PRTools

Version 3.0

A Matlab Toolbox for Pattern Recognition

R.P.W. Duin

January 2000

An introduction into the setup, definitions and use of PRTools is given. Readers are assumed to
be familiar with Matlab and should have a basic understanding of field of statistical pattern
recognition.

Pattern Recognition Group tel : +31 15 2786143
Delft University of Technolgy fax: +31 15 2786740
P.O. Box 5046, 2600 GA Delft email: duin@tn.tudelft.nl

The Netherlands http://www.ph.tn.tudelft.nl/prtools

1. Introduction

In statistical pattern recognition one studies techniques for the generalisation of decision rules
to be used for the recognition of patterns in experimental data sets. This area of research has a
strong computational character, demanding a flexible use of numerical programs for studying
the data as well as for evaluating the data analysis techniques themselves. As still new
techniques are being proposed in the literature a programming platform is needed that enables
a fast and flexible implementation. Pattern recognition is studied in almost all areas of applied
science. Thereby the use of a widely available numerical toolset like Matlab may be profitable
for both, the use of existing techniques, as well as for the study of new algorithms. Moreover,
because of its general nature in comparison with more specialised statistical environments, it
offers an easy integration with the preprocessing of data of any nature. This may certainly be
facilitated by the large set of toolboxes available in Matlab.

The more than 100 routines offered by PRTools in its present state represent a basic set covering
largely the area of statistical pattern recognition. In order to make the evaluation and comparison
of algorithms more easy a set of data generation routines is included, as well as a small set of
'standard’ real world datasets. Of course, many methods and proposals are not yetimplemented.
Anybody who likes to contribute is cordially invited to do so. The very important field of neural
networks has been skipped partially as Matlab already includes a very good toolbox in that area.
At the moment just some basic routines based on that toolbox are included in order to facilitate
a comparison with traditional techniques.

PRTools has a few limitations. Due to the heavy memory demands of Matlab very large
problems with learning sets of tens of thousands of objects cannot be handled on moderate
machines. Moreover, some algorithms are slow as it appeared to be difficult to avoid nested
loops. A fundamental drawback with respect to some applications is that PRTools as yet does
not offer the possibility of handling missing data problems, nor the use of fuzzy or symbolic
data. These areas demand their own sets of routines and are waiting for manpower.

In the next sections, first the area of statistical pattern recognition covered by PRTools is
described. Following the toolbox is summarized and details are given on some specific
implementations. Finally some examples are presented.

2. The area of statistical pattern recognition

PRTools deals with sets latbeled objectaind offers routines for generalising such sets into
functions fordata mappingandclassification An objectis a k-dimensional vector ¢ature

values It is assumed that for all objects in a problem all values of the same set of features are
given. The space defined by the actual set of features is callethe spaceObjects are
represented as points or vectors in this spaaagsification functiorassigns labels to new
objects in the feature space. Usually, this is not done directly, but in a number of stages in which
the initial feature space is successively mapped into intermediate stages, finally followed by a
classification. The concept afappingspaces and dataset is thereby important and constitutes
the basis of many routines in the toolbox.

Sets ofobjectsmay be given externally or may be generated by one of the data generation
routines of PRTools. Thelabelsmay also be given externally or may be the result of a cluster
analysis. By this technique similar objects within a larger set are grouped (clustered). The
similarity measure is defined by the cluster technique in combination with the object
representation in the feature space.

A fundamental problem is to find a goddstance measurhat agrees with the dissimilarity of

the objects represented by the feature vectors. Throughout PRTools the Euclidean distance is
used as default. However, scaling the features and transforming the feature spaces by different
types of maps effectively changes the distance measure.

Thedimensionality of the feature spag®gy be reduced by the selection of subsets of good
features. Several strategies and criterion functions are possible for searching good subsets.
Feature selectiofis important because it decreases the amount of features that have to be
measured and processed. In addition to the improved computational speed in lower dimensional
feature spaces there might also be an increase in the accuracy of the classification algorithms.
This is caused by the fact that for less features less parameters have to be estimated.

Another way tareduce the dimensionalitg to mapthe data on a linear or nonlinear subspace.
This is called linear or nonlinear feature extraction. It does not necessarily reduce the number
of features to be measured, but the advantage of an increased accuracy might still be gained.
Moreover, as lower dimensional representations yield less complex classifiers better
generalisations can be obtained.

Using alearning sef(or training set) a classifier can be trained such that it generalizes this set
of examples of labeled objects intalassification rule Such a classifier can be linear or
nonlinear and can be based on two different kinds of strategies. The first one minimizes the
expected classification error by using estimates optbieability density functionsn the

second strategy this error is minimised directlydpgimizing the classification functiaver its
performance over the learning set. In this approach it has to be avoided that the classifier
becomes entirely adapted to the learning set, including its noise. This decreases its
generalisation capability. Thisvertraining can be circumvented by several types over
regularisation(often used in neural network training). Another technique is to simplify the
classifiaction function afterwards (e.g. the pruning of decision trees).

If the class probability density functions are known like in simulations, the optimal
classification function directly follows from thgayes ruleln simulations this rule is often used
as a reference.

Constructed classification functions may be evaluateaddgpendent test set$ labeled

objects. These objects have to be excluded from the learning set, otherwise the evaluation
becomes biased. If they are added to the learning set, however, better classification function may
be expected. A solution to this dilemma is the useroks validatiorandrotation methods by

which a small fraction of objects is excluded from learning and used for testing. This fraction is
rotated over the available set of objects and results are avaraged. The extreme cdsavethe
one-outmethod for which the excluded fraction is as large as one object.

The performance of classification functions can be improved by the following methods:

1. Arejectoption in which the objects close to the decision boundary are not classified. They
are rejected and might be classified by hand or by another classifier.

2. The selection or averaging of classifiers.

3. A multi-stage classifier fasxombiningclassification results of several other classifiers.

For all these methods it is profitable or necessary that a classifier yields some distance measure
or aposteriori probability in addition to the hard, unambiguous assignment of labels.

3. References

Yoh-Han PaoAdaptive pattern recognition and neural networkddison-Wesley, Reading,
Massachusetts, 1989.

K. Fukunagalntroduction to statistical pattern recognitipeecond edition, Academic Press,
New York, 1990.

S.M. Weiss and C.A. KulikowskZomputer systems that leatdorgan Kaufman Publishers,
California, 1991.

C.M. Bishop,Neural Networks for Pattern Recognitiddlarendon Press, Oxford, 1995.
B.D. Ripley,Pattern Recognition and Neural Network&ambridge University Press, 1996.

J. SchurmanrRattern classification, a unified view of statistical and neural approadoés
Wiley & Sons, New York, 1996.

E. Gose, R. Johnsonbaugh and S. Ragtern recognition and image analysirentice-Hall,
Englewood Cliffs, 1996

S. Haykin,Neural Networks, a Comprehensive Foundateatond edition, Prentice-Hall,
Englewood Cliffs, 1999.

S. Theodoridis and K. Koutroumbaattern RecognitionAcademic Press, New York, 1999.

4. A review of the toolbox

Feature)
-«
Unlabeled Djta Measurement Data Generation
Cluster
Analysis

p Labeled Data =

Visualisation < Nonlinear Feature
2D Projection Mapping ! Selection

Classifier
Training

I

Multistage | »| Combining

Classifiers Classifiers
L Y L
> Classification
Error) Plot
Estimation Results

PRTools makes use of the possibility offered by Matlab 5 to define 'Classes’ and 'Objects’.
These programmatic concepts should not be confused witldhsesndobjectsas defined in
Pattern Recognition. Two 'Classes’ have been defida@dset andmapping . A large number

of operators (like [])and Matlab commands have been overloaded and have thereby a special
meaning when applied todataset and/or anapping .

The central data structure of PRTools isdhtaset . It primarily consists of a set of objects
represented by a matrix of feature vectors. Attached to this matrix is a set of labels, one for each
object and a set of feature names. Moreover, a set of apriori probabilities, one for each class, is
stored. In most help files of PRToolsdataset is denoted byA. In almost any routine this is

one of the inputs. Almost all routines can handle multiclass object sets.

In the above scheme the relations between the various sets of routines are given. At the moment

there are no commands for measuring features, so they have to be supplied externally. There are
various ways to regroup the data, scale and transform the featurespace, find good features, build
classifiers, estimate the classification performances and compute (new) object labels.

Data structures of the 'Classiapping store trained classifiers, feature extracting results, data
scaling definitions, nonlinear projections, etcetera. They are usually denoweditoy result of

the operatioA*Wis again a dataset. It is the classified, rescaled or mapped result of applying
the mapping definition stored Wito A.

A typical example is given below:

A = gendath(100); % Generate Highleyman’'s classes, 100 objects/class
% Training set C (20 objects / class)
% Test set D (80 objects / class)
[C,D] = gendat(A,20);
% Compute classifiers
W1 = Idc(C); % linear
W2 = qdc(C); % quadratic
W3 = parzenc(C); % Parzen
W4 = bpxnc(C,3); % Neural net with 3 hidden units
% Compute and display errors
disp([testd(D*W1),testd(D*W2),testd(D*W3),testd(D*W4))]);
% Plot data and classifiers

scatterd(A); % scatter plot

plotd(W1,-"); % plot the 4 discriminant functions
plotd(W2,’-.");

plotd(W3,--);

plotd(W4,");

This commandfile first generates ggndath two sets of labeled objects, both containing 100
two-dimensional object vectors, and stores them and their labels and apriori probabilities in the
dataset A . The distribution follows the so-called ‘Highleyman classes’. The next call to
gendat takes thiglataset and splits it at random intodataset C , further on used for

training, and alataset D , used for testing. This training s&t contains 20 objects from both
classes. The remaining 2 x 80 objects are collected in

In the next lines four classification functions (discriminants) are computed, cslledv2, W3
andwa4. The linear and quadratic classifier are both based on the assumption of normally
distributed classes. The Parzen classifier estimates the class densities by the Parzen density
estimation and has a built-in optimization for the smoothing parameter. The fourth classifier
uses a feedforward neural network with three hidden units. It is trained by the backpropagation
rule using a varying stepsize.

Hereafter the results are displayed and plotted. Theltes¢et D is used in a routineestd
(test discriminant) on each of the four discriminants. The estimated probabilities of error are
displayed in the Matlab command window and look like:

0.1750 0.1062 0.1000 0.1562

Finally the classes are plotted in a scatter diagram together with the discriminants, see below.
The plot routineplotd draws a vectorized straight line for the linear classifiers and computes
the discriminant function values in all points of the plot grid (default 30 x 30) for the nonlinear
discriminants. After that, the zero discriminant values are computed by interpolation and
plotted.

We will now shortly discuss the PRTools commands group by group. The two basic structures
of the toolbox can be defined by the constructiatgset andmapping . These commands can

also be used to retrieve or redefine the data. It is thereby not necessary to use the general Matlab
converterstruct() for decomposing the structures. gstlab andgetfeat the labels

assigned to the objects and features can be found. The generation and handling of data is further
facilitated bygenlab andrenumlab .

Datasets and Mappings
dataset Define dataset from datamatrix and labels and retrieve
getlab Retrieve object labels from dataset
getfeat Retrieve feature labels from dataset
genlab Generate dataset labels
renumlab Convert labels to numbers
mapping Define mapping and classifier from data and retrieve
getlab Retrieve labels assigned by a classifier

Data Generation
gauss Generation of multivariate Gaussian distributed data
gendat Generation of subsets of a given data set
gendatb Generation of banana shaped classes
gendatc Generation of circular classes
gendatd Generation of two difficult classes
gendath Generation of Higleyman classes
gendatk Nearest neighbour data generation
gendatl Generation of Lithuanian classes
gendatm Generation of many Gaussian distributed classes
gendatp Parzen density data generation
gendats Generation of two Gaussian distributed classes
gendatt Generation of testset from given dataset
prdata Read data from file and convert into a dataset

There is a large set of routines for the generation of arbitrary normally distributed classes
(gauss), and for various specific problengendatc, gendatd, gendath, gendatm and
gendats). There are two commands for enriching classes by noise injegtindatk and
gendatp). These are used for the general testset gengeatdatt . A given dataset can be
spit into a training set and a testgetdat . The routinggendat splits the dataset at random
into two sets.

Linear and Higher Degree Polynnomial Classifiers
kiclc Linear classifier by KL expansion of common cov matrix
kljlc Linear classifier by KL expansion on the joint data
loglc Logistic linear classifier
fisherc Fisher’s discriminant (minimum least square linear classifier)
Idc Normal densities based linear classifier (Bayes’ rule)
nmc Nearest mean classifier
nmsc Scaled nearest mean classifier
perlc Linear classifier by linear perceptron
persc Linear classifier by nonlinear perceptron
pfsvc Pseudo-Fisher support vector classifier
qdc Normal densities based quadratic (multi-class) classifier
udc Uncorrelated normal densities based quadratic classifier
polyc Add polynomial features and run arbitrary classifier
classc Converts a mapping into a classifier
classd General classification routine for trained classifiers
testd General error estimation routine for trained classifiers

All routines operate in multi-class problenetassd andtestd are the general classification
and testing routines. They can handle any classifier from any routine, including the ones to

follow.

Nonlinear Classification
knnc k-nearest neighbour classifier (find k, build classifier)
mapk k-nearest neighbour mapping routine
testk Error estimation for k-nearest neighbour rule
parzenc Parzen density based classifier
parzenml Optimization of smoothing parameter in Parzen density estimatjon.
mapp Parzen mapping routine
testp Error estimation for Parzen classifier
edicon Edit and condense training sets
treec Construct binary decision tree classifier
classt Classification with binary decision tree
bpxnc Train feed forward neural network classifier by backpropagatior|
Imnc Train feed forward neural network by Levenberg-Marquardt rulg
rbnc Train radial basis neural network classifier
neurc Automatic neural network classifier
rnnc Random neural network classifier
svc Support vector classifier

knnc andparzenc are similar in the sense that the classifiers they build still include all training
objects and that their parameter (the number of neighbours or the smoothing parameter) can be
user supplied or can be optimized over the training set using a leave-one-out error estimation.
For the Parzen classifier the smoothing parameter can also be estimateddmynl using an
optimization of the density estimation. The special purpose classification routapgs and

mapp are called automatically when needed. In general, there is no need for the user to call them
directly. The special purpose testing routimestk andtestp are useful for obtaining leave-
one-out error estimations.

Decision trees can be constructediagc , using various criterion functions, stopping rules or
pruning techniques. The resulting classifier can be usddsisd ,testd andplotd . They
make use oflasst

PRTools offers three neural network classifigsgfic , Innnc andrbnnc) based on an old
version of Matlab’s Neural Network Toolbox. Adaptations of Mathwork’s routines are made in
order to prevent unnecessary display of intermediate results. They are storegtivatie
subdirectory. The resulting classifiers are ready to ustabyd ,testd andplotd . The
automatic neural network classifiezurc builds a network without any parameter setting by
the user. Random neural network classifiers can be generateethyThe first one is totally
random, the second optimizes the output layer by a linear classifier.

The Support Vector Classifies\c) can be called for various kernels as defineghtwxm (see

below). The classifier is optimized by a quadratic programming procedure. For some
architectures a C-version is built-in for speeding up processing.

Normal Density Based Classification
distmaha Mahalanobis distance
mapn Multiclass classification on normal densities
meancov Estimation of means and covariance matrices from multiclass data
nbayesc Bayes classifier for given normal densities
Idc Normal densities based linear classifier (Bayes’ rule)
qdc Normal densities based quadratic classifier (Bayes’ rule)
udc Normal densities based quadratic classifier (independen features)
testn Error estimate of discriminant on normal distributions

Classifiers for normal distributed classes can be traindddyqdc andudc, while nbayesc
assumes known densities. The special purpose testraegine can be used if the parameters
of the normal distribution (means and covariances) are known or estimatezhigov.

Feature Selection

feateval Evaluation of a feature set

featrank Ranking of individual feature permormances

featselb Backward feature selection

featself Forward feature selection

featsel Individual feature selection

featselo Branch and bound feature selection

featselp Pudil’s floating forward feature selection

featselm Feature selection map, general routine for feature selection
The feature selection routinésatselb |, featself ,featseli ,featselo andfeatselp

generate subsets of features, calliemjeval for evaluating the feature sétéatselm offers
a general entry for feature selection, calling one of the other metohds. All routines produce a

mappingw(e.g.W = featself(A,[],k)). So the reduction of a datageto B is done by
B = A*W
Classifiers and Tests (general)

classc Convert mapping to classifier

classd General classification routine for trained classifiers

cleval Classifier evaluation (learning curve)

clevalb Classifier evaluation (learning curve), bootstrap version

confmat Computation of confusion matrix

crossval Error estimation by crossvalidation

normc Normalisation of classifiers

reject Compute error-reject curve

roc Compute receiver-operator curve

testd General error estimation routine for trained classifiers

-10 -

A classifier maps, after training, objects from the feature space into its output space. The
dimensionality of this space equals the number of classes (an exception is possible for two-class
classifiers, that may have a one-dimensional output space). This output space is mapped on
posterior probabilities bylassc . Normalization of these probabilities on a given dataset can

be controlled byiormc . This is standard built-in for all training algorithms. Classification
(determining the class with maximum output) is doneclagsd , error estimates for test data

are made byestd andconfmat . More advanced techniques like rotating datasets over test
sets and training sets, are offerecchyssval |, cleval andclevalb

Mappings
cmapm Compute some special maps
featselm Feature selection map, general routine for feature selection
fisherm Fisher mapping
Kim Decorrelation and Karhunen Loeve mapping (PCA)
kims Scaled version dflm , useful for prewhitening
Imnm Levenberg-Marquardt neural net diabolo mapping
nlkim Nonlinear Karhunen Loeve mapping (NL-PCA)
normm Object normalization map
proxm Proximity mapping and kernel construction
reducm Reduce to minimal space mapping
scalem Compute scaling data
sigm Simoid mapping
subsm Subspace mapping
svm Support vector mapping, useful for kernel PCA

Classifiers are a special type of mapping, as their output spaces are related to class membership.
In general a mapping converts data from one space to another. This may be done by a fixed
procedure, not depending on a dataset, but controlled by at most some parameters. Most of these
mappings that don’t need training are collectedhgpm(e.g. shifting, rotation, deletion of
particular features), another example is the sigmoidal magjmg. Some of the mappings

that need training don’t depend on the object labels, e.g. the principal component analysis
(PCA) byklm andkims , object normalization bgormm and scaling bgcalem , subspace

mapping (maps defined by normalized objects and that include the originhdmy and

nonlinear PCA or kernel PCA by support vector mappsag. The other routines depend on

object labels as they define the mapping such that the class separability is maximized in one way
or another. The Fisher criterion is optimizedfisiierm , the scatter bim (if called by

labelled data), density overlap for normal distributionsridy and general class separability by

Imnm.

-11 -

Combining classification rules
baggingc Boortstrapping and aggregation of classifiers
majorc Majority voting combining classifier
maxc Maximum combining classifier
minc Minimum combining classifier
meanc Averaging combining classifier
medianc Median combining classifier
prodc Product combining classifier
traincc Train combining classifier
parsc Parse classifier or map

Classifiers can be combined by horizontal and vertical concatenation, see section 5.2, e.g.
W = [W1, W2, W3]. Such a set of classifiers can be combined by several rules, like majority
voting (majorc), combining the posterior probabilities in several waysx¢, minc , meanc,
medianc andprodc), or by training an output classifierajncc). The way classifiers are
combined can be inspected fmysc .

dataim Image operation on dataset images.

data2im Convert dataset to image

datfilt Filter dataset image

datgauss Filter dataset image by Gaussian filter

im2obj Convert image to object in dataset

im2feat Convert image to feature in dataset

image Display images stored in dataset

imagesc Display images stored in dataset, automatic scaling

Images can be stored, either as featuine®f€at) , or as objectsrq2obj) in a dataset. The

first possibility is useful for segmenting images using a vector of values for each pixels (e.g. in
case of multi-color images, or as a result of a filterbank). The second possibility enables the
classification of entire images using their pixels as features. Such datasets can be displayed by
the overloaded commanaisage andimagesc . The relation with image processing is
established bgataim , enabling arbitrary image operations, Simple filtering can be sped up by
the use oflatfilt anddatgauss.

Clustering and Distances
distm Distance matrix between two data sets.
proxm Proximity mapping and kernel construction
hclust Hierarchical clustering
kcentres k-centers clustering
kmeans k-means clustering
modeseek Clustering by modeseeking

-12 -

Plotting

plotd Plot discriminant function in scatterplot
plotf Plot feature distribution
plotm Plot mapping in scatterplot
plot2 Plot 2d function
plotdg Plot dendrgram (see hclust)
scatterd Scatterplot
scatter3d 3D Scatterplot
Examples
prexl1 Classifiers and scatter plot
prex2 Plot learning curves of classifiers
prex3 Multi-class classifier plot
prex4 Classifier combining
prex5 Use of images and eigenfaces

-13 -

5. Some Detalils

The command help files and the examples given below should give sufficient information to use
the toolbox with a few exeptions. These are discussed in the following sections. They deal with
the ways classifiers and mappings are represented. As these are the constituting elements of a
pattern recognition analysis, it is important that the user understands these issues.

5.1 Datasets

A dataset consists of a set o objects, each given by features. In PRTools such a dataset
is represented byraby k matrix:m rows, each containing an object vectok aflements.
Usually a dataset is labeled. An example of a definition is:
>A=dataset([123;234;345;456],[3355])

> 4 by 3 dataset with 2 classes

The 4 by 3 data matrix (4 objects given by 3 features) is accompanied by a labellist of 4 labels,
connecting each of the objects to one of the two classes, 3 and 5. Class labels can be numbers
or strings and should always be given as rows in the labellist. If the labellist is not given all
objects are given the default label 255. In addition it is possible to assign labels to the columns
(features) of a dataset:

> A = dataset(rand(100,3),genlab([50 50],[3 5]).['r1’;'r2";'r3"])

> 100 by 3 dataset with 2 classes

The routine genlab generates 50 labels with value 3, followed by 50 labels with value 5. In the
last term the labels (r1, r2, r3) for the three features are set. The complete definition of a dataset
is:

> A = dataset(datamatrix,labels,featlist,prob,lablist)

given the possibilitiy to set apriori probabilities for each of the classes as defined by the labels
giveninlablist . The valuesimprob should sumto one. If prob is empty or if it is not supplied

the apriori probabilities are computed from the dataset label frequencies. If prob = 0 then equal
class probabilities are assumed.

Various items stored in a dataset can be retrieved by
> [nlab,lablist,m,k,c,prob,featlist] = dataset(A)

in which nlab are numeric labels for the objects (1, 2, 3, ...) referring to the true labels stored in
the rows of lablist. The size of the dataset is m by k, ¢ is the number of classes (equal to
max(nlab)). Datasets can be combined by [A; B] if A and B have equal numbers of features and
by [A B] if they have equal numbers of objects. Creating subsets of datasets can be done by
A(l1,J) in which | is a set of indices defining the desired objects and J is a set of indices defining
the desired features. In all these examples the apriori probabilities set for A remain unchanged.

The original datamatrix can be retireved by double(A) or by +A. The labels in the objects of A
can be retrieved labels = getlab(A), which is equivalent to labels = lablist(nlab,:). The feature
labels can be retrieved by featlist = getfeat(A). Conversion by struct(A) makes all fields in a
dataset A accessible to the user.

-14 -

5.2 Classifiers and mappings

There are many commands to train and use mappings between spaces of different (or equal)
dimensionalities. For example:

if A is ambyk datasetrfiobjects in &-dimensional space)
and W is ak by n mapping (map fromk to n dimensions)
thenA*Wis amby n datasetrfiobjects in ar-dimensional space)

Mappings can be linear (e.g. a rotation) as well as nonlinear (e.g. a neural network). Typically
they can be used for classifiers. In that cakebg n mapping maps &-feature data vector on

the output space ofraclass classifier (exception: 2-class classifiers like discriminant functions
may be implemented by a mapping to a 1-dimensional space like the distance to the
discriminantn =1).

Mappings are of the datatypeapping ' (class(W) is mapping '), have a size qdk,n] if
they map fronk ton dimensions. Mappings can be instructed to assign labels to the output
columns, e.g. the class names. These labels can be retrieved by

labels = getlab(W); before the mapping, or
labels = getlab(A*W); after the datasetis mapped byv

Mappings can be learned from examples, (labeled) objects stored in a datémahstance by
training a classifier:

W3 = Idc(A); the normal densities based linear classifier
W2 = knnc(A,3); the 3-nearest neighbor rule
W1 = svc(A,’p’,2); the support vector classifier based on a 2-nd order

polynomial kernel

Untrained or empty mappings are supported. They may be very useful. In this case the dataset
is replaced by an empty set or entirely skipped:

V1 =Idc; V2 = knnc([],a); V3 = svc(]],’p’,2);
Such mappings can be trained later by
W1 = A*V1; W2 = A*V2; W3 = A*V3;

The mapping of a testsBtby B*W1is now equivalent t®*(A*V1) or even, irregulary but very
handy toA*V1*B (or evenA*ldc*B). Note that expressions are evaluated from left to right, so
B*A*V1 may result in an error as the multiplication of the two datasgta) is executed first.

Users can add new mappings or classifiers by a single routine that should support the following
type of calls:

W = newmapm([], parl, par2, ...); Defines the untrained, empty mapping.
W = newmapm(A, parl, par2, ...); Defines the map based on the training dataset
B = newmapm(A, W); Defines the mapping of datagebnW resulting in a dataset

-15-

For an example list the routisabsc.m .

Some trainable mappings do not depend on class labels and can be interpreted as finding a space
that approximates as good as possible the original dataset given some conditions and measures.
Examples are the Karhunen-Loeve Mappiktn() which may be used for PCA and the Support
Vector Mapping ¢vm) by which nonlinear, kernel PCA mappings can be computed.

In addition to trainable mappings, there are fixed mappings, which operation is not computed
from a trainingset but defined by just a few parameters. Most of them can besepby

The resulD of a mapping of a testset on a trained classifier; B*W1is again a dataset, storing

for each object ifB the output values of the classifier. These values, usually betigenand

inf can be interpreted as similarities: the larger, the more similar with the corresponding class.
These number can be mapped on@g interval by the fixed mappirggm :

D = B*W1*sigm . The values in a single row (object) don't necessarily sum to one. This can be
achieved by the fixed mapping normnD = B*W1*sigm*normm which is equivalent to
B*W1*classc . Effectively a mappingvis converted into a classifier By*classc , which

maps objects on the normalizgl] output space. Usually a mapping that can be converted
into a classifier in this way, is scaled such by a multiplicative constant that these numbers
optimally represent (in the maximum likelihood sense) the posterior probabilities for the
training data. The resulting output dataset D has column labels for the classes and row labels for
the objects. The class labels of the maximum values for each object can be retrieved by
labels = D*classd; orlabels = classd(D); A global classification error follows from

e = D*estd; ore =testd(D);

Mappings can be combined in the following ways:

sequential: W=W1*W2*W3 (equal inner dimensions)
stacked : W=[W1, w2, W3] (equal numbers of 'rows' (input dimensions))
parallel : W =[W1; W2 ;W3] (unrestricted)

The output size of the parallel mapping is irregulary equgkiek2+k3) by(nl1+n2+n3)

as the output combining of columns is undefined. In a stacked or parallel mapping columns
having the same label can be combined by various combinenniike, meanc andprodc . If

the classifiersvl, W2andwa3are trained for the sanreclasses, their output labels are the same
and are combined By = prodc([W1;W2;W3]) into a(k1+k2+k3) by n classifier.

Wfor itself, ordisplay(W) lists the size and type of a classifier as well as the routine or section
in @mapping/mtimes used for computing a mappirdgW The construction of a combined
mapping may be inspected parsc(W) .

A mapping may be given an output selectionby W(:,J) , in whichJ is a set of indices
pointing to the desired class®&s= A*W(:,J); is equivalent t® = A*W; B = B(:,J);
Input selection is not possible for a mapping.

-16 -

6. Examples

The following examples are available under PRTools. We present here the source codes and the
output they generate.

6.1 Classifiers and scatter plot

A 2-d Highleyman datas@étis generated, 100 s
objects for each class. Out of each class 20 objess -
are generated for training,and 80 for testin®. |
Four classifiers are computed: a linear one and ¢°/ S
quadratic one, both assuming normal densities | . - - - -
(which is correctin this case), a Parzen classifier ¢ |
a neural network with 3 hidden units. Note that t |)
data generation as well as the neural network |
initialisation use random generators. As aresulttr | /
only reproduce if they use the original seed. Afte,
computing and displaying classification results for
the test set a scatterplot is made in which all
classifiers are drawn.

%PREX1 PRTools example of classifiers and scatter plot
help prex1
pause(1)
A = gendath(100,100); % Generate Highleyman's classes
% Training set ¢ (20 objects / class)
% Test set d (80 objects / class)
[C,D] = gendat(A,20);
% Compute classifiers

= 1dc(C); % linear
w2 = qdc(C); % quadratic
w3 = parzenc(C); % Parzen

= Imnc(C,3); % Neural Net

% Compute and display errors
disp([testd(D*w1),testd(D*w2),testd(D*w3),testd(D*w4)]);
% Plot data and classifiers
figure(l);
hold off;
scatterd(A); drawnow;
plotd(w1,-"); drawnow;
plotd(w2,'-."); drawnow;
plotd(w3,'--"); drawnow;
plotd(w4,""); drawnow;
echo off
0.1875 0.0500 0.1437 0.0938

6.2 Learning curves

In this example the learning curves for four classifiers are computed using the Highleyman

-17 -

dataset. The errors are computed usingléal routine.

%PREX2 PRTools example, plot learning curves of classifiers
help prex2
pause(1)
% set desired learning sizes
learnsize = [3 5 10 15 20 30];
% Generate Highleyman's classes
A = gendath(100,100);
% avarage error over 10 repetitions
% testset is complement of training set
el = cleval(ldc,A learnsize,10);
figure(1); hold off;
plot(learnsize,e1(1,:),-");
axis([0 30 0 0.3]); hold on; drawnow;
e2 = cleval(qdc,A,learnsize,10);
plot(learnsize,e2(1,:),-."); drawnow;
e3 = cleval(knnc([],1),A,learnsize,10);
plot(learnsize,e3(1,:),'--"); drawnow;
e4 = cleval(treec,A,learnsize,10);
plot(learnsize,e4(1,:),""); drawnow;
legend('Linear','Quadratic','1-NN','DecTree");
xlabel('Sample Size'")

ylabel('Error’);
T T T T T
—— Linear
- = Quadratidg
-—-- 1-NN
0.25F DecTree | 4
0.2+
E 0.15F
w

0.1F

0 5 10 15 20 25 30
Sample Size

6.3 Multi-class classifier plot

This file shows how to construct a colored scatter diagram defining the areas assigned to the
various classes. First the global variable GRIDSIZE is set to 100 in order to avoid empty areas.

-18-

Then the Highleyman dataset is used to construct a 4-class problem. This is done by using the
data only and then generating the labels separately. Note that the scatter plotitself is called twice
in order to have the scatter on top of the color plot generatpidtdy .

%PREX3 PRTools example of multi-class classifier plot
help prex3
echo on
global GRIDSIZE
gs = GRIDSIZE;
GRIDSIZE = 100;
% generate 2 x 2 normal distributed classes
a = +gendath(20); % data only
b = +gendath(20); % data only
A=[a; b +5]; % shift 2 over [5,5]
lab = genlab([20 20 20 20],[1 2 3 4]');% generate 4-class labels
A = dataset(A,lab);% construct dataset

hold off; % clear figure

scatterd(A,"."); drawnow;% make scatter plot for right size

w = qdc(A); % compute normal densities based classifier
plotd(w,'col’); drawnow;% plot classification regions

hold on;

scatterd(A); % redraw scatter plot

echo off

GRIDSIZE = gs;

10

6.4 Classifier combining

This example is just an illustration on the use of mapping and classifier combining. The method
itself does not make much sense. There are sequential mapslikewkl*vkl) and a stacked

-19 -

map vall = [wl,w2,w3,w4,w5]), using various combining rules. Note how in the feature
selection routinéeatself a classifierlfic) is used for the criterion.

%PREX4 PRTools example of classifier combining
help prex4
echo on

A = gendatd(100,100,10);
[B,C] = gendat(A,20);

wkl = klm(B,0.95); % find KL mapping input space
bkl = B*wkI; % map training set
vkl = Idc(bkl); % find classifier in mapped space
w1 = wkl*vKI; % combine map and classifier

% (operates in original space)
testd(C*w1) % test

wfn = featself(B,'NN',3); % find feature selection mapping

bfn = B*wfn; % map training set

vfn = Idc(bfn); % find classifier in mapped space
w2 = wfn*vfn; % combine

testd(C*w2) % test

wfm = featself(B,ldc,3); % find second feature set

bfm = B*wfm; % map training set

vfm = Idc(bfm); % find classifier in mapped space
w3 = wfm*vfm; % combine

testd(C*w3) % test

w4 = |dc(B); % find classifier in input space
testd(C*w4) % test

w5 = knnc(B,1); % another classifier in input space
testd(C*wb5) % test

wall = [wl,w2,w3,w4,w5]; % parallel classifier set

testd(C*prodc(wall)) % test product rule
testd(C*meanc(wall)) % test mean rule
testd(C*medianc(wall)) % test median rule
testd(C*maxc(wall)) % test maximum rule again
testd(C*minc(wall)) % test minimum rule
testd(C*majorc(wall)) % test majority voting

echo off

-20 -

6.5 Image segmentation by vector quantization

In this example an images is segmented using modeseeking clustering techniques based on an
randomly selected subset of pixels. The resulting classifier is applied on all pixels, and also on
the pixels of a second image (may apply not so good). Finally a common map is computed and
applied for both images.

%PREX5 PRTOOLS example of image vector quantization
help prex5
echo on
% standard Matlab TIFF read
girl = imread('girl.tif','tiff");
% display
figure
subplot(2,3,1); subimage(girl); axis off;
title('Girl 1%); drawnow
% construct 3-feature dataset from entire image
%[X,Y] = meshgrid(1:256,1:256);
%X = X/10000;
%Y = Y/10000;
%qirl(:,:,4) = X;
%qirl(:,:,5) = Y;
g1 = im2dfeat(girl);
imheight = size(girl,1);
% generate testset
t = gendat(g1,250);
% run modeseek, find labels, and construct labeled dataset
labt = modeseek(t*proxm(t),25);
t= dataset(t,labt);
% train NMC classifier
w = t*qdc([],1e-6,1e-6);
% classify all pixels
pack
lab = g1l*w*classd;
% show result
% substitute class means for colors
cmap = +meancov(t(;,1:3));
subplot(2,3,2); subimage(reshape(lab,imheight,length(lab)/im-
height),cmap);
axis off;
title('Girl 1 --> Map 1"
drawnow

% Now, read second image
girl2 = imread('girl2.tif','tiff");

% display
subplot(2,3,4); subimage(girl2);

-21 -

%qirl2(:,:,4) = X;
%qirl2(:,:,5) = Y;
axis off;
title('Girl 2%); drawnow
% construct 3-feature dataset from entire image
02 = im2feat(girl2);
clear girl girl2
pack
lab2 = g2*w*classd;
% show result
% substitute class means for colors
cmap = +meancov(t(:,1:3));
subplot(2,3,5);
subimage(reshape(lab2,imheight,length(lab)/imheight),cmap);
axis off;
title('Girl 2 --> Map 1"
drawnow

TR 1 — i 1.7

% Compute combined map

g =1[91; 92];

t = gendat(g,250);

labt = modeseek(t*proxm(t),25);
t= dataset(t,labt);

w = t*qdc([],1e-6,1e-6);

cmap = +meancov(t(:;,1:3));
clear g

pack

lab = gl*w*classd,;
subplot(2,3,3);
subimage(reshape(lab,imheight,length(lab)/imheight),cmap);
axis off;

title('Girl 1 --> Map 1,2")

drawnow

pack

lab = g2*w*classd;

subplot(2,3,6); subimage(reshape(lab,imheight,length(lab)/im-
height),cmap);

axis off;

title('Girl 2 --> Map 1,2")

drawnow

set(gcf,'DefaultAxesVisible','remove’)

et 3 i 1 et 7 — i 1.7

-22 -

6.6 Use of images and eigenfaces

This example illustrates the use of images by the face image dataset. The eigenfaces based on
the firstimage of each subject are displayed. Next allimages are mapped on this eigenspace, the
scatterplot for the first two eigenfaces are displayed and the leave-one-out error is computed as
a function of the number of eigenfaces used.

%PREX6 Use of images and eigenfaces
help prex6
echo on

if exist(‘facel.mat’) ~= 2
error('Face database not in search path’)
end
a = readface([1:40],1);
w = kim(a);
imagesc(dataset(eye(39)*w',[1,[1.[1,[],112)); drawnow

b=1;

forj=1:40
a = readface(j,[1:10]);
b = [b;a*w];

end

figure

scatterd(b)

-23-

title('Scatterplot on first two eigenfaces’)
fontsize(14)
Scatterplot on first two eigenfaces
2000 ‘ ‘ ‘

1500

1000 §

500

=500

-1000 ‘ ‘ ; ‘
—-1500 —-1000 -500 0 500 1000 1500

featsizes =[12 357 10 15 20 30 39];
e = zeros(1,length(featsizes));
for j = 1L:length(featsizes)

k = featsizes());

e(j) = testk(b(:,1:k),1);
end
figure
plot(featsizes,e)
xlabel('Number of eigenfaces’)
ylabel('Error’)
fontsize(14)

0.8

0.6

Error

0.4f

0.2r

0 10 20 30 40

Number of eigenfaces

-24 -

-25-

	PRTools
	Version 3.0
	A Matlab Toolbox for Pattern Recognition
	R.P.W. Duin
	January 2000
	1. Introduction
	2. The area of statistical pattern recognition
	3. References
	4. A review of the toolbox
	5. Some Details
	5.1 Datasets
	5.2 Classifiers and mappings

	6. Examples
	6.1 Classifiers and scatter plot
	6.2 Learning curves
	6.3 Multi-class classifier plot
	6.4 Classifier combining
	6.5 Image segmentation by vector quantization
	6.6 Use of images and eigenfaces

