
Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 1

Proposal for a Drag and Drop subsystem for
the Java Foundation Classes

(Draft: 0.6).
Laurence P. G. Cable.

THIS IS A DRAFT SPECIFICATION, IT IS THEREFORE SUBJECT TO CHANGE,
AND FURTHERMORE IMPLIES NO INTENT ON BEHALF OF JavaSoft TO
DELIVER SUCH BEHAVIOR

Send comments to java-beans@java.sun.com.

1.0 Requirements

This proposal is based upon an (incomplete) earlier work undertaken in 1996 to specify a
Uniform Data Transfer Mechanism, Clipboard, and Drag and Drop facilities for AWT.

The AWT implementation in JDK1.1 introduced the Uniform Data Transfer Mechanism
and the Clipboard protocol. This draft proposal defines the API for the Drag and Drop
facilities for JDK1.2 based upon these 1.1 UDT API’s.

The primary requirements that this proposal addresses, are:

1. Provision of a platform independent Drag and Drop facility for Java GUI clients

 implemented through AWT and JFC classes.

2. Integration with platform dependent Drag and Drop facilities, permitting Java

 clients to be able to participate in DnD operation with native applications using:

• OLE (Win32) DnD

• CDE/Motif dynamic protocol

• MacOS

3. Support for 100% pure JavaOS/Java implementation.

4. Leverages the existingjava.awt.datatransfer.* package to enable the transfer of

 data, described by an extensible data type system based on the MIME standard.

5. Does not preclude the use of “accessibility” features where available.

The proposal derives from the previous work mentioned above, but incorporates signifi-
cant differences from that original work as a result of the advent of the JavaBeans event
model, Lightweight Components, and an increasing understanding of the cross-platform
integration and interoperability issues.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 2

2.0 API

2.1 Overview

Drag and Drop is a direct manipulation gesture found in many Graphical User Interface
systems that provides a mechanism to transfer information between entities associated
with a presentation element in the GUI. Normally driven by the physical gesturing of a
human user, Drag and Drop provides sensory feedback to that user during navigation over
the presentation elements in the GUI, originating from the source of the drag, and usually
terminating in a drop over a target, between which, any subsequent data transfer occurs.

A typical Drag and Drop operation can be decomposed into the following states (not
entirely sequentially):

• A Drag Source comes into existence, associated with some presentation element in the
GUI, and some potentially transferable data.

• 1 or more Drop Targets come into/go out of existence, associated with presentation ele-
ments in the GUI, potentially capable of consuming transferable data.

• A human user gestures to initiate a Drag and Drop operation on a presentation element
in the GUI associated with a Drag Source.

Note: Although the body of this document consistently refers to the stimulus for a drag
and drop operation being a physical gesture by a human user this does not preclude a
programmatically driven DnD operation given the appropriate implementation of a
DragSource.

• TheDragSource initiates the Drag and Drop operation on behalf of the user.

• As the user gestures navigate over presentation elements in the GUI associated with
Drop Target(s), the Drag Source receives notifications in order to provide “Drag Over”
feedback effects, and the Drop Target(s) receive notifications in order to provide “Drag
Under” feedback effects.

The gesture itself moves a logical cursor across the GUI hierarchy, intersecting the
geometry of GUI Components, possibly resulting in the logical “Drag” cursor entering,
crossing, and subsequently leaving associated Drop Targets.

The Drag Source object manifests “Drag Over” feedback to the user, in the typical case
by animating the GUI Cursor associated with the logical cursor.

Drop Target objects manifest “Drag Under” feedback to the user, in the typical case, by
rendering animations into their associated GUI Components under the GUI Cursor.

• The determination of the feedback effects, and the ultimate success or failure of the
data transfer, should one occur, is parameterized as follows:

• By the transfer “operation”:Copy, Move or Reference(link).

• By the intersection of the set of data types provided by the Drag Source and the set
of data types comprehensible by the Drop Target.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 3

• When the user terminates the drag operation, normally resulting in a successful Drop,
both the Drag Source and Drop Target receive notifications that include, and result in
the transfer of, the information associated with the Drag Source.

2.2 Drag Source

TheDragSource is the entity responsible for the co-ordination of the Drag and Drop oper-
ation for the initiating client.

2.2.1 TheDragSource definition

TheDragSourceand associated constant interfaces are defined as follows:

public class java.awt.dnd.DnDConstants {

public static int ACTION_NONE= 0x0;

public static int ACTION_COPY= 0x1;

public static int ACTION_MOVE= 0x2;

public static int ACTION_COPY_OR_MOVE= ACTION_COPY |

 ACTION_MOVE;

public static int ACTION_REFERENCE = 0x40000000;

}

public class java.awt.dnd.DragSource {

public static DragSource getDragSource(Component c);

 Point imageOffset,

public DragSourceContext

 startDrag(Component c,

 AWTEvent trigger,

 int actions,

 Image dragImage,

 Point dragImageOffset,

 Transferable transferable,

 DragSourceListener dsl)

 throws InvalidDnDOperationException;

public void setDefaultDragCursor(Cursor c);

public Cursor getDefaultDragCursor();

public void setDefaultDropCursor(Cursor c);

public Cursor getDefaultDropCursor();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 4

public void setDefaultNoDropCursor(Cursor c);

public Cursor getDefaultNoDropCursor();

public boolean isDragTrigger(AWTEvent trigger);

public Rectangle getDragThresholdBBox(Component c,

 Point hotspot);

}

TheDragSource may be used in a number of scenarios:

• 1 default instance per JVM for the lifetime of that JVM. (defined by this spec)

• 1 instance per class of potential Drag Initiator object (e.gTextField). [implementation
dependent]

• 1 per instance of a particularComponent, or application specific object associated with
aComponent instance in the GUI. [Implementation dependent]

• some other arbitrary association. [implementation dependent]

 A controlling object, the Drag Initiator, will obtain aDragSource instance either prior to,
or at the time a users gesture, effecting an associatedComponent, in order to both deter-
mine if the gesture does in fact trigger a Drag and Drop operation, and to subsequently
process the resulting operation itself.

The initial interpretation of the users gesture, and the subsequent starting of the Drag oper-
ation are the responsibility of the implementingComponent, or associated entity.

Window system platforms usually define a set of gestures (typically mouse or keyboard
related) that are associated with a Drag and Drop operation. TheDragSource provides a
mechanism to allow testing of anAWTEvent stream to determine if any of the events con-
tained within are gestures that should initiate a Drag operation on the particular platform,
in particular theisDragTrigger() method will inspect anAWTEventto determine if it is a
Drag triggering event. In addition, thegetDragThresholdBBox() method returns aRectan-
gle, centered at thePoint specified by thehotspot parameter. This “threshold” defines the
platform default minimum amount by which the hotspot of the “logical” cursor must
move, in eitherx or y coordinates in order to complete the triggering gesture.

When such a gesture occurs, theDragSource’s startDrag() method shall be invoked in
order to cause processing of the users navigational gestures and delivery of Drag and Drop
protocol notifications. TheDragSource, if successful in starting a Drag operation, returns
aDragSourceContext instance to the caller of startDrag(). The startDrag()method’s
parameters include theAWTEvent that triggered the operation, the data associated with the
operation, theComponent the gesture logically occurred in, and the possible operation(s)
themselves (ACTION_COPY, ACTION_MOVE, ACTION_REFERENCE).

On platforms that can support this feature, a “Drag” image may be associated with the
operation to enhance the fidelity of the “Drag Over” feedback. This image would typically

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 5

be a small “iconic” representation of the object, or objects being dragged, and would be
rendered by the underlying system, tracking the movement of, and coincident with, but in
addition to the Cursor animation.

Where this facility is not available, or where the image is not of a suitable type to be ren-
dered by the underlying system, this parameter is ignored and only Cursor “Drag Over”
animation results, so applications should not depend upon this feature.

TheDragSourceContext returned provides status and control to the originator of the Drag
operation for its duration via the associatedDragSourceListener interface passed in the
startDrag() call.

TheTransferableinstance associated with theDragSourceContext at the start of the Drag
operation, represent the object(s) or data that are the operand(s), or the subject(s), of the
Drag and Drop operation, that is the information that will subsequently be passed from the
DragSource to theDropTargetas a result of a successful Drop on theComponent associ-
ated with thatDropTarget..

Note that multiple (collections) of either homogeneous, or heterogeneous, objects may be
subject of a Drag and Drop operation, by creating a container object, that is the subject of
the transfer, and implementsTransferable.

2.2.2 TheDragSourceContext Definition

TheDragSourceContext interface is defined as follows:

public interface DragSourceContext {

DragSource getDragSource();

Component getComponent();

AWTEvent getTrigger();

public Transferable getTransferable();

void cancelDrag() throws InvalidDnDOperationException;

void commitDrop() throws InvalidDnDOperationException;

int getSourceActions();

void setSourceActions(int actions)

 throws InvalidDnDOperationException;

void setCursor(Cursor Cursor)

throws InvalidDnDOperationException;

Cursor getCursor();

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 6

void addDragSourceListener(DragSourceListener dsl)

throws TooManyListenersException;

void removeDragSourceListener(DragSourceListener dsl);

}

The state machine theDragSource implements, with respect to the source, or initiator of
the Drag and Drop operation is detailed below:

Notifications of changes in state with respect to the initiator during a Drag and Drop oper-
ation, as illustrated above, are delivered from theDragSource,to the appropriateDrag-
SourceContext, which delegates notifications, via a unicast JavaBeans compliant
EventListener subinterface, to an arbitrary object that implementsDragSourceListener.

The primary responsibility of theDragSourceListener is to monitor the progress of the
users navigation during the Drag and Drop opertation and provide the “Drag -over” effects
feedback to the user. Typically this is accomplished via changes to the “Drag Cursor”.

EveryDragSource object has 3 defaultCursors associated with it:

• TheDrag Cursor, the cursor displayed when dragging occurs over noDropTarget. This
cursors value may be set/get using thesetDefaultDragCursor()/getDefaultDragCur-
sor()methods ofDragSource.

• TheNoDrop Cursor, the cursor displayed when dragging over an invalidDropTarget.
This cursors value may be set/get using thesetDefaultNoDropCursor()/getDefaultNo-
DropCursor()methods ofDragSource.

ds.startDrag()

dsl.dragExit()*

dsl.dragEnter()*+

dsl.dragOver()*+

dsl.dragDropEnd()

ds = DragSource

dsl = DragSourceListener

dsl.dragGestureChanged()+#(*) <next>

dc.cancelDrag()

dc.commitDrop()(+)

dc = DragSourceContext
(#)

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 7

• TheDrop Cursor, the cursor displayed when dragging over a validDropTarget. This
cursors value may be set/get using thesetDefaultDropCursor()/getDefaultDropCur-
sor()methods ofDragSource.

Theses default values are used by theDragSource during the drag operation, but can be
overridden by theDragSourceListener by calling thesetCursor() method of theDrag-
SourceContext interface obtained via theDragEvent.

2.2.3 TheDragSourceListener Definition

TheDragSourceListener interface is defined as follows:

public interface java.awt.dnd.DragSourceListener

 extends java.util.EventListener {

void dragEnter (DragSourceDragEvent dsde);

void dragOver (DragSourceDragEvent dsde);

void dragGestureChanged(DragSourceDragEvent dsde);

void dragExit (DragSourceDragEvent dsde);

void drop (DragSourceDragEvent dsde);

void dragDropEnd (DragSourceDropEvent dsde);

}

TheDragSourceListener’s dragBegin() method is called as a result ofstartDrag() being
invoked on the associatedDragSource object and is intended as a simple notification of
drag commencement.

As the drag operation progresses, theDragSourceListener’sdragEnter(), dragOver(), and
dragExit() methods shall be invoked as a result of the users navigation of the logical
“Drag” Cursor’s location intersecting the geometry of GUIComponents with associated
DropTargets. [See below for details of theDropTarget’s protocol interactions].

Note that during the Drag the set of operations the source can provide may change, how-
ever theDataFlavors exposed by theTransferable at the start of the Drag operation are
constant for the duration of the operation.

On some platforms (e.g Win32) the underlying Drag and Drop protocol associates the
platform Drop Target abstraction with platform Window System Windows, in other sys-
tems (e.g Motif) these abstractions can be arbitrary regions within a Window System Win-
dow. Such differences have subtle effects upon the semantics of theDropSourceListener
methods, sinceDropTargets are associated at thejava.awt.Component granularity which
necessarily implies that typicallyDropTargets geometries will be subregions of Window
System Windows.

However the implications of this platform dependent distinction on this protocol is some-
what transparent with respect to either aDropSource or DropTarget as follows.

TheDragSourceListener’s dragEnter() method is invoked when the users gesture results
in the logical cursor’s hotspot location initially intersecting with the screen geometry of a
distinctComponent with aDropTarget associated with it.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 8

On platforms where potentialDropTargets are exposed at the platform Window System
Window granularity, theDragSource’s dragEnter() method will be called when the cursor
intersects the Window System Window that contains one or moreComponents that have
DropTargets associated with them. Although the cursor may not in fact have actually inter-
sected the geometry of a particularComponent with aDropTarget associated with it in the
destination, the expected platform “Drag Over” feedback will occur since the destination
will respond with a “no drop” semantic. On platforms where potentialDropTargets are
exposed below the granularity of a platform Window System Window, the feedback will
occur upon intersection with the geometry of the associatedComponent.

TheDragSourceListener’s dragOver() method is invoked as the logical cursor’s hotspot
moves, contained within the geometry of aComponent with an associatedDropTarget.

TheDragSourceListener may, during invocations of itsdragEnter(), DragOver(),
dragExit() or dragGetsureChanged() methods, change either, the currentCursor, via a
call tosetCursor(), the permitted actions, via a call tosetSourceActions(), or cancel the
drag operation, via a call tocancelDrag().

TheDragSourceListener’s dragGestureChanged() method is invoked when the state of the
input device(s), typically the mouse buttons or keyboard modifiers, that the user is inter-
acting with in order to preform the Drag operation, changes.

Should the change in gesture be interpreted as a drop, the method signals this back
through theDragSource via a call to thecommitDrop() method. TheDragSource will
notify theDropTarget of the Drop and transfer theTransferable[] data at this time .

Subsequently thedragDropEnd() method is invoked to signify that the operation is com-
plete. TheisDragAborted() andisDropSuccessful() methods of theDragSourceDropEvent
can be used to determine the termination state. Once this method is complete theDrag-
SourceContext and the associated resources are invalid.

2.2.4 TheDragSourceDragEvent Definition

TheDragSourceDragEvent class is defined as follows:

public class java.awt.dnd.DragSourceDragEvent

 extends java.util.EventObject 1 {

public DragSourceContext getDragSourceContext();

public int getTargetActions();

public int getGestureModifiers();

}

1. This could be a subclass of AWTEvent but there seems little motivation to make it so.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 9

An instance of the above class is passed to aDragSourceListener’s dragBegin(),
dragEnter(), dragOver(), dragGestureChanged()anddragExit() methods.

ThegetDragSourceContext() method returns theDragSourceContext associated with the
current Drag and Drop operation.

ThegetTargetActions()method returns the drop actions, supported by, and returned from
the currentDropTarget.

ThegetGestureModifiers() returns the current state of the input device modifiers, usually
the mouse buttons and keyboard modifiers, associated with the users gesture.

2.2.5 TheDragSourceDropEvent Definition

TheDragSourceDropEvent class is defined as follows:

public public class java.awt.dnd.DragSourceDropEvent

 extends java.util.EventObject {

boolean isDragCancelled();

boolean isDropSuccessful();

}

An instance of the above class is passed to aDragSourceListener’s dragDropEnd()
method.

If the Drag operation was aborted for any reason, by the initiator invoking theDrag-
SourceContext’s cancelDrag() method for instance, theisDropAborted() method will
returntrue , elsefalse.

If the Drop occurs, then the parcticipatingDropTarget will signal the success or failure of
the data transfer via theDropTargetContext’s dropComplete() method this status is made
avialable to the initiator via theisDropSuccessful() method.

2.3 Drop Target

2.3.1 java.awt.Component Additions

TheJava.awt.Component class has two additional methods added to allow the (dis)associ-
ation with aDropTarget. In particular:

public class java.awt.Component /* ... */ {

// ...

public synchronized

void setDropTarget(DropTarget dt)

 throws IllegalArgumentException;

public synchronized

DropTarget getDropTarget(DropTarget df);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 10

//

}

To associate aDropTarget with aComponent onr may invoke either;DropTarget.setCom-
pononent() orComponent.setDropTarget() methods. Thus conforming implementations of
both methods are required to guard against mutual recursive invocations.

To associate aDropTarget with aComponent onr may invoke either;DropTarget.setCom
pononent(null) or Component.setDropTarget(null) methods.

Conformant implementations of both setter methods inDropTarget andComponent
should be implemented in terms of each other to ensure proper maintenance of each
other’s state.

ThesetDropTarget() mehtod throws if theDropTarget actual parameter is not suitable for
use with this class/instance ofComponent.

2.3.2 TheDropTarget Definition

A DropTarget encapsulates all of the platform-specific handling of the Drag and Drop pro-
tocol with respect to the role of the receipient or destination of the operation.

A singleDropTarget instance may be associated with any arbitrary instance of
java.awt.Component.Establishing such a relationship exports the associatedComponent’s
geometry to the client desktop as being receiptive to Drag and Drop operations when the
coordinates of the logical cursor intersects that geometry.

TheDropTarget class is defined as follows:

public class java.awt.dnd.DropTarget {

public DropTarget();

public DropTarget(Component c);

public Component getComponent();

public void setComponent(Component c)

throws IllegalArgumentException;

public DropTargetContext getDropTargetContext();

public boolean supportsAutoScrolling();

public void setAutoScrollInsets(Insets scrollInsets);

public Insets getAutoScrollInsets();

public void setDefaultTargetActions(int actions);

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 11

public int getDefaultTargetActions();

public void

 addDropTargetListener(DropTargetListener dte)

 throws TooManyListenersException;

public void

 removeDropTargetListener(DropTargetListener dte);

public void setActive(boolean active);

public boolean isActive();

}

If the Component associated with a particularDropTarget supports scrolling, theDropTar-
get can expose this facility to the Drag and Drop operation, thus allowing scrollableCom-
ponents to “autoscroll” their contents under the logical cursor while it is quiescent within
the region defined by the intersection of theInsets set via thesetAutoScrollInsets() method
and the bounding box of theComponent.

ThesetComponent() method throws if theComponent actual parameter is not appropriate
for use with this class/instance ofDropTarget.

2.3.3 TheDropTargetContext Definition

As the logical cursor associated with an ongoing Drag and Drop operation first intersects
the visible geometry of aComponent with an associatedDropTarget, theDropTargetCon-
textassociated with theDropTarget is the interface, through which, access to control over
state of the recipient protocol is achieved from theDropTargetListener.

TheDropTargetContext interface is defined as follows:

public class DropTargetContext {

public DropTarget getDropTarget();

public Component getComponent();

public void setTargetActions(int actions)

throws InvalidDnDOperationException;

public int getTargetActions();

public DataFlavor[] getDataFlavors();

public void getTransferable()

throws InvalidDnDOperationException;

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 12

public void dropComplete(boolean success)

throws InvalidDnDOperationException;

//

protected void acceptDrop(int action);

protected void rejectDrop();

}

TheDropTargetContext provides theDropTargetListener with the ability to determine the
location of the logical cursor within the geometry of the associatedComponent,via the
getCursorLocation() method, manipulate the operations that it is capable of supporting
(ACTION_COPY, ACTION_MOVE, or ACTION_REFERENCE), via thesetTargetAc-
tions()andgetTargetActions() methods, and also to signal the end (successful or other-
wise) of any data transfer that may result from a Drop operation on the associated
DropTarget, via thedropComplete() method.

2.3.4 TheDropTargetListener Definition

Providing the appropriate “Drag-under” feedback semantics, and processing of any subse-
quent Drop, is enabled through theDropTargetListener asssociated with aDropTarget.

TheDropTargetListener determines the appropriate “Drag-under” feedback and its
response to theDragSource regarding drop eligibility by inspecting the sources suggested
actions and the data types available.

A particularDropTargetListener instance may be associated with aDropTarget via add-
DropTargetListener() and removed viaremoveDropTargetListener() methods.

public interface java.awt.dnd.DropTargetListener

 extends java.util.EventListener {

void dragEnter (DropTargetDragEvent dtde);

void dragOver (DropTargetDragEvent dtde);

void dragExit (DropTargetDragEvent dtde);

void dragScroll (DropTargetDragEvent dtde);

void drop (DropTargetDropEvent dtde);

}

ThedragEnter() method of theDropTargetListener is invoked when the hotspot of the log-
ical “Drag” Cursor intersects a visible portion of theDropTarget’s associatedCompo-
nent’s geometry. TheDropTargetListener, upon receipt of this notification, shall
interrogate the operation “actions” and the types of the data as supplied by theDragSource
to determine the appropriate “actions” and “Drag-under” feedback to respond with.

ThedragOver() method of theDropTargetListener is invoked while the hotspot of the log-
ical “Drag” Cursor, in motion, continues to intersect a visible portion of theDropTarget’s
associatedComponent’s geometry. TheDropTargetListener, upon receipt of this notifica-

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 13

tion, shall interrogate the operation “actions” and the types of the data as supplied by the
DragSource to determine the appropriate “actions” and “Drag-under” feedback to respond
with.

ThedragExit() method of theDropTargetListener is invoked when the hotspot of the logi-
cal “Drag” Cursor ceases to intersect a visible portion of theDropTarget’s associated
Component’s geometry. TheDropTargetListener, upon receipt of this notification, shall
undo any “Drag-under” feedback effects it has previously applied.

ThedragScroll() method of theDropTargetListener is invoked when the hotspot of the
logical “Drag” Cursor has been quiescent (stationary) for a short (TBD) period of time,
and both intersects a visible portion of theDropTarget’s associatedComponent’s geometry
and the ScrollInsets.TheDropTargetListener, upon receipt of this notification, shall
scroll, if it supports scrolling, the contents of the associatedComponent based upon the
location of the logical “Drag” cursor.

Thedrop() method of theDropTargetListener is invoked as a result of theDragSource
invoking itscommitDrop() method. TheDropTargetListener, upon receipt of this notifica-
tion, shall perform the operation specified by the return value of thegetSourceActions()
method on theDropTargetDropEvent object, upon theTransferable object returned from
thegetTransferable()method, and subsequently invoke thedropComplete() method of the
associatedDropTargetContext to signal the success, or otherwise, of the operation.

2.3.5 TheDropTargetDragEvent and DropTargetDropEvent Definitions

TheDropTargetEvent andDropTargetDragEvent are defined as follows:

public abstract class java.awt.dnd.DropTargetEvent

 extends java.util.EventObject 1 {

public DropTargetContext getDropTargetContext();

Point getCursorLocation();

public int getSourceActions();

}

The getCursorLocation() method return the co-ordinates, relative to the associatedCom-
ponent’s origin, of the hotspot of the logical “Drag” cursor.

ThegetSourceActions() method return the current “actions”, or operations
(ACTION_MOVE, ACTION_COPY, or ACTION_REFERENCE) theDragSource asso-
ciates with the current Drag and Drop gesture.

public class java.awt.dnd.DropTargetDragEvent

 extends java.awt.dnd.DropTargetEvent {

1. This could be a subclass of AWTEvent but there seems little motivation to make it so.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 14

public DataFlavor[] getDataFlavors();

}

A DropTargetDropEvent is passed to theDropTargetListener’s dragEnter(), dragOver(),
dragExit()anddragScroll() methods.

ThegetDataFlavors() method returns the available type(s), in descending order of prefer-
ence of the data that is the subject of the Drag and Drop operation.

TheDropTargetDropEvent is defined as follows:

public class java.awt.dnd.DropTargetDropEvent

 extends java.awt.dnd.DropTargetEvent {

public void acceptDrop(int dropAction);

public void rejectDrop();

public Transferable getTransferable();

}

A DropTargetDropEvent is passed to theDropTargetListener’s drop() method, as the Drop
occurs (initiated by theDragSource via an invocation ofcommitDrop()). TheDropTarget-
DropEvent provides theDropTargetListener with access to the Data associated with the
operation, via theTransferablereturned from thegetTransferable() method.

The return value of thegetSourceActions()method is defined to be the action(s) defined by
the source at the time at which the Drop occurred.

The return value of thegetCursorLocation() method is defined to be the location at which
the Drop occurred.

TheDropTargetListener.drop() method shall invokeacceptDrop() prior to any invocation
of getTransferData() on the Transferable associated with the Drop.

The rejectDrop() may be called to reject the Drop operation.

2.4 Data Transfer Phase

If the initiator of the Drag operations commits the Drop by invoking theDragSourceCon-
text’s commitDrop() method the DropTarget is notified via an invocation of the DropTar-
getListener’s drop() method. If the initiator cancels the operation by invoking the
DragSourceContext’s cancelDrop()method theDropTarget is notified via an invocation of
theDropTargetListener’s dragExit() method.

In the case where a drop occurs, theDropTargetListener’s drop() method is responsible for
initiating the transfer of the data associated with the gesture. TheDropTargetDropEvent
provides a means to obtain aTransferable object that represent that data object(s) to be
transferred.

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 15

The java.awt.datatransfer.Transferable API provides the mechanisms to perform that data
transfer itself.

Once theDropTarget has processed the transfer(s) of data provided, or if it is unable to
complete the transfer for any reason, it signals its completion, along with an succcess or
failure of the transfer itself, by invoking theDropTargetContext’s dropCompleted()
method. At this point theTransferable andDragSourceContext instances are no longer
valid and all references to them should be discarded to allow them to be subsequently gar-
bage collected.

2.4.1 Mapping platform dependent data types to MIME types

All the target DnD platforms represent their transfer data types using a similar mechanism,
however the representations do differ. A mechanism is required in order to create an exten-
sible (platform dependent) mapping between these type names, their representations, and
MIME basedDataFlavors.

The implementation will provide a mechanism to externally specify a mapping between
platform native data types (strings) and MIME types (strings). This external mapping will
be used by the underlying platform specific implementation code in order to expose the
appropriate DataFlavors (MIME types), exported by the source, to the destination, via the
underlying platform mechanisms.

3.0 Open Issues

3.0.1 What are the implications of the various platform protocol engines?

Due to limitations of particular underlying platform Drag and Drop and Window System
implementations, the interaction of a Drag operation, and the event delivery semantics to
AWT Components is platform dependent. Therefore during a drag operation aDragSource
may process platform Window System Events pertaining to that drag to the exlcusion of
normal event processing. This will be elaborated upon in future revisions of the specifica-
tion.

Initially, due to interactions between the single-threaded design center of the platform
native DnD systems, and the native window system event dispatching implementations in
AWT, it is likely that “callbacks” intoDropTarget, DropTargetContext, andDropTar-
getListener will occur on the AWT system event dispatch thread. This behavior is highly
undesirable but is an implementation, not architectural, feature, and will be addressed in a
future release.

3.0.2 Security?

TBC

Proposal for a Drag and Drop subsystem for the Java Foundation ClassesAugust 26, 1997 16

3.0.3 Inter/Intra VM transfers?

To enable intra-JVM Drag and Drop Transfers the existingDataFlavor class will be
extended to enable it to represent the type of a “live” object reference, as opposed to a
Serialized (persistent) representation of one. Such objects may be transferred between
source and destination within the same JVM andClassLoader context.

To be Specified in a later draft.

3.0.4 Lifetime of the Transferable(s)?

Transferable objects, their associatedDataFlavors, and the objects that encapsulate the
underlying data specified as the operand(s) of a drag and drop operation shall remain valid
until theDragSourceListener, associated with theDragSource controlling the operation,
receives adragDropEnd() event.

3.0.5 Impact of InfoBus?

Since the Infobus specifiation defeines thatDataItems implementTransferable they are
potentially capable of being dragged and dropped between InfoBus members.

Further investigation is underway to determine if any additional

3.0.6 Implications of “Move” semantics on source objects exposed viaTransferable?

The “source” of a successful Drag and Drop (ACTION_MOVE) operation is required to
delete/relinquish all references to the object(s) that are the subject of theTransferable
immediately after transfer has been successfully completed.

3.0.7 Semantics of ACTION_REFERENCE operation.

As a result of significant input from developers to an earlier version of the specification an
additional operation/action tag; ACTION_REFERENCE was added to include existing
platform Drag and Drop”Link” semantics.

It is believed that Reference, or Link, semantics are already sufficiently poorly specified
for the platform native Drag and Drop to render it essentially useless even between native
applications, thus between native and platform independent Java applications it is not rec-
ommended.

For Java to Java usage the required semantic; within the same JVM/ClassLoader, is
defined such that the destination shall obtain a Java object reference to the subject(s) of the
transfer. Between Java JVM’s orClassLoaders, the semantic is implementation defined,
but could be implemented through transferring a URL from the source to the destination.

