
Java Speech Grammar Format
Specification
Version 0.5 — August 28, 1997

Beta Draft
Grammars are used by speech recognizers to determine what the
recognizer should listen for and to describe what utterances a user
may say. The Java™ Speech Grammar Format is a platform-
independent, vendor-independent textual representation of
grammars in the flavor of Java that is readable and editable by both
developers and computers.

© 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign patents, or pending
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable, perpetual, worldwide limited
license (without the right to sublicense) under SUN's intellectual property rights that are essential to practice this
specification. This license allows and is limited to the creation and distribution of clean-room implementations of this
specification that (i) are complete implementations of this specification, (ii) pass all test suites relating to this specification that
are available from SUN, (iii) do not derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems, Sun Microsystems Computer
Corporation, the Sun logo, the Sun Microsystems Computer Corporation logo, Java and HotJava are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX ® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. All other product names mentioned herein are the trademarks of their respective
owners.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME

 .
 . . . 2

 .
. . . . 2
 . . . 3
 . . . 5
 . . . 7

. . . . 7
. . . 7
. . . 8

 . . . 9
. . . 9
. . 10
. . 12
 . . 13
 . . 14
. . . 15
 . . 15

. .

. . 16
 . . 18
Contents
Notes to Reviewers

Contributions

Java Speech Grammar Format Specification

1.0 Introduction .. . 1
1.1 Related Documentation .

2.0 Definitions .. . 2
2.1 Grammar Names and Package Names.
2.2 Rule Names .
2.3 Tokens .
2.4 Comments .

3.0 Grammar Header .
3.1 Grammar Name Declaration .
3.2 Import.

4.0 Grammar Body. .
4.1 Rule Definitions .
4.2 Composition.
4.3 Grouping .
4.4 Unary Operators. .
4.5 Tags .
4.6 Precedence .
4.7 Recursion .

5.0 Examples . 16
5.1 Example 1: Simple Command and Control .
5.2 Example 2: Resolving Names .
iii

-

iv

s

n

7.

rmat

are
ates
e
ly it

h
to
d

listed
Java
Notes to Reviewer

This document describes the Java™ Speech Grammar Format (JSGF) and
explains how it can be used to define cross-platform, cross-vendor recognitio
grammars. This specification is an extract from the Java Speech Application
Programming Interface (JSAPI) specification that will be released later in 199
When the full specification is released, the Java Speech Grammar Format
specification will be included as part of the programming guide.

Review Comments

We are very interested in your input concerning the Java Speech Grammar Fo
specification. Send your comments to:

javaspeech-comments@sun.com

Please be sure to include the version number and date of the document you
reviewing with your comments. We anticipate releasing a small number of upd
to our documentation during the review period. These updates will incorporat
responses to comments. The earlier we receive your feedback, the more like
will be taken into consideration for the next update.

Because of the high level of interest in the Java Speech API, the Java Speec
Grammar Format and the Java Synthesis Markup Language, we are unable
respond directly to individual comments or questions, but we will carefully rea
and evaluate all of the input we receive.

JSGF and JSAPI

This specification for the Java Speech Grammar Format defines a textual
representation of the recognition grammars but does not address the issues
below. These programmatic issues are covered in the documentation for the
Speech API which is expected to be released later in 1997.
v

Java Speech Grammar Format

vi

izer,
ent

ed

ed to

ort
the

ppear
res

t you
• Mechanisms for loading and deleting of grammars in a speech recogn
activation of grammars for recognition, and other grammar managem
functionality.

• Mechanisms for receiving results of recognition for a grammar and
processing of those results.

• Specific error handling behavior for undefined and ambiguously defin
rule references.

• Vocabulary management such as provision of token pronunciations.

Issues for this Release

Many aspects of the Java Speech Grammar Format are fully specified. However,
some areas are still under development. Reviewers are especially encourag
provide feedback in these areas.

Specification Issues

The following areas in the Java Speech Grammar Format are either not yet
defined or are not fully defined in this version of the specification:

• A formal syntactic specification of JSGF.

• Format header: an optional header may be introduced to improve supp
for multi-lingual applications. It could define the JSGF version used in
document, the character encoding and possibly the language. e.g.
#jsgf 1.0 ISO-8859-1 en.us;

• “Pragma” facility for specifying grammar-specific parameters.

• Special symbols:
<NULL> and empty groups () [] that are skipped.
<GARBAGE> matching any spoken input for word and phrase spotting.
<UNSPEAKABLE> which cannot be matched to any speech.

• Unicode symbols with Java-style reference ‘\u003C’.

Plans for Future Releases

Sun and its partners are considering new capabilities and features that may a
in a future release of the Java Speech Grammar Format specification. Featu
that we are considering for future releases include:

• Codebase conventions for locating grammars as URLs.

Comments regarding the priority of these features, or other new features tha
would like to see, are appreciated.

e the

PI, the

d

Web Resources

To obtain information about the Java Speech API, see the web site at:

http://java.sun.com/products/java-media/speech/

To obtain information about other Java Media and Communications APIs, se
web site at:

http://java.sun.com/products/java-media/

Mailing Lists

Discussion lists have been set up for anyone interested in the Java Speech A
Java Speech Grammar Format specification, and the Java Synthesis Markup
Language. Thejavaspeech-announce mailing list will carry important
announcements about releases and updates. Thejavaspeech-interest
mailing list is for open discussion of the Java Speech API and the associated
specifications.

To subscribe to thejavaspeech-announce list or thejavaspeech-interest
list, send email withsubscribe javaspeech-announce or subscribe
javaspeech-interest or both in the message body to:

javamedia-request@sun.com

The javaspeech-announce mailing list is moderated. It is not possible to sen
email to that list.

To send messages to the interest list, send email to:

javaspeech-interest@sun.com

To unsubscribe from thejavaspeech-announce list or thejavaspeech-
interest list, send email withunsubscribe javaspeech-announce or
unsubscribe javaspeech-interest or both in the message body to:

javamedia-request@sun.com

Revision History

Version 0.5: First public Beta release.
vii

Java Speech Grammar Format

viii

logy

rch on
Contributions

Sun Microsystems, Inc. has worked in partnership with leading speech techno
companies to define the specifications for the Java Speech API and the Java
Speech Grammar Format (JSGF). These companies bring decades of resea
speech technology and experience in the development and use of speech
applications. Sun is grateful for the contributions of:

♦ Apple Computer, Inc.

♦ AT&T

♦ Dragon Systems, Inc.

♦ IBM Corporation

♦ Novell, Inc.

♦ Philips Speech Processing

♦ Texas Instruments Incorporated
ix

Java Speech Grammar Format

x

at

ser’s
rt

acy
 by

 is
ed in

trol

mail
ow
 with

ming
nts of
Java Speech Grammar Form
Specification

1.0 Introduction

Speech recognition systems provide computers with the ability to listen to a u
speech and determine what they say. Current technology does not yet suppo
unconstrained speech recognition: the ability to listen to any speech in any
context and transcribe it accurately. To achieve reasonable recognition accur
and response time, current speech recognizers constrain what they listen for
usinggrammars.

TheJava™ Speech Grammar Format (JSGF) defines a platform-independent,
vendor-independent way of describing one type of grammar, arule grammar (also
known as acommand and control grammar). It uses a textual representation that
readable and editable by both developers and computers, and can be includ
Java source code. The other major grammar type, thedictation grammar, is not
discussed in this document.

A rule grammar specifies the types ofutterances a user might say (a spoken
utterance is similar to a written sentence). For example, a simple window con
grammar might listen for “open a file”, “close the window”, and similar
commands.

What the user can say depends upon the context: is the user controlling an e
application, reading a credit card number, or selecting a font? Applications kn
the context, so applications are responsible for providing a speech recognizer
appropriate grammars.

This document defines the Java Speech Grammar Format. First, the basic na
and structural mechanisms are described. Following that, the basic compone
the grammar, thegrammar header and thegrammar body, are described. The
1

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

2

les of

izers

ormat
e
y the
 for

ntions
e Java
red to
6

rmat

e that
 the
grammar header declares thegrammar name and lists theimported rules and
grammars. The grammar body defines therules of this grammar as combinations
of speakable text and references to other rules. Finally, some simple examp
grammar declarations are provided.

1.1 Related Documentation

The following is a list of related documentation that may be helpful in
understanding and using the Java Speech Grammar Format.

The Java Speech Grammar Format has been developed for use with recogn
that implement the Java Speech API. However, it may also be used by other
speecch recognizers and in other types of applications.

Readers interested in the programmatic use of the Java Speech Grammar F
with the Java Speech API are referred to the technical documentation and th
Programmers Guide for the API. That guide is scheduled for public release b
end of 1997. Among other issues, those documents define the mechanisms
loading grammars into recognizers, methods for controlling and modifying
loaded grammars, error handling and so on.

The Java Speech Grammar Format has adopted some of the style and conve
of the Java Programming Language. There are dozens of books that describ
programming. Readers interested in a comprehensive specification are refer
The Java Language Specification, Gosling, Joy and Steele, Addison Wesley, 199
(GJS96).

Finally, like the Java Programming Language, the Java Speech Grammar Fo
is defined with the Unicode character set. The full specification is defined inThe
Unicode Standard, Version 2.0, The Unicode Consortium, Addison-Wesley
Developers Press, 1996 (Uni96).

2.0 Definitions

2.1 Grammar Names and Package Names

Each grammar defined by Java Speech Grammar Format has a unique nam
is declared in the grammar header. The structure of these names is either of
following:

packageName.grammarName

grammarName

Java Speech Grammar Format Specification

and

ses
 the

ules
has a

ter is
lude

l:

es.
The first pattern (package name + grammar name) is afull grammar name and the
second is asimple grammar name (grammar name only). Examples of full
grammar names and simple grammar names include:

COM.Sun.speech.apps.numbers

EDU.unsw.med.people

examples

The package name and grammar name have the same format as packages
classes in the Java programming language. A full grammar name is a dot-
separated list ofJava identifiers1 (see GJS96, §3.8 and §6.5).

The grammar naming convention also follows the naming convention for clas
in the Java Programming Language (see GJS96). The convention minimizes
chance of naming conflicts. The package name should be:

reversedDomainName . localPackaging

For example, forCOM.Sun.speech.apps.numbers , COM.Sun is the reversed
Internet domain name,speech.apps is the local package name to divide the
name space internally, and finallynumbers is the name of the grammar.

2.2 Rule Names

A grammar is composed of a set of rules that define what may be spoken. R
are combinations of speakable text and references to other rules. Each rule
uniquerule name. A reference to a rule is represented by the rule’s name in
surrounding <> characters (less-than and greater-than).

A legal rule name is similar to a Java identifier but allows additional extra
symbols. A legal rule name is an unlimited-length sequence of Unicode
characters matching the following2:

• Characters matching
java.lang.Character.isJavaIdentifierPart including the
Unicode letters and numbers plus other symbols.

• The following additional punctuation symbols:

1. A Java identifier is an unlimited-length sequence of Unicode characters. The first charac
a letter or one of a set of special symbols (including ‘$’ and ‘_’). Following characters inc
letters, numbers, the special symbols and other characters. Thejava.lang.Character
class defines methods to test identifiers and document the character sets in more detai
isJavaIdentifierStart andisJavaIdentifierPart .

2. The Java Speech API will define a method to test the set of legal characters in rule nam
3

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

4

re
mple,

g
i,
mes.

 use

r

+ - : ; , = | / \ () [] @ # % ! ^ & ~

Grammar developers should be aware of two constraints. First, rule names a
compared with exact Unicode string matches, so case is significant. For exa
<Name>, <NAME> and<name> are different. Second, whitespace3 is not permitted
in rule names.

The Unicode character set includes most writing scripts from the world’s livin
languages, so rule names can be written in Chinese, Japanese, Korean, Tha
European languages, and many more. The following are examples of rule na

<hello>

<Zürich>

<user_test>

<$100>

<1+2=3>

<παβ>

2.2.1 Qualified and Fully-Qualified Names

Although rule names are unique within a grammar, separate grammars may
the same rule name. A later section introduces theimport statement, which
allows one grammar to reference rules from another grammar. When two
grammars use the same rule name, a reference to that rule name may be
ambiguous.Qualified names andfully-qualified names are used to resolve these
ambiguities.

A fully-qualified rule name includes thefull grammar name and therule name.
For example:

<COM.sun.greetings.english.hello>

<COM.sun.greetings.deutsch.gutenTag>

A qualified rule name includes only thegrammar name and therule name and is a
useful shorthand representation. For example:

<english.hello>

<deutsch.gutenTag>

3. TheisWhitespace method of thejava.lang.Character class can be used to test fo
whitespace characters in the Unicode character set.

Java Speech Grammar Format Specification

ide

fines

rules

 to
t be

kage

 by

s

,

by
n the
The following conditions apply to the use of rule names:

• Qualified and fully-qualified rule names may not be used on the left s
of the definition of a rule.

• Import statements must use fully-qualified rule names.

• Local rules can be reference with qualified and fully-qualified names
using the form<localGrammarName.ruleName >.

2.2.2 Resolving Names

It is an error to use an ambiguous reference to a rule name. The following de
behavior for resolving references:

• Local rules have precedence. If a local rule and one or more imported
have the same name,<ruleName >, then a simple rule reference to
<ruleName > is a reference to the local rule.

• If two or more imported rules have the same name,<ruleName >, but
there is no local rule of the same name, then a simple rule reference
<ruleName > is ambiguous and is an error. These imported rules mus
referred to by their qualified or fully-qualified names.

• If two or more imported rules have the same name and come from
grammars with the same grammar name (but necessarily different pac
names), then a simple rule reference or qualified rule reference is
ambiguous and is an error. These imported rules must be referred to
their fully-qualified names.

• A reference by a fully-qualified rule name is never ambiguous.

2.3 Tokens

A token, sometimes called aterminal symbol, is the part of a grammar that define
what may be spoken by a user. Most often, a token is equivalent to aword. Tokens
may appear in isolation or in whitespace-separated sequences. For example

hello

konnichiwa

this is a test

open the directory

In Java Speech Grammar Format, a token is a Unicode sequence bounded
whitespace, by quotes or delimited by the other symbols that are significant i
grammar:
5

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

6

y

he
s:

r’s

 not

r a
bols.

 of
f
d

es.
; = | * + <> () [] {} /* */ //

A token is a reference to an entry in arecognizer’s vocabulary, often referred to as
the lexicon. The recognizer’s vocabulary defines thepronunciation of the token.
With the pronunciation, the recognizer is able to listen for that token.

Most recognizers operatemono-lingually, that is, listening for one language at an
given time. Similarly, their vocabulary will normally contain the words of one
language. Therefore, grammar definitions only contain tokens from a single
language and the interpretation of tokens is language specific.

Most recognizers have a comprehensive vocabulary for each language they
support. However, it is never possible to include 100% of a language. For
example, names, technical terms and foreign words are often missing from t
vocabulary. For tokens missing from the vocabulary, there are two possibilitie

• An application can add the token and pronunciation to the recognize
vocabulary to ensure consistent recognition.

• Good recognizers are able to guess the pronunciation of many words
in the vocabulary.

2.3.1 Quoted Tokens

A token does not need to be a word. A token may be a sequence of words o
symbol. Quotes can be used to surround multi-word tokens and special sym
For example:

the "New York" subway

"+"

A multi-word token is useful when the pronunciation of words varies because
the context. Multi-word tokens can also be used to simplify the processing o
results, for example, getting single-token results for “New York”, “Sydney” an
“Rio de Janeiro.”

Quoted tokens can be included in the recognizer’s vocabulary like any other
token. If a multi-word quoted token is not found in the vocabulary, then the
default behavior is to search for each space-separated token within the quot

2.3.2 Symbols and Punctuation

Most speech recognizers provide the ability to handle common symbols and
punctuation forms. For example, recognizers for English usually handle
apostrophes (“Mary’s”, “it’s”), hyphens (“new-age”), and periods (“Mr.”).

Java Speech Grammar Format Specification

vide
 likely

o”.
e

.

the
of

ts

ns,

arts:
There are, however, many textual forms that are difficult for a recognizer to
handle unambiguously. In these instances, a grammar developer should pro
tokens that are as close as possible to the way people will speak and that are
to be built into the vocabulary. The following are common examples.

• Numbers: “0 1 2” should be expanded to “zero one two” or “oh one tw
Similarly, “call 555 1234” should be expanded to “call five five five on
two three four.”

• Dates: “Dec 25, 1997” should be written as “December twenty fifth
nineteen ninety seven.”

• Special symbols: ‘&’ as “ampersand” or “and”, ‘+’ as “plus”, and so on

2.4 Comments

Comments may appear in both the header and body. The comment style of
Java Programming Language is adopted (see GJS96). There are two forms
comment.

Comments do not nest. Furthermore,// has no special meaning within commen
beginning with/* . Similarly, /* has no special meaning within comments
beginning with// .

Comments may appear anywhere in a grammar definition except within toke
quoted tokens, rule names, tags and weights.

In this version there is no special meaning to comments beginning with/** ,
unlike Java code in which this form signifies a documentation comment.

3.0 Grammar Header

A single file defines a single grammar. The definition grammar contains two p
thegrammar header and thegrammar body. The grammar header declares the
name of the grammar and may import rules from other grammars. The body
defines the rules of the grammar, some of which may be public.

/* text */ A traditional comment. All text between/* and*/ is
ignored.

// text A single-line comment. All the text from// to the end of a
line is ignored.
7

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

8

r. The

mar
ic

ly-

f all
ee
3.1 Grammar Name Declaration

The grammar’s name must be declared as the first statement of that gramma
format is either of the following:

grammar packageName.grammarName ;

grammar grammarName;

The naming of packages and grammars is described in the section onGrammar
Names and Package Names on page 2.

For example:

grammar COM.Sun.speech.apps.numbers;

grammar EDU.unsw.med.people;

grammar examples;

3.2 Import

The grammar header can optionally includeimport declarations. The import
declarations follow the grammar declaration and must come before the gram
body (the rule definitions). An import declaration allows one or all of the publ
rules of another grammar to be referenced locally. The format of the import
statement is one of the following

import < fullyQualifiedRuleName >;

import < fullGrammarName .*>;

For example,

import <COM.Sun.speech.app.index.1stTo31st>;

import <COM.Sun.speech.app.numbers.*>;

The first example import statement imports a single rule referenced by its ful
qualified rule name (the rule named<1stTo31st> from the grammar named
COM.Sun.speech.app.index).

The use of the asterisk in the second import statement requests the import o
public rules of thenumbers grammar. For example, if that grammar defines thr
public rules,<digits> , <teens> , <zeroToMillion>, then all three may be
referenced locally.

Java Speech Grammar Format Specification

.g.

e,

f

ition
ar

on,

d

An imported rule can be referenced in three ways: by its simple rule name (e
<digits>), by its qualified rule name (e.g.<numbers.digits>), or by its
fully-qualified rule name (<COM.Sun.speech.apps.numbers.digits>).

The name resolving behavior is defined earlier in this document inResolving
Names on page 5.

Note that even when an imported rule is referenced by its fully-qualified nam
the corresponding import statement for the grammar is required. (This differs
from the Java Programming Language.)

4.0 Grammar Body

The grammar body definesrules. The rule’s definition is a logical combination o
text that may be spoken, referred to astokens or terminals, andreferences to other
rules. A rule is defined once, and only once, in a grammar. The order of defin
of rules is not significant. (These properties differ from some linguistic gramm
formats.)

4.1 Rule Definitions

The patterns for defining a rule are:

<ruleName > = ruleDefinition ;

public < ruleName > = ruleDefinition ;

The rule name to be defined is followed by the equals sign, ‘=’, a rule definiti
and the closing semi-colon, ‘;’.

The simplest rule definitions arereferences to another rule or to a token. A
reference to another rule uses its rule name, its qualified name, or its fully-
qualified name. The following are examples defining the rule<x> by a simple rule
reference, by a fully-qualified rule reference, and as a token:

<x> = <y>;

<x> = <COM.acme.grammar.y>;

<x> = word;

As explained below, more complex rule definitions are built by the following
mechanisms:

• Composition of rule definitions as sequences of sub-rule definitions an
sets of alternative sub-rule definitions
9

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

10

th

the

ave

e

nce to

able

s

• Groupingusing parentheses and brackets

• Unary operators for repetition of rule definitions

• Attachment of application-specifictags

4.1.1 Public Rules

Any rule in a grammar may be declared as public. A public rule is defined wi
the pattern:

public < ruleName > = ruleDefinition ;

A public rule has three possible uses:

• It can beimported into another grammar so that it may be referenced in
rule definitions of that grammar.

• It can be used as anactive rule for recognition (i.e., a rule used by a
recognizer to determine what may be spoken).

• It can be referenced locally.

Without the public declaration, a rule is implicitly private and so can only be
referenced locally (in the grammar in which it is defined). Note that unlike the
Java Programming Language, the Java Speech Grammar Format does not h
keywords forprivate or protected .

4.2 Composition

4.2.1 Sequence

A rule definition can be a sequence of sub-rule definitions separated by whit
space. For example:

<where> = I live in Boston;

<statement> = this <object> is <OK>;

Each entry in the sequence must be spoken in order for the complete seque
be spoken. In the first example, to say the rule<where> , the speaker must say the
words “I live in Boston” in that exact order. The second example mixes speak
tokens with references to other rules,<object> and<OK>. To say the rule
<statement> , the user must say “this” followed by something which matche
<object> , then “is”, and finally something matching<OK>.

Java Speech Grammar Format Specification

 in

hed
ative
hes,

n.

f
 is

ight
The items in a sequence may be any legal rule definition. This includes the
structures described below for alternatives, groups and so on. The items are
separated by whitespace characters.

4.2.2 Alternatives

A rule definition can be aset of alternative rule definitions separated by ‘|’
symbols (vertical bar) and optionally by whitespace. For example:

<name> = Michael | Yuriko | Mary | Duke | <otherNames>;

To say the rule<name>, the speaker must say one, and only one, of the items
the set of alternatives. For example, a speaker could say “Michael”, “Yuriko”,
“Mary”, “Duke” or anything that matches the rule<otherNames> . However, the
speaker could not say “Mary Duke”.

Sequences have higher precedence than alternatives. For example,

<country>= South Africa | New Zealand | Papua New Guinea;

is a set of three alternatives, each naming a country.

4.2.3 Weights

Not all ways of speaking a grammar are equally likely. Weights may be attac
to the elements of a set of alternatives to indicate the likelihood of each altern
being spoken. A weight is a floating point number surrounded by forward slas
e.g. /3.14/. The higher the weight, the more likely that an entry will be spoke
The weight is placed before each item in a set of alternatives. For example:

<size> = /10/ small | /2/ medium | /1/ large;

<color> = /0.5/ red | /0.1/ navy blue | /0.2/ sea green;

<action> = please (/20/save files |/1/delete all files);

The weights should reflect the occurrence patterns of the elements of a set o
alternatives. In the first example, the grammar writer is indicating that “small”
10 times more likely to be spoken than “large” and 5 times more likely than
“medium.”

The following conditions must be met when specifying weights:

• If a weight is specified for one entry in a set of alternatives, then a we
must be specified for every alternative (the “all or nothing rule”).

• Weights are floating point numbers that could be passed to the
java.lang.Float.valueOf(String) method. For example, 56,
11

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

12

hes.

 can
ist.

t
ned

’.

g a

 or

e

0.056, 3.14e3, 8f.

• Only a floating point number and whitespace is allowed within the slas

• Weights must be zero or greater. A zero weight indicates that the entry
never be spoken, as if the entry was not included in the alternatives l
(Zero weights are useful in developing grammars.)

• At least one non-zero positive weight is required.

Appropriate weights are difficult to determine and guessing weights does no
always improve recognition performance. Effective weights are usually obtai
by study of real speech and textual data.

4.3 Grouping

4.3.1 (Parentheses)

Any rule definition may be explicitly grouped using matching parentheses ‘()
Grouping has high precedence and so can be used to ensure the correct
interpretation of rules. It is also useful for improving clarity. For example:

<action> = please (open | close | delete);

The following example shows a sequence of three items, with each item bein
set of alternatives surrounded by parentheses to ensure correct grouping.

<command> = (open | close) (windows | doors)
(immediately | later);

To say something matching<command>, the speaker must say one word each
from the three sets of alternatives: for example, “open windows immediately”
“close doors later”.

If a grouping surrounds a single definition, then the entity is defined to be a
sequence of one item (not an alternative with only one option). For example:

(start)

(<end>)

4.3.2 [Optional Grouping]

Square brackets may be placed around any rule definition to indicate that th
contents are optional. In other respects, it is equivalent to parentheses for
grouping and has the same precedence.

For example,

Java Speech Grammar Format Specification

s

ry

se of

ase

 be
<polite> = please | kindly | oh mighty computer;

public <command> = [<polite>] don’t crash;

allows a user to say “don’t crash” and to optionally add one form of politenes
such as “oh mighty computer don’t crash” or “kindly don’t crash”.

4.4 Unary Operators

There are threeunary operators in the Java Speech Grammar Format. The una
operators share the following features:

• They attach to the immediately preceding rule definition

• They have high precedence

• Only one unary operator can be attached to any rule definition

4.4.1 * Kleene Star

A rule definition followed by the asterisk symbol indicates that the immediate
preceding rule definition may be spokenzero or more times. The asterisk symbol
is known as the Kleene star (after Stephen Cole Kleene, who originated the u
the symbol). For example,

<command> = <polite>* don’t crash;

allows a user to say things like “please don’t crash”, “oh mighty computer ple
please don’t crash”, or to ignore politeness: “don’t crash”.

As a unary operator, this symbol has high precedence. For example,

<song> = sing New York *;

matches “sing New York”, “sing New” and “sing New York York York”, but not
“sing New York New York”. Quotes or parentheses can be used to modify the
scope of the * operator. For example,

<song> = sing (New York) *;

does match “sing New York New York”.

4.4.2 + Plus Operator

A rule definition followed by the plus symbol indicates the rule definition may
spokenone or more times. For example,

<command> = <polite>+ don’t crash;
13

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

14

on’t

n of
e

uence
ing

 and

e

 a tag
requires at least one form of politeness. So, it allows a user to say “please d
crash,” but “don’t crash” is not legal.

The precedence of + is the same as *.

4.5 Tags

Tags provide a mechanism for grammar writers to attach application-specific
information to rule definitions. These tag attachments do not affect recognitio
a grammar. Instead, the tags are attached to the result object returned by th
recognizer to the application. Applications may use these tags to simplify or
enhance the processing of recognition results.

A tag may be attached to any part of a rule definition: to a token, to a rule
reference, to a sequence or to a set of alternatives. When attaching to a seq
or set of alternatives, parentheses ‘()’ should be used to enclose the item be
tagged.

The tag is a string delimited by curly braces ‘{}’. The tag must immediately
follow the item being tagged (whitespace is allowed). For example:

<rule> = <action>{tag in here};

<command>= please (open {OPEN} | close {CLOSE}) the file;

<country> = Australia | United States {USA} |
America {USA} | (U S of A) {USA};

As a unary operator, tag attachment has higher precedence than sequences
alternatives. For example, in

<action> = book | magazine | newspaper {thing};

the “thing” tag is attached only to the “newspaper” token. Parentheses may b
used to modify tag attachment:

<action> = (book | magazine | newspaper) {thing};

Also, since only one unary operator may be attached to a rule definition (and
is a unary operator), the following are not permitted:

<badRule> = <action> {tag1} {tag2};

<badRule> = <action> * {tag2};

<badRule> = <action> {tag1} +;

With the addition of parentheses, the following is legal:

<OKrule> = (<action> *) {tag};

Java Speech Grammar Format Specification

o the

 same
s the

 the
:

uote

tem
r to
4.5.1 Using Tags

Tags simplify the writing of applications by simplifying the processing of
recognition results. The content of tags, and the use of tags are entirely up t
discretion of the developer. One important use of tags is in internationalizing
applications. The four following examples are rule definitions from four
grammars used for four separate languages. The application would load the
grammar for the language spoken by the user, but the tags would remain the
across all languages and thus simplify the application software that processe
results.

In the English grammar:

<GoodMorning>= (howdy | good morning) {hi};

In the Japanese grammar:

<GoodMorning>= (ohayo | ohayogozaimasu) {hi};

In the German grammar:

<GoodMorning>= (guten tag) {hi};

In the French grammar:

<GoodMorning>= (bon jour) {hi};

4.6 Precedence

The following list defines the relative precedence of syntactic components of
Java Speech Grammar Format. The list is from highest to lowest precedence

1. A string started with the quote symbol continues until the matching q
symbol.

2. ‘()’ parentheses for grouping and ‘[]’ for optional grouping.

3. The unary operators (‘+’, ‘*’) and tag attachments apply to the tightest i
immediately preceding them. To apply them to a sequence o
alternatives, use ‘()’ or ‘[]’ grouping.

4. Sequences of rule definitions.

5. ‘|’ separated set of alternatives.
15

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

16

ol
n
at

 of

nd

f a

 is

ome
 not

 that
4.7 Recursion

Recursion is the definition of a rule in terms of itself. Recursion is a powerful to
that enables representation of many complex grammatical forms that occur i
spoken languages. Recognizers supporting the Java Speech Grammar Form
allow right recursion. In right recursion, the rule refers to itself as the last part
its definition. For example:

<command> = <action> | (<action> and <command>);

<action> = stop | start | pause | resume | finish;

allows the following commands: “stop”, “stop and finish”, “start and resume a
finish”.

Nested right recursion is also permitted. Nested right recursion is a definition o
rule that references another rule that refers back to the first rule with each
recursive reference being the last part of the definition. For example,

<X> = something | <Y>;

<Y> = another thing <X>;

Nested right recursion may occur across grammar definitions. However, this
strongly discouraged, as it introduces unnecessary complexity and potential
maintenance problems.

Any right recursive rule can be re-written using unary operators, specifically
Kleene star ‘*’ and the plus operator ‘+’. For example, the following rule
definitions are equivalent:

<command> = <action> | (<action> and <command>);

<command> = <action> (and <action>) *;

Although re-write using ‘+’ and ‘*’ is equivalent, right recursive grammars are
permitted because they allow simpler and more elegant representations of s
grammars. Other forms of recursion (left recursion, embedded recursion) are
supported because this type of re-write cannot be guaranteed.

5.0 Examples

By combining simple rules together, it is possible to build complex grammars
capture what users can say. The following are examples of grammars with
complete headers and bodies.

Java Speech Grammar Format Specification

t
tion

ghts
5.1 Example 1: Simple Command and Control

This example shows two basic grammars that define spoken commands tha
control a window. Optional politeness is included to show how speech interac
can be made a little more natural and conversational.

/*** Header ***/
grammar COM.acme.politeness;

/*** Body ***/
public <startPolite> = please | kindly | could you |

oh mighty computer;
public <endPolite> = please | thanks | thank you;

Thepoliteness grammar is not useful on its own but is imported into the
commands grammar to add the conversational style.

/*** Header ***/
grammar COM.acme.commands;
import <COM.acme.politeness.startPolite>;
import <COM.acme.politeness.endPolite>;

/*** Body ***/
// e.g. “please move the window”
public <basicCommand> = <startPolite>* <command>

[<endPolite>];

// e.g. “open the file”
<command> = <action> [the | a] <object>;
<action> = /10/ open |/2/ close |/1/ delete |/1/ move;
<object> = window | file | menu;

Thecommands grammar defines a singlepublic rule,<basicCommand> , which
is composed of two imported rules,<startpolite> and<endPolite> , and
three private rules,<command>, <action> and<object> . Both the<action>
and<object> rules are sets of alternative words and the actions list has wei
that indicate that “open” is more likely than the others. The<command> rule
defines a sequence in which<action> is followed optionally by “the” or “a” and
always by an<object> .
17

Java Speech Grammar Format Specification – Version 0.5 – August 28, 1997

18

r an
rt
ants

l

Because<COM.acme.commands.basicCommand> is public, it can be made
active for recognition. When it is active, users may say commands such as:

• “open a window”

• “close file please”

• “oh mighty computer please open a menu”

5.2 Example 2: Resolving Names

The following example grammar illustrates the use of fully-qualified names fo
application that deals with clothing. The two imported grammars define impo
rules regarding pants and shirts, including the lists of colors that shirts and p
may have. The local<color> rule is a combination of the imported color lists.
Because a reference to<color> is ambiguous (it could come from either the
pants or shirts grammar), qualified or fully-qualified names are required.

grammar COM.acme.selections;

import <COM.acme.pants.*>;

import <COM.sun.shirts.*>;

<color> = <COM.acme.pants.color> |
<COM.acme.shirts.color>;

public <statement> = I like <color>;

The reference to<color> in the last definition is not ambiguous: because loca
rules have precedence over imported rules, it refers to the locally-defined
<color> rule. In the definition of the local<color> rule, qualified names could
have been used as they would be unambiguous references: that is,

<color> = <pants.color> | <shirts.color>;

	Java Speech Grammar Format Specification
	Java Speech Grammar Format Specification
	1.0 Introduction
	1.1 Related Documentation

	2.0 Definitions
	2.1 Grammar Names and Package Names
	2.2 Rule Names
	2.2.1 Qualified and Fully-Qualified Names
	2.2.2 Resolving Names

	2.3 Tokens
	2.3.1 Quoted Tokens
	2.3.2 Symbols and Punctuation

	2.4 Comments

	3.0 Grammar Header
	3.1 Grammar Name Declaration
	3.2 Import

	4.0 Grammar Body
	4.1 Rule Definitions
	4.1.1 Public Rules

	4.2 Composition
	4.2.1 Sequence
	4.2.2 Alternatives
	4.2.3 Weights

	4.3 Grouping
	4.3.1 (Parentheses)
	4.3.2 [Optional Grouping]

	4.4 Unary Operators
	4.4.1 * Kleene Star
	4.4.2 + Plus Operator

	4.5 Tags
	4.5.1 Using Tags

	4.6 Precedence
	4.7 Recursion

	5.0 Examples
	5.1 Example 1: Simple Command and Control
	5.2 Example 2: Resolving Names

