
i

Java™ 2D API
Enhanced Graphics and Imaging for Java

2550 Garcia Avenue
Mountain View, CA 94043 USA
415 960-1300 fax 415 969-9131

A Sun Microsystems, Inc. Business

ii

iii

tes
FAR

foreign

s, Sun
ration
UNIX
ugh X/
 their

)

 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United Sta
Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and
52.227-19.

The release described in this document may be protected by one or more U.S. patents,
patents, or pending applications.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystem
Microsystems Computer Corporation, the Sun logo, the Sun Microsystems Computer Corpo
logo, Java and HotJava are trademarks or registered trademarks of Sun Microsystems, Inc. ®

is a registered trademark in the United States and other countries, exclusively licensed thro
Open Company, Ltd. All other product names mentioned herein are the trademarks of
respective owners.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S
DESCRIBED IN THIS PUBLICATION AT ANY TIME

2

 . 2
 . 8
. . 9
11

12

12
3
14
16
16
17
18

20

20
23

4

25
. 27

30

 . 30
34

38

38
39
39
Contents

1 Java 2D API Fundamentals .

Drawing .
Text .
Images .
Summary .

2 Rendering .

Rendering Pipeline .
Controlling the Rendering Quality . 1
Transformations. .
Creating a New Type of Path .
Stroke. .
Paint .
Composite .

3 Text and Fonts .

Text Handling .
Advanced Layout. .

4 Color Management . 2

Specifying Colors .
Color Classes .

5 Imaging .

Image Processing and Enhancement
Using Offscreen Buffers .

6 Graphics Devices .

Graphics Environment. .
GraphicsDevice .
GraphicsConfiguration .

vi

g

va
ed by
g
-

and
ting.
print,
ce

 of

 used.
ple

-
ng
vice

hics
Java 2D API
Enhanced Graphics and Imagin

The Java 2D API (Application Programming Interface) provides a powerful,
flexible framework for using device and resolution independent graphics in Ja
programs. The Java 2D API builds on the graphics and imaging classes defin
java.awt, extending the capabilities while maintaining compatibility for existin
programs. The Java 2D API will enable developers to easily incorporate high
quality 2D graphics, text, and images in Java applications and applets.

The Java 2D API provides a two-dimensional imaging model for line art, text,
images that uniformly addresses color, spatial transformations, and composi
With the Java 2D API, you use the same imaging model for both screen and
which provides a highly WYSIWYG (What You See Is What You Get) experien
for the user.

Sun Microsystems and Adobe Systems Incorporated are the primary authors
the Java 2D API specification.

This paper describes the Java 2D API and illustrates how the key classes are
The first section provides an overview of the Java 2D API, using a simple exam
to introduce the drawing model and key rendering features. The following sec
tions describe the primary elements of the Java 2D API: the graphics renderi
pipeline, text and font support, color management, imaging, and graphics de
support.

This paper is not intended as an exhaustive description of advanced 2D grap
and imaging for Java or a complete programmer’s guide.
1

Java 2D API, Version 0.952

uni-
 The

r and
er or

d y-

e
dering

vice
1.0 Java 2D API Fundamentals

The Java 2D API handles arbitrary shapes, text, and images and provides a
form mechanism for performing transformations such as rotation and scaling.
Java 2D API also provides extensive font and color support.

The Java 2D API allows you to control how graphics primitives are rendered
through a comprehensive set of attributes associated with theGraphics2D state.
You can specify characteristics such as the stroke width, join types, and colo
texture fills, as well as how the graphics are blended to the screen and wheth
not they are antialiased.

Coordinate Spaces

The Java 2D API defines two coordinate spaces: theUser Coordinate Space and
theDevice Coordinate Space. The origin of the Device Coordinate Space lies in
the upper left-hand corner with x-coordinate values increasing to the right an
coordinate values increasing downward.

Figure 1-1 Device Coordinate Space and default User Coordinate Space

All graphics objects are described in the device-independent User Coordinat
Space until they are rendered on a device such as screen or printer. The ren
state of aGraphics2D object associated with the target device includes aTrans-

form object that converts the graphics object’s User Space coordinates to De
Space coordinates. The defaultTransform results in a default User Coordinate
Space that has the same orientation as the Device Coordinate Space

1.1 Drawing

The Java 2D API uses the drawing model defined by thejava.awt package for
drawing to the screen: eachComponent object implements apaint method that is
invoked automatically whenever something needs to be drawn. Whenpaint is
invoked, it is passed aGraphics object that knows how to draw into the compo-
nent.

(0,0)
x

y

Java 2D API Fundamentals 3

raw

 one

 The
les,

 To

D

 red
1.1.1 Basic Drawing Process

Suppose you have a component whose job it is to draw a red rectangle. To d
the rectangle usingjava.awt, you implementComponent.paint:

public void paint(Graphics g) {
 g.setColor(Color.red);
 g.fillRect(300, 300, 200, 100);
}

This example illustrates the basic drawing process for any component:

1. Specify the rendering attributes for the shape you want to draw by calling
of theGraphics attribute methods, such assetColor.

2. Define the shape that you want to draw, such as a rectangle.

3. Use theGraphics object to render the shape by calling one of theGraphics

rendering methods, such asfillRect.

1.1.2 Drawing with the Java 2D API

The basic drawing process is the same when you use Java 2D API features.
Java 2D API simply provides additional features for specifying fancy paint sty
defining complex shapes, and controlling the rendering process.

Component.paint is overloaded to support the Java 2D API drawing features.
use these features, you can implement the version ofpaint that accepts a
Graphics2D object as a parameter.Graphics2D extendsGraphics to support
advanced drawing operations.

Note: For backward compatibility, you can also implement the original paint
method, which takes aGraphics object as a parameter. To use the new Java 2
API features, cast theGraphics parameter to aGraphics2D. The default imple-
mentation ofComponent.paint(Graphics2D) is to call
Component.paint(Graphics).

For example, you could use the new features of the Java 2D API to draw the
rectangle by implementingComponent.paint(Graphics2D):

public void paint(Graphics2D g2d) {
 // 1. Specify the rendering attributes

Java 2D API, Version 0.954

more
to

the
erns.

e
in the

ddi-

n
 the

ther
rent
 g2d.setColor(Color.red);
 // 2. Define the shape. (Use Even-Odd rule.)
 BezierPath path = new BezierPath(BezierPath.EVEN_ODD);
 path.moveTo(300.0f, 400.0f); // lower left corner
 path.lineTo(500.0f, 400.0f); // lower right corner
 path.lineTo(500.0f, 300.0f); // upper right corner
 path.lineTo(300.0f, 300.0f); // upper left corner
 path.closePath(); // close the rectangle
 // 3. Render the shape
 g2d.fillPath(path);
}

The process is the same, but the Java 2D API classBezierPath is used to define
the rectangle. For drawing simple shapes such as the rectangle, it is slightly
complicated to use the Java 2D API; however, the Java 2D API enables you
manage complex drawing operations using the same process:

1. Specify the rendering attributes.

With the Java 2D API classes you can fill a shape with a solid color, but
Java 2D API also supports more complex fills such as gradients and patt
To specify complex fills, you use thesetPaint method. (For more informa-
tion, see Section 2.6, “Paint.”)

2. Define a shape, a text string, or an image.

The Java 2D API treats paths, text, and images uniformly; they can all b
rotated, scaled, skewed, and composited using the methods introduced
following sections. In this example, a single rectangle is defined.

The Java 2D API provides an implementation of thePath interface that can
be used to define complex shapes. This class,BezierPath, allows you to
describe a shape using a combination of lines and Bezier curves. (For a
tional information about the Path interface, see “Creating a New Type of
Path” on page 16.)

UsingBezierPath to define a shape also allows you to control the locatio
of the shape. (The shape can also be translated to a new position using
Graphics2D transformation attribute.)

Winding Rules

TheBezierPath constructor takes a parameter that specifies the winding
rule to be used for the object. The winding rule is used to determine whe
or not a point lies inside the shape when path segments cross. Two diffe
winding rules can be specified for aBezierPath object: the even-odd wind-

Java 2D API Fundamentals 5

is
 cross.

nsla-

kew-

per-
 in
art of
ith
le
 to the
ing rule or the nonzero winding rule. The even-odd rule is specified in th
example, but has no effect as the path segments in the rectangle do not

3. Render the shape, text string, or image.

To actually render the shape, text, or image you call one of theGraphics2D

rendering methods. In this example, the rectangle is rendered using
fillPath.

Transformations

In the Java 2D API, objects are processed by aTransform associated with
theGraphics2D object before they are drawn. ATransform object takes a
point or a path and transforms it to a new point or path. The defaultTrans-

form object created when theGraphics2D object is constructed performs
simple scaling to device coordinates. To get effects such as rotation, tra
tion, or custom scaling, you create Transform objects and apply them to the
Graphics2D object.

The most commonly usedTransform is theAffineTransform, which per-
forms linear transformations such as translation, rotation, scaling, and s
ing. (For more information about transformations, see Section 2.3,
“Transformations”).

1.1.3 Managing Complex Drawing Operations

The power of the Java 2D API lies in its ability to manage complex drawing o
ations within the same framework used to draw the rectangle in the example
Section 1.1.2. Suppose that you want to draw a second rectangle, covering p
the first rectangle, rotated 45˚ counterclockwise. The new rectangle is filled w
blue and rendered 50% transparent, so that the original rectangle is still visib
underneath. With the Java 2D API, the second rectangle can easily be added
previous example:

public void paint(Graphics2D g2d) {
 g2d.setColor(Color.red);
 BezierPath path = new BezierPath(BezierPath.EVEN_ODD);
 path.moveTo(0.0f, 0.0f); // lower left corner
 path.lineTo(200.0f, 0.0f); // lower right corner
 path.lineTo(200.0f, -100.0f); // upper right corner
 path.lineTo(0.0f, -100.0f); // upper left corner
 path.closePath(); // close the rectangle
 AffineTransform at = new AffineTransform();
 at.setToTranslation(300.0, 400.0);
 g2d.transform(at);

Java 2D API, Version 0.956

ce of

the

 To

,
r

n

he
 g2d.fillPath(path);
 // Add a second rectangle
 g2d.setColor(Color.blue); // define the color
 AlphaComposite comp =
 AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5);
 g2d.setComposite(comp); //set the composite mode
 // Rotate about the origin -45 deg in radians
 at.setToRotation(-Math.PI/4.0));
 g2d.transform(at);
 g2d.fillPath(path);
}

The drawing process is the same for both rectangles:

• The rectangle is defined using aBezierPath object.

• The rendering attributes are set by callingsetColor.

• Transformations are applied before the rectangle is rendered.
(Graphics2d.transform is used to position both rectangles at (300, 400)

and rotate the blue rectangle 45° counterclockwise.)

• The rectangle is rendered by callingfillPath. In addition, before the blue
rectangle is rendered, the transfer mode is specified by creating an instan
AlphaComposite.

1. Defining the Color

To paint the second rectangle with a 50% transparent blue, you first set
color to be painted.

You also need to indicate how the new color blends with existing colors.
do this, you create anAlphaComposite object. AnAlphaComposite object
defines atransfer modethat specifies how colors are blended. In this case
you want to create anAlphaComposite object that sets the transparency fo
rendering to 50% and blends the new color over the existing color. To do
this, you specify theSRC_OVER transfer mode and an alpha value of 0.5 whe
you create theAlphaComposite object. You then callGraphics2D.setCom-
posite to use the newComposite object.

2. Defining the Rotation

The rotation is performed by creating a newAffineTransform and calling
setToRotation to specify the counterclockwise rotation of 45 degrees. T
transform is then composed with the previous transform of theGraphics2D

object (the translation to (300,400)) by callingtransform.

Java 2D API Fundamentals 7

, to
ith
The effects of consecutive calls totransform are cumulative; from this
point forward, anything you draw is translated to(300,400) and rotated 45˚
counterclockwise, as shown in Figure 1-2.

Figure 1-2 Transformation effects

3. Rendering the Blue Rectangle

Just like the first rectangle, the blue rectangle is rendered by callingfill-

Path.

TheGraphics2D object transforms the path, using the specifiedTransform

object. The result is a rotated rectangle. It uses the specified color, blue
determine what color the output should be. This color is then blended w
the colors of the underlying image, based on the state of theComposite

object and theColor object.

Figure 1-3 shows the results of invoking the complete method.

(0,0)
x

y

Before any
Transformations

After the rotate
of -45°

After the translate
to (300,400)

(0,0)
x

y

(0
,0

)

x

y

(0,0)
x

y

(0,0)
x

y

Device Coordinate
Axes and User Coordi-
nate Axes aligned.

Device Coordinate
Axes unchanged, User
Coordinate Axes trans-
lated to (300, 400).

Device Coordinate
Axes unchanged, User
Coordinate Axes
rotated -45°.

Device Coordinates Device Coordinates
Device Coordinates
User Coordinates

User Coordinates

Use
r C

oo
rd

ina
te

s

Java 2D API, Version 0.958

for
ing

 use
res.

e

a 2D

sing a
,

 the
y of
Figure 1-3 Results of invoking example paint implementation

1.1.4 Performing Hit Detection

Detecting where the user clicks the mouse on a graphic can be complicated
complex transformed graphics. The Java 2D API simplifies this task by provid
aGraphics2D method calledhitPath. This method takes aRectangle object and
aPath object as parameters and returns aboolean value that indicates whether
any point in the rectangle would be painted by the path. ThehitPath method also
takes aboolean value that indicates whether or not the path’s fill or stroke
attributes should be taken into account.

1.2 Text

The Java 2D API provides text handling support that ranges from the simple
of fonts to professional-quality management of character layout and font featu

The Java 2D API enhancedFont class provides greater control over fonts than th
existing java.awt.Font class. It also allows you to retrieve more information
about a font, such as the Bezier paths of individual character glyphs. The Jav
API Font class will supersedejava.awt.Font.

1.2.1 Drawing Text

To draw text, you use the same process that you use for paths. Instead of u
BezierPath object to define a shape, you create aFont object and render the text
by callingGraphics2D.drawString.

For example, to draw a large letter ‘J’, rotated 45˚ counterclockwise, on top of
rectangles from the previous example, you add the following code to the bod
thepaint method:

Java 2D API Fundamentals 9

th,
ly
using

citi-
just
ith

pple-
// get a 200 point version of Helvetica-BoldOblique
Font myFont = new Font("Helvetica-BoldOblique",
 Font.Plain, 200);
// display the character ‘J’ in green
// the rotation and translation have already been done
g2d.setColor(Color.green);
g2d.drawString("J", 0, 20);

Because the Java 2D API Font class provides agetGlyphOutline method (see
Section 3.1.1 on page 20 for more information) that returns the character pa
you can use a text string as a clipping path. For example, you could draw on
those parts of the rectangles that would show through the rotated letter J by
the character path, scaled appropriately, as a clipping path:

Figure 1-4 Using text as a clipping path

To do this, you get the character’s shape by callinggetGlyphOutline, which
returns an instance ofPath. You then supply thePath object as an argument to
setClip, a method defined byGraphics2D. In Figure 1-4, the text outline is also
stroked in black.

As illustrated by these examples, the Java 2D API treats text as a first-class
zen. It can be drawn, transformed, used as a clipping path, and composited
like any other graphic element. You can even perform hit detection on text w
theGraphics2D.hitString method.

1.3 Images

The Java 2D API provides a full range of features for handling images by su
menting the image-handling classes injava.awt andjava.awt.image with sev-

Java 2D API, Version 0.9510

s.
es

 2D
 in

t and

rom

nfor-

ach
at an
eral new classes, including:BufferedImage, Tile, Channel,
ComponentColorModel, and ColorSpace.

These classes give advanced Java programmers greater control over image
Using the Java 2D API imaging classes, you can create images in color spac
other than RGB and characterize colors for accurate reproduction. The Java
API imaging classes also allow you to specify exactly how pixels are laid out
memory.

Like all other graphic elements, images are transformed by theTransform object
associated with theGraphics2D object when they are drawn. This means that
images can be scaled, rotated, skewed, or otherwise transformed just like tex
paths. However, images maintain their own color information1 rather than using
the current color.

Displaying an image is straightforward. Having acquired an image (perhaps f
a URL), you specify the desired transformation and callGraphics2D.drawImage:

Image image = applet.getImage(url);
AffineTransform at = new AffineTransform();
at.rotate(Math.PI/4.0);
g2d.transform(at);
g2d.drawImage(image, 0, 0, this);

1.3.1 Transparency and Images

Images can carry transparency information for each pixel in the image. This i
mation, called analpha channel, is used in conjunction with the currentCompos-

ite object to blend the image with an existing drawing.

Figure 1-5 contains three images with different transparency information. In e
case, the image is displayed over a blue rectangle. This example assumes th
AlphaComposite object is installed that usesSRC_OVER as its transfer mode for
compositing.

1. Images have an embedded color model to interpret pixel data as color.

Java 2D API Fundamentals 11

ent
image
hird
t val-

e for
, you

tions

,
th-

ient
Figure 1-5 Transparency and images

In the first image, all pixels are fully opaque (the dog’s body) or fully transpar
(the background). You often see this effect used on web pages. The second
is rendered with uniform, non-opaque transparency for the dog’s body. The t
image has opaque values around the dog’s face and increasingly transparen
ues as the distance from the dog’s face increases.

1.4 Summary

The Java 2D API extends AWT to provide a standard, cross-platform interfac
handling complex shapes, text, and images. With the Java 2D API classes
can incorporate high-quality 2D graphics, text, and images in your applica
and applets. The Java 2D API:

• Enables high-quality device and resolution independent graphics

• Enhances font and text handling support

• Provides a single, comprehensive rendering model

The key Java 2D API classes introduced in this section are summarized in
Table 1-1.

Class Name Description

Graphics2D A subclass ofGraphics that encapsulates information about where to draw
drawing parameters such as the current font, and the actual drawing me
ods.

Paint An interface used to specify the colors used to fill a shape, such as a grad
fill or pattern fill. Paints are alternatives to colors.

Java 2D API, Version 0.9512

e

how
hese

ro-

 and

ne

ve

-

to

d

r
r-
Table 1-1 Basic Java 2D API classes

2.0 Rendering

In the Java 2D API, the rendering of graphics objects is controlled through th
Graphics2D state attributes. With theGraphics2D state attributes, you can set a
clipping path to limit the area that is rendered, vary the stroke width, change
strokes are joined together, and compose graphics objects in different ways. T
attributes are applied during the rendering process.

2.1 Rendering Pipeline

The rendering process can be broken down into four stages. (Note that this p
cess might actually be compressed to optimize rendering performance.)

1. The graphics object being rendered is converted to graphics primitives

Path An interface used to maintain a collection of points that describe the outli
of a shape.

BezierPath A path that is built using lines and Bezier curves.

Stroke An interface that specifies how to turn a path to be rendered bydrawPath

into an outline of the stroked path. The stroked path can be filled to achie
the same results.

Transform An interface that specifies how to transform a point or path into another
point or path.

AffineTransform A transformation that supports rotation, scaling, skewing, and other com
mon linear transformations.

Composite An interface that specifies how to blend two colors to form a third. Used
implement transparency and similar effects.

Font An enhancedFont class that provides control over font characteristics an
access to detailed information.

BufferedImage A class that supports fine-grain control over an image by allowing you to
specify the image’sColorModel, image data, and data layout (Tile and
Channel).

ColorSpace A class that identifies a color space and supports the conversion of colo
components in a particular color space to and from standard color conve
sion spaces.

Class Name Description

Rendering 13

phics
phics

rted

n be

lor is

ges

om-
 you

fer-
the

not
transformed into the Device Space using theTransform from theGraphics2D
object associated with the target device. This determines where the gra
object should be rendered. How this is done depends on the type of gra
object being rendered:

• When apath is rendered, it is converted to aBezierPath object. If the path
is to be stroked, theStroke object in theGraphics2D is used to convert the
path to a stroked path. ThisBezierPath is transformed into device
coordinates using theTransform object in theGraphics2D.

• Whentext is rendered, the layout of the glyphs is determined using the
information in the fonts used by the string. The glyphs are then conve
to outlines that are described byBezierPath objects. TheseBezierPath
objects are transformed into device coordinates using theTransform object
in theGraphics2D.

• When animage is rendered, its bounding box (in user coordinates) is
transformed into device coordinates using theTransform object in the
Graphics2D.

2. The current clip is used to constrain the rendering operation. The clip ca
any shape that can be described by aPath object. The clip is transformed into
the Device Space using theTransform in effect whensetClip was called.

3. The color to be rendered is determined. For image operations, the co
taken from the data of the image. For all other operations, the currentPaint

or Color object in theGraphics2D is queried for the color.

4. The color is applied to the rendering target using the currentComposite

object.

2.2 Controlling the Rendering Quality

When graphics primitives are rendered on graphics display devices, their ed
can appear jaggy due to aliasing.Antialiasing is a technique used to render
objects with smoother appearing edges. This technique requires additional c
puting resources and can impact the rendering speed. The Java 2D API lets
indicate whether you want objects to be rendered as quickly as possible, or
whether you prefer that the rendering quality is as high as possible. Your pre
ence is specified as a hint because not all platforms support modification of
rendering mode.

You specify your rendering preferences to aGraphics2D object by callingset-
RenderingHints. There are two types of hints. The first indicates whether or

Java 2D API, Version 0.9514

 a pref-
ld
nter-

s
es

es
-

ions,

he

s-
a-
rm

he
objects should be antialiased when they are rendered. The second indicates
erence in the trade-off between speed and quality. For example, this hint cou
affect how precisely stroke joins are rendered or whether better dithering or i
polation should be performed.

2.3 Transformations

The Java 2D API transformations are based on theTransform interface. The
AffineTransform class implementsTransform to support operations such as
scaling, rotation, and skewing.

2.3.1 Using Affine Transformations

An affine transformation performs a linear transformation on a set of graphic
primitives. It always transforms straight lines into straight lines and parallel lin
into parallel lines, but it might alter the distance between points and the angl
between non-parallel lines. An affine transformation is based on a two-dimen
sional matrix of the following form:

 where and

To use theAffineTransform class, you do not need to interact directly with
transformation matrices. You simply invoke the appropriate sequence of rotat
translations, and other transformations to get the effect you want.

TheTransform associated with theGraphics2D object transforms all of the
paths, text, and images you draw from User Space to Device Space; this is t
Transform that a program interacts with most.Graphics2D implements a version
of drawImage that takes an instance ofTransform as a parameter. When you use
this version ofdrawImage, the image is drawn as if you had appended the tran
form to theGraphics2D object. This allows you to perform additional transform
tions on an image object when it is drawn (this can be thought of as a transfo
from image space to User Space). Similarly, you can apply an instance of
AffineTransform to aFont object to create a newFont object for drawing text,
as discussed in “Text Handling” on page 20.

2.3.2 Creating Custom Transformations

Advanced clients can create classes that implement theTransform interface to
provide new types of transformations. New transform classes must support t

a b tx
c d ty

x′ ax by tx+ += y′ cx dy ty+ +=

Rendering 15

va

 per-
ot be

m

,

 a
hat

Bezier
 non-
Transform.createInverse method, which inverts a transformation and con-
structs a newTransform object that is the inverse of the current one. In other
words, all Java 2D API transforms must produce an inverse if it exists. All Ja
2D API transforms must also be able to operate on instances ofBezierPath.

For example, you could define a new, non-linear transform to draw objects in
spective so that they appear to shrink away in the distance. (This effect cann
accomplished with the linearAffineTransform.) Your new class,Perspec-
tiveTransform, can transform points and paths using any method needed.2 It is
not constrained to transformations that can be described by a linear transfor
matrix.

2.3.3 Transformation Pipeline

Clients can use different implementations ofTransform as needed. For example
you could apply thePerspectiveTransform to a drawing and then apply an
AffineTransform to rotate the drawing, as shown in Figure 2-1.

Figure 2-1 Perspective and affine transformations

When you append aTransform object to aGraphics2D object, it becomes part of
a pipeline of transformations that are applied to the drawing. TheGraphics2D

Transform object might actually be aTransformChain. TransformChain is an
implementation of theTransform interface that executes multiple transforms in
predefined order. It is useful for representing sequences of transformations t
cannot be combined into a single simple type ofTransform object.

2. Transform operations that require the use of rational curves to represent transformed
curves (like the perspective example) must be able to produce approximations using
rational Bezier curves.

Java 2D API, Version 0.9516

ed

ry

sen-
all

on.

s-
2.4 Creating a New Type of Path

To create a new path, you can implement thePath interface. It doesn’t matter how
the path is represented internally, as long as thePath interface methods can be
implemented. For example, a simple implementation ofPath could be created to
represent polygons as arrays of points. This class,PolygonPath, needs to define
just one new method,addPoint. To build aPolygonPath object, a client would
repeatedly calladdPoint. Once the path is built, it could be used in a call to
drawPath, setClip or any other method that expects aPath object as an argu-
ment.

ThePolygonPath class must implement thePath interface methods, including
createTransformedPath andgetAsBezierPath. ThecreateTransformedPath
method creates a newPath object that represents the current path as transform
by theTransform parameter. ThegetAsBezierPath method constructs a new
BezierPath object that contains a representation of the path.

BothTransform andPath define acreateTransformedPath method. When the
Java 2D API needs to transform a path before painting it, it first callsPath.cre-

ateTransformedPath. If the path contains internal information that is necessa
for its points to be transformed correctly (using theTransform object’strans-
form method), or if the path contains special knowledge ofTransform objects
that should be applied, this processing is done inPath.createTransformedPath.
If the Path object does not need to perform special processing increateTrans-

formedPath, it can simply call thecreateTransformedPath method of the sup-
pliedTransform object.

WhenTransform.createTransformedPath is called, theTransform object is
responsible for transforming an arbitrary path with an arbitrary internal repre
tation. If theTransform does not recognize the particular type of path, it can c
the path’sgetAsBezierPath method to get the path in a canonical form. All
Transform objects must be able to operate onBezierPath objects.

ImplementingPolygonPath.getAsBezierPath for thePolygonPath class is
quite simple. First, aBezierPath object is constructed and thenmoveTo is called,
followed by a sequence of calls tolineTo. For other types of custom paths, this
conversion might be more complicated and could result in a loss of informati

2.5 Stroke

When aPath object is drawn, it is first converted to an equivalentBezierPath. In
the Java 2D API, allGraphics2D objects know how to stroke and fill aBezier-
Path. Stroking aBezierPath object is equivalent to running a logical pen along
the segments of theBezierPath. TheStroke object encapsulates the characteri

Rendering 17

oin-

ited
 sec-
tern.

ple

com-

f

tics of the mark drawn by the pen. The Java 2D API provides aBasicStroke class
that contains characteristics such as the line width, end-cap style, segment j
style, and the dashing pattern. The end-cap styles are chopped, round, and
squared. The join styles are bevel, miter, and round. The miter join can be lim
to a certain length. The first image in Figure 2-2 uses the miter join-style; the
ond image uses a round join-style, a round end-cap style, and a dashing pat

Figure 2-2 Stroke styles

2.6 Paint

Section 1.0, “Java 2D API Fundamentals” demonstrates how to specify a sim
fill color for a path. With the Java 2D API, you can also fill a shape with more
complex paint styles, such as gradients and textures. To facilitate the use of
plex fills, the Java 2D API defines a new class calledPaint and aGraphics2D
method calledsetPaint. These features eliminate the time-consuming task of
creating complex fills using simple solid-color paints.

Figure 2-3 Complex paint styles

Conceptually, all drawing is done with aPaint object. AColor3 object can be
thought of as a very simple type ofPaint object, and thesetColor method as a
special case ofsetPaint. In effect,setColor installs aPaint object for you that
paints with a single color. (You can actually pass aColor to thesetPaint
method, becauseColor implements thePaint interface and is just another type o
Paint object.)

3. The enhanced Java 2D APIColor class will supersedejava.awt.Color.

��
��
QQ
QQ
¢¢
¢¢

Java 2D API, Version 0.9518

ed

pe.
 asks
iate

atch
ls.

ation

 being

evice

r
he

peline.
line,

most
 to

rived
Once you callsetPaint, everything you draw (such as text and paths) is paint
using the specifiedPaint object.

A Paint object must ultimately specify what color to paint each pixel in a sha
Conceptually, the Java 2D API determines what pixels comprise a shape and
thePaint object for the color of each. It then converts that color to an appropr
pixel value for the output device and writes the pixel to that device. This is a
tedious process that provides few opportunities for optimization.

To streamline this process, the Java 2D API processes pixels in batches. A b
can be either a contiguous set of pixels on a given scanline or a block of pixe
This batch processing is done in two steps:

1. A PaintContext object is created from thePaint object. ThePaintContext
object stores the contextual information about the current rendering oper
and the information necessary to generate the colors. ThecreateContext

method takes as parameters the bounding boxes of the graphics object
filled in User Space and in Device Space, theColorModel in which the colors
should be generated, and the transform used to map User Space into D
Space. TheColorModel is treated as a hint because not allPaint objects can
support an arbitraryColorModel. (For more information aboutColorModels,
see Section 4.0, “Color Management.”)

2. ThePaintContext is asked for theColorModel of the generated paint colo
and theTile that contains the actual color data for a given batch. T
getColorModel method is only called once, butgetTile is called repeatedly
as the area being rendered is processed in batches by the rendering pi
This information is then passed to the next stage in the rendering pipe
which draws the generated color using the currentComposite object.

2.7 Composite

In Section 1.1 we discussed basic compositing and introduced theAlphaCompos-

ite class, an implementation of theComposite interface. This class supports a
number of different composition styles and is intended to meet the needs of
clients. Instances of this class embody a composition rule that describes how
blend a new color with an existing one. The alpha values for rendering are de
from aColor, Paint, orImage object, combined with pixel coverage information
from a rasterized path (when antialiased rendering is being performed).

Rendering 19

esti-
xist-
ncy

r-

 by

n

nd

d the
l

2.7.1 Managing Transparency

One of the most commonly used compositing rules in the AlphaComposite class
is SRC_OVER. WhenAlphaComposite.SRC_OVER is applied, it indicates that the
new color (the source color) should be blended over the existing color (the d
nation color). The alpha value indicates, as a percentage, how much of the e
ing color should show through the new color. It is a measure of the transpare
of the new color. Opaque colors don’t allow any existing color show through,
while transparent colors let all of the existing color show through.

You can also use anAlphaComposite object to add an additional level of transpa
ency to everything drawn. To do this, you create anAlphaComposite object with
an alpha value that increases the transparency of every object drawn:

comp = AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5);

The specified alpha value, 0.5, is combined with the alpha values of aColor,
Paint, orImage prior to rendering. This reduces the alpha of everything drawn
50%, making everything 50% more transparent.

In this example, which extends the example in Section 1.1.3, the text is draw
before theComposite object is created so that it is totally opaque. Then the
AlphaComposite.SRC_OVER object is created to set the transparency to 50% a
the two overlapping rectangles are drawn, as shown in Figure 2-4:

Figure 2-4 Compositing

The red rectangle that was completely opaque is now partially transparent an
blue rectangle is even more transparent than it was originally. This additiona
layer of transparency provided by theAlphaComposite class can be useful in a
number of circumstances.

Java 2D API, Version 0.9520

g

os-

text
histi-

ing
uch

s.

lude

pre-
2.7.2 Defining Custom Composition Rules

You can create an entirely new type of compositing operation by implementin
theComposite andCompositeContext interfaces. AComposite object provides a
CompositeContext object that actually holds the state and performs the comp
iting work. MultipleCompositeContext objects can be created from oneCompos-

ite object to maintain the separate states in a multi-threaded environment.

3.0 Text and Fonts

You can use the Java 2D API transformation and drawing mechanisms with
strings. The Java 2D API also adds new text related classes that support sop
cated text layout and fine-grain font control.

3.1 Text Handling

The Java 2D API provides an enhancedFont class that provides greater control
over fonts than the previousjava.awt.Font. This enhancedFont class supports:

• Specification of detailed font information

• Access to information about a font and its glyphs

3.1.1 Specifying and Obtaining Font Information

There is a rich body of information that can be used to describe a font, includ
its name, the type technology it uses, its version, and its style parameters. S
information is represented by theFontDescriptor class, which can be used to
locate aFont for a specific purpose. AFontDescriptor consists of a set of key/
value pairs.

Table 3-1 lists possibleFontDescriptor keys. You can use aFontDescriptor
object to obtain a list of host system fonts that share particular characteristic

Name Semantics

Name If present, supplies the name of the requested font, such asHelvetica-BoldOblique.

Family If present, supplies the family of the requested font, such asHelvetica.

Style If present, supplies the style parameters of the requested font. Possible values inc
Plain, Italic, andBold.

Technology If present, identifies the type technology of the requested font. Possible values re
sent technologies such asType1 andTrueType.

Text and Fonts 21

n

s

h

 to

” is

rawn:

r.
Table 3-1 Font descriptor keys

EveryFont object contains attributes for font name, size, and transform and a
array ofFontFeatures that describe the particularFont. TheFont class defines
several convenience methods that allow you to access this data directly.

TheFont class also provides access to font metrics. Every font object contain
detailed metrics for the font.Font allows you to access metric and outline infor-
mation through the methodsgetDesignMetrics, getGlyphMetrics, andgetG-
lyphOutline.4 The path returned bygetGlyphOutline is scaled using theFont
size and transform, but does not reflect theTransform associated with the
Graphics2D object.

3.1.2 Accessing Text Paths

You can use theFont.getGlyphOutline method to access the path of any glyp
in a font, as illustrated in Section 1.2. TheStyledString class also provides a
getStringPath method that simplifies the conversion of an entire block of text
a path. This method returns an instance ofPath that describes the character
shapes of the laid-out text. The returnedPath object reflects any transformations
applied to theFont object associated with the string, but not theTransform asso-
ciated with theGraphics2D object.

3.1.3 Transforming Text

Using theFont.deriveFont methods, you can create a newFont object with dif-
ferent attributes from an existingFont object. For example, to scale a font to a
custom size, you could create an instance ofFont with a unitary size and use
Font.deriveFont to apply aTransform and create a new scaledFont object.

Similarly, you could apply aTransform to theFont to skew the text, as shown in
the second part of Figure 3-1. In the first image in Figure 3-1, the string “Java
rotated several times around a center point. In the second image, aTransform

object is used to generate a skewed version of the font before the string is d

4. Note that bothgetGlyphMetrics andgetGlyphOutline take a glyph identifier, not a characte

Version If present, identifies the version of the requested font.

Name Semantics

Java 2D API, Version 0.9522
Figure 3-1 Transforming text

The following code uses thederiveFont method to implement this effect:

// Create a transformation for the font.
AffineTransform fontAT = new AffineTransform();
fontAT.setToScale(72.0, 72.0);
// Describe the font you want to use and then instantiate it
Font theFont = new Font("Helvetica", Font.PLAIN, 1);
Font theDerivedFont = theFont.deriveFont(fontAT);
// Define the rendering transform
AffineTransform at = new AffineTransform();
at.setToTranslation(400.0, 400.0);
g2d.transform(at);
at.setToRotation(Math.PI / 2.0);
// Create a StyledString object, specifying the text and
// transformed font.
StyledString ss = new StyledString("Java", theDerivedFont);
// Draw four copies of the string at 90 degree angles
for (int i = 0; i < 4; i++) {
 g2d.drawString(ss, 0.0f, 0.0f);
 g2d.transform(at);
}
// Create a skewed version of the font
fontAT.append(new AffineTransform(1.0, 0.0, -1.2, 1.0,
 0.0, 0.0));
theDerivedFont = theFont.deriveFont(fontAT);
// Create a StyledString object, specifying the text and the
// skewed font.
ss = new StyledString("Java", theDerivedFont);

JavaJa
va

Java Java

JavaJa
va

Java Java

Text and Fonts 23

here
o the
 infor-
lient

es,
xt.

hey

for-
yout,

m
. The
fine

xt and

are
 such

only
// Translate to a new location
at.setToTranslation(400.0, 0.0);
g2d.transform(at);
at.setToRotation(Math.PI / 2.0);
// Draw four more copies of the string at 90 degree angles
// with the skewed font.
for (int i = 0; i < 4; i++) {
 g2d.drawString(ss, 0.0f, 0.0f);
 g2d.transform(at);
}

3.2 Advanced Layout

Before a piece of text can be displayed, it is necessary to determine exactly w
each character should be placed. Most clients leave this layout process up t
system, which supplies a set of algorithms that compute the layout based on
mation contained in the font (such as the font metrics) and provided by the c
(such as the text itself and the requested point size).

The Java 2D API provides text layout facilities that handle most common cas
including text strings with mixed fonts, mixed languages, and bidirectional te

Advanced clients might want to compute the text layout themselves so that t
can exercise detailed control over what glyphs are used and where they are
placed. Using information such as glyph sizes, kerning tables, and ligature in
mation, advanced clients can use their own algorithms to compute the text la
bypassing the system’s layout mechanism.

TheGlyphSet class provides a way of displaying the results of custom layout
mechanisms. AGlyphSet object can be thought of as the output of an algorith
that takes a string and computes exactly how the string should be displayed
system has a built-in algorithm and the Java 2D API lets advanced clients de
their own algorithms. Normally, when you construct aStyledString object, you
pass in the text you want to be displayed. The system then processes this te
builds aGlyphSet object for you, based on its layout algorithm.

A GlyphSet object is basically an array of glyphs and glyph locations. Glyphs
used instead of characters to provide total control over layout characteristics
as kerning and ligatures. For example, when displaying the string “final”, you
might want to replace the leading “fi” substring with the ligature “fi”. (In profes-
sional publishing, certain combinations of two or more characters are comm
replaced by a single glyph, known as a ligature.) In this case, theGlyphSet object
will have fewer glyphs than the number of characters in the original string.

Java 2D API, Version 0.9524

, the

 of
of
e

xt. A
 they

, and
I

ows
Figure 3-2 and Figure 3-3 illustrate howGlyphSet objects are used with the
default layout mechanism and with custom layout mechanisms. In Figure 3-2
client builds aStyledString object and passes it to thedrawString method.
The built-in layout algorithm determines which glyphs to use and where each
them should be placed. This information is stored internally using instances
GlyphSet. TheseGlyphSet objects are then passed to a glyph rendering routin
that does the actual drawing.

Figure 3-2 Using the built-in layout algorithm

In Figure 3-3, the client assembles the information necessary to lay out the te
custom layout algorithm is used to determine which glyphs to use and where
should be placed. In this example, the“fi” substring is replaced with the “fi” lig-
ature. This layout information is then stored in aGlyphSet object. TheGlyphSet
object is then passed to thedrawString method, which passes it directly to the
glyph renderer.

Figure 3-3 Using custom layout algorithms

4.0 Color Management

Color imaging is one of the fundamental components of any graphics system
it is often a source of great complexity in the imaging model. The Java 2D AP
provides support for high-quality color output that is both easy to use and all
advanced clients to make sophisticated use of color.

final

GlyphSet

my-font

my-glyph-ids

my-x-posns

my-y-posns

drawString()

Glyph
Renderer

Built-in
Layout
Algorithm

simple
StyledString

with Font
parameters

final

drawString()

Glyph
Renderer

Client
Layout
Algorithm

GlyphSet
collection

Font
parameters

Color Management 25

 need

en,

lled

ing
r

cess
ted
.

YK
es of
e cyan
r.
and

r
ce.
nt
de-

d by
d
vel-

. To
ent
t

 that
t

n-
4.1 Specifying Colors

To display a rectangle of a certain color, such as the process color cyan, you
a way to describe this color to Java. There are a number of different ways to
describe a color; for example, a color could be described as a set of red, gre
and blue (RGB) components, or a set of cyan, magenta, yellow, and black
(CMYK) components. These different techniques for specifying colors are ca
color spaces.

As you probably know, colors on a computer screen are generated by blend
different amounts of red, green, and blue light. Therefore, using an RGB colo
space is standard for imaging on computer monitors. Similarly, four-color pro
printing uses cyan, magenta, yellow, and black ink to produce color on a prin
page; the printed colors are specified as percentages in a CMYK color space

Due to the prevalence of computer monitors and color printing, RGB and CM
color spaces are both commonly used to describe colors. However, both typ
color spaces have a fundamental drawback—they are device-dependent. Th
ink used on one printer might not exactly match the cyan ink used on anothe
Similarly, a color described as an RGB color might look blue on one monitor
purplish on another.

The Java 2D API refers to RGB and CMYK as color space types. A particula
model of monitor with its particular phosphors defines its own RGB color spa
Similarly, a particular model of printer has its own CMYK color space. Differe
RGB or CMYK color spaces can be related to each other through a device-in
pendent color space.

Standards for the device-independent specification of color have been define
the International Commission on Illumination (CIE). The most commonly use
device-independent color space is the three-component XYZ color space de
oped by CIE. When you specify a color usingCIEXYZ, you are insulated from
device dependencies.

Unfortunately, it’s not always practical to describe colors in theCIEXYZ color
space—there are valid reasons for representing colors in other color spaces
obtain consistent results when a color is represented using a device-depend
color space such as a particular RGB space, it is necessary to show how tha
RGB space relates to a device-independent space likeCIEXYZ.

One way to map between color spaces is to attach information to the spaces
describes how the device-dependent space relates to the device-independen
space. This additional information is called aprofile. A commonly used type of
color profile is the ICC Color Profile, as defined by the International Color Co

Java 2D API, Version 0.9526

ail-

e Java
ee in

n an
acter-
duce

utput
lor
dent
In
phi-
d to
 a
sortium. For details, see the ICC Profile Format Specification, version 3.3 av
able athttp://www.color.org.

Figure 4-1 illustrates how a solid color and a scanned image are passed to th
2D API, and how they are displayed by various output devices. As you can s
Figure 4-1, both the input color and the image have profiles attached.

Figure 4-1 Using profiles to map between color spaces

Once the API has an accurately specified color, it must reproduce that color o
output device, such as a monitor or printer. These devices have imaging char
istics of their own that must be taken into account to make sure that they pro
the correct results. Another profile is associated with each output device to
describe how the colors need to be transformed to produce accurate results.

Achieving consistent and accurate color requires that both input colors and o
devices be profiled against a standard color space. For example, an input co
could be mapped from its original color space into a standard device-indepen
space, and then mapped from that space to the output device’s color space.
many respects, the transformation of colors mimics the transformation of gra
cal objects in an (x, y) coordinate space. In both cases, a transformation is use
specify coordinates in a “standard” space and then map those coordinates to
device-specific space for output.

Profile RGB
Monitor

Grayscale
Monitor

CMYK
Printer

Java 2D

Solid Color

Scanned Image

Profile

Profile

Profile

Profile
API

Color Management 27

om a

An

 RGB

ce
with
 writ-

ce.
ion or

om-

 to
4.2 Color Classes

The key color management classes in the Java 2D API areColor, ColorModel,
andColorSpace. TheColor class describes a color in terms of its constituent
components in its particular color space. TheColorModel class provides informa-
tion necessary to convert the components of a pixel in anImage or BufferedIm-
age into color components in a particular color space. TheColorSpace class has
methods for converting color components in a particular color space to and fr
well-definedCIEXYZ color conversion space as well as a standard RGB color
space.

4.2.1 Color

TheColor class provides a description of a color in a particular color space.
instance ofColor contains the value of the color components and aColorSpace

object. Because aColorSpace object can be specified in addition to the color
components when a new instance ofColor is created, theColor class can handle
colors in any color space.

TheColor class has a number of methods that support a proposed standard
color space calledsRGB (seehttp://www.w3.org/pub/WWW/Graphics/Color/
sRGB.html). sRGB is the default color space for the Java 2D API. Several con-
structors defined by the Color class omit theColorSpace parameter. These con-
structors assume that the color's RGB values are defined insRGB, and use a default
instance ofColorSpace to represent that space.

Java usessRGB as a convenience to application programmers, not as a referen
color space for color conversion. Many applications are primarily concerned
RGB images and monitors, and defining a standard RGB color space makes
ing such applications easier. TheColorSpace class defines the methodstoRGB

andfromRGB so that developers can easily retrieve colors in this standard spa
These methods are not intended to be used for highly accurate color correct
conversions. See Section 4.2.3, “ColorSpace” for more information.

To create a color in a color space other thansRGB, you use theColor constructor
that takes aColorSpace object and an array of floats that represent the color c
ponents appropriate to that space. TheColorSpace object identifies the color
space.

4.2.2 ColorModel

TheColorModel class contains data which is used to interpret pixel data in an
image. This includes mapping components in the data channels of an image

Java 2D API, Version 0.9528

ngle
 See

he

or

ce

K

 of
s

tween
components of a particular color space. It might also involve extracting pixel
components from packed pixel data, retrieving multiple components from a si
data channel using masks, and converting pixel data through a lookup table.
Section 5.2, “Using Offscreen Buffers” for more information on theColorModel

class.

4.2.3 ColorSpace

A ColorSpace object represents a color space, such as a particular RGB or
CMYK space. AColorSpace object serves as a colorspace tag that identifies t
specific color space of aColor object or, through aColorModel object, of an
Image, BufferedImage, orGraphicsConfiguration. ColorSpace provides
methods that transformColors in a specific color space to and fromsRGB and to
and from a well-definedCIEXYZ color space.

All ColorSpace objects must be able to map a color from the represented col
space intosRGB and transform ansRGB color into the represented color space.
Since every color contains aColorSpace object, set explicitly or by default, every
color can also be converted tosRGB. Similarly, since everyGraphicsConfigura-
tion is also associated with aColorSpace object, anysRGB color can be dis-
played on any output device. It follows that a color specified in any color spa
can be displayed by any device by mapping it throughsRGB as an intermediate
color space.

The methods used for this process aretoRGB andfromRGB:

• toRGB transforms a color in the represented color space, such as a CMY
space, to a color insRGB.

• fromRGB takes a color insRGB and transforms it into the represented color
space.

Though mapping throughsRGB always works, it's not always the best solution.
For one thing,sRGB cannot represent every color in the full gamut ofCIEXYZ col-
ors. If a color is specified in some space that has a different gamut (spectrum
representable colors) thansRGB, then usingsRGB as an intermediate space result
in a loss of information. To address this problem, theColorSpace class can map
colors to and from another color space, the “conversion space”CIEXYZ.

The methodstoCIEXYZ andfromCIEXYZ map color values from the represented
color space to the conversion space. These methods support conversions be
any two color spaces at a reasonably high degree of accuracy. However, it is
expected that built-inColorSpace implementations (such asICC_ColorSpace)

Color Management 29

r-

 in a
g

e-
d
rbi-
d.

is that
version
will support high-performance conversion based on underlying platform colo
management systems.

Figure 4-2 and Figure 4-3 illustrate the process of translating a color specified
CMYK color for display on an RGB color monitor. Figure 4-2 shows a mappin
throughsRGB. As this figure illustrates, the translation of the CMYK color to an
RGB color is not exact because of a gamut mismatch.5

Figure 4-2 Mapping through sRGB

Figure 4-3 shows the same process usingCIEXYZ as the conversion space. When
CIEXYZ is used, the color is passed through accurately.

Figure 4-3 Mapping through CIEXYZ

4.2.4 ICC_Profile and ICC_ColorSpace

ColorSpace is actually an abstract class. The Java 2D API provides one impl
mentation,ICC_ColorSpace, which is based on ICC Profile data as represente
by theICC_Profile class. You can define your own subclasses to represent a
trary color spaces, as long as the methods discussed above are implemente
However, most developers can simply use the defaultsRGB ColorSpace or color

5. Of course, the colors used in these diagrams are illustrative, not accurate. The point
colors might not be mapped accurately between color spaces unless an appropriate con
space is used.

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

CMYK
ColorSpace

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

DeviceRGB
ColorSpacesRGB

Color
CMYK
Color

Device RGB
Color

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

CMYK
ColorSpace

toRGB

fromRGB

toCIEXYZ

fromCIEXYZ

DeviceRGB
ColorSpaceCIEXYZ

Color
CMYK
Color

Device RGB
Color

Java 2D API, Version 0.9530

ofiles

w
ace.
color
hich
on-
stems
the

 an

ypes,

onnec-

 can

e
ise
ular
ssing

itec-
fines a
ght

g:
spaces that are represented by commonly available ICC Profiles, such as pr
for monitors and printers, or profiles embedded in image data.

Section 4.2.3 describes howColorSpace objects represent a color space and ho
colors in the represented space can be mapped to and from a conversion sp
Color management systems are often used to handle the mapping between
spaces. A typical color management system (CMS) manages ICC profiles, w
are similar toColorSpace objects; ICC profiles describe an input space and a c
nection space, and define how to map between them. Color management sy
are very good at figuring out how to map a color tagged with one profile into
color space of another profile.

The Java 2D API defines a class calledICC_Profile that holds data for an arbi-
trary ICC Profile.ICC_ColorSpace is an implementation of the abstractColor-

Space class.ICC_ColorSpace objects can be constructed fromICC_Profiles.
(There are some limitations—not all ICC Profiles are appropriate for defining
ICC_ColorSpace).

ICC_Profile has several subclasses that correspond to specific color space t
such asICC_ProfileRGB andICC_ProfileGray. Each subclass ofICC_Profile
has a well-defined input space (such as an RGB space) and a well-defined c
tion space (likeCIEXYZ). The Java 2D API can use a platform's CMS to access
color profiles for various devices such as scanners, printers, and monitors. It
also use the CMS to find the best mapping between profiles.

5.0 Imaging

Image processing involves the manipulation of raster images, often to improv
visual appearance or bring out subtle shapes and patterns that might otherw
escape visual detection. Any of the image processing effects provided in pop
photo-editing programs can be produced using the Java 2D API image-proce
classes, or by extending those classes.

5.1 Image Processing and Enhancement

The Java 2D API provides a set of classes that define operations onBufferedIm-

age andTile objects. These image processing classes share a common arch
ture. Each image processing operation is embodied in a class. Each class de
filter method that performs the actual image manipulation. This method mi
operate on a source and destinationBufferedImage, or a source and destination
Tile. Figure 5-1 illustrates the basic model for Java 2D API image processin

Imaging 31

n,
sses

old,

arches
detec-
etec-
,

ld-
 can
g out
Figure 5-1 Image processing model

The operations supported include amplitude scaling, lookup-table modificatio
linear combinations of channels, color conversion, and convolutions. The cla
that implement these operations includeAffineTransformOp, ChannelCombin-
eOp, ColorConvertOp, ConvolveOp, LookupOp, RescaleOp, and Thresh-
oldOp. These classes can be used to blur, sharpen, enhance contrast, thresh
and color correct images.

Figure 5-2 illustrates edge detection and enhancement, an operation that se
for sharp changes in intensity within an image and emphasizes them. Edge
tion is commonly used in medical imaging and mapping applications. Edge d
tion is used to increase the contrast between adjacent structures in an image
allowing the viewer to discriminate greater detail.

Figure 5-2 Edge detection and enhancement

Figure 5-3 demonstrates lookup table manipulation via rescaling and thresho
ing. Rescaling can increase or decrease the intensity of all points. Rescaling
be used to increase the dynamic range of an otherwise neutral image, bringin

source
image

destination
image

filter

image-processing
operation

Java 2D API, Version 0.9532

 in
detail in a region that appears neutral or flat. Thresholding can clip ranges of
intensities to a specified level.

Figure 5-3 Lookup-table manipulation

The image processing classes provided by the Java 2D API are summarized
Table 5-1:

Table 5-1 Image processing classes

Class Name Operates on Description

AffineTransformOp BufferedImage, Tile Performs an affine transforma-
tion on the image or tile.

ChannelCombineOp BufferedImage, Tile Performs arbitrary linear combi-
nations on channels.

ColorConvertOp BufferedImage, Tile Performs color conversion.

ConvolveOp BufferedImage, Tile Performs spatial filtering.

LookupOp BufferedImage, Tile Uses a lookup table to remap
pixel data from one intensity to
another.

RescaleOp BufferedImage, Tile Rescales the data by multiplying
each pixel by a scale factor and
adding an offset.

ThresholdOp BufferedImage, Tile Sets pixel intensities in a given
range to a constant.

Imaging 33

ing
er-
e of
,
sur-

n
ht
-
res:

e is
 with
el of
5.1.1 Processing an Image

The following code fragment illustrates how to use one of the image process
classes,ConvolveOp. Convolution is the process that underlies most spatial filt
ing algorithms. Convolution is the process of weighting or averaging the valu
each pixel in an image with the values of neighboring pixels. In this example
each pixel in the source image is averaged equally with the eight pixels that
round it.

float weight = 1.0f/9.0f;
float[] elements = new float[9]; // create 2D array
// fill the array with nine equal elements
for (i = 0; i < 9; i++) {
 elements[i] = weight;
}
// use array of elements as argument to create a Kernel
private Kernel myKernel = new Kernel(3, 3, 1, 1, elements);
public ConvolveOp simpleBlur = new ConvolveOp(myKernel);
// sourceImage and destImage are instances of BufferedImage
simpleBlur.filter(sourceImage, destImage) // blur the image

The variablesimpleBlur contains a new instance ofConvolveOp that implements
a blur operation on aBufferedImage or aTile. Suppose thatsourceImage and
destImage are two instances ofBufferedImage. When you callfilter, the core
method of theConvolveOp class, it sets the value of each pixel in the destinatio
image by averaging the corresponding pixel in the source image with the eig
pixels that surround it. The convolution kernel in this example could be repre
sented by the following matrix, with elements specified to four significant figu

When an image is convolved, the value of each pixel in the destination imag
calculated by using the kernel as a set of weights to average the pixel’s value
the values of surrounding pixels. This operation is performed on each chann
the image.

K
0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

0.1111 0.1111 0.1111

=

Java 2D API, Version 0.9534

th
e in

he
ple

 of its

xel

nsity

ues,
sian

r
te the

lated
he
 the

u

e is
The following formula shows how the weights in the kernel are associated wi
the pixels in the source image when the convolution is performed. Each valu
the kernel is tied to a spatial position in the image.

The value of a destination pixel is the sum of the products of the weights in t
kernel multiplied by the value of the corresponding source pixel. For many sim
operations, the kernel is a matrix that is square and symmetric, and the sum
weights adds up to one.6

The convolution kernel in this example is relatively simple. It weights each pi
from the source image equally. By choosing a kernel that weights the source
image at a higher or lower level, a program can increase or decrease the inte
of the destination image. TheKernel object, which is set in theConvolveOp con-
structor, determines the type of filtering that is performed. By setting other val
you can perform other types of convolutions, including blurring (such as Gaus
blur, radial blur, and motion blur), sharpening, and smoothing operations.

5.2 Using Offscreen Buffers

BufferedImage is derived fromjava.awt.Image. This class supports fine-grain
control over an image by allowing you to specify the image’sColorModel, image
data, and data layout (Tile and Channel). You also can supply storage space fo
the image data or access the existing storage data, allowing you to manipula
contents of an image directly.

An image’sColorModel specifies the color space of the data in theTile and how
the data is mapped to color and alpha components. ATile is comprised of an
array ofChannel objects. AChannel is a collection of data and data layout
parameters for one or more bands of an image. With the information encapsu
by theTile and ColorSpace objects, you can directly access and manipulate t
pixels in an image. If you don’t want to manipulate pixels directly, you can use
getData andputData, methods defined byTile.

TheChannel, ColorModel, andColorSpace classes are important whenever yo
need to know about pixel layouts; for example, when implementing newCompos-

ite objects or usingBufferedImage objects.

6. If the sum of the weights in the matrix is one, the intensity of the destination imag
unchanged from the source.

K
i 1– j 1–, i 1– j, i 1– j 1+,

i j 1–, i j, i j 1+,
i 1+ j 1–, i 1+ j, i 1+ j 1+,

=

Imaging 35

a-

 and

or.

r

odel
n to
lpha

index

d

age,

annel
erent
oesn't
 area.
5.2.1 Color Models

Images are two dimensional arrays of pixel values, notColor objects. To deter-
mine the color value of a particular pixel, you need to know how color inform
tion is encoded in each pixel. TheColorModel associated with an image
encapsulates the data and methods necessary for translating a pixel value to
from its constituent color components.

The Java 2D API provides three types of color models:

• An IndexColorModel contains a lookup table that maps an index to a col
It can be associated with aTile that has either one or twoChannel objects
(the second channel is an alpha channel).

• A ComponentColorModel is associated with aTile that has the same numbe
of Channel objects as color and alpha components in the
ComponentColorModel. The placement of color component names in the
color space of the color model determines the mapping between color
components and channels in the channel array. For example, a color m
with an RGB color space would map red to the channel at index 0, gree
the channel at index 1, and blue to the channel at index 2. If there is an a
channel, it would be the last channel in the channel array, the channel at
3.

• A PackedColorModel is associated with aTile that has one
DiscreteChannel object. TheDirectColorModel in JDK1.1 is a
PackedColorModel. The packing information that describes how color an
alpha components are extracted from the channel is stored in the
PackedColorModel.

5.2.2 Tiles

If a Tile is not embedded in aBufferedImage, it can have many more channels
than color components. This is useful for image processing applications. For
example, a Landsat satellite image would have seven channels of data in aTile,
corresponding to the different sensors onboard the satellite. To display the im
you would typically create a subtile of theTile to include only channels 3, 1, and
0, and associate it with a RGB color model so that channel 3 maps to red, ch
1 maps to green, and channel 0 maps to blue. However, you could use a diff
combination of channels because the channel data is false color; the color d
necessarily correspond to a color that a person would see when viewing the

Java 2D API, Version 0.9536

re
/5
nnel

 into

For

t.

e use-
if
ce

y

ick-

aw

 copy

n
el

n off-
imi-

e two
w.
5.2.3 Channels

TheChannel class describes exactly how pixels are encoded and how they a
laid out in memory. It can handle a wide variety of data layouts such as a 5/6
layout in a RGB image, a band-sequential layout where the data in each cha
of the image is contiguous, and the layout supported by the current
java.awt.Image class, where 4 bytes of alpha, red, green and blue are packed
an integer.

There are two types ofChannel classes:DiscreteChannel andPackedChannel.
DiscreteChannel objects have one channel element per data array element.
example, each channel element in aByteDiscreteChannel would fit in one byte.
A PackedChannel can have multiple channel elements in a data array elemen
For example, a binary image might use aBytePackedChannel with 8 channel ele-
ments packed into a byte.

In aBufferedImage, the number and type ofChannel objects in theTile must
match the number of color and alpha components and type ofColorModel.

5.2.4 Using a BufferedImage as an Offscreen Cache

Preparing a graphic element offscreen and then copying to the screen can b
ful, particularly if the graphic is complex or is used repeatedly. For example,
you want to display a complicated shape several times, you could draw it on
into an offscreen buffer and then copy it to different locations in the window. B
drawing the graphic once and copying it, you can display the graphics more
quickly. Using offscreen buffers can also improve performance and reduce fl
ering in animation effects.

Thejava.awt package facilitates the use of offscreen buffers by letting you dr
to anImage object the same way that you draw to a window. All of the Java 2D
API rendering features can be used when drawing to an offscreen images. To
an offscreen drawing to the screen, you simply call thedrawImage method.7

The newBufferedImage class allows you to directly manipulate the pixels in a
image. It also provides more flexibility in the data layout and in the color mod
associated with the image.BufferedImage can be used to create an image that
can be efficiently blitted to a graphics device.

Offscreen buffers are often used for animation. For example, you could use a
screen buffer to draw an object once and then move it around in a window. S

7. Actually, you can draw it to another offscreen buffer just as easily. Some applications us
(or more) offscreen buffers to compose a complete drawing before copying it to a windo

Imaging 37

 a
ca-

t to

 then
ied,

ge.
 is
k
is

 chan-
ntrol
l
nging

.

 new
g the
larly, you could use an offscreen buffer to provide feedback as a user moves
graphic using the mouse. Instead of redrawing the graphic at every mouse lo
tion, you could draw the graphic once to an offscreen buffer, and then copy i
the mouse location as the user drags the mouse.8

Figure 5-4 Using an offscreen buffer

Figure 5-4 demonstrates how a program can draw to an offscreen image and
copy that image into a window multiple times. The last time the image is cop
it is transformed. Note that transforming the image instead of redrawing the
graphic with the transformation might produce unsatisfactory results.

A BufferedImage object can contain an alpha channel, just like any other ima
In situations like the one illustrated in Figure 5-4, a 1-bit deep alpha channel
sufficient to distinguish the painted areas from the unpainted areas. The mas
allows the image to blend with graphics that have already been painted (in th
case, a green rectangle). In other situations, you might want a deeper alpha
nel so you can manipulate the level of transparency in the image. You can co
the alpha characteristics of aBufferedImage object by selecting an alpha channe
of the appropriate depth, manipulating the data in the alpha channel, and cha
the composite mode in theGraphics2D object used to draw theBufferedImage.

Often, it is important to create an instance ofBufferedImage whose color space,
depth, and pixel layout exactly match the window into which you are drawing
This allowsdrawImage to do its job quickly.GraphicsConfiguration provides

8. It is up to the programmer to “erase” the previous version of the image before making a
copy at a new location. This can be done by redrawing the background or copyin
background from another offscreen buffer.

Java 2D API, Version 0.9538

or-
ics

uct a
n

ing

yout

by a
tes.

hich

 the

ut

ics
s.

ble
r

convenience methods that automatically create buffered images in the right f
mat. You can also query the graphics configuration associated with the graph
device on which the window resides to get the information you need to constr
compatibleBufferedImage object. (See the section “GraphicsConfiguration” o
page 39).

The same mechanism can be extended to a variety of output devices, includ
printers. For example, you could create aBufferedImage that is compatible with
a specific printer, resulting in an image whose color space, depth and pixel la
allow it to be drawn efficiently to that printer.

6.0 Graphics Devices

All graphics devices, such as a monitors and printers, are represented
GraphicsDevice object that encapsulates a device’s capabilities and attribu
The Java 2D API allows you to query the attributes of the environment in w
your application is running through theGraphicsEnvironment class and these
GraphicsDevice objects and their associatedGraphicsConfiguration objects.

6.1 Graphics Environment

You can access information about the overall operating environment through
GraphicsEnvironment class, which:

• Provides a list ofGraphicsDevice objects that represents all attached outp
devices

• Encapsulates the text capabilities of a system

You can examine the list of graphics devices and query the associated graph
configurations to determine the capabilities and properties of attached device
Normally, you don’t need to access this information.

GraphicsEnvironment also allows you to search for fonts based on properties
such as the font’s name, family, and style. You can also use it to list all availa
fonts. This might be useful, particularly if you are implementing a font panel o
font menu. Font searching and enumeration capabilities are based on theFontDe-

scriptor class, which is discussed in “Text Handling” on page 20.

Graphics Devices 39

r
ls
olor

 the
r

e for

-

ed to
 The
ate
6.2 GraphicsDevice

The Java 2D API uses theGraphicsDevice class to represent an actual output
device. Typically, you do not need to access this class.GraphicsDevice objects
are bound to actual output devices, such as printers or windows.

EachGraphicsDevice has a list ofGraphicsConfiguration objects associated
with it. In the X-windows environment, different windows on the same monito
can have different pixel layouts—a single monitor can provide multiple visua
with different pixel configurations. For example, one might be 8-bit pseudo-c
and another might be 24-bit direct color. When you list theGraphicsConfigura-

tion objects for a graphics device, there is one for each supported visual. In
MacOS and Windows environments, every pixel in every window on a monito
has the same configuration.

You can get a reference to aGraphicsDevice object from:

• GraphicsEnvironment, which maintains a list ofGraphicsDevice objects
that corresponds to every device that the Java 2D API knows about (on
every monitor or printer available on the system).

• GraphicsConfiguration, which defines a method that returns the
GraphicsDevice associated with the configuration. You can get the
GraphicsConfiguration associated with aGraphics2D object by calling
getDeviceConfiguration.

6.3 GraphicsConfiguration

To get a list of theGraphicsConfiguration objects associated with a particular
GraphicsDevice, you can callGraphicsDevice.getConfigurations. You can
query aGraphicsConfiguration to determine the capabilities of aGraphicsDe-
vice and createBufferedImage objects that are optimized for use with that con
figuration of the device.

You can also retrieve theColorModel object and the default and normalizing
Transforms for the configuration. TheColorModel maintains aColorSpace
object that characterizes the color output capabilities of the device and is us
match colors during the rendering process; see “Color Classes” on page 27.
Transform objects define how to transform from two convenient user coordin
spaces into the device coordinate space.

Figure 6-1 illustrates how aGraphicsDevice object is related to other key 2D
objects.

Java 2D API, Version 0.9540
Figure 6-1 Graphics configuration relationships

Graphics2D

Info about where
we are drawing
and the drawing
methods
themselves

GraphicsConfiguration

Graphics Configuration

Represents the
configuration of an
output device such as
a window in a
particular x11 visual
or screen depth.

ColorModel

Buffered Image

Defines the layout
and composition of
pixels in an image

ICC_ColorSpace

Data and methods
to convert a color
to and from RGB &
CIE XYZ

JavaJa
va

Ja
va

Ja
va

Java Java

Java

Java

createCompatibleImage

Device
characterization info
from the ICC profile

ColorSpace

bpp, colorMap, etc.

ColorModel

Capabilities, etc.

GraphicsDevice

Type

ID String

Represents a physi-
cal output device.

GraphicsDevice

	Contents
	1.0 Java 2D API Fundamentals
	1.1 Drawing
	1.1.1 Basic Drawing Process
	1.1.2 Drawing with the Java 2D API
	1.1.3 Managing Complex Drawing Operations
	1.1.4 Performing Hit Detection

	1.2 Text
	1.2.1 Drawing Text

	1.3 Images
	1.3.1 Transparency and Images

	1.4 Summary

	2.0 Rendering
	2.1 Rendering Pipeline
	2.2 Controlling the Rendering Quality
	2.3 Transformations
	2.3.1 Using Affine Transformations
	2.3.2 Creating Custom Transformations
	2.3.3 Transformation Pipeline

	2.4 Creating a New Type of Path
	2.5 Stroke
	2.6 Paint
	2.7 Composite
	2.7.1 Managing Transparency
	2.7.2 Defining Custom Composition Rules

	3.0 Text and Fonts
	3.1 Text Handling
	3.1.1 Specifying and Obtaining Font Information
	3.1.2 Accessing Text Paths
	3.1.3 Transforming Text

	3.2 Advanced Layout

	4.0 Color Management
	4.1 Specifying Colors
	4.2 Color Classes
	4.2.1 Color
	4.2.2 ColorModel
	4.2.3 ColorSpace
	4.2.4 ICC_Profile and ICC_ColorSpace

	5.0 Imaging
	5.1 Image Processing and Enhancement
	5.1.1 Processing an Image

	5.2 Using Offscreen Buffers
	5.2.1 Color Models
	5.2.2 Tiles
	5.2.3 Channels
	5.2.4 Using a BufferedImage as an Offscreen Cache

	6.0 Graphics Devices
	6.1 Graphics Environment
	6.2 GraphicsDevice
	6.3 GraphicsConfiguration

