ThelJava 3D API
Questionsand Answers

Michael F. Deering and Henry A. Sowizral
Index of Question Topics

e o o

e o 0 0w

e

®© 6 06 6 0 0 0 06 0 0 0 0o 0 o o0

How was the Java 3D API specification developed?
Process

Implementation Plans: platforms, dates, performance
Compliance Testing

What technical features does the Java 3D API support?
Immediate Mode

View Model

Tracker Model

Capability Bits

Vector Mathematics Library

Float and Double

Geometry Compression Format

Triangles are Universal

Hi-resolution Coordinates

Scoping of Lights

Sound Library

Double-buffered, True-color, Z-buffered Rendering Model
VRML

Support Utilities and Applications

Extensions and Updates

What features are not supported by the Java 3D API?
Most Methods Final

User Traversal of the Scene-graph

Off-screen Rendering and Printing

Shading Language

Who needs the Java 3D API?
Markets
Hardware Platforms



How was the Java 3D API specification developed?

Process
Q: What was the process used to design the Java 3D API?

A Java 3D is part of the Java Media suite of APIs, which in turn is part of the
overall Java API efforts. Java 3D is a joint collaboration between Intel, Silicon
Graphics, Apple, and Sun. All four companies had advanced retained mode
APIs under development and were looking at developing Java versions. These
companies decided to pool their efforts to develop a single, compatible API
that could truly be cross-platform.

This draft of the Java 3D API specification is a result of that partnership. Prior
to this public review period, the specification was made available to Java
licensees for review. After the public review period ends, the specification will
be finalized. We have continued to refine the specification throughout this
process and hope that few major decisions will need to be revisited. One of the
purposes of this Q&A document is to point out some of the choices made by
the Java 3D team and explain why they were made.

We encourage readers to send in comments on the Java 3D API specification
through June 27, 1997. These comments will be reviewed for possible inclusion
into future releases of the specification. We anticipate that the final Java 3D
specification will be frozen and released by the end of the third quarter, 1997.

Implementation Plans
Q: What are the implementation plans for Java 3D?

A JavaSoft will release implementations of Java 3D for JavaOS, MacOS, UNIX,
and Windows. The initial reference implementations of the Java 3D API will be
layered on top of existing lower-level immediate-mode 3D rendering APIs,
specifically OpenGL, Direct3D, and QuickDraw3D. The initial Java 3D
implementations will be written mostly in Java but will also take advantage of
native methods.

We expect the initial Java 3D implementations to perform quite well because
they will use existing, accelerated, low-level graphics APIs such as Direct3D,
OpenGL, and Quickdraw3D.

The Java 3D API Questions and Answers —May 30, 1997



Since all Java specifications are freely and openly available to the public, we
anticipate that individuals or companies may choose to develop their own
implementations of Java 3D. These implementations can be released at any
time; however, any implementation that is based on a version of the Java 3D
specification prior to the final 1.0 specification can at best be considered “beta.”

Compliance Testing
Q: What about compliance testing?

A JavaSoft will develop a compliance testing suite for certifying
implementations as “Java 3D Compatible.” The compliance test suite will
ensure interoperability across platforms. The compliance suite will be
developed in parallel with the reference implementations and final
specification revisions.

What technical features does the Java 3D API support?

Immediate Mode

Q: Java 3D includes a fairly complete, generic, immediate mode. Why not a
more complex one? Why not an even simpler one? Why not wrappers over
OpenGL/Direct3aD/QuickDraw3D?

A: The design of the Java 3D immediate mode enables cross-platform
capability for all applications written using the Java 3D API. An application
developer using immediate mode exclusively, whose main concern is
performance and not inter-platform operability, should use the appropriate
lower-level API rather than Java 3D. Otherwise, Java 3D’s immediate mode
provides the best compromise of features in a one-size-fits-all immediate-mode
layer while still achieving reasonable performance. An even simpler
immediate-mode APl would severely limit possible performance-oriented
optimizations; a more complex API could cause the underlying software and
hardware models to diverge from one another. Another important constraint
on Java 3D’s immediate mode was the need to seamlessly interoperate with the
retained mode API; otherwise we would have two divergent APIs.

What technical features does the Java 3D API support? 3



View Model

Q: Java 3D provides a very sophisticated Virtual Reality based view model. Is
all this complexity needed?

A: From the typical application’s point of view, Java 3D’s view model is quite
simple: the application author places, orients, and scales a view platform
object—period. Java 3D does the rest of the work. If the application only
delivers an environment and leaves the details of viewpoint control to a
browser, the application doesn’t even need to provide a view platform object. If
an application wants to port over existing code that uses a camera-based view
model, it makes a single Java 3D call to establish the camera’s parameters.
Then, by moving the viewplatform instead of the camera, things function
much as they did in the original system. Only the developers of browsers or
sophisticated application packages need to worry about the additional details
of Java 3D’s view model; this is why the documentation of the view model is
split into two parts: a chapter targeted at the ordinary application developer
and an appendix for developers who need detailed knowledge of the view
model.

Unfortunately, we cannot layer Java 3D’s view model on top of the existing
camera-based view model. Extending the Java vision of “write once, run
anywhere” to modern viewing devices such as HMDs requires the
implementation of the full Java 3D view-model semantics. The Java 3D view
model simplifies to that of a camera-based model, not vice-versa. In our
discussions with partners and potential users and after a through examination
of the view model’s semantics, we have reached the consensus that the view
model’s perceived complexity is necessary to extend the “write once, run
anywhere” goal to include a “write once, view anywhere” goal.

JavaSoft’s reference implementation will include full source code for the view
model; this should address the concerns of Java 3D API implementors about
coding complexity and understanding the semantics of the view model.

Tracker Model

Q: Why does Java 3D include support for a six-degree-of-freedom tracking
model.

A: For performance reasons, the Java 3D view model needs to expose a six-
degree-of-freedom head and hand-tracker as formal objects. Their exposure
allows APl implementors to optimize view model computations that rely on

The Java 3D API Questions and Answers —May 30, 1997



those trackers. Since Java 3D exposes such a device for head tracking, we
generalized tracking to include additional channels of sensors, as well as
simpler real-time continuous sensors such as joysticks.

AWT provides an abstraction of the most common desktop interaction
peripherals: keyboards and mice. Java 3D uses these as is, rather than creating
an incompatible 1/0 model. But for real-time critical devices, such as joysticks
and six-degree-of-freedom devices, where AWT had not yet defined a
mechanism, Java 3D introduces a new real-time class of /0 device. In real-
time graphics systems, low latency can be more important than missing an
event. An event more than a few 30th’s of a second old may no longer be of
any interest. The user’s head position 1/10 of a second ago may not provide a
useful approximation to the user’s current head position. Java 3D provides
access to the last “k” sensor values through a fixed-length circular buffer. An
application can use those values to pick whatever value or values it wants to
use in computing the sensor’s “true” position and orientation.

Capability Bits
Q: Capability bits guard most of the modifiable state in Java 3D node objects.

Their default value is access-not-granted (“don’t touch that”) for live scene-
graphs. Why?

A: The vast majority of today’s 3D environments are run-time environments,
not editing environments. While in a typical editing situation it may be
convenient to make most objects modifiable, such a default reduces the
opportunity to optimize an application’s runtime execution. If an application
identifies only those objects that will change, Java 3D can perform
optimizations over most of the scene-graph. Java 3D provides capability flags
so that applications can specify this critical information.

Vector Mathematics Library

Q: The vector mathematics library is quite extensive, but why is it bundled
with Java 3D? Why don’t other Java packages use this code?

A As stated in the Vector Mathematics appendix, we developed the set of
math classes as part of the Java 3D process; however, JavaSoft has decided to
make Java 3D’s Vector objects and methods a separate package, extend them to
include more functionality, and make them available to other evolving Java
APIs. (In the process, some additional 2D vector and matrix classes may be

What technical features does the Java 3D API support? 5



defined.) However, to make the Vector Mathematics API available for review at
the same time as the Java 3D APIs, it has been bundled with this release of the
Java 3D API as an appendix.

Float and Double

Q: The vector mathematics library in particular, and many of the Java 3D
interfaces in general, seem to give identical support for both single-precision
and double floating-point formats.

A: This decision reflects the state of the industry today. It is much easier to
provide both single and double precision support than to force the issue.
Realistically, most 3D graphics hardware only operates on single-precision
floating-point numbers (or even just fixed-point). On the other hand, some
applications, especially in the MCAD space, use double-precision values
exclusively. Because of this, the vector mathematics library supports both
formats and many of the Java 3D methods accept either format as a user
convenience. Also, in some computations, particularly 3D transformations,
while the final rendering occurs using a single-precision composite transform
matrix, the compositing of the matrix components on some platforms is
calculated in double-precision.

Geometry Compression Format
Q: What is the Java 3D geometry compression format?

A: Java 3D is a run-time API. It does not define an external file format. The
geometry compression format is a special case. It is both a run-time binary
format (for platforms with hardware support for compressed geometry), a
format that applications can use at the file and network level, and one that can
interact with APIs other than Java 3D. Like the vector mathematics package,
we describe the geometry compression format in an appendix to ensure
completeness for this release of the specification; it will later be broken out into
a separate specification document.

One more optimization point: even machines that do not support the rendering
of compressed geometry directly may use non-standard, optimized, internal
formats for representing renderable geometry. When provided with a
compressed geometry, these machines can transcode it directly into their own
internal format without incurring the space cost or semantics loss that would
occur if the compressed geometry were first decompressed into a canonical
floating-point format.

The Java 3D API Questions and Answers —May 30, 1997



Triangles are Universal
Q: Is the only area geometric primitive supported by Java 3D the triangle?

Java 3D provides a broad implementation base for developing applications
targeted at many markets, while still allowing those applications to run
compatibly on many different hardware platforms. The triangle serves as a
very useful lowest-common-dominator primitive that ports nicely across most
platforms. Higher-level primitives vary massively by application area. In many
areas, no other primitives are used. In others, fully trimmed NURBS are the
minimum next step. By limiting the directly-supported graphics shapes to
triangles, applications can choose to add further functionality at higher-level
abstractions.

We fully expect higher-level functionality in future versions of the Java 3D API.

High-resolution Coordinates

Q: Why are high-resolution coordinates supported? Why not something
simpler? More complex?

A: To support large scale virtual worlds, applications need some form of
standardized higher-resolution coordinate system. To address this need, high-
resolution coordinates are supported in Java 3D. However, the computational
cost associated with supporting anything other than fixed translations between
high-resolution coordinate frames was deemed too high. The extension of
high-resolution coordinates to include rotations is still under evaluation, and
may be included in later releases.

Scoping of Lights
Q: Why are there so many complex scoping modes for lights?

A: Without full-radiosity calculations, lighting is an approximation that uses
hints provided by the application. Java 3D supports four general classes of
scoping hints: scoping through explicit on/off switches, scoping through
hierarchical specification, scoping through bounding volume, and scoping
through natural attenuation.

What technical features does the Java 3D API support? 7



Sound Library

Q: Why is the 3D sound API defined within Java 3D rather than one of the
other Java Media APIs?

A: Java 3D is the only Java API that includes support for headtrackers, a
parameterization of an end-user’s physical head, generalized 3D
transformations, and other such concepts. Because of this, fully-spatialized
audio really only makes sense within the context of Java 3D. However, Java’s
Sound API is used to provide general sound and MIDI support. This is another
issue under continuous evaluation.

Double-buffered, True Color, Z-buffered Rendering Model

Q: Java 3D assumes a double-buffered, true-color, Z-buffered rendering model
as minimum. Why?

A: We made this minimal rendering configuration decision after extensive
discussion and debate. Market trends clearly show a shift towards these
minimum rendering capabilities, even among low-cost game boards. Note also
that true color does not necessarily mean 24-bit color—an API can still support
a true-color model even with a 15-bit or 8-bit frame buffer.

A very important factor in the minimal-rendering-configuration debate was the
realization that support for indexed color would result in two different APIs;
the same was found to be true for non Z-buffered rendering techniques.
Unfortunately, supporting indexed color or no Z-buffering would result in
incompatible programs that generally would not operate across platforms with
different capabilities.

VRML

Q: Java 3D and VRML both appear to support similar retained scene-graph
style applications. Why both?

A: VRML 1.0 and 2.0 are mainly file formats. VRML 2.0 is aimed at a general
Internet market and additionally includes some support for programming-
language-independent runtime API calls. Java 3D is specifically a Java
language API, and is only a runtime API. Java 3D does not define a file or
network format of its own. It is designed to scale well and provide support for
markets that require higher levels of performance than VRML can provide;
specifically real-time games, sophisticated mechanical CAD applications, and

The Java 3D API Questions and Answers —May 30, 1997



real-time simulation markets. In this sense, Java 3D provides a lower-level,
underlying platform API. We expect that many VRML implementations will be
layered on top of Java 3D.

We have talked with VRML developers about their expectations for an
underlying, platform-independent 3D graphics API. We have modified a
number of features and some semantics of Java 3D to track the evolving VRML
specifications and avoid gratuitous differences. (For example, both systems use
meters as the default physical units.) Given the parallel, ongoing evolution of
VRML and Java 3D, it is not possible for these two APIs, each with different
goals to keep in lockstep at all times; this is why we expect VRML
environments to layer on top of Java 3D. Also, in discussion with potential
Java 3D users, especially in the MCAD domain, they expect support for
features in Java 3D not presently included in VRML.

Support Utilities and Applications
Q: Will JavaSoft provide support utilities and applications?

A: Java 3D includes a number of objects and methods, including several
methods described as “helping functions,” that are part of the Java 3D
specification. We will also provide other capabilities such as loaders and
example programs that are not officially part of the Java 3D specification. (Over
time, some of these may become part of the official specification. We will
always clearly label those capabilities that are formally part of the
specification.)

We expect the graphics community to write a wide variety of applications in
and for Java 3D. While companies will keep most of their software proprietary,
some developers will likely follow the Internet community model and release
software into the public domain. Such applications may be quite helpful to the
Java 3D community.

Extensions and Updates
Q: What about extensions, how will the process work?

A: This specification is aimed at the initial Java 3D API release. We have
already identified a number of features and extensions, that, while of general
interest, have been tentatively placed beyond the scope of the initial API
release. (Several examples of such items are documented within the
specification.)

What technical features does the Java 3D API support? 9



10

Other features are of more limited interest, such as common “laws of physics”
for simulations. We expect that such features will be best handled as additional
APIs on top of Java 3D. (By definition, these features are beyond the scope of
the initial specification.)

After initial release, requests for features and extensions will be considered for
additional minor and major releases as merited; no explicit schedule or time
frame is in place for these updates. We understand the importance of stable
and relatively long-lived semantics for true platform interoperability.

The Java 3D API Questions and Answers—May 30, 1997



What features are not supported by the Java 3D API1?

Most Methods Final

Q: While all the Java 3D node classes may be subclassed, most of the pre-
defined methods are declared final. Why?

A: Most of the pre-defined final methods provide access to internal state.
Without direct access to an object’s internal representation, an application that
extended those methods would cut itself off from the object’s internal state
information—a situation with very little value for an application. Applications
can, however, subclass most of Java 3D’s classes, add instance variables, add
new methods to provide added semantics, and use the object’s final methods to
access its original functionality. This technique provides one way to achieve
VRML support.

User Traversal of Scene Graphs

Q: The Java 3D rendering model assumes that Java 3D controls the traversal of
the scene graph. Why aren’t there many hooks for an application to gain
control over traversal or to insert immediate-mode render calls?

A: This is probably the one area where Java 3D takes a principled stand.
Modern software systems use internal representations of 3D scenes that have
very little to do with the original hierarchical scene graph defined by the
application. A good analogy is the relationship between the source text of a C
program and the highly-optimized machine code generated by parallelizing
supercomputer compilers. A correspondence between the source and machine
code exists, but the equivalent machine code statements might not exist
(sharing common subexpressions) and might not execute in the original order.

Today'’s very large virtual worlds require some form of separate spatial
hierarchical structure to represent a 3D scene’s object geometry and location.
Typically, far less than 1% of the objects in a virtual world are visible in a given
image frame. Only the visible objects need to be involved in the generation of
a given frame. Unfortunately, a hierarchical scene-graph traversal semantic
that requires traversing every node in the scene graph “just in case” or to
accumulate side effects creates unnecessary and indeed overwhelming
computational costs—a cost no longer viable. The VRML 2.0 standard took the
same position on this issue: the traversal order of the hierarchical scene graph

What features are not supported by the Java 3D API? 11



12

is left up to the underlying implementation. In Java 3D nearly the only things
connected by the hierarchy are the nested coordinated transforms. As in VRML
2.0, we have pushed nearly all of the state information down into the leaves.

Java 3D still provides techniques that applications can use to gain partial or
full control of the traversal order, if needed. The ordered group node requires
that Java 3D render its children in a specified linear order, if the node is
rendered at all. Java 3D’s mixed-immediate and retained-mode rendering
causes Java 3D to automatically render many portions of the scene, while
letting the application access the rendering loop so that it can render items in
any way it wants.

Shading Language

Q: Java 3D provides layers of rendering abstraction: pure immediate mode,
mixed immediate retained mode, retained mode, and compiled-retained mode.
What about support for even higher quality graphics semantics: a shading
language (like RenderMan™)?

A: The shading language used in Pixar’s RenderMan works precisely because
it is its own language with its own semantics. RenderMan is ‘C- like’, with
many quite important differences. To do the same thing in Java 3D would
require, in effect, a new non-standard dialect of Java—a direction that Java
does not necessarily want to follow.

There are other ways to add shading language support to an API such as
Java 3D, though in general they are more cumbersome. We are interested in
supporting an even more sophisticated shading model than Java 3D’s lowest
common denominator, and this is an area under continuous active
investigation. However, it was felt such support would be “a bridge too far”
for the first release of Java 3D. Thus, we will continue to re-examine this issue
to see if it warrants inclusion in future extensions or revisions of the Java 3D
specification.

Off-screen Rendering and Printing

Q: What about support for off-screen rendering and printing?

A: Unfortunately, both off screen rendering support and printer support can
require implementation-specific or hardware-specific features. While both off-

screen rendering and printing support are considered important, they are not a
part of the initial Java 3D specification.

The Java 3D API Questions and Answers—May 30, 1997



Who needs the Java 3D API?

Markets
Q: What are the markets for Java 3D?

A: We designed Java 3D as a high-level, platform-independent, 3D graphics
programming APl amenable to very high-performance implementations, but
still effective across a wide range of platforms. Java 3D is targeted at
supporting a gamut of environments from small virtual universes through very
large ones (lots of objects, most not visible at any given time). Java 3D also
supports graceful scaling that keeps pace as the speed and capability of the
underlying 3D hardware rendering engines increase by orders of magnitude
over time.

Java 3D targets a variety of application domains, including providing efficient
support for loading and supporting the various VRML formats on top of
Java 3D. MCAD environments and applications also present an important
application domain for Java 3D.

Real-time 3D games present one of the markets Java 3D supports. Java 3D
includes many features that enable the development of platform-independent,
high-performance games. These same features are ideal for the “higher end”
gaming community: location-based entertainment, flight simulation, and the
general visual simulation market.

Java 3D is not an authoring environment, and does not provide built-in
authoring tools. It is aimed at providing the fastest possible run-time
environment. However, we anticipate independent software suppliers will
build authoring systems that generate Java 3D applications as output.

Hardware Platforms
Q: What specific hardware platforms is Java 3D aimed at?

A: Java 3D is aimed at a wide range of 3D-capable hardware and software
platforms, from low-cost PC game cards and software renderers at the low end,
through mid-range workstations, all the way up to very high-performance,
specialized, 3D image generators. Because the initial implementations of

Java 3D will be layered on OpenGL, Direct3D, and QuickDraw3D, Java 3D
applications will run on any Java-enabled platform that supports one of these

Who needs the Java 3D API? 13



14

lower-level, immediate-mode 3D APIs. These APIs in turn have optimized
implementations that provide support for various specific graphics hardware
subsystems.

It is expected that Java 3D implementations will provide useful rendering rates
on most modern PC’s, and certainly will if their frame buffers have some 3D
acceleration.

Of course, a very sophisticated Java 3D application aimed at real-time walk-
throughs of an MCAD data base for, say, an oil platform, will quite likely not
have adequate performance if run on a low-end PC.

On mid-range workstations, Java 3D is expected to provide applications with
nearly full-speed hardware performance.

Finally, we designed Java 3D to scale as underlying hardware platforms
increase in speed over time. Tomorrow’s 3D PC game accelerators will support
more complex virtual worlds than today’s high-priced workstations; as the
general level of 3D acceleration available on the mass market increases,

Java 3D scales to meet it.

The Java 3D API Questions and Answers—May 30, 1997



	The Java�3D API Questions and Answers
	How was the Java 3D API specification developed?
	Process
	Q: What was the process used to design the Java�3D...

	Implementation Plans
	Q: What are the implementation plans for Java�3D?

	Compliance Testing
	Q: What about compliance testing?


	What technical features does the Java 3D API suppo...
	Immediate Mode
	Q: Java�3D includes a fairly complete, generic, im...

	View Model
	Q: Java�3D provides a very sophisticated Virtual R...

	Tracker Model
	Q: Why does Java�3D include support for a six-degr...

	Capability Bits
	Q: Capability bits guard most of the modifiable st...

	Vector Mathematics Library
	Q: The vector mathematics library is quite extensi...

	Float and Double
	Q: The vector mathematics library in particular, a...

	Geometry Compression Format
	Q: What is the Java�3D geometry compression format...

	Triangles are Universal
	Q: Is the only area geometric primitive supported ...

	High-resolution Coordinates
	Q: Why are high-resolution coordinates supported? ...

	Scoping of Lights
	Q: Why are there so many complex scoping modes for...

	Sound Library
	Q: Why is the 3D sound API defined within Java�3D ...

	Double-buffered, True Color, Z-buffered Rendering ...
	Q: Java�3D assumes a double-buffered, true-color, ...

	VRML
	Q: Java�3D and VRML both appear to support similar...

	Support Utilities and Applications
	Q: Will JavaSoft provide support utilities and app...

	Extensions and Updates
	Q: What about extensions, how will the process wor...


	What features are not supported by the Java 3D API...
	Most Methods Final
	Q: While all the Java�3D node classes may be subcl...

	User Traversal of Scene Graphs
	Q: The Java�3D rendering model assumes that Java�3...

	Shading Language
	Q: Java�3D provides layers of rendering abstractio...

	Off-screen Rendering and Printing
	Q: What about support for off-screen rendering and...


	Who needs the Java 3D API?
	Markets
	Q: What are the markets for Java�3D?

	Hardware Platforms
	Q: What specific hardware platforms is Java�3D aim...




