of scrollbars. See note.

Toolkit.getPrintJob(Frame,
String, Properties) Modified

A program prints by first calling this method to
obtain a PrintJob object, from which it obtains a
series of objects implementing the PrintGraphics
interface. If a given implementation omits printer
support, getPrintJob should throw
java.lang.UnsupportedOperationException.

Window(Frame) Optional

This constructor is not required to be implemented,
and may throw
java.lang.UnsupportedOperationException if
called. However, if the Frame constructor does not
throw
java.lang.UnsupportedOperationException,
this one may not either, and vice-versa.

Cautions

A platform’s implementation of List may provide a scrolling mechanism other than scrollbars. See
note.

Implementation of Scrolling Controls and Behavior

Because scrolling in Personal Java can be done using whatever means is appropriate for the system,
rather than being restricted to traditional computer desktop metaphors, the scrollbar display policies (e.g.
for ScrollPane) have slightly different meanings:

ScrollPane scrollbar

policy

Visual Effect

(look)

Functional Effect

(feel)

SCROLLBARS_NEVER

Users see no
indication that
the item
supports
scrolling.

Scrolling this item can
only be done
programmatically.

SCROLLBARS_AS_NEEDED

If visual
feedback for
scrolling is
supported, it
should be given
only if the size
of the scrollable
area requires it.

Scrolling can be done
by the user using
whatever means the
toolkit provides.

SCROLLBARS_ALWAYS

If visual
feedback for
scrolling is
supported, it
should be given
even if the size
of the scrollable
area does not
require it.

Scrolling can be done
by the user using
whatever means the
toolkit provides.

Similarly, the scroller display policy for TextArea is also slightly modified:

TextArea scrollbar policy
Visual

Effect (look)

Functional Effect

(feel)

SCROLLBARS_NONE

Users see no
indication
that the
TextArea
supports
scrolling.

Scrolling this
TextArea can only
be done
programmatically.

SCROLLBARS_VERTICAL_ONLY

If visual
feedback for
scrolling is
supported, it
should be
given only if
the height of
the scrollable
area requires
it.

Scrolling can be
done by the user
using whatever
means the toolkit
provides.

SCROLLBARS_HORIZONTAL_ONLY

If visual
feedback for
scrolling is
supported, it
should be
given only if
the width of
the scrollable
area requires
it.

Scrolling can be
done by the user
using whatever
means the toolkit
provides.

SCROLLBARS_BOTH

If visual
feedback for
scrolling is
supported, it
should be
given for the
horizontal
and vertical
axes.

Scrolling can be
done by the user
using whatever
means the toolkit
provides.

APIs for Double Buffering and Specifying Component Behavior

PersonalJava provides additional APIs for performing double buffering and for specifying ways of
interfacing with components in a mouseless environment. (Ideally, these APIs will be folded into a
future release of the JDK.)

Methods for Double Buffering

PersonalJava provides a new method, isDoubleBuffered, for class Component.

 // in class java.awt.Component
 public boolean isDoubleBuffered();

If isDoubleBuffered returns true, then all drawing done inside paint and update methods will
be double buffered automatically. The default value for the double buffering setting is
platform-specific.

To achieve double buffering on a platform that does not support it, developers should explicitly
create an off-screen image, draw into it, and use drawImage to display it. However, doing so may
take large amounts of memory, and could therefore fail.

Developers wishing to use these methods in other versions of the JDK should use the compatibility
interface provided in sunw.awt:

 package sunw.awt;
 public interface DoubleBuffering {
 public boolean isDoubleBuffered();
 }

These interfaces will be implemented by the Component class in the PersonalJava API.

Example: Using the Double Buffering Interface

 Applet class MyAnimator checks at init time to see if the hardware will automatically double-buffer
its graphical output. If not, it allocates its own off-screen image buffer:

public class MyAnimator extends Applet implements Runnable {

 ...
 Image offScreenBuffer = null;

 Graphics offScreenGraphics = null;

 void allocateOffScreen() {
 // Create an off-screen Image buffer and a Graphics context
 offScreenBuffer = createImage(getSize().width, getSize().height);
 offScreenGraphics = offScreenBuffer.getGraphics();
 }

 public void init() {
 // If the hardware doesn’t handle double-buffering...
 if (! isDoubleBuffered()) {
 allocateOffScreen();
 }
 ...
 }

 public void paint(Graphics g) {
 if (offScreenGraphics == null) {
 // Hardware handles double-buffering, so just draw on the screen
 drawFrame(g);
 } else {

 // We have to do double-buffering ourselves.
 // First draw offscreen into allocated image buffer.
 Dimensions d = getSize();
 if (sizeDiffers(this, offScreenBuffer)) {
 allocateOffScreen();
 }
 drawFrame(offScreenGraphics);
 // Then copy the buffer onto the screen.
 g.drawImage(offScreenBuffer, 0, 0, this);
 }
 }

 ...
}

Interfaces for Specifying Component Behavior

The PersonalJava API includes four interfaces that allow developers to make it easier for their applets
and applications to adapt to mouseless environments. Examples of such environments are keyboard-only
systems and systems that are operated by remote control.

In mouseless environments, users typically can navigate from one on-screen component to another by
using keys or buttons on the system’s input device. When the user navigates to a component, the visual
representation of that component is modified in some way to indicate that it is the "current" component.

The input device typically will provide a way for the user to "select" the current component, indicating
that the user desires to interact with the component. For example, after navigating to an on-screen button
component, the user might press the Go key on a remote control to indicate that the on-screen button is to
be "pressed".

PersonalJava provides input preference interfaces to allow developers to specify the manner in which
users navigate among components and the way that users interact with components. These interfaces and
their descriptions are:

 package java.awt;
 public interface NoInputPreferred {}
 public interface KeyboardInputPreferred {}
 public interface ActionInputPreferred {}
 public interface PositionalInputPreferred {}

NoInputPreferred

The user may not navigate to the component. This interface might be appropriate for components
such as labels.

KeyboardInputPreferred

The component will be used primarily via keyboard input. Some platforms will respond by
popping up an on-screen keyboard when the user navigates to or selects this component. The
developer should ensure that Component.isFocusTraversable returns true for this component.

ActionInputPreferred

This interface is intended for those types of components that the user would click on or otherwise
"activate" using the input device. The component should receive a MOUSE_ENTER event when the
user navigates to the component, and a MOUSE_EXIT event when the user navigates from the
component. It should receive a MOUSE_DOWN event followed by a MOUSE_UP event when the user
selects it. The mouse coordinates for all events associated with this component will be the
coordinates of the center of the component.

PositionalInputPreferred

The component will be used primarily by the user selecting x,y coordinates within the component.
The component should receive MOUSE_ENTER and MOUSE_EXIT events when the user navigates to
it. The system should provide some mechanism for selecting specific x,y coordinates within the
component’s bounds, and provide mouse movement events if possible. The platform should decide
if selection of x,y coordinate begins when the user navigates to the component or when the user
selects the component. In either case, the component should receive a MOUSE_DOWN and MOUSE_UP
event with the selected coordinates.

Examples: Using the Component Behavior Interfaces

 Class MyLabel represents an area that simply displays a test string. It isn’t concerned with any sort of
input at all:

public class MyLabel extends Canvas implements NoInputPreferred {

 public MyLabel(String text) {
 ...
 }

 public void paint(Graphics g) {
 g.drawString(text, x, y);
 }
}

 Class MyNumberField represents an area into which the user can type a number. It only concerns
itself with character input, but not positional or other sorts of input:

public class MyNumberField extends Canvas implements KeyboardInputPreferred, KeyListener {

 public MyNumberField() {
 ...
 }

 /* Insert the key in the field */
 public void keyTyped(KeyEvent e) {
 ...
 }

 /* Ignore it - input handled by keyTyped */
 public void keyPressed(KeyEvent e) {
 }

 /* Ignore it - input handled by keyTyped */
 public void keyReleased(KeyEvent e) {
 }

 /* We want the user to be able to TAB to this component. */
 public boolean isFocusTraversable() {
 return true;
 }

 ...
}

 Class MyButton, below, represents a button on the screen. It only concerns itself with actions (up and
down clicks) and whether it’s selected, so we make it implement ActionInputPreferred:

public class MyButton extends Canvas implements ActionInputPreferred {

 public MyButton(Image down, Image up, Image disabled) {

 MouseListener mouseListener = new MouseAdapter() {

 public void mousePressed(MouseEvent e) {
 ... // User clicked; do something
 }

 public void mouseReleased(MouseEvent e) {
 ... // User released
 }

 public void mouseEntered(MouseEvent e) {
 ... // User has navigated here
 }

 public void mouseExited(MouseEvent e) {
 ... // User has navigated away
 }
 };

 addMouseListener(mouseListener);
 }

 ...
}

 Class MyScribbler creates an area on which the user can "draw." It concerns itself with "mouse" up
and down events, keyboard input, and the position of the input device. Note that because we wish this
Component to act more like a drawing pad than a type-in field, we have it implement
PositionalInputPreferred instead of KeyboardInputPreferred.

public class MyScribbler extends Canvas implements PositionalInputPreferred,
 MouseMotionListener, KeyListener
 {

 private final static char controlP = 0x10;

 Color currentColor = Color.black;
 boolean painting = true;

 public MyScribbler() {
 ...
 }

 /* User is holding the button while moving. Draw a line.
 Since not all input devices allow dragging, we will provide
 other means for doing this in the mouseMoved method. */
 public void mouseDragged(MouseEvent e) {
 addLine(e.x, e.y, currentColor);
 repaint();
 }

 /* User has moved the pointing device to a new position.
 If the user is pressing the shift key, draw a line, else
 just move. */
 public void mouseMoved(MouseEvent e) {
 if (painting) {
 addLine(e.x, e.y, currentColor);
 repaint();
 }
 }

 /* Show this character at the current position */
 public void keyTyped(KeyEvent e) {
 char ch = e.getKeyChar();
 if (ch == controlP) {
 painting = !painting;
 } else {
 addChar(e.x, e.y, e.getKeyChar());
 repaint();
 }
 }

 /* Ignore key press - it’s handled by keyTyped */
 public void keyPressed(KeyEvent e) {
 }

 /* Ignore key release - it’s handled by keyTyped */
 public void keyReleased(KeyEvent e) {
 }

 /* We don’t want the user to be able to TAB to this component. */
 public boolean isFocusTraversable() {
 return false;
 }

}

A component should implement only one of the input preference interfaces. If a component implements
more than one, it should behave as if none had been implemented.

Input preferences are meant as hints to the implementation, and some implementations may ignore them
on certain Components. For example, an implementation might choose always to treat a Button (or a
subclass of Button) as implementing ActionInputPreferred, irrespective of the input preference
interfaces actually implemented. However, implementations should honor input preferences on
subclasses of the generic Canvas, Component, Container, Dialog, Frame, ScrollPane, and Window
classes when appropriate. All classes in the java.awt package are guaranteed not to implement any of
these interfaces.

An implementation should ignore these input preferences when appropriate. For example, on a platform
with a keyboard and mouse, the implementation might always ignore them. On a platform with a remote

control that contains a trackball, the implementation might ignore all but KeyboardInputPreferred. On
a platform with only a keyboard, the implementation might ignore only KeyboardInputPreferred.

Note that a component that inherits from NoInputPreferred may still receive events on an
implementation that chooses to ignore it. Also, an implementation may choose to not allow the user to
navigate to a component for reasons not covered here. For example, an implementation might not allow
a user to navigate to a component that is too small or that is obscured.

If a component does not inherit from any of these interfaces, an implementation might establish a default
for predictability, might attempt to detect what the component wants based on event listeners, or might
apply other heuristics.

Developers wishing to use these features under other versions of the JDK should use the compatibility
interfaces in sunw.awt:

 package sunw.awt;
 public interface NoInputPreferred {}
 public interface KeyboardInputPreferred {}
 public interface ActionInputPreferred {}
 public interface PositionalInputPreferred {}

 java.awt.datatransfer

PersonalJava supports the full JDK 1.1 API for the java.awt.datatransfer package, which is
invaluable for transfer of information both between Java applications and/or applets and between Java
and non-Java programs running on the same platform.

Class and Interface List

Name Status

Clipboard Required

ClipboardOwner Required

DataFlavor Required

StringSelection Required

Transferable Required

UnsupportedFlavorException Required

 java.awt.event

PersonalJava supports the full JDK 1.1 API for the java.awt.event package.

Class and Interface List

Name Status

ActionEvent Required

ActionListener Required

AdjustmentEvent Required

AdjustmentListener Required

ComponentAdapter Required

ComponentEvent Required

ComponentListener Required

ContainerAdapter Required

ContainerEvent Required

ContainerListener Required

FocusAdapter Required

FocusEvent Required

FocusListener Required

InputEvent Required

ItemEvent Required

ItemListener Required

KeyAdapter Required

KeyEvent Required

KeyListener Required

MouseAdapter Required

MouseEvent Required

MouseListener Required

MouseMotionAdapter Required

MouseMotionListener Required

PaintEvent Required

TextEvent Required

TextListener Required

WindowAdapter Required

WindowEvent Required

WindowListener Required

 java.awt.image

PersonalJava supports the full JDK 1.1 API for the java.awt.image package.

Class and Interface List

Name Status

AreaAveragingScaleFilter Required

ColorModel Required

CropImageFilter Required

DirectColorModel Required

FilteredImageSource Required

ImageConsumer Required

ImageFilter Required

ImageObserver Required

ImageProducer Required

IndexColorModel Required

MemoryImageSource Required

PixelGrabber Required

RGBImageFilter Required

ReplicateScaleFilter Required

java.awt.peer

Developers should not directly use the interfaces in java.awt.peer, unless they are porting
PersonalJava to a new platform. An implementation should mirror the restrictions from java.awt in an
implementation of peers for PersonalJava. For example, an implementation of PopupMenuPeer.show()
for PersonalJava may throw UnsupportedOperationException when called, assuming
PopupMenu.show() does.

 java.beans

PersonalJava supports the full JDK 1.1 API for the java.beans package.

Class and Interface List

Name Status

BeanDescriptor Required

BeanInfo Required

Beans Required

Customizer Required

EventSetDescriptor Required

FeatureDescriptor Required

IndexedPropertyDescriptor Required

IntrospectionException Required

Introspector Required

MethodDescriptor Required

ParameterDescriptor Required

PropertyChangeEvent Required

PropertyChangeListener Required

PropertyChangeSupport Required

PropertyDescriptor Required

PropertyEditor Required

PropertyEditorManager Required

PropertyEditorSupport Required

PropertyVetoException Required

SimpleBeanInfo Required

VetoableChangeListener Required

VetoableChangeSupport Required

Visibility Required

java.io

Class and Interface List

Name Status

BufferedInputStream Required

BufferedOutputStream Required

BufferedReader Required

BufferedWriter Required

ByteArrayInputStream Required

ByteArrayOutputStream (see Cautions) Required

CharArrayReader Required

CharArrayWriter Required

CharConversionException Required

DataInput Required

DataInputStream Required

DataOutput Required

DataOutputStream Required

EOFException Required

Externalizable Required

File Required

FileDescriptor Required

FileInputStream Required

FileNotFoundException Required

FileOutputStream Required

FileReader Required

FileWriter Required

FilenameFilter Required

FilterInputStream Required

FilterOutputStream Required

FilterReader Required

FilterWriter Required

IOException Required

InputStream Required

InputStreamReader (see Cautions) Required

InterruptedIOException Required

InvalidClassException Required

InvalidObjectException Required

LineNumberInputStream Required

LineNumberReader Required

NotActiveException Required

NotSerializableException Required

ObjectInput Required

ObjectInputStream Required

ObjectInputValidation Required

ObjectOutput Required

ObjectOutputStream Required

ObjectStreamClass Required

ObjectStreamException Required

OptionalDataException Required

OutputStream Required

OutputStreamWriter (see Cautions) Required

PipedInputStream Required

PipedOutputStream Required

PipedReader Required

PipedWriter Required

PrintStream Required

PrintWriter Required

PushbackInputStream Required

PushbackReader Required

RandomAccessFile Required

Reader Required

SequenceInputStream Required

Serializable Required

StreamCorruptedException Required

StreamTokenizer Required

StringBufferInputStream Required

StringReader Required

StringWriter Required

SyncFailedException Required

UTFDataFormatException Required

UnsupportedEncodingException Required

WriteAbortedException Required

Writer Required

Cautions

Developers should be aware that the specific character encodings available (as used in
ByteArrayOutputStream, InputStreamReader, and OutputStreamWriter) are platform specific and
may be quite limited in PersonalJava implementations. However, an implementation should guarantee
the availability of converters for ISO 8859-1 ("Latin-1"), Unicode (big- and little-endian varieties, both
marked and unmarked), and the native character encoding of the platform itself.

 java.lang

PersonalJava supports the full JDK 1.1 API for the java.lang package. In addition, PersonalJava
provides an additional API for a UnsupportedOperationException class.

Class and Interface List

Name Status

AbstractMethodError Required

ArithmeticException Required

ArrayIndexOutOfBoundsException Required

ArrayStoreException Required

Boolean Required

Byte Required

Character Required

Class Required

ClassCastException Required

ClassCircularityError Required

ClassFormatError Required

ClassLoader Required

ClassNotFoundException Required

CloneNotSupportedException Required

Cloneable Required

Compiler Required

Double Required

Error Required

Exception Required

ExceptionInInitializerError Required

Float Required

IllegalAccessError Required

IllegalAccessException Required

IllegalArgumentException Required

IllegalMonitorStateException Required

IllegalStateException Required

IllegalThreadStateException Required

IncompatibleClassChangeError Required

IndexOutOfBoundsException Required

InstantiationError Required

InstantiationException Required

Integer Required

InternalError Required

InterruptedException Required

LinkageError Required

Long Required

Math Required

NegativeArraySizeException Required

NoClassDefFoundError Required

NoSuchFieldError Required

NoSuchFieldException Required

NoSuchMethodError Required

NoSuchMethodException Required

NullPointerException Required

Number Required

NumberFormatException Required

Object Required

OutOfMemoryError Required

Process Required

Runnable Required

Runtime Required

RuntimeException Required

SecurityException Required

SecurityManager Required

Short Required

StackOverflowError Required

String (see Cautions) Required

StringBuffer Required

StringIndexOutOfBoundsException Required

System Required

Thread Required

ThreadDeath Required

ThreadGroup Required

Throwable Required

UnknownError Required

UnsatisfiedLinkError Required

VerifyError Required

VirtualMachineError Required

Void Required

Cautions

Developers should be aware that the specific character encodings available (as used in String) are
platform specific and may be quite limited in PersonalJava implementations.

Additional APIs

UnsupportedOperationException is defined as:

 package java.lang;
 public class UnsupportedOperationException
 extends sunw.lang.UnsupportedOperationException {
 public UnsupportedOperationException(Object o);
 public UnsupportedOperationException(Object o, String s);
 }

For compatibility, the following class is also provided and can be included in downloaded applets:

 package sunw.lang;
 public class UnsupportedOperationException extends RuntimeException {
 public UnsupportedOperationException(Object o);
 public UnsupportedOperationException(Object o, String s);
 }

Developers wishing to use this feature under other versions of the JDK should use the sunw.lang
version of UnsupportedOperationException.

 java.lang.reflect

PersonalJava supports the full JDK 1.1 API for the java.lang.reflect package.

Class and Interface List

Name Status

Array Required

Constructor Required

Field Required

InvocationTargetException Required

Member Required

Method Required

Modifier Required

 java.net

PersonalJava supports the full JDK 1.1 API for the java.net package, excepting optional class
ServerSocket, which is rendered off-limits for applets by most java.lang.SecurityManager
implementations.

Class and Interface List

Name Status

BindException Required

ConnectException Required

ContentHandler Required

ContentHandlerFactory Required

DatagramPacket Required

DatagramSocket Required

DatagramSocketImpl Required

FileNameMap Required

HttpURLConnection Required

InetAddress Required

MalformedURLException Required

MulticastSocket Required

NoRouteToHostException Required

ProtocolException Required

ServerSocket Optional

Socket Required

SocketException Required

SocketImpl Required

SocketImplFactory Required

URL Required

URLConnection Required

URLEncoder Required

URLStreamHandler Required

URLStreamHandlerFactory Required

UnknownHostException Required

UnknownServiceException Required

 java.util

PersonalJava does not support the full functionality of the JDK 1.1 java.util package. The following
is a description of the subset of the JDK 1.1 java.util package that is the baseline specification for the
PersonalJava utility functionality. Licensees may implement additional functionality from the JDK 1.1
java.util package as needed, provided that the additional functionality conforms fully to the JDK 1.1

java.util package specification.

PersonalJava also provides new APIs for utility features not found in the JDK 1.1 API.

Class and Interface List

Name Status

BitSet Required

Calendar Unsupported

Date Modified

Dictionary Required

EmptyStackException Required

Enumeration Required

EventListener Required

EventObject Required

GregorianCalendar Unsupported

Hashtable Required

ListResourceBundle Required

Locale Required

MissingResourceException Required

NoSuchElementException Required

Observable Required

Observer Required

Properties Required

PropertyResourceBundle Required

Random Required

ResourceBundle Required

SimpleTimeZone Unsupported

Stack Required

StringTokenizer Required

TimeZone Unsupported

TooManyListenersException Required

Vector Required

Modified Class Details

Class Date and its methods are not deprecated in PersonalJava.

 java.util.zip

PersonalJava does not support the full functionality of the JDK 1.1 java.util.zip package. The
following is a description of the subset of the JDK 1.1 java.util.zip package that is the baseline
specification for the PersonalJava utility functionality. Licensees may implement additional
functionality from the JDK 1.1 java.util.zip package as needed, provided that the additional
functionality conforms fully to the JDK 1.1 java.util.zip package specification.

The PersonalJava java.util.zip package is intended to provide at least the capabilities necessary to
allow applets and other data to be loaded from JAR files.

Class and Interface Details

Method Status Comments

Adler32 Unsupported

The Adler32 constructor is not required to be
implemented, and may throw
java.lang.UnsupportedOperationException
if called. The same is true of all of the other
methods of Adler32.

CRC32 Required

CheckedInputStream Required

CheckedOutputStream Required

Checksum Required

DataFormatException Required

Deflater Unsupported

The Deflater constructor is not required to be
implemented, and may throw
java.lang.UnsupportedOperationException
if called. The same is true of all of the other
methods of Deflator.

DeflaterOutputStream Unsupported

The DeflaterOutputStream constructor is not
required to be implemented, and may throw
java.lang.UnsupportedOperationException
if called. The same is true of all of the other
methods of DeflatorOutputStream.

GZIPInputStream Required

GZIPOutputStream Unsupported

The GZIPOutputStream constructor is not
required to be implemented, and may throw
java.lang.UnsupportedOperationException
if called. The same is true of all of the other
methods of GZIPOutputStream.

Inflater Modified

The constructor Inflater() will throw
UnsupportedOperationException when
called, as the nowrap option (implicit in this call)
is not supported. Likewise, Inflater(boolean)
will throw UnsupportedOperationException
when called with a false argument.

InflaterInputStream Required

ZipConstants Required

ZipEntry Required

ZipException Required

ZipFile Unsupported

The ZipFile constructor is not required to be
implemented, and may throw
java.lang.UnsupportedOperationException
if called. The same is true of all of the other
methods of ZipFile.

ZipInputStream Required

ZipOutputStream Unsupported

The ZipOutputStream constructor is not required
to be implemented, and may throw
java.lang.UnsupportedOperationException
if called. The same is true of all of the other
methods of ZipOutputStream.

Timer and TimerSpec APIs

PersonalJava also includes the following classes and interfaces in sunw.util. (Ideally, to ensure wide
compatibility, these APIs will be integrated into a future version of the JDK.)

 package sunw.util;

 public abstract class Timer {

 public static Timer getTimer();

 public abstract void schedule(TimerSpec t);
 public abstract void deschedule(TimerSpec t);
 }

 public class TimerSpec {

 // defaults to a one-shot timer going off immediately
 // regular defaults to true
 public TimerSpec() {

 setAbsolute(false);
 setRepeat(false);
 setRegular(true);
 setTime(0);
 }

 // accessors

 public void setAbsolute(boolean absolute);
 public boolean isAbsolute();

 public void setRepeat(boolean repeat);
 public boolean isRepeat();

 // ala regular vs. irregular in sun.misc.Timer
 public void setRegular(boolean regular);
 public boolean isRegular();

 public void setTime(long time);
 public long getTime();

 // listeners

 public void addTimerWentOffListener(TimerWentOffListener l);
 public void removeTimerWentOffListener(TimerWentOffListener l);

 // convenience functions

 public void setAbsoluteTime(long when) {
 setAbsolute(true);
 setTime(when);
 setRepeat(false);
 }

 public void setDelayTime(long delay) {
 setAbsolute(false);
 setTime(delay);
 setRepeat(false);
 }

 // for the benefit of timer implementations

 public void notifyListeners(Timer source);
 }

 public class TimerWentOffEvent extends java.util.EventObject {

 private TimerSpec timerSpec;

 public TimerWentOffEvent(Timer source, TimerSpec spec) {
 super(source);

 timerSpec = spec;
 }

 public TimerSpec getTimerSpec() {
 return timerSpec;
 }
 }

 public interface TimerWentOffListener {

 void timerWentOff(TimerWentOffEvent e);
 }

The Timer methods are:

getTimer()

Returns a timer object. There may be one Timer instance per virtual machine, one per applet, one
per call to getTimer, or some other platform dependent implementation.

schedule(TimerSpec)

Begins monitoring a TimerSpec. When the timer specification should fire, the timer will call
TimerSpec.notifyListeners.

deschedule(TimerSpec)

Removes a TimerSpec from the set of monitored specifications. The descheduling happens as
soon as practical, but may not happen immediately.

The TimerSpec methods are:

TimerSpec()

Creates a new timer specification that defaults to a one-shot regular timer that goes off after a
delay of 0ms.

setAbsolute(boolean)
isAbsolute()

Determines whether the time specification in setTime is an absolute time or a delay time.

setRepeat(boolean)
isRepeat()

Determines whether a delay time should fire once or continue delaying and firing until
descheduled. This value has no effect if the time specification is absolute.

setRegular(boolean)
isRegular()

Determines whether a repeating delay time measures from the time the event fires (regular) or
from the time the event listeners finish executing (not regular). For example, imagine you have a
timer specification that repeats every 10ms, but calling the listeners via notifyListeners takes
5ms. If the specification is regular, the listeners will be called every 10ms. If the specification is
not regular, the listeners will be called every 15ms (10ms after the listeners finish executing). Due
to system load or the length of time the event listeners take to execute, it may not be possible for
regular specifications to fire fast enough. In this case, the specification will fire as fast as possible.

setTime(long)
getTime()

Sets the time at which the specification fires. Absolute times are in milliseconds since midnight,
January 1, 1970 UTC. Relative times are in milliseconds. A specification with an absolute time
less than java.lang.System.currentTimeMillis() will fire as soon as it is registered.

addTimerWentOffListener(TimerWentOffListener)

Adds a listener to call when the specification fires.

removeTimerWentOffListener(TimerWentOffListener)

Removes a listener from the list of listeners to call when the specification fires. If the listener is
not currently registered on this timer specification, this method does nothing.

setAbsoluteTime(long)

Sets the timer specification to fire at the specified absolute time.

setDelayTime(long)

Sets the timer specification to fire once after the specified delay.

notifyListeners(Timer)

Calls all the listeners registered on this specification. This method is primarily for the benefit of
implementers of subclasses of Timer and will normally not be used by developers.

Unless it has unusual timing requirements, an applet should use the timer provided by getTimer rather
than creating one of its own. By doing so, an implementation may be able to conserve resources by
providing timing services via an existing thread rather than creating a new one.

An implementation of timers will be provided so that developers can use the sunw.util timing classes
with downloaded applets on non-PersonalJava platforms.

Compatibility for JDK 1.1-based Systems

The following APIs are provided to be included with downloaded applets to allow them to run on
BusinessJava platforms that lack the new features in PersonalJava:

 sunw.awt

 package sunw.awt;

 public interface DoubleBuffering { ... }

 public interface NoInputPreferred {}
 public interface KeyboardInputPreferred {}
 public interface ActionInputPreferred {}

 public interface PositionalInputPreferred {}

 sunw.lang

 package sunw.lang;

 public class UnsupportedOperationException extends RuntimeException {
 ...
 }

 sunw.util

 package sunw.util;

 public abstract class Timer { ... }

 public class TimerSpec { ... }

 public class TimerWentOffEvent { ... }

 public interface TimerWentOffListener { ... }

Networking Protocols

The PersonalJava networking classes support a wide variety of protocols, listed below. Licensees are
free to use the implementations we supply, to use their own, or to leave optional ones out. Those marked
as "required" are ones that applets universally assume to be available. We recommend that implementors
include those marked as "optional" if space and the specifics of the device or system allow it.

The Version column lists the lowest version we recommend (or require, as appropriate) supporting.

The Supplied column details what we will include in the initial implementation of PersonalJava,
including a version number if appropriate.

Name Version Required Optional Supplied

http: 1.0 1.1

SSL
(Secure
Sockets
Layer)

3.0

gopher: --

ftp: -- (requires
java.net.ServerSocket)

mailto:
(SMTP)

--

file: --

Image Formats

PersonalJava assumes the ability to handle the set of graphical image formats listed below.

Where a version number is listed, it represents the lowest version we recommend (or require, as
appropriate) supporting.

Format Version Required Optional

CompuServe GIF 89a

JPEG (JFIF)

XBM (XBitmap)

XBitmap format isn’t often used in programs, but is commonly used to represent icons in web server directory listings. It’s a
simple textual format that requires a very small amount of code to implement.

Note: Although a PersonalJava implementation is required to support the image formats listed above,
different implementations may deliver the image data using different variations of the ImageProducer
and ImageConsumer interfaces. For example, many implementations will deliver a GIF image using an
instance of IndexColorModel to describe the colors. However, others may deliver the data using other
color models. In particular, television based platforms may deliver data in a YUV
(luminance/chrominance) color model. Likewise, some implementations may deliver a single scanline at
a time, whereas others may deliver many scanlines at the same time, may deliver an entire image at
once, or may deliver it in pieces not based on scanlines at all. Developers should always write according
to the whole ImageProducer and ImageConsumer interface and not take shortcuts based on empirical
results on a single platform.

Items Still Under Investigation

None at present. Defer applet requirement declaration API until a later release.

 Sun Microsystems, Inc.

Copyright 1997 Sun Microsystems, Inc. All rights reserved.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.

