

NeroCmd

v1.6

Developer’s Manual

NeroCmd will only work with
a fully installed Nero version!

v1.12, Copyright 2002-2003 Ahead Software

Ahead Software AG, Im Stoeckmaedle 18, 76307 Karlsbad, Germany

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

2

1. Contents
1. Contents ... 2
2. License Agreement ... 5
3. Introduction.. 6

3.1. Motivation... 6
3.2. Overview .. 6
3.3. Requirements... 7
3.4. Required Skills ... 7

4. Files in the Package .. 8
4.1. File Description .. 8

4.1.1. Visual C++ Project Files ... 8
4.1.2. Executable Files ... 8
4.1.3. NeroCmd Source Code .. 8

5. NeroCmd Class Overview... 10
6. NeroCmd Activity Overview ... 11
7. Example Sequence Diagram: Write ISO/Audio .. 12
8. Global functions .. 13

8.1. The main function... 13
8.2. The getopt function .. 13
8.3. The ReadParameterFile function ... 13
8.4. The Usage function .. 13

9. NeroCmd classes .. 14
9.1. The CBurnContext ... 14

9.1.1. The CBurnContext constructor ... 14
9.1.2. The ~CBurnContext destructor... 14
9.1.3. The AbortedCallback member function .. 14
9.1.4. The AddLogLine member function ... 14
9.1.5. The CommandCDInfo member function... 15
9.1.6. The CommandDriveInfo member function.. 15
9.1.7. The CommandEject member function .. 15
9.1.8. The CommandErase member function... 15
9.1.9. The CommandGetSpeeds member function .. 16
9.1.10. The CommandInternal member function .. 16
9.1.11. The CommandListDrives member function .. 16
9.1.12. The CommandListFormats member function ... 16
9.1.13. The CommandRead member function ... 16
9.1.14. The CommandVersion member function.. 17
9.1.15. The CommandWrite member function.. 17
9.1.16. The CreateIsoTree member function.. 17
9.1.17. The CtrlHandler member function .. 17
9.1.18. The DebugPrintIsoTrack member function... 17
9.1.19. The DecodeCapabilities member function.. 18
9.1.20. The DeleteIsoItemTree member function ... 18
9.1.21. The DisableAbortCallback member function .. 18
9.1.22. The EOFCallback member function ... 18
9.1.23. The ErrorCallback member function... 18

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

3

9.1.24. The Exit member function... 19
9.1.25. The GetAvailableDrives member function .. 19
9.1.26. The GetBurnFlags member function .. 19
9.1.27. The GetIsoTrack member function ... 19
9.1.28. The IdleCallback member function ... 20
9.1.29. The InitNeroAPI member function .. 20
9.1.30. The LookForADrive member function... 20
9.1.31. The NeroLoad member function... 20
9.1.32. The OpenDevice member function... 20
9.1.33. The OpenLogFile member function .. 21
9.1.34. The PrintLogLine member function .. 21
9.1.35. The ProgressCallback member function .. 21
9.1.36. The ReadIOCallback member function .. 21
9.1.37. The SetMajorPhaseCallback member function .. 21
9.1.38. The SetPhaseCallback member function ... 21
9.1.39. The TranslateNeroToExitCode member function... 22
9.1.40. The TrimStringRight member function.. 22
9.1.41. The SelectResponse function... 22
9.1.42. The UserDialog member function... 22
9.1.43. The WriteFreestyle member function ... 22
9.1.44. The WriteImage member function .. 23
9.1.45. The WriteIOCallback member function... 23
9.1.46. The WriteIsoAudio member function .. 23
9.1.47. The WriteNeroErrorLog member function .. 23
9.1.48. The WriteVideoCD member function.. 23

9.2. PARAMETERS .. 25
9.2.1. The PARAMETERS constructor ... 25
9.2.2. The ~PARAMETERS destructor... 25

9.3. TRACK ... 25
9.4. CErrorLog... 25

9.4.1. The CErrorLog constructor ... 25
9.4.2. The ~CErrorLog destructor... 25
9.4.3. The Open member function.. 26
9.4.4. The printf member function... 26

9.5. EXITCODE enumeration.. 26
9.6. CExitCode .. 26

9.6.1. The CExitCode constructor... 26
9.6.2. The CExitCode destructor .. 26
9.6.3. The GetLastError member function .. 26
9.6.4. The GetLastErrorLogLine member function ... 27
9.6.5. The GetTextualExitCode member function .. 27
9.6.6. The assignment operator for CExitCode classes ... 27
9.6.7. The assignment operator for EXITCODE enumerations .. 27
9.6.8. The cast operator.. 27

9.7. CResponse .. 27
9.8. CSimpleStringArray.. 27

9.8.1. The CSimpleStringArray constructor .. 28
9.8.2. The ~CSimpleStringArray destructor.. 28

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

4

9.8.3. The Add member function .. 28
9.9. CFindFiles .. 28

9.9.1. The CFindFiles constructor... 28
9.9.2. The ~CFindFiles destructor .. 28
9.9.3. The FindNext member function ... 28
9.9.4. The GetCreateTime member function .. 29
9.9.5. The GetName member function ... 29
9.9.6. The IsSubDir member function... 29
9.9.7. The IsValidEntry member function ... 29

10. Version History .. 30

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

5

2. License Agreement

IMPORTANT: PLEASE READ THE SOFTWARE LICENSE AGREEMENT ("LICENSE")
CAREFULLY BEFORE USING THE SOFTWARE.

USING THE SOFTWARE INDICATES YOUR ACKNOWLEDGMENT THAT YOU HAVE
READ THE LICENSE AND AGREE TO ITS TERMS.

The license agreement is contained in a text file, “NeroSDK_License.txt”, to be found
in the root folder of the installation package.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

6

3. Introduction

3.1. Motivation

NeroCmd is a console application that facilitates the processing of commands
understood by the NeroAPI.

This part of the documentation has been created for developers who want to change the
NeroCmd parser to fit their own, more refined requirements. Users who want to benefit
from the functionality without having to understand the machinery inside should refer to
the “NeroCmd User’s Manual”, which gives a comprehensive description of how to use
the application.

3.2. Overview

NeroCmd can perform the following tasks:

• List all available drives

• Display capabilities of a particular drive

• List available read and write speeds for a particular drive

• Get CD info for the currently loaded CD from a particular drive

• List supported Audio formats

• Burn:

o ISO DVD

o ISO/Audio CD

o Video CD

o Super Video CD

o CD from image

o Freestyle CD

• Grab Audio tracks and store them in disk files (Digital Audio Extraction)

• Eject/Load CD from drive

• Erase CD Rewritable/ DVD Rewritable

• Display NeroAPI version information

This paper will guide you through the architecture of the application.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

7

3.3. Requirements

NeroCmd will work on any platform, which is fit for hosting Nero 5.5.9.14. Nero needs to
be installed prior to using NeroCmd.

NeroCmd will not work with Linux.

You can obtain the latest version of Nero from http://www.nero.com.
To compile NeroCmd you will need Microsoft Visual C++ 6.0 or Microsoft Visual Studio
.NET.

We have used Visual C++ 6.0 with the Visual Studio Service Pack 5. If you experience
problems under Visual C++ 6.0, and do not have that service pack installed, you might
want to obtain the Service Pack, before taking other options into consideration.

3.4. Required Skills

This documentation is directed towards Software developers who have gathered some
experience in C++ programming.
It is absolutely required that you know the basic concepts of the C++ programming
language.

You should also have aquired some familiarity with the NeroAPI. The NeroAPI
documentation can be found in the “NeroAPI/Doc” folder of the NeroSDK.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

8

4. Files in the Package
NeroCmd comes as a zipped file; the contents of this ZIP archive are listed and explained
below.

4.1. File Description

On the following pages you will find a complete list of files that are part of the NeroCmd
source code distribution. If the application that you have created does not work it might
well be that some of these files are missing. A short description of the file’s purpose has
been added where suitable or required.

The noteworthy characteristic of the structure is the absence of a direct mapping
between classes and files. Many member functions of CBurnContext, the central class
for most operations, are quite complex and therefore have their own module.

4.1.1. Visual C++ Project Files

Path \ File Name Description
NeroCmd.dsw Visual C++ Workspace for NeroCmd.
NeroCmd.dsp Visual C++ project file for NeroCmd.

4.1.2. Executable Files

Path \ File Name Description
NeroCmd.exe Release version of the NeroCmd executable.

4.1.3. NeroCmd Source Code

Path \ File Name Description
AbortedCallback.cpp AbortedCallback implementation.
AddLogLineCallback.cpp AddLogLine callback implementation.
BurnContext.cpp Implementation of the CBurnContext class.
BurnContext.h Central class for CD operations.
CommandCDInfo.cpp Implements the –cdinfo command.
CommandDriveInfo.cpp Implements the –driveinfo command.
CommandEject.cpp Implements the –eject and –load commands.
CommandErase.cpp Implements the –erase command for CDRW/DVDRW media.
CommandGetSpeeds.cpp Implements the –get_speeds command.
CommandInternal.cpp Implements the –internal command. This command is only

used for internal testing purposes.
CommandListDrives.cpp Implements the –listdrives command, which will list all available

drives with their main characteristics.
CommandListFormats.cpp Implements the –listformats command to display the available

audio formats.
CommandRead.cpp Implements DAE (digital audio extraction) through the –read

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

9

Path \ File Name Description
command.

CommandVersion.cpp Implements the –version command for retrieval and printing of
version information.

CommandWrite.cpp Implements the general –write command and distinguishes
between different burn types and acts accordingly.

CtrlHandler.cpp Handles Ctrl events.
DisableAbortCallback.cpp This is one of the NeroAPI callbacks. It prints out the info to

remind user whether the current operation is abortable.
ErrorLog.cpp CErrorLog class implementation.
ErrorLog.h Logging of error messages created by the application
ExitCode.cpp Translate the numeric error code into a textual representation.
ExitCode.h Supported exit codes and translation to textual representation.
ExitCodeTranslator.cpp Translation of NeroAPI errors to EXITCODEs.
FindFile.cpp Implementation of helper class for ISO tree handling moved

from.
FindFile.h Helper class for ISO tree handling.
getopt.cpp Decoding of argument list, help function, parsing of parameter

file.
getopt.h COMMAND and BURNTYPE enumerations, PARAMETERS

declaration.
IdleCallback.cpp Callback for idle processing.
IOCallbacks.cpp Callbacks that do not deal with files directly.
IsoTrack.cpp ISO tree handling.
NeroCmd.cpp Main file of the application.
parameters.cpp PARAMETERS class implementation file
parameters.h PARAMETERS class declaration, COMMAND_LINE_ERRORS

enumeration, enumerations for available burn types and
commands; structure for storing a track list.

ProgressCallback.cpp Callback for displaying progress on current operation.
resource.h Resource header file for version.rc.
SetMajorPhaseCallback.cpp Callback for reporting major phase changes.
SetPhaseCallback.cpp Callback for reporting phase changes.
SimpleStringArray.cpp Simple string vector class implementation.
SimpleStringArray.h Declaration of a simple string vector class.
StdAfx.cpp Source file that contains the standard includes
StdAfx.h Include file for standard system include files, or project specific

include files that are used frequently, but are changed
infrequently.

UserDialog.cpp Interaction with the user.
version.rc Version resource script.
WriteFreestyle.cpp Freestyle format burning.
WriteImage.cpp ISO image burning.
WriteIsoAudio.cpp ISO/Audio format burning.
WriteNeroErrorLog.cpp Write the error log to a file.
WriteVideoCD.cpp Video format burning.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

10

5. NeroCmd Class Overview

This overview shows the basic components of NeroCmd. CBurnContext is the central class.
CBurnContext uses the PARAMETERS class, where all the information obtained by the
command line input has been stored, to assemble the appropriate data for every burn
format, and execute calls to NeroAPI to perform the desired operation.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

11

6. NeroCmd Activity Overview

The diagram above shows a very rough overview of the required operations.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

12

7. Example Sequence Diagram: Write ISO/Audio

This sequence diagram shows the important operations when NeroCmd has been
instructed to write an ISO/Audio CD or DVD. The different instances do not exactly map to
classes, to better illustrate the distribution of functionality to different modules.

Including all classes that are used would have made the sequence diagram too complex,
so e.g. calls to CFindFiles and CSimpleStringArray classes have been disregarded here.
Also, repeated single function calls that – for instance – are required to PARAMETERS
have been reduced to “set various flags”.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

13

8. Global functions

8.1. The main function
int main(int argc, char* argv[])

Inside the main() function the PARAMETERS and CBurnContext classes are
instantiated; a variable is provided for the EXITCODE enumeration. The global getopt()
function is called with the command line parameters the user entered on the command
line. The getopt function will fill the PARAMETERS structure according to these
command line parameters.

If getopt returns EXITCODE_BAD_USAGE, because the command line parameters
have not been provided properly, the application exits. If getopt was successful in
parsing the parameters, the NeroAPI is loaded, and the desired command is executed
by calling the appropriate member function of CBurnContext.

8.2. The getopt function
bool getopt (PARAMETERS & params, int argc, char ** argv)

getopt() checks if there are any parameters; if not, a help on usage is displayed on the
screen and the application exits. Otherwise the following commands are allowed:
listdrives, driveinfo, listformats, get_speeds, version, cdinfo, read, write, erase, eject and
load. Only one command at a time is allowed. The actual checking for command line
parameter consistency is done in the PARAMETERS class.
If a commercial at “@” is encountered, the ReadParameterFile function is called to
overwrite the argument strings with the content of a parameter file.

8.3. The ReadParameterFile function
static bool ReadParameterFile (PARAMETERS & params, LPCSTR psFilename)

ReadParameterFile is responsible for reading and parsing the parameter list from a disk
file. Once the parameters are parsed, they are passed on to the getopt function for
decoding.

8.4. The Usage function
static void Usage (void)

Usage will display a number of help screens on allowed commands and flags.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

14

9. NeroCmd classes

9.1. The CBurnContext

This is the central class for CD and DVD operations. It handles all available operations
and callbacks.

9.1.1. The CBurnContext constructor

CBurnContext::CBurnContext(PARAMETERS* params)

CBurnContext(), as we use it, gets a PARAMETERS pointer, that is then stored in a
member variable. It will later be used during NeroAPI callbacks to retrieve settings
from the PARAMETERS class. The default constructor is not used.

In the constructor various handles are set to an uninitialized value. The Console
Control handler is set to the CtrlHandler member function to provide handling of
keyboard inputs like Ctrl+C.

9.1.2. The ~CBurnContext destructor

CBurnContext::~CBurnContext ()

If the NeroAPI had been successfully initialized, cleanup functions like device
closing and memory deallocation are performed. Even if the NeroAPI had not been
initialized before, the NeroDone() function is executed to make sure that all threads
are stopped before the NeroAPI DLL is closed.

9.1.3. The AbortedCallback member function

BOOL NERO_CALLBACK_ATTR CBurnContext::AbortedCallback (void *pUserData)

AbortedCallback is one of the “NeroCallback” callback functions. It simply returns
the flag maintained in CBurnContext.

9.1.4. The AddLogLine member function

void NERO_CALLBACK_ATTR CBurnContext::AddLogLine (void *pUserData,
 NERO_TEXT_TYPE type, const char *text)

This function analyzes the type parameter and assigns a log header accordingly.
Then the header and text are printed, breaking lines after 76 characters.
Header Description
[i] Informative text.
[#] Some operation stopped prematurely.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

15

Header Description
[!] Important information.
[?] A question which requires an answer.
[-] A message concerning a CD-ROM drive or recorder

9.1.5. The CommandCDInfo member function

CExitCode CBurnContext::CommandCDInfo (const PARAMETERS & params)

If the user supplied “—cdinfo” on the command line, this function executes a CD info
command. It simply calls NeroAPI’s NeroGetCDInfo function and displays
information about media type, number of free blocks, access type, artist and title.

Then information about every track is displayed, including track number, track type,
start block, end block, track length in blocks and session number. If artist and title
information are available, they will be displayed as well.

9.1.6. The CommandDriveInfo member function

CExitCode CBurnContext::CommandDriveInfo (const PARAMETERS & params)

If the user supplied “—driveinfo” on the command line, this function will retrieve and
display drive letter, device name, device id, host adapter name, host adapter
number, buffer underrun protection technology, drive buffer size, supported media
and speeds for a particular drive.

9.1.7. The CommandEject member function

CExitCode CBurnContext::CommandEject (const PARAMETERS & params)

If the user supplied “—eject” or “—load” on the command line, this function executes
the eject and load commands by calling NeroAPI’s NeroEjectLoadCD function.

9.1.8. The CommandErase member function

CExitCode CBurnContext::CommandErase (const PARAMETERS & params)

If the user supplied “—erase” on the command line, this function erases a CDRW
either entirely or in quick mode, depending on whether the “—entire” flag was set.
The NeroGetCDRWErasingTime function is called. A negative return value indicates
that either no CD was inserted or the drive does not support CDRWs. Upon a
negative return value the function will terminate.

Otherwise, the estimated time for deletion is displayed and NeroEraseCDRW is
called to actually perform the deletion.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

16

9.1.9. The CommandGetSpeeds member function

CExitCode CBurnContext::CommandGetSpeeds (const PARAMETERS & params)

If the user supplied “—get_speeds” on the command line, this function displays a list
of all available read and write speeds for a particular drive.

CommandGetsSpeeds calls NeroGetAvailableSpeeds twice to retrieve read and
write speeds for a particular drive, then displays the results.

9.1.10. The CommandInternal member function

CExitCode CBurnContext::CommandInternal (const PARAMETERS & params)

This command is used strictly for internal testing.

9.1.11. The CommandListDrives member function

CExitCode CBurnContext::CommandListDrives (const PARAMETERS & params)

If the user supplied “—listdrives” on the command line, this function displays a list of
all available drives with their main characteristics.

Information about the available drives has been retrieved during initialization and
stored in a member variable of the class.

The number of available drives is used in a for-loop: For every drive the drive letter,
device name, buffer underrun protection technology name, host adapter number,
host adapter name, and device ID are displayed.

9.1.12. The CommandListFormats member function

CExitCode CBurnContext::CommandListFormats (const PARAMETERS & params)

If the user supplied “—listformats” on the command line, this function displays a list
of all available audio formats, including some basic information about each format.

The formats are retrieved by looping through the NeroAudioGetFormatInfo function
until it returns FALSE.

9.1.13. The CommandRead member function

CExitCode CBurnContext::CommandRead (const PARAMETERS & params)

If the user supplied “—read” on the command line, this function performs DAE
(digital audio extraction). First, the CD info is retrieved. Then the function
enumerates through the user supplied list of tracks. It tries to find every single track

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

17

among the existing tracks. If the track was not found, an error will be reported.
Otherwise the audio data will be extracted.
The file extension is determined - supported extensions are WAV and PCM. Any file
handles that have been opened during this operation will be closed before the
function returns.

9.1.14. The CommandVersion member function

void CBurnContext::CommandVersion (void)

This function is called when the user supplied “—version” on the command line. A
call to NeroGetAPIVersionEx retrieves the information, which is then formatted and
displayed.

9.1.15. The CommandWrite member function

CExitCode CBurnContext::CommandWrite (const PARAMETERS & params)

If the user supplied “—write” on the command line, this function distinguishes
between different burn types and acts accordingly. The GetBurnType() function of
the PARAMETERS class is used to determine whether an image, Audio/ISO, Video
CD, or Super Video CD has been requested by the user. Then the appropriate
member function for each burn type will be called.

9.1.16. The CreateIsoTree member function

CExitCode CBurnContext::CreateIsoTree (LPCSTR psFilename,
 NERO_ISO_ITEM ** ppItem, int iLevel)

This function searches for a specified path and recursively adds all files and
directories that are found. It starts by defining an instance of the CFindFiles helper
class. If the first filename that has been supplied cannot be found, an error is
returned.

9.1.17. The CtrlHandler member function

BOOL WINAPI CBurnContext::CtrlHandler (DWORD dwCtrlType)

Whatever event occurred is handled by aborting any current operation.

9.1.18. The DebugPrintIsoTrack member function

void CBurnContext::DebugPrintIsoTrack (const NERO_ISO_ITEM * pItem,
 int iLevel)

This function is used solely for debug purposes in order to print the whole ISO tree.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

18

9.1.19. The DecodeCapabilities member function

void CBurnContext::DecodeCapabilities (const NERO_SCSI_DEVICE_INFO *
 pNSDI) const

This function displays the available capabilities for a drive (DAO, CD text, bus
type...).

9.1.20. The DeleteIsoItemTree member function

void CBurnContext::DeleteIsoItemTree (NERO_ISO_ITEM * pItem)

This function deletes the ISO tree recursively. If a directory is encountered,
DeleteIsoItemTree is called again with the first item in that directory. If the item is a
reference to another item, NeroFreeMem is called, otherwise NeroFreeIsoItem.

9.1.21. The DisableAbortCallback member function

void NERO_CALLBACK_ATTR CBurnContext::DisableAbortCallback (void
 *pUserData, BOOL enableAbort)

This is one of the NeroAPI callbacks. It prints out information to let the user know
whether the current operation is abortable or not.

9.1.22. The EOFCallback member function

BOOL NERO_CALLBACK_ATTR CBurnContext::EOFCallback (void *pUserData)

This IO callback is one of the callbacks, which perform operations with NeroAPI that
do not deal with files directly. It returns the result of a feof() function call, to
determine whether the end of a file has been reached.

9.1.23. The ErrorCallback member function

BOOL NERO_CALLBACK_ATTR CBurnContext::ErrorCallback (void *pUserData)

This IO callback is one of the callbacks, which perform operations with NeroAPI that
do not deal with files directly. It uses ferror() to check for error and returns the result.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

19

9.1.24. The Exit member function

EXITCODE CBurnContext::Exit(CExitCode code)

This function takes an CExitCode class object, translates it to its textual
representation by calling its GetTextualExitCode member function, and returns the
provided exit code.

9.1.25. The GetAvailableDrives member function

CExitCode CBurnContext::GetAvailableDrives (void)

This function is used to set the m_NeroDeviceInfos member of CBurnContext to the
return value of NeroGetAvailableDevicesEx. It returns EXITCODE_OK or
EXITCODE_ERROR_OBTAINING_AVAILABLE_DRIVES depending on the value of
m_NeroDeviceInfos.

9.1.26. The GetBurnFlags member function

DWORD CBurnContext::GetBurnFlags (const PARAMETERS & params)

This function sets the appropriate burn flags according to the user supplied
parameters. This includes real mode or simulation, TAO or DAO, abort disabling,
speed test, session closing, buffer underrun protection, non-empty CDRW detection,
CD text option, eject disabling, and verification.

9.1.27. The GetIsoTrack member function

CExitCode CBurnContext::GetIsoTrack (const PARAMETERS & params,
 CNeroIsoTrack ** ppIsoTrack, NERO_ISO_ITEM ** ppItem)

This function creates a CNeroIsoTrack from the user supplied parameters.
It imports a previous session if requested by the user and builds the file and
directory tree.

If “—import” was specified NeroGetCDInfo is called and a pointer to a
NERO_CD_INFO structure for the specified device is retrieved. The function checks
whether the requested import track exists on the CD. (If no track number was
specified, the last session will be imported.)

Then the import flags are set according to the “—import_udf”, “—import_iso_only” or
“—prefer_rockrige” flags. The NeroImportIsoTrackEx function is called.

If the NeroImportIsoTrackEx function fails, it is probably due to an empty drive.

Now the function iterates through the file list and adds each item to the tree. If a
directory is found it is recursed and every contained item is added to the tree.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

20

Depending on the user supplied command line parameters “—iso_mode2”, “—
use_rockridge”, “—create_iso_fs”, “ –dvdvideo_realloc” and “—create_udf_fs”
internal flags are set.

Then NeroCreateIsoTrackEx is called. If track creation fails the ISO item tree is
deleted.

9.1.28. The IdleCallback member function

BOOL NERO_CALLBACK_ATTR CBurnContext::IdleCallback (void *pUserData)

This is a NeroAPI callback responsible for idle processing. Since we have no idle
processing, we simply return our aborted flag.

9.1.29. The InitNeroAPI member function

CExitCode CBurnContext::InitNeroAPI (void)

This function fills the Nero settings structure with CBurnContext’s this-pointer and
the address of the UserDialog function then it initializes the NeroAPI. The return
value is mapped to an EXITCODE.

9.1.30. The LookForADrive member function

int CBurnContext::LookForADrive (const PARAMETERS & params)

This is a support function that enumerates drives and finds the one that matches the
specified command line parameters. It will accept both device names and drive
letters.

9.1.31. The NeroLoad member function

CExitCode CBurnContext::NeroLoad (void)

This function connects to the NeroAPI, and sets the m_bNeroInitialized flag if the
operation was successful.

9.1.32. The OpenDevice member function

CExitCode CBurnContext::OpenDevice (const PARAMETERS & params)

This function opens a device. It checks for the presence of a device by enumerating
drives and trying to find the requested drive among them.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

21

9.1.33. The OpenLogFile member function

bool CBurnContext::OpenLogFile (LPCSTR psLogFilename)

This function opens the log file by calling the Open function of the m_ErrorLog
member. It returns true if the log could be opened.

9.1.34. The PrintLogLine member function

void CBurnContext::PrintLogLine(LPCSTR s)

This function prints error log lines that are passed to the CBurnContext class from
outside.

9.1.35. The ProgressCallback member function

BOOL NERO_CALLBACK_ATTR CBurnContext::ProgressCallback (void *pUserData,
 DWORD dwProgressInPercent)

This is a Nero callback, responsible for showing progress of the current operation.
Here we display the progress in percent, and update a simple progress meter.

9.1.36. The ReadIOCallback member function

DWORD NERO_CALLBACK_ATTR CBurnContext::ReadIOCallback (void *pUserData,
 BYTE *pBuffer, DWORD dwLen)

ReadIOCallback will be used when PCM is written to CD. It calls fread() to fill the
supplied buffer from a file.

9.1.37. The SetMajorPhaseCallback member function

void NERO_CALLBACK_ATTR CBurnContext::SetMajorPhaseCallback (void
 *pUserData, NERO_MAJOR_PHASE phase, void * reserved)

This is a Nero callback that prints the change of major phase (e.g. “Start Caching”,
“Start Writing”, “Done Writing”...)

9.1.38. The SetPhaseCallback member function

void NERO_CALLBACK_ATTR CBurnContext::SetPhaseCallback (void *pUserData,
 const char *text)

This is a Nero callback that prints the change of phase.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

22

9.1.39. The TranslateNeroToExitCode member function

CExitCode CBurnContext::TranslateNeroToExitCode (NEROAPI_BURN_ERROR err)

This function performs a simple translation from NeroAPI's burn error into
NeroCmd’s own EXITCODE.

9.1.40. The TrimStringRight member function

void CBurnContext::TrimStringRight (LPSTR psString)

This function rids the string of spaces from the right. It is called from the
LookForADrive function to trim drive letters and drive names.

9.1.41. The SelectResponse function

static NeroUserDlgInOut SelectResponse (const CResponse response[],
 int iSelection = 0)

This static helper function is not a class member, but resides in one module with the
UserDialog member function. It displays a set of choices and allows the user to
move from one choice to another by pressing the arrow keys.

9.1.42. The UserDialog member function

NeroUserDlgInOut NERO_CALLBACK_ATTR CBurnContext::UserDialog (void*
 pUserData, NeroUserDlgInOut type, void *data)

Depending on “type” this function prompts the user for a decision that the NeroAPI
requires to proceed with the current process. E.g. the user would have to decide
whether or not to erase a non-empty CDRW. The actual user input is provided by
the SelectResponse function.

pUserData contains a pointer to the CBurnContext instance that initialized the
NeroAPI. Thus, functions from CBurnContext can be called during a callback, which
otherwise would not be possible.

9.1.43. The WriteFreestyle member function

CExitCode CBurnContext::WriteFreestyle (const PARAMETERS & params)

This function is responsible for burning a freestyle CD and will be called when the
user has supplied one of the “—freestyle” command line parameters. After a few
preparations, GetIsoTrack is called to obtain an ISO track based on the given
parameters.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

23

The CD stamp information is provided, and a for-loop is used to build the track
structure. NeroBurn is called and cleanup functions are performed.

9.1.44. The WriteImage member function

CExitCode CBurnContext::WriteImage (const PARAMETERS & params)

This function is responsible for burning an ISO image and will be used if the “—
image” command line parameter has been supplied.
Writing an image is a straight forward process. A NERO_WRITE_IMAGE structure is
created, and the image file name member is filled. Then NeroBurn is called.

9.1.45. The WriteIOCallback member function

DWORD NERO_CALLBACK_ATTR CBurnContext::WriteIOCallback (void *pUserData,
 BYTE *pBuffer, DWORD dwLen)

WriteIOCallback will used when PCM data is being read from CD.

9.1.46. The WriteIsoAudio member function

CExitCode CBurnContext::WriteIsoAudio (const PARAMETERS & params)

This function is responsible for burning an ISO/Audio CD or ISO DVD. The size of
the CD is calculated, and the program tries to allocate memory for the
NERO_WRITE_CD structure that will be used for writing the information. If the free
memory pool is not large enough, the application will terminate.

The function fills the NERO_WRITE_CD structure with the information the user
provided. The burn process is started by calling NeroBurn, passing a pointer to the
NERO_WRITE_CD structure.

9.1.47. The WriteNeroErrorLog member function

void CBurnContext::WriteNeroErrorLog (const PARAMETERS & params)

This function simply writes the standard Nero error log out to a file – “neroerr.txt”.

If “—nero_log_timestamp” was specified, the timestamp will be added to the file
name prefix.

9.1.48. The WriteVideoCD member function

CExitCode CBurnContext::WriteVideoCD (const PARAMETERS & params)

This function performs burning Video or Super Video CDs.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

24

A reference to a parameter object is supplied in the function parameter list.
Objects for NERO_WRITE_VIDEO_CD, ExitCode, and NERO_ISO_ITEM are
instantiated.

Size is calculated from the size of NERO_WRITE_CD, adding the number of tracks
in the parameter structure, multiplied by the size of each NERO_VIDEO_ITEM.
Memory is allocated for the given size and returned as a pointer to a
NERO_WRITE_VIDEO_CD structure.

If not enough memory is available, the application exits with
EXITCODE_OUT_OF_MEMORY. Otherwise, the allocated memory is filled with 0-
bytes.

The nwvcdSVCD member is set according the m_BurnType member of the
parameters class. It becomes true if GetBurnType() returns
BURNTYPE_SVCD_CD. The nwcdNumItems member is set to the m_iNumTracks
member of parameters. pItem is set to point to NULL;

The temporary path (if supplied by user) gets copied to the appropriate field of the
NERO_WRITE_VIDEO_CD structure. At most 256 chars are copied. This is the
current size of the NERO_WRITE_VIDEO_CD field. It is ensuredthat the string does
not exceed the field size.

A try-catch-combination follows.

The call to GetIsoTrack returns a result code which is compared to EXITCODE_OK.
If it differs an exception is thrown, providing the exit code that was just obtained.

In the following loop a temporary pointer to a NERO_VIDEO_ITEM is assigned to
each of the nwcdItems of the parameters structure, one by one in every execution of
the loop until all tracks have been processed.

Then the name of the source file is copied from the m_psFilename member of the
parameters’ item structure to the temporary item. The last byte of the string is set to
0 to terminate it. strrchr() searches for the last occurrence of “.”, then the extension
is compared to the allowed file types “mpg”, “mpeg”, “jpg”, “jpeg” and “avi”, thus
setting nviItemType to NERO_MPEG_ITEM, NERO_JPEG_ITEM or
NERO_NONENCODED_VIDEO_ITEM. If none applies the error log is written and
an “unknown file type” exception is thrown.

NeroBurn is called with the required data. Afterwards TranslateNeroToExitCode is
called. Memory is freed up and the code returned.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

25

9.2. PARAMETERS

The PARAMETERS class combines all possible flags and additional data.

Additionally, it checks the consistence of the data provided by its setters. There is a Set
function and a Get function for every available property. Those properties are derived
from command line parameters. There are quite many, and the operations are so similar
that we will not list them here.

9.2.1. The PARAMETERS constructor

PARAMETERS::PARAMETERS ()

All values are set to reasonable defaults.

9.2.2. The ~PARAMETERS destructor

PARAMETERS::~PARAMETERS ()

The destructor performs no other than the default operation.

9.3. TRACK
struct TRACK {
 int m_iTrack;
 LPCSTR m_psFilename;
 NERO_TRACKMODE_TYPE m_Mode;
};

This is the Track structure as used by PARAMETERS.

9.4. CErrorLog

9.4.1. The CErrorLog constructor

CErrorLog::CErrorLog ()

The constructor merely sets the file handle member to NULL, thus marking it as
undefined.

9.4.2. The ~CErrorLog destructor

CErrorLog::~CErrorLog ()

If the file handle member differs from NULL it is passed to the fclose function.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

26

9.4.3. The Open member function

bool CErrorLog::Open (LPCSTR psFilename)

This function first verifies that the filename, which was passed to this function, is not
a NULL value. Then it tries to open that file in write mode. The function returns true if
the file could be opened.

9.4.4. The printf member function

int CErrorLog::printf (const char * format, ...)

This function adds one line to the log file. It provides formatted output of error log
entries to the log file.

9.5. EXITCODE enumeration

The EXITCODE enumeration type is used when the application terminates. It indicates
what kind of error has occurred, if any.

9.6. CExitCode

CExitCode is a wrapper class for EXITCODE. All functions which are capable of
returning errors will return an instance of this class. CExitCode also preserves the
textual NeroAPI error.

9.6.1. The CExitCode constructor

CExitCode::CExitCode (EXITCODE code)

The constructor saves the error code in a member variable and obtains the last error
log line from the NeroAPI.

9.6.2. The CExitCode destructor

CExitCode::~CExitCode ()

In the destructor the error string is freed.

9.6.3. The GetLastError member function

LPCSTR GetLastError (void) const

This function returns the last error or an empty string.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

27

9.6.4. The GetLastErrorLogLine member function

void CExitCode::GetLastErrorLogLine (void)

The last error is requested from the NeroAPI and returned.

9.6.5. The GetTextualExitCode member function

LPCSTR CExitCode::GetTextualExitCode (void) const

This function translates the numeric error code into a textual representation.

9.6.6. The assignment operator for CExitCode classes

CExitCode & CExitCode::operator= (const CExitCode & code)

This is the assignment operator if the source is another CExitCode.

9.6.7. The assignment operator for EXITCODE enumerations

CExitCode & CExitCode::operator= (const EXITCODE code)

This will is the assignment operator if the source is a plain EXITCODE constant.

9.6.8. The cast operator

operator EXITCODE () const {return m_ExitCode;}

The cast operator simply returns the member variable, which is of the EXITCODE
enumeration type.

9.7. CResponse
struct CResponse {
 LPCSTR m_psButtonText;
 NeroUserDlgInOut m_RetVal;
};

This simple structure holds a pair consisting of response text and the corresponding
return value.

9.8. CSimpleStringArray

This class implements a simple array of strings as STL vector.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

28

9.8.1. The CSimpleStringArray constructor

CSimpleStringArray::CSimpleStringArray ()

The constructor merely sets the Boolean m_bOwnData member to true.

9.8.2. The ~CSimpleStringArray destructor

CSimpleStringArray::~CSimpleStringArray ()

The CSimpleStringArray destructor iterates through the vector and deletes the
strings if the m_bOwnData flag is set, which by default is not the case. This prevents
deleting strings that do not belong to the object that uses CSimpleStringArray.

9.8.3. The Add member function

void CSimpleStringArray::Add (LPSTR psString)

This member adds a string to the CSimpleStringArray vector by calling the insert
function.

9.9. CFindFiles

CFindFiles is a helper class for enumerating a directory tree for ISO tree handling.

9.9.1. The CFindFiles constructor

CFindFiles::CFindFiles (LPCSTR psPath)

The constructor takes an LPCSTR path as parameter. The _findfirst function is used
to locate the first entry and store its handle. Depending on whether a valid handle
was returned the entry is marked as valid or invalid.

9.9.2. The ~CFindFiles destructor

CFindFiles::~CFindFiles ()

If a handle exists it will be passed to the _findclose function to perform cleanup for
files and directories.

9.9.3. The FindNext member function

void CFindFiles::FindNext (void)

This functions will find the next file or directory entry and set the valid flag.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

29

9.9.4. The GetCreateTime member function

inline time_t CFindFiles::GetCreateTime (void) const

This function returns the time when a file or directory was created.

9.9.5. The GetName member function

inline LPCSTR CFindFiles::GetName (void) const

This function returns the name of a file or directory.

9.9.6. The IsSubDir member function

inline bool CFindFiles::IsSubDir (void)

This function indicates whether or not the entry is a subdirectory by checking if the
_A_SUBDIR attribute is set.

9.9.7. The IsValidEntry member function

inline bool CFindFiles::IsValidEntry (void)

This function returns the m_bValid flag which has been set during construction or
changed during FindNext.

NeroCmd v1.6 Developer’s Manual

Ahead Software AG

30

10. Version History

Version Date Comments
1.0 November 24, 2000 Initial version.
1.1 December 6, 2000 Updates according to the changes in NeroAPI (version 5.0.3.4).

- UserDialog callback function has been modified to
 support new DLG_NON_EMPTY_CDRW callback.
- Two new command line parameters have been added.
 One is –detect_non_empty_cdrw and the other is –cd_text.
- The code around NeroImportIsoTrack has been updated
 according to the NeroAPI changes. Error handling has been
 improved.

1.2 April 5, 2001 Updates according to the changes in NeroAPI (version 5.5.0.6).
- Changed project name from NeroBATCH to NeroCmd

1.3 April 23, 2001 Updates according to the changes in NeroAPI (version 5.5.1.4).
- Added two cmd line options according to the two
 new NBF_ constants
- Added a new EXITCODE_ and a corresponding error
 message for a new NEROAPI_INIT_DEMOVERSION_EXPIRED
 constant
- Changed NeroAPI initialization to utilize the new
 shared API feature

1.4 October 28, 2001 Added handling of the –dvd parameter. The DVD burning
feature was introduced with NeroAPI 5.5.4.4.

1.5 December 3, 2001 Several Bugfixes:
- UserDialog-Input wasn't evaluated properly.
- Buffer was overwritten occasionally, causing the application
 to terminate with an error.
Improved Log File Handling
Added –force_erase_cdrw command line parameter to delete
 CDRW without user interaction when combined with
 –detect_non_empty_cdrw
Added –nero_log_timestamp to keep multiple versions of the NeroAPI error
log for batch runs.

1.6 November 22, 2002 Improved file and directory handling.
Added
--driveinfo for information about a particular drive
--listformats for listing available audio formats
--get_speeds for read and write speeds
--recursive for handling of subdirectories

	1. Contents
	2. License Agreement
	3. Introduction
	3.1. Motivation
	3.2. Overview
	3.3. Requirements
	3.4. Required Skills

	4. Files in the Package
	4.1. File Description
	4.1.1. Visual C++ Project Files
	4.1.2. Executable Files
	4.1.3. NeroCmd Source Code

	5. NeroCmd Class Overview
	6. NeroCmd Activity Overview
	7. Example Sequence Diagram: Write ISO/Audio
	8. Global functions
	8.1. The main function
	8.2. The getopt function
	8.3. The ReadParameterFile function
	8.4. The Usage function

	9. NeroCmd classes
	9.1. The CBurnContext
	9.1.1. The CBurnContext constructor
	9.1.2. The ~CBurnContext destructor
	9.1.3. The AbortedCallback member function
	9.1.4. The AddLogLine member function
	9.1.5. The CommandCDInfo member function
	9.1.6. The CommandDriveInfo member function
	9.1.7. The CommandEject member function
	9.1.8. The CommandErase member function
	9.1.9. The CommandGetSpeeds member function
	9.1.10. The CommandInternal member function
	9.1.11. The CommandListDrives member function
	9.1.12. The CommandListFormats member function
	9.1.13. The CommandRead member function
	9.1.14. The CommandVersion member function
	9.1.15. The CommandWrite member function
	9.1.16. The CreateIsoTree member function
	9.1.17. The CtrlHandler member function
	9.1.18. The DebugPrintIsoTrack member function
	9.1.19. The DecodeCapabilities member function
	9.1.20. The DeleteIsoItemTree member function
	9.1.21. The DisableAbortCallback member function
	9.1.22. The EOFCallback member function
	9.1.23. The ErrorCallback member function
	9.1.24. The Exit member function
	9.1.25. The GetAvailableDrives member function
	9.1.26. The GetBurnFlags member function
	9.1.27. The GetIsoTrack member function
	9.1.28. The IdleCallback member function
	9.1.29. The InitNeroAPI member function
	9.1.30. The LookForADrive member function
	9.1.31. The NeroLoad member function
	9.1.32. The OpenDevice member function
	9.1.33. The OpenLogFile member function
	9.1.34. The PrintLogLine member function
	9.1.35. The ProgressCallback member function
	9.1.36. The ReadIOCallback member function
	9.1.37. The SetMajorPhaseCallback member function
	9.1.38. The SetPhaseCallback member function
	9.1.39. The TranslateNeroToExitCode member function
	9.1.40. The TrimStringRight member function
	9.1.41. The SelectResponse function
	9.1.42. The UserDialog member function
	9.1.43. The WriteFreestyle member function
	9.1.44. The WriteImage member function
	9.1.45. The WriteIOCallback member function
	9.1.46. The WriteIsoAudio member function
	9.1.47. The WriteNeroErrorLog member function
	9.1.48. The WriteVideoCD member function

	9.2. PARAMETERS
	9.2.1. The PARAMETERS constructor
	9.2.2. The ~PARAMETERS destructor

	9.3. TRACK
	9.4. CErrorLog
	9.4.1. The CErrorLog constructor
	9.4.2. The ~CErrorLog destructor
	9.4.3. The Open member function
	9.4.4. The printf member function

	9.5. EXITCODE enumeration
	9.6. CExitCode
	9.6.1. The CExitCode constructor
	9.6.2. The CExitCode destructor
	9.6.3. The GetLastError member function
	9.6.4. The GetLastErrorLogLine member function
	9.6.5. The GetTextualExitCode member function
	9.6.6. The assignment operator for CExitCode classes
	9.6.7. The assignment operator for EXITCODE enumerations
	9.6.8. The cast operator

	9.7. CResponse
	9.8. CSimpleStringArray
	9.8.1. The CSimpleStringArray constructor
	9.8.2. The ~CSimpleStringArray destructor
	9.8.3. The Add member function

	9.9. CFindFiles
	9.9.1. The CFindFiles constructor
	9.9.2. The ~CFindFiles destructor
	9.9.3. The FindNext member function
	9.9.4. The GetCreateTime member function
	9.9.5. The GetName member function
	9.9.6. The IsSubDir member function
	9.9.7. The IsValidEntry member function

	10. Version History

