Javd" 2D API

Enhanced Graphics and Imaging for Java

X Sun

microsystems

A Sun Microsystems, Inc. Business
2550 Garcia Avenue

Mountain View, CA 94043 USA
415960-1300 fax 415 969-9131

00 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR
52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign
patents, or pending applications.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems, Sun
Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer Corporation

logo, Java and HotJava are trademarks or registered trademarks of Sun Microsystems, Ific. UNIX

is a registered trademark in the United States and other countries, exclusively licensed through X/
Open Company, Ltd. All other product names mentioned herein are the trademarks of their

respective owners.

THIS PUBLICATION IS PROVIDED *AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME

Contents

Java 2D APl Fundamentals 2
Drawing.t 2
T Xt L 8
IMAgES . . . 9
SUMMANY . .o 11
Rendering 12
Rendering Pipeline 12
Controlling the Rendering Quality 13
Transformations. 14
Creatinga New TypeofPath 16
StrOKe. . . 16
Paint. . .. 17
COMPOSItE . . o e 18
Textand Fonts i 20
TextHandling 20
Advanced Layout. 23
Color Managementt 24
Specifying Colors 25
Color Classes.o 27
IMaging ... 30
Image Processing and Enhancement. 30
Using Offscreen Buffers 34
GraphicS DeviCes 38
Graphics Environment. 38
GraphicsDeviCe 39

GraphicsConfiguration 39

vi

Java 2D AP

Enhanced Graphics and Imaging

T he Java 2D API (Application Programming Interface) provides a powerful,
flexible framework for using device and resolution independent graphics in Java
programs. The Java 2D API builds on the graphics and imaging classes defined by
java.awt, extending the capabilities while maintaining compatibility for existing
programs. The Java 2D API will enable developers to easily incorporate high-
quality 2D graphics, text, and images in Java applications and applets.

The Java 2D API provides a two-dimensional imaging model for line art, text, and
images that uniformly addresses color, spatial transformations, and compositing.
With the Java 2D API, you use the same imaging model for both screen and print,
which provides a highly WYSIWYG (What You See Is What You Get) experience
for the user.

Sun Microsystems and Adobe Systems Incorporated are the primary authors of
the Java 2D API specification.

This paper describes the Java 2D API and illustrates how the key classes are used.
The first section provides an overview of the Java 2D API, using a simple example
to introduce the drawing model and key rendering features. The following sec-
tions describe the primary elements of the Java 2D API: the graphics rendering
pipeline, text and font support, color management, imaging, and graphics device
support.

This paper is not intended as an exhaustive description of advanced 2D graphics
and imaging for Java or a complete programmer’s guide.

Java 2D API, Version 0.95

1.0 Java 2D API Fundamentals

The Java 2D API handles arbitrary shapes, text, and images and provides a uni-
form mechanism for performing transformations such as rotation and scaling. The
Java 2D API also provides extensive font and color support.

The Java 2D API allows you to control how graphics primitives are rendered
through a comprehensive set of attributes associated witlrdhei cs2D state.

You can specify characteristics such as the stroke width, join types, and color and
texture fills, as well as how the graphics are blended to the screen and whether or
not they are antialiased.

Coordinate Spaces

The Java 2D API defines two coordinate spacedJ#es Coordinate Spacand
the Device Coordinate Spac&he origin of the Device Coordinate Space lies in
the upper left-hand corner with x-coordinate values increasing to the right and y-

coordinate values increasing downward.

(0,0)
X

Figure 1-1 Device Coordinate Space and default User Coordinate Space

All graphics objects are described in the device-independent User Coordinate
Space until they are rendered on a device such as screen or printer. The rendering
state of &raphics2D object associated with the target device includbsaas-

form object that converts the graphics object’'s User Space coordinates to Device
Space coordinates. The defaldtinsform results in a default User Coordinate

Space that has the same orientation as the Device Coordinate Space

11 Drawing

The Java 2D API uses the drawing model defined byadhe. awt package for
drawing to the screen: eaCbmponent object implements paint method that is
invoked automatically whenever something needs to be drawn. pihenis
invoked, it is passed@aphics object that knows how to draw into the compo-
nent.

Java 2D APl Fundamentals 3

1.1.1 Basic Drawing Process

Suppose you have a component whose job it is to draw a red rectangle. To draw
the rectangle usingava.awt, you implementomponent.paint:

public void paint(Graphics g) {
g.setColor(Color.red);
g.fi11Rect (300, 300, 200, 100);

This example illustrates the basic drawing process for any component:

1. Specify the rendering attributes for the shape you want to draw by calling one
of theGraphics attribute methods, such sstColor.

2. Define the shape that you want to draw, such as a rectangle.

3. Use the&raphics object to render the shape by calling one ofGitephics
rendering methods, such il 1Rect.

1.1.2 Drawing with the Java 2D API

The basic drawing process is the same when you use Java 2D API features. The
Java 2D API simply provides additional features for specifying fancy paint styles,
defining complex shapes, and controlling the rendering process.

Component.paint is overloaded to support the Java 2D API drawing features. To
use these features, you can implement the versipaiat that accepts a
Graphics2D object as a paramet@raphics2D extendSiraphics to support
advanced drawing operations.

Note: For backward compatibility, you can also implement the original paint
method, which takes@aphics object as a parameter. To use the new Java 2D
API features, cast th@aphics parameter to @raphics2D. The default imple-
mentation ofComponent.paint(Graphics2D) is to call
Component.paint(Graphics).

For example, you could use the new features of the Java 2D API to draw the red
rectangle by implementingpmponent.paint(Graphics2D):

public void paint(Graphics2D g2d) {
// 1. Specify the rendering attributes

Java 2D API, Version 0.95

g2d.setColor(Color.red);

// 2. Define the shape. (Use Even-0dd rule.)
BezierPath path = new BezierPath(BezierPath.EVEN_ODD);
path.moveTo(300.0f, 400.0f); // lower left corner
path.1ineTo(500.0f, 400.0f); // Tower right corner
path.1ineTo(500.0f, 300.0f); // upper right corner
path.T1ineTo(300.0f, 300.0f); // upper left corner
path.closePath(); // close the rectangle

// 3. Render the shape

g2d.fil1Path(path);

The process is the same, but the Java 2D API BtaserPath is used to define

the rectangle. For drawing simple shapes such as the rectangle, it is slightly more
complicated to use the Java 2D API; however, the Java 2D API enables you to
manage complex drawing operations using the same process:

1. Specify the rendering attributes.

With the Java 2D API classes you can fill a shape with a solid color, but the
Java 2D API also supports more complex fills such as gradients and patterns.
To specify complex fills, you use teetPaint method. (For more informa-

tion, see Section 2.6, “Paint.”)

2. Define a shape, a text string, or an image.

The Java 2D API treats paths, text, and images uniformly; they can all be
rotated, scaled, skewed, and composited using the methods introduced in the
following sections. In this example, a single rectangle is defined.

The Java 2D API provides an implementation offtineh interface that can

be used to define complex shapes. This ckasserPath, allows you to
describe a shape using a combination of lines and Bezier curves. (For addi-
tional information about th@ath interface, see “Creating a New Type of
Path” on page 16.)

UsingBezierPath to define a shape also allows you to control the location
of the shape. (The shape can also be translated to a new position using the
Graphics2D transformation attribute.)

Winding Rules

TheBezierPath constructor takes a parameter that specifies the winding
rule to be used for the object. The winding rule is used to determine whether
or not a point lies inside the shape when path segments cross. Two different
winding rules can be specified foBézierPath object: the even-odd wind-

Java 2D APl Fundamentals 5

ing rule or the nonzero winding rule. The even-odd rule is specified in this
example, but has no effect as the path segments in the rectangle do not cross.

3. Render the shape, text string, or image.

To actually render the shape, text, or image you call one oftphics2D
rendering methods. In this example, the rectangle is rendered using
filTPath.

Transformations

In the Java 2D API, objects are processed byaasform associated with
theGraphics2D object before they are drawn.TAansform object takes a

point or a path and transforms it to a new point or path. The d&famk -

form object created when tlteaphics2D object is constructed performs

simple scaling to device coordinates. To get effects such as rotation, transla-
tion, or custom scaling, you createansform objects and apply them to the
Graphics2D object.

The most commonly usétransform is theAffineTransform, which per-

forms linear transformations such as translation, rotation, scaling, and skew-
ing. (For more information about transformations, see Section 2.3,
“Transformations”).

1.1.3 Managing Complex Drawing Operations

The power of the Java 2D API lies in its ability to manage complex drawing oper-
ations within the same framework used to draw the rectangle in the example in
Section 1.1.2. Suppose that you want to draw a second rectangle, covering part of
the first rectangle, rotated 45° counterclockwise. The new rectangle is filled with
blue and rendered 50% transparent, so that the original rectangle is still visible
underneath. With the Java 2D API, the second rectangle can easily be added to the
previous example:

public void paint(Graphics2D g2d) {
g2d.setColor(Color.red);
BezierPath path = new BezierPath(BezierPath.EVEN_ODD) ;
path.moveTo(0.0f, 0.0f); // lower left corner
path.1ineTo(200.0f, 0.0f); // lower right corner
path.1ineTo(200.0f, -100.0f); // upper right corner
path.TineTo(0.0f, -100.0f); // upper Tleft corner
path.closePath(); // close the rectangle
AffineTransform at = new AffineTransform();
at.setToTranslation(300.0, 400.0);
g2d.transform(at);

Java 2D API, Version 0.95

g2d.fill1Path(path);

// Add a second rectangle

g2d.setColor(Color.blue); // define the color

AlphaComposite comp =
AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5);

g2d.setComposite(comp); //set the composite mode

// Rotate about the origin -45 deg in radians

at.setToRotation(-Math.PI/4.0));

g2d.transform(at);

g2d.fil1Path(path);

The drawing process is the same for both rectangles:

» The rectangle is defined usin@eézierPath object.
» The rendering attributes are set by calkrgColor.

» Transformations are applied before the rectangle is rendered.
(Graphics2d.transformis used to position both rectangles(@apo, 400)
and rotate the blue rectangle 48ounterclockwise.)

* The rectangle is rendered by callifigi 1Path. In addition, before the blue
rectangle is rendered, the transfer mode is specified by creating an instance of
AlphaComposiite.

1. Defining the Color

To paint the second rectangle with a 50% transparent blue, you first set the
color to be painted.

You also need to indicate how the new color blends with existing colors. To
do this, you create axiphaComposite object. AnAlphaComposite object
defines aransfer modéhat specifies how colors are blended. In this case,
you want to create axlphaComposite object that sets the transparency for
rendering to 50% and blends the new color over the existing color. To do
this, you specify th6RC_OVER transfer mode and an alpha value of 0.5 when
you create thalphaComposite object. You then caliraphics2D.setCom-
posite to use the newomposite object.

2. Defining the Rotation

The rotation is performed by creating a nefiffineTransform and calling
setToRotation to specify the counterclockwise rotation of 45 degrees. The
transform is then composed with the previous transform dfrtinghics2D
object (the translation t@300,400)) by callingtransform.

Java 2D APl Fundamentals 7

The effects of consecutive callsteansform are cumulative; from this
point forward, anything you draw is translated 300, 400) and rotated 45°
counterclockwise, as shown in Figure 1-2.

Before any After the translate After the rotate
Transformations to (300,400) of -45°
Device Coordinates
User Coordinates Device Coordinates Device Coordinates
(0,0) . (0,0) . (0,0) & &

User Coordinates

(0,0)
X
\% y y
DY
y
Device Coordinate Device Coordinate Device Coordinate
te A ligned. - Coordinate Axes
nate Aixes algne lated to (300, 400). rotated 455,
Figure 1-2 Transformation effects

3. Rendering the Blue Rectangle

Just like the first rectangle, the blue rectangle is rendered by cilifg
Path.

TheGraphics2D object transforms the path, using the specifigthsform
object. The result is a rotated rectangle. It uses the specified color, blue, to
determine what color the output should be. This color is then blended with
the colors of the underlying image, based on the state gbipesite

object and th€oTor object.

Figure 1-3 shows the results of invoking the complete method.

Java 2D API, Version 0.95

Figure 1-3 Results of invoking example paint implementation

1.1.4 Performing Hit Detection

Detecting where the user clicks the mouse on a graphic can be complicated for
complex transformed graphics. The Java 2D API simplifies this task by providing
aGraphics2D method calleditPath. This method takesrectangle object and
aPath object as parameters and reture@l ean value that indicates whether

any point in the rectangle would be painted by the pathhTtrath method also
takes aoolean value that indicates whether or not the path’s fill or stroke
attributes should be taken into account.

1.2 Text

The Java 2D API provides text handling support that ranges from the simple use
of fonts to professional-quality management of character layout and font features.

The Java 2D API enhancédnt class provides greater control over fonts than the
existing java.awt.Font class. It also allows you to retrieve more information
about a font, such as the Bezier paths of individual character glyphs. The Java 2D
API Font class will supersedgava.awt.Font.

1.2.1 Drawing Text

To draw text, you use the same process that you use for paths. Instead of using a
BezierPath object to define a shape, you creaferex object and render the text,
by callingGraphics2D.drawString.

For example, to draw a large letter ‘J’, rotated 45° counterclockwise, on top of the
rectangles from the previous example, you add the following code to the body of
thepaint method:

Java 2D APl Fundamentals 9

// get a 200 point version of Helvetica-BoldOblique

Font myFont = new Font("Helvetica-BoldOblique",
Font.Plain, 200);

// display the character ‘J’ 1in green

// the rotation and translation have already been done

g2d.setColor(Color.green);

g2d.drawString("1", 0, 20);

Because the Java 2D API Font class providgstalyphOutline method (see

Section 3.1.1 on page 20 for more information) that returns the character path,
you can use a text string as a clipping path. For example, you could draw only
those parts of the rectangles that would show through the rotated letter J by using
the character path, scaled appropriately, as a clipping path:

Figure 1-4 Using text as a clipping path

To do this, you get the character’s shape by caflaig1yphOutline, which
returns an instance ehth. You then supply theath object as an argument to
setClip, a method defined Wyraphics2D. In Figure 1-4, the text outline is also
stroked in black.

As illustrated by these examples, the Java 2D API treats text as a first-class citi-
zen. It can be drawn, transformed, used as a clipping path, and composited just
like any other graphic element. You can even perform hit detection on text with
theGraphics2D.hitString method.

1.3 Images

The Java 2D API provides a full range of features for handling images by supple-
menting the image-handling classegana.awt andjava.awt.image with sev-

10

Java 2D API, Version 0.95

eral new classes, includingufferedImage, Tile, Channel,
ComponentColorModel, and ColorSpace.

These classes give advanced Java programmers greater control over images.
Using the Java 2D API imaging classes, you can create images in color spaces
other than RGB and characterize colors for accurate reproduction. The Java 2D
APl imaging classes also allow you to specify exactly how pixels are laid out in
memory.

Like all other graphic elements, images are transformed byrtma form object
associated with theraphics2D object when they are drawn. This means that
images can be scaled, rotated, skewed, or otherwise transformed just like text and
paths. However, images maintain their own color informatiather than using

the current color.

Displaying an image is straightforward. Having acquired an image (perhaps from
a URL), you specify the desired transformation and@alphics2D.drawImage:

Image image = applet.getImage(url);
AffineTransform at = new AffineTransform();
at.rotate(Math.PI/4.0);

g2d.transform(at);

g2d.drawImage(image, 0, 0, this);

1.3.1 Transparency and Images

Images can carry transparency information for each pixel in the image. This infor-
mation, called amalpha channelis used in conjunction with the curr@pos-
ite object to blend the image with an existing drawing.

Figure 1-5 contains three images with different transparency information. In each
case, the image is displayed over a blue rectangle. This example assumes that an
AlphaComposite object is installed that us6RC_OVER as its transfer mode for
compositing.

1. Images have an embedded color model to interpret pixel data as color.

Java 2D APl Fundamentals 11

Figure 1-5 Transparency and images

In the first image, all pixels are fully opaque (the dog’s body) or fully transparent
(the background). You often see this effect used on web pages. The second image
is rendered with uniform, non-opaque transparency for the dog’s body. The third
image has opaqgue values around the dog’s face and increasingly transparent val-
ues as the distance from the dog’s face increases.

1.4 Summary

The Java 2D API extends AWT to provide a standard, cross-platform interface for
handling complex shapes, text, and images. With the Java 2D API classes, you
can incorporate high-quality 2D graphics, text, and images in your applications
and applets. The Java 2D API:

» Enables high-quality device and resolution independent graphics

< Enhances font and text handling support

« Provides a single, comprehensive rendering model

The key Java 2D API classes introduced in this section are summarized in
Table 1-1.

Class Name Description

Graphics2D A subclass ofraphics that encapsulates information about where to draw,
drawing parameters such as the current font, and the actual drawing meth-
ods.

Paint An interface used to specify the colors used to fill a shape, such as a gradient

fill or pattern fill. Paints are alternatives to colors.

12

Class Name

Java 2D API, Version 0.95

Description

Path

BezierPath

Stroke

Transform

AffineTransform

Composite

Font

BufferedImage

ColorSpace

Table 1-1

2.0 Rendering

An interface used to maintain a collection of points that describe the outline
of a shape.

A path that is built using lines and Bezier curves.

An interface that specifies how to turn a path to be renderdéaapath
into an outline of the stroked path. The stroked path can be filled to achieve
the same results.

An interface that specifies how to transform a point or path into another
point or path.

A transformation that supports rotation, scaling, skewing, and other com-
mon linear transformations.

An interface that specifies how to blend two colors to form a third. Used to
implement transparency and similar effects.

An enhancedont class that provides control over font characteristics and
access to detailed information.

A class that supports fine-grain control over an image by allowing you to
specify the image’solorModel, image data, and data layout (Tile and
Channel).

A class that identifies a color space and supports the conversion of color
components in a particular color space to and from standard color conver-
sion spaces.

Basic Java 2D API classes

In the Java 2D API, the rendering of graphics objects is controlled through the
Graphics2D state attributes. With th@aphics2D state attributes, you can set a
clipping path to limit the area that is rendered, vary the stroke width, change how

strokes are joined together, and compose graphics objects in different ways. These

attributes are applied during the rendering process.

2.1 Rendering Pipeline

The rendering process can be broken down into four stages. (Note that this pro-
cess might actually be compressed to optimize rendering performance.)

1. The graphics object being rendered is converted to graphics primitives and

Rendering 13

transformed into the Device Space usingrttensform from theGraphics2D

object associated with the target device. This determines where the graphics
object should be rendered. How this is done depends on the type of graphics
object being rendered:

* When gpathis rendered, it is converted t@ezierPath object. If the path
is to be stroked, thecroke object in th&raphics2D is used to convert the
path to a stroked path. ThiszierPath is transformed into device
coordinates using theransform object in theGraphics2D.

* Whentextis rendered, the layout of the glyphs is determined using the
information in the fonts used by the string. The glyphs are then converted
to outlines that are described kyzierPath objects. ThesBezierPath
objects are transformed into device coordinates usirgrtma form object
in theGraphics2D.

* When arimageis rendered, its bounding box (in user coordinates) is
transformed into device coordinates usingTthensform object in the
Graphics2D.

2. The current clip is used to constrain the rendering operation. The clip can be
any shape that can be described byt object. The clip is transformed into
the Device Space using theansform in effect whersetClip was called.

3. The color to be rendered is determined. For image operations, the color is
taken from the data of the image. For all other operations, the charernt
or Color object in theGraphics2D is queried for the color.

4. The color is applied to the rendering target using the cukmbsite
object.

2.2 Controlling the Rendering Quality

When graphics primitives are rendered on graphics display devices, their edges
can appear jaggy due to aliasidgtialiasingis a technique used to render

objects with smoother appearing edges. This technique requires additional com-
puting resources and can impact the rendering speed. The Java 2D API lets you
indicate whether you want objects to be rendered as quickly as possible, or
whether you prefer that the rendering quality is as high as possible. Your prefer-
ence is specified as a hint because not all platforms support modification of the
rendering mode.

You specify your rendering preferences raphics2D object by callingset-
RenderingHints. There are two types of hints. The first indicates whether or not

14

Java 2D API, Version 0.95

objects should be antialiased when they are rendered. The second indicates a pref-
erence in the trade-off between speed and quality. For example, this hint could
affect how precisely stroke joins are rendered or whether better dithering or inter-
polation should be performed.

2.3 Transformations

The Java 2D API transformations are based onthesform interface. The
AffineTransform class implementsransform to support operations such as
scaling, rotation, and skewing.

2.3.1 Using Affine Transformations

An affine transformation performs a linear transformation on a set of graphics
primitives. It always transforms straight lines into straight lines and parallel lines
into parallel lines, but it might alter the distance between points and the angles
between non-parallel lines. An affine transformation is based on a two-dimen-
sional matrix of the following form:

{a ztx} where x' = ax+by+ % and Yy = cx+dy+ ¥
cdt

To use theffineTransform class, you do not need to interact directly with
transformation matrices. You simply invoke the appropriate sequence of rotations,
translations, and other transformations to get the effect you want.

TheTransform associated with th@raphics2D object transforms all of the

paths, text, and images you draw from User Space to Device Space; this is the
Transform that a program interacts with moGtaphics2D implements a version

of drawImage that takes an instance fansform as a parameter. When you use
this version otirawImage, the image is drawn as if you had appended the trans-
form to theGraphics2D object. This allows you to perform additional transforma-
tions on an image object when it is drawn (this can be thought of as a transform
from image space to User Space). Similarly, you can apply an instance of
AffineTransform to aFont object to create a nefwnt object for drawing text,

as discussed in “Text Handling” on page 20.

2.3.2 Creating Custom Transformations

Advanced clients can create classes that implemefitae form interface to
provide new types of transformations. New transform classes must support the

Rendering 15

Transform.createInverse method, which inverts a transformation and con-
structs a neWransform object that is the inverse of the current one. In other
words, all Java 2D API transforms must produce an inverse if it exists. All Java
2D API transforms must also be able to operate on instangegiafrPath.

For example, you could define a new, non-linear transform to draw objects in per-
spective so that they appear to shrink away in the distance. (This effect cannot be
accomplished with the lineaffineTransform.) Your new clasRerspec-
tiveTransform, can transform points and paths using any method nédtla.

not constrained to transformations that can be described by a linear transform
matrix.

2.3.3 Transformation Pipeline

Clients can use different implementationg ednsform as needed. For example,
you could apply th€erspectiveTransform to a drawing and then apply an
AffineTransform to rotate the drawing, as shown in Figure 2-1.

Figure 2-1 Perspective and affine transformations

When you appendBransform object to &raphics2D object, it becomes part of

a pipeline of transformations that are applied to the drawingGidphics2D
Transform object might actually be BransformChain. TransformChain is an
implementation of th&ransform interface that executes multiple transforms in a
predefined order. It is useful for representing sequences of transformations that
cannot be combined into a single simple typ&rahsform object.

2. Transform operations that require the use of rational curves to represent transformed Bezier
curves (like the perspective example) must be able to produce approximations using non-
rational Bezier curves.

16

Java 2D API, Version 0.95

2.4 Creating a New Type of Path

To create a new path, you can implementth interface. It doesn’'t matter how
the path is represented internally, as long agdlak interface methods can be
implemented. For example, a simple implementatioraeh could be created to
represent polygons as arrays of points. This ckadsgonPath, needs to define
just one new methodddPoint. To build aPolygonPath object, a client would
repeatedly calhddPoint. Once the path is built, it could be used in a call to
drawPath, setC1ip or any other method that expectgaah object as an argu-
ment.

ThePolygonPath class must implement ttrath interface methods, including
createTransformedPath andgetAsBezierPath. ThecreateTransformedPath
method creates a neRath object that represents the current path as transformed
by theTransform parameter. ThgetAsBezierPath method constructs a new
BezierPath object that contains a representation of the path.

Both Transform andPath define acreateTransformedPath method. When the
Java 2D API needs to transform a path before painting it, it firsthealls cre-
ateTransformedPath. If the path contains internal information that is necessary
for its points to be transformed correctly (usingthensform object’'strans-

form method), or if the path contains special knowledgerafsform objects

that should be applied, this processing is domath.createTransformedPath.

If the Path object does not need to perform special processibgelteTrans-
formedPath, it can simply call thereateTransformedPath method of the sup-
plied Transform object.

WhenTransform.createTransformedPath is called, th@ransform object is
responsible for transforming an arbitrary path with an arbitrary internal represen-
tation. If theTransform does not recognize the particular type of path, it can call
the path’'sgetAsBezierPath method to get the path in a canonical form. All
Transform objects must be able to operateBenierPath objects.

ImplementingPolygonPath.getAsBezierPath for thePolygonPath class is

quite simple. First, 8ezierPath object is constructed and thesveTo is called,
followed by a sequence of callstbtneTo. For other types of custom paths, this
conversion might be more complicated and could result in a loss of information.

2.5 Stroke

When aPath object is drawn, it is first converted to an equivabeatierPath. In

the Java 2D API, aliraphics2D objects know how to stroke and filBazier-

Path. Stroking aBezierPath object is equivalent to running a logical pen along
the segments of tiBezierPath. TheStroke object encapsulates the characteris-

Rendering 17

tics of the mark drawn by the pen. The Java 2D API providasiaStroke class

that contains characteristics such as the line width, end-cap style, segment join-
style, and the dashing pattern. The end-cap styles are chopped, round, and
squared. The join styles are bevel, miter, and round. The miter join can be limited
to a certain length. The first image in Figure 2-2 uses the miter join-style; the sec-
ond image uses a round join-style, a round end-cap style, and a dashing pattern.

8
I
-
A7
L
¥V
Figure 2-2 Stroke styles
2.6 Paint

Section 1.0, “Java 2D API Fundamentals” demonstrates how to specify a simple
fill color for a path. With the Java 2D API, you can also fill a shape with more
complex paint styles, such as gradients and textures. To facilitate the use of com-
plex fills, the Java 2D API defines a new class caliddt and aGraphics2D

method calledetPaint. These features eliminate the time-consuming task of
creating complex fills using simple solid-color paints.

[|
\

Figure 2-3 Complex paint styles

4 H H)
A E RN
\EEm
|

Conceptually, all drawing is done wittPaint object. AColor? object can be
thought of as a very simple typerafint object, and theetColor method as a
special case ofetPaint. In effect,setColor installs aPaint object for you that
paints with a single color. (You can actually pass®r to thesetPaint

method, becaus®lor implements th@aint interface and is just another type of
Paint object.)

3. The enhanced Java 2D ARi1or class will supersedgava.awt.Color.

18

Java 2D API, Version 0.95

Once you calketPaint, everything you draw (such as text and paths) is painted
using the specifieBaint object.

A Paint object must ultimately specify what color to paint each pixel in a shape.
Conceptually, the Java 2D API determines what pixels comprise a shape and asks
thePaint object for the color of each. It then converts that color to an appropriate
pixel value for the output device and writes the pixel to that device. This is a
tedious process that provides few opportunities for optimization.

To streamline this process, the Java 2D API processes pixels in batches. A batch
can be either a contiguous set of pixels on a given scanline or a block of pixels.
This batch processing is done in two steps:

1. APaintContext Object is created from tiRaint object. ThePaintContext
object stores the contextual information about the current rendering operation
and the information necessary to generate the colorscAdmeContext
method takes as parameters the bounding boxes of the graphics object being
filled in User Space and in Device Space,dbimrModel in which the colors
should be generated, and the transform used to map User Space into Device
Space. Th&€olorModel is treated as a hint because noPailnt objects can
support an arbitrargolorMode. (For more information abodblorModeTs,
see Section 4.0, “Color Management.”)

2. ThePaintContext is asked for th€olorModel of the generated paint color
and theTile that contains the actual color data for a given batch. The
getColorModel method is only called once, latTi1e is called repeatedly
as the area being rendered is processed in batches by the rendering pipeline.
This information is then passed to the next stage in the rendering pipeline,
which draws the generated color using the cuitemtosite object.

2.7 Composite

In Section 1.1 we discussed basic compositing and introducedgh&Compos -

ite class, an implementation of thesmposite interface. This class supports a
number of different composition styles and is intended to meet the needs of most
clients. Instances of this class embody a composition rule that describes how to
blend a new color with an existing one. The alpha values for rendering are derived
from aColor, Paint, orImage object, combined with pixel coverage information
from a rasterized path (when antialiased rendering is being performed).

Rendering 19

2.7.1 Managing Transparency

One of the most commonly used compositing rules inAthghaComposi te class

is SRC_OVER. WhenAlphaComposite.SRC_OVER is applied, it indicates that the

new color (the source color) should be blended over the existing color (the desti-
nation color). The alpha value indicates, as a percentage, how much of the exist-
ing color should show through the new color. It is a measure of the transparency
of the new color. Opaque colors don't allow any existing color show through,
while transparent colors let all of the existing color show through.

You can also use afiphaComposite object to add an additional level of transpar-
ency to everything drawn. To do this, you creatalgithaComposite object with
an alpha value that increases the transparency of every object drawn:

comp = AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5);

The specified alpha value, 0.5, is combined with the alpha valuebdg
Paint, or Image prior to rendering. This reduces the alpha of everything drawn by
50%, making everything 50% more transparent.

In this example, which extends the example in Section 1.1.3, the text is drawn
before theComposite object is created so that it is totally opaque. Then the
AlphaComposite.SRC_OVER object is created to set the transparency to 50% and
the two overlapping rectangles are drawn, as shown in Figure 2-4:

Compositin

Figure 2-4 Compositing

The red rectangle that was completely opaque is now patrtially transparent and the
blue rectangle is even more transparent than it was originally. This additional
layer of transparency provided by thiphaComposite class can be useful in a
number of circumstances.

20

Java 2D API, Version 0.95

2.7.2 Defining Custom Composition Rules

You can create an entirely new type of compositing operation by implementing
theComposite andCompositeContext interfaces. Alomposite object provides a
CompositeContext object that actually holds the state and performs the compos-
iting work. Multiple CompositeContext objects can be created from div@pos-

ite object to maintain the separate states in a multi-threaded environment.

3.0 Textand Fonts

You can use the Java 2D API transformation and drawing mechanisms with text
strings. The Java 2D API also adds new text related classes that support sophisti-
cated text layout and fine-grain font control.

3.1 Text Handling

The Java 2D API provides an enhan€gealt class that provides greater control
over fonts than the previogava.awt.Font. This enhancedont class supports:

 Specification of detailed font information
» Access to information about a font and its glyphs

3.1.1 Specifying and Obtaining Font Information

There is a rich body of information that can be used to describe a font, including
its name, the type technology it uses, its version, and its style parameters. Such
information is represented by tRentDescriptor class, which can be used to
locate aFont for a specific purpose. PontDescriptor consists of a set of key/
value pairs.

Table 3-1 lists possibleontDescriptor keys. You can userRobntDescriptor
object to obtain a list of host system fonts that share particular characteristics.

Name Semantics

Name If present, supplies the name of the requested font, sueti@stica-BoldOblique.

Family If present, supplies the family of the requested font, sudleTa@tica.

Style If present, supplies the style parameters of the requested font. Possible values include

Plain, Italic, andBold.

Technology If present, identifies the type technology of the requested font. Possible values repre-
sent technologies such Bgel andTrueType.

Text and Fonts 21

Name Semantics
Version If present, identifies the version of the requested font.
Table 3-1 Font descriptor keys

EveryFont object contains attributes for font name, size, and transform and an
array ofFontFeatures that describe the particulasnt. TheFont class defines
several convenience methods that allow you to access this data directly.

TheFont class also provides access to font metrics. Every font object contains
detailed metrics for the fontont allows you to access metric and outline infor-
mation through the methodetDesignMetrics, getGlyphMetrics, andgetG-
1yph0ut11‘ne.4 The path returned yetGlyphOutline is scaled using theont

size and transform, but does not reflectithensform associated with the
Graph1ics2D object.

3.1.2 Accessing Text Paths

You can use theont.getGlyphOutline method to access the path of any glyph
in a font, as illustrated in Section 1.2. T8/ TedString class also provides a
getStringPath method that simplifies the conversion of an entire block of text to
a path. This method returns an instanceaah that describes the character
shapes of the laid-out text. The returmadh object reflects any transformations
applied to theront object associated with the string, but notTthensform asso-
ciated with theSraphics2D object.

3.1.3 Transforming Text

Using theFont.deriveFont methods, you can create a newmit object with dif-
ferent attributes from an existirfgnt object. For example, to scale a font to a
custom size, you could create an instanceoat with a unitary size and use
Font.deriveFont to apply arransform and create a new scalesht object.

Similarly, you could apply &ransform to theFont to skew the text, as shown in

the second part of Figure 3-1. In the first image in Figure 3-1, the string “Java” is
rotated several times around a center point. In the second images&orm

object is used to generate a skewed version of the font before the string is drawn:

4 Note that botlgetGlyphMetricsandgetGlyphoutinetake a glyph identifier, not a character.

Java 2D API, Version 0.95

o

3
Java \
ene N

©
=

BAB[L

Q

< i

S o

Figure 3-1 Transforming text

The following code uses thieriveFont method to implement this effect:

// Create a transformation for the font.
AffineTransform fontAT = new AffineTransform();
fontAT.setToScale(72.0, 72.0);
// Describe the font you want to use and then instantiate it
Font theFont = new Font("Helvetica", Font.PLAIN, 1);
Font theDerivedFont = theFont.deriveFont(fontAT);
// Define the rendering transform
AffineTransform at = new AffineTransform();
at.setToTranslation(400.0, 400.0);
g2d.transform(at);
at.setToRotation(Math.PI / 2.0);
// Create a StyledString object, specifying the text and
// transformed font.
StyledString ss = new StyledString("Java", theDerivedFont);
// Draw four copies of the string at 90 degree angles
for (int i =0; i < 4; i++) {

g2d.drawString(ss, 0.0f, 0.0f);

g2d.transform(at);
3
// Create a skewed version of the font
fontAT.append(new AffineTransform(1.0, 0.0, -1.2, 1.0,

0.0, 0.0));

theDerivedFont = theFont.deriveFont(fontAT);
// Create a StyledString object, specifying the text and the
// skewed font.
ss = new StyledString("Java", theDerivedFont);

Text and Fonts 23

// Translate to a new location
at.setToTranslation(400.0, 0.0);
g2d.transform(at);
at.setToRotation(Math.PI / 2.0);
// Draw four more copies of the string at 90 degree angles
// with the skewed font.
for (int i =0; 1 < 4; i++) {
g2d.drawString(ss, 0.0f, 0.0f);
g2d.transform(at);

3.2 Advanced Layout

Before a piece of text can be displayed, it is necessary to determine exactly where
each character should be placed. Most clients leave this layout process up to the
system, which supplies a set of algorithms that compute the layout based on infor-
mation contained in the font (such as the font metrics) and provided by the client
(such as the text itself and the requested point size).

The Java 2D API provides text layout facilities that handle most common cases,
including text strings with mixed fonts, mixed languages, and bidirectional text.

Advanced clients might want to compute the text layout themselves so that they
can exercise detailed control over what glyphs are used and where they are
placed. Using information such as glyph sizes, kerning tables, and ligature infor-
mation, advanced clients can use their own algorithms to compute the text layout,
bypassing the system’s layout mechanism.

TheGlyphSet class provides a way of displaying the results of custom layout
mechanisms. AlyphSet object can be thought of as the output of an algorithm

that takes a string and computes exactly how the string should be displayed. The
system has a built-in algorithm and the Java 2D API lets advanced clients define
their own algorithms. Normally, when you construstaledString object, you

pass in the text you want to be displayed. The system then processes this text and
builds aG1yphSet object for you, based on its layout algorithm.

A GlyphSet object is basically an array of glyphs and glyph locations. Glyphs are
used instead of characters to provide total control over layout characteristics such
as kerning and ligatures. For example, when displaying the string1”, you

might want to replace the leadingi® substring with the ligaturefi”. (In profes-

sional publishing, certain combinations of two or more characters are commonly
replaced by a single glyph, known as a ligature.) In this case] yheSet object

will have fewer glyphs than the number of characters in the original string.

24

Java 2D API, Version 0.95

Figure 3-2 and Figure 3-3 illustrate h@aiyphSet objects are used with the

default layout mechanism and with custom layout mechanisms. In Figure 3-2, the
client builds &tyledString object and passes it to theawString method.

The built-in layout algorithm determines which glyphs to use and where each of
them should be placed. This information is stored internally using instances of
GlyphSet. TheseGlyphSet objects are then passed to a glyph rendering routine
that does the actual drawing.

drawString() GlyphSet
my-font
simple . my-glyph-ids
StyledString Built-in — Glyph
with Font ™ k?yoqth 7 MyXPOSNS ™ Renderer |7
parameters gorithm my-y-posns
Figure 3-2 Using the built-in layout algorithm

In Figure 3-3, the client assembles the information necessary to lay out the text. A
custom layout algorithm is used to determine which glyphs to use and where they
should be placed. In this example, tifé” substring is replaced with th&™lig-

ature. This layout information is then stored i@l gphSet object. TheGTyphSet

object is then passed to theawString method, which passes it directly to the
glyph renderer.

drawString()
Client
Font | GlyphSet | Glyph
parameters 'I&?ggﬁtthm ™ collection ™ Renderer
Figure 3-3 Using custom layout algorithms

4.0 Color Management

Color imaging is one of the fundamental components of any graphics system, and
it is often a source of great complexity in the imaging model. The Java 2D API
provides support for high-quality color output that is both easy to use and allows
advanced clients to make sophisticated use of color.

Color Management 25

4.1 Specifying Colors

To display a rectangle of a certain color, such as the process color cyan, you need
a way to describe this color to Java. There are a number of different ways to
describe a color; for example, a color could be described as a set of red, green,
and blue (RGB) components, or a set of cyan, magenta, yellow, and black
(CMYK) components. These different techniques for specifying colors are called
color spaces

As you probably know, colors on a computer screen are generated by blending
different amounts of red, green, and blue light. Therefore, using an RGB color
space is standard for imaging on computer monitors. Similarly, four-color process
printing uses cyan, magenta, yellow, and black ink to produce color on a printed
page; the printed colors are specified as percentages in a CMYK color space.

Due to the prevalence of computer monitors and color printing, RGB and CMYK
color spaces are both commonly used to describe colors. However, both types of
color spaces have a fundamental drawback—they are device-dependent. The cyan
ink used on one printer might not exactly match the cyan ink used on another.
Similarly, a color described as an RGB color might look blue on one monitor and
purplish on another.

The Java 2D API refers to RGB and CMYK as color space types. A particular
model of monitor with its particular phosphors defines its own RGB color space.
Similarly, a particular model of printer has its own CMYK color space. Different
RGB or CMYK color spaces can be related to each other through a device-inde-
pendent color space.

Standards for the device-independent specification of color have been defined by
the International Commission on Illlumination (CIE). The most commonly used
device-independent color space is the three-component XYZ color space devel-
oped by CIE. When you specify a color ustigxyz, you are insulated from

device dependencies.

Unfortunately, it's not always practical to describe colors ircttxyz color
space—there are valid reasons for representing colors in other color spaces. To
obtain consistent results when a color is represented using a device-dependent
color space such as a particular RGB space, it is necessary to show how that
RGB space relates to a device-independent spacelliez.

One way to map between color spaces is to attach information to the spaces that
describes how the device-dependent space relates to the device-independent
space. This additional information is callegrafile. A commonly used type of

color profile is the ICC Color Profile, as defined by the International Color Con-

26

Java 2D API, Version 0.95

sortium. For details, see the ICC Profile Format Specification, version 3.3 avail-
able athttp://www.color.org.

Figure 4-1 illustrates how a solid color and a scanned image are passed to the Java
2D API, and how they are displayed by various output devices. As you can see in
Figure 4-1, both the input color and the image have profiles attached.

Solid Color
] i RGB
' Profile | — | Profile Monitor
Grayscale
) Monitor
| Java 2D || Profile
API

Scanned Image
1] | Profile | L_p| Profile CMYK
~ Printer

Figure 4-1 Using profiles to map between color spaces

Once the API has an accurately specified color, it must reproduce that color on an
output device, such as a monitor or printer. These devices have imaging character-
istics of their own that must be taken into account to make sure that they produce
the correct results. Another profile is associated with each output device to
describe how the colors need to be transformed to produce accurate results.

Achieving consistent and accurate color requires that both input colors and output
devices be profiled against a standard color space. For example, an input color
could be mapped from its original color space into a standard device-independent
space, and then mapped from that space to the output device’s color space. In
many respects, the transformation of colors mimics the transformation of graphi-
cal objects in anx(y) coordinate space. In both cases, a transformation is used to
specify coordinates in a “standard” space and then map those coordinates to a
device-specific space for output.

Color Management 27

4.2 Color Classes

The key color management classes in the Java 2D ARb&se, ColorModel,
andColorSpace. TheColor class describes a color in terms of its constituent
components in its particular color space. TheorModel class provides informa-

tion necessary to convert the components of a pixel imade or BufferedIm-

age into color components in a particular color space.dd1erSpace class has
methods for converting color components in a particular color space to and from a
well-definedCIEXYZ color conversion space as well as a standard RGB color
space.

42.1 Color

TheColor class provides a description of a color in a particular color space. An
instance ofolor contains the value of the color components aoglarSpace
object. Because @1lorSpace object can be specified in addition to the color
components when a new instanc&efor is created, théolor class can handle
colors in any color space.

TheColor class has a number of methods that support a proposed standard RGB
color space callesRGB (seehttp://www.w3.org/pub/WwW/Graphics/Color/
sRGB.htm1). sRGB is the default color space for the Java 2D API. Several con-
structors defined by the Color class omitth&orSpace parameter. These con-
structors assume that the color's RGB values are defisedanand use a default
instance ofolorSpace to represent that space.

Java usesRGB as a convenience to application programmers, not as a reference
color space for color conversion. Many applications are primarily concerned with
RGB images and monitors, and defining a standard RGB color space makes writ-
ing such applications easier. Th&lorSpace class defines the methotsRCB
andfromRGB so that developers can easily retrieve colors in this standard space.
These methods are not intended to be used for highly accurate color correction or
conversions. See Section 4.2.3, “ColorSpace” for more information.

To create a color in a color space other trRaB, you use th€olor constructor

that takes @olorSpace object and an array of floats that represent the color com-
ponents appropriate to that space. TéikorSpace object identifies the color

space.

4.2.2 ColorModel

TheColorModel class contains data which is used to interpret pixel data in an
image. This includes mapping components in the data channels of an image to

28

Java 2D API, Version 0.95

components of a particular color space. It might also involve extracting pixel
components from packed pixel data, retrieving multiple components from a single
data channel using masks, and converting pixel data through a lookup table. See
Section 5.2, “Using Offscreen Buffers” for more information onasitorMode

class.

4.2.3 ColorSpace

A ColorSpace object represents a color space, such as a particular RGB or
CMYK space. AColorSpace object serves as a colorspace tag that identifies the
specific color space of@7or object or, through @olorModel object, of an

Image, BufferedImage, Or GraphicsConfiguration. ColorSpace provides
methods that transfor@olors in a specific color space to and freRGB and to

and from a well-definedIEXYZ color space.

All ColorSpace objects must be able to map a color from the represented color
space intaRGB and transform asRGB color into the represented color space.
Since every color containgalorSpace object, set explicitly or by default, every
color can also be convertedsrGB. Similarly, since evergraphicsConfigura-

tion is also associated withCalorSpace object, anysRGB color can be dis-
played on any output device. It follows that a color specified in any color space
can be displayed by any device by mapping it thraRgis as an intermediate
color space.

The methods used for this processwmGB andfromRGB:

* toRGB transforms a color in the represented color space, such as a CMYK
space, to a color isRGB.

» fromRGB takes a color iBRGB and transforms it into the represented color
space.

Though mapping througérRGB always works, it's not always the best solution.

For one thingsRGB cannot represent every color in the full gamutXExyz col-

ors. If a color is specified in some space that has a different gamut (spectrum of
representable colors) thaRGB, then usingRGB as an intermediate space results

in a loss of information. To address this problem di®rSpace class can map
colors to and from another color space, the “conversion SQaegYz.

The methodsoCIEXYZ andfromCIEXYZ map color values from the represented

color space to the conversion space. These methods support conversions between
any two color spaces at a reasonably high degree of accuracy. However, it is
expected that built-idolorSpace implementations (such asC_ColorSpace)

Color Management 29

will support high-performance conversion based on underlying platform color-
management systems.

Figure 4-2 and Figure 4-3 illustrate the process of translating a color specified in a
CMYK color for display on an RGB color monitor. Figure 4-2 shows a mapping
throughsRGB. As this figure illustrates, the translation of the CMYK color to an
RGB color is not exact because of a gamut mismatch.

CMYK DeviceRGB
CMYK ColorSpace SRGB ColorSpace Device RGB
Color Color Color
toRGB toRGB
fromRGB fromRGB
toCIEXYZ toCIEXYZ
fromCIEXYZ fromCIEXYZ
Figure 4-2 Mapping through sRGB

Figure 4-3 shows the same process usiiExYz as the conversion space. When
CIEXYZ is used, the color is passed through accurately.

CMYK DeviceRGB

CMYK ColorSpace CIEXYZ ColorSpace Device RGB
Color Color Color
toRGB toRGB
fromRGB fromRGB
toCIEXYZ toCIEXYZ
fromCIEXYZ fromCIEXYZ
Figure 4-3 Mapping through CIEXYZ

4.2.4 1CC_Profile and ICC_ColorSpace

ColorSpace is actually an abstract class. The Java 2D API provides one imple-
mentation,ICC_ColorSpace, which is based on ICC Profile data as represented
by theICC_Profile class. You can define your own subclasses to represent arbi-
trary color spaces, as long as the methods discussed above are implemented.
However, most developers can simply use the dedaalt ColorSpace or color

5 Of course, the colors used in these diagrams are illustrative, not accurate. The point is that
colors might not be mapped accurately between color spaces unless an appropriate conversion
space is used.

30

Java 2D API, Version 0.95

spaces that are represented by commonly available ICC Profiles, such as profiles
for monitors and printers, or profiles embedded in image data.

Section 4.2.3 describes hawlorSpace objects represent a color space and how
colors in the represented space can be mapped to and from a conversion space.
Color management systems are often used to handle the mapping between color
spaces. A typical color management system (CMS) manages ICC profiles, which
are similar taColorSpace objects; ICC profiles describe an input space and a con-
nection space, and define how to map between them. Color management systems
are very good at figuring out how to map a color tagged with one profile into the
color space of another profile.

The Java 2D API defines a class calied_Profile that holds data for an arbi-
trary ICC ProfileICC_ColorSpace is an implementation of the abstraeior-

Space classICC_ColorSpace objects can be constructed fra@C_Profiles.

(There are some limitations—not all ICC Profiles are appropriate for defining an
ICC_ColorSpace).

ICC_Profile has several subclasses that correspond to specific color space types,
such agCC_ProfileRGB andICC_ProfileGray. Each subclass afC_Profile

has a well-defined input space (such as an RGB space) and a well-defined connec-
tion space (like&€IEXYZ). The Java 2D API can use a platform's CMS to access

color profiles for various devices such as scanners, printers, and monitors. It can
also use the CMS to find the best mapping between profiles.

5.0 Imaging

Image processing involves the manipulation of raster images, often to improve
visual appearance or bring out subtle shapes and patterns that might otherwise
escape visual detection. Any of the image processing effects provided in popular
photo-editing programs can be produced using the Java 2D API image-processing
classes, or by extending those classes.

51 Image Processing and Enhancement

The Java 2D API provides a set of classes that define operatiengfemedIm-

age andT1i1e objects. These image processing classes share a common architec-
ture. Each image processing operation is embodied in a class. Each class defines a
filter method that performs the actual image manipulation. This method might
operate on a source and destinatiofiferedImage, or a source and destination

Tile. Figure 5-1 illustrates the basic model for Java 2D APl image processing:

Imaging 31

image-processing
operation
filter
source > destination
image image
Figure 5-1 Image processing model

The operations supported include amplitude scaling, lookup-table modification,
linear combinations of channels, color conversion, and convolutions. The classes
that implement these operations includ€ineTransformOp, ChannelCombin-

eOp, ColorConvertOp, ConvolveOp, LookupOp, RescaleOp, and Thresh-

o1dOp. These classes can be used to blur, sharpen, enhance contrast, threshold,
and color correct images.

Figure 5-2 illustrates edge detection and enhancement, an operation that searches
for sharp changes in intensity within an image and emphasizes them. Edge detec-
tion is commonly used in medical imaging and mapping applications. Edge detec-
tion is used to increase the contrast between adjacent structures in an image,
allowing the viewer to discriminate greater detail.

(= Applet Viewer: LookupTestclass = | Applet Viewer: ConvolveTest.class

Figure 5-2 Edge detection and enhancement

Figure 5-3 demonstrates lookup table manipulation via rescaling and threshold-
ing. Rescaling can increase or decrease the intensity of all points. Rescaling can
be used to increase the dynamic range of an otherwise neutral image, bringing out

32 Java 2D API, Version 0.95

detail in a region that appears neutral or flat. Thresholding can clip ranges of
intensities to a specified level.

e

The image processing classes provided by the Java 2D API are summarized in

Figure 5-3 Lookup-table manipulation

Table 5-1:

Class Name Operates on Description

AffineTransformOp BufferedImage, Tile Performs an affine transforma-
tion on the image or tile.

ChannelCombineOp BufferedImage, Tile Performs arbitrary linear combi-
nations on channels.

ColorConvertOp BufferedImage, Tile Performs color conversion.

ConvolveOp BufferedImage, Tile Performs spatial filtering.

LookupOp BufferedImage, Tile Uses alookup table to remap
pixel data from one intensity to
another.

RescaleOp BufferedImage, Tile Rescales the data by multiplying
each pixel by a scale factor and
adding an offset.

ThreshoT1dOp BufferedImage, Tile Sets pixel intensities in a given

range to a constant.

Table 5-1 Image processing classes

Imaging 33
5.1.1 Processing an Image

The following code fragment illustrates how to use one of the image processing
classesgonvolveOp. Convolution is the process that underlies most spatial filter-
ing algorithms. Convolution is the process of weighting or averaging the value of
each pixel in an image with the values of neighboring pixels. In this example,
each pixel in the source image is averaged equally with the eight pixels that sur-
round it.

float weight = 1.0f/9.0f;
float[] elements = new float[9]; // create 2D array
// fill the array with nine equal elements
for (i =0; 1 <9; i++) {
elements[i] = weight;
}
// use array of elements as argument to create a Kernel
private Kernel myKernel = new Kernel(3, 3, 1, 1, elements);
public ConvolveOp simpleBlur = new ConvolveOp(myKernel);
// sourceImage and destImage are instances of BufferedImage
simpleBlur.filter(sourceImage, destImage) // blur the image

The variablesimpleBlur contains a new instance@ifnvolveOp that implements

a blur operation on BufferedImage or aTile. Suppose thatourceImage and
destImage are two instances 8iifferedImage. When you calfilter, the core
method of theconvolveOp class, it sets the value of each pixel in the destination
image by averaging the corresponding pixel in the source image with the eight
pixels that surround it. The convolution kernel in this example could be repre-
sented by the following matrix, with elements specified to four significant figures:

0.1111 0.1111 0.1111
K =0.1111 0.1111 0.1111
0.1111 0.1111 0.1111

When an image is convolved, the value of each pixel in the destination image is
calculated by using the kernel as a set of weights to average the pixel’s value with
the values of surrounding pixels. This operation is performed on each channel of
the image.

34

Java 2D API, Version 0.95

The following formula shows how the weights in the kernel are associated with
the pixels in the source image when the convolution is performed. Each value in
the kernel is tied to a spatial position in the image.

i-1,j-1 i-1,j i-1j+1
K=11ij-1 i, ij+1
i+1,j—-1 i+1j i+1j+1

The value of a destination pixel is the sum of the products of the weights in the
kernel multiplied by the value of the corresponding source pixel. For many simple
operations, the kernel is a matrix that is square and symmetric, and the sum of its
weights adds up to orfe.

The convolution kernel in this example is relatively simple. It weights each pixel
from the source image equally. By choosing a kernel that weights the source
image at a higher or lower level, a program can increase or decrease the intensity
of the destination image. Tlkernel object, which is set in thenvolveOp con-
structor, determines the type of filtering that is performed. By setting other values,
you can perform other types of convolutions, including blurring (such as Gaussian
blur, radial blur, and motion blur), sharpening, and smoothing operations.

5.2 Using Offscreen Buffers

BufferedImage is derived fromjava.awt.Image. This class supports fine-grain
control over an image by allowing you to specify the image&l®rModel, image

data, and data layouti(le and Channel). You also can supply storage space for

the image data or access the existing storage data, allowing you to manipulate the
contents of an image directly.

An image’sColorModel specifies the color space of the data inTtiie and how

the data is mapped to color and alpha components1Ais comprised of an

array ofChannel objects. AChannel is a collection of data and data layout
parameters for one or more bands of an image. With the information encapsulated
by theTile and ColorSpace objects, you can directly access and manipulate the
pixels in an image. If you don’t want to manipulate pixels directly, you can use the
getData andputData, methods defined byile.

TheChannel, ColorModel, andColorSpace classes are important whenever you
need to know about pixel layouts; for example, when implementingoeyes -
ite objects or usingufferedImage objects.

6. If the sum of the weights in the matrix is one, the intensity of the destination image is
unchanged from the source.

Imaging 35
5.2.1 Color Models

Images are two dimensional arrays of pixel valuesCoibir objects. To deter-

mine the color value of a particular pixel, you need to know how color informa-
tion is encoded in each pixel. ThelorModel associated with an image
encapsulates the data and methods necessary for translating a pixel value to and
from its constituent color components.

The Java 2D API provides three types of color models:

* An IndexColorModel contains a lookup table that maps an index to a color.
It can be associated withrale that has either one or twihannel objects
(the second channel is an alpha channel).

* A ComponentColorModel is associated with®&i 1e that has the same number
of Channel objects as color and alpha components in the
ComponentColorModel. The placement of color component names in the
color space of the color model determines the mapping between color
components and channels in the channel array. For example, a color model
with an RGB color space would map red to the channel at index 0, green to
the channel at index 1, and blue to the channel at index 2. If there is an alpha
channel, it would be the last channel in the channel array, the channel at index
3.

* A PackedColorModel is associated with &iTe that has one
DiscreteChannel object. ThedirectColorModel in JDK1.1 is a
PackedColorModel. The packing information that describes how color and
alpha components are extracted from the channel is stored in the
PackedColorModel.

5.2.2 Tiles

If aTile is not embedded inBufferedImage, it can have many more channels

than color components. This is useful for image processing applications. For
example, a Landsat satellite image would have seven channels of datdén a
corresponding to the different sensors onboard the satellite. To display the image,
you would typically create a subtile of th&le to include only channels 3, 1, and

0, and associate it with a RGB color model so that channel 3 maps to red, channel
1 maps to green, and channel 0 maps to blue. However, you could use a different
combination of channels because the channel data is false color; the color doesn't
necessarily correspond to a color that a person would see when viewing the area.

36

Java 2D API, Version 0.95

5.2.3 Channels

TheChannel class describes exactly how pixels are encoded and how they are
laid out in memory. It can handle a wide variety of data layouts such as a 5/6/5
layout in a RGB image, a band-sequential layout where the data in each channel
of the image is contiguous, and the layout supported by the current
java.awt.Image class, where 4 bytes of alpha, red, green and blue are packed into
an integer.

There are two types @hannel classesbiscreteChannel andPackedChannel.
DiscreteChannel objects have one channel element per data array element. For
example, each channel element ByaeDiscreteChannel would fit in one byte.

A PackedChannel can have multiple channel elements in a data array element.
For example, a binary image might useyaePackedChannel with 8 channel ele-
ments packed into a byte.

In aBufferedImage, the number and type Ghannel objects in th@1i1e must
match the number of color and alpha components and tyqad @fMode].

5.2.4 Using a Bufferedimage as an Offscreen Cache

Preparing a graphic element offscreen and then copying to the screen can be use-
ful, particularly if the graphic is complex or is used repeatedly. For example, if

you want to display a complicated shape several times, you could draw it once
into an offscreen buffer and then copy it to different locations in the window. By
drawing the graphic once and copying it, you can display the graphics more
quickly. Using offscreen buffers can also improve performance and reduce flick-
ering in animation effects.

Thejava.awt package facilitates the use of offscreen buffers by letting you draw
to anImage object the same way that you draw to a window. All of the Java 2D

API rendering features can be used when drawing to an offscreen images. To copy
an offscreen drawing to the screen, you simply caltith@Image method’

The newBufferedImage class allows you to directly manipulate the pixels in an
image. It also provides more flexibility in the data layout and in the color model
associated with the imageufferedImage can be used to create an image that
can be efficiently blitted to a graphics device.

Offscreen buffers are often used for animation. For example, you could use an off-
screen buffer to draw an object once and then move it around in a window. Simi-

7 Actually, you can draw it to another offscreen buffer just as easily. Some applications use two
(or more) offscreen buffers to compose a complete drawing before copying it to a window.

Imaging 37

larly, you could use an offscreen buffer to provide feedback as a user moves a
graphic using the mouse. Instead of redrawing the graphic at every mouse loca-
tion, you could draw the graphic once to an offscreen buffer, and then copy it to
the mouse location as the user drags the nfouse.

RO Window |
Wl Lbitalpha_

Figure 5-4 Using an offscreen buffer

Figure 5-4 demonstrates how a program can draw to an offscreen image and then
copy that image into a window multiple times. The last time the image is copied,

it is transformed. Note that transforming the image instead of redrawing the
graphic with the transformation might produce unsatisfactory results.

A BufferedImage object can contain an alpha channel, just like any other image.

In situations like the one illustrated in Figure 5-4, a 1-bit deep alpha channel is
sufficient to distinguish the painted areas from the unpainted areas. The mask
allows the image to blend with graphics that have already been painted (in this
case, a green rectangle). In other situations, you might want a deeper alpha chan-
nel so you can manipulate the level of transparency in the image. You can control
the alpha characteristics oBafferedImage object by selecting an alpha channel

of the appropriate depth, manipulating the data in the alpha channel, and changing
the composite mode in tlieaphics2D object used to draw ttBafferedImage.

Often, it is important to create an instance8wfferedImage whose color space,
depth, and pixel layout exactly match the window into which you are drawing.
This allowsdrawImage to do its job quicklyGraphicsConfiguration provides

8- Itis up to the programmer to “erase” the previous version of the image before making a new
copy at a new location. This can be done by redrawing the background or copying the
background from another offscreen buffer.

38

Java 2D API, Version 0.95

convenience methods that automatically create buffered images in the right for-
mat. You can also query the graphics configuration associated with the graphics
device on which the window resides to get the information you need to construct a
compatibleBufferedImage object. (See the section “GraphicsConfiguration” on
page 39).

The same mechanism can be extended to a variety of output devices, including
printers. For example, you could createuéferedImage that is compatible with

a specific printer, resulting in an image whose color space, depth and pixel layout
allow it to be drawn efficiently to that printer.

6.0 Graphics Devices

All graphics devices, such as a monitors and printers, are represented by a
GraphicsDevice object that encapsulates a device’s capabilities and attributes.
The Java 2D API allows you to query the attributes of the environment in which
your application is running through tlieaphicsEnvironment class and these
GraphicsDevice objects and their associatechphicsConfiguration objects.

6.1 Graphics Environment

You can access information about the overall operating environment through the
GraphicsEnvironment class, which:

 Provides a list ofiraphicsDevice objects that represents all attached output
devices

« Encapsulates the text capabilities of a system

You can examine the list of graphics devices and query the associated graphics
configurations to determine the capabilities and properties of attached devices.
Normally, you don’t need to access this information.

GraphicsEnvironment also allows you to search for fonts based on properties
such as the font’'s name, family, and style. You can also use it to list all available
fonts. This might be useful, particularly if you are implementing a font panel or
font menu. Font searching and enumeration capabilities are basedrontibe-
scriptor class, which is discussed in “Text Handling” on page 20.

Graphics Devices 39

6.2 GraphicsDevice

The Java 2D API uses tleeaphicsDevice class to represent an actual output
device. Typically, you do not need to access this ctasphicsDevice objects
are bound to actual output devices, such as printers or windows.

EachGraphicsDevice has a list ofiraphicsConfiguration objects associated

with it. In the X-windows environment, different windows on the same monitor
can have different pixel layouts—a single monitor can provide multiple visuals
with different pixel configurations. For example, one might be 8-bit pseudo-color
and another might be 24-bit direct color. When you lisGit#phicsConfigura-

tion objects for a graphics device, there is one for each supported visual. In the
MacOS and Windows environments, every pixel in every window on a monitor
has the same configuration.

You can get a reference t@eaphicsDevice object from:

e GraphicsEnvironment, which maintains a list afraphicsDevice objects
that corresponds to every device that the Java 2D API knows about (one for
every monitor or printer available on the system).

* GraphicsConfiguration, which defines a method that returns the
GraphicsDevice associated with the configuration. You can get the
GraphicsConfiguration associated with @raphics2D object by calling
getDeviceConfiguration.

6.3 GraphicsConfiguration

To get a list of th&raphicsConfiguration objects associated with a particular
GraphicsDevice, you can caltraphicsDevice.getConfigurations. You can
guery aGraphicsConfiguration to determine the capabilities ofiaaphicsDe-
vice and creatBufferedImage objects that are optimized for use with that con-
figuration of the device.

You can also retrieve th@1orMode1 object and the default and normalizing
Transforms for the configuration. TheolorModel maintains aolorSpace

object that characterizes the color output capabilities of the device and is used to
match colors during the rendering process; see “Color Classes” on page 27. The
Transform objects define how to transform from two convenient user coordinate
spaces into the device coordinate space.

Figure 6-1 illustrates how@raphicsDevice object is related to other key 2D
objects.

Java 2D API, Version 0.95

Graphics2D Graphics Configuration

Info about where Represents the
we are drawing configuration of an
and the drawing output device such as

methods awindow in a
themselves particular x11 visual
or screen depth.

createCompatiblelmage|

GraphicsConfiguration

Buffered Image

GraphicsDevice

ColorModel

Represents a physi-

Capalbilities, etc. cal output device.

Defines the layout
and composition of
pixels in an image

GraphicsDevice

Type

ID String

ICC_ColorSpace

ColorModel
bpp, colorMap, etc. Data and methods
to convert a color
to and from RGB &
ColorSpace CIE XYZ

Device

characterization info
from the ICC profile

Figure 6-1 Graphics configuration relationships

	Contents
	1.0 Java 2D API Fundamentals
	1.1 Drawing
	1.1.1 Basic Drawing Process
	1.1.2 Drawing with the Java 2D API
	1.1.3 Managing Complex Drawing Operations
	1.1.4 Performing Hit Detection

	1.2 Text
	1.2.1 Drawing Text

	1.3 Images
	1.3.1 Transparency and Images

	1.4 Summary

	2.0 Rendering
	2.1 Rendering Pipeline
	2.2 Controlling the Rendering Quality
	2.3 Transformations
	2.3.1 Using Affine Transformations
	2.3.2 Creating Custom Transformations
	2.3.3 Transformation Pipeline

	2.4 Creating a New Type of Path
	2.5 Stroke
	2.6 Paint
	2.7 Composite
	2.7.1 Managing Transparency
	2.7.2 Defining Custom Composition Rules

	3.0 Text and Fonts
	3.1 Text Handling
	3.1.1 Specifying and Obtaining Font Information
	3.1.2 Accessing Text Paths
	3.1.3 Transforming Text

	3.2 Advanced Layout

	4.0 Color Management
	4.1 Specifying Colors
	4.2 Color Classes
	4.2.1 Color
	4.2.2 ColorModel
	4.2.3 ColorSpace
	4.2.4 ICC_Profile and ICC_ColorSpace

	5.0 Imaging
	5.1 Image Processing and Enhancement
	5.1.1 Processing an Image

	5.2 Using Offscreen Buffers
	5.2.1 Color Models
	5.2.2 Tiles
	5.2.3 Channels
	5.2.4 Using a BufferedImage as an Offscreen Cache

	6.0 Graphics Devices
	6.1 Graphics Environment
	6.2 GraphicsDevice
	6.3 GraphicsConfiguration

