
eXactML 1.2

User’s Guide

Bristol Technology Inc.
39 Old Ridgebury Road
Danbury, CT 06810-5113
USA
(203) 798-1007

Bristol Technology BV
Plotterweg 2A
3821 BB Amersfoort
The Netherlands
+31 (0)33 450 50 50

Printed July 25, 2000

This manual supports eXactML Release 1.2 and higher versions.
No part of this manual may be reproduced in any form or by any means without written permission of:

Bristol Technology Inc
39 Old Ridgebury Road
Danbury, CT 06810-5113 U.S.A.

Copyright © Bristol Technology Inc. 2000

RESTRICTED RIGHTS

The information contained in this document is subject to change without notice.

For U.S. Government use:
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at 52.227-7013.

All rights reserved. Printed in the U.S.A.

The information in this publication is believed to be accurate in all respects; however, Bristol Technology Inc. cannot
assume responsibility for any consequences resulting from its use. The information contained herein is subject to
change. Revisions to this publication or a new edition of it may be issued to incorporate such changes.

Bristol Technology® and eXactMLTM are trademarks of Bristol Technology Inc. Visual C++ is a registered trademark of
Microsoft Corporation. All other trademarks herein are the property of their respective holders.

General Notice: Some of the product names used herein have been used for identification purposes only and may be
trademarks of their respective companies.

Part No. EX1000628

eXactML User’s Guide i

Contents

Chapter 1 Getting Started with eXactML . 1
What is eXactML? . 1
How Does eXactML Work? . 1
Installing eXactML . 2
Quick Start . 3

Chapter 2 Generating Interfaces with eXactML 5
Using the eXactML AppWizard . 5
Using the eXactML Command . 13

Chapter 3 Using Generated Interfaces. 15
Types of Interfaces Generated . 15
Read Interfaces . 16
Sample Applications . 16
Using Generated Interfaces in Applications . 17
Distributing Applications That Use eXactML Classes 20

Chapter 4 eXactML Class Reference . 23
Namespaces . 23
XObject . 23
XDatatype . 25
XList . 25
XMLImporterBase . 25
XObjectFactory . 27
Initialize Function . 27
XML Schema Support . 28

Contents

ii eXactML User’s Guide

Chapter 5 Error Messages . 33
DTD-to-Schema Parser Error Messages . 33
eXactML Class Generator Error Messages . 34
Microsoft XML Schema Errors . 35
eXactML AppWizard Error Messages . 36

Chapter 6 Frequently Asked Questions. 37

eXactML User’s Guide 1

Chapter 1

Getting Started with eXactML

What is eXactML?
eXactML makes it easy to add XML support to applications. It generates C++
interfaces for reading and writing valid XML content based on a specified DTD or
schema. Use these interfaces in your C++ applications to add XML support quickly and
easily.

How Does eXactML Work?
eXactML first parses the specified DTD or schema into an intermediate W3C XML
Schema that orders elements according to dependencies and provides name attributes
for all elements that do not have names in the original DTD or schema. You may save
the intermediate schema generated by eXactML for future reference if you wish.

For complete instructions on generating eXactML interfaces, see Chapter 2,
“Generating Interfaces.”

eXactML generates a header and source file that define interfaces for each element in
the specified DTD or schema. Each interface provides a constructor and Get(), Set(),
EmitXML(), and IsValid() methods. For more information about the interfaces, see the
eXactML Class Reference in Chapter 4.

eXactML also generates a flex/bison parser that is customized to recognize XML
documents for the given DTD or schema. The parser can be invoked to import a
document and generate the appropriate element object structures. These objects may
ben be manipulated programmatically using the generated interfaces.

Chapter 1 • Getting Started with eXactML
Installing eXactML

2 eXactML User’s Guide

Once you generate the eXactML interfaces and parser, follow the instructions in
Chapter 3, “Using Generated Interfaces,” to add the classes to your application.

Installing eXactML
After downloading eXactML from the Bristol Technology web site, perform the
following steps to install it on your PC or workstation:

1. Double-click the eXactML11.exe icon to open the eXactML Welcome dialog.

2. Click Finish to unpack the eXactML installation files and start the installation pro-
cess.

3. Click Next> to view the eXactML license agreement.

4. Click Yes to agree to the license terms and continue with the installation.

5. Enter your name, company name, and serial number, then click Next> to continue.

Your serial number was provided on the email you received from Bristol
Technology. If you no longer have the email containing your serial number,
request a serial number from support@bristol.com.

6. Choose the destination folder where you wish to install eXactML and click Next>
to install the eXactML files.

7. When setup is complete, select “I would like to view the Release Notes” and click
Finish.

Data
Source

Business
Application

eXactML Classes

DTD

Schema

XML
Documents

Chapter 1 • Getting Started with eXactML
Quick Start

eXactML User’s Guide 3

Quick Start
Once you’ve installed eXactML, you can generate C++ interfaces to add XML to your
application in just a few minutes:

1. Start Visual C++ and choose the File > New menu item.

If you already have a project that you are adding XML support to, open it first to
make the project generated by eXactML a subproject in your existing workspace.

2. On the Project tab, select eXactML AppWizard and specify the project name and
location.

3. In the eXactML AppWizard, specify your DTD or schema location and class
options, then click Finish.

That’s it! eXactML generates C++ classes that you can use to add the ability to write
valid XML to your applications. For more information about using the eXactML
AppWizard or, if you don’t use Visual C++, the eXactML command, see Chapter 2,
“Generating Interfaces.” For more information about using interfaces generated by
eXactML in your application, see Chapter 3, “Using Generated Interfaces.”

Chapter 1 • Getting Started with eXactML
Quick Start

4 eXactML User’s Guide

eXactML User’s Guide 5

Chapter 2

Generating Interfaces with eXactML

There are two ways to use eXactML to generate interfaces based on your DTD or

schema: the Visual C++ eXactML AppWizard and the eXactML command.

If you are using Microsoft Visual C++ for application development, the eXactML

AppWizard is the easiest way to generate interfaces for your DTD or schema and use

these interfaces in your application.

If you don’t use Visual C++, however, you can use the eXactML command to generate

interfaces.

Using the eXactML AppWizard

eXactML provides close integration with Visual C++ to make it easy to generate

interfaces and use them in Visual C++ applications. eXactML runs as an AppWizard,

provides the option of using MFC data types, and generates the XML interfaces in a

Visual C++ project.

To use the eXactML AppWizard to generate interfaces in a Visual Studio project,

perform the following steps:

1. If you wish to use the interfaces generated by eXactML in an existing project, open

the project in Visual C++ before running the eXactML AppWizard.

2. In Visual C++, choose the File > New menu item. The New dialog opens.

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML AppWizard

6 eXactML User’s Guide

3. On the Projects page, select eXactML AppWizard and specify the following
options:

Option Description

Project name: The name of the project to be created by the eXactML
AppWizard.

Location: The directory location of the project to be created by the
eXactML AppWizard. Enter the full pathname or click ...
to browse to the location.

Workspace option If your application project file is open, you may specify
whether to create a new workspace or add the eXactML
project to the current workspace. If no application
project file is currently open, the eXactML AppWizard
automatically creates a new workspace.

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML AppWizard

eXactML User’s Guide 7

4. Click OK. The eXactML AppWizard Step 1 opens.

5. Specify the following options:

6. Click Next> to display the eXactML AppWizard Step 2.

Option Description

Input File Name Enter the full pathname of the DTD or schema to use as
the basis for your generated classes. Click … to select a
file with the Open Schema dialog.
eXactML supports the W3C XML Schema standard as
well as DTD. Other schema standards such as XML-
Data will be supported in upcoming releases. eXactML
recognizes the following file extensions:
.dtd DTD
.xdr, .biz, .xml Microsoft XML Schema
.xsd, other extensions W3C XML Schema

Copy and add Check Copy and add to project to copy the specified
DTD or schema file to your project. This option makes it
easy to add your DTD or schema file to your source code
control system along with the rest of your project.

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML AppWizard

8 eXactML User’s Guide

7. Specify the following options:

Option Description

Namespace Specify the namespace used by the generated classes.
The default namespace is the name of the DTD or
schema file (without the extension). To specify a differ-
ent namespace, clear the Use File Name checkbox and
type the namespace in the Namespace edit box.

Disable use of C++
Namespaces

If the compiler on your target platform does not support
C++ namespaces (for example, SPARCWorks 4.2),
select this option to cause all class definitions to be pre-
fixed with namespace_.

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML AppWizard

eXactML User’s Guide 9

8. Click Next> to display the eXactML AppWizard Step 3.

Save generated
schema

From your DTD or schema, eXactML generates an inter-
mediate schema in W3C XML Schema format. In this
schema, eXactML rearranges elements to account for
dependencies between elements and assigns names to all
attributes that are unnamed in the original DTD or
schema. eXactML uses this schema to generate inter-
faces for your DTD or schema.

To save the intermediate schema created in memory by
eXactML, check Save Generated Schema. eXactML
saves the generated schema in the current project with
the name eXactML_basename.scm, where basename is
the name of the DTD or schema entered in step 5. If you
are generating classes from a DTD, this option is particu-
larly useful because you can edit the schema to add type
constraints not available in DTDs, then regenerate
classes with eXactML using the edited schema, resulting
in better classes.

Disable XML read
capability

When checked, this option defines the macro -
EXACTML_SUPPRESS_READ_SUPPORT in the gen-
erated project. When this macro is defined, the compiled
eXactML classes will not contain XML read support,
thus decreasing code size. Enable this option only if you
do not want to use eXactML classes for reading XML.

Option Description

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML AppWizard

10 eXactML User’s Guide

9. Specify the following options:

Option Description

Use MFC To generate classes that use MFC data types internally,
check Use MFC internally. By default, eXactML gener-
ates classes that use STL data types. When this option is
selected, eXactML classes may still use some STL com-
ponents internally, but will mainly use MFC.

Note: If any names in your DTD are the same as MFC
macro names (for example, TEXT), the Visual C++ com-
piler will generate an error when you compile your
classes. In this case, either change the name in your DTD
or in the classes generated by eXactML before compil-
ing.

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML AppWizard

eXactML User’s Guide 11

10. Click Finish. Visual C++ displays the New Project Information dialog, which lists
the options you selected in the eXactML AppWizard.

11. Click OK.

eXactML creates source and header files that define interfaces for all elements in your
DTD or schema. If you did not disable XML read capability, it also creates source files
for the parser used to import XML documents into the interfaces.

If you specified, eXactML copies the original DTD or schema file and the generated
schema file created by eXactML to your project. eXactML also configures your project
settings to build the generated interfaces to your specification.

The classes generated by eXactML are particularly useful because they use names that
match the element and attribute names in your DTD or schema rather than generic
names such as “element” or “node.”

Link emitted
classes as a DLL

To build a DLL from the classes generated by eXactML,
check Create a DLL. This setting causes eXactML to add
DLL information to the classes it generates and config-
ure project build settings to build a DLL. By default,
eXactML configures project build settings to build a
static library. The resulting static library or DLL import
library must be added to your application project’s link
line.

Link eXactML
Base library as a
DLL

To link the eXactML Base library as a DLL, select Link
eXactML Base library as a DLL. This option is only
enabled if Link emitted classes as a DLL is selected. By
default, eXactML configures project build settings to
link the eXactML base library as a static library.

Option Description

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML AppWizard

12 eXactML User’s Guide

Classes generated by eXactML

Source DTD

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML Command

eXactML User’s Guide 13

Using the eXactML Command
If you don’t use Visual C++ for application development, you can still use eXactML to
generate C++ classes by using the eXactML command. This command has the
following syntax:

eXactML [-DLMNRX?] [-ddirectory] [-klicensekey]
[-llistfile] –nnamespace file

Flag Description

-D Configures the generated header file to export a DLL when compiled on
Windows. Do not use this option if you are compiling on other platforms.
By default, the generated classes are compiled into a static library.

-d Specifies the directory where generated files are stored. The default is the
current directory.

-k Changes license information to use the specified license key and then exits.
Use this option to change from an evaluation license to a development
license.

-L Returns the license status for your installation of eXactML.

-l Specifies the name of the list file where eXactML writes a list of source
files created as well as error information. The default is standard output.

-M Uses MFC data types in generated classes. Use this option only if you plan
to compile your classes on Windows only. Classes that use MFC cannot
compile on other platforms. By default, eXactML uses STL data types in
generated classes so the classes can be compiled on UNIX and Linux plat-
forms. Note that if you use STL data types and compile on Windows, you
must link to the multithreaded DLL version of the C++ runtime library. If
you use the eXactML AppWizard, it configures this project setting for you
automatically. eXactML may still use some STL components internally,
but mainly uses MFC.

Chapter 2 • Generating Interfaces with eXactML
Using the eXactML Command

14 eXactML User’s Guide

-N Causes eXactML to generate code that does not use namespaces. Use this
option if your compiler does not support namespaces (for example,
SPARCWorks 4.2). When this option is used, all classes are given the
namespace_ prefix and all references to eXactML objects use eXactML_
instead of eXactML::. Note that in situations where you need to compile
on multiple platforms and wish to use namespaces when possible, you must
run eXactML twice (once without this option and once with it) and main-
tain two sets of code. However, you may use code generated with the -N
option on compilers that do have namespace support, enabling you to
maintain a common source code base if desired.

-n Specifies the namespace for the generated classes.

-R Suppresses the generation of code to support reading of XML documents.
Enable this option only if you do not want to use eXactML classes for read-
ing XML.

-X Saves the intermediate schema file generated by eXactML. From your
DTD or schema, eXactML generates an intermediate schema in W3C
XML Schema format. In this schema, eXactML rearranges elements to
account for dependencies between elements and assigns names to all
attributes that are unnamed in the original DTD or schema. eXactML uses
this schema to generate interfaces for your DTD or schema. eXactML
saves the generated schema with the name eXactML_basename.scm,
where basename is the name of the DTD or schema file. If you are generat-
ing classes from a DTD, this option is particularly useful because you can
edit the schema to add type constraints not available in DTDs, then regen-
erate classes with eXactML using the edited schema, resulting in better
classes.

file The pathname of the DTD or schema file generated classes should be based
upon.

Flag Description

eXactML User’s Guide 15

Chapter 3

Using Generated Interfaces

Types of Interfaces Generated
eXactML generates classes for each element in your DTD or schema. The names of the
classes correspond to the element names in your DTD or schema. For each element,
eXactML classes provide a default constructor, copy constructor, assignment operator,
destructor, and the following member functions, all defined in the header file generated
by eXactML.

• Get() member function
eXactML generates a Get() member function for each element or attribute. This
member function returns the attribute value. Call HasAttribute() first for attributes.

• Set() member function
eXactML generates a Set() member function for each element attribute, unless the
element is fixed. This member function sets the value of the attribute.

• EmitXML() member function
This member function writes valid, well-formed XML content for the element to a
stream. It returns trueon success.

• IsValid() member function
This member function verifies that the element data is of the correct datatype. See
the XML Schema Support section for a list of supported XML datatypes and the
associated eXactML datatypes. Note that for datatypes implemented as strings in
eXactML, eXactML only checks whether it is a string; it does not check values.
For example, the XML datatype date is implemented as a string in eXactML.
IsValid() checks that the value is a string, but does not check that it is a valid date.
Regular expressions are not supported in string literals.

• freeElems() member function
For list elements, this member function iterates over the list and deletes all pointers
in it. Destructors for classes that use a list class call this member function.

Chapter 3 • Using Generated Interfaces
Read Interfaces

16 eXactML User’s Guide

• Has() member function
For elements that are associated with the zero or one wildcard, this member
function determines whether a specified element exists before calling the Get()
member function.

• Remove() member function
For elements that are associated with the zero or one wildcard, this member
function removes a specified element.

For more detailed information about these member functions, see Chapter 4, “ExactML
Class Reference.”

Read Interfaces
By default, eXactML generates an XML parser when it generates interfaces for your
DTD or schema. This parser is customized to recognize XML documents for the
specified DTD or schema. Use the XMLImporter class in your application to invoke
the parser to import an XML document and generate the appropriate element object
structures. These objects may then be manipulated programatically by the interfaces
generated by eXactML.

If you do not plan to use the eXactML read capability in your application, disable read
capability in the eXactML Wizard when you generate interfaces for your DTD or
schema.

For more detailed information about XMLImporter, see Chapter 4, “eXactML Class
Reference.”

Sample Applications
eXactML provides the following sample applications that demonstrate the use of
classes generated by eXactML. These samples are located in
eXactML_install_directory/samples.

Sample Description

acmepc eXactML classes are generated from a DTD and use STL.
Demonstrates read and write functionality.

scribble/dtdafx eXactML classes are generated from a DTD and use MFC.
Demonstrates write functionality only.

Chapter 3 • Using Generated Interfaces
Using Generated Interfaces in Applications

eXactML User’s Guide 17

Using Generated Interfaces in Applications
Once you’ve generated classes with eXactML, you can use them in your application
just as you would any class library.

For an example of how you might use classes generated by eXactML in an application,
let’s look at the acmepc sample. This sample is a simple console application that reads
catalog order information from a data file and writes it out as an XML document. The
data file may be a text document (identified with the .dat filename extension) or an
XML document (identified with the .xml filename extension).

Constructing XML Content
The acmepc application builds the XML document by setting the value for each
element attribute.

In this example, the acmepc element consists of one or more item elements. Each item
element consists of five subelements (make, specification, price, blurb, and internal) as
well as a type attribute and a code attribute.

The way that the application constructs the output XML document depends on whether
the input file is a text document or an XML document.

Parsing a Text File
If the input file ends with the .dat filename extension, the acmepc application first
opens the data file and reads it into a data stream:

getline(dataStrm, inputbuf);

The following code uses the Set_code() class generated by eXactML to set the value
for the code attribute:

scribble/schemaafx eXactML classes are generated from a W3C XML Schema
and use MFC. Demonstrates read and write functionality.

scribble/schemastl eXactML classes are generated from a W3C XML Schema
and use STL. Demonstrates write functionality only.

marketwatch eXactML classes are generated from a W3C XML Schema
and use MFC. Demonstrates write functionality only.

Sample Description

Chapter 3 • Using Generated Interfaces
Using Generated Interfaces in Applications

18 eXactML User’s Guide

dataStrm >> inputbuf;
debug(“Code=”);
item.Set_code(inputbuf);

Once each item element is complete, it is added to the sequence of items that make up
the acmepc element:

AcmepcSeq *pAcmecpseq = new acmepcSeq;
pAcmepcseq->Set_item(item);
acmepc.Get_acmepcSeqList().push_back(pAcmepcseq);

Parsing an XML File

The application first calls the Initialize() function to register the create functions for the
generated classes with the XMLImporter. This function must be called before using
any generated classes or the XMLImporter.

acmepcxml::Initialize();

Next, the application imports the XML file, constructing the acmepc element object:

try {
importer.ImportFromFile(sInputFileName, fPreprocess);
}
catch (eXactML::XException & e)
{

std::cerr << e.GetMsg() << std::endl;
std::cerr << "in " << e.GetSourceFile() << " at line

number " << e.GetSourceLine() << std::endl;
return 1;

}

cout << "Read in XML file with no errors." << std::endl;

The importer’s GetXObject() function returns a pointer to the root object of the XML
document. Use dynamic_cast() to cast this pointer to the appropriate class:

acmepc *acmepc = dynamic_cast<acmepcxml::acmepc *>
(importer.GetXObject());

cout << "Successfully cast XML importer root to
acmepcxml::acmepc" << std::endl;

Chapter 3 • Using Generated Interfaces
Using Generated Interfaces in Applications

eXactML User’s Guide 19

Validating XML Content

When the acmepc element is constructed, the application validates it against the DTD
with the IsValid() member function before writing the XML document:

try {
acmepc.IsValid();

}
catch (eXactML::XException e) {

cout << “Exception in validating XML” << std::endl;
cout << e.GetMsg() << std::endl;
return 1;

}

Note that the following example data files are included with the sample. Some of them
contain data that does not match the DTD:

• acmepc.dat contains valid data that will generate a valid XML document.

• badtype.dat contains an invalid value, Scanner, for the product type. The
DTD only allows PC and Printer as product type values.

<!ATTLIST item type (PC|PRINTER) “PC”>

• acmepc.xml contains a valid acmepc XML document.

Writing the XML Document

Finally, the application generates the XML document, either to a file or to standard
output:

if (argc == 3)
acmepc.EmitXMLToFile(argv[2]);

else
acmepc.EmitXML(cout);

Deleting Imported XML Objects

After an XML document has been imported, the acmepc sample frees the objects
created during the parsing of the XML document:

XMLImporterBase::DeleteImportedXObject()

If this function were not called, a memory leak would result.

Chapter 3 • Using Generated Interfaces
Distributing Applications That Use eXactML Classes

20 eXactML User’s Guide

Distributing Applications That Use eXactML Classes
When you distribute applications that use classes generated by eXactML, the code you
distribute depends on your eXactML Wizard settings.

If you selected the Create DLL option, you must distribute this DLL along with your
application. If you used the default setting, the generated classes are built as a static
library. You must configure your application’s project settings to link to this DLL or
static library.

If your application uses eXactML’s XML read capability, you must also distribute the
exactmlbase library and configure your application’s project settings to link to this
library. The eXactML distribution includes several versions of the eXactML Base
Library; the version you distribute depends on your eXactML Wizard settings. The
following table describes the various eXactML Base libraries. In this table, the
following codes are used:

d = Debug
s = Static
n = No Namespace

To use read capability without distributing exactmlbase, build the source code
provided in the Source folder of the eXactML installation directory into your
application.

C++ Namespaces Library Type Release or Debug
eXactML Base
Library Name

Enabled DLL Release exactmlbase.lib/dll

Enabled DLL Debug exactmlbase_d.lib/dll

Enabled Static library Release exactmlbase_s.lib

Enabled Static library Debug exactmlbase_sd.lib

Disabled DLL Release exactmlbase_n.lib/dll

Disabled DLL Debug exactmlbase_nd.lib/dll

Disabled Static library Release exactmlbase_ns.lib

Disabled Static library Debug exactmlbase_nsd.lib

Chapter 3 • Using Generated Interfaces
Distributing Applications That Use eXactML Classes

eXactML User’s Guide 21

Important! The project settings for exactmlbase.dll, the DLL generated for your eXactML
classes, and your main application must match. Otherwise, your application may fail
during XML read while performing STL memory cleanup operations in
exactmlbase.dll. Since exactmlbase.dll uses the multithreaded version of
the Visual C++ C runtime library, the generated DLL and your main application must
use this version in their project settings as well. The same applies to the debug
configuration as well.

If you wish to statically link the C runtime library into your application, rebuild the
exactmlbase debug and release DLLs using that version of the C runtime library.

Use the exactmlbase.dsp project file installed with eXactML to rebuild
exactmlbase.dll with different project settings.

Important! If you are distributing your application on UNIX platforms, use the makefile provided
in the Source folder to build the exactmlbase library on each platform.

Chapter 3 • Using Generated Interfaces
Distributing Applications That Use eXactML Classes

22 eXactML User’s Guide

eXactML User’s Guide 23

Chapter 4

eXactML Class Reference

Namespaces
All eXactML classes are defined in the C++ namespace named "eXactML" unless the
no namespace option is used. If this option is selected, no C++ namepsace is declared
and all eXactML objects are prefixed with “eXactML_”. Note that many of these
classes are implemented differently depending on whether you are using STL or MFC.

XObject
The XObject class acts as the base class for all other eXactML classes, including those
generated from a DTD or schema. It implements the following public methods:

XObject()
The default constructor

XObject(const XObject & other)
The copy constructor

~XObject()
A virtual destructor

XObject & operator=(const XObject & other)
An assignment operator which copies another XObject's tag value into the current
XObject

int operator!=(const XObject & other)
This inequality comparison operator returns false if the XObjects' tags are equal,
otherwise it returns true.

Chapter 4 • eXactML Class Reference
XObject

24 eXactML User’s Guide

int operator==(const XObject & other)
This equality comparison operator returns true if the XObjects' tags are equal,
otherwise it returns false.

bool EmitXMLToFile(const char * pFileName)
Emits the current object's contents as XML to a given file. Returns false if the emit
process fails, otherwise returns true.

bool EmitXMLToFile(const std::string & sFileName)
This function is identical to the previous one, but it takes a CString (in MFC mode) or
std::string (in STL mode) argument instead of a const char *.

void EmitXMLHeader(std::ostream & oStrm)
Emits an XML header to a stream. It is called internally by EmitXMLToFile(), but
may be called by an application that wants to emit directly to a stream but needs to emit
the XML header first.

bool EmitXML(std::ostream &, int indentLevel = 0)
A pure virtual function. This function is implemented in every class derived from
XObject to emit that object's contents as XML to the stream parameter.

bool EmitAsAttribute(std::ostream &)
Emits the contents of the object in attribute syntax to the stream parameter.

void SetTag(const std::string & pTag)
Sets the XML tag associated with the object.

const std::string & GetTag() const
Returns the XML tag associated with the object.

bool IsValid()
Checks an object to see if it conforms to the DTD or schema from which it was
generated. It returns true if the object is valid, and false if it is not valid. IsValid()
may throw an eXactML::XException() object when an invalid condition occurs.

bool HasAttribute(std::string attrName)
Returns true if the specified attribute name exists; otherwise, returns false. Use this
method before the Get method.

void RemoveAttribute(std::string attrName)
Deletes the specified attribute.

Chapter 4 • eXactML Class Reference
XDatatype

eXactML User’s Guide 25

XObject * clone() const
This pure virtual function is implemented by every derived class to create a deep copy
of the current object.

XDatatype
XDatatype is a template class derived from XObject. It implements all the public
XObject interfaces. It also uses the eXactML::XFacet class to implement XML
schema datatypes with constraints. Generated classes derived from XDatatype will add
the appropriate XFacets to the object during construction. When the
XDatatype::IsValid() function is called, all of the appropriate XFacets are
compared against the value in the datatype to determine if it meets the constraints.

XDatatype implements the following additional functions, where T is the template
parameter type:

T GetValue()
Get the value stored in this datatype.

void SetValue(const T value)
Set the value stored in this datatype.

XList
This template class is derived from XObject and also from either CList (in MFC mode)
or std::list (in STL mode). The template parameter for XList should always be a pointer
to a class derived from XObject. XList inherits the interfaces of XObject and either
CList or std::list. When pointers are passed into an XList, the XList is now responsible
for deallocating that memory unless that pointer is removed from the list. To
implement this behavior, the following XList member function is provided:

void freeElems()
Called during object destruction, this function iterates over the list and deletes all the
element pointers. It then removes empties the list.

XMLImporterBase
This class is an abstract class used as the base for every XMLImporter class which is
generated for a given DTD or schema. It implements the following public methods:

Chapter 4 • eXactML Class Reference
XMLImporterBase

26 eXactML User’s Guide

void ImportFromFile(const std::string sFileName,

bool fPreprocess = true)

This function is used to read in an XML document whose filename is specified by

sFileName. If the second parameter is false, the importer will not call the entity

preprocessor before parsing the XML document. ImportXMLFromFile() will call

the protected PreProcess() function to preprocess the file (if preprocessing is enabled)

and then call the virtual Import() function to parse the file. If it is known that all XML

documents for this DTD or schema do not make use of entity references, a significant

performance gain may be achieved by setting fPreprocess to false. If the specified file

cannot be found or opened, ImportFromFile() will throw an appropriate

eXactML::XException. Exceptions may also be thrown by the PreProcess() or Import()

functions which are called by ImportFromFile(). These exceptions will be passed up to

the calling program.

eXactML::XObject * GetXObject()

After ImportFromFile() has been called, this function will return the root object of the

XObject tree populated by the parsing of the XML document. Applications should use

dynamic_cast to cast the XObject pointer to the appropriate expected root node. Note

that the pointer to the actual allocated tree is passed here to avoid the overhead of

making a copy. This tree will not be deleted automatically when the XMLImporter is

destroyed. Instead, call the static XMLImporterBase::DeleteImportedXObject()

function on the root node to delete the tree.

std::string GetOriginalFileName()

Returns the file name of the file passed into ImportFromFile(). Mainly to be used for

problem determination when a file fails to parse.

std::string GetPreProcessedFileName()

Returns the filename of the file used during the PreProcess() step called by

ImportFromFile(). This information may be needed for problem determination when a

file fails to parse.

static void DeleteImprotedXObject(eXactML::XObject *

pXObject)

This static function should be called to delete the tree of objects created during the

ImportFromFile() XML document parse.

Chapter 4 • eXactML Class Reference
XObjectFactory

eXactML User’s Guide 27

XObjectFactory
Under normal circumstances, an application will not directly reference the static
functions of the XObjectFactory class. If an application derives classes from eXactML-
generated classes, however, the XObjectFactory functions may be used to ensure that
the derived classes will be used during the parsing of an XML document.
XObjectFactory implements the following public methods:

static void RegisterCreateFunction(std::string
sObjectName, CREATE_FUNC_PTR pCreateFunc)
This function registers a create function with the XObjectFactory. A create function
has the following prototype:

static XObject * create(void)

All eXactML-generated classes have a static create() member function. This function
simply calls the new operator to allocate an instance of a class and return the allocated
pointer. If an application uses classes derived from eXactML-generated classes, these
derived classes should also implement a static create() member function. The
RegisterCreateFunction() call maps fully-qualified class names to the corresponding
create functions so that the XMLImporter() can create instances of the correct objects
when parsing XML documents. Use this function to register your own create function
for a derived class. If a create function is already registered for a given class name, the
new function will override the existing function. Note that when registering a derived-
class create function, the sObjectName parameter should be the fully-qualified base
class name. This lets the XMLImporter create the appropriate subclass when it is
importing an XML document. See the scribble\schemaafx sample for an
example of how this is done.

Initialize Function
The eXactML tool generates an Initialize() function within the designated namespace
whenever read functionality is enabled. This Initialize() function must be called before
an XMLImporter is used to import an XML document. The generated Initialize
function calls XObjectFactory::RegisterCreateFunction() to register all the create
functions for the eXactML-generated classes. This lets the XMLImporter create the
objects as it parses the XML document. If an application has derived classes from the
eXactML-generated classes, it should call XObjectFactory::RegisterCreateFunction()
for those classes after the Initialize() function has been called. See the
scribble\schemaafx sample for an example of how this is done.

Chapter 4 • eXactML Class Reference
XML Schema Support

28 eXactML User’s Guide

XML Schema Support
XML schema support in eXactML is based on the 24 September 1999 and 5 November
1999 drafts from the World Wide Web Consortium. Because this standard is still
evolving, Bristol Technology will continue to track it closely and implement changes
in upcoming releases.

Relevant URLs are:

• http://www.w3.org/TR/1999/WD-xmlschema-1-19991105/ - XML Schema
Structures

• XML Schema Datatypes
http://www.w3.org/TR/1999/WD-xmlschema-2-19991105/

• XML Schema Structures
http://www.w3.org/TR/1999/WD-xmlschema-1-19990924/

• XML Schema Datatypes
http://www.w3.org/TR/1999/WD-xmlschema-2-19990924/

• W3C XML Homepage
http://www.w3.org/XML/

eXactML also supports the Microsoft XML Schema format. For more information on
this format, see http://msdn.microsoft.com/xml/reference/schema/start.asp.

Structures
eXactML supports XML Schema structures except the following, for which the W3C
working group has not yet reached consensus:

• Attribute Group Definition

• Named Model Group

• Archetype Refinement

• Entities and Notations

• Schema Composition and Namespaces

Datatypes
eXactML implements XML schema datatypes as follows. Note that eXactML classes
validate that all generated XML is of the correct type, but do not necessarily validate
that the data is correct. For example, if your XML content contains an element of
datatype date, eXactML classes verify that the element is string but not that it is a valid
date.

Chapter 4 • eXactML Class Reference
XML Schema Support

eXactML User’s Guide 29

Schema
Datatype

Datatype used by
eXactML Classes (STL)

Datatype used by
eXactML Classes (MFC)

string std::string CString

boolean bool bool

real double double

timeInstant std::string CString

timeDuration std::string CString

recurringInstant std::string CString

binary std::string CString

uri std::string CString

language std::string CString

NMTOKEN std::string CString

NMTOKENS std::list<NMTOKEN> CList<NMTOKEN>

Name std::string CString

NCName std::string CString

ID std::string CString

IDREF std::string CString

decimal double double

integer long long

non_negative_
integer

unsigned long unsigned long

positive_integer unsigned long unsigned long

non_positive_
integer

long long

negative_integer long long

date std::string CString

Chapter 4 • eXactML Class Reference
XML Schema Support

30 eXactML User’s Guide

Groups

Groups in XML Schema are equivalent to parenthetical phrases in DTD !ELEMENT

declarations. eXactML implements groups as separate classes rather than using a

generic list of subelements for each class. This allows eXactML to provide easy
checking to assure validity of subelements.

Unfortunately, XML Schema groups are often not named, and DTD parenthetical

phrases certainly are unnamed. In these cases, eXactML generates a name based on the

parent archetype name and the word "Choice" (in the case of a choice) or "Seq" (in the
case of a sequence). For example, consider the following snippet from a DTD:

<!ELEMENT Item (Description, (UPC | SKU | Model))>

A schema representing this type might look like:

<archetype name="Item" order="seq">
 <element name="Description" type="Description"/>
 <group order="choice">
 <element name="UPC" type="UPC"/>
 <element name="SKU" type="SKU"/>
 <element name="Model" type="Model"/>
 </group>
</archetype>

In this case, eXactML will create a class for "Item" to represent the archetype and also

one called "ItemChoice" to represent the choice of UPC, SKU or Model. Class Item

will have a m_ItemChoice data member and corresponding accessor functions
SetItemChoice() and GetItemChoice(). The ItemChoice class will contain a

pointer to XObject, and have SetChoice() and GetChoice() functions. In this

fashion, either a UPC, SKU or Model object can be placed into the ItemChoice object.

When ItemChoice::IsValid() is called, ItemChoice will verify that the choice
is a valid UPC, SKU or Model.

time std::string CString

Schema
Datatype

Datatype used by
eXactML Classes (STL)

Datatype used by
eXactML Classes (MFC)

Chapter 4 • eXactML Class Reference
XML Schema Support

eXactML User’s Guide 31

If you prefer to have better names for your choices or sequences, run the eXactML
utility once and select the "Save generated schema" option. You can then modify the
group names in the generated schema an rerun eXactML with the modified schema as
input.

See the eXactML Release Notes for a description of current limitations in schema
support.

Chapter 4 • eXactML Class Reference
XML Schema Support

32 eXactML User’s Guide

eXactML User’s Guide 33

Chapter 5

Error Messages

There are three categories of eXactML error messages: messages from the DTD-to-
Schema parser, messages from the eXactML code generator, and messages from the
eXactML AppWizard.

DTD-to-Schema Parser Error Messages
The following error messages may be generated when converting your DTD into a
W3C XML Schema for use with eXactML. They are limited to DTD processing.

Error: Unable to open DTD input file
Make sure that you specified the correct pathname for your DTD. You must have read
permission for this file.

Error: Unable to open DTD preprocessor output file
Make sure that you have write permission for the directory you specified for eXactML
output.

Error: <DTD_filename>: line <#>: <description> at token “<token>” in the
following line: <line number>
For details on the source of this error, compare this line against the
appropriate production rule in the XML spec at
http://www.w3.org/TR/REC-xml.
The specified token is not used in your DTD in accordance with the W3C XML
specification. The <description> may be one of the following:

• Parse failed for DTD file: unable to continue.

• Reference to undefined symbol

• Defined symbol has no value

Chapter 5 • Error Messages
eXactML Class Generator Error Messages

34 eXactML User’s Guide

• Failed to open include file <filename>

• ftell failed

• Don’t know how to handle token ID

• Invalid character

• Problem with entity reference

• Entity reference undefined

Error: Stack Overflow - unable to continue

Send email with your DTD or schema file to support@bristol.com.

Error: Stack Underflow - unable to continue

Send email with your DTD or schema file to support@bristol.com.

Error: Symbol table full

Send email with your DTD or schema file to support@bristol.com.

Error: Lexemes array full

Send email with your DTD or schema file to support@bristol.com.

Error: Invalid symbol table index

Send email with your DTD or schema file to support@bristol.com.

Error: Too many errors - unable to continue

eXactML attempts to recover from errors and continue processing, but if it encounters
an excessive number of errors in your DTD, it exits with this message.

Error: <DTD filename>: line <#>: External entity reference to URL at token
“<token>” in the following line: <line text>.

This version of eXactML is unable to resolve external entity URL references such as
http://www.w3.org/TR/xhtml1/DTD/xhtml-lat.ent. To work around
this limitation, place the information from the specified URL into a file with the same
name (for example, ./xhtml-lat.ent). When eXactML encounters an external
entity URL reference, it looks for a local file with the same name and, if one exists,
uses it instead.

eXactML Class Generator Error Messages
The following errors may be generated by eXactML during the process of generating
classes for your DTD or schema:

Chapter 5 • Error Messages
Microsoft XML Schema Errors

eXactML User’s Guide 35

Error during XML4C2 Initialization
The IBM XML4C2 parser used to parse schemas is unable to start. This usually
indicates an installation problem. Uninstall and then reinstall eXactML. If the message
persists, see http://www.alphaworks.ibm.com/tech/xml4c for more information about
the XML4C parser.

An Error occurred during parsing
The IBM XML4C2 parser used to parse schemas encountered an error. See
http://www.alphaworks.ibm.com/tech/xml4c for more information about the XML4C
parser.

eXactML License error, please contact Bristol for a license.
The serial number entered during eXactML installation is incorrect or has expired.
Send email to support@bristol.com to request a new serial number.

Error: parse failed: unable to continue
The IBM XML4C2 parser used to parse schemas failed. This usually indicates an
installation problem. Uninstall and then reinstall eXactML. If the message persists, see
http://www.alphaworks.ibm.com/tech/xml4c for more information about the XML4C
parser.

Error: Caught STL exception while <function>
Send email with your DTD or schema file to support@bristol.com.

Error: XMLException <exception> while <function>
Send email with your DTD or schema file to support@bristol.com.

Error: Caught a DOM exception with type <type> Message: <message>
Send email with your DTD or schema file to support@bristol.com.

Error: Caught an unknown exception while <function>.
Send email with your DTD or schema file to support@bristol.com.

Microsoft XML Schema Errors
The following errors may be generated during processing of Microsoft XML Schema
files. They all indicate errors in the schema. For more information about the Microsoft
XML Schema, see http://msdn.microsoft.com/xml/reference/schema/start.asp.

• Error: Found an XML-Data <datatype> declaration for ElementType
‘<item_name>’ without a dt:type attribute. Cannot continue.

• Error: Found an XML-Data ElementType without a name. Cannot continue.

Chapter 5 • Error Messages
eXactML AppWizard Error Messages

36 eXactML User’s Guide

• Error: Found an XML-Data ElemntType declaration with a null name. Cannot
continue.

• Error: Found an XML-Data AtrributeType declaration without a name. Cannot
continue.

• Error: Found an XML-Data AttributeType declaration with a null name. Cannot
continue.

• Error: Found an XML-Data <datatype> declaration for AttributeType
‘<item_name>’ without a dt:type attribute. Cannot continue.

• Error: Found an XML-Data enumeration declaration for AttributeType
‘<item_name>’ without a dt:values attribute. Cannot continue.

• Error: Found an XML-Data <attribute> declaration with a type specification.
Cannot continue.

• Error: Found an XML-Data <attribute> declaration of type ‘<item_name>’
without a corresponding AttributeType declaration. Cannot continue.

eXactML AppWizard Error Messages
The following error messages may be generated by the eXactML AppWizard:

Cannot create temporary file; out of disk space?
Make sure that you have available disk space.

Error: No input file
You must specify your DTD or schema on the first page of the eXactML AppWizard.

Error: License failure
The serial number entered during eXactML installation is incorrect or has expired.
Send email to support@bristol.com to request a new serial number.

Error: Unknown exit code
Send email with your DTD or schema file to support@bristol.com.

Can’t open listfile to show errors!

eXactML was unable to open the listfile created during class generation that contains
any errors.

Could not open exactml.exe listfile
eXactML was unable to open the listfile created during class generation that contains
any errors.

eXactML User’s Guide 37

Chapter 6

Frequently Asked Questions

Is eXactML a Windows product only, or is it available for other platforms?

The eXactML product itself runs only on Windows, but it generates classes that you
can build and use on other platforms. For the current version, we’ve verified that you
can build and use classes generated by eXactML on Solaris and Linux. For details, see
the eXactML 1.0 Release Notes.

Do I have to use Visual C++ to use eXactML?

Tight integration with Visual C++ means that eXactML can automatically configure
project settings required to build eXactML classes and build your eXactML generated
classes along with your project. However, if you do not wish to use Visual C++, you
can use the eXactML command line interface to generate your classes. The eXactML
executable is located in eXactML_install_directory/bin.

Do I need to distribute any eXactML files with my application?

You must ship the code generated by eXactML (typically the DLL created by the
AppWizard). If you use eXactML’s XML read capability, you must also link your
application to and distribute the exactmlbase.dll file. The eXactML installation
includes the source for exactmlbase.dll, so you can build it with your application
if you don’t wish to distribute a separate DLL or if you need to build it for other
platforms.

If you distribute the source code for your application, you may also distribute the
source files for the eXactML classes. You may not distribute the source for
exactmlbase.dll.

Chapter 6 • Frequently Asked Questions

38 eXactML User’s Guide

Does eXactML read in DTD or schema definitions?
eXactML reads in DTD, W3C XML Schema, and Microsoft XML Schema definitions.
eXactML generates a corresponding W3C XML Schema definition, enabling you to
quickly move from DTDs or Microsoft XML Schemas to W3C XML Schemas if you
choose.

Which schema standard does eXactML support?
eXactML supports both the W3C XML Schema and the Microsoft XML Schema
standards. For more information, see Chapter 4, “eXactML Class Reference.”

What is the difference between eXactML and DOM?
The main difference is that the classes generated by eXactML unique to your DTD or
W3C XML Schema, unlike the generic interfaces provided by DOM. For example, if
your DTD has a Person element with attributes FirstName, LastName, and Age, the
classes generated by eXactML use those element and attribute names, so that the class
Person includes Get_FirstName, Get_LastName, and Get_Age member functions.

Can I use SGML extensions in my DTD?
No. eXactML supports DTD that conform to the XML 1.0 DTD only.

How do I upgrade my evaluation license to a developer license?
If you have an evaluation license of eXactML installed, upgrade to a development
license as follows:

1. Purchase a developer license from http://store.bristol.com. A developer license key
will be sent to you via email within one business day.

2. Run the following command at the DOS prompt, where licensekey is the developer
license key you received from Bristol:

exactml -klicensekey

	Contents
	Chapter 1 Getting Started with eXactML
	What is eXactML?
	How Does eXactML Work?
	Installing eXactML
	Quick Start

	Chapter 2 Generating Interfaces with eXactML
	Using the eXactML AppWizard
	Using the eXactML Command

	Chapter 3 Using Generated Interfaces
	Types of Interfaces Generated
	Read Interfaces
	Sample Applications
	Using Generated Interfaces in Applications
	Distributing Applications That Use eXactML Classes

	Chapter 4 eXactML Class Reference
	Namespaces
	XObject
	XDatatype
	XList
	XMLImporterBase
	XObjectFactory
	Initialize Function
	XML Schema Support

	Chapter 5 Error Messages
	DTD-to-Schema Parser Error Messages
	eXactML Class Generator Error Messages
	Microsoft XML Schema Errors
	eXactML AppWizard Error Messages

	Chapter 6 Frequently Asked Questions

