Java Speech Grammar Format
Specification

\ersion 0.5— August 28,1997

Grammars are used by speech recognizers to determine what the
recognizer should listen for and to describe what utterances a user
may say. The Java™ Speech Grammar Format is a platform-
independent, vendor-independent textual representation of
grammars in the flavor of Java that is readable and editable by both
developers and computers.

D Sun

microsystems

THE NETWORK IS THE COMPUTER"

© 1997 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions
set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

The release described in this document may be protected by one or more U.S. patents, foreign patents, or pending
applications.

Sun Microsystems, Inc. (SUN) hereby grants to you a fully paid, nonexclusive, nontransferable, perpetual, worldwide limited
license (without the right to sublicense) under SUN's intellectual property rights that are essential to practice this
specification. This license allows and is limited to the creation and distribution of clean-room implementations of this
specification that (i) are complete implementations of this specification, (ii) pass all test suites relating to this specification that
are available from SUN, (iii) do not derive from SUN source code or binary materials, and (iv) do not include any SUN binary
materials without an appropriate and separate license from SUN.

Java and JavaScript are trademarks of Sun Microsystems, Inc. Sun, Sun Microsystems, Sun Microsystems Computer
Corporation, the Sun logo, the Sun Microsystems Computer Corporation logo, Java and Hotlava are trademarks or registered
trademarks of Sun Microsystems, Inc. UNIX ® is a registered trademark in the United States and other countries, exclusively
licensed through X/Open Company, Ltd. All other product names mentioned herein are the trademarks of their respective
owners.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME

Contents

Notes to Reviewers

Contributions

Java Speech Grammar Format Specification

1.0 INtrodUCtiono e 1...
1.1 Related Documentation e 2
2.0 DefiNitioNsot 2...
2.1 Grammar Names and Package Names. 2
2.2 RUIE NAMES . . o 3
2.3 TOKENS . .t 5
2.4 COMMENESttt e e e e e 7
3.0 Grammar Headero 7
3.1 Grammar Name Declaration i 7
3.2 IMPOIt. . . 8
4.0 Grammar Body. 9
4.1 Rule Definitions. 9
4.2 COMPOSILION. . ..t 10
4.3 GrOUPING . o v vt e et e e e e e e e 12
4.4 Unary OPEeratorsS. oot e e 13
A D MO .« o v 14
4.6 PreCedenCet 15
A7 RECUISION . . e e e e e e e e e e 15
B.OEXamples 16. ...
5.1 Example 1: Simple Command and Control. 16
5.2 Example 2: Resolving Names 18

Notes to Reviewers

This document describes the Java™ Speech Grammar Format (JSGF) and
explains how it can be used to define cross-platform, cross-vendor recognition
grammars. This specification is an extract from the Java Speech Application
Programming Interface (JSAPI) specification that will be released later in 1997.
When the full specification is released, the Java Speech Grammar Format
specification will be included as part of the programming guide.

Review Comments

We are very interested in your input concerning the Java Speech Grammar Format
specification. Send your comments to:

javaspeech-comments@sun.com

Please be sure to include the version number and date of the document you are
reviewing with your comments. We anticipate releasing a small number of updates
to our documentation during the review period. These updates will incorporate
responses to comments. The earlier we receive your feedback, the more likely it
will be taken into consideration for the next update.

Because of the high level of interest in the Java Speech API, the Java Speech
Grammar Format and the Java Synthesis Markup Language, we are unable to
respond directly to individual comments or questions, but we will carefully read
and evaluate all of the input we receive.

JSGF and JSAPI

This specification for the Java Speech Grammar Format defines a textual
representation of the recognition grammars but does not address the issues listed
below. These programmatic issues are covered in the documentation for the Java
Speech API which is expected to be released later in 1997.

Java Speech Grammar Format

» Mechanisms for loading and deleting of grammars in a speech recognizer,
activation of grammars for recognition, and other grammar management
functionality.

» Mechanisms for receiving results of recognition for a grammar and
processing of those results.

» Specific error handling behavior for undefined and ambiguously defined
rule references.

« Vocabulary management such as provision of token pronunciations.

Issues for this Release

Many aspects of the Java Speech Gramorandt are fully specified. However,
some areas are still under development. Reviewers are especially encouraged to
provide feedback in these areas.

Specification Issues

The following areas in the Java Speech Grammar Format are either not yet
defined or are not fully defined in this version of the specification:

« A formal syntactic specification of JSGF.

» Format headeran optional header may be introduced to improve support
for multi-lingual applications. It could define the JSGF version used in the
document, the character encoding and possibly the language. e.g.

#sgf 1.0 1ISO-8859-1 en.us;

* “Pragma” facility for specifying grammar-specific parameters.

* Special symbois
<NULL>and empty groups () [] that are skipped.
<GARBAGExnatching any spoken input for word and phrase spotting.
<UNSPEAKABLExvhich cannot be matched to any speech.

» Unicode symbolsith Java-style reference ‘\u003C'.

Plans for Future Releases

Sun and its partners are considering new capabilities and features that may appear
in a future release of the Java Speech Grammar Format specification. Features
that we are considering for future releases include:

« Codebase conventiof@r locating grammars as URLSs.

Comments regarding the priority of these features, or other new features that you
would like to see, are appreciated.

Web Resources

To obtain information about the Java Speech API, see the web site at:
http://java.sun.com/products/java-media/speech/

To obtain information about other Java Media and Communications APIs, see the
web site at:

http://java.sun.com/products/java-media/

Mailing Lists

Discussion lists have been set up for anyone interested in the Java Speech API, the
Java Speech Grammar Format specification, and the Java Synthesis Markup
Language. Théavaspeech-announce mailing list will carry important
announcements about releases and updategaviEseeech-interest

mailing list is for open discussion of the Java Speech API and the associated
specifications.

To subscribe to thavaspeech-announce list or thejavaspeech-interest
list, send email witlubscribe javaspeech-announce or subscribe
javaspeech-interest or both in the message body to:

javamedia-request@sun.com

Thejavaspeech-announce mailing list is moderated. It is not possible to send
email to that list.

To send messages to the interest list, send email to:
javaspeech-interest@sun.com

To unsubscribe from thavaspeech-announce list or thejavaspeech-
interest list, send email witlinsubscribe javaspeech-announce or
unsubscribe javaspeech-interest or both in the message body to:

javamedia-request@sun.com

Revision History

Version 0.5: First public Beta release.

vii

Java Speech Grammar Format

viii

Contributions

Sun Microsystems, Inc. has worked in partnership with leading speech technology
companies to define the specifications for the Java Speech API and the Java
Speech Grammar Format (JSGF). These companies bring decades of research on
speech technology and experience in the development and use of speech
applications. Sun is grateful for the contributions of:

<

Apple Computer, Inc.
AT&T
Dragon Systems, Inc.

Novell, Inc.

.

.

+ IBM Corporation
.

¢ Philips Speech Processing
.

Texas Instruments Incorporated

Java Speech Grammar Format

Java Speech Grammar Format
Specification

1.0 Introduction

Speech recognition systems provide computers with the ability to listen to a user’s
speech and determine what they say. Current technology does not yet support
unconstrainedspeech recognition: the ability to listen to any speech in any
context and transcribe it accurately. To achieve reasonable recognition accuracy
and response time, current speech recognizers constrain what they listen for by
usinggrammars

TheJava™ Speech Grammar Form@SGF) defines a platform-independent,
vendor-independent way of describing one type of gramnnale grammarn(also
known as @ommand and contrgirammar). It uses a textual representation that is
readable and editable by both developers and computers, and can be included in
Java source code. The other major grammar typelickegtion grammaris not
discussed in this document.

A rule grammar specifies the typesutterancesa user might say (a spoken
utterance is similar to a written sentence). For example, a simple window control
grammar might listen for “open a file”, “close the window”, and similar
commands.

What the user can say depends upon the context: is the user controlling an email
application, reading a credit card number, or selecting a font? Applications know
the context, so applications are responsible for providing a speech recognizer with
appropriate grammars.

This document defines the Java Speech Grammar Format. First, the basic naming
and structural mechanisms are described. Following that, the basic components of
the grammar, thgrammar headeand thegrammar bodyare described. The

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

grammar header declares tirammar namend lists thémportedrules and
grammars. The grammar body definesrtiies of this grammar as combinations

of speakable text and references to other rules. Finally, some simple examples of
grammar declarations are provided.

1.1 Related Documentation

The following is a list of related documentation that may be helpful in
understanding and using the Java Speech Grammar Format.

The Java Speech Grammar Format has been developed for use with recognizers
that implement the Java Speech API. However, it may also be used by other
speecch recognizers and in other types of applications.

Readers interested in the programmatic use of the Java Speech Grammar Format
with the Java Speech API are referred to the technical documentation and the
Programmers Guide for the API. That guide is scheduled for public release by the
end of 1997. Among other issues, those documents define the mechanisms for
loading grammars into recognizers, methods for controlling and modifying

loaded grammars, error handling and so on.

The Java Speech Grammar Format has adopted some of the style and conventions
of the Java Programming Language. There are dozens of books that describe Java
programming. Readers interested in a comprehensive specification are referred to
The Java Language Specificati@osling, Joy and Steele, Addison Wesley, 1996
(GJS96).

Finally, like the Java Programming Language, the Java Speech Grammar Format
is defined with the Unicode character set. The full specification is defiffdgkin
Unicode Standard, Version 2.0he Unicode Consortium, Addison-Wesley
Developers Press, 1996 (Uni96).

2.0 Definitions

2.1 Grammar Names and Package Names

Each grammar defined by Java Speech Grammar Format has a unique name that
is declared in the grammar header. The structure of these names is either of the
following:

packageName.grammarName

grammarName

Java Speech Grammar Format Specification

The first pattern (package name + grammar namdulsgrammar namend the
second is @imple grammar nam@rammar name only). Examples of full
grammar names and simple grammar names include:

COM.Sun.speech.apps.numbers
EDU.unsw.med.people
examples

The package name and grammar name have the same format as packages and
classes in the Java programming language. A full grammar name is a dot-
separated list afava identifier$ (see GJS96, §3.8 and §6.5).

The grammar naming convention also follows the naming convention for classes
in the Java Programming Language (see GJS96). The convention minimizes the
chance of naming conflicts. The package name should be:

reversedDomainName . localPackaging

For example, foCOM.Sun.speech.apps.numbers , COM.Sunis the reversed
Internet domain namepeech.apps is the local package name to divide the
name space internally, and finatlymbers is the name of the grammar.

2.2 Rule Names

A grammar is composed of a set of rules that define what may be spoken. Rules
are combinations of speakable text and references to other rules. Each rule has a
uniquerule name A reference to a rule is represented by the rule’s name in
surrounding <> characters (less-than and greater-than).

A legal rule name is similar to a Java identifier but allows additional extra
symbols. A legal rule name is an unlimited-length sequence of Unicode
characters matching the foIIowi?'lg

» Characters matching
java.lang.Character.isJavaldentifierPart including the
Unicode letters and numbers plus other symbols.

« The following additional punctuation symbols:

1 AJava identifier is an unlimited-length sequence of Unicode characters. The first character is
a letter or one of a set of special symbols (including ‘$’ and *_’). Following characters include
letters, numbers, the special symbols and other charactermvaliang.Character
class defines methods to test identifiers and document the character sets in more detail:
isJavaldentifierStart andisJavaldentifierPart

2 The Java Speech API will define a method to test the set of legal characters in rule names.

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

L= NOe#%! M &~

Grammar developers should be aware of two constraints. First, rule names are
compared with exact Unicode string matches, so case is significant. For example,
<Name> <NAME>and<name> are different. Second, whitespéd:enot permitted

in rule names.

The Unicode character set includes most writing scripts from the world’s living
languages, so rule names can be written in Chinese, Japanese, Korean, Thai,
European languages, and many more. The following are examples of rule names.

<hello>
<Zirich>
<user_test>
<$100>
<1+2=3>

<TO 3>

2.2.1 Qualified and Fully-Qualified Names

Although rule names are unique within a grammar, separate grammars may use
the same rule name. A later section introducespert statement, which

allows one grammar to reference rules from another grammar. When two
grammars use the same rule name, a reference to that rule name may be
ambiguousQualified nameandfully-qualified namesare used to resolve these
ambiguities.

A fully-qualified rule name includes ttiell grammar namend therule name
For example:

<COM.sun.greetings.english.hello>
<COM.sun.greetings.deutsch.gutenTag>

A qualified rule name includes only tgeammar namend theule nameand is a
useful shorthand representation. For example:

<english.hello>

<deutsch.gutenTag>

3. TheisWhitespace ~ method of thgava.lang.Character class can be used to test for
whitespace characters in the Unicode character set.

Java Speech Grammar Format Specification

The following conditions apply to the use of rule names:
* Qualified and fully-qualified rule names may not be used on the left side
of the definition of a rule.
» Import statements must use fully-qualified rule names.

» Local rules can be reference with qualified and fully-qualified names
using the formxlocalGrammarName.ruleName >.

2.2.2 Resolving Names

It is an error to use an ambiguous reference to a rule name. The following defines
behavior for resolving references:

» Local rules have precedence. If a local rule and one or more imported rules
have the same nameuleName >, then a simple rule reference to
<ruleName > is a reference to the local rule.

* If two or more imported rules have the same namgeName >, but
there is no local rule of the same name, then a simple rule reference to
<ruleName > is ambiguous and is an error. These imported rules must be
referred to by their qualified or fully-qualified names.

» If two or more imported rules have the same name and come from
grammars with the same grammar name (but necessarily different package
names), then a simple rule reference or qualified rule reference is
ambiguous and is an error. These imported rules must be referred to by
their fully-qualified names.

« Areference by a fully-qualified rule name is never ambiguous.

2.3 Tokens

A token sometimes calledtarminal symbaqlis the part of a grammar that defines
what may be spoken by a user. Most often, a token is equivalewbtol.alokens
may appear in isolation or in whitespace-separated sequences. For example,

hello

konnichiwa

this is a test

open the directory

In Java Speech Grammar Format, a token is a Unicode sequence bounded by
whitespace, by quotes or delimited by the other symbols that are significant in the
grammar:

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997
=< ONG N

A token is a reference to an entry ireaognizer’s vocabularyften referred to as
thelexicon The recognizer’s vocabulary defines ginenunciationof the token.
With the pronunciation, the recognizer is able to listen for that token.

Most recognizers operateono-linguallythat is, listening for one language at any
given time. Similarly, their vocabulary will normally contain the words of one
language. Therefore, grammar definitions only contain tokens from a single
language and the interpretation of tokens is language specific.

Most recognizers have a comprehensive vocabulary for each language they
support. However, it is never possible to include 100% of a language. For
example, names, technical terms and foreign words are often missing from the
vocabulary. For tokens missing from the vocabulary, there are two possibilities:

* An application can add the token and pronunciation to the recognizer’'s
vocabulary to ensure consistent recognition.

» Good recognizers are able to guess the pronunciation of many words not
in the vocabulary.

2.3.1 Quoted Tokens

A token does not need to be a word. A token may be a sequence of words or a
symbol. Quotes can be used to surround multi-word tokens and special symbols.
For example:

the "New York" subway
nyn

A multi-word token is useful when the pronunciation of words varies because of
the context. Multi-word tokens can also be used to simplify the processing of
results, for example, getting single-token results for “New York”, “Sydney” and
“Rio de Janeiro.”

Quoted tokens can be included in the recognizer’s vocabulary like any other
token. If a multi-word quoted token is not found in the vocabulary, then the
default behavior is to search for each space-separated token within the quotes.

2.3.2 Symbols and Punctuation

Most speech recognizers provide the ability to handle common symbols and
punctuation forms. For example, recognizers for English usually handle
apostrophes (“Mary’s”, “it's”), hyphens (“new-age”), and periods (“Mr.”).

Java Speech Grammar Format Specification

There are, however, many textual forms that are difficult for a recognizer to
handle unambiguously. In these instances, a grammar developer should provide
tokens that are as close as possible to the way people will speak and that are likely
to be built into the vocabulary. The following are common examples.

* Numbers: “0 1 2" should be expanded to “zero one two” or “oh one two”.
Similarly, “call 555 1234” should be expanded to “call five five five one
two three four.”

» Dates: “Dec 25, 1997” should be written as “December twenty fifth
nineteen ninety seven.”

» Special symbols: ‘& as “ampersand” or “and”, ‘+’ as “plus”, and so on.

24 Comments

Comments may appear in both the header and body. The comment style of the
Java Programming Language is adopted (see GJS96). There are two forms of
comment.

* text */ A traditional commentAll text between* and*/ is
ignored.
Il text A single-line commentll the text from// to the end of a

line is ignored.

Comments do not nest. Furthermdte has no special meaning within comments
beginning withv* . Similarly,/* has no special meaning within comments
beginning with/ .

Comments may appear anywhere in a grammar definition except within tokens,
guoted tokens, rule names, tags and weights.

In this version there is no special meaning to comments beginningwith
unlike Java code in which this form signifies a documentation comment.

3.0 Grammar Header

A single file defines a single grammar. The definition grammar contains two parts:
thegrammar headeand thegrammar bodyThe grammar header declares the
name of the grammar and may import rules from other grammars. The body
defines the rules of the grammar, some of which may be public.

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

3.1 Grammar Name Declaration

The grammar’s name must be declared as the first statement of that grammar. The
format is either of the following:

grammar packageName.grammarName ;
grammar grammarName;

The naming of packages and grammars is described in the sectByaramar
Names and Package Nanwmspage 2.

For example:
grammar COM.Sun.speech.apps.numbers;
grammar EDU.unsw.med.people;

grammar examples;

3.2 Import

The grammar header can optionally inclim@ort declarations. The import
declarations follow the grammar declaration and must come before the grammar
body (the rule definitions). An import declaration allows one or all of the public
rules of another grammar to be referenced locally. The format of the import
statement is one of the following

import < fullyQualifiedRuleName >;
import < fullGrammarName .*>;

For example,
import <COM.Sun.speech.app.index.1stTo31st>;
import <COM.Sun.speech.app.numbers.*>;

The first example import statement imports a single rule referenced by its fully-
gualified rule name (the rule nametbktTo31st> from the grammar named
COM.Sun.speech.app.index).

The use of the asterisk in the second import statement requests the import of all
public rules of th@umbers grammar. For example, if that grammar defines three
public rules<digits> , <teens> , <zeroToMillion>, then all three may be
referenced locally.

Java Speech Grammar Format Specification

An imported rule can be referenced in three ways: by its simple rule name (e.g.
<digits>), by its qualified rule name (e.gaumbers.digits>), or by its
fully-qualified rule nameqCOM.Sun.speech.apps.numbers.digits>).

The name resolving behavior is defined earlier in this docum&esolving
Nameson page 5.

Note that even when an imported rule is referenced by its fully-qualified name,
the corresponding import statement for the grammar is required. (This differs
from the Java Programming Language.)

4.0 Grammar Body

The grammar body definesles The rule’s definition is a logical combination of
text that may be spoken, referred ta@sensor terminals andreferencego other

rules. A rule is defined once, and only once, in a grammar. The order of definition
of rules is not significant. (These properties differ from some linguistic grammar
formats.)

41 Rule Definitions

The patterns for defining a rule are:
<ruleName > = ruleDefinition
public < ruleName > = ruleDefinition

The rule name to be defined is followed by the equals sign, ‘=", a rule definition,
and the closing semi-colon, ;.

The simplest rule definitions areferencego another rule or to a token. A
reference to another rule uses its rule name, its qualified name, or its fully-
gualified name. The following are examples defining thesateby a simple rule
reference, by a fully-qualified rule reference, and as a token:

<> = <y>;
<x> = <COM.acme.grammar.y>;
<x> = word;

As explained below, more complex rule definitions are built by the following
mechanisms:

» Compositiorof rule definitions as sequences of sub-rule definitions and
sets of alternative sub-rule definitions

10

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

» Groupingusing parentheses and brackets
» Unary operatordor repetition of rule definitions
» Attachment of application-speciftags

41.1 Public Rules

Any rule in a grammar may be declared as public. A public rule is defined with
the pattern:

public < ruleName > = ruleDefinition ;
A public rule has three possible uses:
It can bamportedinto another grammar so that it may be referenced in the

rule definitions of that grammar.

It can be used as attiverule for recognition (i.e., a rule used by a
recognizer to determine what may be spoken).

* It can be referenced locally.

Without the public declaration, a rule is implicitly private and so can only be
referenced locally (in the grammar in which it is defined). Note that unlike the
Java Programming Language, the Java Speech Grammar Format does not have
keywords forprivate or protected

4.2 Composition

4.2.1 Sequence

A rule definition can be a sequence of sub-rule definitions separated by white
space. For example:

<where> = | live in Boston;
<statement> = this <object> is <OK>;

Each entry in the sequence must be spoken in order for the complete sequence to
be spoken. In the first example, to say the «uleere> , the speaker must say the
words “l live in Boston” in that exact order. The second example mixes speakable
tokens with references to other rulesbject> and<OK> To say the rule
<statement> , the user must say “this” followed by something which matches
<object> , then “is”, and finally something matchir@K>

Java Speech Grammar Format Specification

The items in a sequence may be any legal rule definition. This includes the
structures described below for alternatives, groups and so on. The items are
separated by whitespace characters.

4.2.2 Alternatives

A rule definition can be set of alternativeule definitions separated by ‘|’
symbols (vertical bar) and optionally by whitespace. For example:

<name> = Michael | Yuriko | Mary | Duke | <otherNames>;

To say the rul&name>, the speaker must say one, and only one, of the items in
the set of alternatives. For example, a speaker could say “Michael”, “Yuriko”,
“Mary”, “Duke” or anything that matches the ruietherNames> . However, the
speaker could not say “Mary Duke”.

Sequences have higher precedence than alternatives. For example,
<country>= South Africa | New Zealand | Papua New Guinea;

is a set of three alternatives, each naming a country.

4.2.3 Weights

Not all ways of speaking a grammar are equally likely. Weights may be attached
to the elements of a set of alternatives to indicate the likelihood of each alternative
being spoken. A weight is a floating point number surrounded by forward slashes,
e.g. /3.14/. The higher the weight, the more likely that an entry will be spoken.
The weight is placed before each item in a set of alternatives. For example:

<size> =/10/ small | /2/ medium | /1/ large;
<color> =/0.5/ red | /0.1/ navy blue | /0.2/ sea green;
<action> = please (/20/save files |/1/delete all files);

The weights should reflect the occurrence patterns of the elements of a set of
alternatives. In the first example, the grammar writer is indicating that “small” is
10 times more likely to be spoken than “large” and 5 times more likely than
“medium.”

The following conditions must be met when specifying weights:

» If aweight is specified for one entry in a set of alternatives, then a weight
must be specified for every alternative (the “all or nothing rule”).

* Weights are floating point numbers that could be passed to the
java.lang.Float.valueOf(String) method. For example, 56,

11

12

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

0.056, 3.14e3, 8f.
» Only afloating point number and whitespace is allowed within the slashes.

* Weights must be zero or greater. A zero weight indicates that the entry can
never be spoken, as if the entry was not included in the alternatives list.
(Zero weights are useful in developing grammars.)

« At least one non-zero positive weight is required.

Appropriate weights are difficult to determine and guessing weights does not
always improve recognition performance. Effective weights are usually obtained
by study of real speech and textual data.

4.3 Grouping

4.3.1 (Parentheses)

Any rule definition may be explicitly grouped using matching parentheses ‘()'.
Grouping has high precedence and so can be used to ensure the correct
interpretation of rules. It is also useful for improving clarity. For example:

<action> = please (open | close | delete);

The following example shows a sequence of three items, with each item being a
set of alternatives surrounded by parentheses to ensure correct grouping.

<command> = (open | close) (windows | doors)
(immediately | later);

To say something matchirgommand>, the speaker must say one word each
from the three sets of alternatives: for example, “open windows immediately” or
“close doors later”.

If a grouping surrounds a single definition, then the entity is defined to be a
sequence of one item (not an alternative with only one option). For example:

(start)

(<end>)

4.3.2 [Optional Grouping]

Square brackets may be placed around any rule definition to indicate that the
contents are optional. In other respects, it is equivalent to parentheses for
grouping and has the same precedence.

For example,

Java Speech Grammar Format Specification
<polite> = please | kindly | oh mighty computer;
public <command> = [<polite>] don't crash;

allows a user to say “don’t crash” and to optionally add one form of politeness
such as “oh mighty computer don’t crash” or “kindly don't crash”.

4.4 Unary Operators

There are threanary operatorsn the Java Speech Grammar Format. The unary
operators share the following features:

» They attach to the immediately preceding rule definition
* They have high precedence
* Only one unary operator can be attached to any rule definition

441 *Kleene Star

A rule definition followed by the asterisk symbol indicates that the immediate
preceding rule definition may be spokaaro or more timesThe asterisk symbol

is known as the Kleene star (after Stephen Cole Kleene, who originated the use of
the symbol). For example,

<command> = <polite>* don’t crash;

allows a user to say things like “please don't crash”, “oh mighty computer please
please don't crash”, or to ignore politeness: “don’t crash”.

As a unary operator, this symbol has high precedence. For example,
<song> = sing New York *;

matches “sing New York”, “sing New” and “sing New York York York”, but not
“sing New York New York”. Quotes or parentheses can be used to modify the
scope of the * operator. For example,

<song> = sing (New York) *;

does match “sing New York New York”.

4.4.2 + Plus Operator

A rule definition followed by the plus symbol indicates the rule definition may be
spokenone or more timed~or example,

<command> = <polite>+ don’t crash;

13

14

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

requires at least one form of politeness. So, it allows a user to say “please don't
crash,” but “don’t crash” is not legal.

The precedence of + is the same as *.

4.5 Tags

Tags provide a mechanism for grammar writers to attach application-specific
information to rule definitions. These tag attachments do not affect recognition of
a grammar. Instead, the tags are attached to the result object returned by the
recognizer to the application. Applications may use these tags to simplify or
enhance the processing of recognition results.

A tag may be attached to any part of a rule definition: to a token, to a rule
reference, to a sequence or to a set of alternatives. When attaching to a sequence
or set of alternatives, parentheses ‘()’ should be used to enclose the item being
tagged.

The tag is a string delimited by curly braces ‘{}. The tag must immediately
follow the item being tagged (whitespace is allowed). For example:

<rule> = <action>{tag in here};
<command>= please (open {OPEN} | close {CLOSE}) the file;

<country> = Australia | United States {USA} |
America {USA} | (U S of A) {USA};

As a unary operator, tag attachment has higher precedence than sequences and
alternatives. For example, in

<action> = book | magazine | newspaper {thing};

the “thing” tag is attached only to the “newspaper” token. Parentheses may be
used to modify tag attachment:

<action> = (book | magazine | newspaper) {thing};

Also, since only one unary operator may be attached to a rule definition (and a tag
is a unary operator), the following are not permitted:

<badRule> = <action> {tagl} {tag2};
<badRule> = <action> * {tag2};
<badRule> = <action> {tagl} +;
With the addition of parentheses, the following is legal:

<OKrule> = (<action> *) {tag};

Java Speech Grammar Format Specification

45.1 Using Tags

Tags simplify the writing of applications by simplifying the processing of
recognition results. The content of tags, and the use of tags are entirely up to the
discretion of the developer. One important use of tags is in internationalizing
applications. The four following examples are rule definitions from four

grammars used for four separate languages. The application would load the
grammar for the language spoken by the user, but the tags would remain the same
across all languages and thus simplify the application software that processes the
results.

In the English grammar:
<GoodMorning>= (howdy | good morning) {hi};
In the Japanese grammar:
<GoodMorning>= (ohayo | ohayogozaimasu) {hi};
In the German grammar:
<GoodMorning>= (guten tag) {hi};
In the French grammar:

<GoodMorning>= (bon jour) {hi};

4.6 Precedence

The following list defines the relative precedence of syntactic components of the
Java Speech Grammar Format. The list is from highest to lowest precedence:

1. A string started with the quote symbol continues until the matching quote
symbol.

2. ()’ parentheses for grouping and ‘[]’ for optional grouping.

3. The unary operators (‘+', *’) and tag attachments apply to the tightest item
immediately preceding them. To apply them to a sequence or to
alternatives, use ‘()’ or ‘[]' grouping.

4. Sequences of rule definitions.

5. ‘| separated set of alternatives.

15

16

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

4.7 Recursion

Recursionis the definition of a rule in terms of itself. Recursion is a powerful tool
that enables representation of many complex grammatical forms that occur in
spoken languages. Recognizers supporting the Java Speech Grammar Format
allow right recursion In right recursion, the rule refers to itself as the last part of
its definition. For example:

<command> = <action> | (<action> and <command>);

<action> = stop | start | pause | resume | finish;

allows the following commands: “stop”, “stop and finish”, “start and resume and
finish”.
Nested right recursiois also permitted. Nested right recursion is a definition of a

rule that references another rule that refers back to the first rule with each
recursive reference being the last part of the definition. For example,

<X> = something | <Y>;
<Y> = another thing <X>;

Nested right recursion may occur across grammar definitions. However, this is
strongly discouraged, as it introduces unnecessary complexity and potential
maintenance problems.

Any right recursive rule can be re-written using unary operators, specifically
Kleene star “*" and the plus operator ‘+'. For example, the following rule
definitions are equivalent:

<command> = <action> | (<action> and <command>);
<command> = <action> (and <action>) *;

Although re-write using ‘+’ and *’ is equivalent, right recursive grammars are
permitted because they allow simpler and more elegant representations of some
grammars. Other forms of recursion (left recursion, embedded recursion) are not
supported because this type of re-write cannot be guaranteed.

5.0 Examples

By combining simple rules together, it is possible to build complex grammars that
capture what users can say. The following are examples of grammars with
complete headers and bodies.

Java Speech Grammar Format Specification

5.1 Example 1: Simple Command and Control

This example shows two basic grammars that define spoken commands that
control a window. Optional politeness is included to show how speech interaction
can be made a little more natural and conversational.

[*** Header ***/
grammar COM.acme.politeness;

/*** Body ***/

public <startPolite> = please | kindly | could you |
oh mighty computer;

public <endPolite> = please | thanks | thank you;

Thepoliteness grammar is not useful on its own but is imported into the
commands grammar to add the conversational style.

[*** Header ***/

grammar COM.acme.commands;

import <COM.acme.politeness.startPolite>;
import <COM.acme.politeness.endPolite>;

/*** Body ***/

Il e.g. “please move the window”

public <basicCommand> = <startPolite>* <command>
[<endPolite>];

Il e.g. “open the file”

<command> = <action> [the | a] <object>;

<action> = /10/ open |/2/ close |/1/ delete |/1/ move;
<object> = window | file | menu;

Thecommands grammar defines a singlablic rule,<basicCommand> , which

is composed of two imported rulesstartpolite> and<endPolite> , and

three private rules;command>, <action> and<object> . Both the<action>
and<object> rules are sets of alternative words and the actions list has weights
that indicate that “open” is more likely than the others. dduenmand>rule

defines a sequence in whichction> is followed optionally by “the” or “a” and
always by arcobject>

17

18

Java Speech Grammar Format Specification — Version 0.5 — August 28, 1997

Because<COM.acme.commands.basicCommand> is public, it can be made
active for recognition. When it is active, users may say commands such as:
* “open a window”
* “close file please”
« “oh mighty computer please open a menu”

5.2 Example 2: Resolving Names

The following example grammar illustrates the use of fully-qualified names for an
application that deals with clothing. The two imported grammars define import
rules regarding pants and shirts, including the lists of colors that shirts and pants
may have. The localcolor> rule is a combination of the imported color lists.
Because a reference<oolor> is ambiguous (it could come from either the

pants or shirts grammar), qualified or fully-qualified names are required.

grammar COM.acme.selections;
import <COM.acme.pants.*>;
import <COM.sun.shirts.*>;

<color> = <COM.acme.pants.color> |
<COM.acme.shirts.color>;

public <statement> = | like <color>;

The reference tecolor> in the last definition is not ambiguous: because local
rules have precedence over imported rules, it refers to the locally-defined
<color> rule. In the definition of the locakolor> rule, qualified names could
have been used as they would be unambiguous references: that is,

<color> = <pants.color> | <shirts.color>;

	Java Speech Grammar Format Specification
	Java Speech Grammar Format Specification
	1.0 Introduction
	1.1 Related Documentation

	2.0 Definitions
	2.1 Grammar Names and Package Names
	2.2 Rule Names
	2.2.1 Qualified and Fully-Qualified Names
	2.2.2 Resolving Names

	2.3 Tokens
	2.3.1 Quoted Tokens
	2.3.2 Symbols and Punctuation

	2.4 Comments

	3.0 Grammar Header
	3.1 Grammar Name Declaration
	3.2 Import

	4.0 Grammar Body
	4.1 Rule Definitions
	4.1.1 Public Rules

	4.2 Composition
	4.2.1 Sequence
	4.2.2 Alternatives
	4.2.3 Weights

	4.3 Grouping
	4.3.1 (Parentheses)
	4.3.2 [Optional Grouping]

	4.4 Unary Operators
	4.4.1 * Kleene Star
	4.4.2 + Plus Operator

	4.5 Tags
	4.5.1 Using Tags

	4.6 Precedence
	4.7 Recursion

	5.0 Examples
	5.1 Example 1: Simple Command and Control
	5.2 Example 2: Resolving Names

