JavaSpace™ Specification
Revision 0.4

June 27,19974:28 pm

el e

The JavaSpace™ package provides a distributed persistence and object exchange
mechanism for code written in the Java™ programming language. Objects are written in
entries that provide atyped grouping of relevant fields. Clients can perform simple
operations on a JavaSpace server to write new entries, lookup existing entries, and remove
entries from the space. Using these tools, you can write systems to store state, and also write
systems that use flow of data to implement distributed algorithms and let the JavaSpace
systemimplementdistributed persistence for you.

Revision 0.4, June 27, 1997 4:28 pm

Chapter:

Pageii

0 1996 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

THIS IS A DRAFT, AND IS KNOWN TO BE INCOMPLETE. IT MAY NOT BE COPIED OR REDISTRIB-
UTED WITHOUT THE EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS. SEND MAIL
TO js-comments@jse.east.sun.com IF YOU WISH TO MAKE ADDITIONAL REVIEW COPIES
OR IF YOU HAVE COMMENTS. fOR MORE DETAILS ABOUT OUR REDISTRIBUTION POLICY, SEE
http://java.sun.com/doc/redist.html

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject
to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this manual may be protected by one or more U.S. patents, foreign patents, or pending
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully-paid, nonexclusive, nontransferable, perpetual,
worldwide limited license (without the right to sublicense) under SUN's intellectual property rights that are
essential to practice this specification. This license allows and is limited to the creation and distribution of clean
room implementations of this specification that: (i) include a complete implementation of the current version of
this specification without subsetting or supersetting; (ii) implement all the interfaces and functionality of the
standardava* packages as defined by SUN, without subsetting or supersetting; (iii) do not add any addi-
tional packages, classes or methods tgetlee* packages; (iv) pass all test suites relating to the most recent
published version of this specification that are available from SUN six (6) months prior to any beta release of
the clean room implementation or upgrade thereto; (v) do not derive from SUN source code or binary materi-
als; and (vi) do not include any SUN binary materials without an appropriate and separate license from SUN.

Sun, Sun Microsystems, Sun Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Com-
puter Corporation logo, Java, JavaSoft, JavaScript, and HotJava are trademarks or registered trademarks of Sun
Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. All other product names mentioned herein are the trademarks of their
respective owners.

THIS PUBLICATION IS PROVIDED “AS 1S” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. THIS
PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES
WILL BE INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC.
MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PRO-
GRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JavaSpace™ Specification—6/27/97

Table of Contents

1 AboutThisDocument, vii
11 Status vii
1.2 Annotations. vii
1.3 COmMmMeNtS vii
1.4 Overview of Changes From Version0.3 viii

2 Introduction.
2.1 OVeIVIEW . ..o e 1
2.2 The JavaSpace Modeland Terms 1
2.3 Benefits. 4
2.4 JavaSpacesand Databases.......................... 6
2.5 JavaSpacesand Linda Systems...................... 6
2.6 Goals & Requirements.cciuiinn... 8
2.7 Dependencies 8

3 Entries, Templates, and Operations...................... 11
31 Entry andEntryRep i 11

Page iii

Pageiv

3.2 JaVaSPACE ... 14
3.3 Templatesand Matching........................... 16
34 WIEE o 17
35 read ... 17
36 take ... 18
3.7 notify 18
38 TBNBW . .o 20
3.9 cancel ... 20
3.10 OperationOrdering 21
3.11 Implementing JavaSpace using EntryRep 21
TransactionsSot 23
4.1 Operations Under Transactions 23
4.2 TransactionConflictException — 24
4.3 Transactions and ACID Properties. 25
UtIlities. 27
51 LeaseRenewal.......... i 27
5.2 JavaSpaceProxy 27
Administration 31
6.1 Requirementst 31
6.2 Approach............ .. 31
6.3 SPACE ... 32
6.4 freeze 32
6.5 contents and Adminlterator 33
6.6 shutDown 34

JavaSpace™ Specification—6/27/97

6.7 acl and AccessControl.................. 35
7 CooKbOoOK. 37
7.1 WriteThenTake i .. 37
7.2 Entry Splitting.o 38
7.3 Generations.t 38
8 References and FurtherReading 39
8.1 References 39
8.2 FurtherReading 39

Chapter: Page v

Page vi

JavaSpace™ Specification—6/27/97

0.1 Status

0.2 Annotations

0.3 Comments

About This Document 0

This document is the fourth release of the specification for JavaSpaces. The
primary purpose of publishing at this time is to gather comments from a wider
audience on the design and utility of JavaSpaces. As a welcome side effect, we
will also gather data on the utility of this document itself—we encourage
editorial as well as technical comment. Obviously, all details are subject to
change without notice.

This revision has changes marked with change bars (as in this paragraph).
Major changes are enumerated below (80.4).

Note — In this document you will see several paragraphs in this style. These are
areas where we specifically invite comment. Consider them as “notes to
reviewers.”

Please direct comments to js-comments@jse.east.sun.com

Page vii

0

0.4 Overview of Changes From Version 0.3

Page viii

O A discussion on JavaSpace’s relationship to Linda-style systems has been

added (81.5).

The implementation of Entry.rep has been elided, as it was not
contractual (82.1).

The definition of UnusableEntryException has expanded to include
how it is used for a completely unusable entry. (§82.1.1).

A description of InternalSpaceException has been added (§2.2.1).

A notify under a non-null transaction will get all notifications that
would happen under a null transaction in addition to those for the
provided transaction (82.7).

A renew call has been so you can renew an existing notification request
instead of creating a new one (82.8).

The method cancellnterest has been renamed cancel (82.9).

Methods have been added for JavaSpace implementors to get and set an
EntryRep object’s identifier.

The Adminliterator interface is no longer Remote, so that a space can
implement it with a client-side proxy to a space-specific remote interface.
Unfortunately this means that it must provide a proxy, even if that proxy
just forwards all calls to a remote implementation of Adminlterator
(85.5).

The administrative interface now allows you to shut down a server (85.6).

JavaSpace™ Specification—6/27/97

1.1 Overview

Introduction 1

Distributed systems are hard to build. They require careful thinking about
problems that do not occur in local computation. The primary problems are
those of partial failure, greatly increased latency, and language
compatibility[1]. The Java programming Ianguage1 has a remote method
invocation system called RMI[2] that lets you approach general distributed
computation in Java using techniques natural to the Java language and
environment. This is layered on Java’s object serialization mechanism[3] to
marshall parameters to remote methods into a form that can be shipped across
the wire and unmarshalled in the remote server’s virtual machine.

These tools, powerful as they are, do not make distributed computation
systems easy to design—they merely make them possible to approach. This
specification describes the JavaSpace model that is designed to help you solve
two related problems: distributed persistence and the design of distributed
algorithms.

1.2 TheJavaSpace Model and Terms

A JavaSpace holds entries. An entry is a typed group of objects, expressed in a
Java class that extends the class jive.javaSpace.Entry

1. Hereafter the Java language is called simply “Java”, and a JavaSpace server is called simply a “JavaSpace”;
“Java” is a trademarks of Sun Microsystems, Inc.

Page 1

1]l
H

Page 2

An entry can be written into a JavaSpace, which creates a copy of that entry in
the JavaSpace that can be used in future lookup operations.

You can look up entries in a JavaSpace using templates, which are entry objects
that have some or all of its fields set to specified values that must be matched

exactly. Remaining fields are left as wildcards—these fields are not used in the
lookup.

There are two kinds of lookup operations: read and take. A read request to a
JavaSpace returns either an entry that matches the template on which the read
is done, or an indication that no match was found. A take request operates like
a read, but if a match is found, the matching entry is removed from the
JavaSpace.

You can request a JavaSpace to notify you when an entry is written that
matches a specified template. This is done using the Jive event model
contained in the package jive.events and described in the Jive event
specification (not yet available).

All operations that modify a JavaSpace are performed in a transactionally
secure manner with respect to that space. That is, if a write operation returns
successfully, that entry was written into the space (although an intervening
take may remove it from the space before a subsequent lookup of yours). And
if a take operation returns an entry, that entry has been removed from the
space, and no future operation will read or take the same entry. In other words,
each entry in the JavaSpace can be taken at most once. Note, however, that two
or more entries in a JavaSpace may have exactly the same value.

JavaSpaces support a simple transaction mechanism that allow multi-operation
and/or multi-space updates to complete atomically. This is done using the Jive
transaction model contained in the package jive.transactions and
described in the Jive transaction specification (not yet available).

Each operation on a JavaSpace can operate under some identity, which is a
parameter to the invocation. A space may use this identity to protect access to
part or all of the space for some or all operations.

1.2.1 Distributed Persistence

JavaSpaces provide a mechanism for storing a group of related objects and
retrieving them based on a value-matching lookup for specified fields. This
allows a JavaSpace to be used to store and retrieve objects on a remote system.

JavaSpace™ Specification—6/27/97

[EEN
I

1.2.2 Distributed Algorithms as Flows of Objects

Many distributed algorithms can be modeled as a flow of objects between
participants. This is different from the traditional way of approaching
distributed computing, which is to create method-invocation-style protocols
between participants. In JavaSpace’s “flow of objects” approach, it is the
movement of objects into and out of JavaSpaces.

For example, a book ordering system might look like this:

0O A book buyer wants to buy 100 copies of a book. They write a request for
bids into a particular public JavaSpace.

O The broker runs a server that takes those requests out of the space and
writes them into a JavaSpace for each book seller who registered with the
broker for that service.

O A server at each book seller removes the requests from its JavaSpace,
presents the request to a human to prepare a bid, and writes the bid into the
JavaSpace specified in the book buyer’s request for bids.

0O When the bidding period closes, the buyer takes all the bids from the space
and presents them to a human to select the winning bid.

A method-invocation-style would create particular remote interfaces for these
interactions. With a flow-of-objects approach, only one interface is
required—the JavaSpace interface.

Chapter 1: Introduction Page 3

1]l
H

In general, the JavaSpace world looks like this:

IdentltlesA/' Client

JavaSpace

writeEvent

Event
Catcher

Transaction

. noti
notify fy

JavaSpace

JavaSpace

Clients perform operations that map entries or templates onto JavaSpaces.
These can be singleton operations (as with the upper client), or contained in
transactions (as with the lower client) so that all or none of the operations take
place. A single client can interact with as many JavaSpaces as it needs to.
Identities are accessed from the security subsystem and passed as parameters
to method invocations. Notifications go to event catchers, which may be clients
themselves, or proxies for a client (such as a store-and-forward mailbox).

1.3 Benefits

JavaSpaces are a tool for building distributed protocols. They are designed to
work with applications that can model themselves as flows of objects through
one or more servers. If your application can be modeled this way, JavaSpaces
will provide many benefits.

Page 4 JavaSpace™ Specification—6/27/97

[EEN
I

JavaSpaces provide a reliable distributed storage system for the objects. In the
book buying example, the designer of the system had to define the protocol for
the participants and design the various kinds of entries that must be passed
around. This effort is akin to designing the remote interfaces that an equivalent
customized service would require. Both the JavaSpace solution and the
customized solution would require someone to write the code that presented
requests and bids to humans in a GUI. And in both systems, someone would
have to write code to handle the seller’s registrations of interest with the
broker.

The server for the model that uses JavaSpaces would be implemented at that
point.

The customized system would need to implement the servers. These servers
would have to handle concurrent access from multiple clients. Someone would
need to design and implement a reliable storage strategy that guaranteed the
entries written to the server would not be lost in an unrecoverable or
undetectable way. If multiple bids needed to be made atomically, a distributed
transaction system would have to be implemented.

All these concerns are solved in the JavaSpaces servers. They handle
concurrent access. They store and retrieve entries atomically. And they provide
implementation of the Java standard distributed transaction mechanism.

This is the power of the JavaSpace model—many common needs are addressed
in a simple platform that can be easily understood, and used in powerful ways.

JavaSpaces also help with data traditionally stored in a file system, such as
user preferences, email messages, images, and so on. Actually this is not a
different use of JavaSpaces. Such uses of a file system can equally be viewed as
passing objects that contain state from one external object (the image editor) to
another (the window system that uses the image as a screen background). And
JavaSpaces enhance this because they store objects, not just data, so the image
can have abstract behavior, not just information that must be interpreted by
some external application(s).

JavaSpaces provide distributed object persistence with Java objects. Because
Java code is downloadable, JavaSpace entries can store objects whose behavior
will be transmitted from the writer to the readers, just as in Java RMI. An entry
in a JavaSpace may, when fetched, cause some active behavior in the reading
client. This is the benefit of storing objects, not just data, in an accessible
repository for distributed cooperative computing.

Chapter 1: Introduction Page5

1]l
H

1.4 JavaSpaces and Databases

A JavaSpace can store persistent data which is later searchable. But a JavaSpace
is neither a relational or object database. JavaSpaces are designed to help solve
problems in cooperative distributed computing, not primarily as a data
repository (although there are many data storage uses for JavaSpaces) Some
important differences are;

O Relational databases understand the data they store and manipulate it
directly via query languages. JavaSpaces store entries that they understand
only by type and the serialized form of each field. There are no general
gueries in a JavaSpace, only “exact match” or “don’t care” for a given field.
You design your flow of objects so that this is sufficient and powerful.

O Object databases provide an object oriented image of stored data that can be
modified and used, nearly as if it were transient memory. JavaSpaces do not
provide a nearly-transparent persistent/transient layer, and work only on
copies of entries.

These differences exist because the JavaSpace are designed for a different
purpose than either relational or object databases. A JavaSpace can be used for
simple persistent storage, such as storing a user’s preferences that can be
looked up by the user’s ID or name. JavaSpace functionality is somewhere
between that of a filesystem and a database, but it is neither.

1.5 JavaSpaces and Linda! Systems

Page 6

The JavaSpace model is strongly influenced by Linda systems, which support a
similar model of entry-based shared concurrent processing. Our references (87)
include several that describe Linda-style systems.

No knowledge of Linda systems is required to understand this specification.
This section discusses the relationship of JavaSpaces to Linda systems for the
benefit of those already familiar with Linda programming. Other readers
should feel free to skip ahead.

JavaSpaces are similar to Linda systems in that they store collections of
information for future computation, and are driven by value-based lookup.
They differ in some important ways:

1. Linda is a registered trademark of Scientific Computing Associates.

JavaSpace™ Specification—6/27/97

[EEN
I

O Linda systems have not used rich typing. JavaSpaces take a deep concern
with typing from the Java type-safe environment. Entries themselves, not
just their fields, are typed—two different entries with the same field types
but with different Java types are different tuples. For example, an entry that
had a string and two double values could be either a named point or a
named vector. In JavaSpaces these two entry types would have specific
different Java classes, and templates for one type would never match the
other, even if the values are compatible (82.3).

O Entries are typed as Java objects, so they may have methods associated with
them. This provides a way of associating behavior with entries (§2.3).

O As another result of typed entries, JavaSpaces allow matching of
subtypes—a template match can return a type that is a subtype of the
template type (§2.3). This means that the read or take may return more state
than anticipated. In combination with the previous point, this means that
entry behavior can be polymorphic in the usual object-oriented style that
Java provides.

O The fields of JavaSpace entries are Java objects. Any Java object type can be
used for matching lookups as long as it has certain properties (82.3). This
means that computing systems done using JavaSpaces are object-oriented
from top to bottom, and behavior-based (agent-like) applications can use
JavaSpaces for coordination.

O Linda systems provide blocking read and take operations for coordination.
JavaSpaces cannot do so, since this would require a blocked thread in the
server for each blocked client waiting for a read or take to complete, putting
too large a burden on the server. Instead we provide notification when
potentially matching entries are written, and require the client to attempt a
take or read (8§2.7).

O Transactions in a JavaSpace are prevented from seeing results of another
transaction’s modifications by a thrown exception that does not abort the
transaction (§83.3). In existing Linda-style systems with transactions (as in
almost all database systems), this isolation is achieved by blocking a thread
that attempts conflicting access, and unresolvable conflict aborts at least one
of the transactions. Non-blocking prevention of transaction conflicts is

O JavaSpaces are multiple—most Linda tuple spaces have one tuple space for
all cooperating threads. So JavaSpace transactions span multiple spaces (and
even non-JavaSpace transaction participants).

Chapter 1: Introduction Page7

1]l
H

O JavaSpaces do not provide an equivalent of “eval” because it would require
the server to execute arbitrary computation on behalf of the client. Such a
general compute server system has its own large number of requirements
(such as security and fairness).

On the nomenclature side, JavaSpace uses a more accessible set of terms than
the traditional Linda terms. The term mappings are “entry” for “tuple”,
“value” for “actual”, “wildcard” for “formal”, “write” for “out”, and “take” for
“in”. So the Linda sentence “When you ‘out’ a tuple make sure that actuals and
formals in ‘in” and ‘read’ can do appropriate matching” would be translated to
“When you write an entry make sure that values and wildcards in ‘take’ and
‘read’ can do appropriate matching.”

1.6 Goals & Requirements

1.7 Dependencies

Page 8

The goals of the JavaSpace design are:

O Provide a platform for designing distributed computing systems that
simplifies the design and implementation of those systems.

O The client side should have few classes, both to keep the client-side model
simple, and to make downloading of the client classes quick.

0O The client side should have a small footprint, since it will run on computers
with limited local memory.

0 A variety of server implementations should be possible, including relational
database storage, object-oriented database storage.

O It should be possible to create replicated JavaSpace implementations.

The requirements for JavaSpace are:
O The client side of JavaSpaces must be 100% Pure Java.

O Clients must be oblivious to the implementation details of the server. The
same entries and templates must work in the same ways no matter which
server is used.

This document relies upon the following other specifications:

0O RMI

JavaSpace™ Specification—6/27/97

[EEN
I

O Object Serialization
O Distributed Events (to be delivered)

O Distributed Transactions (to be delivered)

Chapter 1: Introduction

Page 9

1]l
H

Page 10

JavaSpace™ Specification—6/27/97

Entries, Templates, and Operations 2=

There are four primary operations that you can invoke on a JavaSpace. These
operations have parameters that are entries, including some that are templates,
which are a kind of entry. This chapter describes entries, templates, and the
details of the operations, which are:

O write —write the given entry into this JavaSpace
O read —read an entry from this JavaSpace that matches the given template.

O take —read an entry from this JavaSpace that matches the given template,
removing it from this JavaSpace.

O notify —notify a specified object when entries that match the given
template are written into this JavaSpace.

2.1 Entry and EntryRep

An entry is a typed group of object references represented by a Java class that
is a direct or indirect subtype of jive.javaSpace.Entry . Two different
entries have the same type if and only if they are of the same Java class.

All fields in an entry must be public, and they must all be references to

Serializable objects. Entries may not have fields of primitive type (int ,
boolean , ...), although the objects they refer to may have primitive and non-
public fields.

Page 11

Page 12

Entries are not directly written into JavaSpaces, nor are they directly returned
by them. Entries flow to and from a JavaSpace wrapped inside EntryRep
objects that contain a serialized form of the entry that is suitable for JavaSpace
storage and retrieval. The public part of jive.javaSpace.Entry looks like
this:
public class Entry implements java.io.Serializable, Cloneable {
public EntryRep rep() throws lllegalArgumentException {...}

}

Multiple calls to rep on the same Entry will return different EntryRep
objects if any object reachable from the entry has changed state between the
calls. Absent any changes of reachable state, rep may or may not return
different objects.

The relevant public part of EntryRep is

public final class EntryRep
implements java.io.Serializable, Cloneable

{
public EntryRep(Entry e) throws lllegalArgumentException {...}
public Entry entry() throws UnusableEntryException {...}

}

EntryRep isfinal because it is a direct communication class between clients
and any JavaSpace. In other words, an EntryRep that is created by a client can
be used with any JavaSpace. The full EntryRep class is discussed in (§2.11).

An EntryRep object can be used more than once. For example, the same
EntryRep object can be written into the same JavaSpace as many times as
desired. This wwill create multiple entries with the same contents. Entry and
EntryRep are Serializable and Cloneable for your convenience.

Any attempt to create an EntryRep from a malformed entry type (one that has
non-public or primitive fields) throws an lllegalArgumentException

2.1.1 UnusableEntryException

If the serialized fields of the entry cannot be deserialized for any reason,
entry throws UnusableEntryException (82.1.1). This will only happen if
deserializing a field causes an exception to be thrown.

JavaSpace™ Specification—6/27/97

N
1]

public class UnusableEntryException extends Exception {
public Entry partialEntry ;
public String[] unusableFields ;
public Throwable[] nestedExceptions

}

The partialEntry field will refer to an entry of the type that would have
been returned, with all the usable fields filled in. Fields whose deserialization
caused an exception will be null and have their names listed in the
unusableFields string array. For each element in unusableFields | the
corresponding element of nestedExceptions will refer to the exception that
caused the field to fail deserialization.

If the EntryRep is corrupt in such a way as to prevent even an attempt at field
deserialization, partialEntry and unusableFields will both be null |, and
nestedExceptions will be a single element array with the offending
exception.

The kinds of exceptions that can show up in nestedExceptions are;

0O ClassNotFoundException : The actual class of an object that was
serialized cannot be found.

O InstantiationException : An object could not be created for a given
type.

O lllegalAccessException : The field in the entry was either inaccessible
or final

0O RemoteException : When a RemoteException is the nested exception of
an UnusableEntryException , it means that a remote reference in the
entry’s state is no longer valid (more below). Remote errors on the read call
itself are passed through by read , and so arrive as RemoteException
objects, not UnusableEntryException objects.

Generally speaking, writing a remote reference to a non-persistent server into a
JavaSpace is risky. Because entries are stored in serialized form, entries in a
JavaSpace will not participate in the garbage collection that keeps such
references valid. However, if the reference is not persistent because the server
does not export persistent references, that garbage collection is the only way to
ensure the ongoing validity of a remote reference. If a field contains a reference
to a non-persistent remote object, either directly or indirectly, it is possible that
the reference is no longer valid when it is deserialized. If this happens,
EntryRep.entry throws an UnusableEntryException (82.1.1) with the

Chapter 2: Entries, Templates, and Operations Page 13

1]l
N

exception’s nestedException field set to the RemoteException that
signalled this condition. Usually this means that the remote object no longer
exists. In such a case, the client code must decide whether to take the entry
out of the space (if the original operation was a read), or to write the entry
back into the JavaSpace (if the original operation was a take) or to leave the
JavaSpace as it is. This take option, of course, assumes that the lookup fields
that match the offending entry uniquely identify that entry—otherwise the
take might remove a different entry.

Unfortunately, in Java 1.1, the only kind of server type available is not
persistent. Until a persistent type is added, you will have to handle the above
problems with remote references. You may choose instead to have your entries
store information sufficient to look up the current reference—such as the
registry’s host name and the name in the registry—rather than putting raw
references into the JavaSpace.

2.2 JavaSpace

All operations are invoked on the JavaSpace. Entries are represented by
EntryRep objects—entries are not stored directly in the JavaSpace. For
example, the following code fragment would write an entry of type
AttrEntry into the JavaSpace referred to by space :

JavaSpace space = getSpace();

AttryEntry e = new AttrEntry();

e.name = "Duke";

e.value = new GIFImage("dukeWave.gif");
EntryRep erep = e.rep(); // or new EntryRep(e)
space.write(erep, null, null);

The JavaSpace interface is:

import java.rmi.*;
import jive.events.*;
import jive.transactions.*;

public interface JavaSpace
extends Remote, TransactionParticipant, TransactionMgr
{
void write(EntryRep rep, Transaction txn, Identity who)
throws RemoteException, TransactionException,
SecurityException;
EntryRep read(EntryRep tmpl, Transaction txn, Identity who)
throws RemoteException, TransactionException,

Page 14 JavaSpace™ Specification—6/27/97

N
1]

SecurityException;
EntryRep take(EntryRep tmpl, Transaction txn, Identity who)
throws RemoteException, TransactionException,
SecurityException;
EventRegID notify(EntryRep tmpl, EventCatcher catcher,
Transaction txn, Identity ident, int lease)
throws RemoteException, TransactionException,
SecurityException;
long renew(long cookie, long extension)
throws RemoteException, NotRegisteredException;
void cancel(long cookie)
throws RemoteException, NotRegisteredException;

}

The TransactionMgr , TransactionParticipant , Transaction and
TransactionException types in the above signatures are imported from
jive.transactions . The TransactionMgr interface provides methods for
creating transactions. The TransactionParticipant interfaces provides
methods for participants in these generated transactions. The Identity and
SecurityException types are imported from jive.security . The

EventCatcher and EventReglD types are imported from jive.events

Each operation is performed under an identity that is a security principal. The
JavaSpace can vet each operation against this identity, throwing
SecurityException to prevent unwanted access. The details of what is
unwanted is up to the JavaSpace implementation.

In all methods that have the parameter, txn may be null , which means that
no Transaction object is managing the operation (83). The ident object may
also be null , which means that the operation is not associated with any
principal. Such an operation will only succeed if there are no access control
restrictions on that operation of the JavaSpace.

The details of each method are given below.

2.2.1 InternalSpaceException

The exception InternalSpaceException may be thrown by a JavaSpace
implementation that encounters an inconsistency in its own internal state or is
unable to process a request because of internal limitations (such as storage
space being exhausted). This exception is a subclass of RemoteException

The exception adds no new fields or methods, and has two exceptions: one that

Chapter 2: Entries, Templates, and Operations Page 15

1]l
N

takes a String description and the other that takes a String and a nested
exception; both constructors simply invoke the equivalent RemoteException
constructors.

2.3 Templates and Matching

Page 16

The lookup operations (read , take , and the notification requests) use entry
objects of a given type, whose fields can either have values (references to
objects) or wildcards (null references). When considering a template T as a
potential match against a entry E in the space, fields with values in T must be
matched exactly by the value in the same field of E. Wildcards in T match any
value in the same field of E.

The values of two fields match if the bytes generated by their serialized form
match, ignoring differences of serialization stream implementation (such as
blocking factors for buffering). A JavaSpace does not use Object.equals or
any other form of type-specific value matching.

You can write an entry that has a null -valued field, but you cannot match
explicitly on a null value in that field, since null signals a wildcard field. If
you have a field that may be variously null or not in entries, and want to
match on whether that field is set, you can set the field to null in your entry.
But if you will need to write templates that distinguish between set and unset
values for that field, you will have to add a Boolean field that indicates
whether the field is set, and use a Boolean value for that field in templates.

Each field’s serialized form is considered as if it were generated separately, that
is, if two fields of the entry refer to the same object (directly or indirectly), the
serialized form that is compared for each field will have a separate copy of that
object. This is to regularize the serialized form between the template, which
may have null fields where a matching entry has values. If this were not so,
then a template which had a wildcard for the first object would have the full,
serialized object where the second reference appears, but the entry would have
only a back-reference to the first object in that place. For details, see the
specification on Object Serialization.

The type of E can be a subtype of the type of T, in which case all fields added
by the subtype are considered to be wildcards. This enables a template to
match entries of any of its subtypes.

An entry that has no wildcards is a valid template.

JavaSpace™ Specification—6/27/97

N
1]

2.4 write

2.5 read

A write places a copy of an entry into the given JavaSpace. The EntryRep
passed to the write is not affected by the operation. Each write operation
places a new entry into the specified JavaSpace, even if the same EntryRep
object is used in more than one write

Each field of the entry is independent, and is therefore serialized separately.
This means that if two fields of an entry refer to the same object, directly or
indirectly, the entry actually written into the JavaSpace will have two
independent copies of that object. Consequently, when the entry is read back
from the JavaSpace, the reconstituted entry will have independent copies of
that object. (This is only true of different fields of an entry; if an object graph of
a particular field refers to the same object twice, the graph will be serialized
and reconstituted with a single copy of that object.)

This is unexpected behavior, but it is both logically correct, and practically
advantageous. Logically, the fields can refer to object graphs, but the entry is
not itself a graph of objects, and so should not be reconstructed as one. An
entry (as used with respect to a JavaSpace) is a set of separate fields, not a unit
of its own. From a practical standpoint, viewing an entry as a single graph of
objects requires a JavaSpace to parse and understand the serialized form,
because the ordering of objects in the written entry will be different from that
in a template that can match it. Entry is a Serializable class so that client
code can store them into files or transmit them across RMI calls. The entry as a
whole is not serialized when used with JavaSpaces.

If a write returns without throwing an exception, that entry is committed to
the space, possibly within a transaction (83). If a RemoteException is
thrown, the write may or may not have been successful. If any other
exception is thrown, the entry was not written into the space.

Writing an entry into a JavaSpace may generate notifications to registered
objects (82.7).

A read request will search the JavaSpace for an entry that matches (§2.3) the
template provided as an EntryRep . If a match is found, a reference to a copy
of that entry is returned. If no match is found, null is returned.

Chapter 2: Entries, Templates, and Operations Page 17

1]l
N

2.6 take
2.7 notify
Page 18

Any matching entry can be returned. Successive read requests with the same
template on the same JavaSpace may or may not return equivalent objects,
even if no intervening modifications have been made to the space. Each
invocation of read returns a new object, even if the same entry is matched in
the JavaSpace.

(See the discussion in write (82.4) about independent serialization and
deserialization of fields.)

A take request performs exactly like a read (82.5), except that the matching
entry is removed from the JavaSpace. Two take operations will never return
copies of the same entry, although if two equivalent entries were in the
JavaSpace the two takes may return equivalent entries.

If a take returns a non-null value, the entry has been removed from the
space, possibly within a transaction (83). This modifies the claims to once-only
retrieval—A take is only considered to be successful if all enclosing
transactions are commit successfully. If a RemoteException is thrown, the
take may or may not have been successful. If any other exception is thrown,
the take did not occur, and no entry was removed from the space.

With a RemoteException , an entry can be removed from a JavaSpace and yet
never returned to the client that performed the take , thus losing the entry in
between. In circumstances where this is unacceptable, the take can be
wrapped inside a transaction that is committed by the client when it has the
taken entry in hand.

(See the discussion in write (82.4) about independent serialization and
deserialization of fields.)

A notify request invoked on a template registers interest in future incoming
entries to the specified JavaSpace that match the template. When matching
entries arrive, the specified EventCatcher will be notified. When you invoke
notify you provide an upper bound on the lease time, which is how long you
want the registration to be remembered by the server.The server decides the

JavaSpace™ Specification—6/27/97

2

actual time for the lease. If the specified lease time is zero, the server uses its
prefered lease time. You will get an lllegalArgumentException if the lease
time requested is negative.

Each notify returns an EventRegID object that has an event ID that will be
passed along with the notification, a cancellation cookie that can be used to
unregister interest in the event, and the actual lease length granted by the
space. The relevant part of EventRegID class looks like this:

public class EventRegID implements java.io.Serializable {
public long getEventID() {...}
public long getCancelCookie() {..}
public long getLeaseLength() {...}
public long getCurrentSeqNo() {-}

}

The jive.events.EventCatcher interface—the interface that must be
supported by the notified object—looks like this:

public interface EventCatcher extends Remote {
void notify(long eviD, Remote fromWhom, long seqNo)
throws EventUnknownException, RemoteException;

}

When a matching object is written, the notify method is invoked on the
catcher, with eviD being the value returned by the EventRegID object’s
getEventID method, fromWhom being the JavaSpace, and the seqNo being a
monotonically increasing number. If you get a notification with a seqNo of,
say, three, there will have been three previous calls with values zero, one, and
two (although you may not have received them, or you may receive call
number three more than once).

If the transaction parameter is null , the catcher will be notified when
matching entries are written either under a null transaction or when a
transaction commits. If an entry is written under a transaction and then taken
under that same transaction before the transaction is committed, catchers
registered under a null transaction will not be notified of that entry.

If the transaction parameter is not null , the catcher will be notified of
matching entries written under that transaction in addition to the notifications
it would recieve under a null transaction. A notify ~ made with a non-null
transaction is implicitly dropped when the transaction completes.

Chapter 2: Entries, Templates, and Operations Page 19

1]l
N

2.8 renew

2.9 cancel

Page 20

It is a good idea to replace a notify request with a new one before you get too
close to the end of the lease period. Once the new request has been successful,
it would be polite to cancel interest in the older request. The client is
responsible for tracking lease expiration because it has enough information to
do so, and only the client knows whether a given expiration is acceptable. This
also reduces the amount of network traffic compared to having the server
notify the client that a lease is about to expire.

The server will make a “best effort” attempt to deliver notifications. The server
will retry at least until the notification request’s lease expires.

Note — We are working on ways to address the starvation and fairness issues
when the notification will result in a take by the client. If many clients want to
take the same entry, clients that are far away and/or far down on the
notification list may get starved, while all others will do a failing take .

Note — Descriptions of jive.events types and their behaviors belong in the
event specification when that is available.

The cookie returned in the EventRegID object by a notification request (82.7)
can be passed to the JavaSpace’s renew method to renew the interest in a
notification. You can pass the extension time you desire; the space will return
the time actually granted. If the time passed is zero, the server will use its
preferred extension time. An lllegalArgumentException is thrown if the
extension time is negative. If the cookie is for an unknown notification request
(possibly one that has already expired, or whose transaction has completed), a
NotRegisteredException will be thrown.

The cookie returned in the EventReglID object by a notification request (82.7)
can be passed to the JavaSpace’s cancel method to cancel future notifications
that would result from the request.

JavaSpace™ Specification—6/27/97

N
1]

2.10 Operation Ordering

Operations on a JavaSpace are unordered. The only view of operation order
can be a thread’s view of the order of the operations it performs. A view of
inter-thread order can be imposed only by cooperating threads that use an
application-specific protocol to prevent two or more operations being in
progress at a single time on a single JavaSpace. Such means are outside the
purview of this specification.

For example, given two threads T and U, if T performs a write operation and
U performs a read with a template that would match the written entry, the
read may not find the written entry even if the write returns before the
read . Only if T and U cooperate to ensure that the write returns before the
read commences would the read be ensured the opportunity to find the entry
written by T (although it still may not do so because of an intervening take
from a third entity).

2.11 Implementing JavaSpace using EntryRep

The client code will operate primarily in terms of Entry objects, but
interaction with a JavaSpace requires the use of EntryRep objects. For clients,
the only interesting parts of EntryRep are its constructor (also available via
the Entry.rep method) and its entry method.

The other methods of EntryRep are primarily of interest to someone
implementing a JavaSpace interface. They provide access necessary for
building data structures that contain EntryRep objects that must be searched
by templates. The Java language provides no way to limit access only to such
server implementations, however, and so these methods are both visible to
client code and invokable by them. The problem created is one of “surface
area”—the class is more complex to clients than it needs to be, and
programmers of client code must be told that these methods are generally
useless to them. However, client code can do no harm by invoking the
methods.

The full public part of EntryRep looks like this:

public final class EntryRep
implements java.io.Serializable, Cloneable

{
public EntryRep(Entry e) throws lllegalArgumentException{...}
public Entry entry() throws UnusableEntryException {...}

Chapter 2: Entries, Templates, and Operations Page 21

1]l
N

Page 22

public long id) {..}

public void id(long newlID) {...}
public int numFields() {...}
public Long classFor() {...}

public Long([] superclasses() {...}

public boolean matches(EntryRep entry) {...}
public int hashCode() {...}

public boolean equals(Object that) {...}

}

The constructor and the entry method have already been discussed (82.1).
The id methods allow you to get or set the objects ID, which is a space relative
identifier for use of the space implementation. The numFields method returns
the number of fields in the entry. classFor returns a Long object whose value
is the serialize UUID for the type of the Entry object from which the
EntryRep was constructed. The superclasses method returns an array of
Long objects with serialize UUIDs for each superclass, up to and including the
UUID for the Entry class itself.

The matches method determines if the entry object passed as a parameter
matches the template object on which it is invoked.

The hashCode and equals methods have standard behavior.

JavaSpace™ Specification—6/27/97

Transactions 3

The JavaSpace facility uses the package jive.transactions to provide basic
atomic transactions that group multiple operations across multiple JavaSpaces
into a bundle that acts as a single atomic operation. JavaSpaces are actors in
these transactions; the client can be an actor as well, as can any remote object
that implements the appropriate interfaces.

Transactions wrap together multiple operations. Either all modifications within
the transactions will be applied or none will, whether the transaction spans
one or more operations and/or one or more JavaSpaces.

Note — The transaction specification is not yet finished, so we do not yet know
if transactions can be nested. If so, some obvious modifications will be needed.

3.1 Operations Under Transactions

Any read , write , or take operations that have a null transaction act as if
they were in a committed transaction that contained exactly that operation. For
example, a take with a null transaction parameter performs as if a
transaction was created, the take performed under that transaction, and then
the transaction was committed. Any notify operations with a null
transaction apply to write operations that are committed to the full
JavaSpace.

Page 23

1]l
w

Transactions affect operations in the following ways:

O write : An entry written is not visible outside its transaction until the
transaction successfully commits. If the entry is taken within the transaction,
the entry will never be visible outside the transaction and will not be added
to the space when the transaction commits. Specifically, the entry will not
generate notifications to catchers not registered under the writing
transaction. Entries written under a transaction that aborts are discarded.

O read : Aread may match any entry written under that transaction or in the
full JavaSpace. A JavaSpace is not required to prefer matching entries
written inside the transaction to those in the full JavaSpace. When read, an
entry is added to the set of entries read by the provided transaction. Such an
entry may be read in any other transaction to which the entry is visible, but
cannot be taken in another transaction. A read will throw
TransactionConflictException if all possible matching entries have
been taken in other transactions that have not yet completed (§3.2).

O take : Atake matches like aread with the same template. When taken, an
entry is added to the set of entries taken by the provided transaction. Such
an entry may not be read or taken by any other transaction. A take will

throw TransactionConflictException if all possible matching entries
have been read or taken in other transactions that have not yet completed
(83.2).

O notify : A notify performed under a null transaction applies to write
operations that are committed to the full JavaSpace. A notify performed
under a non-null transaction additionally provides notification of writes
performed within that transaction. When a transaction completes, any
registrations under that transactions are implicitly dropped. When a
transaction commits, any entries that were written under the transaction
(and not taken) will cause appropriate notifications for registrations that
were made under a null transaction.

If a transaction aborts while an operation is in progress, that operation will
terminate with a TransactionException

3.2 TransactionConflictException

Each entry in a JavaSpace can be in one of three transactional states:

1. Taken by a transaction that has not yet completed

Page 24 JavaSpace™ Specification—6/27/97

w
1]

2. Read by one or more transactions that have not yet completed
3. Not involved in any transaction

The TransactionConflictException is thrown when the only way to
satisfy a read request would be to return an entry in state 1, or when the only
way to satisfy a take request would be to take an entry in state 1 or 2.

public class TransactionConflictException
extends TransactionException

{
public TransactionConflictException() {...}
public TransactionConflictException(String msg) {...}
}
A thrown TransactionConflictException does not abort either

transaction in question. The recipient of the exception is allowed to attempt
other operations that may satisfy its needs. Cancelling the transaction will be a
very common reaction, but the client makes that decision.

3.3 Transactions and ACID Properties

The ACID properties traditionally offered by database transactions are
preserved in transactions on JavaSpaces. The ACID properties are:

0O Atomicity: All the operations grouped under a transaction occur or none of
them do.

O Consistency: The completion of a transaction must leave the system in a
consistent state. Consistency includes issues known only to humans, such as
that an employee should always have a manager. The enforcement of
consistency is outside of the transaction—a transaction is a tool to allow
consistency guarantees, and not itself a guarantor of consistency.

O Isolation: Ongoing transactions should not affect each other. Each participant
should only see inconsistencies resulting from the operations of its own
transactions.

O Durability: The results of a transaction should be as persistent as the entity
on which the transaction commits.

TransactionConflictException is thrown when a requested operation
would, if satisfied, violate the isolation property. The exception also preserves
consistency because no inconsistent state of a transaction will be made visible.

Chapter 3: Transactions Page 25

1]l
w

Page 26

Persistence is not a required property of JavaSpaces. A transient JavaSpace that
does not preserve its contents between system crashes is a proper
implementation of the JavaSpace contract, and may be quite useful. If you
choose to perform operations on such a space, your transactions will guarantee
as much durability as the JavaSpace allows for all its data, which is all that any
transaction system can guarantee.

JavaSpace™ Specification—6/27/97

4.1 Lease Renewal

Utilities 4

JavaSpaces are designed to be as simple as possible, but no simpler. This
section describes utility classes that will help you use JavaSpaces. These are not
architectural—JavaSpaces are perfectly usable without them. They are
designed to help in certain common tasks that users of JavaSpaces will face.
These classes will live in a util subpackage of the JavaSpace package.

Registered notifications time out to prevent junk from accumulating in the
server (82.7). Clients must renew their interest by re-invoking notify before
the lease expires. We will provide a class that keeps renewing leases on a set of
templates until told to stop.

Note — Details of this utility will have to wait until the event specification is
available.

4.2 JavaSpaceProxy

Clients using a JavaSpace must translate entries to and from EntryRep objects.
This may be awkward for small, simple uses of JavaSpaces. We will provide a
utility class JavaSpaceProxy whose calls use Entry where JavaSpace uses
EntryRep . Client code can create a JavaSpaceProxy object for the JavaSpace
it needs to talk to, and then make all calls on the JavaSpaceProxy object,
which will create EntryRep objects on the fly as needed.

Page 27

1]l
N

Page 28

public class JavaSpaceProxy {

}

public JavaSpaceProxy(JavaSpace space) {...}
public JavaSpace space() {...}

public boolean retainReps() {...}

public void retainReps(boolean retain) {.}}
public int retainLimit() {...}

public void retainLimit(int limit) {...}

public void write(Entry entry, Transaction txn, Identity ident)
throws TransactionException, SecurityException,
RemoteException

{}

public Entry read(Entry tmpl, Transaction txn, Identity ident)
throws TransactionException, SecurityException,

RemoteException
1}
public Entry take(Entry tmpl, Transaction txn, Identity ident)
throws TransactionException, SecurityException,
RemoteException
{.}

public EventRegID
notify(Entry tmpl, EventCatcher catcher, Identity ident,
long lease)
throws SecurityException, RemoteException

{}

public void renew(long cookie)
throws NotRegisteredException, RemoteException

{}

public void cancel(long cookie)
throws NotRegisteredException, RemoteException

{.}

A JavaSpaceProxy is created with a JavaSpace to which it forwards
operations. The space method returns that value.

The method retainReps indicates whether the JavaSpaceProxy object will
remember EntryRep objects it has created in the past and reuse them for
future invocations of the same Entry object. If the Entry objects you use as
parameters to the JavaSpace are only reused with the same value (for example,

JavaSpace™ Specification—6/27/97

4

a template that never changes which is used to read entries), you can invoke
retainReps with true and the EntryRep objects created will be reused.
When you invoke retainReps with false , any existing cached EntryRep
objects will be dropped. You can reset the cache of retained objects with two
calls to retainReps , the first with false and the second with true .

You can limit the number of cached EntryRep objects to a maximum using
retainLimit . Objects are evicted from the cache on a “least recently used”
basis. If a call to retainLimit provides a value less than the number
currently retained, the cache size will be reduced. You can reset the cache of
retained objects with a two calls to retainLimit , the first with zero as a
parameter and the second with the original value. The default limit is 1000.
You can make the cache of effectively unlimited size by using a limit of
Integer.MAX_VALUE

Note — When weak references are added to Java we should probably do
something with them here.

Note — Other ideas?

Chapter 4: Utilities Page 29

1]l
AN

Page 30

JavaSpace™ Specification—6/27/97

5.1 Requirements

5.2 Approach

Administration 5

The administration of a JavaSpace is dependent upon the implementation of
the server. No administrative requirements are true of all JavaSpaces. This
chapter discusses administration for our initial implementation of JavaSpace
servers.

An administrator of a JavaSpace installation should be able to:
Freeze operations on the JavaSpace

Iterate through all entries that match a certain template
Delete specific entries returned by that iteration

Get a time stamp on an entry so that staleness can be judged

Shutting down the server

O o o o o o

Security policy for applying the Identity parameters to allowed behavior

Administrative tasks will be done using a JavaSpaceAdmin interface. Each
space can export such an object to those entities who should be allowed to
invoke the methods. Each method will also take an Identity to authorize
each operation.

Page 31

1]l
o1

package jive.javaSpace;

import java.rmi.*;
import jive.transactions.*;
import java.security.acl.Acl;

public interface JavaSpaceAdmin
extends Remote, TransactionParticipant

{

JavaSpace space() throws SecurityException, RemoteException;

Transaction freeze(ldentity ident)
throws SecurityException, RemoteException;
Transaction freeze(ldentity ident, long waitFor)
throws SecurityException, RemoteException;

Adminlterator
contents(EntryRep tmpl, Transaction txn, Identity ident)
throws TransactionException, SecurityException,
RemoteException;

void shutDown(ldentity ident)
throws SecurityException, RemoteException;
void shutDown(ldentity ident, long waitFor)
throws SecurityException, RemoteException;

Acl acl(Identity ident)

throws SecurityException, RemoteException;
void acl(Acl, acl, Identity ident)

throws SecurityException, RemoteException;

5.3 space

The space method returns the JavaSpace which the JavaSpaceAdmin object
manages.

5.4 freeze

The freeze method has two forms—one that waits indefinitely for existing
operations to complete, and one that takes a long that says how long to wait
for existing operations to complete, after which any operations still in progress
will be terminated abruptly. Each invocation of freeze returns a transaction

Page 32 JavaSpace™ Specification—6/27/97

5

within which normal JavaSpace operations are allowed. Multiple freezing
transactions may be in progress simultaneously, but all must be under the
same identity as the freeze operation that caused the freeze. When all
freezing transactions have completed, the JavaSpace will be unfrozen.

If you attempt to freeze a JavaSpace, and generally have permission to do so,
but the space is already frozen under another identity, you will get a
FreezeConflictException , which lists the identity of the freezer. This
exposure of identity is necessary so that one admin trying to fix up a broken
space will know which other admin is already attempting the fix. The identity
is only exposed to other administrators—in order to receive this exception you
must be authorized to freeze the space (85.6).

When freeze returns, the JavaSpace server will block incoming requests, and
cease sending notifications. When the server is unfrozen, pending incoming
requests will continue, and notification delivery will resume, including for
operations undertaken during the freezing transactions.

5.5 contents and Adminlterator

The contents method returns an Adminlterator object. This will be
implemented by each space to perform the following methods:

package jive.javaSpace;

import java.rmi.*;

public interface Adminlterator {
public EntryRep[] nextReps(int maximum) throws RemoteException;
public void delete(EntryRep) throws RemoteException;
public long timeStamp(EntryRep rep) throws RemoteException;

}

The nextReps method takes a count of the maximum number of entries to
return, and returns an array of EntryRep objects that has up to that many
elements. A return value of null indicates the end of iteration.

The delete method deletes from the space the entry correlating to the given
EntryRep , which must have been returned by an Adminlterator object. A
JavaSpace implementation is allowed to throw lllegalArgumentException

if the EntryRep object passed to delete was not returned by that same
iterator’s nextReps method and is not a clone or deserialized copy of such an
EntryRep . An implementation may choose not to throw the exception if every

Chapter 5: Administration Page 33

1]l
o1

5.6 shutDown

Page 34

EntryRep object it returns is sufficiently unique to specify a single entry in the
JavaSpace. Passing an EntryRep object of one space into the delete method
of another space’s Adminlterator object generates undefined behavior—if
you are lucky, it will throw lllegalArgumentException , but it may result
in some entry being deleted.

In a formal sense one can view delete as more of an efficiency than an
enabling technology—clearly the administrative requirement could be met by
doing a take of appropriate entries. But once administrative code has a direct
reference in hand to an entry in the JavaSpace, it is clear that for most
implementations it could be made orders of magnitude faster to directly
remove elements.

The timeStamp method returns a server-relative approximate time stamp of
when the entry was written into the space. This time stamp is expressed in the
standard Java units of milliseconds, but the space need not be so precise. Time
stamps are designed to allow administrative functions to remove stale entries
from the space, and so are not required to have millisecond accuracy. The
behavior of timeStamp with another space’s EntryRep object is undefined,
with the same behavior as delete in the same circumstances.

Note that Adminlterator is not a remote interface—contents must return a
local object that communicates with its server on a server-defined remote
interface. Many implementations will be able to have contents return an
object that implements at least timeStamp locally, and forwards the other
request back to the space.

The server can be told to shut down. If the specified identity is authorized to
execute this request, the server will immediately stop accepting new requests.
If shutDown is given only an identity, the shutdown will be immediate,
terminating any existing requests. If a time is also specified, existing requests
will be given up to waitFor milliseconds to complete requests. If waitFor is
zero, shutDown will wait indefinitely for ongoing requests to complete.

JavaSpace™ Specification—6/27/97

o1
1]

5.7 acl and Access Control

The Identity parameter to the operations will allow the JavaSpace to check
operations against a set of principals who are permitted to perform operations.
The access control is defined by a java.security.acl.Acl object, which
has the following permissions:

O write —the principal is allowed to write entries into the JavaSpace and
request notification of write operations.

O read —the principal is allowed to read entries from the JavaSpace

O take —the principal is allowed to take entries from the JavaSpace and
request notification of take operations.

0O admin —the principal is allowed to perform all administrative functions
except setting the ACL.

0 acl —the principal is allowed to change the ACL for the space.

There are two overloads of the acl method—one which returns a copy of the
space’s ACL and the other which provides a replacement ACL which will be
copied to be the new ACL object.

Chapter 5: Administration Page 35

1]l
o1

Page 36

JavaSpace™ Specification—6/27/97

Cookbook 6

This chapter shows examples of several common usage patterns for JavaSpace
programming. Although not required for the specification, the purpose is to
help people use JavaSpaces well, and to provide more background on the
expected uses of JavaSpace. As this document matures this chapter will be split
off into a separate document

6.1 Write Then Take

Many algorithms are focused around singleton objects that provide a current
value for something. Updating singleton objects requires both writing in a new
entry with new values and taking out the old entry. The order is important. If
you write, then take, there will be no visible inconsistent state—if a client reads
the value while both new and old entries are present it will get either the new
or the old entry. If the client had read moment earlier it would have gotten the
old entry—if it had read moments later it would have gotten the new entry.
Which happens is not relevant for singleton entries. If you had, on the other
hand, taken before writing, there would be a window where a client’s read
could fail because no matching entry was available.

For such singleton entries, “write then take” avoids a transaction altogether.

Page 37

6

6.2 Entry Splitting

6.3 Generations

Page 38

Some entries require a large amount of data, and must be processed by several
players in the protocol before they are removed. Such entries can benefit from
header entries that contain the modifiable parts of the entry and refer to the
rest of the data. For example, a travel expense report may contain a lot of state
(records of each expense, including where, why, what type, and so on) that is
generally unchanged as the report moves through the approval process. You
can create an ExpenseReport entry type that holds the report details, and an
ExpenseReportStatus entry type that refers to a unique key in the
ExpenseReport and that will hold the current state of the report in the
approval process. Then as various players make their approval or rejection
marks on the report, only the ExpenseReportStatus object must be taken
and replaced with updated state, leaving the large ExpenseReport object
untouched.

You may want to update many entries consistently. You can wrap a collection
of takes of the old entries and writes of the new entries, but this has a cost of
making the entries unavailable during the course of the transaction. You could
instead have a generation marker for the entry collection. A Generation

entry would hold a single marker (say a String) that would be stamped on
each element of the generation. New entries would then be written under a
new generation identifier, and when the new generation was complete, the
Generation entry would be updated (possibly using “Write Then Take”
(6.1)). The older generation could be kept around for a while to allow clients
with the older generation marker to work, or these clients could know that a
new generation existed when they were unable to get a complete set of entries
under the old generation. (If they succeed in getting a complete set of entries
under the old generation, they can be considered to have completed before the
new generation arrived.)

JavaSpace™ Specification—6/27/97

References and Further Reading /

7.1 References

[1] A Note on Distributed Computing, Jim Waldo, Geoff Wyant, Ann Wollrath,
and Sam Kendall. Sun Microsystems Laboratories technical report SMLI TR-
94-29, http://www.sunlabs.com/technical-reports/1994/abstract-29.html

[2] Java Remote Method Invocation Specification,
http://chatsubo.javasoft.com/current

[3] Java Object Serialization Specification, http://chatsubo.javasoft.com/current

Note — Need references to events and transactions specifications when they are
completed.

7.2 Further Reading

7.2.1 Linda Systems

[4] How to Write Parallel Programs: A Guide to the Perplexed, Nicholas Carriero
and David Gelernter, ACM Computing Surveys, Sept., 1989.

[5] Generative Communication in Linda, David Gelernter, ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 1, pp. 80-112 (January 1995)

Page 39

1]l
\l

[6] Persistent Linda: Linda + Transactions + Query Processing, Brian G. Anderson,
Dennis Shasha,

[7] Adding Fault-tolerant Transaction Processing to LINDA, Scott R. Cannon, David
Dunn, Software—Practice and Experience, Vol. 24(5), pp. 449-446 (May 1994)

[8] ActorSpaces: An Open Distributed Programming Paradigm, Gul Agha, Christian
J. Callsen, University of Illinois at Urbana-Champaign, UILU-ENG-92-1846,

7.2.2 The Java Platform

[9] The Java Language Specification, James Gosling, Bill Joy, Guy Steele, Addison-
Wesley

[10] The Java Virtual Machine Specification, Tim Lindholm, Frank Yellin, Addison-
Wesley

[11] The Java Class Libraries, Patrick Chan, Rosanna Lee, Addison-Wesley

Note — Put in the upcoming RMI book

7.2.3 Distributed Computing
[12] Distributed Systems, Sape Mullender, Addison-Wesley

[13] Distributed Systems: Concepts and Design, George Coulouris, Jean Dollimore,
Tim Kindberg, Addison-Wesley

[14] Distributed Algorithms, Nancy A. Lynch, Morgan Kaufmann

Page 40 JavaSpace™ Specification—6/27/97

	JavaSpace™ Specification
	Revision 0.4 June 27, 1997 4:28 pm
	The JavaSpace™ package provides a distributed pers...

	Table of Contents
	1 About This Document vii
	1.1 Status vii
	1.2 Annotations vii
	1.3 Comments vii
	1.4 Overview of Changes From Version 0.3 viii

	2 Introduction 1
	2.1 Overview 1
	2.2 The JavaSpace Model and Terms 1
	2.3 Benefits 4
	2.4 JavaSpaces and Databases 6
	2.5 JavaSpaces and Linda Systems 6
	2.6 Goals & Requirements 8
	2.7 Dependencies 8

	3 Entries, Templates, and Operations 11
	3.1 Entry and EntryRep 11
	3.2 JavaSpace 14
	3.3 Templates and Matching 16
	3.4 write 17
	3.5 read 17
	3.6 take 18
	3.7 notify 18
	3.8 renew 20
	3.9 cancel 20
	3.10 Operation Ordering 21
	3.11 Implementing JavaSpace using EntryRep 21

	4 Transactions 23
	4.1 Operations Under Transactions 23
	4.2 TransactionConflictException 24
	4.3 Transactions and ACID Properties 25

	5 Utilities 27
	5.1 Lease Renewal 27
	5.2 JavaSpaceProxy 27

	6 Administration 31
	6.1 Requirements 31
	6.2 Approach 31
	6.3 space 32
	6.4 freeze 32
	6.5 contents and AdminIterator 33
	6.6 shutDown 34
	6.7 acl and Access Control 35

	7 Cookbook 37
	7.1 Write Then Take 37
	7.2 Entry Splitting 38
	7.3 Generations 38

	8 References and Further Reading 39
	8.1 References 39
	8.2 Further Reading 39

	About This Document
	0.1 Status
	0.2 Annotations
	0.3 Comments
	0.4 Overview of Changes From Version 0.3
	Introduction
	1

	1.1 Overview
	1.2 The JavaSpace Model and Terms
	1.2.1 Distributed Persistence
	1.2.2 Distributed Algorithms as Flows of Objects

	1.3 Benefits
	1.4 JavaSpaces and Databases
	1.5 JavaSpaces and Linda Systems
	1.6 Goals & Requirements
	1.7 Dependencies
	Entries, Templates, and Operations
	2

	2.1 Entry and EntryRep
	2.1.1 UnusableEntryException

	2.2 JavaSpace
	2.2.1 InternalSpaceException

	2.3 Templates and Matching
	2.4 write
	2.5 read
	2.6 take
	2.7 notify
	2.8 renew
	2.9 cancel
	2.10 Operation Ordering
	2.11 Implementing JavaSpace using EntryRep
	Transactions
	3

	3.1 Operations Under Transactions
	3.2 TransactionConflictException
	1. Taken by a transaction that has not yet complet...
	2. Read by one or more transactions that have not ...
	3. Not involved in any transaction

	3.3 Transactions and ACID Properties
	Utilities
	4

	4.1 Lease Renewal
	4.2 JavaSpaceProxy
	Administration
	5

	5.1 Requirements
	5.2 Approach
	5.3 space
	5.4 freeze
	5.5 contents and AdminIterator
	5.6 shutDown
	5.7 acl and Access Control
	Cookbook
	6

	6.1 Write Then Take
	6.2 Entry Splitting
	6.3 Generations
	References and Further Reading
	7

	7.1 References
	[1] A Note on Distributed Computing, Jim Waldo, Ge...
	[2] Java Remote Method Invocation Specification, h...
	[3] Java Object Serialization Specification, http:...

	7.2 Further Reading
	7.2.1 Linda Systems
	[4] How to Write Parallel Programs: A Guide to the...
	[5] Generative Communication in Linda, David Geler...
	[6] Persistent Linda: Linda + Transactions + Query...
	[7] Adding Fault-tolerant Transaction Processing t...
	[8] ActorSpaces: An Open Distributed Programming P...

	7.2.2 The Java Platform
	[9] The Java Language Specification, James Gosling...
	[10] The Java Virtual Machine Specification, Tim L...
	[11] The Java Class Libraries, Patrick Chan, Rosan...

	7.2.3 Distributed Computing
	[12] Distributed Systems, Sape Mullender, Addison-...
	[13] Distributed Systems: Concepts and Design, Geo...
	[14] Distributed Algorithms, Nancy A. Lynch, Morga...

