
ed to
rn
PRTools

Version 3.0

A Matlab Toolbox for Pattern Recognition

R.P.W. Duin

January 2000

An introduction into the setup, definitions and use of PRTools is given. Readers are assum
be familiar with Matlab and should have a basic understanding of field of statistical patte
recognition.

tel : +31 15 2786143

fax: +31 15 2786740

email: duin@tn.tudelft.nl

http://www.ph.tn.tudelft.nl/prtools

Pattern Recognition Group

Delft University of Technolgy

P.O. Box 5046, 2600 GA Delft

The Netherlands
- 1 -

rules
h has a
dying

ables
plied
able
over,
ts, it

ly be

vering
rison

 set of
ented.
ral
area.

ilitate

rate
ted
 does
lic
1. Introduction

In statistical pattern recognition one studies techniques for the generalisation of decision
to be used for the recognition of patterns in experimental data sets. This area of researc
strong computational character, demanding a flexible use of numerical programs for stu
the data as well as for evaluating the data analysis techniques themselves. As still new
techniques are being proposed in the literature a programming platform is needed that en
a fast and flexible implementation. Pattern recognition is studied in almost all areas of ap
science. Thereby the use of a widely available numerical toolset like Matlab may be profit
for both, the use of existing techniques, as well as for the study of new algorithms. More
because of its general nature in comparison with more specialised statistical environmen
offers an easy integration with the preprocessing of data of any nature. This may certain
facilitated by the large set of toolboxes available in Matlab.

The more than 100 routines offered by PRTools in its present state represent a basic set co
largely the area of statistical pattern recognition. In order to make the evaluation and compa
of algorithms more easy a set of data generation routines is included, as well as a small
’standard’ real world datasets. Of course, many methods and proposals are not yet implem
Anybody who likes to contribute is cordially invited to do so. The very important field of neu
networks has been skipped partially as Matlab already includes a very good toolbox in that
At the moment just some basic routines based on that toolbox are included in order to fac
a comparison with traditional techniques.

PRTools has a few limitations. Due to the heavy memory demands of Matlab very large
problems with learning sets of tens of thousands of objects cannot be handled on mode
machines. Moreover, some algorithms are slow as it appeared to be difficult to avoid nes
loops. A fundamental drawback with respect to some applications is that PRTools as yet
not offer the possibility of handling missing data problems, nor the use of fuzzy or symbo
data. These areas demand their own sets of routines and are waiting for manpower.

In the next sections, first the area of statistical pattern recognition covered by PRTools is
described. Following the toolbox is summarized and details are given on some specific
implementations. Finally some examples are presented.
- 2 -

s are

hich
 by a
tes

n
ter
e

nce is
fferent

ets.
e
sional
rithms.

e.
mber
ined.

 set

 the

r

2. The area of statistical pattern recognition

PRTools deals with sets oflabeled objects and offers routines for generalising such sets into
functions fordata mapping andclassification. An object is a k-dimensional vector offeature
values. It is assumed that for all objects in a problem all values of the same set of feature
given. The space defined by the actual set of features is called thefeature space. Objects are
represented as points or vectors in this space. Aclassification function assigns labels to new
objects in the feature space. Usually, this is not done directly, but in a number of stages in w
the initial feature space is successively mapped into intermediate stages, finally followed
classification. The concept ofmappingspaces and dataset is thereby important and constitu
the basis of many routines in the toolbox.

Sets ofobjects may be given externally or may be generated by one of the data generatio
routines of PRTools. Theirlabelsmay also be given externally or may be the result of a clus
analysis. By this technique similar objects within a larger set are grouped (clustered). Th
similarity measure is defined by the cluster technique in combination with the object
representation in the feature space.

A fundamental problem is to find a gooddistance measurethat agrees with the dissimilarity of
the objects represented by the feature vectors. Throughout PRTools the Euclidean dista
used as default. However, scaling the features and transforming the feature spaces by di
types of maps effectively changes the distance measure.

Thedimensionality of the feature space may be reduced by the selection of subsets of good
features. Several strategies and criterion functions are possible for searching good subs
Feature selection is important because it decreases the amount of features that have to b
measured and processed. In addition to the improved computational speed in lower dimen
feature spaces there might also be an increase in the accuracy of the classification algo
This is caused by the fact that for less features less parameters have to be estimated.

Another way toreduce the dimensionalityis tomapthe data on a linear or nonlinear subspac
This is called linear or nonlinear feature extraction. It does not necessarily reduce the nu
of features to be measured, but the advantage of an increased accuracy might still be ga
Moreover, as lower dimensional representations yield less complex classifiers better
generalisations can be obtained.

Using alearning set (or training set) a classifier can be trained such that it generalizes this
of examples of labeled objects into aclassification rule. Such a classifier can be linear or
nonlinear and can be based on two different kinds of strategies. The first one minimizes
expected classification error by using estimates of theprobability density functions. In the
second strategy this error is minimised directly byoptimizing the classification functionover its
performance over the learning set. In this approach it has to be avoided that the classifie
becomes entirely adapted to the learning set, including its noise. This decreases its
generalisation capability. This ‘overtraining’ can be circumvented by several types over
regularisation (often used in neural network training). Another technique is to simplify the
classifiaction function afterwards (e.g. the pruning of decision trees).
- 3 -

on
n may

n is
e

hey

easure
If the class probability density functions are known like in simulations, the optimal
classification function directly follows from theBayes rule. In simulations this rule is often used
as a reference.

Constructed classification functions may be evaluated byindependent test sets of labeled
objects. These objects have to be excluded from the learning set, otherwise the evaluati
becomes biased. If they are added to the learning set, however, better classification functio
be expected. A solution to this dilemma is the use ofcross validationandrotationmethods by
which a small fraction of objects is excluded from learning and used for testing. This fractio
rotated over the available set of objects and results are avaraged. The extreme case is thleave-
one-out method for which the excluded fraction is as large as one object.

The performance of classification functions can be improved by the following methods:
1. A reject option in which the objects close to the decision boundary are not classified. T

are rejected and might be classified by hand or by another classifier.
2. The selection or averaging of classifiers.
3. A multi-stage classifier forcombining classification results of several other classifiers.

For all these methods it is profitable or necessary that a classifier yields some distance m
or aposteriori probability in addition to the hard, unambiguous assignment of labels.

3. References

Yoh-Han Pao,Adaptive pattern recognition and neural networks, Addison-Wesley, Reading,
Massachusetts, 1989.

K. Fukunaga,Introduction to statistical pattern recognition, second edition, Academic Press,
New York, 1990.

S.M. Weiss and C.A. Kulikowski,Computer systems that learn, Morgan Kaufman Publishers,
California, 1991.

C.M. Bishop,Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

B.D. Ripley,Pattern Recognition and Neural Networks, Cambridge University Press, 1996.

J. Schurmann,Pattern classification, a unified view of statistical and neural approaches, John
Wiley & Sons, New York, 1996.

E. Gose, R. Johnsonbaugh and S. Jost,Pattern recognition and image analysis, Prentice-Hall,
Englewood Cliffs, 1996

S. Haykin,Neural Networks, a Comprehensive Foundation, second edition, Prentice-Hall,
Englewood Cliffs, 1999.

S. Theodoridis and K. Koutroumbas,Pattern Recognition, Academic Press, New York, 1999.
- 4 -

s’.

ecial

each
ss, is

oment
4. A review of the toolbox

PRTools makes use of the possibility offered by Matlab 5 to define ’Classes’ and ’Object
These programmatic concepts should not be confused with theclassesandobjectsas defined in
Pattern Recognition. Two ’Classes’ have been defined:dataset andmapping . A large number
of operators (like* []) and Matlab commands have been overloaded and have thereby a sp
meaning when applied to adataset and/or amapping .

The central data structure of PRTools is thedataset . It primarily consists of a set of objects
represented by a matrix of feature vectors. Attached to this matrix is a set of labels, one for
object and a set of feature names. Moreover, a set of apriori probabilities, one for each cla
stored. In most help files of PRTools, adataset is denoted byA. In almost any routine this is
one of the inputs. Almost all routines can handle multiclass object sets.

In the above scheme the relations between the various sets of routines are given. At the m

Unlabeled Data

Labeled Data

Data Generation

Cluster
Analysis

Feature
Selection

Classifier
Training

Classification

Error
Estimation

Plot
Results

Feature
Measurement

Visualisation
2D Projection

Multistage
Classifiers

Combining
Classifiers

Nonlinear
Mapping
- 5 -

ere are
s, build

ta

lying

0
in the

y
nsity
fier
ation

 are
there are no commands for measuring features, so they have to be supplied externally. Th
various ways to regroup the data, scale and transform the featurespace, find good feature
classifiers, estimate the classification performances and compute (new) object labels.

Data structures of the ’Class’mapping store trained classifiers, feature extracting results, da
scaling definitions, nonlinear projections, etcetera. They are usually denoted byW. The result of
the operationA*W is again a dataset. It is the classified, rescaled or mapped result of app
the mapping definition stored inW to A.

A typical example is given below:

A = gendath(100); % Generate Highleyman’s classes, 100 objects/class
% Training set C (20 objects / class)
% Test set D (80 objects / class)

[C,D] = gendat(A,20);
% Compute classifiers

W1 = ldc(C); % linear
W2 = qdc(C); % quadratic
W3 = parzenc(C); % Parzen
W4 = bpxnc(C,3); % Neural net with 3 hidden units

% Compute and display errors
disp([testd(D*W1),testd(D*W2),testd(D*W3),testd(D*W4)]);

% Plot data and classifiers
scatterd(A); % scatter plot
plotd(W1,’-’); % plot the 4 discriminant functions
plotd(W2,’-.’);
plotd(W3,’--’);
plotd(W4,’:’);

This commandfile first generates bygendath two sets of labeled objects, both containing 10
two-dimensional object vectors, and stores them and their labels and apriori probabilities
dataset A . The distribution follows the so-called ‘Highleyman classes’. The next call to
gendat takes thisdataset and splits it at random into adataset C , further on used for
training, and adataset D , used for testing. This training setC contains 20 objects from both
classes. The remaining 2 x 80 objects are collected in D .

In the next lines four classification functions (discriminants) are computed, calledW1, W2, W3

and W4. The linear and quadratic classifier are both based on the assumption of normall
distributed classes. The Parzen classifier estimates the class densities by the Parzen de
estimation and has a built-in optimization for the smoothing parameter. The fourth classi
uses a feedforward neural network with three hidden units. It is trained by the backpropag
rule using a varying stepsize.

Hereafter the results are displayed and plotted. The testdataset D is used in a routinetestd

(test discriminant) on each of the four discriminants. The estimated probabilities of error
displayed in the Matlab command window and look like:

0.1750 0.1062 0.1000 0.1562
- 6 -

elow.
tes
ear

tures

Matlab

further
Finally the classes are plotted in a scatter diagram together with the discriminants, see b
The plot routineplotd draws a vectorized straight line for the linear classifiers and compu
the discriminant function values in all points of the plot grid (default 30 x 30) for the nonlin
discriminants. After that, the zero discriminant values are computed by interpolation and
plotted.

:

We will now shortly discuss the PRTools commands group by group. The two basic struc
of the toolbox can be defined by the constructorsdataset andmapping . These commands can
also be used to retrieve or redefine the data. It is thereby not necessary to use the general
converterstruct() for decomposing the structures. Bygetlab andgetfeat the labels
assigned to the objects and features can be found. The generation and handling of data is
facilitated bygenlab andrenumlab .

Datasets and Mappings

dataset Define dataset from datamatrix and labels and retrieve
getlab Retrieve object labels from dataset
getfeat Retrieve feature labels from dataset
genlab Generate dataset labels
renumlab Convert labels to numbers

mapping Define mapping and classifier from data and retrieve
getlab Retrieve labels assigned by a classifier

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

- 7 -

s

 to
There is a large set of routines for the generation of arbitrary normally distributed classe
(gauss), and for various specific problems (gendatc, gendatd, gendath, gendatm and
gendats). There are two commands for enriching classes by noise injection (gendatk and
gendatp). These are used for the general testset generatorgendatt . A given dataset can be
spit into a training set and a testsetgendat . The routinegendat splits the dataset at random
into two sets.

All routines operate in multi-class problems.classd andtestd are the general classification
and testing routines. They can handle any classifier from any routine, including the ones

Data Generation

gauss Generation of multivariate Gaussian distributed data
gendat Generation of subsets of a given data set
gendatb Generation of banana shaped classes
gendatc Generation of circular classes
gendatd Generation of two difficult classes
gendath Generation of Higleyman classes
gendatk Nearest neighbour data generation
gendatl Generation of Lithuanian classes
gendatm Generation of many Gaussian distributed classes
gendatp Parzen density data generation
gendats Generation of two Gaussian distributed classes
gendatt Generation of testset from given dataset
prdata Read data from file and convert into a dataset

Linear and Higher Degree Polynnomial Classifiers

klclc Linear classifier by KL expansion of common cov matrix
kljlc Linear classifier by KL expansion on the joint data
loglc Logistic linear classifier
fisherc Fisher’s discriminant (minimum least square linear classifier)
ldc Normal densities based linear classifier (Bayes’ rule)
nmc Nearest mean classifier
nmsc Scaled nearest mean classifier
perlc Linear classifier by linear perceptron
persc Linear classifier by nonlinear perceptron
pfsvc Pseudo-Fisher support vector classifier

qdc Normal densities based quadratic (multi-class) classifier
udc Uncorrelated normal densities based quadratic classifier

polyc Add polynomial features and run arbitrary classifier

classc Converts a mapping into a classifier
classd General classification routine for trained classifiers
testd General error estimation routine for trained classifiers
- 8 -

ing
can be
ation.

l them

r

e in

y

.

follow.

knnc andparzenc are similar in the sense that the classifiers they build still include all train
objects and that their parameter (the number of neighbours or the smoothing parameter)
user supplied or can be optimized over the training set using a leave-one-out error estim
For the Parzen classifier the smoothing parameter can also be estimated byparzenml using an
optimization of the density estimation. The special purpose classification routinesmapk, and
mapp are called automatically when needed. In general, there is no need for the user to cal
directly. The special purpose testing routinestestk andtestp are useful for obtaining leave-
one-out error estimations.

Decision trees can be constructed bytreec , using various criterion functions, stopping rules o
pruning techniques. The resulting classifier can be used inclassd , testd andplotd . They
make use ofclasst .

PRTools offers three neural network classifiers(bpxnc , lmnnc and rbnnc) based on an old
version of Matlab’s Neural Network Toolbox. Adaptations of Mathwork’s routines are mad
order to prevent unnecessary display of intermediate results. They are stored in theprivate

subdirectory. The resulting classifiers are ready to use byclassd , testd andplotd . The
automatic neural network classifierneurc builds a network without any parameter setting b
the user. Random neural network classifiers can be generated byrnnc . The first one is totally
random, the second optimizes the output layer by a linear classifier.

The Support Vector Classifier (svc) can be called for various kernels as defined byproxm (see

Nonlinear Classification

knnc k-nearest neighbour classifier (find k, build classifier)
mapk k-nearest neighbour mapping routine
testk Error estimation for k-nearest neighbour rule

parzenc Parzen density based classifier
parzenml Optimization of smoothing parameter in Parzen density estimation
mapp Parzen mapping routine
testp Error estimation for Parzen classifier

edicon Edit and condense training sets

treec Construct binary decision tree classifier
classt Classification with binary decision tree

bpxnc Train feed forward neural network classifier by backpropagation
lmnc Train feed forward neural network by Levenberg-Marquardt rule
rbnc Train radial basis neural network classifier
neurc Automatic neural network classifier
rnnc Random neural network classifier

svc Support vector classifier
- 9 -

ce a

a

)

below). The classifier is optimized by a quadratic programming procedure. For some
architectures a C-version is built-in for speeding up processing.

Classifiers for normal distributed classes can be trained byldc , qdc andudc , while nbayesc

assumes known densities. The special purpose testroutinetestn can be used if the parameters
of the normal distribution (means and covariances) are known or estimated bymeancov.

The feature selection routinesfeatselb , featself , featseli , featselo andfeatselp

generate subsets of features, callingfeateval for evaluating the feature set.featselm offers
a general entry for feature selection, calling one of the other metohds. All routines produ
mappingW (e.g.W = featself(A,[],k)). So the reduction of a datasetA to B is done by
B = A*W.

Normal Density Based Classification

distmaha Mahalanobis distance
mapn Multiclass classification on normal densities
meancov Estimation of means and covariance matrices from multiclass dat
nbayesc Bayes classifier for given normal densities
ldc Normal densities based linear classifier (Bayes’ rule)
qdc Normal densities based quadratic classifier (Bayes’ rule)
udc Normal densities based quadratic classifier (independen features
testn Error estimate of discriminant on normal distributions

Feature Selection

feateval Evaluation of a feature set
featrank Ranking of individual feature permormances
featselb Backward feature selection
featself Forward feature selection
featseli Individual feature selection
featselo Branch and bound feature selection
featselp Pudil’s floating forward feature selection
featselm Feature selection map, general routine for feature selection

Classifiers and Tests (general)

classc Convert mapping to classifier
classd General classification routine for trained classifiers
cleval Classifier evaluation (learning curve)
clevalb Classifier evaluation (learning curve), bootstrap version
confmat Computation of confusion matrix
crossval Error estimation by crossvalidation
normc Normalisation of classifiers
reject Compute error-reject curve
roc Compute receiver-operator curve
testd General error estimation routine for trained classifiers
- 10 -

e
-class
d on
an

st

ership.
xed
f these

is

e way
A classifier maps, after training, objects from the feature space into its output space. Th
dimensionality of this space equals the number of classes (an exception is possible for two
classifiers, that may have a one-dimensional output space). This output space is mappe
posterior probabilities byclassc . Normalization of these probabilities on a given dataset c
be controlled bynormc . This is standard built-in for all training algorithms. Classification
(determining the class with maximum output) is done byclassd , error estimates for test data
are made bytestd andconfmat . More advanced techniques like rotating datasets over te
sets and training sets, are offered bycrossval , cleval andclevalb .

Classifiers are a special type of mapping, as their output spaces are related to class memb
In general a mapping converts data from one space to another. This may be done by a fi
procedure, not depending on a dataset, but controlled by at most some parameters. Most o
mappings that don’t need training are collected bycmapm (e.g. shifting, rotation, deletion of
particular features), another example is the sigmoidal mappingsigm . Some of the mappings
that need training don’t depend on the object labels, e.g. the principal component analys
(PCA) byklm andklms , object normalization bynormm and scaling byscalem , subspace
mapping (maps defined by normalized objects and that include the origin) bysubsm and
nonlinear PCA or kernel PCA by support vector mapping,svm. The other routines depend on
object labels as they define the mapping such that the class separability is maximized in on
or another. The Fisher criterion is optimized byfisherm , the scatter byklm (if called by
labelled data), density overlap for normal distributions bymlmand general class separability by
lmnm.

Mappings

cmapm Compute some special maps
featselm Feature selection map, general routine for feature selection
fisherm Fisher mapping
klm Decorrelation and Karhunen Loeve mapping (PCA)
klms Scaled version ofklm , useful for prewhitening
lmnm Levenberg-Marquardt neural net diabolo mapping
nlklm Nonlinear Karhunen Loeve mapping (NL-PCA)
normm Object normalization map
proxm Proximity mapping and kernel construction
reducm Reduce to minimal space mapping
scalem Compute scaling data
sigm Simoid mapping
subsm Subspace mapping
svm Support vector mapping, useful for kernel PCA
- 11 -

.g.
rity

g. in
 the
yed by

by
Classifiers can be combined by horizontal and vertical concatenation, see section 5.2, e
W = [W1, W2, W3]. Such a set of classifiers can be combined by several rules, like majo
voting (majorc), combining the posterior probabilities in several ways (maxc, minc , meanc,
medianc andprodc), or by training an output classifier (traincc). The way classifiers are
combined can be inspected byparsc .

Images can be stored, either as features (im2feat) , or as objects (im2obj) in a dataset. The
first possibility is useful for segmenting images using a vector of values for each pixels (e.
case of multi-color images, or as a result of a filterbank). The second possibility enables
classification of entire images using their pixels as features. Such datasets can be displa
the overloaded commandsimage andimagesc . The relation with image processing is
established bydataim , enabling arbitrary image operations, Simple filtering can be sped up
the use ofdatfilt anddatgauss.

Combining classification rules

baggingc Boortstrapping and aggregation of classifiers
majorc Majority voting combining classifier
maxc Maximum combining classifier
minc Minimum combining classifier
meanc Averaging combining classifier
medianc Median combining classifier
prodc Product combining classifier
traincc Train combining classifier
parsc Parse classifier or map

dataim Image operation on dataset images.
data2im Convert dataset to image
datfilt Filter dataset image
datgauss Filter dataset image by Gaussian filter
im2obj Convert image to object in dataset
im2feat Convert image to feature in dataset
image Display images stored in dataset
imagesc Display images stored in dataset, automatic scaling

Clustering and Distances

distm Distance matrix between two data sets.
proxm Proximity mapping and kernel construction
hclust Hierarchical clustering
kcentres k-centers clustering
kmeans k-means clustering
modeseek Clustering by modeseeking
- 12 -

Plotting

plotd Plot discriminant function in scatterplot
plotf Plot feature distribution
plotm Plot mapping in scatterplot
plot2 Plot 2d function
plotdg Plot dendrgram (see hclust)
scatterd Scatterplot
scatter3d 3D Scatterplot

Examples

prex1 Classifiers and scatter plot
prex2 Plot learning curves of classifiers
prex3 Multi-class classifier plot
prex4 Classifier combining
prex5 Use of images and eigenfaces
- 13 -

use
l with
nts of a

t

bels,
umbers
all
mns

the
ataset

bels
d
qual

ed in

and
e by
ning
nged.

f A
ture
n a
5. Some Details

The command help files and the examples given below should give sufficient information to
the toolbox with a few exeptions. These are discussed in the following sections. They dea
the ways classifiers and mappings are represented. As these are the constituting eleme
pattern recognition analysis, it is important that the user understands these issues.

5.1 Datasets

A dataset consists of a set ofm objects, each given byk features. In PRTools such a datase
is represented by am by k matrix: m rows, each containing an object vector ofk elements.
Usually a dataset is labeled. An example of a definition is:
> A = dataset([1 2 3; 2 3 4; 3 4 5; 4 5 6],[3 3 5 5]’)
> 4 by 3 dataset with 2 classes

The 4 by 3 data matrix (4 objects given by 3 features) is accompanied by a labellist of 4 la
connecting each of the objects to one of the two classes, 3 and 5. Class labels can be n
or strings and should always be given as rows in the labellist. If the labellist is not given
objects are given the default label 255. In addition it is possible to assign labels to the colu
(features) of a dataset:
> A = dataset(rand(100,3),genlab([50 50],[3 5]’),[’r1’;’r2’;’r3’])
> 100 by 3 dataset with 2 classes

The routine genlab generates 50 labels with value 3, followed by 50 labels with value 5. In
last term the labels (r1, r2, r3) for the three features are set. The complete definition of a d
is:
> A = dataset(datamatrix,labels,featlist,prob,lablist)

given the possibilitiy to set apriori probabilities for each of the classes as defined by the la
given inlablist . The values inprob should sum to one. If prob is empty or if it is not supplie
the apriori probabilities are computed from the dataset label frequencies. If prob = 0 then e
class probabilities are assumed.

Various items stored in a dataset can be retrieved by
> [nlab,lablist,m,k,c,prob,featlist] = dataset(A)

in which nlab are numeric labels for the objects (1, 2, 3, ...) referring to the true labels stor
the rows of lablist. The size of the dataset is m by k, c is the number of classes (equal to
max(nlab)). Datasets can be combined by [A; B] if A and B have equal numbers of features
by [A B] if they have equal numbers of objects. Creating subsets of datasets can be don
A(I,J) in which I is a set of indices defining the desired objects and J is a set of indices defi
the desired features. In all these examples the apriori probabilities set for A remain uncha

The original datamatrix can be retireved by double(A) or by +A. The labels in the objects o
can be retrieved labels = getlab(A), which is equivalent to labels = lablist(nlab,:). The fea
labels can be retrieved by featlist = getfeat(A). Conversion by struct(A) makes all fields i
dataset A accessible to the user.
- 14 -

qual)

cally

ns

ut

ataset

so

wing
5.2 Classifiers and mappings

There are many commands to train and use mappings between spaces of different (or e
dimensionalities. For example:

if A is am by k dataset (m objects in ak-dimensional space)
and W is ak by n mapping (map fromk to n dimensions)
thenA*W is am by n dataset (m objects in an-dimensional space)

Mappings can be linear (e.g. a rotation) as well as nonlinear (e.g. a neural network). Typi
they can be used for classifiers. In that case ak by n mapping maps ak-feature data vector on
the output space of an-class classifier (exception: 2-class classifiers like discriminant functio
may be implemented by a mapping to a 1-dimensional space like the distance to the
discriminant,n = 1).

Mappings are of the datatype 'mapping ' (class(W) is 'mapping '), have a size of[k,n] if
they map fromk to n dimensions. Mappings can be instructed to assign labels to the outp
columns, e.g. the class names. These labels can be retrieved by

labels = getlab(W); before the mapping, or
labels = getlab(A*W); after the datasetA is mapped byW.

Mappings can be learned from examples, (labeled) objects stored in a datasetA, for instance by
training a classifier:

W3 = ldc(A); the normal densities based linear classifier
W2 = knnc(A,3); the 3-nearest neighbor rule
W1 = svc(A,’p’,2); the support vector classifier based on a 2-nd order

polynomial kernel

Untrained or empty mappings are supported. They may be very useful. In this case the d
is replaced by an empty set or entirely skipped:

V1 = ldc; V2 = knnc([],a); V3 = svc([],’p’,2);

Such mappings can be trained later by

W1 = A*V1; W2 = A*V2; W3 = A*V3;

The mapping of a testsetB by B*W1is now equivalent toB*(A*V1) or even, irregulary but very
handy toA*V1*B (or evenA*ldc*B). Note that expressions are evaluated from left to right,
B*A*V1 may result in an error as the multiplication of the two datasets (B*A) is executed first.

Users can add new mappings or classifiers by a single routine that should support the follo
type of calls:

W = newmapm([], par1, par2, ...); Defines the untrained, empty mapping.
W = newmapm(A, par1, par2, ...); Defines the map based on the training datasetA.
B = newmapm(A, W); Defines the mapping of datasetA onW, resulting in a datasetB.
- 15 -

a space
asures.
rt

puted

lass.

be

ed
s

els for

ns

e

ion
For an example list the routinesubsc.m .

Some trainable mappings do not depend on class labels and can be interpreted as finding
that approximates as good as possible the original dataset given some conditions and me
Examples are the Karhunen-Loeve Mapping (klm) which may be used for PCA and the Suppo
Vector Mapping (svm) by which nonlinear, kernel PCA mappings can be computed.

In addition to trainable mappings, there are fixed mappings, which operation is not com
from a trainingset but defined by just a few parameters. Most of them can be set bycmapm.

The resultDof a mapping of a testset on a trained classifier,D = B*W1is again a dataset, storing
for each object inB the output values of the classifier. These values, usually between-inf and
inf can be interpreted as similarities: the larger, the more similar with the corresponding c
These number can be mapped on the[0,1] interval by the fixed mappingsigm :
D = B*W1*sigm . The values in a single row (object) don’t necessarily sum to one. This can
achieved by the fixed mapping normm:D = B*W1*sigm*normm which is equivalent to
B*W1*classc . Effectively a mappingW is converted into a classifier byW*classc , which
maps objects on the normalized[0,1] output space. Usually a mapping that can be convert
into a classifier in this way, is scaled such by a multiplicative constant that these number
optimally represent (in the maximum likelihood sense) the posterior probabilities for the
training data. The resulting output dataset D has column labels for the classes and row lab
the objects. The class labels of the maximum values for each object can be retrieved by
labels = D*classd; or labels = classd(D); A global classification error follows from
e = D*testd; or e = testd(D);

Mappings can be combined in the following ways:

sequential: W = W1 * W2 * W3 (equal inner dimensions)
stacked : W = [W1, W2, W3] (equal numbers of 'rows' (input dimensions))
parallel : W = [W1; W2 ;W3] (unrestricted)

The output size of the parallel mapping is irregulary equal to(k1+k2+k3) by(n1+n2+n3)

as the output combining of columns is undefined. In a stacked or parallel mapping colum
having the same label can be combined by various combiners likemaxc, meanc andprodc . If
the classifiersW1, W2andW3are trained for the samen classes, their output labels are the sam
and are combined byW = prodc([W1;W2;W3]) into a(k1+k2+k3) by n classifier.

Wfor itself, ordisplay(W) lists the size and type of a classifier as well as the routine or sect
in @mapping/mtimes used for computing a mappingA*W. The construction of a combined
mapping may be inspected byparsc(W) .

A mapping may be given an output selection byW = W(:,J) , in whichJ is a set of indices
pointing to the desired classes.B = A*W(:,J); is equivalent toB = A*W; B = B(:,J);

Input selection is not possible for a mapping.
- 16 -

nd the

an
6. Examples

The following examples are available under PRTools. We present here the source codes a
output they generate.

6.1 Classifiers and scatter plot

A 2-d Highleyman datasetA is generated, 100
objects for each class. Out of each class 20 objects
are generated for training,C and 80 for testing,D .
Four classifiers are computed: a linear one and a
quadratic one, both assuming normal densities
(which is correct in this case), a Parzen classifier and
a neural network with 3 hidden units. Note that the
data generation as well as the neural network
initialisation use random generators. As a result they
only reproduce if they use the original seed. After
computing and displaying classification results for
the test set a scatterplot is made in which all
classifiers are drawn.

%PREX1 PRTools example of classifiers and scatter plot
help prex1
pause(1)
A = gendath(100,100); % Generate Highleyman's classes

% Training set c (20 objects / class)
% Test set d (80 objects / class)

[C,D] = gendat(A,20);
% Compute classifiers

w1 = ldc(C); % linear
w2 = qdc(C); % quadratic
w3 = parzenc(C); % Parzen
w4 = lmnc(C,3); % Neural Net

% Compute and display errors
disp([testd(D*w1),testd(D*w2),testd(D*w3),testd(D*w4)]);

% Plot data and classifiers
figure(1);
hold off;
scatterd(A); drawnow;
plotd(w1,'-'); drawnow;
plotd(w2,'-.'); drawnow;
plotd(w3,'--'); drawnow;
plotd(w4,':'); drawnow;
echo off
0.1875 0.0500 0.1437 0.0938

6.2 Learning curves

In this example the learning curves for four classifiers are computed using the Highleym

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−5

−4

−3

−2

−1

0

1

2

3

4

5

- 17 -

o the
reas.
dataset. The errors are computed using thecleval routine.

%PREX2 PRTools example, plot learning curves of classifiers
help prex2
pause(1)

% set desired learning sizes
learnsize = [3 5 10 15 20 30];

% Generate Highleyman's classes
A = gendath(100,100);

% avarage error over 10 repetitions
% testset is complement of training set

e1 = cleval(ldc,A,learnsize,10);
figure(1); hold off;
plot(learnsize,e1(1,:),'-');
axis([0 30 0 0.3]); hold on; drawnow;
e2 = cleval(qdc,A,learnsize,10);
plot(learnsize,e2(1,:),'-.'); drawnow;
e3 = cleval(knnc([],1),A,learnsize,10);
plot(learnsize,e3(1,:),'--'); drawnow;
e4 = cleval(treec,A,learnsize,10);
plot(learnsize,e4(1,:),':'); drawnow;
legend('Linear','Quadratic','1-NN','DecTree');
xlabel('Sample Size')
ylabel('Error');

6.3 Multi-class classifier plot

This file shows how to construct a colored scatter diagram defining the areas assigned t
various classes. First the global variable GRIDSIZE is set to 100 in order to avoid empty a

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

Sample Size

E
rr

o
r

Linear
Quadratic
1−NN
DecTree
- 18 -

ing the
twice

thod
Then the Highleyman dataset is used to construct a 4-class problem. This is done by us
data only and then generating the labels separately. Note that the scatter plot itself is called
in order to have the scatter on top of the color plot generated byplotd .

%PREX3 PRTools example of multi-class classifier plot
help prex3
echo on
global GRIDSIZE
gs = GRIDSIZE;
GRIDSIZE = 100;

% generate 2 x 2 normal distributed classes
a = +gendath(20); % data only
b = +gendath(20); % data only
A = [a; b + 5]; % shift 2 over [5,5]
lab = genlab([20 20 20 20],[1 2 3 4]');% generate 4-class labels
A = dataset(A,lab);% construct dataset
hold off; % clear figure
scatterd(A,'.'); drawnow;% make scatter plot for right size
w = qdc(A); % compute normal densities based classifier
plotd(w,'col'); drawnow;% plot classification regions
hold on;
scatterd(A); % redraw scatter plot
echo off
GRIDSIZE = gs;
.

6.4 Classifier combining

This example is just an illustration on the use of mapping and classifier combining. The me
itself does not make much sense. There are sequential maps (likew1 = wkl*vkl) and a stacked

−2 −1 0 1 2 3 4 5 6 7 8
−4

−2

0

2

4

6

8

10
- 19 -

e
map (wall = [w1,w2,w3,w4,w5]), using various combining rules. Note how in the featur
selection routinefeatself a classifier (ldc) is used for the criterion.

%PREX4 PRTools example of classifier combining
help prex4
echo on

A = gendatd(100,100,10);
[B,C] = gendat(A,20);

wkl = klm(B,0.95); % find KL mapping input space
bkl = B*wkl; % map training set
vkl = ldc(bkl); % find classifier in mapped space
w1 = wkl*vkl; % combine map and classifier

% (operates in original space)
testd(C*w1) % test

wfn = featself(B,'NN',3); % find feature selection mapping
bfn = B*wfn; % map training set
vfn = ldc(bfn); % find classifier in mapped space
w2 = wfn*vfn; % combine
testd(C*w2) % test

wfm = featself(B,ldc,3); % find second feature set
bfm = B*wfm; % map training set
vfm = ldc(bfm); % find classifier in mapped space
w3 = wfm*vfm; % combine
testd(C*w3) % test

w4 = ldc(B); % find classifier in input space
testd(C*w4) % test
w5 = knnc(B,1); % another classifier in input space
testd(C*w5) % test

wall = [w1,w2,w3,w4,w5]; % parallel classifier set
testd(C*prodc(wall)) % test product rule
testd(C*meanc(wall)) % test mean rule
testd(C*medianc(wall)) % test median rule
testd(C*maxc(wall)) % test maximum rule again
testd(C*minc(wall)) % test minimum rule
testd(C*majorc(wall)) % test majority voting

echo off
- 20 -

d on an
o on

d and
6.5 Image segmentation by vector quantization

In this example an images is segmented using modeseeking clustering techniques base
randomly selected subset of pixels. The resulting classifier is applied on all pixels, and als
the pixels of a second image (may apply not so good). Finally a common map is compute
applied for both images.

%PREX5 PRTOOLS example of image vector quantization
help prex5
echo on

% standard Matlab TIFF read
girl = imread('girl.tif','tiff');

% display
figure
subplot(2,3,1); subimage(girl); axis off;
title('Girl 1'); drawnow

% construct 3-feature dataset from entire image
%[X,Y] = meshgrid(1:256,1:256);
%X = X/10000;
%Y = Y/10000;
%girl(:,:,4) = X;
%girl(:,:,5) = Y;
g1 = im2dfeat(girl);
imheight = size(girl,1);

% generate testset
t = gendat(g1,250);

% run modeseek, find labels, and construct labeled dataset
labt = modeseek(t*proxm(t),25);
t= dataset(t,labt);

% train NMC classifier
w = t*qdc([],1e-6,1e-6);

% classify all pixels
pack
lab = g1*w*classd;

% show result
% substitute class means for colors

cmap = +meancov(t(:,1:3));
subplot(2,3,2); subimage(reshape(lab,imheight,length(lab)/im-
height),cmap);
axis off;
title('Girl 1 --> Map 1')
drawnow

% Now, read second image

girl2 = imread('girl2.tif','tiff');
% display

subplot(2,3,4); subimage(girl2);
- 21 -

%girl2(:,:,4) = X;
%girl2(:,:,5) = Y;
axis off;
title('Girl 2'); drawnow

% construct 3-feature dataset from entire image
g2 = im2feat(girl2);
clear girl girl2
pack
lab2 = g2*w*classd;

% show result
% substitute class means for colors

cmap = +meancov(t(:,1:3));
subplot(2,3,5);
subimage(reshape(lab2,imheight,length(lab)/imheight),cmap);
axis off;
title('Girl 2 --> Map 1')
drawnow

% Compute combined map

g = [g1; g2];
t = gendat(g,250);
labt = modeseek(t*proxm(t),25);
t= dataset(t,labt);
w = t*qdc([],1e-6,1e-6);
cmap = +meancov(t(:,1:3));
clear g
pack
lab = g1*w*classd;
subplot(2,3,3);
subimage(reshape(lab,imheight,length(lab)/imheight),cmap);
axis off;
title('Girl 1 --> Map 1,2')
drawnow
pack
lab = g2*w*classd;
subplot(2,3,6); subimage(reshape(lab,imheight,length(lab)/im-
height),cmap);
axis off;
title('Girl 2 --> Map 1,2')
drawnow
set(gcf,'DefaultAxesVisible','remove')
- 22 -

sed on
ce, the
ted as
6.6 Use of images and eigenfaces

This example illustrates the use of images by the face image dataset. The eigenfaces ba
the first image of each subject are displayed. Next all images are mapped on this eigenspa
scatterplot for the first two eigenfaces are displayed and the leave-one-out error is compu
a function of the number of eigenfaces used.

%PREX6 Use of images and eigenfaces
help prex6
echo on

if exist('face1.mat') ~= 2
error('Face database not in search path')

end
a = readface([1:40],1);
w = klm(a);
imagesc(dataset(eye(39)*w',[],[],[],[],112)); drawnow

b = [];
for j = 1:40

a = readface(j,[1:10]);
b = [b;a*w];

end
figure
scatterd(b)
- 23 -

title('Scatterplot on first two eigenfaces')
fontsize(14)

featsizes = [1 2 3 5 7 10 15 20 30 39];
e = zeros(1,length(featsizes));
for j = 1:length(featsizes)

k = featsizes(j);
e(j) = testk(b(:,1:k),1);

end
figure
plot(featsizes,e)
xlabel('Number of eigenfaces')
ylabel('Error')
fontsize(14)

−1500 −1000 −500 0 500 1000 1500
−1000

−500

0

500

1000

1500

2000
Scatterplot on first two eigenfaces

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

Number of eigenfaces

E
rr

or
- 24 -

- 25 -

	PRTools
	Version 3.0
	A Matlab Toolbox for Pattern Recognition
	R.P.W. Duin
	January 2000
	1. Introduction
	2. The area of statistical pattern recognition
	3. References
	4. A review of the toolbox
	5. Some Details
	5.1 Datasets
	5.2 Classifiers and mappings

	6. Examples
	6.1 Classifiers and scatter plot
	6.2 Learning curves
	6.3 Multi-class classifier plot
	6.4 Classifier combining
	6.5 Image segmentation by vector quantization
	6.6 Use of images and eigenfaces

