
September 16, 1997
JavaBeans Activation
Framework Specification
Draft 3

Bart Calder, Bill Shannon

This is a draft of the JavaBeans Activation
Framework Specification, a proposed data
typing and registry technology that will be
released as a Java Standard Extension.
eans
 was
s fall
reating

ta, a
od for

enta-

evel-
c-

a

1.0 Overview

JavaBeans is proving to be a popular technology. As more people embrace JavaB
and Java some of the environment’s shortcomings are brought to light. JavaBeans
meant to satisfy needs in builder and development environments but its capabilitie
short of those needed to deploy stand alone components as content editing and c
entities.

Missing from JavaBeans and Java as a whole is a consistent strategy for typing da
method for determining the supported data types of a software component, a meth
binding typed data to a component and some of the related architecture and implem
tion that supports these features.

Presumably with these pieces in place, a JavaBeans based component could be d
oped that provides helper application like functionality in a web browser, added fun
tionality to an office suite, or a content viewer in a Java based network computer
environment.

2.0 Goals

This document has the goal of describing a proposal for a Java implementation of
framework to provide the following services:

• A service to determine the type of arbitrary data.

• A service to encapsulate access to data.

• A service to discover the operations available on a particular type of data.
1 of 19

Architectural Overview

xten-

sup-
t
cus of

ram

ndler
rface
e

sents
pe of
m,

pera-
• A service to instantiate the correct software component that corresponds to the
desired operation on a particular piece of data

This functionality will be packaged as a JDK 1.1.x and later compatible standard e
sion.

3.0 Architectural Overview

There already exists a fair amount of support in JDK 1.1 (including JavaBeans) to
port a modest activation framework and the intention is to leverage as much of tha
existing technology as possible. The integration of these disparate pieces is the fo
this effort.

A diagram of the overall architecture is above. Note that the framework in the diag
is not bound to a particular application.

3.1 DataHandler

The object in the center of diagram is a class called the DataHandler. The data ha
provides a consistent interface for the other subsystems to clients that wish to inte
with this framework. The top of the diagram shows two ways arbitrary data could b
introduced into the system, as a file and as a collection of bits.

3.2 DataSource

Data is encapsulated in an object implementing the DataSource interface which pre
both a stream providing access to the data, and a String representing the MIME ty
the data. Classes could be implemented for common data sources (web, file syste
IMAP, ftp etc.). The DataSource interface could also be extended to allow per data
source user customizations. Once the DataSource is set in the DataHandler, the o
tions available on that data can be determined.

DataHandler Command
Map

Command
Object

DataSource DataContentHandler

Framework
Client
2 of 19 JavaBeans Activation Framework Specification Draft 3

Using The Framework

ter-
o
ly a
a list
ple-

l for
hese

inter-

he
ver-
t
ro-

he
rame-

hat

erate
er
ng
ial-
 per-
s the

m
ple-
urn to
IME

riate
va-
akes
3.3 CommandMap

The CommandMap provides a service that allows consumers of its interfaces to de
mine the ‘commands’ available on a particular MIME Type as well as an interface t
retrieve an object that can operate on an object of a particular MIME Type (effective
component registry). The Command Map would be able to generate and maintain
of available capabilities on a particular data type by a mechanism defined by the im
mentation of the particular instance of the CommandMap. The programming mode
the software components that implemented the commands would be JavaBeans. T
beans could use serialization, externalization or implement the ‘CommandObject’
face to allow the typed data to be passed to them.

Our goal is to provide a flexible and extensible framework for the CommandMap. T
CommandMap interface allows developers to develop their own solutions for disco
ing which commands are available on the system. A possible implementation migh
access the ‘types registry’ on the platform or use a server based solution. We will p
vide a simple default solution based on RFC 1343 (.mailcap) like functionality (see
“Planned Deliverables” below).

3.4 Command Object

CommandObjects are JavaBeans that implement the CommandObject interface. T
CommandObject interface allows beans that were implemented to be used in the f
work to access their DataSource and DataHandler objects directly.

4.0 Using The Framework

The intent is to make this infrastructure widely available for any Java ‘application’ t
needs this functionality. The ‘canonical’ consumer of this framework will access it
through the DataHandler (although the major subsystems are designed to also op
independently). The underlying data source will be associated with the DataHandl
when the DataHandler class is constructed. The DataHandler will get the data typi
information from the DataSource or set directly from the constructor. Once this init
ization step is complete, the consumer can request a list of commands that can be
formed on that data item. When a request for this list is made the DataHandler use
MIME type information of the data item to request a list of available commands fro
the CommandMap. The CommandMap has knowledge of available commands (im
mented as JavaBeans) and their supported data types. The CommandMap will ret
the DataHandler a subset of the full list of all commands based on the requested M
type and the semantics of the CommandMap implementation. Ultimately when the
application wishes to apply a command to some data it is done through the approp
DataHandler interface which uses the CommandMap to retrieve the appropriate Ja
Bean which is used to operate on the data. The container (user of the framework) m
the association between the data and the Bean.
JavaBeans Activation Framework Specification Draft 3 3 of 19

Usage Scenarios

rame-

ical
 all
 that

file
uld

he

ata-
 under-
cess

con-
 each
uctor
Han-
pro-
e
ir

user,
able
5.0 Usage Scenarios

This scenario is meant to provide the reader with a concrete example of how this f
work might be used. The example application is a file system viewer in the spirit of
CDE’s ‘dtfile’ or similar to the Windows 95 Explorer. The basic functionality of the
application is to present the user with a display of the available files. This hypothet
application has a function like CDE’s dtfile or Explorer’s ‘right mouse’ menu where
operations that can be performed on a data item are exposed in a popup menu for
item.

A typical user would use the application to view a directory of files. Upon finding a
of interest, the user could click on it which would bring up a popup menu which wo
list the available operations on that file. Operations commonly implemented would
include ‘edit’, ‘view’ and ‘print’. Selecting the ‘view’ operation for instance would
cause the document to be opened in the appropriate viewer.

5.1 Scenario Architecture

The description of the application will be broken down into three discrete steps in t
interest of clarity:

• Initialization: Application constructs a view of the file system.

• Get Command List: Application presents command list for a data item.

• Perform Command: Application performs command on a data object.

5.2 Initialization

One of the interfaces mentioned below is the ‘DataSource’ object. Recall that the D
Source object encapsulates the underlying data object in a class that abstracts the
lying data storage mechanism and presents its consumers with a common data ac
and typing interface. The file viewer application would query the file system for its
tents. For each file in the directory, a DataSource object would be instantiated. For
DataSource object a DataHandler is instantiated with the DataSource as its constr
argument. A DataHandler can not be instantiated without a DataSource. The Data
dler object provides the client application with access to the CommandMap which
vides a service that enables access to commands that can operate on the data. Th
application would maintain a list of the DataHandler objects and query them for the
names and icons to generate the display.

// for each file in the directory:
File file = new File(file_name);
DataSource ds = new FileDataSource(file);
DataHandler dh = new DataHandler(ds);

5.3 Getting the Command List

Once the application has been initialized and the files have been presented to the
the user can click on a file which will bring up a popup menu that displays the avail
4 of 19 JavaBeans Activation Framework Specification Draft 3

Usage Scenarios

the

e list
er is

ppro-
nd and
xter-
from
 (like
ugh
d doc-
t
t the

here
 creat-
n

operations on that file. The application implements this functionality by requesting
list of available commands from the DataHandler object associated with a file. The
DataHandler uses the MIME Type of the data (which it gets from the DataSource
object) to query the CommandMap for operations that are available on that type. Th
can be interpreted and presented to the user in the form of a popup menu. The us
now free to select one of the operations from that list.

// get the command list for an object
BeanInfo cmdInfo[] = dh.getPreferredCommandList();

PopupMenu popup = new PopupMenu(“Item Menu”);

// populate the popup with available commands
for(i = 0; i < cmdInfo.length; i++)
 popup.add(cmdInfo[i].getDisplayName());

// add and show popup
add(popup);
popup.show(x_pos, y_pos);

5.4 Performing a Command

After the user has selected a command from the popup, the application uses the a
priate BeanInfo class to retrieve the bean that corresponds to the selected comma
associates the data with that bean (using the appropriate method (DataHandler, E
nalization etc.). Some CommandObjects (viewers for instance) will be subclassed
java.awt.Component and will require that they are given a parent container. Others
a default print Command) may not present a UI. This allows them to be flexible eno
to function as stand alone viewer/editors, or perhaps as components in a compoun
ument system. The ‘application’ is responsible for providing the proper environmen
(containment, life cycle, etc.) for the CommandObject to execute in. We expect tha
requirements will be lightweight (not much beyond JavaBeans containers and AWT
containment for visible components).

// get the command object
BeansDescriptor bd = cmdInfo[cmd_id].getBeanDescriptor();
Object cmdBean = java.beans.Beans.instansiate(
 null,
 bd.getBeanClass().getName()
);
if(cmdBean instanceof javax.activation.CommandObject)
 cmdBean.setDataHandler(dh);
else
 ... // use serialization/externalization where appropriate

my_awt_container.add((Component)cmdBean);

5.5 An Alternative Scenario

The first scenario we view as the ‘canonical’ case. There are also circumstances w
the application has already created Java Objects to represent its data. In this case
ing an in memory instance of a DataSource that converted an existing object into a
JavaBeans Activation Framework Specification Draft 3 5 of 19

Proposed Interfaces

en-
ld be
an-

s other
mers
 con-
ble
 in

e
fined.

else-
derly-

ta-
 for
n

 one
e
nsible
echa-

g web
InputStream would at best be an inefficient use of system resources and could pot
tially result in a loss of data fidelity. In these cases an instance of DataHandler cou
instantiated with the DataHandler(Object obj, String mimeType) constructor. DataH
dler implements Transferable so the consuming beans can request representation
than InputStreams. The DataHandler will have to construct a DataSource for consu
that request it. The DataContentHandler mechanism will be extended to also allow
version from Objects to InputStreams. The following is another example of a possi
use of the framework. In this scenario a data base front end provides query results
terms of Java Objects.

 /**
 * Get the viewer to view my query results:
 */
 Component getQueryViewer(QueryObject qo) {
 String mime_type = qo.getType();
 Object q_result = qo.getResultObject();
 DataHandler my_dh = new DataHandler(q_result, mime_type);

 return (Component)DataHandler.getBean(
 my_dh.getCommand(“view”));
 }

6.0 Proposed Interfaces

Based on the description of the overall architecture of this framework along with th
diagram of that framework it is apparent that a number of interfaces need to be de
This section will describe these interfaces.

6.1 DataSource

The data source interface is used by the DataHandler (and possibly other classes
where) to access the underlying data. The DataSource object encapsulates the un
ing data object in a class that abstracts the underlying data storage and typing
mechanism and presents its consumers with a common data access interface. Da
Source objects will likely be provided for common sources (file systems and URL’s
instance) and application and system vendors will likely want to implement their ow
DataSources for things like IMAP servers, object databases, etc. There is a one to
correspondence between underlying data items (files for instance) and DataSourc
objects. Also note that the class that implements the DataSource interface is respo
for typing the data. In the case of a file system a DataSource might use a simple m
nism such as file extensions to type data while a DataSource that supports incomin
based data may actually examine the data stream to determine its type.

/**
 * abstract public class DataSource
 *
 */

public interface DataSource {
/**
6 of 19 JavaBeans Activation Framework Specification Draft 3

Proposed Interfaces

 data
 to
 a
the
lter-
taH-
 * Return an InputStream representation of the data
 *
 * This method will throw an exception if it cannot
 * create an InputStream (in cases where DataSource
 * was created with an object and not an input stream)
 *
 * @return an InputStream
 */

public InputStream getInputStream() throws Exception;

/**
 * Get the output stream, (write data back to source)
 * @return an OutputStream
 */
public OutputStream getOutputStream() throws Exception;

/**
 * Return the base MIME Type of this data
 * @return the MIME Type
 */
public String getContentType() throws Exception;

/**
 * Return the domain specific ‘name’ of this object. For

 * example, in the case of a file, return the filename.
 */

 public String getName();
}

6.2 DataHandler

The DataHandler is a class is used by clients of the framework to encapsulate the
source object and command object binding infrastructure. It encapsulates the type
command object binding service of the command map for applications. It provides
handle to the operations and data available on a data element. It also implements
Transferable interface. This allows applications and command objects to retrieve a
native representations (in the form of Java objects) of the underlying data. The Da
andler encapsulates the interface to the component repository and data source.

public Class DataHandler implements Transferable {
/**
 * DataHandler constructor (DataSource)
 *
 * Initializes the DataHandler class.
 */
public DataHandler(DataSource ds);

/**
 * DataHandler constructor (Object, MIME Type)
 *
 * Initializes the DataHandler class. This constructor
JavaBeans Activation Framework Specification Draft 3 7 of 19

Proposed Interfaces
 * is used when the application already has in memory
 * representations of the data in the form of Java Objects.
 */
public DataHandler(Object obj, String mime_type);

/**
 * Get the data source
 *
 * Returns the DataSource associated with this
 * instance of DataHandler. In the case of this DataHandler
 * being created using DataHandler(Object, String), the
 * DataHandler will return an instance of DataSource
 * that encapsulates the object.
 */
public DataSource getDataSource() throws Exception;

/**
 * Get the MIME type of the data
 */
public String getContentType();

/**
 * Get the InputStream (convenience)
 *
 * return a data stream for this Object, calls
 * this.getDataSource().getInputStream()
 */
public InputStream getInputStream();

/**
 * Get the OutputStream
 *
 * return an output stream for this object
 * this.getDataSource().getOutputStream()
 */
public OutputStream getOutputStream();

/**
 * (from Transferable)
 * Return the MIMETypes (DataFlavor) of this data
 *
 * The return value of this method is derived from the
 * the original type of this data as well as from the
 * possible Object types returned from a search of
 * the available DataContentHanders.
 * @return the DataFlavors
 */
public DataFlavor[] getTransferDataFlavors() throws Exception;

/**
 * from Transferable
 */
public boolean isDataFlavorSupported(DataFlavor
 flavor);
8 of 19 JavaBeans Activation Framework Specification Draft 3

Proposed Interfaces
public Object getTransferData(DataFlavor flavor) throws
 Exception;
/**
 * Set the CommandMap to use, DataHandler uses the
 * CommandMap from the getDefaultCommandMap static
 * method in CommandMap by default.
 */
public void setCommandMap(CommandMap cmdmap);

/**
 * Get preferred command list.
 *
 * Return an array of BeanInfo classes that describe
 * the preferred (depending on the semantics of the CommandMap)
 * beans that correspond to this objects MIME type. Usually
 * this method will return one BeanInfo for each command for
 * the mimeType. (calls directly into the CommandMap)
 */
BeanInfo[] getPreferredCommands(String mimeType) throws
 Exception;
/**
 * Get all the available commands for this type.
 *
 * Return an array of BeanInfo classes that describe
 * all the commands known to the CommandMap that
 * can accept this object’s MIME type.
 * (calls directly into the CommandMap)
 */
BeanInfo[] getAllCommands() throws Exception;

/**
 * Get the ‘default’ command ‘cmdName’ for this objects
 * MIME type.
 *
 * Attempts to find a command named ‘cmdName’ that
 * can accept the dh’s MIME type. (calls directly into
 * CommandMap)
 */
BeanInfo getCommand() thows Exception;

/**
 * Return an instantiated instance of the bean
 *
 * This convenience method uses the BeanInfo class to
 * instantiate an instance of the bean, using this
 * DataHandler instance to set the DataHandler property
 * in beans that implement CommandObject.
 */
Object getBean(BeanInfo binfo);
}

JavaBeans Activation Framework Specification Draft 3 9 of 19

Proposed Interfaces

ndler
echa-
d in

types
s to
ation
n-
m.

Map
sts
rieve
stored
ike
6.3 DataContentHandler

The DataContentHandler interface is used to write java objects used by the DataHa
to convert InputStreams into Java objects. Effectively the DataHandler uses this m
nism to implement the Transferable interface. DataContentHandlers will be specifie
data files to refer to particular MIME types. DataFlavors are used to represent the
accessible from a DataContentHandler. We also provide an interface that allows u
write DataContentHandlers that go in the opposite direction. For instance an applic
may have an Image Object they wish to access as a gif file. The image.gif DataCo
tentHandler would be used to convert the Image object into a gif format byte strea

// DataContentHandler
public interface DataContentHandler {
/**
 * return the DataFlavors for this DCH
 */
public DataFlavors[] getTransferDataFlavors() throws Exception;

/**
 * return the Transfer Data
 */
public Object getTransferData(DataFlavor df, DataSource ds);

/**
 * return the InputStream, throws an exception if it
 * cannot construct an InputStream from the object
 * type.
 */
public InputStream getInputStream(Object obj) throws Exception;

/**
 * construct an object from a byte stream
 * (similar semantically to previous method, we are
 * deciding which one to support)
 */
public void putByteStream(Object obj,
 OutputStream os)
 throws Exception;
}

6.4 CommandMap

Once the DataHandler has a MIME Type for the content, it can query the Command
for the operations, orcommands that are available to that type. The application reque
commands through the DataHandler (which in turn uses the CommandMap) to ret
the JavaBean associated with that command. Some or all of the command map is
in some ‘common’ place. One possible lightweight implementation might be a file l
.mailcap (RFC 1343) file. One could imagine more featureful implementations that
were perhaps distributed, or provided licensing or authentication features.

public abstract class CommandMap {
 /**
 * gets the default CommandMap as defined by the implementation
10 of 19 JavaBeans Activation Framework Specification Draft 3

Proposed Interfaces

ata-
ter-
 */
 public static CommandMap getDefaultCommandMap()
 throws Exception;

 /**
 * sets the DefaultCommandMap
 */
public static void setDefaultCommandMap(CommandMap);

/**
 * Get preferred command list.
 *
 * Return an array of BeanInfo classes that describe
 * the preferred (depending on the semantics of the CommandMap)
 * beans that correspond to this mimeType. Usually this
 * method will return one BeanInfo for each command for
 * the mimeType.
 */

abstract public BeanInfo[] getPreferredCommands(String
 mimeType)
 throws Exception;
 /**
 * Get all the available commands for this type.
 *
 * Return an array of BeanInfo classes that describe
 * all the commands known to the CommandMap that
 * can accept this mime type.
 */

abstract public BeanInfo[] getAllCommands(String mimeType)
 throws Exception;

 /**
 * Get the ‘default’ command ‘cmdName’ for this mime
 * type
 *
 * Attempts to find a command named ‘cmdName’ that
 * can accept mimeType.
 */

abstract public BeanInfo getCommand(String mimeType,
 String cmdName)
 thows Exception;
}

6.5 Command Object

We expect JavaBeans that are designed specifically to use the DataHandler and D
Source interface provided by the framework will implement the CommandObject in
face. Specifically it gives beans direct access to methods in the DataHandler and
DataSource interfaces.

public interface CommandObject {
 /**
 * Set the data handler
JavaBeans Activation Framework Specification Draft 3 11 of 19

Writing Beans for the Framework

ns
 Jav-
e

a-

.

ted
ren’t

al
ors
cap
ow

di-

s (as
are

mu-
easy
liza-
 */
public void setDataHandler(DataHandler dh) throws Exception;

}

7.0 Writing Beans for the Framework

7.1 Overview

This document describes the specification of well behaved viewers in the JavaBea
Activation Framework. It is important to note that this proposal is based heavily on
aBeans and developers intending to implement viewers for the framework should b
familiar with their basic concepts.

7.2 Viewer Goals

1. Make the implementation of viewers and editors as simple as implementing Jav
Beans. ie: low cost of entry to be agood citizen.

2. Allow developers to have a certain amount of flexibility in their implementations

7.3 General

We are attempting to limit the amount of extra baggage that needs to be implemen
from ‘generic’ JavaBeans. As a matter of fact, in many cases JavaBeans which we
developed with knowledge of the framework can be used. Where possible we will
exploit the existing features of JavaBeans and the JDK and define as few addition
interfaces and policies as possible. We expect that in the first release, viewers/edit
will be bound to data via a simple registry mechanism similar in function to a .mail
file. We also plan to exploit any future extensions to the ClassLoader that might all
auto discovery of configuration files on the system. This would allow developers to
deliver supplementary registry files to be appended to the system ones allowing ad
tional packages to be added at runtime.

Our viewers/editors and related classes and files will be encapsulated into JAR file
is the preferred method for beans). No restrictions will be made on which classes
used to implement beans beyond those expected of ‘well behaved’ beans.

7.4 Interfaces

Components can to implement the ‘CommandObject’ interface if they wish to com
nicate directly with their DataHandler and DataSource. The interface is small and
to implement. Beans however can still use the traditional Serialization and Externa
tion methods available in JDK 1.1 and later.
12 of 19 JavaBeans Activation Framework Specification Draft 3

Framework Integration Points

Data-
ion

 the
ns of
ation

 sup-
l pro-
en for
nta-
they

ill be
man-
ssed
tiva-

 for

he

ctiva-
7.5 Storage

As mentioned earlier, the canonical method of storage is via the DataHandler and
Source. It is however possible to use Serialization and Externalization. An applicat
that uses the framework could for instance implement the following:

ObjectOutputStream oos = new ObjectOutputStream(
 data_handler.getOutputStream());
my_externalizable_bean.writeExternal(oos);

The use of Serialized Objects is still being developed.

7.6 Packaging

The basic format for packaging of the Viewer/Editors is the JAR file as described in
JavaBeans specifications. This format allows the convenient packaging of collectio
files that are related to a particular JavaBean or applet (see section 8 about Integr
Points below).

7.7 Container Support

The JavaBeans Activation Framework has been designed to be flexible enough to
port the needs of a variety of applications. It is expected that these applications wil
vide the appropriate containers and life cycle support for these beans. Beans writt
the framework should be compatible with the guidelines in the JavaBeans docume
tion and should be tested against the BDK BeanBox (and the JDK Appletviewer if
are subclassed from Applet).

7.8 Lifecycle

In general we expect that the life cycle semantics of beans used in the framework w
the same as those for all JavaBeans. In the case of beans that implement the Com
dObject interface we encourage application developers to not parent beans subcla
from java.awt.Component to an AWT container until after they have set the javax.ac
tion.CommandObject.setDataHandler method.

7.9 Command Verbs

The implementation of the DefaultCommandMap will provide a mechanism to allow
an extensible set of command verbs. Applications using the framework will be able
query the system for commands available for a particular MIME type and retrieve t
bean associated with them.

8.0 Framework Integration Points

In an attempt to clarify how Beans developers can integrate with the JavaBeans A
tion Framework, we present a number of scenarios.
JavaBeans Activation Framework Specification Draft 3 13 of 19

Framework Integration Points

rk:

at,

and-

-
ing

bat
 do

n
s.
 con-
ffer

ining

at-
d

t-
First, let’s review the pluggable components of the JavaBeans Activation Framewo

• a mechanism for getting to the storage of data, DataSource

• a mechanism to convert data objects to and from an external byte stream form
DataContentHandler

• a mechanism to locate visual components that operate on data objects, Comm
Map

• the visual components that operate on data objects, Beans

As a Bean developer, you’re unlikely to need to develop a new DataSource or Com
mandMap. You might develop a DataContentHandler and of course you’ll be build
the visual Beans.

8.1 A Bean

Suppose you’re building a new Wombat Editor product, with its corresponding Wom
file format. You’ve built the Wombat Editor as one big Bean. Your WombatBean can
anything and everything that you might want to do with a Wombat. It can edit, it ca
print, it can view, it can save Wombats to files, and it can read Wombats in from file
You’ve defined the Wombat file format in a language-independent manner, and you
sider the Wombat data and file formats to be proprietary so you have no need to o
programmatic interfaces to Wombats beyond what your WombatBean supports.

You’ve chosen the MIME type “application/x-wombat” to describe your Wombat file
format, and you’ve chosen the filename extension “.wom” to be used by files conta
Wombats.

To integrate with the framework, you’ll need some simple wrappers for your Womb
Bean for each command you want to implement. For example, for a Print comman
wrapper you might do something like:

public class WombatPrintBean extends WombatBean {
 public WombatPrintBean() {
 super();
 initPrinting();
 }
 }

You’ll need to create a mailcap file that lists the MIME type “application/x-wombat”
and user visible commands that are supported by your WombatBean. Your Womba
Bean wrappers will be listed as the objects supporting each of these commands.

application/x-wombat; ; x-java-View=com.foo.WombatViewBean; \
 x-java-Edit=com.foo.WombatEditBean; \

 x-java-Print=com.foo.WombatPrintBean

You’ll also need to create a mime.types file with an entry:

type=application/x-wombat desc=”Wombat” exts=wom

All of these components will be packaged in a JAR file:
14 of 19 JavaBeans Activation Framework Specification Draft 3

Framework Integration Points

tic
dler.
ds to
liz-

t

f

lso

Beans

anip-
eed
bat

eturns
bat

o the

taCon-

nta-

 thus
META-INF/mailcap
META-INF/mime.types
com/foo/WombatBean.class
com/foo/WombetEditBean.class
com/foo/WombatViewBean.class

Because everything is built into one Bean, and because no third party programma
access to your Wombat objects is required, there’s no need for a DataContentHan
Your WombatBean might implement the Externalizable interface and use its metho
read and write your Wombat files. The DataHandler will arrange to call the Externa
able methods when appropriate.

8.2 Beans

Your Wombat Editor product has really taken off, and you’re now adding significan
new functionality and flexibility to your Wombat Editor. It’s no longer feasible to put
everything into one giant Bean. Instead, you’ve broken the product into a number o
Beans and other components:

• a WombatViewer Bean that can be used to quickly view a Wombat in read-only
mode.

• a WombatEditor Bean that is more heavy weight than the WombatViewer, but a
allows editing.

• a WombatPrinter Bean that simply allows you to print a Wombat.

• a component that is responsible for reading and writing Wombat files.

• a Wombat class that encapsulates the Wombat data and is used by your other
and components.

In addition, there has been demand by customers to be able to programmatically m
ulate Wombats, without necessarily using the visual viewer or editor Beans. You’ll n
to create a DataContentHandler that can convert a byte stream to and from a Wom
object. When reading, the WombatDataContentHandler reads a byte stream and r
a new Wombat object. When writing, the WombatDataContentHandler takes a Wom
object and produces a corresponding byte stream. You’ll need to publish the API t
Wombat class.

The WombatDataContentHandler is delivered as a class and is designated as a Da
tentHandler that can operate on Wombats in the mailcap file included in JAR file.

Your mailcap file will change to list the appropriate Wombat Beans as the impleme
tions for the user commands:

application/x-wombat; ; x-java-View=com.foo.WombatViewBean; \
 x-java-Edit=com.foo.WombatEditBean; \

x-java-Print=com.foo.WombatPrintBean; \
 x-java-ContentHandler=com.foo.WombatDataContentHandler

Your Wombat Beans could continue to implement the Externalizable interface, and
read and write Wombat byte streams, but more likely they will simply operate on
JavaBeans Activation Framework Specification Draft 3 15 of 19

Framework Integration Points

 on,
l
on-
-

ed
an.

ir

he

uld

g the

n
s will
n

ata-
bat-

 with
Wombat objects directly. To find the Wombat object they’re being invoked to operate
they will implement the CommandObject interface; the setDataHandler method wil
refer them to the corresponding DataHandler, from which they can invoke the getC
tent method, which will return a Wombat object (produced by the WombatDataCon
tentHandler).

As before, all components are packaged in a JAR file.

8.3 Viewer only

The Wombat product has been wildly successful. The ViewAll Company has decid
that it can produce a Wombat viewer that’s much faster than the WombatViewer Be
Since they don’t want to depend on the presence of any Wombat components, the
viewer must parse the Wombat file format, which they reverse engineered.

The ViewAll WombatViewerBean implements the Externalizable interface to read t
Wombat data format.

ViewAll delivers an appropriate mailcap file:

application/x-wombat; ; x-java-View=com.viewall.WombatViewer

and mime.types file:

type=application/x-wombat desc=”Wombat” exts=wom

All components are packaged in a JAR file.

8.4 Content Handler Only

Now that everyone is using Wombats, you’ve decided that it would be nice if you co
notify people by email when new Wombats are created. You’ve designed a new
WombatNotification class and a corresponding data format to be sent by email usin
MIME type “application/x-wombat-notification”. Your server will detect the presence
of new Wombats, construct a WombatNotification object, and construct and send a
email message with the Wombat notification data as an attachment. Your customer
run a program that scans their email INBOX for messages with Wombat notificatio
attachments and use the WombatNotification class to notify the user of the new
Wombats.

In addition to the server application and user application described, you’ll need a D
ContentHandler to plug into the DataHandler infrastructure and construct the Wom
Notification objects. The WombatNotification DataContentHandler is delivered as a
class named WombatNotificationDataContentHandler and is delivered in a JAR file
the following mailcap file:

application/x-wombat-notification; \
 WombatNotificationDataContentHandler
16 of 19 JavaBeans Activation Framework Specification Draft 3

Planned Deliverables

The
g to
 to

the

ent it
JDK
 are

r

des

e
rans-

’

ec-

at
ibly
The server application will create DataHandlers for its WombatNotification objects.
DataHandler will be used by the email system to fetch a byte stream correspondin
the WombatNotification object. (The DataHandler will use the DataContentHandler
do this.)

The client application will get a DataHandler for the email attachment and will use
getContent method to get the corresponding WombatNotification object, which will
then be used to notify the user.

9.0 Planned Deliverables

9.1 Packaging Details

The desire to have this functionality available on JDK 1.1 has caused us to implem
as a Standard Extension. This will allow it to be delivered asynchronously from the
and to be included in new software products in a more timely fashion. The following
some more details about the package:

• The package name will bejavax.activation.

• The initial release will be supported on JDK 1.1.x (exact revision TBD) and late
versions of the JDK.

9.2 APIs

interface DataSource: An interface class that describes a data source which provi
a MIME type and an input stream.

class DataHandler: A class that acts as a handle for the data source and uses th
existing ContentHandler mechanism and a new similar mechanism to implement T
ferable. Additionally it provides access to the registry infrastructure that ‘discovers
available beans.

interface DataContentHandler: An interface similar semantically to the Con-
tentHandler interface that uses DataFlavors and InputStream instead of URLConn
tions.

class CommandMap: An abstract class that describes the registry.

interface CommandObject: An interface that can be implemented by beans that
wish to access DataHandlers and DataSources directly.

9.3 Default Implementations

class FileDataSource: A simple sample implementation of a DataSource object th
represents a file. This class will use file to map file extension to MIME type or poss
a .mime.types file. (see appendix A)
JavaBeans Activation Framework Specification Draft 3 17 of 19

Issues

at
ap

d

s are

and-

n-
class DefaultCommandMap: A simple sample command map implementation th
uses a properties file that is a semantic extension to RFC 1343 (mailcap files) to m
MIME types to beans. (see appendix A)

class com.sun.activation.*: A few simple example viewer beans (probably text an
image). (TBD)

class com.sun.activation.DataContentHandlers.*: some default data content
handlers. (TBD)

9.4 Other

We also hope to deliver some part of the framework into a future BDK but the detail
still TBD.

10.0 Issues

1. Should the Default CommandMap be returned by a static method in the Comm
Map base class? Or should we provide a CommandMapFactory?static method

2. Should we also define a DataContentHandlerFactory in the same fashion as Co
tentHandlerFactory?TBD

3. We need to define the policies etc. for Serialization.

11.0 Appendix A: Class definitions for default package
implementations:

11.1 FileDataSource

public class FileDataSource implements DataSource {
 // start with a File
 public FileDataSource(File file);

 // start with a path
 public FileDataSource(String path);

 // return the ‘name’ of this object
 public String getName();
 // prepends mimetype entries to the registry
 public addMimeTypes(String);
}

11.2 DefaultCommandMap

public class DefaultCommandMap extends CommandMap {
 // Default Constructor

public DefaultCommandMap();
 // Provide a path to a mailcap file
 public DefaultCommandMap(String mailcap);
18 of 19 JavaBeans Activation Framework Specification Draft 3

Document Change History
 // adds mailcap entries to the command map
 public void addMailCap(String);

 // get all know commands for this MIME type
 public BeanInfo[] getAllCommands(String mimeType);

 // get command
 public BeanInfo getCommand(String mimtType, String cmdName);

 // get the preferred set of commands for MIME type
 public BeanInfo[] getPreferredCommands(String mimeType);
}

12.0 Document Change History

May 13,1997: Initial Public Draft 1

Aug 1, 1997: Internal Review Draft 2

• AddedIntegration Points section

• Minor API changes

Sept 16 1997: Second Public Draft 3

• Edited document to reflect change to Standard Extension

• Removed URL/URLConnection section

• Minor API changes

Note: Change bars reflect differences from the May 13 draft.

13.0 Contacting Us

Please send your questions and comments to:

activation-comments@icdev.eng.sun.com
JavaBeans Activation Framework Specification Draft 3 19 of 19

	ReportTitle - JavaBeans Activation Framework Specification Draft...
	Heading1 - 1.0 Overview
	Heading1 - 2.0 Goals
	Heading1 - 3.0 Architectural Overview
	Heading2 - 3.1 DataHandler
	Heading2 - 3.2 DataSource
	Heading2 - 3.3 CommandMap
	Heading2 - 3.4 Command Object

	Heading1 - 4.0 Using The Framework
	Heading1 - 5.0 Usage Scenarios
	Heading2 - 5.1 Scenario Architecture
	Heading2 - 5.2 Initialization
	Heading2 - 5.3 Getting the Command List
	Heading2 - 5.4 Performing a Command
	Heading2 - 5.5 An Alternative Scenario

	Heading1 - 6.0 Proposed Interfaces
	Heading2 - 6.1 DataSource
	Heading2 - 6.2 DataHandler
	Heading2 - 6.3 DataContentHandler
	Heading2 - 6.4 CommandMap
	Heading2 - 6.5 Command Object

	Heading1 - 7.0 Writing Beans for the Framework
	Heading2 - 7.1 Overview
	Heading2 - 7.2 Viewer Goals
	Numbered1 - 1. Make the implementation of viewers and editors ...
	Numbered - 2. Allow developers to have a certain amount of fl...

	Heading2 - 7.3 General
	Heading2 - 7.4 Interfaces
	Heading2 - 7.5 Storage
	Heading2 - 7.6 Packaging
	Heading2 - 7.7 Container Support
	Heading2 - 7.8 Lifecycle
	Heading2 - 7.9 Command Verbs

	Heading1 - 8.0 Framework Integration Points
	Heading2 - 8.1 A Bean
	Heading2 - 8.2 Beans
	Heading2 - 8.3 Viewer only
	Heading2 - 8.4 Content Handler Only

	Heading1 - 9.0 Planned Deliverables
	Heading2 - 9.1 Packaging Details
	Heading2 - 9.2 APIs
	Heading2 - 9.3 Default Implementations
	Heading2 - 9.4 Other

	Heading1 - 10.0 Issues
	Numbered1 - 1. Should the Default CommandMap be returned by a ...
	Numbered - 2. Should we also define a DataContentHandlerFacto...
	Numbered - 3. We need to define the policies etc. for Seriali...

	Heading1 - 11.0 Appendix A: Class definitions for default pac...
	Heading2 - 11.1 FileDataSource
	Heading2 - 11.2 DefaultCommandMap

	Heading1 - 12.0 Document Change History
	Heading1 - 13.0 Contacting Us

